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Preface

Multi-valued data arises in many applications ranging from modern imaging
techniques to computational simulations and from medicine to engineering. Its
mathematical modeling frequently involves higher-order descriptors, such as tensors
or basis functions that are indexed by multiple indices. Even though such descriptors
have a long tradition of being used in the sciences to describe physical phenomena
and they are widely studied in mathematics, it is only over the last few years that
their significance for data and image analysis and a need for their visualization
has been recognized. At the same time, most applications that involve higher-order
descriptors require collaborations between diverse scientific communities such as
applied mathematics, computer science, physics, engineering, neuroscience, and
medicine.

This book is the fifth in a series that fosters a more active exchange between these
communities by collecting recent research findings and survey chapters dealing with
different aspects of this topic authored by researchers from different fields. Most
chapters were contributed by the participants of a workshop on the Visualization
and Processing of Higher Order Descriptors for Multi-Valued Data that was held
in February 2014 in Dagstuhl, Germany, and we hope that it will convey some of
the workshop’s inspiring atmosphere of open intellectual exchange. We are pleased
to also include a number of high-quality chapters that are relevant to the topic, but
whose authors could not attend the workshop due to other obligations or to the very
limited number of available places.

Comparing the range of chapters to previous books in the series, we can observe
a particularly strong interest in the mathematical foundations of the field. Similarly,
statistical analysis of higher-order descriptors and the use of machine learning
techniques play a more prominent role than in previous years. A renewed interest
in diffusion-weighted magnetic resonance imaging (dMRI) can be attributed to the
wider availability of multi-shell and multi-parameter data, as well as the emergence
of a completely new generation of dMRI techniques that use more complex gradient
waveforms. At the same time, applications in engineering and the physical sciences
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vi Preface

continue to play an important role, and the workshop has witnessed promising
collaborations in this domain.

The book is structured in five parts. The first is concerned with mathematical
foundations, while the second brings together methods for the processing and
interpolation of higher-order descriptors. The third part discusses questions of
visualization. This is followed by a section on statistical analysis and a final
part that presents solutions to specific application problems involving higher-order
descriptors.

The mathematical foundations presented in Part I include the development of
novel mathematical descriptions, the study and comparative analysis of existing
ones as well as algorithms for their computation. A new generation of diffusion MRI
techniques that make use of multiple gradient pulses or flexible gradient waveforms
sparked a lot of interest at the workshop since they not only allow us to acquire
information about tissue microstructure that is inaccessible to traditional diffusion
MRI, but also produce data for which fully adequate models and visualization
techniques are still to be developed. The first chapter unifies and compares two
mathematical approaches to modeling this new type of data. The second chapter
explores the use of Finsler geometry in the context of diffusion MRI by considering
Brownian motion on Finsler manifolds. The third chapter relates the theory of ori-
entation tensors and fabric tensors to parametric models of orientation distribution
functions that are commonly used in dMRI. The fourth chapter studies the topology
of linear symmetric tensor fields. Finally, the fifth chapter proposes two randomized
algorithms for computing low-rank tensor approximations and applies them to an
image-compression task.

The extension of data analysis methods from scalar fields to higher-order descrip-
tors requires the generalization of the fundamental concepts of data processing,
filtering, and interpolation. The first two chapters of Part II introduce morpholog-
ical filters for higher-order descriptors. These are filters that are concerned with
the detection and manipulation of shapes and structures in images with many
applications. The topic of the first chapter is the extraction of long and thin
structures, e.g. to find cracks. The second chapter proposes a partial ordering and a
notion of maximum and minimum for color images using higher-order descriptors.
The third chapter introduces a direction-controlled interpolation scheme to deal with
tensor fields with conflicting orientations, e.g. to resolve fiber crossings in DTI
fields. The last chapter summarizes the state of the art and challenges of tensor
voting. The goal of tensor voting is to retrieve as much reliable information from
various imaging data as possible, even where there is low resolution and in the
presence of noise. The idea is to propagate local information encoded through
tensors in a neighborhood following principles of proximity and similarity borrowed
from Gestalt psychology.

The wealth of information present in higher-order descriptors poses signifi-
cant challenges to visualization. The first three chapters in Part III address the
visualization of data from different variants of diffusion MRI. The first presents
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direct volume rendering and glyph-based strategies for data from diffusion spectrum
imaging, which estimates the diffusion propagator, a three-dimensional probability
distribution, at each point of three-dimensional space. The second chapter focuses
on diffusion kurtosis imaging, which approximates the diffusion propagator in its
covariance and kurtosis. It describes a method that uses this information to segment
and visualize tissue types. Reconstructing the trajectories of major nerve-fiber
bundles is a common goal in many variants of diffusion MRI, and it is significant
in graphically conveying their shapes, the larger-scale bundles they form and their
relationships to other anatomical structures in a clear manner. The third chapter
surveys illustrative techniques that tackle these challenges. Finally, the extraction
of features is a common strategy to deal with complex data. The last chapter
compares different ways of computing the heat kernel signature, a popular tool in
computational geometry, for general symmetric tensor fields and proposes its use as
a feature for visualization.

Part IV is devoted to a more formal statistical analysis of higher-order descrip-
tors, generalizing tools from univariate statistics. The first chapter presents a
comprehensive framework for analyzing diffusion MRI data while accounting
for multiple fiber compartments throughout the whole pipeline of interpolation,
filtering, spatial normalization, and statistical analysis. The second chapter sum-
marizes the state of the art and current challenges in applying statistical hypothesis
testing and predictive modeling through supervised machine learning to multivariate
neuroimaging data, again with a special focus on diffusion MRI.

The last part (Part V) is a collection of three chapters dealing with specific
applications of higher-order descriptors. The first application is the analysis of
a turbulent combustion simulation. A tensor-based clustering method is used to
define typical and atypical behavior in the field. The second application is a classical
mechanical engineering problem. It describes a case study for the use of tensorline
visualization to support the design process for mechanical parts. The last chapter
is concerned with a clinical application of diffusion-weighted magnetic resonance
imaging (dMRI). It proposes enhancing local features taking context information
into account. The framework developed is used for more accurate neurosurgical
planning.

We would like to thank the organizers of the Dagstuhl workshop, Bernhard
Burgeth (Universität des Saarlandes, DE), Ingrid Hotz (Linköping University–
Norrköping, Sweden), Anna Vilanova Bartroli (TU Delft, NL), and Carl-Fredrik
Westin (Harvard Medical School—Boston, US), as well as the board and staff of
Schloss Dagstuhl for creating a unique opportunity for interdisciplinary exchange.
We are also grateful to all the authors and reviewers who contributed to this book
and who ensured its scientific quality. Last but not least, we would like to thank the
editors of the Springer book series Mathematics and Visualization, as well as Martin
Peters and Ruth Allewelt (Springer, Heidelberg) for their support in publishing this
collection as part of their series.
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We hope that this book will further the scientific progress on higher-order
descriptors by serving as a reference to those who work with applications that
generate multi-valued data or could benefit from higher-order models, and by
providing a source of inspiration to researchers who are working on novel methods
in the areas of image processing and visualization.

Norrköping, Sweden Ingrid Hotz
Bonn, Germany Thomas Schultz
December 2014
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Diffusion-Weighted Magnetic Resonance Signal
for General Gradient Waveforms: Multiple
Correlation Function Framework, Path
Integrals, and Parallels Between Them

Cem Yolcu and Evren Özarslan

Abstract Effects of diffusion on the magnetic resonance (MR) signal carry a
wealth of information regarding the microstructure of the medium. Characterizing
such effects is immensely important for quantitative studies aiming to obtain
microstructural parameters using diffusion MR acquisitions. Studies in recent years
have demonstrated the potential of sophisticated gradient waveforms to provide
novel information inaccessible by traditional measurements. There are mainly two
approaches that can be used to incorporate the influence of restricted diffusion,
particularly on experiments featuring general gradient waveforms. The multiple
propagator framework essentially reduces the problem to a path integral, which can
be evaluated analytically or approximated via a matrix representation. The multiple
correlation function method tackles the Bloch–Torrey equation, and employs an
alternative matrix formulation. In this work, we present the two techniques in a
unified fashion and link the two approaches. We provide an explanation for why
the multiple correlation function is computationally more efficient in the case of
waveforms featuring piecewise constant gradients.

1 Introduction

Magnetic resonance (MR) measurements of the translational diffusion of spin
bearing particles have been employed to characterize the microstructure of bio-
logical tissue, colloids, and other porous materials. To sensitize the MR signal
to the diffusional motion of molecules, carefully devised profiles of magnetic
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4 C. Yolcu and E. Özarslan

field gradients are typically utilized. We shall refer to such profiles as gradient
waveforms. As a particle diffuses during the course of the application of the
waveform, it suffers a net phase shift, which is related to the local magnetic field it
experiences throughout its movement. As such, the particle’s motional history, along
with the gradient waveform, determines the net phase acquired by the particle when
an echo forms. The sum of the magnetic moments of all particles thus determines
the signal intensity detected by the radiofrequency antenna.

The simplest gradient waveform involves a pair of identical gradient pulses
applied effectively in opposite directions. This pulsed field gradient (PFG) wave-
form has been utilized since the 1960s with great success [45]. For example,
characterization of diffusion anisotropy in fibrous tissues has made diffusion-
weighted MR a powerful tool for mapping neural connections between different
regions of the nervous system [9, 15, 21, 31, 36, 42]. In recent years, other important
microstructural features of the tissue like cell size, size distribution, and complexity
of the medium have been examined with MR techniques employing a pair of PFG
pulses [1, 2, 35, 40, 41].

The power of MR diffusion measurements has prompted the research community
to search for alternative encoding schemes that employ gradient waveforms that are
more sophisticated than the traditional two pulse experiments described above. Most
notably, oscillating gradient waveforms [46] have been successfully employed to
probe the short time regime of the diffusion process [17], and multiple-PFG (e.g.,
double diffusion encoding, DDE) acquisitions [4, 16, 34] have been shown to pro-
vide sensitivity to diffusion anisotropy at different length scales [13, 26, 30, 32, 39].

All these endeavors mentioned above would benefit greatly from schemes
that relate the MR signal intensity obtained from general gradient waveforms to
microstructural parameters of the medium. Consider the case of the traditional PFG
measurements. Although there are relatively easily obtained explicit expressions for
measurements involving infinitesimally short pulses, those solutions are far from
being accurate in real acquisitions that typically employ long pulses. Development
of a theoretical framework is even more imperative for the case of more sophisti-
cated pulse sequences.

To address this important issue, several different methods have been developed.
In the first approach, commonly referred to as the “multiple propagator (MP)”
method, a general gradient waveform is discretized and represented by a train of
impulses [11] as shown in Fig. 1. Since all pulses are very short, diffusion is thought
to take place in the absence of an impressed gradient field. Expressions have been
derived for MR signal intensity by employing a sequence of propagators describing
the movement between the application of the neighboring impulses. Based on this
idea, a numerical scheme involving products of a series of matrices was developed
[10, 14, 33, 47], and a few studies have validated the signal computations [3, 6].
This approach has been recognized as a path integral formulation of the diffusion
process, and the matrix formulation was used as an analytical method by considering
the signal in the limits of short intervals, and very large number of impulses [34].
For this reason, we use the phrases “multiple propagator” and “path integral”
interchangeably.
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Fig. 1 A general gradient waveform G .t / is approximated by a series of impulses. The continuous
line shows the effective gradient profile that accounts for any reversals due to the radiofrequency
pulses

Another approach referred to as the “multiple correlation function (MCF)”
method treats the general waveform as a piecewise constant function [7, 8, 43]. By
directly tackling the Bloch–Torrey equation [48] using techniques that are employed
routinely in quantum mechanics, explicit expressions for the signal intensity that
involve products of exponentials of matrices have been derived. This technique
was subsequently studied [5, 44] in the context of the Carr-Purcell-Meiboom-Gill
experiment [12, 29]. In recent years, the technique has been revisited and restudied
in depth [18]. Subsequently the method was adapted to geometries with layered
structures [19, 20], capped cylinders [32], and triangular pores [28]. The technique
was also generalized to waveforms with variations in the direction of the gradients
[38] and structure-specific susceptibility gradients have been incorporated [27] into
the formulation.

In this work, we present a general approach to the problem of estimating the
signal intensity. In the next section, we first discuss the connection between proba-
bility concepts and the Bloch–Torrey equation characterizing the time evolution of
the magnetization density. Next we show that both MP and MCF methods emerge
naturally from a common approach, and are in a sense equivalent to each other. In
Sect. 3 we discuss how the MP approach can be converted into a matrix product
representation, and subsequently illustrate why the MCF technique is more efficient
from a computational point of view for PFG measurements. Finally in Sect. 4, we
treat the case of restricted diffusion at small diffusion sensitivity as an example for
employing the MP approach as an analytical tool to calculate the path integral.

2 Theory

2.1 From Probability Concepts to Bloch–Torrey Equation

In this section, we provide a brief overview of the basics of diffusion MR signal,
and invoke a theorem from probability theory to derive the Bloch–Torrey equation
[48] that is fundamentally important for this work. In this section, we consider the
one-dimensional problem for simplicity.
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Preliminary Remarks on MR Signal Formation

In a conventional MR experiment, a “pulse sequence,” involving a series of
radiofrequency pulses and an effective gradient waveform denoted by G.t/, is
applied, and an echo is generated at time te . This echo, or the MR signal, denoted
by E.te/, is the integral (over space) of the transverse magnetization—a complex-
valued quantity. We shall denote by m.x; t/, the magnetization at location x at time
t . Thus,

E.te/ D
Z

dx m.x; te/ : (1)

Just prior to the start of the pulse sequence, all molecules can be assumed to be at
their equilibrium states. At the time of the echo, however, there is a distribution of
phases due to various phenomena. Here, we shall ignore all effects but diffusion.
Let p.�/ represent the distribution of the phases in the sample (or voxel in image
acquisitions). Another expression for the MR signal is then

E.te/ D
Z

d� p.�/ ei� : (2)

The expressions above describe the MR signal, which is a macroscopic quantity
influenced by the random movements of many spin-bearing particles. We shall
now consider only one such particle. The gradient waveform perturbs the main
magnetic field by different amounts at different locations. Typically, linear gradients
are employed, which induce a phase shift in the magnetic moment of the particle
given by

� D ��
Z te

0

dt x.t/ G.t/ ; (3)

where x.t/ denotes the trajectory of the particle during the course of the gradient
waveform. The notion of x for a single trajectory is hence slightly different than that
in the argument of magnetization Eq. (1), the latter being associated with the spatial
variation of a population of spins.

A Relevant Theorem

Here, we invoke a theorem by Kac [22] in which the author considers a Wiener
functional of the form

˛ŒV � D
Z �

0

d�0 V.�.�0// (4)
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whose distribution function is �.˛I �/. The author proves that the following
relationship holds

Z 1
0

Z 1
0

e�u˛�s�d˛�.˛I �/ d� D
Z 1
�1

 .�; s/ d� ; (5)

where  .�; s/ is the fundamental solution to the differential equation

1

2

d2 

d�2
� .s C uV.�//  D 0 : (6)

The last two equations can be expressed in an alternative form via the inverse
Laplace transform:

Z 1
0

e�u˛ d˛�.˛I �/ D
Z 1
�1

d� !.�; �/ ; (7)

where !.�; �/ is the inverse Laplace transform of  .�; s/, and obeys

@!

@�
D 1

2

@2!

@�2
� uV.�/ ! : (8)

There are a few conditions for the above relationships to hold, which we don’t
include here for brevity.

It turns out that the above theorem is very closely related to the diffusion MR
signal described in the previous subsection. We first note that the time at which
the echo forms (te) can be taken as a characteristic time of the experiment, and
further define a characteristic length L D .2Dte/1=2, where D is the bulk diffusion
coefficient. Next, we identify the variable � D x=L as a dimensionless position,
�0 D t=te as a dimensionless time variable, and � D 1 in Eq. (4). Further taking1

V D �� te x.t/ G.t/, Eq. (4) turns into Eq. (3). Thus, d˛�.˛I �/ D p.�/ d�.
With the further identifications u D �i and ! D Lm, it is clear that the left

and right hand sides of Eq. (7), correspond to the expressions for E.te/ in Eqs. (2)
and (1), respectively. Finally, Eq. (8) becomes

@m

@t
D D

@2m

@x2
� i � x G.t/m : (9)

This partial differential equation, referred to as the Bloch–Torrey equation, had
been derived by Torrey using hydrodynamic arguments [48]. Multi-dimensional
generalization of this equation will be employed in the subsequent section.

1Strictly speaking, the form of V .�.�0// differs slightly from that in Eq. (4) due to the explicit time
dependence. However, this difference doesn’t appear to violate the applicability of Kac’s theorem.
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2.2 Parallels Between MCF and MP Methods

To illustrate the parallel between the path integral and the multiple correlator
approaches, let us consider the echo attenuation at time t ,

E.t/ D
Z

dr m.r; t/ D
Z

dr hrjm.t/i ; (10)

where hrjm.t/i denotes the projection of the magnetization state jm.t/i onto a
position eigenstate jri à la Dirac’s bra-ket notation. We have also committed a
slight abuse of notation by using dr to denote the infinitesimal volume element.
The transverse magnetization density at time t is related to that at the initial time
(chosen here as t D 0) via jm.t/i D U.t; 0/jm.0/i, where U.t; 0/ could be called
the Bloch–Torrey propagator. Consequently, we have

E.t/ D
Z

dr hrjU.t; 0/jm.0/i : (11)

Basically, the two approaches toward calculating this echo differ in the way they
handle U.t; 0/, but before going into that, we must talk a little bit more about the
propagator itself.

The propagator U.t; 0/ obeys the Bloch–Torrey equation2

@

@t
U.t; 0/ D � �DK2 C i�G .t/ � R

�
U.t; 0/ ; (12)

with K and R being the wave vector and position operators,3 respectively, and we
also take this opportunity to define the operator

H.t/ D DK2 C i�G .t/ � R : (13)

Due to the noncommutation of H.t/ with H.t 0/ for t ¤ t 0, the solution of Eq. (12)
is not simply U.t; 0/ D e�tH. Rather, the time interval from 0 to t is sliced up into
small intervals, and the propagation is carried out step-wise, i.e.,

U.t; 0/ D lim
�!0
n�Dt

U
�
n�; .n � 1/�� : : :U.2�; �/U.�; 0/ : (14)

2With the boundary condition that U.0; 0/ D I, where I is the identity operator.
3The wave vector operator, when expressed in the position basis, is a derivative, i.e., hrjK D
�irhrj. Its commutator with the position operator is ŒK;R�D �i.
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Each of the “infinitesimal propagators” above is of the form e��H.t/, and we have4

U.t; 0/ D lim
�!0
n�Dt

e��H.n���/ : : : e��H.�/e��H.0/ : (15)

It is important to keep in mind that the operator product is ordered from right to left
in increasing time.

This “time-slicing” described above is common to both approaches, and more
or less inevitable. Where the path integral (multiple propagator) and the multiple
correlation function approaches (seem to) depart is how they proceed with extracting
the numberE.t/ through Eq. (11).

Multiple Correlation Function (MCF) Technique

The multiple correlator scheme adopts the eigenbasis fjkig of the wave vector
operator K for computing E.t/. Using the completeness relation I D P

k jkihkj,
Eq. (11) is rewritten as

E.t/ D
X
k;k0

Z
dr hrjkihkjU.t; 0/jk0ihk0jm.0/i : (16)

Since hk0jm.0/i / ık0 ;0 and
R

dr hrjki / ı0;k, 5 the echo simply becomes

E.t/ D h0jU.t; 0/j0i : (17)

In order to compute this “matrix element” of the operator U.t; 0/, one then employs
the time-slicing, Eq. (15), inserting identity operators (in the jki basis) in between
the infinitesimal propagators:

E.t/ D lim
�!0
n�Dt

X
fkg

h0je��H.n���/jkn�1i : : : hk2je��H.�/jk1ihk1je��H.0/j0i : (18)

4Also note that for a practical implementation where the limit � ! 0 is not actually taken, one
might want to offset the argument of H by �=2 (like in Fig. 1) or some other amount, but we need
not bother with that for our purposes.
5The eigenfunction corresponding to the k D 0 eigenvalue is constant over the volume of interest:
hrj0i D V �1=2. Hence

R
dr hrjki D V 1=2

R
dr h0jrihrjki D V 1=2h0jki D V 1=2ı0;k. On the

other hand, the initial magnetization is in equilibrium, and therefore proportional to the k D 0

eigenket, meaning hk0jm.0/i D cık0;0. For convenience, we assume a normalization for m.r; t /
such that

R
dr m.r; 0/ D 1, whereby c D V �1=2.
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What needs to be computed, therefore, is the product of matrices of the (component-
wise) form

hk0je��DK2�i��G .t/�Rjki ; (19)

or of exponentials of matrices of the (component-wise) form

��hk0jDK2 C i�G .t/ � Rjki D ��!kık0;k � i��G .t/ � hk0jRjki ; (20)

where !k denotes the product of D with the kth eigenvalue of the operator K2.
We do not elaborate on the details of the (numerical) implementation of such

matrix operations here.

Multiple Propagator Technique

The multiple propagator (path integral) approach, on the other hand, favors the
eigenbasis fjrig of the position operator R. Either in Eq. (11) or (17), one performs
the time slicing, this time employing the completeness relation I D R

dr jrihrj in
between the infinitesimal propagators. One obtains,

E.t/ D lim
�!0
n�Dt

Z
drn : : : dr0 hrnje��H.n���/jrn�1i : : :

: : :hr1je��H.0/jr0ihr0jm.0/i : (21)

Now, e��H D e��DK2�i��G �R is not equal to e��DK2
e�i��G �R since

�
K2;R

� D
�2iK ¤ 0. However,

e��DK2�i��G �R D e��DK2

e�i��G �R C O.�2/ ; (22)

which one may verify by simply considering the Taylor series expansions of the
exponentials. Hence, to lowest nontrivial order in �—which is nevertheless the limit
of interest—any one of the matrix elements in Eq. (21) can be written as

hr 0je��H.t/jri Dhr 0je��ŒDK2Ci�G .t/�R�jri
Dhr 0je��DK2

e�i��G �Rjri C O.�2/
Dhr 0je��DK2 jrie�i��G �r C O.�2/ : (23)

Note that since U0 D e�tDK2
is the propagator for the diffusion equation[25],

i.e., it satisfies .@=@t/U0 D �DK2U0, the ket e�tDK2 jri is just the (probability)
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density profile at time t , when the initial density profile was proportional to jri, i.e.,
localized at r . Therefore, the matrix element

hr 0je��DK2 jri D P� .r
0jr/ ; (24)

i.e., the probability of diffusing to r 0 a time � after having been at r . Additionally
defining q.t/ D ��G .t/, and setting hrjm.0/i D V �1 as was done earlier, we have

E.t/ D V �1 lim
�!0
n�Dt

Z
drn : : : dr0 P� .rnjrn�1/ : : : P� .r1jr0/e�i

Pn�1
jD0 qj �rj : (25)

The summation in the exponent turns into an integral as � ! 0, and the sequence of
n integrals essentially represents a path integral. Thus, the echo attenuation is given
simply by

E.t/ D V �1
D
e�i�

R t
0 dt 0 G .t 0/�r.t 0/

E
paths

: (26)

3 Implementation Aspects

In the previous section, we showed that the multiple propagator and multiple
correlator approaches are not fundamentally different. Nonetheless, we will refer
to a strategy making explicit use of spatial coordinates as a path integral or multiple
propagator approach, while reserving the multiple correlator terminology for when
spatial coordinates are not used explicitly. Here, we briefly discuss implementation-
related aspects of computing the echo, which was largely neglected in the previous
section.

3.1 Matrix Product Formulation of the Multiple Propagator
Technique

Let us denote the echo before the continuum limit (� ! 0) as

QE.t/ D V �1
Z

drn : : : dr0 P� .rnjrn�1/ : : : P� .r1jr0/e�i
Pn�1
jD0 qj �rj : (27)

Frequently, the stepwise path propagator (Eq. (24)) is neither available nor easy to
derive. In this case, the usual strategy is to resort to an expansion in the eigenstates
of U0.t C �; t/ D e��DK2

(recall that hrjK2 D �r2hrj), since the eigenfunctions
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may be more easy to derive (or to look up). Denoting the eigenfunctions of r2 with
uk.r/, one may write

P�.r
0jr/ Dhr 0je��DK2 jri D

X
k

e��!kuk.r
0/u�k.r/ : (28)

After employing this eigenfunction decomposition, matrices (indexed by the states
jki) of the form

ƒk;k0.�/ � hkjƒ.�/jk0i D e��!k ık;k0 (29)

and

	k;k0.q/ � hkj	.q/jk0i D
Z

dr u�k.r/e�iq�ruk0.r/ (30)

crop up. Then, the echo becomes the “00” matrix element (in its wave vector space
representation) of an operator, i.e.,

QE D h0j	.qn/ƒ.�/	.qn�1/ƒ.�/ : : : ƒ.�/	.q1/ƒ.�/	.q0/j0i : (31)

The echo is then the continuous time limit of QE .
In a previous article [34], one of the authors used this scheme to compute,

analytically, the low gradient (small q) limit of the echo in restricted diffusion
experiments. More elaboration on this will follow after the next subsection.

3.2 The “Advantages” of the MCF Technique

Earlier, we discussed that the MCF technique does not rely on explicit projection
of the propagators onto the spatial coordinate basis, but rather expresses them in
the wave vector basis where the zero-gradient propagator is diagonal. Even though
the required matrix elements can be computed analytically, the computation of the
operator product is typically left to a computer, after which the continuum limit
cannot be taken formally. However, when a gradient waveform G .t/ consisting of
subsequent plateaus of finite duration is considered, the continuum limit becomes
insubstantial, and this approach seems to afford a more efficient calculation.

Recall that the reason behind the infinitesimal time-slicing of Eq. (15) was the
fact that the commutator ŒH.t/;H.t 0/� ¤ 0 for t ¤ t 0. When the gradient sequence,
and therefore (the “time translation generator”) H.t/ is a series of plateaus of
finite duration, however, the commutator vanishes within these intervals, negating
the need for slicing these intervals. That is, the product of propagators in the
corresponding Eq. (15) need only include as many exponentials as there are plateaus,
each being the result of summing up the exponents within each finite time interval.
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Specifically, if we have a piecewise constant gradient profile, with subsequent
plateaus labeled by 0 � j � p, of width 
tj , where G .t/ D G j and H.t/ D Hj ,
we have

E.t/ D h0j
pY
jD0

e�
tjHj j0i : (32)

Thus, the above expression requires much fewer number of matrices to exponentiate
and multiply in the case of a pulsed field gradient (PFG) experiment with a small
number of pulses (p � n), as opposed to a general waveform situation.

The procedure then follows similarly to Eq. (18) onwards. The MCF technique
is set up to take advantage of such a situation, while the multiple propagator (path
integral) approach is not, because the isolation of the phase factor from the stepwise
propagator in the latter relies on the width � of the sampling interval being small—
see Eq. (23).

4 Evaluation of the Path Integral: Effect of Restricted
Diffusion at Small Attenuations

The effect of free (Gaussian) diffusion on the MR signal for general gradient wave-
forms has been quantified by solving the Bloch–Torrey equation using conventional
means [23, 24]. The echo attenuation is given by

E.t/ D exp

0
@��2D

Z t

0

ˇ̌
ˇ̌
ˇ
Z t 0

0

G .t 00/ dt 00
ˇ̌
ˇ̌
ˇ
2

dt 0
1
A : (33)

It is very desirable to obtain a similar expression for more complicated environ-
ments, e.g., when the water molecules are trapped inside isolated pores. To this
end, the path integral derived above (Eq. (26)) can be studied, and in certain cases,
evaluated analytically. In this section we shall summarize the derivation presented
in [34].

We have shown earlier that the (discrete approximation of the) signal attenuation
can be expressed as the “00” matrix element of an operator (product) as given in
Eq. (31). We are primarily interested in evaluating the signal attenuation value up to
terms of quadratic order in the q’s. We henceforth denote the order in q of physical
quantities with superscripts, and proceed by keeping good track of the order of q

afforded by each operator 	.q/—see Eq. (30).
The 0th order term of QE is easily found (all the 	’s are identity) as

QE.0/ D h0jƒ.n�/j0i D 1 : (34)
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The last equality stems from the definition (29) of ƒ. Sure enough, E.0/ D QE.0/

does not require the taking of the continuum limit.
The first order arises when in the product of Eq. (31) only one of the n C 1 	’s

contribute its first order value 	.1/.qj / while the rest are 	.0/.qj / D 	.0/ D 1.
Joined with the recently exploited fact that the “top” eigenvalue ofƒ is also e0 D 1,
the first order correction to the echo consists of terms of the form

h0j	.1/.qj /j0i D �iqj V
�1
Z

dr r DW �iqj � rcm : (35)

Here, rcm is the center of “mass” of the pore space. Hence,

QE.1/.n�/ D �ircm �
nX

jD0
qj ; (36)

and therefore (with q D ��G , and �
P

j ! R
dt)

E.1/.t/ D �i�rcm �
Z t

0

dt 0G .t 0/ : (37)

The integral in the above expression vanishes at the echo time as required by the
gradient echo condition. Thus, the MR signal typically does not include a first order
term.

To calculate the second order term of the echo attenuation, the following
quantities prove to be useful:

e20 D h0j	.2/.qj /j0i D � 1

2V

Z
dr .qj � r/2 ; (38)

and

e11 D h0j	.1/.qi /ƒ.t/	.1/.qj /j0i (39)

D V �1
Z

dr i qi � r i

Z
drj qj � rj Pt .rj jr i / :

At this point, we consider three pore shapes of rectangular slabs, cylinders, and
spheres commonly considered in the literature [14, 33]. We shall treat these three
geometries simultaneously. To this end, we denote the number of restricted diffusion
dimensions by d .

More explicitly, when d D 1, we refer to the slab geometry wherein diffusion
takes place between two infinite plates separated by distance 2a. All gradients of
the sequence are applied in the orientation perpendicular to the plates. When this
condition is not met, separation of variables could be employed, and the gradient
vectors are decomposed into directions parallel and perpendicular to the plates.
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The parallel components could then be used in Eq. (33) to calculate the attenuation
due to free diffusion taking place in the parallel direction [37]. The product of the
two attenuations yield the signal value.

The case d D 2 is for diffusion taking place within a cylindrical pore of radius
a, and the derivation is valid for components of the gradients perpendicular to the
lateral surface of the pore. When the gradients are applied along some arbitrary
direction, the gradient vector can be decomposed similarly. The attenuation for d D
2 can be computed for the perpendicular component of the gradient. This attenuation
can be multiplied with that along the cylinder direction; if Eq. (33) is employed
for this direction, one obtains the aggregate signal for infinite cylinders [1]. If the
solution for the slab geometry (d D 1) is used instead, the signal for a capped
cylinder geometry [32] is obtained.

Finally, the case d D 3 represents diffusion taking place within a sphere of
radius a.

For these shapes, the integrals in Eqs. (38) and (39) are given by

e20 D � q2j a
2

2.2C d/
; (40)

and

e11 D 2a2qi � qj

1X
kD1

sdk e�!dk.tj�ti / : (41)

where!dk D ˛2dkD=a
2. Here, ˛1k WD .k�1=2/� , and ˛2k and ˛3k are the kth zero of

the derivative of the first order Bessel and spherical Bessel functions, respectively.
The quantity sdk, given by

sdk D 1

˛2dk .˛
2
dk � d C 1/

; (42)

satisfies the relationship

1X
kD1

sdk D 1

2.2C d/
: (43)

The second order term of the expression for MR signal attenuation is then given
by6

QE.2/ D �a2
nX

jD0

nX
iD0

qj � qi

1X
kD1

sdk e�!dkjti�tj j : (44)

6More details can be found in [34].
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Taking the continuum limit of the above expression twice, one obtains

E.2/ D �2�2a2
1X
kD1

sdk

Z t

0

dt 0 e!dkt
0

G .t 0/ � F dk.t
0/ ; (45)

where

F dk.t
0/ D

Z t

t 0
dt 00G .t 00/ e�!dkt

00

: (46)

For small attenuations (E values close to 1), the MR signal for diffusion within
the considered pore shapes is thus given by

E.t/ � exp

 
�2�2a2

1X
kD1

sdk

Z t

0

dt 0 e!dkt
0

G .t 0/ � F dk.t
0/
!
: (47)

Note this expression’s resemblance to that for free diffusion in Eq. (33).
The above derivation illustrates that the multiple propagator approach can be

utilized as an analytical tool when the path integral it represents can be evaluated.

5 Conclusion

In this work, we revisited the main theoretical advances in relating the underlying
diffusion process to the MR signal obtained via general gradient waveforms. Our
main objective was to establish the connections of the probabilistic framework
on which the multiple propagator (path integral) technique was developed to the
multiple correlation function method that employs the Bloch–Torrey equation. A
theorem from probability theory led to an alternative derivation of this equation.
Formulating the two techniques using a common framework enabled us to draw
parallels between them. Multiple propagator technique is more closely related to
a path integral. As such, the technique can be considered an analytical method
when the path integral can be evaluated; otherwise its matrix formulation provides a
viable approximation. However, due to the commutation relations of the Bloch–
Torrey propagator, the multiple correlation function method is computationally
more efficient for many gradient waveforms employing pulsed field gradients.
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Finslerian Diffusion and the Bloch–Torrey
Equation

T.C.J. Dela Haije, A. Fuster, and L.M.J. Florack

Abstract By analyzing stochastic processes on a Riemannian manifold, in par-
ticular Brownian motion, one can deduce the metric structure of the space. This
fact is implicitly used in diffusion tensor imaging of the brain when cast into a
Riemannian framework. When modeling the brain white matter as a Riemannian
manifold one finds (under some provisions) that the metric tensor is proportional to
the inverse of the diffusion tensor, and this opens up a range of geometric analysis
techniques. Unfortunately a number of these methods have limited applicability, as
the Riemannian framework is not rich enough to capture key aspects of the tissue
structure, such as fiber crossings.

An extension of the Riemannian framework to the more general Finsler man-
ifolds has been proposed in the literature as a possible alternative. The main
contribution of this work is the conclusion that simply considering Brownian motion
on the Finsler base manifold does not reproduce the signal model proposed in the
Finslerian framework, nor lead to a model that allows the extraction of the Finslerian
metric structure from the signal.

1 Introduction

By observing a Brownian motion in a Riemannian manifold one can extract the local
geometric structure of the space. This fact was used implicitly in Diffusion Tensor
Imaging (DTI) of the brain by O’Donnell et al. [32] to interpret the (inverse of the)
diffusion tensor as the metric of a Riemannian manifold, and was first explicitly
mentioned in this context by Lenglet et al. [24]. DTI is one of many diffusion
weighted MRI techniques that allows one to measure the conglomerate stochastic
behavior of water molecules, averaging the microscopic motion of the particles over
mm scale voxels [31]. In their work, and the work of many authors afterwards, this
manifold model of the brain white matter at the mm scale produced analyses of
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the data ranging from geometry-derived scalar maps [6, 14, 16, 32] and geodesic
tractography [17, 20, 24], to segmentation algorithms [25]. Despite its many uses,
the DTI model and the corresponding Riemannian framework suffer from the fact
that they oversimplify the structure of the tissue to an extent that proves unrealistic
in large parts of the brain [22]. Tissue structures such as crossing fibers cannot be
modeled properly using DTI, and especially for applications such as tractography
research is now focused mainly on more elaborate models [4, 21, 37, 45].

Recently Florack et al. [15] proposed a signal model that coincides with the
generalized DTI model of Özarslan et al. [34, 35], with a geometric interpretation
similar to the Riemannian interpretation of DTI. This new framework is based on
Finsler geometry, a generalization of Riemannian geometry, and is hypothetically
suitable for the modeling of diffusion MRI signals with an arbitrarily complex
orientation dependence. A summary of Finsler geometry and the Finslerian diffusion
MRI framework is given in Sect. 2. In this work we consider the question of
whether the Finsler geometrical framework can be derived from Brownian motion
in a Finsler manifold in the same way that the DTI model and its geometric
interpretation are obtained when considering Brownian motion in a Riemannian
manifold. To answer this question we replace the anisotropic diffusion generator
in the Bloch–Torrey equation [41] that leads to the DTI model with the generator
of Brownian motion in a Finsler manifold. This generator originates from Antonelli
and Zastawniak’s Finslerian diffusion theory [3, App. A], and is discussed in Sect. 3.
In Sect. 4 we apply the Finsler diffusion generator to diffusion MRI, resulting in a
signal model that differs from the one used in Florack et al. [15]. We show that
the resulting model is evidently not suited for the modeling of complex biological
tissues. We conclude in Sects. 5 and 6 with a discussion on the implications of these
results for the Finsler diffusion MRI framework.

2 Preliminaries

Throughout the paper we employ the summation convention, implying summation
over identical pairs of upper and lower indices. Occasionally we will write ‘tensor’
when factually referring to the coordinate representation of a tensor relative to a
basis; the details should be clear from context. Unless otherwise stated dual elements
will be designated as such by a circumflex diacritic, e.g. Oy would be the dual element
to y. Boldface symbols refer to (co-)vectors with indexed components, e.g. the
contravariant components of a vector x 2 V would be fxi gdimV

iD1 .

2.1 A Brief Overview of Finsler Geometry

A Finsler manifold is a differentiable manifold M together with the central object
in Finsler geometry, the eponymous Finsler function F . Let x 2 M and denote
y WD yjx 2 TxM , with TxM the tangent space at x, an element of the tangent bundle
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TM D [x2MTxM . Write T �M for the dual tangent bundle to M . The Finsler
function is then a mapping F W TM ! R W .x; y/ 7! F.x; y/ that satisfies the
following conditions1:

• Positive-definiteness For all .x; y/ 2 TM, F.x; y/ � 0 and F.x; y/ D 0 ”
y D 0.

• Homogeneity F is positively homogeneous of degree one in y, i.e., for all
.x; y/ 2 TM and � 2 R, F.x; �y/ D j�jF.x; y/.

• Strong convexity The fundamental tensor gij.x; y/ D 1
2
@2F 2

@yi @yj
.x; y/ is positive-

definite on the slit tangent bundle TM n 0.

From these conditions it follows that

F 2.x; y/ D gij.x; y/yiyj (1)

for y ¤ 0. Additionally, Euler’s theorem on homogeneous functions shows that the
fundamental tensor is homogeneous of degree zero in y: gij.x; �y/ D gij.x; y/ for
all � 2 R. The fundamental tensor can be interpreted as the Finslerian analogue of
the metric tensor in Riemannian geometry, and is in the literature often referred to
as the Finsler metric tensor.

The fundamental tensor can be used to define a correspondence between y 2 TM
and its dual Oy 2 T �M analogous to Riemannian geometry:

Oyi D gij.x; y/yj ; (2)

yi D Ogij.x; Oy/ Oyj : (3)

Here the dual Ogij.x; Oy/ of the fundamental tensor is defined for all .x; Oy/ 2 T �M by

Ogik.x; Oy/gkj.x; y/ D ıij ; (4)

subject to Eqs. (2) and (3), and accordingly we have a dual Finsler function OF DW H
defined by

H2.x; Oy/ D Ogij.x; Oy/ Oyi Oyj : (5)

Again analogous to Riemannian geometry, we can (informally) define a Finsle-
rian geodesic as a C1 curve �.t/ D f�i .t/g in M , 0 � t � T , for which the first
variation of its integral length

L.�/ WD
Z T

0

F

�
�.t/;

d�

dt
.t/

�
dt

1We only consider reversible Finsler functions, meaning that for all .x; y/ 2 TM, we have
F.x;�y/ D F.x; y/.
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is equal to zero. Constant speed geodesics, i.e., those �.t/ for which the integrand
in the previous equation is 1 for all t , satisfy the geodesic equation

d2�i

dt2
C �ijk

d�j

dt

d�k

dt
D 0: (6)

In this equation the �ijk � �ijk
�
�.t/; d�dt .t/

�
are the formal Christoffel symbols of the

second kind defined by

�ijk.x; y/ D 1

2
gil.x; y/

�
@gkl

@xj
.x; y/C @gjl

@xk
.x; y/� @gjk

@xl
.x; y/

�
; (7)

evaluated at
�
�.t/; d�dt .t/

� 2 TM n 0.
As an example we can consider Riemannian manifolds, which form a subset

of Finsler manifolds. A Finsler manifold is Riemannian if the fundamental tensor
coincides with a Riemannian metric tensor, which is the case if and only if the
fundamental tensor has no y dependence. The Riemannian metric tensor g.x/ D
fgij.x/g then defines a Finsler function F.x; y/ D p

gij.x/yiyj based on Eq. (1).
A second example is the family of locally Minkowskian manifolds. The structure
of these manifolds is x-independent but does depend on y, i.e., at each point x
there exists a chart with an induced coordinate basis on TxM such that F.x; yjx/ D
F.0; yj0/ DW F.y/.

Further information about Finsler geometry can be found in [8].

2.2 The Riemannian Framework for DTI

Before we look at the Finslerian framework for diffusion MRI, we revisit the
Riemannian case. The Riemannian framework [24, 32] presents a geometric inter-
pretation of the DTI model [10], in which the diffusion weighted signal S.q/ of a
single voxel˝ 	 R

3 is expressed in terms of the diffusion tensorD D fDijg3i;jD1:

S.q/ D S.0/ exp

�
�
�

 � ı

3

�
Dijqiqj

	
: (8)

Here 
 and ı are respectively the pulse separation time and the pulse width in the
pulsed gradient spin echo sequence.2 q D fqig3iD1 D �ıG is a wave (co-)vector3

oriented parallel to the applied gradient G, with � the gyromagnetic ratio [19]. These
various parameters and constants are typically given as a single value, the b-value

2Different gradient sequences can be used to find the coefficients fDijg, based on modified (but
similar) versions of Eq. (8).
3In conformity with diffusion MRI literature we omit the diacritical mark above the covectors q
and G.
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b D kqk2 �
 � ı
3

�
that we will refer to in Sect. 5. Equation (8) is derived from

the Bloch–Torrey equation [41], which describes the dynamics within the voxel ˝
of the net transverse magnetization vector MT .x; t/, x 2 ˝ , subject to a diffusion
process generated by an infinitesimal diffusion generator [33] L :

@MT

@t
.x; t/ D �i� .G.t/ � x/MT .x; t/ � 1

T2
MT .x; t/C LMT .x; t/: (9)

Let MT .x; t/ D M.t/ exp
h
�i� R t

0
G.�/ � x d� � t

T2

i
, where M.t/ describes the

magnetization amplitude without the effect of relaxation. Solving Eq. (9) for a
pulsed gradient spin echo experiment with the assumption that L D Dij @

@xi
@
@xj

,
the anisotropic diffusion generator, gives the DTI model [10]. Here the signal S.q/,
measured with gradient settings defined in q, is the amplitude of the magnetization
M.t/ at the echo time TE.

In their 2002 paper, O’Donnell et al. [32] define a Riemannian manifold .M; g/
with the components of the metric tensor g given by the inverse diffusion tensor,
i.e., gij D Dij, where D�1 D Dij. As argued by Lenglet et al. [24] this definition
in fact follows by assuming that the motion of the measured hydrogen nuclei can
be described by a Brownian motion in a Riemannian manifold, generated by the
Laplace–Beltrami operator

L D 1p
detg.x/

@

@xi

�p
detg.x/gij.x/

@

@xj

�
DW 
R; (10)

where gikgkj D ıij , along with the assumption that g is spatially homogeneous
per voxel [17]. In other words, the assumption that the brain can be modeled as
a Riemannian manifold leads to a signal model (the DTI model) that allows the
extraction of the metric structure of this manifold [12].

2.3 The Finslerian Framework for Generalized DTI

One of the earlier extensions of the DTI model is Generalized DTI4 (GDTI) [34], in
which the signal model is given by

S.q/ D


S.0/ exp

�� �
 � ı
3

� kqk2D.q=kqk/� if q ¤ 0
S.0/ if q D 0

; (11)

where k:k denotes the Euclidean norm andD W S2 ! R
C is a general even function

on the sphere that represents the apparent diffusion when measuring along a given

4There are two diffusion MRI models called generalized DTI, one by Özarslan et al. [34] and one
by Liu et al. [27]. Whenever we refer to GDTI we mean the former.
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direction q 
 G. GDTI has an improved angular resolution compared to DTI, while
retaining the quadratically exponential scaling in the norm of q.

As described in Florack et al. [15] Eq. (11) can be rewritten to

S.q/ D


S.0/ exp

�� �
 � ı
3

�
Dij.q/qiqj

�
if q ¤ 0

S.0/ if q D 0
;

where the domain of D is expanded to R
3 n 0, but with D constrained to be

homogeneous of degree zero and thus effectively dependent on only the orientation
of the argument q. A comparison with Eq. (5) leads to the identification

Dij.q/qiqj D H2.q/ (12)

providing the relation to the fundamental tensor, where q is interpreted as a covector
q in the cotangent bundle T �M of a Finsler manifoldM . A variant of Eq. (12) was
already used by Melonakos et al. [29, 30] to perform Finsler tractography in human
brain diffusion MRI data.

3 Laplace–Beltrami Operators in Finsler Geometry

3.1 The Generator of Finslerian Brownian Motion

The Riemannian framework for DTI is founded on the one-to-one connection
between the diffusion tensor and the metric tensor of the presupposed Riemannian
manifold. Recall that 
R, the generator for Brownian motion in Riemannian mani-
folds, could be used to derive the DTI model (Sect. 2.2). The question we now face is
whether the assumed existence of a Finsler manifold likewise provides a direct link
to the physical parameters describing the measured diffusion. In order to answer
this, we need to substitute an expression for the generator of Finslerian Brownian
motion for L in Eq. (9). The generator of Brownian motion in a Finsler manifold is
due to Antonelli and Zastawniak [3, App. A], and extends the work by Pinsky [38]
and Watanabe and Watanabe [44]. We will recapitulate the ideas in these works,
moving from Euclidean space via Riemannian manifolds to the Finslerian case.

The Isotropic Transport Process in Euclidean Space

In the Watanabe paper [44] it is shown that the equations governing Brownian
motion in n-dimensional Euclidean space can be derived from the intuitive notion
of colliding particles moving in straight lines in-between collisions [13], extending
proofs for one- and two-dimensional Brownian motion by others (see Watanabe [43]
and references therein). This notion is formalized as a Markov process .Xt ; Yt /,
called the isotropic (scattering) transport process and defined as follows.
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Fig. 1 An illustration of the isotropic transport process. A particle (represented by a red circle)
moves along a straight line along yi from the point xi , until at a time t D �iC1 a (virtual) collision
causes the particle to change direction. The collision times satisfy P f�i � �i�1 > tg D exp.�t /,
where �0 D 0. The transport process is defined by these paths Xt (black lines), and the direction
of movement at each point Yt , cf. Eq. (13)

Consider a particle initially at a position x0 2 R
n moving in a straight line with

unit speed along the direction y0 2 Sn�1, and denote its path by �.x0; y0/.t/ with
0 � t � �1 and �1 the time at which the particle first collides. Next assume that
the time between collisions ei D �i � �i�1 (where we set �0 D 0) satisfies P fei >
tg D exp.�t/ with t � 0 [26]. After the first collision the particle continues from
the point of collision x1 D �.x0; y0/.�1/ along a new direction y1 chosen according
to the uniform probability measure on Sn�1. Continuing with this reasoning allows
us to define the transport process .Xt ; Yt / as

Xt D �.xi�1; yi�1/.t/;
Yt D dXt

dt ;

ˇ̌
ˇ̌
�i�1�t��i

(13)

for all positive integers i . This process is illustrated in Fig. 1.
In order to show (weak) convergence of Xt to Brownian motion a parameter  >

0 is introduced such that the mean distance the particle traverses between collisions
scales linearly with , while its speed scales with �1. It can be shown that taking
the limit  # 0 produces the Laplacian 
 D @2

@xi @xj
as the generator of this process,

of which we will forego the technicalities discussed in [43, 44].

The Isotropic Transport Process in a Riemannian Manifold

The Laplace–Beltrami operator 
R is the unique generalization of the Laplacian

 to Riemannian manifolds, and both 
 and 
R are defined as the divergence
of the gradient (concepts that are well-defined in both Riemannian manifolds and
Euclidean space, but not necessarily in Finsler manifolds). In his work, Pinsky [38]
showed that in analogy to the isotropic transport process in Euclidean space of



28 T.C.J. Dela Haije et al.

the previous section, a stochastic process on the tangent bundle of a Riemannian
manifold can be defined that leads to the Riemannian Laplace–Beltrami operator.
His adaption requires a number of significant changes (see Pinsky [38] and the
references therein for specifics):

1. The trajectories that particles follow are now general Riemannian geodesics,
rather than straight lines (Euclidean geodesics).

2. The new direction of a particle after collision is now based on the rotationally
invariant probability measure d!x on the locally defined Riemannian unit sphere
fy 2 TxM jgij.x/yiyj D 1g, rather than a probability measure on the globally
defined Euclidean unit sphere.

Again a limit theorem on a parameter  is invoked to show that this process leads
to the result Eq. (10).

The Isotropic Transport Process in a Finsler Manifold

In the work by Antonelli and Zastawniak [3, App. A] the trajectories that particles
follow are governed by the Finsler geodesic equation (Eq. (6)), while the direction
after collision is distributed uniformly on the local Finslerian unit sphere, the so-
called indicatrix IxM at x of the n-dimensional Finsler manifold M , under the
normalized Riemannian volume measure d�x.y/. The dependent variable y relates
to the direction of motion in a sample path, analogous to Eqs. (6) and (13). Once
more, details can be found in [3]. Similar limiting arguments as before lead to the
generator
F of Finslerian Brownian motion:


F D n

Z
IxM

yiyj
�
@

@xi
@

@xj
� �kij .x; y/

@

@xk

�
d�x.y/: (14)

The symbols �kij .x; y/ are the formal Christoffel symbols introduced in Sect. 2.1, cf.
Eq. (7).

As it should be, this expression reduces to the Riemannian Laplace–Beltrami
operator 
R in the special case where the metric (and thus the volume element) is
independent of the direction of particle motion y. In that case M is equivalent to a
Riemannian manifold, and the indicatrix bundle IM D [x2M IxM reduces to the unit
tangent bundle UTM D [x2M UTxM , with UTxM D fy 2 TxM jgij.x/yiyj D 1g.
The volume measure d�x.y/ becomes the rotationally invariant probability measure
d!x on the local Riemannian unit sphere. We find, using Eq. (14), that in this special
case


F D n
R

UTxM
yiyj d!x

�
@
@xi

@
@xj

� �kij .x/ @

@xk

�

D gij.x/
�

@
@xi

@
@xj

� � k
ij .x/

@

@xk

�
[23]D 
R:
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In the second-to-last step we use the fact that the y-independent formal Christoffel
symbols of the second kind �kij .x/ coincide with the connection coefficients � k

ij .x/
of the Levi–Civita connection [23], as well as the identity

n

Z
UTxM

yiyj d!x D gij.x/

which follows from

n

Z
UTxM

yiyj d!xgij.x/ D n

Z
UTxM

gij.x/yiyj d!x D n D ıii D gij.x/gij.x/:

3.2 Other Finslerian Laplace–Beltrami Operators

While 
F as discussed above is representative of the intuition behind Brownian
motion, it is by no means a unique definition of a Finslerian Laplace–Beltrami
operator. Like with many counterparts of concepts in Riemannian geometry,
different derivations of the Riemannian Laplace–Beltrami operator typically lead to
completely different objects when translated to Finsler geometry. These operators
have properties similar to the Laplace–Beltrami operator, and reduce to 
R when
restricted to a Riemannian manifold. Examples of these can be found in Bao and
Lackey [7], Barthelmé [9], and Centore [11]. Centore for instance derives a Laplace–
Beltrami operator based on the defining property that a Laplacian, in a certain
infinitesimal sense, locally measures the mean value of a function. The choice
made for 
F made here allows us to retain the assumption that the behavior of
the measured particles is governed by Brownian motion (albeit in a more complex
space) as was done in the Riemannian framework.

4 Finslerian Adaptations of the Bloch–Torrey Equation

Application of the Finsler Laplace–Beltrami operator in the Bloch–Torrey equation
proceeds according to Torrey [41]. We consider the previously given Bloch–Torrey
equation, Eq. (9), and assume now that the generatorL is given by
F as presented
in Eq. (14). As in DTI we assume that within a voxel, the generator may be
considered spatially homogeneous, in which case d�x D d�0 and �kij .x; y/ D 0.
This leaves us with the generator for Brownian motion in a locally Minkowskian
manifold:

L D n
R
I0M

yiyj d�0.y/ @
@xi

@
@xj�D Aij @

@xi
@
@xj
;

(15)
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where in (�) we define Aij WD n
R
I0M

yiyj d�0.y/. Next we substitute Eq. (15) in
the Bloch–Torrey equation and again solve for a pulsed gradient spin echo sequence,
giving the signal model

S.q/ D S.0/ exp

�
�
�

 � ı

3

�
Aijqiqj

	
: (16)

The limitations of the resulting signal model are clear. The tissue descriptor Aij

has the same six degrees of freedom as the DTI tensor D, Eq. (8), and as a result
will have the same problems with modeling complex tissue architecture. In the
same vein, the integral relationship between Aij and the fundamental tensor does
not allow the resolution of the components gij describing the structure of the Finsler
manifold unless the underlying manifold is actually Riemannian. Given Eq. (16) it
is consequently not possible to extract the geometry of the Finsler manifold from
diffusion MRI measurements, contrary to the Riemannian case.

One might wonder whether a different Finsler Laplace–Beltrami operator might
produce more useful results, but this does not appear to be the case. The operators
from the references mentioned above[7, 9, 11] all result in models with a limited
number of degrees of freedom, as can be verified by solving the appropriate
modifications of the Bloch–Torrey equation. Additionally these operators lack the
physical interpretation that 
F has as described here, and generally have more
complicated expressions.

5 Discussion

Regarding the hypothesized relation in Eq. (12) linking the GDTI model and the
Finslerian framework, it is clear that the model does not follow from the assumption
of a Brownian motion in a Finsler base manifold, nor does it seem likely that it is
the result of a different diffusion process in this space. Of course the model follows
when postulating a generator of the form Dij.q/ @

@xi
@
@xj

as was done in the original
work by Özarslan et al. [34], but in this case relating the diffusion tensor D to
structural properties of the tissue becomes more difficult.

What we have to let go of is the idea that the anisotropy that particles encounter
is prescribed by the direction of their motion in the simple manner that we assumed
here. Instead we can view the tissue as an abstract space whose anisotropy properties
are locally parameterized by an externally imposed vector field 
 q, which is
actually more aligned with the original ideas in Özarslan et al. [34] and Florack
et al. [15]. If stochastic processes on such a space could be linked to a process on
a Finsler manifold, this would provide the assumptions that need to be validated
for the geometric interpretation of GDTI to hold. This will be the subject of future
investigations.
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Earlier objections to the GDTI model raised by Liu et al. [28] consisted of a
mathematical argument based on the Taylor expansion of the function H2.q/ D
Dij.q/qiqj (Eq. (5)) around the origin q D 0, where the assumption of quadratic
scaling in the norm of q was shown to constrictD to the diffusion tensor of the DTI
model. The conclusion drawn by the authors was that the GDTI model of Özarslan
et al. was self-inconsistent. However, the key step of writing the function as a series
expansion requires analyticity in the origin; it is this assumption of analyticity, rather
than the assumption of quadratic scaling, that imposes the a priori unwarranted
restriction on the function space of D.

This discussion notwithstanding, the usability of GDTI is restricted to gradient
strength regions in which the quadratic scaling assumption holds to a reasonable
approximation. Assaf and Cohen [5] reported approximate validity up to b D
5;000 s=mm2 for various combinations of ı and 
. Additionally it is in principle
possible to determine a Finsler function based on data for which the quadratic
scaling assumption holds locally. In both cases though, the level sets of the
reconstructed Finsler function are required to be convex in order to satisfy the strong
convexity requirement mentioned in Sect. 2.1. This convexity can be checked with
a simple convexity measure. A cursory investigation on a single data set from the
Human Connectome Project [42] (subject ID 100307, see Fig. 2) suggests this might
be satisfied to a large extent for gradient strengths up to at least5 b D 3;000 s=mm2,
cf. Fig. 3. The experiment compares the apparent convexity of the level sets obtained
from the data with ‘typical’ values of convex and non-convex level-sets, showing a
fairly homogeneous and relatively high degree of convexity throughout the data set.
The higher b-value shells of the data set show a higher degree of convexity. The
specific acquisition protocol can be found in the overview paper by Sotiropoulos
et al. [39], and further details are available in related references [2, 18, 40]. At this

Fig. 2 A sagittal slice in a T1 weighted image of a data set provided by the Human Connectome
Project (subject ID 100307)

5Since we only report results of a single experiment we provide only the b-value. A more extensive
analysis should consider the influence of the different parameters ı, 
, and kGk separately.
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a

b

Fig. 3 A simple experiment showing a measure of convexity for a sagittal slice in a single data
set. The convexity measure C is defined as the ratio between the volumes of the apparent unit
level set of H2, Eq. (5), and its convex hull. The level sets are defined per orientation according to
Eq. (12). In the ventricles, where we expect the true underlying level sets to be convex, we typically
find C � 0:95. (a) The convexity measure of the diffusion data with b D 1;000 s=mm2 matching
Fig. 2, and the corresponding histogram. (b) The convexity measure plot and histogram of diffusion
data with b D 3;000 s=mm2

stage the value in using the Finslerian framework in combination with GDTI has to
be determined experimentally, see also [1, 36].

6 Conclusion

The commonly used Diffusion Tensor Imaging (DTI) model can be derived from
the Bloch–Torrey equation by specifying the infinitesimal diffusion generator of
Riemannian Brownian motion. This leads to the geometrical interpretation of DTI,
where the (white) matter in the brain is viewed as a Riemannian manifold, with
a metric tensor defined locally as the inverse of the diffusion tensor. A similar
framework based on Finsler geometry has been suggested [15] as a geometric inter-
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pretation of the Generalized DTI (GDTI) model [34], but this framework lacks the
relation to a stochastic process that makes the Riemannian framework so intuitive.

In this chapter we have discussed Brownian motion in Finsler manifolds, gener-
ated by a Finslerian Laplace–Beltrami operator due to Antonelli and Zastawniak [3,
App. A], and we derived the corresponding diffusion MRI model. We have shown
that the resulting signal model has the same general form as the DTI model, and
will thus suffer the same limitations. Furthermore, it is not possible to extract the
geometric structure of the proposed Finsler manifold from the signal based on this
model. As a final remark, it should be noted that the model obtained through the
assumption of Finslerian Brownian motion is entirely different from the GDTI
model. The validity and value of the GDTI model and the corresponding geometric
framework is the subject of future investigations.
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Fiber Orientation Distribution Functions
and Orientation Tensors for Different Material
Symmetries

Maher Moakher and Peter J. Basser

Abstract In this paper we give closed-form expressions of the orientation tensors
up to the order four associated with some axially-symmetric orientation distribution
functions (ODF), including the well-known von Mises-Fisher, Watson, and de la
Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration
parameter. Then, we use these elementary ODFs as building blocks to construct new
ones with a specified material symmetry and derive the corresponding orientation
tensors. For a general ODF we present a systematic way of calculating the
corresponding orientation tensors from certain coefficients of the expansion of the
ODF in spherical harmonics.
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1 Introduction

Fibrous composites are ubiquitous in nature and occur over a wide range of length
scales. While there are familiar examples in engineering, materials sciences, and
geophysics, in biology, they arise as nanoscale fibrous macromolecular systems,
sub-microscopic fibrous bundles, and even macroscopic fibrous tissues and organs.
There is an increasing appreciation and desire to describe, predict, and measure
material and transport processes within these complex systems. Central to achieving
this goal is developing a mathematical and statistical framework like the one
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presented here, from which one can build constitutive laws and more precise,
accurate, and predictive models of material behavior. In the medical imaging field,
there has been much interest determining orientation distribution functions (ODF)
in brain white matter. For this application, the ODFs we consider and propose here
can be explicitly included in models of nerve fiber orientation within an imaging
voxel, whose parameters could be measured or estimated from MRI data.

The microscopic description of fiber orientation in fibrous materials, which are
made of a large collection of rod-like objects, is embodied in the ODF, which is
a non-negative function � defined on the unit sphere S2 of R

3. It is normalized
so that

R
S2
�.n/ d� D 1, where d� is the area element in S2 and n is a generic

vector on the unit sphere S2 that can be parametrized by spherical coordinates as
n D .cos � sin �; sin � sin �; cos�/T with 0 � � � 2� and 0 � � � � . If �
satisfies �.n/ D �.�n/, then � is said to be antipodally symmetric.

Since the work of Advani and Tucker [1], orientation tensors of even orders have
been used to describe the orientation of fibers at the macroscopic scale. For a given
positive integer k, the kth order orientation tensor is given by the expected value,
with respect to the orientation distribution function �, over all orientations n 2 S2:

hn˝ki� WD
Z
S2
�.n/n˝k d�; (1)

where, n˝k denotes the kth-power tensor product of n defined by

n˝k D n ˝ n ˝ � � � ˝ n„ ƒ‚ …
k times

:

Orientation tensors enjoy certain properties that follow immediately from their
definition (1). First, the kth order orientation tensor hn˝ki� is totally symmetric, i.e.,
its components satisfy

.hn˝ki�/i1;��� ;ik D .hn˝ki�/i�.1/;��� ;i�.k/ ;

for all permutations �.�/ of the integers 1; � � � ; k. Second, since n is a unit vector,
all the components of hn˝ki� are less than or equal to one in absolute value. Third,
the contraction of the kth order orientation tensor with respect to any two indices is
the .k � 2/th order orientation tensor, i.e.,

.hn˝ki�/i1;��� ;ik�2;j;j D .hn˝k�2i�/i1;��� ;ik�2
:

Furthermore, the trace of even-order orientation tensors hn˝2ki� is equal to one

.hn˝2ki�/i1;��� ;ik ;i1;��� ;ik D 1;
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and the complete contraction of odd-order orientation tensors hn˝2kC1i� is equal to
the orientation tensor of the first order, i.e.,

.hn˝2kC1i�/i1;��� ;ik ;i1;��� ;ik ;j D .hni�/j :

Any ODF � can be (uniquely) decomposed into an antipodally symmetric part �s

and an antipodally skew-symmetric part �a according to

�.n/ D �s.n/C �a.n/; (2)

where

�s.n/ WD 1
2
.�.n/C �.�n// and �a.n/ WD 1

2
.�.n/� �.�n//:

It should be noted that the antipodally symmetric part �s is always an ODF, i.e., it
is a non-negative function in S2 and its integral over S2 is equal to one. In general,
the antipodally skew-symmetric part is not, however, an orientation distribution
function.

By exploiting the fact that integration over S2 is invariant under the change of
variable n ! �n it follows that for k even we have

Z
S2
�.n/n˝k d� D

Z
S2
�.�n/n˝k d� D

Z
S2

1
2
.�.n/C �.�n//n˝k d�;

and that for k odd we have
Z
S2
�.n/n˝k d� D �

Z
S2
�.�n/n˝k d� D

Z
S2

1
2
.�.n/� �.�n//n˝k d�:

Therefore, even-order orientation tensors depend only on the antipodally symmetric
part of � and odd-order orientation tensors depend only on the antipodally skew
symmetric part of �. As a consequence, when � is antipodally symmetric all
odd-order orientation tensors vanish. The orientation tensor of order k, hn˝ki�, is
also called a fabric tensor of the first kind of rank k [16].

For an ODF �.n/ defined on the unit sphere S2, one can consider the kth order
approximation

Q�.n/ WD C0 C C1 � n C tr.C2hn˝2i�/C tr.C3hn˝3i�/C � � � C tr.Ckhn˝ki�/;

where the coefficients Ci , i D 0; : : : ; k, each of which is a totally symmetric tensor
of order i , are determined so that the least-squares functional

E .�/ WD
Z
S2
Œ�.n/� Q�.n/�2 d�;



40 M. Moakher and P.J. Basser

is minimized. However, as explained in the seminal paper of Kanatani [16], these
coefficients tensors are not uniquely defined. The reason is that the even-order
tensors 1, n˝2, n˝4 : : : are not linearly independent, and similarly, the odd-order
tensors n, n˝3 : : : are not linearly independent. In fact, since knk D 1, n˝l can be
obtained from n˝k , with k � l C 2, by repeated contractions.

We note that if �.n/ is antipodally symmetric, which is the condition that we
will consider next, then all odd-order coefficient tensors vanish. Let Vl be the vector
space of functions defined on S2 spanned by n˝l . Then, because of what we stated
earlier on the linear dependence of 1, n˝2, n˝4 : : : , we have V0 	 V2 	 V4 : : :.
Therefore, if one wants to approximate �.n/ up to order k (even), then it suffices to
simply consider an approximation of the form

�.n/ 
 1

4�
Fi1���ik ni1 � � �nik ; (3)

where Fi1���ik are the components of a kth order totally symmetric tensor called the
fabric tensor of the second kind of rank k [16]. The fabric tensors of the second kind
of rank 0, 2, and 4 are, respectively

F D 1; F D 15

2

�hn˝2i� � 1
5
I
�
; FD 315

8

�hn˝4i� � 1
3
.I ˝ hn˝2i�/s C 1

7
.I ˝ I/s

�
:

Here and throughout the paper, I denotes the (second-order) identity tensor, and the
superscript s on a tensor indicates taking the totally symmetric part of that tensor.

Because the approximation (3) has a compact form, the number of tensor
components needed for the computation is minimal. However, to get a higher-order
approximation one must recompute the tensor. By a Gram-Schmidt process, we can
get the orthogonal decomposition of Vk D V 0k ˚ V 0k�2 ˚ � � � ˚ V 00 where V 00 D V0
and V 0l is the orthogonal complement of Vl�2 in Vl with respect to the L2.S2/-inner
product. Then, using this orthogonal decomposition, we obtain the more practical
approximation of �.n/ [15, 16]:

�.n/ 
 1

4�

�
D C tr.Dhn˝2i�/C tr.Dhn˝4i�/C � � � � : (4)

The coefficients D , D, and D are called the fabric tensors of the third kind of rank
0, 2, and 4, respectively. They are given by

D D 1; D D 15

2

�hn˝2i� � 1
3
I
�
; DD 315

8

�hn˝4i� � 3
7
.I ˝ hn˝2i�/s C 1

35
.I ˝ I/s

�
:

In the field of diffusion MRI, high angular diffusion resolution imaging (HARDI)
is a commonly used modality for non-invasively probing water diffusion in fibrous
biological tissues such as muscle and brain white matter. HARDI encompasses
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several techniques such as Q-ball imaging [31], diffusion orientation transform MRI
[24], and spherical deconvolution MRI [30]. In general, these techniques produce a
function defined on the unit sphere. Various high-order tensor decompositions have
been used for approximating such functions. The reader is referred to the recent
review article [28] on the use of higher-order tensors in diffusion imaging. We
here particularly mention the work of Özarslan and Mareci [23] who employed an
approximation of the form (3), and the work of Florack and co-authors [9, 10] who
used an approximation of the form (4).

We mention that orientation tensors of even order have been widely used in
the macroscopic description of short-fiber composites [2, 14], fiber suspensions
[7], damage mechanics [25, 33], etc. For classical solids and fluids, the even-order
orientation tensors suffice for the macroscopic description of such media. However,
there are natural and man-made materials that exhibit chiral behavior, i.e., they are
not invariant under inversion. Such materials are called chiral, noncentrosymmetric,
or hemitropic [17]. For instance, quartz, biological molecules such as the DNA
double helix, and composites with helical or screw-shaped inclusions, polar chiral
materials [6, 12, 22], and chiral metamaterials [34] all show different behaviors for
opposite directions. Material properties such as piezoelectricity and pyroelectricity
are represented by odd-order tensors [17]. It is therefore necessary to use odd-order
orientation tensors as well for the macroscopic description of such properties for
these types of media. We should also mention that odd-order orientation tensors are
necessary for dealing with singularities in fiber arrangements and in fiber splaying
and merging. Furthermore, in the work of Liu et al. [18], odd-order diffusion tensors
are considered for the measurement of the phases of magnetic resonance signals.

In the remainder of the paper, we will give the expressions of the orientation
tensors up to the fourth order for ODFs with some prescribed material symmetry
classes. The notation that will be used is described below.

Let E 3 denote the three-dimensional Euclidean space and let feigiD1;2;3 be an
orthonormal basis of it. Any vector v in E 3 can be represented as v D viei . The
inner product of two vectors a and b is denoted by a � b.

A second-order tensor T of the three-dimensional space E 3 is a linear map that
assigns to each vector in E 3 a vector in E 3. We denote by u ˝ v the second-order
tensor that assigns to a vector w the vector .v � w/u. A second-order tensor can
thus be represented as T D Tij ei ˝ ej . A second-order tensor T is symmetric if
Tij D Tj i for all i; j D 1; 2; 3. The tensor product a ˝b of two vectors is the tensor
that assigns to each vector u the vector .b � u/a. In components .a ˝ b/ij D aibj .

A third-order tensor T can be seen as a linear map that assigns a vector
to each second-order tensor. A third-order tensor admits the representation
T D Tijkei ˝ ej ˝ ek . This tensor is said to be symmetric in the last two indices if
Tijk D Tikj for all i; j; k D 1; 2; 3, and totally symmetric if in addition Tijk D Tjik

for all i; j; k D 1; 2; 3.
A fourth-order tensor T can be seen as a linear map that assigns to each second-

order tensor a second-order tensor. A fourth-order tensor admits the representation
T D Tijklei ˝ ej ˝ ek ˝ el . This tensor is said to possess the minor symmetries
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if Tijkl D Tjikl D Tijlk for all i; j; k; l D 1; 2; 3, the major symmetry if Tijkl D
Tklij for all i; j; k; l D 1; 2; 3, and total symmetry if in addition to the minor and
major symmetries it satisfies Tijkl D Tikjl for all i; j; k; l D 1; 2; 3. Any fourth-
order tensor T possessing the minor and major symmetries can be decomposed, in
a unique manner, into its totally symmetric part Ts and its asymmetric part Ta as:
T D T

s C T
a. The components of the totally symmetric and asymmetric parts are

[3, 21]

T sijkl D 1
3
.Tijkl C Tikjl C Tilkj/; T aijkl D 1

3
.2Tijkl � Tikjl � Tilkj/: (5)

Let I denote the fourth-order identity tensor whose components are given by Iijkl D
1
2
.ıikıjl C ıil ıjk/. Then the components of its totally symmetric part Is are I sijkl D
1
3
.ıikıjl C ıilıjk C ıij ıkl /, and the components of its asymmetric part Ia are I aijkl D
1
6
.ıikıjl C ıil ıjk � 2ıij ıkl /.

We note that vectors and second-order tensors are easily dealt with by using
linear algebra operations. This is not the case for third- and fourth-order tensors. We
therefore introduce a (non-physical) six-dimensional space OE so that the usual linear
algebra operations can be used for the manipulation of third-order tensors that are
symmetric with respect to the last two indices and fourth-order tensors possessing
the minor symmetries.

Let Oe1 D e1 ˝ e1, Oe2 D e2 ˝ e2, Oe3 D e3 ˝ e3, Oe4 D 2�1=2.e2 ˝ e3 C e3 ˝ e2/,
Oe5 D 2�1=2.e1˝e3Ce3˝e1/ and Oe6 D 2�1=2.e1˝e2Ce2˝e1/. Then any third-order

tensor T D Tijkei ˝ ej ˝ ek with Tijk D Tikj can be represented by

OT D OTi˛ei ˝ Oe˛;

where the Latin indices range from 1 to 3 and the Greek indices run from 1 to 6.
Similarly, any fourth-order tensor T D Tijklei ˝ej ˝ek ˝el with Tijkl D Tjikl D Tijlk

can be represented by

OT D OT˛ˇ Oe˛ ˝ Oeˇ:

In this way, the fourth-order identity tensor I is represented by, OI, the second-order
identity tensor in OE whose components are OI˛ˇ D ı˛ˇ.

2 Isotropic, Transversely Isotropic, and Uniform ODFs

The isotropic ODF is given by

�iso.n/ D 1

4�
: (6)
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Fig. 1 (a) Spatial randomly oriented fibers, (b) planar randomly oriented fibers, (c) totally aligned
fibers

The isotropic orientation averages of n˝2 and n˝4 are given by

hn˝2iiso WD
Z
S2
�iso.n/n˝2 d� D 1

3
I; (7)

and

hn˝4iiso WD
Z
S2
�iso.n/n˝4 d� D 1

5
I
s ; (8)

where I
s is the totally symmetric part (defined by (5)1) of the fourth-order

identity tensor I. The isotropic distribution (6) represents a uniform distribution of
orientations on the unit sphere S2. This distribution corresponds to fibers that are
randomly oriented as depicted in Fig. 1a.

There are two other special distributions that need to be mentioned here. First,
the distribution

�iso;m.n/ D 1

2�
ı.n � m/; (9)

represents a uniform distribution of orientations in the plane perpendicular to m,
where m is a unit vector and ı.�/ denotes the Dirac delta function. This distribution
corresponds to randomly oriented fibers in planes perpendicular to m, see Fig. 1b.
The second- and fourth-order orientation tensors associated with (9) are

hn˝2iiso;m WD
Z
S2
�iso;m.n/n˝2 d� D 1

2
.p˝2 C q˝2/;
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and

hn˝4iiso;m WD
Z
S2
�iso;m.n/n˝4 d� D 1

8

�
3p˝4 C 3q˝4 C p˝2 ˝ q˝2 C q˝2 ˝ p˝2

C.p ˝ q/˝2 C .q ˝ p/˝2 C p ˝ q˝2 ˝ p C q ˝ p˝2 ˝ q
�
;

where p and q are any two orthogonal unit vectors in the plane perpendicular to m.
Second, the distribution

�m.n/ D ı.1 � .n � m/2/

4�
p
1 � .n � m/2

; (10)

represents orientations totally aligned with m. This distribution corresponds to fibers
oriented along m, see Fig. 1c. We note that this orientation distribution can simply
be expressed as �m.n/ D ım.n/, where ım.�/ is the spherical delta function defined
such that for any functions f on S2 we have

Z
S2

ım.n/f .n/ d� D f .m/:

It is given by ım.n/ D 1
sin� ı.� � �0/ı.� � �0/ where .�; �/ and .�0; �0/ are the

spherical coordinates of n and m, respectively, see e.g., [29, p. 211]. The second-
and fourth-order orientation tensors associated with (10) are

hn˝2im WD
Z
S2
�m.n/n˝2 d� D m˝2; (11)

and

hn˝4im WD
Z
S2
�m.n/n˝4 d� D m˝4: (12)

3 Axially-Symmetric ODFs

We say that an ODF %m.�/ is axially symmetric with respect to m 2 S2 if %m.Rn/ D
%m.n/ for all (proper) rotations R about the vector m. The ODF %m.�/ is also called
transversely hemitropic with m as the direction of transverse hemitropy. In this case,
there exists a positive function Q%.�/ defined on the interval Œ0; �� such that

%m.n/ D Q%.˚/; (13)
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where cos˚ D m � n. As %m.�/ is normalized, the function Q%.�/ further satisfies

2�

Z �

0

Q%.˚/ sin˚ d˚ D 1:

If, in addition the ODF %m.�/ is antipodally symmetric, which is the case when
Q%.˚/ D Q%.� � ˚/ for all ˚ 2 Œ0; ��, then the ODF %m.�/ is called transversely
isotropic with m as the direction of transverse isotropy.

The first-order orientation tensor, corresponding to the axially symmetric distri-
bution %e3 , is

hni%e3
WD
Z
S2
%e3 .n/n d� D

2
400
A

3
5 ;

and the corresponding second-order orientation tensor is

hn˝2i%e3
WD
Z
S2
%e3 .n/n

˝2 d� D
2
4B 0 0

0 B 0

0 0 1 � 2B

3
5 ;

where

A D 2�

Z �

0

cos˚ sin˚ Q%.˚/ d˚; B D �

Z �

0

sin3 ˚ Q%.˚/ d˚: (14)

The corresponding third-order orientation tensor,

hn˝3i%e3
WD
Z
S2
%e3 .n/n

˝3 d�;

has the matrix representation

2
4 0 0 0 0

p
2C 0

0 0 0
p
2C 0 0

C C A� 2C 0 0 0

3
5 ;

where

C D �

Z �

0

cos˚ sin3 ˚ Q%.˚/ d˚: (15)
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Similarly, the corresponding fourth-order orientation tensor,

hn˝4i%e3
WD
Z
S2
�%e3 .n/n

˝4 d�;

has the 6D second-order tensor representation

2
66666664

3D D F 0 0 0

D 3D F 0 0 0

F F E 0 0 0

0 0 0 2F 0 0

0 0 0 0 2F 0

0 0 0 0 0 2D

3
77777775
;

where

D D 1
4
�

Z �

0

sin5 ˚ Q%.˚/ d˚; (16a)

E D 2�

Z �

0

cos4 ˚ sin5 ˚ Q%.˚/ d˚; (16b)

F D �

Z �

0

cos2 ˚ sin3 ˚ Q%.˚/ d˚: (16c)

As the trace of the fourth-order orientation tensor is equal to one, one can easily
verify that 8D C E C 4F D 2�

R �
0

sin˚ Q%.˚/ d˚ D 1.
In the following subsections we will give explicit expressions of the orientation

tensors up to the order four for several uni-modal axially symmetric ODFs. All
these orientation distributions are characterized with the modal vector (mean axis) m
and a concentration parameter � 2 Œ0; �1/. When the concentration parameter � is
equal to zero, the orientation distribution reduces to the isotropic distribution (6). On
the other hand, when the concentration parameter � approaches �1 the orientation
distribution tends to the totally aligned orientation distribution (10).

3.1 The von Mises-Fisher ODF

The widely used uni-modal orientation distribution is the Fisher distribution (also
known as the von Mises-Fisher distribution), with modal vector m 2 S2 and
concentration parameter � > 0; it is given by (see e.g., [19, 35])

�MF
m;� .n/ D �MF.�/

4�
exp.�m � n/; (17)
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Fig. 2 Plots of the
transversely hemitropic
ODF (17) for � D 1, 2, 5,
and 10

where

�MF.�/ D �

sinh �
:

In Fig. 2 we give plots of (17) for various values of the concentration parameter �.
It should be noted that this distribution is not invariant under the inversion of
directions: n 7! �n, and hence it is not antipodally symmetric.

When m D e3, the corresponding first-order orientation tensor is

hniMF
m3;�

WD
Z
S2
�MF

m3;�
.n/n d� D 1

�

2
4 0

0

˛.�/

3
5 ;

and the corresponding second-order orientation tensor is

hn˝2iMF
m3;�

WD
Z
S2
�MF

m3;�
.n/n˝2 d� D 1

�2

2
4˛.�/ 0 0

0 ˛.�/ 0

0 0 �2 � 2˛.�/

3
5 ;

where

˛.�/ D �MF.�/ cosh � � 1:

The corresponding third-order orientation tensor

hn˝3iMF
m3;�

WD
Z
S2
�MF

m3;�
.n/n˝3 d�;

has the matrix representation

1

�3

2
4 0 0 0 0

p
2ˇ.�/ 0

0 0 0
p
2ˇ.�/ 0 0

ˇ.�/ ˇ.�/ �.�/ 0 0 0

3
5 ;

where

ˇ.�/ D .�2 C 3/� 3�MF.�/ cosh �;

�.�/ D .�2 C 6/�MF.�/ cosh � � 3.�2 C 2/:
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Note that as the contraction of hn˝3iMF
m3;�

is equal to hniMF
m3;�

we can verify that

2ˇ.�/C �.�/ D �2˛.�/:

Similarly, the corresponding fourth-order orientation tensor,

hn˝4iMF
m3;�

WD
Z
S2
�MF

m3;�
.n/n˝4 d�;

has the 6D second-order tensor representation

1

�4

2
66666664

3a.�/ a.�/ c.�/ 0 0 0

a.�/ 3a.�/ c.�/ 0 0 0

c.�/ c.�/ b.�/ 0 0 0

0 0 0 2c.�/ 0 0

0 0 0 0 2c.�/ 0

0 0 0 0 0 2a.�/

3
77777775
;

where

a.�/ D �2 C 3.1� �MF.�/ cosh �/;

b.�/ D �4 C 12�2 C 24� 4.�2 C 6/�MF.�/ cosh �;

c.�/ D .�2 C 12/�MF.�/ cosh � � 5�2 � 12:

Because the trace of even-order orientation tensors is equal to one, the three
functions a.�/, b.�/, and c.�/ are dependent, satisfying the relation

8a.�/C b.�/C 4c.�/ D �4:

As mentioned before, the von Mises-Fisher ODF (17) is not antipodally symmet-
ric. Its antipodally symmetric part is given by

.�MF
m;� /

s.n/ D �MF.�/

4�
cosh.�m � n/; (18)

and its antipodally skew-symmetric part is given by

.�MF
m;� /

a.n/ D �MF.�/

4�
sinh.�m � n/: (19)

Plots of (18) for various values of the concentration parameter � are shown in Fig. 3.
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Fig. 3 Plots of the
transversely isotropic
ODF (18) for � D 1, 2, 5,
and 10

All orientation tensors of even orders relative to the orientation distribution
function (18) are equal to the orientation tensors of even orders relative to the
orientation distribution function (17), whereas all orientation tensors of odd orders
relative to the ODF (18) vanish.

3.2 The Watson ODF

The Watson distribution (also known as the Dimroth-Watson distribution) with
modal vector m 2 S2 and concentration parameter � > 0 is given by [8]

�DW
m;� .n/ D �DW.�/

4�
exp.�2.m � n/2/; (20)

where

�DW.�/ D 2�p
� erfi.�/

;

and erfi.�/ represents the imaginary error function defined by

erfi.s/ D �i erf.is/ D 2sp
�

Z 1

0

exp.s2t2/ dt:

This distribution can be seen as a special case of the well-known Bingham (multi-
modal) distribution for axial data

�K.n/ D 1

b.K/
exp.n � Kn/;



50 M. Moakher and P.J. Basser

Fig. 4 Plots of the
transversely isotropic
ODF (20) for � D 1,

p
2, 2,

and 3

where K is a symmetric matrix and b.K/ is a normalization constant. The
distribution �DW

m;� .n/ is transversely isotropic. Like the von Mises-Fisher distribution,
the Dimroth-Watson distribution is parametrized by the concentration parameter �.
Plots of (20) for various values of the concentration parameter � are given in Fig. 4.

When m D e3, the corresponding second-order orientation tensor hn˝2iDW
m3;�

WDR
S2
�DW

m3;�
.n/n˝2 d� is given by

1

4�2

2
4 Q̨ .�/ 0 0

0 Q̨ .�/ 0

0 0 2
�
2�2 � Q̨ .�/�

3
5 ;

where

Q̨ .�/ D .2�2 C 1/� �DW.�/e�
2

:

The corresponding fourth-order orientation tensor,

hn˝4iDW
m3;�

WD
Z
S2
�DW

m3;�
.n/n˝4 d�;

has the 6D second-order tensor representation

1

32�4

2
66666664

3 Qa.�/ Qa.�/ Qc.�/ 0 0 0

Qa.�/ 3 Qa.�/ Qc.�/ 0 0 0

Qc.�/ Qc.�/ Qb.�/ 0 0 0

0 0 0 2 Qc.�/ 0 0

0 0 0 0 2 Qc.�/ 0

0 0 0 0 0 2 Qa.�/

3
77777775
;
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where

Qa.�/ D 4�2.�2 C 1/C 3� .2�2 C 3/�DW.�/e�
2

;

Qb.�/ D 8
h
3C .2�2 � 3/�DW.�/e�

2
i
;

Qc.�/ D 4
h
3�DW.�/e�

2 � .2�2 C 3/
i
:

We note that, since the trace of even-order orientation tensors is equal to one, the
three functions Qa.�/, Qb.�/ and Qc.�/ satisfy the relation

8 Qa.�/C Qb.�/C 4 Qc.�/ D 32�4:

3.3 The Singular-Kernel ODF

The uni-modal ODF with modal vector m 2 S2 and concentration parameter 0 <
K < 1 given by

�SK
m;K.n/ D �SK.K/

4�

1

1 � 2K.m � n/CK2
; (21)

where

�SK.K/ D K

tanh�1 K
;

is called the singular-kernel distribution [32]. It should be noted that this distribution
is not invariant under the inversion of directions: n 7! �n. In Fig. 5 we present plots
of (21) for various values of the concentration parameterK .

Fig. 5 Plots of the transversely hemitropic ODF (21) for K D 2
3
, 3
4
, and 5

6
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When m D e3, the corresponding first-order orientation tensor is

hniSK
m3;K

WD
Z
S2
�SK

m3;K
.n/n d� D 1

2K

2
4 0

0

K2 C 1 � �SK.K/

3
5 ;

and the corresponding second-order orientation tensor is

hn˝2iSK
m3;K

WD
Z
S2
�SK

m3;K
.n/n˝2 d� D 1

8K2

2
4 Ǫ .K/ 0 0

0 Ǫ .K/ 0

0 0 2.4K2 � Ǫ .K//

3
5 ;

where

Ǫ .K/ D .K2 C 1/�SK.K/� .K2 � 1/2:

The corresponding third-order orientation tensor,

hn˝3iSK
m3;K

WD
Z
S2
�m3;K.n/n

˝3 d�;

has the matrix representation

1

16K3

2
64

0 0 0 0
p
2 Ǒ.K/ 0

0 0 0
p
2 Ǒ.K/ 0 0

Ǒ.K/ Ǒ.K/ O�.K/ 0 0 0

3
75 ;

where

Ǒ.K/ D .K4 � 2
3
K2 C 1/�SK.K/� .K6 �K4 �K2 C 1/;

O�.K/ D 2
�
.K6 C 3K4 C 3K2 C 1/� .K4 C 10

3
K2 C 1/�SK.K/

�
:

Note that as the contraction of hn˝3iSK
m3;K

is equal to hnim3;K we can verify that

2 Ǒ.K/C O�.K/ D 8K2Œ.K2 C 1/� �SK.K/�:

Similarly, the corresponding fourth-order orientation tensor,

hn˝4iSK
m3;K

WD
Z
S2
�m3;K.n/n

˝4 d�;
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has the 6D second-order tensor representation

1

128K4

2
66666664

3 Oa.K/ Oa.K/ Oc.K/ 0 0 0

Oa.K/ 3 Oa.K/ Oc.K/ 0 0 0

Oc.K/ Oc.K/ Ob.K/ 0 0 0

0 0 0 2 Oc.K/ 0 0

0 0 0 0 2 Oc.K/ 0

0 0 0 0 0 2 Oa.K/

3
77777775
;

where

Oa.K/ D .K8 � 4K6 C 6K4 � 4K2 C 1/� .K6 � 11
3
K4 � 11

3
K2 C 1/�SK.K/;

Ob.K/ D 8
�
.K8 C 4K6 C 6K4 C 4K2 C 1/� .K6 C 13

3
K4 C 13

3
K2 C 1/�SK.K/

�
;

Oc.K/ D 4
�
.K6 C 1

3
K4 C 1

3
K2 C 1/�SK.K/� .K4 � 1/2

�
:

Because the trace of even-order orientation tensors is equal to one, the three
functions Oa.�/, Ob.�/ and Oc.�/ are dependent. Indeed, they satisfy the relation

8 Oa.K/C Ob.K/C 4 Oc.K/ D 128K4:

As mentioned before, the singular-kernel orientation distribution function (21) is
not antipodally symmetric. Its antipodally symmetric part is given by

.�SK
m;K /

s.n/ D �SK.K/

4�

1CK2

.1CK2/2 � 4K2.m � n/2
; (22)

and its antipodally skew-symmetric part is given by

.�SK
m;K/

a.n/ D �SK.K/

4�

2Km � n
.1CK2/2 � 4K2.m � n/2

: (23)

Plots of (22) for various values of the concentration parameterK are given in Fig. 6.

Fig. 6 Plots of the transversely isotropic ODF (22) for K D 2
3
, 3
4
, and 5

6
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All orientation tensors of even orders relative to the orientation distribution
function (22) are equal to the orientation tensors of even orders relative to the
orientation distribution function (21), whereas all orientation tensors of odd orders
relative to the ODF (22) vanish.

For the comparison with the other distributions, we can compose the functions
Ǫ .K/, Ǒ.K/, O�.K/, Oa.K/, Ob.K/, and Oc.K/with the functionK 7! � D K=.1CK/.

3.4 The de la Vallée Poussin ODF

The ODFs

�VP
m;k.n/ D 2k C 1

4�
.n � m/2k; (24)

are a family (indexed by a positive integer k) of antipodally and axially symmetric
ODFs. We note here that �VP

e3;k
.n/ D .cos�/2k has the same functional form (with

� replaced by 1
2
�) as the de la Vallée Poussin distribution in SO.3/, the group of

rotations in R
3 [26]. Accordingly, we call the family of ODFs (24) the de la Vallée

Poussin ODF. The positive integer k acts as the concentration parameter of the
Fisher and Watson distributions. Plots of (24) for various values of the concentration
parameter k are given in Fig. 7.

For �VP
e3;k

, the second-order orientation tensor is

hn˝2iVP
e3;k WD

Z
S2
�VP

e3;k.n/n
˝2 d� D 1

2k C 3

2
41 0 0

0 1 0

0 0 2k C 1

3
5 :

The corresponding fourth-order orientation tensor,

hn˝4iVP
e3;k WD

Z
S2
�VP

e3;k.n/n
˝4 d�;

Fig. 7 Plots of the transversely isotropic ODF (24) for k D 1, 2, 3 and 5
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has the 6D second-order tensor representation

1

.2kC 3/.2kC 5/

2
66666664

3 1 2kC 1 0 0 0

1 3 2kC 1 0 0 0

2kC 1 2kC 1 .2kC 1/.2kC 3/ 0 0 0

0 0 0 2.2k C 1/ 0 0

0 0 0 0 2.2k C 1/ 0

0 0 0 0 0 2

3
77777775
:

Using a change of variables we can deduce that the family of ODFs

�VP
e1;k.n/ D 2k C 1

4�
cos2k � sin2k �: (25)

is transversely isotropic along the e1-axis. Similarly, the family of ODFs

�VP
e2;k.n/ D 2k C 1

4�
sin2k � sin2k �: (26)

is transversely isotropic along the e2-axis.
The de la Vallée Poussin ODF (24) can be generalized as

�VPm
m;� .n/ D � C 1

4�
jn � mj�; (27)

where the concentration parameter is now a positive real number �. The correspond-
ing orientation tensors have the same expressions as the ones for the de la Vallée
Poussin ODF, we just need to replace 2k with �.

For all the axially symmetric ODFs discussed in Sect. 3, when the concentration
parameter � is equal to zero, the second- and fourth-order orientation tensors are
equal to the isotropic tensors (7) and (8), respectively. On the other hand, when �
goes to infinity, the second- and fourth-order orientation tensors are equal to the
totally aligned orientation tensors (11) and (12) with m D e3, respectively. For the
comparison, in Fig. 8 we present plots of the 11 and 33 components of the second-
order orientation tensors, and the 1111 and 3333 components of the fourth-order
orientation tensor as functions of the concentration parameter � and for the different
ODFs.
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Fig. 8 Plots of the components of the second- and fourth-order orientation tensors as functions of
� for the different ODFs: von Mises-Fisher (blue), Watson (red), singular kernel (magenta), and
de la Vallée Poussin (black). On the left the 11 (dashed) and 33 (solid) components of the second-
order tensor, and on the right the 1111 (dashed) and 3333 (solid) components of the fourth-order
tensor

4 Orthotropic ODFs

By adding two transversely isotropic ODFs with the same functional form but dif-
ferent modal vectors we obtain (after multiplication by 1

2
) an orthotropic orientation

distribution. For example, by adding %mC and %m� , where m˙ D cos 1
2
 e1 ˙

sin 1
2
 e2, we obtain the orthotropic ODF

%orth.n/ D 1
2
.%mC.n/C %m� .n// : (28)

Plots of (28) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular-kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 9.

The first- and second-order orientation tensors are given by

hniorth D 1
2

2
4 0

0

A cos 1
2
 

3
5

and

hn˝2iorth D 1
2

2
41 � B C .1 � 3B/ cos 0 0

0 1 � B � .1 � 3B/ cos 0

0 0 2B

3
5 ;

where A and B are given in (14) for the chosen ODF %m.
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Fig. 9 Plots of orthotropic
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

The third-order orientation tensor has the matrix representation

hn˝3iorth D 1
4

2
4n11 n12 n13 0 0 0

0 0 0 0 0
p
2n12

0 0 0 0
p
2n13 0

3
5 ;

with

n11 D A.3 cos 1
2
 C cos 3

2
 / � C.3 cos 1

2
 � 5 cos 3

2
 /;

n12 D A.cos 1
2
 � cos 3

2
 / � C.cos 1

2
 � 5 cos 3

2
 /;

n13 D C cos 1
2
 ;

where C is given by (15) for the chosen ODF %m.
The fourth-order orientation tensor has the 6D tensor representation

.n˝4/orth D

2
66666664

N11 N12 N13 0 0 0

N12 N22 N23 0 0 0

N13 N23 N33 0 0 0

0 0 0 2N23 0 0

0 0 0 0 2N13 0

0 0 0 0 0 2N12

3
77777775

with

N11 D 1
4
.3D C E C 6F /� 1

2
.3D �E/ cos C 1

4
.3D CE � 6F / cos2  ;

N22 D 1
4
.3D C E C 6F /C 1

2
.3D � E/ cos C 1

4
.3D C E � 6F / cos2  ;

N33 D 3D;
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N12 D 1
2

�
3D C E � 2F � .3D C E � 6F / cos2  

�
;

N13 D 1
2
ŒD C F � .D � F / cos � ;

N23 D 1
2
ŒD C F C .D � F / cos � ;

whereD, E , and F are given in (16) for the chosen ODF %m.
Other orthotropic ODFs can be obtained by adding two different axially-

symmetric ODFs. For example, by adding two axially-symmetric ODFs with
orthogonal modal vectors, say e1 and e2,

%1;2.n/ D 1
2
.%1e1 .n/C %2e2 .n//:

The corresponding first-order orientation tensor is

hni%1;2 WD
Z
S2
%1;2.n/n d� D 1

2

2
4A1A2
0

3
5 ;

and the corresponding second-order orientation tensor is

hn˝2i%1;2 WD
Z
S2
%1;2.n/n˝2 d� D 1

2

2
41 � B1 C B2 0 0

0 1C B1 � B2 0

0 0 B1 CB2

3
5 ;

where Ai and Bi are given in (14) for the chosen ODFs %iei , i D 1; 2.
The corresponding third-order orientation tensor

hn˝3i%1;2 WD
Z
S2
%e3 .n/n

˝3 d�;

has the matrix representation

1
2

2
4A1 � 2C1 C1 C1 0 0

p
2C2

C2 A2 � C2 C2 0 0
p
2C1

0 0 0
p
2C2

p
2C1 0

3
5 ;

and the corresponding fourth-order orientation tensor,

hn˝4i%1;2 WD
Z
S2
%1;2.n/n˝4 d�;
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has the 6D second-order tensor representation

1
2

2
66666664

E1 C 3D2 F1 C F2 F1 CD2 0 0 0

F1 C F2 3D1 C E2 D1 C F2 0 0 0

F1 CD2 D1 C F2 3.D1 CD2/ 0 0 0

0 0 0 2.D1 C F2/ 0 0

0 0 0 0 2.F1 CD2/ 0

0 0 0 0 0 2.F1 C F2/

3
77777775
;

whereCi Di ,Ei and Fi are given in (15) and (16) for the chosen ODFs %iei , i D 1; 2.

5 Cubic ODFs

By adding three transversely isotropic ODFs with the same functional form and
mutually orthogonal modal vectors we obtain (after multiplication by 1

3
) a cubic

orientation distribution. For example, by adding %e1 , %e2 and %e3 , we obtain the cubic
orientation distribution

%cub.n/ D 1
3
.%e1 .n/C %e2 .n/C %e3 .n// : (29)

Plots of (29) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 10.

Fig. 10 Plots of cubic ODFs based on: antipodally symmetric von Mises-Fisher (first row),
Watson (second row), antipodally symmetric singular kernel (third row), and de la Vallée Poussin
(fourth row)
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The first-order orientation tensor is 1
3
A
�
1 1 1

�T
, where A is given in (14) for the

chosen ODF %m. The second-order orientation tensor is equal to 1
3
I and the third-

order orientation tensor hn˝3icub has the matrix representation

1

3

2
4A � 2C C C 0

p
2C

p
2C

C A � 2C C
p
2C 0

p
2C

C C A � 2C
p
2C

p
2C 0

3
5 ;

where C is given in (15) for the chosen ODF %m.
The fourth-order orientation tensor hn˝4icub has the 6D tensor representation

1

3

2
66666664

6D CE D C 2F D C 2F 0 0 0

D C 2F 6D C E D C 2F 0 0 0

D C 2F D C 2F 6D C E 0 0 0

0 0 0 2.D C 2F / 0 0

0 0 0 0 2.D C 2F / 0

0 0 0 0 0 2.D C 2F /

3
77777775
;

whereD, E , and F are given in (16) for the chosen ODF %m.
Another cubic ODF can be obtained by adding four axially symmetric ODFs

(with the same functional form)

%thd.n/ D 1
4
.%a1 .n/C %a2 .n/C %a3 .n/C %a4 .n// ; (30)

where

a1 D 1p
3

2
411
1

3
5 ; a2 D 1p

3

2
4 1

�1
�1

3
5 ; a3 D 1p

3

2
4�1
1

�1

3
5 ; a4 D 1p

3

2
4�1

�1
1

3
5 :

Plots of (30) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin distributions with
various values of the concentration parameter are given in Fig. 11. Plots of (30)
based on the von Mises-Fisher and singular kernel distributions with various values
of the concentration parameter are shown in Fig. 12.

The fact that this ODF has cubic symmetry is not a surprise. Indeed, the tips of the
unit vectors ai , i D 1; : : : ; 4 are vertices of a regular tetrahedron. This tetrahedron
can be embedded inside the unit cube centered at the origin. Each vertex of the
tetrahedron is a vertex of the cube, and each edge of the tetrahedron is a diagonal of
one of the cube’s faces.
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Fig. 11 Plots of tetrahedral
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

Fig. 12 Plots of tetrahedral
ODFs based on: the von
Mises-Fisher (first row) and
the singular kernel (second
row)

The first-order orientation tensor vanishes and the second-order orientation
tensor is equal to 1

3
I. The third-order orientation tensor has the matrix representation

p
3.A � 5C /

9

2
40 0 0

p
2 0 0

0 0 0 0
p
2 0

0 0 0 0 0
p
2

3
5 ;

while the fourth-order orientation tensor has the 6D tensor representation

1

9

2
66666664

12.DCF /CE 6DCE 6DCE 0 0 0

6DCE 12.DCF /CE 6DCE 0 0 0

6DCE 6DCE 12.DCF /CE 0 0 0

0 0 0 2.6DCE/ 0 0

0 0 0 0 2.6DCE/ 0

0 0 0 0 0 2.6DCE/

3
77777775
;

whereD, E , and F are given in (16) for the chosen ODF %m.
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6 Hexagonal ODFs

By adding three transversely isotropic ODFs (having the same functional form) with
planar modal vectors of mutual angles equal to 2

3
� we obtain (after multiplication

by 1
3
) a cubic orientation distribution. For example, by adding %e1 , %m1 and %m2 ,

where m1;2 D 1
2
.�e1 ˙ p

3e2/, we obtain the hexagonal orientation distribution

%hex.n/ D 1
3
.%e1 .n/C %m1 .n/C %m2 .n// : (31)

Plots of (31) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 13. Plots of (31) based on the
von Mises-Fisher and singular-kernel ODFs with various values of the concentration
parameter are shown in Fig. 14.

The first-order orientation tensor is 2
3

�
A 0 0

�T
and the second-order orientation

tensor is

hn˝2ihex D 1

2

2
41 � B 0 0

0 1 � B 0

0 0 2B

3
5 ;

Fig. 13 Plots of hexagonal ODFs based on: antipodally symmetric von Mises-Fisher (first row),
Watson (second row), antipodally symmetric singular kernel (third row), and de la Vallée Poussin
(fourth row)

Fig. 14 Plots of hexagonal ODFs based on: the von Mises-Fisher (first row) and the singular kernel
(second row)



Fiber Orientation Distribution Functions and Orientation Tensors 63

where A and B are given in (14) for the chosen ODF %m.
The third-order orientation tensor hn˝3ihex has the matrix representation

1

12

2
45A� C 3A� 7C 8C 0 0 0

0 0 0 0 0
p
2.3A� 7C /

0 0 0 0 8
p
2C 0

3
5 ;

and the fourth-order orientation tensor hn˝4ihex has the 6D matrix representation

1

8

2
66666664

3.3DCEC 2F / 3DCEC 2F 4.DCF / 0 0 0

3DCEC 2F 3.3DCEC 2F / 4.DCF / 0 0 0

4.DCF / 4.DCF / 24D 0 0 0

0 0 0 8.DCF / 0 0

0 0 0 0 8.DCF / 0

0 0 0 0 0 2.3DCEC2F /

3
77777775
;

where C , D, E , and F are given in (15) and (16) for the chosen ODF %m.

7 Icosahedral ODFs

We have used (elementary) axially symmetric ODFs to construct new ODFs with
different material symmetry classes. The eight symmetry classes of fourth-order
tensors (isotropy, cubic, orthogonal, hexagonal, tetragonal, trigonal, monoclinic,
and triclinic) can thus be obtained. There are more elaborate symmetries that can
be detected only in higher order tensors. For example, the cubic symmetry is not
detected at the second-order level. Furthermore, the following example exhibits a
case where the second- and fourth-order orientation tensors are isotropic whereas
the ODF is obviously not. Let bi , i D 1; : : : ; 6 be the unit vectors pointing to the
opposite vertices of a regular icosahedron and given by

b1;2 D 1p
1C �2

2
4 0

1

˙�

3
5 ; b3;4 D 1p

1C �2

2
4˙�
0

1

3
5 ; b5;6 D 1p

1C �2

2
4 1

˙�
0

3
5 ;

where � D .1Cp
5/=2. Let us consider the ODF obtained by adding the six axially

symmetric ODFs with modal vectors bi :

%ico.n/ D 1
6
.%b1 .n/C %b2 .n/C %b3 .n/C %b4 .n/C %b5 .n/C %b6 .n// : (32)
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Fig. 15 Plots of icosahedral
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

Fig. 16 Plots of icosahedral
ODFs based on: the von
Mises-Fisher (first row) and
the singular kernel (second
row)

Plots of (32) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular-kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 15. Plots of (32) based on the
von Mises-Fisher and singular kernel ODFs with various values of the concentration
parameter are shown in Fig. 16.

The first-order orientation tensor is equal to A=.3
p
1C �2/

�
1 1 1

�T
, where A

is given in (14) for the chosen ODF %m. The second- and fourth-order orientation
tensors are the isotropic tensors (7) and (8), respectively. The third-order orientation
tensor has the representation

p
5�

30
p
1C �2

2
4u v w 0

p
2v

p
2w

w u v
p
2w 0

p
2v

v w u
p
2v

p
2w 0

3
5 ;

with

u D .3 � p
5/AC 2

p
5C; v D 2A� p

5.
p
5C 1/C; w D p

5.
p
5 � 1/C;

where C is given in (15) for the chosen ODF %m.
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8 General ODFs

As we have seen, in many cases it suffices to look at approximations (3) or (4) up
to the order four. However, certain ODFs cannot be approximated by only keeping
low-order terms and one has to consider higher-order approximations. Moreover,
empirically, we may wish to measure or estimate a fiber ODF or its moments, so a
convenient and general representation in terms of a complete and orthogonal set of
basis functions is sought.

We claim that any ODF can be approximated by a sum of axially symmetric
ODFs with different modal vectors and concentration parameters. For instance, one
can use the uni-modal de la Vallée Poussin ODF as its related tensors are easily
computed. In fact, the de la Vallée Poussin can be expressed in terms of the Cartesian
coordinates as

�VP
m;k.n/ D Rm;k.x; y; z/ WD .m1x Cm2y Cm3z/

2k D .m � n/2k;

where, of course, the coordinates x, y, and z of n are constrained to satisfy the
condition x2 C y2 C z2 D 1.

Therefore, any square-integrable function on S2 can be approximated by

f .n/ 

KX
kD0

LX
lD1

fklRml ;k.n/;

where ml are unit vectors. For the determination of this (simple) approximation one
can seek, for givenK and L, unit vectors ml and coefficients fk;l minimizers of the
functional

Z
S2

"
f .n/ �

KX
kD1

LX
lD1

fk;l .ml � n/2k
#2

d�:

If we take only one value of the concentration parameter (power) in the de la
Vallée Poussin kernel in the above approximation, i.e., we assume fk;l D 0 for
all k < K , then the above minimization problem reduces to finding unit vectors ml

and coefficients Qfl minimizers of the functional

Z
S2

"
f .n/ �

LX
lD1

Qfl.ml � n/2K
#2

d�:

This minimization problem is similar to the low-rank approximation approach of
Schultz and Seidel [27] for estimating crossing fibers from an ODF generated
by Q-ball imaging or spherical deconvolution. When the ODF is also estimated
from diffusion weighed imaging signals, Gur et al. [13] presented a nonlinear
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method for the joint estimation of the ODF, extracting the fiber directions using
low-rank approximations. We also mention that Ghosh et al. [11] and Megherbi
et al. [20] used similar techniques for extracting fiber directions without any prior
information about the number of fibers. These works employ the symmetric tensor
decomposition algorithm proposed in [4] which is based on the decomposition of
homogeneous polynomials as a sum of powers of linear forms.

Alternatively, if the coefficients of the expansion in spherical harmonics of the
ODF are given (estimated from experimental data or computed from a given ODF),
then one can compute the orientation tensors explicitly as shown below. Recall that
any ODF can be expanded in real spherical harmonics

�.n/ D
1X
lD0

lX
mD�l

cl;mSl;m.�; �/:

Here Sl;m.�; �/ are the (normalized) real spherical harmonics of degree l and order
m defined by

Sl;m.�; �/ D

8̂
<̂
ˆ̂:

.�1/mp
2
.Yl;m.�; �/C NYl;m.�; �// form > 0;

Yl;0.�; �/ form D 0;
.�1/m
i
p
2
.Yl;�m.�; �/� NYl;�m.�; �// form < 0;

where the complex spherical harmonics Yl;m.�; �/ (and its complex conjugate
NYm;l .�; �/) are related to the associated Legendre polynomials Pm

l .�/ by

Yl;m.�; �/ D .�1/m
s
2l C 1

4�

.m � l/Š

.mC l/Š
Pm
l .cos �/ exp.im�/:

For example, the non-vanishing spherical harmonic coefficients up to the order
four for the von Mises-Fisher ODF (17) are

c0;0 D 1

2
p
�
; c1;0 D

p
3 .� cosh � � sinh �/

2
p
�� sinh �

;

c2;0 D
p
5
�
.3C �2/ sinh � � 3� cosh �

�
2
p
��2 sinh �

;

c3;0 D
p
7
�
�.�2 C 15/ cosh � � 3.2�2 C 5/ sinh �

�
2
p
��3 sinh �

;

c4;0 D 3
�
.�4 C 45�2 C 105/ sinh� � 5�.2�2 C 21/ cosh �

�
2
p
��4 sinh �

:
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Similarly, the non-vanishing spherical harmonic coefficients up to order four for the
Watson ODF (20) are

c0;0 D 1

2
p
�
; c2;0 D

p
5
�
6�e�

2 � p
�.2�2 C 3/ erfi �

�

8��2 erfi �
;

c4;0 D
3
�
10�.2�2 � 21/e�2 C 3

p
�.4�4 C 20�2 C 35/ erfi �

�

64��4 erfi �
:

When the spherical harmonic coefficients cl;m, l D 0; : : : ; 4,m D �l; : : : l , of an
ODF � are given then we can compute the orientation tensors up to order four. The
first-order orientation tensor is

hni� D 2

r
�

3

1X
mD�1

c1;ms1;m; (33)

the second-order orientation tensor is

hn˝2i� D 2

r
�

3

 
c0;0S0;0 C

r
2

5

2X
mD�2

c2;mS2;m
!
; (34)

the third-order orientation tensor is

hn˝3i� D 2

r
�

5

 
1X

mD�1
c1;mS1;m C

r
2

7

3X
mD�3

c3;mS3;m
!
; (35)

and the fourth-order orientation tensor is

hn˝4i� D 2

r
�

3

 
c0;0S

0;0 C
r
2

5

2X
mD�2

c2;mS
2;m C 2p

105

4X
mD�4

c4;mS
4;m

!
:

(36)

The vectors sl;m, second-order tensors Sl;m, third-order tensors Sl;m and fourth-order
tensors Sl;m are given in the Appendix.

9 Discussion and Concluding Remarks

We have presented explicit expressions of the orientation tensors up to order four
for a hierarchy of ODFs with different material symmetries. We have given the
coefficients of these orientation tensors in a natural coordinate system. However,
we recognize that to use these ODF with experimental data, the mean direction
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vector may also need to be included in these distributions as a random variable
and estimated. We have seen that by combining axially symmetric ODFs with
different modal vectors and concentration parameters one can get an ODF with
more complex material symmetry. Inversely, we claim that a given ODF can be well
approximated by a convex combination of axially symmetric ones. However, finding
such an approximation can be complicated due to non-uniqueness. Alternatively,
we proposed using the approximation of this ODF by spherical harmonics up to
a specified order. For each order, the orientation tensors are given by a linear
combination of pre-computed tensors that form an orthonormal basis.

If from experimental data we can estimate the coefficients of the expansion in
spherical harmonics of the ODF, then by using this framework we can compute
the orientation tensors. From the orientation tensors we can infer the material
symmetries (or direction of the fibers) by the method developed in [5].

Appendix

We give here the expressions for the normalized orientation-like tensors that appear
in (33)–(36).

The vectors s1;m, m D �1; : : : ; 1, which are obtained from
R
S2
S1;m.�; �/n d�

by normalization, are given by

s1;�1 D
2
4�1
0

0

3
5 ; s1;0 D

2
400
1

3
5 ; s1;1 D

2
4 0

�1
0

3
5 :

The second-order tensors Sl;m, l D 0; 2,m D �l; : : : ; l , which are obtained fromR
S2
Sl;m.�; �/n˝2 d� by normalization, are given by

S0;0 D 1p
3

2
41 0 00 1 0

0 0 1

3
5 ; S2;�2 D 1p

2

2
41 0 0

0 �1 0
0 0 0

3
5 ; S2;�1 D 1p

2

2
4 0 0 �1
0 0 0

�1 0 0

3
5 ;

S2;0 D 1p
6

2
4�1 0 0

0 �1 0
0 0 2

3
5 ; S2;1 D 1p

2

2
40 0 0

0 0 �1
0 �1 0

3
5 ; S2;2 D 1p

2

2
40 1 01 0 0

0 0 0

3
5 :

Note that Sl;m are traceless except for S0;0 which has unit trace. Furthermore, the
set fSl;m; l D 0; 2; m D �l; : : : ; lg forms an orthonormal basis of the space of
symmetric second-order tensors.

The third-order tensors Sl;m, l D 1; 3, m D �l; : : : ; l , which are obtained fromR
S2
Sl;m.�; �/n˝3 d� by normalization, are given by

S1;�1 D 1p
15

2
4�3 �1 �1 0 0 0

0 0 0 0 0 �p
2

0 0 0 0 �p
2 0

3
5 ; S1;0 D 1p

15

2
40 0 0 0

p
2 0

0 0 0
p
2 0 0

1 1 3 0 0 0

3
5 ; S1;1 D 1p

15

2
4 0 0 0 0 0 �p

2

�1 �3 �1 0 0 0

0 0 0 �p
2 0 0

3
5 ;
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S3;�3 D 1
2

2
64
�1 1 0 0 0 0

0 0 0 0 0
p
2

0 0 0 0 0 0

3
75 ; S3;�2 D 1

p

6

2
64
0 0 0 0

p
2 0

0 0 0 �p2 0 0

1 �1 0 0 0 0

3
75 ; S3;�1 D 1

2
p

15

2
64
3 3 �4 0 0 0

0 0 0 0 0
p
2

0 0 0 0 �4p2 0

3
75 ;

S3;0 D 1p
10

2
4 0 0 0 0 �p

2 0

0 0 0 �p
2 0 0

�1 �1 2 0 0 0

3
5 ; S3;1 D 1

2
p
15

2
40 0 0 0 0

p
2

1 1 �4 0 0 0

0 0 0 �4p2 0 0

3
5 ; S3;2 D 1p

6

2
40 0 0

p
2 0 0

0 0 0 0
p
2 0

0 0 0 0 0
p
2

3
5 ;

S3;3 D 1
2

2
4 0 0 0 0 0 �p

2

�1 1 0 0 0 0

0 0 0 0 0 0

3
5 :

We remark that the set fSl;m; l D 1; 3; m D �l; : : : ; lg forms an orthonormal
basis of the space of totally symmetric third-order tensors.

The fourth-order tensors S
l;m, l D 0; 2; 4, m D �l; : : : ; l , which are obtained

from
R
S2
Sl;m.�; �/n˝4 d� by normalization, are given by

S
0;0 D 1

3
p
5

2
66666664

3 1 1 0 0 0

1 3 1 0 0 0

1 1 3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

3
77777775
; S

2;�2 D 1

2
p
21

2
66666664

6 0 1 0 0 0

0 �6 �1 0 0 0

1 �1 0 0 0 0

0 0 0 �2 0 0
0 0 0 0 2 0

0 0 0 0 0 0

3
77777775
; S

2;�1 D 1

2
p
21

2
66666664

0 0 0 0 �3p
2 0

0 0 0 0 �p
2 0

0 0 0 0 �3p
2 0

0 0 0 0 0 �2
�3p

2 �p
2 �3p

2 0 0 0

0 0 0 �2 0 0

3
77777775
;

S
2;0 D 1

2
p
63

2
66666664

�6 �2 1 0 0 0

�2 �6 1 0 0 0

1 1 12 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 �4

3
77777775
; S

2;1 D 1

2
p
21

2
66666664

0 0 0 �p
2 0 0

0 0 0 �3p
2 0 0

0 0 0 �3p
2 0 0

�p
2 �3p

2 �3p
2 0 0 0

0 0 0 0 0 �2
0 0 0 0 �2 0

3
77777775
; S

2;2 D 1

2
p
21

2
66666664

0 0 0 0 0 3
p
2

0 0 0 0 0 3
p
2

0 0 0 0 0
p
2

0 0 0 0 2 0

0 0 0 2 0 0

3
p
2 3

p
2

p
2 0 0 0

3
77777775
;

S
4;�4 D 1

2
p
2

2
66666664

1 �1 0 0 0 0

�1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 �2

3
77777775
; S

4;�3 D 1
4

2
66666664

0 0 0 0 �p
2 0

0 0 0 0
p
2 0

0 0 0 0 0 0

0 0 0 0 0 2

�p
2

p
2 0 0 0 0

0 0 0 2 0 0

3
77777775
; S

4;�2 D 1p
14

2
66666664

�1 0 1 0 0 0

0 1 �1 0 0 0

1 �1 0 0 0 0

0 0 0 �2 0 0
0 0 0 0 2 0

0 0 0 0 0 0

3
77777775
;

S
4;�1 D 1p

28

2
66666664

0 0 0 0 3
p
2 0

0 0 0 0
p
2 0

0 0 0 0 �4p2 0
0 0 0 0 0 2

3
p
2

p
2 �4p2 0 0 0

0 0 0 2 0 0

3
77777775
; S

4;0 D 1

2
p
70

2
66666664

3 1 �4 0 0 0

1 3 �4 0 0 0

�4 �4 8 0 0 0

0 0 0 �8 0 0

0 0 0 0 �8 0
0 0 0 0 0 2

3
77777775
; S

4;1 D 1

2
p
28

2
66666664

0 0 0
p
2 0 0

0 0 0 3
p
2 0 0

0 0 0 �4p2 0 0p
2 3

p
2 �4p2 0 0 0

0 0 0 0 0 2

0 0 0 0 2 0

3
77777775
;

S
4;2 D 1

2
p
14

2
66666664

0 0 0 0 0 �p
2

0 0 0 0 0 �p
2

0 0 0 0 0 2
p
2

0 0 0 0 4 0

0 0 0 4 0 0

�p
2 �p

2 2
p
2 0 0 0

3
77777775
; S

4;3 D 1
4

2
66666664

0 0 0 �p
2 0 0

0 0 0
p
2 0 0

0 0 0 0 0 0

�p
2

p
2 0 0 0 0

0 0 0 0 0 �2
0 0 0 0 �2 0

3
77777775
; S

4;4 D 1

2
p
2

2
66666664

0 0 0 0 0
p
2

0 0 0 0 0 �p
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0p
2 �p

2 0 0 0 0

3
77777775
:

It should be noted that Sl;m are traceless except for S0;0 which has unit trace. The
set fSl;m; l D 0; 2; 4; m D �l; : : : ; lg forms an orthonormal basis of the space of
totally symmetric fourth-order tensors.
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Topology of 3D Linear Symmetric Tensor Fields

Yue Zhang, Jonathan Palacios, and Eugene Zhang

Abstract There has been much research in 3D symmetric tensor fields, including
recent work on tensor field topology. In this book chapter, we apply these research
results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields,
and provide some novel insights on such fields. We also propose a number of
hypotheses about linear tensor fields. We hope by studying linear tensor fields, we
can gain more critical insights into the topology of general 3D tensor fields in the
future.

1 Introduction

There has been much recent research in the analysis and visualization of second-
order, symmetric tensor fields, especially on their topology; however, our under-
standing of 3D symmetric tensor fields are still far from mature, especially when
compared to our knowledge of 2D symmetric tensor fields. In this chapter, we study
the behaviors of 3D linear tensor fields, with a focus on topology.

As the first term in Taylor’s expansion, the behaviors of a tensor field near the
point of interest are usually dictated by its linearization at the point, which is a
linear tensor field. Moreover, linear tensor fields are easier to study than more
generic tensor fields due to their simpler forms. Finally, existing degenerate curve
extraction methods often make the following assumptions: (1) that every degenerate
curve intersecting a cell must also intersect the cell boundary, i.e., no degenerate
loops exist completely inside a cell, and (2) there is at most one intersection per
cell’s face with all the degenerate curves. These assumptions, if invalid, can make
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the extraction of degenerate curves incomplete, thus compromising their physical
interpretations of applications. In this chapter we will discuss such tensor patterns
in the context of linear tensor fields. We observe that a number of degenerate
curves often intersect at a single degenerate point, and we discuss the minimum
and maximum number of such curves.

Section 2 reviews past research in symmetric tensor field visualization. In Sect. 3
we review what we believe are the most relevant results on symmetric tensor fields.
In Sect. 4 we provide a number of observations and hypotheses on 3D linear tensor
fields before concluding in Sect. 5.

2 Previous Work

There has been much work on the topic of 2D and 3D tensor fields for medical
imaging and scientific visualization. We refer the readers to the surveys by Zhang et
al. [8] and Kratz et al. [5]. Here we only mention the research most relevant to this
chapter.

Delmarcelle and Hesselink introduce the topology of 2D symmetric tensor fields
in terms of degenerate tensors (with repeated eigenvalues) [1, 2]. This work is later
extended to 3D symmetric tensor fields [4]. Zheng and Pang [11] point out that
triple degeneracy, i.e., a tensor with three equal eigenvalues, cannot be extracted
in a numerically stable fashion. They further show that double degeneracies, i.e.,
3D tensors with only two equal eigenvalues, form lines in the domain. In this work
and subsequent research [13], they provide a number of degenerate curve extraction
methods based on the analysis of the discriminant function of the tensor field.
Furthermore, Zheng et al. [12] point out that near degenerate curves the tensor field
exhibits 2D degenerate patterns and define separating surfaces which are extensions
of separatrices from 2D symmetric tensor field topology. Tricoche et al. [7] convert
the problem of extracting degenerate curves in a 3D tensor field to that of finding
the ridge and valley lines of an invariant of the tensor field, thus leading to a more
robust extraction algorithm. Tricoche and Scheuermann [6] introduce a topological
simplification operation which removes two degenerate points with opposite tensor
indexes from the field. Zhang et al. [10] propose an algorithm to perform this pair
cancellation operation by converting the tensor field to a vector field and reusing
similar operations in vector field topological simplification [9].

3 Background on Tensors and Tensor Fields

In this section we review the most relevant background on tensors and tensor fields.
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3.1 Tensors

A K-dimensional (symmetric) tensor T has K real-valued eigenvalues: �1 � �2 �
: : : � �K . The largest and smallest eigenvalues are referred to as the major
eigenvalue and the minor eigenvalue, respectively. When K D 3, the middle
eigenvalue is referred to as the medium eigenvalue. An eigenvector belonging
to the major eigenvalue is referred to as a major eigenvector. Medium and
minor eigenvectors can be defined similarly. Eigenvectors belonging to different
eigenvalues are mutually perpendicular.

A tensor is degenerate when there are repeated eigenvalues. In this case, there
exists at least one eigenvalue whose corresponding eigenvectors form a higher-
dimensional space than a line. When K D 2 a degenerate tensor must be a multiple
of the identity matrix. When K D 3, there are two types of degenerate tensors,
corresponding to three repeated eigenvalues (triple degenerate) and two repeated
eigenvalues (double degenerate), respectively. The latter can be further divided into
linear degenerate tensors, i.e., �1 > �2 D �3, and planar degenerate tensors, i.e.,
�1 D �2 > �3. A tensor is degenerate if and only if it has a zero discriminant
defined as

Q
1�i<j�K.�i � �j /

2. A double degenerate tensor has one repeated
eigenvalue and one non-repeated eigenvalue. The non-repeated eigenvalue for a
linear degenerate tensor is its major eigenvalue, while for a planar degenerate tensor
the non-repeated eigenvalue is the minor eigenvalue. The degenerate tensors are of
essential importance in tensor field topology, and the study of degenerate tensors
in 3D is made easier with the well-known trace-deviator decomposition, explained
next.

The trace of a tensor T D .Tij/ is trace.T/ D PK
iD1 �i , which is invariant under

the change of basis. T can be uniquely decomposed as D CA where D D trace.T/
K

I (I
is theK-dimensional identity matrix) and A D T � D. The deviator A is a traceless
tensor, i.e., trace.A/ D 0. Note that T and A have the same set of eigenvectors.
Moreover, a tensor is degenerate if and only if its deviator is degenerate. Another
nice property of the set of traceless tensors is that it is closed under matrix addition
and scalar multiplication, making it a linear subspace of the set of tensors. These
properties make it possible to study tensor field topology by focusing on traceless
tensors, for which many tensor invariants have a simpler form. In the remainder of
this chapter we will focus on only traceless tensors and therefore omit the mention
of the word traceless.

There are a few other important tensor invariants, such as the determinant jTj DQK
iD1 �i , magnitude jjTjj D

qP
1�i;j�K T 2ij D

qPK
i �

2
i , and mode.T/ D 3

p
6jTj
jjTjj3 .

The mode achieves its maximum value 1 when T is a linear degenerate tensor
and its minimal value �1 when T is a planar degenerate tensor. Figure 1 shows
the transition from planar degenerate tensors (left column) to linear degenerate
tensors (right column) through non-degenerate tensors (middle columns). Given a
3D (traceless) symmetric tensor, the magnitude and the mode of the tensor uniquely
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Fig. 1 Visualization of the impact of tensor mode using various types glyphs: ellipsoids (top),
boxes (middle), and superquadrics (bottom). The leftmost and rightmost columns correspond to
planar and linear degenerate tensors, respectively. Notice how planar degenerate tensors transition
gradually towards linear degenerate tensors through non-degenerate tensors (middle columns)

determine the three eigenvalues, thus providing a more meaningful description than
the three eigenvalues independently.

3.2 Tensor Fields

We now review tensor fields, which are continuous tensor-valued functions over
some domain ˝ 	 R

K . A tensor field can be thought of as K eigenvector
fields, corresponding to the K eigenvalues. A hyperstreamline with respect to an
eigenvector field ei .p/ is a 3D curve that is tangent to ei everywhere along its path.
Two hyperstreamlines belonging to two different eigenvalues can only intersect
at the right angle, since eigenvectors belonging to different eigenvalues must be
mutually perpendicular.

Hyperstreamlines are usually curves; however, they can occasionally consist of
only one point, where there are more than one choice of lines that correspond to
the eigenvector field. This is precisely where the tensor field is degenerate. A point
p0 2 ˝ is a degenerate point if T.p0/ is degenerate. The topology of a tensor field
consists of its degenerate points.

In 2D, the set of degenerate points of a tensor field are isolated points
under numerically stable configurations, when the topology does not change given
sufficiently small perturbation in the tensor field. An isolated degenerate point can
be measured by its tensor index [10], defined in terms of the winding number of
one of the eigenvector fields on a loop surrounding the degenerate point. The most
fundamental types of degenerate points are wedges and trisectors, with a tensor
index of 1

2
and � 1

2
, respectively. Let LTp0 .p/ be the local linearization of T.p/ at a

degenerate point p0 D .x0; y0/, i.e.,

LTp0 .p/ D
�
a11.x � x0/C b11.y � y0/ a12.x � x0/C b12.y � y0/
a12.x � x0/C b12.y � y0/ a22.x � x0/C b22.y � y0/

�
(1)
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The quantity ı D
ˇ̌
ˇ̌
�
a11�a22

2
a12

b11�b22
2

b12

�ˇ̌
ˇ̌, invariant under the change of basis, character-

izes degenerate points as wedges or trisectors. Namely, a point p0 is a wedge when
ı > 0 and a trisector when ı < 0. When ı D 0, p0 is a higher-order degenerate
point.

The total tensor index of a continuously tensor field over a two-dimensional man-
ifold is equal to the Euler characteristic of the underlying manifold. Consequently,
it is not possible to remove one degenerate point. Instead, a pair of degenerate
points with opposing tensor indexes (a wedge and trisector pair) must be removed
simultaneously [10].

The topology in 3D tensor fields is more challenging. While triple degeneracies
can exist, they are numerically unstable, i.e., can disappear under arbitrarily small
perturbations. Stable topological features in 3D tensor fields consists of double
degenerate points that form curves. A curve consists of either purely linear degen-
erate points, or purely planar degenerate points. Furthermore, along a degenerate
curve the tensor field exhibits 2D tensor degenerate patterns.

To be more precise, consider a degenerate curve � and a point p0 2 � . The
repeated plane at p0 is the plane that is perpendicular to the non-repeated eigenvec-
tor at p0. Recall that the non-repeated eigenvector is the eigenvector corresponding
to the non-repeated eigenvalue of T.p0/, which is the major eigenvalue for linear
degenerate points and the minor eigenvalue for the planar degenerate points.

Let .v1; v2/ be an orthonormal basis for the repeated plane at p0 and v3 be a
unit non-repeated eigenvector for T.p0/ such that .v1; v2; v3/ form a right-handed
orthonormal basis. Under this basis the tensor field has the form:

0
@M11.p/ M12.p/ M13.p/

M12.p/ M22.p/ M23.p/

M13.p/ M23.p/ M33.p/

1
A (2)

When p ! p0, M13.p/ and M23.p/ approach 0. Moreover, if p0 is a
linear degenerate point, the difference between the eigenvectors of M.p/ D�

M11.p/ M12.p/

M12.p/ M22.p/

�
and the projection of the eigenvectors corresponding to �2 and

�3 approach 0 as p approaches p0. A similar statement can be made for a planar
degenerate point, except that we replace �2 and �3 with �1 and �2, respectively.

M.p/ restricted to the repeated plane at p0 has at least one degenerate point, p0.
The 2D tensor pattern near p0 is typically either a wedge or a trisector. Recall that
5f refers to the gradient vector of a scalar field f . The tangent of degenerate curve
� at p0 is 5.M11.p/� M22.p//� 5M12.p/, which is the direction in which M.p/
remains degenerate. When 5.M11.p/ � M22.p// � 5M12.p/ D 0, the tangent
to the degenerate curve is parallel to the repeated plane at p0. In this case, the 2D
degenerate pattern of M inside the repeated plane is a higher-order degenerate point.
It is referred to as a transition point as it is the boundary between wedge points on
� and trisector points on � .
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Fig. 2 Near a degenerate curve, 3D tensor fields exhibit 2D tensor patterns such as wedges (in the
left plane, also the inset to the left) and trisectors (in the right plane, also the inset in the right).
Such patterns persist along the curve until transition points (top of the curve), where the wedge and
trisector cancel each other

Figure 2 illustrates this with an example. When taking a stack of cut planes
moving upwards, we can observe two 2D degenerate patterns (wedge and trisector)
in the projected tensor field moving closer and eventually canceling each other at
the transition point (red).

4 3D Linear Tensor Fields

We wish to study the topological behaviors of 3D linear tensor fields, such as the
number, location, and types of the degenerate curves contained in them. A 3D linear
symmetric tensor field has the following form:

LT.x; y; z/ D T0 C xTx C yTy C zTz (3)

where

T0 D
0
@T0;11 T0;12 T0;13
T0;12 T0;22 T0;23
T0;13 T0;23 �T0;11 � T0;22

1
A ; Tx D

0
@Tx;11 Tx;12 Tx;13
Tx;12 Tx;22 Tx;23
Tx;13 Tx;23 �Tx;11 � Tx;22

1
A

Ty D
0
@Ty;11 Ty;12 Ty;13
Ty;12 Ty;22 Ty;23

Ty;13 Ty;23 �Ty;11 � Ty;22

1
A ; Tz D

0
@Tz;11 Tz;12 Tz;13

Tz;12 Tz;22 Tz;23

Tz;13 Tz;23 �Tz;11 � Tz;22

1
A :

To understand their topological behaviors, we need to establish two facts about
linear tensor fields: under the change of coordinate systems, and when projected
onto a plane.
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Lemma 1 Given a linear symmetric tensor field LT.x; y; z/ D T0 C xTx C yTy C
zTz, its linearity is preserved under change of coordinate systems.

Proof Let C D .o; e1; e2; e3/ and C 0 D .o0; e01; e02; e03/ be two coordinate systems
where o and o0 are the respective origins and the ei ’s and e0i ’s are the basis vectors.
Let .x; y; z/ and .x0; y0; z0/ be the coordinates of a point p under C and C 0,
respectively. The two sets of coordinates are related by

0
@x � x0

y � y0
z � z0

1
A D M

0
@x
0
y0
z0

1
A (4)

where

0
@x0y0

z0

1
A is the origin of C , andM is the unique linear transformation such that

M.e0i / D P3
jD1 Mije

0
j D ei for 1 � i � 3.

Given a tensor field T D T0CxTX CyTyCzTz underC , we consider its formula
under C 0. For the point p, its tensor value using C is:

T0 C xTx C yTy C zTz (5)

Under C 0 it becomes:

M�1.T0 C xTx C yTy C zTz/M (6)

Recall that

x D M11x
0 CM12y

0 CM13z
0 C x0

y D M21x
0 CM22y

0 CM23z
0 C y0

z D M31x
0 CM32y

0 CM33z
0 C z0

Therefore, the tensor field has the following linear form under C 0:

LT.x0; y0; z0/ D T 00 C x0T 0x C y0T 0y C z0T 0z (7)

where

T 00 D M�1.T0 C x0Tx C y0Ty C z0Tz/M (8)

T 0x D M�1.M11Tx CM21Ty CM31Tz/M (9)

T 0y D M�1.M12Tx CM22Ty CM32Tz/M (10)

T 0z D M�1.M13Tx CM23Ty CM33Tz/M (11)
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Note that T 00 , T 0x, T 0y , and T 0z are symmetric, traceless tensors since the set of
such tensors is closed under matrix addition. Furthermore, the linearity is preserved
under the change of basis, i.e., the tensor field expressed underC 0 is still linear. ut

Lemma 1 states that under a change of coordinate systems, a linear tensor field
remains linear, a fact that is neither surprising nor difficult to prove; and Eqs. (8)–
(11) establish how the coefficients of the linear tensor field vary as a result of change
in the coordinate systems. These equations will be useful later when we understand
the behaviors of the tensor field near degenerate curves.

We now consider the projection of a linear tensor field onto a plane.

Lemma 2 Given a linear symmetric tensor field LT.x; y; z/ D T0 C xTx C yTy C
zTz, its projection onto a plane is a 2D symmetric, linear tensor field inside the
plane.

Proof Let N be a normal to the plane and p0 D .x0; y0; z0/ be a point on the plane.
We construct a new coordinate system .p0;X; Y;N / such that p0 is the new origin
and X and Y form a basis for the plane. Based on Lemma 1, the linear tensor field
under the new basis has the form in Eqs. (8)–(11).

Given a point p in the plane. Under the new coordinate systems, p has the form

LT 00.x0; y0/ D T 000 C x0T 00x C y0T 00y (12)

where LT 00 is the projected tensor field of LT on the plane, and T 000 , T 00x and T 00y are
respectively the 2 � 2 subblock of T 00 , T 0x , and T 0y corresponding to the plane. It is
clear that T 00 remains a symmetric, linear tensor field. ut

Again, the important message from Lemma 2 is how the projection tensor field
relates to the original 3D tensor field. We now are ready to consider the topology of
a 3D linear, symmetric tensor field. We begin with the simpler case when T0 D 0.
In this case, the origin is a triple degenerate point.

Theorem 1 Given a linear symmetric tensor field LT.x; y; z/ D xTx C yTy C zTz,
a point .x0; y0; z0/ is degenerate if and only if .kx0; ky0; kz0/ is also degenerate for
any k ¤ 0. Moreover, k.x0; y0; z0/ is triple degenerate if and only if .x0; y0; z0/ is
triple degenerate. If .x0; y0; z0/ is a degenerate point, then k.x0; y0; z0/ is linear if
k > 0 and planar if k < 0.

Proof By the definition of linearity, LT.kx0; ky0; kz0/ D kx0Tx C ky0Ty C kz0Tz D
k.x0Tx C y0Ty C z0Tz/ D kLT.x0; y0; z0/. The proof then follows directly from the
fact that if the eigenvalues of LT.x0; y0; z0/ are �1, �2, and �3, then LT.kx0; ky0; kz0/
has k�1, k�2, and k�3 as the eigenvalues. ut
An immediate result is:

Corollary 1 Given a numerically stable linear tensor field LT.x; y; z/ D xTx C
yTy C zTz, there are no degenerate loops.
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Proof Recall that if a point p0 D .x0; y0; z0/ is degenerate, then so are the points on
the line passing through p0 and the origin. So if there is a loop of degenerate points,
then each point on the loop would lead to a line of degenerate points. Consequently,
the loop would lead to a cylindrical surface of degenerate points, which is not
numerically stable. ut

The above corollary states that all degenerate curves in such a tensor field must
end in infinity.

Besides the linear/planar classification, a degenerate point can be further classi-
fied into either a wedge, a trisector, or a transition point. This classification refers
to the 2D degenerate pattern around the degenerate point inside the repeated plane
at the point. A natural question is whether this classification even makes sense, i.e.,
when projecting the 3D tensor field onto the repeated plane, does the 2D degenerate
pattern depend on the coordinate systems in the repeated plane or the choice of the
plane normal? This is answered with the following theorem.

Theorem 2 The wedge/trisector classification of a degenerate point p in a 3D
linear, symmetric tensor field T is independent of the choice of the normal in the
repeated plane and the coordinate system for the repeated plane.

Proof Recall the definition of wedge/trisector classification of T under a right-
handed orthonormal frame O D .p0;X; Y;N / where p0 is a point in the space,
N is a normal to the repeated plane at p and X and Y are parallel to the plane.
Let the tensor field be expressed under O , which has the form LT.x; y; z/ D
T0 C xTx C yTy C zTz. The 2D projection onto the repeated plane with the basis
.X; Y / is:

LTp.x; y/ D
�
T0;11 C Tx;11x C Ty;11y T0;12 C Tx;12x C Ty;12y

T0;21 C Tx;21x C Ty;21y T0;22 C Tx;22x C Ty;22y

�
(13)

The wedge/trisector classification is based on the quantity

ı D .Tx;22 � Tx;11/Ty;12 � .Ty;22 � Ty;11/Tx;12 (14)

The degenerate point p is a wedge, trisector, or transition point when ı is
positive, negative, and zero, respectively. Note that ı depends only on the first
2 � 2 blocks of Tx and Ty . We now consider a second right-handed orthonormal
frame O 0 D .p00; X 0; Y 0; N 0/. We wish to show that ı under O 0 is the same as that
underO , i.e., ı is invariant under the change of basis. Note that O 0 can be obtained
fromO under the combination of three types of operations: translation, rotation, and
reflection. Consequently, all we need is to show that ı is invariant under these three
operations.

We first consider translation, i.e.,X 0 D X , Y 0 D Y , andN 0 D N . Let .x0; y0; z0/
be the coordinates of p00 underO 0. Let .x; y; z/ and .x0; y0; z0/ be the coordinates of
an arbitrary point p underO and O 0, respectively. Then

x D x0 � x0 y D y0 � y0 z D z0 � z0 (15)
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Consequently, the tensor field has the form LT.x0; y0; z0/ D T 00 Cx0T 0x C y0T 0y C
z0T 0z where T 0x D Tx , T 0y D Ty , T 0z D Tz, and T 00 D T0 � x0Tx � y0Ty � z0Tz. Recall
that ı only depends on the first 2�2 blocks of T 0x and T 0y , which are identical to that
of Tx and Ty , it does not change when translating the origin of the frame.

We now consider the case of reflection, i.e., p0 D p00, N 0 D �N , X 0 D X , and
Y 0 D �Y . In this case .x; y; z/ and .x0; y0; z0/ are related by

x D x0 y D �y0 z D �z0 (16)

Furthermore, a matrix A under O and O 0 are related by A0 D MAM where

M D
0
@1 0 0

0 �1 0

0 0 �1

1
A. Consequently,

LT 0.x0; y0; z0/ D M.LT.x;�y;�z//M D MT0M C xMTxM � yMTyM � zMTzM

(17)

It is straightforward to verify that ı computed for LT 0.x0; y0; z0/ is the same as that
for LT.x; y; z/.

We now consider the case of rotation, i.e., p0 D p00, N 0 D N , and X 0 and Y 0
are obtained by rotatingX and Y counterclockwise by an angle of � in the repeated
plane. In this case .x; y; z/ and .x0; y0; z0/ are related by

x D cos �x0 C sin �y0 y D � sin �x0 C cos �y (18)

This reduces to the case showing ı is invariant under 2D rotations for 2D linear
symmetric tensor fields, which has been proven by Delmarcelle [1].

Consequently, ı is invariant under any combinations of translation, rotation, and
reflection, and thus any change of basis. ut

This theorem, while rather simple, is important in that it establishes the well-
definedness of the wedge/trisector classification. Now a degenerate point can be
classified as a linear wedge, a linear trisector, a planar wedge, or a planar trisector.
Next we state two facts on linear tensor fields.

Theorem 3 Given a linear tensor field LT.x; y; z/ D T0CxTxCyTyCzTz, a point
p0 D .x0; y0; z0/ is a wedge if and only if p00 D .kx0; ky0; kz0/ (for any k ¤ 0/

is also a wedge. Similarly, a point p0 D .x0; y0; z0/ is a trisector if and only if
p00 D .kx0; ky0; kz0/ is also a trisector (for any k ¤ 0/. Moreover, the orientations
of the degenerate patterns remain constant regardless of k.

Proof Recall that the wedge/trisector classification and the orientation of the 2D

degenerate pattern are solely dependent on the matrix

�
Tx;22 � Tx;11 Ty;22 � Ty;11

Tx;12 Ty;12

�
.

We construct a coordinate system using the point p0 and the normalN to the plane
where the wedge or trisector is on, and we denote this system by .p0;X; Y;N /.
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Without loss of generality, we align N with Z. In this system, our tensor field is
LT.x; y; z/ D T0 C xTx C yTy C zTz. We then translate the plane to where the point
p00 is, and the tensor field becomes LT 0.x; y; z/ D T 00 C xT 0x C yT 0y C zT 0z. As the
repeated plane at p00 is parallel to that at p0, T 0x D Tx, T 0y D Ty and

 
T 0x;22 � T 0x;11 T 0y;22 � T 0y;11

T 0x;12 T 0y;12

!
D
�
Tx;22 � Tx;11 Ty;22 � Ty;11

Tx;12 Ty;12

�
:

As a result, p0 and p00 have the same wedge/trisector type. Moreover, the local
orientation of the degenerate patterns at p0 and p00 are the same. ut

The above results indicate that if a point p D .x; y; z/ is a degenerate point,
then any point on the ray emanating from the origin and containing p is also
a degenerate point. Moreover, the linear/planar classification and wedge/trisector
classification along the ray does not change. In contrast, the ray in the opposite
direction from the origin has the same wedge/trisector classification but opposite
linear/planar classification. Figure 3 (middle) indicates this with an example tensor

field LT.x; y; z/ D
0
@0 x yx 0 z
y z 0

1
A. The origin is a triple degenerate point, colored in

white. Linear wedge points are colored green, while planar wedge points in yellow.
Trisector points are colored blue if linear and red if planar. This field has eight
degenerate rays:

1. fk.1; 1; 1/jk > 0g (linear wedge)
2. fk.1;�1; 1/jk > 0g (planar wedge)
3. fk.�1;�1; 1/jk > 0g (linear trisector)
4. fk.�1; 1; 1/jk > 0g (planar trisector)
5. fk.1; 1;�1/jk > 0g (planar trisector)
6. fk.1;�1;�1/jk > 0g (linear trisector)
7. fk.�1;�1;�1/jk > 0g (planar wedge)
8. fk.�1; 1;�1/jk > 0g (linear wedge)

The top and bottom rows of Fig. 3 show the projected tensor pattern inside the
non-repeated planes at some degenerate points. Notice that along a degenerate ray
pair, the wedge/trisector classification does not change, nor does the orientation of
the wedges and trisectors.

A fundamental question is how many such degenerate ray pairs exist given a
linear tensor field where T0 D 0. We will consider the generic case in which
degenerate points form curves instead of isolated points, surfaces, or volumes. For
example, when Tx , Ty , and Tz span a one-dimensional space in the set of 3D
symmetric, traceless tensors, LT.x; y; z/ is degenerate either everywhere, i.e., Tx ,
Ty and Tz are degenerate, or only at the origin, i.e., Tx , Ty and Tz are non-degenerate.

One way to consider the problem is to ask how many degenerate points exist
on the set of unit tensors, i.e., with unit magnitude. Notice that each such point
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Fig. 3 The middle-row image shows a tensor field LT.x; y; z/ D xTx C yTy C zTz, which has a
triple degenerate point at the origin, from which degenerate rays emanate. Yellow points are planar
wedges, red points are planar trisectors, green points are linear wedges, and blue points are linear
trisectors. Notice that along each degenerate ray, the linear/planar classification does not change,
while opposite rays have opposing linear/planar classification (green/yellow and blue/red). Along
each ray pair (two opposing rays), wedge/trisector classification does not change. Moreover, the
orientation of the wedge/trisector patterns do not change along each ray pair, such as the wedge
pattern along the green/yellow ray pair (top row) and the trisector pattern along the red/blue ray
pair (bottom row)

corresponds to a degenerate ray in 3D. In generic cases, the set of such points
(degenerate points with unit magnitude) should be isolated points instead of curves
or surfaces, for the latter would correspond to degenerate surfaces and volumes,
respectively.
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Let D be the dimension of tensors spanned by Tx , Ty , and Tz. Notice that the
higher the dimensionD, the more the number of degenerate rays. The most generic
case is when Tx , Ty , and Tz are linearly independent and form a three-dimensional
subspace in the set of 3 � 3 symmetric, traceless tensors.

Theorem 4 Given a linear tensor field LT.x; y; z/ D xTx C yTy C zTz, there are
at most 18 degenerate rays, forming nine pairs of opposing curves.

Proof Degenerate points of a tensor field correspond to mode ˙1, i.e.,

3
p
6

jT j
jjT jj3 D ˙1 (19)

On the unit tensor surface, i.e., the levelset of jjT jj D 1, degenerate points are
the global minima and maxima. Consequently, 5jT j � 5jjT jj2 D 0.

Since T .x; y; z/ is linear, jT j and jjT jj2 are cubic and quadratic in terms of x,
y, and z, respectively. Thus, 5jT j and 5jjT jj2 are quadratic and linear in terms of
x, y, and z, respectively, and 5jT j � 5jjT jj2 is cubic in terms of the coordinates.
Notice that while 5jT j � 5jjT jj2 is a 3-vector, leading to three equations, only two
of which are linearly independent. Denote these equations as

F.x; y; z/ D 0; G.x; y; z/ D 0 (20)

Furthermore,

jjT jj2 D 1 (21)

Since F and G are both cubic and jjT jj2 is quadratic, Bézout’s Theorem states
that there are at most 3 � 3 � 2 D 18 solutions [3]. ut

The above theorem establishes that there are up to nine degenerate lines in a
linear tensor field LT.x; y; z/ D xTx C yTy C zTz.

We now consider the most generic linear tensor fields, i.e., LT.x; y; z/ D T0 C
xTx C yTy C zTz. While this is clearly a more complex situation, notice that the
asymptotic behavior of the tensor field towards infinity is the same as LT.x; y; z/ D
xTx C yTy C zTz, i.e., by setting T0 D 0. Consequently, there exists r 2 R such that
given a sphere centered at the origin with the radius r , the tensor field LT.x; y; z/ D
T0 C xTx C yTy C zTz has up to eighteen degenerate curves outside the sphere,
with a one-to-one correspondence to the degenerate rays for the field LT.x; y; z/ D
xTx C yTy C zTz. Let 2N be the number of such curves. Notice that N curves are
of the linear type and the other N curves are of the planar types.

Assume that these curves do not converge onto a finite point or limit cycle. Then
two of such curves must be connected, leading to N pairs of degenerate curves.
Note that an L and P type curve pair cannot be connected. Consequently,N needs
to be even. We thus conclude that the maximum number of curves emanating from
the infinity must be even and at most eight pairs, instead of nine pairs as stated in the
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Fig. 4 The asymptotic behavior of the a linear tensor field LT.x; y; z/D T0 C xTx C yTy C zTz

(top) is the same as the case when T0 D 0 (bottom). There appears to be no degenerate loops in a
linear tensor field when T0 ¤ 0, and the number of degenerate curves in the tensor field does not
seem to depend on T0; however, these degenerate curves are paired up based on their linear/planar
classification

theoretical upper bound. Figure 4 compares three pairs of tensor fields (top: T0 D 0;
bottom: T0 ¤ 0). Notice the same asymptotic behaviors of these fields towards
infinity and how in the non-zero T0 case, these degenerate curves are pairwise
connected.

However, it is not clear to us whether eight is the real upper bound, and whether
for the case T0 ¤ 0, additional degenerate loops would appear as a result of adding
T0. We discuss these issues next.

4.1 Observations and Hypotheses

We have implemented a system in which the user can design a 3D linear, traceless,
symmetric tensor field LT.x; y; z/ D T0 C xTx C yTy C zTz by specifying T0, Tx ,
Ty , and Tz either numerically or graphically. The degenerate curves in the tensor
field are then extracted and classified based on its linear/planar and wedge/trisector
properties. For degenerate curve extraction, we utilize the method of Zheng et
al. [11]. Figure 5 shows the user interface.
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Fig. 5 The interface of our linear tensor field design system. The user can design a 3D linear
traceless tensor field by specifying either the coefficients of the tensor field directly or by specifying
the desired eigenvalue and eigenvectors. The degenerate curves are extracted and displayed

In the default configuration,

T0 D
0
@0 0 00 0 0

0 0 0

1
A ; Tx D

0
@0 1 01 0 0

0 0 0

1
A ; Ty D

0
@0 0 10 0 0

1 0 0

1
A ; Tz D

0
@0 0 00 0 1

0 1 0

1
A

To specify a matrix (e.g., T0), the user can specify either its entries or its eigenvalues
and eigenvectors. Our system automatically ensures that the resulting matrix is
traceless. While entries of a matrix are specified directly using textboxes provided
in the system, the eigenvalues can be specified either directly or by deriving from
specified tensor magnitude and mode. The eigenvectors are specified using the
graphical interface in which the user can rotate a 3D orthonormal frame, whose
axes give the major, medium, and minor eigenvectors.

Through experiments using our system, we make the following observations.

Conjecture 1 Given a generic linear tensor field LT.x; y; z/ D xTx C yTy C zTz,
i.e., Tx, Ty , and Tz are linearly independent, there are either four degenerate rays
(two pairs) or eight degenerate rays (four pairs). Any number of these rays can be
wedges.

Figures 6 and 7 illustrate the observation with example tensor fields. There
are either two or four pairs of degenerate rays intersecting at the origin (a triple
degenerate point). It is possible to have any subset of these curves being wedges and
trisectors, respectively. Seemingly, this observation is contradicting to the Poincaré-
Hopf theorem which states that on a sphere the number of wedges is four more than
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Fig. 6 A tensor field LT.x; y; z/ D xTx C yTy C zTz may have two trisector degenerate curves
(left), one trisector and one wedge curve (middle), and two wedge curves (right)

Fig. 7 A tensor field LT.x; y; z/ D xTx C yTy C zTz may also have four trisector degenerate
curves (upper-left), three trisector and one wedge curve (upper-middle), two trisector and two
wedge curves (upper-right), one trisector and three wedge curves (lower-left), and four wedge
curves (lower-right)

that of the trisectors. In fact, the degenerate rays of a linear tensor field is not related
to the degenerate points of that field projected on a plane. This plane may not be the
repeated plane. A degenerate point in 3D does not need to be a degenerate point in
2D. As a consequence a degenerate point in 3D does not need to be a degenerate
point in 2D, and a non-degenerate 3D tensor can become a degenerate 2D tensor
when projected on a plane. To illustrate, the following examples are provided:

T D
0
@2 0 0

0 �1 0

0 0 �1

1
A T D

0
@ 1 0 �2
0 1 �2

�2 �2 �2

1
A :
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Conjecture 2 Given a generic linear tensor field LT.x; y; z/ D xTx C yTy C zTz,
i.e., Tx , Ty , and Tz are linearly independent, the following are the only possible
bifurcations: (1) a wedge ray pair and a trisector ray pair can merge into a ray of
transition points before disappearing when there were four degenerate ray pairs; (2)
a wedge ray pair and a trisector pair can merge into a ray of transition points before
splitting again into a wedge and trisector ray pair when there were two degenerate
ray pairs; (3) a wedge degenerate ray pair becomes a ray of transition points before
turning into a trisector ray pair.

Figures 8, 9, and 10 show examples of these bifurcations. While the first type of
bifurcations seems normal, we were surprised to observe the last two bifurcations.
The second bifurcation seems related to observations that in a generic case, there are
minimal of two degenerate ray pairs (instead of zero). When there were only two
degenerate ray pairs to start with, they cannot cancel each other as it would lead to
zero degenerate ray pairs.

Conjecture 3 Given a numerically stable linear tensor field LT.x; y; z/ D T0 C
xTx C yTy C zTz, there are no degenerate loops. Consequently, the tensor field has
the same number of degenerate rays as when T0 D 0, i.e., the number of degenerate
curves in a linear tensor field is independent of its constant term T0.

Fig. 8 One wedge degenerate curve and one trisector degenerate curve (left) merge into one
degenerate curve of transition points (middle) before disappearing (right)

Fig. 9 One wedge degenerate curve and one trisector degenerate curve (left) merge into one
degenerate curve of transition points (middle) before being split into one wedge and one trisector
curve again (right)
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Fig. 10 A wedge degenerate curve (left) becomes a degenerate curve of transition points (middle)
before becoming a trisector degenerate curve (right)

We had anticipated the appearance of degenerate loops when T0 ¤ 0; however,
we have never observed them with extensive experiments. This observation, if true,
would allow us to draw conclusions about linear tensor fields with a non-zero T0 by
studying the simpler case where T0 D 0, such as the number of wedge and trisector
curves in the tensor field as well as possible bifurcations. Figure 4 (bottom) show
three tensor fields with a non-zero T0. No degenerate loops exist for these fields.

5 Conclusion

In this chapter we have studied the topology of 3D linear tensor fields. We provide
some theoretical results as well as observations drawn from extensive experiments.
Part of our contribution is a linear tensor field design system which allows intuitive
and interactive creation of linear tensor fields. In the future we wish to explore
more robust methods to extract and classify degenerate curves in a linear tensor
field. In addition, we plan to extend our analysis to polynomial tensor fields. Our
analysis, if validated, can help make the extraction of tensor field topology more
rigorous as we know the number of degenerate curves that can intersect a cell
in the mesh. Understanding the bifurcations in tensor fields can lead to tensor
field simplification strategies. Moreover, our observations are based on hundreds
of randomly but manually created tensor fields using our interface. In the future, we
plan to add an automatic random field generator which can enhance our ability to
test a large of number of tensor fields for any hypotheses.
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Random Projections for Low Multilinear Rank
Tensors

Carmeliza Navasca and Deonnia N. Pompey

Abstract We propose two randomized tensor algorithms for reducing multilinear
tensor rank. The basis of these randomized algorithms is from the work of Halko
et al. (SIAM Rev 53(2):217–288, 2011). Here we provide some random versions
of the higher order SVD and the higher order orthogonal iteration. Moreover, we
provide a sharp probabilistic error bound for the matrix low rank approximation.
In consequence, we provide an error bound for the tensor case. Moreover, we give
several numerical examples which includes an implementation on a MRI dataset to
test the efficacy of these randomized algorithms.

1 Introduction

The problem of approximating a given matrix M 2 R
n�m with a low rank matrix

OM 2 R
n�k is the optimization,

min
rank. OM/�k

kM � OMk2F

where k � k is the matrix Frobenius norm. The optimal solution due to Eckart-Young
[8] is

M � D argminrank. OM/�kkM � OMk2F D Uk˙kV
T
k

whereUk˙kV
T
k D Pk

iD1 �iui˝vi is the first k leading terms in the SVD. Similarly,
we ask a similar question for tensors: for a given nth order tensor T , can one find
the best rank k approximant OT via

min kT � OT k2F (1)
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where k � k2F D trh�; �i is a Frobenius norm. Here the best rank k approximant

is defined as OT D Pk
iD1 �iu

.1/
i ˝ u.2/i ˝ � � � ˝ u.k/i . The tensor case is more

complicated and challenging. The best rank k approximant may exist, but it may
not have orthogonal factors like in the SVD of a matrix [16]. Or the best k rank-one
terms may simply not exist [6]. Also, a minimizer in (1) is not guaranteed to exist
unlike in the matrix case where the best rank k solution always exists. Moreover,
this is well-known that this problem is NP-hard [12].

These tensor rank reducing questions are important since they have practical
applications across many disciplines, namely in signal processing [3], PDEs [2, 15],
geophysics [14], environmental sciences [18], brain connectome [24] and etc. Other
interesting applications are in bioinformatics [21] and biomedical imaging [13]; see
more applications in [17] and the references therein.

In this work, we propose some algorithms for approximating a low multilinear
rank tensor OT from a given tensor T 2 Rn1�n2�n3 ; i.e

min kT � OT k2F
where OT D Pr1

lD1
Pr2

mD1
Pr3

kD1.S /lmn.U1/il ; .U2/jm; .U3/kn (Tucker format) with
orthogonal matrices U1 2 R

n1�r1 , U2 2 R
n2�r2 and U3 2 R

n3�r3 . Here the core
tensor is S 2 R

r1�r2�r3 . It follows that the tensor OT has rank-.r1; r2; r3/. In these
algorithms, we use random projections on matrices which are based on the work of
Halko et al. [11]. We also prove a sharper probabilistic error bound found in [11]
for the matrix case. Then, this error bound was applied to error bounds in the tensor
case. The tensor extension of these randomized projections was first proposed by
Mahoney et al. [19].

In addition, we demonstrate the efficacy of the proposed randomized algorithms
with MRI data compression. The numerical experiments are compared to tensor
based methods for compression (e.g. quasi-Newton methods on Grassmannian
manifolds [23]). We restrict our comparison to tensor based methods for three-
dimensional datasets even though there are well-known methods for compression
based on wavelet analysis that has been successful for two-dimensional data. In
the work of Wu et al. [27], they have shown that the higher-order SVD within
the hierarchical tensor framework has some advantages over wavelet analysis for
compression. The advantages are the following: (a) it can achieve far higher quality
than wavelet transform at large compression ratios (b) the tensor framework facili-
tates progressive or partial data transmission and visualization; i.e. the receiver can
quickly view the low resolution versions first and decide whether it is worthwhile to
wait for higher resolution details.

2 Preliminaries

We denote the scalars in R with lower-case letters .˛; ˇ; : : :/ and the vectors
with lower-case letters .a; b; : : :/. The matrices are written as upper-case letters
.A;B; : : :/ and the symbol for tensors are calligraphic letters .A ;B; : : :/. The
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subscripts represent the following scalars: .A /ijk D aijk, .A/ij D aij , .a/i D ai .
The superscripts indicate the length of the vector or the size of the matrices. For
example, bK is a vector with length K and BN�K is a N � K matrix. In addition,
the lower-case superscripts on a matrix indicate the mode in which it has been
matricized. For example,Rn is the mode-nmatricization of the tensor R 2 R

I�J�K
for n D 1; 2; 3.

Definition 1 The Kronecker product of matrices A and B is defined as

A˝ B D

2
64
a11B a12B : : :

a21B a22B : : :
:::

:::
: : :

3
75 :

Definition 2 (Mode-n Vector) Given a tensor T 2 R
I�J�K , there are three types

of mode vectors, namely, mode-1, mode-2, and mode-3. There are J � K mode-1
vectors that are of length I which are obtained by fixing the indices .j; k/ while
varying i . Similarly, the mode-2 vector (mode-3 vector) is of length J (K) obtained
from the tensor by varying j (k) with fixed .k; i/ .i; j /.

Definition 3 (Mode-nRank) The mode-n rank of a tensor T is the dimension of
the subspace spanned by the mode-n vectors.

The order of a tensor refers to the cardinality of the index set. A matrix is a second-
order tensor and a vector is a first-order tensor.

Definition 4 (Rank-(L,M,N)) A third-order tensor T 2 R
I�J�K is rank-

.L;M;N / if the mode-1 rank is L, the mode-2 rank is M and the mode-3 rank is
N .

In the case when a third-order tensor has rank-.1; 1; 1/, it is simply called a rank-1
tensor.

Definition 5 (Tucker Mode Product) Given a tensor T 2 R
I�J�K and the

matrices A 2 R
OI�I , B 2 R

OJ�J and C 2 R
OK�K , then the Tucker mode-n products

are as follows:

.T 1 A/Oi ;j;k D
IX
iD1
.T /ijkaOi i ; 8Oi ; j; k (mode-1 product)

.T 2 B/ Oj ;i;k D
JX
jD1

.T /ijkb Oj j ; 8 Oj ; i; k (mode-2 product)

.T 3 C / Ok;i;j D
KX
kD1

.T /ijkc Okk; 8 Ok; i; j (mode-3 product)

In general, we have the following definition.
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Definition 6 Given a kth order tensor T 2 R
n1�n2����nk and matrices Ui 2 R

Onl�nl ,
then the Tucker mode-nl is

.T l Ul /i1i2���Oil ���ik D
X
il

.T /i1i2���il ���ik .U /Oil il

Definition 7 (Matricization) Matricization is the process of reordering the ele-
ments of an N th order tensor into a matrix. The mode-n matricization of a tensor
T 2 R

n1�n2�����nk is denoted by Tl and arranges the mode-l fibers to be the columns
of the resulting matrix. The mode-l fiber, tn1���nl�1WnlC1���nk , is a vector obtained by
fixing every index with the exception of the l th index.

If we use a map to express such matricization process for any N th order tensor
T 2 R

n1�n2�����nk , that is, the tensor element .n1; n2; : : : ; nk/ maps to matrix
element .nl ; j /, then there is a formula to calculate j :

j D 1C
kX
lD1
l¤k

.nl � 1/Jl with Jl D
l�1Y
mD1
m¤l

nm:

Then, given a third-order tensor X 2 R
I�J�K , the mode-1, mode-2 and mode-3

matricizations of X , respectively, are:

X1 D ŒxW11; : : : ; xWJ1; xW12 : : : ; xWJ2; : : : ; xW1K ; : : : ; xWJK�;

X2 D Œx1W1; : : : ; xI W1; x1W2 : : : ; xI W2; : : : ; x1WK; : : : ; xI WK�; (2)

X3 D Œx11W; : : : ; xI1W; x12W : : : ; xI2W; : : : ; x1J W; : : : ; xIJ W�:

3 Theoretical Error Bounds

In this section, we introduce a randomization technique for calculating low rank
matrices. It is well known from Eckart-Young Theorem [8] that the low rank k
matrix approximation is attained from calculating the leading first k rank-one terms
in the SVD; i.e.

argminrank. OA/�kkA � OAkF D Uk˙kV
T
k D OA

where rank. OA/ � k:

Recent results [11] show that the randomized versions of classical numerical
linear algebra techniques give fast, efficient and accurate algorithms. Here we build
on the theoretical error bounds found in [11] which will be essential for the error
bounds in the tensor case.
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Table 1 Fixed low matrix
rank [11]

Input: A, rank k, oversampling parameter p

Output: Q 2 R
n�kCp

Draw a random n� k C p test matrix ˝

Form the matrix product Y D A ˝

Compute a QR: ŒQ;R�=qr.A˝/

Table 2 Randomized SVD
[11]

Input: A, orthogonal matrix Q

Output: orthogonal matrices U , V and diagonal matrix ˙ ;
i.e A D U˙V T

Form B D QTA

Compute a small SVD: Œ OU ,˙ ,V T �=svd(B)

Set U D Q OU

The goal is to create an algorithm for SVD with randomness. For simplicity, we
fix a specific low rank k in mind. Given a matrix A 2 R

n�m, a desired rank k, and
an oversampling parameter p, we want to constructQ 2 R

n�kCp with orthonormal
columns such that

kA�QQTAk � min
rank. OA/�k

kA � OAk:

Essentially, we are constructing a random orthogonal projection such that the
residual kA�QQTAk � . A Gaussian test matrix˝ is used such that the columns
of A˝ are orthonormalized; i.e. A˝ D QR. See Table 1. Thus,Q captures the first
k columns as the left singular vectors of A. Then, the matrix B D QTA of size
k C p � m is formed and factored into its SVD; i.e. B D OU˙V T . It follows that
A D QB D Q OU˙V T D U˙V T whereU D Q OU . SVD is performed on a smaller
matrix B of size k C p � m as opposed to A of size n � m. See Table 2 for the
randomized SVD.

Now we discuss a deterministic error bound for calculating the range space of A.
Let A be an m � n that has an SVD of A D U ˙ V T ; i.e.

A D U

�
˙1

˙2

	 �
V T
1

V T
2

	
(3)

where ˙1 is an k � k matrix and ˙2 is an n � k � n � k matrix. Let ˝ be an
n� l test matrix where l � k in the coordinate system determined by the right polar
decomposition of A via

˝1 D V T
1 ˝ and ˝2 D V T

2 ˝: (4)

A deterministic bound is the following:
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Theorem 1 ([11]) Let A be an m � n matrix with SVD A=U˙V T (3). Let ˝ be
a test matrix and construct the matrix Y=A˝ with ˝1 and ˝2 are defined in (4).
Assume ˝1 has full row rank, then

kA �QQTAk2F � k˙2k2F C k˙2˝2˝
�
1k2F :

Let Vs be an n � s matrix whose entries are i.i.d. N.0; 1/ random variables and
let Ms D 1

s
VsV

T
s . The random matrixMs is called the Wishart matrix.

Theorem 2 ([9]) Let Ms D 1
s
VsV

T
s where Vs is an n � s matrix with i.i.d. entries

with �ij 
 N.0; 1/. For 0 < n
s
< 1, the largest singular values of Ms converges

a.s. to
�
1Cp

n
s

�
as s ! 1.

Theorem 3 ([25]) Let Ms D 1
s
VsV

T
s where Vs is an n � s matrix with i.i.d. entries

with �ij 
 N.0; 1/. For 0 < n
s
< 1, the smallest singular values of Ms converges

a.s. to
�
1 �p

n
s

�
as s ! 1.

Here we improve the theoretical bound in Theorem 1.

Theorem 4 Let A be anm � n matrix with SVD A=U˙V T (3). Let ˝ be an n � l
matrix with i.i.d. entries with aij 
 N.0; 1/ and construct the matrix Y=A ˝ with
˝1 and ˝2 are defined in (4). Assume ˝1 has full row rank, then

kA �QQTAk2F �

0
B@1C

1C
q

n�k
l

1 �
q

k
l

1
CA k˙2k2F

as l ! 1 where 0 < n�k
l
< 1 and 0 < k

l
< 1.

Proof Theorem 1 states this bound:

kA �QQTAk2F � k˙2k2F C k˙2˝2˝
�
1k2F :

We now calculate a bound for k˙2˝2˝
�
1k2F . The following is true:

k˙2˝2˝
�
1k2F D tr..˝�

1 /
T˝T

2 ˙
2
2˝2˝

�
1/ D tr.˝T

2 ˙
2
2˝2˝

�
1.˝

�
1 /
T /:

Let P1 D ˝
�
1.˝

�
1 /
T and P2 D ˝2˝

T
2 with orthonormal bases f�j g and f kg [20],

respectively. Then

tr.˝T
2 ˙

2
2˝2P1/ D trhI;˝T

2 ˙
2
2˝2P1i D

X
i

h�i ;˝T
2 ˙

2
2˝2P�ii

�
X
i

kP k2h�i ;˝T
2 ˙

2
2˝2�i i � kP1k2 trhI;˝T

2 ˙
2
2˝2i
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� kP1k2 trhI;˙2
2˝2˝

T
2 i � kP1k2

X
i

h k;˙2
2P2 i i

� kP1k2kP2k2
X
i

h k;˙2
2P2 i i � kP1k2kP2k2k˙2k2F

Using Theorem 2, the largest singular value of P2 converges almost surely top
l

�
1C

q
n�k
l

�
as l ! 1 for 0 < n�k

l
< 1. Similarly, using Theorem 3,

the largest singular value of P1 is the reciprocal of the smallest singular value of
˝1˝

T
1 ; i.e. the largest singular value of P1 converges almost surely to 1p

l
�
1�

p
k
l

�

as l ! 1 for 0 < k
l
< 1. Thus,

kA�QQTAk2F � k˙2k2F C k˙2˝2˝
�
1k2F

� .1C kP1k2kP2k2/k˙2k2F

�

0
B@1C

1C
q

n�k
l

1 �
q

k
l

1
CA k˙2k2F

as l ! 1 where 0 < n�k
l
< 1 and 0 < k

l
< 1. ut

This is a probabilistic bound which sharpens the result of [11] and [1]. The
deterministic bound of [11] is an improvement on the result of [1]. In the next
section, we will apply Theorem 4 for the error bounds in the tensor case.

4 Low Multilinear Rank Tensor Approximation

In this section, we will describe two low multilinear rank tensor approximations as
well apply the probabilistic theoretical bounds. An extension of SVD to tensor is
called the multilinear SVD [4] (or Higher-order SVD). Recall the Tucker mode-nl
(Definition 6). Given a kth order tensor T 2 R

n1�n2����nk and matrices Ui 2 R
Onl�nl

for i D 1; � � � ; then the Tucker mode-nl is

.T l Ul /i1i2���Oil ���ik D
X
il

Ti1i2���il ���ikUOil il

Definition 8 (Multilinear SVD) A third order tensor T 2 R
n1�n2����nk can be

factored into a product of a core third order tensor and three orthogonal matrices; i.e.

T D S 1 U1 2 U2 � � � l Ul � � � k Uk
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where S 2 R
n1�n2����nk is the core tensor and UiUi 2 R

nl�nl are orthogonal
matrices. The core tensor satisfies:

• an all-orthogonality constraint for each mode l : hSi1i2���ilD˛���ik ;Si1i2���ilDˇ���ik i D
.�l /2ı˛;ˇ with ˛; ˇ D 1; � � � ; nl

• ordering

kSilD1kF � kSilD2kF � kSilD3kF � � � � � kSilDnlkF
where SilD˛ D Si1i2���ilD˛���ik and kSilD˛kF D �l˛ for ˛ D 1; � � � ; nl .

A kth order tensor has k set of singular values f�l˛g and singular vectors .Ul/˛ for
˛ D 1; � � � ; nl .
Definition 9 (Low Multilinear SVD) A given third order tensor T 2 R

n1�n2����nk
can be factored into a product of a core third order tensor and three orthogonal
matrices; i.e.

T D S 1 U1 2 U2 � � � l Ul � � � k Uk
where S 2 R

r1�r2����rk is the core tensor and Ui 2 R
nl�rl are orthogonal matrices.

The core tensor satisfies

• an all-orthogonality constraint for each mode l : hSi1i2���ilD˛���ik ;Si1i2���ilDˇ���ik i D
.�l /2ı˛;ˇ with ˛; ˇ D 1; � � � ; rl

• ordering

kSilD1kF � kSilD2kF � kSilD3kF � � � � � kSilDnlkF
where SilD˛ D Si1i2���ilD˛���ik and kSilD˛kF D �l˛ for ˛ D 1; � � � ; rl .

A kth order tensor has k set of singular values f�l˛g and singular vectors .Ul/˛ for
˛ D 1; � � � ; rl .

There are methods for computing (low) multilinear SVD [4, 5, 26]. One approach
is to flatten (Definition 2) the tensor and apply matrix SVD. A third order
tensor T is matricized into T1 D U1S1.U2 ˝ U3/

T , T2 D U2S2.U3 ˝ U1/
T

and T3 D U3S3.U1 ˝ U2/
T . To obtain orthogonal matrices Ui , each matrix Ti is

decomposed into its SVD. The low rank core tensor S 2 R
r1�r2�r3 is built via

S D T 1 U T
1 2 U T

2 3 U T
3 . Low rank orthogonal matrices are constructed by

taking the first ri columns ofUi 2 R
ni�ri . Moreover, the randomized SVD in Table 1

which is based on random projections can applied to each Ti . See Table 3 and Fig. 1.
In the next section, we describe an improvement of this method.
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Table 3 Randomized multilinear SVD (or rand HOSVD)

Input: T 2 R
n1�n2�n3 , rank� .r1; r2; r3/, oversampling parameter p1; p2; p3

Output: orthogonal matrices Ul and diagonal tensor S in T D S �1 U1 �2 U2 �3 U3
Reshape T into matrices T1, T2, T3
U1 randsvd.T1; r1; p1/

U2 randsvd.T2; r2; p2/

U3 randsvd.T3; r3; p3/

Form S D T �1 U T
1 �2 U T

2 �3 U T
3

Fig. 1 Randomized HOSVD Example. (left) Six frames of the original data of size 92� 92� 26.
(right) Reconstructed data using Randomized HOSVD with low multilinear rank-.35; 35; 26/

4.1 A Randomized Multilinear Orthogonal Iteration (MOI)

The HOOI method is based on minimizing the Frobenius norm squared of the
residual:

min
U1;U2;U3

kT � S 1 U1 2 U2 3 U3k2F D min
U1;U2;U3

kT k2F � 2hS ;S i C kS k2F
D max

U1;U2;U3
kS k2F

where S D T 1 U T
1 2 U T

2 3U T
3 . In general, the orthogonal matrices are obtained

through

max
U1;��� ;Uk

kT 1 U T
1 2 U T

2 � � � k U T
k k2F

The implementation of this maximization problem is an alternating maximization
of the matricized subproblems:

max
Ul

kUT
l Zk2F (5)
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where Z D Sl.U
T
1 ˝ UT

2 � � � ˝ UT
l�1 ˝ UT

lC1 � � �Uk/. Orthogonal Ul is attained by
setting the leading rl singular vectors of Z [10]. Here we show an alternative proof
in the spirit of Regalia [22] on how the maximum is attained in (5); i.e.

max
Ul

kUT
l Zk2F

where Z D Sl.U
T
1 ˝ UT

2 � � � ˝ UT
l�1 ˝ UT

lC1 � � �Uk/.
Assume Z has an SVD; i.e. Z=X˙Y T . We calculate

kUT
l Zk2F D trhUT

l Z; U
T
l Zi D tr.ZT UUTZ/D tr.Y ˙XT UUT X˙Y T /D tr.XT UUT X˙2/

D trhXT UUTX;˙2i D tr
X
i;j

.XT UU T X/ij .˙
2/ji D

X
i

.XT UU T X/ii .�.˙
2//i

�X
i

.�.˙2//i

since kXTUU TXk2 � kXT k2kU k2kUT k2kXk2 � 1. If follows that when U D
X , the maximum of the objective function is attained.

Here we describe how randomness is introduced to the orthogonal iteration. Let
T 2 R

n1�n2�n3 . Consider the following subproblems from the HOOI formulation:
find orthogonalQi , i D 1; 2; 3 such that

kT1 �Q1Q
T
1 T1k2F D min

rank.U1/�r1
kT1 � U1S1.U2 ˝ U3/

T k2F
kT2 �Q2Q

T
2 T2k2F D min

rank.U2/�r2
kT2 � U2S2.U3 ˝ U1/

T k2F
kT3 �Q3Q

T
3 T3k2F D min

rank.U3/�r3
kT3 � U3S3.U1 ˝ U2/

T k2F

Thus, we can iteratively calculateQ.k/
i and U .k/

i until a stopping criteria is satisfied.
Moreover, we calculate the theoretical bounds for each mode. We call this method
randomized Multilinear Orthogonal Iteration (randomized MOI).

Theorem 5 Let Tl 2 R
nl�n1���nl�1nlC1���nk be a matricization of a kth-order tensor

with SVD Tl=Ul˙.U1 ˝ � � �Ul�1 ˝ UlC1 � � � ˝ Uk/
T (3). Let ˝l be an Nl � Ll

matrix with i.i.d. entries with aij 
 N.0; 1/ and construct the matrix Yl=Tl ˝ with
˝1 and˝2 are defined in (4) where N D n1 � � �nl�1nlC1 � � �nk . Assume˝1 has full
row rank, then

kTl �QlQ
T
l Tlk2F �

0
B@1C

1C
q

Nl�rl
Ll

1 �
q

rl
Ll

1
CA k˙2k2F

as Ll ! 1 where 0 < Nl�rl
Ll

< 1 and 0 < rl
Ll
< 1.
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Remark 1 It follows that we can bound (1) but the theorem above; i.e.

kT � OT k2F �

0
B@1C

1C
q

Nl�rl
Ll

1�
q

rl
Ll

1
CA k˙2k2F

for any mode l since kT � OT k2F D kTl � QlQ
T
l Tlk2F by rearrangements of

elements.

5 Numerical Examples

In the first two numerical experiments, the knee MRI dataset was obtained from
OsiriX [7]. The first numerical experiment is the implementation of the randomized
HOSVD (rand HOSVD) described in Table 3. The dataset of size 92 � 92 � 26

is compressed with a core tensor of size 35 � 35 � 26. Here for each orthogonal
matrix Ui , we took the first ri columns of Ui where r1 D 35; r2 D 35; r3 D 26. The
calculated errors are kS1kF D 1333:3, kS2kF D 58:2 and kS3kF D 5:1. See Fig. 1.
Here l1 D l2 D 85 and p1 D p2 D 50.

The second experiment is the implementation of the randomized MOI in Table 4.
The dataset of size 92�92�26 is compressed with a core tensor of size 35�35�26.
Here for each orthogonal matrix Ui , we took the first ri columns of Ui where r1 D
35; r2 D 35; r3 D 26. The calculated errors are kS1kF D 5:1, kS2kF D 5:1 and
kS3kF D 5:1 after two iterations. See Fig. 2. Here l1 D l2 D 85 and p1 D p2 D 50.

The third experiment is a comparison study of multilinear rank reduction
using HOOI, randomized HOOI and Quasi-Newton [23]. In Fig. 3, we find a low
multilinear rank of (3,3,3) from a tensor A of size 5 � 5 � 5 while having a

Table 4 Randomized multilinear orthogonal iteration (randomized MOI)

Input: T 2 R
n1�n2�n3 , rank� .r1; r2; r3/, oversampling parameter p1; p2; p3

Output: orthogonal matrices Ul and diagonal tensor S in T D S �1 U1 �2 U2 �3 U3
Reshape T into matrices T1, T2, T3
for k D 1; � � � ;MAXit

Z1 T1.U
k�1
2 ˝ Uk�1

3 /

U k
1  randsvd.Z1; r1; p1/

Z2 T2.U
k�1
3 ˝ Uk

1 /

U k
2  randsvd.Z2; r2; p2/

Z3 T3.U
k
1 ˝ Uk

3 /

U k
3  randsvd.Z3; r3; p3/

Form S D T �1 U T
1 �2 U T

2 �3 U T
3

end
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Fig. 2 Randomized HOOI Example. (left) Six frame of the original data of size 92 � 92 � 26.
(right) Reconstructed data using Randomized HOOI with low multilinear rank-.35; 35; 26/

Fig. 3 Comparison of HOOI, randomized MOI and quasi-Newton methods

stopping criteria of a maximum number of iterations of 100 and the error norm,
kU3A3.U1˝U2/k2F , to be within 10�6. HOOI maxed out at 100 iterations and Quasi-
Newton required 99 iterations while Randomized MOI needed 18 iterations. For the
randomized MOI, we take L3 D 5 (with an oversampling parameter of p D 2) and
the desired rank of r3 D 3.
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Part II
Processing, Filtering and Interpolation



Path-Based Mathematical Morphology
on Tensor Fields

Jasper J. van de Gronde, Mikola Lysenko, and Jos B.T.M. Roerdink

Abstract Traditional path-based morphology allows finding long, approximately
straight, paths in images. Although originally applied only to scalar images, we
show how this can be a very good fit for tensor fields. We do this by constructing
directed graphs representing such data, and then modifying the traditional path
opening algorithm to work on these graphs. Cycles are dealt with by finding strongly
connected components in the graph. Some examples of potential applications are
given, including path openings that are not limited to a specific set of orientations.

1 Introduction

An image can be considered as a function whose argument is a position. However,
with increasing computing power and increasing sensor capabilities, it is becoming
more and more common to acquire data that varies as a function of both position
and orientation. For example: orientation scores (and similar schemes) [9, 15–17,
29, 32], flow fields, diffusion MRI data [28, 48] and seismic anisotropy data [40].
When filtering such data this additional structure can be taken into account to extract
more relevant data.

Path openings [23, 24] are a class of morphological filters that are able to extract
long and thin structures. They essentially allow preserving pixels that are part of
a long path, while suppressing pixels that are only part of short paths (this allows
these filters to be interpreted as hyperconnected filters [53]). Applied to traditional
binary or greyscale images this can be useful for finding cracks, roads, fibres, and
other thin elongated structures [10, 34, 37, 45, 49].
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In this work we motivate why the concept of a path is natural to consider
in the context of (symmetric) tensor fields. We then explain how path openings
traditionally work on directed acyclic graphs, and how they can be generalized to
allow for cycles. This leads to an efficient algorithm, which we use to demonstrate
that our method can indeed be used to produce sensible results on (tensorial)
orientation scores and diffusion MRI data.

1.1 Related Work

Certain fibre tractography methods already use a graph-based approach [6, 25,
44, 47]. However, these are typically undirected graphs, and are primarily used
for finding tracts (using shortest paths), and not for filtering the data. The use of
directed graphs in this work allows us to prevent a path from doubling-up on itself
unnecessarily, while still allowing very efficient filtering of the entire data set. Still,
the graph building methods employed by these tractography methods could be a
source of inspiration.

Some of the work on mathematical morphology on tensor fields by Duits
et al. [18] also considered dilations along what can be considered as “paths”
following the local orientation. But rather than using path openings, more traditional
dilations and erosions were used (it is not immediately clear whether these
operations could be used to implement path openings). And instead of using a
graph-based approach, a PDE-based approach was used. Franken and Duits [20]
applied a similar approach to orientation scores (although without focussing on
morphological operators).

Bismuth et al. [4] developed a method to at least partially deal with curved
features in a close relative of path openings, by iteratively linking up approximately
linear segments. However, they only support a limited number of changes of
direction, and still rely on being able to define suitable directed acyclic graphs. In
contrast, here we simply forgo the requirement that the graph is acyclic. In addition,
our method could be used to link up approximately linear segments with different
orientations too, without the need to explicitly build chains of a certain length. It
is not immediately clear how some of their other refinements could translate to our
work though.

The technique recently developed by Morard et al. [38] could in theory also be
adapted to compute path openings on tensor fields, as it simply finds a number
of (potential) paths and then filters along those using a 1D algorithm (instead of
implicitly filtering along all paths). However, we would still need a suitable method
for finding paths. Also, it is not yet clear how well it approximates the “true” path
opening.
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2 Definitions and Notation

2.1 Mathematical Morphology and Openings

Mathematical morphology is a framework for non-linear image processing based
on (algebraic) lattices [22]. A lattice is a partially ordered set such that every two
elements have a uniquely defined least upper bound and a uniquely defined greatest
lower bound. These are called the join/supremum (‘_’) and meet/infimum (‘^’),
respectively. Typically, one works with lattices of images, using a partial order that
compares images in a pixel-wise fashion: an image is less than or equal to another
image if every pixel value in it is less than or equal to the corresponding pixel value
in the other image. We will work mostly with the lattice of graphs, in which one
graph is less than or equal to another graph if it is a subgraph of the other graph.

Central in the theory of mathematical morphology is a categorization of operators
based on the properties they have. For example, an operator is called an erosion if it
distributes over taking the meet (".a^ b/ D ".a/^ ".b/). Another important class
of operator is the opening. An (algebraic) opening is an operator from a lattice to
another (possibly the same) lattice that is [22, 41]:

increasing a smaller input implies a smaller output,
anti-extensive the output is less than or equal to the input, and
idempotent the output is a fixed point of the operator.

So more input means more output, you cannot get more out than you put in, and
applying an opening twice does the same as applying it once. If an opening depends
on some parameter to control its “strength”, it is often possible to produce an
intermediate data structure called an opening transform that contains information
on which pixels to keep for what parameter values.

2.2 Tensors

We consider a tensor field to be an image whose pixel values are tensors based on
the (local) tangent space. For example, even though a vector can be considered a
tensor, we do not consider a colour image to describe a tensor field, as a colour
vector does not describe a direction in the image domain.

We will only concern ourselves with real, symmetric tensors based on (tangent
spaces of) Euclidean spaces. Most crucially, the tensors are based on some vector
spaceV with an inner product ‘�’. We consider symmetric tensors to be built from the
symmetrized tensor product ‘ˇ’ [7, 31], so a rank-r , degree-n (or order-n) tensor A
is any tensor that can be written as a weighted sum of r (but not less than r) tensors
of the form [11]

aˇn D a ˇ � � � ˇ a„ ƒ‚ …
n times

, with a 2 V :



112 J.J. van de Gronde et al.

The terms in such a weighted sum form a so-called “rank-one decomposition” of
a tensor, analogous to the eigendecomposition of a symmetric matrix. Due to its
linearity, the inner product on tensors is fully determined by

aˇn � bˇn D .a � b/n:

The identity tensor In is the unique degree-n symmetric tensor that satisfies
In � aˇn D kakn, with n even. See our previous work [21, 50] for details.

2.3 Graphs

A directed graph G can be identified with a pair .V;E/ containing a set of vertices
and a set of edges, with all of the edges being pairs of vertices. A graph is a subgraph
of another graph if both its vertex set and its edge set are subsets of the vertex set
and the edge set, respectively, of the other. A cycle is a sequence of edges of the
form .v1; v2/; .v2; v3/; : : : ; .vn; v1/ (that is, if an edge ends at vertex v then the next
edge starts at vertex v, and the first and last vertex are also the same). If a directed
graph does not contain any cycles it is called a directed acyclic graph, or DAG. The
vertices in a directed acyclic graph can always be ordered in such a way that if there
is an edge from a vertex to another vertex, then this other vertex comes after the first
in the ordering. Such an ordering is called a topological ordering of the graph.

3 From Tensor Fields to Paths in Graphs

Previously [21, 50, 51], we looked at generalizing mathematical morphology to
vector-valued images and tensor fields. For this, it was found that it is important
to construct rotation-invariant operators. This is in line with some older research
[2, 8, 42], as well as the more recent work by Angulo [1] for example. We
accomplished this by “lifting” to rotation-invariant representations. For tensor fields,
this boiled down to taking a function that maps a position to a tensor (describing a
tensor field), and turning it into a function that maps a tangent vector1 to a scalar
(for example: if f maps positions to degree-n tensors, then one could construct a
function f 0 on tangent vectors defined by f 0.x; v/ D f .x/ � vˇn, where the pair
.x; v/ represents a tangent vector). This makes it much easier to apply traditional
morphological concepts, as these are typically already suited to scalar images.

1A tangent vector can be considered an element in the tangent bundle, and is a combination of
a position and a vector describing an orientation/direction. Physically, a tangent vector can be
considered to describe the position and velocity of a particle, for example.
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Fig. 1 Illustration of what
(spherically deconvolved)
diffusion MRI data looks like.
There is a regular grid of
points, and for each of those
points there are zero or more
antipodal pairs of directions
with weights (the arrow
length corresponds to the
weight). Any two antipodal
directions have the same
weight. The idea is that
vectors that roughly line up
could be indicative of a fibre
bundle running through those
vectors

By adapting the theorem that showed the usefulness of lifting to a rotation-
invariant representation [51, Thm. 1], we can also consider operations like tensor
decomposition to be admissible lifting operators. That is, we can consider the
tensor decomposition as a rotation invariant map from the tensor space to a rotation
invariant lattice. Although we will not prove this here, this is part of our (intuitive)
justification for using tensor decompositions for morphological filters on tensor
fields.

Once we view a tensor field as a function on tangent vectors—or as a sparse set
of (weighted) tangent vectors (see Fig. 1)—it becomes natural to look for paths in
the data. This is like looking for streamlines [35] in a flow field, or performing trac-
tography on diffusion tensor fields [3, 14, 36, 39]. More fundamentally, orientations
really only make sense if they line up somehow, naturally giving rise to the concept
of a path.

In some cases, like gradients of functions, it might be more natural to consider
something like a “hyperplane/sheet” opening (extracting surfaces or other structures
that are more than one dimensional), but this is somewhat outside the scope of the
current work. We do show an example (using orientation scores) in 2D though,
where a hyperplane is also a line, so that it still makes sense to use a path opening.

In our examples we build graphs in which the vertices correspond to tangent
vectors. There is an edge from a tangent vector to another tangent vector with the
same orientation at a neighbouring position if and only if the neighbouring position
is within 0.65 times the cell spacing of the ray spanned by the first tangent vector.
More formally, if we denote the set of all possible edges on the current grid by N
(so regardless of which tangent vectors are in any particular data set), then (with unit
cell spacing, x1; x2 in some Euclidean space, v a unit vector in the tangent space,
and ignoring the weights associated with the tangent vectors):

..x1; v/; .x2; v// 2 N ” .x2 � x1/ � v � 0

and k.x2 � x1/ � ..x2 � x1/ � v/vk � 0:65:
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Fig. 2 A tangent vector is connected to another tangent vector with the same direction at a
neighbouring position if the neighbouring position is within a set distance from the ray spanned by
the first tangent vector. For connecting to different orientations, positions are chosen only if both
orientations “agree” on being able to reach/come from each other’s position

Fig. 3 If we connect vectors to other vectors in a bidirectional way (left), we quickly link
everything together and lose the idea behind finding paths (the grey line could be a single path!).
That is why we only connect vectors to other vectors that lie roughly in the direction the vector
is pointing to (right figure shows an example path). Note that the grey line segments connect the
midpoints of the arrows representing tangent vectors

We also connect tangent vectors to tangent vectors with a different orientation if
they “agree” on being able to reach each other’s position (see Fig. 2):

..x1; v1/; .x2; v2// 2 N ” ..x1; v1/; .x2; v1// 2 N
and ..x1; v2/; .x2; v2// 2 N :

If G D .V;E/ is the graph we build for a particular data set, with V containing all
the tangent vectors, then E D .V � V /\N . See Fig. 3 for why it is important that
the above relation is not symmetric.

The above connectivity scheme strikes a balance that seems to work reasonably
well in practice. However, it would definitely be interesting to examine more closely
what kind of connectivity makes sense for this kind of data. In particular, though it
might be tempting to try to fit “trajectories” through tangent vectors to determine
the connectivity between neighbouring positions and orientations, in practice the
discrete grid (of positions) works against this. Also, a good balance should be struck
between being able to track sharp turns and preventing spurious connections.
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Note that since in our applications we always have antipodal pairs of tangent
vectors, it is useful to have the concept of an “opposite”. For each graphG D .V;E/

we have a map of opposites o W V !V that gives the antipodal partner of each
vertex. We have: .v1; v2/ 2 E ” .o.v2/; o.v1// 2 E , for all v1; v2 2 V .

4 Path Openings on Graphs with Cycles

Traditionally [23, 24], binary path openings are computed by constructing several
directed acyclic graphs (DAGs), one for each direction, like in Fig. 4. These graphs
are then used to determine the lengths of the longest paths running through each
point using a dynamic programming scheme. Said paths are constrained to form a
(connected) path in one of the graphs. So one can have an approximately horizontal
path, an approximately vertical path, etc. (depending on the number of directions
used). Some enhancements have been developed [34], but the basic idea remains the
same. This means that path openings are not well suited to extract curved features.

In most work on path openings, weighted graphs are considered, with the weights
corresponding to—binary—pixel values. In our setting it is more convenient to
simply consider the graph induced by those pixels that are “on”. We define a path a
in a graphG D .V;E/ to be a sequence of vertices such that any pair of consecutive
vertices is an edge in E . The set of vertices in a is denoted by �.a/, its length by
jaj, and the set of all paths in G by ˘.G/. A path opening on a directed acyclic
graph G, with path length threshold L, can then be defined as:

˛L.G/ D
[

f�.a/ j a 2 ˘.G/ and jaj � Lg :

Introducing cycles in the graph poses a problem: there is no such thing as
a longest path in the presence of a cycle. One solution is to constrain paths to
never visit the same vertex twice. However, finding the length of the longest path
through each vertex would then be NP-hard (even approximations are hard [5, 27]).
Constraining paths to never traverse the same edge twice might be simpler in some
cases, but it is not immediately clear in what cases, nor how we could (easily) find
such paths. Also, if the idea is to find the longest (or, rather, largest) path, why
should we avoid cycles in the path?

Fig. 4 A set of DAGs that has been used for (traditional) 2D path openings
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The key is to focus on path size (j�.a/j) instead of path length (jaj). For a DAG,
there is no difference, as a vertex can only occur once in a path in a DAG anyway,
but in the presence of cycles it can make a big difference. In particular, traversing a
cycle multiple times does not make the path larger (in the sense of the size of the set
of vertices covered by the path). In the interest of brevity, we will, from now on, say
“path size” instead of “the size of the set of vertices covered by a path”. So rather
than finding longest paths through vertices, we find, for each vertex, the maximum
size of all paths through that vertex. We thus (re)define the path opening as follows:

˛S.G/ D
[

f�.a/ j a 2 ˘.G/ and j�.a/j � Sg : (1)

The subscript S will be dropped whenever it is immaterial to the matter at hand.
Also, when convenient we equate ˛S.G/ with the subgraph of G D .V;E/ it
induces: .˛S .G/; f.a1; a2/ 2 E j a1; a2 2 ˛S.G/g/.

Note that the above allows us to apply path openings to oriented data and find
curved paths, as we demonstrate in Sect. 5. Also, we give an efficient algorithm to
compute ˛S in Sect. 4.2. But first we show that ˛S is indeed worthy of the title path
opening.

4.1 ˛S is an Algebraic Opening

The above develops a generalization of the traditional path opening, but it is not
immediately clear that the result is in fact still an opening in the algebraic sense of
the word. That is, it should be increasing, anti-extensive and idempotent. Here we
first show that the operator does in fact still have these properties in an abstract
graph-based setting, and then go on to discuss how this applies to some more
concrete settings.

Theorem 1 A path opening ˛ on directed graphs is an opening: increasing, anti-
extensive and idempotent. In particular, for all directed graphs G and H , if G is
a subgraph of H , then ˛.G/ is a subset of ˛.H/ (increasing). Also, ˛.G/ induces
a subgraph of G (anti-extensive), and ˛.˛.G// D ˛.G/ (idempotent), where we
equate ˛.G/ with the subgraph of G that it induces.

Proof We start by observing that ˛ is almost trivially anti-extensive: by definition it
returns a subset of the vertices of the graph (inducing a subgraph).

To see that ˛ is increasing, observe that ifG is a subgraph ofH , any path possible
in G is also possible in H . The maximum path size through every vertex in H that
is also in G should thus be greater than or equal to the maximum path size of the
same vertex in G. It follows that ˛.G/ � ˛.H/.

That ˛ is idempotent follows from the fact that if it returns a vertex, it also returns
all vertices in the path that made it return that vertex. So all of the vertices returned
by the path opening will have large enough paths in the induced subgraph to be
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preserved by a second application of the path opening: ˛.˛.G// � ˛.G/. And since
we already concluded that ˛ is anti-extensive, implying that ˛.˛.G// � ˛.G/, we
have that ˛ must be idempotent.

In the above, filtering is done by removing vertices from the graph rather than
“turning them off” (as in traditional path openings). However, if we have a graph
with boolean weights, then we can simply consider the subgraph that contains only
those vertices that are turned on. Since paths do not propagate through vertices that
are turned off, this has no effect on the result. Using this trick the above can be
interpreted as a(nother) proof that traditional path openings are indeed openings.

When applying the above to orientation scores (see Sect. 5.1), where we use
tensor decompositions to compute sparse sets of tangent vectors, it is not clear yet
to what extent the whole procedure (decomposition, filtering, reconstruction) can
be considered an opening. The main issues are picking a suitable order, and the
possible ambiguity of tensor decompositions. Since the path opening itself is anti-
extensive, we suspect the Loewner order [8, 50] might be sufficient to prove anti-
extensivity, but it is unlikely to be of use for proving increasingness. As for tensors
with ambiguous decompositions (analogous to having eigenvalues with multiplicity
greater than one), a more detailed study of how often and where they occur would
be needed. As it is, we consider this firmly outside the scope of the current work,
but look forward to future developments.

4.2 Implementation

The first step in realizing an efficient algorithm to find the maximum path sizes
through all vertices, is to observe that all vertices within a cycle share the same
longest path size, and that this size is greater than or equal to the cycle size. Also,
since for counting the path size it does not matter where we enter the loop, we can
contract any loop of n vertices into a single vertex that we count as n vertices without
affecting the results (see Fig. 5). If we do this with all cycles, then we clearly end up
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Fig. 5 Left: original directed graph containing a cycle (dashed), along with the maximum path
“lengths” through each vertex. Right: same graph after contracting the cycle into a single vertex
with weight 3 (rather than 1)
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Algorithm 1: Path opening on graphs, allowing for cycles
Input : A directed vertex-weighted graph G D .V; E;w/, with w W V !R, a map of

opposites o W V !V , and a threshold S .
Output: A set A 	 V .

H D .V 0; E 0;w0/ graph of strongly connected components in G
construct o0 W V 0!V 0 such that v 2 v0 and u 2 u0 and o.v/ D u H) o0.v0/ D u0

find �C W V 0!R using Algorithm 2
A ;
for v0 2 V 0 do

� �C.v
0/C w0.v0/C �C.o

0.v0//

if � 
 S then
A A[ v0

with a directed acyclic graph, allowing the application of a traditional path opening
algorithm.

Can we easily find the graph resulting from contracting all cycles? (Known as
the condensation of a graph.) Yes: by finding strongly connected components. A
strongly connected component in a directed graph is a (maximal) set of vertices
such that there is a path in the graph from every vertex to every other vertex in
the set. The set of all vertices in a directed graph can be partitioned into strongly
connected components. As all vertices in a cycle clearly belong to the same strongly
connected component, contracting the cycle does not change the partition. So after
we have contracted all cycles, each vertex of the contracted graph corresponds to a
strongly connected component in the original graph. We use Tarjan’s algorithm [46]
to find all the strongly connected components in a graph in linear time.

Instead of just counting the number of vertices in a path, Algorithm 1 uses the
sum of all vertex (and edge) weights associated with the set of vertices (and edges)
covered by the path. The weight of a strongly connected component is the sum of the
weights of the vertices (and edges) in the component. Also, we only find the sizes
of paths that end in each vertex (up to, but not including, the weight of the vertex
itself). Since in our context the vertices (tangent vectors) come in antipodal pairs,
the maximum size of a path through a vertex is then determined by combining its
associated path size with the path size found for its opposite (and the vertex’s own
weight).

Our implementation of a (one-sided) path opening on a directed (acyclic) graph
in Algorithm 2 uses an algorithm by Kahn [26] to compute the topological ordering,
but avoids outputting this topological order by integrating the body of the (outer)
loop in Algorithm 2 with the topological sort.
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Algorithm 2: One-sided path opening transform
Input : A directed acyclic vertex-weighted graph G D .V; E;w/, with w W V !R.
Output: A map � W V !R giving the maximum lengths of paths ending in each vertex

(excluding the weight of the vertex itself).

initialize � W V !R to zero
O  topological sort of V
for o in O do

l  �.o/C w.o/
for s 2 V j .o; s/ 2 E do

�.s/ maxf�.s/; lg

5 Examples

We now apply the above to two types of oriented data: tensorial orientation scores
and diffusion MRI data. These proof-of-concepts illustrate how our methods can be
applied to oriented data. We use tensor decomposition and spherical deconvolution
to obtain sparse sets of tangent vectors and associated weights that together describe
the data. We then build graphs on these tangent vectors using simple rules for
deciding what vectors can be connected. Finally, we apply the above to filter the
data, and show the results.

5.1 Orientation Scores

Our first example2 takes a 2D image and computes an orientation score inspired on
work by Duits and Franken [15–17, 19, 20], except that we use a fourth order tensor
to represent the orientation score rather than a discrete number of directions based
on a discrete approximation of a tensor-valued filter defined in the Fourier domain

by F.�/ D �ˇn

k�kn . We then use the (symmetric) higher order power method [30] in
combination with multiplicative update rules for non-negative least squares [43] to
find a decomposition of the tensors into positively weighted rank-one tensors and the
identity tensor (in as far as this is possible). Since it proved slightly simpler to extract
positive components from a tensor than negative components, we ignore negative
components; our example has a dark background and light foreground to ensure
that the main features are represented by positive components. We also ignore the
weight of the identity tensor, as we are only interested in oriented features. The
compound effect of these measures is shown in Fig. 6.

Having found directions and weights, we rotate the directions by 90ı so they
point along the edge/line, and turn them into antipodal pairs. For building a graph

2Code available at http://bit.ly/1zpfIXf.

http://bit.ly/1zpfIXf
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Fig. 6 From left to right: the original image; the reconstruction from the vectors and values
extracted from the orientation tensors (ignoring any negatively weighted components, as well as
the identity component); the reconstruction after path opening with a threshold of 400 pixels. Since
the image dimensions are 387 � 517, this threshold is way too large for a traditional path opening
to have picked up any part of the curves. Note that for the path opening the weights are ignored
(and kept unchanged). Grey values have been inverted, so the filter was run on an image with a
dark background and light curve

Fig. 7 Left: the original orientations found (near the top-most crossing in Fig. 6). Right: the output
of the path opening. The orientations are shown as small line segments extending symmetrically
from the center of each pixel (the length corresponding to the weight)

on the orientation score data, we use the rules already discussed in Sect. 3. For this
example we use one additional constraint though: we only connect tangent vectors
to other tangent vectors if they differ in angle by less than 30ı. We compute a path
opening on the graph, and then reconstruct the data from the output graph. Figure 7
shows what the intermediate sets of tangent vectors look like.
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Figure 6 shows that we can extract a long curved path from a noisy background,
even though we use a threshold that is in fact higher than the width of the image,
and definitely higher than any of the approximately straight paths that could have
been picked up by a traditional path opening. Also, our method is not limited to
fixed set of orientations, it works with whatever orientations are found by the tensor
decompositions. This is in stark contrast to traditional path openings, which have
to process the entire image once per orientation, and require relatively complicated
schemes to be able to distinguish between more than eight orientations (in 2D) [52].

5.2 Diffusion MRI

Our spherically deconvolved diffusion MRI dataset has a (short) list of directions
and associated weights for each point in a regular (although slightly anisotropic) 3D
grid. Because of the physics of diffusion, these directions again come in antipodal
pairs, with the same weight for both directions. To build a graph on the diffusion
MRI data, we use the same rules as explained in Sect. 3.

ExploreDTI [33] was used for motion and eddy currents correction, while Star-
Track [12] was used for spherical deconvolution. In principle tensor decomposition
could be considered a kind of spherical deconvolution, but for diffusion MRI it is
often appropriate to use a different kernel (fibre response function) to deconvolve
with. Also, we typically do not start with a tensor, but rather with measurements
in many discrete directions. The resulting path opening is demonstrated in Fig. 8.
Figure 9 shows the largest strongly connected component.

In this example we remove tangent vectors whose weight is below a threshold.
However, at crossings, the values tend to be smaller than in regions with a single

Fig. 8 The result of performing a path opening on spherically deconvolved (and thresholded)
diffusion MRI data. From left to right: the original graph; a path opening with length threshold
five; and a path opening with length threshold 100. The most striking differences are visible along
the periphery. Path length was measured in voxels; the complete volume contains 128 � 128� 69
voxels. Interactive version available at http://bit.ly/1zpfIXf

http://bit.ly/1zpfIXf
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Fig. 9 Largest strongly
connected component present
in the (thresholded) diffusion
MRI data (containing 16,540
elements). Apart from this
strongly connected
component there was one
other of a size of several
thousands (corresponding to
the noisy blob at the bottom
of the data visible in Fig. 8),
and two with a size of only
four elements. All 668,966
remaining strongly connected
components had size one (so
were not part of a cycle)

fibre orientation.3 Our attempt at compensating for this assumes that all directions
suffer the same attenuation, and that this factor is equal to the maximum weight for
a voxel divided by the sum of all the weights in a voxel (compensating for the fact
that vectors come in pairs).

A more traditional way of finding paths/fibres in diffusion MRI is using
tractograpy. In a common variant of tractography the diffusion MRI data is used
to extract a finite set of trajectories/fibres representing the layout of the actual
nerve fibre bundles. Here, tractography was performed using StarTrack [13].
Figure 10 shows some examples of how the constructed graph compares to more
traditional tractography. For comparison purposes we took the markers used to
select trajectories in the tractography data and used those for what amounts to
a flood fill procedure on the graph we constructed, limited to staying within a
certain number of steps from the marker. The main differences (in what structures
are found) appear to be caused by our method’s tendency to be more sensitive to
small branches (it picks up on what, when taking the data at face value, could be a
connection from the fornices to the corpus callosum for example), and the traditional
method’s ability to follow trajectories at a low(er) threshold (at least in order to cross
small gaps).

3This makes some intuitive sense, as every voxel contains the same amount of space, but at a
crossing it is shared by fibres of multiple orientations.
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Fig. 10 Tractography of the corpus callosum (top) and the fornices (bottom), and propagation
of the same markers (seedpoints) on the graph we constructed (on the right, showing all tangent
vectors within 20 steps of the markers). Note that the views are all at roughly the same scale and
look onto the anterior of the brain, but that the graph-based images are much sparser due to only
plotting tangent vectors at voxel positions (as well lines between connected tangent vectors)

Although our method is perhaps not really suitable as a drop-in replacement for
more traditional tractography methods, it does have some interesting characteris-
tics:

• Symmetry of the connections. By construction, if our method finds a path from
position and orientation A to position and orientation B, it will also find a
reversed path. Tractography methods based on numerically integrating PDEs will
tend to miss small branches of larger tracts.

• Output data has the same format as input data (it is just sparser). In fact, as the
result of an algebraic opening, the output is a subset of the input.

Also, in principle, we could imagine first thinning the data (within the same kind of
framework), and then filtering it. If we record the thickness of the bundles, this could
then be taken into account during filtering. Essentially this would mean working
with bundles rather than paths.
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6 Conclusion and Future Work

We have shown how we can deal with cycles in graphs so as to still have an easy
and efficient algorithm for path openings. The idea is to contract all cycles (or
rather, strongly connected components) to single vertices weighted by the sum of the
weights of the vertices in the contracted cycles. The remaining acyclic condensation
graph can be filtered using more traditional path opening algorithms.

In contrast to traditional path openings, our approach allows extracting curved
paths without any problems. We can also easily support tensor fields and similar
data. In principle we could even construct path openings for data whose “image
domain” is a sphere or other curved space/manifold. We do note, however, that
picking any arbitrary graph structure is unlikely to be successful, some amount of
sparsity and a tendency to avoid (unnecessary) cycles is crucial in getting sensible
results. Our examples show that it is entirely feasible to apply our method to certain
classes of real-world data though.

In the future we hope to look at other attributes than length or size for paths and
proper greyscale path openings. We suspect that for certain attributes the strongly
connected component decomposition can still help, as long as we want to compute
those attributes over maximal paths (maximal in the sense that there are no other
paths of which they are proper subsets). The condensation of a graph makes it easier
to deal with cycles when analyzing paths in directed graphs.

Regarding tensors and tensor decompositions, there are still some unresolved
issues. For example, how likely is it to have an ambiguous (minimum symmetric-
rank) tensor decomposition? How does this change if we add identity tensors to
the possible “basis” tensors? What if we put certain constraints on the tensors?
Ultimately, we hope to be able to consider the path openings we have created here as
algebraic openings on tensor fields (and not just graphs built on top of those tensor
fields), but so far the possibility or impossibility of this is still an open question. In
addition, it would be interesting to explore tensor decompositions that can also deal
with negative components, for use with orientation scores.

We are also highly interested in looking at bundles (paths with a width) rather
than paths (without width). In 3D it might also be worthwhile to attempt finding
sheets rather than paths. Finally, we would like to develop versions of our path
openings that are more robust to noise [10, 45], and experiment with “greyscale”
path openings on (decomposed) tensor fields.
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Processing Multispectral Images
via Mathematical Morphology

Andreas Kleefeld and Bernhard Burgeth

Abstract In this chapter, we illustrate how to process multispectral and hyper-
spectral images via mathematical morphology. First, according to the number of
channels the data are embeded into a sufficiently high dimensional space. This
transformation utilizes a special geometric structure, namely double hypersimplices,
for further processing the data. For example, RGB-color images are transformed
into points within a specific double hypersimplex. It is explained in detail how
to calculate the supremum and infimum of samples of those transformed data to
allow for the meaningful definition of morphological operations such as dilation
and erosion and in a second step top hats, gradients, and morphological Laplacian.
Finally, numerical results are presented to explore the advantages and shortcomings
of the new proposed approach.

1 Introduction

Mathematical morphology is concerned with the detection, extraction and manip-
ulation of shapes, contours, and structures in image data. Scientists working in
this field may look back at almost half a century of successful developments
and applications of powerful methods for image processing in, roughly speaking,
medical and engineering sciences. Since the path-breaking work of Matheron and
Serra [12, 13, 17, 18], a vast amount of literature (e.g. [3, 10, 11, 16, 20–22, 25])
provides testimony of this story of success. The operations of dilation and erosion
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are the cornerstones of mathematical morphology typically applied to gray-scale
images endowed with a (complete) lattice structure. However, the recent decade
has seen ever rising efforts to develop powerful morphological tools for data types
that do not allow for such a lattice structure. There the main focus certainly lies on
color images [1, 4, 9, 19, 24], that is, vectorial data, see the excellent survey [2] and
the literature cited therein, but, to a much lower extend, on matrix valued images
as well (e.g. [8]). The most promising and recent approach to color morphology,
presented by van de Gronde and Roerdink [24] relies on the very versatile concept
called frames. The main idea of Burgeth and Kleefeld [5, 6] consists of establishing
a one-to-one correspondence of a RGB-image with a matrix-valued image of 2 � 2

real symmetric matrices for which morphological techniques already have been
developed, see [7]. This correspondence is inspired by the striking similarity of the
Ostwald color bi-cone [14] in the well known HSL-model and the Loewner order
cone for 2 � 2 symmetric matrices.

In essence, a color image is transformed into a matrix valued image, undergoes
morphological processing and the result is transformed back into a color image.
However, this approach has two disadvantages: One is that it is geared towards
images with three channels which is the degree of freedom in a 2 � 2 symmetric
matrix. The other one is that due to its non-polyhedral structure the Loewner
bi-cone (e.g. the transformed Ostwald bi-cone) is not stable under taking the
Loewner-supremum (or -infimum). Precisely, taking the supremum can lead to an
element outside the bi-cone. In this chapter an approach is presented that overcomes
both obstacles; it utilizes an embedding into polyhedral double (hyper-)simplexes
instead of Loewner cones making them both stable under a sup-, inf-operation
(now the operations satisfy the closure condition) and adaptable to an arbitrary
number of channels in a multivariate image. The simplicial structure is important
since, as it turns out, mappings into other polyhedra entails non-uniqueness of
the supremum/infimum of a finite set of multivariate data. For example, draw the
two squares with edge length 0.1 with lower left vertex .0:1; 0:1/ and .0:2; 0:1/,
respectively. The smallest enclosing square enclosing the two given squares has
edge length 0.2 and the lower left coordinate is given by .0:1; y/ with 0 � y � 0:1.

Note also that the Loewner order for symmetric matrices has another flaw; it
is not associative. In general, it holds sup.sup.A;B/; C / ¤ sup.A; sup.B; C //,
likewise for the inf-operation. This makes the calculation of a supremum/infimum of
three or more matrices cumbersome. This disadvantage alone makes it worthwhile
to look for an alternative approach such as the double hypersimplex approach.

The chapter is organized as follows. First, it is explained in Sect. 2 how to map the
data of a multispectral/hyperspectral image into a suitable space. The space under
consideration will be a double hypersimplex. Additionally, the inverse of the map
introduced in Sect. 2.1 is constructed in Sect. 2.2. Then, it is illustrated in Sect. 2.3
how to find the supremum and infimum of a set of points located in the double
hypersimplex using a geometric approach which is needed to define mathematical
morphological operation such as dilation and erosion. In Sect. 2.4, we explain how
to subtract two points located in the double hypersimplex to make mathematical
morphological operations such as top hats, gradients, and morphological Laplacian
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meaningful. In Sect. 3, we give a glimpse at scalar-valued morphology operations
and explain how to use those operations for multispectral/hyperspectral images.
Numerical results are presented for a variety of multispectral and hyperspectral
images in Sect. 4. A short summary including possible future research concludes
this article in Sect. 5.

2 Mathematical Morphology
for Multispectral/Hyperspectral Images

A typical multispectral image consists of data in the form depth�width�height,
n � w � h for short, where 3 � n � 10. For n > 10, we call it a hyperspectral
image, which can contain as many as 200 (or more) depth information. Note that
in the sequel we assume n � 3. For example, an RGB-image can be considered
as a multispectral image of size 3 � w � h. We call a slice in the n-direction of
a multispectral/hyperspectral image a pixel. Hence, a pixel is a vector of size n
containing normalized data; i.e., data in the range Œ0; 1�. If this is not the case,
we can always normalize them assuming that the range is finite. Precisely, a
multispectral/hyperspectral image has w � h pixels of the form Œ0; 1�n. To apply
mathematical morphology, we need to define an appropriate supremum and infimum
of a given set of pixels for the operations such as dilation and erosion. As a first
step, we convert a pixel datum Œ0; 1�n (a hypercube, �n for short) into a double
hypersimplex, ˙n for short. As a second step, we define an appropriate supremum
and infimum of a set of points located in the double hypersimplex.

2.1 Map from the Hypercube to the Double Hypersimplex

In this subsection, we first illustrate how to convert a point x D .x1; : : : ; xn/ 2 �n

into a point y D .y1; : : : ; yn/ 2 4n, where the hypersimplex is defined as

4n WD
(

y 2 R
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nX
iD1

yi � 1

)

for n � 2. Define the map  W �n ! R
n by

 .x/ D
�
x1
m

s
; : : : ; xn�1

m

s
; xn

m

s

�
DW y ; (1)

where m D maxfx1; : : : ; xn�1; xng and s D x1 C : : : C xn�1 C xn. If x D 0, then
we define y D 0. We have  .�n/ D 4n. To see this, let x ¤ 0 with xi 2 Œ0; 1�,
8 i D 1; : : : ; n, then clearly yi D xi

m
s

� 0, since m � 0 and s � 0 and we have
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Pn
iD1 yi D Pn

iD1 xi ms D m
s

Pn
iD1 xi D m

s
� s D m � 1, since the maximal m is

one.

Example 1 Application of the map (1) to the point .1=2; 1=10; 3=5; 4=5; 1=20/ 2
�5 yields .8=41; 16=410; 48=205; 64=201; 4=205/ 2 45, since s D 41=20 and
m D 4=5.

Next, we define a map from the hypercube to the double hypersimplex ˙n which
is given by the union of 
n and 
n mirrored at the x1 � : : : � xn�1–plane. The
desired map is constructed by transforming the last coordinate by using 2xn � 1 and
then applying the mapping (1) withm D maxfx1; : : : ; jxnjg and s D x1C : : :Cjxnj.
It is noteworthy that we could pick any coordinate position and transform the entry
as before, but we decided to change the last coordinate to keep things simple.

Precisely, we have the map � W �n ! R
n given by

�.x/ D
�
x1
m

s
; : : : ; xn�1

m

s
; .2xn � 1/ m

s

�
DW y ; (2)

where m D maxfx1; : : : ; xn�1; j2xn � 1jg and s D x1 C : : : C xn�1 C j2xn � 1j.
If x D .0; : : : ; 0; 1=2/, then we define y D 0. We clearly have  .�n/ D ˙n by
construction.

Example 2 Application of the map (2) to the point .1=2; 1=10; 3=5; 4=5; 1=20/ 2
�5 yields .8=41; 16=410; 48=205; 64=201;�72=205/ 2 ˙5, since s D 41=20 and
m D 4=5.

With the two maps (1) and (2) we are able to convert any point located in the
hypercube to a point located in the hypersimplex and the double hypersimplex,
respectively. The following two examples illustrate the result of the map  and
� given by (1) and (2) applied to 1,000 points located in the unit square and unit
cube, respectively.

Example 3 In Figs. 1a and 2a, we show 1,000 randomly chosen points in the unit
square. The result of the mappings and � given by (1) and (2) for n D 2 applied to
those 1,000 points is shown in Figs. 1b and 2b, respectively. As we can see, the 1,000
randomly chosen points from the unit square are mapped into the two-dimensional
simplex and into the two-dimensional double simplex, respectively.

Example 4 In Figs. 3a and 4a, we show 1,000 randomly chosen points in the unit
cube. The result of the mapping  and � given by (1) and (2) for n D 3 applied to
those 1,000 points is shown in Figs. 3b and 4b, respectively. As we can see, the 1,000
randomly chosen points from the unit cube are mapped into the three-dimensional
simplex and three-dimensional double simplex, respectively.

Now, we are able to convert an rgb-datum into a point located in ˙3.
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Fig. 1 Thousand randomly chosen points in �2 and the result of the mapping  applied to those
1,000 points. (a) 1,000 randomly chosen points in �2. (b) 1,000 points in42
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Fig. 2 Thousand randomly chosen points in �2 and the result of the mapping � applied to those
1,000 points. (a) 1,000 randomly chosen points in �2. (b) 1,000 points in ˙2

2.2 Map from the Hypersimplex to the Hypercube

In this subsection, we define the inverse of the map  given by (1). The map  �1 W
4n ! R

n is given by

 �1.y/ D
�
y1
s

m
; : : : ; yn�1

s

m
; yn

s

m

�
DW x ; (3)

where m D maxfy1; : : : ; yn�1; yng and s D y1 C : : : C yn�1 C yn. If y D 0,
then we define x D 0. We have  �1.4n/ D �n. To see this, let x 2 �n, then
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Fig. 3 Thousand randomly chosen points in �3 and the result of the mapping  applied to those
1,000 points. (a) 1,000 randomly chosen points in �3. (b) 1,000 points in43
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Fig. 4 Thousand randomly chosen points in �3 and the result of the mapping � applied to those
1,000 points. (a) 1,000 randomly chosen points in �3. (b) 1,000 points in ˙3

y D  .x/ 2 4n; i.e., yi D xi
m
s

D xi
maxfx1;:::;xn�1;xng
x1C:::Cxn�1Cxn by definition, which can be

rewritten as

yi D xi
maxfm

s
x1; : : : ;

m
s
xn�1; ms xng

m
s
x1 C : : :C m

s
xn�1 C m

s
xn

D xi
maxfy1; : : : ; yn�1; yng
y1 C : : :C yn�1 C yn

and hence xi D yi
y1C:::Cyn�1Cyn

maxfy1;:::;yn�1;yng for all i .
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Similarly, we can write down the inverse of the map � given by (2). The map
��1 W ˙n ! R

n is given by

��1.y/ D
�
y1
s

m
; : : : ; yn�1

s

m
;
1

2
.yn C 1/

s

m

�
DW x ; (4)

wherem D maxfy1; : : : ; yn�1; jynjg and s D y1 C : : :Cyn�1 C jynj. If y D 0, then
we define x D .0; : : : ; 0; 1=2/. We clearly have ��1.˙n/ D �n by construction.

2.3 Calculating Suprema and Infima

In this subsection, we illustrate how to calculate suprema and infima of a set of
points located in the double hypersimplex ˙n. Generally, it should be noted that one
could only define the supremum in the hypersimplex, but to make the calculation
of a infimum straightforwardly, we decided to define the supremum in the double
hypersimplex.

First, we illustrate how to calculate the supremum of a set of points P located
in 43. Let x.i/ WD .x

.i/
1 ; x

.i/
2 ; x

.i/
3 / be the i -th point of the set P . Note that

each point is representing a pyramid with corners E.i/
1 D .x

.i/
1 ; x

.i/
2 ; 0/, E

.i/
2 D

.x
.i/
1 C h.i/; x

.i/
2 ; 0/, E

.i/
3 D .x

.i/
1 ; x

.i/
2 C h.i/; 0/, and E.i/

4 D .x
.i/
1 ; x

.i/
2 ; h

.i//, where

h.i/ D x
.i/
3 . Obviously, each base of a pyramid is a triangle with vertices .x.i/1 ; x

.i/
2 /,

.x
.i/
1 Ch.i/; x.i/2 /, and .x.i/1 ; x

.i/
2 Ch.i//. We call them base triangles. Note that we list

only the first two coordinates, since the base triangles are located in the x1�x2–plane
(the third coordinate is zero). In Fig. 5a, b, the point .0:3; 0:4; 0:2/ representing
a pyramid inside 43 (red) is shown in blue and its base triangle (green triangle
with blue boundary) located in the x1 � x2-plane, respectively. Note that the point
.0:3; 0:4; 0:2/ is the upper vertex of the blue pyramid and uniquely determines it.

The ordering we are considering is induced by the cone determined by the vertex
.0; 0; 0/ and a base spanned by the three points .0; 0; 1/, .0; 1; 1/, and .1; 0; 1/. This
means that the point .0; 0; 1/ is larger in this ordering than any other point of 43.
Hence, if one considers two points a; b 2 43, then the supremum sup.a; b/ is
the upper vertex of the smallest pyramid with triangular base in the x1 � x2-plane
covering those two points. This smallest pyramid can be determined by the base
triangles. To this end consider, for example, as above the point .0:3; 0:4; 0:2/ as
the upper vertex of the small blue pyramid. Such a point determines a pyramid and
its base triangle uniquely, and vice versa. We have a one-to-one correspondence
between points in 43 and the set of aforementioned base triangles. Now finding this
smallest pyramid with triangular base in the x1 � x2-plane amounts to finding the
smallest base triangle enclosing the two base triangles generated by the two points
a and b. More general, to obtain the supremum of a set of points ai with some index
set I 3 i boils down to determine the smallest base-triangle enclosing the base-
triangles corresponding to the points ai . In principle the same strategy is applicable
in higher dimensions.
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Fig. 5 Point .0:3; 0:4; 0:2/ representing a pyramid (blue) inside 43 (red) and its base triangle
(green triangle with blue boundary) located in the x1 � x2-plane, respectively. (a) The point
.0:3; 0:4; 0:2/ representing a pyramid (blue) inside 43 (red). (b) The base of the pyramid (green
triangle with blue boundary) represented by the point .0:3; 0:4; 0:2/ located in the x1 � x2-plane

Finding the smallest base triangle with vertices v1;max, v2;max, and v3;max of
a set of base triangles is an easy task, since it is an easy geometric problem.
The first and second coordinate of v1;max are given by x1;min WD mini x

.i/
1 and

x2;min WD mini x
.i/
2 , respectively. The length of the smallest base triangle is given

by l2 WD maxi
P3

jD1 x
.i/
j � x1;min � x2;min. To see this, one has to calculate

the i -th distance of the line spanned by the two points .x.i/1 C h.i/; x
.i/
2 / and

.x
.i/
1 ; x

.i/
2 C h.i// by using the Hessian normal form and scale the distance by the

factor
p
2. The maximum of the i -th distance is the length. Hence, the first and

second coordinate of v2;max are x1;min C l2 and x2;min, respectively. The first and
second coordinate of v3;max are x1;min and x2;min C l2, respectively. It should be clear
how to construct the corresponding pyramid. In sum, the supremum is given by
the point .x1;min; x2;min; l2/. In Fig. 6a, we show in blue the smallest enclosing base
triangle given the three base triangles of the pyramids corresponding to the points
.0:1; 0:4; 0:3/, .0:2; 0:1; 0:1/, and .0:6; 0:2; 0:1/ in 43. The supremum is given by
the point .0:1; 0:1; 0:7/. The triangle with edge color red is the maximum possible
smallest triangle enclosing a set of triangles. In Fig. 6b, we show the smallest
enclosing triangle for a set of five triangles which are represented by five randomly
generated points.

Next, we illustrate how to calculate the supremum for a set of points located
in 44. Let x.i/ WD .x

.i/
1 ; x

.i/
2 ; x

.i/
3 ; x

.i/
4 / be the i -th point of the set P . The base

of the i -th point is a pyramid with corners .x.i/1 ; x
.i/
2 ; x

.i/
3 /, .x

.i/
1 C h.i/; x

.i/
2 ; x

.i/
3 /,

.x
.i/
1 ; x

.i/
2 C h.i/; x

.i/
3 /, and .x.i/1 ; x

.i/
2 ; x

.i/
3 C h.i//, where h.i/ D x

.i/
4 . Note that we

are again suppressing the last coordinate, since it zero. Finding the smallest base
pyramid with vertices v1;max, v2;max, v3;max, and v4;max of a set of pyramid works
as follows. The first, second, and third coordinate of v1;max are x1;min WD mini x

.i/
1 ,
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Fig. 6 Smallest enclosing base triangle given a set of base triangles. (a) Smallest enclosing base
triangle given three base triangles. (b) Smallest enclosing base triangle given five base triangles
(randomly generated)
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Fig. 7 Smallest enclosing base pyramid given a set of base pyramids. (a) Smallest enclosing base
pyramid given three base pyramids (randomly generated). (b) Smallest enclosing base pyramid
given five base pyramids (randomly generated)

x2;min WD mini x
.i/
2 , and x3;min WD mini x

.i/
3 , respectively. The length of the smallest

base pyramid is given by l3 WD maxi
P4

jD1 x
.i/
j � x1;min � x2;min � x3;min. To

verify this, one has to calculate the i -th distance of the plane spanned by the
three points .x.i/1 Ch.i/; x

.i/
2 ; x

.i/
3 /, .x

.i/
1 ; x

.i/
2 Ch.i/; x

.i/
3 /, and .x.i/1 ; x

.i/
2 ; x

.i/
3 Ch.i//

by using the Hessian normal form and scales the distance by the factor
p
3. The

maximum of the i -th distance is the length. Hence, the supremum is given by the
point .x1;min; x2;min; x3;min; l3/. In Fig. 7a, b, we show the smallest base pyramid
enclosing three and five base pyramids, respectively. The points representing the
base pyramids are randomly generated.

Finally, we explain how to find the supremum given a set of points located in
4n. Let x.i/ WD .x

.i/
1 ; : : : ; x

.i/
n�1; x

.i/
n / be the i -th point of the set P . Following the
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arguments as before, it is easy to see that the supremum is given by the point

.x1;min; : : : ; xn�1;min; ln/ ; (5)

where xj;min WD mini x
.i/
j and ln WD maxi

Pn
jD1 x

.i/
j �Pn�1

jD1 xj;min.
Now, we are in position to explain how to calculate a supremum for a set of

points located in ˙n. We could add one to the last coordinate of the points, use
the formula (5) to calculate the supremum, and then subtract one from the last
coordinate of the result which is motivated by supi x.i/ D supi fx.i/ C eng � en
to ensure that the base of the penumbras is located in the x1 � : : : � xn�1–plane.
A careful inspection of the used formulas reveals that we can directly calculate the
supremum for a set of points located in ˙n using the formula (5).

A corresponding infimum of a set of points located in ˙n is found by flipping the
sign of the last coordinate of the points, use formula (5) to calculate the supremum,
and then flip the sign of the last coordinate of the result, which is motivated through
the use of infi a D � supi f�ag for a 2 R. Precisely, we calculate

inf
i

x.i/ WD sup
i

fx.i/g

where x.i/ WD .x
.i/
1 ; : : : ; x

.i/
n�1;�x.i/n /.

Example 5 In this example, we calculate the supremum of the three rgb-colors
.1; 0; 0/ (red), .0; 1; 0/ (green), and .0; 0; 1/ (blue). Using the map (2) leads
to the representation .1=2; 0;�1=2/, .0; 1=2;�1=2/, and .0; 0; 1/ in the double
hypersimplex ˙3, respectively. The supremum is given by .0; 0; 1/ calculated
via (5). Applying the map (4) leads to .0; 0; 1/ 2 �3 which represents the color blue.
The infimum is given by .0; 0;�1/. Applying the map (4) leads to .0; 0; 0/ 2 �3

which represents the color black.

The set of all double hypersimplices aligned as described above is partially
ordered with respect to the inclusion “	”; i.e., given two double hypersimplices
S1 2 ˙n and S2 2 ˙n, S1 is smaller than S2, if S1 is contained in S2, written as
S1 	 S2. The set of all these double hypersimplices admits an infimum (equivalently
the greatest lower bound or meet) and a supremum (the least upper bound or
join), hence it is a lattice [15]. It is even a distributive lattice since for any double
hypersimplices S1; S2; S3 2 ˙n the relations

inf .S1; sup .S2; S3// D sup .inf .S1; S2/ ; inf .S1; S3//

or equivalently

sup .S1; inf .S2; S3// D inf .sup .S1; S2/ ; sup .S1; S3//

are valid. To verify this, let x.1/, x.2/, and x.3/ be the point representing the double
hypersimplices S1; S2; S3 2 ˙n, respectively. Let i D 1; : : : ; n � 1, then the i -
th component of inf .S1; sup .S2; S3// is given by minfx.1/i ;minfx.2/i ; x.3/i gg which
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equals minfminfx.1/i ; x.2/i g;minfx.1/i ; x.3/i gg which represents the i -th component of
the expression sup .inf .S1; S2/ ; inf .S1; S3//. The n-th component involves more
steps of calculations and is left to the reader.

2.4 Difference of Two Points Located in the Double
Hypersimplex

In this subsection, we explain how to subtract two points located in the double
hypersimplex to make mathematical morphological operations such as top hats,
gradients, and morphological Laplacian meaningful.

Before we define the new subtraction, we need the Einstein velocity addition ˚
defined by

u ˚ v D 1

1C u� v



u C 1

�u
v C �u

1C �u
.u� v/� u


; (6)

where

�u D 1p
1 � u� u

:

Here, we used the constant c D 1 (see [23, p. 3]). Naturally, the Einstein subtraction
� is defined by u ˚ .�v/.

Next, we will explain how to subtract two points located in ˙n ensuring that the
result will be in ˙n. The new subtraction will work as follows. Given two points x
and y from ˙n, we will transform the first n�1 coordinates of them by Oxi D 2xi �1
and Oyi D 2yi � 1 (i D 1; : : : ; n � 1), respectively. Additionally, we set Oxn D xn
and Oyn D yn. Hence, it is ensured that each component of Ox and Oy is in Œ�1; 1�.
Next, we apply componentwise the Einstein velocity subtraction using formula (6).
Precisely, we calculate Ozi WD Oxi ˚ .� Oyi / for i D 1; : : : ; n. The result Ozi will be in
Œ�1; 1� for each i D 1; : : : ; n. Finally, we convert the n � 1 components of Oz using
zi D .Ozi C1/=2 ensuring that each zi is in Œ0; 1� for i D 1; : : : ; n�1. We set zn D Ozn
which is Œ�1; 1�. Finally, we apply the map  given by (1) to z. The result is in ˙n

by construction. In sum, for x; y 2 ˙n, we define the difference operation ˇ as

x ˇ y WD  

�
Œ.2x1 � 1/˚ .� .2y1 � 1//�C 1

2
; : : : ; (7)

Œ.2xn�1 � 1/˚ .� .2yn�1 � 1//�C 1

2
; xn ˚ .�yn/

�
:

The result of x ˇ y is clearly an element of ˙n by construction.
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3 A Glimpse at Scalar-Valued Morphology

In this section, we briefly review the definitions of some fundamental scalar-valued
morphological operators that we will generalise to the multi-valued setting.

In gray-scale morphology an image is represented by a scalar function f .x; y/
with .x; y/ 2 R

2. The so-called structuring element is a set B 	 R
2 that determines

the neighbourhood relation of pixels. Often convex sets such as disks, ellipses or
squares are used as structuring elements.

Gray-scale dilation ˚ replaces the gray-value of the image f .x; y/ by its
supremum within a mask B . It is given by .f ˚B/ .x; y/ WD sup ff .x � x0; y �
y0/ j .x0; y0/2Bg; while erosion � is determined by taking the infimum. It is given
by .f �B/ .x; y/ WD inf ff .xCx0; yCy0/ j .x0; y0/2Bg: The opening operation,
denoted by ı, is defined as erosion followed by dilation: f ı B WD .f � B/˚ B :

Closing, indicated by the symbol , consists of a dilation followed by an erosion:
f  B WD .f ˚ B/ � B : Since erosion and dilation are antagonistic operations
one can view opening and closing as an attempt to restore the image. A comparison
with the original image by taking the difference to the opened or closed image leads
to the so-called top-hats. The white top-hat which is the difference between the
original image and its opening is defined as WTH.f / WD f � .f ı B/ : Its dual,
the black top-hat is the difference between the closing and the original image; i.e.,
BTH.f / WD .f  B/ � f ; while the self-dual top-hat is the difference between
closing and opening; i.e., SDTH.f / WD .f  B/ � .f ı B/ : By construction these
top-hats allow the detection of small details in an image.

In an image the boundaries or edges of objects are the loci of high gray-value
variations. These variations can be detected by a derivative operator such as the
gradient. Erosion and dilation are also the elementary building blocks of the basic
morphological gradients: The so-called Beucher gradient is the difference between
the dilation and the erosion: %Bf WD .f ˚ B/ � .f � B/ : It is an analog to the
Euclidean norm of the gradient jrf j if an image is regarded as a differentiable
function. We also consider the internal gradient as the difference between the
original image and its erosion given by %�Bf WD f � .f � B/ ; and the external
gradient as the difference between the dilation and the original image given by
%CB f WD .f ˚ B/ � f : The morphological Laplacian is defined by the difference
of the external and internal gradient; i.e., 
Bf WD %CB f � %�Bf .

All morphological operations can now be carried over for multispectral and
hyperspectral images by using the supremum and infimum definition as explained
on page 138, refer specifically to expression (5) and the next paragraph. The
difference operation is replaced by the Einstein difference operation given by (8).
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4 Numerical Results

In this section, we present the new proposed approach to process some data sets.
First, we consider the case of a multispectral image with three bands; i.e., an rgb-
image. We use the colored peppers-image of size 512 � 512 which is shown in
Fig. 8a. As a first step, each pixel of the image is converted to a point located
in the double hypersimplex using the map (2) with n D 3. The result is stored
in a matrix field f . Next, we define a cross-shaped structuring element SEcross

consisting of five pixels, B for short. Then, dilation f � B and erosion f ˚ B

are properly defined by using the supremum and infimum operation, respectively
(refer to page 138, specifically to expression (5) and the next paragraph). Other
morphological operations such as opening f ı B D .f � B/ ˚ B , closing
f B D .f ˚B/�B , white top-hat f ˇ .f ıB/, black top-hat .f B/ ˇ f , self-
dual top-hat .f  B/ ˇ .f ı B/, Beucher gradient .f ˚ B/ ˇ .f � B/, internal
gradient %�Bf D f ˇ .f � B/, external gradient %CB f D .f ˚ B/ ˇ f , and
the morphological Laplacian 
Bf D %CB f ˇ %�Bf , where ˇ is the difference
operation given by (8). After the application of a morphological operation the
result is visualized by transforming back to a color image using the map (4) with
n D 3. The results of the aforementioned morphological operations are presented
in Fig. 8b–l. Now, we will show that it is possible to easily process a color image.
The question of the interpretation of correct colors in the resulting color images
is a completely different story. In our opinion, better results would be obtained if
one can map the diagonal of the cube from .0; 0; 0/ and .1; 1; 1/ to the line of ˙3

spanned by the two points .0; 0;�1/ and .0; 0; 1/ (in this instance the approach of
gray-scale images is equivalent to basic gray-scale morphology), but unfortunately
such a map has not yet been found. Note that our intention is not to give a better way
of processing color images (this is just a byproduct of our new approach to process
multispectral images for n D 3). As we can see the dilated peppers-image gets a
blue touch. This happens because the supremum of the colors red and green is blue
(refer to Example 5 and Fig. 8b). The minimum of those two colors is black as we
can see in the eroded peppers-image (also refer to Example 5 and Fig. 8c). Opening
and closing are the concatenation of the antagonistic operations dilation and erosion,
hence in some way approximations to the identity map. Therefore the images in
Fig. 8d, e are similar to the original, but not quite. The difference is obtained by
the top hats as displayed in Fig. 8f–h. For large parts of the image there is hardly
any difference (almost zero-difference) which accounts for the predominant color
gray. Morphological derivatives imitate regular derivatives from calculus, hence
help to detect locii of strong changes in the data as they appear, for example,
at object boundaries. This explains the appearance of Fig. 8i–l where, to varying
extent, contours are enhanced, while flat regions (almost zero-variance) are gray.
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Fig. 8 Dilation, erosion, opening, closing, white top-hat, black top-hat, self-dual top-hat, Beucher
gradient, internal and external gradient, and morphological Laplacian applied to peppers having
resolution 512 � 512. (a) Original image of size 512 � 512. (b) Dilation, SEcross. (c) Erosion,
SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White top-hat, SEcross. (g) Black top-hat,
SEcross. (h) Self-dual top-hat, SEcross. (i) Beucher gradient, SEcross. (j) Internal gradient, SEcross.
(k) External gradient, SEcross. (l) Morphological Laplacian, SEcross
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Fig. 9 Color image baboon
and its gray-valued
representation used as
transparency. (a) Original
color image baboon of size
512 � 512. (b) Gray-valued
image baboon of size
512 � 512

a b

We need 0:2; 0:7; 3; 11, and 36 s to dilate a rgb-image of size 32 � 32, 64 � 64,
128 � 128, 256 � 256, and 512 � 512, respectively. This is more than two times
faster than our previous color processing approach (see [5]). Of course, it still very
expensive if compared to the binary or gray-scale case.

Next, we will consider an rgb˛-image; i.e., an rgb-image that contains an ˛-
channel (transparency). We use the colored test image baboon of size 512 � 512

as shown in Fig. 9a and use as ˛-channel its gray-value representation (created with
gimp using Image ! Mode ! Grayscale) as illustrated in Fig. 9b. We use this
multispectral image of size 512� 512� 4 and apply opening, closing, white top-hat,
external gradient, internal gradient, and morphological Laplacian to it. Figure 10a–
l are displaying the processed outcomes of a 4-channel image. In Fig. 10a–c, g–i
one can see the rgb-parts of the results of various morphological operators (first and
third row of Fig. 10). Each of Fig. 10d–f, j–l shows the transparency as a gray-scale
image (second and fourth row of Fig. 10).

Essentially, what has been said about Fig. 8 holds true for those images in Fig. 10
as well. However, since the original image contains rich texture-like structures with
high variations, the results display more details and texture of the original image
“covered” with a dominant gray tinge.

Next, we will process a hyperspectral image with 12 channels having resolution
949 by 220. We use the image STC taken from the MultiSpec website.1 The image
has been taken in June 1966 by an aircraft scanner Flighline C1 and shows a portion
of Southern Tippecanoe County in Indiana. The data are stored in band sequential
format (BSQ-format). The wavelength of the 12 channels are 0.4–0.44, 0.44–0.46,
0.46–0.48, 0.48–0.5, 0.5–0.52, 0.52–0.55, 0.55–0.58, 0.58–0.62, 0.62–0.66, 0.66–
0.72, 0.72–0.8, 0.8–1�m, respectively. In Fig. 11a, the image is shown as a rgb-
image, where we have extracted the bands 11, 9, and 7, since band 11, 9, and 7
represent red, green, and blue of the spectrum. Using the same approach as before
with n D 12 and the structuring element SEcross consisting of five pixels, we get the
following results for dilation, erosion, opening, closing, white top-hat, black top-hat,
internal gradient, external gradient, and morphological Laplacian, where the result
is again shown in Fig. 11b–j as a rgb-images using bands 11, 9, and 7. The same

1https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 10 Opening, closing, white top-hat, internal and external gradient, and morphological
Laplacian applied to rgb˛-image baboon having resolution 512 � 512. (a) Opening, SEcross.
(b) Closing, SEcross. (c) White top-hat, SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White
top-hat, SEcross. (g) External gradient, SEcross. (h) Internal gradient, SEcross. (i) Morphological
Laplacian, SEcross. (j) External gradient, SEcross. (k) Internal gradient, SEcross. (l) Morphological
Laplacian, SEcross
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a b c d e

f g h i j

Fig. 11 STC-image and various morphological operations applied to it are shown as rgb-color
image using bands 11, 9, and 7. (a) STC-image of size 949 � 220. (b) Dilation, SEcross. (c) Erosion,
SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White top-hat, SEcross. (g) Black top-hat,
SEcross. (h) Internal gradient, SEcross. (i) External gradient, SEcross. (j) Morphological Laplacian,
SEcross
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Table 1 Time in seconds to dilate a multispectral/hyperspectral image of size n � 512 � 512 for
various n ranging from 3 to 200

n 3 5 10 20 50 100 150 200

s 41.4 42.0 42.4 42.8 48.7 58.3 65.8 75.9

interpretation of the results carries over to the processed versions, see Fig. 11b–j, of
the 12-channel STC-image as displayed in Fig. 11a. Note that the algorithm needs
30 s to dilate the image.

Finally, we dilate a multispectral/hyperspectral image of size n � 512 � 512 for
various n using the structuring element SEcross to show that the computation time is
quite low no matter how big n actually is. In Table 1 we list the time needed to dilate
an image using the structuring element SEcross with the number of channels ranging
from n D 3 to n D 200.

Hence, we are able to process quickly a hyperspectral image with 200 channels
in 75:9 s.

5 Conclusion and Outlook

We have shown that it is a simple step to define mathematical morphological
operations such as dilation and erosion for multispectral/hyperspectral images by
first converting the data into a double hypersimplex using a simple geometric
approach which is motivated by the Loewner ordering. Then, with the definition of a
suitable difference operation motivated by the Einstein velocity addition we are able
to define morphological operations such as top hats, gradients, and morphological
Laplacian. Numerical results confirm that this approach has the potential to be
applicable to multispectral images. Note that from the computational point of
view the approach is fast in computation time and that we are not limited to
multispectral images. As shown, the approach can also be used for hyperspectral
images without any limitations. It remains to think about how to visualize a
multispectral/hyperspectral image to extract meaningful information of a processed
multispectral image such as the Beucher gradient or the morphological Laplacian.
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Direction-Controlled DTI Interpolation

Luc Florack, Tom Dela Haije, and Andrea Fuster

Abstract Diffusion Tensor Imaging (DTI) is a popular model for representing
diffusion weighted magnetic resonance images due to its simplicity and the fact
that it strikes a good balance between signal fit and robustness. Nevertheless,
problematic issues remain. One of these concerns the problem of interpolation.
Because the DTI assumption forces Apparent Diffusion Coefficients (ADCs) to
fit quadratic forms, destructive interference of diffusivity patterns tends to mask
information on orientations. For some applications, notably tractography, one would
like an interpolated DTI tensor to reflect not only some weighted average of its
immediate grid neighbours, but also to preserve orientation information available
at those points. This is possible if one declines from the quadratic restriction,
considering general homogeneous functions of degree two instead. We show that
one may interpret the interpolated ADC as a family of DTI tensors, parametrized
by orientation. Any choice of a preferred direction—notably a stipulated fiber
tangent—singles out a unique DTI tensor instance. Results are physically plausible
and intuitive.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DWMRI) has become a standard
MRI technique for in vivo imaging of apparent water diffusion processes in fibrous
tissue, cf. Hagmann et al. [25]. Diffusion Tensor Imaging (DTI), pioneered by
Basser et al. [5] and explored by many others, is an established model, based
on a second order symmetric positive-definite tensor, or quadratic form. This so-
called diffusion tensor relates the flux of diffusing particles to the concentration
gradient in a solution under the assumption of steady state (Fick’s first law [12]),
and consequently enters as an attenuating factor in the DWMRI signal (cf. the
Bloch-Torrey equation with diffusion term [45]). In this chapter we consider the

L. Florack (�) • T. Dela Haije • A. Fuster
Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands
e-mail: L.M.J.Florack@tue.nl; T.C.J.Dela.Haije@tue.nl; A.Fuster@tue.nl

© Springer International Publishing Switzerland 2015
I. Hotz, T. Schultz (eds.), Visualization and Processing of Higher Order
Descriptors for Multi-Valued Data, Mathematics and Visualization,
DOI 10.1007/978-3-319-15090-1_8

149

mailto:L.M.J.Florack@tue.nl
mailto:T.C.J.Dela.Haije@tue.nl
mailto:A.Fuster@tue.nl


150 L. Florack et al.

classical problem of DTI interpolation, given a discrete image of diffusion tensors
on a regular grid.

To alleviate shortcomings of component-wise linear interpolation in DTI, many
alternatives have been proposed, such as geodesic [6, 14, 36], log-Euclidean [1],
tensor spline [3], geodesic-loxodrome [30], linear invariant [21], dyadic-tensor [20],
pde-based [48], and quaternion-based schemes [49]. None of these, however, is
capable of preventing destructive interference when interpolating DTI tensors with
conflicting orientations (the generic situation). To overcome this limitation, Schultz
has proposed a higher order tensor inpainting method that is capable of handling
ambiguous local orientations for the purpose of resolving fiber crossings [40]. In this
chapter we revisit the problem of interpolation from an entirely novel vantage point
so as to address this particular issue. The methodology we propose is in principle
applicable to symmetric positive-definite second order tensors in a broader context
than DTI.

Our aim is to construct an interpolation scheme that avoids destructive inter-
ference of orientational information provided by DTI evidence. A question that
presents itself is whether this is possible at all. As a Gedanken experiment, consider
two similar white matter fiber bundles arranged in a planar sheet and sampled on
a square grid, crossing at right angles at the fiducial center point. Along the white
matter tracts and away from the crossing the (level sets of the) inverse-DTI tensors
are prolate spheroids, pointing towards the stipulated crossing. However, dictated by
symmetry, any scheme that aims for an unambiguous DTI interpolation at the center
must necessarily result in a profile that is isotropic in the crossing plane. Destructive
interference of orientations seems unavoidable, confronting us with a paradox.

This state of affairs relates to a remark by Bernhard Riemann in his “Habilitation”
[33, 37] in the context of Riemannian geometry, in which quadratic forms (“metric
tensors”) figure prominently. Riemann noted that the quadratic assumption is an
unnecessary constraint for his theory, but declined to further investigate the general
case. This study was taken up by Finsler [13] and subsequently by Cartan [7]
and others. The key point is to replace quadratic forms by certain homogeneous
functions of degree two. This idea has sparked new geometric developments in
various fields of research, such as general relativity theory, cf. Gibbons et al. [22].
It is likewise of interest for extending the geometric approach in DWMRI [17], but
here we will only discuss its application in the context of DTI interpolation.

Of course, ideally one would like to avoid destructive interference of orientations
altogether. However, heterogeneity of orientations at the microscopic scale will
always induce destructive interference at MRI observation scale (millimeter regime
in a typical human scanner). More complex High Angular Resolution Diffusion
Imaging (HARDI) or Diffusion Spectrum Imaging (DSI) schemes may avoid
destructive interference at mesoscopic scales, but with a concomitant cost in terms
of prolonged acquisition time and reduced robustness as compared to DTI [8–
11, 15, 16, 19, 26–28, 31, 34, 35, 41, 46]. By virtue of its limited angular resolution
the latter strikes a good balance between signal fit and robustness, is relatively
fast, and is therefore often clinically preferred despite shortcomings. This reality
has led us to consider the problem of how our recently proposed “Finsler-DTI”
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model [17] (another model in the HARDI/DSI category) could be fruitfully applied
in the context of DTI. That is, we take it for granted that our input data are DTI
images (or cannot be fit to any higher order model due to acquisition restrictions),
and that we have no influence on the acquisition protocol. It might then seem
inevitable that we have to take destructive interference due to the limitation of DTI
to six degrees of freedom per point for granted, but this ignores the actual trade-off
between spatial and angular resolution. There is no a priori reason why we would
need to fix the number of degrees of freedom governing angular resolution if we
lower spatial resolution. But this (lowering of spatial resolution) is precisely what
happens in interpolation schemes, as these are invariably based on some weighted
local neighbourhood averaging.

The paradox of DTI interpolation without destructive interference of orientations
may be resolved if we (1) relax the quadratic assumption (and thus the restriction
to six degrees of freedom) outside grid points, and (2) specify a projection back
onto quadratic forms a posteriori given a context dependent bias in the form of a
preferred direction. The methodology we propose in the next section can be seen
as an application of Riemann-Finsler geometry [2, 7, 13, 17, 37–39] and exploits
multiplicative calculus to implement positivity preserving “linear” operations [4,
18, 23, 24, 43, 47].

2 Theory

2.1 5D-DTI

The human brain consists mostly of water, but diffusion turns out to be anisotropic
as a result of its fibrous architecture. The Stejskal-Tanner signal attenuation formula
in the spin-echo experiment on spin diffusion in an isotropic medium [44] inspired
Moseley, Basser, Le Bihan and others, [5] to capture this anisotropy in terms of
a symmetric positive-definite second order diffusion tensor. This is the basis of
DTI.

Associated with a DTI tensor is the nondegenerate positive-definite quadratic
form1

F 2
DTI.x; �/ D Dij .x/�

i �j ; (1)

with FDTI.x; �/ � 0. The coefficients Dij .x/, i; j D 1; 2; 3, are the components
of the inverse of the DTI tensor relative to a Cartesian coordinate basis; those
pertaining to the DTI tensor itself are written as Dij .x/. For our purpose we will
consider a more general function, F.x; �/�0, insisting on a quadratic scaling with

1Einstein summation convention applies to pairs of identical upper and lower indices.
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respect to the magnitude of � by imposing the following homogeneity condition2 in
�-space:

F 2.x; �/ D Dij .x; �/�
i �j with Dij .x; ��/ D Dij .x; �/ (2)

for all � ¤ 0. The function F.x; �/ is assumed to be smooth and positive for
� ¤ 0, and such that the �-Hessian of F 2.x; �/ is a nondegenerate positive-definite
matrix. Using Euler’s theorem for homogeneous functions, recall Footnote 2, it can
be shown that

Dij .x; �/ D 1

2

@2F 2.x; �/

@�i @�j
: (3)

Equations (2) and (3) are in fact equivalent (i.e. the �-Hessian operator is invertible).
Details can be found in Bao et al. [2].

The projection operator alluded to in the introduction—˘#, say—enables us to
associate a quadratic form to the function F.x; �/ in (2) after specification of a
preferred direction # 2 S

2, viz.

˘#.F / D F# ; (4)

in which F#.x; �/ � 0 is defined by

F 2
# .x; �/ D Dij .x; #/�

i �j : (5)

The tensor field Dij .x; #/ lives on a 5D domain, .x; #/ 2 R
3 � S

2, providing
the desired flexibility for propagating orientation information in a spatial DTI
interpolation without destructive interference, cf. Jonasson et al. [29] for a similar
approach in the context of white matter segmentation and Duits and Franken [11]
and Florack and Fuster [17] for a generic approach. The (convex) unit level set

F.x; �/ D 1 (6)

is called the indicatrix of F , and the (ellipsoidal) unit level set

F#.x; �/ D 1 (7)

the osculating indicatrix of F associated with direction # 2S
2. In DTI all osculating

indicatrices equal the indicatrix, recall (1) and (5).
The corresponding level sets of the associated function H.x; q/ D

Dij .x; q/qiqj , related to F.x; �/ D Dij .x; �/�
i �j via a Legendre transform, are

referred to as “figuratrix”, respectively “osculating figuratrix”, cf. [17] for details.

2A function f .z/ is homogeneous of degree r if f .�z/ D �rf .z/ for all � > 0.
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(The distinction between indicatrices and figuratrices is not relevant for the present
discussion.)

2.2 DTI Interpolation

We may consider a DTI image as the “vertical” projection of a hypothetical tensor
field on R

3 � S
2 in the sense of the previous section, recall (2) and (3):

Dij .x/ D
Z
#2S2

Dij .x; #/�.d#/ : (8)

The #-integration3—with spherical measure �.d#/—expresses destructive inter-
ference of high angular resolution information due to the quadratic restriction.
However, if we are given two DTI samples we may construct a weighted average by
first lifting them to R

3�S
2, followed by averaging. The result may be backprojected

to a quadratic form on R
3 with the help of a suitably chosen parameter # 2 S

2. The
details are as follows.

Let F 2
g .x; �/ D gij .x/�

i �j and F 2
h .x; �/ D hij .x/�

i �j be two inverse-DTI
quadratic forms, and ˛ 2 Œ0; 1� a weighing parameter, then set

F.x; �I˛/ D F 1�˛
g .x; �/ F ˛

h .x; �/ : (9)

By construction F 2.x; �I˛/ is homogeneous of degree two in �, but typically not a
quadratic form, unless ˛D0 or 1. We may thus apply (3) so as to obtain its indicatrix
and associated family of osculating indicatrices. A tedious but straightforward
computation reveals the explicit result in terms of gij .x/ and hij .x/ for any given
value of ˛ (this result holds in any spatial dimension):

Dij .x; �I˛/ D F 2.x; �I˛/
ij .x; �I˛/ with (10)


ij D .1�˛/
"
gij

F 2
g

�2˛ �i
F 2
g

 
�j

F 2
g

� �j

F 2
h

!#
C˛

"
hij

F 2
h

�2.1�˛/ �i
F 2
h

 
�j

F 2
h

� �j

F 2
g

!#
;

(11)

in which �i.x; �/ D gik.x; �/�
k and �i .x; �/ D hik.x; �/�

k . It is straightforward
to apply this one-parameter weighted averaging formula to n-dimensional spatial
interpolation for any nD1; 2; 3; : : :, cf. Fig. 1 for a sketch of the 2D procedure.

3In reality the r.h.s. should also entail a spatial integration over a voxel cell if the integrand is
interpreted in distributional sense as a Riesz representant of an infinite-resolution source field, cf.
the effective medium theory by Novikov and Kiselev [32].
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Fig. 1 Spatial interpolation in 2D: F.x; �/ D F1.P1; �/
˛ F2.P2; �/

ˇ F3.P3; �/
� F4.P4; �/

ı , in
whichF 2

k .Pk; �/ are quadratic forms in � given at the grid pointsPk , and x 2 R
3 is an interpolation

point. The corresponding expression for the interpolated indicatrix follows by a computation
similar to that in the one-parameter case, (9)–(11), now involving the relative area weights ˛; ˇ; �; ı
(all determined by the two components of x2R2). The 3D case is similar

3 Results

Figure 2 shows the results of one-parameter interpolation between two 2D quadratic
forms according to (9)–(11), both for the unambiguous indicatrix (left), as well as
for the induced osculating indicatrices for a few orientations # 2 S (middle and
right). Looking at the results for two inverse-DTI tensors gij .x/ and hij .x/ we
observe the following. The interpolated indicatrix is always convex, and ellipsoidal
if gij .x/ and hij .x/ are proportional. Indeed, (10) and (11) imply that if hij / gij ,
then interpolation boils down to isotropic scaling:

Dij .x; �I˛/ D c.x; �I˛/ gij .x/ with c.x; �I˛/ D F 2.x; �I˛/
F 2
g .x; �/

: (12)

Generically, however, the interpolated indicatrix is non-ellipsoidal. This effect is
most pronounced for perpendicular orientations (main eigenaxes). The correspond-
ing osculating indicatrices, on the other hand, are always ellipsoidal by construction.
Given a pair gij .x/ and hij .x/ and a fixed weight ˛ 2 .0; 1/, there are, however,
infinitely many such interpolated osculating indicatrices. A unique one is only
singled out after providing an orientation # 2 S. If this orientation happens to
be aligned with gij .x/ or hij .x/, then this alignment biases the interpolation to
the extent that the corresponding orientation tends to be emphasized. To appreciate
this phenomenon better, cf. the horizontal spoke in the middle subfigure of Fig. 2,
and observe the occurrence of an isotropic transition for ˛ strictly less than 1

2
;

for the vertical spoke in the rightmost subfigure this is exactly opposite. The
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Fig. 2 Interpolated indicatrices and osculating indicatrices for two inverse-DTI tensors gij and
hij shown as black ellipses at either end of a spoke, with gij in the lower left corner. Radial
distance along a spoke reflects the value of ˛2 Œ0; 1�, with ˛D0 at the center, recall (9)–(11). Left:
Indicatrices. Polar angle reflects relative rotation of the outer ellipse. Middle and right: Osculating
indicatrices. Polar angle now corresponds to the angular parameter # 2 S of the osculating
indicatrix, recall (3)

Fig. 3 Comparison of one-parameter interpolation schemes on 2D tensors for linearly increasing
weighing parameters ˛ 2 Œ0; 1� between the tensors gij (leftmost black ellipse, ˛ D 0) and
hij (rightmost black ellipse, ˛ D 1). Interpolations are shown in red. Top row: Log-Euclidean
interpolation. Second row: The newly proposed scheme for indicatrices, based on (9)–(11). Third
and fourth rows: Corresponding osculating indicatrices for a horizontal, respectively vertical bias
# 2 S, overlayed onto their corresponding indicatrices (replicated in grey)

difference is explained by the a posteriori bias incorporated through the choice of # ,
corresponding to a horizontal, respectively vertical orientation. In tractography this
bias may be exploited in a spatial interpolation scheme to express one’s expectation
about the direction of fiber tracking, if available. In particular, crossing fibers
“see” different DTI interpolations at the same crossing point, depending on their
tangents.

Figure 3 shows a comparison of the newly proposed scheme with log-Euclidean
interpolation (first row, cf. Arsigny et al. for details [1]). Again, the major difference
is the fact that we do not directly aim for an interpolation that is closed under
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Fig. 4 Half-way 2D interpolation of a crossing pattern (black ellipses). Left: Log-Euclidean
scheme. Middle and right: The newly proposed scheme for the indicatrix (red convex shape) and
two instances of direction-controlled osculating indicatrices (dashed ellipses), for horizontal and
diagonal orientations, respectively, as indicated by the arrows

the quadratic restriction manifest in the DTI model, but under a much weaker
homogeneity condition. Thus the interpolations typically produce non-ellipsoidal
indicatrices (second row). The quadratic restriction is enforced through projection
after providing an orientation # 2 S so as to single out the corresponding osculating
indicatrices. In the figure this is illustrated for the horizontal (third row) and vertical
orientation (fourth row), clearly showing the effect of this bias in relation to the
orientation of the original tensors gij and hij and the generating indicatrices. It is
apparent that a horizontal (vertical) bias enhances the influence of the horizontally
(vertically) oriented tensor, thus breaking the naively expected symmetry in this
example (in which the tensor hij is a 90ı-rotated copy of gij ). This symmetry is
inevitably present in any reasonable non-parametric interpolation scheme, cf. the
top row, where the isotropic transition necessarily occurs exactly in the middle
(˛ D 1

2
). The asymmetry in our scheme can be exploited in tractography, where

the (estimated) tangent naturally provides an orientation bias.
Figure 4 illustrates the effect of 2D spatial interpolation, again in comparison

to the log-Euclidean scheme. The latter produces an isotropic interpolation, as
expected by symmetry. Our scheme produces genuine ellipsoidal shapes after
providing a preferred orientation # 2 S, in this case # 
 0ı and # 
 45ı. The
osculating indicatrix with control parameter # 
 45ı happens to be consistent with
that of the end points, in the sense that its main axis has the same orientation, in
contrast to the osculating indicatrix with control parameter #
0ı.

Figure 5 illustrates grid interpolation according to the “multiplicatively bilinear”
interpolation scheme sketched in Fig. 1. The experiment shown on the left shows
a discrete tensor field sampled from a smooth “single fiber orientation” region
of interest, simulating a mildly curved underlying fiber bundle (black ellipses),
together with its interpolation to a refined grid. The right subfigure illustrates the
case of a sampled, randomly oriented tensor field.

It can be observed in the left subfigure of Fig. 5 that the interpolating gauge
figures are almost, though not exactly, elliptical, and thus have a fairly well-
defined, though not entirely crisp, preferred orientation. Although orientation is (by
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Fig. 5 Two-dimensional grid refinement through interpolation according to the scheme of Fig. 1.
The black ellipses are grid samples, the red ones are interpolations. Left: Interpolation of a
smoothly varying discrete tensor field. Right: Interpolation of a randomly varying discrete tensor
field

construction) likewise unambiguous in each sample point in the right subfigure of
Fig. 5, it is much more fuzzy and less anisotropic at typical interpolation points, and
the non-elliptical shape of the (convex) gauge figures is also more apparent. In both
cases one needs a “preferred orientation” field to single out an unambiguous member
from the osculating family of ellipses so as to re-obtain a symmetric positive-definite
second order tensor at each point. Such a field may be relatively straightforward
and inspired by the data in the former case, but less trivial in the latter, recall the
discussion on the results of Fig. 4.

Figure 6 illustrates one of the many possible projections of the interpolated
image on the left of Fig. 5 back into the space of symmetric positive-definite second
order tensors. The vertical has been chosen here as the preferred orientation for
all interpolation points (a crude extrapolation of the preferred orientation apparent
in the lower part of the discrete data). This might be a legitimate choice if one
assumes that a bundle of fibers enters the region of interest from below in the upward
direction. Clearly one could easily refine this crude global orientation selection
pointwise, keeping tabs on the dominant direction as one progresses along the fiber
tracks, but notice that by virtue of the almost elliptical nature of the indicatrices
the back-projection is relatively insensitive to the choice of orientation parameter.
(This is not the case in complex regions, recall the fiber crossing simulation in
Fig. 4.)

The result of Fig. 6 may be compared with a standard DTI interpolation scheme,
such as the log-Euclidean scheme illustrated for the same data in Fig. 7. But note that
there are infinitely many ways to (pointwise) back-project indicatrices. The “right
way” will depend on the application.
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Fig. 6 Back-projection of the interpolated image on the left of Fig. 5 (replicated for ease of
comparison) through specification of an orientation at each interpolation point so as to select an
unambiguous osculating indicatrix, i.e. ellipse. The black ellipses are grid samples, the red ones
are (original, respectively back-projected) interpolations. Left: Replication of the left subimage of
Fig. 5. Right: Back-projection for a homogeneous vertical orientation parameter field

Fig. 7 Two-dimensional grid refinement through log-Euclidean interpolation. The black ellipses
are grid samples, the red ones are interpolations. Left: Interpolation of a smoothly varying discrete
tensor field. Right: Interpolation of a randomly sampled discrete tensor field. Cf. Figs. 5 and 6

Extension to three dimensions is straightforward. There are many more scenarios
for the relative configurations of two ellipsoids and many more possible preferred
directions to be specified in order to single out an osculating indicatrix/figuratrix.
Figure 8 shows two examples.
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Fig. 8 Three-dimensional DTI interpolation. The figures on either end are genuine ellipsoids, the
ones in-between are convex indicatrices/figuratrices. A preferred direction # 2 S

2 will be needed
in order to project each interpolated shape back to an ellipsoid (not shown here). Top: Interpolation
between an oblate and a prolate spheroid. In this configuration, the minor axis of the former is
aligned with the major axis of the latter. Bottom: Interpolation between two oblate spheroids with
a 90ı relative turn around one of the major axes

4 Summary and Conclusion

We have proposed a novel scheme for direction-controlled interpolation of DTI
tensors (or other symmetric positive-definite second order tensors). It consists of
two steps. In step 1 an unbiased interpolation is obtained that (generically) violates
the quadratic restriction manifest in the 3D-DTI model. The resulting tensor can
be interpreted as a 5D-DTI (an instance of a HARDI) tensor, i.e. a tensor living
in the five-dimensional product R3 � S

2. The additional dimensions provided by
S
2 embody a “memory” for recollection of the orientation information available

in the original tensor data, which would inevitably be destroyed in a parameter-free
interpolation scheme. Step 2 entails a projection along S

2 so as to reobtain a genuine
3D-DTI tensor on R

3. This step requires specification of a preferred orientation
# 2 S

2. Such an orientation may naturally present itself in certain applications,
such as tractography (tangent directions).

Uncertainty may be accounted for by specifying a suitable distribution of
orientation parameters in our interpolation scheme, rather than a crisp choice. Such
a distribution of orientations naturally induces a probabilistic distribution of DTI
tensors, akin to the model by Jian et al. [28], which may be useful for probabilistic
tractography, cf. also Schultz et al. [42].

The methodology has been explained in the simplified context of one-parameter
interpolation for the sake of clarity. We have indicated how to generalize the results,
in particular to 1D, 2D and 3D spatial interpolation of sampled 3D tensor fields.
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We have provided several illustrations to elucidate the closed-form interpolation
formula, Eqs. (9)–(11).

All in all, the proposed scheme is more versatile than parameter-free schemes,
and provides explicit control over how to average symmetric positive-definite
second order tensors in a particular application context, such as tractography, and is
not limited to DTI. It exploits the trade-off between spatial and angular resolution.

Acknowledgements The Netherlands Organisation for Scientific Research (NWO) is gratefully
acknowledged for financial support.
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Tensor Voting: Current State, Challenges
and New Trends in the Context of Medical
Image Analysis

Daniel Jörgens and Rodrigo Moreno

Abstract Perceptual organisation techniques aim at mimicking the human visual
system for extracting salient information from noisy images. Tensor voting has been
one of the most versatile of those methods, with many different applications both
in computer vision and medical image analysis. Its strategy consists in propagating
local information encoded through tensors by means of perception-inspired rules.
Although it has been used for more than a decade, there are still many unsolved
theoretical issues that have made it challenging to apply it to more problems,
especially in analysis of medical images.

The main aim of this chapter is to review the current state of the research in tensor
voting, to summarise its present challenges, and to describe the new trends that we
foresee will drive the research in this field in the next few years. Also, we discuss
extensions of tensor voting that could lead to potential performance improvements
and that could make it suitable for further medical applications.

1 Introduction

Applications in the field of medical image analysis aim at extracting any kind of
information from images that can be used within a medical context. These images
are obtained by a broad range of different imaging modalities. Depending on their
distinct characteristics concerning the resulting output images, each such modality
is suitable for specific medical applications. In fact, in some cases a combination of
several modalities is required.

A common problem of many modalities is the tradeoff between the achievable
image quality and a limiting parameter inherent to the particular imaging device. For
example, in the case of acquiring images in vivo through Computed Tomography
(CT), regarding safety considerations, the radiation dose is a limiting factor for
a higher contrast. At the same time, low doses result in a lower signal to noise
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ratio (SNR) and therefore in decreased image quality. As another example, in
Magnetic Resonance Imaging (MRI) higher resolutions usually result in longer
acquisition times. In turn this makes the gathered signal more prone to artifacts
due to movements of the patient like breathing and thereby leads to lower image
quality as well.

In order to be able to retrieve as much reliable information as possible from
images even in the case of low resolution and the presence of noise, the applied
analysis methods must provide a robust behaviour in those contexts. In the past,
perceptual organisation methods like tensor voting have proven to be suitable in
such cases, as they have successfully been used within noisy scenarios in related
applications like colour image segmentation [27], image restoration, curvature
estimation [6, 14, 39, 41], edge detection [26, 31] or colour image denoising [28].
The strength of perceptual algorithms is that they usually do not rely on any prior
knowledge about the image contents. Instead, they follow certain predefined rules
that try to imitate the behaviour of the human visual system (HVS). As an example
the authors of [3] developed a model based on the architecture of the visual cortex,
which they show is capable of perceptual completion of structures. Referring to the
structure of the visual cortex as well, stochastic completion fields are used in [44] for
the inference of illusory contours. This technique was in fact shown to be strongly
related to tensor voting (cf. [43]). Also founded—similarly to tensor voting—on
the principles of Gestalt psychology (cf. [11]) the work on structural saliency in
[38] aims at detecting global structures from local (image) features. An overview
on further perceptual organisation methods subdivided in different categories can
be found in [24].

Being one of the most versatile of these techniques, tensor voting has been
applied to a variety of problems in the field of computer vision and has been
successfully utilised in problems within medical image analysis as well. These
include the correction of small segmentation errors of segmented blood vessels
[34], the enhancement of ultrasound images [9], detection of adherens junctions
in microscope images [16] (see also Fig. 1), surface inference for dental CAD/CAM
[40] as well as cell tracking in [13]. Therefore we believe that it might also
be beneficial in further applications like blood vessel segmentation, detection of
bifurcations, detection of separation points and vortices in blood flow images,
tractography or identification of nodes within the mesh-like structure of trabecular
bone. The method retrieves salient information from the input data by basically
following three steps. First, local features are encoded as tensors. After that, these
are propagated in a neighborhood following the principles of proximity, good
continuation and similarity borrowed from Gestalt psychology as mentioned above.
Thereby, the underlying idea is that compatible features should reinforce each other
whereas those which are contrary are disregarded. Finally, the resulting tensor field
is processed in order to gather the desired information.

Tensor voting is on the one hand flexible for any kind of adaptions, as it
constitutes a theoretical, mathematical framework. On the other hand, this flexibility
comes at the cost of requiring extra efforts to adapt it to a particular application.
Thereby, the key tasks for any adaption are, first, to find a way to encode the
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Fig. 1 In this example from [16] tensor voting is used to extract the curvilinear structures of
adherens junctions from microscope images. The first row shows the original data in chosen
regions, the second contains the resulting structures after iterative tensor voting. The inferred
adherens junctions obtained as binary data after morphological thinning are depicted in the
third row

features of interest by means of tensors, second, to extend the method for a particular
type of input data and, in the end, to find a formulation that allows for an efficient
implementation.

As described in [18], the original formulation of tensor voting in [20] pro-
vided promising results in different applications. Nevertheless, some issues, as for
example its significantly high execution time due to several steps of numerical
integration, limited its usability in many cases. Subsequent reformulations of the
original equations, e.g. in [8, 29] or [25], proposed efficient modifications which
led to a considerably reduced execution time of the algorithm. Although there have
been even more approaches that dealt with further open problems, tensor voting still
requires some more extensions in order to use it in applications like those mentioned
above. Extended formulations for different types of input data like greyscale, vector-
or tensor-valued images as well as modifications for the use of higher-order tensors
and the handling of multiscale data can help to broaden the range of possible
applications for this method. Even though there exist proposed solutions for some
of these problems, there is still work to do on generalising underlying assumptions
and further improving the performance.

Therefore, this chapter aims at further describing the current challenges in tensor
voting and depicting possible approaches that, in our opinion, will be followed in
the next few years in this field of research.

In the next section, an introduction to the original formulation of tensor voting
is given at first, followed by a brief review on efficiency-related extensions. After
that, we depict open issues inherent to tensor voting and briefly review attempts
to overcome these in combination with a description of further possible solution
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strategies. In the final section, the main arguments are summarised followed by
concluding remarks on the general implementation of these extensions.

2 Original Formulation of Tensor Voting

This section deals with the ideas that drove the original formulation of tensor voting
and the modifications proposed to increase the efficiency of possible implementa-
tions of the method.

The first formulation of tensor voting (cf. [10, 20]), now referred to as the
“original” or “classical” formulation, was applied to sparse and noisy three-
dimensional data sets in order to extract surfaces, 3D curves and junctions from
them. Since its introduction, the framework has been adopted to different problems
in computer vision and has also been applied in the context of medical image
analysis recently (cf. [9, 13, 16, 34] already mentioned above). Despite its success,
applying tensor voting to specific medical applications requires further extensions
of the method like the ones discussed in the next section.

In the following, we focus on the formulation of tensor voting in the case of three
dimensions. Indeed, it can be formulated for spaces of arbitrary dimension n � 2.
A description of the general formulation in the n-dimensional case is given in [18].

As mentioned above, tensor voting consists of three basic steps: Encoding of
certain image features as tensors, propagation of these within the area of interest
and, finally, analysis of the resulting tensor map to extract salient structures like
those mentioned above.

The first step of encoding features requires the definition of these beforehand.
Usually, estimated normals or tangents to structures found at certain positions in the
input data, e.g. by utilising the image gradient, are encoded by tensorisation.1 In case
no prior information about a feature is available at a given point, an identity tensor
is chosen for representation. In general, the number of these so-called input tokens
that are initialised in the first step might be lower than the total number of output
tensors of tensor voting. It must be noted, that the original formulation utilises only
second-order tensors or, more precisely, symmetric positive semidefinite matrices
throughout the method. Thereby, the basic idea is the observation that there exists an
eigendecomposition for such a three-dimensional tensor T of second order, given by

T D
3X
iD1

�i eieTi ; (1)

1In this case tensorisation denotes the mapping t W R3 ! R
3�3 with t .n/ D nnT 8n 2R3 , also

referred to as the dyadic product or the outer product.
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�i and ei being the ordered eigenvalues and their corresponding eigenvectors,
respectively. By rewriting (1), one can derive three so-called extreme cases, that is
tensors that encode only one of the mentioned features, as there are curves, surfaces
and junctions. Based on their definitions as

S D .�1 � �2/ e1eT1 ;

P D .�2 � �3/ .e1eT1 C e2eT2 / ; (2)

B D �3 .e1eT1 C e2eT2 C e3eT3 / ;

the tensor T can then be expressed as

T D S C P C B ; (3)

where S, P and B are called the stick, plate and ball components of T. These usually
indicate the normal space of the particular encoded features. Figure 2 illustrates this

l1

l3 l1 −l2

l2 −l3

l2stick tensor

plate tensor

ball tensor

.

e3

e1

.

e2

Fig. 2 Following (3), a three-dimensional second-order tensor T can be decomposed into a stick,
plate and ball component. Their orientation is defined by the eigenvectors ei of T and their saliency,
i.e. their size, is determined by the combination of the eigenvalues �i as described in (2). This figure
is based on [42]
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decomposition using the ellipsoid-based representation of tensors of second order
and provides additional interpretations of the factors in (2).

Following up, it is the step of propagation or voting during which each tensor-
encoded feature induces a tensor (or voting) field describing its most likely
continuation at all points within a given neighbourhood. These voting fields contain
the implementation of the aforementioned perceptual rules of proximity, good
continuation and similarity. In fact, the stick, plate and ball components of a specific
tensor T generate their own respective tensor fields which, after summing them up,
represent the overall voting field induced by T. Regarding that, the tensor vote T V
received at a particular point p is then retrieved by integrating the votes collected
from all points in its neighbourhood�.p/. In accordance with [30] this yields

T V.p/ D
X

q2�.p/;
vD p�q

SV.v;Sq/C PV.v;Pq/C BV.v;Bq/ ; (4)

where SV , PV and BV denote the particular stick, plate and ball voting field,
and Sq, Pq and Bq the stick, plate and ball component of the tensor located at q,
respectively.

Finally, after the voting process has finished, the resulting tensor field is analysed
in order to retrieve the inferred information from it. Considering (3) it can be
decomposed into a stick, plate and ball component at every point p within its
domain of definition and therefore consists of three tensor fields corresponding
to the extreme cases, which can be investigated separately. Referring to (2) the
eigenvectors determine the orientation of the particular features, whereas the factors
composed of the eigenvalues represent the corresponding saliencies.2 By finding
local maxima along the normals of the feature directions, 3D curves, surfaces and
junctions can be extracted from those saliency maps.

2.1 Voting Fields

The voting process introduced above, can be seen as a convolution-like operation
(cf. [21]), as the instructions for the vote propagation, that is the shape of the voting
fields, are the same at each position in the region of interest. In the next paragraphs
the construction of the particular voting fields is described in further detail with a
focus on key parameters, that affect the shape of the fields.

2The saliencies are also referred to as curveness, surfaceness and junctionness.
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2.1.1 Stick Voting

The design of the stick voting field specially aims at implementing the principles of
good continuation and proximity. It is postulated that the most likely continuation
of a surface is that with the least curvature, which means straight lines are preferred
over sharp edges, and a constant curvature, i.e. the connection of the points that cast
and receive the vote, referred to as voter and receiver, is depicted by the osculating
circle, as illustrated in Fig. 3. Thereby, the direction of the voting tensor, that is
e.g. the normal to the most likely continuation of the surface, is aligned with the
radius vector of the receiver position with respect to the centre of the circle. To
further model proximity within the formulation, a Gaussian decaying function is
introduced that decreases along with a larger distance between voter and receiver
and with the curvature of the connecting circular arc. Thereby, the order of decay
can be adjusted by the standard deviation parameter of the Gaussian, which mainly
determines whether preferably large or small structures will be inferred within the
voting step.

In summary, the stick voting consists of two parts: On the one hand, the tensorial
function Rt2

3 performs a change of basis which is basically achieved through a
rotation of the system of eigenvectors of the voting tensor by a given angle around
the rotation axis t2 D v � e1 as depicted in Fig. 3. In this way the orientation of the
tensor vote is determined. Second, the scalar decay function d controls the strength

Sq SV (v Sq)

t1

e1

q

p

v
lpq

2qpq

qpq

t1
.

e1

.

t2

Fig. 3 Based on the explanations of Sect. 2.1.1, the construction of a stick vote SV .v;Sq/ at
position p induced by the stick tensor Sq at position q is visualised within its local coordinate
system. This is defined by the principal eigenvector of Sq, denoted e1, and the tangent space to
the encoded surface at q spanned by t1 and t2, whereby the latter is oriented perpendicularly to the
image plane

3FunctionRt is defined asRt.˛; �/ W R3�3! R
3�3 withRt.˛;S/ D Q˛;t S QT

˛;t 8S 2R3�3 , where
Q˛;t 2 SO.3/ performs a rotation of angle ˛ around axis t.
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of the propagated feature. This leads to

SV.v;Sq/ D d.�l ; b� I lpq; �pq/ Rt2 .2�pq;Sq/ ; (5)

where lpq � l.v; �pq/ denotes the arc length of the osculating circle between p and
q, �pq � �.v; �pq/ the corresponding curvature and �pq the angle enclosed by the
direct connection v D p � q between voter and receiver and the tangent space of the
surface encoded by the voter q (cf. Fig. 3). Following [30], d might be chosen as

d.�l ; b� I lpq; �pq/ D
8<
:e
� l2

2�2
l

�b��2
if �pq 2 Œ��

4
; �
4
�

0 otherwise
: (6)

It is obvious that the only degrees of freedom for the construction of the stick
voting field are the scale parameter �l and the weighting parameter b� for adjusting
the influence of the curvature within the exponent of the decay function d .

As large values of �pq do not produce likely continuations of an encoded feature,
the angle is limited to the range of Œ��

4
; �
4
� in (6) which is equivalent to restricting

the voting field SV to a cone. Figure 4 shows a two-dimensional slice of the
saliencies induced by the stick voting field.

2.1.2 Plate and Ball Voting

The generation of the plate and ball voting fields makes use of the previously defined
stick voting field, which for that reason is said to be fundamental.

Sq

e1

Fig. 4 A slice of the voting field induced by the stick tensor Sq is schematically depicted by a
number of contour lines of its saliencies. As the angle �pq is restricted to the range of Œ� �

4
; �
4
�

the saliencies are equal to zero outside the cone that is indicated by the dashed lines. Actually,
the three-dimensional field is retrieved by a rotation around the axis defined by the principal
eigenvector e1 of Sq, as indicated in the figure
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Fig. 5 The voting field of the
plate tensor P is constructed
by integrating the voting
fields of all possible stick
tensors Rt.ˇ;SP/ within the
plate. These are retrieved by
rotating a particular stick
tensor SP contained in P by
an angle ˇ around the rotation
axis t, which depicts the
tangent space to the encoded
curve, i.e. it is perpendicular
to the eigenvectors e1 and e2
of P. In this figure only a
finite number of possible
stick tensors within P is
exemplary depicted e3

e1

e2

SP

Rt(b SP)

b

P

t

The relationship between plate and stick voting is based on the observation that
a plate tensor can always “be decomposed into all possible stick tensors inside the
plate” (cf. [30]). These are defined by means of rotationsRt.ˇ;SP/, where SP is an
arbitrary stick tensor within the plate P and ˇ the rotation angle within the normal
space of the curve encoded by P (cf. Fig. 5). In fact, the plate vote is constructed
by integrating the induced voting fields of all these stick tensors and therefore
directly depends on the definition of the fundamental stick voting field, which can
be formulated as

PV.v;Pq/ � PV.SV I v;Pq/ D 1

�

Z 2�

0

SV.v; Rt.ˇ;SPq// dˇ ; (7)

where v D p � q.
In case of the ball voting the derivation is similar to that of plate voting with

the only difference, that a second degree of freedom is added by means of an
additional rotation angle. The decomposition of a ball tensor into all possible
stick tensors within its defined sphere, can be seen as a subsequent application
of two rotations of a specific stick within the ball tensor around two axes r1 and
r2 that are perpendicular to each other as well as to that stick. Given the angles
ˇ1 and ˇ2 with respect to these axes, the possible stick tensors can be written as
Rr2 .ˇ2; Rr1 .ˇ1;SB//, where SB denotes a random stick tensor within B. Integration
of the induced voting fields of all these stick tensors yields the ball voting field,
which again directly depends on the fundamental stick voting field, modelled as

BV.v;Bq/ � BV.SV I v;Bq/

D 3

4�

Z 2�

0

Z �

0

SV.v; Rr2 .ˇ2; Rr1 .ˇ1;SBq// sin.ˇ1/ dˇ1dˇ2 ; (8)

considering v D p � q again.
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2.2 Efficiency-Related Modifications

Besides fulfilling application-related objectives, a reasonable runtime and reason-
able memory requirements are the most important factors for the usage of an
implementation. As the original formulation of tensor voting does not allow for
a time efficient realisation, different modifications have been proposed to overcome
this issue.

The basic approach for achieving better runtime properties in case of the original
formulation was the precomputation of the voting fields. This issue can be addressed
by using a scale-invariant decay function, e.g. (6). This modification makes it
possible to derive voting fields at any scale from a single precomputed one at a
specific scale.

Indeed, there exists a tradeoff between runtime considerations and memory
requirements due to precomputed voting fields. This especially plays an important
role for possible GPU implementations (cf. e.g. [22]) where “on-device” memory is
a rather limited resource.

Focussing on the runtime of tensor voting implementations, further propositions
mainly aim at avoiding the numerical integrations for the calculations of the
plate and ball voting fields, since these are the most time consuming parts of the
implementation.

Two alternative formulations are given in [29]. The first is based on numerical
approximations derived from an analysis of the original voting processes. The
second arrives at simplifications by taking “the perceptual meaning of the original
tensor voting” into account. Both modifications reduce the complexity of the
calculation of a single plate or ball vote (cf. (7) and (8) respectively) to constant
time.

The authors of [8] rewrite the 2D stick voting field in order to derive a formula-
tion of tensor voting in terms of an ordinary convolution employing steerable filters.
Taking advantage of the convolution theorem this algorithm shows a rather good
performance in the case of stick voting. In [33] a generalisation of that concept to
three dimensions is proposed. It is further mentioned in [8] that due to their good
performance concerning convolutions and the fast fourier transform, GPUs might
lead to further runtime improvements of the proposed algorithm.

Further, there are two approaches also addressing n-dimensional tensor voting.
The first one mainly consists of finding a certain orthonormal basis of the normal
space of the feature encoded by the voting tensor [25]. Ensuring that this basis
contains a component parallel to the projection vn of the connection v between
voter and receiver onto the normal subspace amounts in an optimised voting process
consisting of separate stick votes for each component. Thereby, the complete stick
voting procedure is only needed for the basis vector parallel to vn, whereas the others
are just scaled by decay depending on the distance jjvjj. This leads to a complexity
of O.d�2/ per vote (cf. [45]) where d is the dimension of the considered space
and the term �2 stems from the applied Gram-Schmidt algorithm for finding the
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orthonormal basis. For a specific application case, i.e. the dimension d is fixed, this
amounts to constant time as above.

A closed-form solution was also proposed in [45]. However, it was proven
incorrect in [17].

3 Current Challenges and Proposed Solution Strategies

This section provides the description of further issues that appear within the
framework of tensor voting, related to input data and additional objectives for the
method. The need for the research to address these issues is derived from particular
application cases, followed by summarising the current state of research and the
proposition of possible solution strategies to be further investigated in the future.

3.1 Contextual Voting

The voting procedure in its classic form only relies on the angular and spatial
relation between voter and receiver. In some cases that might not be enough
information to determine an appropriate vote. For example in the context of colour
image denoising in [28] where a stick vote can be interpreted as voting for a specific
colour, the decision if voter or receiver carry either regular or noisy information is
made based on their corresponding neighbourhoods (cf. Fig. 6 for further detail). If
the voter is noisy its information should be suppressed. On the other hand, a noisy
receiver needs more votes in order to refine its encoded information.

q p

q p

q

vote “ ”

p

q no vote p

Fig. 6 This example of contextual voting is based on [28]. The two situations depicted in the top
and bottom row only differ in the context at receiver site p. In case the information at p is different
from that in its neighbourhood (top) the voter q should cast a vote whereas in case of consistency
between p and its neighbourhood (bottom) no vote takes place
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Fig. 7 The insufficiency of classic tensor decompositions in certain contexts and a proposed
alternative strategy are depicted schematically. An isotropic tensor T can be decomposed in
an infinite number of orthogonal decompositions. Two possibilities are shown in (a), where
T D S.1/1 C S.1/2 D S.2/1 C S.2/2 . In (b) two examples of non-orthogonal decompositions of
an anisotropic tensor are shown which employ rank-1 (left) and rank-2 (right) tensors for that
purpose, respectively. Regarding the indicated crossing structure in the neighbourhoods of T1 and
T2 these decompositions could be more reasonable than the common orthogonal one (along the
dotted ( ) lines). (a) Orthogonal decompositions (S.1/1;2 and S.2/1;2) of an isotropic tensor (T). (b)
Context-dependent non-orthogonal rank-1 (S�

1;2) and rank-2 (P�

1;2) decompositions of anisotropic
tensors (T1 and T2)

Another example of contextual voting is the context-based decomposition. The
classical eigendecomposition is not the only choice in the isotropic case. By rotation
of the eigensystem one can retrieve several equivalent representations of the same
isotropic tensor (cf. Fig. 7a). Also in the anisotropic case, the context, i.e. the
neighbourhood, might favour a decomposition different from the one obtained from
the eigenvectors. In particular, it must not necessarily be orthogonal or rank-1.
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Regarding the indicated crossing structure in the neighbourhoods of T1 and T2 in
Fig. 7b the decompositions based on S�1;2 or P�1;2 could be more reasonable than the
common orthogonal one (along the dotted ( ) lines).

One alternative for retrieving such a decomposition is to cluster the received
votes at a certain position instead of adding them up. In the case of stick votes the
direction of a particular stick, i.e. of the corresponding surface normal, is the base
parameter for the clustering. For plate votes the direction of the encoded curve, i.e.
the tangent to the feature, is used for that purpose. The particular components of the
decomposition are then given by either the cluster centers or the sum of all cluster
members. In view of the example in Fig. 7b, this choice might describe a tensor
more appropriately in a specific context.

Generally, including such additional information from a broader neighbourhood
can be seen as the implementation of additional perceptual rules. This principle can
be adapted to different situations. Related examples are given in Sects. 3.3 and 3.4.

3.2 Higher-Order Tensors

As described in the previous section, the original formulation of tensor voting
comprises only second-order tensors for encoding and propagating local features.
However, in some applications second-order tensors are not appropriate to represent
the desired characteristics of image structures. Figure 8 illustrates the summation
of three orthogonal tensors in the second- and sixth-order case. It is obvious that
in the first case it is not possible to extract the input tensors from the resulting
sum, whereas the sixth-order result can still be decomposed into the three input
components. This is in accordance with [35].

+ + =

+ + =

second
order

sixth
order

Fig. 8 The results of the summation of three orthogonal rank-1 tensors in the case of second-
and sixth-order tensors are depicted using the corresponding homogeneous forms (cf. [36, 37]).
Despite the slightly different shape of the rank-1 tensors, the loss of directional information in the
second-order tensor sum is obvious. In that case, the decomposition of the sum into three rank-1
summands is not unique, as opposed to the sixth-order case, where the input components can still
be extracted from the resulting tensor
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Some applications, including analysis of blood vessels, extraction of neural tracts
or detection of separation points in blood flow, involve modelling features like
bifurcations4 and crossroads.5 As pointed out above, second-order tensors might
not be appropriate in these cases because of their lack of directional information.
Concerning those applications, the extension of tensor voting to higher-order tensors
aims at getting improved results at Y- and X-shaped junctions.

In [35], such an extension of tensor voting is proposed as a preprocessing step
for fiber tracking. Using higher-order tensor voting should overcome the lack of
directional information at fiber crossings in an inpainting manner. Furthermore, an
approach for the distinction of Y- and X-shaped crossings based on tensors of odd
order, in particular of third order, is suggested. Although, both propositions led to
improved fiber tracking results in the concerned areas, in the end, they only focus on
inferring curve structures and do not take advantage of the whole framework, since
only the stick tensor voting is applied.

A possible approach to adapt tensor voting to higher-order tensors is to decom-
pose the latter into lower order components. Especially first- and second-order
components are of interest, as classical tensor voting could be applied to these in
a subsequent step. For this strategy, it is important to find efficient and appropriate
higher-order tensor decompositions, since the concept of the eigendecomposition
does not directly apply to higher-order tensors. Some approaches have already been
suggested, like the higher-order singular value decomposition (HOSVD) proposed
in [4] or the lower-rank6 approximation of higher-order tensors in [36], which was
actually used in [35]. However, a thorough evaluation of these two approaches must
be performed in order to determine which of them is more appropriate for tensor
voting.

An alternative option is to define extreme cases for higher-order tensors, in the
same fashion as the ones mentioned in Sect. 2. That means, it is desired to find
a decomposition into “basic” tensors that encode just one certain feature which
permits to design the corresponding voting fields separately. By integrating these,
the overall voting field could be obtained as before. At the same time, it must be
ensured that the spirit of the classical tensor voting is still preserved in the higher-
order case. As an example, in [35] the analysis of accumulated higher-order votes
was performed by using the homogeneous form instead of the classical definition of
feature saliencies.

Another inadequacy in the formulation of tensor voting is the way in which
votes received at a certain point are accumulated. In the original formulation this
aggregation is performed by simple elementwise tensor summation. As pointed out
in [32] averaging tensors leads to a swelling effect in the presence of noise and the
results tend to be more isotropic, i.e. they carry less directional information.

4That is Y-crossings.
5That is X-crossings.
6The rank of a tensor is defined as the minimal number of first-order tensors, i.e. vectors, which is
needed to represent it as a sum of outer products of these.
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To overcome this effect different aggregation schemes for accumulation of the
tensor votes could be explored. There have been proposed different Riemannian
metrics like Euclidean, geometric or Log-Euclidean [2] metrics, that led to different
averaging methods for symmetric positive-definite matrices (cf. [23]). Including
different metrics in the accumulation step of higher-order tensor votes might provide
better characteristics than the former summing process.

Other aggregation schemes, for instance grouping the received votes in clusters
and performing the summation only for votes within the same cluster (cf. Sect. 3.1),
could be beneficial for the results in bifurcations and crossings. In fact, the grouping
would require to choose an appropriate metric to measure the distance between two
particular tensors of higher order.

Observing that the approximation of the angular distribution of the received votes
is the central argument for employing tensors of higher order gives also rise for
another approach. The propositions in [3, 7, 44] directly consider the full space
of angular distributions in their framework. Using group convolution or diffusion
equations the orientation information is being propagated. The method in [7] was
shown to have good properties concerning the results at crossing in 2D images.
Furthermore, the framework was adapted in order to apply crossing-preserving
smoothing to HARDI data (cf. [5]). Since relationships between these methods
and the original tensor voting have been established in the past, it is interesting
to investigate how extensions of tensor voting such as the ones described in this
chapter can be translated into those methods.

3.3 Multiscale Image Analysis

According to the description of tensor voting in Sect. 2, the scale parameter �l
has strong influence on the results of tensor voting. Being the standard deviation
parameter in the Gaussian decay from (5), it directly affects the shape of the voting
fields. By adjusting �l , features of a certain size are preferred over others.

As an example, for blood vessel segmentation it is not only of interest to
investigate the input data at one fixed scale, but instead over a number of different
ones. This stems from the observation that thickness of blood vessels might
gradually vary along their extent. There have been proposed different methods for
performing multiscale analysis based on tensor voting.

The strategy in [15] is based on multiple thresholding steps, which are illustrated
in Fig. 9. Initially, tensor voting is performed over several scales �.i/l , 1 � i � I ,
providing different saliency values for each particular input token, i.e. for each
token there exists a mapping between scale and saliency, called the saliency curve
(Fig. 9a). In a next step, this curve is subjected to a first thresholding procedure,
which is depicted in Fig. 9b. During that procedure, the number of scales, denoted
by Nk , at which the saliency lies above a given iteration-specific threshold Ts is
determined for every input token, enumerated by k. Finally, as shown in Fig. 9c,
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c

a b

Fig. 9 Steps of one repetition of the iterative algorithm for multiscale analysis presented in [15].
(a) depicts the salience curve of the k-th token that basically relates the stick saliency to the scale
parameter �l . Based on the threshold Ts the number of scales, Nk , for which the retrieved saliency
of the token lies above Ts is extracted in (b). In the end, such tokens that satisfy Nk > TN ,
are identified in (c) and kept for the next iteration starting with (a), whereas those below of the
threshold TN are discarded. (a) Saliency curve of the k-th token. (b) Thresholded saliency curve
of the k-th token. (c) Thresholded quantities Nk of all tokens

another threshold TN is applied to the extracted quantitiesNk , obtaining only those
tokens, which showed a sufficiently high saliency over a certain minimal number
(TN ) of different scales �.i/l . By repeating the three described steps, the authors aim
at removing noise-like artifacts in each iteration based on the assumption that “non-
salient segments do not exhibit consistent stability over multiple scales” which is
motivated by scale space theory. At the same time this leads to less voting support
for the remaining noise in the next repetitions. Thereby, the actual threshold Ts is
slightly increased at each iteration in order to compensate for the strengthening of
the structure saliencies due to the discarded background tokens. It is important to
remark, that the number of different scales, I , as well as the number of repetitions
are fixed throughout the algorithm.

Another approach, presented in [42], expands the tensor voting framework by
a “first order augmentation”. The authors observed, that even though the use of
second-order tensors provides the capability to both measure the uncertainty and
the direction of the votes themselves at the same time, the information from where
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the votes are received is not preserved. By using the first order augmentation through
the so-called polarity vector, which is subsequently propagated after the usual
voting steps, it is possible to determine the main direction from which the votes
were received. As this vector is weighted with saliency, tokens within a particular
structure should receive contrary polarity votes that cancel out. This gives the
opportunity to distinguish between points located at the border of a certain feature,
which means their polarity saliency is significantly high, and points that lie inside
that feature, i.e. their polarity is supposed to be low (cf. Fig. 10). Considering the
combination of junction and polarity, i.e. so-called end-curve, saliency leads to the
definition of four distinct key situations which are listed in Table 1 together with
the authors’ interpretations within the particular medical applications described in
[42]. Based on their aim to extract smooth and continuous surfaces they claim, that
only the case of both low junction and polarity values at the same time describes a
desired, that is smooth and continuous, feature.

By introducing an iterative and adaptive algorithm, one can now analyse the
image data regarding several scales. After tensor voting was applied using a

Fig. 10 By using the example of a straight line structure with two endpoints this figure
schematically illustrates the concept of the polarity vector. In case of tokens within the interior
of the structure the received polarity vectors, which are in fact weighted with the specific structure
saliency, cancel out. Opposed to that, the endpoints obtain a non-null vector pointing to the interior
of the line, which indicates the presence of a structure border in their neighbourhood

Table 1 This table lists the key situations for the classification of a token’s neighbourhood based
on the tuple of junction saliency and end-curve saliency defined in [42]

Junction saliency End-curve saliency Interpretation

High High Highly convoluted surfaces; neither smooth nor continuous

High Low Salient separated point; probably due to missing data or noise

Low High Discontinuous border of a structure without junction

Low Low Smoothness and continuity constraints fulfilled

The proposed iterative algorithm for multiscale analysis is based on the particular interpretations
of these four combinations, which are based on the objective to infer mainly smooth surfaces
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certain scale parameter, the neighbourhood of each point is investigated regarding
junctionness and polarity. If both values are low, a particular token is assumed to
be valid and is therefore disregarded during the next iterations. In the other three
cases the scale parameter is increased to promote smoothness through features of
larger scale and the previous steps of voting and investigation are repeated again.
As the presented medical applications in [42] only comprise the extraction of
relatively smooth surfaces of organs or other tissue layers, the authors assume the
particular case of high junctionness and low polarity, which indicates a separated
point junction, to be unlikely to occur in their experiments. Instead they assume that
it was induced by either noise or missing data. In that case, before approaching to
the next iteration, all tokens in the investigated neighbourhood are removed, so that
the thereby created gap can be closed by tensor voting at a larger scale.

Although the two modifications show good performance, it is questionable if
discarding information in the analysis process of noisy data is a suitable strategy in
a medical context. Instead, an approach based on the direct integration of scales in
the formulation, like—though in a different context—in [12], appears to be more
appropriate for medical images. Furthermore, both methods introduced above do
not take into account possible interactions between different scales, since they
perform their multiscale analysis just on the output of tensor voting at different
independent scales. But, taking into account that images might convey important
inter-scale information, like in the case of gradually changing thickness of blood
vessels, potentially important information can be lost. In [12] it was also shown that
combining information of different scales can be advantageous.

For these reasons, it seems beneficial to integrate multiscale analysis directly into
the tensor voting framework. One alternative that would be worthwhile to explore
for doing so is to find a way to model local scale as a local feature in the input data.
Then it could also be propagated in the voting process. A possible strategy could
consist of the following steps which are also schematically visualised in Fig. 11.

To take different scales into account, one could build up a pseudo-scale-space
by adding scale as a dimension to the spatial domain amounting in R

n � R as the
considered space. Starting with an n-dimensional tensor field whose tokens encode
local features as before, the voting procedure is performed at several scales �.i/l ,
1 � i � I , which can be seen as a pure spatial or intra-scale voting (Fig. 11a). By
this, features of different scales are inferred separately.

Subsequently, information at different scales can be propagated between those
in an inter-scale voting procedure. Again, this can be decomposed into further
substeps. On the one hand a global inter-scale voting is performed (Fig. 11b), i.e.
the receiver in R

n � R has both, different scale and a different position in R
n than

the voter. On the other hand local inter-scale voting along the scale axis only (i.e.
fixed position in R

n, cf. Fig. 11c) could enforce the scale information at a certain
site.

In the end, the analysis step can consist of two strategies. Either global features
are extracted at each scale first and are combined afterwards, or tensors are locally
combined first and then global structures are extracted.
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Fig. 11 The proposed voting strategy that takes interactions between multiple scales into account
consists of three steps. In (a), the common voting is performed in the spatial domain separately
for different scales �.i/l . Second, voting is performed between the tensor fields (cf. (b)) created in
the first step. At last, the tensors corresponding to different scales at the same spatial position are
refined in a last (voting) step depicted in (c). (a) Intra-scale voting; (b) global inter-scale voting;
(c) local inter-scale voting

The current description needs to be refined in order to be more efficient,
especially concerning its memory consumption. Further, the voting fields used in
the three steps have to be modified in a way so that they regard scale also as a
feature. This could be handled within the decay function.

3.4 Greyscale Images

The original formulation of tensor voting was not intended to be directly applied to
greyscale images and therefore lacks the handling of some issues appearing in that
context. Besides the question of how to define the input tokens, the propagation of
information from structured to non-structured regions constitutes the main problem.
Propositions in literature primarily focussed on postprocessing the output of tensor
voting.

In [30], the image gradient is used to define the input tokens as already mentioned
in Sect. 2. By following this approach the input tensors are created as pure stick
tensors. Therefore, the other components, i.e. the plate and the ball component, are
equal to zero and the subsequent tensor voting steps only comprise stick voting.

An iterative application of tensor voting with thresholding steps at the begin-
ning of each repetition depicts the basis of the method presented in [16] (cf.
Fig. 1 for exemplary results), which especially aims at extracting curves from
two-dimensional image data. Tokens that are found to provide low saliency are
disregarded in the next iteration. As all tokens are initialised as unoriented tensors,
the first voting step is performed as ball voting to infer preferred directions of the
tokens. The following iterations only focus on stick voting, as the desired structures
are represented by curves. Thereby, the essential idea of the iterative approach is
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Fig. 12 As shown in the upper left part of the figure, the aperture angle �max determines the shape
of the cone of the stick voting field. Using the example of three particular aperture angles, the other
figures illustrate how decreasing �max affects the voting field induced by the stick tensor Sq in the
method proposed in [16]

to decrease the limiting range for the angle �pq, that is the aperture angle �max of
the stick voting field (cf. Fig. 12). This strategy reduces the diffusion of the votes
and enforces the most promising structures in the image. Decreasing the aperture
angle gradually over the iterations is described by the authors as “shifting from an
exploratory to an exploitative mode”. However, validation of this method showed
that, even though good results for the particular application case of extracting
adherens junctions were achieved, the approach still suffers from low accuracy at
T- and X-shaped junctions.

Another strategy is described in [19], which is based on the introduction of
additional voting fields that, rather than promoting their vote inside a given cone,
aim at inhibiting votes at positions outside of that. The authors propose to utilise
Gabor filters for the acquisition of the input tokens as a first step, as these filters
are known for their optimal time-bandwidth product. Following up, there are two
subsequent steps of, first, stick voting to infer directional information on curve
structures and, second, ball voting to refine the regions around occurring junctions,
i.e. close gaps between curve structures. Thereby, each of those steps involves
an inhibitory voting performed prior to the classical (excitatory) tensor voting
procedure. By using inhibitory voting fields, tokens with non-maximal saliency are
expected to be suppressed so that their disturbing influence on the excitatory voting
is minimised. Doing this, a better localisation of the features is expected.

Specific to both propositions, that were described in the previous two paragraphs,
is the fact that they try to compensate the issues of tensor voting by adjusting either
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the input or the output of the classical method. Opposed to that, it would be an
interesting approach to add modifications within the formulation of tensor voting
itself to solve the problem in the source.

As we identified the propagation of information to unstructured regions to be the
main problem in the context of greyscale images, it might be promising if tensor
voting was aware of local structuredness of a region. Therefore we suggest to use
a measure of structuredness that influences the voting steps. As a simple choice
the gradient magnitude could be employed for that purpose. Alternatively, such
a measure could be estimated by utilising both structure information defined in
the classical tensor voting formulation and additional statistical methods. By using
a kind of contextual voting scheme (cf. Sect. 3.1) structuredness could steer the
propagation process of tensor voting. For example, based on the comparison of the
structuredness of voter and receiver (and possibly their neighbourhoods), the decay
function could be adjusted. Similar to the local scale in Sect. 3.3, the new parameter
might also be propagated while other features steer that process.

3.5 Vector- and Tensor-Valued Input Data

Related to the challenge of processing greyscale, i.e. scalar, image data is the
application of tensor voting to vector- or tensor-valued data. Some medical images
obtained by different modalities inherently depict vector-, second-order tensor-
or fourth-order tensor-valued images. For instance Phase-Contrast Cardiovascular
Magnetic Resonance (PC-CMR) used for blood flow analysis produces flow maps
that can be seen as time-resolved vector fields. Moreover Diffusion Tensor Imaging
(DTI) and Diffusion Kurtosis Imaging (DKI) estimate the diffusion along different
directions within every voxel and encode them in second- or fourth-order tensors.

Some possibilities to extend the tensor voting formulation to vector- and tensor-
valued input data in the context of image structure estimation have been suggested
in [30]. In particular the application to colour, i.e. vector-valued, images and
higher-order tensor-valued data was explored. Recalling that the entries of a higher-
order tensor can be associated with the components of a vector, basically two
approaches are proposed which focus on processing vector-valued data. In case of
both, initialisation is performed independently for each channel, providing d tensor
fields of input tokens Tkq, given by

Tkq D Skq C Pkq C Bkq ; (9)

where 1 � k � d and the number of channels is denoted by d .
Following the first approach, the tensor voting formulation in (4) is applied to

each channel separately, i.e.
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T Vk.p/ D
X

q2�.p/;
vDp�q

SV.v;Skq/C PV.v;Pkq/C BV.v;Bkq/ : (10)

Summing up the specific intermediate results yields

T V.p/ D
dX
kD1

wk T Vk.p/ (11)

with wk being a weighting parameter depending on the particular channel. In fact,
in case the image gradient ruk is utilised for initialisation of the k-th channel like
in [30], i.e. Tkq D rukq.rukq/

T D Skq , plate and ball voting can be omitted as for
both components Pkq D Bkq D 0 holds true.

The second option proposed in [30] is to combine the initialised input tokens of
all channels following

Tq D
dX
kD1

wk Tkq ; (12)

where wk again determines the weighting between the channels. Finally the
formulation of tensor voting from (4) is applied to Tq based on the decomposition
into its stick, plate and ball components defined in (3).

The proposed adaptions of the tensor voting method have shown to lead to
better results for image structure estimation compared to the concept of the
structure tensor. Nevertheless, the modifications are based on simplifications and
assumptions that are not fulfilled in all possible cases. Mainly the precondition
that the different channels are independent from each other restricts the number of
possible applications. Therefore, it is relevant to investigate how to process vector
fields with correlated components.

Regarding metric spaces provides the opportunity to measure distances between
elements of such a space. In particular, one is able to define the input tokens directly
from the elements of a vector field. Metric partial derivatives (cf. [1]) could be used
to calculate derivatives with respect to the metric, which one could use to define
features in the same way as e.g. the image gradient in the scalar valued case. Higher-
order tensor fields could be processed by either associating the tensors with a vector
like in [30] and subsequently applying the extension of tensor voting to vector fields,
or by defining the input tokens directly from the tensor elements.

4 Concluding Remarks

After providing a brief insight into the problems faced in the context of medical
image analysis, we have presented the essential ideas of the original formulation of
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tensor voting. Based on that, selected challenges concerning the application of ten-
sor voting in certain situations in medical image analysis were discussed in further
detail. We described inherent issues related to contextual voting, utilising higher-
order tensors within the method’s formulation, performing multiscale analysis and
to handling greyscale and vector- or tensor-valued input data. An overview of the
current research which addresses these issues was given and possible strategies that
are worthwhile to explore were described. Especially, the latter might potentially
improve the results of tensor voting in order to make it applicable to further
applications.

In the end, it must be remarked that along with the particular main objectives of
the presented extensions there still exist secondary objectives. As already mentioned
earlier, an efficient implementation is essential to provide a feasible extension of the
method. This must be regarded when proposing the formulation of a mathematical
solution. Furthermore, medical applications often require several of the extensions at
the same time, which induces a relationship between those. For that reason, one has
to consider that possible extensions solving different issues must still be compatible
with each other, so that they can be used within the same framework.

To conclude, although tensor voting has been proven effective in many appli-
cations, it is far from being a mature technique and, as described in the previous
sections, still comprises several issues to be solved. We think this fact will foster
research in this field in the next few years.
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Visualization of Diffusion Propagator
and Multiple Parameter Diffusion Signal

Olivier Vaillancourt, Maxime Chamberland, Jean-Christophe Houde,
and Maxime Descoteaux

Abstract New advances in MRI technology allow the acquisition of high resolution
diffusion-weighted datasets for multiple parameters such as multiple q-values,
multiple b-values, multiple orientations and multiple diffusion times. These new and
demanding acquisitions go beyond classical diffusion tensor imaging (DTI) and sin-
gle b-value high angular resolution diffusion imaging (HARDI) acquisitions. Recent
studies show that such multiple parameter diffusion can be used to infer axonal
diameter distribution and other biophysical features of the white matter, otherwise
not possible. Hence, this calls for novel visualization techniques to interact with
such complex high-dimensional and high-resolution datasets. To date, there are no
existing visualization techniques to visualize full brain images or fields of diffusion
signal profiles and diffusion propagators reconstructed from them. It is important to
be able to scroll in these images beyond single voxels, just as one would navigate
in a whole brain map of fractional anisotropy extracted from DTI. In this chapter,
we give a review of the existing visualization techniques for the local diffusion
phenomenon and propose alternative visualization techniques for fields of high-
dimensional 3D diffusion profiles. We introduce: (i) a volume rendering approach
and (ii) a diffusion propagator silhouette glyph as a complement to existing DTI and
HARDI visualization techniques. We show that these visualization techniques allow
the real-time exploration of high-dimensional multi-b-value and multi-direction data
such as diffusion spectrum imaging (DSI). Our visualization technique therefore
opens new perspectives for 3D diffusion MRI visualization and interaction.

1 Introduction

New advances in multi-band acquisition [1–3], in compressed sensing technol-
ogy [1, 4], improvements in magnetic resonance (MR) hardware [1, 3], such as
multi-channel head coil allowing fast parallel imaging, and novel diffusion imaging
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sequences allow the acquisition of many diffusion measurements in reasonable
time. The motivation for these demanding acquisitions is to obtain both the radial
and angular part of the diffusion signal at potentially multiple diffusion times.
Hence, going beyond classical diffusion tensor imaging (DTI) and high angular
resolution diffusion imaging (HARDI) tractography applications. In fact, not only
is it nowadays important to densely measure the radial and angular part, but it is
important to do so at multiple echo times (TE) [5–7]. Recent studies show promising
multi-parameter diffusion techniques for axonal diameter distribution estimation
and to study demyelination and abnormal white-matter tissue [6, 8, 9].

To date, there are no available visualization techniques to efficiently visualize a
2D field or full brain of such 3D diffusion images and diffusion propagators. The
diffusion propagator is the full 3D probability distribution function describing the
probability that a water molecule starting at origin will have displaced to a certain
location during the diffusion time. Visualization of these 3D diffusion profiles is
crucial to explore, analyze and understand the data efficiently in order reinforce
hypothesis building and understanding of the data acquisitions, noise and features
present in the data.

In this chapter, we first revisit the theory of the 1D and 3D q-space imaging
and give a brief overview of existing visualization techniques. We then introduce
two alternative ways to visualize fields of 3D diffusion profiles. We propose (i) to
use a direct volume rendering method and (ii) define a new diffusion propagator
silhouette glyph. We show that these visualization techniques allow the real-time
interaction with complex 3D diffusion datasets and open new perspectives in
diffusion MRI exploration. All software solutions are open and publicly available to
the community.

2 Theory

2.1 Diffusion-Weighted Imaging and Q-Space Imaging

It is well-known that the diffusion-weighted signal is tuned with two key parameters:
the direction of the applied diffusion gradients and a b-value acting like an inverse
zoom factor, e.g. the higher the b-value, the smaller the range of the displacement of
molecules observed. While these parameters are still used in clinical applications,
they are inadequate to describe the basis of possible displacements in porous media.
In 1991, Callaghan introduced q, representing the wave vector of displacements and
leading to the dual space of displacement vectors, called q-space [10, 11]: q D ıG�

2�
.

The q wave vector is linked to the width (ı), the magnitude (jGj) and orientation
of the diffusion gradient pulse (G) of the diffusion sequence. The b-value itself is
linked to the square of the q vector and the diffusion time � : b D 4�2jqj2� and
� D .
 � ı

3
/, where 
 is the time between the two diffusion gradient pulses. The

diffusion time thus corresponds to the duration of the observation of the diffusion
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Fig. 1 Figure adapted from Kuchel et al. [12] representing the 1D q-space imaging diffusion
signal attenuation decay curves for water in suspensions of human erythrocytes as a function of
q-value at different hematocrit. The different curves on the graph represent the hematocrit values
in decreasing order from the top of the figure, starting from a value of 93 %, followed by 83, 73,
63, 47, 42, and 25 % at the bottom of the figure. The shaded area represents the range of q values
that are currently achievable on clinical MRI systems

process. This parameter is generally untuned but is the result of the optimization
of the TE under the constraint of the chosen b-value, the hardware characteristics
(maximum amplitude and slew-rate of the gradients and safety considerations). Yet,
in recent AxCaliber and ActiveAx techniques [7, 9], diffusion acquisitions are done
for multiple b-values, multiple gradient orientations as well as multiple TEs to be
sensitive to different underlying microstructural sizes.

A very powerful illustration of the potential of these equations is Fig. 1. We
see the evolution of the diffusion-weighted signal attenuation according to the
magnitude of the q wave vector in a simple media composed of a network
of impermeable cylinders filled with water. The attenuation is measured in the
direction perpendicular to the axis of the cylinders and shows a typical diffraction
phenomenon occurring because of water molecules hitting the boundaries of the
cylinders. This simple 1D q-space imaging experiment illustrates how diffusion
imaging could be used to probe microstructure of porous media and infer infor-
mation about its compartments, shape and size.

One-dimensional q-space imaging was then generalized to 3D q-space imaging.
Under the narrow pulse approximation [13], the relationship between the diffusion
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Fig. 2 Single voxel illustration of the Fourier relationship between measured 3D q-space diffusion
signal (left) and 3D diffusion propagator or displacement probability (right)

Fig. 3 2D slice representation of different q-space sampling schemes used to measure the
diffusion signal and reconstruct the diffusion propagator. (a) Cartesian. (b) Spherical. (c) Radial

signal, E.q/, in q-space and the ensemble average diffusion propagator , P.R/, in
real space, is given by a Fourier transform (FT) relationship [11] such that

P.R/ D
Z

q2<3
E.q/e�2�iq�Rdq; (1)

where E.q/ D S.q/=S0, S.q/ is the diffusion signal measured at position q in q-
space related to the b-value and S0 is the image without diffusion. We denote q D jqj
and q D qu, R D rr, where u and r are 3D unit vectors. Equation (1) suggests a
way to reconstruct the diffusion propagator; acquiring as many diffusion images
E.q/, along as many q-vectors q as possible, before taking a Fourier transform to
obtain the diffusion propagator P.R/. This is illustrated in Fig. 2 and is at the heart
of Diffusion Spectrum Imaging (DSI) [14], which was recently used in several
seminal papers exploring new theories of the grid organization of the brain [15] and
connectomics studies [16, 17].

Equation (1) opens the way to several new acquisition schemes. Figure 3 high-
lights the three most used q-space sampling strategies: (i) sampling the Cartesian
grid, (ii) multiple b-value shells in q-space and (iii) radial q-space lines. Every
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sampling scheme leads to a different reconstruction technique of the propagator
and adapted mathematical tools for it.

2.2 Existing Visualization Techniques for Diffusion Imaging

To the best of our knowledge, there is no technique to visualize a field of diffusion
propagators, or 3D diffusion signal profiles arising from DSI [14], multiple b-value
diffusion-weighted imaging (DWI), and hybrid diffusion imaging (HYDI) [18].
As seen in Fig. 4, some techniques have been proposed at the voxel level, using
(i) projections of isocontours along a certain view [14] (Fig. 4a), (ii) intersecting
orthogonal planes [14] (Fig. 4b), or (iii) multiple concentric shells representing
isosurfaces of the diffusion propagator [19] (Fig. 4c). It is true that a naive
implementation of these techniques would be possible to make them visualize whole
fields and volumes of diffusion data. However, making a useful tool to explore high-
dimensional diffusion MRI data interactively is essential and non-existent at this
time. Multiple-parameter diffusion MRI visualization will become important at the
era of multiple b-value and multiple TE diffusion data acquisitions. This chapter
sets the table for future visualization research.

It is also possible to visualize fields of isosurfaces of a certain radius (Fig. 4b)
or fields of orientation distribution function (ODF) computed from the diffusion
propagator [14, 18–22]. The ODF is computed with the equation:

�.�; '/ D
Z 1
rD0

P.rr; �; '/r2dr; (2)

which describes the diffusion ODF in unit direction r D .�; '/, because computed
as the radial integral of the diffusion propagator . Many other HARDI angular
profiles exist and a very popular one is the fiber ODF reconstructed using spherical
deconvolution techniques [23]. High-order tensor glyphs for HARDI also exist [24–
28] to generalize diffusion tensors from DTI and capture the apparent diffusion
coefficient, the Kurtosis tensor [29] or a generalized tensor [30] from HARDI data.
In all cases, the angular profile is visualized as a spherical function, where the radius
of the sphere is scaled according to the spherical function at each vertex of the sphere
mesh. This is illustrated in Fig. 5, where we see how each vertex point .�; '/ of the
spherical mesh is scaled to radius r D �.�; '/.

Data visualization for diffusion tensor imaging (DTI) is more developed. In DTI,
classic ellipsoidal glyphs are used [31], superquadrics [32, 33], supertoroids [34],
tensor glyphs [35] or more complex glyphs [36], highlighting the linear, planar
or isotropic parts of the diffusion tensor, as seen in Fig. 6. New DTI glyph
developments arise from the need to increase orientation and depth perception
for single glyphs, and improve data inter-relation perception for glyph fields.
As seen in Fig. 6, advances in DTI glyphs provide perceptual cues that reduce
ambiguities caused by precedent models and thus must be considered in the creation
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Fig. 4 Existing techniques to visualize the diffusion propagator and 3D q-space diffusion profile.
All these techniques work only for a single voxel and do not exist to image a full brain or even
a field of diffusion propagators. In (a), different 2D slices of the 3D diffusion signal profile (1st
row) and propagator (2nd row) are seen, as well as an isosurface glyph through the volume. These
images are adapted from [14, Fig. 2]. In (b), the diffusion propagator (also called 3D displacement
distribution) is visualized using three orthogonal planes through its center. Below, an isosurface
glyph at radius 5 of the propagator and a diffusion ODF integrating the propagator over radii.
Images are adapted from [20, Fig. 6]. In (c), multiple concentric shells are seen on top of one
another. Each shell represents an isosurface glyph overlaid with a different opacity and, a colormap
from blue to red for low to high isosurface radii of the propagator. Images are adapted from [19,
Fig. 6]
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Fig. 5 Angular profile visualization with the orientation distribution function (ODF) glyph,
�.�; '/. The radius of a spherical mesh is scaled according to the value of the sphere

Fig. 6 Different prolate and oblate diffusion tensors visualized with classical ellipsoids (top) and
superquadrics (bottom). Superquadrics are adapted from Kindlmann et al. [32] and provide better
perceptual cues than ellipsoids

of new diffusion glyph models beyond DTI. In this regard, the proposed diffusion
propagator silhouette glyphs in this chapter are inspired by Westin et al. [36] and
superquadrics from [33] to allow the visualization of fields of propagators or 3D
diffusion signal profiles.

3 Methods

3.1 Dataset for Visualization

A standard DSI acquisition mimicking the original DSI protocol [14] was done on
a 3 T system (Philips Achieva X, Best, The Netherlands), equipped with a whole
body gradient (40 mT/m and 200 T/m/s) and a 8-channel head coil. Single-shot spin-
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Fig. 7 Axial slice of the b D 0 image (S0 image) and background voxels that are automatically
estimated by the PIESNO algorithm. Here, � D 7:26

echo EPI measurements with isotropic 2 mm spatial resolution and 515 diffusion
measurements were acquired including q-space points of a cubic lattice within the
sphere of five lattice units in radius. TE/TR D 116 ms/14.9 s (including time for
dynamic B0 stabilization), bandwidth in EPI direction D 1,101 Hz, 128�128matrix,
60 axial slices with a parallel imaging (SENSE) factor of 2, delta and Delta were
45.4 and 57.7 ms and maximal b-value of bmax D 6,000 s/mm2. The estimated SNR
in the white matter was approximately 38 for the b D 0 image, as computed by
dividing the mean signal value in the white matter by the noise standard deviation
� estimated using PIESNO [37]. The PIESNO framework [37] is robust to Rician
and non-Central chi distributed noise arising from multiple channel imaging data
reconstructed with SENSE or GRAPPA [37]. Figure 7 shows an axial slice with
background voxels automatically detected by PIESNO and then used to infer the
noise standard deviations � from these voxels. Note that the PIESNO technique
is not meant to do a precise brain extraction or skull strip, but used to identify
voxels that all have the same underlying noise statistics. Hence, it is expected that
the background voxels form a mask with some holes, as shown in [37]. The PIESNO
implementation is publicly available in the Diffusion in Python (www.dipy.org)
library.

3.2 Visualization of a Field of Diffusion Propagators

Suppose we are given a 3D dataset with a 3D profile at each voxel. In our problem,
this 3D profile is represented by discrete samples of E.q/ or P.R/ [Eq. (1)] for
a certain sampling scheme of q-space or real-space. In practice, this means we
have a four-dimensional dataset, X � Y � Z � N , where at each voxel position
.x; y; z/, we have N diffusion measurements. For the rest of this chapter, we will
assume that the N diffusion measurements are correspondent to a fixed Cartesian

www.dipy.org
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grid within each voxel .i; j; k/. Hence, in the following equations, the voxel position
(x, y, z) is omitted for simplicity. This is natural for diffusion images coming from
a DSI acquisitions [14]. In the case of a multiple b-value or HYDI acquisitions,
we assume that the data is first resampled to a fixed Cartesian grid. One can do
this with trilinear interpolation [18] or more advanced techniques now exist using
mathematically sound bases functions such as the 3D-SHORE basis [38], the BFOR
basis [39] and novel interpolation strategies [40].

Given this representation, an isosurface glyph can be defined as the spherical
function at a certain radius from the origin of the 3D profile. Hence, for the diffusion
propagator, the isosurface glyph at radius r is defined in spherical coordinates as

Pr.�; '/ D P.R D r; �; '/; (3)

where 0 < r 6
p
i 2 C j 2 C k2 is within each imaging voxel. Hence, r is a

parameter of the isosurface glyph and can vary between 0 and the maximum
radius prescribed by the Cartesian grid within the voxel. This corresponds to an
isosurface glyph as seen in Fig. 4b[left]. Otherwise, from the diffusion propagator,
we can reconstruct the ODF glyph using Eq. (2) and an upper bound prescribed
by the acquisition grid. This corresponds to an ODF glyph seen in Fig. 4b[right].
Finally, the visualization of Fig. 4c is simply an extension of Eq. (3) for multiple
radii and with different opacity and color for each isosurface. Multiple isosurfaces
from the propagator are overlaid on top of one another. Isosurfaces at small radii
look isotropic (blue) and isosurfaces at larger radii have a much sharper angular
distribution (red) [19].

It is important to note that even though these visualization exists at the single
voxel level, they are computationally heavy and demanding and, to our knowledge,
none of these techniques can be visualized interactively in a 2D region or a full 3D
brain. ODF-glyph visualization has only recently started to be efficiently visualized
in fields using fields of spherical harmonics representations [41–43].

3.3 Direct Volume Rendering

Direct rendering proves to be an efficient way to convey the information contents
of diffusion datasets since, in its simplest form, diffusion data can be seen as a N -
dimensional scalar field, where N is the number of the diffusion measurements.
Direct volume rendering methods differ from the previously mentioned visualiza-
tion techniques by generating images of volumetric diffusion data without explicitly
extracting geometric surfaces from it. The techniques instead use an optical model
to render optical properties such as color and opacity. The general idea behind direct
volume rendering is to accumulate optical properties along each viewing ray to
obtain the final volume image [44].

In our case, the discretized volumetric diffusion data is stored as a single 3D
texture in the graphics processing unit’s (GPU) memory where each voxel of the
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3D texture corresponds to a certain location in the data space of a diffusion volume.
The data value at each voxel of the volume is used as the parameter of a transfer
function that maps diffusion values to optical properties, which can then be used for
rendering [45].

During rendering, any viewing ray going through the volume is sampled n times
at regular intervals. In this work, we choose n to be two times the longest diagonal.
Since the Cartesian grid is 16 � 16 � 16, n D 56, (ceil.2.16

p
3//). The resulting

fragment color C and opacity A for a viewing ray are respectively computed
according to Eq. (4):

C D
nX
iD1

Ci

i�1Y
jD1

.1 � Aj /; A D 1 �
nY

jD1
.1 �Aj /; (4)

where color Ci and opacity Ai are given by a transfer function that approximates
the emission of optical properties between samples i and i C 1 from the data value
at sample i .

Practically, the view-ray sampling scheme is constructed by generating n view-
aligned, 3D texture-mapped slices that serve as sampling planes inside the bounding
box defined by the DW image volume [46]. Equation (4) are evaluated by rendering
the sampling planes in a back to front manner through an iterative compositing
process performed via GPU alpha blending. The alpha blending is configured such
that:

F D .1 �Ai/Fd C Ci ; (5)

where F is the final fragment color after an iteration and Fd the fragment color in
the frame buffer at the beginning of the iteration.

For the rendering of diffusion dataset volumes, the transfer function is a simple
1D lookup texture that maps diffusion volume values to a certain color and alpha
transparency component. The most significant visualization results were obtained
by using a transfer function comprising of narrow color bands centered on low
transparency color gradients. This provides a visualization similar to isosurfaces
with supplementary inter-surface information provided by the color gradients.
Moreover, the user can interactively edit the transfer function texture by adding,
removing or displacing color bands, which provides precise interactive-time control
over where and which isosurfaces are displayed.

Data-wise, direct volume rendering proves to be effective for the visualization of
single propagators or small groups of propagator. It is also one of the few visual-
ization techniques to allow precise rendering of raw diffusion data in the frequency
domain [E(q)], less practicable with classic isosurface polygonal technique due to
the high number of isosurfaces and extensive tessellation required to obtain a similar
level of fidelity. Figure 8 presents examples of frequency domain diffusion profiles,
E.q/, and their spatial domain diffusion propagators, P.R/.
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Fig. 8 Examples of glyphs obtained through direct volume rendering methods. [Left] Untrans-
formed frequency domain DW profiles, E.q/. [Right] The corresponding spatial domain diffusion
propagators. P.R/. Both datasets were normalized before display between their minimum and
maximum values. The innermost blue regions represent values ranging from 1 to 0.65 and the
outermost red region represent values ranging from 0.04 to 0.06

3.4 Diffusion Propagator Silhouette Glyphs

While effective for small datasets or precise data observation, direct volume
rendering performs poorly for large fields of data. This can be explained by the
focus of data field visualization, which concentrates on the observation of visual and
structural tendencies rather than precise propagation information [47]. In this regard,
propagator rendering through direct volume rendering provides poor direction and
shape cues, which renders this visualization technique misadapted for large scale
propagator field visualization. The shift in focus from a single propagator to
propagator field visualization calls for visualization techniques that better describe
data inter-relation.

As a solution to large scale diffusion field visualization, we introduce the
diffusion propagator silhouette (DPS) glyph. The general objective of the silhouette
glyph is to create a geometric glyph that preserves the unique propagator shapes
obtained through diffusion acquisitions while sufficiently reducing the data to
remain efficient in a large scale visualization context. The general glyph shape is
built in such way as to emulate the visual cues provided by biaxial glyphs [32, 48],
which were introduced for DTI visualization and have proven to perform well in
terms of perception evaluation [49].

The glyph construction process is divided in five (5) steps presented in Fig. 9.
Note that these steps were developed mainly for the diffusion propagator P.R/
visualization but could be adapted to any structure. Every step is performed
independently for each propagator of the field:

1. Principal axes extraction. We begin by extracting the principal axes of the
diffusion propagator glyph. The process is similar to eigen decomposition in DTI
but is performed here with a principal component decomposition procedure on
the full diffusion propagator. To do so, we apply a threshold to our propagator
volume and only preserve values that are higher than the given threshold. The
threshold can be modified to obtain different results and will be further detailed in
the next subsection. Once the propagator has been thresholded, the data is stored
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Fig. 9 Depiction of the silhouette glyph construction process. (a) The principal axes of the data
volume are extracted by calculating the eigenvectors and eigenvalues of the thresholded volume.
(b) A principal plane is formed parallel to the two eigenvectors corresponding to the longest
eigenvalues. (c) The silhouette of the glyph is extracted at the precedently set threshold value.
(d) The top half of the glyph geometry is extruded from the glyph silhouette. (e) The bottom half
glyph is generated by mirroring the top half along the principal plane. (f) A side view of the glyph
along with the contributions of measures Cs and Cp in the glyph construction. Note that 1 � Cp
and Cp silhouette scaling factors. (g) Examples of various glyph profiles obtained from a given
silhouette according to different Cs and Cp values

in anM�3matrixX where each row corresponds to the location of a voxel in the
data space of the diffusion propagator. The values contained in each column ofX
are centered on their mean, which creates a mean-subtractedM � 3 data matrix
B . The covariance matrix C is calculated from B such that C D 1

M

P
BTB .

A matrix V of eigenvectors which diagonalizes the covariance matrix C is then
computed such that V �1CV D D whereD is the diagonal matrix of eigenvalues
of C . The column vectors that make V are the three normalized eigenvectors of
C . The elements of the diagonal of matrixD are the corresponding eigenvalues.
The corresponding eigenvalues and eigenvectors are paired together and sorted
in decreasing eigenvalue order.

2. Principal plane construction We create a plane parallel to the first two
eigenvectors of our list which becomes the principal plane of the propagator.
The plane will be used to generate our glyph silhouette in the next step.

3. Silhouette extraction The silhouette is extracted by circularly creating a number
of rays initialized at the center of the propagator volume along the principal plane
and pointing outside of the volume. Each ray is linearly sampled from the center
to the exterior of the volume until the propagator volume value at that point falls
below the threshold specified in step 1. The location of the point along the ray
is kept. When all rays are sampled and all points obtained, the shape formed by
linking the points together in order is the glyph’s silhouette.

4. Glyph geometry creation The objective for this step is to produce a geomet-
ric shape that possesses visual cues akin to those provided by superquadric
glyphs [32], while preserving the general propagation silhouette along the
principal plane. To do so, we exploit two diffusion tensor metrics proposed by
Westin et al. [36] in conjunction with the previously extracted silhouette to define
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our silhouette glyph geometry. These metrics use the ordered eigenvalues �1, �2
and �3 obtained in step 1. such that �1 > �2 > �3. Westin et al. [36] defines
three normalized metrics that can be calculated from the eigenvalues, the Planar
measure Cp , the Linear measure Cl and the Spherical measure Cs , defined as

Cl D �1 � �2

�1 C �2 C �3
; Cp D 2.�2 � �3/

�1 C �2 C �3
; Cs D 3�3

�1 C �2 C �3
: (6)

For silhouette glyphs, only the Cp and Cs values are used. The linear measure
Cl is left aside since the linearity of a given glyph is intrinsically defined in
it’s silhouette. In fact, Cl depends on �1 and �2, which correspond to the
two eigenvectors used to create the principal plane on which the silhouette is
defined. Once Cs and Cp have been computed, the glyph geometry is obtained
by extruding the silhouette of the propagator on a straight extrusion path in
the direction of the third eigenvector, on a distance corresponding to �3. The
word extrusion comes from geology and basically means that we are carving
the glyph’s geometry using the diffusion propagator values. The extrusion is a
process used to create objects of a fixed cross-sectional profile. This process has
the ability to create very complex cross-sections. Each point on the extrusion
path is defined by a position and a silhouette scale for that given position. The
relation between the position t along the third eigenvector and the scale s.t/ at
that position for the top half of a glyph is given by the piecewise function Eq. (7)
and illustrated in Fig. 9f:

s.t/ D
8<
:
1 W 0 6 t 6 .1 � Cs/�3=2
A W .1 � Cs/�3=2 < t 6 �3=2

0 W otherwise;
(7)

where

A D
p
1 � .t=.�3.1 � .1 � Cs=2////2.1 � Cp/C Cp: (8)

5. Bottom half and shading The bottom half of the glyph is a simple symmetry
of the top half along the principal plane of the propagator. The resulting glyph is
illuminated and colored using simple phong shading.

4 Results

Figure 10 presents three general propagator cases visualized through the classic
ODF glyph, the direct volume rendering technique and the silhouette glyph. A single
fiber voxel from the corpus callosum (row 1), a crossing fiber voxel between corpus
callosum and corticospinal tract (row 2) and a voxel from the ventricles (row 3) were
manually extracted from the DSI dataset.
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ODF glyph Direct Volume Rendering Silhouette glyph

Single fiber

Fiber crossing

Isotropic diffusion

Fig. 10 Comparison of diffusion cases with an existing visualization method, ODF glyphs, and the
proposed DWI visualization methods, direct volume rendering and diffusion propagator silhouette
glyphs. The DPS glyphs are obtained with a threshold set at 0.035 and the ODF glyphs are obtained
by integrating from a radius of 2 to a radius of 6 in data space

As previously stated, the distribution of diffusion around the propagator can
be easily observed through direct volume rendering. However, it is obvious that
the general shape perpendicular to the longest axis is better conveyed through the
silhouette glyph, as shown with the “single fiber” case where the perpendicular plane
around the primary axis is only apparent through the glyph visualization, and can
hardly be seen with direct volume rendering of ODF rendering. This is a feature
that resembles the superquadrics tensor visualization of Fig. 6. Looking at the ODF
glyph only, one could be misled in believing that the signal is purely anisotropic and
very focused around the principal direction of diffusion. However, it is quite clear
from volume rendering and the silhouette glyph that there is diffusion propagation
orthogonal to the principal direction.

The “crossing fibers” example (row 2) is also interesting in that the direct volume
rendering clearly shows that the information relevant to the crossing visualization is
located in the lower (outermost) propagator values. It can also be appreciated that
the diffusivity along each of the fiber population is different and better appreciated
in the volume rendering or silhouette glyph as opposed to the ODF glyph, where
both fiber population seem to have the same diffusion properties. We have also
highlighted with a black rectangle regions of 3-way crossings in Fig. 11. Here, the
glyphs have a cuboid appearance with corners marking the 3-way crossings. Note
the difference between the ODF glyph that shows a very different 3-way crossing
between the corpus callosum (the red peak), corticospinal tract (the blue peak) and
superior longitudinal fasciculus (the green peak coming out from the page).
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Fig. 11 Visualization of an experimental DWI dataset with an existing visualization techniques
and the two techniques introduced in this paper. (Top) ODF glyph rendering of the DWI
propagators. (Middle) DPS glyph rendering of the DWI propagator with a threshold set at 0.035.
The glyph coloring is obtained from an FA map. (Bottom) The same dataset explored at large scale
using direct volume rendering. In the middle panel, some glyphs with 3-way crossings have been
identified with a black rectangle. These correspond to the crossings between corpus callosum,
corticospinal tract and superior longitudinal fasciculus
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Finally, isotropic diffusions are poorly represented through ODF glyphs as they
are subject to a normalization and noise accumulation that negatively impact on
the resulting shape. Direct volume rendering and silhouette glyphs however both
successfully and clearly display isotropic glyphs which makes them effective in that
regard.

Figure 11 shows a comparison of ODF rendering, silhouette glyphs rendering and
direct volume rendering of a propagator field. The depicted field is a coronal slice
taken in the centrum semiovale. The figure shows the exact same dataset rendered
with ODFs, silhouette glyphs and direct volume rendering. The strength of the ODF
visualization is apparent in that the brain fiber crossings and primary directions are
obvious and clearly displayed. However, the quality of the propagator representation
is dramatically reduced as the anisotropy of the propagator decreases. Examples of
this can be seen in the upper left part of the dataset. The silhouette glyph clearly
renders the isotropic structures in the gray matter and ventricles, while the same
structures are hardly visible through ODF rendering. The same goes for the lower
left part of the dataset where the general direction of anisotropic (red) silhouette
glyphs are clearly visible but fail to be correctly displayed by ODF glyphs at the
same location. As for direct volume rendering, some of the more obvious structures
such as the voxels in the corpus callosum remain visible but are far less obvious and
require a greater focus to be seen when compared to the glyph rendering techniques.
Finally, it is to be observed that isotropy is equally conveyed through direct volume
rendering as it is with silhouette glyph rendering.

Both visualization techniques were implemented using OpenGL and rendered
at an interactive rate of 10–15 frames per second on consumer-grade computer
hardware without placing any particular focus on rendering performances. For these
tests, we used a GPU card Geforce GTX 295, an Intel Core i7 870 (2.93 GHz
4x) CPU, 8 Gb of ram, screen size of 1920�1200 (viewport size varied based
on visualization software’s window size, screenshots were taken at 1920�1200
resolution and cropped) and number of glyphs of 16,384 corresponding to a full
128�128 slice. Moreover, the user can switch between direct volume rendering
silhouette glyphs back-and-forth in real-time.

5 Discussion

In this chapter, we have reviewed the existing visualization techniques and have
proposed two alternatives to diffusion data visualization. Our presented methods
are not proposed to replace current visualization techniques but can serve as a
complement when combined. Creating scalar maps from derived information from
the diffusion signal [18, 38] such as anisotropy indices, diffusivity, moments or
higher-order features of the diffusion signal or propagator remain important to
explore the full brain and can serve as scalar images to put behind ODFs, volumes
or silhouette glyphs.
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5.1 Preprocessing

During our development, data preprocessing had a clear impact on the obtained
visualization. The influence of filtering windows, data normalization, zero padding
and noise removal could be further investigated to see their impact on the final
renderings. Several recent q-space interpolation techniques have also been proposed
which could serve the visualization purpose [40].

Moreover, for the silhouette glyph, we have chosen to implement a PCA to
determine the principal plane on which the data lived. Note that we have also tried
to use a first DTI fit from the b-value images lower than b D 1;500 s/mm2, as used
in the novel MAP-MRI technique [38]. Results were similar and we thus avoided
adding a DTI fit in the procedure and preferred using the full q-space data available.

5.2 Threshold Adjustment for Silhouettes

The visualization of diffusion propagators through direct volume rendering shows
that most of the directional information is contained within the lower valued parts of
the propagator, that is, the propagation data located near the outermost parts of the
volume. The innermost values of the diffusion propagator mostly appear isotropic
and thus provide little visual information for the visualization of large propagator
fields.

As a result, the selection of a correct threshold has a definite impact on the
appearance of the generated glyphs. Lower thresholds will usually provide glyphs
with greater directional cues and will expose more complex diffusion structures. In
opposition, a higher valued threshold produces glyph fields that possess a greater
visual uniformity but provide a smaller amount of visual directional cues. Complex
diffusion structures can hardly be seen with a high threshold. Figure 12 displays

Fig. 12 Changing the threshold value has an observable effect on the resulting glyph. In the
above images, the propagator volumes were independently normalized between their minimum
and maximum values. [Left] Silhouette glyph field with a threshold value set at 2� . [Right] The
same DPS glyph field with a threshold value of �
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a comparison between two different threshold values resulting in a qualitatively
visually different glyph fields.

In this work, we have set the threshold as a function of the dataset’s noise
standard deviation, � , as automatically computed from the PIESNO framework [37].
In a sense, � serves as a data-driven way to define the threshold. We found that
a threshold of � gave best visual cues for the silhouette glyphs. However, the �
remains a tunable parameter for users who require precise adjustment and other
automatic selection could be investigated in the future.

5.3 Beyond Fiber Crossings Visualization

The “crossing fibers” problem has received a lot of attention and research since the
invention of DTI. As such, visualization of crossing fibers is most visually appealing
using sharp ODF glyphs or even just the extracted multiple directions from the
ODFs, as seen in Fig. 13. Principal directions, also called peaks, are especially
useful for fiber tractography and for orientation representation of the white matter
architecture [43].

Fig. 13 Visualization a field of sharp fiber ODF glyphs using the extracted principal peaks, as
powered by the FiberNavigator (http://scilus.github.io/fibernavigator/). Peaks are colored using the
RGB (red-green-blue), left-right, anterior-posterior, inferior-superior convention [43]

http://scilus.github.io/fibernavigator/
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The field of diffusion MRI is currently going beyond the crossing fiber problem.
Models now incorporate dispersion of fibers [50, 51], branching and polarity of local
representations [52], and for these, the volume rendering and silhouette glyphs could
be a better alternative for visualization. As seen in Fig. 10, differences in diffusion
properties of each fiber population and diffusion outside the principle axes diffusion
can be better appreciated using a glyph or volume rendering than just the orientation.

5.4 Volume Rendering Versus Glyphs

Direct volume rendering and diffusion propagator silhouette glyphs both provide
different visualization results in their own respect. In practice, a diffusion visualiza-
tion system should allow the user to rapidly switch between direct volume rendering,
diffusion propagator silhouette glyph rendering, ODFs and peaks to get the best of
each approach. As previously explained, direct volume rendering is effective for
the visualization of single propagators or small groups of propagators, when the
study of the propagation distribution is the visualization focus. Conversely, diffusion
propagator silhouette glyphs offer simplified visual information that is well suited
for large dataset exploration as it places the emphasis on the general orientation
features of the propagator while retaining its general shape.

5.5 Multiple TEs

The recent boom of diffusion microstructure techniques developed to estimate
axonal diameter distributions and other such bio-physical features add the require-
ments of having multiple diffusion acquisitions at different TEs. This adds an extra
dimension to diffusion signal profile visualization. Not only do we have a 3D profile
at each voxel, but now, a 3D diffusion profile in time. Our current implementation
only supports the direct volume rendering option. One can load multiple 3D profiles
at different times and switch back and forth between them. In the near future,
we want to add a continuation scroller to navigate through the time dimension.
However, this remains a hard open question that will require a solution to interpolate
q-space data acquired at different TE’s. As the field of diffusion microstructure
grows, this can serve as an important development to be made to go beyond 1D
q-space plots as seen in Fig. 1 in different orientations to have a full 3D solution.

6 Conclusion

In this chapter, we have given a brief overview of visualization techniques from
diffusion signal and diffusion propagator rendering. We have described two new
alternative methods for diffusion visualization which allows large scale inspection of
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diffusion data in a real-time fashion. With respect to the volumic nature of diffusion
data, we have proposed a direct volume rendering method for the visualization of
diffusion profiles and a new diffusion propagator silhouette glyph adapted for diffu-
sion propagator rendering. As multiple b-value imaging and imaging at different
diffusion times has recently been propulsed by the many connectomics projects
in the world and existing developments in diffusion microstructure imaging, the
proposed diffusion signal profiles and diffusion propagator can serve visualization
of all these novel multi-parameter diffusion datasets.
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Visual Knowledge Discovery for Diffusion
Kurtosis Datasets of the Human Brain

Sujal Bista, Jiachen Zhuo, Rao P. Gullapalli, and Amitabh Varshney

Abstract Classification and visualization of structures in the human brain provide
vital information to physicians who examine patients suffering from brain diseases
and injuries. In particular, this information is used to recommend treatment to
prevent further degeneration of the brain. Diffusion kurtosis imaging (DKI) is a
new magnetic resonance imaging technique that is rapidly gaining broad interest
in the medical imaging community, due to its ability to provide intricate details
on the underlying microstructural characteristics of the whole brain. DKI produces
a fourth-order tensor at every voxel of the imaged volume; unlike traditional
diffusion tensor imaging (DTI), DKI measures the non-Gaussian property of water
diffusion in biological tissues. It has shown promising results in studies on changes
in grey matter and mild traumatic brain injury, a particularly difficult form of
TBI to diagnose. In this paper, we use DKI imaging and report our results of
the classification and visualization of various tissue types, diseases, and injuries.
We evaluate segmentation performed using various clustering algorithms on dif-
ferent segmentation strategies including fusion of diffusion and kurtosis tensors.
We compare our result to the well-known MRI segmentation technique based
on Magnetization-Prepared Rapid Acquisition with Gradient Echo (MPRAGE)
imaging.
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1 Introduction

Traumatic brain injury (TBI), caused by blows to the head, is a leading cause of
death and disabilities. In 2010, the United States alone, TBI resulted in 2.5 million
hospitalizations and 50,000 deaths [5]; Survivors often face lifelong disabilities.
Medical professionals examine, diagnose, and treat these injuries; Once injury
occurs, a major focus is on how to prevent further extensive degeneration of the
brain. The examination can significantly impact recovery, as subsequent diagnosis
and treatment depend on it. Different types of medical imaging modalities, including
magnetic resonance imaging (MRI), are used for examining TBI injuries.

MRI is a non-invasive imaging device that uses powerful magnetic fields to
image the diffusion patterns in biological tissues. Diffusion Tensor Imaging (DTI)
is an increasingly popular MRI technique that detects diffusion of water to infer
underlying tissue microstructure. DTI assumes that the water diffusion patterns
follow a Gaussian distribution; it can effectively measure the dominant direction
of water diffusion in tissues, and is widely used in studying white matter tracts in
the brain. However, the Gaussian distribution assumption of the DTI fails whenever
diffusion is restricted by injury or diseases. To address this problem, Jensen and
Helpern [15] introduced diffusion kurtosis imaging (DKI), which measures the
degree of the diffusional non-Gaussianity of water molecules in biological tissues.
DKI has gained attention in the medical imaging community because of its ability to
show a more detailed structure of underlying tissues and because it shows promise
in detecting micro-structural tissue changes caused by mild traumatic brain injuries
and other neurological diseases [43]. In DKI, second-order diffusion tensors (DT)
and fourth-order kurtosis tensors (KT) are calculated. These tensors are spatio-
angular fields that characterize the underlying imaged tissue, as shown in Fig. 1.
Both DT and KT capture properties of underlying tissues that can be used to classify
the whole brain by different tissue types. In both of these datasets, each sample point
can be represented by a unique shape defined by its directional data. The per-sample
shape of a spatio-angular field in KT is highly irregular and complicated compared
with the DT, because KT is capable of estimating finer properties of the imaged
tissue.

Classification and visualization of structures in the human brain provides vital
information to medical professionals examining patients who suffer from brain
diseases and injuries. Detailed information on the imaged tissues can help these
professionals decide what actions to take to prevent further degeneration of the
brain. Tissue segmentation is also important in studying the structure and function
of the brain. There are numerous medical literature reviews that detail the classi-
fication of the brain’s structure in brain fusing data from either single or multiple
imaging techniques, such as DTI and high-angular-resolution diffusion imaging
(HARDI) [12, 24, 28, 29, 33, 34]. Most methods rely on utilizing a statistical
summarization of the datasets, such as the mean value, by identifying appropriate
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Fig. 1 The diffusion tensor (DT) and kurtosis tensors (KT) visualized using glyph overlays. Each
shape shows properties of the underlying tissue. The diffusion values are high and isotropic in the
cerebral spinal fluid (CSF) and gray matter (GM) regions, whereas they are low and anisotropic
in the white matter (WM). The kurtosis values are high around the injury and the WM region. (a)
Diffusion tensor. (b) Kurtosis tensor

ranges of various tissue types. This requires systematic domain knowledge and is
error-prone because initial tissue selection used for training determines the quality of
the output of classification. Also, it is difficult to find tissues for rare diseases. To our
knowledge, no work has been done that performs segmentation by fusing the per-
sample shapes of Gaussian and non-Gaussian diffusion estimated by diffusion and
kurtosis tensors in DKI. In this paper, we report our classification and visualization
results from DKI tensors based on tissue types, diseases, and injuries. We evaluate
different segmentation strategies, and compare them to the latest MRI segmentation
technique based on magnetization prepared rapid acquisition with gradient echo
(MPRAGE) imaging. We also carry out efficient visualization of these segments
using spherical harmonics lighting functions, to facilitate insights into the micro-
structural properties of the imaged tissue volume.

2 Related Work

Numerous studies and literature reviews have been conducted on the segmentation
and visualization of brain tissues using various types of MRI.
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Prčkovska et al. [33] use high-angular-resolution diffusion imaging anisotropy
measures to classify different diffusion models (isotropic, Gaussian, and non-
Gaussian). Their approach requires an estimation of threshold intervals to perform
classification, which can be complex and requires a advanced level of domain
knowledge.

In another study, Prčkovska et al. [34] perform semi-automatic human-assisted
classification of diffusion structures to separate different diffusion models, such as
isotropic, anisotropic Gaussian, and non-Gaussian areas. A domain expert selects
regions for all three different tissue types. Then the distribution is calculated and
used to perform segmentation. Researchers also introduce a hybrid approach to
visualize the structure of diffusion. Ellipsoids are used to display a simple diffusion
shape, and ray-traced spherical harmonics glyphs display the complex structures
based on the segmentation result.

Hasan et al. [12] use DTI to segment and partition cerebrospinal fluid (CSF), grey
matter (GM) and white matter (WM). In their method, domain experts manually
select 50 regions-of-interest for each tissue type. These regions are then used
to create a tissue classification threshold used in a multidimensional supervised
clustering procedure to segment the whole brain into three tissue types.

Liu et al. [28] use multiple domain-based attributes, such as the apparent
diffusion coefficient and fractional anisotropy, to automatically segment CSF, GM,
and WM. The apparent diffusion coefficient and eigenvectors from the diffusion
tensor are used to separate CSF from other regions, such as GM and WM, then the
fractional anisotropy value is employed to separate GM and WM. An expectation-
maximization algorithm combined with a hidden Markov random field model is
used to perform automatic segmentation.

Recently, constrained spherical deconvolution has been deployed on diffusion-
weighted datasets to classify various tissue types and find fiber-track orienta-
tions [18, 35]. Jeurissen et al. [18] performed constrained spherical deconvolution
on multi-shell diffusion weighted data with high angular resolution. Using a multi-
shell multi-tissue model, they were directly able to classify CSF, GM, and WM. In
this paper, we focus on DT and KT to perform classification. These datasets are
acquired using significantly lower angular resolution readings compared to other
diffusion imaging techniques such as high angular resolution diffusion imaging.

A few studies have looked into the classification and visualization aspects of
DKI data. Lu et al. [29] use the spherical harmonics basis to analyze DKI datasets.
Researchers limit the harmonic analysis to three bands (0, 2, and 4) and used
coefficient summation (C0, C2, and C4) to describe the rotationally invariant
property of each band. Then WM, GM, and fiber crossings are segmented based
on the fractional anisotropy and C0 coefficient only, where C0 is a directionally-
averaged apparent kurtosis coefficient equivalent to the mean kurtosis. In their paper,
C0 values were 0:74 ˙ 0:03, 1:09 ˙ 0:01, and 0:84 ˙ 0:02 for GM, WM, and
thalamus, respectively. It is interesting to note that, in their segmentation, they
did not use C2 and C4, which are associated with a higher frequency signal in
the rotationally invariant spherical harmonics coefficient. This higher frequency
information has not yet been fully explored. In this paper, we classify brain tissues
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using the per-voxel shapes of DT and KT, which provides a better grouping of
similar structures and also enhances the likelihood of detecting anomalies.

Volume rendering is widely used to visualize MRI datasets. A considerable
amount of work has been done to improve visualization by incorporating advanced
shading techniques, multiple depth cues, transfer functions, multiple lighting, and
global illumination [6, 13, 14, 22, 23, 25–27, 30, 36, 39, 41, 42]. These studies
on volume rendering contain significant ways to improve the visual quality of the
volume being displayed. This work on visualization builds on our previous work [2],
in which we used spherical harmonics lighting functions to facilitate a more
meaningful visualization of dense spatio-angular datasets. In this work, we extend
this method to support automatic segmentation and visualization of the entire brain.

3 Overview

The proposed method takes spatio-angular fields (such as DT and KT) as inputs and
converts them into a spherical harmonics representation using spherical harmonics
basis functions. Tissues are then classified using the spherical harmonics represen-
tation of both the DT and DK. Depending on the task and the complexity of the
field, we choose to configure either single or multiple spherical harmonics lighting
functions for visualization. Finally, by combining classified segments, the dynamic
spherical harmonics lighting functions, and the input spatio-angular field, we render
the image. We provide two modes to view the final output using either planar or
volume rendering. An overview of our approach is shown in Fig. 2.

Fig. 2 An overview of our proposed method. First, a large number of diffusional readings are
recorded by MRI. Then, we compute tensors and other domain-specific attributes. Next, the tensors
are converted to a spherical harmonic form. After that, we use spherical harmonics approximation
of DT and KT to classify various tissue types. Finally, by combining the dynamic spherical
harmonics lighting functions and the segmented data, the image is rendered. The output is either a
planar-rendered image, a volume-rendered image, or both
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4 Background

4.1 Diffusion Tensor Imaging

DTI assumes a Gaussian diffusion process of water in the imaged tissue. A Taylor
series expansion [19] is used to approximate the diffusion-weighted signal for each
gradient direction, expressed by :

ln ŒS .g; b/� D ln ŒS0� � bDapp .g/CO
�
b2
�
;

Dapp .g/ D
3X
iD1

3X
jD1

gigjDij ;

where g is the diffusion gradient, b is the MRI acquisition parameter b-value
expressed in s/mm2, S0 is the signal without diffusion weighting,Dij is the element
of the diffusion tensor, and Dapp is the apparent diffusion coefficient. The diffusion
tensor, which is a second-order symmetric tensor with six independent elements, is
calculated for each voxel. By using eigen-decomposition of the diffusion tensor we
compute the dominant diffusion directions.

4.2 Diffusion Kurtosis Imaging

DKI measures the non-Gaussian property of water diffusion. The traditional DTI
technique estimates the tensor, based on the assumption that water diffusion patterns
follow a Gaussian distribution. This is true for longer diffusion time scales or when
there are no obstructions. However, measuring diffusion over shorter time periods
causes the local diffusion to adhere to the tissue micro-environment. This diffusion
heterogeneity gives rise to a non-Gaussian probability distribution function for
water diffusion; a limitation for traditional DTI, which assumes diffusion to have
Gaussian distribution [16]. To measure the degree of the diffusional non-Gaussianity
of water molecules in the imaged tissues, Jensen and Helpern [15] introduced DKI.
Compared to DTI, data acquisition needs are much larger in DKI; the kurtosis
tensor is often computed using data from 30 diffusional directions using at least
two non-zero diffusion sensitivities. Common b-values used in DKI acquisition
are 0, 1,000, and 2,000 s/mm2, and the scan time can be as long as 10 min.
While other forms of higher-order diffusion-weighted imaging techniques exist,
such as high-angular-resolution diffusion imaging or diffusion spectrum imaging,
they are less clinically practical because they take a considerably longer time to
scan as they require a higher number of diffusional direction and b-values. The
Taylor series equation in Sect. 4.1 is further expanded to measure the non-Gaussian
property of the water diffusion [15, 16]. A fourth-order diffusion kurtosis tensor is
calculated from the diffusional measurements in DKI using the equation described
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by Jensen and Halpern [16],
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where MD is the mean diffusivity, Kapp is the apparent kurtosis, and Wijkl is the
element of kurtosis tensor. The kurtosis tensor is a symmetric fourth-order tensor
with 15 independent elements. In full form, the signal in each gradient direction is
described by
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4.3 Spherical Harmonics

We approximate DT and KT using spherical harmonics basis functions that are later
used for classification and visualization. Spherical harmonics are basis functions
used to represent and reconstruct any function on the surface of a unit sphere.
Spherical harmonics are defined over the surface of a sphere in the same way Fourier
functions are defined on a circle [32]. In computer graphics and visualization,
spherical harmonics are used for lighting scenes with low frequency lights, for
subsurface scattering and for global illumination, because they can inexpensively
approximate a computationally-complex physical process [4, 10, 20, 36–38, 42].

Spherical harmonics are ortho-normal functions defined by

Y ml .�; �/ D .�1/m
s
2l C 1

4�

.l �m/Š

.l Cm/Š
Pm
l .cos �/eim�;

where l is the band index,m is the order, Pm
l is an associated Legendre polynomial,

and .�; �/ is the representation of the direction vector in the spherical coordinate.
We use real-valued spherical harmonics because the values used to define spatio-
angular fields are positive and real.

To convert the function f .�; �/ into a spherical harmonics basis, spherical
harmonics coefficients aml are approximated using the equation

aml D
Z
s

f .�; �/Y ml .�; �/ds;
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A benefit of using spherical harmonics representation is that integrating two
functions over the sphere can be estimated in an inexpensive way by performing
a dot product of their spherical harmonics coefficients [3, 20].

Z
U.s/ � V.s/ds D

l2X
iD0

ui .s/ � vi .s/;

where U and V are two functions defined on the surface of a sphere, and u.s/ and
v.s/ are their spherical harmonics coefficients.

5 Image Acquisition and Pre-processing

The 3T Siemens Tim Trio Scanner (Siemens Medical Solutions; Erlangen, Ger-
many) was used to perform imaging. Diffusion weighted images were obtained
with b D 1;000; 2;000 s=mm2 in 30 directions, together with 4 b0 images, in-
plane resolution D 2:7mm2, echo time/time repetition D 101ms=6;000ms at a
slice thickness of 2:7mm with two averages. DKI reconstruction was carried out on
each voxel using a MATLAB program, as described by Zhuo et al. [43]. There are
also newer alternative methods for computing kurtosis tensors by Ghosh et al. [9]
and Tax et al. [40].

Once diffusion and kurtosis tensors are computed, we represent the shape of these
tensors by using spherical harmonics approximation. From the diffusion and the
kurtosis tensors, we use Dapp andKapp to compute the shapes of Gaussian and non-
Gaussian diffusion. Each shape is then represented in the spherical harmonics basis
by computing spherical harmonics coefficients aml . Based on the complexity of the
shape, the number of coefficients used in spherical harmonics representation varies.
The shape of the diffusion tensor is simpler than the kurtosis tensor. As described
by Lu et al. [29], we used bands 1, 3, and 5 to represent the shape of the symmetric
kurtosis tensor. This can be done using 15 spherical harmonics coefficients (there
are 25 coefficients in total, but bands 2 and 4 are not used). Bands .>5/ can be used
too; however, high frequency data contains more noise, as discussed in [29]. These
spherical harmonics coefficients capture the shape, magnitude, and direction of the
tensors, which are used for segmentation and visualization.

5.1 Classification Reference Datasets

To compare various classification approaches, we perform tissue classification using
3D T1-weighted MPRAGE images, which is commonly used for brain tissue
segmentation. These images were segmented to CSF, GM and WM using the SPM8
software package [1], and they served as the ground truth. The tissue masks were
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then aligned and under sampled to the DKI space through co-registration of the
fractional anisotropy map and the WM tissue probability map, also through SPM8.
As an initial step, we classify the DKI derived maps to different tissue types. It
should be noted that T1-weighted MPRAGE images may not always be available,
and that the image distortion inherent in diffusion weighted image may have an
effect on co-registration, leading to inaccurate tissue classification. We demonstrate
a method that can classify the tissue type reliably based on the DKI data.

6 Classification

Classifying spherical harmonics volume fields into smaller sub-regions is beneficial
for both visualization and analysis. Local features can be enhanced or suppressed as
desired, lighting functions can be optimized if the classification captures complexity
of the spherical harmonics field, and grouping simplifies the analysis process
because it can reflect domain-specific information. While there are several ways
to accomplish segmentation in volume rendering, a popular method is to examine
the intensity-gradient histogram to find the edge boundaries in order to segment
different regions. In practice, there are different types of soft tissues in an image,
and the boundaries may not be clearly defined. Instead of scalar values, our dataset
contains irregular multi-dimensional geometric shapes. Furthermore, these datasets
come with multiple attributes, which must be examined carefully in order to do the
segmentation. This process can be very difficult. To classify the dataset, we examine
two approaches: domain specific classification and shape based classification.

6.1 Domain Specific Classification

In DKI, several domain-specific attributes having biological relevance are com-
puted. They are mean diffusion, fractional anisotropy, and mean kurtosis. To
apply domain-specific classification, we apply the popular clustering algorithms K-
means [11] and Gaussian mixture models (GMM) [31] on the mean kurtosis and
mean diffusion. The relation between the mean diffusion and kurtosis has been
explored by Jensen et al. [17]. They both capture properties of the imaged tissue.
Here we use K-means and GMM to automatically cluster the dataset into segments.
The results of GMM-based classification can be seen in Fig. 3.

6.2 Shape-Based Classification

We use the shape of the DT/KT tensor at each voxel to perform shape based
classification across the entire volume. When comparing the shape of tensors, we
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Fig. 3 The Gaussian mixture model is applied to mean diffusion and mean kurtosis data shown
in (a). Three means are used to classify CSF, GM, and WM. We compare segmentation performed
using MPRAGE (b) with GMM based segmentation performed using mean diffusion (MD) and
mean kurtosis (MK) images (c)

consider two components: structure of the tensors and their orientation. Here we
focus on just the shape by using the rotationally-invariant spherical harmonics form
for classification. The rotationally invariant spherical harmonics form is computed
by performing the summation of all the spherical harmonic coefficients within
the same band as described by Funkhouser et al. [8] and Kazhdan et al. [21].
Coefficients of the spherical function become

R.f .�; �// D fkf0.�; �/k ; kf1.�; �/k ; : : : :; kf1.�; �/kg

where

fl .�; �/ D
lX

mD�l
aml Y

m
l .�; �/

Shape-based classification is a general approach that can be applied to any spatio-
angular field. To categorize data into segments, clustering-based algorithms, K-
means [11] and GMM are applied to the rotationally-invariant spherical harmonics
attribute. The application of these clustering algorithms on shape-based attributes
will group shapes together based on centroids or density. To apply these algorithms,
we first adjust the rotationally invariant spherical harmonics representation of each
dataset so that they are centered on the origin and have a unit standard deviation.

R
0

l D Rl��fR0;R1;:::;RLg

�fR0;R1;:::;RLg

, where L is total number of bands used. This normalization

is an important step as different datasets, such as rotationally-invariant spherical
harmonics approximation of diffusion and kurtosis tensors, might have different
data distribution. If one dataset is more compact than another, the properties of
the compact dataset might not be well represented after segmentation. An extra
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Fig. 4 We compare segmentation performed using MPRAGE image (a) with segmentation
performed by applying K-means (with k D 3) on a rotationally-invariant spherical harmonics
approximation of diffusion and kurtosis tensors (b). Grey, green, and blue represent CSF, GM, and
WM respectively. In (c)–(e), we show the degree of membership of each pixel to different segments

weighting variable can also be applied depending on the need. Once the data is
adjusted, we apply the clustering algorithms.

We have explored shape-based classification to segment various tissue types. For
the KT dataset, we have three coefficients .R

0

0dk
; R

0

2dk
; R

0

4dk
/ for each voxel from the

rotationally-invariant spherical harmonics attribute. For the DT and KT dataset we
have six coefficients .R

0

0dt
; R

0

2dt
; R

0

4dt
; R

0

0dk
; R

0

2dk
; R

0

4dk
/, three coefficients each for

the diffusion and kurtosis tensors. The shape of the diffusion tensor characterizes the
underlying Gaussian diffusion profile, whereas the kurtosis tensor describes the non-
Gaussian diffusion profile. We cluster the dataset into three different segments and
compare the result with the tissue classification performed on an MPRAGE image
based on data from eight normal subjects. In Fig. 4, we show tissue classification
performed on an MPRAGE image (Fig. 4a) along with segmentation performed by
applying K-means (with k D 3) on the rotationally-invariant spherical harmonics
approximation of the combined DT/KT dataset (Fig. 4b). In Fig. 4c–e we show
degree of membership of each pixel with its segment.

In the study by Falangola et al. [7], three distinct peaks for CSF, GM, and WM
were observed in the MK histogram around 0:45, 0:75, and 1:25 respectively in the
frontal lobe white matter. We compare of segmentation result by apply the K-means
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Fig. 5 Histogram plot of mean kurtosis (MK) for MPRAGE image and segmentation performed
using K-means algorithm (with k D 3) on the rotationally invariant form of the spherical
harmonics approximation of diffusion and kurtosis tensors. The peaks from both MPRAGE and
the DT/KT segmentation are aligned with each other, which shows a good match between the two
segmentation methods

algorithm (with k D 3) to the rotationally-invariant form of the spherical harmonics
approximation of diffusion and kurtosis with MPRAGE-based segmentation.

We apply segmentation on 8 MRIs of healthy subjects and plot the combined
histogram values of mean kurtosis (MK) for each segment, the results of which
are shown in Fig. 5. The peaks of the histogram are aligned with each other. More
interestingly, the MK histogram indicates a narrow distribution of MK values of all
three tissue types, reflective of likely more accurate tissue classification using the
shape based method.

The full result of classification is shown in Table 1. K-means applied on
combined DT and KT performs best with 77 % match with the MPRAGE tissue
classification. GMM produces good results when the CSF, GM, and WM have
distinct density peaks. However, the distribution of each tissue type varies in each
MRI and sometimes causes GMM to select a distribution that does not correspond to
CSF, GM or WM. As the K-means algorithm searches for centroids and is geometric
in nature, it provided better classification compared to the other techniques because
the geometric properties of the tensors are closely tied to the underlying tissue types.

The volume ratio of a given tissue type is the ratio between the volume occupied
by that tissue and the volume of the entire brain. We calculate the volume ratio
for all three tissue types. The volume ratios of different tissue types using our



Visual Knowledge Discovery for Diffusion Kurtosis Datasets of the Human Brain 225

Table 1 Comparison of various segmentation methods on different data type with performance on
MPRAGE image

Segmentation type Classification type Percentage match mean Percentage match STD

GMM on MK Domain 61.61 02.59

GMM on MD and MK Domain 54.55 14.71

K-means on MD and MK Domain 61.43 02.94

GMM on RI DT/KT Shape 68.35 16.00

K-means on RI KT Shape 64.92 03.09

K-means on RI DT/KT Shape 77.50 01.32

Table 2 A comparison of various segmentation methods with MPRAGE based classification

Volume ratio

Segmentation type CSF mean CSF STD GM mean GM STD WM mean WM STD

GMM on MK 0.129 0.112 0.638 0.177 0.231 0.076

GMM on MD and MK 0.244 0.064 0.408 0.230 0.347 0.240

K-means on MD and MK 0.267 0.025 0.440 0.016 0.272 0.016

GMM on RI DT/KT 0.248 0.070 0.415 0.130 0.335 0.134

K-means on RI KT 0.251 0.029 0.448 0.015 0.286 0.020

K-means on RI DT/KT 0.126 0.035 0.508 0.028 0.363 0.017

MPRAGE 0.148 0.026 0.491 0.026 0.359 0.012

Volume ratio, which is a ratio between volume occupied by a tissue and the volume of the whole
brain, is calculated for each tissue type

shape based segmentation and MPRAGE segmentation are shown in Table 2. We
compare these with the volume ratios for MRI data from healthy subjects. K-means
applied on combined DT/KT performs close to the MPRAGE tissue classification.
As mentioned before, when there are no distinct density peaks, the output of the
GMM algorithm degrades.

6.3 Representative Shape

After classifying various segments, we compute a representative shape for each
segment for analysis and lighting in visualization. We determine a representative
shape for lighting by using the mean value for each group based on attributes used
for grouping. The voxel most closely representing the mean is chosen to represent
the shape function. Figure 6 shows the segmentation performed on the DKI image
of a patient with traumatic brain injury (TBI) using K-means (with kD 4) and the
representative shape for each segment. The regions around the injury, as shown in
red, have extreme kurtosis values, depicted by their elongated shapes.
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Fig. 6 Result of applying
K-means (with kD 4)
segmentation to differentiate
CSF (grey), GM (green), and
WM (blue) along with
extreme kurtosis values (red).
The area surrounding the
injury site has very high
kurtosis values. The
representative DKI glyph for
each segment is also shown

7 Visualization

In a previous paper [2], we used spherical harmonics lighting functions to analyze
and visualize spatio-angular fields, such as diffusion and kurtosis tensors. Dynamic
spherical harmonics lighting functions, which have unique directional shapes and
sizes, are used as a query tool to illuminate the spatio-angular field and visualize the
underlying structure. The output of the system is either a planar visualization or a
volume rendering. In this work, our system uses the same tool with added support
for visualizing segmented regions.

7.1 Planar Visualization

For planar visualization, we have several ways of visualizing the data. One direct
way is to map segment identifiers to specific colors using a transfer function; this
visualization mode allows easy identification of various segments. Although this
method is straightforward, one needs to be careful in color assignment for different
segment identifiers so that coloring across MRIs is consistent, as the segment
identifiers from GMM or K-means can stochastically change for every run of the
algorithm, because it is a stochastic process. An example visualization is shown
in Fig. 7, comparing the MRI of a normal subject and an injured patient. For
segmentation, shape-based classification using K-means segmentation (with three
segments) on spherical harmonics approximations of the diffusion and kurtosis
tensor is performed. Figure 7a shows the MRI segmentation of a normal subject,
where segments relate to CSF (grey), WM (blue), and GM (green). In Fig. 7b, we
use the MRI of a patient suffering from traumatic brain injury, in which segments
show the injured region (red), WM (blue), and GM (green).
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Fig. 7 Shape-based classification using K-means segmentation (with k D 3) on the spherical
harmonics approximation of diffusion and kurtosis tensors. (a) shows segmentation into CSF
(grey), WM (blue), and GM (green) on a normal subject. (b) We use the MRI of an injured patient.
The segments show the injured region (red), WM (blue), and GM (green)

Fig. 8 The difference between lighting using a regular lighting function (left) and a local
representative light (right). Using the representative glyph to light the volume field will emphasize
exaggerate local differences, as seen in the second image

7.2 Planar Visualization Using Representative Shapes

The second form of planar visualization uses local shape-based lighting. In our
previous work [2], lighting functions were used to illuminate spatio-angular fields
to show the structural properties of the underlying tissues. The lighting functions
can be modified or rotated to allow active exploration of the dataset. Most lighting
functions used were pre-defined shapes. However, lighting functions do not have
to be constrained to pre-defined shapes. In the previous section, we computed the
representative shape for each cluster; using these shapes, each voxel can be lit by its
group’s representative shape, as shown in Fig. 8. With this lighting, a higher value
characterizes the close approximation between the shape of the spherical harmonic
voxel field and its representative shape, which is similar to the degree of membership
used in segmentation.
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Fig. 9 The volume visualization of the segmented brain. The transfer function that maps the
segment identifiers into color and opacity is automatically created based on segments selected
by the user. In this example, the whole brain is classified into three segments (CSF, GM, and WM),
as shown in the images

7.3 Volume Visualization of Segments

For volume visualization of the segmented data, we map the segment identifiers to
color and opacity using a transfer function. After the MRI dataset is segmented,
we create a scalar field using the segment identifiers. This field is used in volume
rendering to perform a lookup of the transfer function. Based on the user preference,
the opacity of the selected segment is increased while making other segments
semi-transparent. In Fig. 9, we show the output of our volume visualization of the
segmented MRI.

7.4 Volume Visualization of Spatio-Angular Fields

We use the framework, described in our previous work [2], to visualize spatio-
angular fields and add support to display segmented data. In particular, we use
two transfer functions. The first transfer function as described in [2], converts
light response values to color and opacity. The second transfer function determines
opacity based on the segments the user selects. By using both transfer functions at
the same time, we allow the user to view the spatio-angular field of only the selected
segments. In Fig. 10, the spatio-angular field of the segment related to the injury is
visualized. By rotating the lighting function (shown on the right side of the figure)
users can interact with the spatio-angular field.
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Fig. 10 The volume
visualization of the
spatio-angular field. Using an
additional transfer function,
only spatio-angular fields of
selected segments are
displayed. The lighting
function, shown to the right
of the image, is used to
explore the directional
strength of the spatio-angular
field. As the user rotates the
lighting function, a different
direction is queried

8 Application

8.1 Visual Comparison

We visually compare results after applying different segmentation strategies. Since
GMM performed well when segmentation was based on domain-specific attributes
and K-means produced the best results when shape-based attributes were used, we
visually compare these two results with each other. We apply segmentation to find
three segments on the MRIs of both a normal patient and a patient with an injury, as
shown in Fig. 11. The top row shows segmentation using domain-specific attributes,
whereas the bottom row shows segmentation using shape-based attributes. Both
segmentation strategies are able to distinguish basic segments, including injury.
However, shape-based classification is able to capture the underlying properties of
the tissues much better than segmentation done in with domain-specific attributes.

8.2 Segment Count Variation

In classification by shape-based attributes, we tested how increasing the number
of segments affects classification. In Fig. 12, we show the output of segmentation
using two datasets. In the MRI of the normal patient, which is shown in the top row
of Fig. 12, CSF, GM, and WM are clearly segmented when the number of segments
is 3. As the number is further increased, subdivision within GM and CSF, occurred
as seen in Fig. 12c, d. In the case of the patient suffering from TBI, the region around
the injury is clearly visible when the number of segments is greater than 3, as seen
in Fig. 12g, h.

In most of the examples of an MRI of a normal subject, we classify the entire
brain into CSF, GM, and WM. For these classifications k � 3 is used. CSF,
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GMM Normal Subject GMM TBI Patient GMM Frontal Lobe
Damage Patient

K-means Normal Sub-
ject

K-means TBI Patient K-means Frontal
Lobe Damage Patient

a b c

d e f

Fig. 11 A visual comparison between segmentation performed using domain-specific attributes
and shape-based attributes. For segmentation based on domain-specific attributes, GMM is used,
and for shape-based attributes, K-means is used. In the entire segmentation, we find three different
segments. In (a) and (d), the MRI of a normal subject is used. In (b) and (e), the MRI of a patient
suffering from TBI is shown. In (c) and (f), the MRI of a patient with frontal lobe damage is
used. Shape-based classification captures the underlying properties of the tissues much better than
segmentation created using domain-specific attributes

GM, and WM are structurally different; thus they have distinct diffusion profiles.
In classifying a brain with an injury, we use k � 4 as we are dealing with four
structurally distinct regions: CSF, GM, WM, and injury regions. If k > 4 is used,
these regions are further classified. Additional study and evaluations are needed for
these type of classifications.

8.3 Traumatic Brain Injury

We apply segmentation to the MRI of a patient suffering from traumatic brain injury.
We used K-means segmentation with k D 3 on spherical harmonics approximations
of diffusion and kurtosis tensors. In Fig. 13, the output of the segmentation is shown.
The segmentation process is able to segment out the region around the injury (red)
from other regions, such as WM (blue) and GM (green).
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k = 2 k = 3 k = 4 k = 5

k = 2 k = 3 k = 4 k = 5

a b c d

e f g h

Fig. 12 A visual comparison of different segmentation strategies when the number of segments is
varied for different MRI datasets. The top row uses the MRI of a normal subject and in the bottom
row we use the MRI of a patient who is suffering from traumatic brain injury (TBI). Each segment
in these images is colored differently. There is no relation between the coloring of segments for the
normal subject and the patient suffering from traumatic brain injury. (a, e) k D 2. (b, f) k D 3. (c,
g) k D 4. (d, h) k D 5

a b

Fig. 13 The visualization of segmentation done on the MRI of a patient suffering from a traumatic
brain injury. Shape-based classification was performed using K-means segmentation (with k D 3)
on spherical harmonics approximations of diffusion and kurtosis tensors. The segment relating to
the injury is shown in red. (a) Planar visualization. (b) Volume visualization

8.4 Frontal Lobe Injury

In the injury case shown in Fig. 14, the patient has sustained frontal lobe damage. We
segment the MRI dataset using K-means segmentation (with k D 4) on spherical
harmonics approximation of diffusion and kurtosis tensors. The region in blue is
associated with white matter; the region in red is related to areas with high diffusion.
Right after the injury, a high diffusion region was observed in the frontal lobe,
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Fig. 14 The visualization of segmentation done on the MRI of a patient with frontal lobe damage.
Shape-based classification was performed using K-means segmentation (with k D 4) on spherical
harmonics approximation of diffusion and kurtosis tensors. (a) and (b) are from an MRI taken 8
days after the injury. The patient showed a remarkable recovery at a 1 month follow-up after the
injury, shown in (c) and (d). The red region shows area of high diffusion, and the blue region shows
white matter. The changes in the red region can be observed easily

which is normally occupied by white matter, as shown in Fig. 14a, b. After a month,
some noticeable changes in the high diffusion region can be observed, as shown in
Fig. 14c, d. This aligns with the clinical diagnosis, as the patient made a significant
recovery within a month.

9 Conclusion and Future Work

We present- a study on the classification of brain tissues using Gaussian and non-
Gaussian diffusion profiles acquired from DKI. MRI classification and visualization
are vital tools for medical professionals who treat patients suffering from brain
diseases and injuries. The shape of both diffusion and kurtosis tensors provides
important characteristics of the underlying tissues, which can be used to classify
various tissue types, as shown in our study. We apply multiple segmentation
strategies and compare- them with the industry standard MPRAGE imaging. We
also present a way to display the segmented data effectively in planar and in volume
visualization modes.

In the future, we plan to extend the utility of our tool to automatically segment
various disease biomarkers in the human brain to study inflammation and neurode-
generation. We also hope to include data from other forms of imaging to further
improve classification.
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34. Prčkovska, V., Peeters, T.H.J.M., Van Almsick, M., ter Haar Romeny, B., Vilanova i Bartroli,
A.: Fused DTI/HARDI visualization. IEEE Trans. Vis. Comput. Graph. 17(10), 1407–1419
(2011)

35. Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Philips, W., Sijbers, J.:
Isotropic non-white matter partial volume effects in constrained spherical deconvolution. Front.
Neuroinform. 8(28), 1–9 (2014)

36. Schlegel, P., Makhinya, M., Pajarola, R.: Extinction-based shading and illumination in GPU
volume ray-casting. IEEE Trans. Vis. Comput. Graph. 17(12), 1795–1802 (2011)

37. Sillion, F.X., Arvo, J.R., Westin, S.H., Greenberg, D.P.: A global illumination solution for
general reflectance distributions. In: ACM SIGGRAPH Computer Graphics, vol. 25, pp. 187–
196 (1991)

38. Sloan, P.-P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In: ACM Trans. Graph. 21, 527–536 (2002)

39. Tao, Y., Lin, H., Bao, H., Dong, F., Clapworthy, G.: Structure-aware viewpoint selection for
volume visualization. In: Visualization Symposium, Pacific Asia-Pacific, pp. 193–200 (2009)

40. Tax, C.M., Otte, W.M., Viergever, M.A., Dijkhuizen, R.M., Leemans, A.: Rekindle: robust
extraction of kurtosis indices with linear estimation. Magn. Reson. Med. pp. 192–200 (2014).
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4906856&tag=1

41. Tikhonova, A., Correa, C.D., Ma, K.-L.: An exploratory technique for coherent visualization
of time-varying volume data. Comput. Graphics Forum 29(3), 783–792 (2010)

42. Zhang, Y., Ma, K.-L.: Lighting design for globally illuminated volume rendering. IEEE Trans.
Vis. Comput. Graph. 19(12), 2946–2955 (2013)

43. Zhuo, J., Xu, S., Proctor, J.L., Mullins, R.J., Simon, J.Z., Fiskum, G., Gullapalli, R.P.: Diffusion
kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury.
NeuroImage 59(1), 467–477 (2012)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4906856&tag=1


A Survey of Illustrative Visualization Techniques
for Diffusion-Weighted MRI Tractography

Tobias Isenberg

Abstract Fiber tracking is a common method for analyzing 3D tensor fields
that arise from diffusion-weighted magnetic resonance imaging. This method can
visualize, e.g., the structure of the brain’s white matter or that of muscle tissue.
Fiber tracking results in dense, line-based datasets that are often too large to
understand when shown directly. This chapter provides a survey of recent illustrative
visualization approaches that address this problem. We group this work into
techniques that improve the depth perception of fiber tracts, techniques that visualize
additional data about the tracts, techniques that employ focus+context visualization,
visualizations of fiber tract bundles, representations of uncertainty in the context
of probabilistic fiber tracking, and techniques that rely on a spatially abstracted
visualization of connectivity.

1 Introduction

The visual representation of brain connectivity (e.g., Margulies et al. [43]) is an
active research field within visualization. This work has lead to numerous techniques
[51, 52] to explore and better understand the connections in the brain. Many of these
approaches are based on diffusion-weighted magnetic resonance imaging (dwMRI)
[37, 67] which yields estimates for the directional diffusion of water at each of the
sampled locations. These datasets are typically represented as simplified 3D tensor
fields (DTI; e.g., Kratz et al. [39]) and one fundamental visualization technique is
the depiction of fiber tracts extracted from these tensor datasets (e.g., Behrens et al.
[4] and Mori and van Zijl [45]). One sub-field within fiber tracking is deterministic
fiber tracking. In this case a fiber tract is only extended along one direction—
the diffusion tensor’s principal eigenvector (e.g., see Fig. 1 as well as Mori and
van Zijl [45] and Zhang et al. [66]). In contrast, probabilistic tracking approaches
(e.g., Parker [48]) do not only follow a single direction when determining fiber
tracts. Instead, they model the uncertainty of the tract direction at a location and
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Fig. 1 A whole-brain HARDI dataset shown using (a) tubular and (b) a line-based visualization

follow several different directions at each sampled location. The results of this
probabilistic tracking are typically presented visually as positional probabilities—
rather than renderings of dense fiber tracts. Regardless of whether deterministic or
probabilistic fiber tracking is used, however, the fiber tracking produces dense, line-
based datasets1 that are often difficult to understand due to their overall structure
and spatial organization.

The fiber tracts are either computed for the whole brain or based on local seeding.
Typically, the individual tracts are depicted using lines (e.g., Zhukov et al. [69] and
Zöckler et al. [71]) or shaded cylindrical tubes (e.g., Zhang et al. [66]). An additional
color map is often applied in which the color shades represent the local orientation
of the tracts to better understand the spatial character of the data (see Fig. 1). It is
important to understand that these extracted fiber tracts do not show actual brain
fibers. Rather, each fiber tract is an abstracted representation of a likely direction
of many fibers in the brain. As one can see in Fig. 1, however, these depictions can
be quite overwhelming and it can be difficult to understand the spatial structure and
other aspects of the connectivity data—even for small selections of fiber tracts.

For this reason researchers have begun to explore the use of illustrative visualiza-
tion techniques to improve the visual representations of fiber tract data. Illustrative
visualization [53] is a sub-field of visualization that is inspired, in particular, by
the methods and techniques used in traditional illustration—which has a centuries-
long history of creating understandable depictions of scientific subject matter. For
example, illustrative visualization can be used to better depict the spatial structure
of 3D datasets, to free up visual variables for the depiction of additional aspects of

1This is also true for probabilistic tracking [4], even if probabilistic tractography results—due to
the size of the generated data—are typically visualized by displaying the scalar probabilities that
different brain regions are connected to a seed region. In fact, these dataset sizes are one motivation
to employ illustrative visualization as it promises to present the data in an understandable form.
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the data, or to simultaneously show several layers of data. In this survey we review
the different illustrative visualization approaches2 that have been applied to DTI-
based fiber tracking.3 Specifically, we group the approaches according to whether
they improve the depth perception of the dense fiber datasets, support the depiction
of additional data such as uncertainty, enable focus+context visualizations, focus on
abstracted fiber bundle representations, or use other forms of abstracted connectivity
representations. This classification is not entirely unambiguous; however, it provides
a useful structure and ambiguous cases are discussed appropriately.

2 Improving the Depth Perception of Fiber Tracts

In the majority of application scenarios, the visualizations generated based on the
extracted fiber tracts are displayed as 2D projections using traditional PC-based
workstations (in contrast to stereoscopic viewing environments such as CAVEs
[14]). This means that, due to the denseness of the fiber tracts, it can become difficult
to understand the spatial structure and the spatial relationship between different
groups of fiber tracts. The problem can be alleviated somewhat by using shaded
lines (e.g., Zöckler et al. [71] and Mallo et al. [42]) drawn with respect to a light
source in the scene. When combined with line shadowing (e.g., Peeters et al. [49]),
the results convey a much better sense of spatial structure. This basic approach or
extensions of it have been used in cases when a complete, dense dataset of fibrous
structure (such as muscle tissue) needs to be visualized [15, 49, 68].

A related way to address the spatial perception problem is to represent each
tract with a shaded tube (Fig. 1a)—in contrast to a non-illuminated line rendering
(Fig. 1b).4 While the shading (combined with directional color coding) assists depth
perception to some degree, it presents a challenge: Tubes with a larger diameter
improve depth perception but also produce overlaps, reducing amount of visible
detail. It is thus difficult to strike a good balance between the need for detail and the
need for depth perception (even with additional measures such as tube halos [64]).

In a first attempt to address this issue, Klein et al. [38] proposed to remove the
tube shading and, instead, to use distance-encoded contours and shadows for the
tubes. This approach is realized using several rendering passes and enhances depth
perception by visually grouping similar, neighboring fibers and using shadows as
a visual cue for depth ordering. Inspired by this early work, Everts et al. [24]

2Surveys of the use of illustrative visualization techniques for domains other than brain connectiv-
ity have been presented for flow visualization [10] and as a general tutorial/overview [63].
3The chapter focuses on the visualization of brain connectivity. The discussed methods, however,
can also be applied to other datasets that have similar characteristics, for example muscle fiber
data.
4For a comparison of simple line rendering, shaded tubes, illuminated line rendering, and
illuminated line rendering with shadowing see Figure 4 in Peeters et al.’s [49] paper.
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Fig. 2 Depth-dependent halos [24], applied to (a) a selection and (b) a whole-brain tractogram

presented a depth-dependent halo technique that used line-based triangle strips
rather than tubes as the main primitive for depicting fiber tracts.5 This decision was
based on the observation that line-based techniques are able to show more detail
than tube-based renderings (see the comparison in Fig. 1a, b). However, because
using only lines does not provide good support for depth perception, they resort
to using halos6 to enhance depth perception. To prevent halos from overlapping
neighboring fiber tracts, Everts et al. [24] apply them in a depth-dependent fashion
by rendering view-aligned triangle strips (with separate line and halo components).
These triangle strips are folded away from the viewer such that halos only appear
for larger depth discontinuities. Everts et al. combine this approach with line width
attenuation based on the distance of the line segment to the viewer.

As shown in Fig. 2,7 the approach not only visually emphasizes fiber bundles but
also shows a clear depth layering of the bundles—without the bundles ever being
explicitly specified. As shown in Fig. 2, the depth-dependent halo technique works
best for locally seeded selections of fiber tracts (Fig. 2a). In contrast, the spatial
structure of whole-brain tractograms (Fig. 2b) is less clear due to the overlapping of
the dense fiber tracts. The reduced co-linearity of the white matter fibers close to
the gray matter of the brain further reduces clarity (filtering the dataset based on the
fractional anisotropy (FA) value of the tensors can alleviate this problem somewhat).

This limitation of depth-dependent halos results from its very local approach for
emphasizing spatial structure: it is only possible to provide halos and emphasize
depth within the scope of individual line strips. Therefore, follow-up work has

5Everts et al.’s [24] approach could be viewed as an abstraction of line-based rendering with
shadowing: it uses lines as the basic primitive, conveys occlusion, and does not rely on line shading.
6Halos had previously already been used in computer graphics [2] and visualization [13, 64].
7The example images in Fig. 2 were created with the depth-dependent halos demo; see the project
website at http://tobias.isenberg.cc/VideosAndDemos/Everts2009DDH .

http://tobias.isenberg.cc/VideosAndDemos/Everts2009DDH
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Fig. 3 The use of ambient occlusion halos to improve depth perception in fiber tract bundles
[17, 18], using (a) screen-space ambient occlusion and (b) geometry-aware halos. Images © 2014
by Jesús Díaz-García and Pere-Pau Vázquez, used with permission

investigated more global approaches to assist people in perceiving the three-
dimensional structure of fiber tract visualizations. These newer techniques are
inspired by global illumination models in computer graphics, specifically ambient
occlusion8 [70].

A first technique in this group of approaches, presented by Díaz-García and
Vázquez [17, 18], uses ambient occlusion halos around the fiber tracts. These halos
are either computed in screen space (called SSAO halos) or in a geometry-aware
fashion (called GA halos) and are combined with a depth-modulated line style
(see the examples in Fig. 3). The screen-space ambient occlusion [44] essentially
computes a local estimation of shadowing, while geometry-aware halos use a multi-
pass approach that renders enlarged fiber tract geometries to generate halos in object
space to simulate ambient occlusion. Díaz-García and Vázquez [17, 18] conclude
that SSAO halos are best suited for large, dense datasets, while the GA halos are
better for fiber tract selections which are more sparse.

Eichelbaum et al. [22] improved upon these approaches with line-based ambient
occlusion technique called LineAO. Like Díaz-García and Vázquez’s work [17, 18],
this approach uses screen-space ambient occlusion. Based on an in-depth discussion
of the sampling theory behind the technique, however, Eichelbaum et al. handle
both local detail and global structures by separating the computation of the line-
based ambient occlusion from that of the local illumination. Eichelbaum et al. thus
not only produce grayscale visualizations (e.g., in Fig. 4a) but can also combine
the method with illuminated lines or shaded tubes. These combinations can use,

8Ambient occlusion has also already been used in other sub-fields of visualization [62].
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Fig. 4 The same dataset as shown in Fig. 1, but visualized using the LineAO technique [22]; in
(a) grayscale and (b) with directional color-coding

for example, the established color coding based on the local line segment direction
(e.g., Fig. 4b).9

Figure 4 demonstrates how the LineAO visualization is able to convey a
whole-brain tractogram with an excellent support of spatial perception, in contrast
to depth-dependent halos (Fig. 2b). Using LineAO, local individual fibers, fiber
bundles, and the global spatial structure are clearly visible. However, the LineAO
technique is less-suited for more coarse datasets which do not provide enough
occlusion to benefit depth perception. Therefore, when visualizing subsets of fiber
tracts, the approaches by Díaz-García and Vázquez [17, 18] or Everts et al. [24] may
perform better.

3 Visualization of Additional Data About Fiber Tracts

In typical application scenarios for DTI-based fiber tract visualizations, researchers
and health professionals are not only interested in understanding the spatial structure
of a dataset but are also interested in other aspects. It is thus important to understand
how different visualization techniques support the display of additional data dimen-
sions. Some illustrative visualization techniques specifically make additional visual
variables available that can be used for data display.10

9The example images in Figs. 1 and 4 were created with the tool OpenWalnut [19, 20]; see the
website at http://www.openwalnut.org/ .
10In the context of the brain connectivity visualization, Laidlaw et al. [40] have used this principle
to illustratively show slices of DTI data based on inspirations from oil painting.

http://www.openwalnut.org/
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Fig. 5 Depth-dependent
halos [24] with directional
color coding

One common additional property is the local orientation of the fiber tracts. In
traditional visualizations, local orientation is typically displayed using a directional
color coding (as previously shown in Fig. 1). Also depth-dependent halos [24]
and LineAO [22] can easily be combined with this encoding (Figs. 5 and 4b,
respectively).

Going beyond this simple color mapping, Jianu et al. [35] explore encoding
local properties computed based on the DTI data by using color pairs which are
then mapped onto tubular fiber tract visualizations in horizontal, vertical, diagonal,
or diamond patterns. This visual mapping is intended to allow viewers to easily
compare properties of spatially co-located fiber tracts.11 Hermosilla et al. [30] also
used a similar texturing approach to indicate directionality of fiber tracts (see Fig. 7).

Bundle names are another important piece if information when interpreting
fiber tract visualizations. Such annotations are a common element in traditional
illustrations and, hence, are also important for illustrative visualization. Due to the
complex nature of fiber tract datasets and the long length and intertwining nature
of the tracts, however, it is not possible to employ existing external annotation
placement methods created in illustrative visualization. Petrovic et al. [50] address
this challenge by not only providing an impostor-based rendering technique that
allows them to visualize the fiber tracts with a high visual quality but that also allows
them to map the bundle names directly onto the respective fiber tract representations
(see Fig. 6).

An essential property of fiber tract data is that there is always some degree of
uncertainty about a tract’s path. Depicting a tract using a discrete line or tube,
however, suggests that it actually exists in that precise configuration. To encode
several levels of uncertainty in fiber tract data, Hermosilla et al. [30] thus group fiber
tracts based on each track’s uncertainty value and render them using different colors
(using lower saturations for higher uncertainties). They combine this approach with
screen-space ambient occlusion, texture patterns, and unsharp masking to improve

11Everts et al. [25] extended this idea, encoding data properties in (colored) patterns for flow data.



242 T. Isenberg

Fig. 6 Visualization of a tract’s bundle name on the tubular representation. Image © 2007 by
James Fallon, used with permission

Fig. 7 Two examples of the uncertainty visualization by Hermosilla et al. [30]. Both images are by
Pedro Hermosilla Casajus and are used under the CreativeCommonsAttribution-NonCommercial-
NoDerivs3.0Unported(CCBY-NC-ND3.0)license

the visualization’s visual quality. Two examples of this technique are shown in
Fig. 7.

4 Focus+Context Visualization

In practical applications it is typically not sufficient to simply view and understand
the structure of a fiber tract dataset by itself. Instead, viewers need to understand
the spatial location of the fiber tracts with respect to anatomical landmarks such
as the surface of the brain with its sulci and gyri. For this purpose researchers
have developed a number of illustrative focus+context visualization techniques that
combine fiber tract visualization with contextual rendering. Illustrative visualization

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Fig. 8 Virtual Klingler
dissection can serve as a way
of showing the context for a
traditionally visualized
selection of fiber tracts.
Image © 2014 by Thomas
Schultz, used with permission

approaches are particularly well suited for this purpose because they can make use
of the illustration principles of abstraction and emphasis.

A simple form of focus+context visualization is the combination of traditional
fiber visualization with an illustratively rendered brain surface (e.g., Berres et al. [5,
6] and Eichelbaum et al. [21]). Such brain surface representations that wrap around
the fiber tracts typically employ illustrative selective transparency such that sulci are
shown in a more opaque form and gyri are more transparent. This rendering style
allows most of the focus to be visible though the surrounding context, while at the
same time also providing the necessary landmarks for reference. Another interesting
alternative for generating focus+context is to render a subset of the brain volume in
a fashion that resembles an existing dissection method as done by Anwander et al.
[1] and Schultz et al. [59]. Here, the a virtual form of a Klingler dissection provides
the context, while fiber tracts in focus are rendered in front of it as can be seen in
Fig. 8.

Other illustrative rendering approaches attempt to combine the fiber tract visu-
alization with the context visualization in such a way that the visual styles of
both elements of the visualization match—as in traditional illustrations in medical
textbooks. For example, Svetachov et al. [61] combine the black-and-white fiber
tracts rendered using depth-dependent halos [24] with a similarly black-and-white
hatched visualization of the brain surface (see Fig. 9),12 and use cutting planes and
stippling to show regions of gray matter. The hatched context visualization of the
brain surface is stylized using screen-space ambient occlusion and halos are added
around the fiber tracts to help the two visualization layers integrate appropriately.

12The example images in Fig. 9 were created with the project’s demo; see the website at http://
tobias.isenberg.cc/VideosAndDemos/Svetachov2010DCI .

http://tobias.isenberg.cc/VideosAndDemos/Svetachov2010DCI
http://tobias.isenberg.cc/VideosAndDemos/Svetachov2010DCI
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Fig. 9 Two examples of the DTI in context approach [61], using (a) cutting planes and (b) a
focus halo to integrate the fiber tracts with the context representation. The images are in the public
domain as declared in the original article’s publication agreement

Fig. 10 (a) Born et al.’s [7] multi-modal combination of fiber tracts with the brain surface and
functional MRI data in a focus+context visualization; (b) uses halftoning for sulci which resembles
a hatching effect. Images © 2009 by Silvia Born, used with permission

Other illustrative visualization techniques specifically aim to combine fiber tract
visualizations of the brain’s structural connectivity with visualizations of other types
of data to create illustrative multi-modal visualizations. For example, Born et al. [7]
integrate tubular fiber tract visualizations with an existing illustrative visualization
of functional brain connectivity data [33, 34]. The resulting visualization (see
Fig. 10) uses cutting planes, color-coded regions of the gray matter in the opaquely
visualized part of the brain and on the intersection surface, and a semi-transparent
brain surface. This surface also shows brain activity obtained from functional MRI
data. The semi-transparent context visualization employs illustrative techniques
such as ambient occlusion, silhouettes, and halftoning.

Another approach by Schott et al. [57, 58] for illustrative multi-modal visualiza-
tions combines a direct volume rendering of MRI data as context with registered
DTI fiber tracts as the focus. This visualization technique also uses ambient
occlusion—not only within the volume data or within the fiber tracts individually,
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but between the two. This means that the volume generates occlusion for the tubular
fiber tracts and vice versa. By using these illustrative effects together, Schott et al.’s
[57, 58] technique nicely supports the perception of spatial depth of the depicted
objects in their focus+context visualization (also see the approaches discussed in
Sect. 2).

Rieder et al. [55] create a visualization that is visually similar to Born et al.’s
[7]. They also combine the fiber tracts with an opaque and a semi-transparent
rendering of the brain surface. The opaque rendering of the surface is produced
using ambient occlusion and a texture-mapped cutting plane, while the transparent
surface is rendered using silhouettes. Similar to Schott et al. [57, 58], they also
ensure that the ambient occlusion effect of the fibers is not only applied to the fiber
representation but also to the opaque volume rendering of the brain. Rieder et al.’s
[55] visualization, however, is unique in that they combine their illustrative on-
screen focus+context depiction with an interactive physical model that allows users
to control the visualization. This physical model serves as a second layer of context
that also provides an interaction proxy for exploring the visualization. In addition
to adjusting the view on the visualization, users are also able to select specific fiber
tract bundles (by touching one of the illuminated spots on the physical model).

Another recent focus+context visualization of brain anatomy and tractography
data was presented by Reichenbach et al. [54]. In this visualization the authors focus
on showing structural connectivity in the context of selected regions of interest
and the general brain context. In both cases Reichenbach et al. provide context
by emphasizing the cortex’s parcellation (see Fig. 11). Using illustrative techniques
such as depth-dependent outlines they highlight the relationships between different
regions of the brain, assisted specifically by showing structural connectivity. It is

Fig. 11 Example of Reichenbach et al.’s [54] integrated focus+context visualization. Image ©
2014 by André Reichenbach, Mathias Goldau, and Mario Hlawitschka, used with permission
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particularly interesting that this approach and the previously discussed one do not
show connectivity information by rendering individual fiber tracts, but instead show
abstracted fiber bundles. Such bundling approaches are discussed in detail next.

5 Visualization of Fiber Tract Bundles

As the last two examples show, there are some cases in which it is not necessarily
important to observe each extracted fiber tract individually. Instead, these only need
to show meaningful fiber bundles. Some of the previously discussed techniques
show fiber bundles implicitly, for example depth-dependent halos [24] and LineAO
[22]. These methods, however, rely on a visual identification of a bundle. To make
it easier for viewers to identify bundles, researchers have developed methods to
explicitly represent the bundles, for example through wrapped representations [23].
Here, illustrative visualization can help to combine the bundle representation with
that of the individual fibers, to indicate the fact that the bundles are only abstractions
and do not physically exist as dedicated objects in the brain, or to provide additional
visual variables that can be used to display bundle properties such as confidence.

The initial concept of extracting a dedicated bundle surface from a set of
related fiber tracts was extended by Röttger et al. [56] in their BundleExplorer
tool. BundleExplorer uses semi-transparent bundle surfaces with silhouettes and
explicitly represented internal fiber tracts. The tool also uses marker-dependent
cutaway views to see through the bundle surface as well as bundle intersection
highlighting. In this combination of rendering techniques, the internal fiber tracts
serve as focus objects while the bundle surface and the intersections represent
context information.

In a less traditional approach, Otten et al. [46, 47] use fiber tract clustering to
derive a set of related tracts which they then depict using an illustrative rendering
technique that does not actually need to derive an intermediary wrapped surface
geometry. Instead, they still process all extracted fiber tracts individually for the
visualization, but render each of them with a relatively wide halo they color based
on the fiber bundle. This approach causes all fibers in a particular bundle to merge
visually into a single shape (see Fig. 12).13 To emphasize this effect, Otten et al.
[46, 47] add an image-space contour around each of these colored shapes. Finally,
to better indicate the directionality of the fibers within each bundle, they add what
they call “hint lines”—a fiber tract rendering in which only the top-most lines
remain visible due to the occlusion by the tract halos. By using different colors
for each cluster, this technique allows viewers to get a good overview of the fiber
bundle arrangement. The approach can also be combined with additional focus and

13The example images in Fig. 12 were created with the vIST/e project’s demo (using a test release);
see the website at http://bmia.bmt.tue.nl/software/viste/ and the SourceForge repository at http://
sourceforge.net/projects/viste/files/ .

http://bmia.bmt.tue.nl/software/viste/
http://sourceforge.net/projects/viste/files/
http://sourceforge.net/projects/viste/files/
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Fig. 12 Two views of Otten et al.’s [46, 47] fiber bundling approach using 2D line halos

context elements such as textured slices from volume data or explicit fiber tract
visualizations.

6 Probabilistic Fiber Tracking and Uncertainty Visualization

Fiber tract bundles derived from DTI-based fiber tracking, however, are not clearly
defined anatomical structures in the brain. This is due, in part, to limitations of
the data acquisition process. Bundles are also uncertain, however, because the
fiber tracking algorithm, in deterministic tractography, follows the direction of the
tensor’s primary eigenvector until the anisotropy falls below a pre-defined threshold.
That means that, depending on whether or not a fiber tract is located in regions with a
large fractional anisotropy, it can have varying degrees of confidence or uncertainty.

These different levels of confidence can be illustrated on a per-fiber-tract-basis
as shown by Hermosilla et al. [30] (see Fig. 3). The uncertainty, however, can also
be visualized within a fiber bundle as demonstrated by Brecheisen et al. [11, 12]
(see Fig. 13).14 Instead of representing the confidence of each individual fiber,
Brecheisen et al. group the fiber tracts of a given bundle into intervals of the same
confidence range, render them with a halo like in Otten et al.’s [46, 47] work.
They then integrate the resulting layers into a single visualization. Similar to the
other approaches discussed before, they emphasize some or all of the levels with
silhouettes for a better visual perception of the layers. They also use different
schemes to indicate the decreasing confidence levels. These levels include warm-
to-cool shading [29] (Fig. 13a), increasing color saturation (Fig. 13b), decreasing

14The images in Fig. 13 were created with DTITool (provided by Ralph Brecheisen), an early
version of the vIST/e software.
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Fig. 13 Brecheisen et al.’s [11, 12] illustrative visualization of uncertainty: (a) warm-to-cool
shading, (b) increasing saturation, (c) decreasing saturation, and (d) light-to-dark shading

Fig. 14 Goldau et al.’s [28] fiber stippling technique for the visualization of probabilistic
tractography data, (a) with context in form of silhouettes computed from T1-weighted MRI data
and (b) as a multi-modal visualization with context shown in form of T1-weighted MRI data
texture-mapped onto a cutting plane [27]. Images © 2014 by Mathias Goldau, used with permission

color saturation (Fig. 13c), decreasing opacity, light-to-dark shading (Fig. 13d),
decreasing the amount of detail due to growing dilation around the fiber tracts,
and an increasing amount of blur. The resulting bundle visualizations can also be
combined with other data visualization techniques in focus+context views.

The problem of uncertainty in deterministic tractography can also be addressed
by using probabilistic tractography (e.g., Parker [48]). As described at the beginning
of the chapter, this technique does not follow a single, deterministic direction
for each fiber tract integration step. Instead it follows several, depending on the
probability that tracts follow a direction other than the tensor’s primary eigenvector.

Using techniques from illustrative visualization and inspired by traditional
illustrations of brain connectivity, Goldau et al. [28] created a slice-based fiber
stippling technique that shows the distribution of the probability field (see Fig. 14).
The stipples are small line segment that are oriented along the main diffusion
direction. They are created by projecting the diffusion vector onto the slice such that
long, narrow stipples represent diffusion parallel to the cutting plane and short, wide
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stipples represent diffusion at an angle to the cutting plane. The stipples representing
different bundles are shown using different colors. Hlawitschka et al. [31] extend
this approach by employing a Poisson-Disk sampling to distribute the fiber stipples
in order to ensure an adequate perception of the pattern on the slices. In both cases,
fiber stippling (i.e., small oriented dashes) as an illustrative visualization technique
is well suited to the visualization of probability data because many people intuitively
associate dashes to uncertainty [9]. Thus the visualization metaphor employed by
Goldau et al. [28] and Hlawitschka et al. [31] is easily understood by viewers.
Goldau and Hlawitschka [27] also demonstrated that such visualizations can be
integrated in multi-modal depictions of brain data. These multi-modal visualizations
can use a variety of other data modalities such as MRI data, functional MRI data, or
CT data to provide the necessary context (e.g., see Fig. 14b).

7 Spatially Abstracted Visualization of Connectivity

All the illustrative visualization techniques discussed so far are intended to represent
the fiber tracts and the resulting connectivity data as faithfully to the anatomical
data as possible. However, sometimes people are interested in understanding
connectivity in the brain at a higher level, one at which the visual representation
can deviate to some degree from the anatomy. Illustrative visualization is naturally
an ideal candidate for such spatially abstracting visualizations.

Jianu et al. [36] describe a visualization approach in this category in which they
create two-dimensional neural map representations in which bundles of similar
fiber tracts are grouped and visualized using simplified line-based primitives.15

Specifically, these simplified representations are derived by clustering and selecting
the tract with the smallest distance to all tracts in a bundle, favoring longer tracts
over shorter ones. The results are then rendered in an illustrative fashion (using
tract silhouettes and a schematic brain volume projection as context) on the sagittal,
coronal, and transverse planes (see Fig. 15, bottom-left). These views are well
established in medical practice and serve as a means to explore the correct locations
of the corresponding fiber tracts in a linked 3D view. In an extension of this initial
approach, Jianu et al. [36] also created an abstracted bundle representation of the
clusters (see Fig. 15, right)—inspired by Holten’s [32] edge bundling approach. This
abstract representation can serve as an alternative way of exploring the 3D fiber tract
visualization (Fig. 15, top-left). Both approaches together demonstrate that the use
of abstraction and illustrative depiction styles can support interactive exploration of
more traditional visualizations of 3D data.

15A downloadable demo of Jianu et al.’s [36] technique is available at http://graphics.cs.brown.
edu/research/sciviz/newbraininteraction/tutorial.htm and an online demo can be found at http://
graphics.cs.brown.edu/research/sciviz/newbraininteraction/BrainComplete/P3/gmap_brain.html .

http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/tutorial.htm
http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/tutorial.htm
http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/BrainComplete/P3/gmap_brain.html
http://graphics.cs.brown.edu/research/sciviz/newbraininteraction/BrainComplete/P3/gmap_brain.html
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Fig. 15 Screenshot of Jianu et al.’s [36] interactive brain connectivity visualization system that
makes use of a spatial abstraction of fiber bundles, in particular for the interactive selection of fiber
tracts in a bundle. Image © 2014 by Radu Jianu, used with permission

Fig. 16 Example of the effect of Everts et al.’s [26] fiber tract contraction at a scale of 4 mm

Jianu et al.’s [36] abstraction primarily supports the easy selection of previously
computed fiber tract clusters or bundles since their approach removes the complexity
of the dense line representations. Sometimes, however, it is also necessary to
understand the inner structure of a complete set of fiber tracts (such as depicted
in Fig. 1)—a goal that is not easily supported using traditional forms of depiction,
even illustrative ones (e.g., Figs. 2b, 4, and 5). To address this problem, Everts et al.
[26] describe an abstraction technique that spatially contracts full-brain fiber tract
datasets based on their local similarity. This similarity is computed based on co-
linearity within a neighborhood of a given scale level. The result of this processing
is that fiber tracts locally contract perpendicularly to the tract direction, revealing
the global structure of the brain’s white matter by creating volumetric voids (e.g.,
see Fig. 16). For contractions at scale levels � 2 mm, Everts et al. [26] show that the
fiber tracts stay within the bounds of their corresponding fractional anisotropy areas.
The authors also discuss how—when using larger displacements—the contraction
can lead to anatomically incorrect depictions but show that these can reveal the



A Survey of Illustrative Visualization Techniques for dwMRI Tractography 251

brain’s higher-level organization. As such their contraction relates to approaches
that introduce significant distortions such as done by Correa et al. [16]. They used
deformations of line data (including neurological fiber tracts) to provide insight into
the complex structures by deforming their paths or visually separating subsets.

8 Summary and Conclusion

This chapter provided a survey of illustrative visualization techniques applied to
tractography data that resulted from 3D tensor fields based on diffusion-weighted
MRI. The survey showed that illustrative visualization is used, in particular, to
improve the depth perception in complex visualizations, to facilitate the visu-
alization of additional data such as tract names, tract confidence, or similarity
between tracts, to combine fiber tract visualization with additional visual elements in
focus+context visualizations, to visualize fiber tract bundles, and to facilitate further
spatial abstraction, for example, for an interactive exploration of the data. Of course,
such a classification is not necessarily exclusive: a technique that primarily aims for
a focus+context visualization, for example, can also make use of techniques that
improve the depth perception of the fiber tracts or of the whole visualization.

The techniques described in this paper, of course, closely relate to other
illustrative visualization techniques in brain connectivity visualization and beyond.
For instance, the structural connectivity that can be explored though deterministic
and probabilistic tractography closely relates to functional connectivity that can
be examined based on functional MRI data. An example for such a visualization
of functional data was presented by Böttger et al. [8] who employ edge bundling
and bundle-driven transparency as forms of illustrative visualization to create
representations of whole-brain functional connectivity (e.g., Fig. 17).16 Of course,
the tract-based depictions of brain connectivity also closely relate to streamlines,
pathlines, etc. in fluid mechanics which can use similar illustrative visualization
methods (e.g., Brambilla et al. [10], Everts et al. [24, 25], Li and Shen [41], and
Shafii et al. [60]).

Naturally, the work surveyed in this chapter only represents a subset of the field
of illustrative visualization, with explores methods to highlight, provide emphasis,
or introduce abstraction [53]. When using these methods, however, we need to be
aware of the implications of the general approach. While an illustrative visualization
style can be attractive and can thus positively affect viewers [3, 65], it can also have a
high “suggestive” power: Illustrative visualization may suggest information that can
sometimes be misleading precisely because they often provide precise depictions
and clear representations. Everts et al. [24], for instance, reported that neurosurgeons
mentioned that fiber tract visualizations that use depth-dependent halos appear to

16The example image in Fig. 17 was created with the braingl tool, see the webpage at http://code.
google.com/p/braingl/ .

http://code.google.com/p/braingl/
http://code.google.com/p/braingl/
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Fig. 17 Example of a
bundling result generated by
Böttger et al.’s [8] approach
as a form of illustrative
depiction of functional
connections in the brain

depict the actual neuronal fibers (axons) of the brain—something that the data
sources and the resulting visualizations do not provide. So while we should always
be aware of these potential challenges for illustrative visualization, this example
also illustrates the intriguing power of illustrative methods within visualization.
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Visualizing Symmetric Indefinite 2D Tensor
Fields Using the Heat Kernel Signature

Valentin Zobel, Jan Reininghaus, and Ingrid Hotz

Abstract The Heat Kernel Signature (HKS) is a scalar quantity which is derived
from the heat kernel of a given shape. Due to its robustness, isometry invariance, and
multiscale nature, it has been successfully applied in many geometric applications.
From a more general point of view, the HKS can be considered as a descriptor of the
metric of a Riemannian manifold. Given a symmetric positive definite tensor field
we may interpret it as the metric of some Riemannian manifold and thereby apply
the HKS to visualize and analyze the given tensor data. In this paper, we propose a
generalization of this approach that enables the treatment of indefinite tensor fields,
like the stress tensor, by interpreting them as a generator of a positive definite tensor
field. To investigate the usefulness of this approach we consider the stress tensor
from the two-point-load model example and from a mechanical work piece.

1 Introduction

The Heat Kernel Signature (HKS) is a powerful shape signature and has been
introduced by Sun et al. in [11]. They have shown that the HKS is an isometric
invariant and contains almost all intrinsic information of a surface. Intuitively, the
HKS can be considered as the curvature of the surface. Since the HKS is derived
from the process of heat diffusion it is equipped with a time parameter which is a
measure for the size of the neighborhood that influences the value of the HKS at a
point. Common applications use the HKS to detect similarly shaped surfaces, see
[2, 4, 7, 8].
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f

f -1

Metric f*g on U

HKS: U --> R HKS: M --> R

Surface (M,g)

Fig. 1 Commutative diagram illustrating the relation between the HKS of a surface and a positive
definite tensor field. Metric of the surface depicted as ellipses (top left), the parametrized surface
(top right), HKS on the surface (bottom right) and the HKS on U (bottom right)

Motivated by these useful properties, the HKS has recently been proposed to
visualize symmetric positive definite tensor fields [12]. The basic idea is to consider
the HKS as a signature of the metric of the surface. By abstracting completely from
the concept of an embedded surface, we can apply the HKS to tensor fields with
the characteristics of a Riemannian metric, i.e. symmetric positive definite tensor
fields.

The relation between the HKS of a two-dimensional surface M and a positive
definite tensor field (i.e. the metric tensor field of the surface) is illustrated in Fig. 1.
If g is the metric of the surface M and f W R2 � U 7! R

3 a parametrization of
M , i.e. f .U / D M , we can compute the pull back of the metric g on U by f ,
denoted by f �g. The metric f �g is a positive definite tensor field on U which is
well characterized by the HKS of the surface. We can thereby compute the HKS for
a positive definite tensor field defined on U 	 R

2, by interpreting the tensor field as
the metric of a surface.

Note that it is not necessary to compute an explicit embedding of the associated
surface into some Euclidean space to compute the HKS of a given tensor field. This
results in a significant difference for the computation of the HKS. While in case of
surfaces the embedding is utilized to compute the HKS, in the case of general tensor
fields all computations can be done using the tensor only. To do this efficiently, a
realization employing a finite element method is described in [12]. If you are only
interested in very short times scales there may be more accurate alternatives for the
computation, see e.g. [10].



Visualizing Symmetric Indefinite 2D Tensor Fields Using the Heat Kernel Signature 259

The concept described above has been successfully applied to positive define
tensor fields [12]. For other tensor fields, e.g. stress tensor fields, this method is
not directly applicable. In this paper, we propose to interpret such tensor fields as
a generator of a time dependent deformation via a positive monotonic mapping, to
obtain a field which describes a process close to a diffusion process [5]. This enables
us to analyze these fields using the HKS.

A short introduction to the HKS and its application to tensor fields is given in
Sect. 2.1. In Sect. 3 we motivate the use of the HKS to indefinite tensor fields and
explain its generalization. Experiments and results from applying the method are
shown in Sect. 4.

2 Fundamentals

In this section we recall the basic concepts and definitions of the heat kernel and its
signature. It follows the original paper [12] closely.

2.1 Heat Kernel Signature

The Heat Kernel Signature (HKS) has been introduced in the field of visualization
and computer graphics with the purpose of comparing surfaces. It is derived from
the heat equation and assigns each point of the surface a time dependent function,
which depends solely on the metric of the surface. The time parameter supports a
multiscale comparison. It is used to control the size of the neighborhood of a point
on the surface which is taken into account for the HKS. The definition of the HKS
is applicable for arbitrary Riemannian manifolds, and thus can be used to visualize
more general, positive definite tensor fields. A brief introduction to the HKS is given
in this section. For details on the HKS we refer the reader to [11], while a formal
treatment of the heat operator and the heat kernel can be found in [9].

Let .M; g/ be a compact, oriented Riemannian manifold and 
 the Laplace-
Beltrami operator on M which is a equivalent to the usual Laplacian in case of flat
spaces. Given an initial heat distribution h.x/ on M , the heat distribution h.t; x/
at time t is governed by the heat equation .@t � 
/h.t; x/ D 0. The heat kernel
k.t; x; y/ is satisfying .@t � 
x/k.t; x; y/ D 0 with limt!0

R
k.t; x; y/h.y/ dy D

h.x/ where 
x denotes the Laplacian acting in the x variable. The heat kernel can
be computed based on the eigenvalues �i and eigenfunctions �i of 
 by

k.t; x; y/ D
X
i

e��i t�i .x/�i .y/ : (1)
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The heat kernel signature (HKS) is defined in [11] as the function HKS

HKS.t; x/ D k.t; x; x/ : (2)

Since the heat kernel is much more complex than the HKS, one might expect to
lose a lot of information when regarding the HKS instead of the heat kernel. But, as
shown in [11], the HKS of a surface contains almost all information of the metric
of the surface itself and is much more informative than usual scalar quantities like
the trace or the determinant. For small values of the time parameter t the HKS is
strongly related to the curvature of the manifold. Intuitively, the heat is ‘trapped’ in
regions with positive Gaussian curvature, while there is much ‘space to escape’ in
regions with negative Gaussian curvature.

2.2 HKS for Symmetric Positive Definite Tensor Fields

The HKS introduced above is defined for any compact, oriented Riemannian
manifold. Thus the HKS is not restricted to surfaces embedded in R

n. If we have a
metric tensor g, i.e. a symmetric positive definite tensor field, defined on a region
U 	 R

n, then .U; g/ forms a Riemannian manifold. Since there is a Riemannian
manifold associated with a positive definite tensor field in this way, we can compute
the HKS for any positive definite tensor field. The relation of the HKS for surfaces
and tensor fields is based on considering a parametrized surface and the pullback
of its metric. This means, given a parametrized surface we can compute the HKS
for the surface f .U / or the HKS can be directly computed on U using the metric
g even without knowing its embedding. This is equivalent to computing the HKS
on the surface f .U / and then pull it back to the parameter space U . This is nicely
illustrated in the commuting diagram in Fig. 1. More details are given in the paper
by Zobel et al. [12]

An example for the HKS for a symmetric positive definite tensor field is shown
in Fig. 2, a diffusion tensor data set of a brain. Instead of using the diffusion tensor
T itself we consider the metric g D T �1. Large eigenvalues of the diffusion tensor
correspond to high diffusivity in direction of the respective eigenvalue, whereas
small eigenvalues correspond to low diffusivity. Since a high diffusivity should
reflect small distances considering the inverse tensor is a natural way of assigning
a metric to a diffusion tensor. For a detailed discussion see [6]. We evaluate the
HKS for different time steps. Although the extraction of a single slice might discard
valuable information, the structure of the brain becomes obvious by the HKS. The
defined metric implies that blue regions (low values) reflect high diffusivity, whereas
red regions (high values) reflect low diffusivity. Moreover, the time parameter t
allows us to focus on small- as well as large-scale structures.
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t=50t=10t=1

Fig. 2 HKS of a brain data set (Data set courtesy of Gordon Kindlmann at the Scientific
Computing and Imaging Institute, University of Utah, and Andrew Alexander, W. M. Keck
Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison.) for
different t . The inverse of the diffusion tensor is considered. The colormap ranges from the
minimum (blue) to the maximum (red) of each individual image

2.3 Numerical Realization

The computation of the HKS for symmetric positive definite tensor fields has been
described in [12] in detail. The method employs a finite element approach solving a
generalized eigenvalue equation of the Laplacian. For the more general application
of indefinite tensor fields this approach can be used without any changes. Also
the choice of appropriate boundary conditions is discussed in this paper. Usual
boundary conditions like Dirichlet or Neumann boundary conditions influence the
HKS significantly. Neumann boundary conditions represent a perfectly insulated
boundary. Dirichlet boundary conditions cause the HKS to have a fixed value at the
boundary. To reduce these boundary artifacts we reflect a part of the field at the
boundary such the heat at the boundary can diffuse outwards, see Fig. 3.

3 Using the HKS for Indefinite Stress Tensor Fields

While the relation of the heat diffusion process to other diffusion processes is
obvious this is not the case for general indefinite tensors. For some applications
however, there are indefinite tensors that can be considered as generator of a
deformation process, which is described by a positive definite tensor. One example
for such a tensor is the stress tensor, which is a central physical quantity for material
modeling in mechanical engineering. In this section we propose an extension of
the HKS method introduced by Zobel et al. [12] to a more general setting. The
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Fig. 3 The result of the two point load data set on the left is strongly influenced by the boundary.
This effect can be reduced significantly by reflecting a portion of the tensor field on the boundary
(middle) and cropping the result (right)

basic idea is to introduce a natural mapping of stress tensor fields to a positive
definite tensor field which serves as input for the HKS computation. To motivate the
mapping we will summarize some physical basics related to the stress tensor � in
the following. It should be noted, that this summary depicts a strongly simplified
view on the much more complex topic of deformation and stress theory. The
intention is mainly to justify the specific choices of mapping functions used for
the visualization. We restrict the discussion to two-dimensional tensors to keep it
simple. Our current implementation is also restricted to this case. For more details
we refer to mechanical engineering textbooks, e.g. [1, 3]. The task of material
modeling involves two essential tensor fields: the strain and the stress tensor field.

Considering the deformation of a continuous material, as a response to external
forces, the deformation is essentially described by the displacement vector field.
The deformation gradient tensor F measures all associated changes: stretches
(local volume and shape changes) and local orientation changes due to rotations.
Neglecting the rotational part, the stretch tensor is then derived from F employing
the polar decomposition. It is a symmetric, positive definite tensor of second order.
The physical quantity generally used for material modeling is strain, the relative
stretch. In one dimension the uniaxial strain  is defined as logarithm of the relative
changes in length L

 D
Z

dL

L
D ln

L

L0
: (3)

Similarly, the multi-axial strain is defined as the logarithm of the rotation free part
of the deformation tensor.

The stress tensor characterizes the local direction-dependent loads inside of a
material. The sign of its eigenvalues are related to compressive respective tensile
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forces. Stress � and strain  tensor are linked through the constitutive relationship,
which is close to linear for the large class of linear elastic materials (Hooke’s law)

� D C  ;

where C is a tensor of fourth order.
The naive intuition behind the mapping applied for the visualization of the stress

tensor corresponds to a ‘relaxation’ of the material with respect to internal stresses.
While the actual deformation process is much more complex, this mapping still
gives an idea of a small scale transformation inside the material. In accordance
to Eq. (3) the exponential mapping is the natural choice. For small scale changes
it can be approximated linearly using the first term of the Taylor expansion.
For visualization purposes we consider a larger variety of mappings with similar
characteristics. They will be introduced in the following. A similar idea has also be
used in [5] for the generation of texture visualizations.

Let T be a two-dimensional symmetric tensor field, �1 � �2 its eigenvalues and
U the orthogonal matrix, such that

T D UT

�
�1

�2

�
U :

We define  .T / for any positive, monotonic function  W R ! R by

 .T / D UT

�
 .�1/

 .�2/

�
U :

The tensor  .T / is now positive definite while its eigenvector fields remain
unchanged. The selection and parametrization of the mapping  influences the
HKS. Thus this choice has to be made carefully. We use the following mappings

• The exponential mapping .x/ D exp.˛x/, which is the most natural choice for
stress tensor fields.

• Linear mapping .x/ D cC˛x, where ˛ and c are constants such that we obtain
a positive definite field.

• Arc tangent mapping  .x/ D arctan.˛x/C �
2

. As for the exponential mapping,
the range of this function is limited to R

C. It further enhances changes for small
absolute values of stresses while it is asymptotic for stresses with large absolute
values.

Experiments using these mappings are shown in Sect. 4.
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4 Results

In this section, we discuss some results of first experiments with indefinite stress
tensor fields. We investigate the sensitivity of the HKS with respect to the three
different mapping functions described in the previous section and the involved
parameters. Therefore we consider two data sets which are both results from
numerical finite element simulations of material stressing. Both data sets are
originally three-dimensional, of which we have extracted two-dimensional slices.
The first data set simulates two forces acting on a solid block, one pulling, one
pushing the ‘two point load’. This is a simulation with a very low resolution
exhibiting some discretization artifacts, leading to a small scale structure. This data
set is well-studied and therefore appropriate to evaluate our method. Throughout
this section we use the colormap shown in Fig. 3, which ranges from the minimum
to the maximum for the respective data set and setting.

We start with the exponential mapping, which is the most natural choice with
respect to the physical interpretation. More precisely, we consider the tensor fields
exp.T / (Fig. 4 first row) and exp.0:01T / (Fig. 4 second row), i.e. we use two
different scalings of the original field. We can observe that the different scaling
has hardly any influence on the result using this color map (from min blue to max
red). Further, the HKS is evaluated for different time steps t . We see that for small
time scales all details of discretization artifacts of the simulation are visible. Moving
to larger times these details vanish and only the major features, the pushing and the
pulling force remain.

In Fig. 5 the arc tangent mapping is applied to the tensor field. This mapping
is symmetric with respect to positive and negative eigenvalues. It especially
emphasizes changes for eigenvalues with small absolute value while the mapping

t = 0.1 t = 1 t = 2 t = 5 t = 10

t = 0.1 t =1 t = 2 t = 5 t = 10

Fig. 4 HKS of a two point load data set (Data set courtesy of Boris Jeremić, University of
California Davis.) using the exponential mapping. First row exp.T /, second row exp.0:01T /
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t = 0.1 t = 1 t = 2 t = 5 t = 10

t = 0.1 t = 1 t = 2 t = 5 t = 10

Fig. 5 HKS of a two point load data set mapped by arctan, scaled with ˛ D 0:1 for the first row
and ˛ D 0:001 second row

t = 10;000 t = 20;000 t = 30;000 t = 40;000 t = 50;000

Fig. 6 HKS of a two point load data set using the linear mapping

is asymptotic for eigenvalues with large absolute value. In our example the tensor
field is scaled with 0.1 and 0.001 in the first and second row, respectively, and
shifted by �

2
to obtain a positive definite field, i.e. we consider arctan.0:1T /C �

2
and

arctan.0:001T / C �
2

. Using the arc tangent mapping, the scaling has more impact
than for the exponential mapping. While the scaling of 0.1 also emphasizes regions
with small eigenvalues of the tensor T , the scaling of 0.001 focuses on regions with
more extremal eigenvalues, i.e. the points where the load is applied.

The simplest approach to obtain a positive definite tensor field is to shift the
eigenvalues of T by a constant, such that the smallest eigenvalues occurring in
the field are just above zero. Such a linear mapping is used in Fig. 6. Since the
eigenvalues of our data set range from about �27;500 to 27,500, we add 27,500
to all eigenvalues. Therefore the area represented by the resulting metric is much
larger than for the preceding mappings. As a consequence much larger time values
have to be considered. However, the different time steps still show a very similar
behavior. Shifting the eigenvalues by a constant causes the metric to represent a
larger area at each point, thus the curvature decreases. Consequently there seem to
arise some peaks of the curvature at points where the eigenvalues are close to the
minimum, which dominate the behavior of the HKS for all time values. Thus, the
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Tensor trace on
surface

t = 0.5 t = 2 t = 2 t = 5 t = 10

Fig. 7 HKS of a two point load data set with exponential mapping, scaled with ˛ D 100. The
principal stress directions of the data set are given as context information in the background texture.
Data courtesy Markus Stommel, TU Dortmund, Germany

linear mapping is maybe not the proper choice to obtain a positive definite tensor
field, at least if there are strong negative peaks in the smallest eigenvalue field.

A second example represents the simulation of a mechanical work piece, see
Fig. 7. It consists of a boundary structure filled with a fictitious material with a
very low Young’s modulus. Within the interior of the filled region the stresses are
almost constant. The small scale HKS clearly emphasizes the discontinuities in the
material selection. For larger scales it can be seen which parts of the material are
more responsive to the applied forces.

5 Conclusion and Future Work

By applying a respective mapping to indefinite tensor fields it is possible to compute
the heat kernel signature for such fields. This provides a new visualization method
for stress tensors which differs strongly from common visualization methods. Due to
its sensitivity with respect to the derivative of the tensor field it conveys additional
information which is not visible in direct visualization. A special strength of the
method is its inherent level of detail property. Thus, it is possible to emphasize
smaller or larger structures. In contrast to basic Gaussian smoothing the scaling is
directly driven by the tensor data itself. On the other side the interpretation of the
results is not as easy and requires some effort. There are still many open questions
in this respect. For the future we plan on further investigating the significance of
the HKS for further applications. It might be of interest to compare the scaling
properties to ideas of anisotropic diffusion.

From a theoretical point of view the method can be easily generalized to 3D
tensor fields. With the exception of the formulas indicating the relation to Gaussian
curvature, all statements are also valid in higher dimensions. The main obstacle is
that the computation of the eigenvalues and eigenfunctions of the Laplacian is non-
trivial. The computation of the first 500 eigenvalues for a data set with 2562 points
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already takes a few minutes, thus the computation time for a data set with 2563

points is going to be infeasible using standard approaches.
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A Framework for the Analysis of Diffusion
Compartment Imaging (DCI)

Maxime Taquet, Benoit Scherrer, and Simon K. Warfield

Abstract The brain microstructure consists of the complex organization of cellular
structures and extra-cellular space. Insights into this microstructure can be gained in
vivo by means of diffusion-weighted imaging that is sensitive to the local patterns of
diffusion of water molecules throughout the brain. Diffusion compartment imaging
(DCI) provides a separate parameterization for the diffusion signal arising from
each compartment of water molecules at each voxel. Their use in population studies
and longitudinal monitoring of diseases hold promise for unraveling alterations of
the brain microstructure in various disorders and conditions. Yet, to analyze multi-
compartment models, high-level operations commonly used in scalar images need to
be generalized. We present a framework that enables interpolation, averaging, filter-
ing, spatial normalization and statistical analyses of multi-compartment data with a
focus on multi-tensor representations. This framework is based on the generalization
of linear combinations of voxel values through mixture simplification. We illustrate
the impact of this framework in registration, atlas construction, tractography and
population studies.

1 Introduction

The brain microstructure is the complex organization of cellular structures including
the neurons, the axons, their myelin sheath, and glial cells. A key technique to
probe the brain microstructure in vivo is to acquire diffusion-weighted images
(DWI), the intensity of which depends on the local diffusion of water molecules
through the microstructure. Diffusion tensor imaging (DTI) is the most widely
used model to represent the brain microstructure from DWI. This model assumes
that water molecules are diffusing in a single compartment, be it a single fascicle
(in which the diffusion is anisotropic) or a compartment of free water (in which
the diffusion is isotropic). This limits the validity of DTI to represent the brain
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microstructure which presents a variety of compartments in each voxel, including
several crossing fascicles and partial volumes of CSF. The prevalence of voxels with
crossing fascicles at typical resolutions has been shown to be around 60–90 % [6].
Hence any model of the microstructure that does not represent multiple fascicles is
wrong in at least 60 % of the brain.

In contrast, diffusion compartment imaging (DCI) provides a separate represen-
tation for the diffusion of water molecules in each microstructural compartment
in each voxel, thereby enabling a richer and more reliable characterization of the
local brain microstructure. Properties of the diffusion compartment model can be
directly related to properties of the underlying microstructure. For instance, the
diffusion of water molecules in a direction that is orthogonal to a bundle of axons
is facilitated if the axons have a larger diameter. The radial diffusivity of the
corresponding compartment is therefore larger if axonal radii are larger. Typical
examples of compartments are the intra-axonal space of a particular fascicle, the
extra-axonal volume in the vicinity of the fascicle, the space within glial cells, and
the extra-cellular space [10]. Various DCI models spanning a range of granularity
and complexity have been proposed in the literature. These include the multi-tensor
model with fixed diffusivities [23], full multi-tensor models with separate repre-
sentations of fascicles [13], CHARMED [2], NODDI [27] and DIAMOND [14]. By
providing a more reliable representation of the brain microstructure, DCI opens new
opportunities to investigate the brain in disease and injury.

Analyzing DCI models has, however, proven challenging because of the absence
of a one-to-one correspondence between compartments of different voxels (neigh-
boring voxels or voxels from different subjects). This is because different voxels
may have different numbers of fascicles crossing them (Fig. 1). Therefore, corre-
sponding compartments cannot be identified and analyzed separately and a holistic
approach is required. This chapter presents a holistic mathematical framework for
the analysis of DCI.

Typical parameterizations of DCI models are introduced in Sect. 2.1. As we shall
see, many operations on DCI models boil down to computing linear combinations of
these models. Section 2.2 explains why computing linear combinations of diffusion
compartment models is a mixture model simplification problem. Sections 2.3
and 2.4 presents two algorithms to compute linear combinations of DCI. Section 3
provides additional details about the implementation of these methods. Finally,
Sect. 4 illustrates the far-reaching impact of this novel analysis framework on vari-
ous applications, including registration, atlas construction, smoothing, tractography,
population studies and model estimation.

2 Theory

In this section, we first introduce the typical parameterization of diffusion com-
partment models. We then explain why typical operations of image processing boil
down to computing linear combinations of voxel values and how the concept of
linear combinations can be generalized to diffusion compartment models. Finally,
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Fig. 1 Simple synthetic
diffusion compartment model
with fractions of occupancy
encoded as the transparency
of the tensors. The challenge
of analyzing diffusion
compartment imaging (DCI)
stems from the presence of
different numbers of
compartments in each voxels.
For example, in the red area,
voxels containing one
(isotropic), two and three
compartments are present

we present two approaches to compute linear combinations of DCI. The choice
between these two approaches depend on the quantity that one wants to preserve: the
first approach preserves the diffusion signal that is generated by the model, whereas
the second approach preserves the microstructural properties of the models. In
summary, the theoretical contributions of this chapter are the following:

1. We propose a generic approach to generalize common operations to DCI, such
as interpolation, averaging, smoothing and spatial normalization. We originally
proposed this approach in [17] and applied it to registration, atlas construction
and statistical analysis of DCI in [18] and [22].

2. We express two complementary approaches to computing linear combinations
of DCI models: one that preserves the signal and one that preserves the
microstructural properties. The former is similar (although slightly different) to
the approach presented in our previous papers. The latter is a novel contribution
of this chapter.

2.1 Diffusion Compartment Models

At each voxel, DCI models represent the diffusion signal arising from a set of
several compartments as the weighted combination of the signals that would arise
from each compartment individually. For a given set of acquisition parameters, if a
compartment A is known to generate a signal SA and a compartment B is known
to generate a signal SB , then the DCI model for the signal emanating from a voxel
containing a fraction fA of water molecules in A and a fraction fB D 1 � fA of
water molecules in B is:

S D fASA C fBSB:
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This equation can be generalized to an arbitrary number N of compartments as:

S D
NX
iD1

fiSi ; with
NX
iD1

fi D 1:

The assumption underpinning this equation is that there is only slow exchange of
water molecules between compartments. This is known to be an approximation
since water molecules do diffuse through cell membranes. However, this approx-
imation is reasonable insofar as the time it takes to observe a substantial exchange
of water molecules between compartments is large compared to the diffusion time
(which is a parameter of the acquisition).

The signal generated in each compartment, Si , has its own parameterization. For
example, the compartment containing freely diffusing water molecules (as in the
CSF) can be represented by an isotropic tensor, i.e., its diffusion-weighted signal
for a gradient direction g and a b-value b is:

Siso D S0e
�bdfree ;

where dfree D 3 � 10�3 mm2=s is the diffusivity of free water at 37 ıC. In the
sequel, we will focus on compartments whose signal decay can be represented by
a multivariate Gaussian. This does not imply that we assume all fascicles to be
represented by a single tensor. Indeed, the diffusion signal, Sj , arising from the
j -th fascicle could be represented by two compartments, one for the intra-axonal
water (Sj;in) and one for the hindered water molecules (Sj;h):

Sj D f in
j S

in
j C .1 � f in

j /S
h
j D f in

j e
�bgT Din

j g C .1 � f in
j /e

�bgT Dh
j g ;

where f in is the relative contribution of the intra-axonal space to the signal. In this
representation, Din and Dh have the same eigenvectors but the radial diffusivity
of D in is smaller than Dh. This is similar to the CHARMED model in which the
restricted diffusion would be approximated by a Gaussian diffusion tensor with
small radial eigenvalues.

In summary, the class of models that we consider in the following sections is
described as follows. LetN be the number of compartments includingNiso isotropic
compartments and Nf fascicles, themselves represented by K compartments
(usuallyK D 1 for a tensor representation orK D 2 for a bi-tensor representation).
The signal decay S=S0 is thus modeled as:

S=S0 D
NX
iD1

fi e
�bgT Dig D

NisoX
lD1

f iso
l e�bd iso

l C
NfX
jD1

KX
kD1

f k
j e
�bgT Dk

jg :
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2.2 Weighted Combination of DCI: A Model Simplification
Problem

Weighted combinations of voxel values are ubiquitous in medical image analysis.
To name a few, interpolation consists in linearly combining the values of voxels on
the grid to infer the value of the image at a non-grid location. Averaging (as used
in atlas construction) consists in linearly combining the values of voxels in several
subjects. Filtering consists in linearly combining the values of the voxels in an area
with weights defined by a smoothing kernel.

Voxels in DCI contain compartment models and linearly combining these
models is challenging. The challenge arises from the absence of a one-to-one
correspondence between compartments of different voxels. There may be fascicles
that are not present in all voxels (one-to-zero correspondence). There may be
fascicles that are represented by different number of compartments in different
voxels (one-to-many correspondence), for example in the case of fanning fascicles.
For this reason, it is impossible to simply group compartments in pairs and compute
linear combinations of single compartments in those pairs.

The goal of weighted combinations is to determine the parameters of a diffusion
compartment model that can be interpreted as a weighted sum of other DCI models
in a meaningful way. Let us define a virtual voxel containing all compartments from
an original set of M compartment models, in proportion equal to some predefined
weights ˛m;m D 1; : : : ;M . If Smi is the signal arising from the i -th compartment
in the m-th model (i D 1; : : : ; Nm) and fmi is the fraction of its contribution to the
total signal, then the diffusion signal arising from the microstructure in this virtual
voxel would be accurately modeled as:

S D
MX
mD1

˛m

NmX
iD1

fmiSmi D
MX
mD1

NmX
iD1

˛mfmiSmi ,
NcX
kD1

wkSk:

A meaningful definition of the weighted combination of M diffusion compartment
models could thus be the diffusion compartment model made of all these compart-
ments with fractions equal to the original fractions multiplied by the weights of the
combination. This complete model would, however, have an increased number of
compartments (equal to M NN , where NN is the average number of compartments in
the original models) compared to all original models. This is not desirable for two
reasons. First, the model complexity may become computationally intractable when
linear combinations need to be recursively computed. Second, it may be that some
compartments from the complete model actually represent the same microstructural
environment and should therefore be merged in some way.

We want to simplify the complete model to obtain a simplified model that accu-
rately represents the microstructure in the virtual voxel containing all compartments.
To formalize this problem, let us introduce some notations. Let the complete model
be denoted by Mc and let Nc be the number of its compartments. Let its k-th
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compartment be represented by a tensor Dc
k and generate a signal S.Dc

k; b;g/ D
S0e
�bgT Dc

kg at a b-value b and for a gradient direction g. Finally, let wk be the
relative contribution of the k-th compartment to the signal decay, so that the signal
generated by the complete model at a b-value b and for a gradient direction g is
modeled as:

SMc .b;g/ D
NcX
kD1

wkS.D
c
k; b;g/:

Similarly, let Ms be the simplified model with Ns � Nc compartments, with the
j -th compartment described by a tensor Ds

j and generating a signal S.Ds
j ; b;g/

that contributes in a fraction fj to the signal decay from the simplified model, so
that the latter signal is modeled as:

SMs .b;g/ D
NsX
jD1

fj S.D
s
j ; b;g/: (1)

The parameters of the simplified model are to minimize some discrepancy measure
with respect to the complete model:

M�
s D arg min

Ms

d.Mc;Ms/: (2)

The discrepancy function depends on whether one is interested in preserving the
signal or in preserving the microstructure. We detail the solutions to the mixture
simplification problem in those two scenarios in the next two sections.

2.3 Signal-Preserving Model Simplification

If the model simplification should preserve, as much as possible, the signal that
would arise from the complete model, then the discrepancy function reads:

dS.Mc;Ms/ D
Z �

SMs .b;g/� SMc .b;g/
�2

dbdg

D
Z 0
@ NsX
jD1

fj S.D
s
j ; b;g/�

NcX
kD1

wkS.D
c
k; b;g/

1
A
2

dbdg:

In other words, we want the simplified model to generate a signal that is as close
as possible to the signal generated by the complete model, throughout the q-space.
Minimizing this function is challenging. However, Zhang and Kwok provided an
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efficient algorithm to compute the following upper bound to this function [25, 26]:

QdS.Mc;Ms/ D Ns

NsX
jD1

Z 0
@fj S.Ds

j ; b;g/ �
X
k2˝j

wkS.D
c
k; b;g/

1
A
2

dbdg

, Ns

NsX
jD1

QdjS

� dS.Mc;Ms/; (3)

where ˝ D f˝1; : : : ;˝Ns g is a partition of the Nc components of the complete
model in Ns clusters (i.e., Ns groups of compartments that share some similarities)
and QdjS is the discrepancy of the signal within each cluster. Minimizing QdS is much
easier than minimizing dS because the optimization can be performed independently
in each cluster, i.e., the terms QdjS can be independently optimized.

Zhang and Kwok proposed an iterative algorithm in which the partition vari-
ables (˝j ) and the parameters of the simplified model in each cluster (fj and
Ds
j ) are alternatively optimized [25, 26]. Their method can be applied insofar

as the components of the models can be expressed as kernel functions, Sk D
jH kj�1=2KH k

.g � gk/ , which is the case for Gaussian compartment models. The
algorithm for the particular case of Gaussian DCI is presented in Algorithm 1 (with
the step on Line 14 being detailed in Algorithm 2).

This algorithm deserves some comments regarding its interpretation and imple-
mentation.

1. The algorithm only involves simple matrix computations.
2. Both Algorithms 1 and 2 relies on iterative approaches. These approaches were

empirically shown to converge to a local minimum [26] and this was also
observed in all of our experiments.

3. The equations on Lines 10 and 12 of Algorithm 2 result from decoupling the
minimization of QdjS among the parameters fj and Ds

j . Line 12 follows from the

fact that QdjS is a quadratic form in fj and Line 10 arises by computing the partial
derivative of QdjS with respect to .Ds

j /
�1.

4. The formulation of the distance on Line 20 of Algorithm 1 is a direct reformula-
tion of the distance (3) for multivariate Gaussian.

5. Convergence checking for the clustering variables on Line 12 of Algorithm 1
simply consists in assessing whether any element k moved from one cluster to
another during the last iteration.

6. Convergence for the tensor estimation on Line 5 of Algorithm 2 is verified
by computing the Frobenius norm of the difference between two consecutive
estimates and dividing it by the norm of the current estimate. When this ratio is
sufficiently small, then convergence is claimed.

7. For computational efficiency, the inverse of all tensors should be computed a
priori, given their frequent occurrence throughout the algorithm.
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Algorithm 1 Signal-preserving weighted combinations of DCI
1: Input: (1) A set of M models fMmgmD1;:::;M so that Mm is described by fractions fmi and

tensors Dmi (i D 1; : : : ; Nm), (2) The weights ˛m associated with each model, (3) The number
Ns of compartments in the output.

2: Output: A multi-fascicle model: Ms such that SMs .b;g/ D
PNs

jD1 fj e
�bgT Ds

j g

3: k 0

4: for m in 1 to M do F Construct the complete model Mc

5: for i in 1 to Nm do
6: k kC 1
7: wk  ˛mfmi
8: Dc

k  Dmi

9: end for
10: end for
11: ˝  Initialization.fDc

k;wkg; Ns/ F Initialize clustering
12: while ˝ has not converged do
13: for j in 1 to Ns do F Representation
14: Ds

j ; fj  Update.fDc
k ;wkgk2˝j / (see Algorithm 2)

15: Zj  
X
k2˝j

wk

16: end for
17: Reset all ˝j to empty sets
18: for k in 1 to Nc do F Clustering
19: for j in 1 to Ns do

20: Distance.j; k/ ˇ̌
2Dc

k

ˇ̌1=2 C f 2j

Z2j

ˇ̌
2Ds

j

ˇ̌1=2 � 2fj

Zj

ˇ̌
.Ds

j /
�1 C .Dc

k/
�1
ˇ̌
�1=2

21: end for
22: c.k/ arg minx Distance.x; k/
23: ˝c.k/  ˝c.k/ [ fkg
24: end for
25: end while

8. The initialization of clusters on Line 11 of Algorithm 1 can be done in several
manners. We found empirically that the spectral clustering approach of Ng et
al. [8] with the similarity between two tensors defined as the cosine of the scalar
product between their principal orientation is both efficient and accurate. This
approach involves a k-means algorithm on the projection of similarity vectors
onto the basis of the first Ns eigenvectors of the Laplacian matrix. The efficiency
of the algorithm enables us to run it multiple times with random initializations
and select the best clustering (based on the within-cluster sum of distances).

The results of this algorithm in terms of interpolation (a prototype application of
weighted combinations) are depicted in Fig. 2. As expected from the minimization
of the discrepancy between signals, the interpolated models tend to preserve
the signal of the original tensors. This preservation should be understood in the
following way. When the two original models (at the extreme left and extreme right
of Fig. 2a) generate the same signal (for a particular b-value and gradient direction),
then all the interpolated models (in between original models) also generate the same
signal, so that the signal is preserved along the interpolated line. When the original
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Algorithm 2 Update step in signal-preserving weighted combinations of DCI
1: Input: The tensors and fractions that are in Cluster ˝j W fDc

k ;wkgk2˝j

2: Output: The updated tensor and fraction of the j -th compartment in the simplified model :
Ds
j and fj

3: .Ds
j /

�1 1X
k2˝j

wk

X
k2˝j

wk.D
c
k/

�1

4: ı 1
5: while Ds

j has not converged do
6: for k in ˝k do

7: W k  
�
.Ds

j /
�1 C .Dc

k/
�1
�

�1

ˇ̌
ˇ.Ds

j /
�1 C .Dc

k/
�1

ˇ̌
ˇ1=2

wk

8: end for
9: Pj  

X
k2˝j

W k

10: .Ds
j /

�1  P�1
j

X
k2˝j

W k.D
c
k/

�1

11: end while
12: fj  

ˇ̌
1
2
Ds
j

ˇ̌
�1=2

X
k2˝j

wkˇ̌
ˇ.Ds

j /
�1 C .Dc

k/
�1

ˇ̌
ˇ1=2

models generate different signals then the sequence of interpolated models should
generate signals that monotonically evolve from one model to the other. This can be
seen by looking at all the signals at any x-location on the graph of Fig. 2b.

As observed in the top row of Fig. 2a, the tensors tend to look inflated. This
is confirmed by the plot of the radial and axial diffusivities and the fractional
anisotropy which all present non-monotonic evolutions (Fig. 2c). By preserving the
signal, we do not preserve the microstructure. In the next section, we will show that
the opposite is also true.

To understand why we introduce microstructural artifacts by preserving
the signal, let’s picture the weighted combinations of many identical highly
anisotropic compartments spanning a spectrum of orientations (Fig. 3). Preserving
the microstructure would result in one such highly anisotropic compartment aligned
with the mean direction in the spectrum. However, as a function of gradient
direction, the signal decay generated by this average compartment would present
a sharp peak in the orientation of the compartment. This sharp peak is not present
in the signal decay of the original spectrum which presents moderate decay values
for all gradient directions within the spectrum. To most accurately represent these
moderate values spanning a larger area, an inflated tensor needs to be fit.

Another way to preserve the signal would be to compute weighted sums of
the signal, i.e., the set of original scalar diffusion-weighted images (DWI). This is
sometimes performed in the literature as a work-around to the problem of processing
DCI. In this view, the signal-preserving weighted combination presented above can
be interpreted as an acceleration technique to carrying all the processing in the space
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Fig. 2 Interpolation results using the signal-preserving and microstructure-preserving interpola-
tions. Signal-preservation implies that the signal monotonically transits from one value to another,
whereas microstructure-preservation implies that microstructural features monotonically transits
from one value to another. When signal-preservation is achieved, microstructure is not preserved
and vice versa. (a) The models at the left and right extremities are fixed and the others are
interpolation results with weights increasing from 0.1 to 0.9 with steps of 0.1. The colored circles
and squares match those in the graphs below. (b) Signals arising from each model for a b-value of
1;000 s=mm2 and for in-plane gradients making an angle between 0 and � with the horizontal. (c)
Signal generated in a direction of �=25 and various microstructural properties of the green tensor
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Fig. 3 Let an identical highly anisotropic original compartment be repeated many times (here
21) with various orientations. The signal-preserving mean of these compartments is an inflated
tensor with higher radial diffusivity and lower axial diffusivity than the original fascicle. This
inflated tensor better represents the signal generated by the spectrum of fascicles although it
has microstructural features that do not correspond to original compartments. By contrast, the
microstructure-preserving mean accurately represents the microstructure of the compartments in
the spectrum but its generated signal departs from the signal generated by the spectrum

of DWI (since by processing DCI, one avoids the computational burden associated
with re-estimating the DCI at each processing step). However, the discussion above
also makes it clear that if the goal is to preserve properties of the microstructure
then one should not process DWI directly.

Finally, alternatives to the distance in Eq. (3) can also be proposed. For instance,
the original method proposed to compute weighted combinations of DCI was based
on the minimization of the differential entropy between compartments [17]. The
associated algorithm, presented in [22], is framed as an Expectation-Maximization
clustering problem and is guaranteed to converge to a local minimum. The preserved
quantity of this energy function is less clear. However, the simplified model simply
consists in the weighted mean of covariance matrices in each cluster, which speaks
more to the intuition than the equation on Line 10 of Algorithm 2. The two cost
functions mostly differ theoretically and lead to very similar results in practice.

2.4 Microstructure-Preserving Model Simplification

In many applications, preserving the microstructural features is arguably more
important than preserving the signal. For instance, when we align DCI from
various subjects in order to compare their microstructure, it is important that the
interpolation does not result in inflated tensors. This may jeopardize our capability
to detect group differences because the amount of inflation depends on the weights
of the interpolation (tensors further away form the extremities in Fig. 2 are more
inflated).

If weighted combinations must preserve the microstructure, then the discrepancy
function in Eq. (2) should express differences between the parameters of
the DCI models rather than differences between the generated signals. The
j -th compartment of the simplified model should accurately represent a subset
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˝j of the compartments from the complete model so that each compartment of the
complete model is well represented by a compartment in the simplified model. The
discrepancy function therefore reads:

dM.Mc;Ms/ D
NsX
jD1

0
@
ˇ̌
ˇ̌
ˇfj �

X
k2˝j

wk

ˇ̌
ˇ̌
ˇC

X
k2˝j

wkd
0.Dc

k;D
s
j /

1
A :

The first term expresses that the fraction fj of the j -th compartment in the
simplified model should be close to the total fraction of all the compartments
that the j -th compartment represents. The second term expresses that Ds

j should
be close to the tensors Dc

k that it represents in a proportion that is weighted by
the fraction wk of occupancy of those compartments. This discrepancy should be
simultaneously minimized for all fj , all Ds

j and all ˝j . Given any clustering of
compartments into Ns clusters (˝j ; j D 1; : : : ; Ns), one can always find a set of
fractions (fj ; j D 1; : : : ; Ns) that globally minimizes the first term. Indeed, for
fj D P

k2˝j wk , the first term is minimum and equal to zero and the constraints

that
PNs

jD1 fj D 1 with 0 � fj � 1 are respected. It is therefore sufficient to
simultaneously optimize the tensors and the partition by minimizing the second term
of the discrepancy:

M�
c D arg min

Mc

dM.Mc;Ms/

D arg min
Mc

NsX
jD1

X
k2˝j

wkd
0.Dc

k;D
s
j /; with fj D

X
k2˝k

wk :

This is a weighted k-means clustering problem which can be solved by iterating the
following two steps:

Ds
j D WeightedMean

˚
.wk;D

c
k/
�
k2˝j (4)

˝j D
n
k
ˇ̌
ˇd 0

�
Dc
k;D

s
j

�
� d 0

�
Dc
k;D

s
l

�
;8l D 1; : : : ; Ns

o
: (5)

In order for the k-means algorithm to converge, the definitions of the distance
function d 0 and the weighted mean must be interrelated so that the weighted mean is
the tensor that is at the smallest (weighted) cumulative distance of all the elements
in the cluster. Here, we choose the recently introduced anisotropy-preserving metric
of Collard et al. [4] for it best preserves the microstructural features while being
computationally tractable.

In this anisotropy-preserving framework, the weighted mean of two tensors, D1

with weight w and D2 with weight 1�w, is defined as follows (the generalization to
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N tensors is straightforward). First, we compute the spectral decomposition of each
tensor:

Di D U i�iU
T
i :

Second, the eigenvector matrices U i are transformed to their quaternion representa-
tions qi D .ai ; vi / where ai is a scalar and vi is a vector in R

3 such that kqik2 D 1.
The quaternion representation can be understood as the rotation required to align the
canonical basis of R3 to the eigenvectors U i . The scalar ai is related to the angle of
the rotation and vi is proportional to the invariant axis of rotation.

Averaging the quaternions directly would give equal importance to the ori-
entation of all tensors regardless of their anisotropy. However, tensors with low
anisotropy have less relevant orientational information than highly anisotropic ones.
To reflect this relative importance, Collard et al. weight quaternions by a function
of the anisotropy of the tensors. Formally, if we let HAi D log �max

�min
be the Hilbert

anisotropy of the tensors, we compute the weighted mean of quaternions as follows
(for details on the derivation, see [4]):

Nq D w�q1 C .1 � w�/q2

with w� D wf
�
min.HA1;HA/

�
wf

�
min.HA1;HA/

�C .1 � w/f
�
min.HA2;HA/

� ;

where f is any sigmoid function. From the representation of Di as .qi ;�i /, the
weighted mean of two tensors is then defined as:

WeightedMean
˚
.w; q1;�1/; .1 � w; q2;�2/

�

D
�

w�q1 C .1 � w�/q2; exp
�
w log �1 C .1� w/ log �2

��
: (6)

In other words, in the anisotropy-preserving framework, the eigenvalues are inde-
pendently averaged in the log-domain and the eigenvectors are averaged in their
quaternion representations, with weights that depend on the anisotropy of tensors.

Since the sign of eigenvectors is undefined, there are 23 different representations
of U i as a basis of R3 and therefore eight different equivalent quaternions. Before
summing quaternions, they must therefore be aligned. Collard et al. proposed
to perform this alignment by first selecting one arbitrary tensor from the set of
tensors to be averaged, computing one of its quaternion representation, calling it
the reference quaternion and then selecting for each other tensor the quaternion
representation that maximizes the scalar product with the reference quaternion [4].

The distance between two tensors in the anisotropy-preserving framework of [4]
can be defined in terms of a metric compose of one term related to the quaternions
(the chordal distance) and one term related to the eigenvalues. Similarly to the
weighted mean, the term related to the quaternion is weighted by a function of the
Hilbert anisotropy. The distance induced by this metric has no obvious closed-form
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and we therefore employ the following approximation which is an upper bound of
the distance [4]:

d 0.D1;D2/ D f .min.HA1;HA2// kq1 � q2k2 C
3X
iD1

ˇ̌
ˇ̌log

�1;i i

�2;i i

ˇ̌
ˇ̌ : (7)

The weighted mean [Eq. (6)] and distance [Eq. (7)] in the anisotropy-preserving
framework are ill-posed when the tensors are cylindrically symmetric, because
each cylindrically symmetrical tensor can be decomposed in a quaternion in
an infinite number of ways. Cylindrical symmetry is often enforced in DCI to
reduce the number of parameters to estimate [10, 21]. We thus introduce the
following weighted average and distance operators that can be used for cylindrically
symmetric tensors whose representations only depend on the main orientation ei of
tensors and their eigenvalues:

WeightedMeanc
˚
.w; e1;�1/; .1 � w; e2;�2/

�

D
�

w�e1 C .1 � w�/e2
kw�e1 C .1 � w�/e2k2 ; exp

�
w log �1 C .1 � w/ log �2

��
(8)

and

d 0c.D1;D2/ D f .min.HA1;HA2// acos.je1 ˘ e2j/C
3X
iD1

ˇ̌
ˇ̌log

�1;i i

�2;i i

ˇ̌
ˇ̌ : (9)

We now have operators to compute the weighted mean and distance for non-
symmetric tensors [Eqs. (6) and (7)] and for symmetric tensors [Eqs. (8) and (9)]. We
can plug these single-tensor operators into the k-means algorithm [Eqs. (4) and (5)]
to obtain a framework for the analysis of DCI that preserves the microstructure.

Expressing the weighted combinations of diffusion compartment models as a k-
means clustering problem enables the incorporation of useful extensions developed
in the general k-means framework. One particularly interesting extension is the so-
called constrained k-means in which prior knowledge about the clusters can be
incorporated [24]. This is useful if we know that some compartments definitely
represent different microstructural environments despite the possible similarity
between their parameters. For instance, one may want to force the free water
compartments to remain separate from other compartments; or one may want
to keep all compartments that were separate in one voxel to remain so in the
simplified model. Conversely, if some tensors are known to be represent the same
microstructural environments in advance, this can also be incorporated in the k-
means algorithm. Both types of constraints can be expressed as a constraint matrix
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Algorithm 3 Microstructure-preserving weighted combinations of DCI
1: Input: (1) A set of M models fMmgmD1;:::;M so that Mm is described by fractions fmi and

tensors Dmi (i D 1; : : : ; Nm), (2) The weights ˛m associated with each model, (3) The number
Ns of compartments in the output, (4) a constraint matrix C .

2: Output: A multi-fascicle model: Ms such that SMs .b;g/ D
PNs

jD1 fj e
�bgT Ds

j g

3: k 0

4: for m in 1 to M do F Construct the complete model Mc

5: for i in 1 to Nm do
6: k kC 1
7: wk  ˛mfmi
8: Dc

k  Dmi

9: end for
10: end for
11: ˝  Initialization.fDc

k;wkg; ; Ns; C / F Initialize clustering
12: while ˝ has not converged do
13: for j in 1 to Ns do F Representation
14: Ds

j  WeightedMean
˚
.wk;D

c
k/
�
k2˝j

F given by Equation (6) or (8)

15: fj  
X
k2˝j

wk

16: end for
17: Reset all ˝j to empty sets
18: for k in 1 to Nc do F Clustering
19: if 9 k0 < k W C.k; k0/ D 1 then F Check if k must be forced to some cluster
20: c.k/ c.k0/

21: ˝c.k/  ˝c.k/ [ fkg else
22:

ForbiddenClusters fj j˝j � k0 < k and C.k; k0/ D �1g
23: for j in 1 to Ns do
24: if j 2 ForbiddenClusters then
25: Distance.j; k/ 1 else
26:

Distance.j; k/ d 0.Ds
j ;D

c
k/ F d 0 given by Equation (7) or (9)

27: end if
28: end for
29: c.k/ arg minx Distance.x; k/
30: ˝c.k/  ˝c.k/ [ fkg
31: end if
32: end for
33: end while

C whose k1k2-entry defines the link between the k1-th and k2-th tensors in the
complete model:

C.k1; k2/ D
8<
:

�1 if k1 and k2 must not belong to the same cluster
1 if k1 and k2 must belong to the same cluster
0 otherwise.

The full algorithm to perform microstructure-preserving weighted combinations of
DCI is presented in Algorithm 3. The results using this algorithm with constraints
imposing that two tensors from a same voxel cannot be clustered together are
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depicted in Fig. 2. As expected, the microstructural features are preserved in this
framework, whereas the signal is not preserved.

3 Details of Implementation

In this section, we provide additional details regarding the implementation of the
weighted combinations of DCI.

3.1 Selecting the Number of Compartments in the Output

One aspect of the algorithm that we have not yet discussed is how the number of
compartments of the output [Ns in Eq. (1)] is determined. We argue that any choice
for Ns that is lower than the maximum number of non-empty (i.e., with a non-zero
fraction) compartments in the input models is not self-consistent. In other words,
we argue that if we have M input DCI models and if the m-th input model has Nm
non-empty compartments, then we need:

Ns � max
mD1;:::;M Nm:

To understand why other choices would not be self-consistent, imagine that we
want to compute the average DCI model in the following two situations. In the first
situation, the first model is a three-compartment model S1 D faSa C fbSb C fcSc
and the second model is a two-compartment model S2 D .1 � /SA C SB
with a fraction  that is arbitrarily close to zero. In the second situation, the two-
compartment model is replaced by a one compartment model S2 D SA. There is
essentially no difference between the two situations in terms of the microstructure
being represented and in terms of the diffusion signal being generated (the signal
generated by the compartment with an infinitesimal fraction will itself be infinites-
imal). Yet, if the number of compartments of the output depends on the number of
compartments in the second model (e.g., if we set Ns to be the average number of
compartments in the input), then we may end up with two different average DCI
models in the two situations.

Since there is no obvious reason to increase the number of compartments in the
output DCI model compared to the input models, we set, in every applications, the
number of output compartments to be equal to the maximum number of non-empty
compartments in the input models, i.e.,

Ns D max
mD1;:::;M Nm:
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3.2 Computational Time

Several factors impact the computational time required to estimate weighted
combinations of DCI models. In general, weighted combinations are computed
at every voxel of an image, whether it is to apply a transformation field to a
DCI image or to estimate an atlas from a set of spatially aligned image (see
Sect. 4). This process is therefore completely parallelizable, which significantly
decreases computational time. Furthermore, efficient initializations as described
above makes the actual algorithm converge extremely fast. For 27 input voxels
each containing a three-compartment model (which is a typical situation in the
tridimensional interpolation of three-compartment models), less than ten iterations
are usually required to achieve convergence of the K-means. As a typical illustration
of the computational time, the registration of three-compartment DCI models at
a resolution of 1mm � 1mm � 1mm containing 220 � 220 � 176 voxels takes
approximately 40 min on a 10 cores Linux machine. Amongst others, this process
requires tens of millions of calls to the weighted combinations of DCI models (to
interpolate the model at every iteration of the algorithm). This demonstrates that the
proposed method can be used in practice for the analysis of DCI in a large number
of subjects.

4 Applications

In this section, we demonstrate how the proposed framework for weighted com-
binations of diffusion compartment models can be used in various applications.
Unless otherwise mentioned, we present results for the signal-preserving approach
with the differential entropy as a cost function since it corresponds to the method
used in most of our published results. When appropriate, we compare the obtained
results with those of a heuristic approach described in [17]. The heuristic approach
considers DCI as multi-channel images with a tensor in each channel and performs
log-euclidean single-tensor processing in each channel [1]. Attribution of a tensor
to a channel is based on the FA with the tensor with the highest FA occupying the
first channel. When, in a particular voxel, a channel is missing a tensor (because the
selection of the number of fascicles in that voxel resulted in fewer tensors than the
maximum number allowed), then the channel with the highest fraction is split into
two to enforce one-to-one correspondences.

4.1 Registration

Registration is pervasive in medical imaging. A subject’s image can be registered to
an atlas for further comparison between groups (we will discuss this application in
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Moving image Fixed image Registered image

Fig. 4 The capability to compute weighted combinations of DCI combined with an appropriate
similarity metric for block matching (here the generalized correlation coefficient for DCI) enables
us to spatially align DCI

a following section) or to a previous image from the same subject for longitudinal
analysis.

We developed a block matching approach to registration of DCI in [18, 22].
This approach requires the definition of a similarity metric specifically dedicated
to DCI models and a method to interpolate DCI images. Our definition of a
generalized correlation coefficient as a similarity metric can be found in [16] and the
interpolation of DCI was performed using the framework presented in this chapter.
Examples of registered images using this approach are depicted in Fig. 4. To assess
the performance of this registration approach, ten random log-Euclidean polyaffine
fields were applied to the DCI of 24 subjects and noise at six different levels was
then added to both the original and the transformed DCI. Details of the experiment
can be found in [22]. Registering DCI using the presented approach is significantly
more accurate than performing it with the heuristic multi-channel approach: both
the magnitude and the variance of the registration errors are significantly smaller
(Fig. 5).
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Fig. 5 (a) Registering the DCI with the proposed approach to weighted combinations is signif-
icantly more accurate than the multi-channel heuristic, with registration errors that have both
smaller magnitude (top table) and smaller variance (bottom table) (*p < 0:05, **p < 0:005,
***p < 0:001). The poor performance of the heuristic approach to registration can be understood
from its inability to deal with the absence of one-to-one comparisons between compartments. The
model in the middle is the result of interpolating the models on the left and on the right with equal
weights, (b) using the presented approach to interpolate DCI and (c) using the heuristic approach
(figure reproduced from [22])

The poor performance of the multi-channel approach can be understood by its
inability to deal with the absence of one-to-one correspondence. Figure 5b, c illus-
trates how the heuristic approach fails in those cases and results in aberrant tensors
that may eventually mislead conclusions from population studies or longitudinal
studies.

4.2 Construction of an Atlas of the Brain Microstructure

An atlas of the brain microstructure represents the average microstructure in a
standardized anatomy. Such an atlas is an important asset to conduct population
studies as we will see in a subsequent section. Constructing an atlas typically
consists in iterating between the following three steps: registering all subjects to
a common frame, averaging the aligned images, and applying the average inverse
transform to the mean image [5]. The first and last steps require interpolation of DCI
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Fig. 6 From our capability to register and average DCI, we can build an atlas of the brain
microstructure. This atlas represents the average microstructure in a standardized anatomy. Regions
where fascicles cross are accurately represented, such as (middle) the corona radiata where
projections of the corpus callosum and cortico-spinal tracts cross, and (right) a region where the
pyramidal tracts (vertical lines) and the medial cerebellar peduncle (horizontal lines) cross

and the second step requires averaging of DCI. Both interpolation and averaging can
be interpreted as a weighted combination of DCI models and we can therefore use
the presented framework to build an atlas of the brain microstructure. The result,
after ten iterations, is depicted in Fig. 6 with highlighted regions that are known to
present crossing fascicles.

4.3 Filtering

Filtering DCI data proves very useful when the models have been estimated from
noisy data. Filtering consists in replacing every voxels of the image by a weighted
combination of voxels in a neighborhood. This is a simple application of the
weighted combination operator for DCI. We illustrate this capability by generating a
noisy version of the phantom presented in Fig. 1. To obtain a realistic noisy version
of this phantom, we generated synthetic DWI in a three-shell HARDI sequence
with 30 gradient directions on each shell and with b-values of 1,000, 2,000 and
3;000 s=mm2. We added Rician noise to each DWI with a scale parameter of 40
(D S0=10) and estimated the DCI model from these noisy DWI using the technique
developed in [13]. The noisy result is depicted in Fig. 7. We then applied a 3 � 3

Gaussian filter with a standard deviation of 0.5 and a 5 � 5 Gaussian filter with
a standard deviation of 1 to the noised DCI using the microstructure-preserving
weighted combination operator. The result, also depicted in Fig. 7, shows that
aberrant tensors are adequately filtered and brought closer to the source image.

Importantly, this filtering approach leverages information from both single-tensor
and multi-tensor areas in an adaptive manner: the green fibers in the highlighted
region of Fig. 7 are regularized in part by the single-tensor region located above
the two-tensor region whereas the orange fibers are regularized by the single-tensor
region located to the right.
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Source Noised Filtered (3x3, =0.5) Filtered (5x5, =1.0)

Fig. 7 Gaussian smoothing of DCI based on the weighted combination operator. The highlighted
area presents voxels with very noisy tensor estimates that are being regularized by the filter

4.4 Application to Multi-Fiber Tractography

Single-tensor tractography typically consists in (a) shooting tracts from seeding
voxels in the direction of the tensor, (b) making one step in that direction and
(c) interpolating the DTI field at the new location and reiterating the process from
there. The capability to interpolate DCI fields thus enables us to perform multi-fiber
tractography that can disentangle crossing fibers. However, if interpolation leads to
aberrant tensors, as with the heuristic approach, then spurious tracts may appear
(false positives) and expected tracts may go missing (false negatives). In [17], this
effect was demonstrated on a simple synthetic phantom consisting of two crossing
fascicles (Fig. 8). With the proposed approach, however, tracts can reliably be drawn
even in the region of crossing fibers and under the influence of noise.

4.5 Population Studies of the Microstructure

One of the most important applications of diffusion compartment imaging is to learn
how diseases affect the brain microstructure. This can be achieved by conducting
DCI-based population studies. Conducting population studies requires to construct
an atlas of the brain microstructure and to register individual DCI to it. These
techniques have been described in the above sections. Once all subjects have been
aligned to a common coordinate frame, the parameters of the DCI models can be
statistically analyzed. In [18, 22], two different statistical tools for DCI analysis
were introduced: fascicle-based spatial statistics and isotropic diffusion analysis.
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Fig. 8 The capability to compute weighted combinations enables us to perform multi-fiber
tractography by interpolating the DCI field at each step. Using the heuristic multi-channel approach
to interpolate DCI field results in more spurious tracts (higher false positive rate) and more missing
tracts (lower true positive rate), mostly when the noise level increases

The idea behind these two tools is that some properties of DCI models pertain to
individual fascicles whereas some other properties pertain to the surrounding extra-
axonal volume. These tools therefore contrast with traditional DTI-based tools, such
as tract-based spatial statistics (TBSS [15]) that investigate group differences in
microstructure on a per-voxel basis.

Fascicle-based spatial statistics (FBSS) consists in comparing some property of
the fascicle (e.g., FA, MD, radial diffusivity, axial diffusivity, etc.) along a particular
fascicle of interest drawn on the atlas. Specifically, FBSS proceeds in the following
steps:

1. Build a DCI atlas of the microstructure.
2. Perform multi-fiber tractography on the atlas to extract the fiber bundle of interest

(tractography is only computed on the atlas).
3. Select a representative fiber tract from the bundle of interest.
4. Spatially align the DCI of all subjects to the atlas.
5. Interpolate the DCI field from each subject along the fascicle of interest.
6. Select, for each subject and at every location along the fascicle, the tensor most

aligned with the fascicle.
7. Perform statistical analysis of the resulting vectors of microstructural features.

Many of the steps above (atlas construction, registration and multi-fiber tractogra-
phy) require the presented framework. The last step was originally computed using
cluster-based statistics [18, 22]. Recently, however, a Bayesian approach to FBSS
was introduced to circumvent the caveats of p-values in population studies [21].
In the latter approach, a local model of the microstructure at the population level
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Fig. 9 The dorsal language
circuit is a set of fascicles
thought to connect Broca’s
area in the frontal lobe
(Region 1), Geschwind’s
territory in the parietal lobe
(Region 2), and Wernicke’s
area in the temporal lobe
(Region 3)

1

2

3

is estimated and a Markov random field prior is assigned to its latent variables to
express spatial coherence. As an illustration, FBSS was conducted in a population
studies of Tuberous Sclerosis Complex (TSC) to compare the dorsal language
circuit (Fig. 9) between patients with TSC and controls and, within patients with
TSC, between those with autism spectrum disorder (ASD) and those without the
disorder [12]. The results depicted in Fig. 10 demonstrate that FBSS reveals group
differences that single-tensor DTI analysis fails to detect. FBSS also reveals specific
clusters that are missing when the multi-channel heuristic processing of DCI is
used. In particular, a cluster with significantly lower FA in TSC patients with autism
(TSC+ASD) in the vicinity of Broca’s area (Region 1 in Figs. 9 and 10) was only
revealed with FBSS.

Isotropic diffusion analysis (IDA) is used to compare properties that pertain to the
extra-axonal space. It was shown that a higher fraction of water molecules diffusing
in this environment may be a surrogate to the presence of neuroinflammation [11].
IDA proceeds in the following steps:

1. Extract the scalar map of the fraction of isotropic diffusion (fiso) from the aligned
DCI of all subjects.

2. Transform the fiso maps in liso maps with liso D logit.fiso/ to bring the
distribution of the statistics close to a Gaussian.

3. Perform cluster-based statistics on the resulting liso maps as in [9].

Figure 11 presents the results of IDA in a population study comparing children
with TSC with a comorbid diagnosis of autism (TSC+ASD) and children with TSC
but without autism (TSC�ASD).
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Fig. 10 Results of fascicle-based spatial statistics (FBSS) in a population studies comparing
the dorsal language circuit in patients with tuberous sclerosis complex (TSC) and controls and
comparing, within patients with TSC, those with autism spectrum disorder (TSC+ASD) and those
without the disorder (TSC�ASD). The dark curves are the mean fractional anisotropy in the
group and shaded areas around the curve represent two standard errors. Grey rectangles are
locations where the FA is significantly different between the groups. FBSS reveals microstructural
differences that the analysis of single-tensor DTI fails to detect. If a heuristic multi-channel
approach is used to compute weighted combinations of DCI models, then some significant clusters
go missing. The landmarks 1, 2 and 3 correspond to those in Fig. 9 (figure adapted from [22])
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Fig. 11 IDA reveals clusters of significantly higher fraction of isotropic diffusion in children
with TSC and a comorbid diagnosis of autism spectrum disorder than in children with TSC but
without autism. The significant clusters are represented in the atlas space on an axial (left), coronal
(center) and sagittal (right) slice. When the multi-channel heuristic approach is used (bottom line),
significant clusters are located in the same areas but are less spatially coherent (figure adapted
from [22])
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4.6 Estimation of Diffusion Compartment Models

Estimating a DCI model is an ill-posed problem when data at only a single
b-value are available [13, 19]. In that case, additional information from an external
population of subjects can be incorporated in the estimation to regularize it [20].
This prior information is encoded in a probabilistic atlas of the brain microstructure
which contains, in every voxel, a distribution over the model parameters. This
distribution is used as a prior in the estimation of the DCI models in a new
subject [19]. The distribution is spatially aligned to the subject’s space using
the proposed registration method. As a result, population studies of the brain
microstructure can be conducted with single b-value data that are clinically widely
available.

5 Conclusion and Discussion

This chapter introduced a framework for the analysis of diffusion compartment
imaging data. At the heart of this framework is the capability to compute weighted
combinations of DCI models. This is a challenging problem because of the absence
of one-to-one correspondences between the compartments of different DCI voxels
(such as adjacent voxels or voxels from different subjects).

By combining all the compartments from all the DCI models of the weighted
combinations, one obtain a new DCI model. This complete model is, however, not
practical due to its large number of compartments. For this reason, we want to
estimate a simplified model that approaches the complete model. Two approaches
were introduced to simplify the complete model: a signal-preserving approach and a
microstructure-preserving approach. The former leads to a simplified model whose
generated signal is close to that generated by the complete model, whereas the latter
has microstructural properties that are close to the original models. Importantly,
the microstructure-preserving framework preserves all eigenvalues and can work
equally well for tensors that have a cylindrical symmetry and for tensors that have
all three eigenvalues different. In particular, averaging, smoothing or interpolating
ball-and-sticks models lead to a ball-and-sticks models with the microstructure-
preserving operator. This is not the case with the signal-preserving operator for
which combining ball-and-sticks models may lead to multi-tensor models. In that
sense, the microstructure-preserving operator generalizes the approach of Cabeen
et al. [3] for clustering ball-and-sticks, and defines a unique framework that can be
used whether the radial diffusivities are assumed null or finite.

The proposed weighted combinations operator for DCI models has far-reaching
applications in microstructure imaging. We have shown in the last section how
it can be used to perform registration, tractography, smoothing, atlas construc-
tion, population studies and how it can help in estimating DCI. Importantly, the
operator is general enough to be incorporated in various implementations of these
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applications. For instance, one may be interested in developing a more advanced
filtering technique for DCI based on bilateral smoothing. Such an implementation
would simply require to adapt the weights of a smoothing kernel and the proposed
operator could still be used. Similarly, one may want to use another algorithm
for tractography, such as multi-tensor filtered tractography [7]. There again, the
weighted combination operator can be incorporated to better represent the DCI field
at a non grid location.

Incorporating the novel operator in various applications enables us to fully
leverage DCI models in population studies of the brain microstructure, from the
estimation of the models to the statistical analysis of DCI models aligned to an atlas.
This opens new opportunities for the in vivo analysis of the brain microstructure in
the normal development and in diseases and injury.
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Statistical and Machine Learning Methods
for Neuroimaging: Examples, Challenges,
and Extensions to Diffusion Imaging Data

Lauren J. O’Donnell and Thomas Schultz

Abstract In neuroimaging research, a wide variety of quantitative computational
methods enable inference of results regarding the brain’s structure and function. In
this chapter, we survey two broad families of approaches to quantitative analysis
of neuroimaging data: statistical testing and machine learning. We discuss how
methods developed for traditional scalar structural neuroimaging data have been
extended to diffusion magnetic resonance imaging data. Diffusion MRI data have
higher dimensionality and allow the study of the brain’s connection structure. The
intended audience of this chapter includes students or researchers in neuroimage
analysis who are interested in a high-level overview of methods for analyzing their
data.

1 Introduction

The study of the human brain was originally performed by expert dissection of
fixed brains. Now, with the advent of structural and functional neuroimaging, we
can apply quantitative computational analyses to study and model the brain in
vivo. Neuroimaging analyses have important scientific and clinical applications that
include the study or diagnosis of disease, the measurement of change, the detection
of neural activation, and the modeling of anatomy. In this chapter, we aim to provide
a general overview of analysis approaches for neuroimaging data, including some
specific examples of neuroimaging studies.

Much of the research in the neuroimage analysis field has focused on the analysis
of scalar data, such as structural magnetic resonance imaging (MRI) or computed
tomography (CT), where a single scalar value is present at each voxel. Another
large body of analysis research focuses on detection of neural activations using
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Fig. 1 Example diffusion MRI data, including fiber tract trajectories from tractography with
selected (randomly sampled) ellipsoids to visualize diffusion tensors along the tracts. At left, the
whole brain is shown in an inferior view. At right, zoomed images show fiber tract trajectories
(top) plus ellipsoids (bottom). The tracts and ellipsoids are colored by fractional anisotropy (FA),
a popular scalar measure for statistical analyses of diffusion MRI. Blue and purple are high FA,
green and yellow are intermediate values, and red is low FA

timecourse data: the blood-oxygen-level dependent (BOLD) signal of functional
magnetic resonance imaging (fMRI). Of particular interest in this chapter is the
analysis of diffusion MRI, the only non-invasive scan for measurement of the brain’s
connectional structure. The traditional representation of diffusion MRI data is not
scalar. Rather, it is a tensor (specifically, a 3�3 symmetric, positive-definite matrix)
at each voxel. Data employing the tensor representation are called diffusion tensor
MRI or DTI. In current diffusion MRI research, higher-order models (as well as
connectivity data) may also be reconstructed from the scan [58]. Figure 1 shows
both tensor and connectivity (fiber tract) data from a diffusion MRI scan of a healthy
human brain.

Because different types of neuroimaging data have different data dimension-
alities as well as vastly different interpretations in the context of the brain, and
because neuroimaging studies have many possible designs, the analyses developed
for neuroimaging data are manifold. Analyses have been developed for scalar
data, for timecourse data, for tensor-valued data, and for many other types of



Statistical and Machine Learning Methods for Neuroimaging 301

data representations such as measurements from regions of interest or along image
skeletons.

To organize this chapter, we categorize quantitative neuroimaging analyses into
two groups according to their overall philosophy: statistical testing or machine
learning. In statistical testing, the goal is to obtain a result that is statistically
significant: unlikely to have arisen by chance. Most often, these approaches are
applied to measure a result, such as a functional or structural difference, between
groups of subjects. Statistical testing methods are also in regular clinical use to
detect functional brain activations in individual patients. The supervised machine
learning methods that are treated in the second part of this chapter learn computa-
tional models that estimate or predict the values of unobserved variables. During
learning, they are given access to labeled training data, for which the value of
the variable of interest is known, such as images categorized into healthy control
and patient images, or annotated with subject age. In a second step, the respective
quantity—such as disease state or age—is estimated based on other brain scans for
which it is unknown. Statistical and machine learning methods for exploratory data
analysis, such as clustering or Principal Component Analysis (PCA), are outside of
our main focus, even though a use of PCA as part of a predictive model is discussed
in Sect. 3.4.

In the rest of this chapter, we survey examples from the scalar neuroimaging
field, and where possible we describe extensions or new methods developed for
the analysis of diffusion MRI data. The chapter is divided into two parts: first, the
more traditional statistical testing approaches, and second, the more recent machine
learning approaches.

2 Methods for Neuroimaging Analysis That Use Statistical
Tests

In neuroimaging research, statistical tests are used in many scenarios. Examples
include: to find regions of significant difference between two populations in a
clinical neuroimaging study, to find regions of neural activation in fMRI, or to
detect abnormal regions that differ from a model of the healthy brain. In the rest
of this section, we first describe basic concepts, then we give examples of popular
methods that employ statistical testing in neuroimaging data, and finally we describe
extensions of the statistical testing frameworks that have been proposed for analysis
of diffusion MRI data.
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2.1 Basic Concepts and Potential Problems

We begin this section with a simple example that motivates the vocabulary and the
basic concepts used in statistical hypothesis testing. Readers familiar with this may
wish to skip ahead to the overview of methods that have been developed for diffusion
MRI.

In the statistical hypothesis testing framework, there is generally a null hypothesis
H0, such as “There is no difference between the two study groups, thus their data
have the same mean.” A corresponding alternative hypothesis H1

a could be, in
this simple example, that the means of the data from the two groups are different.
(Another H2

a could be, for example, that the mean of one group is larger than the
other.)

To assess this possible difference, a test statistic is chosen. In our example, the
test statistic should be a quantity related to the difference in means, such as the
popular t-statistic [64]. The null distribution is a probability distribution that gives
the probability, under the null hypothesis, of observing values of the test statistic.
The null distribution can be known or estimated from the data. In our example,
armed with the null distribution and an observed test statistic, the researcher will
determine the conditional probability of observing the test statistic if both groups
have the same mean (the null hypothesis).

If the observed test statistic is found to have low probability under the null
hypothesis, the reasoning is that the observed test statistic is unlikely to have
occurred by chance. Thus there may be an experimental finding: it may be possible
to reject the null hypothesis in support of the alternative hypothesis. To decide
whether to reject the null hypothesis, the statistical significance of the observed
test statistic is determined by calculating a p-value, the probability of observing a
statistic at least as extreme as the observed statistic (under the null distribution).
Here, the word “extreme” refers to the tails of the null distribution, where the
probability of observing the test statistic values is low: For H1

a , the first alternative
hypothesis mentioned above, both tails would be considered to be extreme (“two-
tailed test”). ForH2

a , only the tail corresponding to larger values would be taken into
account (“one-tailed test”). If the calculated p-value falls below a predetermined
threshold or alpha level, such as 0.05, the result may be considered significant.
Alternatively, for a given alpha level, the test statistic can be compared to a threshold
for which 5% of the area of the null distribution is located under the tail(s).

Potential problems in hypothesis testing have been widely discussed, for example
in the book “The Cult of Statistical Significance” [76]. Issues include incorrect
rejection of a true null hypothesis, called type I error, or false positive error. In
the context of neuroimaging, this type of error would lead to publication of a false
finding. Type I errors are typically controlled at an alpha level of 0.05, which means
that statistical tests commonly used in neuroimaging have a 5% chance of rejecting
a true null hypothesis due to chance. A second issue is type II error or false negative
error. This means that statistical significance of an effect, even though it is true,
cannot be shown based on the acquired data.
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It is clear that performing multiple tests (multiple comparisons) is dangerous:
eventually, one of the tests will produce a significant value. If this is not correctly
accounted for, the overall chance of a type I error can increase drastically. An
infamous illustration of this was given by an fMRI experiment in which activation
was found in the brain of a dead salmon [8]. Popular strategies for correcting this
potential source of error are mentioned in the next section.

2.2 Popular Neuroimaging Analyses

Here we give a brief overview of two main approaches to data analysis: voxel-based,
where data are measured and statistics are performed in a large number of
voxels throughout the brain, and region-based, where data measurement and
statistical analyses are restricted to neuroanatomical regions generated by image
segmentation. We note that neuroimage analysis methods may also be categorized
according to the number of subjects analyzed. Often, analyses employ a population,
or a neuroimaging dataset that includes data from multiple subjects. However,
some analyses are inherently single-subject, such as fMRI activation detection in
neurosurgical patients.

Voxel-Based Statistics

There is a large and sophisticated body of literature on voxel-based morphometry
(VBM) and statistical parametric mapping (SPM) in structural and functional
imaging [26]. These approaches use the general linear model (GLM) framework,
a linear regression model that incorporates covariates and any indicator variables
reflecting study design [28]. The overall idea is that parameters of interest are
calculated from the GLM, then a parametric statistical test is applied at each voxel,
such as the t-test or F-test. In VBM, traditionally the gray matter is segmented
and smoothed, giving a map of gray matter concentration that is compared across
groups [4]. In fMRI analysis, where the per-voxel information is a vector of time-
course data, traditionally the GLM approach uses regression to obtain a single scalar
parameter for univariate statistical testing [29]. The voxel-based approach assumes
that anatomy corresponds across subjects at the voxel level, and thus smoothing
and image registration play important roles. Statistical analyses called deformation-
based or tensor-based morphometry generally analyze the Jacobian determinants of
the vector-valued deformation fields generated by image registration [5].

In voxel-based analyses, multiple comparisons arise naturally because the tests
are performed at many anatomical locations within the brain. Several statistical
methods may be employed to correct for multiple comparisons, including the
stringent Bonferroni correction, where the threshold for statistical significance is
adjusted to account for the multiple tests. The Bonferroni correction assumes tests
are independent, which is not the case in spatially smooth image data, and leads
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to an overly conservative correction, reducing statistical power. Thus, the theory of
Gaussian random fields is employed in SPM to correct for multiple comparisons [4].
An alternative that controls the expected proportion of false positives within a
statistical map, rather than the probability that any part of the map includes a false
positive, is the false discovery rate (FDR) [7, 30]. However, simple application of
FDR does not take into account the fact that voxels are spatially contiguous and
represent continuous data [11]. In another approach, a summary or maximal test
statistic (such as maximum suprathreshold cluster size) may be used to summarize
information from multiple statistical tests across voxels, and the null distribution
may be estimated for this new, overall test statistic. This strategy may be used in
combination with permutation testing for computation of the null distribution [47].
Permutation tests are increasingly used because they are powerful, non-parametric,
and simple to perform by repeatedly randomizing the labels of the data. However,
they can be computationally intensive.

Region-Based Statistics

In the case where there is a hypothesis about the likely region of an effect (for
example, if the corpus callosum is hypothesized to differ between groups), a region
of interest (ROI) can be created for measurement. This may be done via a manual
or automated image segmentation procedure. Scalar measurements are made, such
as the ROI’s volume or the mean value of image voxels within the ROI. This
approach can avoid the multiple comparisons problem, if only one ROI is measured,
and only one type of information is measured from that ROI. More typically,
data from more than one ROI are measured, and Bonferroni or FDR correction
would be appropriate. Traditional t-tests and ANOVA are very commonly used
in the neuroimaging literature to identify possible differences between groups in
ROI-based studies, for example [62].

2.3 Extension of Analyses to Diffusion MRI

We give examples of analyses in the voxel-based and region-based frameworks, as
well as methods where statistical tests have been developed to deal with unique
types of data from diffusion MRI. We begin with voxel-based and region-based
methods that operate on scalar values derived from diffusion MRI, most commonly
the fractional anisotropy (FA). Next we describe statistical methods that have been
developed for diffusion MRI tracts, followed by methods for vector and tensor data
estimated from diffusion MRI. This is by no means an exhaustive list of references
from the field; rather, we intend to provide examples illustrating the main concepts.
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Voxel-Based Statistics Proposed for Diffusion MRI

At this point, standard VBM studies are not often performed on diffusion MRI data.
It has been shown that results are highly sensitive to the size of the smoothing
kernel [36] and that image registration often fails to match the high FA core of the
white matter tracts [63]. Furthermore, there are issues with non-normally distributed
residuals after fitting a GLM model [36].

The most popular voxel-based analysis of diffusion MRI data was designed to
address these issues. Though it is a voxel-based method, it is called Tract-Based
Spatial Statistics [63]. In this method, to ameliorate registration difficulties and
to restrict analyses to the presumed core of the tract, locally high FA values are
projected onto voxels of a group FA skeleton. After this procedure, the voxels of the
groupwise skeleton have been attributed with data from every subject in the study,
and standard GLM analyses may be used.

Methods have also been investigated for diagnostic analysis of diffusion MRI on
the single subject level. Diffusion MRI is of particular interest as a sensitive marker
for traumatic brain injury, where a quantitative marker is desired to help in diagnosis
and prognosis. Initially, standard VBM techniques were applied to investigate
brain changes by comparing an individual to controls [42]. Then alternative voxel-
based analyses were designed to detect abnormal regions within the single subject,
based on comparison to a model of normal diffusion that employs data from
multiple control subjects. An FA-based method that employs bootstrap methods
for estimating control population variance and corrects for covariates such as age
and gender has been developed to assess departure from the normal model using
z-scores [43].

Region-Based Statistics Proposed for Diffusion MRI

Existing image segmentation and measurement pipelines may be applied to any
scalar data derived from diffusion MRI. Additionally, many diffusion-MRI specific
methods exist for defining white matter tracts, including deterministic and prob-
abilistic tractography methods for estimation of white matter connections. For a
recent overview of tractography segmentation methods, see [49]. Many diffusion
MRI analysis pipelines use atlases derived from tractography, such as the Mori atlas
[69] to define regions of interest in individual subjects. Once tract ROIs have been
defined, they can be used for measurement of quantities such as the average FA
within the tract. This enables region-based statistical analyses.

After ROI definition, measurement and statistical analysis are the same as for
any imaging ROI study, except for the fact that there are many scalar parameters
that may be measured from one diffusion MRI scan. For a basic diffusion tensor
reconstruction, scalars can include FA, mean diffusivity (MD), and more. Thus the
multiple comparisons problem may be more severe in diffusion MRI studies.
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Tract-Based Statistics Proposed for Diffusion MRI

In more sophisticated data analyses than average measurement within an entire tract
region, fiber tracts have been used for structure-specific statistical mapping. Since
tracts can be considered to have a linear structure (connecting brain region A to
brain region B), one option is to analyze data along the tract. This style of analysis
measures data versus arc length along a tract [13]. Methods for measurement
and analysis have been proposed by many authors. Simple averaging of data at
points along the tract and use of permutation testing found significant differences
across hemispheres [48]. Authors have proposed more sophisticated machinery,
such as using an extension of multivariate statistics called functional regression
analysis [31, 75]. Fiber tractography in a DTI atlas was employed to define and
parameterize tracts in conjunction with the Hotelling T 2 statistic to analyze both
FA and tensor norm [31]. Analysis of data along tracts has been shown to have
advantages over simple averaging of the data, which may mask differences [12, 48].
Related approaches have proposed analysis over the entire tract surface, representing
it as a sheet, rather than attributing a single trajectory with data [74].

Eigenvector and Tensor Statistical Tests Proposed for Diffusion MRI

Some disagreement exists regarding an appropriate manifold for diffusion tensors. A
Riemannian metric between diffusion tensors was proposed [3, 6, 23, 24, 41] in order
to restrict analyses to the space of positive definite symmetric matrices. However,
others believe that a Euclidean metric is more appropriate for actual diffusion MRI
data [51]. Several groups have investigated geodesics for interpolation of diffusion
tensors [22, 38]. However, recent work on smoothing may indicate that the metric
between tensors has little practical effect for data analyses [67]. Each metric may be
useful for certain computational tasks: in registration, the log-Euclidean metric may
be used for reducing blurring when averaging, while the Euclidean metric performs
well for the objective function [37].

Limited work exists on statistical testing for group differences in principal
diffusion directions (major eigenvectors) and in entire diffusion tensors. A statistical
method based on the bipolar Watson distribution was proposed to test whether the
principal diffusion direction had the same mean in two groups of subjects [60].
This test was shown to detect differences that were invisible to a more standard
FA analysis [60]. Additional work by the same author investigated tensor statistics
[59] and gave further insight into FDR correction for the eigenvector testing [61].
Another group investigated the application of several multivariate statistical tests
directly to the components of the full diffusion tensor [73].
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3 Regression and Classification in Neuroimaging

Given samples from one or multiple populations, statistical hypothesis testing allow
us to infer statements about parameters describing those populations. In the context
of neuroimaging, frequent examples of populations in the statistical sense include
groups of subjects, voxels, or time steps.

Recently, methods from machine learning are increasingly being used to make
statements about individual samples, rather than populations. Example applications
include supporting the diagnosis of disease based on examples of both healthy and
diseased subjects [25], estimating a person’s brain maturity [21, 27], detecting which
class of object a person is currently looking at [14], whether or not he or she is telling
the truth [19], or predicting behavior [32].

Building a system that facilitates such predictions requires selecting a suitable
machine learning method, extracting mathematical descriptors (“features”) on
which further analysis can be based, and selecting features that are particularly
relevant to the task. Obtaining a reliable estimate of a method’s accuracy can pose
serious and surprising pitfalls. Finally, it is desirable, though unfortunately difficult,
to gain insight on how the machine learning method arrived at its final estimate.

In this section, we will elaborate on each of these steps. Since the field is
young, new methods are evolving rapidly, and no widely used standards have been
established so far. Therefore, we cannot hope to provide a final and exhaustive
overview, but rather focus on general principles and examples of solutions that
have been found to be effective on more than a single dataset and, ideally, by
different groups. We are particularly interested in examples involving diffusion
MRI and multimodal imaging, which have been excluded from an earlier, related
overview [52].

3.1 Methods for Classification

In the context of neuroimaging, classification is the assignment of a subject or a
cognitive state to a specific class, such as recognizing that a subject suffers from
a specific disease, or is currently looking at an example from a certain class of
objects. Mathematically, classification is performed by a function f .x/ that maps
an instance x 2 X , the subject or cognitive state, to a discrete output variable
(“label”) y, which encodes the different classes. In practice, x is usually represented
by an m-dimensional feature vector x 2 R

m.
Training a classifier amounts to learning the function f from a training dataset

f.xi ; yi /g, i D 1; : : : ; n so that f .xi / D yi for as many training examples as
possible. At the same time, f should be as “simple” as possible, in a sense that can
be made mathematically precise [57], to maximize the chance that it will produce
correct results also for novel inputs Qx which have not been part of the training data.
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In neuroimaging applications, it is common to have a high-dimensional feature
space, but relatively little training data (m � n). Support Vector Machines (SVM)
are widely used as a classifier, since they are known to be able to deal with this
situation relatively well [57]. They are based on finding a hypersurface in the feature
space that correctly separates as many of the training samples as possible, while also
maximizing the distance of the decision boundary to the samples that are correctly
classified.

SVMs can be generalized to nonlinear classification by implicitly mapping the
features into an abstract higher-dimensional space using the “kernel trick” [57].
While LaConte et al. [40], working with very high-dimensional feature vectors
to begin with, do not find a clear benefit from mapping them to an even higher-
dimensional space, Wee et al. [71] report a noticeable increase in accuracy when
using nonlinear kernels with moderately sized feature vectors, and Rasmussen et al.
[53] construct an example in which a nonlinear kernel aids classification even in
high-dimensional space. Ultimately, no single kernel is optimal for all applications,
and classification accuracy can often be increased by trying different alternatives.

Aside from support vector machines, the machine learning literature offers a
wide range of classifiers that are occasionally used in neuroimaging, including
Fisher Linear Discriminant Analysis (LDA) [25] and maximum uncertainty Linear
Discriminant Analysis (MLDA) [18], naive Bayesian classifiers [45], k Nearest
Neighbor classifiers [70], neural networks [2], and random forests [1]. For more
detailed explanations of these methods and further pointers to the machine learning
literature, we refer the reader to [9].

Sometimes, it is desirable to combine the results from multiple classifiers. For
example, in multimodal imaging, a separate classifier might be created for each
modality, and a single prediction y has to be derived from their outputs. In the
simplest case, it can be based on a majority vote [35]. A natural improvement of this
is to weight the impact of each classifier by its estimated accuracy [18]. In adaptive
boosting (AdaBoost), this idea is combined with an iterative training of classifiers
on re-weighted training samples, so that classifiers trained at later stages focus on
examples misclassified previously [44].

3.2 Methods for Regression

Regression differs from classification mainly in the fact that the output variable y
is continuous, such as age or brain maturity [21, 27], rather than discrete. Many
methods for classification have a closely related variant that can be used for
regression. An example is support vector regression [57] which, like support vector
classification, produces a function f that can be written in terms of a subset of the
training data, the so-called support vectors. Relevance vector regression, as it was
used in [27], generally provides an even sparser representation of a similar form
and at similar accuracy, at the cost of a more difficult and time consuming training
process.
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Many aspects of learning a function f .x/ that will be discussed in the remainder
of this section are common to classification and regression. In this case, we will
refer to methods that create such functions as “learning machines”.

3.3 Feature Extraction

Feature extraction is the process of producing a feature vector x from the image data.
It will subsequently represent a subject or cognitive state and contain information
relevant to the classification or regression task. Initially, the individual images often
undergo the same preprocessing that would be used for voxel-based statistical
analysis, as it was explained in section “Voxel-Based Statistics”. This includes
normalization to a standard space, so that each voxel position (approximately)
corresponds to the same anatomical structure, often followed by smoothing to
reduce image noise and to compensate for residual misalignment.

At this point, each voxel could in principle be turned into an entry of the feature
vector [40]. Often, a shorter feature vector is desired and is achieved by averaging
values over larger blocks of voxels [19] or over predefined functional regions [18,
21], whose selection may be informed by prior knowledge on the regions involved
in specific tasks or conditions [20].

In the context of diffusion MRI, feature extraction often makes use of the
pipeline developed for Tract-Based Spatial Statistics (TBSS), which was explained
in section “Voxel-Based Statistics Proposed for Diffusion MRI”. In this case, the
features are given by the values on the TBSS skeleton [33, 56], sometimes averaged
over predefined white matter regions [15].

A more complex way of deriving feature vectors from diffusion MRI involves
a brain connectivity graph constructed using tractography. To this end, Wee et al.
[71] first parcellate the brain into anatomical regions of interest and detect which of
them are connected by a deterministic full-brain tractography. The resulting graph
is represented as an adjacency matrix, where edges are alternatively weighted by
fiber count, Fractional Anisotropy, Mean Diffusivity, or any of the three diffusion
tensor eigenvalues, and the resulting six matrices are vectorized and concatenated
to form the final feature vector. In a follow-up work, these dMRI-based connectivity
matrices have been combined with ones constructed from correlations in resting-
state fMRI [72].

3.4 Feature Selection and Feature Weighting

Even though many learning machines are in principle able to operate on high-
dimensional feature spaces, their effectiveness can be reduced when feature vectors
include components whose variation does not carry any information about the
desired output y, especially when, in addition, little training data is available. This
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is particularly relevant for some of the feature vectors described in the previous
subsection, which can be very high-dimensional (m � 106), and often include
information from all regions of the brain, even if only some small specialized area
may be affected by a disease or relevant to a task.

Initially, one often attempts to give similar influence to all features (“feature
normalization”), for example by subtracting the mean and dividing by the standard
deviation, or by linearly rescaling all features to some fixed interval [15]. Subse-
quently, a crucial step in most applications of machine learning in neuroimaging is
to reduce the impact of features which are less relevant to the task at hand.

Feature selection methods attempt to find a subset of features which is particu-
larly well suited for building a learning machine. In order to arrive at an optimal
solution, one would have to evaluate each possible combination of features, which
is infeasible in most cases. Therefore, a frequently used strategy is to first rank
features according to their expected utility, and to include the top k features in the
final feature vector.

In neuroimaging, the Fisher score (as it would be used in an F-test [15]), the
t score (as it would be used in Student’s t-test [71]), and, in case of regression, the
Pearson correlation coefficient [21], are particularly popular for ranking features,
possibly due to their ubiquitous use for statistical testing on the same type of data.
As an alternative to these straightforward methods, a family of heuristics known
as Relief, ReliefF, and RReliefF [54] is occasionally used [33, 50], and offers the
advantage of being able to detect nonlinear dependencies between features and
labels, as well as providing a higher rating of features that are only useful when
used in combination, whereas the simple methods rate each feature in isolation.

Once a ranking has been achieved, the number k of features that should be
included can be found by cross-validation [71], which will be explained in greater
detail in Sect. 3.5. As a computationally less demanding alternative, sometimes only
features are used whose difference between labels is statistically significant [18], or
the number of retained features is simply set to some constant value [21].

Traditional techniques for dimensionality reduction such as Principal Component
Analysis have also been used [27], but have occasionally been found to perform
worse than other feature selection schemes [71]. This might be explained by the fact
that, unlike all methods described above, they only consider the feature vectors xi
in isolation, and do not account for their relationship to the labels yi .

An alternative to feature selection is feature weighting, which assigns a greater
influence to some features than to others, rather than eliminating features com-
pletely. For example, Schmidt-Wilcke et al. [56] and Schlaffke et al. [55] scale all
features by their correspondingF score, which avoids the need to decide how many
features to retain.

Related to the idea of feature weighting are multiple-kernel SVMs, which are
based on a weighted sum of several distance measures (kernels) between the xi , each
of which might depend only on a certain subset of features. A natural application
of this concept is multimodal imaging, where each modality is represented by a
separate kernel [72].
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3.5 Validation and Parameter Tuning

Once a function f .x/ has been trained for classification or regression, its accuracy
can be estimated by applying it to a set of test data f.Qxi ; Qyi /g, and measuring the
difference between the predictions f .Qxi / and the true Qyi . In order to ensure that the
resulting estimate is unbiased (i.e., not overly optimistic), it is essential that the test
data may not overlap with the data that has been used for training.

When data is available from only relatively few subjects, as it is quite common in
neuroimaging, setting part of it aside for testing only allows us to evaluate accuracy
on very few examples, leading to estimates that may be unbiased (on average, we do
not overestimate accuracy), but have high variance (individual estimates of accuracy
are highly uncertain). This problem can be reduced by applying cross validation, in
which the learning machine is trained repeatedly on part of the data. In particular,
in n-fold cross validation, the data is distributed equally between n sets (“folds”).
Based on these, the learning machine is trained n times, each time using data from
n � 1 folds, and evaluating the result on the data from the remaining fold. The final
estimate of accuracy is obtained by averaging the results from all n iterations. A
special case of this is leave-one-out cross validation, in which the number of folds
coincides with the size of the available training dataset, so that, in each iteration,
only one sample .xi ; yi / is left out of the training set.

Most learning machines have parameters that need to be set, such as choosing a
kernel and setting a regularization parameter in support vector machines, or deciding
how many features to retain in feature selection. While some authors simply use
fixed default settings [21], results can often be improved greatly by evaluating
alternative settings using cross-validation, and using the one that led to the highest
estimated accuracy.

When cross-validation is used for parameter tuning, obtaining a reliable estimate
of the final accuracy requires nested cross-validation, so that an outer cross-
validation loop, which is responsible for estimating the overall accuracy, separates
the data into a training and a testing set, and the inner loop, which performs the
parameter tuning, may only access the training data set from the outer loop.

A subtle consequence of this, which is sometimes overlooked, is that in order
for cross-validation to be effective, only the training data may be used for feature
selection. A pragmatic safeguard against accidental double dipping is to attempt
classification of the same data with randomly permuted labels yi , to repeat this
a large number of times, and to observe the resulting distribution of accuracies.
Dosenbach et al. [21] perform this experiment as a part of validating their method;
Schmidt-Wilcke et al. [56] use it as a permutation-based test to assess significance
of their classification results.

Since a classifier cannot be expected to predict random labels with larger-than-
random accuracy, an unbiased estimate should, on average, result in the same
accuracy as a random guess. This is illustrated in Fig. 2: It is based on 100 iterations
in which random group labels have been assigned to 18 healthy subjects, and a
support vector machine with feature weighting has been trained to predict those



312 L.J. O’Donnell and T. Schultz

Fig. 2 On average, trying to predict 100 different sets of random labels cannot lead to better-than-
random accuracy (left). However, if feature weighting is performed outside of the cross validation
loop, the classifier is erroneously reported to achieve perfect results in each case (right)

random labels from MRI data. On the left, feature weighting is done correctly,
within the leave-one-out cross validation. As expected, on average, the classifier
does not achieve higher accuracy than a random guess. On the right, the same
classification is attempted using the same method; the only difference is that, similar
to [33, 50], feature weighting has now been performed as a pre-process on all data,
including the test data. This leads to the misleading estimate that random labels can
be predicted with perfect accuracy in all cases.

This surprising pitfall can be explained by the fact that we are given few data
points with a huge number of features, many of which take on random values. This
means that, given arbitrary class assignments, the feature vector includes features
that happen to separate the data into those classes by pure chance. Performing
feature selection on the whole dataset allows the classifier to operate on those
features, without having any independent data left to check whether or not they
actually contained legitimate information, or were correlated with the labels only
by chance. This is similar to the fact that, after selecting a region of interest (ROI)
based on correlations with another random variable, it is no longer meaningful to
perform a statistical test on those correlations within that same ROI [68].

In summary, Fig. 2 illustrates that performing feature selection or feature weight-
ing outside the cross validation loop can bias estimates so severely that they
lose all meaning. While many works have avoided this problem by a correct
setup [21, 27, 35, 71], some others merely acknowledge that performing feature
selection as a pre-process on all data might lead to results that are “too optimistic,
probably related to some degree of over-fitting” [33] or that “validation in an
independent sample will be essential to determine how robust the current approach
is when applied to a fully independent dataset” [50], which does not appreciate
the full severity of the problem. Importantly, one should never attempt to compare
accuracies from a correct setup with those reported after doing feature selection on
the full dataset.
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The fact that this section has illustrated one difficulty in correctly applying
machine learning to neuroimaging data should not be taken as an indication
that these techniques are fundamentally flawed: They rest on a solid statistical
foundation [66] and, when applied correctly, they have already led to results that
could be reproduced across different datasets [21, 35], and learning machines trained
on one scanner have been tested successfully on data from other scanners [27].

3.6 Interpretation and Visualization

Since a fundamental goal in most neuroimaging studies is to better understand how
the structure of the brain and its activity relate to specific functions, or to factors
such as gender, age, and disease, it is desirable to obtain not only a classification or
regression result from applying a learning machine to the data, but to gain at least
some level of understanding of how it arrives at its prediction, e.g., which regions
of the brain were most important for detecting a specific disease.

Most machine learning methods are designed to achieve the highest possible
accuracy, whereas interpretability by a human operator is usually not a primary
design goal. One common way to still glean some insight is to consider the results of
feature selection. For example, if each feature corresponds to the average over some
region of interest (ROI), the selected features indicate which regions were used to
achieve the classification. When cross validation is used, different features might
be selected in each iteration, and it is common to only report the features that are
selected most frequently [15, 71] or even in all cases [18, 21].

Closely related to this, some authors compare the accuracies that can be achieved
when making different parts of their data available to the classifier. For example,
in the context of diffusion tensor MRI, this may indicate whether Fractional
Anisotropy, Mean Diffusivity, or individual eigenvalues allow for more reliable
detection of a certain disease [71].

As part of their training, linear classifiers, such as linear support vector machines
or linear discriminant analysis, compute a weight with which each feature con-
tributes to the final result. If features were appropriately normalized, this makes
it natural to inspect the weight vectors as an indicator of feature importance. In
fact, when features correspond to individual voxels or small ROIs, weight vectors
can be visualized as spatial maps, similar to activation maps from mass-univariate
statistical analysis [40]. Support vector machines have recently been extended to
increase spatial regularity of the resulting maps, with the goal of making them more
interpretable [17].

However, an important caveat in the interpretation of weight vectors is that
classifiers may put significant weight on features that are unrelated to the given
task or disease, and that the largest weights do not necessarily correspond to the
features which are most strongly related to the label. In particular, Haufe et al. [34]
provide examples in which features are only included to cancel out artifacts that are
also present in truly informative features and might obtain an even greater weight.
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Even though weight vectors have been found to agree with prior knowledge about
abnormalities in Alzheimer’s disease [17, 39] and have indicated neuroanatomically
plausible regions in cases where mass univariate analysis failed to detect significant
differences [16], Haufe et al. [34] conclude that the only truly firm conclusion that
can be drawn from weight vectors of a successful classifier is that at least one of the
features with non-zero weight is associated with the given condition or task.

When support vector machines are used with a nonlinear kernel, the weight
vector is defined in an abstract higher-dimensional space, and generally cannot
be mapped back to the original feature vector [57]. However, sensitivity analysis
[40, 53] can still quantify how much impact each feature has on the classification.
In the linear case, sensitivities amount to the squared feature weights [53], so they
suffer from the same limitations with respect to their interpretability.

4 Main Challenges and Conclusions

As discussed in section “Voxel-Based Statistics”, spatially contiguous regions play
an important role in maintaining statistical power while correcting for multi-
ple comparisons in mass-univariate statistical testing. In contrast, most learning
machines act on abstract feature vectors, and are oblivious of the underlying spatial
structure. Even though attempts have recently been made to increase accuracy
and interpretability of classifiers by spatial regularization [17], it is still widely
unexplored how to best account for spatial and anatomical structures when training
learning machines, and how much is to be gained from it. Taken to the extreme,
Honorio et al. [35] have demonstrated that, on several datasets with a limited number
of subjects each, classification based on a single discriminative region of interest
outperformed some widely used multivariate methods that were found to make use
of a larger number of scattered voxels.

While there is hope that the multivariate analysis afforded by machine learning
techniques will lead to an understanding of interactions and dependencies that
would remain hidden to mass-univariate approaches, interpretation and visualization
of what allows a learning machine to perform successful classification or regression
remains a difficult task [34], and merits further work.

Applications of machine learning to diffusion MRI have so far mostly been based
on features derived from the second-order diffusion tensor model. However, it is
now common to acquire more complex diffusion MR data that requires higher-
order models, including High Angular Resolution Diffusion Imaging (HARDI),
Diffusion Spectrum Imaging (DSI), and multi-shell data. Only few initial works
exist on extracting features suitable for machine learning from such models, based
on spherical deconvolution [10], or a spherical harmonics expansion of apparent
diffusivities [46]. There is still a need to explore alternative features based on such
rich and complex data, and to evaluate their power and reliability in a range of
applications.
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Finally, training highly accurate learning machines and obtaining a realistic
impression of their performance requires more data than is typically acquired for
traditional statistical analysis. Currently, relatively few groups have the opportunity
to apply machine learning to sufficiently uniform datasets that include hundreds
of subjects [21, 27]. However, larger datasets, such as the ones from the Human
Connectome Project [65], are currently becoming available to the general research
community, and are about to open up new horizons for the development and
evaluation of machine learning on neuroimaging data.
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A Clustering Method for Identifying Regions of
Interest in Turbulent Combustion Tensor Fields

Adrian Maries, Timothy Luciani, P.H. Pisciuneri, Mehdi B. Nik, S. Levent
Yilmaz, Peyman Givi, and G. Elisabeta Marai

Abstract Production of electricity and propulsion systems involve turbulent com-
bustion. Computational modeling of turbulent combustion can improve the effi-
ciency of these processes. However, large tensor datasets are the result of such
simulations; these datasets are difficult to visualize and analyze. In this work we
present an unsupervised statistical approach for the segmentation, visualization and
potentially the tracking of regions of interest in large tensor data. The approach
employs a machine learning clustering algorithm to locate and identify areas of
interest based on specified parameters such as strain tensor value. Evaluation on
two combustion datasets shows this approach can assist in the visual analysis of the
combustion tensor field.
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1 Introduction

U.S. energy consumption is dominated by the burning of fossil fuels such as coal,
natural gas and petroleum [1]. Production of electricity and propulsion systems
are two primary reasons for this energy use. Both processes, at their core, involve
turbulent combustion. Turbulent combustion modeling is an important area of
research driven by the effort to improve the efficiency of these processes, reduce
fuel consumption and reduce pollution.

In order of decreasing fidelity and costs, three computational approaches to tur-
bulence combustion are direct numerical simulation (DNS), large eddy simulation
(LES) and Reynolds-averaged Navier-Stokes (RANS). Specific tensor quantities
such as stress, strain, and turbulent stress play in these computational approaches, as
part of the computational modeling process; these quantities are discussed in detail
in our previous work [9]. DNS requires directly capturing the wide range of length-
and time-scales. This severely limits the approach to simulations of relatively
simple, canonical configurations. The complex nature of turbulent reacting flows can
be attributed to the non-linear convection terms and scalar transport terms appearing
in the coupled set of governing equations. In DNS these terms are accounted for
without modeling. However, as discussed in more detail in our previous work [9],
in both LES and RANS these terms create a closure problem and require modeling.
As such, an important aspect of turbulence modeling and model validation involves
comparison of the subgrid scale stress tensor (for LES) or the Reynolds stress tensor
(for RANS) with available DNS data.

A three-dimensional LES features millions of grid points. A DNS of the same
configuration would feature several orders of magnitude more grid points. The result
is that a given snapshot of the flow variables at a particular instance in time for the
entire domain would range on the order of gigabytes in the LES case to terabytes for
the DNS case. An entire simulation is composed of tens of thousands to hundreds of
thousands of time steps. Thus data is typically only retained at specified intervals.
Even in adopting this approach total datasets become cumbersome to work with.
Moreover, as LES models are validated, they are in turn used for much larger flow
geometries of industrial applications, resulting in snapshots that are tens or hundreds
of gigabytes in size.

Producing data at this scale implies a few prerequisite conditions: that a highly
scalable flow solver will be used for the simulation, and that the researcher has
access to a large supercomputing environment. This introduces new complexities
to the workflow. First, file I/O must be handled in parallel and is typically a
costly operation relative to the time required to calculate a given time step of
the simulation. Thus regularly outputting entire snapshots of simulation data will
adversely impact the progress of the calculation. Second, this data is produced at a
remote location. Ideally the researcher would transfer the data to a local machine for
data analysis and interactive visualization. For large datasets transferring files can
take a significant amount of time, adding a measurable bottleneck to the workflow.
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To explore the physical phenomena from a volumetric dataset, the ability of a
visualization tool to compute and track salient features is crucial. The large amount
of data may severely affect the availability of the data for visualization (i.e., the
simulation may not be paused to output the data for visualization), the data transfer
(bandwidth limitations), and the manipulation speed. These are major challenges to
the interactive visualization of tensor data. Furthermore, tensor datasets tend to be
very dense, leading to clutter and occlusion problems when visualizing such datasets
with existing tools.

In situ visualization aims to address some of these issues. Such approaches enable
the user to connect directly to a running simulation, examine the data, do numerical
queries and create graphical output while the simulation executes, bypassing the
need to write data to disk. The visualization and computation can be tightly coupled
(memory sharing), loosely-coupled (communication over a network), or hybrid (the
data is computationally reduced and then sent out for visualization).

The feature extraction approach is an emerging in situ hybrid method. This
approach extracts the meaningful and interesting regions from the datasets, showing
only those parts to the researchers. Typically, only a small percentage of datasets
are of interest, and the feature can be described very compactly. These abstractions
lead to a sharp reduction in the amount of data processed, making an effective
visualization of very large datasets possible. Another advantage of feature extraction
is that it helps the users highlight and focus on regions of particular characteristics
that they are interested in.

As opposed to filtering approaches, which may require expert knowledge about
the structure of the flow, in this work we present an unsupervised statistical approach
for the segmentation, visualization and potentially the tracking of regions of interest
in large tensor data. The approach employs a machine learning clustering algorithm
to locate and identify areas of interest based on specified parameters such as strain
tensor value.

2 Related Work

A great deal of research has been conducted in the problems of feature extraction
and tracking. While initially developed in the field of computer vision [11, 19],
feature extraction and tracking have also been adopted for flow visualization—see
Post et al. [15] for an extensive review. In this section we focus on the existing
related feature-tracking work in flow visualization.

Most feature extraction and tracking techniques fall into one of three basic
categories. The most widespread method is to extract features in each time step
separately and then to track them through time. The first to employ feature extraction
and tracking in flow visualization, Samtaney et al. [16] use feature attributes such
as mass, centroid, volume, or moment of inertia to establish a correspondence of
features across timesteps. Silver and Wang [17, 18] developed a volume tracking
schema that requires that there is a certain amount of overlap between features
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in adjacent timesteps for them to be associated. Caban et al. [2] introduce a
texture-based feature tracking technique that compares textural characteristics
across timesteps to find the best match. A second approach to feature extraction
and tracking is exemplified by the work of Muelder and Ma [12]. Instead of
extracting features in each timestep and then establishing a correspondence, they
use a prediction-correction method that makes a prediction about the location and
size of the region in the next step. The region is then adjusted by growing or
shrinking the border in order to extract the feature of interest. Ji et al. [5] developed
a third approach to feature extraction and tracking, which uses isosurfacing in
higher dimensions. Once again, as opposed to extracting isosurfaces in 3D for every
timestep, their method tracks features by performing an isosurfacing process in 4D.

Other approaches use various machine learning techniques to aid in feature
tracking. Tzeng and Ma [20] utilize neural networks to learn which transfer
functions are most appropriate in tracking the features of interest. Noticing that
tracking groups of features that exhibit similar behavior is more cost-effective than
tracking the features individually, Ozer et al. [13] use a clustering algorithm to group
features based on similarity measures. Our approach is similar to that of Ozer et al.
in that we also utilize clustering analysis. The difference is that, rather than use it to
group features, we use it to define regions of interest.

The visualization community has long been very concerned with the shock
location problem. A number of techniques and algorithms for characterizing the
regions of interest, detecting and visualizing shocks waves have been developed.
Lovely and Haimesy [7] designed an algorithm for extracting the shock surface that
uses the fact that the shock surface normal is typically aligned with the pressure
gradient vector. Thus, the algorithm computes the Mach number in the direction of
the pressure gradient and builds the shock surface from the points where the Mach
number equals one. Another widely-used algorithm utilizes the density gradient
and consists of three steps [14]. It first computes the first and second derivatives
of the density in the direction of the velocity. It then builds an isosurface where
the second derivative equals zero and, finally, it picks the first derivative maxima,
which correspond to the shock, and discards the minima. Ma et al. [8] make the
distinction between shock waves and expansion waves in the third step of the
previous algorithm by using the normal Mach number rather than the first derivative
of the density. Specifically, it picks regions where the Mach number is close to one.
The method we present herein is novel in that it integrates machine learning with
visualization for extracting and clustering regions of interest. It is thus a promising
approach to apply to very large flow datasets.

3 Methods

Given the size and interaction challenges of combustion datasets, automated
methods are particularly relevant to the problem of identifying regions of interest.
Such an approach would allow pushing the feature extraction process in situ, to the
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same computational side that also processes the combustion simulation. Only the
regions extracted would then be sent out to visualization, thus reducing both I/O
and bandwidth usage.

Automated methods for feature identification can be provided through Machine
Learning (ML), a branch of statistics and computer science which studies algorithms
and architectures that learn from observed facts. Unsupervised ML algorithms
are of particular interest for combustion tensor data: in an unsupervised setting,
the objective is to cluster or discover structures in the data. Example algorithms
and representations for unsupervised learning include K-means clustering, mixture
models, hierarchical clustering, and PCA (Principal Component Analysis).

Clustering analysis is used to group data points that are similar to one another.
There are various reasons for using clustering: one may wish to analyze points in
the dataset that are close to one another, to reduce a high-dimensional dataset by
replacing groups of dimensions with single labels, or to reduce the size of the dataset
by replacing groups of data points with single labels.

From the class of clustering methods, we focus on K-means, a powerful yet
computationally-effective approach. As in most Big Data applications, the ability
to trade semantic meaning for performance is important in this context: more
sophisticated methods like mixture models or hierarchical clustering are also
significantly slower than K-means.

3.1 K-Means Clustering

K-means clustering attempts to partition a set ofN observations (the number of grid
points in a simulation) into K clusters; in the resulting partition each observation
belongs to the cluster with the nearest mean observation. The mean is referred to
as the centroid of the cluster. The cluster centroid can later be used to describe all
cluster members, thus attaining data reduction.

In our case, an observation is the computed value of a tensor at a given location.
A tensor is an extension of the concept of a scalar and a vector to higher orders.
Scalars and vectors are 0-th and 1-order tensors, respectively. In general, a k-th
order tensor can be represented by a k-dimensional array, e.g. a second order tensor
is a 2D array (a matrix). For example, while a stress vector is the force acting on
a given unit surface, a stress tensor is defined as the components of stress vectors
acting on each coordinate surface; thus stress can be described by a symmetric 2-nd
order tensor.

The velocity stress and strain tensor fields are manifested in the transport of
fluid momentum, which is a vector quantity governed by the following conservation
equation:
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where the Cartesian index notation is employed in which the index i D 1; 2; 3 rep-
resents spatial directions along the x; y, and z Cartesian coordinates, respectively;
and the repeated index j implies summation over the coordinates. t is time, � is the
fluid density, u � Œu1; u2; u3� is the Eulerian fluid velocity, p is the pressure, and �

is the stress tensor defined as:
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where � is the dynamic viscosity coefficient (a fluid-dependent parameter) and S is
the velocity strain tensor defined as:
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We perform clustering on the six distinct values of the strain tensor in the
combustion data, arranged in a six-dimensional vector x.i/, where i ranges over the
points in the dataset. Tensors used in turbulence modeling are rank 2 tensors, which
for our purposes are 3�3matrices. Additionally, strain tensors are symmetric, sij D
sj i . This means that there are a total of six distinct tensor values for each point in
the grid. We compute mean values and distances using a simple, squared Euclidean
distance metric. We note that in our previous work [9] the alternative approach
of working in a dimensionally-reduced space—such as the space of eigenvalues
and eigenvectors—revealed that in turbulent combustion modeling these reduced
descriptors are small, fairly uniform and non-distinctive throughout the volume, and
thus of limited value for cluster analysis. Similar prior experiments [9] have shown
that reduced descriptors such as trace and determinant can act as valuable flow
filters; proposing and using such descriptors requires, however, expert knowledge
about the nature of a particular flow configuration.

The K-means method follows two alternative steps, one initialization step, and
one assignment step. In the first step, the cluster means are initialized (for example,
with K random observations x.i/ from the set). In the second step, each of the N
points is assigned to the cluster whose mean is most similar to the point. The cluster
means are repeatedly recomputed based on the points assigned to each cluster, and
the N points are reassigned, until convergence:

Tensor K-Means

• Randomly initialize K cluster centroids
�1; �2; ::�K 2 R6

• Repeat {

//cluster assignment step
For i = 1 to N

c.i/ WD index .from 1 to K/ of cluster centroid closest to x.i/
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//centroid move step
For k = 1 to K

�.k/ WD average .mean/ of points assigned to cluster k

}

• J.c.1/; c.2/; ::c.N /; �1; �2; ::�k/ D 1=N
P jjx.i/ � �c.i/jj2

Convergence is assessed using the clustering error function J , given by the mean
distance of all points to their assigned cluster centroid. The problem is NP-hard and
thus computationally challenging; but the iterative approach described above can
converge to local optima.

Unfortunately, ML clustering algorithms do not scale well. In our experiments,
we found that datasets larger than 450,000 points cannot be clustered using K-
means, and datasets larger than 250,000 points cannot be clustered using greedy
agglomerative clustering in less than 24 h (Intel duo CPU at 2.26 GHz and 4 GB
RAM). To reduce such run-times, it is necessary to preprocess the dataset.

A common approach for preprocessing large datasets is to use canopy clus-
tering [10] as a pre-clustering algorithm. This pre-clustering is followed by
a clustering algorithm such as K-means, hierarchical clustering or expectation
maximization. The preprocessing step produces initial estimates for the dataset
clusters, which are then used to speedup the clustering step. However, after a
series of clustering experiments, we concluded that canopy clustering was unable
to perform clustering in a reasonable amount of time. The problem was that in these
tensor datasets the number of clusters of interest is typically below ten. Given this
restriction and the fact that the majority of the data points in a cluster have to be
in the same canopy, the size of the canopies would have had to be no smaller than
800,000 (8M/10), even for the smaller datasets. Clustering such large collections of
data points is, however, unfeasible using K-means: in our further experiments we
found that even 450K datasets require more than 24 h runtime to converge (Quad
core Intel 5, 3.3 GHz, 16 GB RAM).

To circumvent this obstacle, we used instead a pre-clustering step in which K-
means clustering was run on a sub-sampled dataset to obtain good starting cluster
centers. The first dataset was sampled every 4 � 4 � 4 data points and the second
every 4 � 6 � 4 data points regularly throughout the grid. The sampling rate was
empirically selected (lower rate along larger dimensions) so that the pre-clustering
step could complete in minutes. The resulting starter centroids were then used in
K-means over the full datasets. Using this pre-computed cluster centroid setup, the
second clustering step converges in under 50 iterations for the mixing layer dataset
(8M points) and 20 iterations for the shock dataset (21M points); both datasets are
described in detail in the results section. The entire approach takes on average 15–
20 min to compute four clusters (8M point dataset).
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3.2 Cluster Analysis

As is the standard procedure in K-means, we repeat the clustering procedure for a
varying number K of clusters, from 2 to 6, and select the K value that leads to the
lowest clustering error J . In our experiments, the clustering run times for different
K values are fairly similar, with deviation of at most 1 h.

To more easily analyze the features of cluster centroids, we use a star-plot
representation of each centroid. The star-plot is a high-dimensional visualization
technique based on the parallel coordinate plot (PCP). In the PCP descriptor,
dimensions are represented by parallel axes and data points are mapped to the axes;
the data points are then connected by lines [4, 21]. The star-plot is a more compact
representation of the PCP, in which axes are radii of a circle [3, 6].

Figure 1 shows star-plot descriptors for the centroids forK D 5,K D 6,K D 7,
and K D 8; in each star-plot glyph the six centroid values are mapped to radial
spokes, allowing for easy comparison of the centroid traits. Note how increasing
K from 5 to 6 adds a distinctive cluster, while further increasing K to 7 and 8
introduces clusters which are fairly similar to clusters already identified. This type
of analysis can be used to automate the selection of K.

To ensure consistent clustering along the time dimension for the shock dataset,
the tensor centroids of the clusters can be tracked over time based on their similarity,
with visual assistance where necessary to account for splitting, recombining,
vanishing, and appearance phenomena.

4 Results

We evaluate this approach on two large datasets, a mixing layer dataset, and a shock
dataset. Mixing layer configurations are common in combustion simulations, where
two fluids flow over and against each other. Shock waves are important features in
compressible flow datasets that are characterized by abrupt, nearly discontinuous
changes in physical flow quantities such as density, pressure and velocity. Shock
waves are of interest to researchers since they can increase drag and cause structure-
failure in design problems in fluid dynamics.

4.1 Mixing-Layer Dataset

The first dataset is a temporal mixing layer and is a simple configuration where two
streams of fuel and oxidizer flow over and against each other. The flow speeds are
adjusted for a low Reynolds number yielding a narrow range of length scales, and
this configuration can be easily tackled with DNS and then used as a benchmark.
The data for the temporal mixing layer is at a snapshot in time and at the full DNS
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Fig. 1 Star-plot descriptors for the centroids for K D 5 (a), K D 6 (b), K D 7 (c), and K D 8

(d). Increasing K from 5 to 6 adds a distinctive cluster, while further increasing K to 7 and 8
introduces clusters which are fairly similar to clusters already identified
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resolution over a grid of size 193 grid points in two Cartesian directions and 194 in
the other (approx. 8M grid points).

The goal for the mixing layer dataset was to see if clustering can provide insight
into the structure of the flow. We provided a senior combustion researcher with a
3D volume rendering of the divergence of the tensor (sum of components on the
main diagonal, indicating fluid density changes), and a volume rendering of the 4-
group clustering (Fig. 2). We then asked the expert for an evaluation of the clustering
results. The researcher remarked that the clusters coincided with the interesting
regions of the flow: the “mushroom” pattern around the shear layer at the mid-zone
where the two fluids mix, in contrast with the less active outer zones. The domain
expert is currently investigating an interpretation of the clusters.

4.2 Shocklet Dataset

The second dataset has a similar mixing-layer configuration, with flow from one
direction in the top half and in the opposite direction in the bottom half. There are
a few differences as well; one being that the dataset is significantly larger. The size
of the grid in two of the three dimensions is 194 and along the third dimension it
is 577, which brings the total number of grid points close to 21M. This simulation
has been done up to time t D 600 in 12;900 time steps. By this time, the flow is
going through pairing and exhibits 3D effects. This is a supersonic flow, in which the
flow field exhibits shocklets. Thus, the flow field variables such as Mach number,
divergence of velocity and gradients of density, temperature and pressure change
sharply across the shocklet surface. Figure 3 shows the regions of the flow field with
Mach number close to one. The study of shock waves is critical in understanding of
high-speed flows. An efficient and reliable shock wave detection and visualization
method would significantly assist this task.

The goal for the second dataset was to see if the distinct tensor field regions
have a clear relationship with regions of the flow suitable for the location of a
shock surface. Suitable conditions involve the transition from Mach number greater
than 1 to Mach number less than 1, e.g. the isosurface depicted in Fig. 3. Figure 4
shows the star-plot glyphs corresponding to the cluster centroids for the four-cluster
segmentation, at timesteps 70, 75, and 80. Note that the different signatures of the
cluster centroids make possible the consistent labeling and thus tracking of clusters
over time.

Figure 5 compares strain tensor clustering with the magnitude of the Mach
number. The cluster analysis enabled the experts to identify the regions of the flow
potentially suitable for the location of a shock surface. More detailed analysis is
still required to detect shocks, such as the adherence to tabulated thermodynamic
properties across a shock wave. However, using the clustering results, the domain
experts were able to significantly limit this further analysis to only the regions of
interest identified through the clustering.
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Fig. 2 Mixing-Layer Dataset: volume rendering of divergence (top), which can be calculated via
the trace of the strain tensor, and 4-group strain tensor clustering (bottom), rendered by assigning
each cluster an individual value and setting the transfer function monochromatically to each. The
four clusters are color-encoded using a www.colorbrewer2.org qualitative scheme as shades of
orange, purple, green and black. The clusters correlate well with the mixing region of interest: the
“mushroom” pattern around the shear layer at the mid-zone where the two fluids mix (orange and
purple clusters), in contrast with the less active outer zones (green and black clusters)

www.colorbrewer2.org
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Fig. 3 Volume rendering of the region with Ma � 1. In this rendering, all points with Mach
number within the 0.05 threshold of one have been replaced with 1 and the rest with 0; the resulting
two-valued volume is volume-rendered in ParaView. From top to bottom; timesteps 70, 325, and
600
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Fig. 4 Star-plot glyphs corresponding to the cluster centroids for a four-cluster segmentation of
the shock datasets. From left to right: cluster centroids at timesteps (a) 70, (b) 75, and (c) 80. Note
that the different signatures of the cluster centroids make possible the consistent labeling and thus
tracking of clusters over time

5 Discussion and Conclusion

As previously discussed, the goal of this project was to examine the potential
of using cluster analysis on tensor field data generated by turbulent combustion
simulations. First, we were interested in finding out whether an unsupervised
approach can detect structures in the data, and whether these structures correlate
with the regions of interest. Second, we wanted to see whether tensor field clustering
and rendering could give researchers insights into the structure of the flow through
a volume. The answer to both questions is affirmative.

In summary, we found that a machine learning inspired approach, though com-
putationally intensive, can extract and track regions of interest in large, dense tensor
fields. Our K-means approach yielded interesting results: the clusters correlate
well with the regions of interest. Thus, as an in situ technique, the approach has
potential for compression. While the clustering itself may miss potential artifacts,
the clustering approach is also a foundation for automated anomaly detection, and
thus a base for further in situ benefits.

We found that the performance of machine learning algorithms is a major issue,
and note that such algorithms need to be first adapted for large scale data. In
our approach we adapted K-means for large data by using a pre-clustering step;
this pre-clustering step was performed via sub-sampling. In an in situ setting, the
pre-clustering could be coupled with the more intelligent data partitioning that is
mandatory when distributing the computational simulation load across multiple
processors. The run-time cost of the unsupervised machine learning approach
should also decrease when distributed across multiple processors.

In our implementation and preliminary experiments, the clustering technique
was run offline, not in an authentic in situ setting. We note however, that the
approach was designed as an in situ technique, and could be deployed as such in a
computational setting, with the added benefit of data partitioning for pre-clustering.
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Timestep 70: Mach number

Timestep 70: 6-group strain tensor clustering

Timestep 325: Mach number

Timestep 325: 6-group strain tensor clustering

a

b

c

d

Fig. 5 Two snapshots from the shocklet dataset, same YZ slice: renderings of Mach number (a
and c), and the corresponding 6-group strain tensor K-means results (b and d). The six clusters are
encoded with three shades of blue plus three shades of orange-red. The clustering captures regions
of interest for Mach number in both cases. The cluster analysis enables domain experts to identify
the regions of the flow potentially suitable for the location of a shock surface. Cluster centroid
similarity can be further used to ensure consistent cluster labeling across multiple timesteps
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The only current “manual” component of the approach is the selection of K, the
numbers of clusters. The K-selection step can be automated, however, as indicated
in the Fig. 1 shape analysis.

In our approach, we have used a simple feature vector representation for the
tensor field. Similarly, we have used a simple Euclidean distance metric to compute
distances and means over the tensor field. We obtained good correlation between
the cluster-based regions of interest and flow features. Nevertheless, defining more
meaningful feature vectors and distance metrics for tensor similarity that have
improved semantic meaning are important directions of future research.

Visualization of the tensor fields associated with turbulent combustion sim-
ulations is particularly challenging. Difficulties arise from the sheer scale and
density of the data, but also from the small range of values these tensors take. Our
previous attempts at visualizing these types of fields using glyphs or streamlets have
had partial success—these tensors have very small, very similar eigenvalues [9].
Furthermore, many existing tensor representations do not have an intuitive equiva-
lent in combustion turbulent flow; to combustion researchers, tensors do not have
direction or shape. As the domain experts put it, “the tensor itself is very useful
for computation, and pretty complete. . . but its individual components are not so
useful to understand what is going on.” This observation makes feature extraction
and tracking through an unsupervised clustering approach particularly useful.

In conclusion, we have introduced an approach for the segmentation, visualiza-
tion and potential tracking of regions of interest in large scale tensor field datasets
generated by computational turbulent combustion simulations. The approach is
novel in that it integrates machine learning with visualization—interactive volume
rendering and starplots—to extract, cluster, and track regions of interest in the tensor
field. Our evaluation on two rich combustion datasets shows this approach can assist
in the visual analysis of the combustion tensor field.

Acknowledgements This work was supported by NSF CBET-1250171 and NSF CAREER IIS-
0952720.

References

1. Anderson, J.D.J.: Modern Compressible Flow: With Historical Perspective, 3rd edn. McGraw-
Hill Science/Engineering/Math (2002)

2. Caban, J.J., Joshi, A., Rheingans, P.: Texture-based feature tracking for effective time-varying
data visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1472–1479 (2007)

3. Elmqvist, N., Stasko, J., Tsigas, P.: Datameadow: a visual canvas for analysis of large-scale
multivariate data. In: VAST IEEE Symposium on Visual Analytics Science and Technology,
Proceedings, pp. 187–194 (2007)

4. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional
geometry. In: Proceedings of the 1st Conference on Visualization ’90 (VIS ’90), San Francisco,
pp. 361–378. IEEE Computer Society Press, Los Alamitos (1990). http://dl.acm.org/citation.
cfm?id=949531.949588

http://dl.acm.org/citation.cfm?id=949531.949588
http://dl.acm.org/citation.cfm?id=949531.949588


338 A. Maries et al.

5. Ji, G., Shen, H.-W., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In:
Proceedings of the 14th IEEE Visualization, pp. 209–216 (2003)

6. Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour-enhanced star plot glyphs: can salient shape
characteristics be overcome? Cartogr.: Int. J. Geogr. Inf. Geovis. 44(3), 217–231 (2009)

7. Lovely, D., Haimesy, R.: Shock detection from computational fluid dynamics results. In:
Proceedings of the 14th AIAA Computational Fluid Dynamics Conference, 1:M2 (1999)

8. Ma, K.-L., Rosendale, J.V., Vermeer, W.: 3d shock wave visualization on unstructured grids.
In: IEEE Symposium on Volume Visualization and Graphics, pp. 87–104 (1996)

9. Maries, A., Haque, M., Yilmaz, S., Nik, M., Marai, G.: Interactive exploration of stress
tensors used in computational turbulent combustion. In: Laidlaw, D., Villanova, A. (eds.) New
Developments in the Visualization and Processing of Tensor Fields, pp. 137–156. Springer,
Heidelberg (2012)

10. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets with
application to reference matching. In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’00, pp. 169–178. ACM Press,
New York (2000)

11. Meyer, F., Bouthemy, P.: Region-based tracking using affine motion models in long image
sequences. CVGIP: Image Underst. 60(2), 119–140 (1994)

12. Muelder, C., Ma, K.-L.: Interactive feature extraction and tracking by utilizing region
coherency. In: IEEE Pacific Visualization Symposium, PacificVis ’09, pp. 17–24 (2009)

13. Ozer, S., Wei, J., Silver, D., Ma, K.-L., Martin, P.: Group dynamics in scientific visualization.
In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 97–104 (2012)

14. Pagendarm, H.-G., Seitz, B.: An algorithm for detection and visualization of discontinuities
in scientific data fields applied to flow data with shock waves. In: Scientific Visualization:
Advanced Software Techniques, pp. 161–177 (1993)

15. Post, F.H., Vrolijk, B., Hauser, H., Larameeand, R.S., Doleisch, H.: The state of the art in flow
visualisation: feature extraction and tracking. Comput. Graphics Forum 22(4), 775–792 (2003)

16. Samtaney, R., Silver, D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution.
Computer 27(7), 20–27 (1994)

17. Silver, D., Wang, X.: Volume tracking. In: Proceedings of Seventh Annual IEEE Visualization
’96, pp. 157–164 (1996)

18. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput.
Graph. 3(2), 129–141 (1997)

19. Smith, S.M., Brady, J.M.: Asset-2: real-time motion segmentation and shape tracking. IEEE
Trans. Pattern Anal. Mach. Intell. 17(8), 814–820 (1995)

20. Tzeng, F.-Y., Ma, K.-L.: Intelligent feature extraction and tracking for visualizing large-scale
4d flow simulations. In: Proceedings of the ACM/IEEE SC 2005 Conference Supercomputing,
p. 6 (2005)

21. Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc.
85(411), 664–675 (1990)



Tensor Lines in Engineering: Success, Failure,
and Open Questions

Marc Schöneich, Andrea Kratz, Valentin Zobel, Gerik Scheuermann,
Markus Stommel, and Ingrid Hotz

Abstract Today, product development processes in mechanical engineering are
almost entirely carried out via computer-aided simulations. One essential output
of these simulations are stress tensors, which are the basis for the dimensioning of
the technical parts. The tensors contain information about the strength of internal
stresses as well as their principal directions. However, for the analysis they are
mostly reduced to scalar key metrics. The motivation of this work is to put the
tensorial data more into focus of the analysis and demonstrate its potential for the
product development process. In this context we resume a visualization method that
has been introduced many years ago, tensor lines. Since tensor lines have been rarely
used in visualization applications, they are mostly considered as physically not rele-
vant in the visualization community. In this paper we challenge this point of view by
reporting two case studies where tensor lines have been applied in the process of the
design of a technical part. While the first case was a real success, we could not reach
similar results for the second case. It became clear that the first case cannot be fully
generalized to arbitrary settings and there are many more questions to be answered
before the full potential of tensor lines can be realized. In this chapter, we review our
success story and our failure case and discuss some directions of further research.
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1 Introduction

Modern product development processes in mechanical engineering are governed
by computer simulations. That is, new technical systems are first optimized at
the computer, which reduces the time-consuming and expensive real prototyping.
Thereby, criteria for the design of new technical systems are manifold. They include
part stiffness, maximum stress peaks, weight, geometrical or functional boundary
conditions and also practical aspects of manufacturability. Various design options
are simulated and analyzed for the validation and comparison of the performance
of the technical parts under selected operating conditions. In the case of material
stressing, this comparison is performed on the basis of a couple of scalar key
metrics. Commonly, the visualizations used for the simulation results are limited
to the methods provided by the simulation or post-processing software [11, 12].
Examples are contour plots of single tensor components or of derived scalar entities.
However, the output of the simulations is much more comprehensive, e.g. containing
stress and strain tensor fields. Most of this data is currently considered as an
intermediate product and is not used for the evaluation and improvement of the part
design. To fully exploit the power of the simulations, the data must be processed
such that also non-scalar features are intuitively accessible to the engineer.

This paper investigates the usefulness of more advanced visualization methods
and their value in designing good engineered technical parts. Our first studies
are focused on the use of tensor lines to support the design process in a semi-
automatic manner. A central question is the physical relevance and the interpretation
of tensor lines as major load paths. Therefore, we consider some simple, well
known configurations with increasing complexity. The results are very promising for
some case studies, where all new structures outperformed the reference geometry.
However, in other cases, we have not been able to repeat this success and it turned
out that it is not sufficient to consider tensor lines as only basis for the geometry
design. In this chapter, we review the success and failure cases and discuss some
directions of further research.

The paper is structured as follows. First we provide the necessary basics in
Sect. 2. The subsequent Sect. 3 explains the general background and setting of our
case studies. The central part are the discussions of the case studies in the following
sections. The paper ends with a discussion of the results in Sect. 4.

2 Basics: Stress Fields and Tensor Lines

In this section we summarize the most important definitions related to stress tensor
fields and introduce the quality criteria we use to compare the performance of
different component designs.
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2.1 Stress Tensor Fields

External forces applied on a body cause stresses within the body. These stresses
can be described in each point of the body by a stress tensor T� , given by the
respective 3 � 3 matrix. Since the stress tensor is symmetric, there is a basis
of eigenvectors of T� . The eigenvectors represent the principal stress directions.
Considering planar cuts through the material orthogonal to one principal direction
only normal stresses and no shear stresses can be observed. The magnitude of the
normal stress, the principal stress, is then given by the corresponding eigenvalue,
where positive values refer to tension and negative values to compression. It is an
often used convention, that the principal stresses are denoted in descending order
�1 � �2 � �3. We allude to the principal stresses and the corresponding directions
as major, intermediate and minor, respectively. For stress tensor fields, the major
and minor principal stresses are of special interest. For more details, we refer to the
recent survey by Kratz et al. [5].

Strength Criteria For the evaluation of the stressing of a part mostly derived scalar
quantities according to some strength theory are consulted. The objective of a
strength criterion is to replace the six components of the stress tensor by one scalar
value that constitutes the amount of material stressing. There are multiple material
models suitable for different specific cases that are used to model the mechanical
behavior of a material. For example elastoplastic material models are capable to
describe elastic and plastic deformation once a characteristic scalar stress measure,
e.g. the von-Mises stress, reaches a critical value: the yield strength. At this point the
material starts to deform plastically. For our studies it is sufficient to use a simple
linear-elastic isotropic model (Hooke’s law).

Load-Deflection Curve Another important indicator for the performance of a struc-
ture is its stiffness. Stiffness is defined as the structure’s resistance to deformation.
The load-deflection curve is a graphical representation of the relationship between
the deformation (in the direction of the applied force) of the part and the magnitude
of the applied load, see Fig. 1a. The stiffness is indicated by the slope of the load
deformation curve in its (linear) elastic region.

2.2 Tensor Lines

One visualization method that we have used extensively in this work are tensor
lines. They have been introduced to the visualization community a long time ago by
Delmarcelle [1] and have been utilized for visualization purposes of stress tensors
in a geomechanical context [9] as well as in medical applications [2]. Tensor lines
are defined as integral curves, which are tangent to one chosen eigenvector field (for
stress tensors one principal direction) in each point, see Fig. 1b. As there are three
principal direction fields associated with the stress tensor, there are three families
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a b

Fig. 1 (a) The slope of the load-deflection curve is an indicator for the stiffness of a technical
part. It is used for the evaluation and comparison of the various brake levers designed in this case
study. (b) Two-dimensional tensor field with two showcase tensor lines (major, minor). The arrows
represent the principal directions in grid points

of tensor lines—major, intermediate, and minor. Due to the symmetry of the stress
tensor, these lines are orthogonal to each other. It should be noted that tensor lines
only visualize the directional information of the tensor. In this work, the tensor
line computation has been embedded in a larger tensor visualization framework [4],
which supports multiple linked views. A major question during our investigations
has been whether tensor lines can be interpreted as major load paths and can be
used to support the geometry design of new developed mechanical parts.

Fabric Textures To visualize 2D planar cuts through the stress tensor field, we use
fabric textures [3]. This is a texture-based method to visualize 2D projections of the
stress field applying line integral convolution (LIC). The resulting texture is a dense
tensor line representation showing the principal directions of the projected field in
every pixel. The free texture parameters as fiber density and length can be used to
encode further tensor properties as principal stresses.

3 Case Studies

3.1 Product Development Process

The product development processes in mechanical engineering are characterized by
an almost completely virtually tested and optimized part design, Fig. 2. It starts with
the definition of the requirements for the part. This includes the development of an
initial geometry, material selection, the specification of feasibility constraints and
load conditions. This also defines the design space for the subsequent structural
optimization procedure based on a structure simulation. A general goal is to
automate this optimization as far as possible [7, 8, 10]. While this is an interesting
research direction, these methods have not yet found their way into the day-to-day
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Fig. 2 Standard development cycle when designing a new part using requirements and experi-
ences. The goal of this work is to support this process using visualization

routine workflow of an engineer. It is hard to integrate the experts knowledge to
steer the optimization process. Therefore, manual solutions of experts, extending
or adopting existing design solutions and design rules are still widely used. These
solutions are based on general design principles [6] and the experience of the
engineer from previous work. The key metrics used for the analysis and evaluation
are mostly scalar measures applying an appropriate strength theory, see Sect. 2.1.

3.2 The Test Setting

We consider the design of two parts with increasing complexity and degrees of
freedom as test cases. Thereby, we start with a filled volume from which we extract
a support structure. The goal is to define a structure with reduced local stress peaks
and increased stiffness compared to a reference structure (Sect. 2).

The first case is a brake lever, see Fig. 3a. This is an example, which is simple
enough for a suitable validation of the method. At the same time it is a realistic
component. Here, the goal is to design a rib-structure inside a given outer geometry.
A rib structure is the most often used reinforcement structure for injection-molded
plastic parts to efficiently increase their stiffness using as little material as possible.
The design of such a rib structure comprises the definition of position, number and
shape of the ribs. The second case is a solid block with three fixation points and
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Fig. 3 Hand sketches of the initial geometries of our cases. (a) Sketch of the brake lever.
(b) Sketch of the cube. The image shows the fixation points and the application of the two forces

two applied forces, see Fig. 3b. Here the goal is to reduce the volume to a support
structure consisting of a tripod. At first sight this example might seem to be simpler
as the first one, but by closer inspection one can see that the first case is basically
a two-dimensional case with respect to its degrees of freedom of the deformation.
The second case is a full three-dimensional case.

Considering the standard workflow, as shown in Fig. 2, the visualization is used
as additional step after the simulation and no additional computations are performed.
Thus, the results from the simulation are directly accessible to the engineer for
the optimization. The hypothesis is that the major load paths follows the tensor
lines, which therefore provide a good guidance for the structure design. For our
test we perform one optimization cycle. To obtain comparable results we require
that the total volume of the used material is the same for all considered geometries.
The comparison is based on the simulation results and for the first case also on
experimental tests using rapid prototyping.

The FEM-simulation analyzing the component is performed by the commercial
FEM software package Abaqus [11], which is widely used in industry for finite
element analysis and computer-aided engineering. The used plastic material is
described by an isotropic linear-elastic material model. This simple material model
is commonly used in industrial design processes of plastic parts if the loads are
quasi-static and do not exceed the yield point of the material. The simulation results
contain a large variety of data including the stress tensors.

Case 1: Design of a Brake Lever

Task The outer geometry of the brake lever is predefined by mechanical and
ergonomic constraints. The interior part—the design space—offers flexibility for
the specific rib design. The design space and the operating load are outlined in red
in Fig. 4. The goal is to design an appropriate rib structure supporting the outer
geometry.
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Z-Axes

Fixation

a b

c d

Fig. 4 (a) Outer geometry of the brake lever. (b) The design space (outlined in red), which is
available for structural optimization. (c) Reference geometry of a brake lever designed according
to standard design rules. (d) FEM-simulation model with bolts for fixation and the area of the
operating force application

a b

Fig. 5 Results of the first FEM-simulation of the filled geometry. (a) Von-Mises stress on the
surface. (b) 3D tensor lines

Design of the Rib Structure For the first simulation the volume of the design space
has been filled with a fictitious material. This allows to calculate the ‘natural’ flow
of the load from the application point of the operating force to the fixation of the
brake lever without imposing geometric restrictions. A tensor line visualization
of the simulation results can be seen in Fig. 5b. This image shows that the major
(purple lines) and minor (green lines) principal stresses lie in two-dimensional
planes orthogonal to the z-axis. Further, it can be seen that the resulting patterns
hardly change when moving a cutting plane along the z-axis. This suggests to use a
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Sketch 1 Sketch 2 Sketch 3

Geometry 1 Geometry 2 Geometry 3

Fig. 6 (a–c) Simple hand sketched lines following tensor lines used as basis for three new CAD-
structures. (d–f) CAD models of the three rib structures designed along tensor lines keeping a
constant volume

two-dimensional visualization of the stress field on a plane orthogonal to the z-axis,
which can be considered as representative for the volume. Finally, we decided to
use a texture visualization inside the design space to support the definition of the rib
structures. The texture is a dense tensor line representation of the stress field from
the simulation. The density of the fabric like texture encodes the principal stresses.

In a second step, ribs are designed in accordance to the tensor line patterns. The
explicit choice of the tensor lines is left to the engineer using his expert knowledge,
which influences the number, thickness and position of the ribs while keeping
a constant volume. In Fig. 6 the sketch of three different rib patterns is shown.
By designing three different rib patterns, we want to assess the sensitivity of the
proposed method with respect to the specific selection of tensor lines. Similar to the
usual workflow, the engineer can design the rib structure using at first hand sketches
that are then transferred into the CAD-model for the simulation (Fig. 6).

Virtual Validation of the Developed Rib Structure First, we have calculated the von-
Mises stresses of the new geometries. A comparison with the reference part gives the
following results: All tensor-line-driven rib patterns show comparable von-Mises
stresses that are significantly lower (up to 27%) than the reference rib structure,
Fig. 7a. The finite element analysis also shows an increased stiffness of the tensor-
line-driven rib pattern, with a lower deformation (on average 8%) for the new brake-
lever geometry under the same load.

Rapid Prototyping and Experimental Validation Finally, the new geometries have
been experimentally tested using prototypes generated by a rapid prototyping
process. Parts generated by rapid prototyping are not usable for absolute values of
properties like failure but they can be used to compare the part stiffness of different
part designs in a comparative way. Figure 8 shows the rapid prototype models and
the test setup in a standard tensile test machine. Figure 7b shows the measured load-
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a b

Fig. 7 (a) Resulting maximum von-Mises stresses based on the FEM-simulation for the three new
designs (red, green, yellow) in comparison with the reference geometry (blue). (b) Load-deflection
curves from the experimental validation: initial geometry in comparison with the three tensor line
driven parts

a b

Fig. 8 The three alternative and the reference geometry have been printed using a rapid prototyp-
ing method. The right image shows the experimental setup. A load is applied and the deformation
is measured until failure (a) Printed 3D geometries (b) Experimental set-up

deflection curves for the parts. It can be seen that the alternative designs show a
comparable stiffness that is higher than the one of the reference part.

Case Study 2: Tripod

Task Given is a cubic design space, Fig. 3b. The goal is to define a structure inside
this design space, such that the forces on the right side are transmitted in the ‘best
way’ to the three supporting points on the left side.

Design of the Support Structure Again, the idea is to use tensor lines inside the
cubic design space to define a geometrical structure. The first step is an initial
simulation with a cube homogeneously filled with material. To investigate the
influence of the material stiffness on the resulting tensor lines multiple runs with
different material stiffness (Young’s Modulus: E D500, 1,000, 2,000, 10,000 MPa)
have been performed. The respective results are not distinguishable from a visual
inspection of the tensor lines. Visualizations of the simulation result can be seen in
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maximum shear stresses

max

min

Volume rendering Isosurfaces Scatterplot

a b c

Fig. 9 (a, b) show tensor lines selected from the scatterplot (c). The violet lines correspond to
tensile (positive) stresses and the green lines to compressive (negative) stresses. (a) shows the
max respective min principal stress value as volume rendering (red compressive and green tensile
forces). (b) shows the same tensor lines together with an isosurface of a high absolute principal
stress

Fig. 10 Different selections of tensor lines from a dense set of tensor lines, all seeded in regions
of high shear stress: There is no clear criterion to decide which lines to choose for the geometry
design. Slight changes in the seeding conditions lead to different results

Fig. 9. The next step is the selection of characteristic tensor lines as basis for the
generation of a CAD geometry. Looking at the visualizations one sees immediately
that this task is not well-defined. There are many possibilities to connect the
supporting points with the point where the forces are applied, which would result
in very different geometries. Figure 10 shows some possible selections. One of the
possible selection has been used two generate a new CAD geometry. Already at first
sight it differs significantly from the reference geometry, which consists of straight
connections. Both geometries are displayed in Fig. 11(first row). To evaluate the
performance of the new geometry its behavior under load has been compared to
the reference structure. The local deformations for both geometries are plotted in
Fig. 11 (2nd row) and it can be observed that the straight structure is much more
efficient (stiffer). To get a better understanding of this fact we run a new structure
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Fig. 11 Comparison of the two geometries. Left column: reference structure; right column:
structure in alignment with tensor lines. Top row: CAD geometry; middle row: deformation plot;
bottom row: tensor lines

simulation for both structures. This time the tensor lines are used to evaluate the
simulation results. Surprisingly, the tensor lines inside the tripod are completely
different from the tensor lines in the filled cube. For the bent structure they are far
from straight and suggest a bad force transmission behavior. This shows that in this
case it is not sufficient to consider tensor lines for the design of the three dimensional
structure.
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4 Discussion

In this work we have investigated the usefulness of tensor lines as support for the
design process of technical parts. Our central hypothesis used for this investigation
is that tensor lines can be interpreted as major load paths transferring forces from
the points of their application to fixation points. Two case studies with very different
complexity and nature have been considered. They approve this hypothesis only
partially.

The first study, the break lever, is a quasi two-dimensional geometry. In this
case the use of tensor lines has led to better results then the reference geometry.
By selecting three different rib patterns it is shown that our proposed method is
quite robust with respect to the selection of specific tensor lines in this case. For
the break lever the outer outline of the geometry is predefined. Only an interior
support structure had to be designed. The base configuration is already very stable
with respect to torque. Thus, the loads inside the part are well represented by the
principal compressive and tensile stresses.

In contrast, this success could not be repeated with the full three-dimensional
case of the tripod. Here, the only restriction for the geometry are the fixation points
and the point where the force is applied. The tensor lines have been used to define
the complete geometry not only to add a supporting structure. In this case, we could
make the observation that torque is not well represented by tensor lines. Further, we
could also show that the course of the tensorlines strongly depends on the overall
structure of the geometry. Removing the outer material changed their behavior
completely. This leads to the question how representative and stable tensor lines
are with respect to changes in the geometry.

In summary, we conclude that there are cases where tensor lines can substantially
support the design process of technical parts. There is evidence that tensor lines have
a physical meaning in context with stress tensor analysis. But it is also apparent
that it is not sufficient to look at the principal stress direction to understand the
internal loads of a material. In future we want to analyze in more detail the specific
criteria for success and failure of this approach. A key aspect in this context is to
investigate the stability of tensor lines with respect to changes of the geometry.
Further, we consider it important to consider and represent torque effectively in the
visualization.
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Contextual Diffusion Image Post-processing
Aids Clinical Applications

Vesna Prčkovska, Magí Andorrà, Pablo Villoslada, Eloy Martinez-Heras,
Remco Duits, David Fortin, Paulo Rodrigues, and Maxime Descoteaux

Abstract Diffusion weighted magnetic resonance imaging (dMRI) and tractogra-
phy have shown great potential for the investigation of the white mater architecture
in-vivo, especially with the recent advancements by using higher order techniques
to model the data. Many clinical applications ranging from neurodegenerative
disorders, psychiatric disorders as well as pre-surgical planning employ diffusion
imaging-based analysis as an addition to conventional MRI imaging. However,
despite the promising outlook, dMRI tractography confronts many challenges that
complicate its use in everyday clinical practice. Some of these challenges are
low test-retest accuracy, poor quantification of tracts size, poor understanding of
the biological basis of the dMRI parameters, inaccuracies in the geometry of the
reconstructed streamlines (especially in complex areas with curvature, bifurcations,
fanning, crossings), poor alignment with the neighboring diffusion profiles, among
others. Recently developed contextual processing techniques including the one
presented in this work, for enhancement and well-posed geometric sharpening, have
shown to result in sharper and better aligned diffusion profiles. In this paper, we
present a possibility in enabling HARDI tractography on the data acquired under
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354 V. Prčkovska et al.

limited diffusion tensor imaging (DTI) conditions and modeled by DTI. We enhance
local features from the DTI field using operators that take ‘context’ information
into account. Moreover, we demonstrate the potential of the contextual processing
techniques in two important clinical applications: enhancing the streamlines in data
acquired from patients with Multiple Sclerosis (MS) and pre-surgical planning for
tumor resection. For the latter, we explore the possibilities of using this framework
for more accurate neurosurgical planning and evaluate our findings with a feedback
from a neurosurgeon.

1 Introduction

Diffusion weighted magnetic resonance imaging (dMRI) and fiber tractography
have gained significant importance in the medical imaging community for the last
decade. This novel imaging technique enables quantification of water diffusion,
influenced by the structure of biological tissues from the acquisition of series of
diffusion images. dMRI tractography, however, faces many challenges in clinical
applications such as improvements in the geometry of the diffusion profiles on
which the tractography is based including reduction of noise and alignment with
the neighboring profiles. In case of Multiple Sclerosis (MS) as a white matter (WM)
neurodegenerative disease, the nerve tracts are damaged due to presence of WM
lesions. In the areas of the lesions the common scalar measures such as FA have
low values and since they are most commonly used as a stopping criteria for the
streamline tractography algorithms either do not pass through these areas if the
threshold is too high (see Fig. 1), or take a random path [38]. This poses difficulties
when trying to develop quantitative dMRI markers for MS.

Another challenge in the accurate reconstruction of the WM streamlines in a
clinical setting is the clinical equipment. In other words, while recent advances
enable to recover complex fiber geometries at a cost of diffusion measurements
along various, high order, sampling schemes [36], some older MR systems work
with limited gradient tables. These systems are therefore, only suitable for tech-
niques such as diffusion tensor imaging (DTI) [6] that require low number of
gradient directions (a minimum of 6). Many hospitals and research institutes in the
world operate with these kind of MRI systems. Furthermore, in a clinical setting,
the scanning time is often very limited, which also limits the number of applied
gradients for the dMRI acquisition (often as low as 6 or 12). This is the case
of neurosurgical applications, where often a fluid attenuated inversion recovery
(FLAIR), functional/diffusion MRI, and gadolinium-enhanced T1 acquisitions have
to fit a limited time (10–30 min depending on the hospital). Therefore, groups that
want to perform state-of-the-art tractography using high angular resolution diffusion
imaging (HARDI) data are unable to and can only perform DTI tractography on
their old system, which is often the case in neurosurgical planning using dMRI [9].
However, the diffusion community is well aware that the Gaussian assumption of
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Fig. 1 DTI Fiber tractography reveals a damage of the fibers in the right hemi-
sphere within the lesion location (arrows). Image borrowed from NetFormun community,
Phillips cases. http://clinical.netforum.healthcare.philips.com/us_en/Explore/Case-Studies/MRI/
Case-Balo-concentric-sclerosis-on-MRI-DTI-MR-Spectrocopy

the tensor model in DTI is an over simplification of the diffusion phenomenon of
water molecules in the brain and is unable to resolve crossing fibers.

In this work we show that new diffusion signal modeling together with ‘so called’
contextual processing techniques, as explained in the next section, enable to capture
complex angular structures even in the case when the data is acquired from a reduced
gradient direction set arising from an older MR system. Moreover, we present novel
idea to use the contextual processing in order to enhance the irregular information
due to tissue damage as in the case of MS. This is important in order to set a
proper processing framework for developing imaging markers for tissue damage
along reconstructed streamlines in 3D.

http://clinical.netforum.healthcare.philips.com/us_en/Explore/Case-Studies/MRI/Case-Balo-concentric-sclerosis-on-MRI-DTI-MR-Spectrocopy
http://clinical.netforum.healthcare.philips.com/us_en/Explore/Case-Studies/MRI/Case-Balo-concentric-sclerosis-on-MRI-DTI-MR-Spectrocopy
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2 Background

Contextual processing is a processing technique of the data on positions and
orientations that includes a natural coupling between positions and orientations for
alignment of oriented structures via rigid body motions. As dMRI data contains
both spatial (3D position coordinates) and angular (diffusion properties in different
directions per position) information, contextual processing techniques can use
either spatial, angular, or both spatial and angular information in the data. Spatial
techniques, such as (anisotropic) smoothing, use the spatial context for a given
direction and, hence, are applied directly to the individual diffusion weighted images
(DWIs). This has shown to be beneficial in detecting micro-structural changes [42].
Angular techniques [22] use diffusion information in all directions at each individual
position, for example to sharpen diffusion profiles [18].

One can concatenate spatial and angular processing separately. However, the
resulting processing does not appropriately take into account alignment of oriented
structures. To this end, one should not consider the space of positions R

3 and
orientations S2 as a (separate) Cartesian product R3�S2 (see illustration of Fig. 2c)
where the importance of coupling of position and orientation for the purpose of
contextual processing of the data is illustrated ).

Indeed, alignment is done via rigid body motions on the set R3 � S2 via rigid
body motions .x;R/ where x denotes translation and R rotation:

.x;R/.y;n/ D .Ry C x;Rn/ (1)

As the product of two rigid body motions is again a rigid body motion, we get
the following non-commutative group product:

.x;R/.x0;n0/ D .Rx0 C x;Rn0/ (2)

which reflects the interaction between positions and rotations. The group of rigid
body motions commonly denoted as SE.3/ motions is therefore denoted by the
semi-direct product structure SE.3/ D R

3 Ì SO.3/, where SO.3/ is the group
of 3D rotations.1 Similarly the coupled space between position and orientations
(embedded in SE.3/) is denoted as R

3 Ì S2. Likewise we denote its elements by
.y;n/ 2 R

3 Ì S2 with y 2 R
3 and n 2 S2

Several techniques have been developed for contextual processing on R
n Ì Sn�1

(with n denoting the dimension), including [4, 7, 8, 13, 21, 30] for n D 2 and [5, 11,
15, 16, 19, 20, 23, 31–33] for n D 3. These techniques come from probability theory
onRnÌSn�1 where stochastic processes for alignment of oriented structures provide
stochastic partial differential equation (PDE) for contour completion [19, 31] and
contour enhancement [19]. Here we will not consider the details on how to derive the

1The coupled space of positions and orientations R
3 Ì S2 is formally defined as R

3 Ì S2 WD
R
3 Ì SO.3/=.f0g � SO.2//.
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PDEs from these stochastic processes. The explicit formulation of these stochastic
processes can be found in [20]. Intuitively, the solutions of the PDEs are the average
of all stochastic trajectories starting from the initial condition as depicted in Fig. 2a
(for more details see [12, 20]).

In this work we use convolution implementations via analytic kernels of the
stochastic PDEs for contour enhancement as contextual operators that include
alignment of the oriented structures in the data. As such, we both reduce high
frequency noise and incoherent/non-aligned structures in the data. The PDEs
are approximately solved with shift-twist convolutions with the analytic kernels
depicted in the illustration of Fig. 2b. The kernel represents the probabilistic fiber
propagation model.

Fig. 2 (a) Illustration of the stochastic heat kernel where 300 sample paths show the enhancement
kernel on 2D. (b) Illustration of the kernels used in this work in 2D with the enhancement property,
as well as the visualization of the 3D kernel. (c) Coupling of position and orientation. Particle 0 has
position and orientation .y0; n0/, particle 1 and 2 are denoted by .y1; n1/ and .y2; n1/ respectively,
thus having a the same spatial distance from particle 0 (denoted by the dashed circle) and the same
orientation (indicated by the dots). The solid lines represent the sub-Riemannian distance (here the
unique global minimizing geodesic in R

3 Ì S2 connecting two oriented particles) from particle
0 to particle 1 and 2 respectively, where the former is shorter. In fact using this Sub-Riemannian
distance (see [20, eq.43] on R

3 Ì S2 we quantify the fact that the red and black arrows are better
aligned than the green and black which would not be quantified when using Euclidean norm on
the Cartesian product R3 � S2
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We apply these contextual operators in two clinical applications. The first appli-
cation is a proposition of a novel technique for streamline reconstruction in patients
with Multiple Sclerosis (MS) whose white matter (WM) tracts are damaged by MS
lesions thus preventing proper segmentation of the WM streamlines. Segmenting
the WM streamlines is important in order to follow and report percentage of tract
damage in MS. MS is a dynamic disease and the lesions change over the course of
time, especially in the case of relapsing remitting MS (RRMS) where demyelination
and remyelination processes happen dynamically along time. The lesions can be
segmented using other MRI imaging modalities such as T1 and FLAIR as described
in the following sections, however, once mapped in diffusion space it is impossible
to follow the tract damage if we do not segment the WM streamlines properly. In
the case of MS this is particularly challenging due to the presence of the lesions
that stop the streamlines. Therefore we apply these contextual operators to enhance
the incomplete streamlines. If the streamlines are enhanced then their segmented
volume can be used in comparison to the volume of the WM lesions mapped to
the streamlines such that we can account for tract damage and develop imaging
markers for this challenging WM disease. However, here, we only demonstrate the
potential of the image processing operators to enhance the streamlines and we do not
perform further tests in the direction of imaging markers for MS. Finally, we test this
method on a synthetically generated data mimicking the human optic radiation (OR)
damaged by MS lesions and show the potential of using the contextual operators for
streamline enhancement. Furthermore, we validate the finding on in-vivo data of a
patient with MS.

The second clinical application is gathering richer information from a 1.5T MR
system with low gradient sampling scheme for the purpose of pre-surgical planning
and post-operative follow up. We show that crossing angular distributions similar
to ones reconstructed by HARDI acquisitions (as demonstrated in the work of
Prčkovska et al. [32]) can be inferred from diffusion measurements on a 1.5T MR
system in a clinically feasible time (less than 5 min). Finally, we demonstrate that
this technique can be successfully applied to a neurosurgical planning application,
on datasets acquired before and after intervention. Hence, users limited by an old
MR system and DTI-only acquisitions can now perform HARDI-like reconstruc-
tions and improve their fiber tracking results. This contribution can give novel
opportunities for research and white matter connectivity applications in setting
where 1.5T MR systems with limited gradient scheme encoding are available.

3 Methods

In order to infer crossing angular distributions from diffusion tensors (DT) we
implemented a method presented by Prčkovska et al. [32] which employs an
accelerated contextual techniques studied in the work of Rodrigues et al. [34]
and Duits et al. [19, 20] in HARDI imaging rather than in DTI imaging. For
completeness we describe it in this section.
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3.1 Inferring Crossing Angular Distributions from Diffusion
Tensors

In DTI, the signal decay is assumed to be mono-exponential [6], and yields the
equation for each position in y 2 R

3:

Sg.y/ D S0 exp.�bgTDg/; (3)

where Sg is the signal in the presence of diffusion sensitizing gradient, and S0 is
the zero-weighted baseline signal, b-value is the parameter of the scanner closely
related to the effective diffusion time, and the strength of the gradient field, g are the
unit-norm diffusion gradient vectors, and D is the second order symmetric, positive
definite diffusion tensor (DT). Once the DT is calculated per voxel y 2 R

3, the
spherical orientation distribution function (ODF) can be reconstructed, and sampled
on the sphere

ODF.y;n/ D nTD.y/n; (4)

where n is the direction vector defined by the tessellation. Note that there are
other ways to get the orientation density function [1, 20]. Figure 3 shows a typical
linear DT and the correspondent diffusivity profile sampled on a sphere (in our case
icosahedron of order 4,642 points on a sphere).

Following Rodrigues et al. [34], from a tensor field, we create an ODF field, i.e.,
a HARDI-like dataset U , a coupled space of positions and orientations:

U W R3 Ì S2 ! R
C W U .y;n.ˇ; �// (5)

This means that on every position y 2 R
3, the probability of a water particle

diffusing in a certain direction

n.ˇ; �/ D .sinˇ;� cosˇ sin �; cosˇ cos �/T 2 S2; (6)

is given as a positive scalar. Here n.ˇ; �/ is a point on the sphere parameterized
by ˇ 2 Œ��; �/ and � 2 Œ��

2
; �
2
/. This parameterization of S2 ensures that the

singularities in the coordinate frame are at the x-axis and far away from the z-axis
where the unity element is placed (the z-axis serves as reference axis along which
our convolution kernels are aligned). Throughout this article we consider DTI-data
as the initial condition, which means that we set U .y;n/ D nT D.y/n.

Fig. 3 A linear diffusion
tensor (left) and the
corresponding tessellated
ODF (right)
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3.2 Contextual Enhancement of U via Shift-Twist Convolution

Duits et al. [19] proposed a kernel implementation that solves the diffusion equation
on R

3 Ì S2, more precisely the solution of:

@W
@t
.y;n; t/ D D33.n � r/2W.y;n; t/CD44
S2W.y;n; t/

W.y;n; 0/ D U .y;n/;
(7)

where 
S2 denotes the Laplace Beltrami-operator on the sphere S2 D fx 2
R
3 j kxk D 1g, is given by shift-twist convolution with the (line-spread) kernel

W.y;n; t/ D .p
D33;D44
3D;t �R3ÌS2 U /.y;n/

D R
R3

R
S2

p
D33;D44
3D;t .RTn0.y � y0/; RTn0 n/U .y0;n0/ dy0d�.n0/ (8)

This kernel represents the Brownian motion kernel, on the coupled space R
3 Ì S2

of positions and orientations. With some heuristics it can be approximated by:

p
D33;D44
3D;t ..x; y; z/T ;n.ˇ; �// �
N.D33;D44; t/ � pD33;D442D;t ..z=2; x/; ˇ/ � pD33;D442D;t ..z=2;�y/; �/ ;

(9)

where y D .x; y; z/T , and N.D33;D44; t/ � 8p
2

p
�t

p
tD33

p
D33D44 takes care

that the total integral over positions and orientations is 1. The 2D kernel is given by:

p
D33;D44;t
2D .x; y; �/ � 1

32�t2c4D44D33
e
�

p

EN..x;y/;�/
4c2t (10)

where we use short notation

EN..x; y/; �/ D
 

�2

D44
C

�
�y
2 C �=2

tan.�=2/ x
�2

D33

!2

C 1
D44D33

�
�x�
2

C �=2

tan.�=2/ y
�2

where one can use the estimate �=2

tan.�=2/ � cos.�=2/
1�.�2=24/ for j� j < �

10
to avoid numerical

errors. c � 1 is a positive constant for rescaling the time t that we typically set to 1.
Equation (9) is one analytic approximation. Other (more accurate) approximations
can be found in [19, 20]. For more details see the work of Duits et al. [19] and
Rodrigues et al. [34].

The diffusion parameters D33 > 0 and D44 > 0 and stopping time t

allow the adaptation of the kernels to different purposes: t determines the overall
neighborhood size in R

3 Ì S2; D33 > 0 determines spatial extent of the kernel; and
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the quotientD44=D33 models the bending of the fiber propagation model underlying
the diffusion.

We can now convolve this kernel with the ODF image U , using the HARDI
convolution, as expressed in Eq. (11).

˚.U /Œy;nk� D
X
y02P

X
n02T

py;nk .y
0;n0/U .y0;n0/ 
y0
n0 (11)

where py;nk is the kernel centered at position y and orientation nk , 
y0 is the
discrete volume measure and 
n0 the discrete surface measure, which in case of
(nearly) uniform sampling of the sphere, such as tessellations of icosahedrons, can
reasonably be approximated by 4�

jT j . P is the set of lattice positions neighbouring to
y and T is the set of tessellation vectors. Kernel py;nk is the rotated and translated
correlation kernel (such that it is aligned with .y;nk/) given by

py;nk .y
0;n0/ D p

D33;D44
3D;t .R�1n0 .y0 � y/; R�1n0 n/ (12)

where Rn0 is any rotation mapping ez onto n0.
The convolution with such a kernel will result on the extrapolation of crossing

profiles where the neighbourhood information so indicates, i.e., the E-ODFs.

3.3 Data

Synthetic Data

We created a simplified artificial optic radiation (OR) dataset following the known
anatomy of the human OR including curvature in the track (however, excluding
the Meyer’s loop for simplicity purposes). The OR can be damaged in diseases
such as multiple sclerosis (MS) by the presence of focal lesions, diffuse direct
damage or trans-synaptic axonal degeneration [24, 29]. Moreover, it is one of the
most interesting tracks to be investigated in research in MS due to the possibility
to correlate the lesion load in the track with the visual field deficits that is easy to
measure.

We use our framework [35] to create artificial synthetic data with the following
parameters:

• a healthy OR tract, based on in-vivo data, with eigenvalues �i = [367; 496; 1442]
x 106 mm2=s, b-value of 1,000 s=mm2 as commonly found tensor values in the
OR at this b-value and added Rician noise with SNR of 10;

• added a lesion to the artificial tract, with respective eigenvalues of �i= [287;
517; 1224] x 106 mm2=s, sampled from a real OR lesion [38]. (Note the lower
anisotropy tensors in Fig. 5 yellow circle.)
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After creating the artificial phantom data we performed deterministic tracking
on the diffusion tensors (DT) with stopping criteria FA=0.6 (see Fig. 5a). We
furthermore used the kernels to enhance the lesion in diffusion space and afterwards
apply the same deterministic tracking with the same stopping criteria. Note that the
FA threshold is slightly higher than the frequently used thresholds in streamline
tracking in real data since here we are working on a synthetic dataset. In this data
the SNR is higher than in real data and the FA values are therefore significantly
increased (see Fig. 5e).

We performed a parameter search to determine the effect of the convolution on
the artificial OR dataset. To lower the parameter space we fixed D33 D 1, since the
artificial OR tube has radius of 2 voxels, and iterated D44 D f0:01; 0:13; 0:23g and
t D f1:5; 2:5; 3:5g.

MS Patient Data Acquired at 3T Siemens MR System

The scan of the MS patient was performed on a 3T Siemens Trio MRI scanner
(Erlangen, Germany), using a 32 channel head coil for radio-frequency transmission
and signal reception. The MRI protocol included the following sequences: (a) 3D
structural T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo
(MPRAGE) sequence: Repetition Time (TR): 2,050 ms, Echo Time (TE): 2.4 ms,
Inversion recovery time (TI): 1,050 ms, Flip angle: 9ı, FOV: 220 mm and voxel size
of 0:9 � 0:9 � 0:9mm3 (b) DTI sequence with the following parameters: TR/TE,
6900=89ms; acquisition matrix, 96 � 96; 55 contiguous axial slices; 2:5mm3

isotropic voxel size; diffusion weighted images in 30 diffusion directions; b value,
1,000 s=mm2. We identified an artifact in the diffusion-weighted images due to
vibration of the MRI platform (for more information see the work of Gallichan
et al. [25]), which was found in parietal regions and mainly in six directions. In
order to remove this artifact we discarded the affected directions following the work
of Ling et al. [28].

Since the DTI images were obtained by Echo Planar Imaging (EPI) method
they suffered from field inhomogeneities caused by susceptibility changes at the
interfaces between tissues and therefore it is useful to acquire gradient field maps.
By means of field maps, the B0 correction was applied for unwarping images
in order to make the registration step more accurate. Then, the reconstruction of
the diffusion tensors was performed using software toolkit MrTrix [40] with eddy
current correction to carry out the registration to the reference volume. The T1-
MPRAGE sequence was used by two experienced neurologists to manually generate
a lesion map for the patient using ITK-SNAP software [45]. The T1-weighted
images were used because they more accurately identify axonal damage than T2-
weighted images [14]. The manually detected lesions were furthermore mapped
from the T1 space to the diffusion space. This way we know the exact position
of the lesions of the T1 space and the reasons for the fibers to stop due to the track’s
impairment.
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We calculated FA maps that help us register DTI images with high resolution
anatomical images to carry out the fitting of lesion mask into T1 space. The presence
of white matter (WM) lesions distort and bias the output of the registration. For this
reason we removed this bias by filling such lesions to make the brain look like
a ‘healthy brain’ before the registration step. MS lesions were filled by replacing
the lesion voxel intensity values with values that were randomly sampled from an
intensity distribution that measured from surrounding WM voxels [10].

From the original tensor field, we created a seeding mask with FA > 0:3 as
threshold. From the tensor data estimated by the above mentioned pipeline we
created the ODFs as described in Sect. 3.1. Spherical harmonics of order 2 were
estimated and given as an input for the deterministic fibertracking using MRTrix
with the default stopping criteria by the software (0.1 of the spherical harmonics
amplitude), however with thresholded seeding mask.

On the field of ODFs, the kernels were applied in order to enhance the data, with
the parametersD33 D 1, D44 D 0:1 and t D 2 (these were determined by a refined
parameter search based on the results from the artificial OR parameter iteration as
best fit for the real data).

A new tensor field was estimated with a least square fit method from the E-ODFs
field. A new mask is obtained with the new FA map, applying the same threshold
of FA > 0:3. The same fiber tracking algorithm with identical tracking parameters
was applied, however with the new thresholded seeding mask.

To summarize, 100,000 streamlines were estimated using deterministic tracking
applied over:

• original ODF field (order 2 equivalent to the DTI model), masked with original
FA map;

• Constrained Spherical Deconvolution (CSD) [39] (or order 4 as maximum fitting
order given our sampling scheme of 30 gradient direction) from original DWI,
masked with original FA map;

• E-ODFs field, masked with new FA map.

Healthy and Tumor Data Acquired at 1.5T Siemens MR System

Healthy Subject Datasets

The data was acquired from an old 1.5T Siemens MR system with hard coded
gradient tables fixed at 6 or 12 directions on the sphere. Systems like this one,
without a research key, typically have fixed configurations for the gradient scheme
that cannot be altered. On this system, good quality DTI dataset is achievable by
acquiring DW images at bD1,000 s=mm2, 2 mm3 isotropic, TE/TRD95/12500 ms,
and 12 gradient directions. For improving the signal to noise ration (SNR) they can
be additionally averaged at most three times (NEXD3). The DTI with 12 directions
and a single measurement takes 2 min and 46 s, whereas the one with NEXD3 takes
8 min and 18 s, which is acceptable in our clinical setting. Note that this is slower
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than actual systems as we do not have parallel imaging possibilities on the system. A
healthy subject was thus imaged with DTI NEXD1 and NEXD3. The same subject
went into a recent 1.5T SIEMENS Magnetom (Vision) system and was furthermore
imaged with a 64 directions HARDI protocol, bD1,000 s/mm2, 2 mm3 isotropic,
TE/TRD40/3864 ms, which takes 12 min due to a parallel imaging acceleration
factor of 2. The E-ODFs method was applied on the old DTI reconstruction from
log-Euclidean reconstruction [2], whereas state-of-the-art local reconstruction was
applied on the HARDI data. We have performed analytical q-ball [17] with spherical
harmonics (SH) of order 8, constant solid angle (CSA) q-ball [1, 41] with SH of
order 8, and fiber orientation distributions (FOD)s from spherical deconvolution [39]
of order 8 as well.

Tumor Subject Datasets

The tumor data is acquired with the same DTI NEXD 1 described above. We have
imaged a glioblastoma patient before the operation providing pre-operative data and
after the intervention providing post-operative data. From this approximately 3 min
acquisition, we have reconstructed the diffusion tensors using the log-Euclidean
framework [2] and have applied the E-ODFs technique on the pre-operative and
post-operative data. Then, our in-house deterministic streamline tractography was
applied to the ‘original’ tensor and the maxima extracted from E-ODFs, using a
step size of 0.5 voxel, maximum curvature angle of 60ı in an FA (from the original
tensor field) thresholded mask above 0.10 (similar to the technique of [26] and as
advised by [9] for neurosurgical planning).

We chose the parameters for the kernel in order to give a high relevance to the
diffusion along the principal axis D33 D 0:9;D44 D 0:001 and t D 3:4, a third
order tessellation on the sphere and a 3� 3� 3 neighboring lattice. Intuitively, with
these parameters, crossings will be inferred in a given voxel when there are nearby
highly anisotropic profiles oriented towards that voxel.

For all the real data we applied a squaring of the E-ODFs in order to sharpen the
data. This yields better results given the typical blurring of data in convolutions.

4 Results

4.1 Artificial Optic Radiation Phantom Data

In Fig. 4 we illustrate the effect of convolving the artificial OR data with kernels
of different parameters. We fix D33 D 1:0 and vary D44 D f0:03; 0:13; 0:23g
and t D f1:5; 2:5; 3:5g. We show the glyphs corresponding to the E-ODFs versus
the original tensor main direction. We can observe the influence of a bigger t
portraying a bigger contextual neighborhood and thus a better fit to the original
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Fig. 4 Original tensor field of the artificial optic radiation tract. E-ODFs field result of convolu-
tions with varying parameters

tensor directions. Increasing D44 conveys a closer recovery of the curve structure
of the OR, as observed with a better fit to the original tensor directions.

Figure 5a shows the streamlines clearly being stopped due to the lesion in the
tract (with lower FA, see change of FA along the streamlines in Fig. 5e), whereas in
Fig. 5b the full streamlines are completely recovered. The tracking in both cases has
been seeded from the same region and done with the same stopping criteria. Here,
in this artificial example, we show the power of the contextual kernels to be used for
streamline enhancement in diffusion space (see Fig. 5e). This shows the potential of
the kernels to be used as markers for tract damage by simply comparing the original
and enhanced data.

4.2 MS Patient Data: DTI Versus E-ODFs

Figure 6 shows the results of an axial plane with deterministic fiber tracking (whole
brain seeding with white matter mask) including the OR tract in the three different
modeling techniques (DTI, CSD (order 4), E-ODF). The MS lesions that have been
previously segmented by the neurologists are highlighted in white. We observe that
in case of DTI Fig. 6a all of the streamlines are stopped by the presence of the
lesions. In Fig. 6b we observe that CSD of order 4 performs better managing to
recover some of the streamlines that contain MS lesions (violet square) however,
still having problems in different areas (red squares). In Fig. 6c we observe the
enhancement effect on the data after being post-processed with the kernels. All the
streamlines that include lesions are enhanced and pass through the area with lesions.
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Fig. 5 Artificial optic radiation tract. (a) Incomplete streamline due to lesion. (b) Full streamline
in the enhanced data. In both tracking FA=0.6 as a tracking threshold. (c) Tensors with highlighted
lower diffusivity in the lesion. (d) Enhanced lesions. (e) Average FA along the damaged tract (blue)
and enhanced tract (green)
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Fig. 6 Data from the MS patient with (a) DTI streamline fiber tracking. (b) CSD streamline fiber
tracking of order 4. (c) Tracking on the estimated E-ODF field. The zoomed-in areas illustrate how
different techniques behave in the areas of the lesions (white squares)
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4.3 Healthy Subject: DTI Versus HARDI Versus E-ODFs

Figure 7 shows local reconstructions from the healthy subject from a 64 direction
HARDI acquisition, a single average and three averages DTI acquisition with
12 directions. First, we note that E-ODFs for the 12 direction acquisition are
able to recover crossing fiber configurations similar to q-ball and CSA q-ball
reconstructed from the HARDI dataset. The E-ODFs are much smoother than the
q-ball reconstructions, due to the particular choice of the convolutions kernels.
However, their maxima coincide with the maxima calculated from the HARDI
techniques applied on the high angular acquisition datasets, as can be observed in
the second row of Fig. 7.

As expected, compared to state-of-the-art spherical deconvolution, we see that
FODs have a much better angular resolution than respective E-ODFs and q-
ball/CSA reconstructions. To obtain as sharp ODFs, one could always apply a
spherical wavelet transform [27] or a sharpening deconvolution transform [18].
Overall, one concludes that a single average DTI acquisition, taking approximately
3 min, can be transformed into a dataset similar to a 64 direction HARDI-like dataset
with the proposed post-processing routine.

4.4 Tumor Patient

Figure 8 shows local fiber crossings recovered with the E-ODFs technique. The
field of E-ODFs is relatively smooth and is aligned with the anatomy. Nonetheless,
as for the healthy subject, E-ODFs are able to capture crossing fibers in the centrum
semiovale and elsewhere. In particular, one can see the famous crossing between the
corticospinal tract (CST), projections from the corpus callosum (CC) and superior
longitudinal fasciculs (SLF) coming out of the plane as in the case of the healthy
patient. This is encouraging for enhanced fiber tractography from these local E-
ODFs. Finally, we can also observe more structure around and within the tumor
using the extrapolated information. Glioblastomas are known to infiltrate the white
matter and the field of E-ODFs seem to suggest some remaining coherent local
structure within the tumor. This is purely qualitative analysis, furthermore confirmed
by the neurosurgeon at our institute who states that this structure can exist and is
coherent as seen in the images. In fact, when given the choice, our neurosurgeon
prefers looking at the field of E-ODFs more than the tensor field since they better
depict the underlying expected anatomy.

Figure 9 shows the advantage of tracking on a field of E-ODFs reconstructed
fiber crossings. Lateral projections from the CC and CST are neatly recovered from
the ODF tracking algorithm whereas most of these structures are missing on the
tracking applied on the DTI dataset. A similar observation is seen in the post-op
data (see additional material).



Contextual Diffusion Image Post-processing Aids Clinical Applications 369

a b

d

f
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Fig. 7 Healthy dataset. DTI, analytical q-ball, constant solid-angle q-ball, spherical deconvolution
versus E-ODFs (a) DTI. (b) E-ODFs from DTI. (c) Analytical q-ball. (d) E-ODFs from DTI three
averages. (e) CSA-qball. (f) Spherical deconvolution
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Fig. 8 Diffusion tensors versus E-ODFs of order 8 in a zoomed region (coronal slice anterior
view) of the pre-op and post-op dataset. The diffusion tensors are color coded by FA values (blue
encodes low FA values, red high FA values). The color in each point on the E-ODF glyph surface
maps the amplitude of the E-ODF for that orientation where blue encodes low amplitude and red
high. This is the standard glyph color coding for each diffusion technique

When selecting fiber tracts on the surrounding boundary of the tumor, Fig. 10
shows differences also seen between DTI and ODF tracking. The fiber density of
ODF tracking is enhanced and high curvature fibers seem to be tracked easier. This
is especially seen in the post-op data (Fig. 10 (right)).

The computation of the E-ODFs field, from a 120 � 120 � 69 DTI volume,
third order tessellation (162 points on the sphere), took approximately 10 min, on a
standard desktop computer Intel R�Core TMi3-3220 with 8 GB of RAM.

Even though, it is a difficult task to show the differences in a single figure, the
pre-op and post-op fiber structure is quite different, as seen when navigated using
FiberNavigator,2 and seen interactively in 3D. As for the local tensor and E-ODFs
field, our neurosurgeon prefers looking at fiber tracts computed from the E-ODF
field with an interactive tool that allows navigating around and inside the tumor.

2https://github.com/scilus/fibernavigator.
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a b

Fig. 9 Diffusion tensor tracking versus ODF tracking on E-ODFs of order 8 on the pre-op dataset.
Only fibers that pass through the blue selection cube are shown (a) DTI tracking pre-op. (b) ODF
tracking from E-ODFs pre-op

5 Discussion

This work is among the first attempts to use analytic kernel implementations for
enhancement of dMRI data in clinical applications. As such these results should
be taken with care and used to motivate more work in this direction given the
limitations of the dMRI acquisitions (low SNR, antipodal symmetrically acquired
signal, among others).

Moreover, this work for the first time motivates the use of extrapolated contextual
information for development of novel dMRI markers for applications such as MS.
Hopefully it can be applied to indicate the tract damage of specific fiber bundles, but
as well to improve the connectomic-based analysis for these types of applications.
In MS connectivity matrices are corrupted by the presence of the lesions and
incorrectly reconstructed diffusion streamlines. However, further work is needed
in this direction since here we only present preliminary results.

Regarding the neurosurgical application, the more data that can be presented to
support evidence of the current state of the imaged patient, the better. Neurosurgeons
would like to see not only the original DTI data (that has to be taken with care given
the limitations) but as well maps of residuals where the DTI model performs the
worst (i.e., in non-Gaussian areas) or, as in our case, fields of E-ODFs that show the
actual missing crossings structures inferred from the surrounding data.
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Fig. 10 Diffusion tensor tracking versus E-ODF tracking on pre-op versus post-op dataset. Only
fibers that pass simultaneously through the blue selection sphere and green cube are shown

This rich multi-modal data gives additional information, re-assures and encour-
ages the strategies for pre-surgical planning and performing the resection in the most
non-invasive and efficient way. To the best of our knowledge the contextual enhance-
ment does not destroy information but rather enhances the directional information
that is well-aligned (‘in agreement’) with neighboring directional information (via
Brownian motion on the coupled space of positions and orientations). Since our
neighborhood is relatively small, subtle local information is being preserved. One
must also keep in mind that E-ODFs complement the DTI tensors and metrics
derived from the original data such as FA and MD. E-ODFs are greatly used
to enhance the tracking. Of course more thorough validation in this direction
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is necessary. In our experience, neurosurgeons would like to gather as much as
possible data in order to make crucial decisions for the planning of the surgery.

Future work should be done on a simplified visualization of the E-ODFs, as the
neurosurgeon finds it important to see the extracted maxima rather than the glyph
profiles. Finally, the neurosurgeon finds that E-ODFs are more informative than
diffusion tensors in the regions of the edema.

6 Conclusion

In this work we demonstrated the importance of using contextual image processing
operators in a clinical setting, for (a) MS application (b) improving the quality of the
DWI data acquired on an old MR system for the purpose of pre-surgical planning
for tumor resection as well as follow-up. The results are done on a small sample
of subjects (healthy control and two patients) and only show first proof of concept
as and as such should stimulate more research in this direction in a larger patient
cohort and different clinical applications.

More work is needed in the direction of novel imaging markers for MS. This
pilot study illustrates the possibilities of improving the fiber tracking in MS such
that the patient can have its own control template in order to be able to follow
the changes (with respect to lesion load on the streamline) along time. Also the
possibility of having its personal template can minimize the problems with co-
registrations and deformations compared to what is currently done in literature
in cases of voxel-based morphometry (VBM) [3, 43, 44] and track-based spatial
statistics (TBSS) [37].

Moreover, in a clinical setting, the dMRI acquisitions are often limited by
two factors: the gradient strength of the MRI scanner and the scanning time.
Both of these factors are very difficult to compromise given that the first requires
replacement of the whole system and the latter less saturated scanning schedule.
These are often limiting conditions to the research in dMRI, often driven towards
improving the accuracy of the reconstructed fibertracks.

In this paper, we demonstrated and evaluated a unique possibility of not only
performing advanced research on an old MRI machine, but also improving the
tractography results compared to the ones normally obtained by simple DTI
tractography. We started by studying a healthy volunteer scanned with both modest
and more advanced acquisitions (w.r.t. number of gradients) and we performed
several typical reconstruction techniques. We demonstrated that DTI acquisition can
be transformed into a HARDI-like acquisition.

Furthermore, we presented a study of a pre and post-op tumor patient where
the advances from this novel post-processing technique not only will improve the
pre-surgical planning but also give good indications for the post-surgical recovery
of the patient. The feedback given from our neurosurgeon was very positive, given
that the reconstructed profiles with this technique gave more accurate anatomical
information compared to the pure DTI tracking.
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The fiber propagation is now based on a global probabilistic Brownian motion
model on R

3 Ì S2 which sometimes lacks data-adaptability in practice. Here local
adaptation of the diffusion in Eq. (7) is needed. More precisely, local differential
geometric and/or statistical adaptation of the entire diffusivity matrix is needed,
beyond the relatively limited Perona and Malik extension (with diffusion scalar
adaptation only) presented in [15].

Further work is both necessary and recommended for the validation of the
benefits of this technique in the clinical setting in both neurology and neurosurgery
with a larger cohort of patients.
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35. Rodrigues, P., Prčkovska, V., Pullens, W., Strijkers, G., Vilanova, A., ter Haar Romeny, B.:
Validating validators: an analysis of dwmri hardware and software phantoms. In: Proceedings
18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stock-
holm, p. 3964 (2010)

36. Seunarine, K.K., Alexander, D.C.: Multiple fibres: beyond the diffusion tensor. In: Behrens,
T.E.B., Johansen-Berg, H. (eds). Diffusion MRI. Elsevier, London (2009)

37. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E.,
Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial
statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4), 1487–1505
(2006)

38. Tehrani, M.A.: Diffusion tensor imaging study for multiple sclerosis in the optic radiation.
Master’s thesis, Universitat Pumpeu Fabra, Health and Life Science Department (2012)

39. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation dis-
tribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.
NeuroImage 35(4), 1459–1472 (2007)

40. Tournier, J.D., Calamante, F., Connelly, A.: Mrtrix: Diffusion tractography in crossing fiber
regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012). doi:10.1002/ima.22005. http://dx.
doi.org/10.1002/ima.22005

41. Tristán-Vega, A., Aja-Fernández, S.: DWI filtering using joint information for DTI
and HARDI. Med. Image Anal. 14(2), 205–218 (2010). doi:10.1016/j.media.
2009.11.001. http://www.sciencedirect.com/science/article/B6W6Y-4XPB73V-1/2/
a3676e62ab8bf29fabf348def2a7f539

42. Van Hecke, W., Leemans, A., De Backer, S., Jeurissen, B., Parizel, P.M., Sijbers, J.: Comparing
isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Hum.
Brain Mapp. 31(1), 98–114 (2010)

10.1371/journal.pbio.0060159
10.1371/journal.pbio.0060159
http://dx.plos.org/10.1371/journal.pbio.0060159
10.1016/j.media.2010.01.002
10.1016/j.media.2010.01.002
http://www.sciencedirect.com/science/article/B6W6Y-4Y95V7F-1/2/96f995a6e324481afd598ed0f4fd9fcd
http://www.sciencedirect.com/science/article/B6W6Y-4Y95V7F-1/2/96f995a6e324481afd598ed0f4fd9fcd
http://dblp.uni-trier.de/db/journals/pami/pami35.html#MomayyezSiahkalS13
http://dblp.uni-trier.de/db/journals/pami/pami35.html#MomayyezSiahkalS13
http://dblp.uni-trier.de/db/journals/corr/corr1202.html#abs-1202-5414
http://dblp.uni-trier.de/db/journals/corr/corr1202.html#abs-1202-5414
10.1002/ima.22005
http://dx.doi.org/10.1002/ima.22005
http://dx.doi.org/10.1002/ima.22005
10.1016/j.media.2009.11.001
10.1016/j.media.2009.11.001
http://www.sciencedirect.com/science/article/B6W6Y-4XPB73V-1/2/a3676e62ab8bf29fabf348def2a7f539
http://www.sciencedirect.com/science/article/B6W6Y-4XPB73V-1/2/a3676e62ab8bf29fabf348def2a7f539


Contextual Diffusion Image Post-processing Aids Clinical Applications 377

43. Whitwell, J.L.: Voxel-based morphometry: an automated technique for assessing structural
changes in the brain. J. Neurosci. 29(31), 9661–9664 (2009)

44. Wright, I.C., McGuire, P.K., Poline, J.B., Travere, J.M., Murray, R.M., Frith, C.D., Frackowiak,
R.S., Friston, K.J.: A voxel-based method for the statistical analysis of gray and white matter
density applied to schizophrenia. NeuroImage 2(4), 244–252 (1995)

45. Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.:
User-guided 3D active contour segmentation of anatomical structures: significantly improved
efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)



Index

ActiveAx, 193
Adaptive Boosting, 308
Aggregation scheme, 176
Algebraic lattices, 111
Algebraic opening, 111, 116
Anti-extensive, 111
Aperture angle, 182
Atlas, 289
Averaging, 275
AxCaliber, 193
Axon diameter, 192, 209

Ball-and-Sticks, 295
Ball tensor, 167
Ball tensor voting, 171
Beucher gradient, 140, 141
Bézout theorem, 85
Bifurcation, 89, 90
Big Data, 327
Black top-hat, 140, 141
Bloch-Torrey equation, 3, 7, 8, 25, 149
Bloch-Torrey propagator, 8
Bonferroni correction, 303
Brain connectivity, 309
Brain Microstructure, 271
Brownian motion, 21
BSQ-format, 143
B-value, 192, 195

Capped cylinders, 5
Carr-Purcell-Meiboom-Gill experiment, 5
Cell size, 4

Christoffel symbols, 24
Classical tensor voting, 166
Classification, 307
Closing, 140, 141
Clustering, 325, 327–329, 335, 337
Combustion, 324, 326, 330, 335, 337
Complete Mixture Model, 275
Complexity, 4
Compressed sensing, 191
Concentration parameter, 46
Condensation graph, 118, 124
Connectomis, 194
Context-based decomposition, 174
Contextual processing, 355

techniques, 353
Contextual voting, 173
Convexity, 23, 31

measure, 31
Convolution, 172, 357
Corpus callosum, 204, 206
Corticospinal tract, 204, 206
Cross validation, 311
Crossing, 204, 206, 208

DAG. See graph, directed acyclic
Decomposition

of a tensor (see tensor decomposition)
Degenerate curve, 73, 74, 77, 78, 81, 85, 86,

89, 90
Demyalination, 192, 358
Diffusion anisotropy, 4
Diffusion Compartment Imaging (DCI), 272

atlas, 289

© Springer International Publishing Switzerland 2015
I. Hotz, T. Schultz (eds.), Visualization and Processing of Higher Order
Descriptors for Multi-Valued Data, Mathematics and Visualization,
DOI 10.1007/978-3-319-15090-1

379



380 Index

estimation, 295
filterting, 290
microstructure-preserving simplification,

282
population studies, 291
registration, 287
signal-preserving simplification, 276
smoothing, 290
tractography, 291

Diffusion MR, 3
Diffusion MRI, 109, 121, 300
Diffusion propagator, 192, 194, 195, 201–204,

206
Diffusion Spectrum Imaging (DSI), 150, 194,

197, 199, 203, 314
Diffusion tensor, 24
Diffusion Tensor Imaging (DTI), 25, 149, 192,

195, 197, 201, 203, 207, 271, 300
limitations, 272

Diffusion-weighted magnetic resonance
imaging (DwMRI), 235–252, 354

Dilation, 140, 141
Directed acyclic graph. See graph, directed

acyclic
Distance metric, 328, 337
Distribution function, 7
Distribution of phases, 6
dMRI, 353
Double diffusion encoding (DDE), 4
DSI. See Diffusion Spectrum Imaging (DSI)
DTI. See Diffusion Tensor Imaging (DTI)
DwMRI. See diffusion-weighted magnetic

resonance imaging (DwMRI)

Echo, 6, 8
Eckart-Young Theorem, 96
Efficient tensor voting, 172
Eigendecomposition. See tensor

decomposition, 166, 176
Einstein velocity

addition, 139
subtraction, 139

Erosion, 140, 141
Estimation, 295
Euler’s theorem for homogeneous functions,

152
Exchange, 274
Exponentials of matrices, 10
External gradient, 140, 141

Fabric tensor
first kind, 39

second kind, 40
third kind, 40

Fabric texture, 342
Feature extraction, 309
Feature selection, 310, 313
Feature vector, 337
Fiber orientation, 38
Fiber tracts, 235–252

brain connectivity, 244
bundles, 246–248
lines, 236, 238
probabilistic tracking, 247–249
tract bundles, 246–248
tubes, 236, 237, 241–242, 244

Fibre crossings, 121
Fibre tractography. See tractography
Figuratrix, 152
Filtering, 275, 290
Finsler

framework, 25
function, 22
geodesic, 23

equation, 24
geometry, 22
Laplace–Beltrami, 28
manifold, 22
metric tensor, 23

Finsler-DTI, 151
Fourier transform, 194
Frame rate, 206
Free diffusion, 13
Fundamental tensor, 23

Gabor filter, 182
Gaussian diffusion, 13
General gradient waveforms, 3
General Linear Model, 303
Generalized diffusion tensor imaging (GDTI),

25
Glyph, 192, 204, 206
GPU computing, 172
Gradient echo condition, 14
Gradient waveforms, 3
Graph

condensation (see condensation graph)
directed acylic, 112, 115
of tangent vectors, 113

Greyscale image analysis, 181

HARDI. See High angular resolution diffusion
imaging (HARDI)

Heat equation, 259
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Heat kernel, 260
signature, 257

Hessian normal form, 136
High angular resolution diffusion imaging

(HARDI), 150, 192, 195, 314
Higher-order data, 183
Higher-order SVD, 99
Higher-order tensor, 175
HOOI, 101
HOSVD, 103
Hybrid diffusion imaging (HYDI), 195
Hypercube, 131
Hypersimplex, 131
Hyperspectral image, 130

Idempotent, 111
Identity tensor, 112, 119
Illustrative visualization, 235–252

abstraction, 249–251
ambient occlusion, 239–241, 243–245
applications

brain connectivity, 235
diffusion-weighted magnetic resonance

imaging, 235–252
muscle tissue, 237
neurosciences, 235

contours (see silhouettes)
depth-dependent halos, 237–238, 240, 241,

243, 246, 251
depth perception, 237–240, 245
focus+context, 242–249
halftoning, 244
halos, 237–239, 243, 246, 247
hatching, 243
lineAO, 239–241, 246
line style, 238, 239
multi-modal visualizations, 243–245, 249
patterns, 241
screen-space ambient occlusion, 239, 241,

243
shadows, 237, 239
silhouettes, 237, 244–247, 249
stippling, 243, 248–249
unsharp masking, 241

Increasing, 111
Indicatrix, 28, 152
Infimum, 138
Infinitesimal propagators, 9
Infinitesimally short pulses, 4
Inhibitory voting field, 182
Inner product, 112
in situ, 325, 326, 335
Inter-scale information, 180

Internal gradient, 140, 141
Interpolation, 149–160, 199, 275

dyadic-tensor, 150
geodesic, 150
geodesic-loxodrome, 150
inpainting, 150
linear invariant, 150
log-Euclidean, 150
pde-based, 150
quaternion-based, 150
tensor spline, 150

Isocontour, 195
Isosurface, 195, 200
Isotropic transport process, 26
Iterative algorithm, 179

Laplace Beltrami-operator, 360
Lattices. See algebraic lattices
Layered structures, 5
Linear interpolation, 150
Linear tensor field, 73, 78, 80–83, 85, 86, 88,

89
Load-deflection curve, 341
Load path, 340
Locally Minkowski manifold, 24
Loewner cone, 130
Loewner order, 130
Longest path problem, 115
Low gradient, 358

Machine learning, 307
Magnetic field gradients, 4
Magnetic resonance, MR, 3
Magnetization density, 5
Mathematical morphology, 129
Matricization, 96
Matrix representation, 3
MCF. See multiple correlation function (MCF)
Medical image analysis, 163
Metric partial derivative, 184
Microstructure, 3, 193
Mixture Model Simplification, 276
Modal vector, 46
Morphological Laplacian, 140, 141
MRI dataset, 103
Multi-band, 191
Multilinear rank, 101
Multilinear SVD, 99
Multiple comparisons, 303
Multiple correlation function (MCF), 3, 5
Multiple correlator, 9
Multiple propagator, 3, 4, 10
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Multiple Sclerosis, 354
Multiple-PFG, 4
Multiplicative calculus, 151
Multiplicative update rules, 119
Multiscale image analysis, 177
Multi-scale visualization, 259
Multispectral image, 130
Multi-Tensor Model, 274
Multivariate analysis, 314

Neural networks, 308
Neurodegenerative, 354
Neuroimaging, 299
Noise, 198, 208
Non-negative least squares, 119
Non-photorealistic rendering (NPR). See

illustrative visualization
Null hypothesis, 302

ODF, 38, 195, 199, 203, 206, 209
antipodally symmetric, 38
axially symmetric, 44
cubic, 59, 60
de la Vallée Poussin, 54
hexagonal, 62
isotropic, 42
orthotropic, 56
scores, 109, 117, 119
singular-kernel, 51
tensor, 38
transversely hemitropic, 44
transversely isotropic, 45
von Mises-Fisher, 46
Watson, 49

Opening. See algebraic opening, 140, 141
Opposite (tangent vector), 115, 118
Orientation distribution function (ODF). See

ODF
Oscillating gradient, 4
Osculating figuratrix, 152
Osculating indicatrix, 152

Parallel imaging, 191
Path integral, 3, 11
Path opening, 116, 124

on acyclic graphs, 115
properties, 116

PCA. See Principal component analysis (PCA)
Perceptual organisation, 164
Permutation testing, 304, 311
Phase shift, 6

Plate tensor, 167
Plate tensor voting, 170
Poincaré-Hopf theorem, 87
Polarity vector, 179
Population Studies, 291
Porous materials, 3
Power method, symmetric higher order. See

tensor decomposition
Principal Component Analysis, 310
Principal component analysis (PCA), 201, 202,

207
Principal stress, 341
Principle of good continuation, 169
Principle of proximity, 169
Product development process, 340
Propagator, 8
Pulsed field gradient (PFG), 4, 13

Q-space, 193
Quadratic scaling assumption, 31
Quantum mechanics, 5
Quasi-Newton, 103

Random forests, 308
Randomized SVD, 97
Rank-one decomposition. See tensor

decomposition
Region Of Interest, 304, 312
Registration, 287
Regression, 308
Reinforcement structure, 343
Restricted diffusion, 12
Rib structure, 344
Riemann-Finsler geometry, 151
Riemannian

framework, 24
Laplace–Beltrami operator, 25
metric, 258, 306

Riemannian metric, 177
Rotation invariant operators, 112

Sampling, 200
Self-dual top-hat, 140, 141
Sensitivity analysis, 314
Simplified Mixture Model, 275
Size distribution, 4
Smallest enclosing base

pyramid, 137
triangle, 136

Smoothing, 290
Spherical deconvolution, 121, 195
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Spherical harmonics, 66, 199
Statistical hypothesis testing, 301
Statistical Parametric Mapping, 303
Statistical significance, 302
Stejskal-Tanner formula, 151
Stick tensor, 167
Stick tensor voting, 169
Stick voting field, 170
Stochastic processes, 356
Strain tensor, 262
Stress tensor, 324, 327, 341

field, 261
Strongly connected components. See

condensation graph
Superior longitudinal fasciculus, 204, 206
Superquadrics, 195, 197, 202
Support Vector Machine, 308
Supremum, 138
Susceptibility gradients, 5
Symmetric higher order power method. See

tensor decomposition
Symmetric tensors, 111

Tensor
higher-order, 41
orientation, 38
totally symmetric, 38

Tensor decomposition
rank-one decomposition, 112, 113, 117,

119
symmetric higher order power method, 119

Tensor field, 183
Tensor fields, 76–78, 111, 235

3D, 235
topology, 74, 75, 90

Tensor interpolation, 306
Tensorial orientation scores. See orientation

scores

Tensor line, 340, 341
Test statistic, 302
Time-slicing, 9
Topological ordering, 112, 118
Tract-Based Spatial Statistics, 305, 309
Tractography, 110, 113, 122, 155, 159, 160,

192, 208, 291, 305, 309, 353
Transfer function, 200
Transition point, 77, 81, 89
Transverse magnetization, 6
Triangular pores, 5
Trisector, 76, 77, 81–83, 87, 89, 90
Tucker mode product, 95
Tumor resection, 354
Turbulent flow, 324, 337

Uncertainty, 159
visualization, 241, 247–249

Vector field, 183
Visualization

illustrative (see illustrative visualization)
uncertainty (see uncertainty visualization)

Volume rendering, 192, 199, 206, 209
von-Mises stress, 341
Voting field, 168
Voxel-Based Morphometry, 303

Watson distribution, 306
Wedge, 76, 77, 81–83, 87, 89, 90
Weight vector, 313
Weighted Combinations, 275
White top-hat, 140, 141
Wiener functional, 6
Wishart matrix, 98
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