
Function Masking: A New Countermeasure
Against Side Channel Attack

Taesung Kim1,3, Sungjun Ahn2, Seungkwang Lee1, and Dooho Choi1,2(B)

1 Electronics and Telecommunications Research Institute, Daejeon, South Korea
{taesung,skwang,dhchoi}@etri.re.kr

2 Korea University of Science and Technology, Daejeon, South Korea
asj503@ust.ac.kr

3 Korea Advanced Institute of Science and Technology, Daejeon, South Korea
ruthere@kaist.ac.kr

Abstract. Masking schemes have been developed to implement secure
cryptographic algorithms against Side Channel Analysis(SCA) attacks.
Technically, the first-order masking method is vulnerable to the second
order Differential Power Analysis(2ODPA) attacks, but the current solu-
tions against 2ODPA are expensive to implement. Moreover, worse per-
formance will be shown if the cryptographic algorithms include boolean
and arithmetic operations. In this paper, we propose a new masking
scheme to resist SCA attacks, which is called the Function Masking.
Function Masking method conceals functions instead of data in the algo-
rithms and makes it resistant to attacks as much as 2ODPA. We apply
our masking scheme to the HIGHT algorithm. The encryption of function
masked HIGHT takes only 1.79 times more than one of the original algo-
rithm, even though it needs 25 kbytes to store lookup tables in memory.

Keywords: Side channel attack · Countermeasure · Second-order
masking

1 Introduction

A lot of researches have been published about various methods to secure imple-
mentations of different kinds of cryptographic algorithms, after Kocher et al. [11]
introduced Simple Power Analysis(SPA) and Differential Power Analysis(DPA),
types of power analysis. SCA attacks are physical attacks to find out secure data
by using Side Channel Information such as power consumption, electromagnetic
wave, timing, and so on during the execution. The attacks are based on the
statistical dependency between the intermediate values and leaked information.
It means that it is possible for adversaries to determine the entire secret key
related to the intermediate values.

It is very common to randomize the sensitive variables by masking techniques
when a countermeasure is used to protect implementations of block ciphers
against SCA. One or several random values are added to the secret data during
the execution of cryptographic algorithms, which means that every intermediate
c© Springer International Publishing Switzerland 2015
K.-H. Rhee and J.H. Yi (Eds.): WISA 2014, LNCS 8909, pp. 331–342, 2015.
DOI: 10.1007/978-3-319-15087-1 26



332 T. Kim et al.

value is independent of any secret variable. But, the first-order masking method
is vulnerable to a second-order SCA. The second-order masking schemes should
be considered to resist the attacks, but decrease performance.

Some cryptographic algorithms use the boolean and arithmetic operations
to make the security. To counteract the SCA attacks, it is necessary to con-
vert back and forth between the boolean masking and the arithmetic mask-
ing. Thus, Goubin et al. [3] has suggested a secure method to convert between
masks, which is only applicable to the first-order masking. However, it is shown
that it is impossible to apply the Goubin’s method to the second-order masking
schemes [4]. Vadnala et al. [4] has proposed masking conversion for the second-
order masking, but it requires 1027 times more operations to convert 8-bit size
of masks. It is not possible to use it on embedded devices.

In this paper, we suggest a new countermeasure method which randomizes all
the intermediate values of cryptographic algorithms. We call it a function mask-
ing. Our scheme makes lookup tables which randomly convert all the functions
and operations in the algorithms with encoding and decoding(we call it lin-
ear and non-linear function masks). The algorithms are reconstructed by using
these lookup tables. Actually, this method is similar to white-box cryptogra-
phy because of encoded lookup tables. However, our method dynamically inputs
the round keys while white-box cryptography includes the round keys in lookup
tables. Thus, it is possible to change the round keys depending on the envi-
ronments and the attackers cannot predict all the intermediate values during
the execution of cryptographic algorithms. We show the security of the function
masking, apply it to HIGHT algorithm, and compare with second order masking.

The remainder of this paper is organized as follows. Section 2 describes the
existing countermeasures of SCA and HIGHT cryptography algorithm which we
applied the function masking. In Sect. 3, we introduce the concept of function
masking and explain the implementation method of HIGHT algorithm to apply
function masking. We show the security and performance analysis in Sect. 4.
Finally, in Sect. 5, we offer the conclusion.

2 Related Work

2.1 Countermeasures Against Side Channel Attacks

To the best of our knowledge, the most widely used technique protecting against
DPA is to mask key-dependent intermediate data by random values. This is
called masking. For a key-dependent intermediate byte x and a random mask
m, masking requires a function f(x,m) = x · m, where · is defined as bitwise
XOR(boolean masking), modulo addition (additive masking) or multiplication
(multiplicative masking).

y ⊕ m′ = MaskedSbox(x ⊕ m ⊕ k)
m,m′ : random values(mask), y = Sbox(x ⊕ k)



Function Masking: A New Countermeasure Against Side Channel Attack 333

However, using only one mask which is called a first-order masking is vulner-
able to a second-order DPA.

y1 ⊕ m′ = MaskedSbox(x1 ⊕ m ⊕ k1), y1 = Sbox(x1 ⊕ k1)
y2 ⊕ m′ = MaskedSbox(x2 ⊕ m ⊕ k2), y2 = Sbox(x2 ⊕ k2) (1)

y1 ⊕ m′ ⊕ y2 ⊕ m′ = y1 ⊕ y2 = Sbox(x1 ⊕ k1) ⊕ Sbox(x2 ⊕ k2) (2)

To be specific, Eqs. (1) and (2) show that an attacker can obtain a non-masked
result value of XORing two S-box outputs by XORing two masked S-box outputs.
This is due to the fact that m′ is canceled out by the XOR operation. A second-
order DPA is therefore started by making two target points of a power trace as
one point using subtractions or multiplications. The next step is to mount DPA
based on a hypothetical value computed by XORing two S-box outputs [2].

Protection of second-order DPA requires more than two masks, and all inter-
mediate values have to be masked through out the execution of the algorithm.
Especially, each of input and output bytes of S-box must use different masks.
For this reason, a masked AES implementation requires 16 masked S-boxes. As
a result, a high-order masking of AES gives rise to an efficient implementation of
S-boxes. Unfortunately, Table 1 shows that implementing a high-order masking
scheme affects the performance of AES. To be more precise, the countermeasures
are 150–300 times slower than a straightforward implementation. This might be
an intolerable performance for a practical solution. HIGHT algorithms, which we
will apply function masking, includes both boolean and arithmetic operations.
To properly apply data masking, it is required to use a secure boolean-from/to-
arithmetic mask conversion without exposing non-masked intermediate values
against a second-order DPA. Goubin proposed secure mask conversion which
can hide sensitive intermediate in convert process [3]. However, this conversion
can only resist for first-order DPA. Vadnala et al. [4] proposed new conver-
sion method which can work for second-order DPA. This method as shown in
Algorithm 1 requires 4 × 2k + 3 operations for conversion of a k-bit mask. An
arithmetic-to-boolean conversion also requires the similar number of operations.
It must be a critical overhead when it is applied to all mask conversions.

Table 1. Performance of the high-order masking scheme in AES

Method Cycles RAM(bytes) ROM(bytes)

Unprotected implementation

No masking [7] 2 × 103 32 1150

Provably Secure second-order SCA resistant implementation

[5] 675.4 × 103 0 768

[6] 265.5 × 103 0 816



334 T. Kim et al.

Algorithm 1. Boolean to arithmetic conversion of 2nd order
Input: Boolean share: x1 = x ⊕ x2 ⊕ x3, x2, x3

Output: Arithmetic share: A1 = (x − A2) − A3, A2, A3

1: Randomly generate n-bit numbers r,A2, A3

2: r′ ← (r ⊕ x2) ⊕ x3

3: for a = 0 to 2n − 1 do
4: a′ ← a ⊕ r′

5: T [a′] ← ((x1 ⊕ a) − A2) − A3

6: end for
7: A1 = T [r] return A1, A2, A3

2.2 HIGHT Algorithm

The HIGHT(HIGh security and light weigHT) [8] is a symmetric cipher which
encrypts and decrypts data with a 64-bit block cipher using a key of size 128 bits.
It provides light-weight and low-powered hardware implementation for ubiqui-
tous computing devices. We will briefly introduce the algorithm of HIGHT. The
64-bit plaintext and ciphertext are denoted by concatenations of 8 bytes such
as P = P7‖P6‖P5‖P4‖P3‖P2‖P1‖P0 and C = C7‖C6‖C5‖C4‖C3‖C2‖C1‖C0.
Round functions are consisted of several mathematical operations: � addition
mod 28, � subtraction mod 28, ⊕ XOR, and ≪ r r-bit left rotation. The encryp-
tion of HIGHT algorithm is totally made up of initial transformation, round
function, final transformation, and key schedule. It is described in detail below.

Algorithm 2. HIGHT encryption
Input: P = P7‖P6‖P5‖P4‖P3‖P2‖P1‖P0

Output: C = C7‖C6‖C5‖C4‖C3‖C2‖C1‖C0

X0,i = Pi for i = 1, 3, 5, 7
X0,0 = P0 � WK0

X0,2 = P2 ⊕ WK1

X0,4 = P4 � WK2

X0,6 = P6 ⊕ WK3

for i = 0 to 31 do
Xi+1,1 = Xi,0; Xi+1,3 = Xi,2; Xi+1,5 = Xi,4; Xi+1,7 = Xi,6

Xi+1,0 = Xi,7 ⊕ (F0(Xi,6) � SK4i+3)
Xi+1,2 = Xi,1 � (F1(Xi,0) ⊕ SK4i+2)
Xi+1,4 = Xi,3 ⊕ (F0(Xi,2) � SK4i+1)
Xi+1,6 = Xi,5 � (F1(Xi,4) ⊕ SK4i)

end for
C0 = X32,1 � WK4; C1 = X32,2

C2 = X32,3 ⊕ WK5; C3 = X32,4

C4 = X32,5 ⊕ WK6; C5 = X32,6

C6 = X32,7 � WK7; C7 = X32,0



Function Masking: A New Countermeasure Against Side Channel Attack 335

WK0≤i≤7 means whitening key and SK0≤i≤127 is subkey. Round function
uses functions F0 and F1:

F0 = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7)
F1 = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6)

The decryption process is similar to the encryption of HIGHT.

3 Function Masking for Symmetric Cryptography
Algorithm

3.1 Function Masking

Our function masking is inspired by a white-box implementation [9] of block
ciphers. Protection of a key-customized encryption function Ek in a white-box
implementation is replaced by E′

k = G · Ek · F−1, where F and G are input
and output encoding, respectively. Being chosen randomly without reference to
k, the use of G and F unlikely weakens the ordinary black-box security of Ek.
However, one of the serious problems of this solution is the large size of the
lookup tables. Our motivation in this matter is that an attacker in a gray-box
model is not fully privileged to access the lookup table. For this reason, we try
to generate a dynamic-key lookup table which takes both a key and an operand
as an input. To be specific, it can be represented by

E(k, x) = G(E(k, F−1(x)))

where x is an operand to be involved with k.
By generating a lookup table for E(k, x), we can significantly reduce the total

size of the lookup table than a white-box implementation because the table can
be shared throughout all rounds. Also, this yields an additional advantage over a
white-box lookup table: it can support dynamic key applications. In other words,
this method can be also used when a secret key is updated from time to time
like in the case of a session key. A potential problem is how to design the lookup
table within practical size because a key is added to an input to the table. In
the following, we explain how to apply function masking to HIGHT in such an
efficient way.

3.2 Applying Function Masking to HIGHT Algorithm

Function Masking Method
Encoding & Decoding. It is required to conceal all of the intermediate val-
ues. The function masking method uses non-linear, linear encoding and random
masking. Chow et al. [9] has suggested input and output encodings to protect
a table. An encoding is a bijection. Encodings are networked with input and
output of tables. If a table T is prevented with chosen bijections G,H

T ′ = H ◦ T ◦ G−1



336 T. Kim et al.

G is the input encoding and H is the output encoding. In case of two tables for
lookup operations, it is expressed in a networked fashion. For example, tables
T1 and T2 are protected with encodings as follows.

T ′
2 ◦ T ′

1 = (H ◦ T2 ◦ G−1) ◦ (G ◦ T1 ◦ H−1) = H ◦ T2 ◦ T1 ◦ H−1

Encodings make all lookup tables to obfuscate in Function Masking method.
Furthermore, linear functions L and M are used to achieve diffusion for security,
defined by Shannon [12]. There is also random mask to conceal 2 × 4-bit output
values. Random mask is used to encode the modular addition in round.

4-bit non-linear function mask G,H,G−1,H−1: {0, 1}4 → {0, 1}4
8-bit linear function mask L,M,L−1,M−1: {0, 1}8 → {0, 1}8
8-bit random mask C1, C2(0 ≤ C1 ≤ 255, 0 ≤ C2 ≤ 255)

Several types of lookup tables (See Figs. 1, 2 and 3) could be generated with
above masks.

Reduction of Lookup Table Size. The modular addition and XOR operation
result in a value with two operands. If two input values are 8-bit, it can be
shown that all of the 216(= 65536) possible output values produce distinct lookup
tables. However, it is too much big to store in memory sometimes. To overcome
this problem, it could be transformed into 2×212(= 8192) lookup tables. Then, it
could significantly reduce the size of lookup tables. At first, an 8-bit operand and
a high 4-bit of another operand will become input values of the first lookup table.
An 8-bit output of the first table and a low 4-bit of another operand produce an
8-bit result value of the modular addition or XOR operation by using the second
table. For example, the XOR operation of two 8-bit operands can be computed
with type III-1 and III-2 tables. There are also two tables of type IV-1 and IV-2
for the modular addition.

Applying Function Masking to HIGHT Algorithm. The Function Mask-
ing method is applied to the HIGHT algorithm. It is required to make 12 lookup
tables of 5 types for HIGHT algorithm.

Initial Transformation downsizing the size of lookup tables is applied to the
modular addition and XOR with 2×8-bit input. P0 and P1 are encoded by a type
I-2 table. In the case of P0, the encoded value is added with Whitening Key by
using two tables of type IV-1 and IV-2 tables. Then X0,0 is obtained after chang-
ing the mask from type I-4 table. The intermediate value X0,1 is the encoded
value of P1. Moreover, P2 and P3 are encoded by type I-1 table. The encoded
value of P2 is XORed with Whitening Key by using two tables of type III-1 and
III-2 tables. Thus, a table lookup of type I-3 yields the intermediate value X0,2.
The intermediate value X0,3 is the encoded value of P3. P4, P5 and P6, P7 are
the same process as above lookup operations P0, P1 and P2, P3 respectively.

Round Transformation. Let’s take a close look at the first two 8-bit values of
the round inputs shown in Fig. 4. Subkey is protected by encoding through type



Function Masking: A New Countermeasure Against Side Channel Attack 337

I-1 table. Type II-1 and III-2 tables operate functions F and XOR. A high 4-bit
of the encoded subkey and the 8-bit value Xi−1,0 are the input value of the type
II-1 table. Thus, The output and a low 4-bit of the encoded subkey go into the
type III-2 table. And the 8-bit value of Xi−1,1 and a high 4-bit of the XORed
value make the 8-bit output by using a type IV-1 table. The intermediate value
Xi,2 is obtained by a type IV-2 table with the central output and a low 4-bit of
the XORed value. Xi−1,0 becomes Xi,1 just as it is.

The next process is similar to the previous process but the modular addition
and XOR operation are out of order. A type I-2 table encodes a subkey to con-
ceal. A high 4-bit of the encoded subkey and the 8-bit value Xi−1,2 are the input
of a type II-2 table. The result and a low 4-bit of the encoded subkey calcu-
late the modular addition by the type IV-2 table. After computing the modular
addition by lookup operations, the output is divided into 2× 4-bit values. Thus,
the high 4-bit output and the value Xi−1,3 are the input of a type III-1 table. The
8-bit outcome value of the type III-1 table and the low 4-bit output make
the intermediate value Xi,4. Xi,3 is gained by the Xi−1,2. The rest of process
is the same as before. Xi,5,Xi,6 could be output of Xi−1,4,Xi−1,5 by the same
process of the first one. The later process makes Xi,7,Xi,0 with input of Xi−1,6,
Xi−1,7. Lastly all of the output values are rearranged by a left cyclic shift.

Final Transformation. It is easy to look into the final transformation since it
is similar to the initial transformation. The value X32,0 is added with a Whiten-
ing Key by using lookup tables, type IV-1 and IV-2 tables. A first byte C0 of
ciphertext is obtained after decoding table of a type V-1. C1 is the output of
the type V-1 from the intermediate value X32,1. The value X32,2 XOR with a
Whitening key by using lookup tables of type III-1 and III-2. C3 is obtained by
a type V-2 table with an input value X32,3. C4, C5 and C6, C7 are derived from
X32,4,X32,5 and X32,6,X32,7 by the same process of X32,0,X32,1 and X32,2,X32,3

respectively.

Fig. 1. Tables of Type I

4 Security and Performance Analysis

4.1 Security Analysis

To demonstrate the security of the proposed method against side channel attack,
we mainly show that a masked intermediate value is independent from a



338 T. Kim et al.

Fig. 2. Tables of Type II and Type III

Fig. 3. Tables of Type IV and Type V

non-masked value. To do so, we first compare each bit of a masked and a
non-masked intermediate values using the proposed and the original HIGHT
implementations, respectively. The target intermediate value to be compared is
X2(third byte, see Algorithm 2) in the first round output because it is affected by
the first byte of the first round key. The main step of single-bit DPA is to com-
pute a differential trace after dividing power traces into two sets according the
value of a target bit. The protection of DPA can be then justified if two bits of
the non-masked and the masked X2 at each bit position are different with prob-
ability 1/2. For the verification, we have performed encryption for 10,000,000
different plaintexts using the two HIGHT implementations, and also compared
each bit of the masked and the non-masked values of X2. As a result, Table 2
shows that they are different with a nearly 1/2 probability for every bit posi-
tion. This property prevents a DPA attacker from constructing the correct sets
of power traces and thus DPA is unlikely to work when using function masking.

In the case of CPA(correlation power analysis), an attacker computes a cor-
relation value between the Hamming weights of a hypothetical value and the
power consumption [13]. This is due to the fact that the power consumption
of a micro-controller at a given point is known to be proportional or inversely
proportional to the Hamming weight of a processed data. To demonstrate the



Function Masking: A New Countermeasure Against Side Channel Attack 339

Fig. 4. Round transformation

Table 2. Probability of different bit between function masking and no masking inter-
mediate

Bit position 1 2 3 4 5 6 7 8

Probability 49.99 % 50.00 % 50.01 % 50.00 % 50.01 % 49.97 % 50.00 % 49.99 %

protection of CPA, we show that the Hamming weights of a masked and a non-
masked values of X2 are independent from each other. Let HWα denote the set
of plaintexts that lead to the Hamming weight α of the non-masked value of X2.
Then, we have α ∈ [0, 8] because there are nine possible Hamming weights for
an 8-bit value. We have performed encryption for 10,000,000 random plaintexts
using the original HIGHT implementation and divided the plaintexts into HWα,
where α ∈ [0, 8]. The next step is to show that the plaintexts in HWα lead to
well-distributed Hamming weights of X2 in our implementation. For this pur-
pose, we have repeated encryption on our proposed implementation for each set
of plaintexts in HWα, where α ∈ [0, 8]. If the Hamming weights of the masked
values of X2 are uniformly distributed, they will show the probabilities for the
Hamming weights of an 8-bit value shown in Table 3. For α ∈ [0,8], our exper-
imental result shown in Table 4 gives us that the plaintexts in HWα cause the
Hamming weights of X2 to be almost uniformly distributed in our implementa-
tion. This means that a masked and a non-masked values are not correlated to
each other with overwhelming probability. We can therefore conclude that our
function masking can also protect against CPA.

4.2 Performance Analysis

In this section, we compared the performance of the data masking and function
masking. There is no secure implementation of HIGHT with second-order mask-
ing so far. Thus, it was tried to estimate the approximate overhead by calculating



340 T. Kim et al.

Table 3. Probability distribution for the Hamming weight of a uniformly distributed
8-bit value [10]

HW 0 1 2 3 4 5 6 7 8

Prob 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004

Table 4. Probability distribution for the Hamming weight of a function masked value

���������HWα

Masked HW
0 1 2 3 4 5 6 7 8

HW0 0.0038 0.0307 0.1062 0.2201 0.2773 0.2196 0.1073 0.0313 0.0038

HW1 0.0038 0.0311 0.1100 0.2189 0.2730 0.2197 0.1093 0.0303 0.0039

HW2 0.0040 0.0312 0.1092 0.2185 0.2738 0.2190 0.1092 0.0312 0.0039

HW3 0.0039 0.0312 0.1097 0.2189 0.2730 0.2186 0.1095 0.0313 0.0038

HW4 0.0040 0.0312 0.1094 0.2186 0.2736 0.2189 0.1092 0.0312 0.0039

HW5 0.0039 0.0312 0.1091 0.2188 0.2736 0.2189 0.1094 0.0312 0.0039

HW6 0.0039 0.0312 0.1090 0.2191 0.2735 0.2189 0.1093 0.0312 0.0039

HW7 0.0038 0.0311 0.1089 0.2183 0.2746 0.2187 0.1088 0.0317 0.0039

HW8 0.0040 0.0314 0.1097 0.2150 0.2744 0.2189 0.1121 0.0306 0.0039

the number of operations required additional. Conversion of boolean and arith-
metic mask is needed 10 times for one round function, when an implementation
is used converting algorithm of [4]. Initial and final transformation are required
two times mask conversion.

If data masking is applied at the beginning and end of 4 round, namely 8
rounds, initial and final transformation, the required operations of mask conver-
sion are 86,268(((8 × 10) + (2 × 2)) × 1027) because one mask conversion needs
1,027 additional operations. In the case of no masking HIGHT, 392 operations
are required because initial and final transformation need 4 operations in each
and one round needs 12 operations where the HIGHT is composed of 32 rounds.
Thus, it can be estimated that data masking version is over 200 times slower than
the straightforward version. Even this is optimistic estimate excluding random
number creation for mask conversion.

HIGHT applied function masking requires 16 times table lookup for initial
transformation, 20 times for final transformation and 20 times for each round.
For 8 rounds masking, table lookup will be 196 times. Since rest of unmasked
24 rounds require 288 operations, total operations for function masking are 484
times. Although this means function masking is 1.2 times slower than original
HIGHT, actual runtime should be slower than the expectation because memory
operation takes longer than ALU operation in CPU.

We implemented the function masked HIGHT in C language using a Intel
core i7. Table 5 shows that lookup tables are around 25 Kbytes and it takes 1.79
times longer than original HIGHT.



Function Masking: A New Countermeasure Against Side Channel Attack 341

Table 5. Lookup table size and time complexity of function masked HIGHT

Size of lookup tables Time complexity

Type I 4 tables 4 × 256 HIGHT (no masking) 754 cycles

Type II 2 tables 2 × 4096

Type III 2 tables 2 × 4096 HIGHT (function masking) 1351 cycles

Type IV 2 tables 2 × 4096

Type V 2 tables 2 × 256

Total 26,112 bytes (25.5 kbytes) Ratio 1.79 times

5 Conclusion

Prior works have documented the masking methods against the standard DPA
attack. However, The masking method is vulnerable to the high-order DPA
attacks since the attacks use correlation coefficient between two points or more.
To resist the high-order attack, the high-order masking schemes have been pro-
posed but it is not easy to implement in reality because of bad performance.
In this study, it is possible to implement our function masking scheme which
needs only a little overhead in reality. Thus, our scheme takes only 1.79 times
more than the original HIGHT algorithm, but spends almost 200 times less than
the second-order masking method. It means that it is possible to implement the
masked HIGHT algorithm on the microprocessor against SCA by using 25 KB
memory.

In the future, we should consider about the reduction of table size. The
efficiency and security of the masked HIGHT should be verified by applying
the function masking to the standard cryptographic algorithms, AES or ARIA.
We expect that it is possible to compare with the high-order masked AES
since many researches of high-order masking AES have been published. And
it will be confirmed on the small processor devices as well as PC with different
environments.

Acknowledgment. This work was supported by the K-SCARF project, the ICT R&D
program of ETRI(Research on Key Leakage Analysis and Response Technologies).

References

1. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

2. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

3. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
p. 3. Springer, Heidelberg (2001)



342 T. Kim et al.

4. Vadnala, P.K., Großschädl, J.: Algorithms for switching between boolean and arith-
metic masking of second order. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D.
(eds.) SPACE 2013. LNCS, vol. 8204, pp. 95–110. Springer, Heidelberg (2013)

5. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

6. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking
of AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 95–107. Springer, Heidelberg (2011)

7. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

8. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A new block cipher
suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) Selected Areas in
Cryptography. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

10. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets
of smart cards, vol. 31. Springer, Heidelberg (2008)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO’ 99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J 28(4),
656–715 (1949)

13. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)


	Function Masking: A New Countermeasure Against Side Channel Attack
	1 Introduction
	2 Related Work
	2.1 Countermeasures Against Side Channel Attacks
	2.2 HIGHT Algorithm

	3 Function Masking for Symmetric Cryptography Algorithm
	3.1 Function Masking
	3.2 Applying Function Masking to HIGHT Algorithm

	4 Security and Performance Analysis
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusion
	References


