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Abstract. Boneh, Gentry and Hamburg presented an encryption
system known as BasicIBE without incorporating pairings. This sys-
tem has short ciphertext size but this comes at the cost of less time-
efficient encryption/decryption algorithms in which their processing time
increases drastically with the message length. Moreover, the private key
size is l elements in ZN , where N is a Blum integer and l is the message
length. In this paper, we optimize this system in two steps. First, we
decrease the private key length from l elements in ZN to only one ele-
ment. Second, we present two efficient variants of the BasicIBE in terms
of ciphertext length and encryption/decryption speed. The ciphertext is
as short as the BasicIBE, but with more time-efficient algorithms which
do not depend on the message length. The proposed system is very time
efficient compared to other IBE systems and it is as secure as the Basi-
cIBE system.

Keywords: Identity-based encryption · Quadratic residuosity assump-
tion · IND-ID-CPA

1 Introduction

In 1985, Shamir [12] presented the notion of identity-based encryption (IBE) in
which the user’s identity represents his public key and consequently, no public
key certificate is required. Shamir successfully managed to design an identity-
based signature based on the RSA algorithm but he was unable to design an
IBE because sharing an RSA modulus between different users makes RSA inse-
cure [12]. The design of a provable secure IBE remained an open problem for
sixteen years until Boneh and Franklin [4] proposed a provably secure IBE in
the random oracle model based on bilinear maps. Subsequently, there has been
a rapid development in IBE based on bilinear maps, such as [2,3,10,13].

However, all the previously mentioned IBEs are based on pairing operations.
According to MIRACL benchmarks, a 512-bit Tate pairing takes 20 ms while a
1024-bit prime modular exponentiation takes 8.80 ms. The pairing computations
are expensive compared to normal operations. The costly pairing computation
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limits it from being used in wide applications, specially when time and power
consumptions are a major concern such as in limited wireless sensor networks.
Hence, the seek for a scheme that does not rely on pairings is desirable.

Another approach to design IBEs is based on the quadratic residuosity (QR)
assumption. The first IBE based on this approach is due to Cocks [6]. This system
is IND-ID-CPA secure in the random oracle model. It is time-efficient compared
to pairing-based IBEs, but it produces a long ciphertext of two elements in ZN

for every bit in the message.
The design of efficient IBEs without pairings was an open problem until

Boneh, Gentry and Hamburg [5] presented two space-efficient systems (BasicIBE
and AnonIBE) in which the ciphertext is reduced from 2l elements to only one
element in ZN . As in Cocks’ IBE, the security of BasicIBE is based on the QR
assumption in the random oracle model. Although the concrete instantiation of
BasicIBE is highly space-efficient, this comes at the cost of less time-efficient
encryption/decryption algorithms. To encrypt an l-bit message, BasicIBE solves
l+1 equations in the form Rx2+Sy2 ≡ 1 (mod N) for known values of R,S and
N [5]. Solving such an equation requires a ‘solubility certificate’ and obtaining
these certificates requires the generation of primes [6–8]. The obtained certificates
can be used to solve Rx2 + Sy2 ≡ 1 (mod N) efficiently using the Cremona-
Rusin algorithm [8]. The prime generation is a time-consuming process and it is
the bottleneck in the BGH systems. Moreover, the decryption key is l elements
in ZN because the identity ID is hashed to a different value to encrypt each
bit. AnonIBE is based on BasicIBE and it is Anon-IND-ID-CPA secure in the
standard model under the interactive quadratic residuosity (IQR) assumption
[5]. Moreover, the ciphertext length is reduced to one element in ZN plus l + 1
bits.

Jhanwar and Barua [11] made some significant observations on the BGH sys-
tems (for solving equations in the form Rx2+Sy2 ≡ 1 (mod N)) and proposed a
trade-off system that reduces the private key length but increases the ciphertext
length. They found that by knowing the value of S (mod N), one can find a ran-
dom solution to the equation Rx2 + Sy2 ≡ 1 (mod N) using only one inversion
in ZN . The sender solves only 2

√
l equations in the form Rx2+Sy2 ≡ 1 (mod N)

using only 2
√

l inversions in ZN and thus, no prime generation is required. This
increases the encryption/decryption speed dramatically. The private key is only
one element in ZN . However, this system produces a large ciphertext of 2

√
l

elements in ZN .

Our Contribution. In this paper, we first present some definitions and review
Basic IBE. After that, we optimise BasicIBE in two steps. First, we prove that
hashing the identity ID to a different value to encrypt each bit is as secure
as hashing the identity once to encrypt the whole message and therefore, the
private key length is reduced to one element in ZN . Then, we present a variant
of BasicIBE (V-BasicIBE) which is both time- and space- efficient. Moreover, we
prove that V-BasicIBE is as secure as BasicIBE. Although the proposed variant
has the same ciphertext length as BasicIBE, it only solves two equations in the
form Rx2 +Sy2 ≡ 1 (mod N) regardless of the message length. We also present
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another version of V-BasicIBE with a time-space trade-off. For V-BasicIBE,
with only the cost of one more element in ZN , the sender can find a solution to
Rx2+Sy2 ≡ 1 (mod N) using only one inversion in ZN and the receiver does not
have to solve any of these equations. The proposed variant is time- and power-
efficient compared to other IBE systems. It does not use expensive-computational
operations such as pairing like Boneh-Boyen or Boneh-Franklin IBEs [2,4] or even
a prime modular exponentiation such as RSA. Table 1 compares all systems
in this paper, where V2-BasicIBE is the proposed systems with the trade-off
applied. In this table, the symbol m represents prime modular exponentiation
while e and p represents pairing operation and prime generation respectively.
l represents the message length. The symbols G and GT represents an element
in two groups G and GT such that e : G × G → GT .

Table 1. Comparison between various IBEs and the proposed IBEs

Expensive mathematical operations Ciphertext length

Cock’s 0 2l(logN)

The BasicIBE (l + 1)p logN + 2l

The AnonIBE (2l + 1)p logN + l + 1

V-BasicIBE 2p log2 N + 2l

V2-BasicIBE 0 2 log2 N + 2l

Jhanwar-Barua 0 2
√
l logN + 2l

Boneh-Boyen e+3m GT+2G

Boneh-Franklin e G+l

2 Definitions

2.1 IND-ID-CPA

The IND-ID-CPA security model of an IBE is described as a game between an
adversary A and a challenger C [4,12]. This game is as follows:

– Setup(λ): C generates the public parameters (PP ) and sends them to A and
keeps the master secret (MSK) to himself.

– Query Phase: In this phase, A sends private key queries to C for identities
IDs of his choice. These queries are adaptive based on previous queries.

– Challenge: Satisfied with private key queries, A sends to C two messages m1

and m2 for an identity ID∗. C tosses a coin b ∈ [0, 1] randomly and encrypts
mb using ID∗. Note that ID∗ must not be queried in the query phase.

– Guess: A outputs b ∈ [0, 1]. A wins the game if b = b.

The advantage of A to attack a system ξ and win this game is:

IBEAdvA,ξ(λ) = |pr[b = b] − 1
2 |.
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If A submits two pairs of (ID0,m0) and (ID1,m1) in the challenge phase, then
this game is called the ANON-IND-ID-CPA security model. The advantage of
the adversary winning this game is the same as above.

2.2 QR Assumption and Jacobi Symbols

For a positive integer N , define the following set:

J(N) = [a ∈ ZN :
( a

N

)
= 1],

where
(

a
N

)
is the Jacobi symbol of a w.r.t N [5]. The Quadratic Residue set

QR(N) is defined as follows

QR(N) = [a ∈ ZN : gcd(a,N) = 1 ∧ x2 ≡ a (mod N) has a solution].

Definition 1. Quadratic Residuosity Assumption: Let RSAgen(λ) be a proba-
bilistic polynomial time (PPT) algorithm. This algorithm generates two equal
size primes p, q. The QR assumption holds for RSAgen if it cannot distinguish
between the following two distributions for all PPT algorithms A [5].

PQR(λ) : (N,V )(p, q) ← RSAgen(λ), N = pq, V ∈R QR(N),

PNQR(λ) : (N,V )(p, q) ← RSAgen(λ), N = pq, V ∈R J(N) \ QR(N).

In other words, the advantage of A against QR assumption QRAdvA,RSAgen(λ) =

|Pr[(N,V ) ← PQR(λ) : A(N,V ) = 1]| − |Pr[(N,V ) ← PNQR(λ) : A(N,V ) = 1]|

is negligible. i.e. A cannot distinguish between elements in J(N) \ QR(N) and
elements in QR(N).

3 Review of the BasicIBE System [5]

BasicIBE encrypts an l-bit message m using a square S ≡ s2 (mod N) where
s ∈R ZN, the user’s identity ID and a pair of Jacobi symbols for each bit. It
first hashes ID to different values H(ID, i) = uaRi = r2i where a ∈ {0, 1}, u ∈
J(N)\QR(N) and i is the bit index. Then it solves the equations Rix

2
i +Sy2

i ≡ 1
(mod N) and uRix

2
i + Sy2

i ≡ 1 (mod N) to get (xi, yi, xi, yi). The ciphertext is
(S, c, c) where c ← [c1, c2, c3, ..., cl], ci = m · (

2+2yis
N

)
and c ← [c1, c2, c3, ..., cl],

ci = m ·
(

2+2yis
N

)
. To decrypt, one needs to know the square-root of Ri or uRi.

If Ri = r2i , the message is mi = ci · (
1+xiri

N

)
and if uRi = r2i , the message is

mi = ci · (
1+xiri

N

)
.
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4 Optimization of BasicIBE

4.1 Optimization of the Private Key Length

As shown above, the BasicIBE system hashes the identity ID to different values
H(ID, i) = uaRi = r2i , a ∈ {0, 1}. This has a negative impact on the system.
First, the private key length is larger than the message by a factor of ZN which
consumes bandwidth and memory. Second, the Private Key Generator (PKG)
must generate n private keys of l elements in ZN where n is the number of
users in the whole system. This overloads the PKG. Third, this not suitable for
encrypting variable messages length.

In this section, we prove that hashing the identity ID to different values
Ri = H(ID, i) does not have a positive impact on the security of BasicIBE.
Solving the equations Rx2

i + Sy2
i ≡ 1 (mod N) is exactly equivalent to solving

the equations Rix
2
i + Sy2

i ≡ 1 (mod N). Consequently, there is no need for gen-
erating a long private key of l elements in ZN.

Theorem 1. Hashing the identity ID to a different value to encrypt each bit is
as secure as hashing the identity once to encrypt the whole message.

Proof. Jhanwar and Barua [1] showed that there is N − 1 solutions for the
equation Rx2 + Sy2 ≡ 1 (mod N) if S,R ∈ QR(N). The solution (x, y) for that
equation is in the form:

( −2st

R + St2
,

R − St2

s(R + St2)

)

for some t ∈ Z
∗
N such that R + St2 ∈ Z

∗
N .

Rx2
i + Sy2

i = R

( −2st

R + St2

)2

+ Sy2
i =

(
4SR

(R + St2)2

)
t2 + Sy2

i = Rix
2
i + Sy2

i

where Ri = t2 and xi =
−2sr

R + St2
.

Since t is random in Z
∗
N , Ri looks mathematically random exactly as Ri =

H(ID, i). �

4.2 V-BasicIBE

In this section, we explain how to implement a variant of BasicIBE (V-BasicIBE)
that is both time and space efficient. Like any other IBE, V-BasicIBE consists
of four algorithms; Setup, KeyGen, Encrypt and Decrypt.

– Setup(λ): Using RSAgen(λ), generate (p,q), calculate the modulus N ← pq,
choose u ∈ J(N) \ QR(N), and choose a hash function H : ID → J(N). The
public parameters PP are [N,u,H]. The master secret MSK parameters are
p, q and a secret key K for a pseudorandom function FK : ID → [0, 1, 2, 3].
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– KeyGen(MSK, ID, l): Calculate R ← H(ID) ∈ J(N) and w ← FK(ID) ∈
{0, 1, 2, 3}. Choose a ∈ {0, 1} such that uaR ∈ QR(N). Let [z0, z1, z2, z3] be
the four square roots of uaR ∈ ZN , then r ← zw.

– Encrypt(id,m): To encrypt a message m ∈ {−1, 1}l, V-BasicIBE calculates
[xi, yi, xi, yi], i ∈ [0, l − 1] such that these variables satisfy the following equa-
tions:

[xi, yi] ← Rx2
i +Sjy2

i ≡ 1 (mod N) , [xi, yi] ← uRx2
i +Sjy2

i ≡ 1 (mod N)

for an odd number j = 2i + 1. To solve these equations, we review a product
formula presented by Boneh, Gentry and Hamburg [5].

Lemma 1. For i = 1, 2 let (xi, yi) be a solution to Rix
2 +Sy2 ≡ 1 (mod N).

Then (x3, y3) is a solution to

R1R2x
2 + Sy2 ≡ 1 (mod N),

where x3 = x1x2
Sy1y2+1 and y3 = y1+y2

Sy1y2+1 .

Proof. By directly substituting the values of x3 and y3 in the equation
R1R2x

2 + Sy2 ≡ 1 (mod N).

Jhanwar and Barua [11] presented a variant of Lemma 1 to implement their
system. This lemma states that:

Lemma 2. For i = 1, 2 let (xi, yi) be a solution to Rx2 +Siy
2 ≡ 1 (mod N).

Then (x3, y3) is a solution to

Rx2 + S1S2y
2 ≡ 1 (mod N),

where x3 = x1+x2
Rx1x2+1 and y3 = y1y2

Rx1x2+1

Proof. Same as Lemma 1.

To solve these equations, BasicIBE calculates [x0, y0] and then uses Lemma 2
to find [xi, yi] as follows.

x̂ =
2x0

Rx2
0 + 1

, ŷ =
y2
0

Rx2
0 + 1

, xi =
x̂ + xi−1

Rx̂xi−1 + 1
, yi =

ŷyi−1

Rx̂xi−1 + 1
,

where [x̂, ŷ] is a solution to Rx̂2 + S2ŷ2 ≡ 1 (mod N). Similarly, [xi, yi] are
generated as shown above.
The message m ← [m0,m1, ...,ml−1] is encrypted using the following formula:

ci ← mi ·
(

2yis
j + 2
N

)
, ci ← mi ·

(
2yis

j + 2
N

)
.

The ciphertext is C ← (S, c, c).
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– Decrypt(C, r): The message can be retrieved from the ciphertext as follows.

mi ← ci ·
(

xir + 1
N

)
if r2 = R and mi ← ci ·

(
xir + 1

N

)
if r2 = uR.

Correctness: As in [5], it is easy to prove that:

(xir + 1) · (2yis
j + 2) = 2xiryis

j + 2xir + 2yis
j + 2 + (Rx2

i + Sjy2
i − 1)

= (xir + yis
j + 1)2,(

xir + 1
N

)
·
(

2yis
j + 2
N

)
= 1,

(
xir + 1

N

)
=

(
2yis

j + 2
N

)
.

4.3 V-BasicIBE Security

Theorem 2. Suppose the quadratic residuosity assumption holds for RSAgen
and F is a secure PRF. Then the proposed V-BasicIBE is IND-ID-CPA secure
based on the QR assumption when H is modelled as a random oracle. In partic-
ular, suppose A is an efficient IND-ID-CPA adversary, then there exist efficient
algorithms B1, B2 whose running time is the same as that of A such that:

IBEAdvA,V −BasicIBE(λ) ≤ 2QRAdvB2,RSAgen(λ) + PRFAdvB1,F (λ).

We first introduce Lemma 3 [5].

Lemma 3. Let N = pq be an RSA modulus, Si, R ∈ J(N). Then

– 1-When R ∈ J(N)\QR(N), Si ∈ QR(N), the Jacobi symbols
(

g(si)
N

)
for any

function g are uniformly distributed in {±1}, where si is a random variable
uniformly chosen among the four square roots of Si modulo N and g(si)g(−si)
R ∈ QR(N) for all the four values of si.

– 2-When Si ∈ J(N) \ QR(N), R ∈ QR(N), the Jacobi symbols
(

f(r)
N

)
for any

function f are uniformly distributed in {±1}, where r is a random variable
uniformly chosen among the four square roots of R modulo N and f(r)f(−r)
Si ∈ QR(N) for all the four values of r.

– 3-When Si, R ∈ QR(N), the Jacobi symbols
(

g(si)
N

)
and

(
f(r)
N

)
are constant,

i.e. the same for all four values of r and si.

Proof. Let si, si be the four square roots of Si ∈ QR(N) such that si = si

(mod p) and si = −si (mod q), then the four square roots of Si are {±si,±si}.
We can assume the same for R ∈ QR(N) and the four square roots are {±r,±r},
where r = r (mod p) and r = −r (mod q).



264 I. Elashry et al.

Case 1
(

g(s)g(−s)R
N

)
=

(
g(s)g(−s)R

p

)
=

(
g(s)g(−s)R

q

)
= 1.

(
R

p

)
=

(
R

q

)
= −1,

(
g(s)g(−s)

p

)
=

(
g(s)g(−s)

q

)
= −1,

(
g(s)
p

)
= −

(
g(−s)

p

)
and

(
g(s)
q

)
= −

(
g(−s)

q

)
,

(
g(s)
N

)
=

(
g(−s)

N

)
.

(
g(s)
p

)
=

(
g(s)
p

)
.

(
g(s)
q

)
=

(
g(−s)

q

)
= −

(
g(s)
q

)
,

(
g(s)
p

)(
g(s)
q

)
= −

(
g(s)
p

) (
g(s)
q

)
,

(
g(s)
N

)
= −

(
g(s)
N

)
,

(
g(s)
N

)
=

(
g(−s)

N

)
= −

(
g(s)
N

)
= −

(
g(−s)

N

)
.

That means that among the four Jacobi symbols
(

g(a)
N

)
,
(

g(−a)
N

)
,
(

g(a)
N

)
,(

g(−a)
N

)
two are +1 and two are −1. Case 2 and Case 3 can be proven sim-

ilarly to Case 1.

– Security Proof. We define a sequence of games and let Wi represents the
winning of the ith game by the adversary A. These games are defined as
follows.
• Game-0. This game is the usual adversarial game.
• Game-1. This game replaces the PRF F with a truly random function.
• Game-2. This game explains how to simulate the hash function H.
• Game-3. This game sets u ∈ QR(N).
• Game-4. This game explains how to respond to an encryption query

from A.
• Game-5. This game sets R ∈ J(N) \ QR(N).
• Game-6. This game sets Si = s2i for each bit.
• Game-7 replaces the message m with a random number z.

– Game-0. This is the usual adversarial game for defining the IND-ID-CPA
security of IBE protocols. The challenger picks the random oracle H : ID →
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J(N) at random from the set of all such functions in the Setup algorithm and
allows A to query H at arbitrary points. Thus, we have

|Pr[W0] − 1
2
| = IBEAdvA,V −BasicIBE(λ).

– Game-1. This is the same as Game-0, with the following change. In Setup
algorithm, instead of using a PRF F to respond to A’s private key queries,
we use a truly random function f : ID → {0, 1, 2, 3}. If F is a secure PRF,
A will not notice the difference between Game-0 and Game-1. In particular,
there exists an algorithm B1 (whose running time is about the same as that
of A) such that

|Pr[W1] − Pr[W0]| = PRFAdvB1,F (λ).

– Game-2. (N,u,H) are the public parameters PP given to A in the previous
game where u is uniform in J(N) \ QR(N) and the random oracle H is a
random function H : ID → J(N). We make the following change in the
random oracle H in this game. The challenger responds to a query to H(ID)
by picking a ∈R {0, 1} and v ∈R ZN and setting H(ID) = uav2. Thus the
challenger implements a random function H : ID → J(N) as in the previous
game. The challenger responds to a private key query as follows.

Suppose R = H(ID) = uav2 for some a ∈R {0, 1} and v ∈R ZN . The chal-
lenger responds to a private key query for ID by setting either R

1
2 = v

(when a = 0) or (uR)
1
2 = uv (when a = 1). Since v is uniform in ZN this will

produce a square root of R or uR which is also uniform among the four square
roots, as in the previous game. Thus, A’s views in Game-1 and Game-2 are
identical and therefore,

|Pr[W1] = Pr[W2]|.
– Game-3. In this game, the challenger chooses u uniformly in QR(N) instead

of J(N)\QR(N). Since this is the only change between Game-2 and Game-3,
A will not notice the difference assuming that the QR assumption holds for
RSAgen. In particular, there exists an algorithm B2 (whose running time is
about the same as that of A) such that:

|Pr[W3] − Pr[W2]| = QRAdvB2,RSAgen(λ).

– Game-4. We describe below in detail how, in this game, the challenger responds
to an encryption query from A.
• He chooses R ∈ QR(N) and sets H(ID) = R. (*)
• He chooses s ∈R ZN and computes Sj = s2j for an odd value j.
• He sets c ← Encrypt(PP, ID,mb).
• He sends (S, c) to A.

– Game-5. In this game, we make a change in the challenge phase. We replace
the line (*) in Game-4 with the following:
• He chooses R ∈ J(N) \ QR(N) and sets H(ID) = R.
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Since the only difference between Game-5 and Game-4 is that R ∈ J(N) \
QR(N) in Game-5 instead of R ∈ QR(N) in Game-4, A will not notice the
difference assuming that the QR assumption holds for RSAgen. In particular,
there exists an algorithm B2 (whose running time is about the same as that
of A) such that:

|Pr[W5] − Pr[W4]| = QRAdvB2,RSAgen(λ).

– Game-6: In this game, we encrypt the message by choosing si ∈ ZN inde-
pendently and randomly for each bit. In other words, we replace the Jacobi
symbols

(
2yis

j+2
N

)
and

(
2yis

j+2
N

)
with the Jacobi symbols

(
2yisi+2

N

)
and(

2yisi+2
N

)
respectively i.e. ci = mi · (

2yisi+2
N

)
and ci = mi ·

(
2yisi+2

N

)
. To

prove that Game-6 is indistinguishable from Game-5, we present the follow-
ing Theorem.

Theorem 3. The distribution of the Jacobi symbols
(

2yis
j+2

N

)
is indistin-

guishable from the distribution the Jacobi symbols
(
2yisi+2

N

)
.

The proof of this theorem is based on the work of Damgard [9]. He proved that
the Jacobi sequences are indistinguishable from random. i.e. if an adversary
knows the value of

(
a
N

)
, it is a hard problem to find

(
a+1
N

)
for an unknown

value a. Although the values of a and a+1 are highly correlated and dependent,
that does not mean that their Jacobi symbols are correlated. We now present
a formal proof for the above theorem.

Proof. Damgard proved that the following is a hard problem [9].

Lemma 4. Let J be the Jacobi sequence modulo N with a starting point a
and length P(k), for a security parameter k and polynomial P. Given J, find(

a+P (k)+1
N

)
.

This means that, knowing
(

a
N

)
,
(

a+1
N

)
,
(

a+2
N

)
, ...,

(
a+a1

N

)
, ...,

(
a+a2

N

)
, ...,(

a+P
N

)
, it is a hard problem to find

(
a+P+1

N

)
.

We first choose a and P such that a + P + 1 = 2yis
j + 2, then we can write

the above sequence in two different forms:

( a

N

)
,

(
a + 1

N

)
,

(
a + 2

N

)
, ...,

(
2yi1s

j1 + 2

N

)
, ...,

(
2yi2s

j2 + 2

N

)
, ...,

(
a + P

N

)

where a1 = 2yi1s
j1 + 2 − a, a2 = 2yi2s

j2 + 2 − a, and j1 < j2 < j.

( a

N

)
,

(
a + 1

N

)
,

(
a + 2

N

)
, ...,

(
2yi1sj1 + 2

N

)
, ...,

(
2yi2sj2 + 2

N

)
, ...,

(
a + P

N

)

where a1 = 2yi1sj1 + 2 − a, a2 = 2yi2sj2 + 2 − a.

Since ZN is an additive group, the values of a1, a2 and P exist in both
sequences for any value y or s which means that both sequences represent
the Damgard hard problem. Moreover, guessing the Jacobi symbol

(
2yis

j+2
N

)
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from the sequence
(
2yis+2

N

)
,
(

2yis
2+2

N

)
,...,

(
2yis

j−1+2
N

)
is as hard as guessing

the same Jacobi symbol from the sequence
(
2yis1+2

N

)
,
(
2yis2+2

N

)
,...,

(
2yisj+2

N

)
.

The same holds for
(

2yis
j+2

N

)
and

(
2yisi+2

N

)
. �

Based on Theorem 3, A will not be able to distinguish between Game-5 and
Game-6. i.e.

|Pr[W6] = Pr[W5]|.
– Game-7: In this game, we replace the message m(b) by a random string z ∈R

{−1, 1}l i.e., ci = zi · (
2yisi+2

N

)
and ci = zi ·

(
2yisi+2

N

)
. We first prove that

(2yisi + 2)(−2yisi + 2)R ∈ QR(N).

Proof. Let g(si) = (2yisi + 2), then we have

g(si)g(−si)R = 4(yisi + 1)(−yisi + 1)R,

g(si)g(−si)R = 4(1 − (yisi)2)R,

g(si)g(−si)R = 4(Rx2
i )R = (2Rxi)2 ∈ QR(N).

Similarly, we can prove that (2yisi + 2)(−2yisi + 2)uR ∈ QR(N).

Since si ∈ QR(N), R ∈ J(N) \ QR(N), (2yisi + 2)(−2yisi + 2)R ∈ QR(N)
and (2yisi + 2)(−2yisi + 2)uR ∈ QR(N) then Case 1 in Lemma 3 can
be applied and the distribution of the Jacobi symbols

(
2yisi+2

N

)
and

(
2yisi+2

N

)

are random in {±1}. Thus, A will not be able to distinguish between Game-6
and Game-7. i.e.

|Pr[W7] = Pr[W6]|.
– Clearly in Game-7 we have

|Pr[W7] =
1
2
|.

Combining all the previous equations proves theorem.

5 Space-Time Tradeoff

In this section, we present a trade-off between the time and the ciphertext length
of the proposed systems. For V-BasicIBE, instead of sending S along with c and
c as the full ciphertext C, the sender sends C = (x0, x0, c, c). Thus, he can
solve Rx2 + Sy2 ≡ 1 (mod N) using only one inversion in ZN . This results in
high encryption speed. In the decryption, the receiver does not have to solve
any equations and he can generate xi or xi (based on if r2 = R or uR) using
Lemma 2. This, of course, comes at the cost of sending one more element in ZN .
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6 Conclusion

This paper proposed a variant of BasicIBE. The proposed variant is more efficient
(in terms of computation time) than previous IBE systems. We also proved
that the proposed variant has the same security level as the BasicIBE system.
Moreover, the proposed systems have only one element in the ZN private key
instead of l elements in ZN as in BasicIBE. We also produced a time-space
trade-off variant that is both time- and space-efficient.
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