
Systematically Breaking Online
WYSIWYG Editors

Ashar Javed(B) and Jörg Schwenk

Chair for Network and Data Security Horst Görtz Institute for IT-Security,
Ruhr-University Bochum, Bochum, Germany

{ashar.javed,joerg.schwenk}@rub.de

Abstract. Cross-Site Scripting (XSS) — around fourteen years old vul-
nerability is still on the rise and a continuous threat to the web appli-
cations. Only last year, 150505 defacements (this is a least, an XSS can
do) have been reported and archived in Zone-H (a cybercrime archive)
(http://www.zone-h.org/). The online WYSIWYG (What You See Is
What You Get) or rich-text editors are now a days an essential compo-
nent of the web applications. They allow users of web applications to edit
and enter HTML rich text (i.e., formatted text, images, links and videos
etc.) inside the web browser window. The web applications use WYSI-
WYG editors as a part of comment functionality, private messaging
among users of applications, blogs, notes, forums post, spellcheck as-you-
type, ticketing feature, and other online services. The XSS in WYSI-
WYG editors is considered more dangerous and exploitable because
the user-supplied rich-text contents (may be dangerous) are viewable by
other users of web applications.

In this paper, we present a security analysis of twenty (20) popu-
lar WYSIWYG editors powering thousands of web sites. The analy-
sis includes WYSIWYG editors like Enterprise TinyMCE, EditLive,
Lithium, Jive, TinyMCE, PHP HTML Editor, markItUp! universal
markup jQuery editor, FreeTextBox (popular ASP.NET editor), Froala
Editor, elRTE, and CKEditor. At the same time, we also analyze rich-
text editors available on very popular sites like Twitter, Yahoo Mail,
Amazon, GitHub and Magento and many more. In order to analyze
online WYSIWYG editors, this paper also present a systematic and
WYSIWYG editors’s specific XSS attack methodology. We apply the
XSS attack methodology on online WYSIWYG editors and found XSS
is all of them. We show XSS bypasses for old and modern browsers. We
have responsibly reported our findings to the respective developers of
editors and our suggestions have been added. In the end, we also point
out some recommendations for the developers of web applications and
WYSIWYG editors.

1 Introduction

Cross-Site Scripting (XSS) vulnerabilities in modern web applications are now
“an epidemic”. According to Google Vulnerability Reward Program (GVRP)
© Springer International Publishing Switzerland 2015
K.-H. Rhee and J.H. Yi (Eds.): WISA 2014, LNCS 8909, pp. 122–133, 2015.
DOI: 10.1007/978-3-319-15087-1 10

http://www.zone-h.org/

Systematically Breaking Online WYSIWYG Editors 123

report of 2013, XSS is at number one as far as valid bug bounty submissions are
concerned [1]. According to Google Trends, XSS is googled more often than SQL
injection for the first time in history [2]. Recently, an XSS attack has been
successfully used for the closure of a very popular web and mobile application i.e.,
TweetDeck [3]. The XSS issue in TweetDeck was able to affect more than 80,000
users within 96 min [13]. The XSS in WYSIWYG editors is considered more
dangerous, effective and exploitable because the user-supplied rich-text contents
(may be dangerous) are most of the time viewable by other users of the web
applications e.g., we found an XSS in WYSIWYG editor of Twitter Translation
center’s forum1 even in the presence of a Content Security Policy (CSP) [14] (see
Sect. 3.1). The CSP is the W3C standard for the mitigation of an XSS attack.
In case of an XSS in WYSIWYG editor, the attacker does not need to trick
user to visit his page.

Fig. 1. A WYSIWYG Editor

The online WYSIWYG (What You See Is What You Get) or rich-text
editors (see Fig. 1) are main component of the modern web applications. WYSI-
WYG editors allow users of web applications to edit and enter HTML-based
rich text (i.e., formatted text e.g., bold, italic and underline, images, links and
videos etc.) inside the web browser. The modern web applications use WYSI-
WYG editors as a part of comment feature, private messaging among users of
applications, blogs, wiki, notes, forums post, spellcheck as-you-type, ticketing
feature, and other online services. The main purpose of rich-text editors is to
provide users of web applications a better editing experience. The third-party
WYSIWYG editors are normally available in the form of client-side JavaScript
library, PHP or ASP based sever-side component and Rails gem.

The online cross-browser WYSIWYG are very popular e.g.:

– Jive — very popular editor and in use on sites like Amazon, T-Mobile and
Thomson-Reuters etc. [5].

– TinyMCE — Javascript HTML WYSIWYG editor and in use on sites like
XBox, Apple, Open Source CMS Joomla and Oracle etc. [6].

– Lithium — another popular rich-text editor and in use on sites like Paypal,
Skype and Sephora etc. [8].

– Froala — jQuery WYSIWYG text editor and has been downloaded around
6000 times within two and half months of its launch [9].

– EditLive — an advanced WYSIWYG editor and 1500 organizations like
Verizon, The New York Times and Nissan etc. are using it [11].

1 https://translate.twitter.com.

https://translate.twitter.com

124 A. Javed and J. Schwenk

– CKEditor — it has been downloaded 9472723 times and in use in sites like
MailChimp, IBM and Terapad etc. [4]. It is formally known as FCKEditor.

– Markdown — another popular rich-text editor and in use on sites like Twit-
ter, GitHub and Gitter (a private chat service for GitHub) [12].

This paper presents a study of analyzing 20 popular WYSIWYG editors.
In order to evaluate WYSIWYG editors, we also present a systematic attack
methodology (see Sect. 2.2). For testing purpose, we use the demo pages avail-
able by WYSIWYG editor. All the testing is carried out on the demo pages so
that it will not harm any real user of the respective editor (see Sect. 2.1). Fur-
ther, we also study home-grown WYSIWYG editors available on top sites like
Yahoo Mail, Twitter and Magento Commerce. During evaluation of our attack
methodology, we were able to break all WYSIWYG editors (see Sect. 3). We
found XSS bypasses for old and modern browsers. We have responsibly reported
our findings to the respective projects and our suggestions have been added in
WYSIWYG editors like TinyMCE, Lithium, Jive and Froala. At the same time,
we were awarded bug bounties by companies like Magento Commerce, GitHub
and Paypal for finding bugs in their WYSIWYG editors and acknowledged by
Twitter, Paypal and GitHub on their security hall of fame pages. To the best of
our knowledge, this is the first study of analyzing XSS attacks in WYSIWYG
editors. In the end, we also recommend best practices that WYSIWYG editors
and web applications may adopt for the mitigation of an XSS attack (see Sect. 4).

This paper makes the following contributions:

– A security analysis of 20 popular WYSIWYG editors. The complete list of
WYSIWYG editors is avaiable in the appendix (see Sect. A in appendix).
Further, we also analyze WYSIWYG editors of top sites like Paypal, Yahoo,
Amazon, Twitter and Magento.

– A systematic and step-wise attack methodology for evaluating WYSIWYG
editors.

– Our suggestions have been added in top WYSIWYG editors like Lithium,
Jive, TinyMCE and Froala.

– We also point out best practices that WYSIWYG editors and web applica-
tions may use in order to minimize the affect of XSS.

2 Methodology

In this section, we describe the testing and attack methodology.

2.1 Testing Methodology

In this section, we briefly describe the testing process. In order to test WYSI-
WYG editors, we use the demo pages made available by the respective devel-
opers of WYSIWYG editors. The main advantage of testing on demo pages is
that it will not harm any user. In case, we found an XSS during testing process,

Systematically Breaking Online WYSIWYG Editors 125

we act responsibly and filled the bug(s) on GitHub or directly report via email.
During testing of WYSIWYG editors, we identify common injection points
(almost all WYSIWYG editors support these injection points) that are of an
attacker interest e.g., link creation, image and video insertion, description of
images, class or id names and styling of contents. In the next section, we will
present a respective XSS attack methodology for these injection points.

2.2 Attack Methodology

In this section, we describe the XSS attack methodology for the common injec-
tion points identified in previous section. The attack methodology for every
injection point is systematic in nature.

Attacking Link Creation Feature: All WYSIWYG editors support “create
link” feature. The “create link” functionality corresponds to HTML’s anchor
tag i.e., <a> and its “href” attribute. The user-supplied input as a part of
“create link” in WYSIWYG editor lands as a value of “href” attribute. The
attacker can abuse this functionality with the help of following steps (see Fig. 2)
and can execute arbitrary JavaScript in the context of a web application. The step
❶ makes use of JavaScript URI e.g., javascript:alert(1) in order to execute
JavaScript e.g., we found XSS via JavaScript URI in Froala, EditLive, CNET’s
WYSIWYG editor and Twitter etc. The attacker can also use different types of
encoding in JavaScript URI e.g., “javascript:alert%28 1 %29” (URL encoded
parenthesis) and “jav	ascr	ipt:alert(1)” (HTML5 entity
encoding). In case, WYSIWYG editor filters the word “javascript”, then
attacker can use DATA URI based JavaScript execution in step ❷ e.g., “data:
text/html;base64,PHN2Zy9vbmxvYWQ9YWxlcnQoMik+”. We found XSS via
DATA URI in Jive because Jive does not allow JavaScript based URI. In step
❸, the attacker can also leverage VbScript based code execution but it is lim-
ited to Internet Explorer browser. In last step i.e., step ❹, the attacker can make
use of valid URL but as a part of query parameter’s value, he uses the following
attack string i.e., "onmouseover="alert(1) in order to break the URL context.
The step ❹ is very useful in case if WYSIWYG editors only accept URLs start
with “http(s)”. We found XSS in Amazon’s WYSIWYG editor with the help
of step ❹.

Fig. 2. Attack Methodology for Link Creation Feature

Attacking Image Insertion Feature: Another common functionality that
all WYSIWYG editors support is “Insert/Edit Image”. The “Insert/Edit

126 A. Javed and J. Schwenk

Image” feature corresponds to HTML’s and its “src” attribute. The
user-supplied input as a part of “Insert/Edit Image” in WYSIWYG edi-
tor lands as a value of “src” attribute. The attacker may use the following
XSS attack methodology (see Fig. 3) in order to abuse this feature. The step
❶ consists of a valid “jpg” image URL ends in ? and after the question mark
"onmouseover="alert(1). In URL, the question mark symbol is legally valid
and all browsers respect it while at the same time for the WYSIWYG editors,
it is also a legit input at this point because their implementations expect input
to be a valid URL but then we used hard-coded " symbol and the sole purpose is
to break or jump out of the context and execute JavaScript via eventhandler e.g.,
onmouseover. We found XSS in Amazon’s WYSIWYG editor with the help of
first step. The step ❷ consists of a valid SVG image hosted on free domain for
demo purpose. The step ❷ serves two purpose:

1. JavaScript execution via SVG image. We found XSS in GitHub’s rich-text
markup feature with the help of an SVG image and we were awarded bounty
for that. In favor of space restrictions, we refer to the work by Heiderich et al.
in [15] and it shows how an attacker can leverage SVG images for arbitrary
JavaScript code execution.

2. If WYSIWYG editors are doing explicit decoding on the server side then
JavaScript can be executed because decoding will convert the %22 into hard-
coded ", which in turns break the context. We found XSS in Alexa’s rich-text
tool bar creation feature with the help of this technique.

Fig. 3. Attack Methodology for Image Insertion Feature

Attacking “ alt”, “id” and “class” attributes: Another common injection
points that we found in almost all WYSIWYG editors are “alt” attribute of
an tag. In WYSIWYG editors, user can specify the image description
as a value of an “alt” attribute. In a similar manner, we found attributes like
“id” and “class” are common across all WYSIWYG editors. The attacker can
abuse these injection points with the help of following XSS attack methodology
(see Fig. 4). The step ❶ consists of attack vector “anytext"onmouseover="alert
(1)”. It is clear from the attack string that if WYSIWYG editors fail to
properly sanitize/filter ", then the attack string will jump out from the attribute
context and attacker can execute JavaScript. We found XSS in Yahoo Mail’s
WYSIWYG editor with the help of this attack vector. The step ❷ is related to

Systematically Breaking Online WYSIWYG Editors 127

innerHTML based XSS and specific to old Internet Explorer (IE) browser. The
old IE browser treats back-tick i.e., (``) as a valid separator for attribute and
its value. The back-tick based XSS attack string is very useful in cases where
WYSIWYG editors properly filter double quotes (") and do not allow to break
the context e.g., the following XSS attack vectors would result in an innerHTML
based XSS in IE8 browser. <div class="``onmouseover=alert(1)">div layer
</div>, click and etc. Almost all WYSIWYG edi-
tors are vulnerable to innerHTML based XSS including Lithium, TinyMCE,
Froala and GitHub’s WYSIWYG editor. For details about innerHTML based
XSS, we refer to the recent work by Heiderich et al. in [16].

Fig. 4. Attack Methodology for Attributes

Attacking Video Insertion Feature: WYSIWYG editors (not all) support
“Insert Video” feature. As a part of this feature, WYSIWYG editors only allow
HTML’s <object> and/or <embed> tag. The attacker can abuse this feature
with the help of following example code snippet (see Fig. 5). The code snippet
is taken from the Youtube’s video sharing via embedded code feature. In the
perfectly legit code snippet, we have added “onmouseover=alert(1)” in order
to fool WYSIWYG editors. We found XSS in froala with the help of this trick.

Fig. 5. Attack Methodology for Video Insertion Feature

Attacking “ Styles”: All WYSIWYG editors support “styling” of the rich-
text contents e.g., user can specify the height, width, color and font properties
of the contents. The attacker can easily abuse this feature with the help of
CSS expressions [17]. The old versions of Internet Explorer (IE) browsers sup-
port JavaScript execution via CSS expressions. The XSS attack vectors may use
for this purpose are: “width:expression(alert(1))” or “x:expr/**/ession
(alert(1))”. We found XSS in Ebay, Magento, Amazon, TinyMCE and CKEd-
itor’s WYSIWYG editors with the help of “styles”.

128 A. Javed and J. Schwenk

3 Evaluation of Attack Methodology

In this section, we discuss the results of evaluating attack methodology on popu-
lar WYSIWYG editors. We were able to break all WYSIWYG editors in one
or other common injection points discussed in the previous section. In favor of
space restrictions, here we discuss three examples that we consider worth sharing
as a part of evaluation.

3.1 XSS in Twitter Translation Forum’s WYSIWYG editor

Twitter2 (Alexa rank #9), a popular social networking web site. Twitter is one
the handful of web sites that are using CSP for the mitigation of XSS attacks.
Twitter’s CSP is available at the following URL http://i.imgur.com/ESkQG9O.
jpg. The CSP explicitly tells the browser about trusted resources for images,
script, media, and styles etc. Twitter Translation3 is one of the Twitter’s ser-
vice where community can help in translating Twitter related stuff in different
languages. On Twitter Translation forum, we found that it supports rich-text
markup feature. The following Fig. 6 shows Twitter’s markdown cheat sheet.
We found one of the way of specifying links in the forum post is: [Twitter]
(https://twitter.com) (see area marked in red in Fig. 6). As discussed in previous
section (see Sect. 2.2), the attacker can abuse the link creation feature with the
help of JavaScript, Data and VbScript URI. By keeping in mind attack methodol-
ogy related to “create link”, we input the following: [Twitter]
(javascript:alert(1)). Twitter internally treats the above input in the follow-
ing manner: Twitter. The JavaScript
does not execute because of the missing closing parenthesis in “alert(1”. The
reason we found is: Twitter’s WYSIWYG editor’s syntax is causing problem
because internally it treats the closing parenthesis of “alert(1)” as “URL ends
here” and did not look for the last parenthesis. As a part of next step, we convert
the small parenthesis into the respective URL encoded form i.e., (becomes %28
and) becomes %29. The next attack string looks like: [Twitter](javascript:
alert%28 1 %29) and this time it works as expected and internally it looks like:
Twitter. The following Fig. 7
shows JavaScript execution in Twitter’s WYSIWYG editor.

3.2 XSSes in TinyMCE’s WYSIWYG editor

TinyMCE [6] is one of the most popular WYSIWYG editor. We found three
different XSSes in TinyMCE: one in “create link” feature (see Sect. 2.2), one
in “styling” feature (see Sect. 2.2) and one innerHTML based XSS in “alt”
attribute (see Sect. 2.2). We filled three different bugs4 in TinyMCE’s bug tracker
and now all XSSes have been fixed [7]. The following list items summarizes our
findings:
2 https://twitter.com/.
3 https://translate.twitter.com.
4 http://www.tinymce.com/develop/bugtracker view.php?id=6855|6851|6858.

http://i.imgur.com/ESkQG9O.jpg
http://i.imgur.com/ESkQG9O.jpg
https://twitter.com
https://twitter.com/
https://translate.twitter.com
http://www.tinymce.com/develop/bugtracker_view.php?id=6855|6851|6858

Systematically Breaking Online WYSIWYG Editors 129

Fig. 6. Markdown Cheat Sheet

Fig. 7. XSS in Twitter Translation

1. TinyMCE was vulnerable to an XSS in “create link” feature with the help
of DATA URI i.e., “data:text/html;base64,PHN2Zy9vbmxvYWQ9YWxlcnQoM
ik+”.

2. TinyMCE was vulnerable to an XSS in “style” functionality. In order to
execute XSS, we used CSS expressions i.e., “x:expr/**/ession(alert(1))”.
TinyMCE’s implementation does not allow the word “expression” as a part
of styles and that’s why we used “expr/**/ession” i.e., use of multi-lin
comments in “expression” word and old IE browsers simply ignores it.

3. TinyMCE was also vulnerable to an innerHTML based XSS and the attack
vector used for this purpose was: ``onmouseover=alert(1).

130 A. Javed and J. Schwenk

3.3 XSSes in Froala’s WYSIWYG editor

Froala — jQuery WYSIWYG text editor is also one of the popular and latest
rich-text editor [10]. We found XSSes in almost all common injection points iden-
tified in Sect. 2.2. A bug5 has been filled on GitHub and all reported XSS issues
have been fixed in the upcoming version. The following list items summarizes
our findings:

Fig. 8. XSS in Froala

1. “Create Link” feature was vulnerable to an XSS e.g., “javascript:alert(1)”
and “data:text/html;base64,PHN2Zy9vbmxvYWQ9YWxlcnQoMik+ worked.

2. “Insert Image” feature was vulnerable to a trick discussed in previous section
(see Sect. 2.2) i.e., attacker can execute JavaScript with the help of following:
http://www.ieee-security.org/images/new-web/Trojan Horse.jpg?
"onmouseover="alert(1).

3. “Insert Video” feature was vulnerable to the attack method discussed ear-
lier (see Sect. 2.2). The Fig. 8 shows XSS in Froala via “Insert Video” func-
tionality.

4. “Image Title” feature was vulnerable to an innerHTML based XSS attack
method discussed earlier (see Sect. 2.2).

4 Practical and Low Cost Countermeasures

Web applications normally integrate third-party WYSIWYG editor(s) in order
to give customers of web application a better and rich editing experience. In this
section, we discuss low cost, practical and easily deployable countermeasures
that web applications may adopt in order to minimize the affect of an XSS in
WYSIWYG editor(s). Further, we also recommend some suggestions to the
developers of WYSIWYG editors.
5 https://github.com/froala/wysiwyg-editor/issues/33.

https://github.com/froala/wysiwyg-editor/issues/33

Systematically Breaking Online WYSIWYG Editors 131

4.1 HttpOnly Cookies

Web applications use cookies in order to maintain a session state between authen-
ticated client and server because of the stateless nature of an HTTP protocol. If
a flag “HttpOnly” is set on a cookie then JavaScript can not read the value of this
cookie and all modern browsers respect this. We recommend web applications’
developers to use “HttpOnly” cookie especially if WYSIWYG editor is in use.
In case of an XSS in WYSIWYG editor, the attacker can not read the session
cookie of the victim with the help of JavaScript. We found an XSS in Magento’s
(an Ebay company) WYSIWYG editor and found “PHPSESSID” cookie was not
“HttpOnly” and at the same time site only allows authenticated users to post
on forum. With the help of this XSS in WYSIWYG editor, attacker may steal
the session cookie of the forum administrator and hack the forum. The XSS in
Magento’s WYSIWYG editor is now fixed and the details are available in a
post here6. Magento acknowledged our findings and we were awarded thousand
US dollar in the form of bug bounty.

4.2 Iframe’s “sandbox”

We recommend developers of the web applications to use <iframe sandbox> in
order to integrate third-party WYSIWYG editor. With the help of “sandbox”
attribute, the developers of the web applications can restrict the capabilities of
third-party WYSIWYG editor. In case of an XSS in WYSIWYG editor, if
“sandbox” attribute is used then attacker can not access the DOM contents
of the main web page or locally stored data on the client side. All mordern
browsers support iframe’s “sandbox”. For details about <iframe sandbox>,
we refer to [18] for interested readers.

4.3 Content Security Policy

We recommend developers of web applications to retrofit their applications for
CSP [14]. The CSP policy is now a W3C standard for the mitigation of an XSS
attacks. The CSP is based on directives for images, script, media, styles and
iframes etc. The developers of web applications can explicity tell the browser
about the trusted resources. By default, CSP prohibits inlining scripting. In
case of an XSS in WYSIWYG editor, if CSP is defined then first browser will
not allow injected, inline script to execute (unless “unsafe-inline” directive
is specified) and second CSP helps in minimizing the affect of an XSS because
attacker can not ex-filtrate sensitive data to his domain.

4.4 Guidelines for Developers of WYSIWYG editors

In this section, we briefly describe some guidelines for WYSIWYG editors’
developers.
6 http://www.scribd.com/doc/226925089/Stylish-XSS-in-Magento-When-Style-
helps-you.

http://www.scribd.com/doc/226925089/Stylish-XSS-in-Magento-When-Style-helps-you
http://www.scribd.com/doc/226925089/Stylish-XSS-in-Magento-When-Style-helps-you

132 A. Javed and J. Schwenk

– Should force users to input URL or “create link” that starts with an
“http://” or “https://”.

– Should not allow SVG images. With the help of an SVG image, attacker may
execute JavaScript.

– Should properly encode potentially dangerous characters in attributes e.g.,
double quotes and back-tick because these characters can help attacker to
break the attribute context and execute JavaScript.

– Should not allow CSS expressions in “styling” of the contents.
– Should not allow Flash-based movies because attacker can execute JavaScript

code via Flash file.
– In case, WYSIWYG editor allows to upload a file then developers should

validate the file type.

5 Conclusion

In this paper, we analyzed twenty popular WYSIWYG editors and found XSS
in all of them. We had presented a systematic XSS attack methodology for
common injection points in WYSIWYG editors. We hope that this paper will
raise awareness about the XSS issue in modern feature of an HTML5-based web
applications i.e., rich-text editors.

A List of WYSIWYG Editors

1. Mercury Editor: The Rails HTML5 WYSIWYG editor (http://jejacks0n.
github.com/mercury)

2. bootstrap-wysihtml5: Simple, beautiful wysiwyg editor (https://github.com/
jhollingworth/bootstrap-wysihtml5)

3. KindEditor (http://kindeditor.org/)
4. PHP HTML Editor (http://phphtmleditor.com/demo/)
5. elRTE — an open-source WYSIWYG HTML-editor (http://elrte.org/)
6. medium-editor (https://github.com/daviferreira/medium-editor)
7. TinyMCE (http://www.tinymce.com/)
8. Lithium (http://www.lithium.com/)
9. Jive (http://www.jivesoftware.com/)

10. Froala (http://editor.froala.com/)
11. CKEditor (http://ckeditor.com/)
12. EditLive (http://ephox.com/editlive)
13. jquery.qeditor (https://github.com/huacnlee/jquery.qeditor)
14. mooeditable (http://cheeaun.github.io/mooeditable/)
15. HTML5 WYSIWYG Editor (https://github.com/bordeux/HTML-5-WYSI

WYG-Editor)
16. markItUp! universal markup jQuery editor (http://markitup.jaysalvat.com/

home/)
17. FreeTextBox HTML Editor (http://www.freetextbox.com/)
18. Markdown (http://daringfireball.net/projects/markdown/)
19. CLEditor (http://premiumsoftware.net/CLEditor/SimpleDemo)
20. BootstrapWysihtml5withCustomImage Insert (https://github.com/rcode5/

image-wysiwyg-sample)

http://jejacks0n.github.com/mercury
http://jejacks0n.github.com/mercury
https://github.com/jhollingworth/bootstrap-wysihtml5
https://github.com/jhollingworth/bootstrap-wysihtml5
http://kindeditor.org/
http://phphtmleditor.com/demo/
http://elrte.org/
https://github.com/daviferreira/medium-editor
http://www.tinymce.com/
http://www.lithium.com/
http://www.jivesoftware.com/
http://editor.froala.com/
http://ckeditor.com/
http://ephox.com/editlive
https://github.com/huacnlee/jquery.qeditor
http://cheeaun.github.io/mooeditable/
https://github.com/bordeux/HTML-5-WYSIWYG-Editor
https://github.com/bordeux/HTML-5-WYSIWYG-Editor
http://markitup.jaysalvat.com/home/
http://markitup.jaysalvat.com/home/
http://www.freetextbox.com/
http://daringfireball.net/projects/markdown/
http://premiumsoftware.net/CLEditor/SimpleDemo
https://github.com/rcode5/image-wysiwyg-sample
https://github.com/rcode5/image-wysiwyg-sample

Systematically Breaking Online WYSIWYG Editors 133

References

1. Google Vulnerability Reward Program Report for year 2013.: https://www.
youtube.com/watch?v=oAYjZy1Nuyg

2. Google Trends.: http://www.google.com/trends/explore#q=XSS%2C%20SQL
%20Injection&date=today%2012-m&cmpt=q

3. TweetDeck ShutDown.: https://twitter.com/TweetDeck/status/476770732987
252736

4. CKEditor.: http://ckeditor.com/about/who-is-using-ckeditor
5. Jive.: http://www.jivesoftware.com/why-jive/customers/#view=list
6. TinyMCE.: http://www.tinymce.com/enterprise/using.php
7. TinyMCE Tracker.: http://www.tinymce.com/develop/bugtracker.php
8. Lithium.: http://www.lithium.com/why-lithium/customer-success/
9. Froala.: https://github.com/stefanneculai/froala-wysiwyg/issues/33#issue

comment-41170451
10. Froala Editor.: http://editor.froala.com/
11. Edit Live.: http://ephox.com/customers
12. Markdown.: http://daringfireball.net/projects/markdown/
13. From “I wonder...” to Exploitable Worm in 96 Minutes.: https://storify.com/

pacohope/from-i-wonder-to-exploitable-worm
14. Content Security Policy 1.1.: http://www.w3.org/TR/CSP11/
15. Heiderich, M., Frosch, T., Jensen, M., Thorsten, H.: Security risks of scalable vec-

tors graphics. In: CCS, Crouching Tiger - Hidden Payload (2011)
16. Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., Yang, E.Z.: mXSS attacks:

attacking well-secured web-applications by using innerHTML mutations.. In: CCS
(2013)

17. About Dynamic Properties.: http://msdn.microsoft.com/en-us/library/ie/
ms537634(v=vs.85).aspx

18. Play safely in sandboxed IFrames.: http://www.html5rocks.com/en/tutorials/
security/sandboxed-iframes/

https://www.youtube.com/watch?v=oAYjZy1Nuyg
https://www.youtube.com/watch?v=oAYjZy1Nuyg
http://www.google.com/trends/explore#q=XSS%2C%20SQL%20Injection&date=today%2012-m&cmpt=q
http://www.google.com/trends/explore#q=XSS%2C%20SQL%20Injection&date=today%2012-m&cmpt=q
https://twitter.com/TweetDeck/status/476770732987252736
https://twitter.com/TweetDeck/status/476770732987252736
http://ckeditor.com/about/who-is-using-ckeditor
http://www.jivesoftware.com/why-jive/customers/#view=list
http://www.tinymce.com/enterprise/using.php
http://www.tinymce.com/develop/bugtracker.php
http://www.lithium.com/why-lithium/customer-success/
https://github.com/stefanneculai/froala-wysiwyg/issues/33#issuecomment-41170451
https://github.com/stefanneculai/froala-wysiwyg/issues/33#issue
http://editor.froala.com/
http://ephox.com/customers
http://daringfireball.net/projects/markdown/
https://storify.com/pacohope/from-i-wonder-to-exploitable-worm
https://storify.com/pacohope/from-i-wonder-to-exploitable-worm
http://www.w3.org/TR/CSP11/
http://msdn.microsoft.com/en-us/library/ie/ms537634(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/ms537634(v=vs.85).aspx
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

	Systematically Breaking Online WYSIWYG Editors
	1 Introduction
	2 Methodology
	2.1 Testing Methodology
	2.2 Attack Methodology

	3 Evaluation of Attack Methodology
	3.1 XSS in Twitter Translation Forum's WYSIWYG editor
	3.2 XSSes in TinyMCE's WYSIWYG editor
	3.3 XSSes in Froala's WYSIWYG editor

	4 Practical and Low Cost Countermeasures
	4.1 HttpOnly Cookies
	4.2 Iframe's ``sandbox''
	4.3 Content Security Policy
	4.4 Guidelines for Developers of WYSIWYG editors

	5 Conclusion
	A List of WYSIWYG Editors
	References

