
ADAM: Automated Detection and Attribution
of Malicious Webpages

Ahmed E. Kosba1, Aziz Mohaisen2(B), Andrew West2, Trevor Tonn3,
and Huy Kang Kim4

1 University of Maryland at College Park, College Park, USA
2 Verisign Labs, Reston, USA
amohaisen@verisign.com

3 Amazon.com, Washington DC, USA
4 Korea University, Seoul, South Korea

Abstract. Malicious webpages are a prevalent and severe threat in the
Internet security landscape. This fact has motivated numerous static and
dynamic techniques to alleviate such threat. Building on this existing
literature, this work introduces the design and evaluation of ADAM, a
system that uses machine-learning over network metadata derived from
the sandboxed execution of webpage content. ADAM aims at detecting
malicious webpages and identifying the type of vulnerability using simple
set of features as well. Machine-trained models are not novel in this
problem space. Instead, it is the dynamic network artifacts (and their
subsequent feature representations) collected during rendering that are
the greatest contribution of this work. Using a real-world operational
dataset that includes different type of malice behavior, our results show
that dynamic cheap network artifacts can be used effectively to detect
most types of vulnerabilities achieving an accuracy reaching 96 %. The
system was also able to identify the type of a detected vulnerability
with high accuracy achieving an exact match in 91 % of the cases. We
identify the main vulnerabilities that require improvement, and suggest
directions to extend this work to practical contexts.

1 Introduction

The ever increasing online and web threats call for efficient malware analysis,
detection, and classification algorithms. To this end, antivirus vendors and intel-
ligence providers strived to develop analysis techniques that use dynamic, static,
or hybrid—which use both—techniques for understanding web malware. While
static techniques are computationally efficient, they often have the drawback
of low accuracy, whereas dynamic techniques come at higher cost and provide
higher accuracy. Certain functionalities, such as deep analysis of dynamic fea-
tures, are more costly than gathering of indicators and labeling of individual
pieces of malware. Systems that are costly utilizing dynamic features should
be augmented with intelligent techniques for better scalability. Such techniques
include machine learning-based components utilizing light-weight features, such
c© Springer International Publishing Switzerland 2015
K.-H. Rhee and J.H. Yi (Eds.): WISA 2014, LNCS 8909, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-15087-1 1



4 A.E. Kosba et al.

as network metadata, for finding the label and type of a given website with-
out using the computationally heavy components. In addressing this problem,
we introduce ADAM, an automated detection and attribution of malicious web-
pages that is inspired by the need for efficient techniques to complement dynamic
web malware analysis.

The motivation of this work is twofold. First, iDetermine, a proprietary status
quo system for detecting malicious webpages using dynamic analysis is a compu-
tationally expensive one. While iDetermine is the basis for our ground-truth and
network metadata used for creating features for webpages, it also does a great
quantity of other analysis to arrive at accurate labels (e.g., packet inspection,
system calls). We envision our efforts could integrate as a tiered classifier that
enables greater scalability with minimal performance impact. Second, existing
literature on webpage classification [7,17,18,23,24] provided promising accuracy.
Because these approaches rely primarily on static features, we hypothesize that
metadata from network dynamics might improve it as well.

There are multiple challenges that ADAM tries to address. First, webpages
face different types of vulnerabilities: exploit kits, defacement, malicious redirec-
tions, code injections, and server-side backdoors – all with different signatures.
This malice may not even be the fault of a webpage owner (e.g., advertise-
ment networks). Moreover, the distribution of behavior is highly imbalanced,
with our dataset having 40× more benign objects than malicious ones. Despite
these challenges, our approach is currently broadly capable of 96 % accuracy,
with injection attacks and server-side backdoors being identified as areas for
performance improvement and future attention. The system is also capable of
identifying the types of detected vulnerabilities with exact match in 91 % of the
cases, with a difference of 1 and 2 labels in 6 % and 3 % of the cases respectively.

Contribution. The contributions of this paper are: (1) Presenting a system
that identifies whether a webapge is malicious or not based on simple dynamic
network artifacts collected in sandboxed environments, in addition to (2) Evalu-
ating the system using a real dataset that contains multiple variants of malicious
activity.

Organization. The rest of this paper is organized as follows: Sect. 2 discusses
the background and related work. Section 3 presents some details on iDeter-
mine system, which generates the data we use in ADAM and the ground truth,
while Sect. 4 presents the architecture of the ADAM system. Section 5 presents
the evaluation of ADAM and discusses the results, and finally Sect. 6 presents
the conclusions and sheds some light on future work.

2 Related Work

There has been a large body of work in the literature on the problem at hand,
although differing from our work in various aspects, including features richness,
quality of labels, and their context. Most closely related to our work are the works
in [7,17,18,23,24], although differing in using static analysis-related features in



ADAM: Automated Detection and Attribution of Malicious Webpages 5

reaching conclusions on a webpage. On the other hand, ADAM relies on utilizing
simple features extracted from the dynamic execution of a webpage and loading
its contents in a sandboxed environment, with the goal of incorporating that as
a tiered classifier in iDetermine.

Fig. 1. Two examples of transferred file trees

Related to our work, but using structural properties of URLs in order to pre-
dict malice are the works in [10,17,25] for email spam, and in [6,19] for phishing
detection. Additionally, using domain registration information and behavior for
malware domain classification was explored in [14,17]. Related to that is the work
on using machine learning techniques to infer domains behavior based on DNS
traces. Bilge et al. proposed Exposure [5], a system to detect malware domains
based on DNS query patterns on a local recursive server. Antonakakis et al. [2]
functions similarly but analyzes global DNS resolution patterns and subsequently
creates a reputation system for DNS atop this logic [1]. Gu et al. [11–13] studied
several botnet detection systems utilizing the same tools of DNS monitoring.
Dynamic malware analysis and sandboxed execution of malware were heavily
studied in the literature, including surveys in [8,9]. Bailey et al. [3] and Bayer
et al. [4] have focused on behavior-based event counts. Feature development has
since advanced such that malware families can now be reliably identified [16] and
dynamic analysis can be deployed on end hosts [15]. Finally, network signature
generation for malicious webpages is explored in [21,22] for drive-by-download
detection.

3 iDetermine

iDetermine is a system for classification of webpage URLs. It crawls websites
using an orchestrated and virtualized web browser. For each analyzed URL, the
system maintains records of each HTTP request-response made while rendering
that page. The system applies static and dynamic analysis techniques to inspect
each object retrieved while visiting the URL, and monitors any changes that
happen to the underlying system to decide whether the retrieved object is mali-
cious or not. We call these objects transferred files (TFs). If any of the retrieved
objects was found malicious, iDetermine labels the object based on the type of



6 A.E. Kosba et al.

malice uncovered. The system may label a malicious TF with one or more of the
following:

Injection. Occurs when a website is compromised, allowing an attacker to add
arbitrary HTML and javascript to the legitimate content of the site with the pur-
pose of invisibly referencing malicious content aimed at silently harming visitors.
Exploit. Implies that an exploit code for a vulnerability in the browser or
browser helper was found. Exploit code are the heart of drive-by downloads.
Exploit Kit. A collection of exploits bundled together and usually sold in black
market. These kits increase the probability that the browsers of the visiting users
are successfully exploited.
Obfuscation. A TF contains obfuscated code with known malicious activity
behavior.
Defacement. Occurs when an attacker hacks into a website and replaces some
content indicating that the site has been hacked into.
Redirection. A TF redirects to a known malicious content.
Malicious executable or archive. This means that either an executable or
an archive file, e.g. zip, rar, jar, that contains malicious code of some sort was
detected to be downloaded by visiting the webpage.
Server side backdoor. A TF shows symptoms of being a known server-side
backdoor script, like the C99 PHP Shell. Such files allow remote attackers to
control various aspects of the server.

The processing of the data of each URL by iDetermine results in a tree-like
structure (see Fig. 1) where each node represents a TF. Each node stores basic
file attributes and network information (e.g., HTTP response code, IP address,
and Autonomous System (AS) number). These nodes also contain classification
data from iDetermine’s deep analysis and we use this as ground-truth in train-
ing/evaluating our approach.

Fig. 2. The workflow for classifying URLs based on TFs



ADAM: Automated Detection and Attribution of Malicious Webpages 7

4 ADAM: System Structure and Overview

Design goals. There are two basic end goals for the proposed system. The main
goal is to identify whether a webpage is malicious or not based on the basic
metadata maintained by iDetermine, without the requirement to compute any
complex and expensive features. If the webpage is classified as malicious, the
system also aims at identifying which type of malice this webpage has.

Design. The layout of the system is outlined in Fig. 2. The figure shows the
flow of both the training data and the operational data. The system is trained
by labeled webpages, in which each individual TF is labeled whether it is benign
(green), or malicious (red). The system uses the basic meta-data stored in
the system, in addition to a set of simple features generated based on those
attributes. This generation is handled by the feature generation module which
uses IP and WHOIS databases to acquire information about the IP address and
the domain name of the associated TF. After the feature generation stage, the
data is preprocessed, and some features may be filtered using a feature selection
module, before the data is sent to the classification modules. Then, a two-stage
classification procedure is trained based on the preprocessed data.

In the operational mode, for an unlabeled webpage, the system transforms
each TF into a feature vector as done by the feature generation module in the
training phase, and then the features are pre-processed and filtered based on
the feature selection results from the training phase. The TF is then labeled
with the label most close to it in the vector space based on a highly accurate
ground truth. To this end, in the following two subsections, we provide more
details on the generated features, the preprocessing stage, and then we discuss
the classification procedure needed to achieve the above two goals.

4.1 Features Used for Classification

To achieve the design goals, ADAM relies on a rich set of features, and uses
nearly 40 basic features for the classification process. The features fall in the
following categories:

– Basic meta-data features: This represents the simple meta-data attributes
stored originally by iDetermine, such as the HTTP header information, which
includes HTTP method, response code, Is Zipped, .. etc. The meta-data also
includes the AS number, and the result of running the libmagic command on
the TF file which gives information about the type of the retrieved file.

– URI-based features: These are the features derived from the URI
associated with a TF. This includes some basic lexical statistics, e.g. URI
components lengths (hostname, path and query), dot count, slash count, spe-
cial characters ratio and the average path segment length. This also includes
binary features to indicate whether the URI contains an explicit IP, or an
explicit port number. Furthermore, the features include the top-level domain
name in addition to the token words that appear in the different URI compo-
nents for which we use a bag-of-words representation.



8 A.E. Kosba et al.

– TF Tree-based features: These are the features we extract from the TF-
tree to capture the relationship between different TFs that belong to a single
webpage. The TF-tree features capture Parent-child host/IP diversity; TF
depth; number of children and the child-parent type relationship.

– Domain Name-based features: These features are derived from the domain
name of the URI of the TF. This includes: the registrar’s id and age informa-
tion, e.g. creation data and expiration date.

– IP-based features: These are a set of features derived from the IP address
associated with the TF. This includes the Geo-Location features: country,
city and region, in addition to the domain/organization for which the IP is
registered. Furthermore, we consider two IP prefixes (/24 and /28) as features
to detect networks with malicious activity, instead of considering each IP
individually.

It should be noted that the iDetermine system does process and store addi-
tional data that could be useful in the classification task. For example, payload
and content-based features derived from Javascript as in [7,24], or flow infor-
mation features as in [24] can be extracted and utilized. However, we do not
integrate these features in order to maintain a content-agnostic and scalable
classifier.

4.2 Preprocessing and Feature Selection

After the feature values for each category are inferred, a preprocessing stage
is needed before forwarding this data to the classifiers for training and testing
purposes. The preprocessing is done based on the feature type. For numeric
features, such as the lexical counts, proper scaling is applied to keep the values
between 0 and 1. For categorical features such as the top-level domain name or
AS number, we apply feature binarization, in which a binary feature is introduced
per each possible value, since the feature cannot be encoded numerically due
to the absence of order between the values. This approach has been employed
before, such as in [17]. This certainly will result in high-dimensional feature
vectors that require a scalable classifier suitable for high dimensionality vectors.

Due to the high dimensional feature vectors, it could be beneficial to reduce
the dimensionality through a feature selection technique. Therefore, in our exper-
iments, we study the effect of reducing the dimensionality through a chi-square
metric.

4.3 Classification

After preprocessing the data, we train a two-stage classification model to detect
whether a webpage is malicious, and to identify the type of malice if needed.

The first classification stage includes a binary classifier that is trained with
all the TFs from benign and malicious samples. We use an SVM classification
algorithm based on Stochastic Gradient Descent using L1-norm for this stage. In
the second stage, we build another binary classifier for each type of vulnerability.



ADAM: Automated Detection and Attribution of Malicious Webpages 9

Each classifier in the second stage is trained using the malicious TF data only,
e.g. the injection classifier is trained by the data containing (injection TFs versus
No injection but malicious TFs).

The reason we employ this two-stage model is due to the limitations of other
possible approaches. For example, a multi-class classifier will not capture the
observation that some TFs are labeled with more than one label. Additionally,
we found that using multiple binary classifiers directly in a single stage, where
each classifier is trained for only one type of attack—versus all the other benign
and remaining malicious TFs—will lead to lower accuracy and a higher training
time. The low accuracy in this case is due to the higher possibility of false
positives because of using multiple classifiers at once. Therefore, we propose this
two-stage model to filter out the malicious TFs first using a global classifier,
then identify the type of malice separately.

In the operational phase, whenever a webpage is analyzed during operation,
the data of each TF retrieved while visiting the URL are used to predict whether
it is malicious or not. A URL is labeled as benign if all of its retrieved TFs were
classified as benign by the classification algorithm. Then, the type of malice is
identified through the second stage if the TF was labeled as malicious.

5 Evaluation

We present the evaluation and analysis of the proposed system. We give an
overview and description of the dataset with the evaluation procedure and met-
rics. Then, we introduce the performance of the binary classification mechanism
and malice label prediction, followed by the effect of feature selection on the
system accuracy.

5.1 Dataset Description and Statistics

The dataset we consider for evaluation consists of 20k webpages, 10k each of
“malicious” and “benign” types. These URLs were randomly selected from iDe-
termine’s operational history of Internet-scale crawling. As mentioned earlier,
iDetermine labels the webpages using sophisticated static and dynamic analysis
techniques, and hence we consider such labels as our ground truth labels. Ana-
lyzing the URLs of the dataset yields 800k benign TFs and 20k malicious TFs.
Each webpage contains about 40 TFs on average. A histogram of the number of
TFs per webpage is provided in Fig. 3. For the malicious webpages, a histogram
of the percentage of the number of malicious TFs per each malicious webpage
is shown in Fig. 4. The figure shows that for most malicious webpages, less than
10 % of the retrieved TFs are malicious. This confirms the intuition we have for
building the classifiers based on individual TFs.

The iDetermine system labels each malicious TF according to any type of
malice it uncovered. Note that a malicious TF may be labeled with more than
one label at the same time. That is a reason a classifier was built for each malice
type in the label prediction module. The distribution of vulnerabilities among
the malicious TFs can be illustrated in detail through Fig. 5.



10 A.E. Kosba et al.

Fig. 3. A histogram of TFs per web-
page

Fig. 4. Malicious TFs per malicious
webpages

Fig. 5. Distribution of malice among the TFs

5.2 Evaluation Procedure and Metrics

A prototype of the system was built using Python 2.7, and Scitkit-learn [20] was
used for data processing and classification. The evaluation of the system was con-
ducted using 10-fold cross-validation, in which the webpages dataset were divided
into 10 distinct partitions, nine of which are used for the training stage while the
remaining partition is used as the testing data. For consistency, the dataset was
partitioned randomly in a way that guarantees that the distribution of number
of TFs per webpage (shown before in Fig. 3) is roughly maintained, so that the
total number of TFs per partition is almost the same, since the TFs are the
main classification data units the system works on.

The performance metrics will be provided at both the TF and the webpage
granularity, with more focus on the latter since this is the end system goal.
Recall that a webpage is labeled as malicious if any of its TFs was labeled
by the classifier as malicious. The metrics considered for the evaluation are
mainly the false positives rate, which describes the ratio of the benign objects
that were labeled as malicious, and the false negatives rate which describes the
ratio of the malicious objects that were labeled as benign. We also measure the



ADAM: Automated Detection and Attribution of Malicious Webpages 11

effectiveness of the detection system through the F1-score, which is calculated
based on the harmonic mean of precision and recall. Precision refers to the
fraction of the objects that the system labeled as malicious that turned out to
be truly malicious, while recall is the ratio of the truly malicious objects that
the system was able to label malicious.

5.3 Binary Classification Performance

We start by describing the results of the first classification stage, which aims to
identify whether a webpage is malicious or benign, only. Table 1 enumerates the
performance metrics at both TF and webpage granularity, showing an overall
result of 7.6 % FN rate and 6.3 % FP rate for the webpage results. The reason
for having a 14.7 % FN rate on the TF-level is that simple metadata may not
be indicative for all types of TF malice behavior. Additionally, compared to
previous literature, the TF results are consistent with respect to the fact that
our TF records dataset is highly imbalanced. Literature studies showed that as
the data gets highly imbalanced, the accuracy degrades, e.g. 25 % FN rate at a
ratio of 100:1 of benign to malicious URLs [18].

To better understand how well the detection mechanism performed, Fig. 7
shows the detection rate per each vulnerability/attack type at the TF-level,
which describes the ratio of the TFs labeled as malicious successfully. Note that
the “injection” and “server side backdoor cases” were most detrimental to overall
performance. This is made clear in Table 2 which provides overall performance
without those problematic instances, resulting in 2.5 % FP rate and 4.8 % FN
rate overall.

Table 1. Binary classification results

Prec. Recall F-score FP FN

TF-level 0.390 0.852 0.530 0.0314 0.147

page-level 0.935 0.924 0.930 0.063 0.076

Table 2. Binary classification w/o
“injection”

Prec. Recall F-score FP FN

TF-level 0.527 0.873 0.657 0.0153 0.126

page-level 0.948 0.951 0.949 0.0257 0.048

5.4 Label Prediction Performance

After a TF is labeled as malicious by the system, the system labels it according
to the type of attack/malice it carries by the label prediction module described
earlier in Sect. 4. In this section, the results of this module are presented. The
main metric we used for the evaluation of the label prediction is the number of
different labels between the ground truth and the predicted ones. As an example
for illustration, if the ground truth is {Injection}, and the system labeled the
malicious TF as {Injection, Exploit}, then this is considered a difference of one. If
the predicted label was only {Exploit}, this is considered a difference of two, since
two changes are necessary to make the prediction correct. Figure 6 illustrates the
CDF of the label difference metric. As the figure clearly shows, the median of
the difference in label predictions is zero. In fact in more than 90 % of the cases,



12 A.E. Kosba et al.

Fig. 6. The CDF of the difference
in malice label predictions

Fig. 7. Detection rate per TF vulnera-
bility type for various malice types

Fig. 8. Performance of individual label prediction classifiers

there was no difference between the predicted labels and the ground truth, and
in only about 3 % of the cases there was a difference of two labels.

Furthermore, to evaluate the capability of each individual label prediction
classifier. Figure 8 shows the performance of each classifier, by providing two
quantities: the rate of miss-label, which indicates the ratio of the cases where a
classifier was not able to detect a TF that has the type of attack it’s concerned
with, and the rate of wrong-label which is the ratio of the cases where the
classifier gave a positive detection, while the TF does not include such type of
malice. As the figure indicates, with respect to the miss-label rate, the server side
backdoor classifier had the highest miss-label rate, which could be directly due
to the few samples of server side backdoors that the dataset has (recall Fig. 5).
Then, it can be observed the both the exploit and exploit kit classifiers have
high miss-label rates as well, which suggests that new exploit attacks that the
system did not specifically learn about may not be directly easy for the system
to infer. With respect to the wrong-label rate, one interesting observation is that
the injection classifier had the highest wrong-label rate. This could be because
most of the malicious TFs in the dataset are Injection attacks (recall Fig. 5),



ADAM: Automated Detection and Attribution of Malicious Webpages 13

Fig. 9. The CDF of the feature scores.
Note the vertical jump in the curve,
indicating that half of the features are
equally important.

Fig. 10. The effect of the number of
features on detection accuracy. The
detection accuracy gets stable after
using only 50 % of the features.

Table 3. Distribution of generated features

Feature category Number of features

Meta-data based 18850

URL-based 378740

TF tree-based 157

Domain name-based 419

IP-based 65153

which could have resulted tendency towards labeling malicious TFs as injection
due to the imbalanced training dataset.

5.5 Feature Selection Results

Due to the number of categorical features we have, high dimensional vectors
result due to feature binarization. This can have a negative effect on the scala-
bility of the system. Additionally, not all features after expansion/binarization
can be directly useful in identifying whether a webpage is malicious or not. In
this subsection, we provide some observations on feature selection results.

With respect to the chi-square score calculated for each feature by the feature
selection module, it can be observed that the feature scores considerably vary,
ranging from 10−5 to 105. To illustrate the distribution of the feature scores,
Fig. 9 provides the CDF of the logarithm of all feature scores over the dataset.
The main observation in this figure is that roughly the lowest 50 % of the features
have the same score (Note the vertical jump after −2). This may suggest that
half of the features may not be very important for the classification. This can
be confirmed next by studying the effect of the number of features used for
classification on the detection accuracy of the system. From another perspective,
Fig. 10 illustrates the effect of the number of used features on the F1-score.



14 A.E. Kosba et al.

The features are selected based on their scores; when n is the number of features
used, the top n features according to the scoring criteria are used. The figures
shows the performance increases rapidly till it reaches some point, beyond which
the F-score almost gets stable. This is consistent with the score CDF figure
provided before.

It is also interesting to identify how important each feature category is. Since
many of the features we use are categorical (and hence binarized), it may not be
very helpful to solely identify the best feature or group of features, because this
would be very specific to the dataset, and may be affected by the distribution of
the malice types in the dataset. It could be more useful to see the histogram of
the feature scores among the different feature categories that we employ in our
classification process. Figure 11 illustrates the histogram of the logarithm of the
feature scores among each feature category, while Table 3 shows the number of
features generated per each feature category. As shown in the figure, each cate-
gory has a percentage of its features with feature scores more than −2 (i.e. falling
in the top 50 % features), providing a motivation for employing all these features
for the classification process.

Fig. 11. Histograms of feature scores among feature categories

6 Conclusion and Future Work

This paper presented ADAM a system that uses machine learning over simple
network artifacts that are inferred during dynamic webpage execution. ADAM’s
goal is to detect whether a webpage is malicious or not, and to identify the
type of malice if the webpage was found malicious. Under cross-validation and
a dataset that spans different types of attack behavior, the system was able
to detect malicious webpages with an accuracy of 93 % identifying injection
and derver-side backdoor vulnerabilities as the main areas requiring detection
improvement. Excluding injection samples from the dataset has resulted in an



ADAM: Automated Detection and Attribution of Malicious Webpages 15

accuracy reaching 96 %. Additionally, the malice labeling module was able to
detect the label(s) of malicious TFs exactly in about 91 % of the cases, with a
difference of one and two labels in 6 % and 3 % of the cases respectively.

Several directions can be explored to extend this work. Since many of the
features have a dynamic nature over time, e.g., IP addresses, an adaptive mecha-
nism will be needed to capture such dynamic changes. Furthermore, more studies
could be done to enhance the accuracy of the model presented in this paper in
order to better detect injection and server side backdoor attacks, in addition to
identify exploit attacks.

References

1. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a
dynamic reputation system for DNS. In: USENIX Security (2010)

2. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting
malware domains at the upper DNS hierarchy. In: USENIX Security Symposium
(2011)

3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.:
Automated classification and analysis of internet malware. In: Kruegel, C., Lipp-
mann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer,
Heidelberg (2007)

4. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS (2009)

5. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: finding malicious
domains using passive DNS analysis. In: NDSS (2011)

6. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing
URL detection using online learning. In: AISec (2010)

7. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the World Wide Web
(WWW) (2011)

8. Chang, J., Venkatasubramanian, K.K., West, A.G., Lee, I.: Analyzing and defend-
ing against web-based malware. ACM Comput. Surv. 45(4), 49 (2013)

9. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 296–296 (2008)

10. Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. In: LEET (2010)

11. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of net-
work traffic for protocol and structure independent botnet detection. In: USENIX
Security (2008)

12. Gu, G., Porris, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: detecting mal-
ware infection through IDS-driven dialog correlation. In: USENIX Security (2007)

13. Gu, G., Zhang, J., Lee, W.: BotSniffer: detecting botnet command and control
channels in network traffic. In: NDSS (2008)

14. Hao, S., Thomas, M., Paxson, V., Feamster, N., Kreibich, C., Grier, C., Hollenbeck,
S.: Understanding the domain registration behavior of spammers. In: IMC (2013)

15. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effec-
tive and efficient malware detection at the end host. In: USENIX Security Sympo-
sium (2009)



16 A.E. Kosba et al.

16. Kong. D., Yan, G.: Discriminant malware distance learning on structural informa-
tion for automated malware classification. In: KDD (2013)

17. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: KDD (2009)

18. Ma, J., Saul, J.L.K., Savage, S., Voelker, G.M.: Learning to detect malicious URLs.
ACM Trans. Intell. Syst. Technol. 2(3), 30:1–30:24 (2011)

19. McGrath, D.K, Gupta, M.: Behind phishing: an examination of phisher modi
operandi. In: LEET (2008)

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

21. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: USENIX Security (2008)

22. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N., et al.: The
ghost in the browser analysis of web-based malware. In: HotBots (2007)

23. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a
real-time url spam filtering service. In: IEEE Security and Privacy (2011)

24. Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In
CODASPY (2013)

25. Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A.,
Kirda, E.: Beehive: large-scale log analysis for detecting suspicious activity in enter-
prise networks. In: ACSAC (2013)


	ADAM: Automated Detection and Attribution of Malicious Webpages
	1 Introduction
	2 Related Work
	3 iDetermine
	4 ADAM: System Structure and Overview
	4.1 Features Used for Classification
	4.2 Preprocessing and Feature Selection
	4.3 Classification

	5 Evaluation
	5.1 Dataset Description and Statistics
	5.2 Evaluation Procedure and Metrics
	5.3 Binary Classification Performance
	5.4 Label Prediction Performance
	5.5 Feature Selection Results

	6 Conclusion and Future Work
	References


