
Giac and GeoGebra – Improved Gröbner
Basis Computations

Zoltán Kovács1(B) and Bernard Parisse2

1 Johannes Kepler University, Altenberger Strasse 54, 4040 Linz, Austria
zoltan@geogebra.org

2 Institut Fourier, UMR 5582 du CNRS, Université de Grenoble, 100 Rue des Maths,
BP 53, 38041 Grenoble Cedex 9, France
bernard.parisse@ujf-grenoble.fr

Abstract. GeoGebra is open source mathematics education software
being used in thousands of schools worldwide. It already supports equa-
tion system solving, locus equation computation and automatic geometry
theorem proving by using an embedded or outsourced CAS. GeoGebra
recently changed its embedded CAS from Reduce to Giac because it fits
better into the educational use. Also careful benchmarking of open source
Gröbner basis implementations showed that Giac is fast in algebraic com-
putations, too, therefore it allows heavy Gröbner basis calculations even
in a web browser via Javascript.

Gröbner basis on Q for revlex ordering implementation in Giac is
a modular algorithm (E. Arnold). Each Z/pZ computation is done via
the Buchberger algorithm using F4 linear algebra technics and “remake”
speedups, they might be run in parallel for large examples. The output
can be probabilistic or certified (which is much slower). Experimenta-
tion shows that the probabilistic version is faster than other open-source
implementations, and about 3 times slower than the Magma implemen-
tation on one processor, it also requires less memory for big examples
like Cyclic9.

Keywords: Gröbner basis · Computer algebra · Computer aided math-
ematics education

1 Introduction: Heavy Computations in the Classroom

Mathematics education has always been influenced by culture and traditions,
nevertheless development of technology also played an important role in changing
the approach of the teacher and the subject of teaching. The availability of
personal computers and the computer algebra systems (CAS) being widespread
made possible to verify the results of manual solving of an equation, what is
more, to solve equations automatically and concentrate on higher level problems
in the classroom.

Solving an equation system in the high school is one of the most natural
mathematical problems, required not only by pure mathematics but physics and
c© Springer International Publishing Switzerland 2015
J. Gutierrez et al. (Eds.): Computer Algebra and Polynomials, LNCS 8942, pp. 126–138, 2015.
DOI: 10.1007/978-3-319-15081-9 7



Giac and GeoGebra – Improved Gröbner Basis Computations 127

chemistry as well. Despite of its importance the way of solving an equation
system is not trivial. In general, there is no algorithmic technique known which
covers all possible equation systems and returns all solutions of a problem in
finite time. As Wikipedia explains,

In general, given a class of equations, there may be no systematic method

(algorithm) that is guaranteed to work. This may be due to a lack of math-

ematical knowledge; some problems were only solved after centuries of effort.

But this also reflects that, in general, no such method can exist: some problems

are known to be unsolvable by an algorithm, such as Hilbert’s tenth problem,

which was proved unsolvable in 1970 [20].

Even after some restrictions (for example assuming that the equations are alge-
braic and the solutions are real numbers) there is no guarantee that the system
will be solvable quickly enough, however there are efficient methods already
which can compute a large enough set of problems of “typical uses”.

On the other hand, classroom use of modern equation solver algorithms (in
the background, i.e. invisibly for the students) cannot be restricted to direct
equation solving only. There are other fields of mathematics which seem distant
or unrelated with computer algebra, but still use heavy algebraic computations.
With no doubt two such fields in analytical geometry are automated theorem
proving (for computing proofs for Euclidean theorems in elementary geome-
try, see Fig. 1) and locus computation (for example to introduce the notion of
parabola analytically [14]).

In most classroom situations there is no importance in the applied algorithm
when an algebraic equation system must be solved in the background. Some
advanced problems which are normally present in the high school curriculum,
however, may lead to slow computations if the applied algorithm is not fast
enough.

In this paper first we show some possible classroom situations from the
present challenges of mathematics education by utilizing the dynamic geome-
try software GeoGebra. In Sect. 2 we demonstrate the bottleneck of GeoGebra’s
formerly used CAS (Reduce [9]) in its web based version, and show an alternative
CAS (Giac [18]) for the same modern classroom. Then we focus on benchmarking
Giac’s and other CAS’s especially in computing solutions of algebraic equation
systems, i.e. the Gröbner basis of a set of polynomials. In Sect. 3 we provide the
main concepts of Giac’s Gröbner basis algorithm with detailed benchmarks.

2 Computer Algebra in the Classroom

The introduction of smartphones and tablets with broadband Internet connec-
tion allows students to access educational materials from almost everywhere.
Ancsin et al. [1] argues that today’s classroom computers are preferably no
longer workstation PCs but tablets. Thus one of the most important question
for a software developer working for mathematics education is “will my program



128 Z. Kovács and B. Parisse

Fig. 1. Giac computes sufficient condition for the Euler’s line theorem in JavaScript.
Here the elimination ideal of 2v7 − v3, 2v8 − v4, 2v9 − v5 − v3, 2v10 − v6 − v4,−v11v10 +
v12v9,−v11v8+v12v7+v11v6−v7v6−v12v5+v8v5,−v14−v5+v3,−v13+v6 −v4,−v16+
v6 + v3,−v15 + v5 − v4, v17v14 − v18v13, v17v16 − v18v15 − v17v6 + v15v6 + v18v5 − v16v5,
2v19 − v5 − v3, 2v20 − v6 − v4, v22 − v20 − v19 + v3, v21 + v20 − v19 − v4, 2v23 − v3,
2v24 − v4, v26 − v24 − v23 + v3, v25 + v24 − v23 − v4,−v27v22 + v28v21 + v27v20 − v21v20 −
v28v19 + v22v19,−v27v26 + v28v25 + v27v24 − v25v24 − v28v23 + v26v23,−1 + v29v27v18 −
v29v28v17 − v29v27v12 + v29v17v12 + v29v28v11 − v29v18v11 is computed with respect to
revlex ordering for variables v7, v8, v9, . . . , v29. The result ideal contains v3v6 − v4v5
which yields the geometrical meaning “if triangle ABC is non-degenerate, then its
orthocenter H, centroid I and circumcenter G are collinear”.

work on a tablet”? Technically speaking, modern developments should move to
the direction of the HTML5 standard with JavaScript (JS) empowered.

Online access of web server based computer algebra systems became very
popular in the academic world during the last years, including many students
and teachers of a number of universities world-wide. For example, Sage1 has
already been famous not only for being freely available to download, but for its
free demonstration server http://cloud.sagemath.com. Similar approaches are
the SymPy Live/Gamma2 projects and the IPython Notebook3. On one hand,
these systems are free of charge and thus they can be well used in education,
and they are empowered by HTML5 and JS on the client side. On the other hand,
1 http://sagemath.org.
2 http://live.sympy.org, http://www.sympygamma.com.
3 http://ipython.org/notebook.html.

http://cloud.sagemath.com
http://sagemath.org
http://live.sympy.org
http://www.sympygamma.com
http://ipython.org/notebook.html


Giac and GeoGebra – Improved Gröbner Basis Computations 129

when no or only slow Internet connection is available, none of these systems can
be used conveniently because the server side computations are not available any
longer. This is why it seems to be a more fruitful approach to develop an offline
system which can be run locally on the user’s machine inside a web browser,
especially in those classrooms where no Internet connection is permitted.

GeoGebra developers, reported in [16], started to focus on implementing a
full featured offline CAS using the HTML5 technology. The first visible result in
May 2012 was the embedded system GGBReduce which offered many modules
of the Reduce CAS, using the Google Web Toolkit for compiling the JLisp Lisp
implementation into JS. This work is a official part of Reduce under the name
JSLisp now [12].

The first tests back in May 2011 were very promising: the http://www.
geogebra.org/mpreduce/mpreduce.html web page with the base system loaded
below 1 s and used 1.7 MB of JS code. Unfortunately, after adding some extra
modules and the Lisp heap, the initialization time of the Reduce system
increased drastically: see http://dev.geogebra.org/qa/?f= CAS mixture.ggb&
c=w-42-head for an example of GeoGebraWeb 4.2 (2.2 MB JS), the notifi-
cation message “CAS initializing” disappears only after 10 s or even more.
By contrast, http://dev.geogebra.org/qa/?f= CAS mixture.ggb&c=w-44-head
loads below 5 s, using the Giac CAS in GeoGebraWeb 4.4 (7.5 MB JS).

Test case http://dev.geogebra.org/qa/?f= CAS-commands.ggb&... shows
some typical classroom computations related to analyze a rational function as
an exercise. It includes factorizing a polynomial, turning a rational function into
partial fractions, computing the limit of a rational function at infinity, and com-
puting the asymptotes. Also conversion of symbolic to numeric, computation of
derivative and a solution of an equation in one variable are included. Finally,
GeoGebraWeb 4.4 displays the graph of the function and its derivative. The
entire process completes in 7 s. Each update takes 5 s.

These benchmarks were collected, however, on a modern PC. On low cost
machines the statistics will be worse, expecting further work on speedup the
computations preferably by using native code in the browser if possible.

2.1 JavaScript: The Assembly Language for the Web

Embedding a third party CAS usually requires a remarkable work in both the
main software and the embedded part. Figure 2 shows former efforts to include
a CAS in GeoGebra. JSCL, Jasymca [4], Jama [10] and Yacas/Mathpiper [13]
were used as native Java software, but Reduce is written in Lisp and Giac in
C++. (Not shown in the figure, but also Maxima was planned as an extra CAS
shipped with GeoGebra separately—this plan was finally cancelled.)

The main criteria for using a CAS was to be able to run in both the “desktop”
and “web” environments. The desktop environment, technically a Java Virtual
Machine, has used to be the primary user interface for many years since the
very beginning of the GeoGebra project, including platforms Microsoft Win-
dows, Apple’s Mac OS X, and Linux. The web environment is the new direction,

http://www.geogebra.org/mpreduce/mpreduce.html
http://www.geogebra.org/mpreduce/mpreduce.html
http://dev.geogebra.org/qa/?f=_CAS_mixture.ggb&c=w-42-head
http://dev.geogebra.org/qa/?f=_CAS_mixture.ggb&c=w-42-head
http://dev.geogebra.org/qa/?f=_CAS_mixture.ggb&c=w-44-head
http://dev.geogebra.org/qa/?f=_CAS-commands.ggb&...


130 Z. Kovács and B. Parisse

Fig. 2. Computer algebra systems used in GeoGebra from version 2.4 to 4.4. Orange
bars show that the corresponding version of GeoGebra was no longer developed by the
programmers, but still used by the community (Color figure online).

being capable of supporting platforms Windows 8, iPad, Android, and Google’s
Chromebook.

Our approach was to support both environments with the same codebase,
i.e. to make it possible to use the same source code for all platforms. This
has been succeeded by using the tools explained in Fig. 3. The speedup in the
initialization time is obvious: Giac is much faster in its startup, even if there is
a slowness factor between 1 and 10 compared to the Java Native Interface (JNI)
version, depending on the type of the computation.

GeoGebra since version 4.2 not only supports typical CAS operations but
dynamic geometry computations as well. An example is the LocusEquation
command which computes the equation of the locus (if its construction steps can
be described algebraically). The forthcoming version 5.0 will support Envelope
equations and automated geometry proofs in elementary geometry by using the
Prove command. It was essential to make benchmarks to test the underlying
algebra commands in Giac before really using them officially in 4.4.

“JavaScript is Assembly Language for the Web”, states Scott Hanselman
from Microsoft, citing Erik Meijer, former head of Cloud Programmability Team
at Microsoft [8]. The reasoning is as follows:

– JavaScript is ubiquitous.
– It’s fast and getting faster.
– Javascript is as low-level as a web programming language goes.
– You can craft it manually or you can target it by compiling from another

language.

On the other hand, despite being universal and fast, algebraic computations
programmed in a non-scripting (i.e. compiled) language (e.g. C or Java) are
still much faster than it is expectable for being run in a web browser using
the normal browser standards. After the JavaScript engine race 2008–2011 [22],
there is a second front of bleeding edge research to develop another standard
language of the web (Google’s Dart [23], for example), and a renewed focus
on C and C++ to compile them into browser independent or native bytecode



Giac and GeoGebra – Improved Gröbner Basis Computations 131

Fig. 3. Embedded computer algebra systems Reduce and Giac in GeoGebra 4.2 and
4.4. Reduce itself is embedded into JLisp and JSLisp.

(e.g. Google’s Portable and Native Client [21])4. Despite these new experimental
ways, JavaScript is still the de facto standard of portability and speed for modern
computers, and probably the best approach to generate as fast JavaScript code
for computer algebra algorithms as possible.5

To have an exact speed comparison of JNI and JS versions of Giac a modern
headless scriptable browser will be helpful. The new version of PhantomJS 6 has
already technical support to run Giac especially for benchmarking purposes: its
stable version is expected to be publicly available soon.

2.2 Benchmarks from Automated Theorem Proving

The GeoGebra Team already developed a benchmarking system for testing
various external computer algebra systems with different stress cases. In this
4 Giac has already been successfully compiled into .pexe and .nexe applications at

http://ggb1.idm.jku.at/∼kovzol/data/giac. The native executables for 32/64 bits
Intel and ARM achitecture binaries are between 9.7 and 11.9 MB, the portable exe-
cutable is 6.3 MB, however, the .pexe → .nexe compilation takes too long, at least
1min on a recent hardware. The runtime speed is comparable with the JNI version,
i.e. much faster than the JavaScript version.

5 Axel Rauschmayer, author of the forthcoming O’Reilly book Speaking JavaScript,
predicts JavaScript to run near-native performance in 2014 (see http://www.2ality.
com/2014/01/web-platform-2014.html for details). The speed is currently about
70% of compiled C++ code by using asm.js. This will, however, doubtfully speed
up the JS port of Giac like in a native client since it heavily uses the anonymous
union of C/C++ to pack data (unsupported in JS).

6 https://github.com/ariya/phantomjs/wiki/PhantomJS-2 contains a step-by-step
guide to compile the development version of PhantomJS version 2.

http://ggb1.idm.jku.at/~kovzol/data/giac
http://www.2ality.com/2014/01/web-platform-2014.html
http://www.2ality.com/2014/01/web-platform-2014.html
https://github.com/ariya/phantomjs/wiki/PhantomJS-2


132 Z. Kovács and B. Parisse

subsection we simply show the result of this benchmarking. In the next section
other tests will be shown between systems designed much more for algebraic
computations.

In this subsection we run the tests on open source candidates. GeoGebra is
an open source application due to its educational use: schools and universities
may prefer using software free of charge than paying for licenses.

The test cases are chosen from a set of simple theorems in elementary geome-
try. All tests are Gröbner basis computations in a polynomial ring over multiple
variables. The equation systems (i.e. the ideals to compute the Gröbner basis
for) can be checked in details at [15], the final summary (generated with default
settings in Giac as of September 2013) is shown in Table 1.

The conclusion of the statistics was that Giac would be comparable with the
best open source algebraic computation software, Singular. The first impression
of its speed was that it is good competitor of Reduce, thus a very good candidate
to be a long term basis for all CAS computations in GeoGebra. (Later Giac
was extended with an even faster algorithm for computing Gröbner basis, as
described in Sect. 3.)

3 Gröbner Basis Algorithm in Giac7

Starting with version 1.1.0-26, Giac [18] has a competitive implementation of
Gröbner basis for reverse lexicographic ordering, that will be described in this
section.

3.1 Sketch of E. Arnold Modular Algorithm

Let f1, . . . , fm be polynomials in Q[x1, . . . , xn], I = 〈f1, . . . , fm〉 be the ideal
generated by f1, . . . , fm. Without loss of generality, we may assume that the fi
have coefficients in Z by multiplying by the least common multiple of the denom-
inators of the coefficients of fi. We may also assume that the fi are primitive by
dividing by their content.

Let < be a total monomial ordering (for example revlex the total degree
reverse lexicographic ordering). We want to compute the Gröbner basis G of I
over Q (and more precisely the inter-reduced Gröbner basis, sorted with respect
to <). Now consider the ideal Ip generated by the same fi but with coeffi-
cients in Z/pZ for a prime p. Let Gp be the Gröbner basis of Ip (also assumed
to be inter-reduced, sorted with respect to <, and with all leading coefficients
equal to 1).

Assume we compute G by the Buchberger algorithm [3] with Gebauer and
Möller criterion [7], and we reduce in Z (by multiplying the s-poly to be reduced
by appropriate leading coefficients), if no leading coefficient in the polynomials
are divisible by p, we will get by the same process but computing modulo p
the Gp Gröbner basis. Therefore the computation can be done in parallel in

7 The content of this section is released under the Public Domain.



Giac and GeoGebra – Improved Gröbner Basis Computations 133

Table 1. Outputs of Gröbner basis benchmarking in seconds on an Intel Xeon CPU E3-
1220 V2 @ 3.10 GHz running Ubuntu Linux 11.10 in VirtualBox 4.2.10 on an Ubuntu
12.04.1 host. Timeout is 60 s, timed out tests are shown with empty cells. Average*
shows the average by computing 60 s computation time for tests being timed out.
Singular solved the first four tests below 0.01—the benchmarking system was unable
to measure timing under this precision. The CoCoA column shows the results of Giac
via CoCoAlib.

Z and in Z/pZ except for a finite set of unlucky primes (since the number of
intermediate polynomials generated in the algorithm is finite). If we are choosing
our primes sufficiently large (e.g. about 30 bits), the probability to fall on an
unlucky prime is very small (less than the number of generated polynomials
divided by about 230, even for really large examples like Cyclic9 where there are
a few 104 polynomials involved, it would be about 1e-5).

The Chinese remaindering modular algorithm works as follows: compute
Gp for several primes, for all primes that have the same leading monomials
in Gp, reconstruct G∏ pj

by Chinese remaindering, then reconstruct a candidate
Gröbner basis Gc in Q by rational (Farey) reconstruction. Once it stabilizes, do
the checking step described below, and return Gc on success.

Checking steps: check that the original fi polynomials reduce to 0 with respect
to Gc (fast check) and check that Gc is a Gröbner basis (slow check).

Theorem 1 (Arnold). If the checking steps succeed, then Gc is the Gröbner
basis of I.

This is a consequence of ideal inclusions (first check) and dimensions (second
check), for a complete proof, see [2]. The proof does not require that we recon-
struct from Gröbner basis for all primes p, it is sufficient to have one Gröbner
basis for one of the primes. This can be used to speedup computation like in
F4remake (Joux-Vitse, see [11]).



134 Z. Kovács and B. Parisse

3.2 Computation Modulo a Prime

The Buchberger algorithm with F4[5,6]-like linear algebra is implemented mod-
ulo primes smaller than 231 using total degree as selection criterion for critical
pairs.

1. Initialize the basis to the empty list, and a list of critical pairs to empty.
2. Add one by one all the fi to the basis and update the list of critical pairs

with Gebauer and Möller criterion, by calling the gbasis update procedure
(described below at step 9).

3. Begin of a new iteration:
All pairs of minimal total degree are collected to be reduced simultaneously,
they are removed from the list of critical pairs.

4. The symbolic preprocessing step begins by creating a list of monomials,
gluing together all monomials of the corresponding s-polys (this is done with
a heap data structure).

5. The list of monomials is “reduced” by division with respect to the current
basis, using heap division (like Monagan-Pearce [17]) without taking care
of the real value of coefficients. This gives a list of all possible remainder
monomials and a list of all possible quotient monomials and a list of all
quotient times corresponding basis element monomial products. This last list
together with the remainder monomial list is the list of all possible monomials
that may be generated reducing the list of critical pairs of maximal total
degree, it is ordered with respect to <. We record these lists for further
prime runs (speeds up step 4 and 5) during the first prime computation.

6. The list of quotient monomials is multiplied by the corresponding elements
of the current basis, this time doing the coefficient arithmetic. The result is
recorded in a sparse matrix, each row has a pointer to a list of coefficients
(the list of coefficients is in general shared by many rows, the rows have
the same reductor with a different monomial shift), and a list of monomial
indices (where the index is relative to the ordered list of possible monomials).
We sort the matrix by decreasing order of leading monomial.

7. Each s-polynomial is written as a dense vector with respect to the list of
all possible monomials, and reduced with respect to the sparse matrix, by
decreasing order with respect to <. (To avoid reducing modulo p each time,
we are using a dense vector of 128 bits integers on 64 bits architectures, and
we reduce mod p only at the end of the reduction. If we work on 24 bit signed
integers, we can use a dense vector of 63 bits signed integer and reduce the
vector if the number of rows is greater than 215).

8. Then inter-reduction happens on all the dense vectors representing the
reduced s-polynomials, this is dense row reduction to echelon form (0 columns
are removed first). Care must be taken at this step to keep row ordering for
further prime runs.

9. gbasis update procedure:
We record zero reducing pairs during the first prime iteration, this informa-
tion will be used during later iterations with other primes to avoid comput-
ing and reducing useless critical pairs (if a pair does not reduce to 0 on Q,



Giac and GeoGebra – Improved Gröbner Basis Computations 135

it has in general a large number of monomials therefore the probability that
it reduces to 0 on the first prime run is very small). Each non zero row will
bring a new entry in the current basis. New critical pairs are created with
this new entry (discarding useless pairs by applying Gebauer-Möller crite-
rion). An old entry in the basis may be removed if its leading monomial has
all partial degrees greater or equal to the leading monomial corresponding
degree of the new entry. Old entries may also be reduced with respect to the
new entries at this step or at the end of the main loop.

10. If there are new critical pairs remaining start a new iteration at step 3.
Otherwise the current basis is the Gröbner basis modulo p.

3.3 Probabilistic and Deterministic Check, Benchmarks

We first perform the fast check that the original fi polynomials reduce to 0
modulo Gc. Then the user has a choice between a probabilistic fast check (useful
for conjectures) and a deterministic slower certification for a computer assisted
proof.

Probabilistic checking algorithm: instead of checking that s-polys of critical
pairs of Gc reduce to 0, we will check that the s-polys reduce to 0 modulo several
primes that do not divide the leading coefficients of Gc and stop as soon as the
inverse of the product of these primes is less than a fixed ε > 0 (the check is
done only after the reconstructed basis stabilizes, with our examples the first
check was always successful).

Deterministic checking algorithm: check that all s-polys reduce to 0 over
Q. The fastest way to check seems to make the reduction using integer compu-
tations. We have also tried reconstruction of the quotients over Z/pZ for suffi-
ciently many primes: once the reconstructed quotients stabilize, we can check the
0-reduction identity on Z, and this can be done without computing the products
quotients by elements of Gc if we have enough primes (with appropriate bounds
on the coefficients of Gc and the lcm of the denominators of the reconstructed
quotients).

Benchmarks Comparison of Giac (1.1.0-26) with Singular 3.1 (from Sage 5.10)
on Mac OS X.6, Dual Core i5 2.3 Ghz, RAM 2 × 2Go:

– The benchmarks are the classical Cyclic and Katsura benchmarks, and a more
random example, described in the Giac syntax below:

alea6 := [5*x^2*t+37*y*t*u+32*y*t*v+21*t*v+55*u*v,
39*x*y*v+23*y^2*u+57*y*z*u+56*y*u^2+10*z^2+52*t*u*v,
33*x^2*t+51*x^2+42*x*t*v+51*y^2*u+32*y*t^2+v^3,
44*x*t^2+42*y*t+47*y*u^2+12*z*t+2*z*u*v+43*t*u^2,
49*x^2*z+11*x*y*z+39*x*t*u+44*x*t*u+54*x*t+45*y^2*u,
48*x*z*t+2*z^2*t+59*z^2*v+17*z+36*t^3+45*u];
l:=[x,y,z,t,u,v];



136 Z. Kovács and B. Parisse

p1:=prevprime(2^24); p2:=prevprime(2^29);
time(G1:=gbasis(alea6 % p1,l,revlex));
time(G2:=gbasis(alea6 % p2,l,revlex));
threads:=2; // <= to the number of CPU
// debug_infolevel(1); // uncomment for intermed. steps
proba_epsilon:=1e-7; // probabilistic algorithm.
time(H0:=gbasis(alea6,indets(cyclic5),revlex));
proba_epsilon:=0; // deterministic
time(H1:=gbasis(alea6,indets(cyclic5),revlex));

– Mod timings were computed modulo nextprime(2^24) and modulo 107374-
1827 (nextprime(2^30)).

– Probabilistic check on Q depends linearly on log of precision, two timings are
reported, one with error probability less than 1e-7, and the second one for
1e-16.

– Check on Q in Giac can be done with integer or modular computations hence
two times are reported.

Table 2. Benchmarks between Giac and Singular. means timeout (3/4 h or more)
or memory exhausted (Katsura12 modular 1e-16 check with Giac) or test not done
because it would obviously timeout (e.g. Cyclic8 or 9 on Q with Singular).

This leads to the following observations (see Table 2):

– Computation modulo p for 24 to 31 bits is faster that Singular, but seems also
faster than Magma (and Maple). For smaller primes, Magma is 2 to 3 times
faster.

– The probabilistic algorithm on Q is much faster than Singular on these exam-
ples (this probably means that Singular does not implement a modular algo-
rithm). Compared to Maple 16, it is reported to be faster for Katsura10, and
as fast for Cyclic8. Compared to Magma, it is about 3 to 4 times slower.

– If [19] is up to date (except about Giac), Giac is the third software and first
open-source software to solve Cyclic9 on Q (the link is rather old, but we



Giac and GeoGebra – Improved Gröbner Basis Computations 137

believe it is still correct). It requires 378 primes of size 29 bits, takes about
1 day, requires 3 GB of memory on 1 processor, while with 6 processors it takes
6 h (requires 6 GB). The answer has integer coefficients of about 1600 digits
(and not 800 as stated in J.-C. Faugère F4 article), for a little more than 1
million monomials, that’s about 1.4 GB of RAM.

– The deterministic modular algorithm is much faster than Singular for Cyclic
examples, and as fast for Katsura examples.

– For the random last example, the speed is comparable between Magma and
Giac. This is where there are less pairs reducing to 0 (“F4remake” is not as
efficient as for Cyclic or Katsura) and larger coefficients. This could suggest
that advanced algorithms like F4/F5/etc. are probably not much more efficient
than Buchberger algorithm for these kind of inputs without symmetries.

– Certification is the most time-consuming part of the process (except for
Cyclic8). Integer certification is significantly faster than modular certification
for Cyclic examples, and almost as fast for Katsura.

– We would like to stress that a computer assisted mathematical proof can
not be performed with a closed-source software without a certification step.
Therefore the relevant timings for comparison with closed-source pieces of
software is the probabilistic check.

Acknowledgments. The first author thanks Michael Borcherds and Zbyněk Konečný
for the test cases in benchmarking the embeddable computer algebra systems. The
second author wishes to thank Vanessa Vitse for insightful discussions and Frédéric
Han for testing.

References

1. Ancsin, G., Hohenwarter, M., Kovács, Z.: GeoGebra goes mobile. Electron. J.
Math. Technol. 5(2), 160–168 (2011)

2. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symbolic Com-
put. 35(4), 403–419 (2003)

3. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal the-
ory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel
Publishing Company, Dodrecht (1985)

4. Dersch, H.: Jasymca 2.0 – symbolic calculator for Java, Mar 2009. http://webuser.
hs-furtwangen.de/∼dersch/jasymca2/Jasymca2en/Jasymca2en.html

5. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139(1–3), 61–88 (1999)

6. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York
(2002)

7. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Sym-
bolic Comput. 6(2–3), 275–286 (1988)

8. Hanselman, S.: JavaScript is assembly language for the web: semantic markup is
dead! Clean vs. machine-coded HTML (2011). http://goo.gl/YKiO6B. Accessed 8
Jan 2014

http://webuser.hs-furtwangen.de/~dersch/jasymca2/Jasymca2en/Jasymca2en.html
http://webuser.hs-furtwangen.de/~dersch/jasymca2/Jasymca2en/Jasymca2en.html
http://goo.gl/YKiO6B


138 Z. Kovács and B. Parisse

9. Hearn, A.C.: REDUCE User’s Manual Version 3.8, Feb 2004. http://
reduce-algebra.com/docs/reduce.pdf

10. Hicklin, J., Moler, C., Webb, P., Boisvert, R.F., Miller, B., Pozo, R., Remington,
K.: JAMA: JAva MAtrix package, Nov 2012. http://math.nist.gov/javanumerics/
jama/

11. Joux, A., Vitse, V.: A variant of the F4 algorithm. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 356–375. Springer, Heidelberg (2011)

12. Kosan, T.: JSLisp. http://sourceforge.net/p/reduce-algebra/code/HEAD/tree/
trunk/jslisp

13. Kosan, T.: MathPiper, Jan 2011. http://www.mathpiper.org
14. Kovács, Z.: Definition of a parabola as a locus. GeoGebraTube material (2012).

http://www.geogebratube.org/student/m23662
15. Kovács, Z.: GeoGebra developers’ Trac wiki: theorem proving planning

(2012). http://dev.geogebra.org/trac/wiki/TheoremProvingPlanning. Accessed 8
Jan 2014

16. Kovács, Z.: GeoGebraWeb offers CAS functionality, May 2012. http://blog.
geogebra.org/2012/05/geogebraweb-cas/

17. Monagan, M., Pearce, R.: Sparse polynomial division using a heap. J. Symbolic
Comput. 46(7), 807–822 (2011)

18. Parisse, B., Graeve, R.D.: Giac/Xcas computer algebra system (2013). http://
www-fourier.ujf-grenoble.fr/∼parisse/giac fr.html

19. Steel, A.: Gröbner basis timings page (2004). http://magma.maths.usyd.edu.au/
∼allan/gb/

20. Wikipedia. Equation solving — Wikipedia, the free encyclopedia (2013). http://en.
wikipedia.org/w/index.php?title=Equation solving&oldid=580349875. Accessed
14 Jan 2014

21. Wikipedia. Google Native Client — Wikipedia, the free encyclopedia
(2013). http://en.wikipedia.org/w/index.php?title=Google Native Client&
oldid=588335015. Accessed 8 Jan 2014

22. Wikipedia. JavaScript engine — Wikipedia, the free encyclopedia (2013).
http://en.wikipedia.org/w/index.php?title=JavaScript engine&oldid=586802475.
Accessed 8 Jan 2014

23. Wikipedia. Dart (programming language) — Wikipedia, the free ency-
clopedia (2014). http://en.wikipedia.org/w/index.php?title=Dart (programming
language)&oldid=589448479 . Accessed 8 Jan 2014

http://reduce-algebra.com/docs/reduce.pdf
http://reduce-algebra.com/docs/reduce.pdf
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/jslisp
http://sourceforge.net/p/reduce-algebra/code/HEAD/tree/trunk/jslisp
http://www.mathpiper.org
http://www.geogebratube.org/student/m23662
http://dev.geogebra.org/trac/wiki/TheoremProvingPlanning
http://blog.geogebra.org/2012/05/geogebraweb-cas/
http://blog.geogebra.org/2012/05/geogebraweb-cas/
http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html
http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html
http://magma.maths.usyd.edu.au/~allan/gb/
http://magma.maths.usyd.edu.au/~allan/gb/
http://en.wikipedia.org/w/index.php?title=Equation_solving&oldid=580349875
http://en.wikipedia.org/w/index.php?title=Equation_solving&oldid=580349875
http://en.wikipedia.org/w/index.php?title=Google_Native_Client&oldid=588335015
http://en.wikipedia.org/w/index.php?title=Google_Native_Client&oldid=588335015
http://en.wikipedia.org/w/index.php?title=JavaScript_engine&oldid=586802475
http://en.wikipedia.org/w/index.php?title=Dart_(programming_language)&oldid=589448479
http://en.wikipedia.org/w/index.php?title=Dart_(programming_language)&oldid=589448479

	Giac and GeoGebra -- Improved Gröbner Basis Computations
	1 Introduction: Heavy Computations in the Classroom
	2 Computer Algebra in the Classroom
	2.1 JavaScript: The Assembly Language for the Web
	2.2 Benchmarks from Automated Theorem Proving

	3 Gröbner Basis Algorithm in Giac
	3.1 Sketch of E. Arnold Modular Algorithm
	3.2 Computation Modulo a Prime
	3.3 Probabilistic and Deterministic Check, Benchmarks

	References


