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Abstract. In this expository article we give an introduction to Ehrhart
theory, i.e., the theory of integer points in polyhedra, and take a tour
through its applications in enumerative combinatorics. Topics include
geometric modeling in combinatorics, Ehrhart’s method for proving that
a counting function is a polynomial, the connection between polyhe-
dral cones, rational functions and quasisymmetric functions, methods
for bounding coefficients, combinatorial reciprocity theorems, algorithms
for counting integer points in polyhedra and computing rational function
representations, as well as visualizations of the greatest common divisor
and the Euclidean algorithm.
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1 Introduction

Polyhedral geometry is a powerful tool for making the structure underlying many
combinatorial problems visible – often literally! In this expository article we give
an introduction to Ehrhart theory and more generally the theory of integer points
in polyhedra and take a tour through some of its many applications, especially
in enumerative combinatorics.

In Sect. 2, we start with two classic examples of geometric modeling in com-
binatorics and then introduce Ehrhart’s method for showing that a counting
function is a (quasi-)polynomial in Sect. 3. We present combinatorial reciprocity
theorems as a first application in Sect. 4, before we talk about cones as the basic
building block of Ehrhart theory in Sect. 5. The connection of cones to rational
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Fig. 1. (a) The graphic arrangement of the graph G. An edge between vertices vi and vj

corresponds to a hyperplane xi = xj . (b) Points in the cube correspond to colorings.
They can be visualized by drawing the graph G in a coordinate system such that the
height of a vertex vi is given by its color xi ∈ {1, . . . , k}. This induces an orientation of
the edges from the vertex with smaller to the vertex with the larger color. Moving from
coloring a through coloring b to coloring c we pass the hyperplane x2 = x3 which is not
part of the graphic arrangement; in b vertices v2 and v3 are at the same height. Moving
on through d to e we pass the hyperplane x1 = x2 which is in the graphic arrangement;
in d two adjacent vertices are at the same height, so d is not proper. Moving from c
to e thus reverses the orientation of the edge between vertices v1 and v2 (Color figure
online).

functions is the topic of Sect. 6, followed by methods for proving bounds on the
coefficients of Ehrhart polynomials in Sect. 7. Section 8 discusses a surprising con-
nection to quasisymmetric functions. Section 9 is about algorithms for counting
integer points in polyhedra and computing rational function representations, in
particular Barvinok’s theorem on short rational functions. Finally, Sect. 10 closes
with a playful look at the connection between the Euclidean algorithm and the
geometry of Z2.

2 Geometric Modeling in Combinatorics

Many objects in combinatorics can be conveniently modeled as integer vectors
that satisfy a set of linear equations and inequalities. In applied mathematics,
this paradigm has proven tremendously successful: the combinatorial optimiza-
tion industry rests to a large part on mixed integer programming. However, also
in pure mathematics this approach can help to prove theorems. We illustrate
this approach of constructing geometric models of combinatorial objects and
problems on two of the most classic counting functions in all of combinatorics:
The chromatic polynomial of a graph and the restricted partition function.

The chromatic polynomial χG(k) of a given graph G counts the number
of proper k-colorings of G. Let V be the vertex set of G and ∼ its adjacency
relation. A k-coloring is a vector x ∈ [k]V that assigns to each vertex v ∈ V
a color xv ∈ [k] := {1, . . . , k}. Such a k-coloring x is proper if for any two
adjacent vertices v ∼ w the assigned colors are different, i.e., xv �= xw. This
way of describing a coloring as a vector rather than a function already suggests
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Fig. 2. (a) The partition polytope is cut out from the standard simplex
{x | xi ≥ 0,

∑
xi = 1} by the braid arrangement of all hyperplanes xi = xj . (b) The

integer points in the partition polytope for k = 18 and m = 3 correspond to the
partitions of 18 in at most 3 parts.

a geometric point of view (Fig. 1). Define the graphic arrangement of G as the
set of all hyperplanes xv = xw for adjacent vertices v ∼ w. Then the chromatic
polynomial counts integer points x ∈ Z

V that are contained in the half-open
cube (0, k]V but do not lie on any of the hyperplanes in the graphic arrangement
of G, i.e.,

χG(k) = #Z
V ∩ {

x ∈ R
V | 0 < xv ≤ k and xv �= xw if v ∼ w

}
. (1)

The restricted partition function p(k,m) counts the number of partitions
of k into at most m parts.1 This can be modeled simply by defining a partition
of k into at most m parts as a non-negative vector x ∈ Z

m whose entries sum
to k and are weakly decreasing. For example, in the case m = 5 and k = 14 the
partition 14 = 7 + 5 + 2 would correspond to the vector (7, 5, 2, 0, 0). In short,

p(k,m) = #Z
m ∩ {x ∈ R

m | x1 ≥ x2 ≥ . . . ≥ xm ≥ 0 and
m∑

i=1

xi = k}. (2)

Geometrically speaking, the restricted partition function thus counts integer
points in an (m − 1)-dimensional simplex in m-dimensional space. This is visu-
alized in Fig. 2. Note that the constraints that all variables are non-negative and
that their sum is equal to k already defines an (m − 1)-dimensional simplex,
bounded by the coordinate hyperplanes. The braid arrangement, i.e., the set of
all hyperplanes xi = xj , subdivides this simplex into m! equivalent pieces; the
definition of the restricted partition function then selects the one piece in which
the coordinates are in weakly decreasing order.

It is interesting to observe that both constructions work with the braid arrange-
ment. Indeed, there are a host of combinatorial models that fit into this setting.
A great example are scheduling problems [21]: Given a number k of time-slots,

1 It is easy to adapt the following construction to the case of counting partitions with
exactly m parts by making one inequality strict.
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how many ways are there to schedule d jobs such that they satisfy a boolean for-
mula ψ over the atomic expressions “job i runs before job j”, i.e., xi < xj? E.g.,
if ψ = (x1 < x2) → (x3 < x2) then we would count all ways to place 3 jobs in k
time-slots such that if job 1 runs before job 2, then job 3 also has to run before 2.
We will return to scheduling problems in Sect. 8. However, the methods presented
in this article are not restricted to this setup as we will see.

3 Ehrhart Theory

For any set X ⊂ R
d the Ehrhart function ehrX(k) of X counts the number of

integer points in the k-th dilate of X for each 1 ≤ k ∈ Z, i.e.,

ehrX(k) = #Z
d ∩ (k · X).

Both our constructions from the previous section are of this form, since (1)
and (2) are, respectively, equivalent to

χG(k) = #Z
V ∩ k · {x ∈ R

n | 0 < xv ≤ 1 and xv �= xw if v ∼ w} ,

p(k,m) = #Z
m ∩ k · {x ∈ R

m | x1 ≥ x2 ≥ . . . ≥ xm ≥ 0 and
m∑

i=1

xi = 1}.

We will call the set X the geometric model of the counting function ehrX . The
central theme of this exposition is that geometric properties of X often translate
into algebraic properties of ehrX . Ehrhart’s theorem is the prime example of
this phenomenon. To set the stage, we introduce some terminology and refer to
[46,57] for concepts from polyhedral geometry not defined here.

A polyhedron is any set of the form P =
{
x ∈ R

d | Ax ≥ b
}

for a fixed matrix
A and vector b. All polyhedra in this article will be rational, i.e., we can assume
that A and b have only integral entries. A polytope is a bounded polyhedron.
Any dilate of a polytope contains only a finite number of integer points, whence
the Ehrhart function of a polytope is well-defined. A polyhedron is half-open if
some of its defining inequalities are strict. A partial polyhedral complex2 X is
any set that can be written as a disjoint union of half-open polytopes.

Our model of p(k,m) is a polytope. Our model of χG(k) is not, though, as it
is non-convex, disconnected and neither closed nor open. It is easily seen to be
a partial polytopal complex, though, e.g., by rewriting xv �= xw to (xv < xw) ∨
(xv > xw) and bringing the resulting formula in disjunctive normal form. This
makes partial polytopal complexes an extremely flexible modeling framework,
as summarized in the following lemma.
2 Classically, a polyhedral complex is a collection X of polyhedra that is closed under

passing to faces, such that the intersection of any two polyhedra in X is also in
X and is a face of both. In contrast, in a partial polyhedral complex some faces are
allowed to be open. This means that it is possible to remove an edge from a triangle –
including or excluding the incident vertices. It is sometimes useful to regard a partial
polyhedral complex as subset of a fixed underlying polyhedral complex, so as to be
able to refer to the vertices of the underlying complex, for example. We will disregard
these technical issues in this expository paper, however.
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Lemma 1. Let ψ be any boolean formula over homogeneous linear equations
and inequalities with rational coefficients in the variables x1, . . . , xd, k, such that
for every k the set of all x such that ψ(x) is bounded. Then there exists a partial
polytopal complex X such that for all 1 ≤ k ∈ Z,

#
{
x ∈ Z

d | ψ(x, k)
}

= ehrX(k).

The generality of Ehrhart functions of partial polytopal complexes underlines
the strength of the following famous theorem by Eugène Ehrhart.

Theorem 1 (Ehrhart [31]). If X is partial polytopal complex3, then ehrX(k)
is a quasipolynomial.

Quasipolynomials are an important class of counting functions which capture
both polynomial growth and periodic behavior. A function p(k) is a quasipoly-
nomial if there exist polynomials p0(k), . . . , p�−1(k) such that

p(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0(k) if k ≡ 0 mod �
p1(k) if k ≡ 1 mod �
...
p�−1(k) if k ≡ � − 1 mod �

for all k ∈ Z. The polynomials pi are called the constituents of p and their
number is a period of p. The period is not uniquely determined, but of course
the minimal period is; every period is a multiple of the minimal period. The
degree of p is the maximal degree of the pi. If d is the degree of p and � a period
of p, then p is uniquely determined by � · (d + 1) values of p, or more precisely,
by d + 1 values p(k′ · � + i) for each i = 0, . . . , � − 1. This is why it makes sense
to say that ehrX “is” a quasipolynomial, even though we have defined Ehrhart
functions only at positive integers. As an example, the quasipolynomial given by
the restricted partition function p(k, 2) is computed by interpolation in Fig. 3.

Given this terminology, we can make our above statement of Ehrhart’s theo-
rem more precise. Restricting our attention to polytopes P for the moment, the
following hold for ehrP . First, all constituents of ehrP have the same degree. That
degree is the dimension of P . Second, the leading coefficient of all constituents of
P in the monomial basis is the volume of P . Third, the least common multiple
of the denominators of all vertices of P is a period of ehrP . More precisely, if
v1, . . . , vN ∈ Q

d are the vertices of P and vi,j = ai,j

bi,j
∈ Q, then

� = lcm({bi,j | i = 1, . . . , N, j = 1, . . . , d})

is a period of ehrP . In particular, if the vertices of P are all integral the Ehrhart
function is a polynomial.
3 Ehrhart formulated his theorem for polytopes, not for partial polytopal complexes.

The generalization follows immediately, however, since for any partial polytopal com-
plex X the Ehrhart function ehrX is a linear combination of Ehrhart functions of
polytopes.
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Fig. 3. By counting the integer points in the dilates of P and interpolating, we can
compute the Ehrhart quasipolynomial of P . In this case P is the restricted partition
polytope for partitions into at most 2 parts.

Ehrhart’s theorem thus provides a very general method for proving that count-
ing functions are (quasi-)polynomials. Simply by virtue of the geometric models
from Sect. 2, we immediately obtain that the chromatic function is a polynomial
because the vertices of our geometric model are integral. This proof of polynomial-
ity is very different from the standard deletion-contraction method and generalizes
to counting functions that do not satisfy such a recurrence, including all schedul-
ing problems. Also we find that the restricted partition function into m parts is a
quasipolynomial with period lcm(1, 2, . . . ,m): The numbers 1, 2, . . . ,m appear in
the denominators of the vertices, since we intersect the braid arrangement with
the simplex {x | xi ≥ 0,

∑
xi = 1} instead of the cube. For more on the restricted

partition function from an Ehrhart perspective, see [19].
Lemma 1 can be generalized even further, for example by allowing quantifiers

via Presburger arithmetic [56] or by considering the multivariate case [55]. As a
great introductory textbook on Ehrhart theory we recommend [10].

4 Combinatorial Reciprocity Theorems

Now that we know that the Ehrhart function ehrP of a polytope P is in fact a
quasipolynomial we can evaluate it at negative integers. Even though the Ehrhart
function itself is defined only at positive integers, it turns out that the values of
ehrP at negative integers have a very elegant geometric interpretation: ehrP (−k)
counts the number of integer points in the interior of k · P .

Theorem 2 (Ehrhart-Macdonald Reciprocity [43]). If P ⊂ R
n is a poly-

tope of dimension d and 0 < k ∈ Z then

ehrP (−k) = (−1)d · (#Z
n ∩ k · P ◦).
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Here P ◦ denotes the relative interior of P , which means the interior of P
taken with respect to the affine hull4 of P . If P is given in terms of a system of
linear equations and inequalities, the relative interior is often easy to determine.
For example, if P is defined by Ax ≥ b and A′x = b′, and A′ contains all
equalities of the system5, then P ◦ is given by Ax > b and A′x = b′. In short, all
we need to do is make weak inequalities strict.

Ehrhart-Macdonald reciprocity provides us with a powerful framework for
finding combinatorial reciprocity theorems, i.e., combinatorial interpretations of
the values of counting functions at negative integers. We start with a counting
function f defined in the language of combinatorics and translate this counting
function into the language of geometry by constructing a linear model. In the
world of geometry, we apply Ehrhart-Macdonald reciprocity to find a geometric
interpretation of the values of f at negative integers. Translating this geometric
interpretation back into the language of combinatorics, a process which can be
quite subtle, we then arrive at a combinatorial reciprocity theorem.

Let us start with the example of the restricted partition function p(k,m).
Applying Theorem2 it follows that, up to sign, p(−k,m) counts vectors x such
that x1 > x2 > . . . > xm > 0 and

∑
xi = k for any positive integer k. Interpret-

ing this geometric statement combinatorially, we find:

Theorem 3. Up to sign, p(−k,m) counts partitions of k into exactly m distinct
parts.

This result seems to be less well-known in partition theory than one would
expect, even though it is an immediate consequence of Ehrhart-Macdonald reci-
procity; see also [19]. A very similar geometric construction, however, is the basis
of Stanley’s work on P -partitions and the order polynomial [49] which has many
nice extensions, e.g., [39].

Next, we consider the chromatic polynomial χG(k). The model XG we use
here is slightly different from (1) in that we work with the open cube (0, k + 1)V .
This introduces a shift ehrXG

(k) = χG(k − 1). The advantage is that XG is now
a disjoint union of open polytopes P1, . . . , PN . As already motivated by Fig. 1, it
turns out that the Pi are in one-to-one correspondence with the acyclic orienta-
tions6 of the graph G [35]. Applying Theorem2 to each component individually,
we find that χG(−k) counts all integer vectors x in the closed cube such that
points on the hyperplanes xv = xw have a multiplicity equal to the number of
closed components P̄i they are contained in. To interpret this combinatorially,
we define an orientation o and a coloring x of G to be compatible if, when mov-
ing along directed edges, the colors of the vertices always increase or stay the
same. Putting everything together and taking the shift into account we obtain

4 The affine hull of P is the smallest affine space containing P . Affine spaces are the
translates of linear spaces.

5 More precisely, we require that the affine hull of P is {x | A′x = b′} and that for
every row a of A the linear functional 〈a, x〉 is not constant over x ∈ P .

6 An orientation of a graph G is acyclic, if it contains no directed cycles.
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Fig. 4. (a) A directed graph G and the flow problem G defines. (b) The corresponding
partial polyhedral complex X. (c) The labelings of G given by the points v, w along
with the different totally cyclic orientations of G/ supp(v) = G/ supp(w).

Stanley’s reciprocity theorem for the chromatic polynomial below. The geomet-
ric proof we described is due to Beck and Zaslavsky [12] and can be generalized
to cell-complexes [7].

Theorem 4 (Stanley [47]). Up to sign, χG(−k) counts pairs (x, o) of (not
necessarily proper) k-colorings x and compatible acyclic orientations o of G.

Next, the modular flow polynomial of a graph provides us with an example of
a combinatorial reciprocity theorem that was first discovered via the geometric
approach and that makes use of a different construction, unrelated to the braid
arrangement. This example is illustrated in Fig. 4. A Zk-flow on a directed graph
G with edge set E is a vector y ∈ Z

E
k that assigns to each edge of G a number

such that at each vertex v of G the sum of all flows into v equals the sum of
all flows out of v, modulo k. The modular flow polynomial ϕG(k) of G counts
Zk-flows on G that are nowhere zero. To model this in Euclidean space, we
identify the elements of Zk with the integers 0, . . . , k − 1. Nowhere zero vectors
y ∈ Z

E
k thus correspond to integer points y ∈ (0, k)k in the k-th dilate of the open

unit cube. If A ∈ Z
V ×E is the incidence matrix of G, the constraint that flow

has to be conserved at each vertex can be expressed simply by requiring Ay ≡ 0
mod k, or, equivalently, by ∃b ∈ Z

V : Ay = kb. Note that for only finitely many
b ∈ Z

V the hyperplane Ay = b intersects the unit cube (0, 1)E . Let P1, . . . , PN

denote these sections and let X be their union. Then ϕG(k) = ehrX(k).
Applying Ehrhart-Macdonald reciprocity, we obtain that, up to sign, ϕG(−k)

counts integer points in the k-th dilate of the union of the closures P̄i. In partic-
ular, we now count vectors that may have both entries 0 and k, which are both
congruent zero mod k, but which we have to count as different as Fig. 4 shows.
This observation suggests that to find a combinatorial interpretation, we may
want to consider assigning two different kinds of labels to the edges with zero
flow. Pursuing this line of thought eventually leads to the following combinator-
ial reciprocity theorem, which again can be generalized to cell complexes [7], see
also [13,15].

Theorem 5 (Breuer-Sanyal [22]). Up to sign, ϕG(−k) counts pairs (y, o) of
a Zk-flow y on G and a totally cyclic reorientation of G/ supp(y).
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Here a reorientation is a labeling of the edges of a directed graph with + or −,
indicating whether the direction of the edge should be reversed or not. Such a
reorientation is totally cyclic, if every edge of the resulting directed graph lies
on a directed cycle. supp(y) denotes the set of edges where y is non-zero and
G/ supp(y) denotes the graph where supp(y) has been contracted.

For more on combinatorial reciprocity theorems we recommend the forth-
coming book [11].

5 Cones and Fundamental Parallelepipeds

A polyhedral cone or cone, for short, is the set of all linear combinations with
non-negative real coefficients of a finite set of generators v1, . . . , vd ∈ Q

n. If the
generators are linearly independent, the cone is simplicial. The cone is pointed
or line-free if it does not contain a line {u + λv | λ ∈ R}.

Cones are the basic building blocks of Ehrhart theory, because the sets of
integer points in simplicial cones have a very elegant description, which is illus-
trated in Fig. 5. Let v1, . . . , vd ∈ Z

n be linearly independent, and consider the
simplicial cone coneR(v1, . . . , vd) generated by them. The discrete cone or semi-
group coneZ(v1, . . . , vd) of all non-negative integral combinations of the vi reaches
only those integer points in coneR that lie on the lattice Zv1 + . . . + Zvd gen-
erated by the vi. However, by shifting the discrete cone to all integer points in
the fundamental parallelepiped Π(v1, . . . , vd) we can not only capture all inte-
ger points in C, but we moreover partition them into #Z

n+1 ∩ Π(v1, . . . , vd) =
|det(v1, . . . , vd)| disjoint classes. This number of integer points in the fundamen-
tal parallelepiped is called the index of C. Define

coneR(v1, . . . , vd) =

{
d∑

i=1

λivi

∣
∣
∣
∣
∣
0 ≤ λi ∈ R

}

,

coneZ(v1, . . . , vd) =

{
d∑

i=1

λivi

∣
∣
∣
∣
∣
0 ≤ λi ∈ Z

}

,

Π(v1, . . . , vd) =

{
d∑

i=1

λivi

∣
∣
∣
∣
∣
0 ≤ λi < 1

}

.

Lemma 2. Let v1, . . . , vd ∈ Z
n be linearly independent. Then

Z
n ∩ coneR(v1, . . . , vd) = (Zn ∩ Π(v1, . . . , vd)) + coneZ(v1, . . . , vd).

The main benefit of this decomposition is that it splits the problem of describing
the integer points in a cone to into two parts: The finite problem of enumerat-
ing the integer points in the fundamental parallelepiped, and the problem of
describing the discrete cone, which is easy as we shall see below. As an applica-
tion of this result, we will now prove Ehrhart’s theorem for polytopes.
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Fig. 5. (a) The discrete cone coneZ(v1, v2) generated by v1 and v2. Its fundamental
parallelepiped is shaded. (b) To generate all points in Z

2 ∩ coneR(v1, v2) the discrete
cone has to be translated by every integer point in the fundamental parallelepiped
(shown as diamonds).

Fig. 6. (a) The three first dilates of a polytope P ′ in the plane. (b) The polytope
P = P ′ ×{1} embedded in 3-space and the cone C = cone(P ) over P . Sections Hk ∩C
are lattice equivalent to the dilates of P ′.

Suppose we want to compute the Ehrhart function of a polytope P ′ ⊂ R
n.

We embed P ′ at height 1 in R
n+1, i.e., we pass to P = P ′ × {1} ⊂ R

n+1.
Then, we consider the set cone(P ) of all finite linear combinations of elements
in P with non-negative real coefficients as shown in Fig. 6. The intersections of
cone(P ) with the hyperplanes Hk := {x | xn+1 = k} are lattice equivalent7 to
the dilates k · P we are interested in. If we can describe the number of integer
points in such sections of polyhedral cones, we will have a handle on computing
Ehrhart functions.

Before we continue, we observe that we can make two more simplifications.
First, we can restrict our attention to simplicial cones. While in general cone(P )
will of course not be simplicial, we can always reduce the problem to simplicial

7 Two sets X, Y ⊂ Z
n are lattice equivalent if there exists an affine isomorphism

x �→ Ax + b that maps X to Y and which induces a bijection on Z
n.
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Fig. 7. The 4�-th level of C = coneZ(v1, v2, v3) decomposes naturally into the 4�-th
level of coneZ(v1, v2) and a shift of the 3�-th level of C.

cones by triangulating P . Second, we note that while cone(P ) is indeed finitely
generated by the vertices w1, . . . , wN of P , these wi may be rational vectors.
Instead, we would like to work with generators vi that are all integer and all
at the same height wrt. the last coordinate. This can be achieved by letting �
denote the smallest integer such that �·wi ∈ Z

n+1 for all i and setting vi := �·wi.
We have thus reduced the problem of computing the Ehrhart function of

P ′ to computing Z
n+1 ∩ Hk ∩ CR, the number of integer points at height k

in a simplicial cone CR := coneR(v1, . . . , vd) given by integral generators with
last coordinate equal to a constant �. Following Lemma 2 we concentrate on
CZ := coneZ(v1, . . . , vd) first. Since the last coordinate of all vi is �, CZ ∩ Hk is
empty if k �≡ 0 mod �. On the other hand, if k ≡ 0 mod � and k > 0, then

Hk ∩ coneZ(v1, . . . , vd) = vd + (Hk−� ∩ coneZ(v1, . . . , vd)) ∪ (Hk ∩ coneZ(v1, . . . , vd−1)).

This is an instance of Pascal’s recurrence for the binomial coefficients, illus-
trated in Fig. 7, which yields for all integers k ≥ 0,

#H�·k ∩ coneZ(v1, . . . , vd) =
(

k + d − 1
d − 1

)

and #Hk ∩ coneZ(v1, . . . , vd) = 0 if k �≡ 0 mod �.
Applying Lemma 2 we see that to get the counting function for CR, we need

to shift the discrete cone CZ by all the integer points in the fundamental par-
allelepiped, which allows us to reach lattice points at heights k which are not a
multiple of �. Organizing these shifts according to the last coordinate, we obtain
for any k ≥ 0 and 0 ≤ r < �

#
(
Z

n+1 ∩ H�·k+r ∩ CR

)

= h∗
r

(
k + d − 1

d − 1

)
+ h∗

�+r

(
k + d − 2

d − 1

)
+ . . . + h∗

(d−1)·�+r

(
k

d − 1

)
(3)

where h∗
i denotes the number of integer points at height i in Π(v1, . . . , vd).

Note that if we are interested in #
(
Z

n+1 ∩ Hm ∩ CR

)
for an arbitrary non-

negative m then we can always write m = �k + r such that k ≥ 0 and 0 ≤ r < �
simply by doing division with remainder. Also note that (3) is a polynomial
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of degree d − 1 in k for each fixed r. Since r changes periodically with m, the
counting function m → #

(
Z

n+1 ∩ Hm ∩ CR

)
is a quasipolynomial of period �.

By construction, ehrP (k) is a sum of such expressions and therefore itself a
quasipolynomial, which completes the proof of Theorem1.

6 Connection to Rational Functions

The results and constructions of the previous section translate immediately into
the language of generating functions, formal power series and rational functions.
When we represent an integer point v ∈ Z

n by a multivariate monomial zv :=
zv1
1 · . . . · zvn

n , the set of integer vectors in any given set S ⊂ Z
n can be written

as a multivariate generating function

φS(z) =
∑

v∈Zn∩S

zv.

Using the familiar geometric series expansion 1
1−zv =

∑∞
i=0 ziv we see that

generating functions of “discrete rays” of integer vectors can be represented as
rational functions. Indeed, both discrete cones and Lemma2 can be expressed
succinctly in terms of rational functions.

φconeZ(v1,...,vd)(z) =
1

(1 − zv1) · . . . · (1 − zvd)
. (4)

φconeR(v1,...,vd)(z) =

∑
v∈Zn∩Π(v1,...,vd)

zv

(1 − zv1) · . . . · (1 − zvd)
. (5)

If we specialize by substituting zi = q for each i, then we obtain (1 − q�)d in
the denominator, since, by construction, all generators vi have coordinate sum �.
This explains the appearance of binomial coefficients, since

1
(1 − q�)d

=
∞∑

k=0

(
k + d − 1

d − 1

)
q�·k

which turns (3) into

∞∑

k=0

ehrP (k)qk =
h∗
0q

0 + . . . + h∗
d·�−1q

d·�−1

(1 − q�)d
. (6)

In this way, many arithmetic calculations on the level q-series can be viewed
as the projection of a geometric construction, via multivariate generating func-
tions. The richer multivariate picture can be of use, for example, when converting
arithmetic proofs into a bijective proofs, see [19].

Intuitively, we can think of the generating functions φS as weighted indica-
tor functions of sets of integer vectors. Starting with generating functions φP

for polyhedra P and taking linear combinations of these, we obtain an algebra
P of polyhedral sets. However, working with rational function representations
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Fig. 8. Let v1 = (−2, 1) and v2 = (0, 1). Modulo lines, the closed cone C1 generated by
v1 and v2 is equal to the negative of the half-open cone C2 generated by −v1 and v2.
Integer points in corresponding fundamental parallelepipeds are shown as diamonds.

introduces an equivalence relation on this algebra. For example, we can expand
1

1−z either as
∑∞

i=0 zi, the indicator function of all non-negative integers, or as
−∑∞

i=1 z−i, minus the indicator function of all negative integers. This phenom-
enon generalizes to multivariate generating functions: To determine the formal
expansion of a rational function uniquely, we have to fix a “direction of expan-
sion” which can be given for example in terms of a suitable pointed cone. For
details we refer the reader to, e.g., [2,6,9,10]. Important for our purposes is that
to each rational function there corresponds an equivalence class of indicator func-
tions and the simple example of the geometric series tells us what the equivalence
relation is: Two elements in the algebra of polyhedral sets are equivalent if they
are equal modulo lines, i.e., modulo sets of the form {u + λv | λ ∈ Z} for some
u, v ∈ Z

n. We say that a generating function φ is represented by some rational
function expression ρ if there exists a pointed cone C such that the expansion of
ρ in the direction C gives φ; for this to be feasible we assume that the support
of φ does not contain a line. Choosing a different direction C ′ for the expansion
of ρ produces a generating function φ′ that is equal to φ modulo lines.

Working with indicator functions of cones modulo lines does have its advan-
tages. Most importantly, this allows us to “flip” cones by reversing the direction
of some (or all) of their generators and opening some of their faces accordingly,
as shown in Fig. 8.

One beautiful application of this phenomenon is Brion’s theorem, which
allows us to represent φP for any line-free polyhedron P in terms of rational
function representations of cones, i.e., as a linear combination of expressions of
the form (5). Brion’s theorem is motivated in Fig. 9.

For a polyhedron P we define the vertex cone vcone(v, P ) at a vertex v of P
as the set

vcone(v, P ) = v + coneR(v1, . . . , vN ),

where the vi are the directions of the edges incident to v, oriented away from v.
We can easily represent each vertex cone by a rational function: For a simplicial
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Fig. 9. Modulo lines, a polytope is equal to the sum of its vertex cones. In 2 dimensions,
this is easy to see by iteratively flipping cones.

cone C we define ρC as the rational function expression given in (5).8 For a non-
simplicial cone C we define ρC as a linear combination of such expressions, given
via a triangulation of C. Then, the generating function of the set of integer points
in P is the sum of the rational function representations of the vertex cones.

Theorem 6 (Brion [24]). Let P be a polyhedron that does not contain any
affine line. Then

φP =
∑

v vertex of P

ρvcone(v,P )(z).

The theorem of Lawrence-Varchenko [41,53] is the corresponding analogue
for cases in which it is necessary to work with indicator functions directly, not
with equivalence classes modulo lines. It expresses φP as an inclusion-exclusion
of vertex cones which have been “flipped forward” so that their generators all
point consistently in one direction of expansion as shown in Fig. 10.

7 Coefficients of (Quasi-)Polynomials

The geometric perspective provides a wide range of methods for establishing
bounds on the coefficients of counting (quasi-)polynomials. In this section we
will focus on polynomials for simplicity, but the results generalize to quasipoly-
nomials.

The monomial basis is of course the classic choice for computing coefficients
of polynomials. Geometrically, the elements of the monomial basis of the space of
polynomials are the Ehrhart functions ehr[0,1)i(k) = ki of half-open cubes [0, 1)i

of varying dimension. For us, it will be expedient to work with two different bino-
mial bases instead, whose elements are the Ehrhart functions ehrΔd

i
(k) =

(
k+d−i

d

)

8 Here it is important to note that (5) works also for cones with an apex v �= 0: All
we have to do is take the fundamental parallelepiped Π to be rooted at v instead
of the origin. This simply amounts to translating the fundamental parallelepiped as
defined in Sect. 5 by v.
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Fig. 10. The Lawrence-Varchenko decomposition of a pentagon. The sign next to the
apex of each vertex cone C specifies whether C is to be added or subtracted. The
number in each region is the net balance of how often points in the region are counted
when the signed vertex cones are summed. All generators point of all vertex cones point
to the right, which means all vertex cones are forward.

of unimodular9 d-dimensional half-open simplices Δd
i with i open facets. Up to

lattice equivalence, such a Δd
i has the form

Δd
i =

⎧
⎨

⎩
x ∈ R

d+1

∣
∣
∣
∣
∣
x1 > 0, . . . , xi > 0, xi+1 ≥ 0, . . . , xd+1 ≥ 0,

∑

j

xj = 1

⎫
⎬

⎭
.

These unimodular half-open simplices Δd
i form the basic building block of

Ehrhart theory. They offer two different ways in which we can use them to
construct a basis of the space of polynomials. The first basis, which defines the
h∗-coefficients, fixes the dimension d of the simplices and varies the number i of
open facets. In contrast, the second basis, which defines the f∗-coefficients, uses
only open simplices with i = d + 1, but varies their dimension d.

Formally, the h∗-vector (h∗
0, . . . , h

∗
d) and the f∗-vector (f∗

0 , . . . , f∗
d ) of a poly-

nomial p(k) of degree at most d are defined by

p(k) = h∗
0

(
k + d

d

)
+ h∗

1

(
k + d − 1

d

)
+ . . . + h∗

d

(
k

d

)

= f∗
0

(
k − 1

0

)
+ f∗

1

(
k − 1

1

)
+ . . . + f∗

d

(
k − 1

d

)
.

Let us begin by taking a closer look at the h∗-coefficients. As we have
seen in (3) and (6), the h∗-vector of the Ehrhart quasipolynomial of a simplex
9 A simplex Δ with integer vertices is unimodular if the fundamental parallelepiped

of cone(Δ × {1}) contains only a single integer vector: the origin. Equivalently
Z

n ∩ coneR(Δ × {1}) = coneZ(Δ × {1}).
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Fig. 11. (a) A half-open 2-dimensional partial polytopal complex and a partition into
half-open 2-dimensional simplices. (b) A half-open partial polytopal complex X that
is not partitionable. A partition of this complex with half-open 2-dimensional sim-
plices would have to contain a 2-dimensional simplex with at least two edges and,
consequently, at least one vertex. However, X does not contain any of its vertices.
(c) A decomposition of X into open simplices of various dimension.

Δ counts lattice points at different heights in the fundamental parallelepiped
of cone(Δ × {1}), which immediately implies h∗

i ≥ 0. This observation extends
to half-open simplices where some facets have been removed. It follows that if
a geometric model X can be partitioned into half-open simplices that are all
of full dimension, as shown in Fig. 11(a), it follows that ehrX has non-negative
h∗-vector as well. As it turns out, all (closed convex) polytopes have such a
partitionable triangulation, which proves non-negativity of the h∗-vector for all
polytopes.

Theorem 7 (Stanley [48]). If P is an integral polytope, then ehrP has a non-
negative h∗-vector.

However, as the examples of the chromatic polynomial and the flow polynomial
from Sects. 2 and 4 show, the geometric models X that appear in combinatorial
applications of Ehrhart theory are not simply polytopes: Often they are non-
convex, disconnected, half-open or have non-trivial topology. This can lead to
geometric models X that are not partitionable and, consequently, to counting
polynomials with negative h∗-coefficients.

Figure 11(b) gives an example of a half-open partial polytopal complex that
is not partitionable: A partition of the complex in Fig. 11(b), for example, would
require 4 half-open simplices of dimension 2 that have, in total, 6 closed edges
but contain none of the vertices of the complex, which is impossible. Here it is
important to recall that, because we are working with the h∗ basis, all half-open
simplices participating in a partition are required to have the same dimension
(in this example, dimension 2).

Such phenomena appear in practice. One prominent example of natural
counting polynomials with negative entries in their h∗-vector are chromatic
polynomials of hypergraphs. In this case, it is the non-trivial topology of the
geometric models that gives rise to non-partitionability: It is easy to construct
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hypergraphs whose coloring complexes consists of, say, 2-dimensional spheres
that intersect in 0-dimensional subspheres; such complexes are not partitionable
and can produce negative h∗-coefficients [18].

As we have seen in Sect. 3, partial polytopal complexes are the right notion
to describe combinatorial models in Ehrhart theory. While partial polytopal
complexes are not always partitionable, they can always be written as a disjoint
union of relatively open simplices of various dimension. The partial polytopal
complex in Fig. 11(b) can, for example, be written as a disjoin union of open
simplices of dimension 1 and 2 as shown in Fig. 11(c). This motivates the use of
the f∗-basis. As it turns out, the f∗-vector of an open simplex Δ has a counting
interpretation similar to (3), even though its construction is more subtle [16].
It follows that all partial polytopal complexes with integer vertices have a non-
negative f∗-vector. Moreover, this property characterizes Ehrhart polynomials
of partial polytopal complexes.

Theorem 8 (Breuer [16]). If X is an integral partial polytopal complex, then
ehrX has a non-negative f∗-vector.

Conversely, if p(k) is a polynomial with non-negative f∗-vector, then there
exists an integral partial polytopal complex X such that ehrX(k) = p(k).

While Theorem 8 characterizes Ehrhart polynomials of the kind of geometric
objects that appear in many combinatorial applications, the question remains
how to characterize Ehrhart polynomials of convex polytopes. This challenge is
vastly more difficult, and, even though many constraints on the h∗-vectors of
convex polytopes have been proven, is still wide-open even in dimension 3. At
least in dimension 2, a complete characterization of the coefficients of Ehrhart
polytopes is available. See [8,36,37,51] for more information.

Still, there are a wealth of tools available for proving sharper bounds on the
coefficients of counting polynomials ehrX , by exploiting the particular geomet-
ric structure of the partial polytopal complex X, even if X is not convex. One
of the most powerful techniques available is the use of convex ear decomposi-
tions. A convex ear decomposition is a decomposition of a simplicial complex
X into “ears” E0, . . . , EN such that E0 is the boundary complex of a simplicial
polytope, the remaining Ei are balls that are subcomplexes of the boundary
complex of some simplicial polytope, and Ei is attached to

⋃
j<i Ej along its

entire boundary (and not just along some facets), i.e., Ei ∩ ⋃
j<i Ej = ∂Ei. For

example, the complex in Fig. 1, consisting of the boundary of the cube and the
two hyperplanes, has a convex ear decomposition: Start with the boundary of the
cube as triangulated by the braid arrangement, glue in the triangulated square
lying on one of the hyperplanes and then glue in the two triangles on the second
hyperplane one after the other. If all simplices in this complex are unimodu-
lar (as in many combinatorial applications), this leads to the following bounds,
which have been successfully applied to the chromatic polynomial by Hersh and
Swartz [38] and to the integral and modular flow and tension polynomials by
Breuer and Dall [17].
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Theorem 9 (Chari [27], Swartz [52]). If X is a simplicial complex in which
all simplices are unimodular and X has a convex ear decomposition then the
h∗-vector of ehrX(k) satisfies

(a) h∗
0 ≤ h∗

1 ≤ · · · ≤ h∗
	d/2
,

(b) h∗
i ≤ h∗

d−i for i ≤ d/2, and
(c) (h∗

0, h
∗
1 − h∗

0, . . . , h
∗
�d/2� − h∗

�d/2�−1) is an M -vector10.

8 Quasisymmetric Functions

Polyhedral models are useful for the study of combinatorial objects beyond
counting polynomials as well. For example, the simple construction from Sect. 2
of intersecting the cube with a subarrangement of the braid arrangement can
serve as a lens into the world of quasisymmetric functions [21].

A quasisymmetric function is a formal power series Q of bounded degree
in countably many variables x1, x2, . . . such that the coefficients of Q are shift
invariant, i.e., for every (α1, . . . , αm) the coefficients of the monomials xα1

i1
xα2

i2
· · ·

xαm
im

for any i1 < i2 < . . . < im are equal [50]. Note that a quasisymmetric
function can have bounded degree without being a polynomial since we have
infinitely many variables at our disposal.

To approach these from a geometric perspective, it is instructive to start with
quasisymmetric functions in non-commuting variables or nc-quasisymmetric
functions for short [14]. Here the variables xi do not commute multiplicatively
and the constraint is that two monomials xi1 · · · xid and xj1 · · · xjd have the
same coefficient if the tuples i = (i1, . . . , id) and j = (j1, . . . , jd) induce the same
ordered set partition Δ(i) = Δ(j). Here Δ(i) = (Δ1, . . . ,Δm) is an ordered par-
tition of the index set {1, . . . , d} such that i|Δl

is constant and i|Δl
< i|Δl+1 for

all l, e.g., Δ(3, 2, 2, 3, 1) = ({5}, {2, 3}, {1, 4}) =: 5|23|14.
To visualize what is going on here, we need a new way of associating integer

vectors with monomials. Classically, we identify monomials in commuting vari-
ables with their exponent vector. Here, we identify monomials in non-commuting
variables with their vector of indices, i.e., we identify xv1 · · · xvd

with (v1, . . . , vd) ∈
Z

d
≥1. This allows us to picture the map Δ: If φ is an ordered set partition of

{1, . . . , d}, then Δ−1(φ) is precisely the set of integer vectors contained in a simpli-
cial cone of the partial polyhedral complex obtained by triangulating the positive
orthant by the braid arrangement, as shown in Fig. 12. In other words, the mono-
mial nc-quasisymmetric functions

Mφ =
∑

v∈Zd,Δ(v)=φ

xv1 · · · xvd

form a basis of the space of nc-quasisymmetric functions and these are nothing
but cones in the braid arrangement.

10 M -vectors are defined as in Macaulay’s theorem, see for example [57, Chap. 8].
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Fig. 12. The “shift-invariant regions” of integer points that are mapped to the same
ordered set partition by Δ are the simplicial cones in the braid arrangement and cor-
respond to the monomial quasisymmetric function.

Any nc-quasisymmetric function can be turned into a quasisymmetric func-
tion simply by allowing variables to commute. This can be modeled geomet-
rically by taking an integer vector and permuting its entries so that they are
in weakly increasing order, i.e., an element of the half-open simplicial cone
C := {v | 0 < v1 ≤ . . . ≤ vd}. This maps M(φ1,...,φm) to the monomial quasi-
symmetric function M(|φ1|,...,|φm|) where

M(α1,...,αm) =
∑

1≤i1<...<im

xα1
i1

· . . . · xαm
im

.

The monomial quasisymmetric functions form a basis of the space of quasi-
symmetric functions. Thus every quasisymmetric function can be visualized as
assigning a weight to every face of the cone C. The support of a quasisymmetric
function is thus a partial polyhedral subcomplex X of the face lattice of C.

Going one step further it is possible to obtain a polynomial p from a quasi-
symmetric function Q by substituting 1 into the first k variables and 0 into all
other variables, i.e., Q(1k) = p(k). Geometrically, this substitution eliminates
all integer points that contain an entry larger than k. This corresponds to inter-
secting the complex X of cones with the cube (0, k]d, turning X into a simplicial
complex X ∩ (0, k]d and p into the Ehrhart function ehrX∩(0,1]d(k) = Q(1k).11

These observations provide a direct translation between Ehrhart functions con-
structed using the braid arrangement and quasisymmetric functions.

This connection provides fertile ground for future exploration. On the one
hand, the geometric approach offers a very flexible framework for defining qua-
sisymmetric functions. Scheduling problems alone capture a wide range of known
quasisymmetric functions, such as the chromatic symmetric function, the
matroid invariant of Billera-Jia-Reiner, or Ehrenborg’s quasisymmetric function

11 This works best if Q is the specialization of an nc-quasisymmetric function with 0-1
coefficients. Otherwise, this would require a linear combination of Ehrhart functions.
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for posets, as well as new ones, such as the Bergman and arboricity quasisymmet-
ric functions [21]. On the other hand, many methods for the analysis of Ehrhart
polynomials carry over to the quasisymmetric function world. For example, the
specialization Q(1k) collects the coefficients of Q in the fundamental basis in the
h∗-vector of the associated Ehrhart-polynomial – and similarly for the monomial
basis and the f∗-vector. In particular, if X is a partial subcomplex of the braid
arrangement and N,Q and ehrX∩(0,1]d are the associated nc-quasisymmetric,
quasisymmetric and Ehrhart functions, then partitionability of X implies non-
negativity of the coefficients in the fundamental basis of N and Q and non-
negativity of the h∗-vector of ehrX∩(0,1]d . If X is given by a scheduling problem,
partitionability can be guaranteed if the boolean expression defining the schedul-
ing problem takes the form of a certain kind of decision tree [21].

9 Algorithms for Counting Integer Points in Polyhedra

There are many different computational problems associated with polyhedra.
The problem of deciding whether there exists a rational vector v ∈ Q

n satisfying
a linear system of inequalities12 is polynomial time computable, but when we
look for an integer vector v ∈ Z

n instead, the problem becomes NP-hard [46].
However, if the dimension of the polyhedron, i.e., the number of variables of the
system, is fixed a priori, then there is a polynomial time algorithm for finding
an integer solution as Lenstra was able to show in 1983 [42]. While the problem
of counting integer solutions is #P-hard as well, the question remained open
whether it becomes polynomial time computable if the dimension is fixed. The
first algorithm with a polynomial running time in fixed dimension was described
by Barvinok in 1994 [5] and it took ten more years until such an algorithm was
first implemented by De Loera et al. in 2004 [30].

In this section we give an overview over the algorithmic methods for comput-
ing the number of integer points in a polyhedron P , and the related problems of
computing the Ehrhart polynomial ehrP and a rational function expression of the
multivariate generating function φP of all integer points in P . Independently of
whether the goal is to compute ehrP by first passing from P to cone(P × {1})
or whether the goal is to compute φP and Z

n ∩ P directly by using Brion’s the-
orem, the methods employed are similar and consist of three basic steps. First,
the polyhedron P is decomposed into simplicial cones. Second, a rational func-
tion representation of the integer points in these simplicial cones is computed.
We will focus on this step in our exposition since it is crucial with regard to
runtime complexity. Third, the obtained rational function expression needs to
be specialized if the number of integer points or the Ehrhart (quasi-)polynomial
is desired.

To decompose a polyhedron P into simplicial cones, we start by appealing
to Brion’s theorem and represent P as the sum of its vertex cones, modulo
12 Solving a linear system of inequalities over Z (or, equivalently, solving a linear system

of equations over N) is NP-hard. However, solving a linear system of equations over
Z is polynomial-time solvable, for example using the Smith normal form, see below.
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lines.13 To achieve this, we need to compute the vertices and edge directions of P .
Next, the resulting cones need to be triangulated to make them simplicial. There
are sophisticated algorithms available for both tasks [32,33,44,45]. It is also
possible to compute a decomposition of P into simplicial cones directly, without
computing vertices or triangulating, using the Polyhedral Omega algorithm [23].
Polyhedral Omega is based on simple explicit rules for manipulating simplicial
cones formally and is motivated by the symbolic computation framework of
partition analysis [1].

In the second step, we use the ideas developed in Sects. 5 and 6 to rep-
resent the generating function φC of integer points in a simplicial cone C =
coneR(v1, . . . , vd) ⊂ Z

d as a rational function. Let V denote the matrix with the
generators vi of C as columns. The straightforward approach is to use (5) and
obtain a rational function expression by simply enumerating all integer points
in the fundamental parallelepiped Π(V ) of C. This is both simple and efficient
if the index Z

d ∩ Π = |det(V )| of C is sufficiently small. However, in the worst
case, the index may be exponential in encoding size of V , as Fig. 14 shows. Thus
it is not clear a priori that there exists a rational function expression for φC

whose encoding size is polynomial in the encoding size of the input. Barvinok’s
key achievement was to find such a representation.

Before we come to Barvinok’s short rational function representation, however,
it is instructive to take a closer look at how to enumerate the integer points in Π
explicitly. There are several well-known approaches to this problem [23,25,40]
which are all closely related. We will work with the Smith normal form of the
matrix V , which can be computed in polynomial time [46]. The Smith normal
form of V is a representation V = USW where U, S,W are integer matrices, U,W
have determinant ±1 and S is a diagonal matrix whose diagonal entries s1, . . . , sd

satisfy si|si+1. This can be interpreted as shown in Fig. 13. The columns of V
form a basis of a sublattice J of the integer lattice Zd, and V gives the coordinates
of this basis with respect to the standard basis of Zd. The matrices U and W
represent changes of basis on both lattices such that the new bases BJ of J
and BZd of Zd line up. Since the elements of BJ are multiples of the elements
of BZd , the integer points xi in the fundamental parallelepiped of BJ are easy
to enumerate. By computing the coordinates of the xi wrt. the original basis
V of J and taking fractional parts, we translate the xi into the fundamental
parallelepiped Π(V ) and we are guaranteed that we get every point in Z

d∩Π(V )
exactly once. This process is summarized in the formula

φconeR(V )(z) =

∑s1−1
k1=0 · · · ∑s1−1

k1=0 z
1
sd

V (W −1(s′
1k1,...,s′

dkd)
� mod sd)

(1 − zv1) · . . . · (1 − zvd)

where s′
i = sd

si
. This particular expression is taken from [23].

Now we come to Barvinok’s central idea. Consider the cone C generated by
(1, 0, 0), (0, 1, 0) and (1, 1, a) for 0 < a ∈ Z. Its fundamental parallelepiped con-
tains a integer points, as shown in Fig. 14, which is exponential in the encoding
13 We can also use the theorem of Lawrence-Varchenko to obtain an exact signed decom-

position, without working modulo lines.



22 F. Breuer

Fig. 13. In order to compute all integer points in the fundamental parallelepiped
Π(a1, a2), shown in the left panel of (a), we proceed as follows. (a) Using the Smith
normal form, we first perform a change of basis on the integer lattice Z

2 and then a
change of basis on the sublattice generated by a1, a2, so that the bases align. (b) List-
ing all the integer points in the aligned fundamental parallelepiped Π(a′

1, a
′
2) is easy.

We transform these into integer points in Π(a1, a2) by modular arithmetic (taking
fractional parts of coordinates wrt. the original basis a1, a2).

size O(log(a)) of C. Moreover, there is no way to write C as a union of O(log(a))
unimodular cones of index 1. Using inclusion-exclusion, however, C can be writ-
ten as the positive orthant C1 minus the cone C2 generated by (0, 0, 1), (0, 1, 0),
(1, 1, a) and the cone C3 generated by (1, 0, 0), (0, 0, 1), (1, 1, a) which all have
index 1. This generalizes. Let C denote a simplicial cone in fixed dimension d
and let I denote its index. Using the LLL algorithm it is possible to find an
integer vector u such that C = coneR(v1, . . . , vd) can be written as a signed
combination of the cones C1 = coneR(u, v2 . . . , vd), C2 = coneR(v1, u, . . . , vd),
. . ., Cd = coneR(v1, . . . , vd−1, u), where some facets of the Ci have to be opened
according to a few explicit combinatorial rules [40]. The key property of this con-
struction is that indices of the cones Ci decrease quickly. Applying this decompo-
sition recursively, the indices of the cones will eventually reach 1, i.e., the cones
will become unimodular. At each node of the recursion tree one cone is split into
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Fig. 14. C = coneR((1, 0, 0), (0, 1, 0), (1, 1, a)) has a integer points in its fundamental
parallelepiped. This number of integer points is therefore exponential in the encoding
size of C which is in O(log(a)). However C can be written as a signed sum C =
C1 − C2 − C3 of unimodular cones. Here the facet of C2 generated by (0, 1, 0) and
(1, 1, a) is open and the two facets of C3 generated by (1, 1, a) and one of the other two
generators are open.

d-cones, however, the depth of the tree is at most doubly logarithmic in I. Thus
the total number of cones obtained is polynomial in the encoding length of C.
The result is the following fundamental theorem.

Theorem 10 (Barvinok [5]). Let C ⊂ Z
d be a d-dimensional simplicial cone

with integer generators. Then there exists signs εi and vectors ai, bi,j such that

φC(z) =
N∑

i=1

εi
zai

(1 − zbi,1) · . . . · (1 − zbi,d)
(7)

and for fixed d the number of summands N is bounded by a polynomial in the
encoding length of C.

The third step is to specialize the representation of φP in terms of multivariate
rational functions we have obtained thus far, in order to get the Ehrhart polyno-
mial ehrP or the number #Z

n ∩ P . This specialization is non-trivial, especially
if Barvinok decompositions are used, since typically the desired specialization
is a pole of the rational function representation. However, using an exponential
substitution and limit arguments it is possible to compute this specialization in
polynomial time.

The toolbox of algorithms we have described here has many more applications
and extensions. For example, it is possible to extend these methods to handle
multivariate Ehrhart polynomials [55], to compute intersections φP∩Q given φP

and φQ [4], to compute Pareto optima in multi-criteria optimization over integer
points in polyhedra [28], to integrate and sum polynomials over polyhedra [3]
and to convert between rational function representations and piecewise quasi-
polynomial representations of counting functions [54] – all in polynomial time if
the dimension is fixed. As starting points for further reading we recommend the
textbooks [6,29].
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Fig. 15. (a) gcd(9, 6) = 3. (b) −1 ·3+2 ·2 = 1 since (2, 1) is closest to the line through
(3, 2) which means Z

2 ∩ Π((3, 2), (2, 1)) contains no integer point except the origin.
(c) gcd(7, 5) = 1 and −2 · 7 + 3 · 5 = 1.

10 Lattice Point Sets and the Euclidean Algorithm

After these very general considerations, we end this exposition on a playful note
by taking a closer look at integer point geometry in dimension 2 and discussing
several different ways in which the Euclidean algorithm makes an appearance.

The integer lattice in the plane is a great stage for visualizing the greatest
common divisor, as Fig. 15 shows. For two integers a, b ∈ Z, the line segment
in the plane from the origin to the point (a, b) contains precisely gcd(a, b) + 1
integer points. Let (p, q) denote the coordinates of a lattice point closest to but
not on the line L through (0, 0) and (a, b). By construction, the fundamental
parallelepiped spanned by (a, b) and (p, q) contains precisely gcd(a, b) lattice
points on the line and no lattice points off the line.

gcd(a, b) = Π((a, b), (p, q)) = det
(

a p
b q

)
= ap − bq.

Thus the coordinates of the closest points give precisely the coefficients pro-
duced by the extended Euclidean algorithm.

From the above observation it immediately follows that the value of the GCD
increases linearly along any such line L. If (a, b) is the integer point closest to
the origin on such a line L, then gcd(a, b) = 1. The next values of the GCD
on L are thus gcd(2a, 2b) = 2, gcd(3a, 3b) = 3. The graph of the function gcd :
Z
2
>0 → Z>0 is thus contained in a countable collection of rays from the origin

through all points (a, b) with gcd(a, b) = 1. This “graph” of the GCD is shown
in Fig. 16.

A closer look at the graph in Fig. 16 immediately reveals a recursive tree-like
structure. It turns out that this tree corresponds precisely to the recursive opera-
tion of the Euclidean algorithm. The Euclidean algorithm as described by Euclid
moves from (a, b) to (a − b, a) if a > b, it moves from (a, b) to (a, b − a) if a < b
and it terminates if a = b. The perceptive reader will note that this immediately
gives a way to enumerate all positive rational numbers as nodes of an infinite
binary tree [26]. However, tracing out these paths of the Euclidean algorithm in
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Fig. 16. The graph of the gcd g = gcd(a, b) as described in the text. Shown are the rays
from the origin through (a, b) starting at (a, b) for all a, b with gcd(a, b) = 1. The color
of a ray is given by its depth in the recursion tree of the Euclidean algorithm. The
plots in the rightmost column show parallel projections of the graph onto the (g, a)
and (a, b) planes, respectively (Color figure online).

the plane does not yet reveal the connection to the graph of the GCD. To that
end, we turn the Euclidean algorithm on its head.

We fix the point p = (a, b) whose gcd we wish to compute and run the Euclid-
ean algorithm by changing the basis v1, v2 of Z2 in each step. We define the center
of the current basis as the sum c = v1 + v2. If p lies below the line through c
we change our basis to v′

1 = v1 and v′
2 = c. If p lies above the line through c we

change our basis to v′
1 = c and v′

2 = v2. If p lies on the line through c we are
done since gcd(a, b) = a

c1
= b

c2
. Tracing out all the paths the center can take

throughout this recursion, we obtain Fig. 17 which reveals the tree structure of
the base points of the rays in Fig. 16 and which gives a very natural (and novel)
embedding of the Stern-Brocot tree [34, p. 116–117] in the plane.

To conclude, we follow [20] and examine the structure of the integer points
below the line L in more detail, going beyond the closest point (p, q). Define Ta,b

to be the triangle with vertices (0, 0), (a, 0) and (a, b). As we can see in Fig. 18,
the “staircase” of integer points in Ta,b is irregular: the possible steps as we
move from one column to the next are of two different heights, and it is not
clear a priori what the underlying pattern is. It turns out, however, that the
triangles Ta,b have a very nice recursive structure. The key observation is that
triangles of the form Tc,c are very easy to describe as we always go exactly one
step higher as we move from one column to the next. However, if a > b, then Ta,b
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Fig. 17. The left panel shows all lattice points (a, b) in the plane with gcd(a, b) = 1,
up to a recursion depth of 5 in the Eulidean algorithm. The right panel also shows the
tree structure induced by the inverted Euclidean algorithm as described in the text.

Fig. 18. Following the Euclidean algorithm, we reduce the triangle T12,7 recursively, by
removing triangles with integral slope and applying shearing lattice transformations.
In this way we can decompose the “staircase” of integer points below the line from the
origin to (12, 7) into “simple” triangles.

contains a triangle of the form Tb,b, sitting in the lower right corner. Removing
this translate of the half-open triangle T ′

b,b, we are left with a triangle T̃ with
vertices (0, 0), (a − b, 0) and (a, b). Shearing T̃ using the linear transformation
A : (x, y) → (x−y, y), we see that the integer points in T̃ have the same structure
as those in Ta−b,b. Here it is crucial that the linear transformation A maps Z

2
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bijectively onto itself. Now, if a < b we can apply the same procedure in the other
direction. Just like in the Euclidean algorithm we continue recursively until we
reach a triangle of the form Tc,c at which point we stop. We can thus decompose
any triangle Ta,b into simple triangles of the form Tc,c. This process is illustrated
in Fig. 18.

This basic approach can yield much more information as detailed in [20]. For
example, an analysis of how exactly the big and small steps in the staircase are
distributed leads to several characterizations of Sturmian sequences of rational
numbers. Moreover, using a recursive procedure similar in spirit to Fig. 18, it
is possible to show that the sets of lattice points in 2-dimensional fundamental
parallelepipeds always have a short positive description as a union of Minkowski
sums of discrete line segments – this short description yields short rational func-
tion expressions for 2-dimensional fundamental parallelepipeds, which are quite
distinct from those obtained via Barvinok’s algorithm.
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