
A Coinductive Animation of Turing Machines

Alberto Ciaffaglione(B)

Dipartimento di Matematica e Informatica, Università di Udine, Udine, Italy
alberto.ciaffaglione@uniud.it

Abstract. We adopt corecursion and coinduction to formalize Turing
Machines and their operational semantics in the proof assistant Coq. By
combining the formal analysis of converging and diverging evaluations,
our approach allows us to certify the implementation of the functions
computed by concrete Turing Machines. Our effort may be seen as a
first step towards the formal development of basic computability theory.

1 Introduction

In this paper we present and discuss an encoding of Turing Machines (TMs) [12]
and their semantics in the Coq implementation of the Calculus of (Co)Inductive
Constructions (CC(Co)Ind). Actually, we do not find in the literature much for-
malization work dealing with computability theory, a foundational, major area of
computer science, whereas several other domains have benefited, in recent years,
from formal developments carried out within mechanized environments.

As far as we know, the most recent contributions are [1,2,10,13]. Norrish
[10] develops a proof of equivalence between the recursive functions and the λ-
calculus computational models, and formalizes some computability theory results
in the HOL4 system. The two works most related to the present one are those
focusing on TMs. Asperti and Ricciotti [1] develop computability theory up to
the existence of a universal machine, by carrying out their effort from a perspec-
tive oriented to complexity theory in Matita. Xu, Zhang and Urban [13] prove
the undecidability of the halting problem and relate TMs to register machines
and recursive functions by formalizing a universal TM in Isabelle/HOL.

Actually, TMs form an object system which is challenging in several respects.
First, TMs are non-structured. Second, the tape, used by TMs as workspace for
computing, is infinite in both directions. Third, the evaluation of TMs may give
rise to diverging computations. Therefore, TMs provide with a typical scenario
where the user is required to define and reason about infinite objects and con-
cepts. To address formally such an object system, in this paper we settle within
Intuitionistic Type Theory. This framework makes available coinductive types,
i.e., types that have been conceived to provide finite representations of infinite
structures. In particular, a handy technique for dealing with corecursive defini-
tions and coinductive proofs in CC(Co)Ind was introduced by Coquand [4] and
refined by Giménez [6]. Such an approach is particularly appealing, because
proofs carried out by coinduction are accommodated as any other infinite, core-
cursively defined object. This technique is mechanized in the Coq system [11].
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 80–95, 2015.
DOI: 10.1007/978-3-319-15075-8 6

A Coinductive Animation of Turing Machines 81

The present work is in fact a departure from the two cited formalizations
of TMs, due to the following reasons. On the one hand, we adopt corecursion
as definition principle and coinduction as proof principle (while the alternative
contributions do not employ coinductive tools). On the other hand, inspired
by our previous effort on unlimited register machines [2], we encode TMs and
their operational semantics from the perspective of program certification: i.e., we
introduce and justify a methodology to prove the correctness of concrete TMs.

The motivations to carry out our formalization of TMs in Coq are the fol-
lowing. As it is well-known, traditional papers and textbooks about TMs treat
the topic at a more superficial level of detail, and in particular the arguments
why individual TMs are correct are often left out. Therefore, the mechanization
effort in a proof assistant, besides offering the possibility to discover errors, may
typically improve the confidence on the subject (e.g., the correctness proofs for
concrete TMs in [13], developed to formalize the undecidability of the halting
problem, are acknowledged as the most important contribution). Besides being
intellectually stimulating, our work has also the educational objective of popu-
larizing corecursion and coinduction, an aim which is pursued by justifying the
formalization methodology in an analytical way and via suggestive examples.

We have used, as starting point for our development, the textbooks by Cut-
land [5] and by Hopcroft et al. [7]. As an effort towards a broader audience,
we display rarely Coq code in this paper, but present the encoding at a more
abstract level (however, the formalization is available as a web appendix [3]).

Synopsis. In the next section we recall TMs, then in the two following sections
we introduce their formalization and illustrate the implementation of coinduc-
tion in Coq. In the two central sections 5 and 6 we define a big-step operational
semantics for TMs and address its adequacy via a small-step semantics, respec-
tively. In the core Section 7 we prove the correctness of three sample TMs, then
we state final remarks and discuss related and future work.

2 Turing Machines

Turing Machines (TMs), one among the frameworks proposed to set up a formal
characterization of the intuitive ideas of computability and decidability, perform
algorithms as carried out by a human agent using paper and pencil. In this work
we address deterministic, single tape TMs, as introduced by Cutland [5].

Alphabet and tape. TMs operate on a paper tape, which is infinite in
both directions and is divided into single squares along its length. Each square
is either blank or contains a symbol from a finite set of symbols s0, s1, . . . , sn,
named the alphabet A (in fact, the “blank” B is counted as the first symbol s0).

Specification and computation. At any time, TMs both scan a single
square of the tape (via a reading/writing head) and are in one of a finite number
of states q1, . . . , qm. Depending on the current state qi and the symbol being
scanned sh, TMs take actions, as indicated by a specification1, i.e. a finite
1 As said above, we deal with deterministic TMs, i.e., non-ambiguous specifications:

for every pair qi, sh there is at most one quadruple of the form 〈qi, sh, x, qj〉.

82 A. Ciaffaglione

collection of quadruples 〈qi, sh, x, qj〉, where i, j∈[1..m], h∈[0..n], x∈{R,L}∪A:

〈qi, sh, x, qj〉 � 1) if x=R then move the head one square to the right
else if x=L then move the head one square to the left
else if x=sk (k∈[0..n]) then replace sh with sk

2) change the state from qi into qj

When provided with a tape, a specification becomes an individual TM, which is
capable to perform a computation: it keeps carrying out actions by starting from
the initial state q1 and the symbol scanned by the initial position of the head.

Such a computation is said to converge if and only if, at some given time,
there is no action specified for the current state qi and the current symbol sh

(that is, there is no quadruple telling what to do next). On the other hand, if
this never happens, such a computation is said to diverge.

Computable functions. TMs may be regarded as devices for computing
numerical functions, according to the following conventions. A natural number
m is represented on a tape by an amount of m+1 consecutive occurrences of the
“tally” symbol 1 (in such a way, the representation of the 0∈N is distinguished
from the blank tape). Then, a machine M computes the partial function f : N⇀N

when, for every a, b∈N, the computation under M , starting from its initial state
and the leftmost 1 of the a representation, stops with a tape that contains a
total of b symbols 1 (not necessarily consecutive) if and only if a∈dom(f) and
f(a)=b (therefore f is undefined on all inputs a that make the computation
diverge). n-ary partial functions g: Nn⇀N are computed in a similar way, where
the representations of the n inputs are separated by single blank squares.

Consequently, computability theory can be developed via TMs, leading to
the well-known characterization of the class of effectively computable functions.

3 Turing Machines in Coq

As described in the previous section, TMs are formed by two components: the
specification and the tape, whose content in fact instantiates the former, making
it executable. Specifications and tapes actually work together, but are evidently
independent of each other from the point of view of the formalization matter.

Our encoding of TMs in Coq reflects such an independence: in the present
work we are mainly interested in the formal treatment of the tape, which is
more problematic and particularly delicate; conversely, we do not pursue the
specification-component management (automata are actually supported by Coq’s
library), thus keeping that part of the formalization down to a minimum.

Specification and Tape. Concerning the specification part, we represent states
via natural numbers (reserving the 0 for the halting state, for which no transition
is provided), while alphabet symbols and operations performed by the head are
finite collections of elements (we fix the alphabet by adding the “mark” symbol
0 to the “blank” B and the “tally” 1 of previous section). Finally, specifications

A Coinductive Animation of Turing Machines 83

are finite sequences (i.e., lists) of actions (i.e., quadruples)2:

State : p, q, i ∈ N={0, 1, 2, . . .} state
Sym : a, b ∈ {B, 1, 0} alphabet symbol
Head : x, y ∈ {R,L,W (a)} head operation
Act : α ∈ State × Sym × State × Head action
Spec : T,U, V ::= (ι �→αι)ι∈[0..n] (n∈N) specification

To formalize the tape, whose squares are scanned by the head and contain
the alphabet symbols, we adopt a pair of streams (a.k.a. infinite sequences), a
datatype borrowed from the Haskell community, where is named “zipper”:

HTape : l, r ::= (ι �→aι)ι∈[0..∞] half tape (stream)
Tape : s, t, u ::= 〈〈 l, r 〉〉 full tape (zipper)

The intended meaning of this encoding is that the second stream (r = r0:r1: . . .)
models the infiniteness of the tape towards the right, while the first stream
(l = l0:l1: . . .) is infinite towards the left. At any time, the head “⇓” will be
scrutinizing the first symbol of r, which corresponds physically to:

⇓
· · · | l1 | l0 | r0 | r1 | · · ·

This representation allows for a direct access to the content of the tape, an
operation which has therefore constant complexity (see the next section).

Transitions. To make specifications concretely compute, it is necessary, given
the current state and tape symbol, to extract from such lists the corresponding
target state and head operation. In our encoding, this task is carried out by a
transition function tr: Spec → State → Sym → (State ∗ Head).

In fact, we delegate to this transition function the responsibility to guarantee
the determinism of TMs. We implement tr as a recursive function that scans
a list-like specification T : given an input pair (p, a), the target state and head
operation are obtained from the first quadruple of shape 〈p, a, q, x〉 found in T
(no matter if there are other ones with form 〈p, a, i, y〉); if, on the other hand,
there is no corresponding quadruple in T , tr returns an “halting” output:

Parameter halt: (State * Head).

The motivation for this näıve encoding of determinism is, as said at the
beginning of the section, to keep the formalization as minimal as possible, being
the modelling and the management of the tape the focus of our investigation.

4 Coinduction in Coq

The proof assistant Coq supports the formal treatment of circular, infinite data
and relations by means of the mechanism of coinductive types.

First of all, one may formalize concrete, infinite objects (i.e., data) as elements
of coinductive sets3, which are fully described by a set of constructors. From a
2 The middle columns display the metavariables and the datatypes they range over.
3 Coinductive sets are coinductive types whose type is the sort Set.

84 A. Ciaffaglione

pure logical point of view, the constructors can be seen as introduction rules;
these are interpreted coinductively, that is, they are applied infinitely many
times, hence the type being defined is inhabited by infinite objects:

a ∈ Sym h ∈ HTape

a:h ∈ HTape
(HTape)∞

In this example we have formalized (via the cons constructor) infinite sequences,
i.e., streams, of symbols in the alphabet Sym={B, 1, 0}, the coinductive set
HTape which we have introduced in the Section 3 to model the tape of TMs.

Once a new coinductive type is defined, the system supplies automatically
the destructors, that is, an extension of the native pattern-matching capability,
to consume the elements of the type itself. Therefore, coinductive types can also
be viewed as the largest collection of objects closed w.r.t. the destructors. We use
here the standard match destructor to extract the head and tail from streams:

head(h) � match h with a:k ⇒ a tail(h) � match h with a:k ⇒ k

However, the destructors cannot be used for defining functions by recursion
on coinductive types, because it is not possible to consume their elements down
to a base case. In fact, the natural way to allow self-reference with coinductive
types is the dual approach of building objects that belong to them. Such a goal
is fulfilled by defining corecursive functions, like, e.g., the following ones:

Bs � B:Bs same(a) � a:same(a) blink(a, b) � a:b:blink(a, b)
merge(h, k) � match h with a:h′ ⇒ match k with b:k′ ⇒ a:b:merge(h′, k′)

Corecursive functions yield infinite objects and may have any type as domain
(notice that in the last definition the two parameters are infinite objects as well).
To prevent the evaluation of corecursive functions from infinitely looping, their
definition must satisfy a guardedness condition: every corecursive call has to be
guarded by at least one constructor (“:” in the definitions above) and by nothing
but constructors4. In fact, corecursive functions are never unfolded in Coq, unless
their elements are explicitly needed, “on demand”, by a destruction operation.
This way of regulating the implementation of corecursion is inspired by lazy
functional languages, where the constructors do not evaluate their arguments.

Given a coinductive set (such as HTape above), no proof principle can be
automatically generated by the system: actually, proving properties about infi-
nite objects requires the potential of building proofs which are infinite too. What
is needed is the design of ad-hoc coinductive predicates (i.e., relations)5; these
types are in fact inhabited by infinite proof terms. The traditional example is
bisimilarity, that we define on streams and name � ⊆ HTape × HTape:

a ∈ Sym h, k ∈ HTape h � k

a:h � a:k
(�)∞

4 Syntactically, the constructors guard the corecursive call “on the left”; this captures
the intuition that infinite objects are built via the repetition of a productive step.

5 Coinductive predicates are coinductive types whose type is the sort Prop.

A Coinductive Animation of Turing Machines 85

Two streams are bisimilar if we can observe that their heads coincide and, recur-
sively, i.e., coinductively, their tails are bisimilar. Once this new predicate is
defined, the system provides a corresponding proof principle, to carry out proofs
about bisimilarity: such a tool, named “guarded induction” principle [4,6], is
particularly appealing in a context where proofs are managed as any other infi-
nite object. In fact, a bisimilarity proof is just an infinite proof term built by
corecursion (hence, it must respect the same guardedness constraint that core-
cursive functions have to). The guarded induction principle provides a handy
technique for building proofs inhabiting coinductive predicates, as such proofs
can be carried out interactively through the cofix tactic6. This tactic allows the
user to yield proof terms as infinitely regressive proofs, by assuming the thesis
as an extra hypothesis and using it later with care, i.e., provided its application
is guarded by constructors. In this way the user is not required to pick out any
bisimulation beforehand, but may build it incrementally, via tactics.

To illustrate the support provided by the cofix tactic, we display below
the proof of the property ∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b), in
natural deduction style7. By mimicking Coq’s top-down proof practice, first the
coinductive hypothesis is assumed among the hypotheses8; then, the corecursive
functions same, blink and merge, in turn, are unfolded to perform a computa-
tion step; finally, the constructor (�)∞ is applied twice. Hence, the initial goal
is reduced to merge(same(a), same(b)) � blink(a, b), i.e., an instance of the
coinductive hypothesis. Therefore, the user is eventually allowed to exploit (i.e.,
discharge) such a hypothesis, whose application is now guarded by the construc-
tor (�)∞. The application of the coinductive hypothesis in fact completes the
proof, and intuitively has the effect of repeating ad infinitum the initial fragment
of the proof term, thus realizing the “and so on forever” motto:

a, b∈Sym

[∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b)](1)....
merge(same(a), same(b)) � blink(a, b)

a:b:merge(same(a), same(b)) � a:b:blink(a, b)
(�)∞, twice

merge(a:same(a), b:same(b)) � a:b:blink(a, b)
(def : merge)

merge(same(a), same(b)) � blink(a, b)
(def : same, blink)

∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b)
(1), (introduction)

5 Operational Semantics

As stressed in Sections 2 and 3, the semantics of TMs’ specifications is paramet-
ric w.r.t. tapes: computations, induced by specifications, may either converge or
6 A tactic is a command to solve a goal or decompose it into simpler goals.
7 As usual, local hypotheses are indexed with the rules they are discharged by.
8 According to Gentzen’s notation, we write such an hypothesis (among the leaves of

the proof tree) within square brackets, to bear in mind that it can be discharged,
i.e., cancelled, in the course of a formal proof, as it represents a local hypothesis.

86 A. Ciaffaglione

diverge, depending on the tape that is coupled to them and the initial position
of the head (while the initial state is 1∈N). In Section 3 we have also chosen an
encoding for tapes (via a zipper, made of two streams) such that the position of
the head is implicit within the tape itself. Therefore, the semantics of TMs may
be defined by considering configurations (T, p, s), where T is a specification, p a
state, and s=〈〈l, r=r0:r1: . . .〉〉 a tape. Some configurations make actually a com-
putation stop, because there is no action specified by T for the current state p and
symbol r0: these configurations will play the role of the values of our semantics.
In the following, we will denote with tr(T, p, s) the application of the transition
function tr, introduced in Section 3: in particular, we will write tr(T, p, s)= ↓
for (tr T p r0)=halt, and tr(T, p, s)=〈i, x〉 for (tr T p r0)=(i,x).

In this section we define a big-step semantics for TMs, which will play the
role of our main tool throughout the rest of the paper. The potential divergence
of computations provides us with a typical scenario which may benefit from the
use of coinductive specification and proof principles. In fact, a faithful encoding
has to reflect the separation between converging and diverging computations,
through two different judgments. Hence, we define the inductive predicate b∗ ⊆
Spec×Tape×State×Tape×State to cope with converging evaluations, and the
coinductive b∞ ⊆ Spec×Tape×State to deal with diverging ones.

Definition 1. (Evaluation) Assume T∈Spec, s=〈〈l=l0:l1: . . . , r=r0:r1: . . .〉〉 and
t∈Tape, p, q, i∈State. Then, b∗ is defined by the following inductive rules:

tr(T, p, s)= ↓
b∗(T, s, p, s, p)

(stop)
tr(T, p, s)=〈i, R〉 b∗(T, 〈〈r0:l, tail(r)〉〉, i, t, q)

b∗(T, 〈〈l, r〉〉, p, t, q)
(right)∗

tr(T, p, s)=〈i, L〉 b∗(T, 〈〈tail(l), l0:r〉〉, i, t, q)
b∗(T, 〈〈l, r〉〉, p, t, q)

(left)∗

tr(T, p, s)=〈i,W (a)〉 b∗(T, 〈〈l, a:tail(r)〉〉, i, t, q)
b∗(T, 〈〈l, r〉〉, p, t, q)

(write)∗

And b∞ is defined by the following rules, (this time) interpreted coinductively9:

tr(T, p, s)=〈q,R〉 b∞(T, 〈〈r0:l, tail(r)〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(right)∞

tr(T, p, s)=〈q, L〉 b∞(T, 〈〈tail(l), l0:r〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(left)∞

tr(T, p, s)=〈q,W (a)〉 b∞(T, 〈〈l, a:tail(r)〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(write)∞

Notice that in the rules above we write r0 and l0 for head(r) and head(l), respec-
tively (see Section 4 for the definitions of the head and tail functions). ��
9 The relation b∞ is the greatest fixed-point of the above rules, or, equivalently,

amounts to the conclusions of infinite derivation trees built from such rules.

A Coinductive Animation of Turing Machines 87

In our semantics, given a specification T , a tape s and a state p, we capture on
the one hand the progress of both the head and the states transitions, and on
the other hand the effect of the operations performed by the head itself.

In detail, the intended meaning of b∗(T, s, p, t, q) is that the computation
under the specification T , by starting from the tape s and the state p, stops
in the state q, transforming s into t. Conversely, b∞(T, s, p) asserts that the
computation under T , by starting from the tape s and the state p, loops: i.e.,
there exist a state i and a pattern-tape u (reachable from p and s) such that,
afterwards, the computation gets again to the state i with a tape fulfilling u after
a non-zero, finite number of actions. Therefore, a final tape cannot exist for b∞,
because the initial s is scrutinized (and possibly updated) “ad infinitum”.

Since TMs are not structured, we have embedded in the big-step semantics
an alternative structuring criterion, i.e., the number of evaluation steps implicit
amount. In fact, we have defined a base (i.e., non-recursive) rule for b∗ (the
computation stops because no next action exists) and (co)inductive rules for
both b∗ and b∞, to address how moving the head and writing on the tape is
carried out within a converging computation and a diverging one, respectively.

We remark again that the benefit of the zipper encoding of tapes (introduced
in Section 3) is that every operation of the head may be carried out via basic
functions on streams, whose complexity is minimal and constant.

6 Adequacy

To argue that our big-step semantics for TMs is appropriate, we introduce here
a small-step semantics à la Leroy [9], and prove that they are equivalent.

We first define a one-step reduction concept, to express the three basic actions
of TMs (i.e., moving the reading head and writing on the current square). For-
mally, it is defined as a predicate →⊆ Spec×Tape×State×Tape×State, that
we write more suggestively as (T, s, p) → (T, t, q). Note (again) that, since TMs
are not structured, we do not need to define contextual reduction rules.

Now we can formalize the small-step semantics as reduction sequences: finite
reductions ∗→, defined by induction, are the reflexive transitive closure of →,
while infinite reductions ∞→, defined by coinduction, its transitive closure.

Definition 2. (Reduction) Assume T∈Spec, s=〈〈l, r〉〉∈Tape, and p, q∈State.
Then, the one-step reduction → is defined by the following rules:

tr(T, p, s)=〈q,R〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈r0:l, tail(r)〉〉, q) (→R)

tr(T, p, s)=〈q, L〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈tail(l), l0:r〉〉, q) (→L)

tr(T, p, s)=〈q,W (a)〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈l, a:tail(r)〉〉, q) (→W)

88 A. Ciaffaglione

For t, u∈Tape, i∈State, finite reduction ∗→ is defined by induction, via the rules:

(T, s, p) ∗→ (T, s, p)
(∗→0)

(T, s, p) → (T, u, i) (T, u, i) ∗→ (T, t, q)

(T, s, p) ∗→ (T, t, q)
(∗→+)

And infinite reduction ∞→ is defined by the following coinductive rule:

(T, s, p) → (T, t, q) (T, t, q) ∞→
(T, s, p) ∞→ (∞→∞)

We can prove that evaluation and reduction are equivalent concepts, both in
their converging and diverging versions. We remark that our proofs are construc-
tive, whereas Leroy [9] had to postulate the “excluded middle” for divergence.

Proposition 1. (Equivalence) Let be T∈Spec, s, t, u∈Tape, and p, q, i∈State.

1. If (T, s, p) → (T, u, i) and b∗(T, u, i, t, q), then b∗(T, s, p, t, q)
2. If (T, s, p) ∗→ (T, u, i) and b∗(T, u, i, t, q), then b∗(T, s, p, t, q)
3. b∗(T, s, p, t, q) if and only if (T, s, p) ∗→ (T, t, q) and tr(T, q, t)= ↓
4. b∞(T, s, p) if and only if (T, s, p) ∞→

Proof. 1) By inversion of the first hypothesis. 2) By structural induction on the
derivation of (T, s, p) ∗→ (T, u, i), and point 1. 3) Both directions are proved by
structural induction on the hypothetical derivation, but the direction (⇐) requires
also point 1. 4) Both directions by coinduction and hypothesis inversion. ��
The above result points out that the proof practice of reduction and evaluation
is very similar in Coq. In fact, the small-step predicate ∗→ is slightly less handy,
because, to perform a TM action, the user is required to exhibit the witness tape,
besides the target state; obviously, the small-step version lacks the “halting”
concept (i.e., tr(T, q, t)= ↓), which is internalized by the big-step judgment.

Streams vs. Lists. We complete this section with a digression about a different
encoding for tapes, that we pursued in a preliminary phase of our research.

Even if streams are a datatype which captures promptly and naturally the
infiniteness of tapes, a formalization approach via (finite) lists may also be devel-
oped: in this case, the empty list is intended to represent an infinite sequence of
blanks. The choice of lists makes explicit the assumption about TMs that, when
a computation starts, only a finite number of squares can contain non-blank
symbols (in fact, the representation of numerical functions in Cutland’s setting,
that we have adopted at the end of Section 2, respects such a constraint).

Therefore, we proceed by encoding the tape through a pair of lists:

HTapeL : ll, rl ::= (ι �→aι)ι∈[0..n] half tape (list, n∈N)
TapeL : sl, tl ::= 〈〈 ll, rl 〉〉 full tape (list-pair)

Afterwards, big-step semantics predicates, playing the role of the ones that
deal with streams in Section 5, can be introduced. However, since lists (conversely

A Coinductive Animation of Turing Machines 89

to streams) might be empty, such predicates must take into consideration this
extra pattern and manage it via additional rules. Without going into the full
details (for lack of space), we display here the rules for the move-R action10:

bL∗(T, 〈〈B:ll, [] 〉〉, i, t, q)
bL∗(T, 〈〈 ll, [] 〉〉, p, t, q)

(r[])∗
bL∗(T, 〈〈 a:ll, rl 〉〉, i, t, q)
bL∗(T, 〈〈 ll, a:rl 〉〉, p, t, q)

(rL)∗

The inductive convergence predicate bL∗ ⊆ Spec×TapeL×State×TapeL×State
has the same intended meaning of b∗. The coinductive divergence predicate
bL∞ ⊆ Spec×TapeL×State, corresponding to b∞, is defined analogously.

By using the predicates bL∗ and bL∞, we can prove that the semantics with
streams may mimic that with lists, and a limited form of the opposite result (in
the Proposition below we denote with Bs the stream of blank symbols and with
“::” a recursive function that appends a list in front of a stream).

Proposition 2. (Tape) Let be T∈Spec, ll, rl, ll′, rl′∈HTapeL, and p, q∈State.

1. If bL∗(T, 〈〈 ll, rl 〉〉, p, 〈〈 ll′, rl′ 〉〉, q),
then b∗(T, 〈〈 ll::Bs, rl::Bs 〉〉, p, 〈〈 ll′::Bs, rl′::Bs 〉〉, q)

2. bL∞(T, 〈〈 ll, rl 〉〉, p) if and only if b∞(T, 〈〈 ll::Bs, rl::Bs 〉〉, p)

Proof. 1) By structural induction on the hypothetical derivation. 2) Both the
directions are proved by coinduction and hypothesis inversion. ��

The difficulty of proving the reverse implication of point 1 above depends on
the fact that the representation of the tape through lists is not unique, because
one may append to any list blank symbols at will; hence, it is necessary to
introduce an equivalence relation on list-tapes to develop their metatheory. For
this reason (and because lists demand to double the length of proofs, as their
predicates have two constructors for any action), we prefer working with streams.

7 Certification

In this section we use the big-step predicates b∗ and b∞, introduced in Section
5 and justified in Section 6, to address the certification of the partial functions
computed by individual TMs. This “algorithmic” approach, which exploits core-
cursion and coinduction in an involved setting, is significant as it provides a
foundation methodology for the formal development of computability theory.

The divergence of TMs may be caused by different kinds of behavior. Clearly,
it is easy to manage the scenario where a finite portion of the tape is scanned. The
interesting case is when TMs scrutinize an infinite area of it; this may happen
by moving the head infinitely either just in one direction or in both directions.
In this section we address one example for each pattern of behavior, to convey
to the reader the confidence that we can master all of them.
10 We omit from both the rules the transition conditions, that is, the premise

tr(T, p, 〈〈 ll, [] 〉〉)=〈i, R〉 from (r[])∗ and tr(T, p, 〈〈 ll, a:rl 〉〉)=〈i, R〉 from (rL)∗.

90 A. Ciaffaglione

First Example: R Moves. The first partial function that we work out computes
the half of even natural numbers, and is not defined on odd ones:

div2(n) �
{

n/2 if n ∈ E

↑ if n ∈ O

One algorithm that implements the div2 function is conceived as follows. Erase
the first “1” (which occurs by definition) and move the head to the right; then
try to find pairs of consecutive “1”: if this succeeds, erase the second “1” and
restart the cycle, otherwise (a single “1” is found) move indefinitely to the right.

Such an algorithm can be realized, e.g., by the following specification T :

{〈1, 1,W (B), 1〉, 〈1, B,R, 2〉, 〈2, 1, R, 3〉, 〈3, B,R, 3〉, 〈3, 1,W (B), 4〉, 〈4, B, R, 2〉}
This implementation of the div2 function is certified through the predicates b∗
and b∞; the computation starts from the state 1 and the following tape11:

⇓
− | B | 1 | 1 | − | 1︸ ︷︷ ︸

n

| B | − (1)

which is formalized as ∀n. 〈〈Bs, 1:ones(n)::Bs〉〉, where Bs is the stream of blank
symbols, ones(n) a list of n consecutive “1” symbols, “::” a recursive function
that appends a list in front of a stream, and “:” the cons constructor on streams.

To fulfill our goal we carry out, via tactics, a top-down formal development
that simulates the computation of the TM at hand. First, we perform a write-B
and a move-R action from the starting configuration12 (state 1 and tape (1),
that represents the input n), thus reaching the state 2 with the tape:

⇓
− | B | 1 | − | 1︸ ︷︷ ︸

n

| B | − (2)

Proving the divergence requires a combination of coinductive and inductive
reasoning. The core property is the divergence when proceeding from the state
3 and a right-hand blank tape, a lemma which is proved by coinduction13:

l∈HTape

tr(T, 3, 〈〈l, B:Bs〉〉)=〈3, R〉

[∀ l∈HTape. b∞(T, 〈〈l, Bs〉〉, 3)](1)....
b∞(T, 〈〈B:l, Bs〉〉, 3)

b∞(T, 〈〈l, B:Bs〉〉, 3)
(right)∞

b∞(T, 〈〈l, Bs〉〉, 3)
(def : Bs)

∀ l∈HTape. b∞(T, 〈〈l, Bs〉〉, 3)
(1), (introduction)

(3)
11 From now on, we will use “a | −” to represent an infinite amount of “a” symbols.
12 Given a specification T , a configuration will be a pair 〈state, tape〉 from now on.
13 Like at the end of Section 4, we display coinductive proofs in natural deduction-style:

the coinductive hypothesis is indexed with the rule it is discharged by.

A Coinductive Animation of Turing Machines 91

If n is odd, we prove by induction on k that the tape (2) leads to divergence:

∀ l∈HTape. b∞(T, 〈〈 l, ones(2k+1)::Bs 〉〉, 2)

If k=0, carry out a move-R and apply the lemma (3) above; if k=h+1, complete
a cycle (by erasing the second “1”) and conclude via the induction hypothesis.

We address the convergence in the complementary scenario (an even input
n in (2)) by proving the following property, again by induction on k:

∀ l∈HTape. b∗(T, 〈〈 l, ones(2k)::Bs 〉〉, 2, 〈〈 rpt(k):: l, Bs 〉〉, 2)

where rpt(k) in the final tape stands for a list of k consecutive pairs “B:1”. ��

Second Example: R and L Moves. The second sample function that we choose
is partially defined on input pairs, and may be named “partial minus”:

pminus(m,n) �
{

m − n if m ≥ n
↑ if m < n

To compute it, we devise the following algorithm. First scan the tape towards the
right till reaching the B that separates the two inputs; then erase the leftmost
“1” from the representation of n and the rightmost “1” from that of m (both the
“1s” must occur) by replacing them, respectively, with a mark symbol “0” (on
the right, for n) and a B (on the left). The core of the computation is repeating
this cycle, which leads to one of two possible situations: if the end of n is reached
(i.e., we are scanning the first B on the right of a 0-block), then stop; on the
other hand, replacing m with B symbols may cause that the head (looking for
“1s”) moves indefinitely on the left. The specification is the following:

U � {〈1, 1, R, 1〉, 〈1, B,R, 2〉, 〈2, 0, R, 2〉, 〈2, 1,W (0), 3〉, 〈3, 0, L, 3〉,
〈3, B, L, 4〉, 〈4, B, L, 4〉, 〈4, 1,W (B), 5〉, 〈5, B,R, 5〉, 〈5, 0, R, 2〉}

The initial part of the formal development (erasing the first pair of “1s”, so
moving from state 1 to 5) is common to the divergence and convergence cases14:

⇓ ⇓
− | B | 1 | − | 1︸ ︷︷ ︸

m+1

| B | 1 | − | 1︸ ︷︷ ︸
n+1

| B | − ∗=⇒ − | B | 1m | B | B | 0 | 1n | B | −

At this point of the proof, the key pattern to be mastered is shaped as follows:

⇓
− | B | 1 | − | 1︸ ︷︷ ︸

m

| B | − | B︸ ︷︷ ︸
k+2

| 0 | − | 0︸ ︷︷ ︸
k+1

| 1 | − |1︸ ︷︷ ︸
n

| B | − (4)

14 Informally, we represent with
∗

=⇒ the effect of a finite number of actions on a tape.
Moreover, we denote with 1m a block of m consecutive squares with the “1” symbol.

92 A. Ciaffaglione

Starting from this tape and the state 5, we can discriminate between divergence
and convergence by distinguishing the case m<n from m≥n. Notice that we have
introduced the variable k to obtain a more general induction hypothesis.

When we come to the state 5 and an instance (for k=1) of the above tape
(4) we prove the divergence, under the hypothesis m<n, by nested induction on
n and m. This proof requires auxiliary lemmas, to scan 0-blocks and B-blocks
(by induction on k) and for assuring the divergence from the state 4 with the
tape Bs towards the left. One key point is that we can use the predicate b∞
in a compositional way: i.e., when carrying out a divergence proof in top-down
fashion, we can perform a preliminary finite number of actions, thus reducing
to a different goal. In fact, this amounts to split a divergent computation into
a convergent one, easily provable, plus another divergent one, which becomes
our goal; e.g., we scan, by moving the head to the right, a 0-block (of length k,
formalized by the blanks function) via the lemma (proved by induction on k):

∀ k∈N,∀ l, r∈HTape. b∞(U, 〈〈 blanks(k)::l, r 〉〉, 5) ⇒ b∞(U, 〈〈 l, blanks(k)::r 〉〉, 5)

Conversely, it is not possible to use the predicate b∗ in a compositional way
to manage the convergence scenario. The problem is that b∗ requires to exhibit
the final tape, but in this case, due to the complexity of the proof, we cannot
master it tout-court as we have done in the first example. Therefore, we need an
extra tool to accomplish the convergence. Actually, such a tool is provided by
the small-step predicate ∗→: by applying the Proposition 1.2, we may decompose
a convergent computation and address separately the intermediate steps. In the
end, we carry out the proof from (4), under the hypothesis m≥n, by nested
induction on n and m, and by means of lemmas similar to those used for b∞. ��

Third Example: R and L Moves, Infinitely. In this example we consider the unary
function f∅, undefined on every input, for which we devise an implementation
that points out a problem that involves the mechanization of coinduction.

In fact, our algorithm to compute f∅ is very simple: first scan the 1-block
towards the right and replace the first blank with a “1”; then move the head
towards the left till reaching the first blank and replace it again with a “1”;
proceed infinitely in the same way. The specification we pick out is minimal:

V � {〈1, 1, R, 1〉, 〈1, B,W (1), 2〉, 〈2, 1, L, 2〉, 〈2, B,W (1), 1〉}
The idea beneath the formal divergence proof is nesting a couple of inductions

inside the main coinduction; that is, by using the notation introduced in the
previous example to display the modification of the tape, we want to perform
the two computations (passing to state 2 and then coming back to state 1):

⇓ ⇓ ⇓
− | B | 1 | − | 1︸ ︷︷ ︸

n+1

| B | − ∗=⇒ − | B | 1 | − | 1︸ ︷︷ ︸
n+2

| B | − ∗=⇒ − | B | 1 | − | 1︸ ︷︷ ︸
n+3

| B | −

It is apparent that, to accommodate this proof, we may assume the coinductive
hypothesis for the initial configuration (state 1 and leftmost tape above) and

A Coinductive Animation of Turing Machines 93

then carry out two finite computations, thus reducing to a configuration (state
1 and rightmost tape) which is an instance of the coinductive hypothesis itself.

Nevertheless, the application of the coinductive hypothesis is not allowed by
Coq, because the whole proof (i.e., the proof term built interactively through
tactics, and mainly via cofix) is recognized as non-guarded by constructors.
Essentially, this is caused by the fact that the syntactic check does not accept
an induction (i.e., a lemma) nested inside the coinductive development15.

To circumvent the problem, we introduce here a new small-step divergence
predicate. The idea is very direct: divergence may be characterized as the coin-
ductive transitive closure of the inductive non-reflexive transitive closure of →.

Definition 3. (Extra reduction) Assume T∈Spec, s, t, u∈Tape, p, q, i∈State.
Then, finite positive reduction +→ is defined by induction, via the rules:

(T, s, p) → (T, t, q)

(T, s, p) +→ (T, t, q)
(+→1)

(T, s, p) → (T, u, i) (T, u, i) +→ (T, t, q)

(T, s, p) +→ (T, t, q)
(+→+)

And infinite split reduction ∞⇒ is defined by the following coinductive rule:

(T, s, p) +→ (T, t, q) (T, t, q) ∞⇒
(T, s, p) ∞⇒ (∞⇒∞)

Proposition 3. (Equivalence, bis) Let be T∈Spec, s∈Tape, and p∈State.

1. If (T, s, p) +→ (T, u, i) and (T, u, i) +→ (T, t, q), then (T, s, p) +→ (T, t, q)
2. If (T, s, p) ∞⇒, then (T, s, p) ∞→
3. b∞(T, s, p) if and only if (T, s, p) ∞⇒

Proof. 1) By structural induction on the derivation of (T, s, p) +→ (T, u, i). 2)
By coinduction and hypothesis inversion. 3) (⇒) By coinduction and hypothesis
inversion. (⇐) By Proposition 1.4 and point 2. ��

Since the reduction predicate ∞⇒ turns out to be equivalent to b∞, we adopt
the former to carry out our divergence proof. Actually, ∞⇒ does not suffer from
the non-guardedness problem, as it is apparent from the following proof tree16:

n∈N
(V, s, 1) +→ (V, t, 1)

[∀n∈N. (V, s, 1) ∞⇒](1)....
(V, t, 1) ∞⇒

(V, s, 1) ∞⇒ (∞⇒∞)

∀n∈N. (V, s, 1) ∞⇒
(1), (introduction)

The proof of the premise (V, s, 1) +→ (V, t, 1) relies on the transitivity of +→
(Proposition 3.1) and on two auxiliary lemmas, argued by induction on n. ��
15 See [8] for a recent proposal of an alternative, semantic guardedness checking.
16 We write s for 〈〈Bs, ones(n+1)::Bs 〉〉 and t for 〈〈Bs, ones(n+3)::Bs 〉〉.

94 A. Ciaffaglione

8 Conclusion

In the present contribution we have formalized TMs and their (big-step and
small-step) operational semantics in the Coq proof assistant. Our key choices are
the encoding of tapes as pairs of streams (managed by means of corecursion)
and a clear distinction between converging computations (modeled via induc-
tive predicates) and diverging ones (formalized through coinductive predicates).
In the previous, core section we have pointed out the potential of our machin-
ery, by proving the correctness of representative TMs (that is, by certifying the
implementation of the partial functions computed by them).

Our encoding provides a completely mechanized management of the tran-
sitions (via the auto tactic), with the benefit that we may concentrate on the
formal treatment of the tape and the logic of proofs. Divergence can be proved
very often in a compositional way, via the sole big-step coinductive predicate.
When “non-guardedness” complications arise (essentially because induction is
nested inside coinduction), alternative, equivalent small-step coinductive predi-
cates may be employed, by taking advantage of their close relationship with the
main big-step predicate. On the other hand, it is not always possible to master
convergence proofs by compositionality. When this is not feasible (due to the
difficulty of the proof at hand), the small-step semantics predicates may be used
again as an auxiliary tool, to perform intermediate computation steps.

We note also that, in order to carry out either divergence or convergence
proofs, often the user has the responsibility to figure out how to decompose
the main goal. As usual, it is sometimes necessary to generalize the statements
to obtain sufficiently powerful (co)inductive hypotheses. Moreover, some proofs
require a subtle combination of inductive and coinductive reasoning.

Related Work. The contributions of the literature most related to the present
one are those by Asperti and Ricciotti in Matita [1], Xu, Zhang and Urban in
Isabelle/HOL [13], and Leroy in Coq [9]. Both the first two works address TMs,
achieving the ambitious goals we have reported in Section 1.

Asperti and Ricciotti formalize the tape as a triple, made of two lists plus
the square currently scrutinized. The non-termination is managed by requiring
that the total computation function returns an optional value, when it meets
an upper bound of iterations without reaching a final state. The semantics is
defined through a relation between tapes, (weakly) “realized” by TMs.

Xu, Zhang and Urban represent the tape via a pair of lists. They handle the
non-termination in a similar way, i.e., via the condition that there is no transition
into a halting state. The semantics is defined by means of Hoare-rules.

None of the above two works makes use of coinductive tools (that we have
exploited to deal with stream-tapes and divergence); from this perspective, our
paper is more related to that of Leroy [9], who adopts coinduction in Coq to
capture infinite evaluations and reductions of a call-by-value λ-calculus.

Future Work. We believe that the main result achieved by our work (i.e., the
development of a technology for proving the correctness of concrete TMs, via

A Coinductive Animation of Turing Machines 95

several versions of big-step and small-step semantics) is a promising tool to
pursue more advanced goals which are outside the scope of the present paper.

In particular, our effort may be seen as a first step towards the development of
computability theory, as the construction of “brick” TMs and their composition
at higher-levels of abstraction is the natural progress of this contribution.

It would be also stimulating to relate the present formalization to that of
unlimited register machines, that we have addressed in a previous work [2].

Acknowledgments. The author is very grateful to the anonymous referees for their
helpful, constructive reviews.

References

1. Asperti, A., Ricciotti, W.: Formalizing turing machines. In: Ong, L., de Queiroz,
R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 1–25. Springer, Heidelberg (2012)

2. Ciaffaglione, A.: A coinductive semantics of the unlimited register machine. In: Yu,
F., Wang, C. (eds.) INFINITY. Electronic Proceedings in Theoretical Computer
Science, vol. 73, pp. 49–63 (2011)

3. Ciaffaglione, A.: The Web Appendix of this paper. Università di Udine, Italia
(2014). http://users.dimi.uniud.it/∼alberto.ciaffaglione/Turing/

4. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

5. Cutland, N.J.: Computability: An Introduction to Recursive Function Theory.
Cambridge University Press (1980)

6. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995)

7. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley (2003)

8. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 193–206. ACM
(2013)

9. Leroy, X.: Coinductive big-step operational semantics. In: Sestoft, P. (ed.) ESOP
2006. LNCS, vol. 3924, pp. 54–68. Springer, Heidelberg (2006)

10. Norrish, M.: Mechanised computability theory. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer,
Heidelberg (2011)

11. The Coq Development Team. The Coq Proof Assistant, version 8.4. INRIA (2012).
http://coq.inria.fr

12. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 42 (1936)

13. Xu, J., Zhang, X., Urban, C.: Mechanising turing machines and computability
theory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 147–162. Springer, Heidelberg (2013)

http://users.dimi.uniud.it/~alberto.ciaffaglione/Turing/
http://coq.inria.fr

	A Coinductive Animation of Turing Machines
	1 Introduction
	2 Turing Machines
	3 Turing Machines in Coq
	4 Coinduction in Coq
	5 Operational Semantics
	6 Adequacy
	7 Certification
	8 Conclusion
	References

