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Abstract. We present b2llvm, a multi-platform code generator for the
B-method. The b2llvm code generator currently handles the following
elements of the B language: simple data types, imperative instructions
and component compositions. In particular, this paper describes a trans-
lation for essential implementation constructs of the B language into
LLVM source code, implemented into the b2llvm compiler. We use an
example-based approach for this description.

1 Introduction

The B-method is a refinement-based software design method [1]. Its language has
both abstract constructs, suitable for declarative-like specifications, and imper-
ative constructs, commonly found in programming languages. B development
typically starts with a specification, in a so-called machine, followed by incre-
mental refinements to an implementation, where only imperative-like constructs
may be employed [6]. Such an implementation is then translated [5] to source
code in a programming language, say C or Ada. The steps in the B-method are
verified using certified theorem proving technologies. However the translation
to a programming language, and its subsequent compilation to the target plat-
form, do not benefit from the same mathematical rigor. In practice, redundancy
in the tool chains and execution platforms is employed to increase the level of
confidence to the desired levels.

The goal of this work is to contribute a redundancy element, by creating a
new open-source machine-code generation tool chain. To achieve this, we base
our work on the LLVM compilation framework [8]. LLVM is an active open-
source compiler infrastructure used by many compiling toolchains. It provides
an intermediate assembly language suitable to the applications of many compiler
techniques such as optimization, static analysis, code generation, debugging. We
defined a translation from B0 (the subset of the B language that is used to
describe imperative programs) to the LLVM intermediate representation, which
is implemented in the b2llvm tool1.
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The rest of the paper is organized as follows. Section 2 presents selected
aspects of the LLVM intermediate representation language. Next, in section 3,
we review some important concepts of the B-method regarding the structure of
projects. A user perspective of the code generator is then presented in section 4.
In section 5 we present some details of the code generation process through
illustrative examples. Also, section 6 discusses verification and validation aspects.
We conclude and consider future work in section 7.

2 Target LLVM Subset

The LLVM project defines an intermediate representation language (LLVM IR),
as a means to implement different compiler components. Front-ends translate
source programming languages to LLVM IR, optimizers and other static analysis
tasks may be applied to the IR, and back-ends translate from LLVM IR to
target platform assembly languages. LLVM IR is a single-static assignment (SSA)
language, i.e., a variable may only be assigned in a single instruction. Figure 1
exemplifies LLVM IR syntax with a simple program together with its equivalent
C program.

define void @inc(i32* %pi) {

entry:

%0 = load i32* %pi

%1 = add i32 %0, 1

store i32 %1, i32* %pi

ret void

}

void inc(int * pi)

{

*pi += 1;

}

Fig. 1. Simple example of a C function and its corresponding LLVM IR function. The
first line contains the signature: return type void, the name @inc and one parameter
named %pi and typed i32*. Next is the body with a single block, labeled entry, and
temporary variables %0 and %1, created in the conversion to SSA. The block has four
instructions: load, add, store and ret. For instance, %1 = add i32 %0, 1 performs
an addition (add), has result type i32 and assigns to %1 the sum of variable %0 and
integer literal 1.

Figure 2 presents the subset of LLVM IR targeted by the b2llvm code genera-
tor. LLVM IR programs are organized into modules, one per translation unit. A
module may contain declarations of external entities (functions and constants)
and definitions of internal items (functions, variables and constants). Data must
be typed and the name and type of external entities must be declared. All names,
e.g. non-reserved identifiers, must start with @, when they are global, or %, when
they are local. For instance, @max = external constant i32 declares @max as
a 32-bit integer constant and declare void @inc(i32*) declares @inc as a
function with one parameter, namely a pointer to an integer, and a void return
type.
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module ::= item+

item ::= const decl | function decl |
type def | const def | var def | function def

const decl ::= name = external constant type
type def ::= name = type type

type ::= void | itype | { type+ } | type*
const def ::= name = constant type iliteral
var def ::= name = common global type zeroinitializer

function decl ::= declare type name ( type+ )

function def ::= define type name ( param+ ) { block+ }
param ::= type name
block ::= lbl : inst+

inst ::= name = alloca type
| name = 〈 add | sub | mul | sdiv | srem 〉itype exp , exp
| name = icmp 〈 eq | ne | sgt | sge | slt | sle 〉 i1 exp , exp
| name = call type ( arg+ )

| name = getelementptr type * exp, index, index
| name = load type exp
| store type exp, type * exp
| br i1 exp , label lbl , label lbl
| br label lbl
| ret 〈type exp | void 〉

exp ::= name | iliteral | getelementptr ( type exp , index , index )

index ::= itype iliteral
branch ::= iliteral iliteral lbl

arg ::= type exp

Fig. 2. Grammar of the target LLVM IR subset: itype, iliteral , lbl and name correspond
respectively to integer types, integer literals, labels and names. Choices are separated
by | and optionally delimited by 〈 and 〉. The + superscript denotes a comma-separated
list of elements of the annotated entity.

The type system contains the empty type void, a (countable) infinite, num-
ber of integer types, one for each possible bit width (e.g., i8 is the type for 8-bit
integers), and type constructors pointer (declared with monadic operator · *) and
structure (declared with polyadic operator {· · · }). For instance { i8*, i8, i8 }
is the type for structures with three fields, the first having as type pointer to i8.
Grammar rule type def states how types are named, e.g., %T1 = type {i32, i32}
and %T2 = type {%T1*, %T1*}. In LLVM IR, pointer values are integers.

Local entities are constants, variables or functions. An example of constant
definition is @secret = constant i32 42 and is composed of a name, type and
value. A variable definition has a name, a type and code generation attributes, e.g
@count = common global i32 zeroinitializer. Attributes provide information
for target code generation, e.g., linkage type, scope, initialization. For each such
definition, a memory block is allocated statically and stores the variable value.
Function definitions are composed of the signature and body. The signature con-
tains the return type, name, parameters, and attributes for target code generation.
The body is a sequence of blocks of instructions in single-static assignment form.
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Grammar rule inst describes the different kinds of instructions. All instruc-
tions producing a value assign it to a fresh variable (since it is a SSA language).
Instruction alloca allocates a memory block, with the size of the given type, on
the stack segment. This memory is automatically freed when the current frame is
popped from the stack. Arithmetic operations are binary and comparisons return
a 1-bit integer value. Instruction call invokes the given function with the given
arguments, assigning the result to a fresh variable. In general, getelementptr gets
the address of an element in an aggregate object through indexing. This instruc-
tion assumes that a sequence with several aggregate values may be stored start-
ing from the given position. It therefore gets two indices: the first identifies which
value is selected in the sequence, and the second selects the element of interest
in the aggregate. In the LLVM IR code produced by b2llvm, such sequences are
composed of a single structure value. Hence, the first index has value 0 (and type
i32) to select the first structure at the given location exp, and the second index
selects a field in that structure. Instruction load assigns to a fresh variable name
the contents of a memory address of type type specified by exp (e.g. in figure 1).
Instruction storewrites a value to memory address (e.g., see figure 1). Instruction
br is either conditional, and directs the execution to one of two blocks, or uncon-
ditional and the execution jumps to the given block. Instruction switch directs
the control flow to one of several blocks, according to the value of the given expres-
sion. Finally, instruction ret ends the current function call, optionally returning a
value. The expression language is thus limited to names (local and global), integer
literals and selection of an element in a structure.

We make no assumption on the existence of a library to obtain resources
managed by the operating system, such as dynamic memory allocation. Con-
sequently, all data must be allocated either statically, or on the current stack
frame (using the alloca instruction).

3 On the Structure of B Developments

Industrial applications of the B-method are large-scale developments that use
constructs for modular design. The b2llvm code generator supports these con-
structs. We discuss them in this section.

A B project consists in specifying a system at an abstract level and in deriv-
ing a consistent software system. This is essentially done by decomposing the
specification into modules and by producing computer-executable artifacts from
such modules. In a B development, software is organized in libraries of modules
which may be composed to build new modules and realize projects.

A module has a specification, called a machine, and is developed formally
by a series of modules called refinements. Such modules may be used to spec-
ify additional requirements, to define how abstract data may be encoded using
concrete data types, or to define how operations may be implemented algorith-
mically. From a formal point of view, each module is simulated by the subsequent
refinement modules. A refinement is called an implementation when its data is
scalar and behavior is described in a procedural style. Implementations may be
translated into an imperative programming language such as C.
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Fig. 3. Structure of the imports relation in a B project

Machines, refinements and implementations are called the components of
a module. When a module is implemented with the B-method, it is called a
developed module. It is also possible that a module is only specified, but not
implemented, in B. It is then called a base module. b2llvm handles projects with
both kinds of modules.

Among the modularity constructs in the B notation, handling the import rela-
tion requires the application of separate compilation techniques. At the imple-
mentation level, one module may import several instances of a module (base
or developed) to form its internal data structures. The implementation of an
imported developed module may in turn import other instances, and there is
no pre-established limit to such chain of imports. The import relation between
module instances forms a tree, where the root is an implementation and the
descendants of a node are the instances imported from the module in that node.
Figure 3 shows the structure of a B project with an implementation I0 of a
specification M0. I0 imports one unnamed instance of base module M1 and two
instances named A and B of developed module M2. Its implementation I2 in turn
imports two instances C and D of a developed module M3, implemented as I3
(which has no imports itself).

4 General Design of the Code Generator

The input to b2llvm is a large subset of the B implementation language, also
known as B0: simple data types INT and BOOL, enumerations, concrete vari-
ables, concrete constants, sees clause, importation (i.e., instantiation) of mod-
ules, and all instructions, including operation calls. Support for arrays and record
types is also underway and will be integrated to the code generator. This input
is given as XML-formatted files produced by Atelier-B version 4.2. In addition
to producing LLVM IR from B implementations, b2llvm is designed to satisfy
the following two requirements:
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static memory allocation Many safety-critical systems preclude the use of
dynamic memory allocation. Therefore, all memory has to be allocated stat-
ically, save for the function call frame stack. As a side effect, no dynamic
memory allocation library is required.

separate compilation An internal change in a module should only require
generating new IR code for that module, and not for the modules that depend
on it. This condition is important for large projects, where the development
may be distributed. Nevertheless, a change in an interface still requires the
recompilation of all dependent modules.

We will use the example of the B project structure from figure 3 to explain
decisions taken in the design of the code generator. This project consists of four
modules and the corresponding final binary must include one instance of module
M0, one instance of M1, two instances of M2 and four instances of M3.

M1 is a base module, and the corresponding instance is produced by another
tool chain. Nevertheless, M0 may use all the symbols defined in the interface of
M1 and we have to include corresponding declarations in the LLVM IR file for
M0. Similarly, M0 accesses the interface of M2, and M2 accesses that of M3. The
first design decision is that, given a module M, we need a procedure producing
the LLVM IR declarations for all the elements in the interface of M. The code
thus produced is called the interface section of (the translation of) M.

Next, modules may have a data space and the code generator needs to allocate
memory to store the representation of the corresponding data. Dynamic memory
allocation is excluded, and the sole solution is static memory allocation, that is
using global variables. Also, when the code generator processes a B module,
the number of its instances at run time is unknown, and we would not want to
have to regenerate code each time the module is used in a project to suit the
number of instances. So, the second design decision is to distinguish between
code generation of a module and code generation of its instances. To cope with
it, the b2llvm code generator has two operation modes:

– COMP , for module compilation, consists in producing an LLVM IR imple-
mentation of the data, i.e., a type encoding the state space, and of the
behavior, i.e., functions implementing initialization and operations.

– PROJ , for module instances, is applied whenever we need to instantiate
modules, that is, when we want to produce code for a full project. Then, given
the root module of the project, all transitively imported components are
identified and instantiated, by generating LLVM IR global variables having
the type associated with the corresponding module. Note that the definitions
of such module types are generated in COMP mode.

The code generated for a module with a data space needs to address individ-
ually the variables and the imported module instances composing such a space.
To do so, these are aggregated within a structure-like data type. Hence, when
a module has a data space, b2llvm produces the definition of a LLVM IR struc-
ture type, named %M$state$. This definition is called the typedef section of (the
translation of) M.



LLVM-Based Code Generation for B 7

To support separate compilation, the representation of the imported module
instances cannot be part of the structure itself. Instead, the instances of the
imported modules are represented as references to the corresponding encoding
structures (i.e., as pointers). We call %M$ref$ the type pointer to %M$state$.

typedef: If the module has data space, a LLVM IR structure type is defined:
%M$state$ = type { type+ }

interface: If the module has a data space, an LLVM IR type M ref,
pointer to M data and an initialization function are defined:

%M$ref$ = type %M$state$*

declare void @M$init$(%M$ref$, type+)

One function is declared for each operation in the module:
declare void @M$op(%M$ref$, type+)

implementation: For developed modules, defines the functions declared in
the interface:

define void @M$op(%M$ref$ %self$, param+) {
block+

exit: ret void

}

Fig. 4. Summary of the different sections and the pattern of LLVM IR code composing
them

To encode the behavior of a module, for each operation op, a function named
@M$op encoding its behavior is generated. The parameter list of such functions
contains one item for each input and output of the corresponding operation.
There is also one parameter of type %M$ref$, which is a reference to the struc-
ture encoding the instance associated with that operation. Also, b2llvm produces
a function @M$init$ responsible for executing the initialization of M. The param-
eters of this function are the addresses of the instances found in the import tree
of the module (including the module itself). These parameters are necessary to
call the corresponding initialization functions in the correct dependency order
and to bind the references to the imported modules to elements of the structure
of the initialized module. These LLVM IR function definitions and the definition
of the type @M$ref$ form the so-called implementation section of (the transla-
tion of) M. Figure 4 summarizes the three sections defined in our approach for
the code generation and figures 5 and 6 present the overall structure for the code
generated in COMP mode and PROJ , respectively.

5 Details of the Code Generator

We have specified the code generation process with a comprehensive set of formal
rules. Due to space constraints, we cannot thoroughly present this specification2.
Instead, we give an informal description of the code generation process, based
2 This specification is available online at http://www.b2llvm.org/b2llvm/downloads.

http://www.b2llvm.org/b2llvm/downloads
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for each transitively imported stateful module Q, generate
%Q$state$ = type opaque (declares type for Q state space)
%Q$ref$ = type %Q$state$* (and corresponding pointer type)

for each imported module Q, generate
include the interface section of Q

if M is stateful
include the typedef section of M
%M$ref$ = type %M$state$*

include the implementation section of M

Fig. 5. Code template for the COMP mode

for each transitively imported stateful module Q
include the typedef section of Q
%Q$ref$ = type %Q$state$*

for each stateful instance Q, imported transitively through path
declare a variable of type %Q$state$:
@Q[path] = common global %M$state$ zeroinitializer

include the interface section of M
define a function %$init$ with a call to the

initialization function of M with the proper bindings
define void @$init$(void) {

call void @M$init$(@M, { instances+ }) {
exit: ret void

}

Fig. 6. Code template for the COMP mode

on two examples: first, a counter with no external dependencies and, second,
part of a watchdog timer that includes one instance of the same counter. We
complete this section by describing an example of code generation for a project.

5.1 The Standalone Module counter

The implementation counter i of the module counter is presented in figure 7.

1 IMPLEMENTATION counter_i
2 REFINES counter
3 CONCRETE_VARIABLES value, error
4 INVARIANT value: INT & error : BOOL & /* omitted gluing invariant */
5 INITIALISATION value := 0; error := FALSE
6 OPERATIONS
7 inc = IF value < MAXINT THEN value := value + 1
8 ELSE error := TRUE END;
9 res <-- get = res := value

10 END

Fig. 7. Example B implementation
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Here, the code generator needs to access neither the corresponding B machine,
nor the gluing invariant of the implementation. This module is stateful as it has
two state variables value and error (respectively an integer and a Boolean) and
two operations inc and get. Figure 8 contains its corresponding typedef section:
LLVM IR aggregate type %counter$state$ has two elements, a i32 at position
0 represents value and a i1 at position 1 represents error.

1 %counter$state$ = type {i32, i1}

Fig. 8. Corresponding LLVM IR typedef section

Figure 9 contains the corresponding interface section, comprised of the decla-
rations of all the entities defined in the module that may be used by third-party
components (this is illustrated in section 5.2): a pointer type %counter$ref$
to reference an aggregate storing the state of the component, the initialization
function %counter$init$, and the functions %counter$inc and %counter$get,
each responsible for implementing one module operation. Each such function
takes as first parameter the address of the representation of the module state.
The last function also takes as parameter the address of a i32, where the value
of the operation value is stored.

1 %counter$ref$ = type %counter$state$*
2 declare void @counter$init$(%counter$ref$)
3 declare void @counter$inc(%counter$ref$)
4 declare void @counter$get(%counter$ref$, i32*)

Fig. 9. Corresponding LLVM IR interface section

Figure 10 contains the implementation section. It consists of the definition of
all the functions implementing the module behavior. All function bodies contain
an entry and an exit statement block. In addition, a block for each conditional
branch is created; e.g., blocks starting line 18 and 25 respectively correspond to
the IF branches from line 7 and 8 in the inc operation.

This example illustrates the encoding for different kinds of expressions and
instructions. First, let us consider expressions: the example given in figure 7
includes operation parameters, integer and Boolean literals, implementation
(state) variables, an addition and a comparison.

Operation parameters are encoded as function arguments, which have identi-
fiers in LLVM IR. So the b2llvm code generator simply maintains a symbol table
mapping each B operation parameter to the identifier of the corresponding LLVM
IR function parameter. For instance, operation get has output res (l. 9, fig. 7),
which is represented by %res of function @counter$get (l. 31, fig. 10). Integer
and Boolean literals are encoded directly as 32-bit and 1-bit LLVM integer val-
ues; for instance MAXINT and TRUE are encoded respectively as 2147483647
and 1 (l. 15 and l. 26, fig. 10). Implementation variables are encoded as elements
of the aggregate %self$, which is a parameter in each function. Their address is
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1 define void @counter$init$(%counter$ref$ %self$) {
2 entry:
3 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
4 store i32 0, i32* %0
5 %1 = getelementptr %counter$ref$ %self$, i32 0, i32 1
6 store i1 0, i1* %1
7 br label %exit
8 exit:
9 ret void

10 }
11 define void @counter$inc(%counter$ref$ %self$) {
12 entry:
13 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
14 %1 = load i32* %0
15 %2 = icmp slt i32 %1, 2147483647
16 br i1 %2, label %label0, label %label1
17 label0:
18 %3 = getelementptr %counter$ref$ %self$, i32 0, i32 0
19 %4 = load i32* %3
20 %5 = add i32 %4, 1
21 %6 = getelementptr %counter$ref$ %self$, i32 0, i32 0
22 store i32 %5, i32* %6
23 br label %exit
24 label1:
25 %7 = getelementptr %counter$ref$ %self$, i32 0, i32 1
26 store i1 1, i1* %7
27 br label %exit
28 exit:
29 ret void
30 }
31 define void @counter$get(%counter$ref$ %self$, i32* %res) {
32 entry:
33 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
34 %1 = load i32* %0
35 store i32 %1, i32* %res
36 br label %exit
37 exit:
38 ret void
39 }

Fig. 10. LLVM implementation section for counter i

obtained with the getelementptr instruction, giving the position of the variable
representation in this aggregate: 0 for variable value and 1 for variable error.

We now provide detailed explanation for the translation of the assignment
value := value + 1 (l. 7, fig. 7) to LLVM IR instructions (l. 18-22, fig. 10):

l. 18-20 First, the right-hand side of the assignment is evaluated, and the result
is stored in temporary %5, as follows:
l. 18 A getelementptr instruction gets the address of the representation of

variable value in the structure encoding the state of the module, and the
result is stored into temporary %3.

l. 19 A load instruction fetches the data in this location into temporary %4.
l. 20 An add instruction sums this value with one (1) and the result is stored

into temporary %5.
l. 21 Second, the left-hand side of the assignment is evaluated, the result being

stored in temporary %6. Since this is again the variable value, it is essentially
the same operation as in l. 18 and %6 is redundant with %3 (but we do not
deal with optimization at this stage).
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l. 22 Finally, the assignment effectively take place with the value in %5 begin
stored at the evaluated address %6 (that of the representation of variable
value).

For an IF instruction (e.g., lines 7-8, fig. 7), b2llvm generates code to evaluate
the condition (e.g., lines 13-15, fig. 10), a conditional branch (l. 16, fig. 10), and one
block with the encoding of each branch (l. 17-23 and 24-27, fig. 10). Note that each
such block must end with an unconditional branch to the instruction following the
conditional. b2llvm handles the creation of all the required block labels.

Of course, the code thus generated is not optimal: e.g., the exit block in the
initialisation is useless. Indeed, code generation is designed to be as simple as
possible. No optimizations are implemented into b2llvm. A positive consequence
of choosing LLVM as target architecture is the possibility of applying many
off-the-shelf optimizers developped for LLVM to the output of b2llvm.

5.2 The Composed Module wd

Our second example is the wd module detailed in figure 11. It contains module

IMPLEMENTATION wd_i
REFINES wd
VALUES timeout=50
IMPORTS counter
INVARIANT overflow = FALSE & timeout - value = ticker
INITIALISATION

VAR count IN
count := 0;
WHILE count < timeout DO

inc; count := count+1
INVARIANT value = count
VARIANT timeout - count
END

END
OPERATIONS

tick =
VAR elapsed, diff IN

elapsed <-- get;
diff := timeout - elapsed;
IF diff > 0 THEN inc END

END;

Fig. 11. Implementation of B module wd (excerpts)

instantiation, operation calls, and a loop instruction. The state of this module is
exactly the state of the unique instance of its counter component, and is encoded
as an aggregate with a unique element, of type pointer to the state representation
of the corresponding module (see typedef section in figure 12).

1 %wd$state$ = type {%counter$ref$}

Fig. 12. Typedef section for module WD

Functions @wd$init$ and @wd$tick are defined in the implementation section,
presented in figure 13. We first discuss the latter.
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1 define void @wd$init$(%wd$ref$ %self$, %counter$ref$ %arg0$) {
2 entry:
3 %count = alloca i32
4 %0 = getelementptr %wd$ref$ %self$, i32 0, i32 0
5 store %counter$ref$ %arg0$, %counter$ref$* %0
6 call void @counter$init$(%counter$ref$ %arg0$)
7 store i32 0, i32* %count
8 br label %label1
9 label1:

10 %1 = load i32* %count
11 %2 = icmp slt i32 %1, 50
12 br i1 %2, label %label2, label %label0
13 label2:
14 %3 = getelementptr %wd$ref$ %self$, i32 0, i32 0
15 %4 = load %counter$ref$* %3
16 call void @counter$inc(%counter$ref$ %4)
17 %5 = load i32* %count
18 %6 = add i32 %5, 1
19 store i32 %6, i32* %count
20 br label %label1
21 label0:
22 br label %exit
23 exit:
24 ret void
25 }
26 define void @wd$tick(%wd$ref$ %self$) {
27 entry:
28 %elapsed = alloca i32
29 %diff = alloca i32
30 %0 = getelementptr %wd$ref$ %self$, i32 0, i32 0
31 %1 = load %counter$ref$* %0
32 call void @counter$get(%counter$ref$ %1, i32* %elapsed)
33 %2 = load i32* %elapsed
34 %3 = sub i32 50, %2
35 store i32 %3, i32* %diff
36 %4 = load i32* %diff
37 %5 = icmp sgt i32 %4, 0
38 br i1 %5, label %label1, label %label0
39 label1:
40 %6 = getelementptr %wd$ref$ %self$, i32 0, i32 0
41 %7 = load %counter$ref$* %6
42 call void @counter$inc(%counter$ref$ %7)
43 br label %label0
44 label0:
45 br label %exit
46 exit:
47 ret void
48 }

Fig. 13. Implementation section for module WD

Function @wd$tick$ implements operation tick. It has no input and no out-
put. Its sole argument is the address of the representation of a wd instance.
It has two local variables, elapsed and diff, and both are integers. Operation
variables are represented in stack memory, which is reserved with the alloca
instruction (e.g., lines 28-29). LLVM requires that such allocations appear first
in function bodies. The procedure in b2llvm responsible for encoding B opera-
tion declarations has a dedicated preliminary pass that collects all local variables
and issues the corresponding allocations. The encoding of operation calls is illus-
trated lines 30-32. First, the address of the called operation module is computed
(lines 30-31), possibly followed by the computation of other parameters. Then a
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LLVM function call is issued (e.g., l .32). Notice that the output of the opera-
tion is stored on the stack at the location given by parameter %elapsed. Another
example of operation call is given in lines 40-42. The remaining code in the func-
tion body uses previously described techniques.

Function @wd$init$ implements the initialization of a wd instance, the address
of which is given in parameter %self$. It also gets the address of one module
instance for each component. In this example, there is one instantiation of module
counter and its representation is given through parameter %arg0$. Following an
allocation for the representation of variable count, the components are bound and
initialized: each component representation is bound to an element of the aggregate
representing the current instance (e.g., lines 4-5). Also, each component represen-
tation is initialized by calling the corresponding LLVM function (e.g., line 6). The
order of these initializations complies to the dependency order. This example illus-
trates code generation for loops. First the loop condition is evaluated (lines 10-11
in the example), and a conditional branch jumps either to the code implementing
the loop body, or to the first instruction after the loop encoding (e.g., line 12).
Also, the loop body ends with an unconditional branch to the block evaluating
the loop condition (e.g., line 20).

5.3 Generating a System Instance

To conclude this section, we demonstrate and discuss the result of the code gen-
eration in PROJ mode. For this, we take the wd module as example and consider
the resulting code in figure 14. It follows the template given in figure 6 and is
composed of the following: lines 1-2 are the type definitions of the imported com-
ponent and line 3 is the global variable corresponding to its sole instance, then
lines 4-8 correspond to the interface section of the root component (comprised
of the declarations of types and functions), and concluded by the definition a
system initialization function called @$init$ (lines 9-13). The role of this func-
tion is to call the initialization function of the top-level module passing it the
state-representation variables as parameters.

6 Verification and Validation

Considering the verification of the proposed translation, several approaches are
possible: inspection, testing and proof. Only the first is currently available, and
work is underway to provide a framework based on the second approach.

A first approach is based on human inspection of the generated code. Cur-
rently, b2llvm provides two options to assist such inspections. The first option
provides additional functions to output the values of state variables of the sys-
tem: they can be called to visualize the evolution between operation calls. The
first option consists in annotating the code generated with information on the
intent of the code and references to the original B implementation. Figure 15
contains an excerpt of such annotated LLVM IR.
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1 %counter$state$ = type {i32, i1}
2 %counter$ref$ = type %counter$state$*
3 %wd$state$ = type {%counter$ref$}
4 %wd$ref$ = type %wd$state$*
5 @$wd = common global %wd$state$ zeroinitializer
6 @$counter = common global %counter$state$ zeroinitializer
7 declare void @wd$init$(%wd$ref$, %counter$ref$)
8 declare void @wd$tick(%wd$ref$)
9 define void @$init$() {

10 entry:
11 call void @wd$init$(%wd$ref$ @$wd, %counter$ref$ @$counter)
12 ret void
13 }

Fig. 14. Code generation in PROJ mode

1 ;;1 The type for the state of "counter" is defined in "counter_i",
2 ;; it is an aggregate such that:
3 ;;1.1 Position "0" represents variable "value".
4 ;;1.2 Position "1" represents variable "error".
5 %counter$state$ = type {i32, i1}
6 ;;2 The type for references to state encodings of "counter" is:
7 %counter$ref$ = type %counter$state$*
8 ;;3 The function implementing initialisation for "counter" is
9 ;; named "@counter£init£" and has the following parameters:

10 ;;3.1 "%self£": address of LLVM aggregate storing state of "counter";
11 define void @counter$init$(%counter$ref$ %self$) {

Fig. 15. Excerpt of annotated LLVM code generated by b2llvm

A second approach is runtime verification, by application of simulation, test
and assertions. For instance, we can use existing approaches to generate tests
[2,11] from the B development artifacts. Such tests can then be converted to
LLVM IR to produce and run test harnesses. A typical scenario for such a test
would consist in setting the state variables to some given values, call the function
implementing the operation being verified, and then inspect these same variables
to check if they have the expected values. Work in this direction, based on [11]
is currently underway.

It would also be possible to perform dual animation: B model with Pro-
B [10] together with the generated code with the LLVM interpreter. In addition,
B artifacts contain several kinds of assertions: state invariants, loop invariants,
preconditions, as well as ad hoc assertions. If the conditions found in those asser-
tions are expressed in the B0 language, b2llvm can also translate them to LLVM
IR. Using them to monitor the generated code at run-time would additionally
require to provide an LLVM implementation of the assertion semantics (e.g., the
assert command found in the standard C library) and link the generated code
to this implementation.

Finally, to formally verify the correctness of the translation, the semantics
of B and LLVM IR need to be specified in a suitable framework. Vellvm [12] is
a Coq formalization of the LLVM IR semantics that uses CompCert’s memory
model [9]. This could be a starting point for a proof of the correctness of the
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translation rules. It would still require to formalize the semantics of B and of
the translation rules in that same setting. This is left as future work.

7 Conclusion

This paper presents an approach to generate executable code from a large sub-
set of the B implementation language using LLVM, a modern compiler design
infrastructure. This is a work in progress, yet the definition is self-contained and
has a large enough scope to be applied to B implementations where the data
belongs to basic types. Its implementation, called b2llvm, is already publicly
available and will eventually be distributed as an extension to Atelier-B under
an open-source license.

Our current work is to extend the scope to the full B implementation lan-
guage. This entails the inclusion into the translation of rules to handle aggregate
data types as well as some syntactic sugar. We are also planning for producing
a LLVM IR output with debugging information. Such output would be indeed
very helpful to provide feedback to the user when applying testing to validate
the produced code.

To prove the correctness of the translation, we would have to define the
semantics of B and LLVM IR in a unified framework. Possible starting points are
Vellvm [12], a framework to reason about the correctness of LLVM programs and
transformations, and the existing formalizations of the B method (e.g., [3,4,7]).
We would have to extend such a framework to encompass both B and LLVM IR.
Another possible approach would be to translate verification conditions from the
B development artifacts as assertions in the generated LLVM IR. The compiled
program would include checks that such assertions hold while executing.
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