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Preface

This volume contains the papers presented at the 17th Brazilian Symposium on Formal
Methods (SBMF 2014). The conference was held in Maceió, Brazil, from September
29 to October 1, 2014, as a part of CBSoft 2014, the Fifth Brazilian Conference on
Software: Theory and Practice.

The Brazilian Symposium on Formal Methods (SBMF) is an event devoted to the
dissemination of the development and use of formal methods for the construction of
high-quality computational systems, aiming to promote opportunities for researchers
with interests in formal methods to discuss the recent advances in this area. SBMF is a
consolidated scientific-technical event in the software area. Its first edition took place
in 1998, reaching the 17th edition in 2014. The proceedings of the last editions were
published in Springer’s Lecture Notes in Computer Science as volumes 5902 (2009),
6527 (2010), 7021 (2011), 7498 (2012), and 8195 (2013).

The conference program of SBMF 2014 included two invited talks, given by David
Deharbe (Universidade Federal do Rio Grande do Norte, Natal, Brazil) and Narciso
Martí-Oliet (Universidad Complutense de Madrid, Madrid, Spain), who also taught at
CBSoft respective tutorials on Rigorous development of imperative software compo-
nents and Specifying, programming, and verifying in Maude.

A total of 13 research papers were presented at the conference: 9 full papers and
4 short papers. The first were included in these proceedings, together with the invited
talks, while the latter were included only in the preproceedings available at the confer-
ence.

These contributions were selected from 34 submissions that came from 18 dif-
ferent countries: Brazil, Canada, Colombia, Denmark, France, Germany, India, Israel,
Italy, Pakistan, Portugal, South Africa, Switzerland, Tunisia, Turkey, Ukraine, UK, and
Uruguay.

The processes of submission by the authors, paper reviews, and deliberations of the
Program Committee were all assisted by EasyChair.

We would like to begin our acknowledgments by thanking all the authors who sub-
mitted papers and showed interest in the subject, and next all the Program Committee
members and the referees for their hard work in evaluating submissions and suggesting
improvements. We are also very grateful to the local organizers of CBSoft 2014, who
were coordinated by Marcio Ribeiro, Baldoino Santos Neto, and Leandro Dias da Silva,
all from the Universidade Federal de Alagoas, who did an excellent job and managed
to run the conference smoothly. And we cannot forget thanking our respective families,
for their patience while we were devoting time to SBMF instead of being with them.

SBMF 2014 was organized by the Universidade Federal de Alagoas (UFAL), pro-
moted by the Brazilian Computer Society (SBC), and sponsored by the following orga-
nizations, who we thank for their generous support:
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– Brazilian National Institute of Science and Technology for Software Engineering
(INES),

– CAPES, the Brazilian Higher Education Funding Council,
– CNPq, the Brazilian Scientific and Technological Research Council,
– Google Inc., and
– Universidade Federal de Alagoas.

We hope you enjoy reading these proceedings as much as we enjoyed preparing
them.

December 2014 Christiano Braga
Narciso Martí-Oliet
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LLVM-Based Code Generation for B

Richard Bonichon1, David Déharbe1(B), Thierry Lecomte2,
and Valério Medeiros Jr.1

1 UFRN, Natal, Brazil
david@dimap.ufrn.br

2 Clearsy, Aix-en-Provence, France

Abstract. We present b2llvm, a multi-platform code generator for the
B-method. The b2llvm code generator currently handles the following
elements of the B language: simple data types, imperative instructions
and component compositions. In particular, this paper describes a trans-
lation for essential implementation constructs of the B language into
LLVM source code, implemented into the b2llvm compiler. We use an
example-based approach for this description.

1 Introduction

The B-method is a refinement-based software design method [1]. Its language has
both abstract constructs, suitable for declarative-like specifications, and imper-
ative constructs, commonly found in programming languages. B development
typically starts with a specification, in a so-called machine, followed by incre-
mental refinements to an implementation, where only imperative-like constructs
may be employed [6]. Such an implementation is then translated [5] to source
code in a programming language, say C or Ada. The steps in the B-method are
verified using certified theorem proving technologies. However the translation
to a programming language, and its subsequent compilation to the target plat-
form, do not benefit from the same mathematical rigor. In practice, redundancy
in the tool chains and execution platforms is employed to increase the level of
confidence to the desired levels.

The goal of this work is to contribute a redundancy element, by creating a
new open-source machine-code generation tool chain. To achieve this, we base
our work on the LLVM compilation framework [8]. LLVM is an active open-
source compiler infrastructure used by many compiling toolchains. It provides
an intermediate assembly language suitable to the applications of many compiler
techniques such as optimization, static analysis, code generation, debugging. We
defined a translation from B0 (the subset of the B language that is used to
describe imperative programs) to the LLVM intermediate representation, which
is implemented in the b2llvm tool1.

V. Medeiros Jr.—The research presented in this paper was partially supported by
CNPq projects 308008/2012-0 and 573964/2008-4 (National Institute of Science and
Technology for Software Engineer - INES).

1 The b2llvm project is hosted at https://www.b2llvm.org/b2llvm.

c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-15075-8 1
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The rest of the paper is organized as follows. Section 2 presents selected
aspects of the LLVM intermediate representation language. Next, in section 3,
we review some important concepts of the B-method regarding the structure of
projects. A user perspective of the code generator is then presented in section 4.
In section 5 we present some details of the code generation process through
illustrative examples. Also, section 6 discusses verification and validation aspects.
We conclude and consider future work in section 7.

2 Target LLVM Subset

The LLVM project defines an intermediate representation language (LLVM IR),
as a means to implement different compiler components. Front-ends translate
source programming languages to LLVM IR, optimizers and other static analysis
tasks may be applied to the IR, and back-ends translate from LLVM IR to
target platform assembly languages. LLVM IR is a single-static assignment (SSA)
language, i.e., a variable may only be assigned in a single instruction. Figure 1
exemplifies LLVM IR syntax with a simple program together with its equivalent
C program.

define void @inc(i32* %pi) {

entry:

%0 = load i32* %pi

%1 = add i32 %0, 1

store i32 %1, i32* %pi

ret void

}

void inc(int * pi)

{

*pi += 1;

}

Fig. 1. Simple example of a C function and its corresponding LLVM IR function. The
first line contains the signature: return type void, the name @inc and one parameter
named %pi and typed i32*. Next is the body with a single block, labeled entry, and
temporary variables %0 and %1, created in the conversion to SSA. The block has four
instructions: load, add, store and ret. For instance, %1 = add i32 %0, 1 performs
an addition (add), has result type i32 and assigns to %1 the sum of variable %0 and
integer literal 1.

Figure 2 presents the subset of LLVM IR targeted by the b2llvm code genera-
tor. LLVM IR programs are organized into modules, one per translation unit. A
module may contain declarations of external entities (functions and constants)
and definitions of internal items (functions, variables and constants). Data must
be typed and the name and type of external entities must be declared. All names,
e.g. non-reserved identifiers, must start with @, when they are global, or %, when
they are local. For instance, @max = external constant i32 declares @max as
a 32-bit integer constant and declare void @inc(i32*) declares @inc as a
function with one parameter, namely a pointer to an integer, and a void return
type.
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module ::= item+

item ::= const decl | function decl |
type def | const def | var def | function def

const decl ::= name = external constant type
type def ::= name = type type

type ::= void | itype | { type+ } | type*
const def ::= name = constant type iliteral
var def ::= name = common global type zeroinitializer

function decl ::= declare type name ( type+ )

function def ::= define type name ( param+ ) { block+ }
param ::= type name
block ::= lbl : inst+

inst ::= name = alloca type
| name = 〈 add | sub | mul | sdiv | srem 〉itype exp , exp
| name = icmp 〈 eq | ne | sgt | sge | slt | sle 〉 i1 exp , exp
| name = call type ( arg+ )

| name = getelementptr type * exp, index, index
| name = load type exp
| store type exp, type * exp
| br i1 exp , label lbl , label lbl
| br label lbl
| ret 〈type exp | void 〉

exp ::= name | iliteral | getelementptr ( type exp , index , index )

index ::= itype iliteral
branch ::= iliteral iliteral lbl

arg ::= type exp

Fig. 2. Grammar of the target LLVM IR subset: itype, iliteral , lbl and name correspond
respectively to integer types, integer literals, labels and names. Choices are separated
by | and optionally delimited by 〈 and 〉. The + superscript denotes a comma-separated
list of elements of the annotated entity.

The type system contains the empty type void, a (countable) infinite, num-
ber of integer types, one for each possible bit width (e.g., i8 is the type for 8-bit
integers), and type constructors pointer (declared with monadic operator · *) and
structure (declared with polyadic operator {· · · }). For instance { i8*, i8, i8 }
is the type for structures with three fields, the first having as type pointer to i8.
Grammar rule type def states how types are named, e.g., %T1 = type {i32, i32}
and %T2 = type {%T1*, %T1*}. In LLVM IR, pointer values are integers.

Local entities are constants, variables or functions. An example of constant
definition is @secret = constant i32 42 and is composed of a name, type and
value. A variable definition has a name, a type and code generation attributes, e.g
@count = common global i32 zeroinitializer. Attributes provide information
for target code generation, e.g., linkage type, scope, initialization. For each such
definition, a memory block is allocated statically and stores the variable value.
Function definitions are composed of the signature and body. The signature con-
tains the return type, name, parameters, and attributes for target code generation.
The body is a sequence of blocks of instructions in single-static assignment form.



4 R. Bonichon et al.

Grammar rule inst describes the different kinds of instructions. All instruc-
tions producing a value assign it to a fresh variable (since it is a SSA language).
Instruction alloca allocates a memory block, with the size of the given type, on
the stack segment. This memory is automatically freed when the current frame is
popped from the stack. Arithmetic operations are binary and comparisons return
a 1-bit integer value. Instruction call invokes the given function with the given
arguments, assigning the result to a fresh variable. In general, getelementptr gets
the address of an element in an aggregate object through indexing. This instruc-
tion assumes that a sequence with several aggregate values may be stored start-
ing from the given position. It therefore gets two indices: the first identifies which
value is selected in the sequence, and the second selects the element of interest
in the aggregate. In the LLVM IR code produced by b2llvm, such sequences are
composed of a single structure value. Hence, the first index has value 0 (and type
i32) to select the first structure at the given location exp, and the second index
selects a field in that structure. Instruction load assigns to a fresh variable name
the contents of a memory address of type type specified by exp (e.g. in figure 1).
Instruction storewrites a value to memory address (e.g., see figure 1). Instruction
br is either conditional, and directs the execution to one of two blocks, or uncon-
ditional and the execution jumps to the given block. Instruction switch directs
the control flow to one of several blocks, according to the value of the given expres-
sion. Finally, instruction ret ends the current function call, optionally returning a
value. The expression language is thus limited to names (local and global), integer
literals and selection of an element in a structure.

We make no assumption on the existence of a library to obtain resources
managed by the operating system, such as dynamic memory allocation. Con-
sequently, all data must be allocated either statically, or on the current stack
frame (using the alloca instruction).

3 On the Structure of B Developments

Industrial applications of the B-method are large-scale developments that use
constructs for modular design. The b2llvm code generator supports these con-
structs. We discuss them in this section.

A B project consists in specifying a system at an abstract level and in deriv-
ing a consistent software system. This is essentially done by decomposing the
specification into modules and by producing computer-executable artifacts from
such modules. In a B development, software is organized in libraries of modules
which may be composed to build new modules and realize projects.

A module has a specification, called a machine, and is developed formally
by a series of modules called refinements. Such modules may be used to spec-
ify additional requirements, to define how abstract data may be encoded using
concrete data types, or to define how operations may be implemented algorith-
mically. From a formal point of view, each module is simulated by the subsequent
refinement modules. A refinement is called an implementation when its data is
scalar and behavior is described in a procedural style. Implementations may be
translated into an imperative programming language such as C.



LLVM-Based Code Generation for B 5

Fig. 3. Structure of the imports relation in a B project

Machines, refinements and implementations are called the components of
a module. When a module is implemented with the B-method, it is called a
developed module. It is also possible that a module is only specified, but not
implemented, in B. It is then called a base module. b2llvm handles projects with
both kinds of modules.

Among the modularity constructs in the B notation, handling the import rela-
tion requires the application of separate compilation techniques. At the imple-
mentation level, one module may import several instances of a module (base
or developed) to form its internal data structures. The implementation of an
imported developed module may in turn import other instances, and there is
no pre-established limit to such chain of imports. The import relation between
module instances forms a tree, where the root is an implementation and the
descendants of a node are the instances imported from the module in that node.
Figure 3 shows the structure of a B project with an implementation I0 of a
specification M0. I0 imports one unnamed instance of base module M1 and two
instances named A and B of developed module M2. Its implementation I2 in turn
imports two instances C and D of a developed module M3, implemented as I3
(which has no imports itself).

4 General Design of the Code Generator

The input to b2llvm is a large subset of the B implementation language, also
known as B0: simple data types INT and BOOL, enumerations, concrete vari-
ables, concrete constants, sees clause, importation (i.e., instantiation) of mod-
ules, and all instructions, including operation calls. Support for arrays and record
types is also underway and will be integrated to the code generator. This input
is given as XML-formatted files produced by Atelier-B version 4.2. In addition
to producing LLVM IR from B implementations, b2llvm is designed to satisfy
the following two requirements:
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static memory allocation Many safety-critical systems preclude the use of
dynamic memory allocation. Therefore, all memory has to be allocated stat-
ically, save for the function call frame stack. As a side effect, no dynamic
memory allocation library is required.

separate compilation An internal change in a module should only require
generating new IR code for that module, and not for the modules that depend
on it. This condition is important for large projects, where the development
may be distributed. Nevertheless, a change in an interface still requires the
recompilation of all dependent modules.

We will use the example of the B project structure from figure 3 to explain
decisions taken in the design of the code generator. This project consists of four
modules and the corresponding final binary must include one instance of module
M0, one instance of M1, two instances of M2 and four instances of M3.

M1 is a base module, and the corresponding instance is produced by another
tool chain. Nevertheless, M0 may use all the symbols defined in the interface of
M1 and we have to include corresponding declarations in the LLVM IR file for
M0. Similarly, M0 accesses the interface of M2, and M2 accesses that of M3. The
first design decision is that, given a module M, we need a procedure producing
the LLVM IR declarations for all the elements in the interface of M. The code
thus produced is called the interface section of (the translation of) M.

Next, modules may have a data space and the code generator needs to allocate
memory to store the representation of the corresponding data. Dynamic memory
allocation is excluded, and the sole solution is static memory allocation, that is
using global variables. Also, when the code generator processes a B module,
the number of its instances at run time is unknown, and we would not want to
have to regenerate code each time the module is used in a project to suit the
number of instances. So, the second design decision is to distinguish between
code generation of a module and code generation of its instances. To cope with
it, the b2llvm code generator has two operation modes:

– COMP , for module compilation, consists in producing an LLVM IR imple-
mentation of the data, i.e., a type encoding the state space, and of the
behavior, i.e., functions implementing initialization and operations.

– PROJ , for module instances, is applied whenever we need to instantiate
modules, that is, when we want to produce code for a full project. Then, given
the root module of the project, all transitively imported components are
identified and instantiated, by generating LLVM IR global variables having
the type associated with the corresponding module. Note that the definitions
of such module types are generated in COMP mode.

The code generated for a module with a data space needs to address individ-
ually the variables and the imported module instances composing such a space.
To do so, these are aggregated within a structure-like data type. Hence, when
a module has a data space, b2llvm produces the definition of a LLVM IR struc-
ture type, named %M$state$. This definition is called the typedef section of (the
translation of) M.
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To support separate compilation, the representation of the imported module
instances cannot be part of the structure itself. Instead, the instances of the
imported modules are represented as references to the corresponding encoding
structures (i.e., as pointers). We call %M$ref$ the type pointer to %M$state$.

typedef: If the module has data space, a LLVM IR structure type is defined:
%M$state$ = type { type+ }

interface: If the module has a data space, an LLVM IR type M ref,
pointer to M data and an initialization function are defined:

%M$ref$ = type %M$state$*

declare void @M$init$(%M$ref$, type+)

One function is declared for each operation in the module:
declare void @M$op(%M$ref$, type+)

implementation: For developed modules, defines the functions declared in
the interface:

define void @M$op(%M$ref$ %self$, param+) {
block+

exit: ret void

}

Fig. 4. Summary of the different sections and the pattern of LLVM IR code composing
them

To encode the behavior of a module, for each operation op, a function named
@M$op encoding its behavior is generated. The parameter list of such functions
contains one item for each input and output of the corresponding operation.
There is also one parameter of type %M$ref$, which is a reference to the struc-
ture encoding the instance associated with that operation. Also, b2llvm produces
a function @M$init$ responsible for executing the initialization of M. The param-
eters of this function are the addresses of the instances found in the import tree
of the module (including the module itself). These parameters are necessary to
call the corresponding initialization functions in the correct dependency order
and to bind the references to the imported modules to elements of the structure
of the initialized module. These LLVM IR function definitions and the definition
of the type @M$ref$ form the so-called implementation section of (the transla-
tion of) M. Figure 4 summarizes the three sections defined in our approach for
the code generation and figures 5 and 6 present the overall structure for the code
generated in COMP mode and PROJ , respectively.

5 Details of the Code Generator

We have specified the code generation process with a comprehensive set of formal
rules. Due to space constraints, we cannot thoroughly present this specification2.
Instead, we give an informal description of the code generation process, based
2 This specification is available online at http://www.b2llvm.org/b2llvm/downloads.

http://www.b2llvm.org/b2llvm/downloads
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for each transitively imported stateful module Q, generate
%Q$state$ = type opaque (declares type for Q state space)
%Q$ref$ = type %Q$state$* (and corresponding pointer type)

for each imported module Q, generate
include the interface section of Q

if M is stateful
include the typedef section of M
%M$ref$ = type %M$state$*

include the implementation section of M

Fig. 5. Code template for the COMP mode

for each transitively imported stateful module Q
include the typedef section of Q
%Q$ref$ = type %Q$state$*

for each stateful instance Q, imported transitively through path
declare a variable of type %Q$state$:
@Q[path] = common global %M$state$ zeroinitializer

include the interface section of M
define a function %$init$ with a call to the

initialization function of M with the proper bindings
define void @$init$(void) {

call void @M$init$(@M, { instances+ }) {
exit: ret void

}

Fig. 6. Code template for the COMP mode

on two examples: first, a counter with no external dependencies and, second,
part of a watchdog timer that includes one instance of the same counter. We
complete this section by describing an example of code generation for a project.

5.1 The Standalone Module counter

The implementation counter i of the module counter is presented in figure 7.

1 IMPLEMENTATION counter_i
2 REFINES counter
3 CONCRETE_VARIABLES value, error
4 INVARIANT value: INT & error : BOOL & /* omitted gluing invariant */
5 INITIALISATION value := 0; error := FALSE
6 OPERATIONS
7 inc = IF value < MAXINT THEN value := value + 1
8 ELSE error := TRUE END;
9 res <-- get = res := value

10 END

Fig. 7. Example B implementation
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Here, the code generator needs to access neither the corresponding B machine,
nor the gluing invariant of the implementation. This module is stateful as it has
two state variables value and error (respectively an integer and a Boolean) and
two operations inc and get. Figure 8 contains its corresponding typedef section:
LLVM IR aggregate type %counter$state$ has two elements, a i32 at position
0 represents value and a i1 at position 1 represents error.

1 %counter$state$ = type {i32, i1}

Fig. 8. Corresponding LLVM IR typedef section

Figure 9 contains the corresponding interface section, comprised of the decla-
rations of all the entities defined in the module that may be used by third-party
components (this is illustrated in section 5.2): a pointer type %counter$ref$
to reference an aggregate storing the state of the component, the initialization
function %counter$init$, and the functions %counter$inc and %counter$get,
each responsible for implementing one module operation. Each such function
takes as first parameter the address of the representation of the module state.
The last function also takes as parameter the address of a i32, where the value
of the operation value is stored.

1 %counter$ref$ = type %counter$state$*
2 declare void @counter$init$(%counter$ref$)
3 declare void @counter$inc(%counter$ref$)
4 declare void @counter$get(%counter$ref$, i32*)

Fig. 9. Corresponding LLVM IR interface section

Figure 10 contains the implementation section. It consists of the definition of
all the functions implementing the module behavior. All function bodies contain
an entry and an exit statement block. In addition, a block for each conditional
branch is created; e.g., blocks starting line 18 and 25 respectively correspond to
the IF branches from line 7 and 8 in the inc operation.

This example illustrates the encoding for different kinds of expressions and
instructions. First, let us consider expressions: the example given in figure 7
includes operation parameters, integer and Boolean literals, implementation
(state) variables, an addition and a comparison.

Operation parameters are encoded as function arguments, which have identi-
fiers in LLVM IR. So the b2llvm code generator simply maintains a symbol table
mapping each B operation parameter to the identifier of the corresponding LLVM
IR function parameter. For instance, operation get has output res (l. 9, fig. 7),
which is represented by %res of function @counter$get (l. 31, fig. 10). Integer
and Boolean literals are encoded directly as 32-bit and 1-bit LLVM integer val-
ues; for instance MAXINT and TRUE are encoded respectively as 2147483647
and 1 (l. 15 and l. 26, fig. 10). Implementation variables are encoded as elements
of the aggregate %self$, which is a parameter in each function. Their address is
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1 define void @counter$init$(%counter$ref$ %self$) {
2 entry:
3 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
4 store i32 0, i32* %0
5 %1 = getelementptr %counter$ref$ %self$, i32 0, i32 1
6 store i1 0, i1* %1
7 br label %exit
8 exit:
9 ret void

10 }
11 define void @counter$inc(%counter$ref$ %self$) {
12 entry:
13 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
14 %1 = load i32* %0
15 %2 = icmp slt i32 %1, 2147483647
16 br i1 %2, label %label0, label %label1
17 label0:
18 %3 = getelementptr %counter$ref$ %self$, i32 0, i32 0
19 %4 = load i32* %3
20 %5 = add i32 %4, 1
21 %6 = getelementptr %counter$ref$ %self$, i32 0, i32 0
22 store i32 %5, i32* %6
23 br label %exit
24 label1:
25 %7 = getelementptr %counter$ref$ %self$, i32 0, i32 1
26 store i1 1, i1* %7
27 br label %exit
28 exit:
29 ret void
30 }
31 define void @counter$get(%counter$ref$ %self$, i32* %res) {
32 entry:
33 %0 = getelementptr %counter$ref$ %self$, i32 0, i32 0
34 %1 = load i32* %0
35 store i32 %1, i32* %res
36 br label %exit
37 exit:
38 ret void
39 }

Fig. 10. LLVM implementation section for counter i

obtained with the getelementptr instruction, giving the position of the variable
representation in this aggregate: 0 for variable value and 1 for variable error.

We now provide detailed explanation for the translation of the assignment
value := value + 1 (l. 7, fig. 7) to LLVM IR instructions (l. 18-22, fig. 10):

l. 18-20 First, the right-hand side of the assignment is evaluated, and the result
is stored in temporary %5, as follows:
l. 18 A getelementptr instruction gets the address of the representation of

variable value in the structure encoding the state of the module, and the
result is stored into temporary %3.

l. 19 A load instruction fetches the data in this location into temporary %4.
l. 20 An add instruction sums this value with one (1) and the result is stored

into temporary %5.
l. 21 Second, the left-hand side of the assignment is evaluated, the result being

stored in temporary %6. Since this is again the variable value, it is essentially
the same operation as in l. 18 and %6 is redundant with %3 (but we do not
deal with optimization at this stage).
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l. 22 Finally, the assignment effectively take place with the value in %5 begin
stored at the evaluated address %6 (that of the representation of variable
value).

For an IF instruction (e.g., lines 7-8, fig. 7), b2llvm generates code to evaluate
the condition (e.g., lines 13-15, fig. 10), a conditional branch (l. 16, fig. 10), and one
block with the encoding of each branch (l. 17-23 and 24-27, fig. 10). Note that each
such block must end with an unconditional branch to the instruction following the
conditional. b2llvm handles the creation of all the required block labels.

Of course, the code thus generated is not optimal: e.g., the exit block in the
initialisation is useless. Indeed, code generation is designed to be as simple as
possible. No optimizations are implemented into b2llvm. A positive consequence
of choosing LLVM as target architecture is the possibility of applying many
off-the-shelf optimizers developped for LLVM to the output of b2llvm.

5.2 The Composed Module wd

Our second example is the wd module detailed in figure 11. It contains module

IMPLEMENTATION wd_i
REFINES wd
VALUES timeout=50
IMPORTS counter
INVARIANT overflow = FALSE & timeout - value = ticker
INITIALISATION

VAR count IN
count := 0;
WHILE count < timeout DO

inc; count := count+1
INVARIANT value = count
VARIANT timeout - count
END

END
OPERATIONS

tick =
VAR elapsed, diff IN

elapsed <-- get;
diff := timeout - elapsed;
IF diff > 0 THEN inc END

END;

Fig. 11. Implementation of B module wd (excerpts)

instantiation, operation calls, and a loop instruction. The state of this module is
exactly the state of the unique instance of its counter component, and is encoded
as an aggregate with a unique element, of type pointer to the state representation
of the corresponding module (see typedef section in figure 12).

1 %wd$state$ = type {%counter$ref$}

Fig. 12. Typedef section for module WD

Functions @wd$init$ and @wd$tick are defined in the implementation section,
presented in figure 13. We first discuss the latter.
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1 define void @wd$init$(%wd$ref$ %self$, %counter$ref$ %arg0$) {
2 entry:
3 %count = alloca i32
4 %0 = getelementptr %wd$ref$ %self$, i32 0, i32 0
5 store %counter$ref$ %arg0$, %counter$ref$* %0
6 call void @counter$init$(%counter$ref$ %arg0$)
7 store i32 0, i32* %count
8 br label %label1
9 label1:

10 %1 = load i32* %count
11 %2 = icmp slt i32 %1, 50
12 br i1 %2, label %label2, label %label0
13 label2:
14 %3 = getelementptr %wd$ref$ %self$, i32 0, i32 0
15 %4 = load %counter$ref$* %3
16 call void @counter$inc(%counter$ref$ %4)
17 %5 = load i32* %count
18 %6 = add i32 %5, 1
19 store i32 %6, i32* %count
20 br label %label1
21 label0:
22 br label %exit
23 exit:
24 ret void
25 }
26 define void @wd$tick(%wd$ref$ %self$) {
27 entry:
28 %elapsed = alloca i32
29 %diff = alloca i32
30 %0 = getelementptr %wd$ref$ %self$, i32 0, i32 0
31 %1 = load %counter$ref$* %0
32 call void @counter$get(%counter$ref$ %1, i32* %elapsed)
33 %2 = load i32* %elapsed
34 %3 = sub i32 50, %2
35 store i32 %3, i32* %diff
36 %4 = load i32* %diff
37 %5 = icmp sgt i32 %4, 0
38 br i1 %5, label %label1, label %label0
39 label1:
40 %6 = getelementptr %wd$ref$ %self$, i32 0, i32 0
41 %7 = load %counter$ref$* %6
42 call void @counter$inc(%counter$ref$ %7)
43 br label %label0
44 label0:
45 br label %exit
46 exit:
47 ret void
48 }

Fig. 13. Implementation section for module WD

Function @wd$tick$ implements operation tick. It has no input and no out-
put. Its sole argument is the address of the representation of a wd instance.
It has two local variables, elapsed and diff, and both are integers. Operation
variables are represented in stack memory, which is reserved with the alloca
instruction (e.g., lines 28-29). LLVM requires that such allocations appear first
in function bodies. The procedure in b2llvm responsible for encoding B opera-
tion declarations has a dedicated preliminary pass that collects all local variables
and issues the corresponding allocations. The encoding of operation calls is illus-
trated lines 30-32. First, the address of the called operation module is computed
(lines 30-31), possibly followed by the computation of other parameters. Then a
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LLVM function call is issued (e.g., l .32). Notice that the output of the opera-
tion is stored on the stack at the location given by parameter %elapsed. Another
example of operation call is given in lines 40-42. The remaining code in the func-
tion body uses previously described techniques.

Function @wd$init$ implements the initialization of a wd instance, the address
of which is given in parameter %self$. It also gets the address of one module
instance for each component. In this example, there is one instantiation of module
counter and its representation is given through parameter %arg0$. Following an
allocation for the representation of variable count, the components are bound and
initialized: each component representation is bound to an element of the aggregate
representing the current instance (e.g., lines 4-5). Also, each component represen-
tation is initialized by calling the corresponding LLVM function (e.g., line 6). The
order of these initializations complies to the dependency order. This example illus-
trates code generation for loops. First the loop condition is evaluated (lines 10-11
in the example), and a conditional branch jumps either to the code implementing
the loop body, or to the first instruction after the loop encoding (e.g., line 12).
Also, the loop body ends with an unconditional branch to the block evaluating
the loop condition (e.g., line 20).

5.3 Generating a System Instance

To conclude this section, we demonstrate and discuss the result of the code gen-
eration in PROJ mode. For this, we take the wd module as example and consider
the resulting code in figure 14. It follows the template given in figure 6 and is
composed of the following: lines 1-2 are the type definitions of the imported com-
ponent and line 3 is the global variable corresponding to its sole instance, then
lines 4-8 correspond to the interface section of the root component (comprised
of the declarations of types and functions), and concluded by the definition a
system initialization function called @$init$ (lines 9-13). The role of this func-
tion is to call the initialization function of the top-level module passing it the
state-representation variables as parameters.

6 Verification and Validation

Considering the verification of the proposed translation, several approaches are
possible: inspection, testing and proof. Only the first is currently available, and
work is underway to provide a framework based on the second approach.

A first approach is based on human inspection of the generated code. Cur-
rently, b2llvm provides two options to assist such inspections. The first option
provides additional functions to output the values of state variables of the sys-
tem: they can be called to visualize the evolution between operation calls. The
first option consists in annotating the code generated with information on the
intent of the code and references to the original B implementation. Figure 15
contains an excerpt of such annotated LLVM IR.
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1 %counter$state$ = type {i32, i1}
2 %counter$ref$ = type %counter$state$*
3 %wd$state$ = type {%counter$ref$}
4 %wd$ref$ = type %wd$state$*
5 @$wd = common global %wd$state$ zeroinitializer
6 @$counter = common global %counter$state$ zeroinitializer
7 declare void @wd$init$(%wd$ref$, %counter$ref$)
8 declare void @wd$tick(%wd$ref$)
9 define void @$init$() {

10 entry:
11 call void @wd$init$(%wd$ref$ @$wd, %counter$ref$ @$counter)
12 ret void
13 }

Fig. 14. Code generation in PROJ mode

1 ;;1 The type for the state of "counter" is defined in "counter_i",
2 ;; it is an aggregate such that:
3 ;;1.1 Position "0" represents variable "value".
4 ;;1.2 Position "1" represents variable "error".
5 %counter$state$ = type {i32, i1}
6 ;;2 The type for references to state encodings of "counter" is:
7 %counter$ref$ = type %counter$state$*
8 ;;3 The function implementing initialisation for "counter" is
9 ;; named "@counter£init£" and has the following parameters:

10 ;;3.1 "%self£": address of LLVM aggregate storing state of "counter";
11 define void @counter$init$(%counter$ref$ %self$) {

Fig. 15. Excerpt of annotated LLVM code generated by b2llvm

A second approach is runtime verification, by application of simulation, test
and assertions. For instance, we can use existing approaches to generate tests
[2,11] from the B development artifacts. Such tests can then be converted to
LLVM IR to produce and run test harnesses. A typical scenario for such a test
would consist in setting the state variables to some given values, call the function
implementing the operation being verified, and then inspect these same variables
to check if they have the expected values. Work in this direction, based on [11]
is currently underway.

It would also be possible to perform dual animation: B model with Pro-
B [10] together with the generated code with the LLVM interpreter. In addition,
B artifacts contain several kinds of assertions: state invariants, loop invariants,
preconditions, as well as ad hoc assertions. If the conditions found in those asser-
tions are expressed in the B0 language, b2llvm can also translate them to LLVM
IR. Using them to monitor the generated code at run-time would additionally
require to provide an LLVM implementation of the assertion semantics (e.g., the
assert command found in the standard C library) and link the generated code
to this implementation.

Finally, to formally verify the correctness of the translation, the semantics
of B and LLVM IR need to be specified in a suitable framework. Vellvm [12] is
a Coq formalization of the LLVM IR semantics that uses CompCert’s memory
model [9]. This could be a starting point for a proof of the correctness of the
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translation rules. It would still require to formalize the semantics of B and of
the translation rules in that same setting. This is left as future work.

7 Conclusion

This paper presents an approach to generate executable code from a large sub-
set of the B implementation language using LLVM, a modern compiler design
infrastructure. This is a work in progress, yet the definition is self-contained and
has a large enough scope to be applied to B implementations where the data
belongs to basic types. Its implementation, called b2llvm, is already publicly
available and will eventually be distributed as an extension to Atelier-B under
an open-source license.

Our current work is to extend the scope to the full B implementation lan-
guage. This entails the inclusion into the translation of rules to handle aggregate
data types as well as some syntactic sugar. We are also planning for producing
a LLVM IR output with debugging information. Such output would be indeed
very helpful to provide feedback to the user when applying testing to validate
the produced code.

To prove the correctness of the translation, we would have to define the
semantics of B and LLVM IR in a unified framework. Possible starting points are
Vellvm [12], a framework to reason about the correctness of LLVM programs and
transformations, and the existing formalizations of the B method (e.g., [3,4,7]).
We would have to extend such a framework to encompass both B and LLVM IR.
Another possible approach would be to translate verification conditions from the
B development artifacts as assertions in the generated LLVM IR. The compiled
program would include checks that such assertions hold while executing.
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Abstract. Maude is a high-level language and high-performance system
supporting both equational and rewriting computation for a wide range
of applications. Maude also provides a model checker for linear temporal
logic. The model-checking procedure can be used to prove properties when
the set of states reachable from an initial state in a system is finite; when
this is not the case, it may be possible to use an equational abstraction
technique for reducing the size of the state space. Abstraction reduces the
problem of whether an infinite state system satisfies a temporal logic prop-
erty to model checking that property on a finite state abstract version of
the original infinite system. The most common abstractions are quotients
of the original system. We present a simple method for defining quotient
abstractions by means of equations identifying states. Our method yields
the minimal quotient system together with a set of proof obligations that
guarantee its executability, which can be discharged with tools such as
those available in the Maude formal environment. The proposed method
will be illustrated by means of detailed examples.

Keywords: Maude · Rewriting logic · Model checking · Abstraction ·
Formal environment

1 Introduction

Given a concurrent system, we want to check whether certain properties hold in
it or not. If the number of reachable states is finite, one can use model checking;
however, if the number of such states is infinite (or just too large), model check-
ing does not work. For these systems, we can calculate an abstract version of the
infinite-state transition system, with a finite set of states, to which model check-
ing can be applied. A simple method for defining an abstraction is by means of
a quotient that collapses the set of states [5].

In the rewriting logic framework implemented in Maude [1], a concurrent
system is specified by a rewrite theory R = (Σ, E,R), where Σ is a signature
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declaring types and operations, E is a set of equations, and R is a set of rules. The
quotient abstraction is specified by a set of equations E, added to R, resulting in
a rewrite theory R = (Σ, E∪E,R). However, such a quotient will only be useful,
for model-checking purposes, if R is executable, as detailed later, and the state
predicates are preserved by equations [5]. These proof obligations (executability
and state predicate preservation) can be discharged using tools in the Maude
Formal Environment [3].

This paper has the three following goals:

1. To introduce Maude as a framework for modeling systems and model check-
ing their properties.

2. To present a simple method of defining quotient abstractions by means of
equations collapsing the set of states.

3. To show how the Maude Formal Environment tools can help in discharging
the associated proof obligations.

All of this is going to be done by means of examples. The theoretical basis
for the work summarized here has already been described in previous papers,
where the reader can find all the missing details [2,3,5].

The following section introduces two examples; in the first, the set of reach-
able states is finite and model checking will be applied to get the desired results,
while in the second this will not be possible because the set of reachable states
is infinite. Section 3 first summarizes the concepts necessary and then intro-
duces the equational abstraction method and the associated proof obligations.
In Section 4 we apply in detail the method to the second example and manage
to get an abstract version satisfying all the requirements, so that we can model
check on it the desired property.

2 Maude by Example

In order to model a system in rewriting logic, that is, to specify such a system in
Maude, we distinguish between its static part (state structure) and its dynamics
(state transitions). The static part is specified as an equational theory, while the
dynamics are specified by means of rules. Computation in a transition system is
then precisely captured by the term rewriting relation using those rules, where
terms represent states of the given system. Moreover, rules need only specify the
part of the system that actually changes, so that the frame problem is avoided.

This distinction is reflected in Maude by the difference between functional
and system modules [1]. Functional modules in Maude correspond to equational
theories (Σ, E) which are assumed to be Church-Rosser (confluent and sort
decreasing) and terminating; their operational semantics is equational simpli-
fication, that is, rewriting of terms until a canonical form is obtained. Equations
are used to define functions over static data as well as properties of states. Usu-
ally the equations E are divided into a set A of structural axioms (such as
associativity, commutativity, or identity), also known as equational attributes,
for which matching algorithms exist in Maude, and a set E′ of equations that
are Church-Rosser and terminating modulo A.
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System modules in Maude correspond to rewrite theories (Σ, A ∪ E′, R);
rewriting with R is performed modulo the equations A ∪ E′. Furthermore, the
rules R must be coherent with the equations E′ modulo A [2], allowing us to
intermix rewriting with rules and rewriting with equations without losing rewrite
computations by failing to perform a rewrite that would have been possible
before an equational deduction step was taken. By assuming coherence, Maude
always reduces to canonical form using E before applying any rule in R.

Next we illustrate the application of these general ideas to two different
examples.

2.1 Crossing the River

In our first example, we consider a famous puzzle where a shepherd needs to
transport to the other side of a river a wild dog, a lamb, and a cabbage. He has
only a boat with room for the shepherd himself and another item. The problem
is that in the absence of the shepherd the wild dog would eat the lamb, and the
lamb would eat the cabbage.

We represent the shepherd and his belongings as objects1 with only an
attribute indicating its river side location. The group is put together by means
of an associative and commutative juxtaposition operation. Constants left and
right represent the two sides of the river. Operation ch(ange) is used to modify
the corresponding attributes. Finally, the rules represent the ways of crossing
the river that are allowed by the small capacity of the boat. For instance, the
rule labeled wdog, for wild dog, specifies that when the shepherd and the wild
dog are on the same side of the river they can cross together.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side [ctor] .

op ch : Side -> Side .

eq ch(left) = right .

eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .

rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .

rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .

rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm

In Section 2.4 we will see how to solve the puzzle, that is, how to find a way of
crossing the river satisfying all the constraints and without having the possibility
of losing any item in the process, by means of the Maude model checker.
1 Although Maude has a specific notation for objects, we do not make use of it in this
example.
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2.2 An Unordered Communication Channel

For our second example, consider a communication channel in which messages
can get out of order. There is a sender and a receiver. The sender is sending
a sequence of data items, for example numbers. The receiver is supposed to
obtain the data items in the same order they were sent. To achieve this in-order
communication in spite of the unordered nature of the channel, the sender sends
each data item in a message together with a sequence number. The receiver
sends back an acknowledgement indicating that the item has been received.

Sequences are specified as lists, while the contents of the unordered channel
are modeled as a multiset of messages of sort Conf(iguration) using the appropri-
ate equational attributes. The entire system state is a 5-tuple of sort State, built
by means of the operator {_,_|_|_,_} in the module below, where the compo-
nents are: a buffer with the items to be sent, a counter for the acknowledged
items, the contents of the unordered channel, a buffer with the items received,
and a counter for the items received.2

fmod UNORDERED-CHANNEL-EQ is

sorts Nats List Msg Conf State .

op 0 : -> Nats [ctor] .

op s : Nats -> Nats [ctor] .

op nil : -> List [ctor] .

op _;_ : Nats List -> List [ctor] . *** list cons

op _@_ : List List -> List . *** list append

op [_,_] : Nats Nats -> Msg [ctor] .

op ack : Nats -> Msg [ctor] .

subsort Msg < Conf .

op null : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .

vars N : Nats . vars L P : List .

eq nil @ L = L .

eq (N ; L) @ P = N ; (L @ P) .

endfm

Having defined all the necessary infrastructure in the previous funcional mod-
ule, the following system module adds the rules modeling the transitions sending
and receiving messages. For instance, the rule labeled rec specifies that a mes-
sage [N, J] in the channel is read by the receiver, which adds the data N at the
end of its sequence, increments its counter to s(J), and puts the corresponding
acknowledgement ack(J) in the channel.

mod UNORDERED-CHANNEL is

including UNORDERED-CHANNEL-EQ .

vars N M J : Nats . vars L P : List . var C : Conf .

2 Maude provides predefined modules for natural numbers, lists, and many other
datatypes, but they cannot be used in this specification because they are not com-
patible with most tools in the Maude Formal Environment.
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rl [snd]: { N ; L, M | C | P, J } => { N ; L, M | [N, M] C | P, J } .

rl [rec]: { L, M | [N, J] C | P, J }

=> { L, M | ack(J) C | P @ (N ; nil), s(J) } .

rl [rec-ack]: { N ; L, J | ack(J) C | P, M } => { L, s(J) | C | P, M } .

endm

At the end of Section 4 we will manage to model check that the intended
property is indeed satisfied by going through an appropriate quotient specified
by a set of equations.

2.3 The Maude Formal Environment

The Maude Formal Environment [3] provides several tools for proving essential
properties of Maude modules:

– Maude Termination Tool (MTT) to prove termination of equations and of
rules in modules by connecting to external termination tools (we use the
AProVe tool [4] below).

– Church-Rosser Checker (CRC) to check the Church-Rosser property of equa-
tional specifications.

– Sufficient Completeness Checker (SCC) to check that defined functions have
been fully defined in terms of constructors.

– Coherence Checker (ChC) to check the coherence between rules and equa-
tions in system modules.

– Inductive Theorem Prover (ITP) to verify inductive properties of functional
modules (we will not make use of this tool in our examples).

To show how these tools are used, we apply them to the system module
UNORDERED-CHANNEL introduced above. First, we check termination of the equa-
tional part.

Maude> (select tool MTT .)

The MTT has been set as current tool.

Maude> (select external tool aprove .)

aprove is now the current external tool.

Maude> (ct UNORDERED-CHANNEL .)

Success: The module UNORDERED-CHANNEL is terminating.

Second, we check that the equational part is also Church-Rosser, which
depends on its termination (if the specification has no unjoinable critical pairs,
then it is locally confluent; if it is in addition terminating, then it is confluent
[2]). The submit command, which submits all pending proof obligations to the
corresponding tools, makes the connection between the proofs.

Maude> (select tool CRC .)

The CRC has been set as current tool.
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Maude> (ccr UNORDERED-CHANNEL .)

Church-Rosser check for UNORDERED-CHANNEL

All critical pairs have been joined.

The specification is locally-confluent.

The module is sort-decreasing.

Maude> (submit .)

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

The functional part of module UNORDERED-CHANNEL has been checked

terminating.

Success: The module is therefore Church-Rosser.

Success: The module UNORDERED-CHANNEL is Church-Rosser.

Third, we check that the equational part is sufficiently complete, which
depends on it being also terminating and Church-Rosser.

Maude> (select tool SCC .)

The SCC has been set as current tool.

Maude> (scc UNORDERED-CHANNEL .)

Sufficient completeness check for UNORDERED-CHANNEL

Completeness counter-examples: none were found

Freeness counter-examples: none were found

Analysis: it is complete and it is sound

Ground weak termination: not proved

Ground sort-decreasingness: not proved

Maude> (submit .)

The sort-decreasingness goal for UNORDERED-CHANNEL has been submitted

to CRC.

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

Church-Rosser check for UNORDERED-CHANNEL

The module is sort-decreasing.

Success: The functional module UNORDERED-CHANNEL is sufficiently

complete and has free constructors.

Finally, we check that the rules are coherent with respect to the equations,
and this depends on all the previous checks.

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL .)

Coherence checking of UNORDERED-CHANNEL

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

The sufficient-completeness, termination and Church-Rosser properties

must still be checked.
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Maude> (submit .)

The Church-Rosser goal for UNORDERED-CHANNEL has been submitted to CRC.

The Sufficient-Completeness goal for UNORDERED-CHANNEL has been

submitted to SCC.

The termination goal for the functional part of UNORDERED-CHANNEL has

been submitted to MTT.

Sufficient completeness check for UNORDERED-CHANNEL [...]

Church-Rosser check for UNORDERED-CHANNEL [...]

The functional part of module UNORDERED-CHANNEL has been checked

terminating.

The module UNORDERED-CHANNEL has been checked Church-Rosser.

Success: The module UNORDERED-CHANNEL is coherent.

2.4 Model Checking

Temporal logic allows the specification of properties such as safety properties
(ensuring that something bad never happens) and liveness properties (ensur-
ing that something good eventually happens), related to the possibly infinite
global behavior of a system. Maude includes a model checker to prove properties
expressed in linear temporal logic (LTL) [1].

The semantics of temporal logic is defined on Kripke structures, which are
triples A = (A,→A, L) such that A is a set of states, →A is a total binary
relation on A representing the state transitions, and L : A −→ P(AP ) is a
labeling function associating to each state a ∈ A the set L(a) of those atomic
propositions in AP that hold in a.

Given a system module M specifying a rewrite theory R = (Σ, E,R), one
chooses a type k in M as the type of states (this is done in the module below by
means of a subsort declaration) and extends the module by declaring some state
properties Π (of type Prop) and defining their meaning by means of additional
equations using the basic “satisfaction operator”

op _|=_ : State Prop -> Bool .

Section 3 below details how then a Kripke structure K(R, k)Π = (TΣ/E,k,
(→1

R)•, LΠ) is obtained. The relation K(R, k)Π, t |= ϕ, where ϕ is a linear tem-
poral formula and t is the initial state, can be model checked under a few assump-
tions about the module M and its extension with the properties, including the
one stating that the set of states reachable from t is finite.

In the crossing-the-river example, the state type is Group and we define the
following two basic properties:

– success characterizes the (good) state in which the shepherd and his belong-
ings have all crossed the river; if we assume that in the initial state all of
them are on the left side, in the final state all of them are on the right
side.

– disaster characterizes the (bad) states in which some eating takes place,
because the shepherd is on the other side.
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mod RIVER-CROSSING-PROP is

protecting RIVER-CROSSING .

including MODEL-CHECKER .

subsort Group < State .

op initial : -> Group .

eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop [ctor] .

vars S S’ S’’ : Side .

ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .

ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .

eq (s(right) w(right) l(right) c(right) |= success) = true .

eq G:Group |= P:Prop = false [owise] .

endm

Since the model checker only returns either true or paths that are counterex-
amples of properties, in order to find a solution to the puzzle, that is, to find
a safe path in the river crossing example, we need a formula that expresses the
negation of the property we want: a counterexample will then witness a safe path
for the shepherd. If no safe path exists, then it is true that whenever success is
reached, a disastrous state has been traversed before. The following LTL formula
specifies this implication:

<> success -> ((~ success) U disaster)

A counterexample to this temporal logic formula (or any other equivalent
formula) is a safe path, completed so as to have a cycle.

Maude> red modelCheck(initial, <> success -> ((~ success) U disaster)) .

result ModelCheckResult: counterexample(

{s(left) w(left) l(left) c(left),’lamb}

{s(right) w(left) l(right) c(left),’shepherd}

{s(left) w(left) l(right) c(left),’wdog}

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’cabbage}

{s(right) w(right) l(left) c(right),’shepherd}

{s(left) w(right) l(left) c(right),’lamb}

{s(right) w(right) l(right) c(right),’lamb}

{s(left) w(right) l(left) c(right),’shepherd}

{s(right) w(right) l(left) c(right),’wdog}

{s(left) w(left) l(left) c(right),’lamb}

{s(right) w(left) l(right) c(right),’cabbage}

{s(left) w(left) l(right) c(left),’wdog},

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’lamb})

The path described by the first eight lines in this answer to our model check-
ing request provides the solution that we wanted for the crossing-the-river puzzle.
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3 Equational Abstractions

The unordered channel example cannot be model checked directly because the
space of reachable states is infinite, since the first rule may be repeatedly applied,
sending multiple copies of each message into the channel. It requires thus the
application of the abstraction technique in order to be model checked. We sum-
marize here the basic concepts necessary to understand our equational abstrac-
tion method [5].

An AP -simulation H : A −→ B between Kripke structures A and B over the
same set AP of atomic propositions is a total relation H ⊆ A × B such that,
when a →A a′ and aHb, then there is b′ ∈ B with a′Hb′ and b →B b′, and,
furthermore, if aHb then LB(b) ⊆ LA(a). The simulation H is strict when the
previous inclusion is indeed an equality.

A simulation H : A −→ B reflects the satisfaction of a formula ϕ if B, b |= ϕ
and aHb implies A, a |= ϕ.

Theorem 1. [5] AP-simulations reflect satisfaction of LTL−(AP ) formulas
(where LTL−(AP ) is the negation-free fragment of LTL).

Strict simulations reflect satisfaction of LTL(AP ) formulas.

Often we only have a Kripke structure M and a surjective function to a set of
abstract states h : M −→ A. The minimal system Mh

min (over A) corresponding
to M and h is defined by (A,→Mh

min
, LMh

min
), where:

– x →Mh
min

y ⇐⇒ ∃a.∃b.(h(a) = x ∧ h(b) = y ∧ a →M b)
– LMh

min
(a) =

⋂
x∈h−1(a) LM(x).

Theorem 2. [5] h : M −→ Mh
min is indeed a simulation.

Minimal systems can also be seen as quotients. For a Kripke structure A and
∼ an equivalence relation on A, define A/∼ = (A/∼,→A/∼, LA/∼), where:

– [a1] →A/∼ [a2] ⇐⇒ ∃a′
1 ∈ [a1]. ∃a′

2 ∈ [a2]. a′
1 →A a′

2

– LA/∼([a]) =
⋂

x∈[a] LA(x).

Theorem 3. [5] Given M and h surjective, the Kripke structures Mh
min and

M/∼h are isomorphic, where x ∼h y iff h(x) = h(y).

The adjective minimal is appropriate since Mh
min is the most accurate approx-

imation to M consistent with h, but it is not always possible to have a com-
putable description of Mh

min because the transition relation:

x →Mh
min

y ⇐⇒ ∃a.∃b.(h(a) = x ∧ h(b) = y ∧ a →M b)

is not recursive in general. Here we present methods that, when successful, yield
a computable description of Mh

min. As explained before, a concurrent system is
specified by a rewrite theory R = (Σ, E,R) which determines, for each type k,
a transition system (TΣ/E,k, (→1

R)•) where
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– TΣ/E,k is the set of equivalence classes [t] of terms of type k, modulo the
equations E;

– (→1
R)• completes the one-step rewrite relation →1

R with an identity pair
([t], [t]) for each deadlock state [t], to get a total relation.

LTL properties are associated to R and a type k by specifying the basic state
predicates Π in an equational theory (Σ′, E∪D) extending (Σ, E) conservatively.
State properties are constructed with operators p : s1 . . . sn → Prop and their
semantics is defined by means of equations D using the basic “satisfaction oper-
ator” |= : k Prop → Bool. A state property p(u1, . . . , un) holds in a state [t]
iff

E ∪ D � t |= p(u1, . . . , un) = true.

The Kripke structure associated to R, k, and Π, with atomic propositions

APΠ = {p(u1, . . . , un) ground | p ∈ Π}
is then defined as K(R, k)Π = (TΣ/E,k, (→1

R)•, LΠ) where

LΠ([t]) = {p(u1, . . . , un) | p(u1, . . . , un) holds in [t]}.

Assuming that the equations E ∪D are Church-Rosser and terminating, and
that the rewrite theory R is executable, the resulting Kripke structure is indeed
computable.

We can define an abstraction for K(R, k)Π by specifying an equational theory
extension (Σ, E) ⊆ (Σ, E ∪ E′) which gives rise to an equivalence relation ≡E′

on TΣ/E

[t]E ≡E′ [t′]E ⇐⇒ E ∪ E′ � t = t′ ⇐⇒ [t]E∪E′ = [t′]E∪E′

and therefore a quotient abstraction K(R, k)Π/≡E′ . We then need to answer the
following question: Is K(R, k)Π/≡E′ the Kripke structure associated to another
rewrite theory?

We focus on those rewrite theories R satisfying the following requirements:

– R is k-deadlock free, that is (→1
R)• = →1

R on TΣ/E,k,
– R is k-topmost, so k only appears as the coarity of a certain operator f :

k1 . . . kn −→ k, and
– no terms of type k appear in the conditions.

A rewrite theory R can often be transformed into an equivalent one satisfying
these requirements [5]. In particular, the unordered channel example satisfies
these requirements.

Let us take a closer look at the quotient:

K(R, k)Π/≡E′ = (TΣ/E,k/≡E′ , (→1
R)•/≡E′ , LΠ/≡E′ ).

First, TΣ/E/≡E′ ∼= TΣ,E∪E′ . Then, under the above assumptions, R/E′ =
(Σ, E ∪ E′, R) is k-deadlock free and

(→1
R/E′)• = →1

R/E′ = (→1
R)•/≡E′ .
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Therefore, at a purely mathematical level, R/E′ seems appropriate. Now, exe-
cutability requires that the equations E∪E′ are Church-Rosser and terminating,
and that the rules R are coherent with respect to E∪E′. To check or enforce these
conditions, one can use the tools available in the Maude Formal Environment,
as shown in Section 2.3.

Concerning the state properties in the quotient system, given its definition

LΠ/≡E′ ([t]E∪E′) =
⋂

[x]E⊆[t]E∪E′

LΠ([x]E).

it may not be easy to come up with equations D′ defining LΠ/≡E′ . But it becomes
easy if the properties are preserved by E′ in the following sense:

[x]E∪E′ = [y]E∪E′ =⇒ LΠ([x]E) = LΠ([y]E).

In this case we do not need to change the equations D and therefore we have

K(R, k)Π/≡E′ ∼= K(R/E′, k)Π.

Property preservation can be proved inductively or, instead, one can use tools
in the Maude Formal Environment to mechanically discharge the corresponding
proof obligations.

Once E,E′, and R satisfy all these executability requirements, by construc-
tion, the quotient simulation K(R, k)Π −→ K(R, E)Π/≡E′ ∼= K(R/E′, k)Π is
strict, so it reflects satisfaction of arbitrary LTL formulas. Moreover, since R/E′

is executable, for an initial state t having a finite set of reachable states we can
use the Maude model checker to check if a property holds. In this way, we model
check on the abstract version the properties we are interested in checking for the
original system.

4 Equational Abstraction on the Unordered-Channel
Example

Let us go back to the unordered-channel example in Section 2.2. The rule

rl [snd]: { N ; L, M | C | P, J } => { N ; L, M | [N, M] C | P, J } .

allows sending several times the same message, but then the reachable state space
is infinite. To identify repeated copies of sent messages, we add the following
equation:

mod UNORDERED-CHANNEL-ABSTRACTION is

including UNORDERED-CHANNEL .

vars M N P K : Nats . vars L L’ : List . var C : Conf .

eq [A1]: { L, M | [N, P] [N, P] C | L’, K }

= { L, M | [N, P] C | L’, K } .

endm
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Verification of Executability Requirements. We can then check using the tools3 in
the Maude Formal Environment that the proposed abstraction is terminating,
Church-Rosser, and sufficiently complete (although in the last case we get a
warning due to the fact that the added equation is not linear, and therefore
cannot be handled by the SCC tool).

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION .)

Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION is

sufficiently complete and has free constructors. However‘,

module UNORDERED-CHANNEL-ABSTRACTION may still not be

sufficiently complete or not have free constructors.

However, the coherence check fails because the ChC tool returns a critical
pair:

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION

The following critical pairs cannot be rewritten:

cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec

{ L:List,M:Nats | #3:Conf[N:Nats,J:Nats]| P:List,J:Nats }

=> { L:List,M:Nats | #3:Conf ack(J:Nats)[N:Nats,J:Nats]|

P:List @ N:Nats ; nil,s(J:Nats) }.

The sufficient-completeness, termination and Church-Rosser

properties must still be checked.

In this particular example, the critical pair indicates that one can lose possible
rewrites by applying first the equation and that this can be solved by adding
the rule which provides the corresponding rewrite steps. Therefore, to recover
coherence, we add the appropriate rule, which is just a simple renaming of the
returned critical pair.

Since, after the equational abstraction, multiplicity of messages in the channel
no longer matters, the new rule allows to receive a message without deleting it
from the channel; thus, in the channel of the righthand side of the rule, we can see
that the [N, K] message is kept in the channel together with the corresponding
acknowledgement ack(K).
3 In the code shown in this section we omit some intermediate commands and show
part of the output, to emphasize thus the final result.
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mod UNORDERED-CHANNEL-ABSTRACTION-2 is

including UNORDERED-CHANNEL-ABSTRACTION .

vars M N K : Nats . vars L L’ : List . var C : Conf .

rl [snd2]: { L, M | [N, K] C | L’, K }

=> { L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K) } .

endm

Now we can check that all the executability conditions are indeed satisfied;
for instance, in checking coherence we get no critical pair this time.

Maude> (select tool ChC .)

The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)

Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

The sufficient-completeness, termination and Church-Rosser properties

must still be checked.

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-2 is coherent.

Verification of Property Preservation. We can now move to the specification of
the properties. Here the essential property we are looking for is that the protocol
achieves in-order communication in spite of the unordered channel. This property
may be defined by means of a prefix property on lists, as done in the following
module which imports a module BOOLEAN (not shown here) providing Boolean
values and standard operations on them.

mod UNORDERED-CHANNEL-PROP is

protecting BOOLEAN .

protecting UNORDERED-CHANNEL .

sort Prop .

op _~_ : Nats Nats -> Bool . *** equality predicate

op _|=_ : State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats . vars L L’ L’’ : List . var C : Conf .

eq 0 ~ 0 = true .

eq 0 ~ s(N) = false .

eq s(N) ~ 0 = false .

eq s(N) ~ s(M) = N ~ M .

op prefix : List -> Prop [ctor] .

eq [I1]: { L’, N | C | K ; L’’, P } |= prefix(M ; L) =

(M ~ K) and { L’, N | C | L’’, P } |= prefix(L) .

eq [I3]: { L’, N | C | nil, K } |= prefix(L) = true .

eq [I4]: {L’, N | C | M ; L’’, K } |= prefix(nil) = false .

endm

We assume that all initial states are of the form

{n1 ; ... ; nk ; nil , 0 | null | nil , 0}
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where the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil and
has its counter set to 0, the communication channel is empty, the receiver’s
buffer is also empty, and the receiver’s counter is initially set to 0. The following
module puts everything together and declares a concrete initial state.

mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is

extending UNORDERED-CHANNEL-ABSTRACTION-2 .

including UNORDERED-CHANNEL-PROP .

op init : -> State .

eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .

endm

It is easy to see that the set of abstract states is finite and that the module
UNORDERED-CHANNEL is deadlock free. Moreover, to show property preservation,
we can check that the equations in both modules UNORDERED-CHANNEL-PROP and
UNORDERED-CHANNEL-ABSTRACTION-CHECK are terminating, Church-Rosser, and
sufficiently complete, and rules are still coherent.

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK

is sufficiently complete and has free constructors. However [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)

Maude> (submit .)

Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is coherent.

Model Checking the Property. Finally, we can model check the desired property
on the abstract version of the unordered communication channel, as follows:

mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is

including UNORDERED-CHANNEL-ABSTRACTION-CHECK .

including LTL-SIMPLIFIER . *** optional

including MODEL-CHECKER .

endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK :

modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) .

rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second)

result Bool: true

The property then holds also in the original system, as justified in Section 3.
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5 Concluding Remarks

The equational abstraction technique introduced in [5] and summarized here is
fairly simple and takes advantage of the expressiveness of rewriting logic and its
Maude implementation [1], as well as of the tools available in the Maude Formal
Environment [3]. Other examples are available in the references, but they do not
use the Maude Formal Environment in its current integrated form, as we have
done with the main example in this paper.

Related work includes the generalization of the equational theory extension
(Σ, E) ⊆ (Σ, E ∪ E′) to theory interpretations (Σ, E) −→ (Σ′, E′′) and also to
(stuttering) simulations, studied in detail in [6].

Future work will be dedicated to improving the interface of the Maude Formal
Environment to make it more user-friendly. Also, the Inductive Theorem Prover
(ITP) needs more and better integration with the other tools.

Acknowledgments. We are very grateful to our colleagues José Meseguer and Miguel
Palomino, whose work on equational abstraction is summarized in this paper; the
organizers of CBSoft and SBMF 2014 for their invitation to present this work in such
a nice environment; and Christiano Braga for all his enthusiastic help.
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Abstract. The behavioral characterization of biological organisms is a
fundamental requirement for both the understanding of the physiologi-
cal properties and potential drug designs. One of the most widely used
approaches in this domain is molecular pathways, which offers a system-
atic way to represent and analyze complex biological systems. Tradition-
ally, such pathways are analyzed using paper-and-pencil based proofs and
simulations. However, these methods cannot ascertain accurate analysis,
which is a serious drawback for safety-critical applications (e.g., analy-
sis of cancer cells and cerebral malarial network). In order to overcome
these limitations, we recently proposed to formally reason about molec-
ular pathways within the sound core of a theorem prover. As a first step
towards this direction, we formally expressed three logical operators and
four inference rules of Zsyntax , which is a deduction language for molec-
ular pathways. In the current paper, we extend this formalization by
verifying a couple of behavioral properties of Zsyntax based deduction
using the HOL4 theorem prover. This verification not only ensures the
correctness of our formalization of Zsyntax but also facilitates its usage
for the formal reasoning about molecular pathways. For illustration pur-
poses, we formally analyze a molecular reaction of the glycolytic pathway
leading from D-Glucose to Fructose-1,6-bisphosphate.

1 Introduction

Molecular biology is extensively used to construct models of biological processes
in the form of networks or pathways, such as protein-protein interaction net-
works and signaling pathways. The analysis of these biological networks, usually
referred to as biological regulatory networks (BRNs) or gene regulatory networks
(GRNs) [10], is based on the principles of molecular biology to understand the
dynamics of complex living organisms. Moreover, the analysis of molecular path-
ways plays a vital role in investigating the treatment of various human infectious
diseases and future drug design targets. For example, the analysis of BRNs has
been recently used to predict treatment decisions for sepsis patients [15].
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Traditionally, the molecular biology based analysis is carried out by biolo-
gists in the form of wet-lab experiments (e.g. [7,13]). These experiments, despite
being very slow and expensive, do not ensure accurate results due to the inability
to accurately characterize the complex biological processes in an experimental
setting. Other alternatives for deducing molecular reactions include paper-and-
pencil proof methods (e.g. using Boolean modeling [28] or kinetic logic [29]) or
computer-based techniques (e.g. [30]) for analyzing molecular biology problems.
The manual proofs become quite tedious for large systems, where the calculation
of unknown parameters takes several hundred proof steps, and are thus prone
to human errors. The computer-based methods consist of graph theoretic tech-
niques [21], Petri nets [11] and model checking [3]. These approaches have shown
very promising results in many applications of molecular biology (e.g. [8,14]).
However, these methods are not generic and hence have been used to describe
some specific areas of molecular biology [4]. Moreover, the inherent state-space
explosion problem of model checking [20] limits the scope of this success only to
systems where the biological entities can acquire a small set of possible levels.

Theorem proving [12], i.e., a widely used formal methods technique, does not
suffer from the state-space explosion problem of model checking, and has also
been advocated for conducting molecular biology based analysis [31]. The main
idea behind theorem proving is to construct a computer-based mathematical
model of the given system and then verify the properties of interest using deduc-
tive reasoning. The foremost requirement for conducting the theorem proving
based analysis of any system is to formalize the mathematical or logical founda-
tions required to model and analyze that system in an appropriate logic. There
have been several attempts to formalize the foundations of molecular biology.
For example, the earliest axiomatization even dates back to 1937 [32] and other
efforts related to the formalization of biology are presented in [25,33]. Recent for-
malizations, based on K -Calculus [6] and π-Calculus [22–24], also include some
formal reasoning support for biological systems. Another interesting approach is
to model signal transduction pathways using pathway logic [27] which is based
on rewriting logic. But the understanding and utilization of these techniques is
very cumbersome for a working biologist as highlighted by Fontana in [9].

In order to develop a biologist friendly formal deduction framework for reason-
ing about molecular reactions, we propose to formalize the Zsyntax [4] language in
higher-order logic. Zsyntax is a formal language that supports modeling and log-
ical deductions about any biological process. The main strength of Zsyntax is its
biologist-centered nature as its operators and inference rules have been designed
in such a way that they are understandable by the biologists. Traditionally, logical
deductions about biological processes, expressed in Zsyntax , were done manually
based on the paper-and-pencil based approach. This limits the usage of Zsyntax
to smaller problems and also makes the deduction process error-prone due to the
human involvement. As a first step towards overcoming this limitation, we formal-
ized the logical operators and inference rules of Zsyntax in higher-order logic [2].
In the current paper, we build upon these formal definitions to verify a couple of
key behavioral properties of Zsyntax based molecular pathways using the HOL4
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theorem prover. The formal verification of these properties raises the confidence
level in our definitions of Zsyntax operators and inference rules, which have com-
plex interrelationships. Moreover, these formally verified properties can be used to
facilitate the formal reasoning about chemical reactions at the molecular level. In
order to illustrate the usefulness and effectiveness of our formalization for analyz-
ing real-world problems in molecular biology, we present the formal analysis of a
molecular reaction of the glycolytic pathway leading from D-Glucose to Fructose-
1,6-bisphosphate [4].

Our current framework handles static reactions but it can be further extended
to study the reaction kinetics [4] due to the flexibility of Zsyntax . The main
motivation behind using higher-order-logic theorem proving in our work is to
be able to leverage upon the high expressiveness of higher-order logic and thus
reason about differential equations and probabilistic properties, which form an
integral part of reaction kinetics. However, the scope of the current paper is on
the formalization of Zsyntax based deduction calculus for molecular pathways
but this formalization can later be extended to support reaction kinetics as well
because it is done in a higher-order-logic theorem prover.

The rest of the paper is organized as follows: Section 2 provides an introduc-
tion to Zsyntax and the HOL4 theorem prover. The higher-order-logic formaliza-
tion of Zsyntax operators and inference rules using HOL4 is described in Section
3. This is followed by the descriptions of the behavioral properties of Zsyntax
along with their formal proof sketches in Section 4. The illustrative case study
on the glycolytic pathway is presented in Section 4. We conclude the paper in
Section 5 while highlighting some interesting potential applications of our work.

2 Preliminaries

2.1 Zsyntax

Zsyntax [4] exploits the analogy between biological processes and logical deduc-
tion. Some of the key features of Zsyntax are: 1) the ability to express molecular
reactions in a mathematical way; 2) heuristic nature, i.e., if the conclusion of a
reaction is known, then one can deduce the missing data from the initialization
data; 3) computer implementable semantics. Zsyntax consists of the following
three operators:
Z-Interaction: The interaction of twomolecules is expressed by the Z-Interaction
(∗) operator. In biological reactions, Z-interaction is not associative.
Z-Conjunction: The aggregate of same or different molecules (not necessarily
interacting with each other) is formed using the Z-Conjunction (&) operator.
Z-Conjunction is fully associative.
Z-Conditional: A path from A to B under the condition C is expressed using
the Z-Conditional (→) operator as: A → B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 1, that play a vital role
in deducing the outcomes of biological reactions:

Besides the regular formulas that can be derived based on the above men-
tioned operators and inference rule, Zsyntax also makes use of Empirically Valid
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Table 1. Zsyntax Inference Rules

Inference Rules Definition

Elimination of Z-conditional(→E) if C � (A → B) and (D � A) then (C&D � B)

Introduction of Z-conditional(→I) C&A � B then C � (A → B)

Elimination of Z-conjunction(&E) C � (A&B) then (C � A) and (C � B)

Introduction of Z-conjunction(&I) (C � A) and (D � B) then (C&D) � (A&B)

Formulae (EVF). These EVFs basically represent the non-logical axioms of
molecular biology and are assumed to be validated empirically in the lab.

It has been shown that any biological reaction can be mapped and their final
outcomes can be derived using the above mentioned three operators and four
inference rules [4]. For example, consider a scenario in which three molecules
A, B and C react with each other to yield another molecule Z. This can be
represented as a Zsyntax theorem as follows:

A & B & C � Z

TheZ-Conjunction operator& is used to represent the given aggregate ofmolecules
and then the inference rules from Table 1 are applied on these molecules along with
some EVFs (chemical reactions verified in laboratories) to obtain the final product
Z. For the above example, these EVFs could be:

A * B → X and X * C → Z

meaning that A will react with B to yield X and X in return will react with C
to yield the final product Z.

The main contribution of our paper is the formal verification of the Zsyntax
based deduction method based on the higher-order-logic formalization of the
above-mentioned operators and inference rules using the HOL4 theorem prover.
This work will in turn facilitate the derivation of biological reactions within the
sound core of HOL4.

2.2 HOL4 Theorem Prover

HOL4 is an interactive theorem prover developed at the University of Cambridge,
UK, for conducting proofs in higher-order logic. It utilizes the simple type theory
of Church [5] along with Hindley-Milner polymorphism [17] to implement higher-
order logic. HOL4 has been successfully used as a verification framework for
both software and hardware as well as a platform for the formalization of pure
mathematics.

In order to ensure secure theorem proving, the logic in the HOL4 system is
represented in the strongly-typed functional programming language ML [19]. An
ML abstract data type is used to represent higher-order logic theorems and the
only way to interact with the theorem prover is by executing ML procedures
that operate on values of these data types. The HOL4 core consists of only 5
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basic axioms and 8 primitive inference rules, which are implemented as ML func-
tions. Soundness is assured as every new theorem must be verified by applying
these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules.

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and the-
orems, and is usually stored as a file in computers. Users can reload a HOL4 theory
in the HOL4 system and utilize the corresponding definitions and theorems right
away. Various mathematical concepts have been formalized and saved as HOL4
theories by the HOL4 users. We utilize the HOL4 theories of Booleans, arithmetics
and lists extensively in our work. Table 2 provides the mathematical interpreta-
tions of some HOL4 symbols and functions frequently used in this paper.

Table 2. HOL4 Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

¬ not Logical negation

:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

LENGTH L length Length of list L

FST fst (a, b) = a First component of a pair

SND snd (a, b) = b Second component of a pair

SUC n n + 1 Successor of a num

3 Formalization of Zsyntax

We modeled the molecules as variables of arbitrary data types (α) in our formal-
ization of Zsyntax [2]. A list of molecules (α list) represents the Z-Interaction or
a molecular reaction among the elements of the list. The Z-Conjunction oper-
ator forms a collection of non-reacting molecules and can now be formalized
as a list of list of molecules (α list list). This data type allows us to apply
the Z-Conjunction operator between individual molecules (a list with a single
element) or multiple interacting molecules (a list with multiple elements). The
Z-Conditional operator is used to update the status of molecules, i.e., generate
a new set of molecules based on the available EVFs (wet-lab verified reactions).
Each EVF is modeled in our formalization as a pair (α list # α list list) where
the first element is a list of molecules (α list) indicating the reacting molecules
and the second element is a list of list of molecules (α list list) indicating the
resulting set of molecules after the reaction between the molecules of the first
element of the pair has taken place. A collection of EVFs is represented as a list
of EVFs ((α list # α list list)list) in our formalization.
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The elimination of Z-Conditional rule is the same as the elimination of impli-
cation rule (Modus Ponens) in propositional logic and thus it can be directly
handled by the HOL4 simplification and rewriting rules. Similarly, the introduc-
tion of Z-Conditional rule can also be inferred from the rules of propositional
logic and can be handled by the HOL4 system without the introduction of a
new inference rule. The elimination of the Z-Conjunction rule allows us to infer
the presence of a single molecule from an aggregate of inferred molecules. This
rule is usually applied at the end of the reaction to check if the desired molecule
has been obtained. Based on our data types, described above, this rule can be
formalized in HOL4 by returning a particular molecule from a list of molecules:

Definition 1. Elimination of Z-Conjunction Rule
� ∀ L m. z conj elim L m = if MEM m L then [m] else L

The function z conj elim has the data type (α list → α → α list). The
above function returns the given element as a single element in a list if it is a
member of the given list. Otherwise, it returns the argument list as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to
perform a reaction between any of the available molecules during the experiment.
Based on our data types, this rule is equivalent to the append operation of lists.

Definition 2. Introduction of Z-Conjunction and Z-Interaction
� ∀ L m n. z conj int L m n = FLAT [EL m L; EL n L]::L

The above definition has the data type (α list list → num → num →
α list list). The HOL4 functions FLAT and EL are used to flatten a list of list
to a single list and return a particular element of a list, respectively. Thus, the
function z conj int takes a list L and appends the list of two of its elements m
and n on its head.

Based on the laws of stoichiometry [4], the reacting molecules using the Z-
Conjunction operator have to be deleted from the aggregate of molecules. The
following function represents this behavior in our formalization:

Definition 3. Reactants Deletion
� ∀ L m n. z del L m n = if m > n

then del (del L m) n

else del (del L n) m

Here the function del L m deletes the element at index m of the list L and returns
the updated list as follows:

Definition 4. Element Deletion
� ∀ L. del L 0 = TL L ∧

∀ L n. del L (n + 1) = HD L::del (TL L) n

Thus, the function z del L m n deletes the mth and nth elements of the given list
L. We delete the higher indexed element before the lower one in order to make
sure that the first element deletion does not effect the index of the second element
that is required to be deleted. The above data types and definitions can be used to
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formalize any molecular pathway (which is expressible using Zsyntax ) and reason
about its correctness within the sound core of the HOL4 theorem prover.

Our main objective is to develop a framework that accepts a list of initial
molecules and possible EVFs and allows the user to formally deduce the final
outcomes of the corresponding biological experiment. In this regard, we first
develop a function that compares a particular combination of molecules with all
the EVFs and upon finding a match introduces the newly formed molecule in
the initial list and deletes the consumed instances.

Definition 5. EVF Matching
� ∀ L E m n.

z EVF L E 0 m n =

if FST (EL 0 E) = HD L

then (T,z del (TL L ++ SND (EL 0 E)) m n

else (F,TL L) ∧
∀ L E p m n.

z EVF L E (p + 1) m n =

if FST (EL (p + 1) E) = HD L

then (T,z del (TL ++ SND (EL (p + 1) E)) m n

else z EVF L E p m n

The data type of the function z EVF is: (α list list → (α list#α list list) list
→ num → num → num → bool # α list list). The function LENGTH
returns the length of a list. The function z EVF takes a list of molecules L and
recursively checks its head, or the top most element, against all elements of
the EVF list E. If there is no match, then the function returns a pair with its
first element being false (F), indicating that no match occurred, and the second
element equals the tail of the input list L. Otherwise, if a match is found then
the function replaces the head of list L with the second element of the EVF pair
and deletes the matched elements from the initial list as these elements have
already been consumed. This modified list is then returned along with a true (T)
value, which acts as a flag to indicate an element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call
the function z EVF recursively by placing all the possible combinations of the
given molecules at the head of list L one by one.

Definition 6. Recursive Function for calling z EVF
� ∀ L E m n. z deduction recur L E m n 0 = (T,L) ∧

∀ L E m n q. z deduction recur L E m n (q + 1) =

if FST (z recur2 L E m n) ⇔ T

then z deduction recur (SND (z recur2 L E m n)) E

(LENGTH (SND (z recur2 L E m n)) - 1)

(LENGTH (SND (z recur2 L E m n)) - 1) q

else (T,SND (z recur2 L E (LENGTH L - 1) (LENGTH L - 1)))

The data type of function z deduction recur is (α list list → (α list #α
list list) list → num → num → num → bool # α list list). It accepts
the list of molecules L and the list of EVFs E along with their corresponding



Formalization of Zsyntax to Reason About Molecular Pathways in HOL4 39

indices m and n, respectively, and a recursion variable q. It returns a pair with
the first element being a Boolean flag, which becomes true when there are no
more remaining reactions, and the second element being the list of molecules rep-
resenting the post-reaction state. The function z decuction recur recursively
calls the function z EVF for all possible molecule combinations using the function
z recur2, which in turn uses the function z recur1 for this purpose. The argu-
ments m and n of functions z recur1 and z recur2 are initialized with LENGTH
L and the sole purpose of these functions is to exhaust all possible combinations
of the variables m and n for the function z conj int, given in Definition 5. The
formalization of the above mentioned functions and more details about their
behavior can be obtained from [1,2].

In order to model a complete experiment for a given list of molecules, the
variable of recursion in the function z deduction recur should be assigned a
value that is greater than the total number of EVFs so that the application
of none of the EVF is missed. Similarly, the variables m and n of the function
z deduction recur should be assigned the values of (LENGTH L - 1) to ensure
that all combinations of the list L are checked against the elements of the list of
EVFs. Thus, the final deduction function for Zsyntax can be expressed in HOL4
as follows:

Definition 7. Final Deduction Function for Zsyntax
� ∀ L E. z deduction L E =

SND (z deduction recur L E (LENGTH L - 1) (LENGTH L - 1) LENGTH E)

The data type of function z deduction is (α list list → (α list # α list list)
list → α list list). It accepts the initial list of molecules and the list of valid
EVFs and returns a list of final outcomes of the experiment under the given
conditions, by calling the function z decuction recur.

The formal definitions, presented in this section, allow us to recursively check
all the possible combinations of the initial molecules against the first elements of
given EVFs. In case of a match, the corresponding EVF is applied by replacing
the reacting molecules with their outcome in the molecule list and the process
restarts again to find other possible matches from the new list of molecules.
This process terminates when no more molecules are found to be reacting with
each other and at this point we will have the list of post-reaction molecules. The
desired result can then be obtained from these molecules using the elimination of
Z-Conjunction rule, given in Definition 1. The main benefit of the development,
presented in this section, is that it facilitates automated reasoning about the
molecular biological experiments within the sound core of a theorem prover.

4 Formal Verification of Zsyntax Properties

In order to ensure the correctness and soundness of our definitions, we use them
to verify a couple of properties representing the most important characteristics
of molecular reactions. The first property deals with the case when there is no
combination of reacting molecules in the list of molecules and in this case we
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verify that after the Zsyntax based experiment execution both the pre and post-
experiment lists of molecules are the same. The second property captures the
behavior of the scenario when the given list of molecules contains only one set
of reacting molecules and in this case we verify that after the Zsyntax based
experiment execution the post-experiment list of molecules contains the product
of the reacting molecules minus its reactants along with the remaining molecules
provided initially. We represent these scenarios as formally specified properties
in higher-order logic using our formal definitions, given in the previous section.
These properties are then formally verified in HOL4.

4.1 Scenario 1: No Reaction

We verify the following theorem for the first scenario:

Theorem 1
� ∀ E L.

∼(NULL E) ∧ ∼(NULL L) ∧
(∀ a m n. MEM a E ∧ m < LENGTH L ∧ n < LENGTH L

⇒ ∼MEM (FST a) [HD (z conj int L m n)])

⇒ z deduction L E = L

The variables E and L represent the lists of EVFs and molecules, respectively.
The first two assumptions ensure that both of these lists have to be non-empty,
which are the pre-conditions for a molecular reaction to take place. The next
conjunct in the assumption list of Theorem 1 represents the formalization of the
no-reaction-possibility condition as according to this condition no first element
of any pair in the list of EVFs E is a member of the head of the list formed
by the function z conj int, which picks the elements corresponding to the two
given indices (that range over the complete length of the list of molecules L) and
appends them as a flattened single element on the given list L. This constraint
is quantified for all variables a, m and n and thus ensures that no combination of
molecules in the list L matches any one of the first elements of the EVF list E.
Thus, under this constraint, no reaction can take place for the given lists L and
E. The conclusion of Theorem 1 represents the scenario that the output of our
formalization of Zsyntax based reaction would not make any change in the given
molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-
update scenario for all molecule manipulation functions, i.e., z EVF, z recur1,
z recur2 and z deduction recur, under the no-reaction-possibility condition
[1]. For example, the corresponding theorem for z EVF function is as follows:

Theorem 2
� ∀ E L m n P.

∼(NULL E) ∧ ∼(NULL L) ∧ m < LENGTH L ∧ n < LENGTH L ∧
P < LENGTH E ∧ (∀ a. MEM a E ⇒ ∼MEM (FST a) [HD L])

⇒ z EVF L E P m n = (F,TL L)
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The assumptions of above theorem ensure that both lists L and E are not
empty and the arguments of the function z EVF are bounded by the LENGTH of L
and E. The last conjunct in the assumption list models the no-reaction-possibility
condition in the context of the function z EVF. The conclusion of the theorem
states that no update takes place under the given conditions by ensuring that the
function z EVF returns a pair with the first element being F (False), representing
no match, and the second element being equal to TL L, which is actually equal
to the original list L since an element was appended on head of L by the parent
function.

4.2 Scenario 2: Single Reaction

The second scenario complements the first scenario and caters for the case when
a reaction is possible and we verify that the molecules list is indeed updated
based on the outcomes of that reaction. In order to be able to track the reaction
and the corresponding update, we limit ourselves to only one reaction in this
scenario but since we verify a generic theorem (universally quantified) for all
possibilities our result can be extended to cater for multiple reactions as well.
The theorem corresponding to this scenario 2 is as follows:

Theorem 3
� ∀ E L z m’ n’.

∼NULL E ∧ ∼NULL (SND (EL z E)) ∧ 1 < LENGTH L ∧
m’ 
= n’ ∧ m’ < LENGTH L ∧ n’ < LENGTH L ∧ z < LENGTH E ∧
ALL DISTINCT (L ++ SND (EL z E)) ∧
(∀ a b. a 
= b ⇒ FST (EL a E) 
= FST (EL b E)) ∧
(∀ K m n. m < LENGTH K ∧ n < LENGTH K ∧
(∀ j. MEM j K ⇒ MEM j L ∨ ∃ q. MEM q E ∧ MEM j (SND q)) ⇒

if (EL m K = EL m’ L) ∧ (EL n K = EL n’ L)

then HD (z conj int K m n) = FST (EL z E)

else ∀ a. MEM a E ⇒ FST a 
= HD (z conj int K m n))

⇒ z deduction L E = z del (L ++ SND (EL z E)) m’ n’

The first two assumptions ensure that neither the list E, i.e., the list of EVFs,
nor the second element of the pair at index z of the list E is empty. Similarly, the
third assumption ensures that the list L, i.e., the list of initial molecules, contains
at least two elements. These constraints ensure that we can have at least one
reaction with the resultant being available at index z of the EVF list. The next
four assumptions ensure that the indices m’ and n’ are distinct and these along
with the index z fall within the range of elements of their respective lists of
molecules L or EVFs E. According to the next assumption, i.e., ALL DISTINCT
(L ++ SND (EL z E)), all elements of the list L and the resulting molecules of
the EVF at index z are distinct, i.e., no molecule can be found two or more times
in the initial list L or the post-reaction list E. The next assumption, i.e., (∀ a b.
a �= b ⇒ FST (EL a E) �= FST (EL b E)), guarantees that all first elements
of the pairs in list E are also distinct. Note that this is different from the previous
condition since the list E contains pairs as elements and the uniqueness of the
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pairs does not ensure the uniqueness of its first elements. The final condition
models the presence of only one pair of reactants scenario. According to the
assumptions of this implication condition, the variable K is used to represent a
list that only has elements from list L or the second elements of the pairs in list E.
Thus, it models the molecules list in a live experiment. Moreover, the variables
m and n represent the indices of the list K and thus they must have a value less
than the total elements in the list K (since the first element is indexed 0 in the
HOL4 formalization of lists). Now, if the indices m and n become equal to m’
and n’, respectively, then the head element of the z conj int K m n would be
equal to FST of EL z E. Otherwise, for all other values of indices m and n, no
combination of molecules obtained by HD(Z conj int K m n) would be equal
to the first element of any pair of the list E. Thus, the if case ensures that the
variables m’ and n’ point to the reacting molecules in the list of molecules L and
the variable z points to their corresponding resultant molecule in the EVF list.
Moreover, the else case ensures that there is only one set of reacting molecules
in the list L. The conclusion of the theorem formally describes the scenario when
the resulting element, available at the location z of the EVF list, is appended to
the list of molecules while the elements available at the indices m’ and n’ of L
are removed during the execution of the function z deduction on the given lists
L and E.

The proof of Theorem 3 is again based on verifying sub-goals corresponding
to this scenario for all the sub-functions, i.e., z EVF, z recur1, z recur2 and
z deduction recur. The formal reasoning for all of these proofs involved various
properties of the del function for a list element and some of the key theorems
developed for this purpose in our development are given in Table 3 and more
details can be found in [1].

The formalization described in this section consumed about 500 man hours
and approximately 2000 lines of HOL4 code, mainly due to the undecidable
nature of higher-order logic. However, this effort raises the confidence level on
the correctness of our formalization of Zsyntax . This fact distinguishes our
work from all the other formal methods based techniques used in the context of
BRNs, where the deduction rules are applied without being formally checked.
Moreover, our formally verified theorems can also be used in the formal analysis
of molecular pathways. The assumptions of these theorems provide very useful
insights about the constraints under which a reaction or no reaction would take
place. To the best of our knowledge, this is the first time that properties, like
Theorems 1 and 3, about a molecular pathway experiment have been formally
verified. Thus, the identification of these properties and their formal verification
both constitute contributions of this paper.

5 Case Study: Pathway Leading to Fructose-1,
6-Bisphosphate

Formation of Fructose-1,6-bisphosphate (F1,6P) is an intermediate step in gly-
colysis, i.e., a sequence of enzyme catalyzed reaction that breaks down glucose
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Table 3. Formally Verified Properties of the del Function

Signature Theorem

del ASSOC THM � ∀ L E m. m < LENGTH L

⇒ del (L + + E) m = del L m + + E

del LENGTH THM � ∀ L E m. m < LENGTH L

⇒ LENGTH (del L m) = LENGTH L − 1

del EL THM � ∀ L m n. m < n ∧ n < LENGTH L ∧ 1 < LENGTH L

⇒ EL m L = EL m (del L n)

del DISTINCT THM � ∀ L n. n < LENGTH L ∧ ALL DISTINCT L

⇒ ALL DISTINCT (del L n)

del MEM THM � ∀ L a m. m < LENGTH L ∧ MEM a (del L m)
⇒ MEM a L

del NOT MEM THM � ∀ L m. ALL DISTINCT L ∧ m < LENGTH L

⇒∼ MEM (EL m L) (del L m)

and forms pyruvate, which is then used to supply energy to living cells through
the citric acid cycle [18]. In this section, we show how this pathway involving
F1,6P can be formally verified in HOL4 using our formalization of Zsyntax .

The theorem representing the reaction of the glycolytic pathway leading from
D-Glucose to F1,6P [4] can be described in classical Zsyntax format as follows:

Glc & HK & GPI & PFK & ATP & ATP � F1,6P

Using our formalization, this theorem can be defined in HOL4 as follows:

� DISTINCT [Glc; HK; GPI; PFK; ATP; ADP; G6P; F6P; F16P] =⇒
(z conj elim (z deduction [[Glc];[HK];[GPI];[PFK];[ATP];[ATP]]

[([Glc;HK],[[HK;Glc]]);

([HK;Glc;ATP],[[HK];[G6P];[ADP]]);

([G6P;GPI],[[F6P];[GPI]]);

([F6P;PFK],[[PFK;F6P]]);

([PFK;F6P;ATP],[[PFK];[F16P];[ADP]])] ) [F16P]

= [[F16P]]

The first list argument of the function z deduction is the initial aggregate
(IA) of molecules that are available for reaction and the second list argument of
the function z deduction represents the valid EVFs for this reaction. The EVFs
mentioned in the form of pairs and involving the molecules (G6P, F6P, etc.) are
obtained from wet lab experiments, as reported in [4]. The DISTINCT function
used above makes sure that all molecule variables (from initial aggregate and
EVFs) used in this theorem represent distinct molecules. Thus, the function
z deduction would deduce the final list of molecules under these particular
conditions. The function z conj elim will return the molecule F1,6P if it is
present in the post-reaction list of molecules, as previously described.

Figure 1 shows the pathway leading to F1,6P in a step-wise manner. The
gray-coloured circles show the chemical interactions and black colour represents
the desired product in the pathway, whereas each rectangle shows total number
of molecules in the reaction at a given time. It is obvious from the figure that
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`Glc HK GPI PFKATP ATP

Glc * HK PFK ATPATP GPI

Glc * HK * ATP PFK ATPGPI

PFK ATPG6P HK ADP GPI

G6P * GPI ATPHK ADP PFK

ATPGPIF6P PFKHK ADP

F6P * PFK ATPGPIADPHK

GPIF6P * PFK * 
ATP ADPHK

F1,6P GPI PFK ADPHK ADP

1

2

3

4

5

6

7

Fig. 1. Reaction Representing the Formulation of F1,6P

whenever a reaction yields a product, the reactants get consumed (no longer
remain in the list) hence satisfying the stoichiometry of a reaction.

As part of this work, we also developed a simplifier Z SYNTAX SIMP [1] that
simplifies the proof with a single iteration of the function z deduction recur
and works very efficiently with the proofs involving our functions. The proof
steps can be completely automated and the proof can be done in one step as
well. However, we have kept the reasoning process manual purposefully as this
way users can observe the status of the reaction at every iteration, which is a
very useful feature to get an insight of what is happening inside a reaction. Each
application of Z SYNTAX SIMP on the reaction, depicted in Figure 1, would result
in moving from a state n to n + 1.

The verification time required for each iteration step is given in Table 4. HOL4
was running on a linux based machine (Intel Core i5, 4GB RAM). The iteration
time depends on the total number of molecules (elements of list) present at a given
iteration. Low number of molecules translate to less number of possible combina-
tions, which in turn leads to less time required to move to the next iteration.
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Table 4. Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 11.996

2 → 3 7.376

3 → 4 12.964

4 → 5 12.756

5 → 6 9.240

6 → 7 0.048

Our HOL4 proof script is available for download [1], and thus can be used for
further developments and analysis of different molecular pathways. It is impor-
tant to note that formalizing Zsyntax and then verifying its properties was a
very tedious effort. However, it took only 10 lines of code to define and verify
the theorem related to the above case study in HOL4, which clearly illustrates
the usefulness of our foundational work.

We have shown that our formalization is capable of modeling molecular reac-
tions using Zsyntax inference rules, i.e., given a set of possible EVFs, our for-
malism can derive a final aggregate B from an initial aggregate A automatically.
In case of a failure to deduce B, the proposed method still provides the biologist
with all the intermediate steps so that one can examine the reaction in detail
and figure out the possible cause of failure.

The evident benefit of our reasoning approach is its automatic nature as
the user does not need to think about the proof steps and which EVFs to apply
where. However, the most useful benefit of the proposed approach is its accuracy
as the theorems are being verified in a formal way using a sound theorem prover.
Thus, there is no risk of human error or wrong application of EVFs. Finally, due
to the computer-based analysis, the proposed approach is much more scalable
than the paper-and-pencil based analysis presented in [4].

6 Conclusion

Most of the existing formal verification research related to molecular biology
has been focussed on using model checking. As a complementary approach, the
primary focus of the current paper is on using a theorem prover for reason-
ing about molecular pathways. The main strength of this approach, compared
to existing model checking related work, is that the underlying methods and
deduction rules can also be formally verified besides the verification of a partic-
ular molecular pathway case. Leveraging upon this strength, we formally verified
two key behavioral properties of molecular pathways based on the Zsyntax lan-
guage, which presents a deduction style formalism for molecular biology in the
most biologist-centered way. Besides ensuring the correctness of our formaliza-
tion of the Zsyntax operators and inference rules, the formally verified properties
also play a vital role in reasoning about molecular pathways in the sound core
of a theorem prover. The practical utilization and effectiveness of the proposed
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development has been shown by presenting the automatic analysis of Glycolytic
pathway leading to Fructose-1,6-bisphosphate.

The proposed work opens the doors to many new directions of research.
Firstly, we are developing a GUI to add more biologist friendly features in it.
Moreover, we are also targeting some larger case studies, such as Dysregulation of
the cell cycle pathway during tumor progression [16] and Fanconi Anemia/Breast
Cancer (FA/BRCA) pathway [26]. Another interesting future direction is to
leverage the high expressiveness of higher-order-logic and utilize calculus and
differential theoretic reasoning to add reaction kinetics support in our formalism.
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Abstract. In model-based testing, test cases are generated from a spec-
ification model. To avoid an exhaustive search for all possible test cases
that can be obtained, usually an expensive and infeasible activity, test
case generation may be guided by a test selection criterion. The objec-
tive of a test selection criterion is to produce a minimal test suite and
yet effective to reveal faults. However, the choice of a criterion is not
straightforward specially for real-time systems, because most criteria pre-
sented in the literature are general-purpose. Moreover, the relationship
between general-purpose and specific criteria for real-time systems is
not clear. In this paper, we investigate the criteria that can be applied
for test case generation in the scope of model-based testing of real-time
systems, specifically of Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models. We formalize a family of 19 test selection crite-
ria ordered by strict inclusion relation for TIOSTS models. The family
combines general-purpose data-flow-oriented and transition-based crite-
ria with specific reactive and real-time systems criteria. We also per-
form an empirical study to compare the effectiveness of selected criteria.
Results of the empirical study indicate that failure detection capability
of the generated test suite may vary, but differences are not significant
for time failures. We conclude that more effective criteria for the model-
based testing of real-time systems are still needed.

1 Introduction

Model-Based Testing is a testing approach that relies on the design of abstract
models of an application to generate, execute and evaluate tests [10,22,27]. It
has been applied with success in industry, with special emphasis in the avionic,
railway and automotive domains [21].

Test case generation algorithms are based on test selection criteria that guide
how to search for test cases and when to stop the test case generation process.
Different test suites can be generated depending on the chosen test selection
criterion [29]. They may vary in size, behavior coverage and failure detection
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 48–63, 2015.
DOI: 10.1007/978-3-319-15075-8 4
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capability. Therefore, test selection criteria need to establish how to guarantee
the generation of test suites that are ultimately cost-effective.

Real-time systems are reactive systems whose behavior is constrained by
time [18]. So, the testing of these systems should uncover time-related faults
that may require specific test cases to be exercised. Most test selection criteria
for real-time systems at model level are based on structural elements of a model
behavior and its data usage [14]. Some specific test selection criteria for real-
time systems have been proposed, such as covering all clock resets and all guard
bounds [12]. However, the choice of a criterion is not straightforward, because the
relationship between general-purpose and specific criteria for real-time systems
is not clear [2].

In this paper, we investigate test selection criteria for real-time systems in
the context of model-based testing. We focus on criteria that can be applied to
transition systems, because they are usually the basis for conformance testing of
real-time systems [17,28]. We use Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models [5,6], where system behavior is modeled as a transition
system with data and time symbolically defined.

Here we make two contributions. First, we formalize a family of 19 test selec-
tion criteria partially ordered by strict inclusion relation for TIOSTS models. The
family combines Transition-Based Criteria, data-flow-oriented crite-

ria, Reactive Systems Criteria and Real-Time Systems Criteria. We
prove inclusion or incompatibility whenever our family diverges from the known
relationship in other models, because some relation between criteria change when
applied to TIOSTS models.

Second, we conduct a controlled experiment to compare the effectiveness of
selected criteria. The empirical study measures the size, the failure detection
capability and the rate of failures detected by the size of the test suite of differ-
ent criteria. In order to conduct the empirical study, we implemented a selection
of criteria from the family using a depth-first search-based algorithm. Statisti-
cal analyses show that the criteria present different failure detection capability,
although, significant differences cannot be observed for time-related failures. Fur-
thermore, current specific criteria for real-time systems lack precision, i.e. they
miss important failures, pointing to the need for further research in this area.

The paper is structured as follows. Section 2 introduces the TIOSTS model
and test selection criteria for model-based testing of real-time systems. Section 3
formalizes a family criteria for TIOSTS. Section 4 presents an empirical study
to compare selected criteria. Section 5 discusses related work. Finally, Section 6
presents concluding remarks along with pointers for further research.

2 Background

This section presents the symbolic model on which this work is based and intro-
duces the concept of test selection criterion in the context of model-based testing.
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2.1 Timed Input-Output Symbolic Transition System Model

Timed Input-Output Symbolic Transition System (TIOSTS) [5,6] is a symbolic
model for real-time systems that handles both data and time. The TIOSTS
model was defined as an extension of two existing models: Timed Automata [3]
and Input-Output Symbolic Transition Systems [15,24]. Basically, a TIOSTS is
an automaton with a finite set of locations where system data and time evolution
are respectively represented by variables and a finite set of clocks. The transitions
of the model are composed of a guard on variables and clocks, an action with
parameters, an assignment of variables, and a set of clocks to reset.

Figure 1 shows an example of TIOSTS that models a machine for refilling a
card for using the subway. Initially, the system is in the Idle location where it
expects the Credit input carrying the desired value to refill, then this value is
saved into the refillValue variable1 and balance is initialized to zero.

Fig. 1. TIOSTS model of a refilling machine

From the Receive location to Verify the client informs the amount to be
credited to the card. This value is accumulated in the balance variable and
the clock is set to zero. If the current balance is less than the desired value
to refill, then the Receive location is reached again and the MissingValue
output is emitted for informing the remaining value (the condition value =
refillValue − balance contained in the guard means “choose a value for the
value parameter that, with the values of refillValue and balance variables,
satisfies the guard”).

From the Verify location, if the balance is greater than refillValue some
value must be returned to the client in less than 5 time units. After that, the clock
1 Action parameters have local scope, thus their values must be stored in variables for

future references.
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is reset to zero again. Then, the RefillCard output action must be performed in
less than 5 time units and the cardBalance is increased by refillValue. Oth-
erwise, from Verify, if balance is exactly equals to refillValue, then the card
must be refilled in less than 5 time units. Finally, from the Print location, the
voucher must be printed in less than 15 time units and Idle location is reached
again. A formal definition of TIOSTS models is presented in Definition 1 [5].

Definition 1 (TIOSTS). A TIOSTS is a tuple W = 〈V, P,Θ,L, l0, Σ,C, T 〉,
where:

– V is a finite set of typed variables;
– P is a finite set of parameters. For x ∈ V ∪ P , type(x) denotes the type of

x;
– Θ is the initial condition, a predicate with variables in V ;
– L is a finite, non-empty set of locations and l0 ∈ L is the initial location;
– Σ = Σ? ∪ Σ! is a non-empty, finite alphabet, which is the disjoint union of

a set Σ? of input actions and a set Σ! of output actions. For each action
a ∈ Σ, its signature sig(a) = 〈p1, ..., pn〉 is a tuple of distinct parameters,
where each pi ∈ P (i = 1, ..., n);

– C is a finite set of clocks with values in the set of non-negative real numbers,
denoted by R

≥0;
– T is a finite set of transitions. Each transition t ∈ T is a tuple 〈l, a,G,A, y,

l′〉, where:
• l ∈ L is the origin location of the transition,
• a ∈ Σ is the action,
• G = GD ∧ GC is the guard, where GD is a predicate over variables

in V ∪ set(sig(a))2,3 and GC is a clock constraint over C defined as a
conjunction of constraints of the form α#c, where α ∈ C, # ∈ {<,≤,
=,≥, >}, and c ∈ N,

• A = (AD, AC) is the assignment of the transition. For each variable
x ∈ V there is exactly one assignment in AD, of the form x := ADx,
where ADx is an expression on V ∪ set(sig(a)). AC ⊆ C is the set of
clocks to be reset,

• y ∈ {lazy, delayable, eager} is the deadline of the transition,
• l′ ∈ L is the destination location of the transition. 


The semantics of a TIOSTS is described by Andrade and Machado [5]. Next
we define the concepts of state, path and test case.

Definition 2 (State of TIOSTS). In TIOSTS model, a state is a tuple 〈l,
v1, ..., vn, c1, ..., cm〉, which consists of a location l ∈ L, a specific valuation for
all variables vi ∈ V , and a valuation for all clocks ci ∈ C. 

Definition 3 (Path). A path is a finite sequence of transitions (t1, ..., tk),
k ≥ 1, such that the destination location of transition ti is equal to the origin
location of the transition ti+1 for i = 1, 2, ..., k − 1. 

2 GD is assumed to be expressed in a theory in which satisfiability is decidable.
3 Let set(j) be the function that converts the tuple j in a set.
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Definition 4 (Test Case). A test case is a deterministic TIOSTS TC =
〈VTC , PTC , ΘTC , LTC , l0TC , ΣTC , CTC , TTC〉, where Σ?

TC = Σ!
S and Σ!

TC = Σ?
S

(actions are mirrored w.r.t. specification), equipped with three disjoint sets of
verdict locations Pass, Fail, and Inconclusive. Furthermore, each sequence from
the initial location l0TC to some verdict location is a path. 


According to Definition 4, the execution of a test case can emit one of three
possible verdicts: Pass, Fail, and Inconclusive. Pass means that some targeted
behavior of the system under test has been reached, Fail means rejection of
the SUT, and Inconclusive means that targeted behavior cannot be reached
anymore.

Figure 2 is a test case for the TIOSTS model of the refilling machine. The test
case aims to exercise the scenario where the system emits the RefillCard output
when the amount to be credited to the card (value 2) is equal to desired value
to refill (value 1). In this case, the verdict is Pass. If the amount to be credited
to the card (value 2) is less than the desired value to refill (value 1), and the
system emits the MissingValue output with parameter equals to value 1 −
value 2, then the verdict is Inconclusive. It is Inconclusive because this behavior
is specified in the model, but it is not the scenario the tester would like to observe
in the test case execution. The same applies to ReturnChange output action of
the test case. All other cases lead to the implicit Fail verdict.

Fig. 2. A test case for the refilling machine
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2.2 Test Selection Criteria for Real-Time Systems

In model-based testing, test cases are derived from a model which specifies the
expected behavior of a system under test. A Test Selection Criterion defines
which parts of the system are going to be tested, how often and under what
circumstances they will be tested [29]. Test selection criteria are used for two
main purposes: to measure the adequacy of the test suite with respect to the
level of quality required by the context, and to stop the test generation process
after the criterion is reached [29].

We conducted a systematic literature review to identify studies that address
test selection criteria for real-time systems at model level [2]. We considered
studies that a criterion was used at least as part of a test case generation process
in the scope of transition and state-based systems [1,7,9,12–14,16,17,20,26,31].

The results of the review show that most general-purpose test selection cri-
teria may be applied to models of real-time systems. There are also specific
criteria for real-time systems proposed in the literature. However, there is a lack
of studies that investigate the theoretical and empirical relationship between
criteria. The theoretical relationship could indicate the relative effort to satisfy
a criterion, while the empirical evaluation could compare criteria effectiveness
with respect to failure detection capability.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation for Timed Input-Output Automata (TIOA). His family com-
bines Transition-Based Criteria, Reactive Systems Criteria, and
Real-Time Systems Criteria. But data-related criteria are not included
because the TIOA model does not support data abstraction. Conversely, the
TIOSTS model symbolically abstracts both time and data, thus data-related
criteria can be applied to it. Furthermore, to the best of our knowledge, there
is no work on test selection criteria for real-time systems at model level that
evaluate the ability to reveal faults of selected criteria.

3 Towards a Family of Test Selection Criteria for TIOSTS

In this section, we propose a family of test selection criteria for TIOSTS models.
We extend En-Nouaary’s family [12] to include data-related criteria. We choose
to include Data-Flow-Oriented Criteria, because they can be empirically
evaluated with the same failure model employed to compare Transition-Based

Criteria and Real-Time Systems Criteria in the next section. Thus our
proposed family of criteria combines Transition-Based Criteria, Reac-

tive Systems Criteria, Real-Time Systems Criteria and Data-Flow-

Oriented Criteria. Table 1 describes the criteria we considered in this work.
Test selection criteria are often theoretically compared to each other by three

relations: strict inclusion, equivalence, or incompatibility [23]. The rela-
tions are formalized in Definitions 6, 7 and 8 respectively.

Definition 5 (Inclusion Relation). A criterion c1 includes a criterion c2 if
any set of test cases that satisfies c1 also satisfies c2 [23]. 
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Fig. 3. Family of test selection criteria ordered by strict inclusion relation for TIOSTS
models

Definition 6 (Strict Inclusion Relation). A criterion c1 strictly includes
c2, denoted by c1 ⇒ c2, if c1 includes c2 but there is a set of test cases that
satisfies c2 but does not satisfy c1. Note that this is a transitive relation [23]. 

Definition 7 (Equivalence Relation). A criterion c1 is equivalent to a cri-
terion c2 if c1 includes c2 and c2 includes c1. 

Definition 8 (Incompatible Relation). A criterion c1 is incompatible with
a criterion c2 if c1 does not include c2 and c2 does not include c1. 


Our goal is to produce a sound family of test selection criteria partially
ordered by strict inclusion relation. We do not intend to prove all equivalences
or incompatibilities between criteria. To accomplish this, our strategy is i) to
reuse the proofs of strict inclusion relations from other formalisms if they are
also valid for TIOSTS; ii) to prove new strict inclusion relations resulting from
the combination of classes of criteria; iii) to prove the exclusion of strict inclusion
relations valid for other formalisms but not valid for TIOSTS. The proposed
family is formalized in Theorem 1.

Theorem 1. The family of criteria for TIOSTS is partially ordered by strict
inclusion as shown in Figure 3. Furthermore, c1 ⇒ c2 iff it is explicitly shown
to be so in Figure 3 or follows from the transitivity of the relationship.

Proof. We need to prove the relations All-States ⇒ All-Locations, All-

One-Loop-Paths ⇒ All-Transitions, All-Transitions ⇒ All-Clock-

Resets, and All-DU-Paths �⇒ All-Transitions. All other relations can be
easily checked based on proofs already presented in the literature [12,23,29,32].

1. All-States ⇒ All-Locations. Proof follows directly from the definitions
of the criteria. We recap that a state of a TIOSTS consists of a loca-
tion, a specific valuation for all variables, and a valuation for all clocks.
Since the All-States criterion demands the all states to be covered, thus
All-States ⇒ All-Locations.
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Table 1. Test Selection Criteria for TIOSTS models

Criterion Description

Transition-Based Criteria

All-Locations [12,16] Every location of the model must be exercised by at least one test
case.

All-Paths [12,14] Every path of the model must be exercised by at least one test
case.

All-One-Loop-Paths [29] Every loop-free paths through the model must be exercised, plus
all the paths that loop at least once.

All-Transitions [12,16] Every transition of the model must be exercised by at least one
test case.

All-States [1,12,31] Every state of the model must be exercised by at least one test
case.

All-Traces [12] Every trace of the model must be included in the test suite.

Data-Flow-Oriented Criteria

All-Defs [29] At least one def-use pair(dv , uv) for every definition dv must be
exercised by at least one test case, i.e. at least one path from every
definition to one of its use must be covered.

All-DU-Paths [29] Every path for all def-use pairs(dv , uv) must be exercised by at
least one test case, i.e. all paths from every definition dv to every
use uv must be covered.

All-Uses [29] Every def-use pairs(dv, uv) must be exercised by at least one test
case, i.e. at least one path from every definition dv to every use
uv must be covered.

Definition Context [14] All paths from every context of definition of variable x to the
definition of variable x must be exercised by at least one test
case. The context of definition of the variable x are the transitions
where the variables used to define the value of x are defined.

Ordered Context [14] Similar to Definition Context, but the transitions context are
listed in the order of their definitions.

Reactive Systems Criteria

All-Inputs [9,12] Every input action of the model must be exercised by at least one
test case.

All-Outputs [9,12] Every output action of the model must be exercised by at least
one test case.

Real-Time Systems Criteria

All-Clock-Bounds [12] Every clock bound of the model must be exercised by at least one
test case. The bound of a clock is the highest value that a clock
can assume.

All-Clock-Guard-Bounds [12] Every clock guard bound of the model must be exercised by at
least one test case. This criterion is similar to All-Clock-Bounds

but considering only the time guards.

All-Clock-Valuations [12] Every clock valuation of the model must be exercised by at least
one test case.

All-Clock-Resets [12] Every clock reset of the model must be exercised by at least one
test.

All-Clock-Zones [12,26] Every clock zone of the model must be visited through at least
one test case, i.e. all transitions with clock resets or time guards
must be covered.

All-Time-Constraints [12] Every time guard of the model must be exercised by at least one
test case.

Note: The criteria in this table are defined in terms of satisfiable paths, i.e. all data and time guards
in a path must be satisfiable.
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Fig. 4. A TIOSTS model to assist in the proof of All-DU-Paths �⇒ All-Transitions

2. All-One-Loop-Paths ⇒ All-Transitions. Proof follows directly from
the definitions of the criteria. The All-One-Loop-Paths criterion demands
that all loop-free paths to be covered plus all loops at least one lap. Since all
transitions must be either in a loop-free path or in a loop, thus All-One-

Loop-Paths ⇒ All-Transitions.
3. All-Transitions ⇒ All-Clock-Resets. Proof follows directly from the

definitions of the criteria. A clock reset happens within the assignment of a
transition. The All-Transitions criterion demand that all transitions to be
covered. Since all transitions with clock resets are a subset of all transitions,
thus All-Transitions ⇒ All-Clock-Resets.

4. All-DU-Paths �⇒ All-Transitions. Proof by contradiction. Let’s assume
that All-DU-Paths ⇒ All-Transitions. Consider the TIOSTS model in
the Figure 4. The model has two def-use pairs: {(q1, [true], a!, {v := 0}, ∅, q2),
(q4, [p = v], f !(p), ∅, ∅, q6)} and {(q2, [true], b?, {v := 1}, ∅, q3), (q4, [p = v],
f !(p), ∅, ∅, q6)}. The test cases4 {{a! → c? → d? → f !(p)}, {a! → b? → d? →
f !(p)}} satisfy the All-DU-Paths criterion for this model, but the transi-
tions (q3, true, e?, ∅, ∅, q5) and (q5, true, g!, ∅, ∅, q6) are not covered. Thus our
assumption is incorrect, and All-DU-Paths �⇒ All-Transitions. ��

It is important to remark that the relation All-Uses ⇒ All-Transitions

does not hold for TIOSTS as it does for other models [23]. In fact, even
All-DU-Paths ⇒ All-Transitions does not hold for TIOSTS. This hap-
pens because a transition in TIOSTS may have neither a definition nor a use
of a variable. Thus not all transitions will be covered by the All-DU-Paths

criterion.

4 Empirical Study

In this section we present a controlled experiment to compare the effectiveness
of selected criteria. We follow the guidelines given by Wohlin, Runeson, Höst
and Ohlsson [30]. The main goal of the empirical study is to investigate test
selection criteria for real-time systems by observing the test suite generated
from TIOSTS models according to a given criterion with respect to their size and
failure detection capability from the point of view of the tester in the context
4 The last transition in the test case leads to the Accept location.
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of model-based testing. The research hypothesis is that different criteria may
generate different suites of different sizes that may reveal a number of different
failures.

Planning. We conducted this experiment in a research laboratory — an offline
study with a specific context. As independent variable, we have the test selection
criterion. The treatments are: All-One-Loop-Paths (AOLP), All-Transiti-

ons (AT), All-Locations (AL), All-Clock-Zones (ACZ), All-Clock-Re-

sets (ACR), All-DU-Paths (ADUP), All-Uses (AU), and All-Defs (AD).
Instead of evaluating all criteria of the family, we choose to evaluate the most
used criteria found in our literature review. The selected criteria are representa-
tive of transition, time and data-related criteria.

The dependent variables are: i) size of the generated test suites (Size); and
ii) failure detection capability, measured as the number of different failures that
can be detected (Failure). From these dependent variables, for each treatment
and object, we computed two values: i) the percentage of failure, defined as
the relation between the Failure value and the total of possible failures; ii)
the density of failure as the relation between the Failure and the Size values.
For the sake of simplicity, the hypotheses of the study are formulated based on
these measures only as follows. Let %failurei = Failurei

TotalFailures and densityi =
Failurei
Sizei

, where i is a test criterion and Failurei, Sizei are the average value
of the correspondent dependent variables for each of the considered objects.
Based on statistical testing, the null hypothesis is defined as the equality of all
criteria, whereas the alternative hypothesis is defined as the difference between
all criteria.

Regarding experimental design, this study consists of one factor and eight
levels (eight test criteria) with six repetitions corresponding to six different mod-
els from three applications of real-time systems presented in the literature. We
considered a confidence of 95% when deciding on hypothesis rejection. As input,
for each criterion, only TIOSTS models are required. Dependent variables are
computed automatically. Therefore, there is no human intervention and no sub-
jects to be considered. Since there are no random choices involved, there is no
need to compute the number of replications required.

The objects (TIOSTS models) were obtained from 3 different applications: i)
Alarm System — Monitoring and actuation system that can detect invasion and
also the presence of intruders in a building through door, window and movement
sensors [25]; ii) Aircraft Attack System — System that controls attacks to specific
land targets and also threat detection from a missile or another aircraft [19]; and
iii) Philips Audio Protocol — Protocol that defines control message exchanging
for audio and video devices [8]. Moreover, collisions detection and delivery failure
are handled. From these applications, we created six models and used them
as input to the test case generator we implemented using a depth-first search-
based algorithm. Table 2 presents the metrics of number of locations, transitions,
transitions with time constraints, and transitions with data constraints of the
considered models.
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Table 2. Metrics of real-time system models used in the empirical study

Model Loc. Trans. Trans. w/ time constraints Trans. w/ data constraints

Alarm1 7 9 6 7

Alarm2 10 23 13 19

Aircraft1 11 13 8 6

Aircraft2 14 35 20 28

Protocol1 17 29 10 25

Protocol2 17 37 18 25

Notes. Alarm1: Alarm System without power failure. Alarm2: Simplified version of Alarm1 with
power failure treatment. Aircraft1: Aircraft Attack System functionality only. Aircraft2: Simplified
version of Aircraft1 with threat detection functionality. Protocol1: System without failure recovery.
Protocol2: Simplified version of Protocol1 with failure recovery.

It is often difficult to associate a failure with a single fault at code level,
because a failure may be caused by one or more faults. Therefore, for the purpose
of this study and also to avoid undesired effects in the results, instead of the
number of faults, we opt to measure failures — the number of different failures
that can be detected by at least one test case in a given test suite. To allow
for a reasonable sample of failures, we defined a failure model that contains
potential failures which can be detected in a real-time system, particularly as a
result of violation of time constraints. This model was based on previous studies
such as the one performed by En-Nouaary, Khendek and Dssouli [11], and by
Andrade and Machado [4]. Two basic types of failures were considered: time
and behavior. The former is necessarily connected to non-conformity with time
constraints, whereas the latter are more related to behavior non-conformity. For
the sake of space, Table 3 presents only considered failures for the Alarm2 model.
Note that there is a different distribution of faults of the two types. The reason
is that we do not aim to control this factor so that the distribution achieved is
mostly a consequence of potential failures identified by considering each model.

Table 3. Failure Model for Alarm2 model

Failure Type Description

F04 Time When power failure occurs, sensor status does not change.

F05 Time When power failure is detected, the system does not change power supply on
time.

F06 Behavior After handling power failure, system does not resume execution as expected.

F07 Time When power failure occurs, status change of movement sensor is not detected.

F08 Time When power failure occurs, status change of window sensor is not detected.

F09 Behavior After power failure handling, system does not detect an invaded room.

F10 Behavior After power failure handling, alarm starts without invasion detection.

Study execution was conducted according to the following process: 1) For
each input model, a test suite was generated for each of the criteria; 2) For each
test suite, each test case was analysed to determine whether it can fail according
to the failure model; 3) For each test suite, failures from the failure model were
marked when covered by the suite; 4) Data on study variables was collected; 5)
%failure and density values were computed and analysis of results conducted.
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Threats to Validity. Measures were rigorously taken regarding data treatment
and assumption with a confidence level of 95% that is usually applied in com-
paring studies. Also, to avoid the influence on the kind of applications in the
obtained results, we have chosen specifications constructed by different authors
— the models have different structural elements as illustrated in Table 2. More-
over, correctness of the implementation of the algorithms is critical to assess
whether the results are reliable. Therefore, validation was throughly performed
and, to avoid an inconsistent generation of suites, all algorithms are based on the
same basic strategy — a depth-first search — where each criterion is applied as
a stop condition. Furthermore, models used in the study may not be representa-
tive of all kinds of real-time systems, therefore, results can only be interpreted
as specific. However, it is important to remark that they may be considered as
an evidence since results confirm properties already known, particularly for the
general criteria.

Results and Analysis. Data collected in the study as well as test cases generated
can be downloaded from the study web site5. Figure 5 shows the box plots for
the percentage of failure values and Figure 6 shows the box plot for the density
of failures values. As the values do not follow a normal distribution, the Kruskal-
Wallis test was performed and we obtained a p-value of 0.0388 for the percentage
of failures. This means that we can reject the null hypotheses: when compared
together the criteria present a different failure detection capability. However, if
we consider only “Time” failures, the p-value would be 0.1487. Therefore, we
can observe that, for the considered criteria, significant differences of capability
for this kind of failure cannot be observed.
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On the other hand, for the density of failure values, by applying the Kruskal-
Wallis test we obtained a p-value of 0.0670. This means that we cannot reject the
null hypotheses: we cannot observe a significant difference on the failure density
for the considered criteria. It is also important to mention that no significant
5 https://sites.google.com/a/computacao.ufcg.edu.br/rtscoverage/

https://sites.google.com/a/computacao.ufcg.edu.br/rtscoverage/
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correlation between the values of size and failure has been observed for any of
the considered criteria.

General Remarks. From this study, we can observe that the more general crite-
ria such as All-One-Loop-Paths and All-Transitions as well as All-DU-

Paths and All-Uses present a better failure coverage even when only time
failures are considered. The reason is that more test cases are generated when
these criteria are considered. However, they do not always present the best fail-
ure density capacity. Which means that a number of test cases may be either
useless or redundant for the purpose of detecting the considered failures. From
the general criteria, All-Uses (followed by All-DU-Paths) seems to present
more consistently the best relation between size and failure detection capabil-
ity. The reason is that they can most effectively explore the relation between
events that are related to a given variable, whereas the structural criteria such
as All-Transitions and All-Locations can miss certain combinations. The
clock related criteria All-Clock-Zones and All-Clock-Resets present con-
siderably smaller test suites and good density failure capacity, particularly the
second one. However, not all failures are covered, even time related ones. Conse-
quently, these criteria may only be considered under severe project constraints.
Otherwise, one might consider using both of them together in order to improve
failure detection capability and still keep a reasonable failure density.

5 Related Work

Test selection criteria for different kinds of models of real-time systems have
already been investigated in the literature. But most of works just describe a
criterion or a set of criteria without proper theoretical and empirical evaluation.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation criteria for TIOA models. Our proposal is an extension to his
family including data-related criteria for TIOSTS models. We refine the relation
between All-Clock-Resets and the class of Transition-Based Coverage

criteria. In his family, All-Paths ⇒ All-Clock-Resets, but we prove that
the narrow relation All-Transitions ⇒ All-Clock-Resets is true too. We
introduce the relation All-States ⇒ All-Locations that was missing. En-
Nouaary’s family has neither the All-One-Loop-Paths criterion nor the class
of Data-Flow-Oriented Coverage criteria. We introduce them below the
All-Paths criterion. Conversely, our family does not have the All-Clock-

Regions criterion, because TIOSTS uses zones instead of regions. Finally, only
we evaluate empirically the failure detection capability of eight criteria.

Zhu, Hall and May [32] surveys the literature for test selection criteria at
source code level. They present several criteria applicable to unit testing, com-
pare them using the strict inclusion relation and provide an axiomatic study of
the properties of criteria. Our work is close to theirs because we also compare
test selection criteria using the strict inclusion relation. But we work at model
level instead of source code level, and we also perform an empirical study to
compare selected criteria.
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6 Concluding Remarks

In this paper we presented test selection criteria that can be applied to symbolic
transition models of real-time systems, particularly, the TIOSTS model.

We investigated the literature for test selection criteria applicable to mod-
els of real-time systems. Next we selected the ones applicable to TIOSTS and
formalized a family of 19 test selection criteria partially ordered by the strict
inclusion relation.

We evaluated 8 criteria in an empirical study with six TIOSTS models. Our
results showed that, even though there are differences on the criteria related to
size and failure detection capability, the differences were not significant, partic-
ularly when considering time-related failures and cost-effectiveness measured as
the rate of size by the number of failures.

In general, we can observe that current specific available criteria are still
imprecise, because a number of failures were missed. General criteria were pre-
cise, but test suites were large, with a high percentage of test cases that did not
fail. Therefore, we can conclude that more effective criteria for the model-based
testing of real-time systems are still needed, particularly for symbolic models
such as TIOSTS.

As future works, we plan to extend this study to include more test selec-
tion criteria, specially the Control-Flow-Oriented Criteria which exer-
cise data and time guards thoroughly. Based on the analysis of advantages and
weakness of the criteria in a new empirical study, we intend to propose more
precise and effective criteria for TIOSTS.
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3 Facultad de Ingenieŕıa, Universidad ORT Uruguay, Montevideo, Uruguay
szasz@ort.edu.uy

Abstract. We have defined a unified environment that allows formal
verification within the Model-Driven Engineering (MDE) paradigm using
heterogeneous verification approaches. The environment is based on the
Theory of Institutions, which provides a sound basis for representing
MDE elements and a way for specifying translations from these elements
to other logical domains used for verification, such that formal experts
can choose the domain in which they are more skilled to address a formal
proof. In this paper we present how this environment can be supported
in practice by the Heterogeneous Tool Set (Hets). We define semantic-
preserving translations from the MDE elements to the core language of
Hets, and we also show how it is possible to move from it to other log-
ics, both to supplement the original specification with other verification
properties and to perform a heterogeneous verification.

Keywords: Verification · Formal methods · Model-Driven Engineering

1 Introduction

The Model-Driven Engineering (MDE,[1]) paradigm is based on the construction
of models representing different views of the system to be constructed, and model
transformations as the main activity within the software development process. In
this context, there are multiple properties that can be verified [2], from syntactic
to semantic ones, and at different abstraction levels. Whenever formal verifica-
tion is mandatory, there is a plethora of verification approaches with different
objectives, formalisms and supporting tools, which are heterogeneous and not
integrated. With an heterogeneous approach [3], different formalisms are used
for expressing parts of a problem and semantic-preserving mappings allow the
communication between these formalisms in order to compose different views to
an overall specification of the whole problem. We have followed this approach by
proposing a theoretical environment for the formal verification of different MDE
aspects using heterogeneous verification approaches [4], based on the theory of
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Institutions [5]. This environment proposes a generic representation of the MDE
elements (by means of institutions) which can be formally (and automatically)
translated into other formalisms, providing the “glue” that formal experts need
to choose the formalism in which they are more skilled to address a formal proof.

In this paper we show how the environment can be supported in practice
using the Heterogenous Tool Set (Hets,[3]) , which is meant to support hetero-
geneous multi-logic specifications. It also provides proof management capabilities
for monitoring the overall correctness of a heterogeneous specification whereas
different parts of it are verified using (possibly) different formalisms. We first
define from a theoretical perspective how MDE elements can be integrated in
this tool by defining semantic-preserving translations to the Common Algebraic
Specification Language (Casl,[6]), which is the core language of Hets. The exis-
tent connections between Casl and other formalisms broadens the spectrum of
formal domains in which verification can be addressed. We also detail the imple-
mentation of a prototype which allows us to specify MDE elements, supplement
them with multi-logic properties, and perform a heterogeneous verification.

The remainder of the paper is structured as follows. In Section 2 we introduce
the main concepts of MDE based on a running example, and in Section 3 we
summarize how these elements can be represented within our institution-based
environment. Then, in Section 4 we present how this environment can be formally
connected with Casl, and in Section 5 we give details about an implementation
of these ideas using Hets. Finally, in Section 6 we discuss related work and in
Section 7 we present some conclusions and an outline of further work.

2 Model-Driven Engineering

In MDE there are two key elements: models specifying different views of the sys-
tem to be constructed and model transformations allowing the (semi)automatic
construction of the system by processing the models.

Every model conforms to a metamodel which introduces the syntax and
semantics of certain kinds of models. The MetaObject Facility (MOF, [7]) is a
standard language for metamodeling, basically defining hierarchical-structured
classes with properties that can be attributes (named elements with an associ-
ated primitive type or class) or associations (relations between classes in which
each class plays a role within the relation). Every property has a multiplicity
which constraints the number of elements that can be related through it. If there
are conditions that cannot be captured by the structural rules of this language,
the Object Constraint Language (OCL, [8]) is used to specify them. These con-
siderations allow defining conformance in terms of structural and non-structural
conformance. Structural conformance with respect to a metamodel means that in
a given model every object and link is well-typed and the model also respects the
multiplicity constraints. Non-structural conformance means that a given model
respects the invariants specified with the supplementary language.

Consider as an example a simplified version of the well-known Class to Rela-
tional model transformation [9]. The metamodel in the left side of Fig. 1 defines
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UML class diagrams, where classifiers (classes and primitive types) are contained
in packages. Classes can contain one or more attributes and may be declared as
persistent, and each attribute is typed by a primitive type. Notice that a class
must contain only one or two attributes, and also that the Classifier class is not
abstract. We handle these aspects differently from UML class diagrams in order
to have a more complete example. In the right side of Fig. 1 there is a model
composed by a persistent class of name ID within a package of name Package.
The class has an attribute of name value and type String.

Fig. 1. Class metamodel and model of the example

A model transformation takes as input a model conforming to certain meta-
model and produces as output another model conforming to another metamodel
(possibly the same). Query/View/Transformation Relations (QVT-Relations,
[9]) is a relational language which defines transformation rules as mathemati-
cal relations between source and target elements. A transformation is a set of
interconnected relations: top-level relations that must hold in any transforma-
tion execution, and non-top-level relations that are required to hold only when
they are referred from another relation. Every relation defines a set of variables,
and source and target patterns which are used to find matching sub-graphs of
elements in a model. Relations can also contain a when clause which specifies the
conditions under which the relationship needs to hold, and a where clause which
specifies the condition that must be satisfied by all model elements participating
in the relation. The when and where clauses, as well as the patterns may contain
arbitrary boolean OCL expressions and can invoke other relations.

The transformation of the example basically describes how persistent classes
within a package are transformed into tables within a schema, and attributes of
a class are transformed into columns of the corresponding table. Below we show
an excerpt of this transformation. There are keys defined as the combination of
those properties of a class that together can uniquely identify an instance of that
class, e.g. there are no two tables with the same name within the same schema.
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transformation uml2rdbms ( uml : UML , rdbms : RDBMS ) {

key RDBMS::Table {name, schema};

top relation PackageToSchema { ... }

top relation ClassToTable {

cn, prefix : String;

checkonly domain uml c : UML::Class {

namespace = p : UML::Package {}, kind = ’Persistent’, name = cn

};

enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema {}, name = cn

};

when { PackageToSchema(p, s); }

where { AttributeToColumn(c, t);}

}

relation AttributeToColumn { ... }

}

3 An Institution-Based Environment for MDE

Our environment [4] is based on representing models (from now on SW-models to
avoid confusion), metamodels, the conformance relation, transformations and ver-
ification properties in some consistent and interdependent way without depending
on any specific logical domain. We follow an heterogeneous specification approach
[3] which is based on providing Institutions [5] for representing the syntax and
semantics of the elements. An institution is defined as:

– a category Sign of signatures (vocabularies for constructing sentences in a
logical system) and signature morphisms (translations between vocabularies)

– a functor Sen : Sign → Set giving a set of sentences for each signature and
a function Sen(σ):Sen(Σ1)→ Sen(Σ2) translating formulas to formulas for
each signature morphism σ : Σ1 → Σ2;

– a functor Mod : Signop → Cat , giving a category Mod(Σ) of models (provid-
ing semantics) for each signature Σ and a reduct functor Mod(σ):Mod(Σ2)→
Mod(Σ1) translating models to models (and morphisms to morphisms) for
each signature morphism;

– a satisfaction relation of sentences by models, such that when signatures
are changed (by a signature morphism), satisfaction of sentences by models
changes consistently, i.e. M2 |=Σ2 Sen(σ)(ϕ) iff Mod(σ)(M2) |=Σ1 ϕ

We provide an institution IQ for QVT-Relations check-only unidirectional trans-
formations (which we called Qvtr). This institution needs a representation of
SW-models and metamodels, therefore we define an institution IM for the struc-
tural conformance relation between them based on a simplified version of MOF
(which we called Csmof). Complete definitions can be found in [10].
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The institution IM represents the MOF-based structural conformance rela-
tion between metamodels and SW-models. From any metamodel we can derive
a signature Σ = (C, α, P) declaring: a finite class hierarchy C = (C,≤C) (a par-
tial order between classes representing the inheritance relation between them)
extended with a subset α ⊆ C denoting abstract classes; and a properties dec-
laration (attributes and associations) P = (R,P ) where R is a finite set of role
names with a default role name “ ”, and P is a finite set of properties of the form
〈r1 : c1, r2 : c2〉 representing a property and its opposite. The type ci attached to
the role ri represents the type of the property, as well the type in the opposite
side represents its owned class. By T(C) we denote the type extension of C by
primitive types (e.g. Boolean) and type constructors (e.g. List). Formulas rep-
resent multiplicity constraints determining whether the number of elements in
a property end is bounded (upper and/or lower). They are defined as follows:
Φ ::= #C • R = N | N ≤ #C • R | #C • R ≤ N The #-expressions return
the number of links in a property when some role is fixed. The • operator rep-
resents the selection of the elements linked with another of class C through a
role in R. An interpretation I (or model) contains a semantic representation
for a SW-model, i.e. objects and links. It consists of a tuple (VT

C(O), A) where
VT

C(O) = (Vc)c∈T (C) is a T(C)-object domain (a family of sets of object identi-
fiers), A contains a relation 〈r1 : c1, r2 : c2〉I ⊆ Vc1 × Vc2 for each relation name
〈r1 : c1, r2 : c2〉 ∈ P with c1, c2 ∈ T (C), and c2 ∈ α implies Oc2 =

⋃
c1≤Cc2

Oc1 .
Finally, an interpretation I satisfies a formula ϕ with some c• r if for any object
of class c, the number of elements within I related through the role r (of a prop-
erty of the class c) satisfies the multiplicity constraints. The satisfaction relation
checks the multiplicity requirements of the structural conformance relation.

The institution IQ represents QVT-Relations transformations by extending
the Csmof institution. A signature is a pair 〈ΣM

1 , ΣM
2 〉 representing the source

and target metamodels of the transformation, and an interpretation is a tuple
〈MM

1 ,MM
2 〉 of disjoint SignM

i -interpretations that contains a semantic represen-
tation for the source and target SW-models. A formula ϕK represents a key con-
straint of the form 〈c, {r1, ..., rn}〉 (1 ≤ n) with c ∈ Ci (i = 1..n) a class in one of
the metamodels, rj ∈ Ri (j = 1..n) roles defined in properties in which such class
participates (having such role or at the opposite side of it). Roles determine the
elements within these properties that together can uniquely identify an instance
of the class. A formula ϕR represents a set of interrelated transformation rules,
such that, given variables Xs = (Xs)s ∈(

⋃
i T (Ci)), the formula is a finite set

of tuples representing rules of the form 〈top,VarSet,ParSet,Pattern1,Pattern2,
when,where〉, where top ∈ {true, false} defines if the rule is a top-level relation
or not, VarSet ⊆ Xs is the set of variables used within the rule, ParSet ⊆ VarSet
representing the set of variables taken as parameters when the rule is called
from another one, Patterni (i = 1, 2) are the source and target patterns, and
when/where are the when/where clauses of the rule, respectively. A pattern is a
tuple 〈Ei, Ai, P ri〉 such that Ei ⊆ (Xc)c ∈Ci

is a set of class-indexed variables,
Ai is a set of elements representing associations of the form rel(p, x, y) with
p ∈ Pi and x, y ∈ Ei, and Pri is a predicate over these elements. A when/where
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clause is a pair 〈whenc,whenr〉 such that whenc is a predicate with variables in
VarSet, and whenr is a set of pairs of transformation rules and their parameters.
The satisfaction relation expresses that the target SW-model is the result of
transforming the source SW-model (both within the interpretation) according
to the transformation rules and also that key constraints hold (both represented
as formulas).

Institutions can be formally connected by means of (co)morphisms. Then, by
defining these semantic-preserving translations, it is possible to connect MDE
elements to potentially several logics for formal verification. In this way, we just
specify MDE elements once, then spread this information into other logics to
supplement this specification with additional properties, and finally choose the
verification approach we want to use. To the extent that there are many logics
connected through comorphisms, the capabilities of our environment increases.
The environment supports a separation of duties between software developers
(MDE and formal methods experts) such that a formal perspective is avail-
able whenever it is required. Moreover, comorphisms can be automated, as we
show in the following sections, thus the environment is scalable in terms of the
rewriting of MDE elements in each logic. Although our proposal is aligned with
OMG standards, this idea can be potentially formalized for any transformation
approach and language. This allows extending the approach as far as necessary.

4 Borrowing Proof Capabilities

We make use of the possibility of connecting our institutions to potentially sev-
eral host logics, each one with its own proof system. The host logic allows both to
supplement the information contained within the MDE elements with properties
specified in the host logic, and to borrow its proof calculus for formal verification.
For this, we us generalized theoroidal comorphisms (GTC,[11]). A GTC between
two institutions I and J consists of a functor Φ : ThI → ThJ translating the-
ories (pairs of signatures and set of sentences), and a natural transformation
β : (Φ)op;ModJ → ModI translating models in the opposite direction.

We do not define GTC from the institutions defined in the last section, but
from extended institutions IM+

and IQ+
. We extend the definition of Csmof

formulas with a syntactic representation of SW-models as follows:

Ω ::= xc | 〈r1, x1
c1 , r2, x2

c2〉 | Ω ⊕ Ω

with xc ∈ Xc a variable representing a typed element, 〈r1, x1
c1 , r2, x2

c2〉 repre-
senting a link between two typed elements with their respective roles, and Ω⊕Ω
the composition of these elements. In the case of Qvtr, we extend Qvtr for-
mulas by including extended Csmof formulas, i.e. now there is a representation
of multiplicity constraints and SW-models, indexed by the institutions in which
they are defined. These extensions make it possible to use a proof system such
that it is possible to prove that constraints (as a formula) are derived from a syn-
tactic representation of a SW-model, which is the context where the verification
must be done. An exhaustive discussion on this topic can be found in [10].
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We defined GTCs from our extended institutions to Casl, a general-purpose
specification language. The institution IC underlying Casl is the sub-sorted
partial first-order logic with equality and constraints on sets SubPCFOL=, a
combination of first-order logic and induction with subsorts and partial func-
tions. Since Casl has a sound proof calculus, and our comorphisms admit bor-
rowing of entailment [3], we can translate our proof goals using the comorphism
into Casl and use its proof calculus also for proving properties of our extended
Csmof and Qvtr specifications. The importance of Casl is that it is the main
language within the Heterogenous Tool Set (Hets, [3]), a tool meant to support
heterogeneous multi-logic specifications. This comorphism not only allows us to
have tool support for the verification of model transformation by using Hets

(as will be introduced in Section 5) but also to move between the graph of logics
within Hets to take advantage of the benefits of each logic.

In what follows we introduce Casl and resume the encoding of the main
components of the extended institutions into it. An example of the encoding is
given in Section 5, and a complete version can be found in [10].

4.1 Common Algebraic Specification Language

The institution IC for Casl is defined as follows. Signatures consist of a set
S of sorts with a subsort relation ≤ between them, together with a family
{PFw,s}w∈S∗,s∈S of partial functions, {TFw,s}w∈S∗,s∈S of total functions and
{Pw}w∈S∗ of predicate symbols. Signature morphisms consist of maps taking
sort, function and predicate symbols respectively to a symbol of the same kind
in the target signature, and they must preserve subsorting, typing of function
and predicate symbols and totality of function symbols.

For a signature Σ, terms are formed starting with variables from a sorted set
X using applications of function symbols to terms of appropriate sorts, while sen-
tences are partial first-order formulas extended with sort generation constraints
which are triples (S′, F ′, σ′) such that σ′ : Σ′ → Σ and S′ and F ′ are respec-
tively sort and function symbols of Σ′. Models interpret sorts as non-empty sets
such that subsorts are injected into supersorts, partial/total function symbols as
partial/total functions and predicate symbols as relations.

The satisfaction relation is the expected one for partial first-order sentences.
A sort generation constraint (S′, F ′, σ′) holds in a model M if the carriers of the
reduct of M along σ′ of the sorts in S′ are generated by function symbols in F ′.

4.2 Encoding Csmof into Casl

We define a GTC between the extended Csmof institution IM+
and the insti-

tution IC for SubPCFOL=. The class hierarchy represented within a IM+
sig-

nature is basically translated into a set of sorts complying with a subsorting
relation, properties are translated into predicates, and an axiom is introduced
to relate predicates derived from bidirectional properties. Formally, every IM+

signature Σ = (C, α, P) with C = (C,≤C) and P = (R,P ) is translated into a
theory ((S, TF, PF, P,≤S), E) such that:
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– For every class name c in C, there is a sort name c ∈ S.
– For every c1 ≤C c2 with c1, c2 ∈ C, we have c1 ≤S c2 with c1, c2 ∈ S.
– For every c ∈ α there is an axiom in E stating that c is the disjoint embedding

of its subsorts (sort generation constraint).
– For every 〈r1 : c1, r2 : c2〉 ∈ P , there are two predicates r1 : c2 × c1 and

r2 : c1×c2 ∈ Π, and an axiom in E stating the equivalence of the predicates,
i.e. r1(x, y) iff r2(y, x) with x ∈ S1, y ∈ S2. In the case of predicates with the
default role name , we only generate the predicate in the opposite direction
of the default role, i.e. if 〈 : c1, r2 : c2〉 or 〈r1 : c1, : c2〉 we only have r2 :
c1 × c2 or r1 : c2 × c1, respectively.

We consider the existence of a built-in extension of the institution IC, e.g. the
Casl standard library. The sets of functions TF and PF within this extension
contain those functions defined for built-in types (like + for strings).

As an example, the signature corresponding to the class metamodel in Fig. 1
is translated into a theory such that there are sorts for each class, e.g. Package
and UMLModelElement, within the subsorting relation, e.g. Package ≤S

UMLModelElement; and there are predicates for each property, e.g. elements :
Package × Classifier and name : UMLModelElement × String. There is a sort
generation constraint stating that UMLModelElement is the disjoint embedding
of its subsorts Attribute, Classifier, and Package. There are also axioms stating
the equivalence of the predicates derived from bidirectional properties, e.g. ∀ x :
Package, y : Classifier. elements(x, y) ⇔ namespace(y, x)

In the case of a SW-model formula Ω, each variable within the formula
(representing an object) is translated into a total function of the corresponding
type. We also add several axioms in order to represent implicit constraints in
the IM+

institution which are not necessarily kept when representing the basic
elements in SubPCFOL=, as for example the need of distinguishing between
two different variables (functions in the target institution) and the specification
of the cases in which a property holds (when there is a syntactic link represented
within the formula Ω). Formally,

– For every xc ∈ υ(Ω) there is a total function x : c ∈ TF with c ∈ S
– For every 〈r1, xc1 , r2, y

c2〉 ∈ ω(Ω) with 〈r1 : c1, r2 : c2〉 ∈ P , there is an axiom
in E stating that the predicate r2 : c1 × c2 holds for x : c1, y : c2 ∈ TF .
Notice that the opposite direction holds by the equivalence of predicates
stated during the signature translation.

– E has some additional axioms:
• Distinguishability: {xi �= xj | i �= j. xi, xj : c ∈ TF} for all c ∈ S
• Completeness of elements: for all x : c we have that x = oi for some oi :

c ∈ TF . When c is a non-abstract class having sub-classes, completeness
must be defined for oi : c′ ∈ TF for all c′ ≤ c.

• Completeness of relations: for all x : c1, y : c2 we have that r(x, y) holds
only if x = o1 and y = o2 for some o1 : c1, o2 : c2 for which r(c1, c2) hold.

The “distinguishability” and “completeness of elements” axioms correspond
to the “no junk, no confusion” principle: there are no other values than those
denoted by the functions x : c, and distinct functions denote different values.
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The variables within the class SW-model in Fig. 1 are translated into total
functions, e.g. p : Package, c : Class and ID : String. Moreover, for every link
there is an axiom stating that the corresponding predicate holds for the functions
corresponding to the translated elements within the link. This axiom can be
stated in conjunction with the “completeness of relations”, e.g. ∀ x : Package, y :
Classifier. elements(x, y) ⇔ (x = p ∧ y = c) ∨ (x = p ∧ y = pdt). In the case
of the non-abstract class Classifier which has sub-classes, the “completeness of
elements” constraint is stated by the axiom: ∀ x : Classifier. x = c ∨ x = pdt.
Finally, the “distinguishability” constraint must be stated between elements of
sorts related by the subsorting relation. For example, in the case of the elements
within the UMLModelElement hierarchy, we have the following constraint:
¬(a = c) ∧ ¬(a = p) ∧ ¬(a = pdt) ∧ ¬(c = p) ∧ ¬(c = pdt) ∧ ¬(p = pdt).

For the translation of a multiplicity constraint formula we define the following
predicates for constraining the size of the set of elements in a relation:

– min(n,R : D × C) holds if for all y : D there exists x1, ..., xn : C such that
R(y, xi) for all i = {1..n}, and xi �= xj for all i = {1..n − 1}, j = i + 1.

– max(n,R : D × C) holds if for all y : D and x1, ..., xn+1 : C, Rel(y, xi) for
all i = {1..n + 1} implies there is some xi = xj with i = {1..n}, j = i + 1.

The first predicate states that there are at least n different elements related to
every element y by the relation R, which represents a minimal cardinality for
the relation. The other predicate states that there are no more than n elements
related to any element y by the relation R, which represents a maximal cardi-
nality for the relation. Using these predicates, we can translate any multiplicity
constraint formula as follows:

– n ≤ #D • R is translated into min(n,R : D × C)
– #D • R ≤ n is translated into max(n,R : D × C)
– #D • R = n is translated into min(n,R : D × C) ∧ max(n,R : D × C)

such that Q : C × D,R : D × C ∈ Π are the predicates generated by the
translation of the property 〈R : C,Q : D〉. If the multiplicity constraint involves
the other end, i.e. C • Q, the predicate Q : C × D is used instead of R : D × C.

As an example, the formula #(UMLModelElement • name) = 1 derived
from Fig. 1 is translated into the conjunction of

min(1,name : UMLModelElement × String) =
∀ x1 : UMLModelElement. ∃ y1 : String. name(x1, y1)

max(1,name : UMLModelElement × String) =
∀ x1 : UMLModelElement, y2, y1 : String.

(name(x1, y1) ∧ name(x1, y2)) ⇒ y1 = y2

Given a IM+
theory T = 〈Σ,Ψ〉, a IC model M of its translated theory

(Σ′, E) is translated into a Σ-interpretation denoted I = (VT
C(O), A) such that:

each non-empty carrier set |M |s with s ∈ S, is translated into the set Vc in
the object domain VT

C(O), with s the translation of type c ∈ T (C); and each
relation pM of a predicate symbol r2(c1, c2) ∈ P derived from the translation of
a predicate 〈r1 : c1, r2 : c2〉, is translated into the relation pI ⊆ Vc1 × Vc2 ∈ A.
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4.3 Encoding Qvtr into Casl

We define a GTC between the extended Qvtr institution IQ+
and the institu-

tion IC for SubPCFOL=. Every IQ+
signature 〈ΣM

1 , ΣM
2 〉 is translated by the

functor Φ into a theory such that each signature ΣM
i is translated as defined in

the encoding of Csmof into Casl. We assume that the institution IE of the
expressions language has a correspondence (via a comorphism) with the built-in
extension of the institution IC.

Formulas representing keys and transformation rules are translated into named
first-order formulas. Formulas will be of the form P ⇔ F such that P is the predi-
cate naming the formula, and F represents the conditions which must hold in order
to satisfy a key constraint ϕK or transformation ϕR.

In the case of a formula ϕK, the formula F defines that there are not two
different instances of that class with the same combination of properties con-
forming the key of such class. Formally, any formula 〈C, {r1, ..., rn}〉 is translated
into a predicate key C naming a key constraint definition, and a formula of the
form key C ⇔ ∀x, y ∈ C, vj : Tj . x �= y → ∧

i,j ri(x, vj) → ∨
i,j ¬ri(y, vj),

with ri( , ) one of the two predicates from the translation of the property
〈r1 : C1, r2 : C2〉 such that one of the roles is of type C and the other of type Tj .

The key formula in the example is translated into the expression

key Table ⇔ ∀x, y ∈ Table, v1 : String, v2 : Schema.

x �= y → name(x, v1) ∧ schema(x, v2) → ¬name(y, v1) ∨ ¬schema(y, v2)

In the case of a formula ϕR, the formula F declares that top-level rela-
tions must hold, and each individual rule is translated into the set of condi-
tions stated by the checking semantics of QVT-Relations. Formally, every rule
Rule = 〈top,VarSet,ParSet,Patterni (i = 1, 2),when,where〉 ∈ ϕR is translated
into: a predicate Rule : T1 × ...×Tn ∈ P with ParSet = {T1, .., Tn}, and a predi-
cate Top Rule without parameters (only if top = true), naming the formula; and
a formula ∀v1 : T1, ..., vn : Tn. Rule(v1, ..., vn) ⇔ F such that Rule(v1, ..., vn) is
the predicate defined before. In the case of a top rule, there is also a formula
Rule ⇔ F . For the formula F there are two cases corresponding to the checking
semantics of QVT-Relations:

1. If WhenVarSet = ∅
∀ x1, ..., xn ∈ (VarSet\2 VarSet)\ParSet. (Φ(Pattern1) →

∃ y1, ..., ym ∈ 2 VarSet\ParSet. (Φ(Pattern2) ∧ Φ(where)))

2. If WhenVarSet �= ∅
∀ z1, ..., zo ∈ WhenVarSet\ParSet. (Φ(when) →

∀ x1, ..., xn ∈ (VarSet\(WhenVarSet ∪ 2 VarSet))\ParSet.
(Φ(Pattern1) → ∃ y1, ..., ym ∈ 2 VarSet\ParSet.

(Φ(Pattern2) ∧ Φ(where))))



74 D. Calegari et al.

The translation of Patterni = 〈Ei, Ai, P ri〉 is the formula
∧

r2(x, y)∧Φ(Pri)
such that r2(x, y) is the translation of predicate p = 〈r1 : C, r2 : D〉 for every
rel(p, x, y) ∈ Ai with x : C, y : D; and Φ(Pri) is the translation of the predicate
into Casl. Moreover, the translation of when = 〈whenc,whenr〉 (or where) is the
formula

∧
Rule(v) ∧ Φ(whenc) such that Rule(v) is the parametric invocation

of the rule (Rule, v) ∈ whenr, and Φ(whenc) is the translation of the predicate.
In the example, the relation ClassToTable is translated into Casl as follows:

Top_ClassToTable <=> forall p:Package; s:Schema . PackageToSchema(p,s) =>

forall c:Class; cn:String . namespace(c,p) /\ kind(c,Persistent) /\

name(c,cn) => exists t:Table . schema(t,s) /\

name(t,cn) /\ AttributeToColumn(c,t)

The formula states that the relation holds whereas for every package and
schema satisfying the relation PackageToSchema, if there is a persistent class
within that package, there must exists a table in the corresponding schema with
the same class name. Moreover, the attributes and columns of both elements
must be in the relation AttributeToColumn.

Given a IQ+
theory T = 〈Σ,Ψ〉, a model M of its translated theory (Σ′, E)

is translated into a Σ-model M = 〈MM
1 ,MM

2 〉 by constructing disjoint models
with an interpretation of elements for each corresponding IM+

theory.

5 The Environment in Action

We have implemented a prototype of our environment using the Heterogeneous
Tools Set (Hets,[3]). Hets is an open source software providing a general frame-
work for formal methods integration and proof management, based on the Theory
of Institutions, as introduced above. Based on this foundation, Hets supports a
variety of different logics. More specifically, Hets consists of logic-specific tools
for the parsing and static analysis of basic logical theories written in the differ-
ent involved logics (e.g. our extended Csmof and Qvtr institutions), as well as a
logic-independent parsing and static analysis tool for structured theories and the-
ory relations. Proof support for other logics can be obtained by using logic trans-
lations defined by comorphisms (e.g. from Csmof to Casl). Our prototype and
examples can be downloaded together with the Hets distribution.

Within this prototype, MDE experts can specify model transformations in
their domain and such specifications can be complemented by verification experts
with other properties to be verified, e.g. non-structural constraints. All this infor-
mation is taken by Hets, which performs automatic translations of proof obliga-
tions into other logics and allows selecting the corresponding prover to be used,
whilst a graphical user interface is provided for visualizing the whole proof. In
other words, we provided to MDE practitioners the “glue” they need for con-
necting their domain with the logical domains needed for verification.

Our problem is represented as a heterogeneous specification using Casl

structuring constructs, with three logics: CASL, CSMOF and QVTR. We also perform
logic translations through the CSMOF2CASL and QVTR2CASL comorphisms. Next,
there is an excerpt of the heterogeneous specification of the example.
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(1) logic CSMOF

from QVTR/UML get UML |-> UMLMetamodel

from QVTR/UML_WMult get UML |-> UMLConstraints

(2) spec UMLProof = UMLMetamodel

then %implies UMLConstraints end

(3) logic QVTR

from QVTR/uml2rdbms get uml2rdbms |-> QVTTransformation

(4) logic CASL

spec ModelTransformation = QVTTransformation with logic QVTR2CASL

then %implies

. key_RDBMS_Table

. Top_PackageToSchema

. Top_ClassToTable

end

Within the CSMOF logic (1) we create two specifications from standard XMI
files with the information of the class metamodel and SW-model in Fig. 1.
This implies the creation of a representation of signatures and formulas accord-
ing to the institution defined in Section 3. Another specification is created (2)
by extending UMLMetamodel and stating that UMLConstraints is implied. This
means that every formula (multiplicity constraint) in the second specification can
be derived, thus there must be a proof of it. This is how the satisfaction relation
of the Csmof institution is checked. We also use the QVTR logic (3) to create
a specification from a standard .qvt file according to the institution defined in
Section 3. The only difference with respect to the QVT standard is that instead
of using OCL as the expressions language, we use for now a very simple language
containing boolean connectives, constants true and false, term equality, strings
and variables. Finally, we move into Casl (using the comorphism QVTR2CASL)
for creating another specification (4) in which the translation of key and rule for-
mulas defined in Section 3 are implied by the transformation specification. When
a proposition, e.g. Top_ClassToTable, is called from the Casl specification, a
proof of the implication must be given. We can also translate our specifications
and complement them with other constraints which cannot be stated as formulas
of the former institutions, e.g. for stating that there cannot be two Classifiers
with the same name in the UMLMetamodel specification. For this purpose we use
the CSMOF2CASL comorphism as follows.

spec MoreProofs = UMLMetamodel with logic CSMOF2CASL

then %implies

forall x,y:Classifier; str:String . name(x,str) /\ name(y,str) => x = y

end

Once our heterogeneous specification is processed, Hets constructs a devel-
opment graph in which nodes correspond to specifications, some of them with
open proof obligations, and arrows to dependencies between them. We have three
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proof obligations corresponding to those formulas marked as %implies within
the specifications. Proof goals can be discharged using a logic-specific calculus,
e.g. some prover for Casl in the example. The double arrows are heterogeneous
theorem links, meaning that the logic changes along the arrow. In the example
this corresponds to the extension of specifications by using the comorphisms. It
can be noticed that we can use any other logic within the logics graph of Hets

through comorphisms. This improves the proof capabilities of our environment.

5.1 Verification Properties

There are several properties that can be verified, some of them related to the
computational nature of transformations and target properties of transforma-
tion languages, and other to the modeling nature of transformations [2]. The
minimal requirement is conformance, i.e. that the source and target models
(resp. the transformation specification) are syntactically well-formed instances
of the source and target metamodels (resp. the transformation language). Our
framework provides this verification in three parts. During the construction of
Csmof and Qvtr theories, parsing and static analysis check whether signa-
tures and formulas are well-formed, and (as we explained before) a SW-model
within a signature is a structurally well-formed instance of the metamodel in
the same signature, as well as a transformation specification given in a formula
is well-formed with respect to the signature containing both source and target
metamodels. Multiplicity constraints are verified when proving the satisfaction
of Csmof formulas. Finally, non-structural constraints are verified by extending
both Csmof and Qvtr specifications using other logics, as Casl in the example.
Hets also allows for disproving things using consistency checkers. This provides
an additional point of view. In particular, we can check if a set of rules have
contradictory conditions which could inhibit its execution.

In most cases a general-purpose logic, as provided by Casl, is enough to cover
most of the verification approaches in [2]. The inclusion of OCL as an institution
will provide additional support in this sense. However, the verification process
may depend on the problem to verify, since it is well-known that there is a “state
explosion” problem when using automated checkers. Thus, automatic proofs are
not always possible. In Hets it is possible to choose the tool we want to use, e.g.
not an automated theorem proving system but an interactive theorem prover.

Verification interests go beyond these kinds of problems. When verifying a
model transformation we want to consider its elements as a whole and not indi-
vidually. In this sense, sometimes the notion of a transformation model is used,
i.e. a model composed by the source and target metamodel, the transformation
specification and the well-formedness rules. We have a transformation model in
a Qvtr theory (QVTTransformation in the example) which allows to add other
properties by combining elements from the source and target metamodels and
SW-models. With this we can state model syntax relations, trying to ensure
that certain elements or structures of any input model will be transformed into
other elements or structures in the output model. This problem arises when,
for example, these relations cannot be inferred by just looking at the individual
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transformation rules. We can also state model semantics relations, e.g. tempo-
ral properties and refinement. Besides further work is needed to evaluate the
alternatives, there are languages and tools, as ModalCasl and VSE (based on
dynamic logics) commonly used for verifying these kinds of things. We could
also be interested in working at another abstraction level, i.e. not considering
specific SW-models but only metamodels and the transformation specification.
This can be useful, for example, for proving that a transformation guarantees
some model syntax relations when transforming any valid source SW-model. The
problem here is that we need another institutional representation, e.g. we need
to consider an abstract representation of a SW-model instead of a fixed one.

6 Related Work

There are some works that define environments for the comprehensive verifica-
tion of MDE elements based on a unified mathematical formalism, e.g. in [12]
rewriting logic is used to analyze MOF-like and QVT-like elements. Since Hets

integrates rewriting logic, we can use it instead of our comorphism into Casl.
Nevertheless, since our institution is logic-independent it provides more flexibility
for the definition of further specific comorphisms into other logics and languages
(e.g. UML). In general, the use of a fixed unified mathematical formalism serving
as a unique semantic basis can be quite restrictive. With our approach we can
move between formalisms, and use a unified mathematical formalism if necessary
(e.g. when transforming the whole specification into Casl).

In [13] the authors define a language-independent representation of meta-
models and model transformations supporting many transformation languages.
They also define mappings to the B and Z3 formalisms. Since they use only one
generic language, only one semantic mapping needs to be defined for each target
formalism. However, the semantic mapping should be semantics-preserving, and
this aspect is not formally addressed in such work. In our case, comorphisms
already preserve the semantics with respect to the satisfaction relation.

There are works representing the semantics of UML class diagrams with
first-order logic, as in [14]. Since there are no so many alternatives for this rep-
resentation, these works have similarities with our representation of extended
Csmof into Casl. In [15] the authors explain how class diagrams with OCL
constraints can be translated into Casl. However, their definition is informally
presented, and not in terms of a comorphism. In [16] the authors define a comor-
phism from UML class diagrams with rigidity constraints to ModalCASL (an
extension of Casl). Since our IM+

institution is an adaptation of the institution
for UML class diagrams, the comorphisms have some aspects in common, as the
translation of formulas, but without the modal logic particularities.

There are several approaches to heterogeneous specification for traditional soft-
ware development, but there is little tool support. CafeOBJ [17] is an institution-
based approach providing a fixed cube of eight logics and twelve projections
(formalized as institution morphisms), not allowing logic encodings (formalized
as comorphisms). Thus, it is not an option for the definition of our environment.
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Moreover, HeteroGenius [18] is another institution-based framework allowing the
interaction between different external tools for performing hybrid analysis of a
specification. However, the framework is not formally defined or available to be
used as a basis for our environment.

7 Conclusions and Future Work

We have presented the implementation of an environment for the formal verifica-
tion of different MDE aspects using heterogeneous verification approaches, which
is based on the ideas introduced in [4]. The environment was integrated into
Hets by defining comorphisms from institutions representing MDE elements to
Casl, the core language of Hets. The existent connections between Casl and
other logics within Hets broadens the spectrum of logical domains in which
the verification of MDE elements can be addressed. The environment supports
a separation of duties between software developers (MDE and formal methods
experts) such that a formal perspective is available whenever it is required. A
developer imports MDE elements, supplement them with verification properties
specified using any other logic supported by Hets, and perform the heteroge-
neous verification assisted by the tool. Since the implementation can generate
a heterogeneous specification from the same files used by MDE practitioners,
and there is no need of rewriting MDE building block in each logic involved, the
environment is scalable without human assistance.

A current drawback is the inexistence of an institution for OCL, in which
QVT is strongly based. For now we have considered a very simple expressions
language, but the definition of such institution is subject of further work. In the
same sense, we expect to extend the institutions to include some elements not
considered before. This will strengthen the formal environment for MDE. Since
our institutions formalize languages strongly related with those in the UML
ecosystem, it will be interesting to explore the possibility of integrating them
with other languages, as those already defined as institutions in [19].

We need to continue bridging the gap between MDE and formal verification in
terms of tool development in order to practitioners really be able to benefit from
our approach. We can connect the definition of the MDE elements in any popular
tool with an automatic generation of the heterogeneous specification. Moreover,
we could perform an automated verification of some properties (if possible) by
running Hets in background. We also need to improve feedback from existing
formal tools, which needs better traceability between the problem definition and
the results given by a verification tool. We can define some traceability links from
comorphisms, interpret the output of the verification tool and return something
that the MDE practitioner can interpret. Moreover, the environment deals with
many verification properties, but a deeper understanding of this (as for example
about the behavior of models) is a must. In this sense, we can use the knowledge
in [2] to provide a guide for the selection of the “right” verification approach for
the problem which is of interest to verify. We also need to apply our approach
to industrial, real-size examples for strengthening the results.
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alberto.ciaffaglione@uniud.it

Abstract. We adopt corecursion and coinduction to formalize Turing
Machines and their operational semantics in the proof assistant Coq. By
combining the formal analysis of converging and diverging evaluations,
our approach allows us to certify the implementation of the functions
computed by concrete Turing Machines. Our effort may be seen as a
first step towards the formal development of basic computability theory.

1 Introduction

In this paper we present and discuss an encoding of Turing Machines (TMs) [12]
and their semantics in the Coq implementation of the Calculus of (Co)Inductive
Constructions (CC(Co)Ind). Actually, we do not find in the literature much for-
malization work dealing with computability theory, a foundational, major area of
computer science, whereas several other domains have benefited, in recent years,
from formal developments carried out within mechanized environments.

As far as we know, the most recent contributions are [1,2,10,13]. Norrish
[10] develops a proof of equivalence between the recursive functions and the λ-
calculus computational models, and formalizes some computability theory results
in the HOL4 system. The two works most related to the present one are those
focusing on TMs. Asperti and Ricciotti [1] develop computability theory up to
the existence of a universal machine, by carrying out their effort from a perspec-
tive oriented to complexity theory in Matita. Xu, Zhang and Urban [13] prove
the undecidability of the halting problem and relate TMs to register machines
and recursive functions by formalizing a universal TM in Isabelle/HOL.

Actually, TMs form an object system which is challenging in several respects.
First, TMs are non-structured. Second, the tape, used by TMs as workspace for
computing, is infinite in both directions. Third, the evaluation of TMs may give
rise to diverging computations. Therefore, TMs provide with a typical scenario
where the user is required to define and reason about infinite objects and con-
cepts. To address formally such an object system, in this paper we settle within
Intuitionistic Type Theory. This framework makes available coinductive types,
i.e., types that have been conceived to provide finite representations of infinite
structures. In particular, a handy technique for dealing with corecursive defini-
tions and coinductive proofs in CC(Co)Ind was introduced by Coquand [4] and
refined by Giménez [6]. Such an approach is particularly appealing, because
proofs carried out by coinduction are accommodated as any other infinite, core-
cursively defined object. This technique is mechanized in the Coq system [11].
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 80–95, 2015.
DOI: 10.1007/978-3-319-15075-8 6
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The present work is in fact a departure from the two cited formalizations
of TMs, due to the following reasons. On the one hand, we adopt corecursion
as definition principle and coinduction as proof principle (while the alternative
contributions do not employ coinductive tools). On the other hand, inspired
by our previous effort on unlimited register machines [2], we encode TMs and
their operational semantics from the perspective of program certification: i.e., we
introduce and justify a methodology to prove the correctness of concrete TMs.

The motivations to carry out our formalization of TMs in Coq are the fol-
lowing. As it is well-known, traditional papers and textbooks about TMs treat
the topic at a more superficial level of detail, and in particular the arguments
why individual TMs are correct are often left out. Therefore, the mechanization
effort in a proof assistant, besides offering the possibility to discover errors, may
typically improve the confidence on the subject (e.g., the correctness proofs for
concrete TMs in [13], developed to formalize the undecidability of the halting
problem, are acknowledged as the most important contribution). Besides being
intellectually stimulating, our work has also the educational objective of popu-
larizing corecursion and coinduction, an aim which is pursued by justifying the
formalization methodology in an analytical way and via suggestive examples.

We have used, as starting point for our development, the textbooks by Cut-
land [5] and by Hopcroft et al. [7]. As an effort towards a broader audience,
we display rarely Coq code in this paper, but present the encoding at a more
abstract level (however, the formalization is available as a web appendix [3]).

Synopsis. In the next section we recall TMs, then in the two following sections
we introduce their formalization and illustrate the implementation of coinduc-
tion in Coq. In the two central sections 5 and 6 we define a big-step operational
semantics for TMs and address its adequacy via a small-step semantics, respec-
tively. In the core Section 7 we prove the correctness of three sample TMs, then
we state final remarks and discuss related and future work.

2 Turing Machines

Turing Machines (TMs), one among the frameworks proposed to set up a formal
characterization of the intuitive ideas of computability and decidability, perform
algorithms as carried out by a human agent using paper and pencil. In this work
we address deterministic, single tape TMs, as introduced by Cutland [5].

Alphabet and tape. TMs operate on a paper tape, which is infinite in
both directions and is divided into single squares along its length. Each square
is either blank or contains a symbol from a finite set of symbols s0, s1, . . . , sn,
named the alphabet A (in fact, the “blank” B is counted as the first symbol s0).

Specification and computation. At any time, TMs both scan a single
square of the tape (via a reading/writing head) and are in one of a finite number
of states q1, . . . , qm. Depending on the current state qi and the symbol being
scanned sh, TMs take actions, as indicated by a specification1, i.e. a finite
1 As said above, we deal with deterministic TMs, i.e., non-ambiguous specifications:

for every pair qi, sh there is at most one quadruple of the form 〈qi, sh, x, qj〉.
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collection of quadruples 〈qi, sh, x, qj〉, where i, j∈[1..m], h∈[0..n], x∈{R,L}∪A:

〈qi, sh, x, qj〉 � 1) if x=R then move the head one square to the right
else if x=L then move the head one square to the left
else if x=sk (k∈[0..n]) then replace sh with sk

2) change the state from qi into qj

When provided with a tape, a specification becomes an individual TM, which is
capable to perform a computation: it keeps carrying out actions by starting from
the initial state q1 and the symbol scanned by the initial position of the head.

Such a computation is said to converge if and only if, at some given time,
there is no action specified for the current state qi and the current symbol sh

(that is, there is no quadruple telling what to do next). On the other hand, if
this never happens, such a computation is said to diverge.

Computable functions. TMs may be regarded as devices for computing
numerical functions, according to the following conventions. A natural number
m is represented on a tape by an amount of m+1 consecutive occurrences of the
“tally” symbol 1 (in such a way, the representation of the 0∈N is distinguished
from the blank tape). Then, a machine M computes the partial function f : N⇀N

when, for every a, b∈N, the computation under M , starting from its initial state
and the leftmost 1 of the a representation, stops with a tape that contains a
total of b symbols 1 (not necessarily consecutive) if and only if a∈dom(f) and
f(a)=b (therefore f is undefined on all inputs a that make the computation
diverge). n-ary partial functions g: Nn⇀N are computed in a similar way, where
the representations of the n inputs are separated by single blank squares.

Consequently, computability theory can be developed via TMs, leading to
the well-known characterization of the class of effectively computable functions.

3 Turing Machines in Coq

As described in the previous section, TMs are formed by two components: the
specification and the tape, whose content in fact instantiates the former, making
it executable. Specifications and tapes actually work together, but are evidently
independent of each other from the point of view of the formalization matter.

Our encoding of TMs in Coq reflects such an independence: in the present
work we are mainly interested in the formal treatment of the tape, which is
more problematic and particularly delicate; conversely, we do not pursue the
specification-component management (automata are actually supported by Coq’s
library), thus keeping that part of the formalization down to a minimum.

Specification and Tape. Concerning the specification part, we represent states
via natural numbers (reserving the 0 for the halting state, for which no transition
is provided), while alphabet symbols and operations performed by the head are
finite collections of elements (we fix the alphabet by adding the “mark” symbol
0 to the “blank” B and the “tally” 1 of previous section). Finally, specifications
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are finite sequences (i.e., lists) of actions (i.e., quadruples)2:

State : p, q, i ∈ N={0, 1, 2, . . .} state
Sym : a, b ∈ {B, 1, 0} alphabet symbol
Head : x, y ∈ {R,L,W (a)} head operation
Act : α ∈ State × Sym × State × Head action
Spec : T,U, V ::= (ι �→αι)ι∈[0..n] (n∈N) specification

To formalize the tape, whose squares are scanned by the head and contain
the alphabet symbols, we adopt a pair of streams (a.k.a. infinite sequences), a
datatype borrowed from the Haskell community, where is named “zipper”:

HTape : l, r ::= (ι �→aι)ι∈[0..∞] half tape (stream)
Tape : s, t, u ::= 〈〈 l, r 〉〉 full tape (zipper)

The intended meaning of this encoding is that the second stream (r = r0:r1: . . .)
models the infiniteness of the tape towards the right, while the first stream
(l = l0:l1: . . .) is infinite towards the left. At any time, the head “⇓” will be
scrutinizing the first symbol of r, which corresponds physically to:

⇓
· · · | l1 | l0 | r0 | r1 | · · ·

This representation allows for a direct access to the content of the tape, an
operation which has therefore constant complexity (see the next section).

Transitions. To make specifications concretely compute, it is necessary, given
the current state and tape symbol, to extract from such lists the corresponding
target state and head operation. In our encoding, this task is carried out by a
transition function tr: Spec → State → Sym → (State ∗ Head).

In fact, we delegate to this transition function the responsibility to guarantee
the determinism of TMs. We implement tr as a recursive function that scans
a list-like specification T : given an input pair (p, a), the target state and head
operation are obtained from the first quadruple of shape 〈p, a, q, x〉 found in T
(no matter if there are other ones with form 〈p, a, i, y〉); if, on the other hand,
there is no corresponding quadruple in T , tr returns an “halting” output:

Parameter halt: (State * Head).

The motivation for this näıve encoding of determinism is, as said at the
beginning of the section, to keep the formalization as minimal as possible, being
the modelling and the management of the tape the focus of our investigation.

4 Coinduction in Coq

The proof assistant Coq supports the formal treatment of circular, infinite data
and relations by means of the mechanism of coinductive types.

First of all, one may formalize concrete, infinite objects (i.e., data) as elements
of coinductive sets3, which are fully described by a set of constructors. From a
2 The middle columns display the metavariables and the datatypes they range over.
3 Coinductive sets are coinductive types whose type is the sort Set.
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pure logical point of view, the constructors can be seen as introduction rules;
these are interpreted coinductively, that is, they are applied infinitely many
times, hence the type being defined is inhabited by infinite objects:

a ∈ Sym h ∈ HTape

a:h ∈ HTape
(HTape)∞

In this example we have formalized (via the cons constructor) infinite sequences,
i.e., streams, of symbols in the alphabet Sym={B, 1, 0}, the coinductive set
HTape which we have introduced in the Section 3 to model the tape of TMs.

Once a new coinductive type is defined, the system supplies automatically
the destructors, that is, an extension of the native pattern-matching capability,
to consume the elements of the type itself. Therefore, coinductive types can also
be viewed as the largest collection of objects closed w.r.t. the destructors. We use
here the standard match destructor to extract the head and tail from streams:

head(h) � match h with a:k ⇒ a tail(h) � match h with a:k ⇒ k

However, the destructors cannot be used for defining functions by recursion
on coinductive types, because it is not possible to consume their elements down
to a base case. In fact, the natural way to allow self-reference with coinductive
types is the dual approach of building objects that belong to them. Such a goal
is fulfilled by defining corecursive functions, like, e.g., the following ones:

Bs � B:Bs same(a) � a:same(a) blink(a, b) � a:b:blink(a, b)
merge(h, k) � match h with a:h′ ⇒ match k with b:k′ ⇒ a:b:merge(h′, k′)

Corecursive functions yield infinite objects and may have any type as domain
(notice that in the last definition the two parameters are infinite objects as well).
To prevent the evaluation of corecursive functions from infinitely looping, their
definition must satisfy a guardedness condition: every corecursive call has to be
guarded by at least one constructor (“:” in the definitions above) and by nothing
but constructors4. In fact, corecursive functions are never unfolded in Coq, unless
their elements are explicitly needed, “on demand”, by a destruction operation.
This way of regulating the implementation of corecursion is inspired by lazy
functional languages, where the constructors do not evaluate their arguments.

Given a coinductive set (such as HTape above), no proof principle can be
automatically generated by the system: actually, proving properties about infi-
nite objects requires the potential of building proofs which are infinite too. What
is needed is the design of ad-hoc coinductive predicates (i.e., relations)5; these
types are in fact inhabited by infinite proof terms. The traditional example is
bisimilarity, that we define on streams and name � ⊆ HTape × HTape:

a ∈ Sym h, k ∈ HTape h � k

a:h � a:k
(�)∞

4 Syntactically, the constructors guard the corecursive call “on the left”; this captures
the intuition that infinite objects are built via the repetition of a productive step.

5 Coinductive predicates are coinductive types whose type is the sort Prop.
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Two streams are bisimilar if we can observe that their heads coincide and, recur-
sively, i.e., coinductively, their tails are bisimilar. Once this new predicate is
defined, the system provides a corresponding proof principle, to carry out proofs
about bisimilarity: such a tool, named “guarded induction” principle [4,6], is
particularly appealing in a context where proofs are managed as any other infi-
nite object. In fact, a bisimilarity proof is just an infinite proof term built by
corecursion (hence, it must respect the same guardedness constraint that core-
cursive functions have to). The guarded induction principle provides a handy
technique for building proofs inhabiting coinductive predicates, as such proofs
can be carried out interactively through the cofix tactic6. This tactic allows the
user to yield proof terms as infinitely regressive proofs, by assuming the thesis
as an extra hypothesis and using it later with care, i.e., provided its application
is guarded by constructors. In this way the user is not required to pick out any
bisimulation beforehand, but may build it incrementally, via tactics.

To illustrate the support provided by the cofix tactic, we display below
the proof of the property ∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b), in
natural deduction style7. By mimicking Coq’s top-down proof practice, first the
coinductive hypothesis is assumed among the hypotheses8; then, the corecursive
functions same, blink and merge, in turn, are unfolded to perform a computa-
tion step; finally, the constructor (�)∞ is applied twice. Hence, the initial goal
is reduced to merge(same(a), same(b)) � blink(a, b), i.e., an instance of the
coinductive hypothesis. Therefore, the user is eventually allowed to exploit (i.e.,
discharge) such a hypothesis, whose application is now guarded by the construc-
tor (�)∞. The application of the coinductive hypothesis in fact completes the
proof, and intuitively has the effect of repeating ad infinitum the initial fragment
of the proof term, thus realizing the “and so on forever” motto:

a, b∈Sym

[∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b)](1)....
merge(same(a), same(b)) � blink(a, b)

a:b:merge(same(a), same(b)) � a:b:blink(a, b)
(�)∞, twice

merge(a:same(a), b:same(b)) � a:b:blink(a, b)
(def : merge)

merge(same(a), same(b)) � blink(a, b)
(def : same, blink)

∀a, b∈Sym. merge(same(a), same(b)) � blink(a, b)
(1), (introduction)

5 Operational Semantics

As stressed in Sections 2 and 3, the semantics of TMs’ specifications is paramet-
ric w.r.t. tapes: computations, induced by specifications, may either converge or
6 A tactic is a command to solve a goal or decompose it into simpler goals.
7 As usual, local hypotheses are indexed with the rules they are discharged by.
8 According to Gentzen’s notation, we write such an hypothesis (among the leaves of

the proof tree) within square brackets, to bear in mind that it can be discharged,
i.e., cancelled, in the course of a formal proof, as it represents a local hypothesis.
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diverge, depending on the tape that is coupled to them and the initial position
of the head (while the initial state is 1∈N). In Section 3 we have also chosen an
encoding for tapes (via a zipper, made of two streams) such that the position of
the head is implicit within the tape itself. Therefore, the semantics of TMs may
be defined by considering configurations (T, p, s), where T is a specification, p a
state, and s=〈〈l, r=r0:r1: . . .〉〉 a tape. Some configurations make actually a com-
putation stop, because there is no action specified by T for the current state p and
symbol r0: these configurations will play the role of the values of our semantics.
In the following, we will denote with tr(T, p, s) the application of the transition
function tr, introduced in Section 3: in particular, we will write tr(T, p, s)= ↓
for (tr T p r0)=halt, and tr(T, p, s)=〈i, x〉 for (tr T p r0)=(i,x).

In this section we define a big-step semantics for TMs, which will play the
role of our main tool throughout the rest of the paper. The potential divergence
of computations provides us with a typical scenario which may benefit from the
use of coinductive specification and proof principles. In fact, a faithful encoding
has to reflect the separation between converging and diverging computations,
through two different judgments. Hence, we define the inductive predicate b∗ ⊆
Spec×Tape×State×Tape×State to cope with converging evaluations, and the
coinductive b∞ ⊆ Spec×Tape×State to deal with diverging ones.

Definition 1. (Evaluation) Assume T∈Spec, s=〈〈l=l0:l1: . . . , r=r0:r1: . . .〉〉 and
t∈Tape, p, q, i∈State. Then, b∗ is defined by the following inductive rules:

tr(T, p, s)= ↓
b∗(T, s, p, s, p)

(stop)
tr(T, p, s)=〈i, R〉 b∗(T, 〈〈r0:l, tail(r)〉〉, i, t, q)

b∗(T, 〈〈l, r〉〉, p, t, q)
(right)∗

tr(T, p, s)=〈i, L〉 b∗(T, 〈〈tail(l), l0:r〉〉, i, t, q)
b∗(T, 〈〈l, r〉〉, p, t, q)

(left)∗

tr(T, p, s)=〈i,W (a)〉 b∗(T, 〈〈l, a:tail(r)〉〉, i, t, q)
b∗(T, 〈〈l, r〉〉, p, t, q)

(write)∗

And b∞ is defined by the following rules, (this time) interpreted coinductively9:

tr(T, p, s)=〈q,R〉 b∞(T, 〈〈r0:l, tail(r)〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(right)∞

tr(T, p, s)=〈q, L〉 b∞(T, 〈〈tail(l), l0:r〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(left)∞

tr(T, p, s)=〈q,W (a)〉 b∞(T, 〈〈l, a:tail(r)〉〉, q)
b∞(T, 〈〈l, r〉〉, p)

(write)∞

Notice that in the rules above we write r0 and l0 for head(r) and head(l), respec-
tively (see Section 4 for the definitions of the head and tail functions). ��
9 The relation b∞ is the greatest fixed-point of the above rules, or, equivalently,

amounts to the conclusions of infinite derivation trees built from such rules.
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In our semantics, given a specification T , a tape s and a state p, we capture on
the one hand the progress of both the head and the states transitions, and on
the other hand the effect of the operations performed by the head itself.

In detail, the intended meaning of b∗(T, s, p, t, q) is that the computation
under the specification T , by starting from the tape s and the state p, stops
in the state q, transforming s into t. Conversely, b∞(T, s, p) asserts that the
computation under T , by starting from the tape s and the state p, loops: i.e.,
there exist a state i and a pattern-tape u (reachable from p and s) such that,
afterwards, the computation gets again to the state i with a tape fulfilling u after
a non-zero, finite number of actions. Therefore, a final tape cannot exist for b∞,
because the initial s is scrutinized (and possibly updated) “ad infinitum”.

Since TMs are not structured, we have embedded in the big-step semantics
an alternative structuring criterion, i.e., the number of evaluation steps implicit
amount. In fact, we have defined a base (i.e., non-recursive) rule for b∗ (the
computation stops because no next action exists) and (co)inductive rules for
both b∗ and b∞, to address how moving the head and writing on the tape is
carried out within a converging computation and a diverging one, respectively.

We remark again that the benefit of the zipper encoding of tapes (introduced
in Section 3) is that every operation of the head may be carried out via basic
functions on streams, whose complexity is minimal and constant.

6 Adequacy

To argue that our big-step semantics for TMs is appropriate, we introduce here
a small-step semantics à la Leroy [9], and prove that they are equivalent.

We first define a one-step reduction concept, to express the three basic actions
of TMs (i.e., moving the reading head and writing on the current square). For-
mally, it is defined as a predicate →⊆ Spec×Tape×State×Tape×State, that
we write more suggestively as (T, s, p) → (T, t, q). Note (again) that, since TMs
are not structured, we do not need to define contextual reduction rules.

Now we can formalize the small-step semantics as reduction sequences: finite
reductions ∗→, defined by induction, are the reflexive transitive closure of →,
while infinite reductions ∞→, defined by coinduction, its transitive closure.

Definition 2. (Reduction) Assume T∈Spec, s=〈〈l, r〉〉∈Tape, and p, q∈State.
Then, the one-step reduction → is defined by the following rules:

tr(T, p, s)=〈q,R〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈r0:l, tail(r)〉〉, q) (→R)

tr(T, p, s)=〈q, L〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈tail(l), l0:r〉〉, q) (→L)

tr(T, p, s)=〈q,W (a)〉
(T, 〈〈l, r〉〉, p) → (T, 〈〈l, a:tail(r)〉〉, q) (→W )
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For t, u∈Tape, i∈State, finite reduction ∗→ is defined by induction, via the rules:

(T, s, p) ∗→ (T, s, p)
( ∗→0)

(T, s, p) → (T, u, i) (T, u, i) ∗→ (T, t, q)

(T, s, p) ∗→ (T, t, q)
( ∗→+)

And infinite reduction ∞→ is defined by the following coinductive rule:

(T, s, p) → (T, t, q) (T, t, q) ∞→
(T, s, p) ∞→ (∞→∞)

We can prove that evaluation and reduction are equivalent concepts, both in
their converging and diverging versions. We remark that our proofs are construc-
tive, whereas Leroy [9] had to postulate the “excluded middle” for divergence.

Proposition 1. (Equivalence) Let be T∈Spec, s, t, u∈Tape, and p, q, i∈State.

1. If (T, s, p) → (T, u, i) and b∗(T, u, i, t, q), then b∗(T, s, p, t, q)
2. If (T, s, p) ∗→ (T, u, i) and b∗(T, u, i, t, q), then b∗(T, s, p, t, q)
3. b∗(T, s, p, t, q) if and only if (T, s, p) ∗→ (T, t, q) and tr(T, q, t)= ↓
4. b∞(T, s, p) if and only if (T, s, p) ∞→

Proof. 1) By inversion of the first hypothesis. 2) By structural induction on the
derivation of (T, s, p) ∗→ (T, u, i), and point 1. 3) Both directions are proved by
structural induction on the hypothetical derivation, but the direction (⇐) requires
also point 1. 4) Both directions by coinduction and hypothesis inversion. ��
The above result points out that the proof practice of reduction and evaluation
is very similar in Coq. In fact, the small-step predicate ∗→ is slightly less handy,
because, to perform a TM action, the user is required to exhibit the witness tape,
besides the target state; obviously, the small-step version lacks the “halting”
concept (i.e., tr(T, q, t)= ↓), which is internalized by the big-step judgment.

Streams vs. Lists. We complete this section with a digression about a different
encoding for tapes, that we pursued in a preliminary phase of our research.

Even if streams are a datatype which captures promptly and naturally the
infiniteness of tapes, a formalization approach via (finite) lists may also be devel-
oped: in this case, the empty list is intended to represent an infinite sequence of
blanks. The choice of lists makes explicit the assumption about TMs that, when
a computation starts, only a finite number of squares can contain non-blank
symbols (in fact, the representation of numerical functions in Cutland’s setting,
that we have adopted at the end of Section 2, respects such a constraint).

Therefore, we proceed by encoding the tape through a pair of lists:

HTapeL : ll, rl ::= (ι �→aι)ι∈[0..n] half tape (list, n∈N)
TapeL : sl, tl ::= 〈〈 ll, rl 〉〉 full tape (list-pair)

Afterwards, big-step semantics predicates, playing the role of the ones that
deal with streams in Section 5, can be introduced. However, since lists (conversely



A Coinductive Animation of Turing Machines 89

to streams) might be empty, such predicates must take into consideration this
extra pattern and manage it via additional rules. Without going into the full
details (for lack of space), we display here the rules for the move-R action10:

bL∗(T, 〈〈B:ll, [ ] 〉〉, i, t, q)
bL∗(T, 〈〈 ll, [ ] 〉〉, p, t, q)

(r[ ])∗
bL∗(T, 〈〈 a:ll, rl 〉〉, i, t, q)
bL∗(T, 〈〈 ll, a:rl 〉〉, p, t, q)

(rL)∗

The inductive convergence predicate bL∗ ⊆ Spec×TapeL×State×TapeL×State
has the same intended meaning of b∗. The coinductive divergence predicate
bL∞ ⊆ Spec×TapeL×State, corresponding to b∞, is defined analogously.

By using the predicates bL∗ and bL∞, we can prove that the semantics with
streams may mimic that with lists, and a limited form of the opposite result (in
the Proposition below we denote with Bs the stream of blank symbols and with
“::” a recursive function that appends a list in front of a stream).

Proposition 2. (Tape) Let be T∈Spec, ll, rl, ll′, rl′∈HTapeL, and p, q∈State.

1. If bL∗(T, 〈〈 ll, rl 〉〉, p, 〈〈 ll′, rl′ 〉〉, q),
then b∗(T, 〈〈 ll::Bs, rl::Bs 〉〉, p, 〈〈 ll′::Bs, rl′::Bs 〉〉, q)

2. bL∞(T, 〈〈 ll, rl 〉〉, p) if and only if b∞(T, 〈〈 ll::Bs, rl::Bs 〉〉, p)

Proof. 1) By structural induction on the hypothetical derivation. 2) Both the
directions are proved by coinduction and hypothesis inversion. ��

The difficulty of proving the reverse implication of point 1 above depends on
the fact that the representation of the tape through lists is not unique, because
one may append to any list blank symbols at will; hence, it is necessary to
introduce an equivalence relation on list-tapes to develop their metatheory. For
this reason (and because lists demand to double the length of proofs, as their
predicates have two constructors for any action), we prefer working with streams.

7 Certification

In this section we use the big-step predicates b∗ and b∞, introduced in Section
5 and justified in Section 6, to address the certification of the partial functions
computed by individual TMs. This “algorithmic” approach, which exploits core-
cursion and coinduction in an involved setting, is significant as it provides a
foundation methodology for the formal development of computability theory.

The divergence of TMs may be caused by different kinds of behavior. Clearly,
it is easy to manage the scenario where a finite portion of the tape is scanned. The
interesting case is when TMs scrutinize an infinite area of it; this may happen
by moving the head infinitely either just in one direction or in both directions.
In this section we address one example for each pattern of behavior, to convey
to the reader the confidence that we can master all of them.
10 We omit from both the rules the transition conditions, that is, the premise

tr(T, p, 〈〈 ll, [ ] 〉〉)=〈i, R〉 from (r[ ])∗ and tr(T, p, 〈〈 ll, a:rl 〉〉)=〈i, R〉 from (rL)∗.
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First Example: R Moves. The first partial function that we work out computes
the half of even natural numbers, and is not defined on odd ones:

div2(n) �
{

n/2 if n ∈ E

↑ if n ∈ O

One algorithm that implements the div2 function is conceived as follows. Erase
the first “1” (which occurs by definition) and move the head to the right; then
try to find pairs of consecutive “1”: if this succeeds, erase the second “1” and
restart the cycle, otherwise (a single “1” is found) move indefinitely to the right.

Such an algorithm can be realized, e.g., by the following specification T :

{〈1, 1,W (B), 1〉, 〈1, B,R, 2〉, 〈2, 1, R, 3〉, 〈3, B,R, 3〉, 〈3, 1,W (B), 4〉, 〈4, B, R, 2〉}
This implementation of the div2 function is certified through the predicates b∗
and b∞; the computation starts from the state 1 and the following tape11:

⇓
− | B | 1 | 1 | − | 1

︸ ︷︷ ︸
n

| B | − (1)

which is formalized as ∀n. 〈〈Bs, 1:ones(n)::Bs〉〉, where Bs is the stream of blank
symbols, ones(n) a list of n consecutive “1” symbols, “::” a recursive function
that appends a list in front of a stream, and “:” the cons constructor on streams.

To fulfill our goal we carry out, via tactics, a top-down formal development
that simulates the computation of the TM at hand. First, we perform a write-B
and a move-R action from the starting configuration12 (state 1 and tape (1),
that represents the input n), thus reaching the state 2 with the tape:

⇓
− | B | 1 | − | 1

︸ ︷︷ ︸
n

| B | − (2)

Proving the divergence requires a combination of coinductive and inductive
reasoning. The core property is the divergence when proceeding from the state
3 and a right-hand blank tape, a lemma which is proved by coinduction13:

l∈HTape

tr(T, 3, 〈〈l, B:Bs〉〉)=〈3, R〉

[∀ l∈HTape. b∞(T, 〈〈l, Bs〉〉, 3)](1)....
b∞(T, 〈〈B:l, Bs〉〉, 3)

b∞(T, 〈〈l, B:Bs〉〉, 3)
(right)∞

b∞(T, 〈〈l, Bs〉〉, 3)
(def : Bs)

∀ l∈HTape. b∞(T, 〈〈l, Bs〉〉, 3)
(1), (introduction)

(3)
11 From now on, we will use “a | −” to represent an infinite amount of “a” symbols.
12 Given a specification T , a configuration will be a pair 〈state, tape〉 from now on.
13 Like at the end of Section 4, we display coinductive proofs in natural deduction-style:

the coinductive hypothesis is indexed with the rule it is discharged by.
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If n is odd, we prove by induction on k that the tape (2) leads to divergence:

∀ l∈HTape. b∞(T, 〈〈 l, ones(2k+1)::Bs 〉〉, 2)

If k=0, carry out a move-R and apply the lemma (3) above; if k=h+1, complete
a cycle (by erasing the second “1”) and conclude via the induction hypothesis.

We address the convergence in the complementary scenario (an even input
n in (2)) by proving the following property, again by induction on k:

∀ l∈HTape. b∗(T, 〈〈 l, ones(2k)::Bs 〉〉, 2, 〈〈 rpt(k):: l, Bs 〉〉, 2)

where rpt(k) in the final tape stands for a list of k consecutive pairs “B:1”. ��

Second Example: R and L Moves. The second sample function that we choose
is partially defined on input pairs, and may be named “partial minus”:

pminus(m,n) �
{

m − n if m ≥ n
↑ if m < n

To compute it, we devise the following algorithm. First scan the tape towards the
right till reaching the B that separates the two inputs; then erase the leftmost
“1” from the representation of n and the rightmost “1” from that of m (both the
“1s” must occur) by replacing them, respectively, with a mark symbol “0” (on
the right, for n) and a B (on the left). The core of the computation is repeating
this cycle, which leads to one of two possible situations: if the end of n is reached
(i.e., we are scanning the first B on the right of a 0-block), then stop; on the
other hand, replacing m with B symbols may cause that the head (looking for
“1s”) moves indefinitely on the left. The specification is the following:

U � {〈1, 1, R, 1〉, 〈1, B,R, 2〉, 〈2, 0, R, 2〉, 〈2, 1,W (0), 3〉, 〈3, 0, L, 3〉,
〈3, B, L, 4〉, 〈4, B, L, 4〉, 〈4, 1,W (B), 5〉, 〈5, B,R, 5〉, 〈5, 0, R, 2〉}

The initial part of the formal development (erasing the first pair of “1s”, so
moving from state 1 to 5) is common to the divergence and convergence cases14:

⇓ ⇓
− | B | 1 | − | 1

︸ ︷︷ ︸
m+1

| B | 1 | − | 1
︸ ︷︷ ︸

n+1

| B | − ∗=⇒ − | B | 1m | B | B | 0 | 1n | B | −

At this point of the proof, the key pattern to be mastered is shaped as follows:

⇓
− | B | 1 | − | 1

︸ ︷︷ ︸
m

| B | − | B
︸ ︷︷ ︸

k+2

| 0 | − | 0
︸ ︷︷ ︸

k+1

| 1 | − |1
︸ ︷︷ ︸

n

| B | − (4)

14 Informally, we represent with
∗

=⇒ the effect of a finite number of actions on a tape.
Moreover, we denote with 1m a block of m consecutive squares with the “1” symbol.
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Starting from this tape and the state 5, we can discriminate between divergence
and convergence by distinguishing the case m<n from m≥n. Notice that we have
introduced the variable k to obtain a more general induction hypothesis.

When we come to the state 5 and an instance (for k=1) of the above tape
(4) we prove the divergence, under the hypothesis m<n, by nested induction on
n and m. This proof requires auxiliary lemmas, to scan 0-blocks and B-blocks
(by induction on k) and for assuring the divergence from the state 4 with the
tape Bs towards the left. One key point is that we can use the predicate b∞
in a compositional way: i.e., when carrying out a divergence proof in top-down
fashion, we can perform a preliminary finite number of actions, thus reducing
to a different goal. In fact, this amounts to split a divergent computation into
a convergent one, easily provable, plus another divergent one, which becomes
our goal; e.g., we scan, by moving the head to the right, a 0-block (of length k,
formalized by the blanks function) via the lemma (proved by induction on k):

∀ k∈N,∀ l, r∈HTape. b∞(U, 〈〈 blanks(k)::l, r 〉〉, 5) ⇒ b∞(U, 〈〈 l, blanks(k)::r 〉〉, 5)

Conversely, it is not possible to use the predicate b∗ in a compositional way
to manage the convergence scenario. The problem is that b∗ requires to exhibit
the final tape, but in this case, due to the complexity of the proof, we cannot
master it tout-court as we have done in the first example. Therefore, we need an
extra tool to accomplish the convergence. Actually, such a tool is provided by
the small-step predicate ∗→: by applying the Proposition 1.2, we may decompose
a convergent computation and address separately the intermediate steps. In the
end, we carry out the proof from (4), under the hypothesis m≥n, by nested
induction on n and m, and by means of lemmas similar to those used for b∞. ��

Third Example: R and L Moves, Infinitely. In this example we consider the unary
function f∅, undefined on every input, for which we devise an implementation
that points out a problem that involves the mechanization of coinduction.

In fact, our algorithm to compute f∅ is very simple: first scan the 1-block
towards the right and replace the first blank with a “1”; then move the head
towards the left till reaching the first blank and replace it again with a “1”;
proceed infinitely in the same way. The specification we pick out is minimal:

V � {〈1, 1, R, 1〉, 〈1, B,W (1), 2〉, 〈2, 1, L, 2〉, 〈2, B,W (1), 1〉}
The idea beneath the formal divergence proof is nesting a couple of inductions

inside the main coinduction; that is, by using the notation introduced in the
previous example to display the modification of the tape, we want to perform
the two computations (passing to state 2 and then coming back to state 1):

⇓ ⇓ ⇓
− | B | 1 | − | 1

︸ ︷︷ ︸
n+1

| B | − ∗=⇒ − | B | 1 | − | 1
︸ ︷︷ ︸

n+2

| B | − ∗=⇒ − | B | 1 | − | 1
︸ ︷︷ ︸

n+3

| B | −

It is apparent that, to accommodate this proof, we may assume the coinductive
hypothesis for the initial configuration (state 1 and leftmost tape above) and
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then carry out two finite computations, thus reducing to a configuration (state
1 and rightmost tape) which is an instance of the coinductive hypothesis itself.

Nevertheless, the application of the coinductive hypothesis is not allowed by
Coq, because the whole proof (i.e., the proof term built interactively through
tactics, and mainly via cofix) is recognized as non-guarded by constructors.
Essentially, this is caused by the fact that the syntactic check does not accept
an induction (i.e., a lemma) nested inside the coinductive development15.

To circumvent the problem, we introduce here a new small-step divergence
predicate. The idea is very direct: divergence may be characterized as the coin-
ductive transitive closure of the inductive non-reflexive transitive closure of →.

Definition 3. (Extra reduction) Assume T∈Spec, s, t, u∈Tape, p, q, i∈State.
Then, finite positive reduction +→ is defined by induction, via the rules:

(T, s, p) → (T, t, q)

(T, s, p) +→ (T, t, q)
( +→1)

(T, s, p) → (T, u, i) (T, u, i) +→ (T, t, q)

(T, s, p) +→ (T, t, q)
( +→+)

And infinite split reduction ∞⇒ is defined by the following coinductive rule:

(T, s, p) +→ (T, t, q) (T, t, q) ∞⇒
(T, s, p) ∞⇒ (∞⇒∞)

Proposition 3. (Equivalence, bis) Let be T∈Spec, s∈Tape, and p∈State.

1. If (T, s, p) +→ (T, u, i) and (T, u, i) +→ (T, t, q), then (T, s, p) +→ (T, t, q)
2. If (T, s, p) ∞⇒, then (T, s, p) ∞→
3. b∞(T, s, p) if and only if (T, s, p) ∞⇒

Proof. 1) By structural induction on the derivation of (T, s, p) +→ (T, u, i). 2)
By coinduction and hypothesis inversion. 3) (⇒) By coinduction and hypothesis
inversion. (⇐) By Proposition 1.4 and point 2. ��

Since the reduction predicate ∞⇒ turns out to be equivalent to b∞, we adopt
the former to carry out our divergence proof. Actually, ∞⇒ does not suffer from
the non-guardedness problem, as it is apparent from the following proof tree16:

n∈N
(V, s, 1) +→ (V, t, 1)

[∀n∈N. (V, s, 1) ∞⇒](1)....
(V, t, 1) ∞⇒

(V, s, 1) ∞⇒ (∞⇒∞)

∀n∈N. (V, s, 1) ∞⇒
(1), (introduction)

The proof of the premise (V, s, 1) +→ (V, t, 1) relies on the transitivity of +→
(Proposition 3.1) and on two auxiliary lemmas, argued by induction on n. ��
15 See [8] for a recent proposal of an alternative, semantic guardedness checking.
16 We write s for 〈〈Bs, ones(n+1)::Bs 〉〉 and t for 〈〈Bs, ones(n+3)::Bs 〉〉.
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8 Conclusion

In the present contribution we have formalized TMs and their (big-step and
small-step) operational semantics in the Coq proof assistant. Our key choices are
the encoding of tapes as pairs of streams (managed by means of corecursion)
and a clear distinction between converging computations (modeled via induc-
tive predicates) and diverging ones (formalized through coinductive predicates).
In the previous, core section we have pointed out the potential of our machin-
ery, by proving the correctness of representative TMs (that is, by certifying the
implementation of the partial functions computed by them).

Our encoding provides a completely mechanized management of the tran-
sitions (via the auto tactic), with the benefit that we may concentrate on the
formal treatment of the tape and the logic of proofs. Divergence can be proved
very often in a compositional way, via the sole big-step coinductive predicate.
When “non-guardedness” complications arise (essentially because induction is
nested inside coinduction), alternative, equivalent small-step coinductive predi-
cates may be employed, by taking advantage of their close relationship with the
main big-step predicate. On the other hand, it is not always possible to master
convergence proofs by compositionality. When this is not feasible (due to the
difficulty of the proof at hand), the small-step semantics predicates may be used
again as an auxiliary tool, to perform intermediate computation steps.

We note also that, in order to carry out either divergence or convergence
proofs, often the user has the responsibility to figure out how to decompose
the main goal. As usual, it is sometimes necessary to generalize the statements
to obtain sufficiently powerful (co)inductive hypotheses. Moreover, some proofs
require a subtle combination of inductive and coinductive reasoning.

Related Work. The contributions of the literature most related to the present
one are those by Asperti and Ricciotti in Matita [1], Xu, Zhang and Urban in
Isabelle/HOL [13], and Leroy in Coq [9]. Both the first two works address TMs,
achieving the ambitious goals we have reported in Section 1.

Asperti and Ricciotti formalize the tape as a triple, made of two lists plus
the square currently scrutinized. The non-termination is managed by requiring
that the total computation function returns an optional value, when it meets
an upper bound of iterations without reaching a final state. The semantics is
defined through a relation between tapes, (weakly) “realized” by TMs.

Xu, Zhang and Urban represent the tape via a pair of lists. They handle the
non-termination in a similar way, i.e., via the condition that there is no transition
into a halting state. The semantics is defined by means of Hoare-rules.

None of the above two works makes use of coinductive tools (that we have
exploited to deal with stream-tapes and divergence); from this perspective, our
paper is more related to that of Leroy [9], who adopts coinduction in Coq to
capture infinite evaluations and reductions of a call-by-value λ-calculus.

Future Work. We believe that the main result achieved by our work (i.e., the
development of a technology for proving the correctness of concrete TMs, via
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several versions of big-step and small-step semantics) is a promising tool to
pursue more advanced goals which are outside the scope of the present paper.

In particular, our effort may be seen as a first step towards the development of
computability theory, as the construction of “brick” TMs and their composition
at higher-levels of abstraction is the natural progress of this contribution.

It would be also stimulating to relate the present formalization to that of
unlimited register machines, that we have addressed in a previous work [2].

Acknowledgments. The author is very grateful to the anonymous referees for their
helpful, constructive reviews.
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Abstract. The presence of recursive function calls is a well-known bot-
tleneck in software model checking as they might cause infinite loops
and make verification infeasible. This paper proposes a new technique for
sound and complete Bounded Model Checking based on detecting depths
for all recursive function calls in a program. The algorithm of detection of
recursion depth uses over-approximations of function calls. It proceeds in
an iterative manner by refining the function over-approximations until
the recursion depth is detected or it becomes clear that the recursion
depth detection is infeasible. We prove that if the algorithm terminates
then it guarantees to detect a recursion depth required for complete pro-
gram verification. The key advantage of the proposed algorithm is that
it is suitable for generation and/or substitution of function summaries
by means of Craig Interpolation helpful to speed up consequent verifi-
cation runs. We implemented the algorithm for automatic detection of
recursion depth on the top of our SAT-based model checker FunFrog and
demonstrate its benefits on a number of recursive C programs.

1 Introduction

Model checking plays an important role in both proving program correctness
and finding bugs. It provides a powerful fully automated engine which is able to
search for an assertion violation among all possible combinations of the input val-
ues. These advantages are however hindered by the high complexity of analysis,
known as the state-space explosion phenomenon. To combat this problem, many
effective state-space reduction solutions have been developed to allow model
checking to scale to verification of complex systems. The most successful solu-
tions are symbolic model checking among which are Bounded Model Checking
(BMC) [2], and abstraction-based approaches such as predicate abstraction [8],
interpolation-based reasoning [11], and function summarization [1,12,13,19].

BMC has been shown to be particularly successful in safety analysis of
software. The state-of-the-art BMC-based tools such as CBMC [3], LLBMC [14],
VeriSoft [9], FunFrog [18], just to name a few, have been successfully applied
to verification of industrial-size programs. The well-known limitation of BMC is

c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 96–112, 2015.
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that it is aimed at searching for errors in a program within the given number
(bound) of loop iterations and recursion depth. For this reason, BMC is suitable
only for program falsification, while for complete verification it requires finding a
sufficient bound. This problem remains open: the BMC tools analyze an under-
approximation of a program using some particular bound, defined a priori by
the user or set by the tool to some constant, and check the program only up to
this bound.

There exists a number of (direct and indirect) solutions for the automatic loop
bound detection (i.e., constant propagation, k-induction, loop summarization,
etc). However, dealing with recursive function calls is more complicated and
more expensive in practice. This paper proposes an approach for the automatic
recursion depth detection in BMC and shows its applicability in practice.

In particular, we present a BMC algorithm enhanced with automated con-
struction of the sufficient unwinding1. The algorithm iteratively explores the
program calltree and over-approximates recursive function calls while treating
precisely the other ones. The entire abstraction of the calltree is then checked on-
the-fly with respect to a given assertion. If the assertion holds in the current level
of abstraction then the corresponding unwinding is sufficient to guarantee com-
plete verification (and the length of the longest unwinding chain constitutes the
recursion depth). Otherwise, the algorithm identifies which over-approximated
function calls are responsible for the assertion violation. These function calls are
going to be refined and the algorithm goes to the next iteration.

Our approach is developed to reach efficiency in BMC. At each iteration, it
refines only a minimal set of over-approximated function calls, i.e., only those
responsible for spuriousness of the error on the previous iteration. Clearly, the
algorithm is not guaranteed to terminate when there are unbounded sequences of
recursive calls in the program. But if for every possible value of input parameters,
every recursive function in the real program is called a fixed number of times,
the algorithm automatically detects this number and terminates.

We further demonstrate how our algorithm can be made practical by extend-
ing our earlier work on construction and reusing of interpolation-based function
summaries in BMC [19] for checking different assertions. In the current work,
aside from checking user-provided assertions, we use a heuristic called assertion
decomposition to artificially implant helper -assertions into the recursive program.
These assertions are then checked incrementally to generate function summaries
that will be reused to speed up verification of the user-provided assertions.

We implemented the approach on the top of FunFrog BMC, previously
restricted to work only for a user-supplied recursion depth. We evaluated it on a
range of academic and industrial recursive programs requiring bitwise and non-
linear reasoning. Our experimentation confirmed that the summarization-based
recursion depth detection in many cases makes BMC complete and dramatically
improves its performance compare to the classical BMC approach (e.g., CBMC).

1 The algorithm relies on the output of a loop bound detection routine (e.g., conversion
loops to recursion) done by an external tool or set by the user.
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Algorithmically, the closest body of work is the Corral [10] tool (see related
work section for detailed comparison). It is a solver for a restricted version of the
reachability-modulo-theories problem, and it also uses summaries in its bounded
analysis to guarantee a practical solution. Unlike in our approach, in the Corral,
1) the depth of recursion is bounded by a user-supplied recursion depth and 2) an
external tool [7] is used to generate function summaries which in general may
not be helpful to verify the given assertion. Our approach is able to generate
relevant function summaries by itself. Moreover, it forces summaries to be bit-
precise and highly related to the given assertion. It makes our algorithm converge
more effectively and faster.

The rest of the paper is structured as follows. Sect. 2 defines the notation and
presents background on BMC, function summarization and refinement. Sect. 3
presents the BMC algorithm with automatic detection of recursion depth, proves
its correctness and demonstrates its application to function summarization-based
model checking. Sect. 4 discusses different experimentation scenarios of the app-
roach including the assertion decomposition heuristic. Sect. 5 provides a com-
parison with the related work and Sect. 6 concludes the paper.

2 Preliminaries and Previous Work

We first define basic constructs required to present the new algorithm. In par-
ticular, we explicitly define recursion, function summaries and basic BMC steps.

2.1 Programs, Function Calls, Recursion Depth

Definition 1 (cf. [19]). An unwound program for a depth ν is a tuple Pν =
(F̂ν , f̂main , child), such that F̂ν is a finite set of function calls, unwound up to
the depth ν, f̂main ∈ F̂ν is a program entry point and child ⊆ F̂ν × F̂ν relates
each function call f̂ to all function calls invoked directly from it.

There is a fixed set F to represent functions declared in the program and a
possibly unbounded set F̂ to represent function calls. A call f̂ ∈ F̂ corresponds
to a call of a target function, determined by a mapping target : F̂ → F . A
subset F̂ν ⊆ F̂ is introduced to help handling recursion. There is exactly one
call of function fmain, but there may be several calls of the other functions. For
simplicity, later we will use primes (i.e., f̂ ′, f̂ ′′,..) and indexes (i.e., f̂1, f̂2,..) to
differentiate the calls of the same function f ∈ F in the unwound program.

The set of function calls F̂ together with the relation child can be represented
by a corresponding calltree with the root f̂main. We also use relation subtree ⊆
F̂ ×F̂ , a reflexive transitive closure of child. Now we can define recursive functions
using this notation.

Definition 2. A function f is recursive if for every call f̂i, there is another call
f̂ ′

i in its subtree, and target(f̂i) = target(f̂ ′
i) = f .

According to Def. 2, the calltree of a program with recursive functions is
infinite. As detailized later in this section, for classical BMC it has to be bounded.
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A recursive function f is unwound ν times if there is a sequence of function calls
(later called an unwinding chain) f̂0, f̂1,.. f̂ν , where 1 ≤ i ≤ ν, target(f̂i) = f ,
and each f̂i+1 is in the subtree of f̂i. The set of function calls F̂ν and the relation
child define a finite corresponding calltree. If there are no recursive function calls
in the program Pν = (F̂ , f̂main , child) then F̂ν ≡ F̂ for any ν.

BMC is aimed at checking assertions in a program within the given bound
of loop iterations and recursion depth. If the unwinding number ν is provided
a priori, BMC unrolls the loops and recursion up to ν, encodes the program
symbolically and delegates the checking to a SAT solver. If the number is not
provided a priori, BMC may go into an infinite loop and not terminate. Typically
in the absence of the number or when the number is set too high, a predefined
timeout is used to cope with this problem.

BMC encodes the program into the Static Single Assignment (SSA) form,
where each variable is assigned at most once. The SSA form is then conjoined
with the negation of the assertion condition and converted into a logical formula,
called a BMC formula. The BMC formula is checked for satisfiability, and every
its satisfying assignment identifies an error trace. Otherwise, the program is safe
up to ν. Notably, this unwinding number may not be sufficient for complete
verification. A program can be proven safe for ν, but buggy for ν + 1.

int f(int a) {
if (a < 10)

return f (a + 1);
return a - 10;

}

void main() {
int y = 1;
int x = nondet();

if (x > 5)
y = f(x);

assert(y >= 0);
}

(a) C code

y0 = 1;
x0 = nondet();
if (x0 > 5) {

a0 = x0;
// f (unwind 1)
if (a0 < 10)

// f (unwind 2)
...
// end f (unwind 2)
ret0 = ...;

else
ret1 = a0 - 10;

ret2 = phi(ret0, ret1);
// end f (unwind 1)
y1 = ret2;

}
y2 = phi(y0, y1);
assert(y2 >= 0);

(b) SSA form

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
ret0 = ... ∧
... ∧
ret1 = a0 − 10 ∧
(x0 > 5 ∧ a0 < 10 ⇒

ret2 = ret0) ∧
(x0 > 5 ∧ a0 ≥ 10 ⇒

ret2 = ret1) ∧
y1 = ret2 ∧
(x0 > 5 ⇒ y2 = y1) ∧
(x0 ≤ 5 ⇒ y2 = y0) ∧
y2 < 0

(c) BMC formula

Fig. 1. BMC formula generation

Fig. 1 illustrates BMC encoding for a simple C program (Fig. 1a) with a
recursive function f. For this example, the recursion depth ν = 5 guarantees
complete verification.2 In this setting, it is assumed that this recursion depth is
2 See more details on termination in Sect. 3.1.
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given a priori. During unwinding (Fig. 1b), a call of function f is substituted
by its body. There will be five such nested substitutions, and the sixth call is
simply skipped in the example. The encoded BMC formula is shown on Fig. 1c.

Classical BMC algorithms use a monolithic BMC formula, as described in
details in [3]. For specialized BMC algorithms (such as in our earlier work on
function summarization [19] and upgrade checking [6], and the new algorithm
for automatic detection of recursion depth) it is convenient to use a so called
Partitioned BMC formula, which is going to be presented in Sect. 2.2.

2.2 PBMC Encoding

Definition 3 (cf. [19]). Let F̂ν be an unwound calltree, π encodes an assertion,
φf̂ symbolically represent the body of a function f , a target of the call f̂ . Then
a partitioned BMC (PBMC) formula is constructed as ¬π ∧ ∧

f̂∈F̂ν
φf̂ .

Fig. 2 demonstrates creation of a PBMC formula for the example from
Fig. 1a. In the example program, unwound 5 times, the partitions for func-
tion calls f1,f2,..f5 and main are generated separately. They are bound together
using a special boolean variable callstart f̂ for every function call f̂ . Intuitively,
callstart f̂ is equal to true iff the corresponding function call f̂ is reached. Note
that the assertion π is not encoded inside φf̂main

, as in classical BMC, but sepa-
rated from the rest of the formula, such that it helps interpolation.3

Formula φf̂1
that encodes the function call f1 aims to symbolically represent

the function output argument ret0 by means of the function input argument a0,
symbolically evaluated in φf̂main

. At the same time, φf̂1
relies on the value of ret3

defined in φf̂2
by means of a1. Similar reasoning is applied to create each of the

following partitions: φf̂2
,.. φf̂5

.

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
x0 > 5 ⇔ callstart f̂1

∧
y1 = ret0 ∧
(x0 > 5 ⇒ y2 = y1) ∧
(x0 ≤ 5 ⇒ y2 = y0)

(a) formula φf̂main

y2 ≥ 0 ⇔ π

(b) definition of π

(a0 < 10 ⇔ callstart f̂2
) ∧

a1 = a0 + 1 ∧
ret1 = ret3 ∧
ret2 = a0 − 10 ∧
(callstart f̂1

∧ a0 < 10 ⇒
ret0 = ret1) ∧

(callstart f̂1
∧ a0 ≥ 10 ⇒

ret0 = ret2)

(c) formula φf̂1

Fig. 2. PBMC formula generation

3 See more details on interpolation in Sect. 2.3.



Towards Completeness in Bounded Model Checking 101

2.3 Craig Interpolation and Function Summarization

Definition 4 (cf. [4]). Given formulas A and B, such that A ∧ B is unsatis-
fiable. Craig Interpolant of A and B is a formula I such that A → I, I ∧ B is
unsatisfiable and I is defined over the common alphabet to A and B.

For mutually unsatisfiable formulas A and B, an interpolant always exists [4].
For quantifier free propositional logic, an interpolant can be constructed from a
proof of unsatisfiability [16]. Interpolation is used to generate function summaries
to speed up incremental verification (see our earlier work [18,19]).

Definition 5 (cf. [19]). Function summary is an over-approximation of the
function behavior defined as a relation over its input and output variables.

A summary contains all behaviors of the function and (due to its over-
approximating nature) possibly more. The infeasible behaviors (detected dur-
ing analysis of abstract models) have to be refined by means of the automated
procedure, as will be described in Sect. 2.4.

If the program is safe with respect to an assertion π, then the PBMC formula
representing the program is unsatisfiable. The interpolation procedure is applied
repeatedly for each function call f̂ . It splits the PBMC formula into two parts,
φsubtree

f̂
and φenv

f̂
(1). The former encodes the subtree of f̂ . The latter corresponds

to the rest of the encoded program including a negation of assertion π.

φsubtree
f̂

≡
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ φenv
f̂

≡ ¬π ∧
∧

ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ (1)

Since φsubtree
f̂

∧ φenv
f̂

is unsatisfiable, the proof of unsatisfiability can be used

to extract an interpolant If̂ for φsubtree
f̂

and φenv
f̂

. Such formula If̂ is then consid-

ered as a summary for the function call f̂ . While verifying another assertion π′,
the entire part φsubtree

f̂
of the PBMC formula will be replaced by the summary

formula If̂ .

2.4 Counter-Example Guided Refinement

Definition 6 (cf. [19]). A substitution scenario for function calls is a function
Ω : F̂ → {inline, sum, havoc}.

For each function call, a substitution scenario determines a level of approxi-
mation as one of the following three options: inline when it processes the whole
function body; sum when it substitutes the call by an existing summary, and
havoc when it treats the call as a nondeterministic function. Since havoc abstracts
away the function call, it is equivalent to using a summary true.

In the incremental abstraction-driven analyses [6,19], substitution scenarios
are defined recurrently. Algorithms start with the least accurate initial scenario
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Ω0, and iteratively refine it. In (2) and (3), we adapt the definitions from [19]
to the recursive case.

Ω0(f̂) =

⎧
⎨

⎩

sum, if there exists a summary of f̂

inline, if f̂ is not recursive or ν is not exceeded
havoc, if f̂ is recursive and ν is exceeded

(2)

Ωi+1(f̂) =
{
inline, if Ωi(f̂) �= inline and callstart f̂ = true
Ωi(f̂), otherwise

(3)

When a substitution scenario Ωi leads to a satisfiable PBMC formula (i.e.,
there exists an error trace ε), an analysis of ε is required to shows that the
error is either real or spurious. By construction of the PBMC formula, for each
function call f̂ , a variable callstart f̂ is evaluated to true iff f̂ appears along ε.
Consequently, each f̂ might be responsible for spuriousness of ε if f̂ was not
precisely encoded and callstart f̂ = true. If there is no function call, satisfying
the above mentioned conditions, ε is real and must be reported to the user.

3 Bounded Model Checking with Automated Detection
of Recursion Depth

This section presents an iterative abstraction-refinement algorithm for BMC
with automated detection of recursion depth. We first present a basic algorithm,
where all function calls are treated nondeterministically (Sect. 3.1). Then we
strengthen this algorithm to support generation and use of interpolation-based
function summaries (Sect. 3.2).

3.1 Basic Algorithm

An overview of the algorithm is depicted in Alg. 1. The algorithm starts with a
preset recursion depth ν4 and iterates until it detects the actual recursion depth,
needed for complete proof of the program correctness, or a predefined timeout
is reached. Notably, at each iteration of the algorithm, ν gets updated and is
equal to the length of the longest unwinding chain of recursive function calls. In
the end of the algorithm, all recursive calls are unwound exactly same number
of times as they would be called during the execution of the program.

The details of the computation are given below. First, the algorithm aims to
construct a PBMC formula φ using the sets F̂ν and T. Every function call f̂ ∈ F̂ν

is encoded precisely, every function call ĝ ∈ T is treated nondeterministically. In
particular, bodies of function calls from set F̂ν are encoded into the SSA forms
4 The algorithm can be initialized with any number value as demonstrated in our

experiments.
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Algorithm 1. BMC with automatic detection of recursion depth
Input: Initial recursion depth: ν; Program unwound ν times: Pν = (F̂ν , f̂main , child);

Assertion to be checked: π; TimeOut
Output: Verification result: {SAFE, BUG, TimeOut}; Detected recursion depth: ν; Error

trace: ε
Data: PBMC formula: φ; temporary set of function calls to be refined: T

1 while (¬TimeOut) do

2 T ← {ĝ /∈ F̂ν | child(f̂ , ĝ), f̂ ∈ F̂ν }; // get refinement candidates
3 φ ← ¬π ∧

∧
f̂∈F̂ν

CreateFormula(f̂) ∧
∧

ĝ∈T
Nondet(ĝ);

4 result, sat assignment ← Solve(φ); // run SAT solver
5 if (result = UNSAT) then
6 return SAFE, ν;
7 else
8 ε ← extract CE(sat assignment); // extract error trace
9 T ← T ∩ extract calls(ε); // filter out calls which do not affect SAT

10 if (T = ∅) then
11 return BUG, ν, ε;
12 else

13 F̂ν ← F̂ν ∪ T; // unwind the calltree on demand
14 ν ← max chain length(F̂ν); // update the depth
15 end
16 return TimeOut

(i.e., method CreateFormula) and put together into separate partitions (one
partition per each function call) of φ (line 3). At the same time, all function
calls from T are replaced by true (i.e., method Nondet). In total, φ encodes a
program abstraction containing precise and over-approximated parts, conjoined
by negation of an assertion π (line 3). Fig. 3a demonstrates a calltree of a program
with a single recursive function called twice at the first iteration of the algorithm.
In the example, F̂ν = {f̂main, ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely,
and T = {f̂3, f̂ ′

2} (white nodes) are treated nondeterministically.
After the PBMC formula φ is constructed, the algorithm passes it to a SAT

solver. If φ is satisfiable, and the SAT solver returns a satisfying assignment
(line 7), function calls from T are considered as candidate calls to be refined.
To refine, the satisfying assignment is used to restrict T on the calls, appeared
along the error trace ε (i.e., in the satisfying assignment) (line 9). In the next
iteration of the algorithm, the calls from T are encoded precisely in the updated
PBMC formula. Technically, the algorithm extends F̂ν by adding function calls
from T (line 13), as shown, for example, on Fig. 3b. There, f̂ ′

2 appears along ε

and therefore it has to be refined; f̂3 does not appear in ε, so it will be encoded
nondeterministically. If T = ∅ then no nondeterministically treated recursive
calls were found along the error trace, so the real bug is found (line 11), and the
algorithm terminates.

If the SAT solver proves unsatisfiability of φ then the program abstraction,
and consequently the program itself, are safe (line 6). This case is represented on
Fig. 3c. The final recursion depth ν is detected, and the algorithm terminates.

Theorem 1. Given the program P and an assertion π, if Alg. 1 terminates with
an answer SAFE (BUG) then π holds (does not hold) for P .
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Fig. 3. Illustration of the individual steps of the Alg. 1 on the example with a single
recursive function f , called twice.
a) First iteration: F̂ν = {f̂main, ĝ1, ĥ1, f̂1, f̂2} (grey nodes) are encoded precisely,
T = {f̂3, f̂ ′

2} (white ”?” nodes) are treated nondeterministically; the initial recursion
depth is equal to 1.
b) Second iteration: solver returns SAT (corresponding to error trace ε =
{f̂main, f̂1, f̂ ′

2}), set T is updated to contain only one function call ({f̂ ′
2} (black ”!”

nodes)). All calls from T are added to current F̂ν . The current recursion depth is incre-
mented, and equal to 2.
c) Final iteration: solver returns UNSAT or T = ∅, the detected recursion depth is
equal to ν − 1.

Proof (Proof sketch). The proof is divided into two parts, for SAFE (line 6) and
BUG (line 11) outputs of the algorithm (and respectively, the PBMC formula φ
proven UNSAT or SAT).

Case SAFE . In this case φ is unsatisfiable. The formula φ represents some
abstraction of P which contains precise and over-approximated components (as
described in section 3.1). Since every abstracted formula can be strengthened
and turned into the corresponding precise encoding, and since unsatisfiability of
a weaker formula implies unsatisfiability of a stronger formula, then the PBMC
formula φinline encoding P without abstraction is also unsatisfiable, i.e., π holds.

Case BUG. In this case, φ is satisfiable, and the satisfying assignment rep-
resents an error trace. At the same time, the algorithm did not detect any non-
deterministically treated recursive function calls along the error trace (line 10).
It means that π is indeed violated within the current recursion depth. 	


Note on Termination. The algorithm is guaranteed to terminate within a
given timeout when it finds an error or proves that the assertion holds. Similar
to classical BMC, Alg. 1 terminates if the recursion depth is sufficient to disprove
the assertion. Classical BMC can prove the assertion up to some fixed recursion
depth, but the result might be incomplete if the recursion depth is insufficient. In
contrast, by Theorem 1, if our algorithm does not yield a timeout, it guarantees
that the detected recursion depth is complete to prove (disprove) the assertion.
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Algorithm 2. Summarization in BMC with Automatic Detection of Recur-
sion Depth

Input: Initial recursion depth ν; Program unwound ν times: Pν = (F̂ν , f̂main , child);
Assertion to be checked: π; Set of summaries: summaries; TimeOut

Output: Verification result: {SAFE, BUG, TimeOut}; Error trace: ε
Data: PBMC formula: φ; set of function calls: T; substitution scenario: Ω

1 φ ← ¬π; // initialize φ

2 T ← F̂ν ∪ {ĝ /∈ F̂ν | child(f̂ , ĝ), f̂ ∈ F̂ν }; // unwind the calltree initially
3 Ω ← init; // use (2) from Sect. 2.4 to create initial scenario
4 while (¬TimeOut) do

5 φ ← φ ∧
∧

f̂∈T:Ω(f̂)=inline
CreateFormula(f̂) ∧

∧
ĝ∈T:Ω(ĝ)=sum

ApplySummaries(ĝ) ∧
∧

ĥ∈T:Ω(ĥ)=havoc
Nondet(ĥ); // add partitions to φ (inline, summarize, havoc )

6 result, proof , sat assignment ←Solve(φ);
7 if (result = UNSAT) then

8 foreach (f̂ ∈ T) do // split φ ≡ φsubtree
f̂

∧ φenv
f̂

as in Sect. 2.3

9 summaries(f̂) ← Interpolate(proof , f̂);
10 end
11 return SAFE ;

12 else
13 ε ← extract CE(sat assignment);
14 if (∅ = {f̂ ∈ extract calls(ε) | Ω(f̂) 	= inline}) then
15 return BUG, ε;
16 else
17 Ω ← Refine(Ω, T, extract calls(ε)); // use (3) in Sect. 2.4
18 T ← T ∪ {ĝ /∈ T | child(f̂ , ĝ), f̂ ∈ T, Ω(f̂) = inline}; //

// unwind the calltree on demand
19 end
20 return TimeOut

The other benefit of our algorithm is that it does not require the recursion depth
to be given a priori, but instead it is detected automatically.

Based on our observations, termination of Alg. 1 depends on the termination
of the recursive program it was applied to. For example, the program with one
single recursive function from Fig. 1a terminates for any values of input data.
The recursion termination condition, ¬(a < 10) defines the upper bound 10 for
the value of a, and at the same time the function f monotonically increments
the value of a. Hence, the recursive function f is called a fixed number of times
and the program eventually terminates. Clearly, for complete analysis of this
program it is enough to consider the maximum possible number of recursive
function calls for every initial value of a which in this example is equal to 5.
At the same time, it introduces an upper bound for the size of the constructed
PBMC formula which is a sufficient condition to the SAT solver to terminate
while solving it.

3.2 Optimizations and Applications of Alg. 1

Incremental Formula Construction and Refinement. Possible optimiza-
tions of Alg. 1 are 1) the incremental construction of the PBMC formula φ and
2) more efficient handling of a set of the refinement candidates, T.

In the first optimization, φ is created in an incremental manner. At each iter-
ation, φ is not recomputed from scratch, but gets conjoined with new partitions.
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These partitions precisely encode the refined function calls from the set T. In
this manner the PBMC formula is updated at the beginning of each iteration.

In the second optimization, the set of refinement candidates T is merged with
the whole set of unwound function calls F̂ν . Instead of handling those two sets,
it is enough to handle one. To distinguish function calls which were present in
T from the others present in F̂ν the substitution scenario Ω is used.

Summarization. The proposed algorithm for recursion depth detection can be
exploited for efficient incremental program verification (i.e., verification of the
same program with respect to different assertions [19].5 In this setting, function
summaries are computed by means of Craig Interpolation.

Alg. 2 shows how the optimized Alg. 1 can be integrated with summarization-
based verification. Interpolating procedure (line 9), that employs the PBMC
formula φ and its proof of unsatisfiability, is run after each assertion is proven.
The use of summaries makes the verification more flexible. Instead of treating
recursive function calls nondeterministically, the algorithm might apply existent
summaries, thus making entire program abstraction more accurate. Moreover,
the use of substitution scenario (line 5)enables summarization of any (not nec-
essarily recursive) function calls.

4 Experimental Evaluation

We implemented the automatic Recursion Depth Detection (RDD) and Summa-
rization-based RDD (SRDD) inside of the BMC tool FunFrog [18] and make
its binary (FunFrog+(S)RDD) available6. FunFrog supports interpolation-based
function summarization for C programs and uses the SAT-solver PeRIPLO [17] for
solving propositional formulas, proof reduction and interpolation. FunFrog fol-
lows CProver’s7 paradigm. In particular, it accepts a precompiled goto-binary,
a representation of the C program in an intermediate goto-cc language, and
runs the analysis on it.

We evaluated the new algorithms on a set of various recursive C programs
(taken from the SVCOMP’148 set (Ackermann X McCarthy, GCD, EvenOdd),
obtained from industry9 (P2P Joints X), crafted by USI students for evalua-
tion of interpolation-based abstractions). We provide two verification scenarios
to evaluate the algorithms. In the first one, FunFrog+RDD verifies a single asser-
tion in each benchmark and detects the recursion depth. In the second one,
FunFrog+SRDD incrementally verifies a set of assertions and reuses function sum-
maries between its checks. In our experiments loop handling was done by means
of CProver (see Sect. 5 for more details).
5 Recall that the analysis in [19] is restricted to programs, unwound fixed number of

times (i.e., without recursion).
6 http://www.inf.usi.ch/phd/fedyukovich/funfrog srdd.tar.gz
7 http://www.cprover.org
8 http://sv-comp.sosy-lab.org/2014/
9 In scope of FP7-ICT-2009-5 — project PINCETTE 257647.

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz
http://www.cprover.org
http://sv-comp.sosy-lab.org/2014/
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Table 1. Verification statistics for various BMC tools with and without automated
detection of recursion depth

benchmark FunFrog+RDD FunFrog CBMC
In≡1 1 ¡ In ¡ ν In≡ ν

name #R T Result In Time #It ν #Calls In Time #It In Time #It Time Time
Array A 5 a SAFE 1 664.02 15 15 75 10 513.986 6 15 121.381 1 3600+ 3600+
Array B 12 a SAFE 1 777.432 24 24 71 2 1781.92 23 24 3600+ — 3600+ 3600+
Array C 3 a SAFE 1 1113.68 27 16 106 14 991.724 3 16 557.281 1 3600+ 3600+
Ackermann A 2 b SAFE 1 55.758 34 20 2169 7 3493.64 10 20 3600+ — 3600+ 3600+
Ackermann B 2 b BUG 1 56.772 30 17 1942 7 3547.29 10 17 3600+ — 3600+ 3600+
Alternate A 2 c SAFE 1 35.068 50 50 100 30 22.206 20 50 0.902 1 3600+ 3600+
Alternate B 2 c BUG 1 92.314 77 77 154 50 53.315 28 77 1.681 1 3600+ 3600+
Multiply 10 a SAFE 1 710.517 110 10 110 7 569.559 4 10 226.659 1 3600+ 3600+
InterleaveBitsRec 1 a SAFE 1 150.053 33 33 33 15 125.241 19 33 8.188 1 3600+ 3600+
BitShiftRec A 1 a SAFE 1 128.074 64 64 64 20 13.416 45 64 2.413 1 3600+ 3600+
BitShiftRec B 2 b SAFE 1 65.537 12 12 4285 3 65.399 10 12 3600+ – 3600+ 3600+
P2P Joints A 1 a SAFE 1 1234.71 4 4 4 2 1195.31 3 4 1092.26 1 3600+ 3600+
P2P Joints B 1 a BUG 1 1266.38 4 4 4 2 1222.11 3 4 1120.03 1 3600+ 3600+

4.1 Evaluating RDD

Table 1 summarizes the verification statistics of a set of benchmarks with
different types (T) of recursion (a - single recursion, b - multiple recursion,
c - indirect recursion). The number of recursive functions present in each bench-
mark is depicted in the column marked #R. Each benchmark was verified using
CBMC, FunFrog10 without recursion depth detection and 3 different versions of
FunFrog+RDD. The first configuration of FunFrog+RDD performs the algorithm
with the initial recursion depth set to 1 (denoted as In ≡ 1 in the table), detects
recursion depth (ν) and also reports the number of unwound recursive calls as
#Calls. Then, in purpose of comparison, the second and the third configura-
tions perform the same algorithm with the another values of the initial recursion
depths (1 ¡ In ¡ ν and In ≡ ν respectively). For each experiment, we report
total verification time (in seconds) and a number of iterations of FunFrog+RDD
(#It). The verification results (SAFE/BUG) were identical for experiments with
all configurations and we placed them in the table in the section describing the
benchmarks.

Notably, for all different types of recursion, the experiments with CBMC and
pure FunFrog failed as they reached the timeout (3600+) of 1 hour with-
out producing the result. This in general was not a problem for any of the
experiments when FunFrog+RDD was used. We compare different configurations
of FunFrog+RDD in order to demonstrate possible behaviors of FunFrog+RDD
depending on the structure of benchmarks. The benchmarks Multiply,
Alternate A/B, Array A/C, InterleaveBitsRec and BitShiftRec A witness
the overhead of the procedure. In InterleaveBitsRec and BitShiftRec A there
is a single recursive function called one time; in Multiply and Alternate A/B
there are several recursive calls requiring the same recursion depth; in Array A
and Array C there are several recursive calls requiring different, but relatively
close recursion depths. That is, if we compare the first configuration with the
10 CBMC and FunFrog were run with default parameters.
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Table 2. Verification statistics of FunFrog+RDD and FunFrog+SRDD

benchmark FunFrog+RDD FunFrog+SRDD
name #R T Result ν In TotalTime #It In #A TotalTime ItpTime #It
Arithm 1 a SAFE 100 1 128.47 100 1 20 9.676 2.036 119
McCarthy 2 b SAFE 11 1 3600+ — 1 5 10.495 4.859 24
GCD 3 b SAFE 11 1 145.381 64 1 4 54.185 0.409 37
EvenOdd 2 c SAFE 25 1 38.621 50 1 8 27.99 4.49 82
P2P Joints C 1 a SAFE 4 1 1531.38 4 1 4 1151.72 68.10 4
P2P Joints D 1 a SAFE 4 1 1192.28 4 1 4 1089.04 87.08 4

third one, we can see that such overhead exists. The first configuration takes
more time to complete verification than the second one, and the second con-
figuration takes more time to complete verification than the third one. This is
because FunFrog+RDD executes more iterations in the first configuration than
in the second one and more iterations in the second configuration than in the
third one. Again, the difference and the advantage is in the fact that the first
and the second configurations do not know the recursion depth needed for ver-
ification and the third one gets it provided (as an initial recursion depth for
FunFrog+RDD). Therefore, for the third configuration it is always enough to exe-
cute one iteration.

The benchmarks Array B, Ackerman A/B and BitShiftRec B show the oppo-
site behavior, where the first configuration takes less time to complete than the
second and the third ones. These cases demonstrate the benefits of using mini-
mality feature of the FunFrog+RDD, since they require different recursion depths
for each recursive function call appearing in the code. In all configurations we
specify In by a fixed number which may fit well some of the recursive calls,
but for other ones it may be bigger than needed. In this case, FunFrog+RDD
creates unnecessary PBMC partitions, blows up the formula and consequently
slows down the verification process. While using In = 1, incremental unwinding
automatically finds depths for each recursive function call. It means that for such
cases the new approach for BMC not only detects the recursion depth sufficient
for verification but that it also performs it efficiently and allows to slice out parts
of the system which are redundant for verification purpose.

Interesting results are demonstrated by experimentation with the industrial
benchmark P2P Joints A/B. It contains expensive nonlinear computations, a
complex calltree structure with relatively trivial recursion requiring unrolling 4
times. The experiments show that the difference in timings between different
FunFrog+RDD configurations is minor.

4.2 Evaluating SRDD

Another set of experiments of verifying recursive programs by applying FunFrog
+SRDD is summarized in Table 2. There are two configurations of FunFrog com-
pared in the table. The first one, FunFrog+RDD, is similar to the first con-
figuration in Table 1. The second one, FunFrog+SRDD, is SRDD driven by
assertion decomposition.
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We explain the idea of assertion decomposition on the example from Fig. 1.
The assertion assert(y >= 0) (A1) can be used to derive a set the following
helper -assertions assert(x < 5 || y >= 0) (A2), assert(x < 7 || y >= 0)
(A3) and so on. It is clear that if A1 holds, then both A2 and A3 hold as well;
and if A2 holds then A3 holds as well. We will say that A3 is weaker than A2,
and A2 is weaker than A1.

In this experiment, we derive helper-assertions (number of them is denoted
#A in the table) by guessing values of the input parameters of recursive func-
tions, then order assertions by strength and begin verification from the weakest
one. If the check succeeds, the summaries of all (even recursive) functions are
extracted. They will be reused in verification of stronger assertions. This proce-
dure is repeated until the original assertion is proven valid. We summarize total
timings (TotalTime) for verification of each weaker assertion, which includes
the timings for interpolation (ItpTime).

For all benchmarks in the table, FunFrog+SRDD outperforms FunFrog+RDD.
Technically, it means that checking a single assertion may be slower than check-
ing itself and also several other assertions.11 The strongest result, we obtained, is
verifying a well-known McCarthy function. Running FunFrog+SRDD for it takes
around 10 seconds, while FunFrog+RDD, pure FunFrog and CBMC exceed time-
out. Notably, the interpolation may take up to a half of whole verification time.
In some cases, summarization increases the number of iterations. But in total,
FunFrog+SRDD remains more efficient that FunFrog+RDD.

5 Related Work

To the best of our knowledge, there is very little support for computing recur-
sion depths in BMC algorithms. One of the most successful BMC tools, CBMC [3],
attempts to find unwinding recursion depths using constant propagation. This
approach works only if the number of recursive calls is explicitly specified in the
source code (i.e., as a constant number in a termination condition of a recursive
call). If it cannot be detected by constant propagation, the tool gets into an
infinite loop and fails to complete verification. CBMC also supports explicit defi-
nition of a recursion depth ν which may lead to incomplete verification results.
In order to check correctness of the current unwinding, CBMC inserts and checks
so called unwinding assertions. If all unwinding assertions hold, the currently
used recursion depth is sufficient. If there is a violated unwinding assertion, the
current recursion depth has to be increased. To our knowledge, CBMC does not
have the refinement procedure and error trace analysis to make the recursion
depth detection complete.

The idea of processing function calls on demand was also researched by [10]
in the tool Corral. The method, called stratified inlining, relies on substituting
bodies of function calls by summaries, and checking the resulting program using
a theorem prover. If the given level of abstraction is not accurate enough, the
11 A reader can find all these benchmarks with already inserted helper-assertions at

http://www.inf.usi.ch/phd/fedyukovich/funfrog srdd.tar.gz

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz
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algorithm refines function calls in a similar way to our refinement. Despite some
similarity to Alg. 1, Corral relies on the external tool [7] to generate function
summaries. In contrast, our method automatically generates summaries using
Craig Interpolation inside Alg. 2 after an assertion is successfully checked, and
use already constructed summaries to check other assertions.

There are techniques designed to deal with recursion. For instance, [20] is able
to verify recursive programs in milliseconds, but it is limited only to functional
programs. BMC, in contrast, is not designed to deal with recursion, but it has
been applied to a wide range of verification tasks. FunFrog+(S)RDD itself is not a
standalone recursive model checker, but an extension of the existent SAT-based
BMC tool. In our previous work [18], it was already shown applicable to verify
industrial-size programs, supporting complete ANSI C syntax. Conversion to
SAT formulas allows to perform bit-precise checks, i.e., verify assertions in the
programs using bitwise operators.

Craig Interpolation is applicable to verification of recursive programs in a
rather different scenario. In Whale [1], it is used to guess summaries generated
from under-approximations of the function bodies behavior. Unfortunately, the
tool is not available for use, so we are unable to compare it with FunFrog+(S)RDD.

k-induction [5,15] is another under-approximation-driven technique for check-
ing recursion. First, it proves an induction base (i.e., that there is no assertion
violation in the unwinding chain with the length k). Then, if successful, it proves
an induction step (i.e., whenever the assertion holds in an unwinding chain with
the length k, it also holds in the unwinding chain with the length (k+1)). Finally,
the approach is able to find an inductive invariant, which can be treated as func-
tion summary. To our knowledge, there is no incremental model checker based
on k-induction which (re-)uses function summaries.

The overview of other summarization approaches to program analysis can be
found in our earlier work published at [19].

6 Conclusion and Future Work

This paper presented the new approach to automatically detect recursion depths
for BMC and applies it to function summarization-based approaches to model
checking. In principle, a similar idea may be applied to solve the problem of loop
bound detection where an algorithm abstracts away loop bodies and iteratively
refines one more body at a time. One can develop such algorithm in future. We
believe, there is a strong mapping between program termination and analysis
termination which can be investigated in future. In cases of multiple recursion,
the algorithm may be improved by using SAT solvers with support for Minimal
SAT. The approach of the summarization-based BMC might be extended to
support SMT theories. This way, the analysis in general might become more
efficient, but will lose bit-precision.

Acknowledgments. We thank Antti Hyvärinen for his notable contribution during
the work on this paper.
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Abstract. Vehicular Ad-Hoc Networks (VANET) are a special type of
network where its nodes are vehicles that move according to specific pat-
terns. This network is based on wireless communication, presenting new
challenges, such as how it will be tested in realistic scenarios. Currently,
simulations are widely used. However, they have limitations, such as
local minima. Another approach is model checking, which has been used
in only a few studies, often overlooking mobility and signal propagation
issues. This work provides a realistic mobility model using probabilistic
model checking to describe an overtake scenario involving three vehicles
in a short distance. Our analysis has shown 98 % of accident chance in
this situation. However, the main result is providing an example to rep-
resent the mobility aspect which can be connected with other models
such as signal propagation and the network itself. Therefore, VANETs
can now be tested using methods closer to the reality.

Keywords: Model Checking · Vehicular Ad-Hoc Networks · Mobility

1 Introduction

Intelligent Traffic Systems (ITS) are a response to reduce the number of traffic
accidents, the cost of transportation and the volume of CO2 emissions [11]. These
systems make intensive use of communication among vehicles, which is possible
using Vehicular Ad-Hoc Networks (VANETs), a particular class of Mobile Ad-
Hoc Networks (MANETs). VANETs are distributed and self-organized commu-
nication networks, characterized by their high speed and mobility, which brings
several challenges to the academic community [13].

Current research in this field frequently analyzes the behavior of VANETs
using simulators. However, simulation methods examine only a subset of possi-
ble scenarios, which can lead to an incomplete – or even worse, an incorrect –
analysis [14]. Furthermore, works such as [1] and [3] have reported that VANET
simulators, despite their constant evolution, have not reached an ideal point,
because they need to integrate the mobility of the nodes, the communication
protocols (network model) and the signals propagation.

c© Springer International Publishing Switzerland 2015
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A complementary approach to simulation is the use of probabilistic model
checking (PMC) [8,19]. PMC is a technique for the automatic analysis of sys-
tems, which verifies properties in probabilistic logic by exhaustively enumerating
all reachable states. PMC can answer questions such as “What is the probabil-
ity of the occurrence of a certain event?”. This approach is ideal for dynamic
and stochastic systems, such as VANETs. PMC verification is performed by (1)
specifying what are the properties that the system must obey, (2) constructing
the formal model of the system, which should capture all the essential properties
and (3) finally, running the verifier to validate the specified properties.

Verification techniques can be useful to assess the efficiency and correctness
of MANETs. The results obtained can be used to improve a wide range of sys-
tems. Despite its benefits, model checking is rarely used in VANETs. Also, the
few studies (e.g. [4] and [21]) do not address uncertainty caused by the dynamism
of the nodes. Thus, the non-determinism of the message delivery caused by the
mobility of vehicles is not being represented, which is an underlying factor in
VANETs. [20] uses simulation of Markov chains to represent planned trajec-
tories of autonomous vehicles. The tool which we have used for analysis also
represents its model with this technique, however, it uses a formal approach,
finding exact probabilities and estimates, besides, other resources such as multi-
terminal binary decision diagrams are used [19] and our work benefits from these
features.

It is important to verify networks considering not only the network itself,
but also its additional functionalists. Thus, it is often necessary to model the
communication and other important system components [7]. Therefore, building
complete models considering the traffic flow, network and radio propagation are
necessary and rarely explored in model checking. We have proposed the first
step for completely modeling VANETs presenting a motion aspect which will be
coupled with the traditional network analysis.

Nevertheless, this work has the objective of representing mobility models
in VANETs using PMC. The proposed model follows practices and concepts
already used in simulation methods to model an overtake situation involving
three vehicles. However, it uses the benefits of automatic and exhaustive verifi-
cation provided by PMC. Thus, the application of model checking in VANETs
can be extended in the future to describe network and mobility models.

We have used PRISM, a probabilistic model checker for formal modelling
and analysis. This tool can represent systems that exhibit random or probabilis-
tic behaviour. It has been used to analyze many different application domains
from communication protocols to biological systems [18]. We have modeled an
overtake scenario involving three vehicles in a short distance. The model shows
that there is a huge chance of an accident (98% in some scenarios), however
counter-examples to a safe overtake are presented.

This paper is organized as follows: Section 2 presents important concepts
of VANET analysis; PMC is defined in Section 3; Section 4 shows our mobility
model; Section 5 discusses the results of the model; finally, conclusions and future
works are presented in Section 6.
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2 VANET Analysis

In order to validate the effectiveness of Intelligent Traffic Systems, it is necessary
to evaluate their performance and communication protocols in real test environ-
ments. However, there are logistic difficulties, economic questions and technolog-
ical limitations which make simulations a good choice for testing and validation
of these protocols. The fields of computer networks and traffic engineering make
extensive use of simulators. There are long established software such as NS-2
(The Network Simulator)1 and SUMO (Simulation of Urban Mobility)2. Since
the introduction of vehicular networks, the integration of these two fields has
recently become necessary [14].

This integration is required due to inherent features of the strong coupling
between communication and mobility in VANETs. Communication modifies mobil-
ity patterns, on the other hand, correct message reception is affected by vehicular
movement. However, three distinct aspects must work together in order to achieve
realistic tests [3]: (1) Mobility Models represent the vehicle movement, includ-
ing mobility patterns and the interaction between vehicles (e.g. crossroad control);
(2) Network Models describe the data exchanged between vehicles, including
MAC, routing and superior protocol layers; (3) Signal Propagation Models
reproduce the environment modeling involving fixed and mobile obstacles during
the communication. For further details on these mobility and signal propagation
techniques, we refer to [13] and [17], respectively.

Mobility models, the main subject of this work, can be described in two
points [12]: (1) Freedom of movement, responsible for describing the motion
constraint to each vehicle. These representations have been improved from sim-
plified models such Manhattan grid [2] to real world maps (e.g. [6] and [22]) and
(2) Interaction among vehicles which modeling the behavior of a vehicle that
is a direct consequence of the interaction with the other vehicles on the road. This
includes microscopic aspects, such as lane changing and decreasing/increasing
the speed due to the surrounding traffic.

Regarding this microscopic implementation, Car Following Models (CFMs)
are the most used type of driver model. CFMs usually represent time, posi-
tion, speed, and acceleration as continuous functions. However, CFMs have been
extended to include discrete formulations [14]. Commonly used models are (as
described by [15]): the cellular automata models, follow-the-leader models and
intelligent driver model (IDM). The next subsections describe two CFM models
chosen for their simplicity, efficiency and realism.

2.1 Intelligent Driver Model

The Intelligent Driver Model (IDM) shows a crash-free collective dynamic,
exhibits controllable stability properties, and implements a braking strategy
with smooth transitions between acceleration and deceleration behavior [16].

1 NS-2 . http://www.isi.edu/nsnam/ns/. Access date: November 4, 2014.
2 SUMO. http://sumo.sourceforge.net/. Access date: November 4, 2014.

http://www.isi.edu/nsnam/ns/
http://sumo.sourceforge.net/
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The IDM acceleration is a continuous function incorporating different driving
modes for all velocities of freeway and city traffic. The distance s (bumper-to-
bumper) to the leading vehicle is given by s = xl −x− e, where xl and x are the
coordinates and e is the extent of vehicle. IDM also takes into account the veloc-
ity difference (approaching rate) to the leading vehicle, given by Δv = v − vl.
The IDM acceleration function is given by the Equations 1 and 2.

aIDM (s, v,Δv) = a

[

1 −
(

v

v0

)δ

−
(

s∗(v,Δv)
s

)2
]

(1)

s∗(v,Δv) = s0 + vT +
vΔv

2
√

ab
(2)

This expression combines the free-road acceleration strategy, given by:

afree(v) = a[1 − (v/v0)δ]

with a deceleration strategy, given by:

abrake(s, v,Δv) = −a(s∗/s)2

The deceleration strategy becomes relevant when the gap to the leading vehicle
is not significantly larger than the “desired (safe) gap”, given by s∗(v,Δv). The
free acceleration is denoted by the desired speed v0, the maximum acceleration is
a, and the exponent δ indicates how the acceleration decreases with velocity (δ =
1 corresponds to a linear decrease, while δ → ∞ denotes a constant acceleration).

The effective minimum gap s∗ is composed of the minimum distance s0 (which
is relevant for low velocities only), the velocity dependent distance vT , which
corresponds to following the leading vehicle with a constant desired time gap T,
and a dynamic contribution which is only active in non-stationary traffic corre-
sponding to situations in which Δv �= 0. This latter contribution implements an
“intelligent” driving behavior that, in normal situations, limits braking deceler-
ations to a comfortable deceleration b. In critical situations, however, the IDM
deceleration becomes significantly higher, making the IDM collision-free [24].
The IDM parameters v0, T, s0, a and b are shown in Table 1.

Calculating the acceleration at a time t, the new position and speed or decel-
eration distance can be given by traditional kinematics’ equations.

Table 1. Parameters of the Intelligent Driver Model. Adapted– [16].

Parameter Car Truck

Desired speed v0 120 km/h 85 km/h
Free acceleration exponent δ 4 4
Desired time gap T 1.5 2.0
Jam distance s0 2.0 4.0
Maximum acceleration a 1.4 m/s2 0.7 m/s2

Desired deceleration b 2.0 m/s2 2.0 m/s2

Changing threshold Δth 0.1 m/s2 0.1 m/s2
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2.2 Minimizing Overall Braking Induced by Lane Change

A general model to represent lane-changing rules was proposed by [9]. The model
is called Minimizing Overall Braking Induced by Lane Change (MOBIL). The
utility and risk associated of a given lane are determined in terms of longitudinal
accelerations calculated by microscopic car-following models as IDM. The previ-
ous vehicle deceleration in the target lane can not exceed a given safe limit bsafe.
Risk criterion prevents critical lane changes and collisions, while the incentive
criterion takes into account the advantages and disadvantages of other drivers
associated with a lane change via the “politeness factor” p.

A lane change is shown in Figure 1. The MOBIL model depends on the
two previous vehicles in the current and the target lanes, respectively. Thus,
for a vehicle c considering a lane change, the previous vehicles in the target
and current lanes are represented by n and o, respectively. The acceleration ac

denotes the acceleration of vehicle c on the current lane, and ãc refers to the
situation in the target lane, that is, to the new acceleration of vehicle c in the
target lane. Likewise, ão and ãn denote the acceleration of old and new previous
vehicles after the lane change of vehicle c [9].

Fig. 1. Mobil notations. Adapted from [9].

According to [9], the incentive criterion determines if the lane change is better
or not to a driver. In this model, the incentive is generalized to include the
immediately affected neighbors. The politeness factor p determines to which
degree these vehicles influence the lane- changing decision. Thus, the incentive
criterion is given by the Equation 3.

ãc − ac︸ ︷︷ ︸
driver

+p

⎛

⎝ ãn − an︸ ︷︷ ︸
new behind

+ ão − ao︸ ︷︷ ︸
old behind

⎞

⎠ > Δath (3)

The first two terms of the Equation 3 denote the advantage of a possible
lane change to the driver. The change is good if the driver can go faster in the
new lane. The third term denotes the total advantage of the two immediately
affected neighbors multiplied by the politeness factor p. The Δath term on the
right-hand side represents a certain inertia and prevents lane changes if the
overall advantage is only marginal compared with a “keep lane” directive.
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2.3 Framework for Realistic Vehicular Mobility Models

For the purpose of guiding the developers through various challenges and options
during the modeling, the authors of [13] propose a concept map for a compre-
hensible representation of a realistic vehicular mobility model. As can be seen
in Figure 2, the concept map is organized around two major modules, motion
constraints and the traffic generator. Additional modules such as time and
external influences are also required for a fine tuning of the mobility patterns.
The main modules (gray blocks) are implemented through several auxiliary mod-
ules (white ones), which are added according to the desired detail level. These
last ones can be more explored in the original work. The main modules descrip-
tion are as follows [13]:

Fig. 2. Concept map of realistic mobility models. Adapted from [13].

– Motion constraints describe the relative degree of freedom available for
each vehicle. Restrictions can be streets, buildings, vehicles and pedestrians.

– Traffic generator defines different kinds of vehicles, and handles their inter-
actions according to the environment under study. Macroscopically, it models
traffic densities, speeds and flows, while microscopically, it deals with proper-
ties such as the distance between cars, acceleration, braking, and overtaking.

– Time describes different mobility configurations for a specific time of the
day. Traffic density is not uniform during a day. Peak times, such as rush
hours or during special events, can be observed. This block influences the
motion constraints and the traffic generator functional blocks.

– External influences model the impact of a communication protocol or any
other source of information on the motion patterns. This block models the
impact of accidents, temporary road works, or real-time knowledge of the
traffic status on the motion constraints and the traffic generator blocks.
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3 Probabilistic Model Checking

Probabilistic model checking is a formal, exhaustive and automatic technique for
modeling and analyzing stochastic systems. PMC checks if the model satisfies a
set of properties given in special types of logics.

A stochastic system M is usually a Markov chain or a Markov decision
process. This means that the system must satisfy the Markov property, i.e., its
behavior depends only on its current state and not on the whole system history,
and each transition between states occurs in real-time.

Given a property φ expressed as a probabilistic temporal logic formula, PMC
attempts to check whether a model of a stochastic system M satisfies the prop-
erty φ with a probability p ≥ θ, for a probability threshold θ ∈ [0, 1].

Tools called model checkers such as PRISM [19] solve this problem. It requires
two inputs: a modeling description of the system, which defines its behavior
(for example, through the PRISM language), and a probabilistic temporal logic
specification of a set of desired properties (φ).

The model checker builds a representation of the system M , usually as a
graph-based data structure called Binary Decision Diagrams (BDDs), which can
be used to represent boolean functions. States represent possible configurations,
while transitions are changes from one configuration to another. Probabilities
are assigned to the transitions between states, representing rates of negative
exponential distributions.

Properties can be expressed quantitatively as “What is the shortest time
which occurs overtaking?” or qualitatively as “Is overtake maneuver successful?”,
offering valuable insight over the system behavior.

Let R≥0 be the set of positive reals and AP be a fixed, finite set of atomic
propositions used to label states with properties of interest. A labeled CTMC C
is a tuple (S, s̄, R, L) where:

– S is a finite set of states;
– s̄ ∈ S is the initial state;
– R : S × S → R≥0 is the transition rate matrix, which assigns rates between

each pair of states;
– L : S → 2AP is a labeling function which labels each state s ∈ S the set L(s)

of atomic propositions that are true in the state.

The probability of a transition between states s and s′ being triggered within t
time units is 1−e−R(s,s′)·t. The elapsed time in state s, before a transition occurs,
is exponentially distributed with the exit rate given by E(s) =

∑
s′∈S R(s, s′).

The probability of changing to state s′ is given by R(s,s′)
E(s) .

Properties are specified using the Continuous Stochastic Logic (CSL) [23],
which is based on the Computation Tree Logic (CTL) and the Probabilistic CTL
(PCTL). The syntax of CSL formulas is the following:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P�p[φ] | S�p[φ]
φ ::= X Φ | Φ UI Φ

where a is an atomic proposition, � ∈ {>, <, ≥, ≤}, p ∈ [0, 1] and I ∈ R≥0.
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There are two types of CSL properties: transient (P�p) and steady-state
(S�p). In this work we are interested in transient or time related properties.
A formula P�p [φ] states that the probability of the formula φ being satisfied
from a state respects the bound �p. Path formulas use the X (next) and the UI

(time-bounded until) operators. For example, formula XΦ is true if Φ is satisfied
in the next state.

This can be applied to check if a probability p is met for one property leading
to other, such as P�p[Φ1 => XΦ2], where Φ1 and Φ2 could be the properties
“car reaches twice the truck’s speed” and “car overtakes truck in 150 meters”.

PRISM allows including rewards in the model, which are structures used
to quantify states and transitions by associating real values to them. The state
rewards are counted proportionately to the elapsed time in the state, while tran-
sition rewards are counted each time the transition occurs. In PRISM, rewards
are described using the syntax:

rewards “reward name”
...

endrewards

Each reward is specified using the multiple reward commands syntax:

[sync] guard : reward ;

Reward commands describe state and transition rewards. The guard predicate
must be true. The sync is a label used to synchronize commands into a single
transition. The reward is an expression that counts for the reward.

Reward properties can be used in states and transitions, e.g. “What is the
expected reward (speed or throttle) for the car to travel 200 meters at time T?”.

This reward can be instantaneous, obtaining its value at the given time
through the property R=?[I=t], or accumulated, calculating its value until the
given time, using the property R=?[C<=t]. One can obtain the probability of a
state reward by dividing it to the sum of all state rewards. The same procedure
can be applied to transitions.

Rewards of paths in a Continuous-time Markov chain are summations of
state rewards along the path and transition rewards for each transition between
these states. State rewards are interpreted as the rate at which rewards are
accumulated, essentially counting them, i.e. if t time units are spent in a state
with state-reward r, the accumulated reward in that state is r × t.

Another interesting PRISM feature, when reporting the result of model
checking, is the ability to customize properties to obtain different results. This
is done using filters, which use the following syntax:

filter(op, prop, states);

PRISM usually has to compute values for all states simultaneously, thus a
specific point or all initial states can be selected. In the syntax, op is the filter
operator (e.g. max, min, avg), prop is any PRISM property and states is a
Boolean-valued expression identifying a set of initial states to apply the filter.
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4 Mobility VANET Model

Our model was created with a microscopic focus. The idea is to show the rep-
resentation of movement of nodes through the analytical Equations 1, 2 and 3,
previously described in Section 2.1. Signal propagation and communication have
been abstracted. Our microscopic model take into account position, speed, and
acceleration of the vehicles. For this, a overtaking vehicle scenario is implemented
using the PRISM language. This has been done to demonstrate the viability of
PMC usage to check microscopic aspects. Fragments of the models are presented
below and the complete version can be found in the supplementary material and
website [10].

Figure 3 illustrates the proposed scenario. There are three vehicles involved.
The car c1 will overtake the truck, called Leader, which travels slower. However,
the vehicle c2 is coming in the opposite direction. In this situation, c1 can not
see c2, due to weather conditions or lack of attention. This scenario will happen
in a 250 meters road. Thus, the model should answer questions such as “What
is the probability of a collision?”.

Fig. 3. Overtaking vehicle scenario

The Figure 6 depicts the c1’s variables (other vehicles are similar). Each
vehicle maintains its current position and velocity. The variable lane informs
where c1 is located. If the lane is equal to 1, then the vehicle is on right-hand side
(default value), otherwise the car is on left-hand side. In other words, the vehicle
is trying to overtake. The constants desired speed car, desired speed truck
and RS (road side) constrain the model and they are respectively represented in
m/s, m/s and m. The carCrash variable indicates whether c1 and c2 collided
at some point in time.

An interesting feature of the model is that it does not have a specific initial
state. This is achieved by the code shown in Figure 4. The restriction imple-
mented states that vehicles c1 and c2 in opposite directions are separated by RS
meters and that there is a leader (truck) between them, which will be overtaken
by c1. However, the leader position and the initial speed of all involved can
be a combination of values. This creates several scenarios to be automatically
explored. An interesting abstraction was adopted to c2’s position. It starts in
one, however, its real location on the road is given by RS − pos c2.
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Initialization of Variables

init
(pos_l >= truck_size + min_gap_car) & (pos_c1 = 1) & (pos_c2=1) &
(lane = ( (v_c1>pos_l) | (a_c1 <= 0) ? 2 : 1) ) &
(v_c1 >= 0 & v_c1 <= desired_speed_car) &
(v_c2 >= 0 & v_c2 <= desired_speed_car) &
(v_l >=0 & v_l <= desired_speed_truck) &
(carCrash = false)

endinit

Fig. 4. Initial states for the model

The vehicles position is given by x = xi + vt + (a/2)t2, implemented in the
PRISM language, which involves the initial position xi, velocity vt, acceleration
a, and time t. Each transition of the model represents a time period that is
defined by the constant t. The acceleration of the vehicles are calculated by
the IDM model previously presented in Section 2.1. The new speed is given by
v = vi+at and it also depends on the vehicle acceleration. The Figure 5 describes
a fragment of the model responsible for calculating the acceleration and position
of vehicle c1. The formulas are similar for other vehicles.

As mentioned in Section 2.1, the IDM expression combines the free-road
acceleration strategy, given by afree(v) = a[1 − (v/v0)δ], with a deceleration
strategy, given by abrake(s, v,Δv) = −a(s∗/s)2. Therefore, the Equation 1 has
been algebraically split during implementation, because the vehicles do not suf-
fer deceleration when there are no obstacles ahead. Thus, when the vehicle c1
overtakes the leader, c1 does not suffer slowdown, while the truck’s acceleration,
which used to have free way, starts to be influenced by the new c1’s position.

Acceleration and Position Formulas

formula a_c1_free = AM_car - AM_car * pow(v_c1 / desired_speed_car, exponent);
formula a_c1_obst = a_c1_free - a_brake_c1;
formula a_c1 = (overtook|lane=2?a_c1_free: (pos_l>=RS?a_c1_free:a_c1_obst));

formula a_brake_c1 = AM_car * pow(des_dyn_dis_c1 / deltaD_c1, 2);
formula des_dyn_dis_c1 = min_gap_car + max(0.0, v_c1 * T_car + (v_c1 * deltaV_c1) /

(2*pow(AM_car*BM_car,0.5) ));
formula deltaV_c1 = v_c1 - v_l;
//"max 1" to avoid division by zero
formula deltaD_c1 = max(pos_l - pos_c1 - truck_size,1);
formula muv_c1 = (v_c1 + ( a_c1*pow(time,2)) / 2) > 0 ?

(v_c1 + (a_c1*pow(time,2)) / 2) : (-1 * (v_c1 + (a_c1*pow(time,2)) / 2));

Fig. 5. IDM model implementation

PRISM model comprises a set of modules which represent different compo-
nents. The behavior of a module, i.e. the changes to its state that can occur, is
specified by a set of guarded commands. These take the form:

[sync]guard → rate : update;
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where act is an (optional) action label, guard is a predicate over the variables of
the model, rate is a (non-negative) real-valued expression and update is of the
form:

(x′
1 = u1)&(x′

2 = u2)& . . . &(x′
k = uk)

where x1;x2; . . . ;xk are local variables of the module and u1;u2; . . . ;uk are
expressions over all variables.

Intuitively, a command is enabled in a global state of the PRISM model if
the state satisfies the predicate guard. If a command is enabled, a transition that
updates the module’s variables according to update can occur with rate rate.

The modules Mod vC1 and Mod dC1 presented in Figure 6 are responsible for
the transitions in the model which assign a new position and speed to vehicle c1,
and also control the lane change of c1. If the vehicle is able to overtake accord-
ing to the conditions presented by MOBIL model (refer to Subsection 2.2), the
vehicle change to the left lane. If c1 is on the left lane and already overtook
the leader, then c1 returns to the default lane. These modules are synchronized
by label “m”, which is placed inside the square brackets. The Mod dC1 is also
responsible for detecting a crash, which happens when c1 and c2 are in the
same lane and their coordinates are overlaid or the deceleration calculated by
the Torricelle equation (v2 = v2

i + 2aΔx) is unfeasible to be executed in a nor-
mal situation. The modules for the other vehicles involved are similar, although
simpler because they just move forwards without overtake maneuvers.

Modules proposed

module Mod_vC1
v_c1 : [0..desired_speed_car]; // speed

[m] (pos_c1 <= RS) & (v_c1 <= desired_speed_car) ->
(v_c1’ = min(max(ceil(v_c1 + a_c1)*time,0),desired_speed_car));

endmodule

module Mod_dC1
pos_c1 : [1..RS]; // position
lane : [1..2]; //lane’s c1 (1 - right lane, 2 - left lane)
carCrash : bool;

[m] (pos_c1 <= RS) -> (pos_c1’ = min( (ceil(pos_c1 + muv_c1)),RS) ) &
(lane’ = ((lane = 2)&(pos_c1 >= (pos_l+min_gap_car+car_size)))?1:

((lane = 1)&(can_change_lane))?2:lane) &
(carCrash’= ((CanotDecelaration | OverlapPosition) &

(lane=2) & (carCrash=false) ) ?true:false);
endmodule

Fig. 6. Modules implementation

5 Results

Finally, the model built using the PRISM language can be verified. The idea is
to check the correctness of IDM code and analyze different situations about the
modeled scenario. The experiments have been performed in an Intel(R) Xeon(R)
CPU X3323 , 2.50 GHz which has 16 GB of RAM memory. The model presented



124 B. Ferreira et al.

has 386 243 states, 386 243 transitions and 38 400 initial states. For some prop-
erties we have varied the number of initial states through filters. The longest
time to build the model was 2 360.838 s. The longest time to check a property
was for Property 8 of Figure 11, taking 5.418 s.

In order to analyze some situations about the scenario, several interesting
questions can be made. For example, the first property (Figure 7) checks the
probability of a car-crash. The result was: [0.0, 1.0] for a range of values
over initial states. The answer shows that there are situations without accident,
however there are cases of car-crash.

The third property (Figure 7) checks the average probability of an accident
taking into account all initial states. Thus, this scenario has a 98% chance of
collision. The fourth property only confirms the results of these two previously
mentioned properties. It is a non-probabilistic query and the result was true for
the question “Are there situations without accidents?”. The E (Exists) operator
asks whether some path from a state satisfies a particular path formula. If the
result is true, a witness will be generated. In this case, it was provided the
following counter-example: (0, 0, 0, 1, 1, false, 1, 19), which represents
the initial state with values for the respective variables v c1, v c2, v l, pos c1,
lane, carCrash, pos c2 and pos l.

The second property shows another analysis, having calculated the result
[0.0,1.0] considering the range of values over initial states for the question “Is
it possible to finish the scenario without overtake?”, in other words, the leader
reaches the finish before c1. Thus, there are cases with and without overtake.

Car-crash Scenario Properties

(1) P=? [ F (carCrash=true) ]
What is the probability of an accident occurs?

(2) P=? [ ((pos_c1<RS & carCrash=false) U (pos_l>=RS & carCrash=false))]
What is the probability of not occurring overtakes in this scenario?

(3) filter(avg, P=? [ F carCrash=true ], "init")
What is the average probability of an accident occurs?

(4) E [ F (carCrash=false) ]
Is there, at least, one path which does not lead to the accident?

Fig. 7. Properties of Overtake Maneuver

As we have mentioned above, the operator E generates a counter-example
(a path reaching the “goal” state). Using this witness, for instance in Property
4, we can analyze in detail the situation of accidents in the scenario. Since we
have included rewards in our model, we are able to quantify the speed, accelera-
tion and movement over time using the I (instant) operator. Some implemented
rewards and properties are shown in Figure 8, the latter using the filter com-
mand to check specifically the counterexample available. The operator R is the
responsible to get the reward values.
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Movement and
Lane Rewards

rewards "dLeader"
true : pos_l;

endrewards

rewards "dCar"
true : pos_c1;

endrewards

rewards "dCarOpposite"
true : pos_c2;

endrewards

rewards "laneCar"
true : lane;

endrewards

Movement and Lane Quantitative Properties

(5) filter(max, R{"dCar"}=? [ I=T ],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c1 on
the road at time T?

(6) filter(max,R{"laneCar"}=? [ I=T ],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected lane reward for the vehicle c1 on the
road at time T?

(7) filter(max,RS-R{"dCarOpposite"}=? [I=T],
(pos_l=50)&(pos_c1=1)&(pos_c2=1)\&(lane=1)&
(v_c1=0)\&(v_c2=0)\&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c2 on
the road at time T? (With different initial conditions)

Fig. 8. Movement and Lane Rewards, and Quantitative Properties

9.1 Motion in a normal overtake 9.2 Motion with accident

Fig. 9. Scenario analysis

Figure 9 shows the result of analysis, showing the position of the three vehicles
over time. The red line varies between 10 and 20 and it represents the lane of the
vehicle car1 during overtaking. The first value means that car1 is in the default
lane (right lane), the value 20 means that the vehicle is traveling in the left lane
to overtake. The Figure 9.1 shows the behavior of vehicles without collision. Note
that car1 overcomes the leader at the instant 7.5 and when the positions of car1
and car2 overlap, the first car already returned to the right lane. However, in
the Figure 9.2 can be seen that the positions overlap at time 10 and car1 is in
the left lane, meaning that there was a collision.

Figure 10 shows the evolution of the acceleration and velocity of car1 and
leader (truck) in the scenario of overtaking without collision. Speeds rise accord-
ing to acceleration until reaching the maximum limit of the road. As the acceler-
ation and the speed limit are lower, the car can overtake easier. It is interesting
to note that the acceleration modeled with IDM is affected by lane change of
car1. Right at the instant 2, the acceleration of the car1 rises abruptly, because
in this moment, the driver concludes to be more advantageous changing to the
left lane, instead of maintaining in its lane. As the car1 is reaching the desired
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speed, the acceleration is decreasing, which happens linearly. The truck also
reduces the acceleration linearly as the desired speed is reached. At time 8, the
deceleration is slightly more accentuated due to the entrance of the car1 on the
default lane, as soon as the overtaking is completed.

10.1 Acceleration evolution 10.2 Speed evolution

Fig. 10. Analysis in a free car-crash overtake

Analysis regarding to the time spent during overtake or going through the
entire route for each vehicle can also be computed. The Figure 11 shows two
examples of this type of verification. These properties use the reward “step”,
responsible for providing the value 1 for each change of state in the model, which
is equivalent to 1 second in a real scenario. These properties use the operator
F (reachability), which is associated with the reward “step”. According to [18],
the reward property “F prop” corresponds to the reward accumulated along a
path until a satisfactory state is reached. In the case, where the probability of
reaching a state satisfying prop is less than 1, the reward is equal to infinity.

Time Reward

rewards "steps"
true : 1;

endrewards

Time Properties

(8) filter(print, R{"steps"}=? [ F carCrash=true ], ‘init’)
The lowest/highest time to c1 collide during its journey.

(9) filter(print, R{"steps"}=? [ F carCrash=false &
pos_c1=RS ], ‘init’)

The max/min time to c1 completes the path without
collision.

Fig. 11. Time Rewards and Properties

Property 8 calculates the overtake time, which results in a possible colli-
sion for all initial states, thus the presented result was a value range of [8.0,
infinity] seconds. The infinity value represents the initial states without col-
lision, i.e. initial states that have probability less than 1. Therefore, to find the
maximum time limit for the collision it is enough to analyze the PRISM output
log file which will have the travel time for all initial states and their successors,
which is available due to the parameter “print” in the filter command.

The range of minimum and maximum time of collision is [8.0, 11.0], i.e.
the shortest time of an accident is 8 seconds and the greatest time is at instant
11. Thus, they can be simulated, respectively with the following initial states
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(1, 6, 1, 2, 2, false, 6, 20) and (0, 0, 1, 1, 1, false, 1, 19), for
the following variable v c1, v c2, v l, pos c1, lane, carCrash, pos c2 and
pos l.

In a similar way, the Property 9 calculates the minimum and maximum time
of a successful overtake. This also takes into account all possible initial states.
Thus, the range of values presented were between [13.0, Infinity] seconds.
Again, for all initial states which the probability of F to be satisfied is less than
1, it is assigned the infinity value. Thus, analyzing the PRISM log file, we can
identify the new range of values, and the infinity value is [13.0, 16.00]. Their
respectively counter-examples are (4, 0, 0, 1, 1, false, 1, 40) and (0,
0, 0, 1, 1, false, 1, 19), for the same variables presented in Property 8.

6 Conclusions

It is essential to test and analyze VANETs in order to prevent loss of life. Simu-
lations are used to check protocols and applications, however, they have to deal
with two unconnected worlds – network and traffic – which must work together.
In this context, there are challenges that must be addressed by the academic
community. A complementary tool to simulations is model checking, a technique
that automatically and exhaustively explores a model. However, researchers can
use simulation to large-scale analysis and model checking to test thoroughly in
a smaller proportion. Thus, they can supply solutions to known problems for
simulations and model checking, such as determining exact probabilities and
avoiding the state explosion, respectively.

In this article we have presented the formal modeling and analysis of mobility
models using probabilistic model checking to represent an overtake situation. A
microscopic vision was presented to provide a detailed analysis. This was possible
using analytical formulas to represent position, speed, and acceleration. The
model shows that there is a huge chance of an accident (98% in some scenarios),
however there are situations without collision.

In general, during implementation we have noticed some limitations in the
PRISM language, e.g., the absence of some mathematical functions, the lack of
subroutine (function and procedure) and formal parameters. This fact impairs
the legibility of the model and makes difficult to implement and maintain the
models. However, the IDM and MOBIL models can be perfectly implemented
and used in PRISM.

The implementation of motion provides important information such as instan-
taneous speed, acceleration and position through rewards, besides answering
questions regarding the probability of events. Our model follows the framework
shown in Figure 2, presenting smooth motion and human driving patterns, fur-
thermore following speed constraints and considering obstacles. All of this is
provided by IDM and the MOBIL.

The motion patterns are not considered because we are analyzing specific
situations instead of a large flow of vehicles. Furthermore, the mobility modules
can be easily coupled with network protocols. In addition, the modeling is easily
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adaptable under various situations, such as multilane highway or an intersection.
For example, to implement a curve road with a higher abstraction level, it is
simply necessary to change the limited speed to a value less than a straight
road, thus vehicles will reduce the speed while they are crossing a curve.

Future Works: explore more mobility scenarios following the concepts and
examples presented here and couple them with models that represent commu-
nication and signal propagation using a probabilistic method, such as [5], thus,
making it possible to do a complete analysis of the VANET in a stochastic way.
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Abstract. This paper introduces a method to build dynamic logics with
a graded semantics. The construction is parametrized by a structure to
support both the spaces of truth and of the domain of computations.
Possible instantiations of the method range from classical (assertional)
dynamic logic to less common graded logics suitable to deal with pro-
grams whose transitional semantics exhibits fuzzy or weighted behaviour.
This leads to the systematic derivation of program logics tailored to spe-
cific program classes.

1 Introduction

Propositions, capturing static properties of program states, and events, or actions,
which are responsible for transitions from a state to another, are the key ingredi-
ents in modelling and reasoning about state-based software systems. The latter
are typically combined through a Kleene algebra to express sequential, non deter-
ministic, iterative behaviour of systems, while the former brings to the scene a
logical structure.

Dynamic logic [6], a generalisation of the logic of Floyd-Hoare, is a well known
and particularly powerful way of combining these two dimensions into a formal
framework to reason about computational systems. Its potential stems from
blending together classical logic, enriched with a modal dimension to express
system’s dynamics, and a (Kleene) algebra of actions to structure programs.

Over time dynamic logic grew to an entire family of logics increasingly pop-
ular in the verification of computational systems, and able to evolve and adapt
to new, and complex validation challenges. One could mention its role in model
validation (as in e.g. [10]), or the whole family of variants tailored to specific
programming languages (as in e.g. [1,11]), or its important extensions to new
computing domains, namely probabilistic [8] or continuous [13,14].

The latter is particularly relevant from an Engineering point of view: Actu-
ally, Platzer’s hybrid dynamic logic, and its associated tool, KeYmaera, com-
bining an algebra of actions based on real numbers assignments with the standard
Kleene operators and differential equations to specify continuous transitions from
the “real” (physical) world, provides a powerful framework for the design and
validation of cyber-physical systems with increased industrial relevance.
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 130–145, 2015.
DOI: 10.1007/978-3-319-15075-8 9
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If cyber-physical systems gives rise to the need for ways of dealing with
continuous state spaces, in a number of other cases dealing with some form of
“quantitative” transitions (weighted, probabilistic, etc) is also a must. Hence the
quest for dynamic logics able to capture smoothly these kind of phenomena is
becoming more and more important.

This paper intends to contribute in this path. In particular, our attention
is focussed on graded logics [4,16], in the broad sense of attaching partially
ordered grades to logical formulas to express, in one way or another, uncertain
information. In this broad sense, fuzzy [5], probabilistic [12] or weighted logics
[2] may be brought into the picture.

In this context, the purpose of this work is the development of a generic
method to construct graded dynamic logics. Technically, the definition of these
logics is parametrized by (a specific kind of) an action lattice [7] which combines
(a slight generalisation of) a Kleene algebra with a residuated lattice structure.
The latter captures the graded logic dimension and fits nicely with our objectives.
Moreover, the extension of Kleene algebras with residuation operators, providing
weak right and left inverses to sequential composition as in [15], as well as with
a lattice structure leads to a finitely-based equational variety which, as plain
Kleene algebras, is closed under the formation of square matrices [9].

The relevance of this closure property lies in the fact that several problems
modelled as (weighted) transition systems can be formulated as matrices over a
Kleene algebra or a related structure. Following such a trend, we represent pro-
grams as matrices supporting the information about their effects when executed
from each state in the state space. The interested reader is referred to [3] for a
detailed discussion on the relationship between Kleene algebras, action algebras
and action lattices.

The remaining of this paper is organised as follows. Section 2 recalls from
[7] the definition of an action lattice and introduces a method, parametric on
such a lattice, to generate graded dynamic logics. The construction put for-
ward is illustrated with several examples. Then, in Section 3, it is shown that
the resulting logic is a dynamic logic indeed, in the sense that all the rules of
propositional dynamic logic restricted to positive-existential formulas still hold.
Finally, Section 4 concludes and suggests points for future research.

2 The Method

This section introduces a generic method to generate graded dynamic logics para-
metric on a complete action lattice which captures both the structure of the
computational domain and that of the (logical) truth space.

Let us start by recalling from [7] the following definition:

Definition 1. An action lattice is a tuple

A = (A,+, ; , 0, 1, ∗,←,→, ·)
where, for A is a set, 0 and 1 are constants and +, ; , ∗,←,→ and · are binary
operations in A satisfying the axioms in Figure 1, where the relation ≤ is the
one induced by + as a ≤ b iff a + b = b.
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a + (b + c) = (a + b) + c (1)
a + b = b + a (2)
a + a = a (3)
a + 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)
a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)
(a + b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)
1 + a + (a∗; a∗) ≤ a∗ (10)

a; x ≤ x ⇒ a∗; x ≤ x (11)
x; a ≤ x ⇒ x; a∗ ≤ x (12)
a; x ≤ b ⇔ x ≤ a → b (13)
x; a ≤ b ⇔ x ≤ a ← b (14)

(x → x)∗ = x → x (15)
(x ← x)∗ = x ← x (16)
a · (b · c) = (a · b) · c (17)

a · b = b · a (18)
a · a = a (19)

a + (a · b) = a (20)
a · (a + b) = a (21)

Fig. 1. Axiomatisation of action lattices (from [7])

An action lattice is said to be complete when there are both a supremum and
an infimum, wrt ≤, of all subsets of A. Therefore, complete action lattices have
biggest and smallest elements denoted in the sequel by � and ⊥, respectively.
Note that in any action lattice ⊥ = 0, since for any a ∈ A, a+0 = a, i.e., 0 ≤ a. In
this paper we resort to notation

∑
for the iterated version of the (join) operator

+, and to notation
∏

for the iterated version of the (meet) operator ·.
The starting point for the method proposed here is thus the choice of an

appropriate action lattice

A = (A,+, ; , 0, 1, ∗,←,→, ·)
Additionally, we require A to satisfy the following distributive law:

a; (b · c) = a; b · a; c (22)

As mentioned above, this structure supports both the computational parad-
igm (to distinguish between e.g. imperative, deterministic or non deterministic
computations, or between plain or weighted transitions) and the truth space
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(to capture e.g. the standard Boolean reasoning or more complex truth spaces).
Before proceeding let us exemplify this structure with a couple of action lattices
typically found in Computer Science applications. In the examples, the logic
generated by an action lattice A will be denoted by GDL(A).

Example 1 (GDL(2) — the standard propositional dynamic logic). Standard
propositional dynamic logic is generated from the following structure

2 = ({�,⊥},∨,∧,⊥,�, ∗,←,→,∧)

with the standard boolean connectives:

∨ ⊥ �
⊥ ⊥ �
� � �

∧ ⊥ �
⊥ ⊥ ⊥
� ⊥ �

→ ⊥ �
⊥ � �
� ⊥ �

∗
⊥ �
� �

and taking a ← b = b → a. It is not difficult to see that 2 is an action algebra.
Moreover, the lattice is obviously complete and it satisfies the condition (22)
(note that both composition and the meet operator are realized by ∧).

Example 2 (GDL(3) — a dynamic logic to deal with unknown data). This is
a three-valued logic, with an explicit representative for unknown, or uncertain
information. Note that the three elements linear lattice induces an action lattice

3 = ({�, u,⊥},∨,∧,⊥,�, ∗,←, ,→,∧)

where

∨ ⊥ u �
⊥ ⊥ u �
u u u �
� � � �

∧ ⊥ u �
⊥ ⊥ ⊥ ⊥
u ⊥ u u
� ⊥ u �

→ ⊥ u �
⊥ � � �
u u � �
� ⊥ u �

∗
⊥ �
u �
� �

and taking a ← b = b → a. It is easy to see all the conditions in Definition 1
hold. Moreover, the lattice is complete and satisfies condition (22). The reader
should note that both composition and meet are realized by ∧).

Example 3 (GDL(�L) — a dynamic logic to deal with continuous levels of fuzzi-
ness).

This is based on the well-known �Lukasiewicz arithmetic lattice

�L = ([0, 1],max,min, 0, 1, ∗, → , ← , min)

where

– x → y = min{1, 1 − x + y},
– x ← y = 1 − max{0, x + y − 1)} and
– ∗ maps each point of [0, 1] to 1.

Again, this defines a complete action lattice which additionally satisfies condition
(22). Note that both composition and the meet operator are now represented by
function min.
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Example 4 (GDL(FW) – a dynamic logic to deal with resource consuming sys-
tems). This example explores the so called Floyd-Warshall algebra which con-
sists of a tuple N

+
⊥� = ({⊥, 0, 1, . . . ,�},max,+,⊥, 0, ∗, � , � , min) where

+ extends the addition on N by considering ⊥ as its absorbent element and
a + � = � = � + a for any a �= ⊥. The operation max (and min) are defined as
the maximum (minimum) under the order ⊥ ≤ 0 ≤ · · · ≤ �. The operation �
is the truncated subtraction

a � b =

⎧
⎪⎨

⎪⎩

b − a, if b ≥ a and a, b ∈ N

� if a = � and b ∈ N

0 otherwise

and, for any natural i > 0,

∗
⊥ 0
0 0
i �
� �

Note that the order induced by a ≤ b iff max{a, b} = b corresponds to the
mentioned above. The lattice is also complete and it satisfies condition (22)
because a + min{b, c} = min{a + b, a + c}.

Illustrated the notion of an action lattice, we are now prepared to introduce
the general construction of graded dynamic logics. We consider now its signa-
tures, formulæ, semantics and satisfaction. Thus,

Signatures. Signatures of GDL(A) are pairs (Π,Prop) corresponding to the
denotations of atomic computations and of propositions, respectively.

Formulæ. A core ingredient of any dynamic logic is its set of programs. There-
fore, let us denote the set of atomic programs by Π. The set of Π-programs,
denoted by Prg(Π), consists of all expressions generated by

π  π0 |π;π |π + π |π∗

for π0 ∈ Π. Given a signature (Π,Prop), we define the GDL(A)-formulas for
(Π,Prop), denoted by FmGDL(A)(Π,Prop), by the grammar

ρ  � |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ → ρ | 〈π〉ρ
for p ∈ Prop and π ∈ Prg(Π). Note that this corresponds to the positive exis-
tential fragment of the propositional dynamic logic.

Semantics. The first step is to introduce the space where the computations of
GDL(A) are to be interpreted. As usual, this corresponds to a Kleene algebra.
Therefore, we consider the structure

Mn(A) = (Mn(A),+, ;,0,1,*)

defined as follows:
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1. Mn(A) is the space of (n × n)-matrices over A
2. for any A,B ∈ Mn(A), define M = A+B by Mi,j = Ai,j + Bi,j , i, j ≤ n.
3. for any A,B ∈ Mn(A), define M = A ; B by taking Mi,j =

∑n
k=1(Ai,k;Bk,j)

for any i, j ≤ n.
4. 1 and 0 are the (n × n)-matrices defined by 1i,j = 1 and 0i,j = 0, for any

i, j ≤ n.

5. for any M =
[

A B
C D

]

∈ Mn(A), where A and D are square matrices, we take

M* =
[

F * F * ;B ;D*

C D*+D* ;C ;F * ;B ;D*

]

where F = A + B ;D* ;C. Note that this construction is recursively defined
from the base case (where n = 2) where the operations of the base action
lattice A are used.

Finally, we have to show that,

Theorem 1. The structure Mn(A) = (Mn(A),+, ;,0,1, ∗) defined above is a
Kleene algebra.

Proof. The structure, and the respective operations, corresponds to the algebra
of matrices over (A,+, ; , 0, 1, ∗), i.e., the Kleene algebra underlying action lattice
A. A canonical result establishes that Kleene algebras are closed under formation
of matrices (e.g. [9]). Therefore, Mn(A) constitutes a Kleene algebra. �

GDL(A)-models for a set of propositions Prop and programs Π, denoted by
ModGDL(A)(Π,Prop), consists of tuples

A = (W,V, (Aπ)π∈Π)

where

– W is a finite set (of states),
– V : Prop × W → A is a function,
– and Aπ ∈ Mn(A), with n standing for the cardinality of W .

The interpretation of programs in these models is made by matrices over the
Kleene algebra of A. Each matrix represents the effect of a program executing
from any point of the model. Formally, the interpretation of a program π ∈
Prg(Π) in a model A ∈ ModGDL(A)(Π,Prop) is recursively defined, from the
atomic programs (Aπ)π∈Π , as follows:

– Aπ;π′ = Aπ ;Aπ′

– Aπ+π′ = Aπ +Aπ′

– Aπ∗ = A*
π
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Observe that the set of states W supports the index system of the programs
(adjacency) matrices. In this context, it is important to note, that, for example,

(Mπ;π′)ij =
n∑

k=1

{(Mπ)ik; (Mπ′)kj}

corresponds to

Mπ;π′(w,w′) =
∑

w′′∈W

{(Mπ)(w,w′′);Mπ′(w′′, w′)}

where i and j stands for the adjacency index of w and w′, respectively. Actually,
the latter characterisation is often used in the sequel.

Example 5 (Computations spaces)
Let us fix an action lattice A = (A,+, ; , 0, 1, ∗,←,→, ·) and a signature

({π, π′}, {p}). Then, consider a model A = (W,V, (Aπ)π∈Π), with W = {s1, s2}
and the following atomic programs

Aπ =
[⊥ q12

⊥ q22

]

Aπ′ =
[⊥ q′

12

⊥ ⊥
]

which can be represented by the following labelled transition systems:

�������	s1 q12
�� �������	s2

q22

��
�������	s1

q′
12

�� �������	s2

Let us suppose that A is realized by

2 = ({�,⊥},∨,∧,⊥,�, ∗,←,→,∧)

Making q12 = q22 = q′
1,2 = � we get the standard adjacency matrices of the

graph underlying the transition systems. In this case, we interpret choice π + π′

and composition π;π′ by

Aπ+π′ = Aπ+Aπ′ =
[⊥ �

⊥ �
]

+
[⊥ �

⊥ ⊥
]

=
[⊥ ∨ ⊥ � ∨ �

⊥ ∨ ⊥ � ∨ ⊥
]

=
[⊥ �

⊥ �
]

The interpretation of the composition π;π′ is computed as follows,

Aπ;π′ =
[⊥ �

⊥ �
]

;
[⊥ �

⊥ ⊥
]

=
[

(⊥ ∧ ⊥) ∨ (� ∧ ⊥) (⊥ ∧ �) ∨ (� ∧ ⊥)
(⊥ ∧ ⊥) ∨ (� ∧ ⊥) (⊥ ∧ �) ∨ (� ∧ ⊥)

]

=
[⊥ ⊥

⊥ ⊥
]

As expected,

Aπ′;π =
[⊥ �

⊥ ⊥
]
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For the interpretation of the π closure, we have

Aπ* = (Aπ)*
[⊥ �

⊥ �
]*

=
[

f∗ f∗ ∧ � ∧ �∗

⊥ �∗ ∨ (�∗ ∧ ⊥ ∧ � ∧ �)

]

where f = ⊥ ∨ (� ∧ �∗ ∧ ⊥) = ⊥, hence

Aπ∗ =
[� �

⊥ �
]

as expected.
Taking the same matrix in the case of

3 = ({�, u,⊥},∨,∧,⊥,�, ∗,←,→,∧)

and considering q12 = q22 = � and q′
12 = u, let us compute composition

Aπ′;π =
[⊥ u

⊥ ⊥
]

;
[⊥ �

⊥ �
]

=
[

(⊥ ∧ ⊥) ∨ (u ∧ ⊥) (⊥ ∧ �) ∨ (u ∧ �)
(⊥ ∧ ⊥) ∨ (⊥ ∧ ⊥) (⊥ ∧ �) ∨ (⊥ ∧ �)

]

=
[⊥ u

⊥ ⊥
]

As expected, the unknown factor affecting transition s1 → s2 in A′
π is propagated

to transition s2 → s2 in Aπ′;π.
If a continuous space is required to define the “unknown metric”, one may

resort to the �Lukasiewicz arithmetic lattice

�L = ([0, 1],max,min, 0, 1, ∗, → , ← , min)

Consider, for instance, q12 = a, q22 = b and q′
12 = c for some a, b, c ∈ [0, 1]. In

this case we may, for example, compute choice π + π′, making

Aπ+π′ =
[

0 a
0 b

]

+
[

0 c
0 0

]

=
[

max{0, 0} max{a, c}
max{0, 0} max{b, 0}

]

=
[

0 max{a, c}
0 b

]

The reader may check that

Aπ∗ =
[

1 a
0 1

]

Note that the certainty value 1 in the diagonal of the matrix stands for the
reflexive dimension of the reflexive-transitive closure ∗.

Let us now consider the action lattice

N
+
⊥� = ({⊥, 0, 1, . . . ,�},max,+,⊥, 0, ∗, � , � , min)

As stated above, the structure N
+
⊥� is suitable to reason about resource con-

suming systems. The value of a transition is � when it costs an infinite amount
of resources; it is ⊥ when undefined. The composition of actions reflects the
accumulation of sequential costs. For instance Aπ′;π =
[⊥ c

⊥ ⊥
]

;
[⊥ a

⊥ b

]

=
[

max{⊥ + ⊥, c + ⊥} max{⊥ + a, c + b}
max{⊥ + ⊥,⊥ + ⊥} max{⊥ + a,⊥ + b}

]

=
[⊥ c + b

⊥ ⊥
]
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Moreover, the interpretation of a program π + π′ reflects, in each transition the
most expensive choice:

Aπ′+π =
[⊥ c

⊥ ⊥
]

+
[⊥ a

⊥ b

]

=
[

max{⊥,⊥} max{c, a}
max{⊥,⊥} max{⊥, b}

]

=
[⊥ max{c, a}

⊥ b

]

Finally, observe the interpretation of the closure of π

Aπ∗ =
[⊥ a

⊥ b

]

=
[

f∗ f∗ + a + b∗

⊥ max{b∗, b∗ + ⊥ + ⊥∗ + a + b∗}
]

=
[

0 a + b∗

⊥ b∗

]

where f = max{⊥, a + b∗ + ⊥}. Note that for any b > 0, the matrix assumes[
0 �
⊥ �

]

which reflects the cost of an undetermined repetition of transition s2 →

s2. Naturally, when the cost of the action is 0, we have
[

0 a
⊥ 0

]

.

Satisfaction. Finally, let us define the (graded) satisfaction relation. As men-
tioned above, the carrier of A corresponds to the space of truth degrees for
GDL(A). Hence, the graded satisfaction relation for a model
A ∈ ModGDL(A)(Π,Prop) consists of a function

|=: W × FmGDL(A)(Π,Prop) → A

recursively defined as follows:

– (w |= �) = �
– (w |= ⊥) = ⊥
– (w |= p) = V (p,w), for any p ∈ Prop
– (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)
– (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)
– (w |= ρ → ρ′) = (w |= ρ) → (w |= ρ′)
– (w |= 〈π〉ρ) =

∑
w′∈W {Aπ(w,w′); (w′ |= ρ)}

Example 6. In order to make a case for the versatility and generality of this
method, let us consider the evaluation of the very simple sentence 〈π∗〉p in three
of the dynamic logics constructed in the examples above. Concretely, let us
evaluate 〈π∗〉p in state s1. For this we calculate

(s1 |= 〈π∗〉p) =
∑

w′∈W

{Aπ∗(s1, w′); (w′ |= p)}

Starting with GDL(2), let us assume V (p, s1) = ⊥ and V (p, s2) = �. In this
case, as expected

(s1 |= 〈π∗〉p) =
∑

w′∈W {Aπ∗(s1, w′); (w′ |= p)}
=

(Aπ∗(s1, s1) ∧ (s1 |= p)
) ∨ (Aπ∗(s1, s2) ∧ (s2 |= p)

)

= (� ∧ V (p, s1)) ∨ (� ∧ V (p, s2))
= (� ∧ ⊥) ∨ (� ∧ �)
= �
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This means that we can achieve p from s1 through π∗.
Considering the GDL(�L) and assuming V (s1, p) = 0 and V (s2, p) = 1, we

may calculate
(s1 |= 〈π∗〉p) =

∑
w′∈W {Aπ∗(s1, w′); (w′ |= p)

}

= max
{
min{Aπ∗(s1, s1), (s1 |= p)},

min{Aπ∗(s1, s2), (s2 |= p)}}
= max

{
min{1, 0},min{a, 1}}

= max{0, a}
= a

Therefore, we can assure, with a degree of certainty a, that we can achieve p
from s1 through π∗.

Interpreting now the same sentence in logic GDL(N+
⊥�), assuming that

V (s1, p) = ⊥ and V (s2, p) = 0, we get
(s1 |= 〈π∗〉p) =

∑
w′∈W {Aπ∗(s1, w′); (w′ |= p)

}

= max
{Aπ∗(s1, s1) + (s1 |= p),Aπ∗(s1, s2) + (s2 |= p)

}

= max{0 + ⊥, a + b∗ + 0}
= a + b∗

Hence, we can say that p can be accessed from s1 through π∗ consuming a + b∗

resources unities.

3 “Dynamisations” Are Dynamic

Having introduced a generic method for generating dynamic logics, this section
establishes that the resulting logics behave, in fact, as dynamic logics. In par-
ticular, all the axioms of the propositional dynamic logic involving positive-
existential formulas (see [6]) remain sound in this generic construction.

In the context of graded satisfaction, the verification that a property ρ is valid
corresponds to the verification that, for any state w of any model A, (w |= ρ) = �.
Hence, by (13) and (14), we have that asserting (ρ ↔ ρ′) = � is equivalent to
prove that, for any w ∈ W , (w |= ρ) = (w |= ρ′); and to proof (ρ → ρ′) = � is
equivalent to proof that (w |= ρ) ≤ (w |= ρ′).

Lemma 1. The following are valid formulas in any GDL(A):

(1.1) 〈π〉(ρ ∨ ρ′) ↔ 〈π〉(ρ) ∨ 〈π〉ρ′

(1.2) 〈π〉(ρ ∧ ρ′) → 〈π〉(ρ) ∧ 〈π〉ρ′

Proof. Axiom (1.1)

(w |= 〈π〉(ρ ∨ ρ′))

= { defn of |=}
∑

w′∈W

{Aπ(w,w′); (w′ |= ρ ∨ ρ′)}

= { defn. of |=}
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∑

w′∈W

{(Aπ(w,w′);
(
(w′ |= ρ) + (w′ |= ρ′)

)}

= { (7)}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ) + (Aπ(w,w′); (w′ |= ρ′))}

= { supremum properties}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ)} +
∑

w′∈W

{Aπ(w,w′); (w′ |= ρ′))}

= { defn of |=}
(w |= 〈π〉ρ) + (w |= 〈π〉ρ)

= { defn of |=}
(w |= 〈π〉ρ ∨ 〈π〉ρ)

Therefore 〈π〉(ρ ∨ ρ′) ↔ 〈π〉ρ ∨ 〈π〉ρ is valid.
Axiom (1.2)

(w |= 〈π〉(ρ ∧ ρ′))

= { defn of |=}
∑

w′∈W

{Aπ(w,w′); (w′ |= ρ ∧ ρ′)}

= { defn. of |=}
∑

w′∈W

{(Aπ(w,w′);
(
(w′ |= ρ) · (w′ |= ρ′)

)}

= { (22)}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ) · (Aπ(w,w′); (w′ |= ρ′))}

≤ { infimum properties}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ)} ·
∑

w′∈W

{Aπ(w,w′); (w′ |= ρ′))}

= { defn of |=}
(w |= 〈π〉ρ) · (w |= 〈π〉ρ′)

= { defn of |=}
(w |= 〈π〉ρ ∧ 〈π〉ρ′)

Therefore, 〈π〉(ρ ∧ ρ′) → 〈π〉ρ ∧ 〈π〉ρ′ is valid.
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Lemma 2. The following are valid formulas in any GDL(A):

(2.1) 〈π + π′〉ρ ↔ 〈π〉ρ ∨ 〈π〉ρ
(2.2) 〈π;π′〉ρ ↔ 〈π〉〈π′〉ρ
(2.3) 〈π〉⊥ ↔ ⊥
Proof. Axiom (2.1)

(w |= 〈π + π′〉ρ)

= { defn of |=}
∑

w′∈W

{Aπ+π′(w,w′); (w′ |= ρ)}

= { defn of programs interpretation}
∑

w′∈W

{(Aπ(w,w′) + Aπ′(w,w′)); (w′ |= ρ)}

= { (7)}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ) + Aπ′(w,w′); (w′ |= ρ))}

= { lattice distributivity}
∑

w′∈W

{(Aπ(w,w′); (w′ |= ρ)} +
∑

w′∈W

{Aπ′(w,w′); (w′ |= ρ))}

= { defn of |=}
(w |= 〈π〉ρ) + (w |= 〈π′〉ρ)

= { defn of |=}
(w |= 〈π〉ρ ∨ 〈π′〉ρ)

Therefore 〈π + π′〉ρ ↔ 〈π〉ρ ∨ 〈π′〉ρ is valid.
Axiom (2.2)

(w |= 〈π〉〈π′〉ρ)

= { defn of |=}
∑

w′∈W

{Aπ(w,w′); (w |= 〈π′〉ρ)}

= { defn of |=}
∑

w′∈W

{Aπ(w,w′);
∑

w′′∈W

{Aπ′(w′, w′′); (w′′ |= ρ)}}

= { (7)}
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∑

w′∈W

{ ∑

w′′∈W

{Aπ(w,w′);Aπ′(w′, w′′); (w′′ |= ρ)}}

= { commutativity}
∑

w′′∈W

{ ∑

w′∈W

{Aπ(w,w′);Aπ′(w′, w′′); (w′′ |= ρ)}}

= { since (w′′ |= ρ) is independent of w′}
∑

w′′∈W

{ ∑

w′∈W

{Aπ(w,w′);Aπ′(w′, w′′)}; (w′′ |= ρ)
}

= { defn. of composition}
∑

w′′∈W

{Aπ;π′(w,w′′); (w′′ |= ρ)
}

= { defn. of |=}
(w |= 〈π;π′〉ρ)

Therefore 〈π〉〈π′〉ρ ↔ 〈π;π′〉ρ is valid.
Axiom (2.3)

(w |= 〈π〉⊥)

= { defn. of |=}
∑

w′∈W

{Aπ(w,w′); (w |= ⊥)}

= { defn. of satisfaction}
∑

w′∈W

{Aπ(w,w′);⊥}

= { (9) and ⊥ = 0}
∑

w′∈W

{⊥}

= { (4)}
⊥

Therefore 〈π〉0 ↔ 0 is valid.

Lemma 3. The following are valid formulas in any GDL(A):

(3.1) 〈π〉ρ → 〈π∗〉ρ
(3.2) 〈π∗〉ρ ↔ 〈π∗;π∗〉ρ
(3.3) 〈π∗〉ρ ↔ 〈π∗∗〉ρ
(3.4) 〈π∗〉ρ ↔ ρ ∨ 〈π〉〈π∗〉ρ
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Proof. Axiom (3.1) In order to proof this axiom we have first to observe that
for any a, b, c ∈ A, a ≤ b implies a; c ≤ b; c. Supposing a ≤ b, i.e., a + b = b,
we have that

a; c + b; c ={(8)} (a + b); c ={by hypothesis a + b = b} b; c

i.e., a; c ≤ b; c. Moreover, we have also to check that a ≤ a∗ which comes
directly from (10) by monotonicity of the supremum and transitivity. Hence
(and since Mn(A) is an action lattice), we have for any w ∈ W ,

Aπ(w,w′) ≤ Aπ∗(w,w′) for any w′ ∈ W

⇒ { a ≤ b implies a; c ≤ b; c}
Aπ(w,w′); (w′ |= ρ) ≤ Aπ∗(w,w′); (w′ |= ρ) for any w′ ∈ W

⇒ { monotonicity of the supremum}
∑

w′∈W

{Aπ(w,w′); (w′ |= ρ)} ≤
∑

w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

⇔ { defn of |=}
(w |= 〈π〉ρ) ≤ (w |= 〈π∗〉ρ)

⇔ { defn of |=}
(w |= 〈π〉ρ → 〈π∗〉ρ)

Therefore 〈π〉ρ → 〈π∗〉ρ is valid.
Axioms (3.2),(3.3) and (3.4) We start recalling the following well known

Kleene algebra properties: a∗ = a∗∗, a∗ = a∗; a∗ and 1 + a; a∗ = a∗ (see
[9]). Therefore, we have that

Aπ∗(w,w′) = Aπ∗∗(w,w′) (23)
Aπ∗(w,w′) = Aπ∗;π∗(w,w′) (24)

A1+π;π∗(w,w′) = Aπ∗(w,w′) (25)

The remaining of the first two proofs follows exactly the same steps of the
one for Axiom (3.1). For the third case, we have that for any w ∈ W ,

A1+π;π∗(w,w′) = Aπ∗(w,w′) for any w′ ∈ W

⇔ { program interpretation}
A1(w,w′) + Aπ;π∗(w,w′) = Aπ∗(w,w′) for any w′ ∈ W

⇔ { a = b iff a; c = b; c}
(A1(w,w′) + Aπ;π∗(w,w′)

)
; (w′ |= ρ) = Aπ∗(w,w′); (w′ |= ρ)

for any w′ ∈ W
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⇔ { (7)}
A1(w,w′); (w′ |= ρ) + Aπ;π∗(w,w′); (w′ |= ρ) = Aπ∗(w,w′); (w′ |= ρ)
for any w′ ∈ W

⇒ { supremum funcionality}
∑

w′∈W

{A1(w,w′); (w′ |= ρ) + Aπ;π∗(w,w′); (w′ |= ρ)} =

∑

w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

⇔ { distributivity}
∑

w′∈W

{A1(w,w′); (w′ |= ρ)} +
∑

w′∈W

{Aπ;π∗(w,w′); (w′ |= ρ)} =

∑

w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

⇔ { ∑w′∈W {A1(w, w′); (w′ |= ρ) = (w |= ρ)} + program interpretation}
(w |= ρ) + (w |= 〈π;π∗〉ρ) = (w |= 〈π∗〉ρ)

⇔ { (2.2)}
(w |= ρ) + (w |= 〈π〉〈π∗〉ρ) = (w |= 〈π∗〉ρ)

⇔ { defn of |=}
(w |= ρ ∨ 〈π〉〈π∗〉ρ) = (w |= 〈π∗〉ρ)

Therefore, 〈π∗〉ρ ↔ ρ ∨ 〈π〉〈π∗〉ρ is valid.

4 Conclusions

The method introduced in this paper is able to generate several dynamic logics
useful for the working Software Engineer. Some of them are documented in the
literature, others freshly new. For instance, for verification of imperative programs,
we may consider a logic whose states are valuations of program variables. Hence,
and as usual, atomic programs become assignments of variables. In this context, a
transition w →x:=a w′ means that the state w′ differs from w just in the value of
variable x, i.e., that w′(x) = a and for any variable y �= x, w′(y) = w(y).

A very natural direction for future work is to enrich this framework with tests,
i.e., programs ?cond interpreted as A?cond = {(w,w)|w |= cond}. As usual, this
provides a way to express if-then-else statements in dynamic logics. Another
topic deserving attention is the characterisation of program refinement in this
setting, witnessed by some class of action lattice morphisms.
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Abstract. Adding to the modal description of transition structures the
ability to refer to specific states, hybrid(ised) logics provide an inter-
esting framework for the specification of reconfigurable systems. The
qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top
of whatever specification logic is used to model software configurations,
the elements of an hybrid language, including nominals and modalities.
In such a context, this paper shows how a calculus for a hybrid(ised)
logic can be generated from a calculus of the base logic and that, more-
over, it preserves soundness and completeness. A second contribution
establishes that hybridising a decidable logic also gives rise to a decid-
able hybrid(ised) one. These results pave the way to the development of
dedicated proof tools for such logics used in the design of reconfigurable
systems.

Keywords: Institutions · Hybrid logic · Decidability · Completeness

1 Introduction

1.1 Motivation

The need to master ubiquitous and increasingly complex software systems, often
of a safety–critical nature, has brought proof and verification to a central place in
Computer Science and Software Engineering. Logics, as formal reasoning frame-
works, provide tools for a rigorous specification (and analysis) of software sys-
tems, as opposed to more conventional practices in software development which
are often pre-scientific and unable to prove the absence of error designs.

Ideally, the working software engineer seeks for logics that can effectively
provide “yes–or–no” answers to queries regarding properties of the system (i.e.
decidable logics), as well as logics with a calculus providing enough syntactic
rules to derive falsehood from any false statement (i.e. a complete calculus).
The engineer also looks for logics with the right expressive power to specify the
system at hand, a job made difficult by the complex and heterogeneous nature
of current software systems which typically require a number of different logics
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 146–161, 2015.
DOI: 10.1007/978-3-319-15075-8 10
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to be suitably specified. For example, some form of equational logic may be used
for data type specifications, while transitional behaviour my resort to a modal or
temporal logic and fuzzy requirements may become in order to express contex-
tual constraints. Actually, this justifies the quest for methodologies in which a
specification framework can be tailored by combining whichever logics are found
suitable to deal with the different nature of the requirements in presence. As
Goguen and Meseguer put it in a landmark paper [11],

“The right way to combine various programming paradigms is to
discover their underlying logics, combine them, and then base a
language upon the combined logic.”
This line of research has been particularly active for the last twenty years.

Finger and Gabbay, for example, showed in [9] how to add a temporal dimension
to an arbitrary logic, and proved that decidability and completeness is preserved
along this process. Baltazar [2] did similar work but with respect to adding a
probabilistic dimension. Other, similar results include e.g. [6], [7], as well as a
hybridisation method [14], in whose development the current authors have been
involved, and constitutes the starting point of the work reported in the sequel.

1.2 Context

Essentially hybridisation turns a given logic, defined as an institution, into a
hybrid logic, a brand of modal logics that adds to the modal description of
transition structures the ability to refer to specific states (cf. [1,3]). This paves
the way to an expressive framework, proposed in [13], for the specification of
reconfigurable systems, i.e., systems which may evolve through different execu-
tion modes, or configurations, along their lifetime. Specification proceeds in two
steps:

– globally the system’s dynamics is represented by a transition structure
described in a hybrid language, whose states correspond to possible
configurations;

– locally each state is endowed with a structure modelling the specification of
the associated configuration.

The logic used locally, i.e. the one to be hybridised, depends on the appli-
cation requirements. Typical candidates are equational, partial algebra or first-
order logic (FOL), but one may equally resort to multivalued logics or even to
hybrid logic itself equipping, in the last case, each state with another (local)
transition system. Verification resorts to a parametrised translation to FOL

(developed in [14] and [15]), but at the cost of losing decidability and adding
extra complexity.

The generic character of this hybridisation process is achieved through its
rendering in the context of institution theory [10]. Such a theory formalises the
essence of what a logical system actually is, by encompassing syntax, semantics
and satisfaction. However, its classical definition, the one in which the hybridi-
sation method is based, does not include an abstract structure to represent a
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logic calculus. The problem was addressed in [8] with the introduction of π–
institutions, and, more recently, in [5] with the notion of an institution with
proofs, a more general version of the previous work.

1.3 Contributions and Roadmap

This paper starts by recasting the hybridisation method in the theory of institu-
tions with proofs, which makes possible the systematic generation of a calculus
when hybridising a given logic.

Then, we prove that, under certain conditions, this method preserves decidabil-
ity, and furthermore that the generated calculus is sound and complete whenever
the one corresponding to the base logic is. Those are the paper’s main contribu-
tions. Besides their theoretical relevance, from a pragmatic point of view they pave
the way to the development of effective verification algorithms.

The paper is organised as follows. Institutions with proofs are briefly reviewed
in Section 2. Then, Section 3 introduces the generation of an hybrid calculus from
a base one. Section 4 establishes decidability and completeness. Finally, Section
5 concludes the paper and hints at future lines of research.

2 Background

We first recall the notion of an institution [10]. As already mentioned, it for-
malises the essence of a logical system, encompassing syntax, semantics and
satisfaction. Put forward by J. Goguen and R. Burstall in the late seventies,
its original aim was to develop as much as Computer Science as possible in a
general uniform way independently of particular logical systems. This has now
been achieved to an extent even greater than originally thought, with the theory
of institutions becoming the most fundamental mathematical theory underly-
ing algebraic specification methods, and also increasingly used in other areas of
Computer Science. Formally,

Definition 1. An institution is a tuple (SignI ,SenI ,ModI , (|=I
Σ)Σ∈|SignI |),

where:

– SignI is a category whose objects are signatures and arrows signature mor-
phisms,

– SenI : SignI → Set, is a functor that, for each signature Σ ∈ |SignI |,
returns a set of sentences over Σ,

– ModI : (SignI)op → Cat, is a functor that, for each signature Σ ∈ |SignI |,
returns a category whose objects are models over Σ,

– |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), or simply |=, if the context is clear, is a sat-

isfaction relation such that, for each signature morphism ϕ : Σ → Σ′,

ModI(ϕ)(M ′) |=I
Σ ρ iff M ′ |=I

Σ′ SenI(ϕ)(ρ), for any
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M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). Graphically,

Σ

ϕ

��

ModI(Σ)
|=I

Σ
SenI(Σ)

SenI(ϕ)

��
Σ′ ModI(Σ′)

ModI(ϕ)

��

|=I
Σ′

SenI(Σ′)

Intuitively, this property means that satisfaction is preserved under change of
notation.

Definition 2. Consider an institution I and signature Σ ∈ |SignI |. We say
that a sentence ρ ∈ SenI(Σ) is Σ–valid (or simply, valid) if for each model
M ∈ |ModI(Σ)|, M |=I

Σ ρ. Usually we prefix such sentences by |=I
Σ or, simply

by |=I or just |=.

Definition 3. An institution I has the negation property if, for any signature
Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), there is a sentence, ¬ρ ∈ SenI(Σ),
such that for any model M ∈ |ModI(Σ)|, M |=I

Σ ρ iff M �|=I
Σ ¬ρ.

If this property holds, satisfiability of sentences may be rephrased as follows,

Definition 4. Consider institution I with the negation property and a signature
Σ ∈ |SignI |. For any sentence ρ ∈ SenI(Σ),

ρ is Σ–unsatisfiable iff ¬ρ is Σ–valid.

Similarly,

Definition 5. An institution I has the explicit satisfaction property, if for any
signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), satisfiability of ρ entails the
existence of a model M ∈ |ModI(Σ)| such that M |=I

Σ ρ.

Note that this last property holds in the most common logics used in speci-
fication, e.g., propositional, fuzzy, equational, partial and first-order.

Definition 6. An institution I has the conjunction property if, for any sig-
nature Σ ∈ |SignI | and sentences ρ, ρ′ ∈ SenI(Σ), there is sentence ρ ∧ ρ′ ∈
SenI(Σ), such that for any model M ∈ |ModI(Σ)|, M |=I

Σ ρ ∧ ρ′ iff M |=I
Σ ρ

and M |=I
Σ ρ′

Note that with the conjunction property we are able to define a sentence (ρ∧
¬ρ) ∈ SenI(Σ), denoted by ⊥, that is not satisfied by any model of |ModI(Σ)|.

An institution for which both the negation and conjunction properties hold,
is said to have the typical boolean connectives.

In order to better grasp this rather abstract concept of an institution let us
analyse some typical examples.

Example 1. Many sorted first order logic (FOL)
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– Signatures. SignFOL is a category whose objects are triples (S, F, P ), con-
sisting of a set of sort symbols S, a family, F = (Fw→s)w∈S∗,s∈S , of function
symbols indexed by their arity, and a family, P = (Pw)w∈S∗ , of relational
symbols also indexed by their arity.
A signature morphism in this category is a triple (ϕst, ϕop, ϕrl) : (S, F, P ) →
(S′, F ′, P ′) such that if σ ∈ Fw→s, then ϕop(σ) ∈ F ′

ϕst(w)→ϕst(s)
, and if

π ∈ Pw then ϕrl(π) ∈ P ′
ϕst(w).

– Sentences. For each signature object (S, F, P ) ∈ |SignFOL|,
SenFOL(S, F, P ) is the smallest set generated by:

ρ � ¬ρ | ρ ∧ ρ | t = t | π(X) | ∀x : s . ρ′

where t is a term of sorts with the syntactic structure σ(X) for σ ∈ Fw→s

and X a list of terms compatible with the arity of σ. π ∈ Pw and X is a list of
terms compatible with the arity of π. Finally, ρ′ ∈ SenFOL(S, F 
{x}→s, P ).
SenI(ϕ), for ϕ a signature morphism, is a function that, given a sentence
ρ ∈ SenI(S, F, P ), replaces the signature symbols in ρ under the mapping
corresponding to ϕ.

– Models. For each signature (S, F, P ) ∈ |SignFOL|,ModFOL(S, F, P ) is the
category with only identity arrows and whose objects are models with a
carrier set |Ms|, for each s ∈ S; a function Mσ : |Mw| → |Ms|, for each
σw→s ∈ Fw→s; a relation Mπ ⊆ |Mw|, for each π ∈ Pw.

– Satisfaction. Satisfaction of sentences by models is the usual Tarskian
satisfaction.

Example 2. Equational logic (EQ)
The institution EQ is the sub-institution of FOL in which sentences are

restricted to those of the type ∀x : s . t = t′

Example 3. Propositional logic (PL)
Institution PL is the sub–institution of FOL in which signatures with no

empty set of sorts are discarded.

As seen above, no notion of a proof system is considered in the definition of
an institution. This is a limitation if one is interested in logical systems with
calculi, as is the case in this paper which aims at introducing the systematic
generation of calculi for hybridised logics. To overcome this we resort to the
following extended definition of an institution with proofs [5].

Definition 7. An institution with proofs adds to the original definition a functor
Prf I : SignI → Cat such that, for each Σ ∈ |SignI |, Prf(Σ) (called the
category of Σ–proofs) has subsets of SenI(Σ) ( i.e., |Prf(Σ)| = |P(

SenI(Σ)
)| )

as objects, and the corresponding proofs as arrows. The latter are preserved along
signature morphisms. In addition, for A,B ∈ |Prf I(Σ)|, if A ⊆ B then there
is an arrow B −→ A; if A ∩ B = ∅ and there is Γ ∈ |Prf I(Σ)| such that
p : Γ −→ A and q : Γ −→ B, then there is a unique proof 〈p, q〉 making the
following diagram to commute
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A (A 
 B)
i2 ��i1�� B

Γ

p

������������ q

������������
〈 p,q 〉

��

For the sake of simplicity, when a singleton set of sentences is present in a
proof arrow, we may drop the curly brackets. Note that the restrictions imposed
to the proof arrows oblige Prf I to follow the basic properties of a proof system.
In particular, we have

1. Reflexivity (if A ∈ Γ , then Γ � A) follows from the fact that {A} ⊆ Γ and
therefore Γ −→ A.

2. Monotonicity (if Γ � A and Γ ⊆ Δ then Δ � A), follows from composition of
proofs, where Δ −→ Γ is given by inclusion and Γ −→ A by the assumption.

3. Transitivity (if Γ � A and {Δ,A} � B then Γ ∪ Δ � B), follows from the
product of disjoint sets, reflexivity and monotonicity,

Γ �� A �� A′

(Γ ∪ Δ)

�����������
��

������
����

����
����

����
���

Δ 
 A′ ��

��

��

(Δ ∪ A) �� B

Δ

where A′ = A − (A ∩ Δ) ( A′ ⊆ A and (Δ ∪ A) ⊆ (Δ ∪ A′) ).

Note that functor Prf I distinguishes different proofs between the same pair
of objects, as opposed to entailment systems1. In this work, however, we restrict
ourselves to entailment systems in which Prf I(Σ) has at most one arrow for
each pair of objects, i.e. that Prf I(Σ) is thin. Such restriction makes showing
the uniqueness of 〈p, q〉 trivial.

Definition 8. Let I be an institution with proof system Prf I . We say that Prf I

is sound if, for any signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),

if arrow ∅ −→ ρ is in Prf I(Σ) then |=I ρ.

Definition 9. Let I be an institution with proof system Prf I .We say that Prf I

is complete if, for any signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),

if |=I ρ then arrow ∅ −→ ρ is in Prf I(Σ)

Hence, soundness and completeness of Prf I entails the equivalence, for any
signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),

1 Typically, in an entailment system Γ � A means that Γ derives (or entails) A.
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|=I ρ iff ∅ −→ ρ is in Prf I(Σ)

We can now show that

Theorem 1. If an institution I has classical boolean connectives, and a sound
and complete calculus Prf I , with the reductio ad absurdum property, then, for
any signature, Σ ∈ |SignI |, and sentence, ρ ∈ SenI(Σ),

ρ is satisfiable iff ρ −→ ⊥ is not in Prf I(Σ)

Proof

|=I ρ iff ∅ −→ ρ is in Prf I(Σ)

⇔ { defn. of satisfiability }
¬ρ is unsat iff ∅ −→ ρ is in Prf I(Σ)

⇔ { soundness, completeness of PrfI(Σ) and r.a.a}
¬ρ is unsat iff ¬ρ −→ ⊥ is in Prf I(Σ)

⇔ { defn. of negation }
ρ is unsat iff ρ −→ ⊥ is in Prf I(Σ)

⇔ { de Morgan’s law}
ρ is sat iff ρ −→ ⊥ is not in Prf I(Σ)

Corollary 1. In the context of theorem 1, if I has the explicit satisfaction prop-
erty, then

ρ is sat iff ρ −→ ⊥ is not in Prf I(Σ)

⇔ { explicit satisfaction property }
ρ has a model iff ρ −→ ⊥ is not in Prf I(Σ)

This last result will be essential in the sequel for proving completeness of
hybridised logics.

3 Hybridisation of Logics and Their Calculi

As mentioned before, the existence of software products that are built and main-
tained with respect to requirements of different nature calls for techniques that
favour combination of logics. Hybridisation [14] was born in this context. It
aims at providing a framework to specify reconfigurable systems, whose execu-
tion modes are described by whatever logic the engineer finds suitable, whereas
the transition structure is expressed in a hybrid language.
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From a point of view of verification, however, the engineer is not only inter-
ested in having a hybridised logic, but also, in a very pragmatic way, in its
calculus. This section addresses such issue. It starts by revisiting hybridisation
and then, through the notion of institutions with proofs, it shows how to lift the
calculus in the base logic to its hybridised counterpart.

3.1 Hybridisation Revisited

Definition 10. The category SignH is the category Set×Set whose objects are
pairs ( Nom,Λ ) with Nom denoting a set of nominal symbols and Λ, a set of
modality symbols.

Definition 11. Provided an institution I = (SignI , SenI ,ModI , |=I) the
hybridised version HI = (SignHI , SenHI ,ModHI , |=HI) is defined as follows,

– SignHI = SignH × SignI ,
– given a signature (Δ,Σ) ∈ |SignHI |, SenHI(Δ,Σ) is the least set generated

by

ρ � ¬¬ρ | ρ∧ρ | i | @iρ | 〈λ〉ρ | ∀x ρ′ | ψ | A ρ

for i a nominal, λ a modality, ψ ∈ SenI(Σ) and ρ′ ∈ SenHI(Δ 
 {x}, Σ)
where x is a nominal. We use non standard boolean connectives (¬¬,∧)2 in
order to distinguish them from the boolean connectives that the base logic
may have.

– given a signature (Δ,Σ) ∈ |SignHI |, a model M ∈ |ModHI(Δ,Σ)| is a triple
(W,R,m) such that,

• W is a non–empty set of worlds,
• R is a family of relational symbols indexed by the modality symbols, such

that for each λ ∈ Λ ( where Δ = (−, Λ) ), Rλ ⊆ W × W ,
• and m : W → |ModI(Σ)|,

and for each i ∈ Nom, (W,R,m)i is interpreted as a world in W .
– given a signature (Δ,Σ) ∈ |SignI |, a model M = (W,R,m)

∈ |ModI(Δ,Σ)| and a sentence ρ ∈ SenHI(Δ,Σ), the satisfaction relation
is defined as,

M |=HI
(Δ,Σ) ρ iff M |=w ρ, for all w ∈ W

where,
M |=w ¬¬ρ iff M �|=w ρ
M |=w ρ∧ρ′ iff M |=w ρ and M |=w ρ′

M |=w i iff Mi = w
M |=w @iρ iff M |=Mi ρ

M |=w 〈λ〉ρ iff there is some w′ ∈ W such that (w,w′) ∈ Rλ and M |=w′
ρ

M |=w
Aρ iff M |=w ∀x @xρ

M |=w ψ iff m(w) |=I
Σ ψ

M |=w ∀x ρ iff for all M ′, M ′ |= ρ

2 Implication (⇒) and biimplication (⇔) are built in the usual way.
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for (W,R,m) = M ′ ∈ |ModHI(Δ 
 {x}, Σ)| a model expansion of M , with the
only difference between them being the interpretation of nominal x: while it is
defined in M ′, in M it is not.

Note that sentence ρ being satisfiable means that there is a model (W,R,m)
= M ∈ |ModHI(Δ,Σ)| such that M |=w ρ for some w ∈ W . Hence, hybridised
logics do not have the explicit satisfaction property. One can, however, redefine
the satisfaction relation in the hybridisation method to,

M |=HI
(Δ,Σ) ρ iff M |=w ρ, for some w ∈ W

which then provides to logics hybridised in this alternative way the explicit
satisfaction property.

A weak hybridisation of an institution I, denoted by H′I, is obtained as HI,
but the omission of syntax constructor ∀x ρ. The following decidability results
are formulated with respect to weak hybridisation.

3.2 Hybridising a Calculus

We now present the hybridisation of calculi in the context of institutions with
proofs. Let us assume that I has a proof system, i.e., that Prf I is well defined,
and that, in particular, it is an entailment system, i.e., Prf I only defines thin
categories. Then we define PrfHI as follows:

For any
(
(Nom,Λ), Σ

) ∈ |SignHI |,

1. for any ρ ∈ SenI(Σ), if ∅ −→ ρ is in Prf I(Σ) then
∅ −→ ρ is in PrfHI((Nom,Λ), Σ),

2. for any nominal i, j ∈ Nom, modality λ ∈ Λ, ρ, ρ′ ∈ SenHI
(
(Nom,Λ), Σ

)
,

proof arrows in Table 1 are in PrfHI((Nom,Λ), Σ)
3. finally, PrfHI((Nom,Λ), Σ) has all the inclusion proof arrows and for each

A,B, Γ ∈ |PrfHI((Nom,Λ), Σ)| if Γ −→ A, Γ −→ B then Γ −→ A ∪ B.

PrfHI is maintained thin in its construction process in order to have it as
an entailment system.

4 Decidability and Completeness of Hybridised Logics

Decidability and completeness are properties that one usually looks for when
defining a new logic. From a Computer Science perspective, they are essential
as a basis for tool-supported proofs. Formally,

Definition 12. Decidability of an institution I means that, for each signature
Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), there is an effective algorithm able to
decide whether ρ is valid.

After some preliminary work, we address first this definition in the context
of hybridised logics.
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Table 1. Axioms and rules for PrfHI from [3]

Axioms
(CT) All substitution instances of classical tautologies
(Dist) ∅ −→ @i(ρ ⇒ ρ′) ⇔ (@iρ ⇒ @iρ

′)
(⊥) ∅ −→ @i⊥ ⇒ ⊥
(Scope) ∅ −→ @i@jρ ⇒ @jρ
(Ref) ∅ −→ @ii
(Intro) ∅ −→ (i∧ρ) ⇒ @iρ
(	
E) ∅ −→ ([λ]ρ∧〈λ〉i) ⇒ @iρ
(∀E) ∅ −→ ∀x ρ ⇒ ρ[i/x]
Rules
(MP) if ∅ −→ ρ and ρ −→ ρ′ then ∅ −→ ρ′

(N@) if ∅ −→ ρ then ∅ −→ @iρ
(Name) if i does not occur free in ρ and ∅ −→ @iρ then ∅ −→ ρ
(	
I) if i does not occur free in ρ, ρ′ and ∅ −→ (ρ ∧ 〈λ〉i) ⇒ @iρ

′

then ∅ −→ ρ ⇒ [λ]ρ′

(∀I) if i does not occur free in ∀x ρ′, ρ and ∅ −→ ρ ⇒ ρ′[i/x]
∅ −→ ρ ⇒ ∀x ρ′

4.1 Preliminaries

Recall that in the sequel we assume that the base institution I has the classical
boolean connectives and the explicit satisfaction property. Furthermore, it has a
calculus, Prf I , is sound, complete and has the reductio ad absurdum property.

Notation 1. Consider (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ). Let Bρ =
{ψ1, . . . , ψn} to denote the set of all maximal sentences, ψi ∈ SenI(Σ), occurring
in ρ. Then, the set of base sentences, Ωρ, denotes the least set such that for each
a ∈ 2Bρ ,

(χ1 ∧ · · · ∧ χn) ∈ Ωρ ⊆ SenI(Σ)

where

χi =

{
ψi if ψi ∈ a

¬ψi if ψi �∈ a

Whenever suitable we abbreviate (χ1∧· · ·∧χn) to χ, and refer to components
of χ as χi. Moreover, when no confusion arises, we will also consider χ as the
set of sentences {χ1, . . . , χn}.

Lemma 1. For any model M ∈ |ModI(Σ)|, M satisfies exactly one of the sen-
tences in Ωρ.

Proof. Suppose that M fails to satisfy a sentence χ ∈ Ωρ. This only happens
when at least one member of χ is not satisfied by M . By definition of Ωρ we
know that Ωρ has another sentence χ′ which negates all the failed components
in χ and therefore M must satisfy χ′.
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Suppose that M satisfies a sentence χ ∈ Ωρ. Clearly, by the definition of
Ωρ any other sentence χ′ ∈ Ωρ must negate at least one of the components of
χ. Since M cannot satisfy a component and its negation, χ′ cannot be satisfied
by M .

Notation 2. If Ωρ is not empty, Lemma 1 allows the use of notation ΩM
ρ to

denote the sentence in Ωρ which is satisfied by a model M ∈ |ModI(Σ)|.
Next, in order to take advantage of the well known decidability and complete-

ness results for hybrid propositional logic, HPL, we define a function between
HI and HPL sentences,

Definition 13. Consider a signature (Δ,Σ) ∈ |SenHI |, a sentence ρ ∈ SenHI

(Δ,Σ), and a PL signature Prop that, for each ψi ∈ SenI(Σ), has a proposi-
tional symbol πψi

. Then a function
σ : SenHI(Δ,Σ) → SenHPL(Δ,Prop) is defined to replace the base sentences
that occur in ρ and Bρ by propositions from Prop. Formally,

σ(¬¬ρ) = ¬¬σ(ρ)
σ(ρ∧ρ′) = σ(ρ)∧σ(ρ′)
σ(i) = i
σ(@iρ) = @iσ(ρ)
σ(〈λ〉ρ) = 〈λ〉σ(ρ)
σ(∀x ρ) = ∀x σ(ρ)
σ(Aρ) = A σ(ρ)
σ(ψi) = πψi

Definition 14. For each χ ∈ Ωρ we define function σ′ : χ → SenPL(Prop)
such that,

σ′(χi) =

{
¬πψi

if χi = ¬ψi

πψi
if χi = ψi

and denote by σ′[χ] the result of applying σ′ to each member of χ.

Note that both σ and σ′ are injective.

4.2 Decidability

Lemma 2. Consider a signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ). For
any χ ∈ Ωρ, if χ is satisfiable σ′[χ] is also satisfiable.

Proof. Unsatisfaction of σ′[χ] may only come from the following cases:

1. A component of σ′[χ] is unsatisfiable,
2. two components of σ′[χ] contradict each other.

A component in σ′[χ] is πψi
or ¬πψi

, hence the first case never happens. If
two elements contradict each other, that is, if one is πψi

and the other ¬πψi
then

surely χ has elements ψi and ¬ψi, which renders it unsatisfiable.
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Theorem 2. Consider signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ). If ρ
is satisfiable, σ(ρ) is also satisfiable.

Proof. If ρ is satisfiable we have a model M = (W,R,m) ∈ |ModHI(Δ,Σ)| such
that M |=w ρ for some w ∈ W . Through this assumption and Lemma 2, we
define a model (W,R,m′) ∈ |ModHPL(Δ,Σ)| as follows: for any w ∈ W , m′(w)
is a model satisfying σ′[Ωm(w)

ρ ] (recall that Lemma 2 proves that σ′[Ωm(w)
ρ ] is

satisfiable).
It remains to show that (W,R,m′) |=w σ(ρ), for some w ∈ W . Since models

(W,R,m) and (W,R,m′) have the same Kripke structure and ρ, σ(ρ) only differ
in the base sentences, we just need to check that for all χ ∈ Ωρ, m(w) |= χ
entails that m′(w) |= σ′[χ] for any w ∈ W . Actually, this is a direct consequence
of condition, m(w) |= Ω

m(w)
ρ entails that m′(w) |= σ′[Ωm(w)

ρ ] for all w ∈ W ,
which is freely given by the definition of (W,R,m′).

Now, we want to show the converse of Theorem 2. For this we need yet another
definition to cater for the “preservation” of information with respect to satisfia-
bility of the base sentences; information that is “lost” by σ(ρ). Thus,

Definition 15. Let SatI be an effective decision procedure of I, and
∨

denote
the disjunction operator, built from ∧,¬¬. Then define

η(ρ) =

{∨{χ ∈ Ωρ | SatI(χ) is “unsat” }, if Bρ �= ∅
⊥, otherwise

Corollary 2. It is clear that satisfiability of ρ entails satisfiability of ρ∧A¬¬η(ρ),
which in turn, by Theorem 2, entails satisfiability of σ

(
ρ∧ A¬¬η(ρ)

)
.

Lemma 3. Consider a model (W,R,m) ∈ |ModHPL(Δ,Prop)| such that
(W,R,m) |= σ

(
ρ∧ A¬¬η(ρ)

)
. For any χ ∈ Ωρ, if σ′[χ] is satisfied by a model in

img(m), χ is satisfiable.

Proof. If χ is unsatisfiable then, by definition of η, occurs as one of the literals
in η(ρ), hence no model in img(m) may satisfy it.

Theorem 3. Consider signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ). If
σ(ρ∧ A¬¬η(ρ)) is satisfiable, then ρ is satisfiable.

Proof. If σ(ρ ∧ A¬¬η(ρ)) is satisfiable we have a model M = (W,R,m) ∈
|ModHPL(Δ,Prop)| such that M |=w σ(ρ∧A¬¬η(ρ)) for some w ∈ W . Through
this assumption, and by Lemma 3, we define a model (W,R,m′) ∈ |ModHI(Δ,Σ)|
as follows: for any w ∈ W , m′(w) is a model satisfying χ where σ′[χ] = σ′[Ωm(w)

ρ ]
It remains to show that (W,R,m′) |=w ρ for some w ∈ W . Since models

(W,R,m) and (W,R,m′) have the same Kripke structure satisfied by the sen-
tences ρ, σ(ρ∧A¬¬η(ρ)), we just have to show that for all χ ∈ Ωρ, m(w) |= σ′[χ]
entails that m′(w) |= χ for any w ∈ W . Actually, this is a direct consequence of
condition, m(w) |= σ′[Ωm(w)

ρ ] entails m′(w) |= Ω
m(w)
ρ , for all w ∈ W , which is

given by the definition of (W,R,m′).
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Corollary 3. From Corollary 2 and Theorem 3 we have that

ρ is satisfiable iff σ(ρ∧ A¬¬η(ρ)) is satisfiable.

Then, since H′PL was already proved to be decidable [12], we may use an
effective decision procedure of H′PL to check for satisfiability of sentences writ-
ten in H′I. This leads to the expected result

Corollary 4. If I is decidable then H′I is also decidable.

Note that the proof of Theorem 3 paves the way for an example decision
algorithm, that is, an algorithm able not only to answer “yes” or “no” to the
question “Is ρ satisfiable?”, but also to build a model that satisfies sentence ρ,
if it exists. Technically, to construct such an algorithm one also needs to have
example decision algorithms for both I and H′PL. The latter has at least one
prover that meets this requirement [12]. Then, as indicated in the proof, through
a H′PL’s decision procedure, one extracts a Kripke frame for ρ in which suitable
models of I are “attached” given its example decision algorithm for I.

Finally, note that the decision algorithm for H′I, conceptualised in Theorem 3,
maybe computationally hard. Indeed, in order to define η(ρ) the decision algorithm
for I must be executed 2n times where n = |Bρ|.

In addition, if we want the algorithm to give example models, the decision
procedure for I must also be executed a number of times that can reach the
number of worlds in the model built by the decision procedure for H′PL.

4.3 Soundness and Completeness

In this section we focus on the entailment system for HI, i.e., on functor PrfHI ,
to show that the rules in PrfHI are both sound and complete. Note that
for hybridised logics equipped with the corresponding generated proof systems
PrfHI , proving soundness and completeness boils down to show the equivalence,

ρ is satisfiable iff ρ −→ ⊥ is not in PrfHI(Δ,Σ)

Recall also that it is assumed that the base institution has the typical boolean
connectives and the explicit satisfaction property, as well as that its proof system,
Prf I , is sound, complete and has the reductio ad absurdum property.

Theorem 4. If Prf I is sound, then PrfHI is also sound.

Proof. Consider signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ).
If PrfHI is sound then sentence ρ, being satisfiable means that there is no
proof arrow ρ −→ ⊥ in PrfHI(Δ,Σ). If such an arrow exists, however, it must
come from some of the conditions imposed to PrfHI(Δ,Σ), i.e., some of these
conditions must be unsound. We check each one:

1. the condition that proof arrows ∅ −→ ρ in Prf I(Σ) come to
PrfHI(Δ,Σ) is, by assumption, sound.
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2. the axioms and proof rules from Table 1 were already proved to be sound
(cf. [3]).

3. composition, inclusion and product rules are, by definition, sound.

The proof of completeness is more complex. For this we resort to a procedure
similar to the one used for proving decidability.

Theorem 5. Consider a signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ). If
there is no arrow ρ −→ ⊥ in PrfHI(Δ,Σ) then there is also no arrow σ(ρ) −→
⊥ in PrfHPL(Δ,Prop),

Proof. First notice that rules in Table 1 do not distinguish ρ from σ(ρ), that is,
any such rule may be applied to both sentences. Then observe that, since Table
1 contains all classical tautologies, PrfPL does not bring new rules to PrfHPL

and therefore rules in PrfHPL are also in PrfHI . Both remarks entail that if
there are rules in PrfHPL that can generate arrow σ(ρ) −→ ⊥, then the same
set of rules (also present in PrfHI) can surely generate it there.

Next, we show the converse of Theorem 5 holds as well. For this we define a
function to play a role similar to that played by η in sub-section 4.2.

Definition 16. Given a signature (Δ,Σ) ∈ |SignHI | and ρ ∈ SenHI(Δ,Σ) we
define,

η′(ρ) =

{∨{χ ∈ Ωρ| χ −→ ⊥ is in Prf I}, if Bρ �= ∅
⊥, otherwise

Corollary 5. Clearly if there is no arrow ρ −→ ⊥ in PrfHI(Δ,Σ) then there
is also no arrow (ρ∧ A¬¬η′(ρ)) −→ ⊥ in PrfHI(Δ,Σ).

Lemma 4. Consider a model (W,R,m) ∈ |ModHPL(Δ,Prop)| such that
(W,R,m) |= σ

(
ρ∧ A¬¬η′(ρ)

)
. For any χ ∈ Ωρ, if σ′[χ] is satisfied by a model

member of img(m), χ is satisfiable.

Proof. If χ is unsatisfiable then, by definition of η′ and completeness of Prf I ,
occurs as one of the literals in η′(ρ), hence no model member of img(m) may
satisfy it.

Theorem 6. If Prf I is complete then PrfHI is also complete.

Proof. We want to prove that given a signature (Δ,Σ) ∈ |SignHI | and a sentence
ρ ∈ SenHI(Δ,Σ), if no arrow ρ −→ ⊥ exists in PrfHI(Δ,Σ) then ρ is satisfiable.

Hence, let us assume that there is no arrow ρ −→ ⊥ in PrfHI(Δ,Σ), which
by Corollary 5, entails that there is no proof arrow σ(ρ∧ A¬¬η′(ρ)) −→ ⊥ in
PrfHPL(Δ,Prop) and therefore means that σ(ρ∧ A¬¬η′(ρ)) is satisfiable. In
other words, we have a model M = (W,R,m) ∈ |ModHPL(Δ,Prop)| such that
M |=w σ(ρ∧ A¬¬η′(ρ)) for some w ∈ W . Then, by Lemma 4, we are able to
define a model (W,R,m′) ∈ |ModHI(Δ,Σ)|, in which, for any w ∈ W , m′(w) is
a model for χ where σ′[χ] = σ′[Ωm(w)

ρ ].
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It remains to show that (W,R,m′) |=w ρ for some w ∈ W . Since models
(W,R,m) and (W,R,m′) have the same Kripke structure satisfied by sentences
ρ and σ(ρ∧ A¬¬η′(ρ)), it is enough to show that, for all χ ∈ Ωρ, m(w) |= σ′[χ]
entails that m′(w) |= χ for any w ∈ W . Actually, this is a direct consequence of
the fact that m(w) |= σ′[Ωm(w)

ρ ] entails m′(w) |= Ω
m(w)
ρ , for all w ∈ W , which

comes from the definition of (W,R,m′).

5 Conclusions and Future Work

This paper lays the first steps towards the development of (dedicated) proof
tools for hybridised logics, by providing an effective decision algorithm for the
satisfiability problem. Additionally the systematic hybridisation of the calcu-
lus of a base logic was addressed, and shown to preserve both soundness and
completeness.

The next step, from an engineering point of view, is, of course, to develop
such a generic, dedicated prover for hybridised logics. A comparison with the
strategy of using the parametrised translation to FOL will then be due.

In a similar line of research, lies the development of an alternative decision
algorithm, that potentially overcomes the problem detected in the definition of η,
which involves calling the decision procedure of the base logic 2n times, for n the
number of base sentences in the sentence under consideration. Such an algorithm
may be based on the tableau technique (for instance, the one implemented in
[12]) which opens a number of branches as the possible ways to build a model
satisfying a given sentence. If the sentence is unsatisfiable then all branches must
be closed. If any branch remains open then the decision procedure of the base
logic is called to try to close it. Thus, the number of times the decision procedure
of the base logic is called is much smaller than in the approach discussed here.

Other results in the literature abstract the combination of logics pattern
by considering the “top logic” itself arbitrary. Such is the case of what is called
parametrisation of logics in [4] by C. Caleiro, A. Sernadas and C. Sernadas. Sim-
ilarly , the recent method of importing logics suggested by J. Rasga, A. Sernadas
and C. Sernadas [16] aims at formalising this kind of asymmetric combinations
resorting to a graph-theoretic approach. In both cases some decidability and
completeness results are given. It should be interesting to see in which ways the
hybridisation method relates to these works.
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Abstract. Three-valued abstraction is an established technique in soft-
ware model checking. It proceeds by generating a state space model over
the values true, false and unknown, where the latter value is used to rep-
resent the loss of information due to abstraction. Temporal logic proper-
ties can then be evaluated on such models. In case of an unknown result,
the abstraction is iteratively refined. In this paper, we introduce parame-
terised three-valued model checking. In our new type of models, unknown
parts can be either associated with the constant value unknown or with
expressions over boolean parameters. Our parameterisation is an alterna-
tive way to state that the truth value of certain predicates or transitions
is actually not known and that the checked property has to yield the
same result under each possible parameter instantiation. A novel fea-
ture of our approach is that it allows for establishing logical connections
between parameters: While unknown parts in pure three-valued models
are never related to each other, our parameterisation approach enables
to represent facts like ’a certain pair of transitions has unknown but
complementary truth values’, or ’the value of a predicate is unknown
but remains constant along all states of a certain path’. We demon-
strate that such facts can be automatically derived from the system to
be verified and that covering these facts in an abstract model can be
crucial for the success and efficiency of checking temporal logic proper-
ties. Moreover, we introduce an automatic verification framework based
on counterexample-guided abstraction refinement and parameterisation.

1 Introduction

Predicate abstraction [2] is an established technique for reducing the complexity
of temporal logic model checking. It proceeds by generating a state space model
of the software system to be analysed. In this model, concrete states of the system
are mapped to abstract states over a finite set of predicates, and admissible exe-
cutions of the system are represented by sequences of transitions between states.
Traditional predicate abstraction techniques are based on a boolean domain for
predicates and on an over-approximation of the concrete state space. Thus, only
universal properties are preserved under this form of abstraction. If checking a
universal property for an abstract model yields false, it cannot be concluded that
the original system violates this property as well. In this case, model checking
additionally returns an abstract counterexample - a path in the model that refutes
the property. In order to gain certainty about whether this counterexample is
c© Springer International Publishing Switzerland 2015
C. Braga and N. Mart́ı-Oliet (Eds.): SBMF 2014, LNCS 8941, pp. 162–178, 2015.
DOI: 10.1007/978-3-319-15075-8 11
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spurious or corresponds to a real path, it has to be simulated on the original
system. The simulation of counterexamples involves a partial exploration of the
concrete state space, and thus, can be exceedingly costly. Spurious counterex-
amples are typically ruled out via counterexample-guided abstraction refinement
(CEGAR) [4]: Further predicates over the variables of the system are iteratively
added to the model until a level of abstraction is reached where the property can
be either definitely proved or a real counterexample can be found. The applica-
tion of CEGAR does, however, not guarantee that eventually a model can be
constructed that is both precise enough for a definite outcome and small enough
to be manageable with the available computational resources.

More recent approaches [3,13,18] to abstraction refinement for model check-
ing are based on a domain for predicates with the truth values true, false and
unknown. Corresponding three-valued models with the additional value unknown
enable to explicitly model the loss of information due to abstraction. In comparison
to boolean abstractions, the three-valued approach is capable of preserving uni-
versal and existential properties. Hence, all definite results in three-valued model
checking can be directly transferred to the original system. Only an unknown result
necessitates iterative refinement. In the latter case, an unconfirmed counterexam-
ple – a potential error path in the model with unknown transitions and predicates
– is returned. Unconfirmed counterexamples directly hint at necessary refinement
steps. Thus, the costly simulation of counterexamples on the original system is not
required in the three-valued setting. Model checking three-valued abstractions can
be conducted at the same cost as checking boolean abstractions, but it additionally
comes along with the aforementioned advantages.

Continuative work in this field has shown that the precision of model check-
ing three-valued abstractions can be increased by the concept of generalised
model checking (GMC) [7]. While standard three-valued model checking (3MC)
[3,13,18] is based on a special three-valued semantics that enables the direct
evaluation of temporal logic formulae on three-valued models, the idea of GMC
is to construct all boolean concretisations of a three-valued model. Then classi-
cal two-valued model checking is applied to each concretisation and it is checked
whether the results are consistent, i.e. whether either all results are true or
whether all are false. In case of consistency, the result can be transferred to the
original system. GMC generally yields more definite results than 3MC. Hence,
the application of GMC instead of 3MC can reduce the number of necessary
refinement iterations in abstraction-based verification. However, the 3MC prob-
lem is PSPACE-complete, whereas the GMC problem is even EXP-complete:
Number and size of concretisations can be exponential in the size of the three-
valued model. Thus, GMC is rather of theoretical than of practical interest. Most
existing three-valued abstraction-based verification frameworks, e.g. [8,13,14],
rely on standard 3MC and try to compensate the lack of precision with addi-
tional refinement steps.

Here, we introduce parameterised three-valued model checking (PMC) which
is a hybrid of three-valued and generalised model checking. Predicates and tran-
sitions in our parameterised three-valued models can be either associated with
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the values true, false or unknown – or with expressions over boolean parameters.
Our parameterisation is an alternative way to state that the truth value of certain
predicates or transitions is actually not known and that the checked property has
to yield the same result under each parameter instantiation. PMC is thus con-
ducted via evaluating a temporal logic formula under all parameter instantiations
and checking whether the results are consistent. In contrast to GMC, param-
eterised three-valued model checking reduces to multiple instances of standard
three-valued model checking, since the instantiation only affects parameters but
not the explicit truth value unknown. Sizes of instantiations are always linear
in the size of the parameterised three-valued model. Moreover, parameterisa-
tion particularly allows to establish logical connections between unknowns in
the abstract model: While unknown parts in 3MC and GMC are never related
to each other, our parameterisation approach enables to represent facts like ’a
certain pair of transitions has unknown but complementary truth values’, or ’the
value of a predicate is unknown but remains constant along all states of a cer-
tain path’. We demonstrate that such facts can be automatically derived from
the software system to be verified and that covering these facts in an abstract
model can be crucial for the success and efficiency of checking temporal logic
properties. In particular, we introduce an automatic verification framework for
concurrent systems based on parameterised three-valued model checking: Start-
ing with pure three-valued abstraction, in each iteration either classical refine-
ment or parameterisation of unknown parts is applied until a definite result in
verification can be obtained. The decisions for refinement or parameterisation
are automatically made based on unconfirmed counterexamples. For several ver-
ification tasks our hybrid approach can significantly outperform the pure three-
valued approach. Our work includes the definition of parameterisation rules for
three-valued abstractions and a proven theorem which states that PMC is sound
if parameterisation is applied according to the rules.

2 Background: Three-Valued Model Checking

We start with a brief introduction to three-valued state space models, here three-
valued Kripke structures, and the evaluation of temporal logic properties on
them. The key feature of these Kripke structures is a third truth value ⊥ (i.e.
unknown) for transitions and labellings, which can be used to model uncertainty.

Definition 1 (Three-Valued Kripke Structure). A three-valued Kripke
structure over a set of atomic predicates AP is a tuple K = (S ,R,L, F) where

– S is a finite set of states,
– R : S × S → {true,⊥, false} is a transition function with ∀ s ∈ S : ∃ s ′ ∈ S :

R(s, s ′) ∈ {true,⊥},
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– L : S × AP → {true,⊥, false} is a labelling function that associates a truth
value with each predicate in each state,

– F ⊆ P(R−1({true,⊥})) is a set of fairness constraints where each constraint
F ∈ F is a set of non-false transitions.

An example for a Kripke structure K over a set AP = {p} is depicted below.

s1K ::

s2

s3

p = false

p = true

p = ⊥

⊥

⊥

A path π of a three-valued Kripke structure K is an infinite sequence of states
s1s2s3 . . . with R(si , si+1) ∈ {true,⊥}. πi denotes the i -th state of π, whereas πi

denotes the i -th suffix πiπi+1πi+2 . . . of π. A path π is fair if it takes infinitely
often a transition from every fairness constraint F ∈ F. By Π(K , s) we denote
the set of all fair paths of K starting in s ∈ S . Paths are considered for the
evaluation of temporal logic properties of Kripke structures. Here we use the
linear temporal logic (LTL) for specifying properties.

Definition 2. Syntax of LTL] Let AP be a set of atomic predicates and p ∈ AP.
The syntax of LTL formulae ψ is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | Fψ | Gψ | ψUψ.

Due to the extended domain for truth values in three-valued Kripke structures,
the evaluation of LTL formulae is not based on classical two-valued logic. In
three-valued model checking we operate under the three-valued Kleene logic K3

[6] whose semantics is given by the truth tables below.

∧ true ⊥ false
true true ⊥ false
⊥ ⊥ ⊥ false
false false false false

∨ true ⊥ false
true true true true
⊥ true ⊥ ⊥
false true ⊥ false

¬
true false
⊥ ⊥
false true

For K3 we have a reflexive information ordering ≤K3 (in words: ’less or equal
definite than’) with ⊥ ≤K3 true, ⊥ ≤K3 false, and true, false incomparable.
Based on K3, linear temporal logic formulae can be evaluated on paths of three-
valued Kripke structures according to the following definition.

Definition 3 (Three-Valued Evaluation of LTL). Let K = (S ,R,L, F) over
AP be a three-valued Kripke structure. Then the evaluation of an LTL formula
ψ on a fair path π of K , written [π |= ψ], is inductively defined as follows
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[π |= p] := L(π1, p)
[π |= ¬ψ] := ¬ [π |= ψ]
[π |= ψ ∨ ψ′] := [π |= ψ] ∨ [π |= ψ′]
[π |= Xψ] := R(π1, π2) ∧ [

π2 |= ψ
]

[π |= Gψ] :=
∧

i∈N

(
R(πi , πi+1) ∧ [

πi |= ψ
])

[π |= Fψ] :=
∨

i∈N

([
πi |= ψ

] ∧ ∧
0≤j<i R(πi , πi+1)

)

[π |= ψUψ′] :=
∨

i∈N

(
[πi |= ψ′] ∧ ∧

0≤j<i

(
R(πj , πj+1) ∧ [πj |= ψ]

))

The evaluation of LTL formulae on entire three-valued Kripke structures is what
we call three-valued model checking [3].

Definition 4 (Three-Valued LTL Model Checking). Let K = (S ,R,L, F)
over AP be a three-valued Kripke structure. Moreover, let ψ be an LTL formula
over AP. The value of ψ in a state s of K , written [K , s |= ψ], is defined as

[K , s |= ψ] :=
∧

π∈Π(K ,s) [π |= ψ]

In three-valued model checking there exist three possible outcomes: true, false
and ⊥. Three-valued model checking reduces to classical two-valued model check-
ing if the Kripke structure K is actually two-valued, i.e. R−1(⊥) = ∅ and
L−1(⊥) = ∅. In this case, only the outcomes true and false are possible. For
our example Kripke structure [K , s1 |= Gp] yields false, whereas [K , s1 |= GFp]
yields unknown. Gp is a temporal logic formula that characterises a typical
safety property, while GFp characterises a liveness property. Safety and live-
ness are the most vital requirements in software verification. In our approach,
we therefore particularly focus on these two kinds of properties.

For the sake of completeness, we also briefly review generalised model check-
ing (for more details see [7]). Under GMC, [K , s |= ψ] yields true iff [K ′, s |= ψ]
is true for all concretisations K ′ of K , where a concretisation is a two-valued K ′

such that [K , s |= ψ] ≤K3 [K ′, s |= ψ] for all LTL formulae ψ. The definition of
[K , s |= ψ] = false is analogous. In all remaining cases [K , s |= ψ] yields ⊥.

3 Parameterised Three-Valued Model Checking

State space models constructed by three-valued abstraction techniques [8,13,14]
are typically represented as (pure) three-valued Kripke structures. Here we intro-
duce a generalisation called parameterised three-valued Kripke structures, and
we define model checking for these structures. Later we will see that param-
eterised three-valued model checking (PMC) for three-valued abstractions can
significantly enhance the precision of verification.

Definition 5 (Parameterised Three-Valued Kripke Structure). A param-
eterised three-valued Kripke structure over AP and a set of boolean parameters
X = {x1, . . . , xm} is a parameterised tuple K (

m

x ) = (S ,R(
m

x ),L(
m

x ), F(
m

x )) where
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– S is a finite set of states,
– R(

m

x ) : S × S → {true,⊥, false} ∪ BE (X ) is a transition function with ∀ s ∈
S : ∃ s ′ ∈ S : R(

m

x )(s, s ′) ∈ {true,⊥} ∪ BE (X ) where BE (X ) denotes the set
of boolean expressions over X ,

– L(
m

x ) : S × AP → {true,⊥, false} ∪ BE (X ) is a labelling function that asso-
ciates a truth value or a parameter expression with each predicate in each
state,

– F(
m

x ) ⊆ P(R−1(
m

x )({true,⊥}∪BE (X ))) is a set of fairness constraints where
each constraint F ∈ F(

m

x ) is a set of non-false transitions.

Note that (
m

x ) is an abbreviation for the parameter tuple (x1, . . . , xm). An instan-
tiation of a parameterised three-valued Kripke structure K (

m

x ) is a pure three-
valued Kripke structure K (

m

a) where (
m

a) ∈ {true, false}m . Hence, all parameters
are substituted by boolean truth values. However, predicates and transitions that
were not parameterised in K (

m

x ) may still hold the value unknown in K (
m

a). If
the current tuple of parameters or truth values is clear from the context, we
will not explicitly mention it, i.e. we will just refer to R, L and F. An exam-
ple for a parameterised three-valued Kripke structure together with all its pure
three-valued instantiations is shown in the figure below.

s1K (x1) ::

s2

s3

p = false

p = true

p = ⊥

¬x1

x1

s1K (true) ::

s2

s3

p = false

p = true

p = ⊥

s1K (false) ::

s2

s3

p = false

p = true

p = ⊥

For evaluating temporal logic formulae on parameterised three-valued Kripke
structures we consider all possible instantiations.

Definition 6 (Parameterised Three-Valued LTL Model Checking). Let
K (

m

x ) = (S ,R(
m

x ),L(
m

x ), F(
m

x )) be a parameterised three-valued Kripke structure
over AP and X = {x1, . . . , xm}. Moreover, let ψ be an LTL formula over AP.
The value of ψ in a state s of K (

m

x ), written [K (
m

x ), s |= ψ], is defined as

[
K (

m

x ), s |= ψ
]

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true if
∧

(
m
a)∈{t,f }m

([
K (

m

a), s |= ψ
]

= true
)

false if
∧

(
m
a)∈{t,f }m

([
K (

m

a), s |= ψ
]

= false
)

⊥ else

Thus, if checking a temporal logic property yields true for all instantiations, the
result is transferred to the parameterised Kripke structure. The same holds for
false results for all instantiations. In all other cases PMC returns unknown. For
our recent example, we get [K (x1), s1 |= GFp] = true since GFp holds for both
K (true) and K (false). In contrast to our example from Section 2, the two outgo-
ing transitions of state s2 are no longer unknown but parameterised. Moreover,
we capture the fact that the associated transition values are complementary,
which gives us the necessary precision for a definite result in verification.
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Subsequently, we will see that such facts can be automatically derived from
the control flow and program code of the modelled system in the sense that the
corresponding parameterisation gives us a sound abstraction. Furthermore, we
will show how parameterised three-valued model checking can be effectively inte-
grated into an automatic abstraction refinement-based verification procedure.

4 Application to Three-Valued Abstractions

Three-valued model checking [3] is used in many abstraction-based verification
frameworks for software systems [1,8,10,13]. An effective state space reduction
technique for concurrent software systems is three-valued spotlight abstraction
[12,14,15]. In previous works [16,17], we have demonstrated that verifying con-
current systems via spotlight abstraction and three-valued model checking can
significantly outperform approaches based on boolean predicate abstraction [2].
In this section, we give a brief introduction to concurrent systems and spotlight
abstraction (for more details see [12]). Moreover, we show how parameterisa-
tion can be applied to three-valued Kripke structures constructed by spotlight
abstraction and how this can increase the efficiency of verification.

4.1 Spotlight Abstraction for Concurrent Systems

A concurrent system Sys consists of a number of asynchronous processes com-
posed in parallel: Sys = ‖ni=1 Proci . It is defined over a set of variables Var =
Vars ∪ ⋃n

i=1 Vari where Vars is a set of shared variables and Var1, . . . ,Varn
are sets of local variables associated with the processes Proc1, . . . ,Procn , respec-
tively. A process corresponds to a finite sequence of locations where each location
is associated with an operation op on the variables in Vars ∪ Vari . Operations
are of the form op = assume(e) : v1 := e1, . . . , vk := ek where e, e1, . . . , ek are
expressions over Vars ∪ Vari = {v1, . . . , vk}. Hence, an operation consists of an
assume part, also called guard, and a list of assignments. Executing the guard
blocks the execution of the assignments until the expression e evaluates to true.
We omit the guard if e is constantly true. The current location of a process Proci
can be regarded as the value of an additional local counter variable pci over the
process’ locations Loci = {1i , . . . ,Li}. Locations may also be associated with
compound operations, which consist of one or more sub-operations nested inside
a control structure. Compound operations in our systems are, amongst others,
if-then-else and while-do. An example for a concurrent system is depicted below.

v1, . . . , vk : integer

Proc1 ::

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 :
[

. . .
]

2 : while (v1 > 0) do
3 :
[

. . .
]

4 : progress

5 :
[

. . .
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

‖ Proc2 ::

⎡

⎢
⎢
⎣

1 :
[

. . .
]

2 : v1 := f (v2, . . . , vk )

3 :
[

. . .
]

⎤

⎥
⎥
⎦ ‖ . . . ‖ Procn

Here we have a composition of n processes operating on the shared variables
v1, . . . , vk . A liveness property to verify might be whether Proc1 always repeat-
edly reaches progress, which we assume is an arbitrary assertion over Proc1’s
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variables. Subsequently, we show how this verification task can be approached
by three-valued spotlight abstraction.

Spotlight abstraction involves the partition of the processes of the system into
a spotlight and a shade. Predicate abstraction is applied to the spotlight, while
the shade processes are abstracted away by summarising them in one approxima-
tive component. The state space of the resulting abstract system can be straight-
forwardly modelled as a (pure) three-valued Kripke structure. In our current
verification task, the relevant process for the property of interest is Proc1, which
we put into the spotlight: Spot(Proc) = {Proc1}, whereas the remaining system
is for now kept in the shade: Shade(Proc) = {Proc2, . . . ,Procn}. Next, a set of
so-called spotlight predicates over the system variables is selected, here we choose
Spot(Pred) = {progress, (v1 > 0)}. By applying three-valued predicate abstrac-
tion to the spotlight processes, we obtain an abstract process Proca1 with the
same control flow as Proc1 but with operations abstracted over Spot(Pred). The
processes in the shade are summarised to one approximative process ProcShade .
Due to the loss of information about the shade, ProcShade might set predicates
over shared variables to the value ⊥. Our abstract system now looks as follows:
Sysa = Proca1 ‖ ProcShade . The state space of Sysa can be modelled as a pure
three-valued Kripke structure over AP = Spot(Pred) ∪ {(pci = j ) | Proci ∈
Spot(Proc), j ∈ Loci} where (pci = j ) refers to the program counter of Proci , and
each definite model checking result obtained for this structure can be transferred
to the concrete system [12]. A three-valued Kripke structure K corresponding
to Sysa is depicted in part (a) of the figure below. For simplicity, we only show
the program counter predicates that are currently true.

(a) (b)

s1K :: s2

s3

s4

s5

(pc1=1)
(v1>0)=⊥
progress=f

(pc1=2)
(v1>0)=⊥
progress=f

(pc1=4)
(v1>0)=f
progress=t

(pc1=5)
(v1>0)=f
progress=f

(pc1=3)
(v1>0)=t
progress=f

⊥
⊥

s1K (x1) :: s2

s3

s4

s5

(pc1=1)
(v1>0)=⊥
progress=f

(pc1=2)
(v1>0)=⊥
progress=f

(pc1=4)
(v1>0)=f
progress=t

(pc1=3)
(v1>0)=t
progress=f

(pc1=5)
progress=f
(v1>0)=fx1

¬x1

Note that the control flow of spotlight processes is always preserved under spot-
light abstraction. Hence, each transition of K associated with the spotlight
matches with a specific operation of the spotlight process Proc1. For K and its
set of atomic predicates AP = {progress, (v1 > 0)} ∪ {(pc1 = j ) | j ∈ Loc1} we
can formalise our property of interest as the LTL formula GFprogress and then
apply standard three-valued model checking, i.e. check [K , s1 |= GFprogress].
The current abstraction is not precise enough for a definite result in verifica-
tion. Since there exist processes in the shade that operate on the shared variable
v1, the value of the predicate (v1 > 0) in the states s1 and s2 is ⊥. Thus, it
is also unknown whether the body of the while-loop can be executed via the
transition (s2, s3), or whether the loop can be eventually left via (s2, s4). The



170 N. Timm and S. Gruner

automatic abstraction refinement procedure introduced in [17] would now itera-
tively shift processes from the shade to the spotlight until it can be definitively
shown which branch of the while-loop can be actually taken. However, due to
transitive dependencies – Proc2 modifies v1, but in turn depends on v2, . . . , vk
which may be modified by other shade processes as well – such a refinement
can be exceedingly costly or can even lead to a failure of verification because
of state explosion. A closer look at our simple example structure tell us that,
regardless of which branch of the loop will be ever taken, progress will never
hold repeatedly. Hence, the evaluation of GFprogress on K should yield false.
However, the standard three-valued LTL semantics (compare Section 2) does
not allow us to draw this conclusion. In the following we will see that automated
parameterisation can give us the necessary precision for a definite verification
result – at considerably less cost than classical abstraction refinement.

4.2 Parameterisation of Three-Valued Abstractions

As we just have seen, [K , s1 |= GFprogress] yields ⊥. Nevertheless, a ⊥-result
in 3MC always comes along with an unconfirmed counterexample – a potential
error path in the Kripke structure with some unknown transitions or predicates.
Four our running example the path π = s1s2s4s5s5 . . . is an unconfirmed coun-
terexample. Such a path is typically used for counterexample-guided abstraction
refinement (CEGAR) [4]: In our case, the ⊥-transition (s2, s4) would be identified
as the reason for uncertainty, and shade processes that modify the if -condition
(v1 > 0) associated with (s2, s4) would be iteratively shifted to the spotlight.
Now we will show that counterexamples can also be exploited for the parame-
terisation of three-valued Kripke structures. We first illustrate parameterisation
based on our running example and then provide the general rules for it.

Our method detects that the reason for uncertainty, the ⊥-transition (s2, s4)
along π, is associated with a complementary branch in the original system: a
branch of the control flow of a single process with complementary branching
conditions – here (v1 > 0) and ¬(v1 > 0). Instead of applying classical CEGAR,
a fresh boolean parameter x1 is introduced and the transition is parameterised
as follows: R(s2, s4) := x1. Next, the complementary transition (s2, s3) is iden-
tified and parameterised by R(s2, s3) := ¬x1. The corresponding parameterised
three-valued Kripke structure K (x1) is depicted in part (b) of the figure on the
previous page. Applying parameterised three-valued model checking, i.e. verify-
ing [K (x1), s1 |= GFprogress] immediately returns false. Thus, for our running
example a definite result in verification only requires the introduction of a single
parameter and the consideration of the two instantiations K (true) and K (false)
of K (x1). In contrast, a corresponding pure three-valued approach would require
a large number of additional refinement steps and thus would most likely fail
due to state explosion. Also the application of the computationally more expen-
sive GMC would not be successful, since it cannot establish the complementary
relation between (s2, s4) and (s2, s3). The following rule generalises the parame-
terisation of complementary branches in three-valued Kripke structures.



Parameterisation of Three-Valued Abstractions 171

Rule I (Parameterisation of Complementary Branch Transitions). Let
Sys = ‖ni=1 Proci be a concurrent system and Spot = Spot(Proc) ∪ Spot(Pred)
be a spotlight abstraction for Sys. Let K be a three-valued KS over AP =
Spot(Pred) ∪ {(pci = j ) | Proci ∈ Spot(Proc) ∧ j ∈ Loci} that models the
abstract state space corresponding to Sys and Spot, and let s1 be a state of K .
Moreover, let ψ be a safety or liveness LTL formula and checking [K , s1 |= ψ]
yields ⊥. Let π be the unconfirmed counterexample returned by model check-
ing which runs through a finite number of different transitions. The transitions
of K can be parameterised as follows: For each transition (s, s ′) along π with
R(s, s ′) = ⊥, check if (s, s ′) is part of a complementary branch, i.e.: (s, s ′) is
associated with a guard operation assume(e) of a spotlight process Proci , where
e is a boolean expression – and moreover, there exists a state s ′′ such that (s, s ′′)
is associated with a complementary guard operation assume(¬e) of Proci . Then
introduce a fresh parameter xj and set R(s, s ′) = xj and R(s, s ′′) = ¬xj .

This rule allows to parameterise complementary branches (e.g. if - or while-
operations) in three-valued abstractions. As we have seen in our running exam-
ple, this can lead to substantial savings in the number of necessary refinement
steps for a definite result in verification. In fact, any verification task where the
property of interest turns out to be independent from certain branches can profit
from such a parameterisation in a similar manner. At the end of this section we
will present a theorem which states that the application of Rule I leads to sound
abstractions of concurrent systems. Beforehand, we introduce another rule that
allows the parameterisation of predicates in three-valued abstractions.

In order to illustrate how the parameterisation of predicates works, we consider
a second example, the concurrent system Sys depicted below. Our property of
interest is now mutual exclusion, i.e. whether the flag variables flag1 and flag2

are never true at the same time.
v1, . . . , vk : integer;

flag1,flag2, init : boolean where flag1 = false,flag2 = false, init = false;

Proc1 ::

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 : flag1 := f (v1, . . . , vk )

2 : init := true

3 : flag1 := ¬flag2

4 :
[

. . .
]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

‖ Proc2 ::

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 : flag2 := false

2 : await(init)

3 : flag2 := ¬flag1

4 :
[

. . .
]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

‖ . . . ‖ Procn

Applying three-valued spotlight abstraction with classical refinement yields the
following spotlight after a number of iterations: Spot(Proc) = {Proc1,Proc2} and
Spot(Pred) = {flag1,flag2, init}. Next, a corresponding pure three-valued Kripke
structure K over AP = {flag1,flag2, init} ∪ {(pci = j ) | Proci ∈ Spot(Proc) ∧
j ∈ Loci} is constructed, and the mutual exclusion property formalised by the
safety LTL formula G¬(flag1 ∧ flag2) is checked for K . Model checking returns
unknown, since the assignment to flag1 at location 1 of Proc1 depends on the
shared variables v1, . . . , vk which are potentially modified by a large number
of processes that are currently in the shade. Thus, with classical abstraction
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refinement we have to expect a large number of further refinement steps necessary
for a definite result in verification: Predicates over the variables v1, . . . , vk as
well as processes modifying these variables have to be drawn into the spotlight.
Nevertheless, the model checking run based on the current spotlight also returns
the unconfirmed counterexample π depicted in part (a) of the figure below.

(a) (b)

s1π :: s2 s3 s4 s5 s6

(pc1=1)
(pc2=1)
flag1=f
flag2=f
init=f

(pc1=2)
(pc2=1)
flag1=⊥
flag2=f
init=f

(pc1=3)
(pc2=1)
flag1=⊥
flag2=f
init=t

(pc1=3)
(pc2=2)
flag1=⊥
flag2=f
init=t

(pc1=3)
(pc2=3)
flag1=⊥
flag2=f
init=t

(pc1=3)
(pc2=4)
flag1=⊥
flag2=⊥
init=t

s1π(x1) :: s2 s3 s4 s5 s6

(pc1=1)
(pc2=1)
flag1=f
flag2=f
init=f

(pc1=2)
(pc2=1)
flag1=x1

flag2=f
init=f

(pc1=3)
(pc2=1)
flag1=x1

flag2=f
init=t

(pc1=3)
(pc2=2)
flag1=x1

flag2=f
init=t

(pc1=3)
(pc2=3)
flag1=x1

flag2=f
init=t

(pc1=3)
(pc2=4)
flag1=x1

flag2=¬x1

init=t

The reason for uncertainty is the reachable state s6 where flag1 and flag2 are both
⊥. The predicate flag1 is set to ⊥ by transition (s1, s2), since there are not enough
predicates and processes in the spotlight in order to abstract the associated
operation flag1 := f (v1, . . . , vk ) properly. The predicate flag2 is set to ⊥ by
(s5, s6) because the associated operation flag2 := ¬flag1 modifies this predicate
in relation to the already unknown predicate flag1. In our simple example it
is easy to see that flag1 and flag2 must have complementary values in state s6
– which would rule out the unconfirmed counterexample π. However, this fact
cannot be captured by pure three-valued abstraction since it does not allow to
establish connections between predicates that are associated with the value ⊥.

Our concept of parameterisation enables us to establish such connections.
For our running example we proceed as follows: We backtrack to the state s2
where flag1 was initially associated with ⊥. Next, we introduce a fresh param-
eter x1 and set L(s2,flag1) := x1. Based on the operations associated with the
succeeding transitions along π we update the labellings of the states s3 to s6. As
a consequence, we now can capture that flag1 constantly keeps the value x1 along
π, flag2 keeps the value false until s5, and in particular, flag1 and flag2 have com-
plementary values in s6. The resulting path π(x1), which is depicted in part (b)
on the previous page, is no longer an unconfirmed counterexample. Thus, check-
ing G¬(flag1 ∧ flag2) on a corresponding parameterised Kripke structure K (x1)
will immediately return that no counterexample exists, i.e. that the property is
satisfied for the modelled system. Again we have seen that parameterisation –
here with regard to predicates – can lead to substantial savings in the number
of necessary refinement steps for a definite result in verification. The following
rule generalises the parameterisation of predicates in three-valued abstractions.

Rule II (Parameterisation of Predicates along Counterexamples). Let
Sys, Spot, K , s1 and AP be as in Rule I. Moreover, let ψ = G¬(

∧m
i=1 pi)

be a safety LTL formula with {p1, . . . , pm} ⊆ Spot(Pred) and model check-
ing [K , s1 |= ψ] yields ⊥. Let π = s1 . . . sk be the unconfirmed counterexam-
ple returned by model checking which is a path prefix that ends in a state sk
where all predicates from {p1, . . . , pm} are associated with either the value ⊥ or
true. K can be parameterised along π according to the following procedure:
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for s := s1 to sk do
for each pi ∈ {p1, . . . , pm} with L(sk , pi ) = ⊥ do

if L(s, pi ) = ⊥ then
if s = s1, i.e. s is the initial state then

introduce a fresh parameter xj and set L(s, pi ) := xj
else

let s′ be the direct predecessor of s along π, and let op be the operation
associated with the transition (s′, s)
if op is not associated with a process in Spot(Proc) or none of the
atomic predicates occurring in the weakest precondition1 wpop(pi ) are
contained in Spot(Pred) then

introduce a fresh parameter xj and set L(s, pi ) := xj
else

set L(s, pi ) :=
wpop(pi )

[
p/L(s′, p) |p ∈ Spot(Pred)

]
[p/⊥|p �∈ Spot(Pred)],

i.e. update L(s, pi ) wrt. parameterisations in predecessor s′

Parameterisation of predicates is applied in a similar way for model checking
liveness formulae, i.e. [K , s1 |= GF(

∨m
i=1 pi)] with {p1, . . . , pm} ⊆ Spot(Pred).

In case of an unknown result, the model checker additionally returns an uncon-
firmed counterexample π of the form (s1 . . . sl−1) ◦ (sl . . . sk )ω and in all states
sl . . . sk each predicate from {p1, . . . , pm} is associated with either the value ⊥
or false. The finite prefix (s1 . . . sl−1) of π is then parameterised in the same
manner as in the case of model checking safety formulae.

The following theorem establishes the soundness, with respect to the information
ordering ≤K3 (compare Section 2), of parameterised three-valued model checking,
provided that parameterisation is applied according to Rule I and II.

Theorem 1. Let Sys and Spot be as before. Let K over AP be a two-valued KS
modelling the concrete state space of Sys and let K⊥ over AP⊥ = Spot(Pred) ∪
{(pci = j ) | Proci ∈ Spot(Proc) ∧ j ∈ Loci} with AP⊥ ⊆ AP be a pure three-
valued KS modelling the abstract state space corresponding to Spot. Moreover,
let s1 and s⊥

1 be states representing the initial configuration of Sys in K resp.
K⊥. Then for any parameterisation K⊥(

m

x ) of K⊥ obtained by applying the rules
I and II, and for any safety or liveness LTL formula ψ2 over AP⊥ the following
holds:

[K⊥(
m

x ), s⊥
1 |= ψ] ≤K3 [K , s1 |= ψ]

Proof. See http://www.cs.up.ac.za/cs/ntimm/proof.pdf

Hence, every definite result in verification obtained for [K⊥(
m

x ), s⊥
1 |= ψ] can be

directly transferred to the concrete system modelled by K , whereas an unknown
result for [K⊥(

m

x ), s⊥
1 |= ψ] tells us that further abstraction refinement or param-

eterisation of K⊥(
m

x ) is required. In the next section, we will show how we have
implemented the application of the parameterisation rules within an automatic
abstraction refinement procedure for the verification of concurrent systems and
how verification can benefit from our parameterisation approach.
1 Let op = assume(e) : x1 := e1, . . . , xm := em then wpop(p) = e∧p[x1/e1, . . . , xm/em ].
2 ψ is either of the form G¬(

∧m
i=1 pi) or GF(

∨m
i=1 pi) with {p1, . . . , pm} ⊆ AP⊥.

http://www.cs.up.ac.za/cs/ntimm/proof.pdf
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5 Automatic Refinement and Parameterisation

We have prototypically implemented a verification framework for concurrent
systems based on spotlight abstraction with counterexample-guided refinement
and parameterisation. Our framework 3Spot works on top of the three-valued
symbolic model checker χChek [5]. 3Spot takes a concurrent system Sys over a
variable set Var and a safety or liveness temporal logic formula ψ over Sys as
input. The initial spotlight Spot is defined by the processes that are referenced
in ψ and the atomic predicates over Var that are subformulae of ψ. Next, a
parameterised three-valued Kripke structure K⊥(

m

x ) = (S ,R,L, F) corresponding
to Sys and Spot is constructed with a state s1 ∈ S representing the initial
configuration of Sys. The parameter tuple (

m

x ) of K⊥(
m

x ) is initially empty. In
order to check [K⊥(

m

x ), s1 |= ψ], the following procedure is executed:

1. check [K⊥(
m
a), s1 |= ψ] for all valuations (

m
a) ∈ {t, f }m

if ∀(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = t or ∀(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = f then

property ψ is successfully proved resp. disproved for the concurrent system Sys; stop

if ∀(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] ∈ {⊥, t} or ∀(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] ∈ {⊥, f }

then
still some unknown results; further refinement or parameterisation required; go to 2.

if ∃(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = t and ∃(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = f then

current parameterisation not expedient; revoke last parameterisation; go to 2.

2. for each valuation (
m
a) ∈ {t, f }m with [K⊥(

m
a), s1 |= ψ] = ⊥ do

generate unconfirmed counterexample π⊥ for [K⊥(
m
a), s1 |= ψ]

select unconfirmed counterexample π⊥ with the fewest unknown transitions and predicates

if Rule I is applicable along π⊥ then

apply Rule I to the corresponding branch in K⊥(
m
x )

else if Rule II is applicable along π⊥ then

apply Rule II to the corresponding path prefix in K⊥(
m
x )

else
determine cause of indefinite result along π⊥ and derive corresponding refinement candi-
date r (see our previous work [17] for an example technique for deriving refinement can-
didates from unconfirmed counterexamples), which can be a shade process or a predicate;
add r to Spot

if r is a predicate then

revoke parameterisation for parameterised branches in K⊥(
m
x ) where the value of r

affects the branching condition

update K⊥(
m
x ) according to changes in 2. and go to 1.

Hence, the procedure terminates if for all instantiations of the current parame-
terised Kripke structure the same definite result in verification can be obtained.
If model checking yields true for some instantiations and false for others, the
last parameterisation step was not expedient: The property of interest is then
obviously not independent from the most recent parameterisation. Thus, this
step is revoked, which also includes that the same parameterisation will not be
admissible in future iterations. In case model checking returns unknown for some
instantiations, the abstraction has to be further parameterised or refined based
on unconfirmed counterexamples obtained for these instantiations. For this pur-
pose we always apply Rule I or II if possible, or use classical refinement (see our
previous work [17]) otherwise. Adding a new predicate p to the abstraction may
affect parameterised branches: An abstract state s that is the starting point
of a complementary branch may be split into two new states sa and sb with
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L(sa , p) = true and L(sb , p) = false. Thus, in the general case, the parameter-
isation of the complementary branch starting in s has to be revoked. However,
if the branch condition is independent from the value of p then the parame-
terisation can be kept. Alternatives to the revocation of parameterisations are:
Keeping the parameterisation for only one state, either sa or sb . Or, introducing
a fresh parameter xj for the second branch starting in sb . Each iteration ends
with the update of the parameterised three-valued Kripke structure according
to new parameterisations or additional refinements. In case a new predicate has
been added to the abstraction, this update also involves the recalculation of the
parameterisation of predicates (compare last step of Rule II).

So far, parameterisation resp. refinement is performed based on the uncon-
firmed counterexample with the fewest unknown transitions and predicates. The
intention behind this is to minimise the expected effort to confirm or eliminate
the counterexample. Moreover, the attempt to apply the parameterisation rules
or classical refinement is so far always conducted in the fixed order Rule I, Rule
II, refinement. In the future, we intend to use heuristic guidance for selecting the
unconfirmed counterexample and for deciding which rule application or which
refinement step is currently most promising in order to achieve a definite result in
verification within a small number of iterations. Similar to our previous work on
heuristics for pure refinement [17], we plan to base this heuristic approach on the
structure of the underlying concurrent system, i.e. on the variable dependencies
between the processes of the system.

In preliminary experiments, we applied our procedure to multiple-resource
allocation systems3 with up to 25 processes and 140 variable dependencies, and
we checked safety as well as liveness properties. We compared verification under
the pure three-valued approach (which has proven to be generally successful for
concurrent systems in [14,15,17]) with verification under our novel approach with
parameterisation. In several cases where the pure three-valued approach failed
due to an out-of-memory exception, our new technique was capable of returning
a definite verification result. The additional computations for parameterisation
particularly paid off when the property of interest turned out to be indepen-
dent from certain branches in the system, and the costs for concretising these
branches via classical refinement were high. In fact, such cases are very common
for systems with many if -, while-, and similar operations. We also observed ver-
ification tasks (primarily where the system only exhibited very few branches, or
where the property was dependent on most of the branches) that did not profit
from the application of parameterisation rules. Here verification under the new
approach was slower but did not fail, since parameterisation only increases the
number of checks per iteration, but not the size of the abstraction (spotlight
processes and predicates). Thus, so far it is a good strategy to apply the pure
three-valued approach first and in case of failure the approach with param-
eterisation subsequently. Nevertheless, with our intended heuristic approach,
we aim at directly discovering the best possible combination of refinement and
3 A detailed description of these systems can be found in [14].
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parameterisation for each verification task. A more extensive experimental eval-
uation of such an enhanced approach is also planned as future work.

6 Related Work

Or research is situated in the field of model checking temporal logic properties
on partial system models. The idea of evaluating temporal logic formulae on
three-valued Kripke structures was initially proposed in [3] and is now estab-
lished under the name three-valued model checking (3MC). Our new concept
parameterised three-valued model checking (PMC) is an extension of 3MC. In our
approach, unknown parts of the modelled system cannot only be represented by
the constant ⊥, but also by expressions over boolean parameters. The evaluation
of temporal logic formulae is then performed for each possible parameter instan-
tiation. The idea of considering possible instantiations resp. concretisations of
a partial model is adopted from generalised model checking (GMC) [7]. In con-
trast to the concretisations in GMC, our instantiations only affect parameters
but do not concern the constant ⊥. Moreover, our instantiations are always of
the same size as the partial model, whereas the concretisations in GMC can be
exponentially larger. Neither 3MC nor GMC offer a concept for drawing con-
nections between unknown parts. While 3MC and GMC are general concepts
for the verification of partial models, our approach is application-oriented and
takes advantage from the consideration of the system structure when applying
the parameterisation rules within our automated verification procedure.

Another work related to ours is that of Herbstritt et al. [9] who combine three-
valued logic and quantified boolean parameters for representing unspecified parts
of a hardware model with different precision. Their technique is geared towards
equivalence checking of circuits. In contrast to our approach, [9] do not introduce
a concept for establishing connections between parameters in the model. More-
over, the decision for modelling an unspecified part via the third truth value ⊥ or
via a boolean parameter has to be done by hand and not based on automatable
rules. [9] encode their hardware verification tasks as bounded model checking
problems that can be efficiently solved via SAT/QBF-solvers. The definition of
such encodings for our parameterised three-valued model checking is another
interesting direction for future research. A similar approach to the verification
of hardware circuits, but in the context of BDD-based symbolic model check-
ing was introduced in [11]. Their method supports the verification of full CTL
properties based on models with a flexible representation of unknowns. This
approach necessitates the manual selection of the type of modelling unknown
parts. Establishing logical relations between parameters is not possible here.

7 Conclusion

We developed a concept for modelling unknown parts of an abstract software
system with different types of approximation: In our parameterised three-valued
Kripke structures the loss of information about a predicate or a transition can
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be either represented by the constant ⊥ or by an expression over boolean param-
eters. A novel feature of our modelling approach is that it allows for establishing
logical connections between unknown parameters, like equality or complemen-
tarity – and thus, to preserve more details under abstraction that can be crucial
for the success and efficiency of verification. We introduced temporal logic model
checking for parameterised three-valued Kripke structures and showed that this
method is sound if the models are constructed with regard to parameterisation
rules that we defined. These rules take the branching structure and the program
code of the modelled system into account and arrange the connections between
parameters in the model. We then presented an automatic verification procedure
based on iterative abstraction refinement and parameterisation. For several veri-
fication tasks, particularly for verifying systems with many conditional branches,
our new approach with parameterisation can significantly outperform verifica-
tion based on classical modelling techniques that are not capable of characteris-
ing connections between unknown parts. We are convinced that our concept for
parameterisation can be easily and effectively adapted to other types of systems
and verification tasks, which we intend to investigate in our future research.

References

1. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 74–89.
Springer, Heidelberg (2007)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: ACM SIGPLAN 2001, PLDI 2001, pp. 203–213.
ACM, New York (2001)

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued
temporal logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 274–287. Springer, Heidelberg (1999)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Easterbrook, S.M., Chechik, M., Devereux, B., Gurfinkel, A., Lai, A.Y.C.,
Petrovykh, V., Tafliovich, A., Thompson-Walsh, C.: χChek: a model checker for
multi-valued reasoning. In: ICSE 2003, pp. 804–805 (2003)

6. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1–3), 113–131 (1994)

7. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. In:
Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 89–104.
Springer, Heidelberg (2009)

8. Grumberg, O.: 2-valued and 3-valued abstraction-refinement in model checking.
In: Logics and Languages for Reliability and Security, pp. 105–128. IOS Press,
Incorporated (2010)

9. Herbstritt, M., Becker, B.: On combining 01X-logic and QBF. In: Moreno Dı́az,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739,
pp. 531–538. Springer, Heidelberg (2007)

10. Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
probabilistic systems. Logic and Algebraic Programming 81(4), 356–389 (2012).
http://www.sciencedirect.com/science/article/pii/S1567832612000239

http://www.sciencedirect.com/science/article/pii/S1567832612000239


178 N. Timm and S. Gruner

11. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flex-
ible modeling of unknowns. IEEE Trans. Computers 62(6), 1234–1254 (2013)

12. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009)

13. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. Infor-
mation and Computation 206(11), 1313–1333 (2008)

14. Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Veri-
fying Concurrent Systems. Phd thesis, University of Paderborn (2013)

15. Timm, N.: Spotlight abstraction with shade clustering - automatic verification of
parameterised systems. In: 8th International Symposium on Theoretical Aspects
of Software Engineering, pp. 18–25. IEEE Computer Society (2014)

16. Timm, N., Wehrheim, H.: On symmetries and spotlights – verifying parameterised
systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 534–548.
Springer, Heidelberg (2010)

17. Timm, N., Wehrheim, H., Czech, M.: Heuristic-guided abstraction refinement for
concurrent systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 348–363. Springer, Heidelberg (2012)

18. Wei, O., Gurfinkel, A., Chechik, M.: On the consistency, expressiveness, and preci-
sion of partial modeling formalisms. Information and Comp. 209(1), 20–47 (2011)



Author Index

Ahmad, Sohaib 32
Almeida, Diego R. 48
Andrade, Wilkerson L. 48

Barbosa, Luís S. 130, 146
Bonichon, Richard 1
Braz, Fernando A.F. 113

Calegari, Daniel 64
Campos, Sérgio V.A. 113
Ciaffaglione, Alberto 80

Déharbe, David 1
Durán, Francisco 17

Fedyukovich, Grigory 96
Ferreira, Bruno 113

Gruner, Stefan 162

Hasan, Osman 32

Lecomte, Thierry 1

Machado, Patrícia D.L. 48
Madeira, Alexandre 130
Martins, Manuel A. 130, 146
Martí-Oliet, Narciso 17
Medeiros Jr., Valério 1
Moraes, Alan 48
Mossakowski, Till 64

Neves, Renato 130, 146

Sharygina, Natasha 96
Siddique, Umair 32
Szasz, Nora 64

Tahar, Sofiéne 32
Timm, Nils 162

Verdejo, Alberto 17


	Preface
	Organization
	Contents
	LLVM-Based Code Generation for B
	1 Introduction
	2 Target LLVM Subset
	3 On the Structure of B Developments
	4 General Design of the Code Generator
	5 Details of the Code Generator
	5.1 The Standalone Module counter
	5.2 The Composed Module wd
	5.3 Generating a System Instance

	6 Verification and Validation
	7 Conclusion
	References

	Equational Abstractions in Rewriting Logic and Maude
	1 Introduction
	2 Maude by Example
	2.1 Crossing the River
	2.2 An Unordered Communication Channel
	2.3 The Maude Formal Environment
	2.4 Model Checking

	3 Equational Abstractions
	4 Equational Abstraction on the Unordered-Channel Example
	5 Concluding Remarks
	References

	Formalization of Zsyntax to Reason About Molecular Pathways in HOL4
	1 Introduction
	2 Preliminaries
	2.1 Zsyntax 
	2.2 HOL4 Theorem Prover

	3 Formalization of Zsyntax 
	4 Formal Verification of Zsyntax Properties
	4.1 Scenario 1: No Reaction
	4.2 Scenario 2: Single Reaction

	5 Case Study: Pathway Leading to Fructose-1,6-Bisphosphate
	6 Conclusion
	References

	Towards a Family of Test Selection Criteria for Symbolic Models of Real-Time Systems
	1 Introduction
	2 Background
	2.1 Timed Input-Output Symbolic Transition System Model
	2.2 Test Selection Criteria for Real-Time Systems

	3 Towards a Family of Test Selection Criteria for TIOSTS
	4 Empirical Study
	5 Related Work
	6 Concluding Remarks
	References

	Model-Driven Engineering in the Heterogeneous Tool Set
	1 Introduction
	2 Model-Driven Engineering
	3 An Institution-Based Environment for MDE
	4 Borrowing Proof Capabilities
	4.1 Common Algebraic Specification Language
	4.2 Encoding Csmof into Casl
	4.3 Encoding Qvtr into Casl

	5 The Environment in Action
	5.1 Verification Properties

	6 Related Work
	7 Conclusions and Future Work
	References

	A Coinductive Animation of Turing Machines
	1 Introduction
	2 Turing Machines
	3 Turing Machines in Coq
	4 Coinduction in Coq
	5 Operational Semantics
	6 Adequacy
	7 Certification
	8 Conclusion
	References

	Towards Completeness in Bounded Model Checking Through Automatic Recursion Depth Detection
	1 Introduction
	2 Preliminaries and Previous Work
	2.1 Programs, Function Calls, Recursion Depth
	2.2 PBMC Encoding
	2.3 Craig Interpolation and Function Summarization
	2.4 Counter-Example Guided Refinement

	3 Bounded Model Checking with Automated Detection of Recursion Depth
	3.1 Basic Algorithm
	3.2 Optimizations and Applications of Alg. 1 

	4 Experimental Evaluation
	4.1 Evaluating RDD
	4.2 Evaluating SRDD

	5 Related Work
	6 Conclusion and Future Work
	References

	A Probabilistic Model Checking Analysis of a Realistic Vehicular Networks Mobility Model
	1 Introduction
	2 VANET Analysis
	2.1 Intelligent Driver Model
	2.2 Minimizing Overall Braking Induced by Lane Change
	2.3 Framework for Realistic Vehicular Mobility Models

	3 Probabilistic Model Checking
	4 Mobility VANET Model
	5 Results
	6 Conclusions
	References

	A Dynamic Logic for Every Season
	1 Introduction
	2 The Method
	3 ``Dynamisations" Are Dynamic
	4 Conclusions
	References

	Completeness and Decidability Results for Hybrid(ised) Logics
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Contributions and Roadmap

	2 Background
	3 Hybridisation of Logics and Their Calculi
	3.1 Hybridisation Revisited
	3.2 Hybridising a Calculus

	4 Decidability and Completeness of Hybridised Logics
	4.1 Preliminaries
	4.2 Decidability
	4.3 Soundness and Completeness

	5 Conclusions and Future Work
	References

	Parameterisation of Three-Valued Abstractions
	1 Introduction
	2 Background: Three-Valued Model Checking
	3 Parameterised Three-Valued Model Checking
	4 Application to Three-Valued Abstractions
	4.1 Spotlight Abstraction for Concurrent Systems
	4.2 Parameterisation of Three-Valued Abstractions

	5 Automatic Refinement and Parameterisation
	6 Related Work
	7 Conclusion
	References

	Author Index



