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Abstract High-concentrator photovoltaic (HCPV) devices are based on the use of
multijunctions solar cells and optical devices. Therefore, the electrical modelling of
an HCPV device presents a great level of complexity. Several artificial neural
network (ANN)—based models have been developed to try to address this issue. In
this chapter, a review of the developed ANN—based models developed to try to
address some issues related with the field of high concentrator PV technology is
reported. In addition, the results obtained from the application of some of these
models to estimate the electrical parameters of an HCPV module—such as maxi-
mum power, short-circuit current, and open-circuit voltage—are presented. The
results show that the ANNs are a useful tool for modelling HCPV applications.

1 Introduction

High-concentrator photovoltaic (HCPV) technology is based on the use of optical
devices that focus the light received from the Sun on the solar cell surface. The aim
of these systems is to decrease the cost of the electricity by decreasing the semi-
conductor material by mounting less expensive optical devices [1]. HCPV tech-
nology is widely based on the use of high efficiency multijunction (MJ) solar cells;
a primary optical element (usually a Fresnel lens), which concentrates the light; and
a secondary optical element, which receives the light from the primary one to
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homogenize light and improve the angular acceptance angle [2]. An HCPV module
is made up of MJ solar cells, an optical system for each cell, and the rest of the
components required to generate electricity and dissipate the heat produced on the
solar cell surface. MJ solar cells and HCPV modules have already reached high
efficiencies, which are expected to continue growing in the next few years [3–5].
Thus, HCPV could play an important role in the energy generation market in the
coming years [6]. However, due to the use of MJ solar cells and optical elements,
the electrical modelling of HCPV devices shows a significant level of complexity
than for conventional photovoltaic (PV) technology.

Artificial neural networks (ANNs) have proven to be helpful in solving complex
problems and studying nonlinear systems. In the field of PVs, ANNs have been
successfully applied to solve different issues [7–9]. For instance, ANNs have been
used to:

• estimate and predict solar radiation data [10–14],
• estimate the maximum power (Pm) and normal operating power of a flat PV

module [15, 16],
• size, model, and simulate both stand-alone PV systems [17, 18] and PV systems

with a maximum power-point tracking controller [19, 20],
• predict the equivalent circuits parameters of a flat PV module [21],
• select a suitable model for characterising PV devices [22],
• obtain the current–voltage (I–V) curves of different flat-plane panels [23, 24],
• or to estimate the energy production of grid-connected PV systems [25, 26].

Due to the advantages of the ANNs to solve complex and nonlinear problems
related with the field of PVs and the great level of complexity of electrical mod-
elling of HCPV devices, in the recent years several authors have applied different
ANNs to solve various problems related with this new technology. In this chapter, a
review of the ANNs developed to address various issues related with the HCPV is
presented, and examples of the application of ANNs in this field are given. In
particular, the results obtained in the application of some of these ANNs to estimate
the main electrical parameters of an HCPV module—including Pm, short-circuit
current (Isc), and open-circuit voltage (Voc)—are presented.

2 Application of ANNs to Estimate of Direct Solar
Irradiation

Due to the use of lenses that concentrate light on the solar cell, the HCPV devices
operate only with direct normal irradiance (DNI). So the DNI is especially
important for the characterization, management, and operation of HCPV modules,
systems, and power plants. DNI is affected by phenomena that are difficult to
forecast such as cirrus clouds, wildfires, dust storms, and episodic air pollution
events, which can decrease DNI by ≤30 % on otherwise cloud-free days [27].
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Because of this, the modelling and prediction of the DNI is a difficult task, and
several authors have used ANN-based models to address this issue. A complete
review about the solar data forecast by using artificial intelligence methods
including DNI and neural network can be found in [28].

A Bayesian neural network was developed to model direct solar irradiance by
Lopez et al. [29]. A relevance-determination method was also employed to obtain the
relative relevance of a large set of meteorological and radiometric variables. Results
show that themore relevant parameters are the clearness index (Kt) and airmass (AM).

In [30], the authors developed an ANN model to estimate beam solar radiation.
A new parameter known as the “reference clearness index” was introduced, which is
defined as the ratio of the measured beam solar radiation at normal incidence to the
beam solar radiation as computed by Hottel’s clear-day model. Results show that root
mean square error (RMSE) in the ANNmodel varies 1.65–2.79 % for Indian regions.

Mishra et al. [31] developed a self-consistent model for the estimation of direct
solar radiation in the Indian zone. An ANN-based model was used for the esti-
mation of the Kt. The model predictions for the Indian region were found to be in
good agreement with the measurements.

An adaptive model for predicting hourly global, diffuse, and direct solar irra-
diance was developed in [32]. A comparison between a Feed-Forward Neural
Network (FFNN) and the proposed adaptive model was also presented. It was
shown that the FFNN was able to predict the DNI with acceptable accuracy at
Jeddah, King of Saudi Arabia (KSA). They observed that ANN performed better
than the designed adaptive alpha-model with a correlation coefficient of 98 %.

In [33], the author developed an ANN model for estimating of monthly average
daily direct solar radiation. According to the author, a correlation coefficient of
0.998 was obtained with mean bias error (MBE) of 0.005 MJ/m2 and an RSME of
0.197 MJ/m2.

In [34], the authors developed forecastingmodels for hourly solar irradiation using
ANNs for lead times of ≤6 days. Model inputs included current and forecasted
meteorological data obtained from the United States National Weather Service’s
forecasting database and solar geotemporal variables. The gamma test was combined
with a genetic algorithm to select the more relevant inputs. According to the authors,
the estimation of DNI is much more difficult to predict reliably; the RMSE values
obtained on same-day forecasts are in the range of 28–35 %.

Several ANNs were developed by Rodrigo et al. [35] for the generation of DNI
hourly time series for some Spanish locations. In particular, different architectures of
multiple linear perceptron (MLP) neural networks were used with three different
configurations. The designed model could be used for the estimation of the energy
that will be produced by concentrating PV systems, to perform economic analysis,
and to supervise plant operation. The developed models were tested in different
locations. The RMSE among real data and synthetic data for the three configurations
and for the different locations considered are in the range 0.01–0.27. Results show
that the ANNs yield better results for locations in the south of Spain.

Rehman and Mohandes [36] used a radial basis function (RBF) network for
modelling the diffuse and direct normal solar radiation for sites in KSA based on
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input data such as day number, global solar radiation, ambient temperature, and
relative humidity. The results indicate that the RBF (with 50 hidden neurons and
0.1 spread constant) predicts direct normal solar radiation with mean absolute
percentage error of 0.016 and 0.41 for diffuse solar radiation.

A regionally based ANN model to retrieve the DNI at the surface of the United
Arab Emirates (UAE) was developed by Marpu et al. [37]. The results are promising
when estimating the solar irradiance at a 15-minute temporal resolution and a 3-km
spatial resolution. The inputs of the designed model were six SEVIRI (on-board
Meteosat Second Generation satellite) thermal channels along with several time- and
season-dependent parameters, namely the solar zenith angle, solar time, day number,
and eccentricity correction.

Recently, Chu et al. [38] designed a novel smart forecasting model for intra-hour
DNI. The authors combined sky image processing with ANN optimization
schemes. The hybrid forecast models achieved statistically robust forecasting skills
in excess of 20 % over persistence both for forecasts 5 and 10 min ahead,
respectively. Table 1 lists the applications of ANNs for modelling and prediction of
DNI and lists the type of ANN employed in each case.

3 Application of ANNs for the Electrical Modelling
of HCPV Devices

As in any kind of energy system, modelling the electrical output of a PV device is
crucial for the system design and energy prediction. However, the electrical mod-
elling of HCPV modules and systems shows a significantly greater level of

Table 1 Summary of the applications of ANNs for predicting the DNI

# Authors Ref. Year ANN

1 Mellit [28] 2008 Feed-forward neural network, radial basis function
neural network, and neural networks

2 Lopez et al. [29] 2005 Bayesian neural network with Automatic Relevance
Determination (ARD)

3 Alam et al. [30] 2006 Feed-forward back-propagation neural network

4 Mishra et al. [31] 2008 Feed-forward back-propagation neural network

5 Mellit et al. [32] 2010 Feed-forward back-propagation neural network

6 Mubiru [33] 2011 Feed-forward back-propagation neural network

7 Marquez and
Coimbra

[34] 2011 Feed-forward back-propagation neural network

8 Rodrigo et al. [35] 2012 Feed-forward back-propagation neural network

9 Rehman and
Mohandes

[36] 2012 Radial basis function neural networks

10 Marpu et al. [37] 2013 Feed-forward back-propagation neural network

11 Chu et al. [38] 2013 Feed-forward neural network with genetic algorithm
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complexity than conventional PV technology. Due to the use of MJ solar cells and
optical devices, HCPV modules and systems show a strong spectral dependence. To
quantify the spectral changes and to evaluate how these affect the behaviour of an
HCPV device is not a trivial issue [39, 40]. In addition, as in conventional PV
technology, the cell temperature (Tc) is an important input in models used for the
electrical characterization of HCPV devices because the temperature at which cells
are working in an HCPV module affects its performance. However, one of the
problems in HCPV technology is that the direct measurement of this temperature is a
complex task because it requires access inside the module [41].

Because of this difficulty, in recent years the scientific community has devoted
efforts in developing ANN-based models which try to solve some of these issues.

3.1 Application of ANNs to Modelling Multi-junction Solar
Cells

The PV solar cells used in HCPV technology are made of several p-n junctions
(usually three junctions) of III–V semiconductor materials of the periodic table.
Each p-n junction has a different band gap and is interconnected in series with the
others to optimize the absorption of the solar spectrum and increase the efficiency of
the solar cell electricity conversion [42]. Thus, although single-junction (SJ) solar
cells are mainly influenced by changes in irradiance and temperature, MJ solar cells
show complex behaviour because their performance is also strongly influenced by
changes in solar spectrum. Due to this, Patra et al. [43–46] proposed approaches
based on ANN to characterize these devices.

In [43] and [44], an ANN based-model was proposed to characterize dual-junction
(DJ) GaInP/GaAs solar cells. The authors used four multilayer perceptrons: one for
estimating the tunnelling effects of a solar cell and the other three for estimating the
external quantum efficiency (EQE) and the I–V characteristic, both under 1 sun and in
dark, for the DJ solar cell. The inputs for ANNs are the voltage for estimating the
tunnelling effects and the I–V characteristic as well as the irradiation wavelength (λ)
for estimating the EQE. The results were compared with experimental and simulated
data through Silvaco ATLAS software [47]. The results showed that compared with
the results obtained through ATLAS, the MLP-based model was able to predict DJ
solar cell parameters more closely to that of experimental ones.

In [45], a novel Chebyshev neural network-based model for a DJ GaInP/GaAs
solar cell was developed to predict the EQE and the I–V characteristics, both at one
sun and dark levels. The inputs of the model are the same as those in the previous
case.

In [46], an ANN-based model was used to estimate the EQE and the perfor-
mance of triple-junction InGaP/GaAs/Ge solar cells under the influence of a wide
range of charged particles. The inputs of the models are the wavelength (λ), the
proton energy (η), and the fluence (f). The results show that the ANN-based models

Applications of ANNs in the Field of the HCPV Technology 337



perform quite well in the estimation of EQE of the solar cell under the influence of
proton energy ranging from 30 keV to 10 MeV with fluence levels ranging from
1010 to 1014 ion/cm2.

3.2 Application of ANNs to Modelling HCPV Modules

3.2.1 Application of ANNs to Estimate the Maximum Power
of a HCPV Module

Due to the use of MJ solar cells and lenses, HCPV modules are mainly influenced
by changes in irradiance, spectrum, temperature, and wind speed (Ws). Taking this
into account, the output of HCPV modules could be expressed as a function of these
parameters:

Pm ¼ f B; S; T ;Wsð Þ ð1Þ

The relation between these parameters and the output of an HCPV module is
complex and nonlinear, so the use of ANN-based models has been proposed by
several authors to try to find this relation.

Almonacid et al. [48] developed an ANN-based model, in particular an MLP, to
find the relation between the output of an HCPV and the main parameters that
affected its performance. The input parameters used by the model are as follows:

• the DNI to evaluate how the changes in the irradiance affect the performance of
an HCPV module

• AM and precipitable water (PW) to evaluate the spectrum because these are,
together with clouds and aerosol optical depth (AOD), the parameters with the
largest impact on spectral changes [49, 50] and are also easy to obtain from the
data provided by a meteorological station [51–54]

• air temperature (Tair) to evaluate the temperature of the HCPV module; and
• the wind speed (Ws).

Coefficients of neural networks are obtained from outdoormonitored data. The results
show that the ANN based-model could be used to estimate successfully the output of an
HCPV module with a MBE of 0.07 %, an RMSE of 2.91 %, and an R2 of 0.99.

This approach has also been followed by Rivera et al. [55]. In this case, a
cooperative competitive hybrid algorithm for RBF networks was implemented. This
model uses as input the average photon energy [56, 57] to quantify the spectral
influences on the Pm of an HCPV module. This is a single value in eV that char-
acterizes the shape of the spectrum. A spectroradiometer is required for obtaining
this input. The rest of the inputs of the model are DNI to evaluate how the changes
in the irradiance affect the performance of an HCPV module, Tair to evaluate the
temperature, and Ws. The coefficients of the neural network are obtained from
outdoor monitored data. The model obtained gives an error of approximately 3.3 %.
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3.3 Application of ANNs to Estimate the Electrical
Characteristics of an HCPV Module

As already indicated, the output of an HCPV module is significantly affected by
changes in irradiance, spectrum, and temperature. A different approach for electrical
modelling of these devices is based on the premise that the electrical parameters of
an HCPV module can be estimated by applying models and equations used for
conventional PV technology from the DNI, corrected spectrally, and the Tc [58, 59].
According to this approach, two ANNs for estimating these parameters have been
proposed in [41, 60].

Application of ANNs to estimate the spectrally corrected direct normal
irradiance
The spectrally corrected DNI (DNIc) is defined as the portion of the incident
spectrum that an HCPV module is able to convert into electricity expressed here as:

DNIc ¼
min

R
Eb kð Þg kð ÞSRi kð Þdk� �

min
R
Eb;ref kð Þg kð ÞSRi kð Þdk� �

Z
Eb;ref kð Þdk ð2Þ

where the index i represents the junction considered, λ is the wavelength, SRi(λ) is
the spectral response of the i-junction, Eb(λ) is the spectral distribution of the DNI,
and η(λ) is the optical efficiency of the HCPV module.

The advantage of this approach is that the spectral effects of an HCPV device are
quantified by adjusting only the incident DNI [58].

Taking this into account, an ANN-based model for DNIc was presented in [60].
The inputs of the model are the main meteorological parameters that influence the
spectral distribution of the DNI and the performance of an HCPV module: AM,
AOD, and PW. Results show that the method is able to predict spectrally corrected
normal irradiance with an RMSE of 2.92 %, an MBE of −0.12 %, and a R2 of 0.98.

Application of ANNs to estimate the cell temperature of a HCPV module
The operating temperature of the solar cell is a crucial issue to characterize the
electrical behaviour of a PV device. However, the measurement of this temperature
in an HCPV module is a complex task due to its special features that do not allow
one to access the cell. To solve this problem, several authors have attempted
different approaches [41, 61]. One of these is based on the premise that the Tc can
be obtained from the main meteorological parameters that have an influence in this
temperature: DNI, Tair, and Ws. Using a linear expression [62]:

Tc ¼ Tair þ aDNIþ bWs ð3Þ

where a and b are empirical parameters obtained from outdoor monitored data.
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According to this approach, an ANN-based model was presented in [41]. This
model attempts to characterise the relationship between the Tc and the main mete-
orological parameters that affect it. The input parameters are DNI, Tair, and Ws.
Results show that the ANN-based model significantly improves the results of the
method based on a linear expression with an R2 of 0.95, a relative RMSE of 4.80 %,
and an absolute RMSE of 3.24 °C. Table 2 lists the applications of ANNs for
modelling HCPV devices and also indicates the type of ANN employed in each case.

4 Examples of Applications

In this section, some examples of the applications of the ANNs for the character-
ization of HCPV modules are presented. The first example concerns the Pm of an
HCPV estimated using the ANN developed by Almonacid et al. in [48]. In the
second part, the Voc and the Isc of an HCPV module will be calculated from the
DNIc and the Tc according to the approach presented in [58, 59]. The ANNs
developed in [41, 60] have been used to estimate the spectrally corrected normal
irradiance and the Tc for an HCPV module.

4.1 Experimental Campaign

To conduct this study, an HCPV module was measured for 6 months in the Centro
de Estudios Avanzados en Energía y Medio Ambiente at the University of Jaén.
The module is made up of 20 lattice-matched MJ solar cells connected in series (Ns)

Table 2 Summary of applications of artificial neural networks for modelling HCPV devices

No. Authors Ref. Year ANNs

ANN for modelling MJ solar cells

1 Patra and
Maskell, Patra

[43,
44]

2010
2011

Feed-forward back-propagation neural network

2 Patra [45] 2011 Chebyshev neural network

3 Patra and
Maskell

[46] 2012 Feed-forward back-propagation neural network

ANNs for modelling HCPV modules

4 Almonacid
et al.

[48] 2014 Feed-forward back-propagation neural network

5 Rivera et al. [55] 2013 Radial basis function network with a
cooperative-competitive hybrid algorithm

6 Fernández et al. [41] 2014 Feed-forward back-propagation neural network

7 Fernández and
Almonacid

[60] 2014 Feed-forward back-propagation neural network
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with a silicon-on-glass Fresnel lens on each cell (Fig. 1, top left). Figure 1 shows
the EQE of the MJ solar cells and the transmittance of the lens of the HCPV module
used in this study. Table 3 shows the main electrical parameter of the HCPV
module.

The experimental set-up (Fig. 1, top right) used to measure the electrical char-
acteristic of the HCPV module and the main parameters necessary to train the
ANNs for estimating Pm, DNIc and the Tc, is made up of the following:

Fig. 1 Top left Photograph of the HCPV module considered in the study. Top right Scheme of the
experimental set-up to measure the electrical parameters of the HCPV module and the main
parameters necessary to train the ANN. Bottom left EQE of the MJ solar cells of the HCPV
module. Bottom right Transmittance of the Fresnel lenses used in the HCPV module considered

Table 3 Electrical characteristics of the module under study measured at outdoor reference
conditions: DNI = 900 W/m2, Tair = 20 °C, and AM = 1.5, for wind speed lower than 1 m/s

Electrical parameters of the HCPV module

Maximum power (Pm) 232 W

Open circuit voltage (Voc) 57.6 V

Short circuit current (Isc) 5.3 A
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• a high-accuracy two-axis solar tracker to keep the HCPV module always
pointing toward the solar rays so lenses are able to focus the radiation on the
small solar cell area;

• a four-wire electronic load to measure the electrical parameters of the module;
• a four-wire PT100 placed close to the solar cell to measure the Tc; and
• a meteorological station placed at the roof of the centre to record the main

atmospheric parameters such as DNI, Tair, Ws, or humidity.
• the values of AOD and PW, which were not provided by the meteorological

station, were obtained from MODIS Daily Level-3 data source [63].

Table 4 shows the maximum, minimum, and average values of the parameters
used as inputs of the different ANNs used in the study.

4.2 Estimation of the Maximum Power of a HCPV Module

The ANN developed in [48] has been applied to estimate the Pm of the HCPV
module. The inputs of the ANN-based model are DNI, AM, PW, Tair, and Ws. The
structure of the ANN consists of tree layers: the input layer, which has five nodes;
the hidden layer, which has seven nodes; and the output layer, which has one node
that corresponds to the Pm of the HCPV module. This architecture was trained with
the Levenberg–Marquardt back-propagation algorithm to determine the coefficients
of the ANN. To train and test the ANN, a set of outdoor measurements, including
the output of the HCPV module and the meteorological parameters, were used for a
wide range of operating conditions (Table 4). Table 5 shows the coefficient of
multiple determination (R2), the RMSE, the mean absolute error (MAE), and the
MBE between actual data and data predicted by the ANN-based model.

Figure 2 shows an example in the estimation of the Pm of the HCPV module
using the ANN based-model for two different days (summer and winter days).

Table 4 Maximum,
minimum, and average values
of the parameters used as
inputs of the ANNs for
estimating Pm, DNIc, and Tc

Parameter Maximum Minimum Average

DNI (W/m2) 978.42 235.27 763.00

Tair (°C) 40.36 3.74 26.12

Ws (m/s) 9.76 0.00 1.34

AM 9.05 1.02 1.92

AOD 0.55 0.04 0.19

PW (cm) 3.29 0.39 1.71

Table 5 Values of the parameters R2, RMSE, MAE, and MBE between actual data and predicted
data by the ANN-based model for estimating the maximum power of the HCPV module
considered

R2 RMSE (%) MAE (W) MBE (%)

0.98 2.78 4.09 −0.01
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Table 6 shows the maximum, minimum, and average values of the parameters used
as input of the ANN for the two example days.

4.3 Estimation of the Electrical Parameters of a HCPV
Module

According to the approach that the electrical performance of an HCPV device can
be quantified from the DNIc and Tc [58, 59], the Voc, and the Isc of the HCPV
module considered can be estimated from equations used in conventional PVs:

Fig. 2 Left Actual maximum power of the HCPV module considered versus predicted maximum
power by the ANN-based model for a summer day (07 July 2013). Right Actual maximum power
of the HCPV module considered versus predicted maximum power by the ANN-based model for a
winter day (01 December 2013)

Table 6 Maximum, minimum, and average values of the parameters used as inputs for the two
examples days (summer and winter day)

Summer day (07/07/2013) Winter day (01/12/2013)

Parameter Maximum Minimum Average Maximum Minimum Average

DNI (W/m2) 924.87 378.46 797.77 931.97 674.10 863.94

Tair (°C) 36.8 27.8 33.24 13.12 4.72 9.44

Ws (m/s) 6.70 0.25 3.93 3.91 0 1.25

AM 6.42 1.00 1.82 4.30 1.87 2.42

AOD 0.15 0.15 0.15 0.09 0.09 0.09

PW (cm) 1.82 1.82 1.82 0.78 0.78 0.78
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Isc ¼ I�sc
G� G 1þ c T�

c � Tc
� �� � ð4Þ

Voc ¼ V�
oc 1þ b T�

c � Tc
� �� �þ Ns

mkTc
q

ln
G
G�

� �
ð5Þ

where Isc
* , G*, Tc

*, and Voc
* are the Isc, solar global irradiance, Tc, and Voc at reference

conditions; γ and β are the Tc coefficient of the Isc and the Voc, respectively; m is the
effective ideality factor of the cell; k is the Boltzmann constant; and q is the electron
charge.

Equations (4) and (5) must be adapted to HCPV as follows:

Isc ¼ I�sc
DNI�

DNIc 1þ c T�
c � Tc

� �� � ð6Þ

Voc ¼ V�
oc 1þ b T�

c � Tc
� �� �þ Ns

mkTc
q

ln
DNIc
DNI�

� �
ð7Þ

where DNI* is the DNI at reference conditions and DNIc is the spectrally corrected
DNI. The various parameters for the module considered are m = 3, γ = 0.002 °C−1

and β = 0.0015 °C−1 for the HCPV.

4.4 Estimation of the Spectrally Corrected Direct Normal
Irradiance

To estimate the DNIc of the HCPV module considered, the ANN developed in [60]
was applied. The inputs of the ANN are AM, AOD, and PW, and the ANN has five
nodes in the hidden layer and one node in the output layer corresponding to the
spectral correction function. This architecture was trained with the Levenberg–
Marquardt back-propagation algorithm to determine the coefficients of the ANN.
To train and test the ANN, a set of outdoor measurements were used for a wide
range of operating conditions listed in Table 4. Table 7 lists the R2, the RMSE, the
MAE, and the MBE—all of which are considered very adequate—between actual
and predicted data using the ANN-based model.

Figure 3 shows an example of the DNI measured during 2 days (summer and
winter) versus the DNIc predicted by the ANN based-model for the HCPV module.

Table 7 Values of the parameters R2, RMSE, MAE, and MBE between actual data and predicted
data by the ANN-based model for estimating the spectrally corrected direct normal irradiance

R2 RMSE (%) MAE (W/m2) MBE (%)

0.98 3.19 17.50 −0.16
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Table 6 shows the maximum, minimum, and average values of the parameters used
as input to the ANN for the 2 example days.

As can be seen from Fig. 3, although the maximum level of DNI reached on
winter and summer is similar (approximately 900 W/m2), the DNIc is lower in
winter. This could be mainly explained because the AM values are significantly
greater in the winter than in summer, so the portion of the incident spectrum that an
HCPV module is able to convert into electricity is lower due to spectral losses. This
also can be observed at the sunrise and sunset (both in winter and summer) when
the AM values are greater and the DNIc is lower than DNI.

4.5 Estimation of the Cell Temperature

To estimate the Tc of the HCPV module considered, the ANN developed in [41] has
been used. The inputs of the ANN are: Tair, DNI and Ws, and the ANN has five
nodes in the hidden layer and one node in the output layer corresponding to the Tc
of the HCPV module. This architecture was trained with the Levenberg–Marquardt
back-propagation algorithm, to determine the coefficients of the ANN. To train and
test the ANN, a set of outdoor measurements including the Tc of the HCPV module
and the meteorological parameters were used for a wide range of operating con-
ditions, listed in Table 4. Table 8 shows the R2, RMSE, MAE and the MBE
between actual data and predicted data using the ANN-based model.

Fig. 3 Left Actual direct normal irradiance versus spectrally corrected direct normal irradiance
predicted by the ANN-based model for a summer day (07 July 2013). Right Actual direct normal
irradiance versus spectrally corrected direct normal irradiance predicted by the ANN-based model
for a winter day (01 December 2013)
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Figure 4 shows an example of the Tc of the HCPV module measured during
2 days (summer and winter day) versus the Tc predicted by the ANN based-model.
Table 6 shows the maximum, minimum, and averages values of the parameters used
as input of ANN for the two example days.

4.5.1 Estimation of the Short-Circuit Current and the Open-Circuit
Voltage

Once the values of the DNIc and Tc are available, it is possible to estimate the Isc
and the Voc using Eqs. (6) and (7). Table 9 shows the R2, RMSE, MAE, and MBE
between actual and predicted data using Eqs. (6) and (7).

Table 8 Values of the parameters R2, RMSE, MAE, and MBE between actual data and predicted
data by the ANN-based model for estimating the cell temperature of the HCPV module considered

R2 RMSE (%) MAE (oC) MBE (%)

0.90 5.16 2.51 0.00

Fig. 4 Left Actual cell temperature versus predicted cell temperature by the ANN-based model for
a summer day (07 July 2013). Right Actual cell temperature versus predicted cell temperature by
ANN-based model for a winter day (01 December 2013)

Table 9 Values of the parameters R2, RMSE, MAE, and MBE between actual and predicted data
using Eqs. (6) and (7) for estimating the short-circuit current and the open-circuit voltage of the
HCPV module considered

R2 RMSE (%) MAE MBE (%)

Isc 0.97 3.53 0.12 A −0.23

Voc 0.90 0.66 0.29 V 0.01
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Figures 5 and 6 bottom-left show the actual versus the predicted Isc for the
HCPV module considered for 2 example day. Figures 5 and 6 bottom-right show
the actual versus the predicted Voc for the HCPV module considered for 2 example
days.

5 Conclusions

In this chapter, a review of ANN-based models developed for solving some prob-
lems related with HCPV technology is presented. In addition, several examples of
the application of some of these models for estimating the main electrical parameters
of an HCPV module—such as the Pm, the Isc, and the Voc—are presented.

The ANN based-model developed in [48] was applied to estimate the Pm of an
HCPV. This model takes into account the main meteorological parameters that
affect the output of an HCPV module. The approach presented in [58, 59] was

Fig. 5 Top left Direct normal irradiance measured during a summer day versus the spectrally
corrected direct normal predicted by the ANN presented in [60]. Top right cell temperature
measured during a summer day versus cell temperature predicted by the ANN presented in [41].
Bottom left Actual short-circuit current versus estimated short-circuit current using Eq. (6) for the
HCPV module considered during a summer day. Bottom right Actual open-circuit voltage versus
open-circuit voltage using Eq. (7) for the HCPV module considered during a summer day
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followed to estimate the Isc and the Voc. In this case, these electrical parameters
were estimated from the DNIc, the Tc, and use of the equations of conventional
PVs. The values of the DNIc and the Tc were obtained by applying the ANNs
developed in [25, 60].

From the analysis of results, it can be concluded that ANNs are a useful tool for
the electrical characterization of HPCV devices.
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