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Abstract Xerox has invented, tested, and implemented a novel class of operations-
research-based productivity improvement offerings, marketed as Lean Document
Production (LDP), for the $100billion printing industry in theUnitedStates. The soft-
ware toolkit that enables the optimization of print shops is data-driven and simulation-
based. It enables quick modeling of complex print production environments under
the cellular production framework. The software toolkit automates several steps of
the modeling process by taking declarative inputs from the end user and then auto-
matically generating complex simulationmodels that are used to determine improved
design and operating policies. This chapter describes the addition of another layer of
automation consisting of simulation-based optimization using simulated annealing
and greedy search techniques that enable the search of a large number of design
alternatives in the presence of operational and cost constraints. The greedy search
procedure quickly determines an acceptable solution in a web-based online applica-
tion environment. The simulated annealing technique is more time consuming and
is performed offline. The results of the application of this approach to real-world
problems are described.

1 Introduction

Xerox is the world’s leading enterprise for business process and document manage-
ment solutions. Xerox produces and sells a range of color and black-and-white print-
ers, multifunction systems, photocopiers, digital production printing presses, and
related consulting services and supplies. Xerox participates in the printing indus-
try by providing services, via Xerox Managed Services (XMS), to manage print
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Fig. 1 A print production workflow showing the various production operations

operations for clients who choose to outsource their in-plant print operations. Xerox
has invented, tested, and implemented a novel class of operations-research-based pro-
ductivity improvement offerings for the printing industry that has been extensively
described in [17]. This work was a finalist in the 2008 Franz Edelman competition.

Print service centers are documentmanufacturing systemswhich take rawmaterial
and information as input and through a series of processing steps create final finished
document products such as books, brochures, checks, invoices, and the like. They
are designed to manufacture highly customized documents that are often embedded
in their workflows. The document production steps associated with print jobs are
indicated in Fig. 1. Typically print service centers have departments that support
individual steps in this workflow. Each department supports many different types of
internal workflows resulting from the use of different types of software tools, printing
machines (e.g., offset, digital), and finishing equipments such as cutting, binding,
laminating, and shrink wrapping. For further description of the steps we refer the
reader to [17].

The LDP software toolkit automates several steps of the print production mod-
eling process by taking declarative inputs from the end user and then automatically
generating complex simulation models that are used to determine improved design
and operating points for print shops. In this chapter, we describe the addition of
another layer of automation to the LDP toolkit consisting of simulation-based opti-
mization using greedy search techniques and simulated annealing that enables the
automated search of a large number of design alternatives in the presence of oper-
ational constraints to determine a cost-effective solution for the print production
environment.

The printing industry is highly fragmented with thousands of print shops that
are geographically distributed. This approach lends itself to being utilized for opti-
mizing print shops across multiple geographies by users less skilled in the art of
modeling, simulation and optimization, thereby allowing unprecedented scalability
of a simulation-based optimization approach to a wide user base. This is impor-
tant since users are able to utilize the simulation-based optimization toolkit to make
complex design and operational decisions and develop optimized designs without
the arduous task of building the simulation models and the associated optimization
framework.

This chapter is organized as follows. Section2 provides a literature review on
simulation-based optimization approaches. Section3 describes the specifics of the
problem being addressed in this chapter. Section4 provides an overview of the Lean
Document Production toolkit. Section5 describes the existing procedure of selecting
the optimal printing equipment. Section6 describes the simulation-based optimiza-
tion techniques using the LDP toolkit. Section7 describes some applications and
case studies using real-world examples. Lastly in Sect. 8 we present our conclusions
and future scope of work.
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2 Literature Review

The problem of constrained simulation optimization over a finite discrete set of
decision variables is common and has received significant attention. A two-phase
statistically valid procedure that detects feasibility of systems in the presence of one
constraint with a prespecified probability of correctness was presented in [3]. This
procedure was extended to the case of multiple constraints in [4]. An algorithm for
optimal sampling allocations using large deviation theory was provided under sto-
chastic settings [19]. Iterative heuristic algorithms [11], optimal computing budget
allocation framework [15] was proposed for selecting the best design from a discrete
number of alternatives in the presence of a stochastic constraint via simulation exper-
iments with limitations on simulation budget or probability of correctness. A novel
method [13] that converts constrained optimization into unconstrained optimization
by using the Lagrangian function was proposed for the problem over discrete sets
with noisy constraints.

The approaches discussed above either visit all the designs or convert the prob-
lem into a single objective function to find the best system. Suppose we conduct
n simulation replications for each of θ designs, we need nθ total simulation repli-
cations. If the precision requirement is high, and if the total number of designs in
a problem is large, then nθ can be very large, making the system evaluation com-
putationally expensive using the existing methods. In such cases, stochastic search
algorithms such as simulated annealing, tabu search, and genetic algorithms prove
to be the best choice. Simulated annealing [12] has shown successful applications
in a wide range of combinatorial optimization problems, and this fact has motivated
researchers to use simulated annealing in many simulation optimization problems.
But these search techniques need to be adapted for the stochastic environment asso-
ciated with discrete-event systems optimization.

Haddock and Mittenthal have investigated the feasibility of using a simulated
annealing algorithm in conjunction with a simulation model [7]. A variant of the
simulated annealing algorithm was developed for solving discrete unconstrained
stochastic optimization problems by using a constant temperature and convergence
criteria as the number of visits made by the different states in the first m-iterations to
estimate the optimal solution [2]. Two variants of the simulated annealing algorithm
with a decreasing cooling schedule that are designed for solving unconstrained dis-
crete simulation optimization problems was presented in [14]. For solving stochas-
tically constrained simulation optimization systems, an integrated approach using
the simulated annealing algorithm for parameter selection followed by Monte Carlo
simulation for performance evaluation was presented in [1].

Unlike ranking and selection procedures, the application of metaheuristics tech-
niques to simulation optimization problems in stochastic settings may not guarantee
that an acceptable solution, if one exists, will be found. But in most cases we observe
that they converge to acceptable solutions in a reasonable amount of time which is
most desirable in many real-world applications. In this paper we have present the
modified simulated annealing approach that can handle uncertainty in simulation
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output and stochastic constraint(s). The algorithm starts with an initial feasible solu-
tion and utilizes a decreasing cooling schedule.We perform the student’s t hypothesis
test for determining the feasibility of a solution at the current iteration [1]. Our algo-
rithm is distinct to the procedure in [1] by not restricting the neighborhood search to
feasible moves only.

In a web-based simulation optimization applications, approaches that result in
optimal/near optimal solutions in a reasonable time are desirable. A greedy approach
is frequently a good alternative which makes locally optimal choices at each stage
with the hope of finding a global optimum. An efficient greedy approach to allo-
cate ambulance fleet in emergency medical services system was presented [20]. To
determine the optimal configuration of a conveyor-based automatic material han-
dling systems in wafer fabs, a greedy heuristic was proposed [10]. Discussion on
greedy approximation for dock allocation in a food distribution center can be found
in [6]. In this chapter we present the greedy approach for optimal allocation of equip-
ment in print production environment in a web-based online application. The greedy
algorithm initially starts with sufficient number of production equipment and system-
atically reduces the number. The algorithm removes one or more devices such that
the customer’s performance criteria are not violated. This process is repeated until no
more cost reduction is possible subject to the constraint. Alternatively, the algorithm
can begin with no or a minimal set of equipment and systematically increases that
number.

3 Problem Description

Print service centers experience many sources of variability that make them hard to
analyze andoptimize.They exhibit high levels of job size variations, routing complex-
ity, and demand fluctuations as shown in Fig. 2. These service centers are primarily
make-to-order service systems that cater to specific requests of each incoming cus-
tomer. The incoming service requests have random arrival and due date requirements
that vary from job to job and often exhibit variability within the same job type. The
job sizes are often characterized by highly non-normal distributions and sometimes
heavy-tailed [16]. In addition to the above challenges, print shops also experience
long bid times, variability in labor and equipment characteristics, etc.

The LDP toolkit automates the workflow modeling and analysis of the print ser-
vice center. In order to optimize the cost and performance of a print service center,
the user manually evaluates a limited number of designs and selects the best design
among them. For example, to select the optimal equipment that minimizes the cost
of equipment, while simultaneously meeting the performance of a print service cen-
ter such as turnaround time, number of late jobs, operator or equipment utilization,
process cycle efficiency, etc., the user have to simulate multiple equipment config-
uration scenarios manually and select the cost-effective solution among them. This
process is labor intensive, time consuming, and often ad hoc. In this chapter we have
described an automated method to assist in selecting cost-effective solutions for a
print service center by integrating the optimization algorithm with the LDP solution.
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Fig. 2 Multiple sources of variability in a print production environment such as power law job size
distributions, multiple coexistent job types, and high demand fluctuation

4 The LDP Solution for Print Service Center Environment

To address the complexity of operations associated with the print production
processes, the service center resources are organized into autonomous cells [17].
As a result, the most common jobs can be finished autonomously inside (at least)
one of these cells. Figure3 shows how traditional print service centers are organized
based on a departmental structure operated by specialized workers and compare it
to the redesigned operational framework based on autonomous cells where diverse
pieces of equipment are collocated and operated by cross-trained workers.

To orchestrate the flow and control of jobs through the parallel hierarchical cell
structure, the Lean Document Production Controller (LDPC) uses 2-level architec-
ture for production management. The LDPC has:

• A service center controller module (Service center CM)—high-level controller, in
charge of global service center management.

• Several cell controller modules (Cell CMs)—low-level controllers, in charge of
local management inside cells.

4.1 Simulation

Simulation is performed to assess the results of improvements resulting from changes
in workflow grouping, operator cross-training, grouping diverse equipment into
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Fig. 3 Figure showing how a departmental configuration of a print service center is transformed
into a cellular structure utilizing autonomous cells and the corresponding two-level architecture for
the Lean Document Production Controller

autonomous cells and scheduling policies. Building discrete-event simulationmodels
is often a time-intensive effort especially when various scenarios have to be inves-
tigated to determine improved solutions. To facilitate the model building process,
the LDP tool is employed to build the simulation models from a declarative user
interface (Fig. 4). This allows for fast and efficient evaluation of a large number of
what-if scenarios and greatly aids in determining an improved solution out of a large
search space.

The user specifies the equipment characteristics, elements of the cell, scheduling
policies, number of operators and their skill level, and workflow/job characteristics

Fig. 4 Illustrates the user interface for defining the printing equipment, operators and shop policies,
and simulation results for a sample print service center
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as inputs to the simulation model using the LDP user interface (Fig. 4). Before the
shop is simulated, the user schedules the jobs automatically using the scheduling
architecture as described above. Next the tool simulates the operation of the print
service center and outputs various performance metrics such as average turnaround
time, number of late jobs, operator and equipment utilization, maximum turnaround
time, and process cycle efficiency, etc., as shown in Fig. 4.

5 Existing Procedure for Selecting Optimal Equipment
Design in a Print Service Center

The selection of optimal printing equipment in the print service center is currently
carried out manually. The user first defines the necessary equipment type, cost, and
other characteristics (speed, setup time, failure, and repair rates, etc.) in each cell. The
jobworkflowcharacteristics andother shopoperating policies (job sequencingpolicy,
batching, and work in progress, etc.) are collected from the shop and uploaded to
the LDP tool. An equipment design is defined as a combination of different numbers
of equipment types in each cell. The user has to create different equipment designs
that he is interested in by varying the quantity of each equipment type in each cell.
Each of these equipment designs is simulated N times in order to create performance
metric distributions (in the case where the simulation is subject to random events
such as machine failures and job variation). Then, the mean performance measure
of interest and total cost of the equipment is computed. Finally, the user selects
the equipment design that has the least cost and meets the desired print service
center performance goal as specified by the user. This process of evaluating multiple
design configurations is labor intensive, time consuming, and can lead to solutions
far from optimal. Figure5 illustrates the detailed process flow diagram of the existing
procedure.

6 Simulation-Based Optimization Using the LDP Toolkit

The main idea presented here is the integration of the optimization routine and
simulation module within the LDP toolkit that embodies many elements of shop
specification and modeling automation. This enables the automatic search of an
optimal solution for the print production service center. Formore detailed discussion,
applications and benefits of integrating optimization with simulation can be found
in [5, 8, 18, 21].
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Fig. 5 The existing procedure for selecting optimal equipment configuration using LDP tool in
print service center

6.1 Problem Formulation

The problemof selecting the cost-optimal equipment solution for the print production
environment in the presence of stochastic operational constraints such as average
turnaround time, number of late jobs, maximum turnaround time, etc., over a large
number of design alternatives can be formulated as below.

Objective : min Xk∈S f0(Xk) (1)

Subject to : f1(Xk) ≤ δ

lbij ≤ xij ≤ ubij, i = 1..n j , j = 1..m

Xk = [xij]
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where S, the search space, is a finite and discrete set of equipment design configura-
tions; Xk is the kth equipment design configuration, which is the vector combination
in the number of each type of equipment in each cell; k is the index of equipment
design configuration; xij is the number of the i th type of equipment in the j th cell;
n j is the number of unique equipment types in cell j; m represents the total number
of cells in the print service center; lbij and ubij are the lower and upper bounds on the
number of the i th type of equipment in the j th cell; f0(Xk) is the total equipment cost
defined as Cij × xij, where Cij is the cost of i th equipment in j th cell; f1(Xk) is the
print service center performance measure such as average turnaround time, number
of late jobs, maximum turnaround time, etc., which cannot be evaluated exactly, but
needs to be estimated via the LDP simulation. Let Akl be the print service center
performance observation observed from simulation replication l of system k, then
f1(Xk) = E[Akl ]; and δ is the maximum desirable level of the print service center
performance measure.

6.2 Modified Simulated Annealing Algorithm

Here, we present the modified simulated annealing algorithm used for solving Eq.1.
The algorithm consists of two phases: initial feasible solution phase and optimal
solution phase. In the initial feasible solution phase, the algorithm starts with search-
ing for an initial feasible solution by randomly selecting a solution from the design
search space until the stopping criteria ismet. If an initial feasible solutionwas found,
the algorithm starts with this solution and identifies the optimal solution by utilizing
a decreasing cooling schedule in the optimal solution phase. In the case of initial
unfeasible solution, the algorithm is terminated.

Moreover, the constraints inEq.1 are stochastic and the general-purpose simulated
annealing approach has to be adapted to consider the feasibility of a solution when it
moves from one solution to another. A solution is feasible if it meets the print service
center performance goal as specified by the user. To test the feasibility of a solution,
we use the following procedure [1].

Let us consider, an arbitrary stochastic constraint g(θ) ≤ δ, where g(θ) is the
stochastic simulation output for design θ and δ being the maximum desirable level
specified by the user. Letting gi (θ) denote the i th simulation replication and running
simulation n times, the mean and variance estimate for g(θ) could be determined
over n replications as:

ĝ(θ) =
∑n

i=1
gi (θ)

/
n

σ̂ĝ(θ) =
∑n

i=1
(gi (θ) − ĝ(θ))2

/
n − 1

The hypothesis statements for feasibility conditions are as follows:
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Null Hypothesis H0 : ĝ(θ) <= δ

Alternate Hypothesis H1 : ĝ(θ) > δ

Accept the null hypothesis H0, if ω = ĝ(θ) + tn−1,1−α × σ̂ĝ(θ)/
√

n ≤ δ

where,

n − 1 is the degrees of freedom
1 − α is the upper critical point for the t distribution
ĝ(θ) is the mean value of n simulation observations
σ̂ĝ(θ) is the standard deviation of ĝ(θ).

Unlike to the approach [1], our algorithm does not restrict the neighborhood search
to feasible moves only. In their approach the temperature length (M) parame-
ter is not incremented until a neighboring feasible solution is found, resulting in
unknown/more number of evaluations. When the probability of finding a feasible
neighborhood solution is very low, this may result in indefinite looping. In the modi-
fied simulated annealing algorithm, amove to a neighborhood solution is irrespective
of the feasibility of the solution, providing more control on the total number of evalu-
ations by the algorithm. Let T0 be the initial temperature, Tf be the final temperature
(T0/Tdepth) and r the temperature decay rate. This results in the following series of
annealing temperatures:

T0, T0 × r, T0 × r2, T0 × r3 . . . . . . . + T0 × rn,

T f = T0
Tdepth

= T0 × rn,

n = log1/Tdepth

r
.

If the number of times to search a neighborhood solution at a given temperature
is L, then the number of evaluations is n × L . The value of L is fixed throughout the
algorithm and is determined using trial-and-error approach. To estimate the perfor-
mance measure the algorithm makes use of all the historical observations obtained
at that solution. Next, we define the following:

Definition 1 The search space S is a set of equipment design configurations whose
cardinality or |S| is �m

j=1�
nj
i=1(ubij − lbij + 1).

Definition 2 For each Xk ∈ S, there exists a subset N(θ) of S−{Xk}which is called
the set of neighbors of Xk, such that each point in N (θ) can be reached from Xk in
a single transition. For example in Fig. 6, the search space S={A, B, C, D, E, F, G}
and the set of neighbors of Xk =B is N(θ) = {A, D, G}.
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Fig. 6 Illustrates the
discrete search space of a
cube

6.2.1 Algorithm

Parameters

Number of times to run the simulations at design (Xk) : n
Temperature depth: Tdepth

Temperature decay rate: r
Maximum desirable level of secondary performance measure: δ
No. of times to search a neighborhood solution at a given temperature: L
Fraction of the total search space S for obtaining initial feasible solution in %: β
Significance value for t-test: α

Phase I: Finding initial feasible solution

1. feasibility = false
2. max = |S| ∗β
3. i = 0
4. Repeat:

4.1. Randomly select the design configuration: Xi ∈ S
4.2. Generate n simulation observations for performance measures:

{f0(Xi)}nj=1, {f1(Xi)}nj=1

4.3. Evaluate: f̂0(Xi), f̂1(Xi), σ̂f̂0(Xi)
σ̂f̂1(Xi)

and tn−1,1−α

4.4. If f̂1(Xi) + tn−1,1−α × σ̂f̂1(Xi)
/
√
n ≤ δ then

4.5. feasibility = true
4.6. End if
4.7. i = i + 1

5. Until feasibility = true or i > max
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6. If feasibility = true then
7. Return Xi as initial feasible design configuration
8. Else
9. Return initial design configuration cannot be found in max iterations
10. End If

Phase II: Finding optimal design solution

1. value = f̂0(Xi),Tinitial = value/2,Tfinal = Tinitial/Tdepth
2. Repeat:

2.1. For j = 1. . ...L
2.2. Randomly select the neighborhood designX j , whereX j ∈ N(Xi) andN(Xi)

is the set of neighborhood of Xi
2.3. Generate n simulation observations for performance measures:

{f0(Xj)}np=1, {f1(Xj)}np=1

2.4. Evaluate: f̂0(Xj), f̂1(Xj), σ̂f̂0(Xj)
, σ̂f̂1(Xj)

and tn−1,1−α

2.5. If f̂1(Xj) + tn−1,1−α × σ̂f̂1(Xj)
/
√
n ≤ δ

2.5.1. newvalue = f̂0(Xj)

2.5.2. delta = newvalue − value
2.5.3. Generate uniform random number Uk ∼ U[0, 1]
2.5.4. If delta<0 or e−delta/T ≥ Uk then
2.5.5. value = newvalue
2.5.6. Xi = Xj
2.5.7. End If

2.6. End If
2.7. Next j

3. Reduce the temperature: T = r × T
4. Until T ≥ Tfinal

5. Return Xi as the optimum equipment design configuration and value as optimum
total equipment cost value.

6.3 A Greedy Algorithmic Approach for Equipment Allocation

In this sectionwe consider another approach in a different class from that of simulated
annealing. That is an approach formulated from a greedy perspective. The greedy
methodology to optimization applies a heuristic thatmakes the locally optimal choice
at each step. Often the globally optimal solution will not be found but the greedy
heuristic may yield an adequate solution in reasonable time.

Consider the case of assigning a subset of N devices to a production shop. For N
devices, there are 2N possible assignments. Even for moderate values of N this can
be prohibitively large. Also each assignment may require the completion of a time-
consuming simulation run since there is no analytic model capable of expressing
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the production process characteristics of interest except in the simplest cases. Each
run itself may need to be repeated to obtain distributions on performance metrics.
Also if it is desirable to provide timely production design services via, for example,
a web-based tool, then there may be additional constraints on the timely comple-
tion of a solution. The greedy algorithm initially starts with a sufficient number of
devices. Next, the algorithm removes one or more devices such that the customer’s
performance criteria are not violated. This process is repeated until no more cost
reduction is possible. Alternatively, the algorithm can start with none, or a minimal
set of devices (such that each required function can be performed) and from this
configuration devices can be added one or more at a time until the constrained per-
formance criteria is achieved. The device chosen to be added or removed at each
iteration is the device with the best (as detailed below) cost to benefit trade-off. The
method is analogous to forward selection, backward selection, and mixed selection
methods applied in the area of parsimonious model selection discussed in [9].

To illustrate the approach,we consider a shopmodel in the formof a discrete-event
simulation that must be exercised over some duration and some job list condition.
We define best performance as that with least cost with a job turnaround time metric
below a specified upper constraint. The discrete-event model provides as output the
turnaroundmetric and the costs incurred in processing the set of jobs.Wewill assume
for the example below that the performance metric is the average turnaround time
(TAT). Other performance metrics can be selected. The approach proceeds in the
following steps:

1. Complete a simulation with all N machines, {M1, M2 . . . MN}, assigned to the
shop. This will produce as output a turnaround time metric (TAT) and cost (or if
runs are stochastic then the output will be in the form of distributions). Check
that the TAT metric is below the performance constraint(s). If not then stop since
there is no solution possible that would satisfy the constraint. If no solution exists
then one must start with more than N machines. If a solution exists then proceed
to step 2.

2. Run N more simulations. Each of the N simulations will consist of N-1 machines.
For the first simulation remove M1 and retain {M2. . .MN}, for the second simu-
lation replace M1 and remove M2, so that we now retain {M1, M3, M4. . .MN}.
Repeat until each machine has been removed in turn. From these N simulations
determine the set of TAT metrics and cost that is output from the simulation.

3. Consider the average TAT metric and cost output from step 1 above, and the N
from step 2. This is shown in Fig. 7 (For clarity only 4 of the N results, labeled
points A, B, C, and D, are shown from step 2). Here a decision is made in which
one of the machines is removed so as to reduce the set from N machines to N-1.
Any point, such as point D that results in the constraint being violated is not
a candidate and is to be removed. If all points lie above the constraint then no
reduction in machines is permissible, and so the machine removal portion of this
method is stopped. A number of sensible rules can be applied to define which
machine to remove. Example performance heuristics are:
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• Remove the machine which resulted in the largest cost reduction without
violating the TAT constraint. This would correspond to point A in Fig. 7.

• Remove the machine which resulted in the smallest increase in TAT metric,
this would be point B. Or,

• Remove the machine that resulted in the greatest cost reduction per unit TAT
increase which would be point C. This would also capture the case in which
a TAT “increase” is actually negative—a very favorable condition.

All three of the above rules can be applied in three completely independent appli-
cations of the method and the best result chosen. This will require approximately
3 times the number of runs.

4. Steps 2 and 3 above are repeated until the costs can no longer be achieved subject
to the constraint. This would result in an absolute maximum (N + 1)∗N/2 sim-
ulations. So for a pool of 30 machines that would be 465 simulations maximum.
The maximum is unlikely to be run and certain policies can be adopted to reduce
further the number of simulations. For example,

• Step 2 is likely to stop because of TAT constraint violations withN substantially
larger than 1 in all except the most trivial of problems.

• Also the assumption that the machines are unique is highly unlikely. For exam-
ple, if machines M1, M2, and M3 are identical then fewer simulations would
be required since removing M1 is equivalent to removing M2 or M3. In this
way the existence of equivalent machines may reduce the required number of
simulations.

• A final way in which the number of simulations can be reduced is to use as a
guide the utilization results. So, for example, after the completion of step 1, we
have as output the utilization rates of the set of N machines. These should be
ordered from low utilization to high utilization. Step 2 can begin by removing
the machines in the order of lowest to highest utilization. One can then choose
not to run simulations for the machines that are highly utilized.

• Lastly, a modification that may be particularly effective would be to look at
larger groups of machines to be removed and replaced. For example, with the
case of 10 unique machines, instead of removing 1 machine at a time we may
consider removing groups of 2 (or 3, etc…) machines at a time. Suppose we
consider the removal of 2 machines at a time. Then there are 10 ∗ 9/2 = 45
unique 2-tuples (10 ∗ 9 ∗ 8/6 = 120 unique 3-tuples). And so 45 evaluations
would be run after which 2machines are removed that yielded the best trade-off
in cost and performance. There are now8machines left in the pool. The number
of simulations increased from 19 (10 + 9) to 45, but the method explores a
larger set of possibilities and is therefore more likely to produce a solution
closer to optimal. If the group size is increased from 1 to 2, then from 2 to
3, and then from 3 to 4, etc… a more extensive area of the search space is
evaluated. As the group size approaches N we approach the state of exhaustive
search. If a time constraint is set on the simulation time then one can proceed
logically through configurations as outlined in this chapter until the time limit
is reached.
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Fig. 7 Plot of TAT metric versus cost

• All the above stated approaches aim at reducing the number of required simula-
tions. Since the operations in step 2 and step 3 can be performed independently,
the method easily lends itself to parallel processing which may further reduce
the computation time.

The final phase of this method can be to introduce machine failures. This final
step is a more conventional approach and so it is only outlined here for completion
(unlike steps 1–4 above, the final step does not constitute a core idea of this chapter).
Directionally to copewithmachine failuresmoremachinesmay need to be added (not
subtracted as in the steps above). A number of simulations are to be run and the TAT
metric distribution estimated. Machine(s) that are bottleneck devices and/or highly
utilized and therefore vulnerable failure points are identified and if their reliability
levels are sufficiently low, backup machines are added until the distribution of the
TAT metric is adequate.

7 Application and Case Study

Print service centers can be classified into three categories based on the activity
that they perform: transaction printing, on-demand publishing, or a combination of
both. A transaction printing environment produces documents such as checks and
invoices. Each document set is different. Mail metering and delivery are part of the
workflow. On-demand publishing environments focus on producing several copies
of identical documents with more finishing options such as cutting, punching, and
binding. Examples of such products include books, sales brochures, and manuals.
Other environments perform both types of document production simultaneously with
varying emphasis on each one.

In this section we illustrate the selection of the equipment configuration in three
print service centers using existing, simulated annealing, and greedy algorithmic
approaches for different performance criteria’s. The total equipment cost is deter-
ministic and defined Ci j × xi j as where, Ci j is the fixed cost of i th equipment in
the j th cell and xi j is the number of i th type of equipment in the j th cell. The
print service center performance measure f1(Xk) is problem specific and can only
be estimated by running simulations using the LDP toolkit.
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7.1 Print Service Center 1

This print service center has two cells and six stations and can process printing and
inserting job workflows. Table1 shows the equipment in each cell and their fixed
cost.

Job data over a period of 10days is collected from the print service center with
a total of 2692 jobs during that period. The number of equipment of each func-
tion/station type in a cell is varied between 1 and 3 and so the total number of pos-
sible equipment configuration is 729. Table2 illustrates a sample of all the possible
equipment configurations.

Next, we illustrate the selection of optimal or near-optimal equipment configu-
rations for the print service center using the existing approach with N equal to 30
(N is the number of simulations replications for each design configuration), simu-
lated annealing approach with the parameters n = 5, L = 5, Tdepth = 100, r = 0.9,
β = 5% and α = 0.01, and greedy algorithm starting initially with a solution having
3 number of equipment of each type in each cell for two test cases.

7.1.1 Test Case 1

In this problem, we have consider the print service center performance measure
f1(Xk) as the average turnaround time less than or equal to 5h. The average turn-
around time is defined as the arithmetic average of turnaround times (difference
between the completion time and arrival time of job) of all the jobs. Table3 illus-
trates the results summary.

Table 1 The printing equipment in each cell and their fixed cost

Cell Station Fixed cost ($)

Cell one Printer A 2,448,874

Cell one Inserter A 423,366

Cell one Inserter B 1,443,304

Cell one Printer B 2,448,874

Cell two Printer C 3,000,000

Cell two Inserter B 1,443,304

Table 2 A sample of equipment configuration in print service center 1

Design no No. of
printer A’s
in cell one

No. of
inserter A’s
in cell one

No. of
inserter B’s
in cell one

No. of
printer B’s
in cell one

No. of
printer C’s
in cell two

No. of
inserter B’s
in cell two

1 1 1 1 1 1 1

2 1 1 1 1 1 2

. . . . . . .

729 3 3 3 3 3 3
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Table 3 Test case 1 results summary

Existing
approach

Simulated annealing Greedy algorithm

Run1 Run2 Run1 Run2

Printer A’s in
cell one

1 1 1 1 1

Inserter A’s in
cell one

1 1 1 1 1

Inserter B’s in
cell one

3 3 3 3 3

Printer B’s in
cell one

1 1 1 1 1

Printer C’s in
cell two

1 1 1 1 1

Inserter B’s in
cell two

2 2 2 2 2

Optimal total
station cost ($)

15,537,634 15,537,634 15,537,634 15,537,634 15,537,634

Average
turnaround
time (h)

4.8 4.75 4.82 4.78 4.78

Number of
simulations

21870 1120 1115 72 72

Time in hours 29.94 1.44 1.66 0.106 0.11

7.1.2 Test Case 2

In this problem, we have considered the print service center performance measure
f1(Xk) as number of late jobs less than or equal to 0.A print job is late if the
completion date exceeds the due date. Table4 illustrates the results summary.

7.2 Print Service Center 2

This print service center has 4 cells and 70 stations and can process job workflows
having printing, cutting, binding, punching, and other finishing and mailing services.
The search for the optimal equipment configuration is performed only for the printing
equipment in the print service center. Only two cells in the print service have printing
equipment. Table5 shows the printing equipment in each cell and their monthly fixed
costs.

Job data for a period of 20days is collected from the print service center with
2593 jobs in the period. The number of equipment of each type in a cell is varied
between 1 and 3 and the total number of possible equipment configuration is 2187.
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Table 5 The printing equipment in each cell and their fixed cost

Cell Station Monthly fixed cost ($)

Cell one Printer A 1601

Cell one Printer B 6771

Cell one Printer C 3907

Cell two Printer D 6771

Cell two Printer E 1544

Cell two Printer F 2472

Cell two Printer G 2120

Next, we illustrate the selection of optimal or near-optimal equipment configura-
tions for the print service center using the existing approach with N equal to 5, the
simulated annealing approach with parameters n = 5, L = 5, Tdepth = 100, r = 0.9,
β = 5% and α = 0.01, and the greedy algorithm starting initially with a solution
having 3 number of equipment of each types in each cell for two test cases.

7.2.1 Test Case 3

In this problem, we have considered the print service center performance measure
f1(Xk) as the average turnaround time less than or equal to 2h. Table6 illustrates
the results summary.

7.2.2 Test Case 4

In this case, we have considered the print service center performancemeasure f1(Xk)

as themaximum turnaround time less than or equal to 48h. Themaximum turnaround
time is defined as the maximum value of turnaround times over all the jobs. Table7
illustrates the results summary.

7.3 Print Service Center 3

This print service center has two cells and four stations and can process jobworkflows
having printing, and inserting. Table8 shows the printing equipment in each cell and
their monthly fixed costs.

Job data over a period of 30days is collected from the print service center with a
total of 2833 jobs in the period. The number of equipment of each type in a cell is
varied between 1 and 8 and the total number of possible equipment configuration is
4096.



296 S. Rai et al.

Table 6 Test case 3 results summary

Existing approach Simulated annealing Greedy algorithm

Run1 Run2 Run1 Run2

Printer A’s
in cell one

1 2 1 1 2 2

Printer B’s
in cell one

1 1 1 1 1 1

Printer C’s
in cell one

1 1 1 1 1 1

Printer D’s
in cell two

1 1 1 1 1 1

Printer E’s
in cell two

2 1 2 2 1 1

Printer F’s
in cell two

1 1 1 1 1 1

Printer G’s
in cell two

1 1 1 1 1 1

Optimal
total station
cost
(20days)

$17,822 $17,860 $17,822 $17,822 $17,860 $17,860

Avg
turnaround
time (h)

2.0 1.94 1.98 2.0 1.91 1.93

Number of
simulations

10,935 1105 1110 61 61

Time in
hours

58.76 5.55 5.53 0.316 0.305

Next, we illustrate the selection of optimal or near-optimal equipment configu-
rations for the print service center using the existing approach with N equal to 5,
simulated annealing approach with the parameters n = 5, L = 5, Tdepth = 100,
r = 0.9, β = 5% and α = 0.01, and greedy algorithm starting initially with a
solution having 8 number of each equipment type in each cell for two test cases.

7.3.1 Test Case 5

In this problem, we have consider the print service center performance measure
f1(Xk) as the average turnaround time less than or equal to 5h. Table9 illustrates
the results summary.
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Table 7 Test Case 4 results summary

Existing approach Simulated annealing Greedy algorithm

Run1 Run2 Run1 Run2

Printer A’s
in cell one

1 1 1 1 1 1

Printer B’s
in cell one

1 1 1 1 1 1

Printer C’s
in cell one

1 1 1 1 1 1

Printer D’s
in cell two

1 1 1 1 1 1

Printer E’s
in cell two

2 1 2 2 2 2

Printer F’s
in cell two

1 1 1 1 1 1

Printer G’s
in cell two

1 2 1 1 1 1

Optimal
total station
cost
(20days)

$17,822 $18,206 $17,822 $17,822 $17,822 $17,822

Max
turnaround
time (h)

41.52 44.30 40.80 41.22 40.97 41.75

Number of
simulations

10,935 1110 1110 67 67

Time in
hours

58.76 5.58 5.67 0.33 0.35

Table 8 The printing equipment in each cell and their fixed cost

Cell Station Monthly fixed cost ($)

Cell one Printer A 19,156

Cell one Printer B 3907

Cell two Inserter A 21,267

Cell two Inserter B 11,485

7.3.2 Test Case 6

In this case, we have considered the print service center performancemeasure f1(Xk)

as the maximum turnaround time less than or equal to 48h. Table10 illustrates the
results summary.
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Table 9 Test case 5 results summary

Existing approach Simulated annealing Greedy algorithm

Run1 Run2 Run1 Run2

Printer A’s
in cell one

8 8 8 8 8 8

Printer B’s
in cell one

1 2 2 2 1 1

Inserter A’s
in cell two

1 1 1 1 1 1

Inserter B’s
in cell two

5 5 5 5 5 5

Optimal
total station
cost ($)

235,847 239,754 239,754 239,754 235,847 235,847

Average
turnaround
time (h)

4.95 4.88 4.9 4.92 4.97 5

No of
simulations

20,480 1155 1165 67 67

Time in
hours

57.41 1.58 1.83 0.103 0.092

Table 10 Test Case 6 results summary

Existing approach Simulated annealing Greedy algorithm

Run1 Run2 Run1 Run2

Printer A’s
in cell one

5 5 5 5 5 5

Printer B’s
in cell one

4 2 4 2 4 4

Inserter A’s
in cell two

1 2 1 2 1 1

Inserter B’s
in cell two

3 2 3 2 3 3

Optimal
total station
cost ($)

167,130 169,098 167,130 169,098 167,130 167,130

Max
turnaround
time (h)

47.82 47.38 47.79 47.29 47.8 47.76

No of
simulations

20,480 1145 1110 99 99

Time in
hours

57.41 1.44 1.30 0.135 0.133
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7.4 Results and Discussion

We have demonstrated the selection of optimal equipment in print service envi-
ronments using modified simulated annealing and greedy algorithm techniques for
different test cases. These test cases differ either in the performance measures or the
problem size. In test cases 1 and 4, the simulated annealing and greedy algorithm
finds the optimal solutions for both the experimental runs. Whereas, in test case 3
the simulated annealing outperforms the greedy algorithm solutions and in test case
5 the greedy algorithm outperforms simulated annealing solutions. In test case 2 and
6, the simulated annealing and greedy algorithm performs equally in one experi-
mental run, but the greedy technique outperforms annealing algorithm in the second
experimental run.

The results show that the greedy algorithm and simulated annealing perform ade-
quately for a set of tasks typical in the improvement of print operations irrespective
of the size of the problem. The simulated annealing technique is more time consum-
ing and is performed offline and used during preliminary print service center cost
evaluations. The simulated annealing algorithm is wrapped around the stand-alone
LDP modeling framework, enabling the users to determine the optimal equipment
configuration by evaluating a very large number of possible configurations automat-
ically. In addition, by enabling automated simulation-based optimization, we can
enable less skilled users to utilize the power of the LDP toolkit in making informed
and optimized decisions offline. The business value of this automated simulation
optimization solution can be enhanced further by incorporating this into an online
web-based LDP optimization framework. As the greedy algorithm is much faster
than simulated annealing, it is used in a web-based online application as shown in
Fig. 8.

Fig. 8 Online web-based LDP tool kit
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8 Conclusions and Future Work

This chapter presents a simulation-based optimization solution using simulated
annealing as an offline approach and a greedy methodology as an offline or online
approach for optimal print shop equipment selection. It describes how suitable
abstractions and automation of the simulation tool can enable deployment of the
Lean Document Production solution for cost-optimal equipment selection within a
highly fragmented printing industry, while optimizing key performance objectives
such as average turnaround time, number of late jobs, operator or equipment utiliza-
tion, process cycle efficiency, etc. Though the techniques described here are applied
within printing industry, they can also be utilized in other service-based operations
with similar workflow characteristics.

Here we have used simulated annealing as an optimization approach, other evo-
lutionary approaches such as ant colony and genetic algorithms can also be utilized
for this purpose. But, these techniques need to be adapted to suit to the stochastic
environments. The computational speed of these algorithms can be improved further
by parallelizing, running on cloud-based platforms. We carried the above study by
considering a single performance measure; further study can be made to extend the
algorithm for multiple shop performancemeasures such as labor cost and operational
cost.
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