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Abstract This chapter presents integrated solutions for product delivery planning
and scheduling in distribution centres. Integration of cluster analysis, forecast-
ing, computer simulation, metaheuristic optimisation and fitness landscape analysis
allows improving planning decisions at both tactical and operational levels. Scheme
for integrated solutions is provided. Integrated solutions are described and illustrated
by a demonstration case for a regional distribution centre and a large network of retail
stores. Cluster analysis and classification methods are applied to determine typical
demand patterns and corresponding tactical product delivery plans. A multi-objective
optimisation approach is introduced for grouping stores by their geographical loca-
tion and demand data. Different simulation optimisation scenarios to define the opti-
mal delivery routes and schedules at the operational planning level are considered
and compared. Potential applications of a fitness landscape analysis for adjusting
an optimisation algorithm are described and applied for product delivery schedul-
ing. Two-stage vehicle routing supplement with vehicle scheduling is described and
shown in application experiments. Optimisation techniques described in this chapter
are applicable to solve specific routing and scheduling tasks in logistics.

1 Introduction

To ensure business competitiveness, modern management practices require appli-
cation of different methods in the fields of information technology and operations
research. To find the best solution to the problem, these methods must be integrated
to complement each other for mutual benefit. Cluster analysis, computer simulation
and metaheuristic optimisation techniques may be applied to provide an integrated
planning and scheduling of deliveries from a distribution centre (DC) to a net of
regional stores.
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1.1 What is Problem Complexity?

Product delivery planning and scheduling is a high commercial priority task in trans-
port logistics. In real-life applications the problem has different stochastic perfor-
mance criteria and conditions. Optimisation of transportation schedules itself is com-
putationally time-consuming task which is based on the data from tactical planning
of weekly deliveries. This chapter also focuses on the methodology that allows reduc-
ing the effect of the demand variation on the product delivery planning and avoid
numerous time-consuming planning adjustments and high computational costs.

In distribution centres, this problem is related to deliveries of various types of
goods to a net of stores in predefined time windows, taking into account trans-
portation costs and product demand variability. The problem has a high number
of decision variables, which complicates the problem solution process. In practice,
product demand from stores is variable and non-deterministic. As a result, the prod-
uct delivery tactical plan that is further used for vehicle routing and scheduling has
to be adjusted to real demand data, and product delivery re-planning supervised by
a planner is often required. This task is very time consuming and requires specific
knowledge and experience of planning staff in this domain.

1.2 What is Motivation for Integrated Solutions?

An acceptable vehicle schedule can be created with the help of commercial schedul-
ing software usually based on heuristic optimisation. However, in practice a schedule
created with heuristic algorithms cannot satisfy all constraints of the real-life prob-
lem. In this case, an analyst needs to modify or correct a schedule generated by a
standard software in order to satisfy the problem specific constraints and to adapt
this schedule to a new information received by a planner. Simulation modelling can
be applied in this case to numerically evaluate the efficiency of a new schedule
candidate.

Integration of different techniques such as cluster analysis, forecasting, computer
simulation and optimisation to product delivery planning and scheduling allows
improving tactical and operational decisions in logistics distribution centres. A cluster
analysis of product demand data of stores allows identifying typical dynamic demand
patterns and associated product delivery tactical plans. Customer regional clustering
based on multiple criteria is performed through multi-objective optimisation. Meta-
heuristic optimisation provides effective techniques to define optimal parameters of
product transportation and delivery schedules. Vehicle scheduling may be performed
also for the routed solution. Fitness landscape analysis allows enhancing the opti-
misation process and tuning of parameters of optimisation algorithms. An attention
should be given to simulation optimisation of the vehicle schedule, which allows
incorporating stochastic data. Integration of these technologies advances traditional
optimisation techniques known in operations management and lead to coordinated
decisions in the area of delivery planning and scheduling at different management
(strategic, tactical and operational) levels.
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1.3 What are the Main Objective and the Problem Solution?

The main objective is to prepare an effective tactical plan for product deliveries from
DC to a net of stores for the upcoming week. In practice, the real demand can be very
different from the expected or average demand. Hence, significant changes should be
made in the delivery plan for each new week. The reasons for the demand variance
can be product demand seasonal effects or marketing events. In this case, it is very
important to reduce the effect of demand variation on the delivery planning process
and avoid numerous time-consuming adjustments of the base delivery plan.

The problem solution is a detailed delivery plan, in which schedules, routes and
amounts of goods to be delivered are defined as the best ones for the input data defined.
Input data contain information on the historical demand and location of the stores,
available vehicles for the product transportation and existing rural delivery routes.
Additional constraints such as time windows for product deliveries to specific stores
need to be taken into account. An optimal delivery plan should satisfy the following
criteria:

1. An amount of goods delivered to the stores should be equal to the demand of
these stores for a particular day.

2. Product delivery costs have to be minimised. This implies sub-criteria such as the
number of vehicles used to deliver all goods should be decreased, and transporta-
tion costs should be minimised by optimising delivery routes and schedules.

2 Integrated Solution Scheme

This solution scheme provides selecting an appropriate product delivery tactical plan
for the upcoming week and optimising product transportation routes and delivery
schedules. This is achieved by integration of a cluster analysis to define typical
product dynamic demand patterns and identify an appropriate demand cluster and
tactical weekly delivery plan, and using simulation and optimisation techniques to
model and optimise vehicle routes and delivery schedules for product deliveries.

Vehicle routing and schedule optimisation is based on the data from tactical plan-
ning for a week delivery. At the same time, a weekly delivery plan is dependent on
the data about a number of goods to be delivered to stores in a particular day of a spe-
cific week and geographical allocation of stores. In practice, historical data of store
demands can be very different from expected or average one, which is determined
in a predefined or base plan. Thus, significant changes should be made in the base
delivery plan to be adjusted for each new week. So, it is reasonable to specify typical
patterns of dynamic daily demand for different planning weeks and introduce several
base plans each representing an appropriate product delivery timetable for a specific
demand pattern. This will reduce the work of adjusting a typical or base delivery
plan to the current situation. Since there are now more typical delivery plans that are
based on typical demand patterns, the work will be reduced to making a decision,
which delivery plan should be used for the next week and small adjustments of it still
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Fig. 1 Scheme of integrated solution

may be required. In addition, selecting the most suitable delivery plan may ensure
better scheduling solutions and reduce their computational costs.

The integration scheme for the problem solution (Fig. 1) includes the following
main tasks [20]:

1. Definition of typical dynamic demand patterns by clustering historical daily
demand data available for different planning weeks.

2. Grouping of stores based on their geographical locations to leverage the total
product demand over regions.

3. Tactical weekly delivery planning performed for each group of stores and each
demand pattern.

4. Identification of a specific demand pattern based on the classification model cre-
ated for typical dynamic demand patterns and selection of an appropriate tactical
delivery plan for the new week.

5. Adjustment of a selected tactical weekly delivery plan to a new or forecasted
demand.

6. Vehicle routing and scheduling, e.g. by using metaheuristic optimisation meth-
ods [21, 22].

3 Cluster Analysis of Dynamic Demand Data

This section describes methods for determination and recognition of weekly patterns
of dynamic demand data. Determination of patterns of similar dynamic demand
data allows introducing base delivery plans each representing an appropriate product



Integrated Solutions for Delivery Planning and Scheduling … 139

delivery timetable for a specific demand pattern. Described methods allow determin-
ing a number of typical demand patterns based on historical demand data, as well
as defining characteristic features of these patterns and identifying which weekly
delivery plan would be the most suitable for the forthcoming week. An example of
cluster analysis of dynamic demand data is provided.

3.1 Motivation

It is assumed that it is possible to specify typical patterns of dynamic daily demand
for different planning weeks and introduce several base plans each representing an
appropriate product delivery timetable for a specific demand pattern [17].

The required weekly tactical delivery plan is found based on information on the
weekly demands during one year. The objective is to find certain dynamic demand
patterns, which combines weeks into groups in the way that demand data are similar
for all weeks within a specific group but different from those weeks that belong to
other groups.

In this case, a cluster analysis of historical demand data [27] provides an oppor-
tunity to divide a variety of planning weeks into clusters and to find a number of
clusters that represent weeks with a specific demand pattern. It also gives informa-
tion for the construction of the classification model to identify which weekly delivery
plan would be the most suitable for the forthcoming week [17].

Thus a cluster analysis of dynamic demand data is used to:

1. Find a number of typical dynamic demand patterns and corresponding clusters
of planning weeks;

2. Construct a classification model that for any week allows determining an appro-
priate demand pattern, allocating a specific week to one of previously defined
clusters and determining correspondent product delivery plan.

3.2 Determination of Typical Dynamic Demand Patterns

To identify typical dynamic demand patterns based on historical demand data, or its
observations, the k-means clustering algorithm [15] is applied. It divides n observa-
tions into a user-specified number k of clusters, in which each observation belongs
to a cluster with the nearest mean value representing a cluster centroid. The result is
a set of k clusters that are as compact and well-separated as possible.

K-means clustering is a partitioning method that operates on actual observations
and creates a single level of clusters. Thus, for large amounts of data, k-means
clustering is often more suitable than hierarchical clustering.

K-means clustering uses an iterative algorithm that minimises the sum of distances
from each object to its cluster centroid, over all clusters. This algorithm moves objects
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between clusters until this sum cannot be further decreased. The result is a set of
clusters that are as compact and well separated as possible. Like many other types of
numerical minimisations, the solution that k-means clustering reaches often depends
on the starting points. It is possible for an algorithm to reach a local minimum, where
reassigning any one point to a new cluster would increase the total sum of point-to-
centroid distances, but where a better solution does exist. However, it is possible to
overcome that problem by performing a cluster analysis multiple times and selecting
the best result.

While implementing k-means clustering algorithm, its parameter k that defines
a number of the resulted clusters needs to be specified. In case of typical demand
patterns’ determination, this number corresponds to an approximate number of such
patterns and can be calculated using the following methods.

3.3 Definition of an Appropriate Number of Demand Patterns

There exist a number of approaches to find the best number of clusters by completing
cluster validity or measuring goodness of the clustering results compared with ones
created by other clustering algorithms. Here, an appropriate number of k clusters,
or typical demand patterns is defined by using silhouette plots [14]. In this method,
a numerical measure of how close each point is to other points in its own cluster
compared to points in the neighbouring cluster is defined as follows:

si = bi − ai

min (ai , bi )
, (1)

where si is a silhouette value for point i, ai is an average dissimilarity of point i with
the other points in its cluster, and bi is the lowest average dissimilarity between point
i and other points in another cluster. Higher mean values of silhouettes show better
clustering results that determine better clusters giving the best choice for a number
of clusters.

Another method uses the Davies–Bouldin (DB) index [9], which defines the aver-
age similarity between each cluster and its most similar one and is calculated by a
formula:

DBn = 1

n

n∑

i=1

Ri , (2)

where n is a number of clusters and Ri is defined as follows:

Ri = max
i=1,...,n,i �= j

Ri j , and Ri j = (
si + s j

)
/di j , (3)
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where index Ri j is a similarity measure between two clusters and is based on a
measure of dispersion s of a cluster i and a dissimilarity measure di j between two
clusters.

3.4 NBTree for Dynamic Demand Pattern Recognition

A classification model that assigns an appropriate demand cluster is presented by an
NBTree, which induces a hybrid of decision tree and Naive Bayes classifiers. This
algorithm is similar to classical recursive partitioning schemes, except that leaf nodes
created are Naive Bayes categorizers instead of nodes predicting a single class [27].

For a specific week and demand time series, a cluster is identified by determining
a proper leaf number C according to the decision tree. When the leaf number is
known, a cluster is estimated by a formula:

C = arg max
c j =C

P
(
c j

) m∏

i=1

P
(
ai |c j

)
, (4)

where P(c j ) defines the probability that weekly demand belongs to cluster c j , and
P(ai/c j ) defines a conditional probability that demand on day ai belongs to cluster
c j . Probabilities P(c j ) are calculated from clustering results, while P(ai/c j ) are
defined from the classifier according to the above-determined leaf number.

For a specific week, an NBTree allows identifying an appropriate cluster and
then choosing weekly tactical delivery base plan corresponding to this cluster. The
selected weekly delivery plan is then used for the optimisation of parameters of
vehicle schedules.

3.5 Example Applications

Let us assume that historical demand data for 52 weeks are available and specified by
weekly demand time series each representing a sequence of points—daily numbers
of the product deliveries for a specific week (see Fig. 2).

K-means clustering experiments are performed on the historical demand data for
a number of clusters from 2 to 8. Then for each clustering experiment, silhouette
plots are built and mean values of silhouettes per cluster are calculated (Fig. 3).

Analysis of silhouettes mean values leads to the conclusion that the best cluster
separation could be done at k = 4 that gives the highest silhouette mean value equal
to 0.558. Clusters 1–3 seem to be appropriately clustered (see Fig. 4).

However, silhouettes values for the cluster 4 are negative. Theoretically, weekly
dynamic demands assigned to this cluster could be better allocated to another cluster.
These weeks are different due to demand dynamics and specific days, where demand
peaks are observed.
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Fig. 2 Sample demand data

k=2
mean value =0.4397

k=3
mean value =0.5050

k=4
mean value =0.5580

k=5
mean value =0.3886

k=6
mean value =0.3617

k=7
mean value =0.3564

k=8
mean value =0.3496

Fig. 3 Silhouette plots for the number of clusters k = 2 to k = 8

Reallocation of ‘unlike’ weeks avoids receiving negative silhouette values (see
Fig. 5). However, this does not provide an increase of the silhouette mean value as
might be expected. In this case, ‘unlike’ weekly demands behave as a ‘noise’ in
their ‘native’ clusters, decreasing silhouette values. Then, clustering experiments
have been performed with 49 weeks, where three ‘unlike’ weeks have been excluded
from a cluster analysis. This has allowed increasing the silhouette mean value up to
0.5822, while getting the same groups of data clusters 1–3.

The DB index is calculated based on the output data from k-means clustering
experiments for k in the range 2–8 clusters (Fig. 6). The lower value of DB index
which is equal to 0.899 is received for the number of clusters equal to 4. Thus, the
best number of clusters in this case confirms the results of the silhouette plot analysis.

As a result, a number of clusters is set to k = 4. It is worth noting that a tactical
weekly delivery base plan is defined for a cluster with a silhouette mean value greater
than 0.5. In this case, a tactical product delivery base plan is selected, adjusted or
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1st cluster 2nd cluster

  cluster3rd 4th cluster

Fig. 4 Sample demand patterns found by k-means analysis for a number of clusters k = 4

Fig. 5 Silhouette plots for the number of clusters k = 4 with reallocation of ‘unlike’ weeks and
for the number of clusters k = 3 and 49 sample weeks

built for the first three clusters and not analysed for the last one. Dynamic patterns
received for clusters from 1 to 3 are presented in Fig. 4.

To identify an appropriate demand cluster for a specific planning week, NBTree
classification model is built (see Fig. 7). This will allow choosing a weekly delivery
plan which corresponds to this demand cluster.
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Fig. 6 Davies–Bouldin index for different numbers of clusters

Leaf number 1 Leaf number 2

Monday

<=3037 >3037

Fig. 7 NBTree-based classification model

To improve the performance of the classification model, demand data sample size
has been increased up to 156 weeks. Two demand time series were generated for
each planning week by daily demand uniform change within ±5 %. In a similar way,
input data for another 52 weeks have been generated to validate a classification model
itself. Built on this data the NBTree-based classification model with an example of
the leaf Naive Bayes classifier is given in Fig. 8. In this case, tenfold cross-validation
showed that only eight weeks have not been classified correctly, which produced an
error value of about 5 %.
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Fig. 8 Detailed NBTree classification model

Table 1 Weekly demand sample data (in roll containers)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

3231 3462 3842 4437 5021 4868 3391

Let us assume that demand for Friday and Tuesday is 5021 and 3462 roll contain-
ers, correspondingly (see Table 1). From the classification model in Fig. 8, the leaf
number 4 is selected.

Then a likelihood for cluster 2 is calculated by multiplication of probabil-
ities received from the Leaf Number 4 Classifier for specific week days, i.e.
0.348, 0.727, 0.9, 0.9, 0.818 and 0.727. This probability is equal to 0.122. Like-
hoods for cluster 3 and 4 are calculated and are equal to 5.2 · 10−5 and 2.4 · 10−5,
correspondingly.

The probability that weekly dynamic demand belongs to cluster 2 is defined as
follows:

p(C2) = 0.122

0.122 + 5.2 · 10−5 + 2.4 · 10−5
≈ 0,9994. (5)

Similar, probabilities that weekly dynamic demand belongs to cluster 3 or 4 are
calculated: p(C3) = 0.0004; p(C4) = 0.0002. Finally, a cluster with the highest
probability is selected. As a result, the considered week belongs to cluster 2 with the
probability which is very close to 100 %.
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For a specific week, an NBTree allows identifying an appropriate demand cluster
and then choosing weekly tactical delivery base plan corresponding to this demand
cluster. Then, selected weekly delivery plan is used for optimisation of parameters
of vehicle schedules.

4 Grouping of Stores Based on Geographical Locations

In case of a large number of stores in a delivery network, grouping of stores in
relatively small groups based on their geographical locations allows to simplify the
product delivery optimisation task by decreasing its dimension. In this section, the
problem statement of store grouping that also provides the uniform distribution of
the total demand over geographic regions is given, and problem-solving techniques
are described and provided with illustrative examples.

4.1 Optimisation Problem Statement

In practice, weekly delivery planning is done based on the demand and data about
store allocations to geographical regions. Grouping of stores based on their geo-
graphical locations allows leveraging the total product demand over regions. Let us
suppose that all stores are grouped manually, and rearranging regions in case a new
store is added may require. Also, it would be desirable to have separation of regions
with a similar weekly total demand, or the total demand uniformly distributed over
regions.

The use of a cluster analysis for dividing stores into regions according to their
locations does not allow getting the total product demand equally distributed between
these regions. But the region clustering task may be formulated as a multi-objective
optimisation problem.

Input data contains the number of stores n, the number of regions k, two geo-
graphical coordinates xi and yi for each store i, i = 1, . . . , n defined in the Cartesian
coordinate system and the total weekly demand di for each store i.

Decision variables define a region (or cluster) ai to which a store i is assigned:

ai ∈ {1, 2, . . . , k} ; i = 1. . .n. (6)

Additional auxiliary variables are introduced as:

A j = {b|ab = j} , (7)

where A j is a set of stores assigned to each region, and

r (i, j) =
√(

xi − ẋ j
)2 + (

yi − ẏ j
)2

, (8)
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where r (i, j) defines an Euclidean distance from store i to the centroid of cluster j,
and ẋ j and ẏ j are mean values of coordinates for all stores in cluster j:

ẋ j =

∑
i∈A j

xi

∣∣A j
∣∣ , ẏ j =

∑
i∈A j

yi

∣∣A j
∣∣ . (9)

Two objective functions are introduced in the problem. The first objective function
determines how good regions generated from the geographical location point of view
are, and the second one defines if the total demand is equally distributed among these
regions. Both objective functions are minimised, i.e.:

f1 =
k∑

j=1

∑

i∈A j

r (i, j) → min, (10)

f2 =
k∑

j=1

∣∣∣∣∣∣∣∣

∑

i∈A j

di −

n∑
i=1

di

k

∣∣∣∣∣∣∣∣
→ min, (11)

where f1 defines the sum of distances between centroids of the regions and stores
assigned to them, and f2 is the sum of differences of the total demand for each
region and the average demand per region. No additional constraints are defined in
the optimisation problem.

4.2 Multi-objective Optimisation Algorithm

As the problem has two objective functions, a multi-objective optimisation algorithm
should be applied for grouping of stores into geographical regions. Thus for the
grouping task, an application of widely used Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) [10] is proposed. Further discussion on application of NSGA-II
implemented in the HeuristicLab optimisation framework [32] is given.

The optimisation problem itself is implemented as a multi-objective optimisation
problem plug-in of HeuristicLab with integer encoding of solutions and their evalu-
ation by two mathematical functions (10) and (11). Correspondingly, a chromosome
representing a solution is defined as a string of n integer numbers and formalised as
a vector (a1, a2, . . . , an) of decision variables, where ai ∈ [1, k].

In experiments with NSGA-II, the following GA operators are applied: (1) discrete
crossover operator for integer vectors [13], (2) uniform One Position Manipulator
[16] and (3) crowded tournament selector [10].
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Parameters of the algorithm may differ for different sizes and complexity of the
problem and should be tuned experimentally. For the case discussed in this chapter,
with a number of stores equal to 88, the following parameters were determined in
experiments: a termination criterion in a number of generations equal to 5000; the
population size equal to 200; the crossover rate of 90 %; the mutation rate of 5 %;
and 400 selected parents in a new generation.

4.3 Examples of Optimisation Experiments

The results of optimisation experiments for grouping of stores into geographical
regions are performed for different numbers of generations with a population size of
200 solutions (see Fig. 9). Here, demand quality is equal to the sum of variances of
the total demand for each region, and geographic quality corresponds to the sum of
distances between stores in groups and centroids of these groups. An increase in the
number of generations improves the Pareto front of non-dominating solutions by min-
imising both objective functions. However, when the number of generations exceeds
2000, these improvements are small. Finally, at 5000th generation the grouping of
stores into geographical is reached that lead to a uniform distribution of demand
between regions. Further improvements become minor for the discussed case.

However, graphical representation of the obtained results shows that solutions
with high demand quality give worse results for the second objective function and
vice versa. Thus, a solution in the middle of the Pareto front (see Fig. 10, where
different regions with the stores assigned are shown) is selected which provides
compact clusters of stores in regions. A large number of regions in the central part

Fig. 9 Pareto fronts for different numbers of generations
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Fig. 10 Solution in the
middle of Pareto front

of Fig. 10 may be explained by high density of stores with high product demands in
this geographical part, which corresponds to a large city or urban area. Moreover,
there are only two regions with demands that are lower than others. Further gradual
leverage of the regional demand may be experimentally tested. In the example that is
considered, this may worsen the geographical location of high-priority regions (see
Table 2).

Further on, for each group of stores and each demand pattern a weekly delivery
base plan that defines an amount of products to be delivered to stores on specific days
of the calendar week (Table 3) is built. It is based on the average demand for each
store from a specific group in the planning weeks that belong to a certain demand
cluster. Here, a weekly delivery base plan is developed once using knowledge-based
heuristics and updated relatively rare.

Table 2 The distribution of
the total weekly demand

Region Total demand Region Total demand

1 28,443 7 25,328

2 21,429 8 21,552

3 23,440 9 21,787

4 21,687 10 12,152

5 23,583 11 14,722

6 23,101 12 21,860

Table 3 Sample delivery
plan for one week

Day MON TUE WED THU FRI SAT SUN

Store A 30 35 30 25 45 50 30

Store B – 25 – – 35 – –

Store C 20 – 15 – 10 – 25

Store D – 25 – 40 – 35 20

� 50 85 45 65 90 85 75
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Variation in daily deliveries for specific days of the week may produce extra costs
on peak delivery rates. Thus, variation in daily deliveries needs to be minimised
for each store and each group of stores. Additionally, customers with low demand
would not be served each day as it will produce extra transportation costs to deliver
small order quantities too often. This could be achieved by simple division of the
total weekly demand into a number of delivery dates. For stores with low demand,
a number of delivery days is reduced to minimise transportation costs. Afterwards,
the weekly delivery base plan still needs to be further customised to correspond with
demand dynamics during the week (see Table 3).

To ensure maximal operational effectiveness, the base plan selected is adjusted in
order to match the actual customer demand for the forthcoming week. Then, for each
day of the week, vehicle routes and/or delivery schedules are defined to minimise
their transportation costs.

5 Simulation Optimisation of Vehicle Schedules

When the base delivery plan for the upcoming week is selected and adjusted, product
delivery (vehicle) routes and schedules need to be optimised in order to reduce the
transportation costs. Two types of a vehicle routing and scheduling problem are
discussed. In this section, simulation-based vehicle scheduling when delivery routes
are fixed and known is considered. Later on in this chapter a more complex case is
introduced, when first the vehicle routes have to be determined and then these routes
have to be scheduled.

Here, a vehicle scheduling problem with time windows is discussed, with a
description of a vehicle schedule simulation model and scheduling optimisation sce-
narios.

5.1 Problem Express Analysis

A vehicle schedule defines a schedule of deliveries of various types of goods from
DC to a network of stores. Distribution routes or trips for vehicles are fixed. For each
route, the following parameters are defined: a sequence of stores (route points), aver-
age time intervals for vehicle moving between these points, loading and unloading
average times and types of goods to be carried on this route. Goods are delivered to
stores in the predefined time windows. For each store, an average demand of goods
of each type is defined. Vehicle capacities are limited and known.

Vehicles are assigned to routes and schedules for routes are generated that min-
imise the total costs of a schedule. Samples of predefined vehicle routes and schedules
that define at which time each route has to be started and which vehicle will perform
it are shown in Fig. 11. The vehicle idle time is defined as a sum of time periods,
when a vehicle is waiting for the next trip in the DC depot.
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Fig. 11 Examples of vehicle routes

Vehicle Scheduling Problems (VSP) present a class of optimisation problems
that are aimed at assigning a set of scheduled trips to a set of vehicles, in such a
way, that each trip is associated with one vehicle, and a cost function for all trips
is minimised [11, 24]. This problem is often modified with additional constraints,
like time windows, different vehicle capacity, etc. Correspondingly, a VSP with
Time Windows is denoted as VSPTW. A number of methods to solve VSP problems
are proposed in the literature, e.g. integer programming, combinatorial methods,
heuristics [11]. Such problems do not have efficient traditional optimisation methods
and can be solved by application of evolutionary algorithms. Furthermore, an analysis
of a fitness landscape can be used to evaluate the optimisation problem complexity
and to select the most appropriate algorithm.

In practice, the VSP also can be complicated by stochastic processes existing in the
problem, e.g. when the duration of a trip is a random variable. In this case, evaluation
of potential solutions can be made through simulation, and simulation optimisation
could be used to solve such problems. Simulation technology provides a flexible
tool to determine the optimality of each solution. Therefore, the simulation-based
fitness landscape analysis that supposes fitness evaluation of the solution with use of
simulation becomes an important task.

5.2 Problem Statement

Decision variables are introduced to assign vehicles vi to routes and define a start
time ti for each route [21, 22], where i is a route number, vi is a vehicle assigned to
trip i and ti is start time of the trip i. The objective function f is aimed to minimise
the total idle time for all vehicles:

f =
N∑

i=1

T i
idle → min, (12)



152 G. Merkuryeva and V. Bolshakov

where T i
idle is the total idle time for vehicle i; and N is a number of vehicles.

The problem constraints are divided into three groups presenting vehicle capacity
constraints, delivery time constraints, and gate capacity constraints, correspondingly.
In the last case, a number of vehicles that can be loaded in a warehouse simultaneously
cannot exceed a number of gates.

Express analysis shows that the problem could have many solutions that are not
feasible within defined constraints. This makes a solution search process non-efficient
in terms of computational time. To increase optimisation efficiency, all constraints are
converted into soft constraints [21], and the objective function f in (12) is modified
by introducing penalties taking into account the total number of times when the
constraints were not satisfied by a potential solution:

f ∗ =
∑

Tidle + k1Tc + k2Tm + k3T0 + k4 Nol + k5 Not , (13)

where f* is the modified objective function; Tc defines the total duration of overlap-
ping trips for one vehicle; Tm defines the total time of window mismatches; To and
Nol determine the total time and a number of vehicles that exceeded the total work-
ing time; Not is a number of vehicles overloaded. In (13), all indexes for unsatisfied
constraints are multiplied with penalty coefficients ki > 1; i = 1. . .5 that artifi-
cially increase the value of the objective function and make the fitness of a potential
solution worse.

5.3 Simulation of Vehicle Schedules

To estimate fitness of potential schedule solutions, the vehicle schedule simulation
model is introduced. It is built as a discrete-event simulation model, for example
using AnyLogic simulation software [3]. It is based on the object-oriented concep-
tion and presents a simulation model as a set of active objects that are functioning
simultaneously and interact with each other.

In the vehicle schedule model [22], each vehicle is modelled as an active object,
and its behaviour is described by a state chart that defines vehicle states (e.g. parking,
loading, moving and unloading) and transitions between them (see Fig. 12). The
objects of each vehicle are aggregated by the model main object. Three classes
are defined for store, trip and job objects to specify input data. During the model
initialisation it is connected to a database of input data and variable collections of the
main active object are set up with data from the database. Processes related to DC
operations are simulated. During simulation the constraint violations are monitored
and a number of violations are stored in the model.

In the model animation screenshot (Fig. 13), utilisation graphs (timelines) of all
vehicles are combined in a Gantt chart for a vehicle schedule where different states
of the vehicle are shown with different colours, e.g. the grey colour for parking in
DC, green one for loading and blue for moving between route points times.
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Fig. 12 State chart of active object “Vehicle”

Fig. 13 Screenshot of the simulation model
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The utilisation chart for DC gates during the daytime is displayed below the
vehicle utilisation timelines. It shows how many loading gates are busy each time.
Online statistics about the idle time and completed jobs is provided along the timeline
for the corresponding vehicle. A list of performed trips including visited shops is
generated for each vehicle.

5.4 Vehicle Schedule Optimisation Scenarios

Example input data of the VSP contains 37 routes, 17 vehicles and 36 stores. Specific
parameters of vehicles, stores and routes are defined in the simulation model. The
input data for vehicle moving times are interpreted as deterministic and then as
stochastic (depends on the optimisation scenario). As simulation output the total
idle time for all vehicles is calculated. The number of decision variables that define a
vehicle schedule is equal to 74. Thus, exploration of the problem search space requires
evaluation of a huge number of possible solutions [23]. Finally, function (13) is used
for fitness evaluation of the solutions simulated. Two optimisation scenarios based
on using genetic algorithms and a fitness landscape analysis are discussed in this
section, and the third scenario based on scheduling of routed solutions is considered
in Sects. 6 and 7.

5.4.1 Simulation-Based Optimisation with GA

In this scenario, a genetic algorithm (GA) is used to search for the best combination
of the schedule parameters, while simulation model is applied to estimate quality of
a schedule generated. The optimisation tool is implemented as a Java class, which
interacts with the simulation model via ‘Parameter variation’ experiment in Any-
Logic [18].

In GA, solution candidates of the scheduling problem are encoded as integer vector
chromosomes, which length is twice a number of trips (routes). In chromosome, genes
with even sequence numbers represent start times of corresponding trips, and ones
with odd sequence numbers define a vehicle assigned for this trip. For example trip 1
will be performed by vehicle 2 starting at 12:20 a.m. (Fig. 14).

A mutation operator is introduced that changes one randomly selected trip in the
solution candidate. For a selected trip, a new randomly chosen vehicle is assigned,
and the start time is shifted by a certain constant value. One-point crossover with rate

2 20 1 600 2 690 1 120 3 490

Trip 1 Trip 2 Trip 3 Trip 4 Trip 5

Fig. 14 A sample chromosome of the vehicle schedule
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of 75 %, above-mentioned mutation operator with rate of 1 %, one elite individual
and tournament selection with tournament size of two individuals are involved in
algorithm. Termination condition of GA is set to occur when there is no significant
improvement of the best solution in population after a large number of generations.

Optimisation results show that a feasible schedule which satisfies all defined
constraints can be found. Acceptable results are obtained with a population size of
1000 chromosomes, but larger populations significantly increase computational time.
The solution allows decreasing the total idle time from 1140 to 700 min.

5.4.2 Fitness Landscape Analysis and Optimisation Performance

While a genetic algorithm provides very good solutions in VSP optimisation,
nonetheless it needs tuning of parameters and operator selection by skilled personal.
To make tuning and adjusting of an optimisation algorithm easier Fitness Landscape
Analysis (FLA) is proposed in the literature [26, 29]. FLA provides methods and
techniques for a mathematical analysis of a search space of optimisation problems,
and can be applied as a support tool to enhance optimisation of complex systems.
It was proposed that the structures of a fitness landscape affect the way, in which
a search space is examined by a metaheuristic optimisation algorithm. The fitness
landscape analysis would allow getting more information on the problem’s proper-
ties dependent on a specific optimisation method, which will guide the optimisation
process.

FLA techniques apply different strategies for data collection based on simple
moves, which generate a trajectory through the landscape (e.g. random walk). The
information analysis interprets a fitness landscape as an ensemble of objects, which
are characterised by their form, size and distribution and is based on the information
theory. Four information measures are proposed by [30], e.g. the information content
is a measure of entropy in the system and partial information content characterises the
modality of the performed walk. Higher information content and partial information
content values indicate higher hardness of the analysed problem. The statistical
analysis proposed in [33], calculates the autocorrelation function in the random walk
to measure the ruggedness of the landscape. In case of a high correlation between
fitness values the landscape is considered less rugged and thus the problem should
be easier. In this section, to analyse the problem fitness landscape the autocorrelation
function is successfully used.

To apply FLA in the vehicle schedule optimisation the methodology described
in [5] is applied. The optimisation problem is experimentally analysed in a compre-
hensive way to find how parameters of the problem and selection of optimisation
operators and representations of solutions influence both FLA measures and optimi-
sation performance. If the relationships between the fitness landscape measures and
optimisation performance are found, afterwards, for the same class of the problem an
optimisation algorithm can be adjusted based on the FLA results to a new problem
instance.
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To perform comprehensive optimisation and analysis of the VSPTW, the above
described simulation model [22] was re-implemented as a plug-in of HeuristicLab
framework [32] maintaining all model’s logic and functionality.

Hereinafter two types of mutation operators are defined for the representation
described in this chapter. The single position replacement manipulator (VSPManip-
ulator) changes the start time of the trip to a new uniformly distributed random
number, but the single position shift manipulator (VSPShiftManipulator) shifts the
start time with a uniformly distributed random number.

To enhance the quality of optimisation results, permutation encoding for the VSP
solutions is introduced. The encoding is based on the Alba encoding [2] for a vehicle
routing problem. A chromosome is of the permutation type and contains m+n genes,
where n is a number of vehicles and m is equal to a number of trips in the problem.
Genes that have values less or equal to m encode a trip number and values greater
than m encode delimiters or vehicle designators and define a vehicle number for the
next sequence of trips.

The logic of the simulation model is that if no time window constraints are defined
for the first trip, it starts at midnight; otherwise it starts at time to match the first
customer’s window. The next trip starts immediately after the previous one, unless
its start time should be delayed to satisfy time windows of customers in the route
of this trip. No times are encoded, and hence, the potential solution has no directly
encoded idle time, and its trips cannot overlap. Due to the high universality of this
encoding, different permutation manipulation operators can be applied in the search
of the optimal solution.

A grid of landscape analysis experiments is created to compare values between
different landscapes. First, comparison of different mutation operators is performed.
Second, comparison between existing and proposed encodings is done. Results of
comprehensive analysis experiments are described in [6]. Particularly found, that in a
random walk, values of autocorrelation function are slightly lower for the replacement
operator. In the up-down walk the situation is the opposite: replacement mutation has
higher correlation than shift mutation, but the three artificial problems are different
to the others (see Fig. 15; black dots are for replacement and green for shift mutator).
Moreover, the value of the autocorrelation function in random and up-down walks is
lower for the permutation encoding, which means that landscapes of this encoding
should be more rugged.

Fig. 15 Autocorrelation in
up-down walks
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5.4.3 Optimisation with HeuristicLab

A number of VSP optimisation experiments with the algorithms implemented in
the HeuristicLab framework are performed. For the integer encoding both Evolution
Strategy (ES) and Simulated Annealing (SA) algorithms are experimentally found to
be fast and highly successful, but the ES is able to find solutions with better quality
[6]. A genetic algorithm is able to find even better solutions, but with larger num-
bers of evaluations than evolution strategy. Permutation encoding is more effective
in optimisation of the VSP, than integer encoding, as algorithms are able to find
good solutions in less time. Moreover, almost all idle times are eliminated, and trip
overlapping is also avoided. The evolution strategy is more effective than a genetic
algorithm also for the permutation encoding. Even though the search space for this
type of encoding is more complex and rugged, nevertheless, due to its smaller size
the search of the globally optimal solution becomes more effective.

The best results found by different algorithms and for different encodings are
presented in Table 4. Each algorithm for a specific problem has been run 10 times and
the mean fitness of the best solution in each run has been calculated. A GA involved
the population size of 100 chromosomes, tournament selection, 5 % mutation rate
and termination criterion defined by 500 generations. ES (20 + 100) strategy has
been applied with maximum 1000 generations. Simulated annealing has been run
with 3000 iterations and 10 evaluations in each iteration. Each run of GA or ES on
a computer with 4-core CPU required from 8 to 10 s, and about 3 s for simulated
annealing.

Additional detailed optimisation experiments with similar instances and para-
meters show that there are relations between values of fitness landscape analysis
measures and an ability of the optimisation algorithm to find the best solution. The
genetic algorithm with population size of 100 individuals and termination condition
of 500 generations is applied in one series, and the evolution strategy (20 + 100) with

Table 4 Mean fitness values of the best solutions found by different algorithms

Problem Genetic algorithm Evolution strategy Simulated annealing

Integer Permutation Integer Perm. Integer

VSP_37 13 144.6 2 481 39.6 0 10 414.4

VSP_133 111 196.1 132 475 18 279.2 0 112 539.1

VSP_37(13) 47 313.1 26 367 15 860.1 180 67 904.6

VSP_133(31) 199 750.8 313 750 75 233.6 2 887 230 752.4

VSP_s1 33 759.3 3 600 10 346.1 0 12 741.2

VSP_s2 4 082.1 0 757.5 0 2708.5

VSP_s3 5 666.2 5 382 984.6 0 14 274.8

VSP_a1 12 446.2 6 715 347.7 0 26 530.7

VSP_a2 30 575.8 31 880 6377 0 52 755.6

VSP_a3 10 927.2 11 156 1 257.6 0 36 462.7
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Fig. 16 Quality of best
found solutions with ES

crossover and 1000 generations in the second series of experiments. For the problem
instances, which are better solved with the shift operator by GA, the autocorrelation
for this operator also is higher (Figs. 15 and 16; black dots are for replacement and
green for shift mutator). The same dependency is found for the ES algorithm.

Finally, it is concluded, that optimisation using the ES is the best choice for the
solution of a vehicle scheduling problem with time windows. In case of the integer
vector encoding is applied, selection of an appropriate mutation operator is based
on the measures of the FLA, i.e. an operator, which has the highest autocorrelation
value in the up-down walk should be selected.

6 Vehicle Routing

Often the delivery planning at the operational level also requires optimisation of
vehicle routes. The section describes optimisation approach for the vehicle routing
with time windows. First, the problem statement is given, and then an optimisation
algorithm and its experimental adjustment are discussed.

6.1 Problem Statement

The classical statement of the vehicle routing problem with time windows (VRPTW)
[7] is used further. Input data contains a set V of vehicles, a set C of customers and
data about their geographical locations in the form of a directed graph G. The graph
consists of |C | + 2 vertices, whereby the customers are denoted as 1, 2, . . . , n and
the depot (in this case DC) is represented by vertices 0 and n + 1. A set of vertices of
G is denoted as N, while a set A of arcs represents connections between customers
and between the depot and customers. For each arc (i, j), where i �= j , a distance
ci j and a travel time ti j are defined. Each customer i has demand di and should be
served by one vehicle k with capacity qk and only once within a planning horizon.
For each customer, time window [ai , bi ] when it has to be served is defined. Vehicles
routes start and end in DC.
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The VRPTW model contains two sets of decision variables, namely: x and s,
which are defined as flow and time variables, correspondingly. Variable xi jk for each
arc (i, j), where i �= j , i �= n + 1, j �= 0, and each vehicle k is defined as follows:
xi jk = 1 if vehicle k drives from vertex i to vertex j, and xi jk = 0, otherwise. The
decision variable sik for each vertex i and each vehicle k denotes the time, when
vehicle k starts to service customer i.

Shortest routes for a fleet of homogenous vehicles with a limited capacity have to
be found, i.e.:

∑

k∈V

∑

i∈N

∑

j∈N

ci j xi jk → min. (14)

The main problem constraints are defined as follows [7]:

1. Each customer is visited only once;
2. No vehicle is overloaded:

∑

k∈V

di

∑

j∈N

xi jk ≤ q; ∀k ∈ V ; (15)

3. Each vehicle leaves depot 0, leaves a customer after its serving and finally arrives
at the depot n + 1;

4. Vehicle k cannot arrive at customer j before time sik + ti j if it is travelling from
customer i to customer j; and

5. Time windows are defined by:

ai ≤ sik ≤ bi ; ∀i ∈ N ,∀k ∈ V . (16)

6.2 Optimisation Algorithm

For vehicle routing, an island genetic algorithm with offspring selection (IOSGA)
described in [31] is used. It presents a coarse-grained parallel genetic algorithm
where population is divided into several islands in which GA works independently.
Periodically, after a certain number of generations best solutions migrate between
islands. The IOSGA is enhanced with an offspring selection to prevent a prema-
ture GA convergence. Offspring selection forces the algorithm to produce offspring
solutions with better fitness than their parents [1].

For the considered problem instances, operators and parameters of the IOSGA
are determined experimentally as follows: a proportional selector; 5 islands; 200
individuals in population; ring migration each 20 generations with 15 % rate: random
individuals are replaced with the best ones from the neighbour island. The maximal
selection pressure was set equal to 200 and the mutation rate equal to 5 %. Mutation
operators provided in HeuristicLab framework were involved, and a GVR crossover
[25] is selected in an experimental analysis below.
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Fig. 17 Performance of
crossover operators in VRP

It is worth mentioning that GA is not considered as the strongest optimisation
method for the VRP [4, 12], and more often the Tabu Search (TS) algorithm with con-
straint relaxation [8] is recommended as more efficient approach. However, genetic
algorithms show good performance for routing problems and are highly robust and
adjustable. Also, for the considered example instance, the IOSGA shows better results
than TS as described below.

6.3 Route Optimisation Experiments

After an optimisation algorithm is selected, its components such as the crossover
operator need to be justified. To select a crossover operator for the IOSGA a set of
route optimisation experiments are performed (see Fig. 17). Here, the GVR crossover
[25], edge recombination (ERX) and maximal preservative (MPX) crossovers for
solutions using Alba encoding [2] are analysed. As the VRP is minimisation problem,
better operators have lower best found quality values in Fig. 17. ERX application
provided better results in terms of the total length of vehicles’ routes, while preserving
an available number of vehicles. However, the results obtained for Alba encoded
solutions lost in terms of capacity constraints. In turn, application of GVR crossover
provided solutions with an overflow of available vehicles, nevertheless the capacity
constraints were satisfied in most cases. Finally, the GVR crossover operator which
works with an unlimited number of vehicles, but provided the best feasible results
in terms of keeping routes not overloaded was selected.

To determine, if selected optimisation algorithm has the best performance for the
reviewed problem, additional route optimisations experiments are performed with
the tabu search algorithm [8]. In these experiments TS was set up with following
parameters: for the move generation and evaluation, the Potvin Shift Exhaustive
Move operator; and the tabu tenure equal to 15 for problems with 109 customers
and 13 for problems with 53 and 56 customers. The initial solution in each run was
created using Push Forward Insertion heuristics with α = 0.7, β = 0.1 and γ = 0.2.
The termination criterion was defined by 1000 generations.
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Table 5 Routing results obtained with different algorithms

Problem Stores IOSGA Tabu search

Distance Vehicles Distance Vehicles

1 109 6331 44 6396 43

2 53 2561 18 2599 18

3 56 4346 26 4410 25

Results of IOSGA and TS optimisation experiments for the same problem
instances are compared in Table 5. For each problem instance, the number of stores
is defined. For each algorithm and problem instance, the shortest distance in km and
a minimum required number of vehicles received from 10 optimisation experiments
are given. A sample VRP instance of problem 2 solved by the IOSGA can be seen
in Fig. 20.

The IOSGA provides better results in terms of distances and found solutions
with less number of evaluations. The Tabu Search outperformed in minimisation of
a number of required vehicles, which is supposed to be reduced in the next step
of integrated methodology. Thus, the Tabu Search does not provide the significant
improvement of the routing solution in the considered case.

7 Vehicle Scheduling for Routed Solution

The vehicle scheduling for routed solution is discussed. The approach is similar to
one described in Sect. 5, but the difference is in input data and that scheduling in this
case also aims at minimising a number of required vehicles for the same number
of routes. The section presents the problem statement for routed solution is given
and an optimisation algorithm to solve the problem. Then sequential application of
vehicle routing and route scheduling algorithms is described.

7.1 Problem Statement

Obtained in Sect. 6 the vehicle routing solution provides minimal costs on vehicle
driving distances. At the same time this solution can be improved further with a
proper scheduling of routes between available vehicles to minimise also a number
of required vehicles and related costs. In the classical VRPTW statement vehicle
may perform only one route in the planning horizon. In practice, all routes often are
shortened due to a limited capacity of vehicles. This may lead to ineffective solutions
when a vehicle performs only one short route of a few hours long, while most of the
day it may be idle. Thus, the vehicle scheduling problem is formulated for the routed
solution. Here, routes are assumed to be independent from vehicles, while vehicles
may perform a fair number of routes during the day. To solve the problem, methods
developed in [19] are considered.
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As far as the VRPTW solution is feasible for capacity and time window con-
straints, it can be further improved by combining and compacting routes. As a result,
each vehicle can perform a sequence of predefined routes during the day and as a
result, utilisation of vehicles may be significantly increased. A vehicle capacity is
not involved in the statement as in the capacitated VRP all vehicles have the same
capacity and no route of a feasible solution may exceed this value. Finally, input data
is defined as follows: (1) ready time ai for customer i; (2) due time bi for customer
i; (3) service time zi for customer i; (4) a list of routes R obtained in VRP solution,
where each route defines a sequence of visited customers; (5) a set of transportation
times (or vehicle moving times ti j between route sequential points i and j; (6) an
estimated number of vehicles |V |.

Decision variables are similar to ones introduced in the VRPTW model, except
that xi jk = 1 means that route j is the next route after i for vehicle k. Two soft
constraints are introduced for each vehicle:

1. a number of times Nad when a vehicle leaves a customer after due time:

Nad = |{i |sik + zi > bi ; ∀i ∈ N ; ∀k ∈ V }| ; (17)

2. a number of times when vehicle busy time may exceed 24 h in a day:

Not = ∣∣{k|(s(n+1)k − s0k) > 24 · 60; ∀k ∈ V
}∣∣ . (18)

Additional constraints are introduced to assure the model integrity and provi-
sions of schedule simulations. Finally, a fitness function f defines a sum of vehicles
idle times due to fitting deliveries to the time windows and a number of constraint
violations multiplied by penalty values:

f =
∑

k∈V

lk + pad Nad + pot Not → min, (19)

lk =
∑

i∈R

∑

j∈R

max (ai − sik, 0) xi jk; ∀k ∈ V, (20)

where lk is the total idle time of vehicle k; V defines a set of available vehicles; pad

and pot are penalty values or coefficients for late deliveries and vehicle overtimes,
correspondingly, and pad , pot are assumed to be significantly greater than 1.

7.2 Optimisation Algorithm

For vehicle scheduling, a problem plug-in in HeuristicLab optimisation framework
is implemented by maintaining the logic of the above described vehicle schedule
simulation model. Here, a fitness evaluator simulates a vehicle schedule candidate
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6 4 10 3 8 7 12 1 11 5 2 9

Fig. 18 A sample chromosome of permutation encoding for vehicle scheduling

and identifies time windows mismatches as well as evaluates vehicle idle and busy
times. As a result, plug-in is used to calculate a fitness of a candidate solution by
formula (19).

The chromosome which represents the schedule candidate is encoded as a permu-
tation of integer numbers. Integers larger than the number of routes encode gaps in
the chromosome when a new sequence of vehicle routes starts. Other integers define
corresponding routes in sequences. The encoding used is similar to that described in
Sect. 5.4. A sample chromosome for an instance with a number of vehicles n = 3
and a number of routes m = 9 is shown in Fig. 18. Here, the first vehicle marked as
‘10’ performs the sequence of routes: 3, 8 and 7; the second one the sequence of five
routes: 5-2-9-6-4 and the third vehicle will perform only one route, marked as ‘1’.

The application of permutation-based encoding allows easy use of different
recombination and mutation operators. For schedule optimisation, an Evolution
Strategies (ES) algorithm implemented in HeuristicLab [32] is selected as it has
shown high efficiency in vehicle schedule optimisation [6].

7.3 Schedule Optimisation Experiments

Various series of schedule optimisation experiments are performed to compare
scheduling results obtained by different metaheuristic optimisation algorithms. The
following algorithms are examined: ES (λ,µ) and (λ + µ) algorithms, GA, island
genetic algorithm with 5 islands (IGA), and offspring selection genetic algorithm
(OSGA) [1]. Maximal preservative crossover and insertion manipulator are applied
in all algorithms. Numbers of solution evaluations performed to obtain candidates
with equal fitness values are compared on hard instances, with a low number of vehi-
cles and short time windows. The results of optimisation experiments for a single
instance are shown in Fig. 19. As considered problem is a minimisation problem,
best solutions have lower fitness and are in the bottom of the chart.

Fig. 19 Productivity of
optimisation algorithms for
VSPTW
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The experimental results show that the same instance is solved with ES and OSGA
algorithms in shorter time, while GA without modifications demonstrated the worst
result. The ES algorithm is selected as the most suitable having an ability to search
for global solutions with fewer evaluations.

7.4 Example

The following is an example of vehicle routes and schedule optimisation for a daily
plan and specific demand data defined for 53 stores. Time windows for most stores
are fixed from 6:00 a.m. to 9:00 p.m. But some stores can be served in any time.
Application of the IOSGA in the VRP has given 34 routes (see Fig. 20) in the best
solution. Due to a limited capacity of vehicles, most routes in the solution are very
short, including one or two customers. As most of stores are located close to the DC
(see inset in Fig. 20), due to small vehicle moving times, the trip length for many
routes is relatively short. But, in case of large time windows and a long planning
horizon, these routes can be combined.

Finally, evolution strategies (20 + 100) are applied for the routed solution. In
schedule optimisation experiments, the maximal preservative crossover and insertion
mutation operators were applied, and the termination condition was defined by 1000
generations. In experiments it is obtained that the problem instance that required 34
vehicles for deliveries (Fig. 20) has globally optimal solutions with all constraints
satisfied when a number of vehicles is equal to 6.

The corresponding schedule Gantt chart for a planning horizon of 24 h is demon-
strated in Fig. 21. Here, green lines define loading times in DC and the beginning
of routes from the VRP solution, while blue and yellow lines depict transportation
times and unloading times at stores, correspondingly. For example, the 4th vehicle in

Fig. 20 VRP solution of case instance
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Fig. 21 VSP solution of case instance

Fig. 21 has to perform two very long trips that go to the stores in bottom left corner
of Fig. 20. At same time the vehicle on first timeline is scheduled to perform 10 very
short trips to the stores located near DC and having large time windows.

Similar experiments performed for multiple problem instances of the business
case shows that vehicle scheduling applied for the routing solution allows reducing
the number of vehicles required for daily deliveries.

To assess the quality of this approach the benchmark instances [28] are used. First,
vehicle routes are found using the IOSGA, and then vehicles are scheduled with the
ES. The experimental results show that these benchmark problems are designed to
fit each route for each vehicle, so that subsequent scheduling does not provide any
significant enhancement. When capacities of vehicles in benchmark instances are
decreased twice to shorten potential vehicle routes and making them similar to those
specified in the business case, the results of experiments on the modified benchmark
problems show the benefit of the proposed approach for a number of instances. For
example instance C102 requires only 16 vehicles instead of 21 to fulfil the product
delivery plan from DC to a network of stores.

8 Conclusions

Modern delivery planning in large distribution networks with various constrain-
ing factors requires application of a number of methods to minimise delivery costs
and cope with stochastic demand. Methods described in this chapter, such as clus-
ter analysis, simulation, optimisation and fitness landscape analysis—are combined
together into an integrated methodology to increase their application efficiencies and
to reduce the computational requirements. Most of these methods are heuristic and
metaheuristic and thus do not ensure obtaining globally optimal solutions, nonethe-
less they provide very good solutions, which are enough in most business cases, in
less computational time comparing with traditional optimisation techniques.

The proposed integrated approach to product delivery tactical planning and
scheduling allows identifying typical dynamic demand patterns and corresponding
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product delivery tactical plans as well as finding the optimal parameters of prod-
uct delivery schedules. Application of cluster analysis and classification algorithms
to historic dynamic demand data allows identifying typical weekly demand pat-
terns and developing base tactical delivery plans for groups of weeks with similar
demand dynamics. Both k-means and NBTree methods are simple in implemen-
tation and implemented in a number of existing data mining tools. Store grouping
allows determination of groups of stores, which have nearby location, considering the
total demand of group. Application of multi-objective optimisation algorithm allows
getting a set of non-dominating solutions and provides an opportunity to choose solu-
tion balancing between geographical and demand objectives. Both weekly demand
pattern recognition and store grouping allow developing the base tactical delivery
plan.

Two types of schedule optimisation solutions are provided. The first solution is
designed, which has predefined vehicle routes and is simulation-based that allows
dealing with stochastic factors of the deliveries, e.g. stochastic moving times. Fitness
landscape analysis methods are presented and shortly described for tuning and adjust-
ment of an optimisation algorithm. These methods if necessary could be also used
for the second solution which allows optimising both vehicle routes and schedules
when routes are not predefined. Application of advanced genetic algorithms or Tabu
search methods allows obtaining in a fairly short time vehicle routes, which minimise
transportation costs under constraints such as delivery time windows. Supplement-
ing vehicle scheduling methods allows improving this routed solution by minimis-
ing a number of required vehicles and related costs. Both routing and scheduling
are performed in same open source optimisation framework. Experimental results
show that proposed two-stage routing and scheduling methodology provides good
solutions in cases when vehicle routes are constrained with a small capacity. Joint
sequential application of all presented methods allows obtaining cost-effective solu-
tions in large store network delivery planning. In both solutions the parameters of
the optimisation algorithms should be tuned for a specific case.

The proposed integrated approach to product delivery tactical planning and
scheduling allows reducing the effect of product demand variation on the delivery
planning process and avoids numerous time-consuming adjustments of the delivery
tactical plans. Also, identifying demand pattern and an appropriate delivery plan
ensure more qualitative solutions of the schedule optimisation task and cut down its
computational costs.
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