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Abstract This chapter aims to promote and illustrate the fruitful combination of
classical operations research (OR) and computer simulation. First, a highly instruc-
tive example of parallel queues will be studied. This simple example already shows
the necessary combination of OR (queueing) and simulation that appears to be of
practical interest such as for call center optimization. Next, two more ‘real life’
applications are regarded: (1) blood platelet production and inventory management
at blood banks, and (2) train conflict resolution for railway junctions. Both applica-
tions show the useful combination of simulation and optimization methods from OR,
in particular stochastic dynamic programming (SDP) and Markov decision theory
(MDP), to obtain simple rules that are nearly optimal. The results are based on real-
life Dutch case studies and show that this combined OR-simulation approach can
be most useful for ‘practical optimization’ and that it is still wide open for further
application.

1 Introduction

Discrete event simulation is well known as amost powerful tool for logistical process
computation and performance evaluation in a vast majority of fields. Standard appli-
cations are found in the production sector, the service industry (call centers, adminis-
trative logistics), transportation (public transportation systems, road traffic, airports,
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harbors,maritime logistics, express delivery systems, and so on), computer networks,
communication networks and, over the last decade with fast growing attention, in
health care logistics. In most of these applications simulation is required, due to

• the complexity of the system,
• the uncertainties (stochastics) involved at micro up to macro level.

On the one hand, analytic techniques, most notably OR (operations research)
techniques such as queueing analysis and dynamic programming, are generally
restricted to simplified models and simplifying underlying assumptions that have
to be made. On the other hand, simulation by itself does not standardly provide
underlying insights nor techniques for optimization. Clearly, in simple situations
in which an optimization problem can be parameterized by one parameter, such as
by the number of staffing or storage capacity to be determined, simulation search
approaches can be suggested to expedite and automate the search for an optimal
value. An elegant exposé of such methods can be found in Krug [20]. Case-specific
references are found in Sects. 2–4.

Unfortunately, in most realistic logistical situations there will bemultiple parame-
ters and problem aspects that complicate the optimization. In these situations, at best
a number of different scenarios might be proposed to be evaluated and to be com-
pared by simulation. Alternatively, fast and extensive simulation search approaches
might be developed for optimization, as studied in the last decade. As such, simu-
lation is to be regarded as a most practical and almost unlimited tool for scenario
“optimization”. But, as mentioned, it remains to be realized that simulation by itself
does not provide any of these scenarios nor an automatic tool for optimization. This
is where OR might help out in either of two directions

(i) To suggest scenarios based upon general OR results and insights.
(ii) To provide an OR-optimization technique for the problem included.

Clearly, analytic or OR models are generally too simplistic for realistic model-
ing. Simulation in contrast, hardly seems to have any limitations on the modelling
complexity at all. But to the price of loosing general insights due to this complexity
or at least having to simulate extensively to gain such insights. Here the simplistic
OR model might play an important role of just being generic and providing essential
insights. A similar statement can be made for insights on modeling the underlying
stochasticity. ORmodels strongly rely upon distributional assumptions, most notably
of exponential nature, which can easily be parameterized by an arrival or a service
rate. Such strict simplifying assumptions can be relaxed by simulation, but to the
price of requiring detailed input data on very specific input distributions. In addition,
the outcomes of a simulation dependent on the sampled random data. For a fair com-
parison of slightly different scenarios of the same system requires many and long
simulation runs to obtain accurate confidence intervals that allow for hypothesis
testing. In contrast, to say the least, analytic or OR models, even though simplis-
tic and whether exact or approximate, provide expressions or algorithms that are
100% verifiable and replicable.
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Table 1 Combined advantages

OR advantages OR disadvantages

Optimization Simple models

By techniques Strict assumptions

Also by insights

Scenario development

Analytic approximate results

SIM-advantages SIM-disadvantages

Evaluation only Real-life stochastics

By numbers only Real-life complexities

By scenarios only

Computationally expensive

Requires highly detailed data

In short, a combination of OR and simulationmight thus become highly beneficial
to compensate for the disadvantages of one another and to exploit the advantages of
either

• OR for insights from simple computation and optimization,
• Simulation for more realistic evaluation and validation.

The disadvantages and combined advantages are summarized in Table1.
This chapter aims to promote and illustrate the practical potential of the combi-

nation of simulation and optimization (OR). It therefore collects and exposes three
applications based on more detailed and technical papers by the authors, as outlined
in Table2. The chapter is organized by its separate applications in Sects. 2–4. In each
of these sections, the same structuring is used by its specific problem formulation
and background literature, and also by a presentation of the combinedOR-simulation
approach and by its concrete practical numerical results and conclusions. The chapter
will be concluded by an evaluation in Sect. 5.

2 Should We Pool or Not?

This section studies the question as simple as whether queues (or line ups) in front
of service desks should be combined (pooled) into a single queue (line up) or not.
The example in this section is based on van Dijk and van der Sluis [30] and van Dijk
and van der Sluis [31].

Table 2 Combination of techniques for three applications

Sections Topic Combination

Sect. 2 Pooling in call centers SIM + Q insights

Sect. 3 Blood banks SIM + MDP

Sect. 4 Railways SIM + Q + semi-MDP

Legend SIM: Simulation; Q: Queueing; MDP: Markov Dynamic Programming
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In this section, it will be shown that both OR insights and simulation are essen-
tial for an improvement of either a pooled or an unpooled situation and further
optimization.

2.1 Motivation and Literature

The question relates to a variety of daily-life situations such as at banks, information
desks, ticket offices, up to manufacturing with parts and tools lined up for parallel
machines. A question that seems too simple to be asked as the answer seems so
obvious. In contrast, however, it appears to be surprisingly intriguing.

Capacity pooling is a common concept. The general perception seems to be in
favor of pooling (e.g., see Borst et al. [7], Cattani and Schmidt [8]). From an OR-, or
rather queueing-, point of view, it seems less obvious, if not highly intriguing (e.g.,
Bell and Williams [5]). Counterintuitive examples can already been found in the
book of Wolff [34] and Smith and Whitt [26]. Particularly, motivated by present-day
developments of so-called skill-based routing; over the last decade, it has been given
considerable attention within the application field of call centers (see Gans and Zhou
[14], Wallace and Whitt [33]). The insights and results from the field of queueing
appear to be essential to steps for performance improvement and optimization, such
as by overflow and threshold policies (see van Dijk and van der Sluis [30], Osogami
et al. [23], Squillante et al. [27],Wallace andWhitt [33]). Here, overflowmechanisms
come in for which simulation becomes necessarily required.

2.2 Queueing Insights

2.2.1 A First Queueing Insight

Indeed, the last perception seems supported by themost standard queueing expression
D = 1/(μ − λ) with

μ: the service rate (or capacity) of the server (per unit of time)
λ: the arrival rate (per unit of time) and
D: the average (or mean) delay

with the implicit assumption of exponential service times. (This assumption can be
regarded as formal justification for speaking in terms of a service rate.) Pooling two
of such servers as if it becomes a twice as faster server with double arrival rate thus
seems to reduce the mean delay by 50% according to D = 1/(2μ − 2λ). This delay
reduction seems to result from the efficiency gained by pooling individual queues.
The inefficiencies in the nonpooled case are avoided, as one server can no longer be
idle while there are still customers waiting at another. The intuitive reasoning above
thus seems to be supported by queueing theoretic results and in-line with the general
perception that pooling is beneficial.
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More precisely, by straightforward calculation from standardM/M/s-expressions,
we find

WE (2, ρ, τ )

WE (1, ρ, τ )
= τρ2/(1 − ρ2)

τρ/(1 − ρ)
= ρ

1 + ρ

with WE (s, ρ, τ ): the mean waiting time for an exponential server group with s
servers, (that is an M/M/s-queue) with traffic load ρ = λ/sμ per server, with λ the
arrival rate and τ = 1/μ the mean service time.

This shows that the effect of pooling two parallel servers depends on the traffic
load ρ and will indeed lead to a reduction of at least 50%.

2.2.2 A Second Queueing Insight: Variability Factor

This reasoning, however, relies upon the implicit assumption of statistically identical
jobs, identical servers, and equal server loads; however, when services are pooled
with different service means, there is also another elementary queueing result that
becomes important. This is the factor of the variability of the service times (in addition
to just the mean). For example, for the case of a single-server system this is expressed
by Pollaczek–Khintchine’s famous formula

WG = (1 + c2)WD − (1 + c3)

2
WE

where WG, WD and WE are the expected (average or mean) waiting times for the
situation of a general service distribution (G) with squared coefficient of variation
c2, respectively, for a deterministic (or fixed) service time D (hence with c2 = 0)
and for an exponential distribution E (for which c2 = 1), and where

c2 the squared coefficient of variation = σ 2/τ 2

σ 2 the variance of the service time;
τ the mean service time.

In words, this formula tells us that also the variation (as expressed by σ 2) around
(relatively to) the mean τ of the service times plays an essential factor for the average
delay (as compared to the situation of fixed service times).



80 N.M. van Dijk et al.

Fig. 1 Two-server example (k = 10, ρ = 0.83) by OR (queuing)

By pooling different services, due to the mix variability introduced and as by the
Pollaczek–Khintchine formula, the effect will thus be less beneficial.

2.2.3 Instructive Example

Consider the situation of two arrival streams of service (e.g., call) requests, referred
to as of type 1 and 2, with arrival rate λ1 and λ2, and mean service time τ1 and τ2,
with equal workload ρ = λ1τ1 = λ2τ2, and two servers which can handle either
type of service. Let

k = λ1/λ2 = τ2/τ1,
τ = p1τ1 + p2τ2, with pi = λi/(λ1 + λ2),
WA Average waiting time for all jobs,
W1 Average waiting time for type 1 jobs,
W2 Average waiting time for type 2 jobs,
WP Average waiting time for the pooled case.

Figure1 then illustrates the effect of pooling, for example, with k = 10, λ1 = 50
and λ2 = 5 per hour, τ1 = 1 and τ2 = 10min (hence 10 times more short jobs which
are 10 times shorter). Furthermore, the service times are assumed to be deterministic
and the waiting times are expressed in minutes.

2.2.4 A Pooling Formula

With c2mix denoting the mix coefficient for the pooled case, as computed by:

c2mix = p1(τ1 − τ̄ )2 + p2(τ2 − τ̄ )2

τ̄ 2
= p1

( τ1

τ̄ 2

)2 + p2
( τ2

τ̄ 2

)2 − 1

the effect of pooling these two servers is then given by

c2mix = k

k + 1

(
k + 1

2k

)2

+ 1

k + 1

(
k + 1

2

)2

− 1 = (k − 1)2

4k
.
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WP

WA
≈ 1/2(1 + c2mix )WE (2, ρ, τ̄ )

1/2WE (1, ρ, τ̄ )
= (1 + c2mix )

(
ρ

1 + ρ

)
= (k + 1)2

4k

(
ρ

1 + ρ

)

WP

W1
≈ 1/2(1 + c2mix )WE (2, ρ, τ̄ )

1/2WE (1, ρ, τ1)
= (1 + c2mix )

2k

k + 1

(
ρ

1 + ρ

)
= 1/2(k + 1)

(
ρ

1 + ρ

)

These expressions directly lead to the following conclusions:

Conclusions 1 (As based on OR (queueing), for the two-server case, deterministic
services and identical loads)

1. Pooling is always beneficial for type 2.
2. There can be an increase for a fraction k/(k + 1) of the calls for k > 3.
3. Pooling is not beneficial for k > 5.

Similar results can be just as well for larger server numbers; say instead of 2 single
servers for 2 groups of servers each of size s= 5, 10, 20 servers, as of realistic interest
for call center dimensioning. For more details, we refer to van Dijk and van der Sluis
[30, 31].

More generally, by these rather basic but essential OR (queueing) insights and
results, it would seem advantageous to combine the advantages of:

• No (or minimum) idleness as for the pooled case
• No (or minimum) service variability as for the unpooled case.

2.3 Improvement and Optimization by OR and Simulation

2.3.1 Overflow

An overflow system is proposed to further improvement for the overall mean waiting
time. This is where simulation comes in necessarily. Overflow systems are virtually
unsolvable analytically. In Fig. 2, the results by simulation are shown for a two-way
overflow (2WO) and a one-way (1WO-1) scenario as specified by

• Two-way overflow (2WO): A separate queue for each type. An idle server, when
there are no jobs of its own type waiting, will take a job waiting of the other type,
if any.

• One-way overflow (1WO-1): A separate queue for each type. Only an idle server
of type 2 and if there are no jobs waiting of type 2 will take a job from the other
queue, if any.

Figure compares for s = 1 (two parallel servers), k = 10 (hence with 10 times
more short jobs which are 10 times shorter) four basic scenarios of the pooled (P),
the unpooled (U), a two-way overflow (2WO) and a one-way (1WO-1) scenario.
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Fig. 2 Two-server example (k = 10, ρ = 0.83) by OR insights and simulation

Two more simple scenarios to improve the overall average waiting time, as also
based on queueing insights, are to prioritize type 1 jobs, either without preemption
(service interruption) or with preemption of type 2 jobs when a type 1 arrives. In
either way, service for a type 2 job only starts (or is resumed) when no more type 1
jobs are waiting

• Nonpreemptive-Priority-1 (NP1): As in the pooled case and with priority for type
1 jobs when a server idles. Type 2 jobs are served only if there is no type 1 job
waiting.

• Preemptive-Priority-1 (PP1): As scenario NP1. In addition, when a type 1 job
arrives, a type 2 job is preempted. When no more type 1 jobs are waiting, type 2
jobs are resumed.

By simulation the possible improvement is illustrated in Fig. 3 for the situation with
k = 10, ρ = 0.9 and s = 10 (20 servers in total). (To focus on type 1 jobs, the
two-way scenario, which would rank in between the unpooled and one-way scenario
for the allover average, is left out.)

Fig. 3 Average waiting times for different scenarios
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Conclusion 2 As based upon OR insights and by simulation, it appears that overflow
and priority rules perform substantially better.

2.3.2 Single Threshold Optimization

As shown in Sect. 2.3.1, a simple priority rule, particularly the preemption scenario
for short (type 1) jobs, generally seems to perform quite well and to be “optimal”
among simple scenarios. Unfortunately, preemption (interruption) of service will
generally be impractical. A further improvement step by queueing and Simulation
might therefore be proposed by using threshold policies, where T (θ1) indicates a
threshold policy as specified by

T (θ1) =

⎧
⎪⎪⎨
⎪⎪⎩

a server of either type serves jobs from queue 1,
if either (i) m1 ≥ θ1 or (ii) m2 = 0 ∧ m1 ≥ 1;

it serves jobs from queue 2,
otherwise.

More precisely, by exploiting simulation even an optimization can take place by
determining

W ∗ = min
θ1

W (θ1).

The results, as had to be obtained by simulation, for some optimal threshold values
compared to the results for the pooled and NP1 scenarios are shown in Table3.

In fact, it has also been concluded by simulation that these single threshold poli-
cies, with only a threshold value θ1 for type 1, are nearly optimal among all policies
that use threshold values for both type 1 and type 2 servers.

Table 3 Optimal threshold values

s Pooled NP1 T(θ1)

WP WA WA θ∗
1

1 11.53 4.58 4.37 3

2 5.27 2.44 2.27 4

3 3.33 2.63 1.51 4

4 2.34 1.19 1.12 4

5 1.76 0.93 0.88 5

10 0.71 0.38 0.38 1

15 0.40 0.21 0.21 1

20 0.26 0.14 0.14 1

30 0.13 0.07 0.07 1
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2.3.3 Double Optimization

So far, an improvement of the average overall average waiting time was obtained
by particularly improving the mean waiting time for type 1 jobs. Here the average
was computed proportional to the arrival rate ratio for type and type 2 jobs. Though
this averaging makes natural sense, the choice of weights for type 1 and 2 jobs is
still arbitrary. In all scenarios so far, a price still had to be paid by type 2 jobs (even
though for just a small percentage of the jobs).

As an another objective, and supported by insight from queueing, we can address
the question whether a scenario can be found that strictly improves the pooled sce-
nario, that is, in mean waiting time, for both type 1 and type 2 jobs. As mentioned in
Sect. 2.3.2, for the overall average mean waiting time, an optimization by threshold
values basically boiled down to just one threshold value θ1. For the purpose of a strict
improvement, in contrast, also a prioritization of type 2 jobs might thus be expected
and be required. Instead of one threshold value θ1, we will consider threshold rules
with one threshold values θ1 and θ2 for either type of jobs. More precisely, let the
threshold rule S(θ1, θ2) = Thr(θ1, θ2, θ1, θ2, 1, 1), i.e., as specified by:

S(θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a server of type 1 serves jobs from queue 2,
if either (i) m2 ≥ θ2 ∧ m1 < θ1 or (i i) m1 = 0 ∧ m2 ≥ 1;
otherwise, it serves jobs from queue 1.

a server of type 2 serves jobs from queue 1,
if either (i) m1 ≥ θ1 ∧ m2 < θ2 or (i i) m2 = 0 ∧ m1 ≥ 1;
otherwise, it serves jobs from queue 2.

Among these dynamic (or queue length dependent) rules S(θ1, θ2) by simulation
a rule is sought which strictly improves the pooled scenario. An S(Opt)-rule is
determined that takes into account the waiting times of both job types by:

Step 1: Solve

minθ1,θ2 max {W1[S(θ1, θ2)], W2[S(θ1, θ2)]}
This leads to an optimal threshold combination (θ1, θ2)

∗

and overall average waiting time under (θ1, θ2)
∗: WA[S(θ1, θ2)

∗].
Step 2: Solve

WA[S(θ1, θ2)
∗∗] = minθ1,θ2 WA[S(θ1, θ2)]

s.t. max {W1[S(θ1, θ2)], W2[S(θ1, θ2)]} ≤ WPooled

Step 3: If (θ1, θ2)
∗∗ exists, then

WA[S(Opt)∗∗] = WA[S(θ1, θ2)
∗∗],

otherwise

WA[S(Opt)∗∗] = WA[S(θ1, θ2)
∗].



OR and Simulation in Combination for Optimization 85

Fig. 4 Relative improvements over the pooled scenario

Fig. 5 Optimal threshold combinations (θ1, θ2)
∗∗ or (θ1, θ2)

∗ for strict improvements

The improvements are only in the order of a few % but consistently outside 95%
confidence intervals with a range of 0.5%. Figure4 shows the relative improvements
(mean waiting time reduction) that can so be obtained for both type 1 and type 2 jobs
over the pooling scenario for k = 10 and s = 1 up to 20.

Figure5 lists optimal threshold combinations (θ1, θ2)
∗∗ (if existing), for which the

pooled scenario is improved allover, and optimal threshold combinations (θ1, θ2)
∗

otherwise, for different values of s, mix ratios k and ρ = 0.9. It shows that (θ1, θ2)∗∗
does not always exist. For example, for k = 10 and s = 2, at least one of the two job
types will always be worse than for the pooled case. However, for most (s, k)-values
(θ1, θ2)

∗∗ appears to exist.

Conclusion 3 By OR (queueing) insights and Optimization using Simulation a strict
improvement over both short and long jobs might be feasible.

2.4 Summary of Combined Queueing and Simulation

To summarize this first application section of combined queueing and simulation,
tailored to question of pooling and possible improvements and optimization, we may
thus conclude that:

• Pooling is not necessarily optimal in all situations.
• Queueing insights appear to be essential.
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• Simulation is required.
• Queueing insights and further optimization by simulation may lead to substantial
and even strict improvements.

3 Blood Inventory Management

Blood management is of worldwide and generic concern. This includes the produc-
tion (or rather acquisition of donors) and the inventory management of perishable
blood platelets. No general and practical approach seems to be available. In this
section, therefore, an integrated OR-simulation approach is provided.

3.1 Problem Motivation

Blood inventory management is a problem of general human interest with a num-
ber of concerns and complications. Our problem of interest will concentrate on the
production and inventory management of blood platelets. Here there are a number
of conflicting aspects. On the one hand, the demand is highly “uncertain” and apart
from planned surgeries (if such information is used) roughly 50% of the demand is
unpredictable. Clearly, as lives may be at risk, shortages are to be minimized. On
the other hand, the supply is voluntary, and also for ethical reasons blood has to be
considered as highly precious. Any spill, by outdating, of blood (products) is thus
highly “undesirable” if not to be avoided at all. As an extra complicating factor, blood
platelets (thrombocytes) have a limited life time or rather “shelf life” of at most 6
days, this in contrast to red blood cells and plasma in all sorts of blood types that
can be kept for months up to over a year. In addition, regular production of a platelet
pool takes about 1 day. Hence production volumes should be set carefully. Another
complicating factor is that part of the patients need the youngest platelets available,
whereas other patients can be transfused with any platelets that do not exceed their
shelf life of 5 or 6 days. Figure6 shows the product of interest; to help one patient,
platelets of five donors are needed.

3.2 Literature

The above perishable inventory management problem is studied in literature using
various techniques. In the late 1960s and 1970s of last century, the problem is first
analyzed by mathematical analysis of rather simple models that assume zero lead
time, stationary demand, and that neglect the existence of different groups of patients,
etc., see Nahmias [22], Prastacos [24]. More realistic studies use simulation models
to gain insights in the performance of base stock policies, see o.a. Katsaliaki and
Brailsford [18], Sirelson and Brodheim [25].
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Fig. 6 A single platelet pool consists of platelets of five donors

Base stock policies set the order quantity equal to the difference between the actual
stock level (or stock position) and a fixed-up-to level S. The value of parameter S
is weekday dependent as the practical problem is nonstationary: Mean demand are
weekday dependent and no production happens during the weekends. Optimizing
the parameters of order policies is usually very time consuming as the for each day
of the week an optimal parameter setting has to be found and these parameters are
correlated. The number of combinations is often too large to apply enumerated search
using simulation. A recent study that applies simulation based optimization using
meta heuristics is Duan and Liao [12].

It is known that an optimal order policy should consider the ages of the products
in stock, see Fries [13], Nahmias [22]. Base stock policies neglect stock ages but
nevertheless they are commonly applied for being relatively easy to implement and
to analyze. The optimality gap is hardly studied for realistic problem settings with
positive lead time, nonstationary/periodic demand, and multiple types of patients
who require different issuing policies. Main reason is the computational complexity
involved in determining an optimal stockage-dependent policy Blake et al. [6]. This
gap is investigated in the following papers: Haijema et al. [16, 17], Van Dijk et al.
[32]. In these papers, optimal stockage-dependent order policies are derived and
methods are presented that use simulation in combination with optimization to derive
improved but simple ordering policies as well as a way for finding nearly optimal
order-up-to-levels. In this chapter we summarize and integrate the findings of these
studies.

3.3 Combined Optimization-Simulation Approach

In Haijema et al. [16] a combined approach for the blood platelet inventory problem
has therefore been followed, which combines OR and simulation by the following
steps:
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Step 1: Optimization model: First, a stochastic dynamic programming (SDP) for-
mulation is provided, which neglects the existence of blood types. This latter
assumptions will be validated in Step 5.

Step 2: Optimal solution: The dimension of the (SDP) formulation is then reduced
(downsized) by aggregating the state space and demands so that the downsized
(SDP) problem can be solved numerically (using successive approximation). That
is, the optimal value and an optimal strategy is determined for the downsized SDP.

Step 3: Simulation for investigation: Then, as essential tying step, this optimal
policy is (re)evaluated and run by simulation in order to investigate the structure
of the optimal strategy. In this simulation, one registers the frequency of (state,
action)-pairs for the downsized problem.

Step 4: Simulation for re-optimization: The results of step 3 are used to derive
practical order rules, like improved base stock policies and to obtain nearly optimal
parameter values. By a heuristic search procedure parameter values of these rules
are fine tuned for the full-size problem.

Step 5: Simulation for validation: The quality (near-to-optimality) of this practical
simple order-up-to strategy is evaluated by detailed simulation. In this step it is
also justified, for Dutch blood banks, that blood types are ignored in the previous
steps.

As the technical (mathematical) details of steps 1 and 2 are somewhat ‘standard’
but also ‘complicated’ and worked out in detail in Haijema et al. [16] and related
references,wepresent here a compact presentationof the essentialORandSimulation
Steps. The results of Step 5 (validation by simulation) are reported for two cases in
Sects. 3.4 and 3.5.

3.3.1 Steps 1 and 2 Optimization by SDP

To give an SDP formulation, the state of the system is described by (d, x) with

d: the day of the week (d = 1, 2, . . . , 7)

and

x = (x1, x2, ., xm) the inventory state

with xr = the number of pools with a residual life time of r days (maximal m = 6
days) (A pool is one patient-transfusion unit containing the platelets of five different
donations).

Let Vn(d, x) represent the minimal expected costs over n days when starting in
state (d, x). The optimal inventory strategy and production actions are then deter-
mined by iteratively computing (solving) the SDP-equations for n = 1, 2, . . .

Vn(d, x) = min
k

[
c(x, k) =

∑
b

pd(b)Vn−1(d, t (x, k, b))

]
(1)
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Table 4 Optimal productions by SDP for a selection of states

Production Inventory (old . . . young)

7 (0, 0, 5, 0, 0, 9)

8 (0, 0, 6, 0, 0, 8)

9 (0, 0, 8, 0, 0, 6)

10 (0, 6, 2, 0, 0, 6)

10 (5, 0, 3, 0, 0, 6)

with

k the production action,
c(x, k) the one day expected costs in state x under production k,
pd(b) the probability for a (composite) demand b,
t (x, k, b) the new inventory state depending on k, b, x, and some issuing policy,

and

V0(d, x) = 0 to start up the iterative computations.

However, for a realistically sized problem for one of the Dutch regional blood banks
the computational complexity of this SDP for a one-week iteration already becomes
of an order 1014, which makes the computation times prohibitively large. Therefore,
we have downsized the demands and inventory levels by aggregating the pools into
quantities of four. This strongly reduces the computational complexity, so that an
optimal strategy can be computed for this downsized problem by the optimizing
actions of the SDP. However, in practice one needs a simple rule and this optimal
strategy has no simple structure. See, for example, Table4 which prescribes the
production volumes on Tuesday for five different states, which all have the same
total inventory level of 14 pools, but of varying ages.

3.3.2 Steps 3 and 4 Simulation for Investigation and Re-optimization

In order to derive a simple order-up-to strategy which only depends on the total pre-
dicted inventory, the actual platelet production-inventory process is therefore simu-
lated for 100,000 replications so as to register how often which total predicted final
inventory level (I ) and corresponding action occurs under the optimal strategy (as
determined by SDP) for the downsized problem. As an illustration, for a particular
day of the week and the dataset of the regional blood bank, this led to the “simula-
tion table” in Fig. 7. For example, it shows by row 15 and column 7 that during the
100,000 replications 2593 times a state was visited with a total final inventory (I ) of 7
followed by a production decision of 8 (order-up-to 15). Order-up-to-level 15 occurs
in 74.5% of the states visited, however, often a higher production is optimal. The
order-up-to level can be seen as a target-inventory level for Wednesday mornings.



90 N.M. van Dijk et al.

Fig. 7 Simulation frequency table of (State, Action)-pairs for tuesdays from simulation of optimal
SDP solution for 100,000 weeks

We conclude that a simple order-up-to rule might perform well. By investigating
the states at which the optimal production volume is higher we have derived even
better rules that closely resembles the optimal production strategy. For example, a
base stock policy that first estimate the quantity that is left upon replenishment is
doing better as it compensates for estimated waste during the lead time. Such a policy
is called in Haijema et al. [16], the final stock rule. Another improved policy applies
two order-up-to levels, one for the demand for young platelets, and one for the total
demand. Both these improved policies are discovered and tested by simulation of the
optimal stockage-dependent policy.

3.3.3 Step 5 Validation by Simulation

The results of Step 5 are reported for two real-life applications that differ in their
motivation. Application 1 was selected for validation of the method with the premier
objective of reducing waste. In Application 2 the focus is on applying the method
such that one issues younger product while maintaining low levels of waste and a
high product availability. The Netherlands can be divided in four regions at which
blood is collected and processed, see Fig. 8. For Application 1, region North-East is
considered, for Application 2 region South-East is selected.
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Fig. 8 The Dutch blood
banks divide The
Netherlands in four regions

3.4 Application 1: Spill Reduction at Dutch Blood Bank
North-East

3.4.1 Main Results

Applying this combined approach to data from theDutch regional BloodBankNorth-
East, the following conclusions could be drawn

1. A simple order-up-to rule could reduce the spill from roughly 15–20%, as a figure
that also seems rather standard worldwide, to <1% (while also shortages were
reduced and nearly vanished).

2. The combined SDP-Simulation approach led to an accuracy within 1% of the
exact optimal value for the downsized problem.

Detailed data and results are discussed below.

3.4.2 Problem Data Dutch Blood Bank North-East

The maximal shelf life of a platelet pools is five days counted from the first morning
that platelet pools are released to the stock located at the blood bank. The demand
for platelet pools is Poisson distributed with means as reported in Table5.

The demand for youngprefers products of atmost 3-days old. The any-age demand
can be met by any pools of at most 5-days old. Falling short one pool is considered
to be five times as severe as wasting one platelet pool. This is a managerial trade-off
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Table 5 Means of Poisson demands per weekday and per type of demand

Demand Mon Tue Wed Thu Fri Sat Sun Weekly

‘Young’ 20 15 26 15 20 0 0 96

‘Any-age’ 6 6 6 6 6 8 10 48

Total 26 21 32 21 26 8 10 144

that is reflected in a penalty costs of 150 e for spilling one pool, and 750 e for
falling short one pool. Inventory costs are estimated to be only 0.1 e per day per
pool. Meeting the demand for young by products with a residual shelf life of only 2
or less days is penalized by a cost of 200 per pool. The objective is to minimize the
sum of these costs.

3.4.3 Results Dutch Blood Bank North-East

An optimal stockage-dependent policy can be obtained by SDP but only after scaling
the demand figures as if demand happens in multiples of 4 pools (=Step 2). The
resulting policy is simulated to investigate its structure (=Step 3). The result of
Steps 3 and 4 are five more rules, which neglect the age of the products in stock while
setting an order quantity. The performance of these rules are compared in Table6,
using the scaled or downsized demand distributions. Clearly stockage-dependent
ordering (SDP/MDP) gives lowest annual costs. A fixed-order quantity orders every
weekday a fixed weekday dependent quantity and is clearly far from optimal. The
Order-up-to S, which is a base stock policy, provides annual costs that are 9.9%
above the optimal cost level. For the scaled problem, the weekday dependent order-
up-to levels are multiple of 4; for Monday to Friday we get S = (64, 72, 72, 64, 80).
The new policy Bounded Order-up-to S, adds a minimum and a maximum order
quantity to order-up-to S policy. The effect of these bounds are that are quantities
are more smooth, which results in lower annual costs, primarily due to generating
less mismatches, i.e., it happens less frequently that old pools are used to meet the

Table 6 Performance of optimal policy and derived rules
Rule Outdatinga Shortagea Mismatchb Annual costs

MDP-optimal 37 1.95% 4.9 0.26% 0.09 0.01% 36,605 −
Fixed-order-quantity 157 8.41% 1.4 0.07% 0.00 0.00% 98,459 +168.9%c

Order-up-to S rule 36 1.95% 5.7 0.30% 2.17 0.17% 40,236 +9.9%c

Bounded order-up-to S 36 1.95% 5.6 0.30% 0.59 0.05% 39,077 +6.8%c

2D-order-up-to rule 36 1.92% 5.2 0.28% 2.16 0.17% 38,779 +5.9%c

Final stock rule 36 1.91% 5.1 0.27% 1.98 0.16% 38,389 +4.9%c

aIn batches of 4 pools per year; % of total (1872 batches = 7488 pools)
bIn batches of 4 pools per year; % of young-demand (1248 batches = 4992 pools)
cPercentage above optimal cost level (MDP)
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demand for young pools. The 2D-rule, which has both an order-up-to level for young
and for total stock, and the Final stock rule show further cost reductions. The best
policy is still about 5% above the minimal costs level achieved by MDP-optimal.

3.4.4 Re-optimization and Validation

For the validation, we restrict ourselves to the order-up-to S policy as it is com-
monly used. The parameters are reoptimized by local search and simulation with
the nonscaled demand distributions resulting in S = (65, 74, 80, 64, 82). Validation
happens in a more detailed simulation program that takes into account the blood type
of both patients and donors. Donors are selected mainly form the category O and A
for being themost compatible donor, see Fig. 9. The percentages indicate that the two
blood types cover 89% of the population. Most donor provide full blood donations
from which three types of blood products are made: Red blood cell concentrates,
plasma products, and platelet concentrates. As for the production of platelet pools
only a third to a half of the donations is needed, one usually has enough platelets
available of the most compatible blood types O and A. In total, we consider eight
blood types by combining O, A, B, and AB with the Rhesus-D factor.

Table7 report estimates of annual figures by two simulation models: The multi-
group model simulates patients and donors of eight different blood types; the
Universal-group model simulates as if all donors and patients have identical or fully
compatible blood types. The result in annual performance is virtually the same, as
blood of the universal blood group O is plenty available.

If instead of 33% of the available blood is sued for platelet production, 50%
or even 67% is used more of other blood types is used for production. This is
demonstrated in Table8. The annual production stays the same but if blood is more
scarce, more of the less compatible blood type B is produced which is no problem if
demand is met choosing pools of the least favorite but compatible blood type first.

Donor Patient

AB

B

A

O

AB 3%

B 8%

A 42%

O 47%

Donor Patient

−

+

− 16%

+ 84%

Fig. 9 Compatibility of blood types and Rhesus-D factor
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Table 7 Impact of blood types on performance of order-up-to S (simulation for 100 million weeks)

Criterion Multigroup model Universal-group model

In pools Relative (%) In pools Relative (%)

Production 7597 7597

Outdating 143 1.9 142 1.9

Shortage 33 0.4 33 0.4

Quality mismatch 9 0.2 9 0.2

Annual costs 48,168 47,726

Table 8 Production per blood group under the rescaled order-up-to S rule (over 100 simulation
runs of 1 million weeks each) when on average a third, a half or two third of the whole blood
donations (WBD) is used for platelet production

Scenario Total O− O+ A− A+ B− B+ AB− AB+

33% of WBD used 7597

Annual production 1582 5944 62 10 0 0 0 0

% of total production 20.8% 78.2% 0.8% 0.1% 0% 0% 0% 0%

50% of WBD used 7597

Annual production 1018 5268 525 786 0 1 0 0

% of total production 13.4% 69.3% 6.9% 10.3% 0% 0% 0% 0%

67% of WBD used 7597

Annual production 739 4201 560 1991 8 86 0 14

% of total production 9.7% 55.3% 7.4% 26.2% 0.1% 1.1% 0.0% 0.2%

3.5 Application 2: Age Reduction at Dutch Blood Bank
South-East

As donated, platelets tend to clutter and the number of effective platelets within a
pool decreases as time evolves; the quality of a platelet pool is directly related to
its age when its transfusion takes place. Therefore, besides shortages and outdating,
there is a third quality factor.

The issuing age of the platelets.
This quality factor is most important for treatment of special patients (oncology

and hematology) which constitute roughly 40% of all demand. Clearly, the SDP by
itself does not take the age into account. By simulation, in contrast, issuing ages can
easily be kept track of. In Kortbeek et al. [19] and Haijema et al. [16], therefore, the
SDP-simulation approach was extended so that also the quality aspect of the issuing
age is addressed. The extension was applied to a new Dutch Blood Bank study, the
Dutch Blood Bank South-East, with a (meanwhile) extended maximal shelf life of
6 days. Below, several strategies are presented that improve the age of the platelets
issued, such as by slightly relaxing the shortage performance, by introducing penalty
costs for older issues or by a special “weekend” production. The resultswere obtained
by successfully exploiting the strengths of
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Table 9 Performance of base case South-East

Performance indicator Base case

Shortage 0.04% (in days 0.13%)

Outdating 0.25%

Average age 3.75

Age distribution (2.5; 17.2; 19.1; 30.8; 25.1; 5.3)%

• SDP for optimization, and
• Simulation for evaluation.

In the first study only two cost elements are used, outdating and shortage cost.
Shortage costs are taken to be five times as high as the outdating costs. In this base
variant, there are no penalty costs with respect to age. The issuing policy is FIFO,
that is, the oldest platelets are issued first. At Saturday there is a limited production
capacity of 20 pools, and at Sunday there is no production at all.

Table9 shows that the shortage and outdating figures are excellent. The issuing
age of the platelets, however, is fairly high, with more than 30% of the platelets
being issued at shelf ages 5 and 6 days and with an average age of 3.75 days.

At this point, the SDP-Simulation approach is exploited in order to explore sce-
narios and strategies which can improve the issuing age. An obvious first attempt
is to use the LIFO (Last In First Out) issuing policy instead of FIFO, so to always
issue the youngest platelets in stock. Although the average issuing age improves
to 2.26, the price with respect to outdating (11.0%) and shortages (1.87%) is very
high. Therefore it was concluded that LIFO is not the solution. A second alternative
is to allow the number of days with shortages to be relaxed to about 1% (recall this
percentage was 0.13 for the base case). 1% amounts to 3 to 4 days per year and is
considered to be acceptable by the Blood Bank. By allowing more shortages one will
keep fewer inventories, which might result in issuing younger platelets. In order to
find a nearly optimal order-up-to strategy giving 1% shortage days, the ratio between
shortages and outdating costs is decreased. The results are displayed in Table10.

There is a considerable improvement of the age distribution, while outdating has
become virtually zero. Only 14% of the issued platelets is of shelf age 5 and 6 days,
compared to 30% for the base case and the average age has been decreased from
3.75 to 3.18. In the base case, the maximal shelf life is 6 days. But what happens
if one decides not to use platelets of age 6 days, so that platelets become outdated
at the end of day 5 or even at the end of day 4? It can be expected to lead to lower
order-up-to levels, so more shortages but issuing younger platelets. With respect to
the SDP this results in changes in the state space, the expected costs and the transition
probabilities. Using the same cost structure as in the base case one obtains the results
in Table11. The results for a shelf life of 5 days for shortages and outdating are
quite good. The percentage of the platelets issued at shelf age 5 is about 16% and the
average age of the platelets issued is 3.2 days. Although for 4 days the age distribution
improves considerable, the increase in outdating makes this solution unacceptable.



96 N.M. van Dijk et al.

Table 10 Performance South-East, when shortages are tuned to 1% of days

Performance indicator Shortage are tuned to 1%

Shortage 0.35% (in days 0.95%)

Outdating 0.02%

Average age 3.18

Age distribution (8.4; 25.9; 20.3; 31.2; 13.1; 1.1)%

Table 11 Performance South-East, when shelf life is reduced

Performance indicator 5 days 4 days

Shortage 0.24% (in days 0.66%) 0.73% (in days 1.88%)

Outdating 1.22% 5.38%

Average age 3.23 2.70

Age distribution (6.8; 25.8; 20.2; 31.5; 15.6,−)% (15.9; 29.5; 23.0; 31.6,−,−)%

Another possibility is to discourage the issuing of older platelets by penalization
in the cost function of the SDP. This penalty is taken to be half the outdating costs.
(It is important to note that the more cost parameters are used, the more difficult it is
to quantify them in such a way that the effect one is aiming for is indeed achieved.)
Compared to the base case, the only change in the SDP is in the costs. Two cases are
considered: In the first case day 4, 5, and 6 are discouraged, and in the second case
day 5 and 6. The results are displayed in Table12.

Both cases show almost equal results. As expected, shortages have increased, but
the average age went down to 3.12, and issues of day 5 and 6 halved compared to the
base case. The final scenario studies a combination of successful scenarios: a shelf
life of 5 days, a penalization for issuing platelets of age 5, and shortages about 1%
in days. The results are displayed in Table13.

The proposed combination appears to be a very satisfactory improvement, with
shortages in the order of 1% in days, outdating just below 1%, the average age
reduced from 3.75 to 3.06 and only 11.0% issued at age 5.

Table 12 Performance South-East, when discouraging issuance of older pools

Performance indicator Penalize day 4, 5 and 6 Penalize day 5 and 6

Shortage 0.30% (in days 0.95%) 0.33% (in days 1.11%)

Outdating 0.04% 0.08%

Average age 3.12 3.10

Age distribution (9.5; 26.0; 23.1; 27.6; 12.4, 1.5)% (9.9; 26.7; 23.5; 25.1, 12.7, 2.0)%
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Table 13 Performance South-East, when combining scenarios

Performance indicator Combination

Shortage 0.36% (in days 1.04%)

Outdating 0.92%

Average age 3.06

Age distribution (9.0; 27.0; 24.0; 29.0; 11.0; −)%

3.6 Summary Blood Inventory Management

To summarize this section it can thus be concluded that the (perishable inventory)
problem is so complex that it is impossible to obtain practical results by only SDP
or only by Simulation. However, substantial and practical improvements could be
obtained (and have real life been implemented (see Kort et al. [11], Van Dijk et al.
[32]) by their combination.

4 Rail-Track Scheduling

Railroad scheduling is highly complex as punctual and detailed scheduling at minute
basis is confronted with stochastic disruptions on the other. Simple and practical
rules are then required. These in turn are highly situation dependent, including time-
tabling, frequencies up to (country) infrastructures. No general stochastic appears
to be available approach other than simulation. In this section, again an integrated
OR-simulation approach is suggested, as based upon Stochastic (Semi-Markovian)
Dynamic Programming (SDP).

4.1 Motivation

Anexample of yet another class of stochastic decisionproblems forwhich a combined
SDP-simulation approach seemsmost fruitful is found in rail-track scheduling. In the
Netherlands, tracks are heavily used. This implies that these tracks have to be used
in an intelligent way. As an example, consider the junction as depicted in Fig. 10. If
two or more trains enter the junction more or less simultaneously it has to be decided
which train is admitted first. To a certain extent the basis of this decision problem is
deterministic but in practice it is also highly stochastic due to stochastic arrival times,
delays and speed differences. Accordingly, the problem of online dynamic conflict
resolution has the flavor of both a scheduling and a queueing problem.
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Fig. 10 The railway
infrastructure of The
Netherlands with selected
junction for the test case

4.2 Literature

Railway scheduling problems have been extensively studied in the literature and are
known to be NP-hard (Garey and Johnson [15]). Excellent overviews are given in
Assad [4], Cordeau et al. [9], Törnquist [28] andD’Ariano [10]. In the overview paper
Törnquist [28], the relevant literature is classified into three main categories: Tactical
scheduling, operational scheduling, and rescheduling. While the Tactical and oper-
ational scheduling involved constructing the timetable from scratch, rescheduling is
done when train conflicts arise due to perturbations. The online dynamic conflict
resolution falls in the category of Rescheduling.

Very little literature exists on Rescheduling. The issue has been addressed only
recently due to the complex nature of the problem and the very limited available
computational time. The different approaches that are described in the literature min-
imize delay propagation by setting the train order at crossing points. Amongst these
approaches is the model proposed in Adenso-Dıaz et al. [1]. The authors describe
the online conflict resolution problem as a mixed integer programming model and
state that solving this problem by means of the Branch-and-Bound technique is very
time consuming. Instead, the authors propose a heuristic approach that intelligently
reduces the search space by elimination of certain branches that are considered to be
inferior. The approach is implemented at theSpanish national railway companywhere
the tool preselects the best resolution rules and presents them to a train dispatcher.
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Tornquist and Persson [29] propose a two level procedure to resolve train conflicts.
The authors suggest an approximation strategy, which in most cases does well with
respect to computational time and solution quality. Araya et al. [3] formulate the
online scheduling problem as a 0–1 mixed integer programming problem which is
solved in two steps. First, a suboptimal solution is obtained by a heuristic approach.
The branch-and-bound approach is then used to find the optimal solution. A number
of experiments show the efficiency of the approach in terms of computational time.
Another approach is to formulate the train conflict problem as a Job-Shop problem.
Here, the trains are jobs and the tracks are machines. The problem is then to find the
best assignment of the trains to the tracks so that the overall delay (or some other
optimization function) is minimized. Mascis and Pacciarelli [21] introduce blocking
and no-wait constraints to the Job-Shop scheduling problem and use an ‘Alternative
graph’ to solve it.

These heuristics, however, do not guarantee the optimality of the solution. More-
over they do not account for future uncertainties, such as stochastic train arrivals.
In the next section, a stochastic approach is discussed. These approaches attempt to
model uncertainties which are found in the real world (think of the running times,
dwell times and other operations which are often stochastic).

4.3 Combined Simulation and Optimization Approach

4.3.1 OR-Approach: Optimization

This track conflict problem can partially be regarded as a ‘standard’ OR-scheduling
problem, more precisely, as a job-shop problem with blocking. By considering trains
as jobs and tracks as machines, an ‘optimal train order’ for a track can be found by
branch-and-bound techniques. It is a job-shop problem with blocking because an
occupied track section blocks a successive train to enter that section. Trains at the
preceding section can thus be delayed. The usual job-shop formulation, however,
uses fixed handling times without delays and variability’s.

4.3.2 Simulation Approach

As delay aspects and the variability of travel times are crucial for the track conflict, a
stochastic approach might be able to cover more aspects of the problem. Simulation
would thus be in place, despite the fact that it does not optimize at all. Indeed, in
earlier literature (see references in Al-Ibrahim [2]) simulation is used to analyze a
junction. In those studies, train are assigned by dynamic priorities. The dynamic
priority can be a function of the train type, its experienced delay, the delay caused
by acceleration and possible other conflicts. However, optimization is not involved.
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4.3.3 Combined Approach

In Al-Ibrahim [2], therefore, a more extended combination of OR and simulation is
suggested. To include both queueing (time) and scheduling (optimization) aspects a
Semi-Markov Decision Process (SMDP) is formulated.

4.3.4 SMDP-Formulation

The Semi-Markov Dynamic Programming (SMDP) formulation for the stochastic
junction-track scheduling problem essentially takes into account the stochastic nature
and different durations of transitions. It has the form:

Vn+1(A, v, d) = min
k

⎧⎨
⎩

c(A, v, d)+
(τ/τ k(A, v, d))

∑
(A′,v′,d ′) Pk

[
(A, v, d); (A′, v′, d ′)

]
Vn(A′, v′, d ′)

+ [
1 − τ/τ k(A, v, d)

]
Vn+1(A, v, d)

⎫⎬
⎭
(2)

where a state (A, v, d) represents a state of the form:

(A, v, d) = (A1, v1; A2, v2; d1, d2, . . . , dN )

with
Al denoting the trains in queue l ∈ {1, 2}
vl indicating whether the trains are moving (vl = 0) or not (vl = 1)
d j the train type which is occupying the j th position past the junction.

The costs c(A, v, d) cover the time that all trains together are spending in the sub-
network up to a next transition. Further

Pk
[
(A, v, d); (A′, v′, d ′)

]
represents the transition probability from a state

(A, v, d) into (A′, v′, d ′)

τ k(A, v, d) is the average duration of a transition in state (A, v, d), when decision
k is taken.

4.3.5 Simulation-SMDP Approach

A combined approach can now be suggested, which combines simulation with the
SMDP optimization algorithm in a number of steps, as briefly outlined below.

Step 1: (SMDP optimization) For the junction under consideration, a semi-Mark-
ovian decision process is formulated and solved. (As shown above and argued in
more detail in Al-Ibrahim [2]). For every possible, state an optimal decision is
registered.

Step 2: (Simulation) Trains are generated for the junction subnetwork according
to a global train schedule but with a number of stochastic elements to include
initial randomness and speed differences. The trains are simulated until a conflict
is detected. The simulation run is interrupted and the conflict is registered.
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Step 3: (Finding the optimal SMDP decision) The train conflict situation is mapped
on to a state of the SMDPmodel. Then the corresponding optimal decision is read
and communicated to the simulation. The simulation implements this decision
and the simulation continues until the next conflict occurs.

Step 4: The delays, as they occurred in the simulation with the optimal SMDP-
decisions, are registered.

Step 5: Comparison. Simulation is used to also obtain the performance of a number
of other heuristical rules to settle the conflicts.

Step 6: Results. The SMDP results as well as the results for the heuristics are
reported.

In short, simulation is used to capture queueing, to generate conflicts and to evaluate
decisions made while SMDP is used to determine the (within the model) optimal
train order.

4.4 Application Results

4.4.1 Application 1: Junction Case

In cooperation with “ProRail” (the Dutch Railway operator) the approach has first
been applied to a small but complicating andgeneric junctionwithinTheNetherlands.
The junction has 12 arriving trains per hour, 6 fast passenger intercity trains (IC) and
6 slow freight trains (FR); half of the trains on each one of the arriving tracks. After
the junction there are 5 positions (which reflect a distance of more than 13km). The
FR trains need 170s to accelerate from speed 0 to speed 80km/h, while the IC trains
only need 30s to reach the speed of 120 km/h.

To verify that the combined SMDP-simulation approach outperforms simple prac-
tical rules like the FCFS (First Come First Served) rule or a strict priority rule for
passenger or for freight trains, the approach is compared with these rules by simu-
lation. Table14 shows the results. The values are average delays per train type over
12 days at 15h a day. The results show that the SMDP-simulation approach almost
captures the quality for passenger trains as by strictly prioritizing passenger trains
and for freight trains as by strictly prioritizing freight trains.

4.4.2 Application 2: A Network Case

Next, in close cooperation with the department of “Traffic Control” of the Dutch
Railway operator ProRail the approach has been applied to a more complicated
network structure as shown in Fig. 11, called the corridor “Utrecht–Gouda.” This is
a heavily utilized corridor with frequent train conflicts. Presently these conflicts are
resolved by ProRail according to so-called TAD rules. (TAD is the Dutch acronym
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Table 14 Results by simulation and the SMDP-simulation rule for the FCFS, IC-FR (priority to
passenger trains), and FR-IC (priority to freight trains)

12 trains per hour

Discipline Delay IC (s) Delay FR(s) Avr delay (s) Number conflicts
(per hour)

FCFS 182 86 134 2.6

IC-FR 164 109 137 2.6

FR-IC 175 48 111 2.3

SMDP 162 51 106 2.2

Fig. 11 Corridor Utrecht–Gouda (We here confine ourselves to the trains running from Utrecht to
Gouda and do not consider the opposite direction)

for train order document.) These rules are computed offline and prescribe the train
order in case a conflict arises. Table15 shows an example of such a rule.

It is stated that train service 4000 is scheduled to be the first one to run toward the
Gouda station (Gd) followed by train services 2000, 2800, and a freight train, if its
delay is less than 6min. If the train service 4000 has a delay between 6 and 10min,
the TAD rule prescribes that the train should let train services 2000, 2800 and the
freight train go first.

For the corridorUtrecht–Gouda theTAD rules give unsatisfactory results. ProRail,
therefore, was searching for alternative rules that improve the train punctuality for
this corridor. Figure11 shows the corridor inmore detail and indicates the three areas,
which in our approach will be considered separately.

Table 15 Example of a TAD rule

Train To Arrival time Minimum
delay

Maximum
delay

Train order

4000 Gd −0.03/−0.33 0 6 4000 − 2000 − 2800 − FR

4000 Gd −0.03/−0.33 6 10 2000 − 2800 − FR − 4000
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After inspecting the corridor and the specific elements that play a role at each
conflict location, we concluded that there are three different areas where conflicts
occur and where a resolution rule is needed. In Area 1, the trains leave the Utrecht
station toward Gouda. When a conflict arises, one needs to establish an optimal
departure order based on some optimization criterion. In Area 2, at Woerden station,
there is a double track over a distance of 8km which makes it possible for fast trains
to overtake slower trains without delaying them much. Here, one needs to know if,
and when, a fast train may overtake a slower one. Finally in Area 3, at the place called
Oudewater, it is possible to stop a freight train so that a passenger train can overtake
it. The rule here should prescribe when it is optimal to stop a freight train in favor of
a passenger train. Solving the SMD model, described in the previous section, yields
the so-called SMD strategy which decides about the order of the trains for each area
separately. Just like the TAD strategy the SMD strategy is local and computed offline.
However, while the TAD strategy assumes that only one train is delayed at a time,
the SMD strategy prescribes conflict resolution rules for all possible situations. In
its computation, it does not only consider trains in the direct proximity of a conflict
area but it also includes information about (random) future arrivals.

The performance of the SMD strategy is compared to the performance of the TAD
rules and some other simple heuristics. For this comparison simulation is necessarily
required.

Within the simulation, we have applied the timetable of the year 2007 and used
disturbances which are comparable to the ones recorded in 2007. By means of the
“common random number” technique the different strategies are confronted one by
one to the same set of events so that the differences in performance are solely related
to the strategies themselves and not to the random nature of the simulation process.

Table16 shows the punctuality in percentages at the three stations Utrecht (Ut),
Woerden (Wd) and Gouda (Gd) for the different strategies. Here, a train is called
“punctual” if the delay is less than 3min. Each value represents the punctuality aver-
aged over all trains and different train services that cross that station. Upon departure
still 92% of the trains is “punctual”. As one sees, due to conflicts within the corridor,

Table 16 Punctuality (in %) of Utrecht–Gouda trajectory

Discipline Ut Wd Gd

TAD 92 86 72

SMD 92 88 82

FCFS 92 85 70

IC-IR-RE-FR 92 89 83

IC-FR-IR-RE 92 89 82

FR-IC-IR-RE 92 89 80

FR-RE-IR-IC 92 86 74

RE-IR-IC-FR 92 87 78

LeastDelayedFirst 92 86 81

MostDelayedFirst 92 87 73
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the punctuality decreases toward the end of the corridor. Some strategies resolve
the conflicts in a more beneficial way, which translates into a higher punctuality at
the end of the line. The FCFS strategy turns out to be the worst strategy. The TAD
strategy improves FCFS strategy, but only a bit. The strategy MostDelayedFirst tries
to minimize the delay for the most delayed trains by giving them priority over other
trains,which however leads to poor overall results. Giving priority to the least delayed
train turns out to be a better solution. From the train type priority rules IC-IR-RE-FR
turns out to perform very well. This rule gives Intercity trains (IC) priority over all
other train types. The Inter Regional (IR) trains have the second highest priority then
come Regional trains (RE) and Freight trains (FR) have no priority at all. The SMD
strategy improves the punctuality of the TAD strategy by 10% points and is among
the best performing strategies. When considering different scenarios, changing the
percentage of freight trains or the total amount of trains, we found that the perfor-
mance of the simple priority rules was quite sensitive to the number and the mix
of the trains. The strategies that performed well in one case were not performing
well at all in other cases. The SMD strategy performed very well in all cases, which
encourages us to apply this approach to other corridors.

4.5 Summary of Rail-Track Scheduling

Summarizing the results of this section, first of all we note that there is no other
way to evaluate the different train scheduling rules than by simulation. We also note
that even for experienced and intelligent train schedulers, it is impossible to generate
and compare all strategies. The SMDP-algorithm though, in principle computes pre-
sumably optimal decisions. In practice, these decisions can be overruled in the light
of other information and expertise of schedulers, which cannot be included in the
SDMP-simulation model. Nevertheless, the combined SMDP-simulation approach
appeared to provide a valuable tool to support practical train scheduling.

5 Evaluation

OR (Operations Research) is well known for its value of mathematical optimization.
Most famous applications considered in OR are the shortest routing problems (in
route planning systems), and standard inventory optimization (e.g., by deterministic
EOQ formulas). Generally, however, stochastics is involved to model uncertainty.
Here the value of OR seems less famous, although simple insights and formulas from
queueing theory (Q) and stochastic inventory theory (on replenishment policies) are
available, next to techniques for stochastic optimization such as Markov decision
theory (MDP).

In contrast, in practice OR techniques are often perceived as being too complex
to apply and OR models are too simple by relying on strong underlying assumptions
such as exponential distributed process times. Simulation, in particular discrete event
simulation, then naturally comes as amanageable andpractical tool for evaluation and
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search-based optimization with virtually no restriction on either practical complexity
or stochastic assumptions. The use of OR results, particularly of stochastic nature,
generally seems to be skipped.

This chapter aimed to promote that even in that mathematically unsolvable prac-
tice, results from OR could still be most useful in combination with simulation, in
either of two ways

(i) To provide insights so as to assist the simulation steps in search for optimization.
(ii) To provide an optimization formulation and a technique for its computational

feasibility as well as its evaluation by using simulation.

The three applications discussed in this chapter, are real-life applications but their
description is far from complete. These examples simply show that each practical
problem description requires a tailor-made solution, for which both an OR formu-
lation and the way it is to be integrated with simulation are to made specific and
practical.

Simulation engineers might regard OR as too restricted for real-life scale and
complexity. OR practitioners in contrast might regard simulation as insufficiently
formally supported and specific. This chapter aimed to illustrate the opposite. That
one could well benefit from the other. At practical call center scale by queueing
insights and by simulation for practical improvements. For blood banks and rail-
ways, a theoretical OR solution technique for solvable systems used by simulation
for expansion to simple practical rules. Accordingly, a combination appears to be
highly mutually beneficial. Beyond these and other applications by themselves, this
combination also seems of future research interest such as to integrate simulation for
the nearly open problem of transient queueing applications on the one hand and to
support simulation search approaches by OR on the other.
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