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Abstract Dynamic and stochastic problem environments are often difficult tomodel
using standard problem formulations and algorithms. One way to model and then
solve them is simulation-based optimization: Simulations are integrated into the opti-
mization process in order to evaluate the quality of solution candidates and to identify
optimized system configurations. Potential solutions are evaluated with a simulation
model, which leads to new challenges regarding runtime performance, robustness,
and distributed evaluation. In order to design, compare, and parameterize algorithmic
approaches it is beneficial to use an optimization framework for algorithm design
and evaluation. On the one hand, this chapter shows how arbitrary simulators can be
coupled with the open-source HeuristicLab optimization framework. This coupling
is implemented in a generic way so that the simulators act as external evaluators. On
the other hand, we demonstrate how arbitrary optimizers available within Heuris-
ticLab can be called from a simulator in order to perform complex optimization
tasks within the simulation model. In order to illustrate the applicability of these
approaches, real-world examples investigated by the authors are discussed. We show
here application examples from different fields, namely logistics network design,
vendor managed inventory routing, steel slab logistics, production optimization with
dispatching rule scheduling, material flow simulation, and layout optimization.
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1 Introduction

The field of simulation optimization [11, 16, 17, 20] is still a rather young flavor in
operations research. One of its key enablers is the efficient utilization of parallel com-
puting infrastructures which allows modeling and optimizing not only toy problems,
but also more complex real-world scenarios from the field of production and logis-
tics as well as other domains. So far, metaheuristic optimization approaches have
been applied successfully in solving combinatorial optimization tasks such as vehi-
cle routing, production scheduling, and layout optimization. However, when using
standardized problem formulations, only singular aspects of the real-world can be
modeled and optimized in a quite restrictive way—which is often not capable to
represent the real-world and its complex interrelations and constraints appropriately.

Discrete event simulation approaches allow modeling complex and interrelated
production and logistic scenarios in a more sophisticated and realistic way. However,
the optimization capabilities of recent discrete simulation packages [17] are still quite
limited and rather aimed to offer robust “broadband”optimizerswhich are not capable
to explore the full optimization potential of concrete scenarios.

The approach presented in this chapter aims to couple a powerful meta-heuristic
optimization framework offering a huge variety of optimization algorithms with
diverse simulators acting as evaluators of solution candidates in a generic way. By
this means, the user shall be enabled to choose and parameterize an appropriate
optimization method in order to explore more optimization potential compared to
when using built-in solvers (when available). Pursuing this approachwe adhere to the
no free lunch theorem of optimization [57] which postulates that a general purpose,
universal optimization strategy cannot be implemented and that the only possibility
for a strategy to outperform another one is to be more specialized to the structure of
the tackled problem.

The generic approach described in this chapter is to couple diverse specific simu-
lation models representing real-world scenarios with the open-source heuristic opti-
mization framework HeuristicLab [53]. Google protocol buffers act as a generic
interface between optimization algorithms and concrete simulation models that here
act as an external evaluator.

From an algorithmic point of view, the main challenges of the proposed approach
are algorithm selection and parameterization, runtime consumption, robustness, and
stability of calculated solutions. One of the major issues in this context is the runtime
consumption aspect: When solving combinatorial optimization problems, the evalu-
ation of a solution candidate usually only takes small fractions of seconds, whereas
in the context of simulation-based optimization the evaluation of a solution candidate
might take several seconds or even minutes. For the combination of optimization and
simulation it is necessary to scale back the complexity of both simulation and opti-
mization to obtain good results in reasonable time. The requirement of this balance
has led to a renaissance of optimization methods that require fewer evaluations such
as evolution strategies [40] and simulated annealing [27].
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Stochastic elements of the simulation model create the need for robustness analy-
sis of solution candidates. This requires multiple evaluations and enhanced multi-
objective fitness functions that also take into account robustness and stability of
solution candidates. These additional requirements motivate on the one hand the use
of massively parallel computing infrastructures for solution evaluation, and on the
other hand the application of enhanced techniques for algorithm selection and para-
meterization in order to choose the appropriate degree of greediness of the algorithm,
which is the basis for exploiting the achievable optimization potential.

This chapter is structured in the following way: Sect. 2 describes the technical
basis and implementation of the coupling between simulation models and algorithms
offered by HeuristicLab. Thus, for the reader this section also presents guidelines
on how to couple simulation models with optimization frameworks. Section3 sum-
marizes several concrete application example scenarios, in which simulation-based
optimization has been used in combination with HeuristicLab for solving real-world
problems. Finally, Sect. 4 summarizes this chapter and points out the future research
topics and challenges in the field of simulation-based optimization.

2 Methodology and Approach

Over the last decade, a great deal of research has been devoted to couple simulation
models with optimization. In order tomeet the increasing demand for optimization of
simulation model parameters, commercial simulation software packages frequently
offer integrated optimization, for example, OptQuest® [41] or theWITNESS® Opti-
mizer [39].

These commercial software solutions frequently apply metaheuristic algorithms
for optimization, for instance, genetic algorithms, evolution strategies, tabu search,
simulated annealing, scatter search, or hill-climbers. Optimization interfaces usually
show only a limited set of tunable algorithm parameters in order to simplify the user
interface. These interfaces often do not expose characteristics of the optimization
run, e.g., convergence behavior, but focus on statistical analysis of optimization
results. This black box approach is certainly favorable with respect to robustness
and usability of an embedded optimization tool, but it also limits the potential of the
applied optimization method. Optimization environments on the other hand provide
a more complex user interface, more algorithms, and allow analyzing the algorithm
behavior in more detail in order to improve results or convergence speed.

But, parameter optimization is only one possibility for simulation-based opti-
mization. As far as an embedded optimization approach is concerned commercial
packages are not in widespread use. Simulationmodels that encounter decision prob-
lemswhichwould be suited for optimizationwill have to include their own algorithms
or link optimization frameworks into the model. We aim to describe in this section
common interaction patterns between simulation and optimization, the HeuristicLab
software architecture that is suitable for this kind of optimization, and the interfaces
that mate simulation and optimization.
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Simulation Optimization

Events
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Fig. 1 Interaction pattern for control optimization. The simulation model (here shown bold) is the
initiating part

2.1 Interaction Patterns Between Simulation and Optimization

Generally, two main interactions patterns, control optimization and parametric opti-
mization can be identified [20]:

• Control Optimization: The optimization problem might arise within the simula-
tion model, a decision has to be made given the state of the model.

• Parametric Optimization: The simulation model might act as a fitness function,
which will take a number of parameters and calculate the resulting fitness value.

The main difference between these patterns is the role of the initiating part that steers
the control flow. In this section we will also describe a third pattern which can be
seen as a combination of the other two. The application of HeuristicLab has been
successful for these patterns [38, 49] of which real-world examples will be given in
Sect. 3.

Control Optimization

Control optimization is schematically depicted inFig. 1. The optimization here is con-
cerned with decisionmaking in changing and uncertain environments. The simulated
problem scenario changes over time as new events emerge and previous decisions
get executed. It is not possible to undo or change decisions that have been imple-
mented already. Sometimes, a rolling time horizon is allowed to plan ahead, in other
cases only the actual situation may be taken into account for making decisions. This
category can thus also be described as online optimization.

The simulation can be seen as a placeholder for a real-world environment and
models the dynamics of the real system. The optimization or decision-making pro-
cedure has to react to these dynamics. Eventually, events from the simulation envi-
ronment can be replaced with events from the real system. The simulation is mainly
used in place of the real system to test and validate new optimization approaches.
Experiments in the real system would be too costly and too slow to evaluate.

Parametric Optimization

Parametric optimization is illustrated in Fig. 2. A candidate solution (usually a para-
meter vector) is passed to the simulationwhich then returns a quality value by running
the simulation model using the given parameter set. This approach can be applied
when, for example, a closed-form representation of the evaluation function is not
feasible because it contains complex stochastic elements or dynamic interactions.
Especially, the application of metaheuristics has proven fruitful in this context [45].
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Fig. 2 Simulation-based parametric optimization. The optimization model is the initiating part
(here shown bold)
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Fig. 3 Generation of priority rules combining parameter and control optimization. The control
flow is steered by the priority rule optimization (here shown bold)

The candidate solutions are iteratively improvedby themetaheuristic algorithm, often
totalling a large number of simulation runs. This category can also be described as
offline optimization. For stochastic simulation models the quality has to be seen as a
random variable and often multiple simulation runs of the same parameter set need
to be performed to estimate the expected quality.

Generation and Parameterization of Heuristic Policies

This approach combines parametric and control optimization. Policies can be seen
as a control strategy that can be used for making decisions online. The simulation
model uses such a policy according to the control optimization pattern. When events
require a decision, the policy is called to make that decision. The policies themselves
are improved offline using the quality that is returned by the simulation model.
Policies should be designed such that they can efficiently compute the next decision
based on the current situation in dynamic environments. Examples of such policies
are priority rules that combine and weight different domain features to rank and
prioritize a number of alternative decisions. Different representations for priority
rules are possible, for example, vector and tree representations. Figure3 illustrates
this pattern schematically.
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2.2 Software Architecture

HeuristicLab1 [53] is a software environment for heuristic and evolutionary algo-
rithms, developed and successively applied by members of the Heuristic and Evolu-
tionary Algorithms Laboratory2 since 2002. Being licensed under the GNU GPL,3

HeuristicLab has a growing community of researchers and practitioners using the tool
in a wide range of scientific as well as commercial areas. It provides a vast number of
already implemented algorithms and problems for optimization and data analysis, an
experiment designer, and support for algorithm and results analysis. Furthermore, a
sophisticated graphical user interface distinguishes HeuristicLab from other heuris-
tic optimization frameworks [35], which usually require substantial programming
skills to extend algorithms and apply them to a given problem. HeuristicLab offers
not only programming-based extensibility, but also allows to add and modify algo-
rithms and problems using the graphical user interface and a graphical algorithm
modeling language. In HeuristicLab, algorithms are described as operator graphs
where an operator represents a node and the connections denote the execution flow.
Changing or rearranging operators can be done by drag-and-drop without actually
writing code [54]. The framework thereby enables users and practitioners to perform
complex tasks such as algorithm development. The possibility to extend the frame-
work on the code level remains, and software engineers benefit from the plugin-based
architecture (Fig. 4) allowing them to develop custom algorithms, data structures for
solution representations, or custom optimization problems. This has led to a signif-
icant level of code reuse across metaheuristic variants and gradually gives users an
understanding of algorithm development [52, 55].

Base and Core Layer

The base layer contains plugins that provide essential functionality required by all
other plugins of the above layers. Every plugin in HeuristicLab is based on the
PluginInfrastructure which loads plugins and checks their dependencies. The base
layer also includes the Persistence which allows to save and load files.

The core layer is situated atop the base layer and includes the algorithmmodeling
language. It contains core interfaces, data objects, parameters, operators, and engines.
The algorithmmodeling language uses operators to describe small, individual steps in
an algorithm [52]. Algorithms are created by chaining together these operators. This
is called an operator graph and engines are used to execute that graph by applying
one operator after another sequentially. In general, the operators process data that is
stored in the memory of an algorithm which is represented in form of a scope tree.
Each scope can hold several variables, such as a quality value, the current iteration
of an algorithm, or a complex data type like a solution candidate. If it contains sub-
scopes, it can also represent a population. Operators can be applied on any level in
the scope tree and may modify its structure as well as read and write variables. Some

1 http://dev.heuristiclab.com.
2 http://heal.heuristiclab.com.
3 https://www.gnu.org/copyleft/gpl.html.

http://dev.heuristiclab.com
http://heal.heuristiclab.com
https://www.gnu.org/copyleft/gpl.html


Simulation-Based Optimization with HeuristicLab: Practical Guidelines … 9

Fig. 4 Block diagram of the architecture of HeuristicLab with a separation into different logical
layers. HeuristicLab is composed of a number of plugins each containing a defined set of function-
ality. Generally, each of the boxes in this figure represent a plugin, or multiple plugins if a “*” is
added to the name. The horizontal layers are base, core, and optimization. The vertical layers show
the separation between models and views. In the block diagram, a plugin always depends on the
plugins on the layer below as well as the plugins to its left on the same layer

operators allow the application of subsequent operators on a number of sub-scopes
in parallel. The ParallelEngine is able to execute those operators in different threads
and further engines exist that allow to make use of distributed computing resources,
such as HeuristicLab Hive [53]. Therefore, HeuristicLab provides an easy way to
incorporate data-based parallelism into algorithms. To obtain the values of variables,
operators specify parameters which can either directly contain a value or provide
only the name of a variable which is used to find a match among the algorithm’s
parameters, the problem’s parameters, and the scope tree. An example of such an
operator is an evaluator that is applied on a solution scope. Evaluators typically read
those variables that contain the solution encoding, those that provide the problem
data and, after computing the fitness, add a quality variable to the scope. Similar to
any other operator, it could also contain additional parameters that would, e.g., read
the algorithm’s state such as the current iteration or a collection which acts as another
memory.

Optimization Layer

The topmost layer in the architecture includes the algorithms, problems, different
standard encodings, and various other plugins for algorithm analysis and random
number generation. HeuristicLab is shipped with several algorithms such as genetic
algorithm [31], evolution strategy [10, 21], offspring selection genetic algorithm [2],
local search, simulated annealing [27], tabu search [19], particle swarm optimiza-
tion [26], and many more. Among the list of available problems in HeuristicLab
are real-valued test functions, combinatorial problems such as the traveling sales-
man, vehicle routing, and the quadratic assignment problem, as well as data analysis
problems such as regression and classification. The optimization layer also contains
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analyzers that allow to study the performance of algorithms. Basic analyzers pro-
vide a quality progress, more sophisticated analyzers enable an inspection of the
algorithms’ behavior.

2.3 Interfacing with Simulation

In this section we describe three different strategies for performing simulation-based
optimization with HeuristicLab. These strategies differ from each other with respect
to their effort to set up the optimization and their possible applications.

• The first strategy (Sect. 2.3.1) is to create interfaces that couple HeuristicLab with
specific simulation frameworks such as MATLAB or Scilab.

• Another possibility is to define a general inter-process communication protocol
for data exchange that allows the coupling of arbitrary software with HeuristicLab
(Sect. 2.3.2).

• The third strategy is to implement the simulationmodelwithinHeuristicLab,which
results in the tightest coupling between the simulation model and the optimization
algorithm (Sect. 2.3.3).

2.3.1 Specific Interface

A possibility to couple a simulation environment with an optimization framework
is to provide a specific interface layer which is responsible for handling the com-
munication between the optimization algorithm and the simulation model. Most
simulation frameworks provide several ways to couple them with other applications
using various kinds of technologies, ranging from direct calls to specialized applica-
tion programming interfaces (API), component object model (COM) interfaces for
interprocess communication, or web services. A drawback of specific interfaces is
that they have to be implemented for each simulation environment and technology.
However, they can be implemented in a generic way to execute arbitrary commands
instead of running a specific simulation model.

HeuristicLab provides specific interfaces for MATLAB and Scilab out of the box.
Both these frameworks excel at numeric computation, which makes them especially
suited to perform continuous simulation. Furthermore, both frameworks provide spe-
cific modules to ease the development of simulation models. The interfaces for these
two software systems have been implemented in a genericway allowing the execution
of arbitrary scripts in the respective programming language. The MATLAB inter-
face is based on the COM technology to enable communication with HeuristicLab,
whereas the Scilab interface calls directly a native C++ API.

A common problem in continuous simulation is the identification of appropriate
parameter values to adapt the simulation model to the circumstances of the real-
world—a use case is detailed in Sect. 3.6. Therefore, real-vector encoded parameter
optimization problems with a coupling to MATLAB and Scilab have been imple-
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//parameter assignment
p.m = param1;
p.d1 = param2;
p.Fc = param3;

//import and execution of simulation model
importXcosDiagram(’simulationModel.zcos’);
xcos_simulate(scs_m,4);

//read original data and compute quality metric
originalValues = csvRead("data.csv",",",".");
simulatedValues = simulationModel.values(:,2);
quality = sum((values(:,1) - original(:,3))ˆ2);

Fig. 5 Example of an evaluation script implemented in Scilab. The simulation is started using the
defined model and the parameters given by the optimization algorithm (param1 – param3), the
quality is calculated as sum of squared differences between the output of the simulation model and
previously measured values

mented in HeuristicLab. The evaluation of a solution candidate uses the aforemen-
tioned specific interfaces and executes a script in the simulation environment that
calculates the quality of a solution candidate. As a result, every algorithm that can
handle real-vector encoded solutions, such as for example evolution strategies, evo-
lutionary algorithms, or simulated annealing, can be used to solve such parameter
optimization problems.

A benefit of the chosen strategy is that the effort for configuration and program-
ming isminimized for the user. The only part that has to be provided by the user to run
the optimization is the evaluation script; the user can create this script in a familiar
environment (MATLAB or Scilab) and does not have to learn the specifics of the
HeuristicLab framework to execute the optimization. However, this minimal config-
uration effort comes with a price, namely that by default only real-valued parameters
can be optimized with this approach.

Figure5 shows an evaluation script for Scilab that parameterizes and runs a
simulation model. Solution candidates, in this case combinations of real numbers
(param1 – param3), are generated by the algorithm and the quality of the parame-
ter combination is calculated by the simulation framework. The here shown script
loads an existing simulation model, sets its parameters to the values supplied by the
algorithm, runs the simulation model, and finally extracts the quality of this given
parameter vector by converting results of the simulation to a numerical value.

2.3.2 Generic Interface

A generic exchange protocol has been integrated in HeuristicLab that enables com-
munication with external processes, such as simulators, and allows the encoding of
several types of parameters. The protocol has beenfirst described in [8]; in this section
a summary will be given. It has also been enhanced with a cache which prevents the
execution of simulation runs for solutions that have already been evaluated [38].
Since the execution of simulations can consume relatively large amounts of runtime,



12 M. Affenzeller et al.

message SolutionMessage {
message DoubleVariable {

required string name = 1;
optional double data = 2;

}
message DoubleArrayVariable {

required string name = 1;
repeated double data = 2;
optional int32 length = 3;

}
//... further sub-messages omitted ...
required int32 solutionId = 1;
repeated IntegerVariable integerVars = 2;
repeated IntegerArrayVariable integerArrayVars = 3;
repeated DoubleVariable doubleVars = 4;
repeated DoubleArrayVariable doubleArrayVars = 5;
repeated BoolVariable boolVars = 6;
repeated BoolArrayVariable boolArrayVars = 7;
repeated StringVariable stringVars = 8;
repeated StringArrayVariable stringArrayVars = 9;
repeated RawVariable rawVars = 10;

}
message QualityMessage {

required int32 solutionId = 1;
required double quality = 2;
extensions 1000 to max;

}

Fig. 6 Definition of the generic interface messages in .proto format [8]

parallelization is amajor aspect. The generic interface allows to specify several target
machines that are running the given simulation with provided parameter settings and
returns the results. The evaluation is thus distributed and allows even longer running
simulationmodels to be optimized in reasonable time. The generic interface has been
integrated in the form of a customizable problem definition in HeuristicLab and is
explained in this section.

External Evaluation Problem

As the name implies, instances of this problem type have to be evaluated by an
application that is external to HeuristicLab. This problem has no preconfigured rep-
resentation or operators, but it can be customized. The RealVectorEncoding plugin
contains operators that can be added if the simulation exposes real-valued parameters
for optimization; if the parameters are discrete values, operators of the IntegerVector-
Encoding plugin can be used to create and optimize the solutions. These encodings
can also be used in combination if there are simulation parameters of both types.

Interoperability

In HeuristicLab, an evaluator that is applied on a solution scope calculates the
solution’s quality and adds this quality back to the scope. The evaluator of the
ExternalEvaluationProblem collects a user specified set of variables, adds them
to a SolutionMessage, and transmits this message to an external application. The
evaluation operator then pauses and awaits the reply in form of a QualityMessage.
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The quality value given in this message is then stored into the corresponding scope.
This generic definition allows the use of many algorithms that are designed to opti-
mize single-objective problems in HeuristicLab. To encode and transmit messages,
the protocol buffer4 framework has been used; the messsages’ structure is shown
in Fig. 6.

The protocol buffer format is designed to work with very compact files that are
serialized, which minimizes transmission time. Furthermore, the serialization itself
is also very quick. Google provides implementations of protocol buffers for Java,
C++, and Python, and open-source ports also have been created for other languages
such as C#, R, and many others.5 The solution message buffer is a so-called “union
type” protocol buffer, which is a very generic message for potentially unknown use
cases. It includes fields for storing Boolean variables, integers, doubles, and strings
as well as arrays of these types. In HeuristicLab, the SolutionMessageBuilder class
translates the variables in a scope into variables in a SolutionMessage; this message
builder can use custom converters for transcoding custom data types into a field of
the solution message.

Parallelization and Caching

Parallelization is an effective means to reduce overall runtime if the necessary time
to run a simulation model becomes very long. The overhead of the communication
and the optimization procedure then become a negligible part. In HeuristicLab this
is supported through the use of the above-mentioned parallel engine. This engine
allows multiple evaluators to be executed concurrently, which in turn make use of
multiple channels defined in theClients parameter. In the background theThreadPool
in .NET is used to provide threads for efficient operations. To further decrease runtime
an EvaluationCache and the respective evaluator can be used that hashes each visited
solution and prevents further simulation runs. The cache can later be persisted to a
file or exported as a comma-separated-values (CSV) file for further analysis [38].

Protocol Extensions

The QualityMessage can also be extended if more results or variables are included
in the solution scope and shall be read and interpreted by an analyzer. This extension
of the quality message can be achieved by creating a newmessage which extends the
QualityMessage. Field numbers 1000 and higher can be used to declare extension
fields. Figure7 shows a .proto message definition that adds another field storing the
number of repetitions.

Example Interface with AnyLogic 6

AnyLogic6 is a simulation environment implemented in Java that allows to add Java
code in various parts of the modeling process. In general, users are able to create
model as ActiveObjects that might contain other ActiveObjects. A model can then be

4 http://code.google.com/p/protobuf.
5 http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns.
6 http://www.xjtek.com.

http://code.google.com/p/protobuf
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
http://www.xjtek.com
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message MyResponse {
extend HeuristicLab.Problems.ExternalEvaluation.QualityMessage {

required int32 repetitions = 1000;
}

}

Fig. 7 Extension of the quality message to return also the number of repetitions that have been
performed

run in different experiments such as a SimulationExperiment. To couple the model
withHeuristicLab andmake use of the generic data-exchange interface, a special type
of experiment is used. In AnyLogic the so-called ParametersVariation experiment
allows to perform a set of simulation runs for certain parameters. These parameters
can be varied automatically given certain bounds and a step size, and they can also
be varied freely by an external program such as HeuristicLab. For this purpose a Java
library HL3ExternalEvaluation.jar was added to the model, which is also available
on the HeuristicLab website.7 This Java library abstracts the data-exchange part
and allows to set up the simulation model either as a push or a poll service for
HeuristicLab. When choosing the push service, the model needs to implement an
interface which is passed to the library; when opting for the poll service, the library
can be polled for incoming solution messages and subsequently a quality can be
returned.

2.3.3 Integrated Simulation and Optimization

While the methodologies presented in Sects. 2.3.1 and 2.3.2 are dedicated to para-
meter optimization of models that have been created using external simulation envi-
ronments, an alternative approach is to implement simulation models directly in
HeuristicLab and integrate them with optimization algorithms. The HeuristicLab
architecture is generic in the sense that not only optimization algorithms, but arbi-
trary algorithms including simulations can be modeled. The applicability of this
approach has been shown especially in the context of dynamic vehicle routing and
various practical case studies [48, 50, 51].

The direct implementation of simulation models in HeuristicLab allows a tight
coupling with optimization algorithms, which is beneficial in cases where efficient or
sophisticated interactions between simulation and optimization are required. Integra-
tive approaches require that the simulation framework and the optimization frame-
work share a common platform or programming language. For HeuristicLab, this
means that .NET based simulation frameworks such as Repast.net8 or Sim#9 should
be utilized. This allows using the HeuristicLab API in simulation models and vice
versa.

7 http://dev.heuristiclab.com/howtos.
8 http://repast.sourceforge.net.
9 http://github.com/abeham/SimSharp.

http://dev.heuristiclab.com/howtos
http://repast.sourceforge.net
http://github.com/abeham/SimSharp
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When tackling control optimization problems an efficient and flexible integration
is needed. In this case standard simulation software usually cannot be applied out
of the box and only few generic and extensible modeling infrastructures exist for
control optimization, e.g., dynamic vehicle routing [36]. Implementing control opti-
mization problems with HeuristicLab requires that the simulation model references
the HeuristicLab plugins. When running the model, the events that require a deci-
sion parameterize the corresponding optimization problem, the solver algorithm, and
await the result. This can be done in a state where the simulation model is paused,
or, in a real-time simulation, while the simulation model continues to run. The added
complexity of real-time operation, such as the occurrence of changes while the opti-
mization is running, has to be taken into account. Real-time simulation optimization
requires a very tight combination of simulation and optimization that may require
implementing customized optimization algorithms.

In parametric optimization problems, where the runtime of the simulation model
is a critical and limiting factor, an integrated simulation and optimization approach
reduces the inter-process communication overhead. Implementing such an approach
requires the definition of a customized problem inHeuristicLabwith a customevalua-
tor. In order to evaluate a candidate solution, the evaluatormakes use of the simulation
framework API, initializes the model, executes it, and creates the fitness values out
of the model’s performance indicators [7].

3 Real-World Examples

3.1 Simulation-Based Design of a European-Wide
Logistics Network for Bio Residues

3.1.1 Problem Description

Increasing prices of fossil fuels and other nonrenewable energy sources have led to
an increased interest in the development of alternatives. On the one hand, renewable
energy sources, such as energy crops, are employedmore often.On the other hand,we
see an increased use of so-called second-generation bio-fuels which can be obtained
by processing organic residues such as straw, wood chips, lifestock waste, or malt
spent grains that do not competewith other food crops and have amore limited impact
on greenhouse gas emissions [15, 25]. When processing these waste products, two
problems are solved at the same time: Waste amounts are reduced, and precious
resources are replenished. The inherent problem of this idea, however, is that it is
typically rather uneconomical to further process or transport waste products, which
is why they are considered waste in the first place, i.e., the effort invested in their
transport is bigger than the expected revenue. The key to the mitigation of this
problem is to increase the value density of these products by de-central and cheap
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Fig. 8 Echelons in the logistics network

“upgrading” to intermediate energy carriers which can be transported over longer
distances more economically.

This is why we have developed an optimized multi-echelon logistics network for
the transport of feedstock, intermediate, and final products on a large scale within
BioBoost.10 In this research project, biomass potentials and key data on conversion
facilities available in Europe have been compiled; this information forms the basis for
planning a large logistics network. Suitable conversion plant locations and capacities
as well as transport routes and product amounts are then optimized using simulation-
based optimization: Many scenarios are iterated and evaluated, and metaheuristics
are used to tune free variables so that the quality of the resulting logistics network
is optimized. The approach described in this section encompasses several modeling
optimizations to enable faster calculations.

3.1.2 Simulation Model

Several free variables are optimized: At each location, a certain amount of feedstock
has to be obtained which is then transported to a certain plant for de-central process-
ing. The intermediate energy carrier is then transported to a central plant where it
is converted into heat, fuel, or other end products. This overall process is shown in
Fig. 8.

The initial solution space size in a naivemodelwould be determined by the number
of free variables. In the case of the logistics network, the following factors have to
be considered:

• Locations of feedstock sources and the utilization levels for each of these sources.
In this case more than 1000 level 3 NUTS regions [14] have been used as possible
source locations.

• Locations of the intermediate and central processing plants placed on any combi-
nation of more than 1000 regions.

10 http://www.bioboost.eu.

http://www.bioboost.eu
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• Connections of sources and targets in each echelon of the logistic network. The
logistics network can be modeled as an adjacency matrix containing the links
between source and target locations. This matrix would then have a size greater
than s = 1000× 1000. Moreover, every subset of connections will then be a valid
solution candidate giving a total of s! = 8 × 105565708 possible routing networks
for each type of feedstock.

The large size of this original solution space renders a direct solution of the
problem infeasible. For this reason it was attempted to model the solution space so
that it remains susceptible to optimization by providing a meaningful neighborhood
definition, and at the same time removing asmany unnecessary scenarios as possible.

3.1.3 Optimization

A very strong simplification can be made by allowing only one target region per
source region. This immediately reduces the number of choices per feedstock to
approximately 109. However, the solution space for one complete scenario still com-
prises at least two echelons and at least three different feedstock types each of which
contains a choice for source and target region, their connectedness, and the amount
of acquired feedstock. Therefore, the solution space size is still in the area of around
1021 per product.

A second reduction of the solution space size can be achieved by eliminating
variables or variable choices that would lead to solutions that can be guaranteed
to be inferior. One naive possibility would be to allow only transport targets that
are directly adjacent to the source region. The variant we have employed was to
automatically select plant locations and capacities based on the transport targets
of different feedstock types as this further reduces the number of free variables
and, simultaneously, the solution space size to 1015 possibilities per feedstock type.
After these transformations, the resulting solution space is manageable with current
metaheuristic optimization methods.

In a third round, computationally expensive calculations of routes between source
and target locations have been replaced with precalculated estimates to reduce the
computation time. Furthermore, a speed-up has been achieved through aggregation
into yearly calculations instead of step-wise event-driven simulation [30].

Finally, while the solution space is perceived as fixed for the whole optimization
process, some combinations of variable choices can lead to meaningless, equal, or
inferior results. For this purpose we have developed a mechanism that dynamically
reduces the solution space only during the application of variation operators, hiding
inferior options, which again leads to a significant runtime reduction.
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Fig. 9 Solution visualization within HeuristicLab

3.1.4 Conclusion

The simulationmodel has been implemented based on the HeuristicLab optimization
environment [52, 53]where the evaluation of a two-echelon scenario takes about 1ms
on average for one feedstock type and meaningful optimization results are available
after 2–12h when executing the optimization on a single computer with a Core 2
Duo processor. Figure9 shows a screenshot of the implementation in HeuristicLab
with a visualization of the feedstock utilizations and transport vectors.

Using only a few simplifications and the powerful and flexible optimization
algorithms available within HeuristicLab, an optimization task that initially seemed
intractable has been reformulated to allow its optimization and might help to reduce
the amount of waste while increasing the amount of energy available in the future.

3.2 Simulation-Based Priority Rule Optimization
for Scheduling Production Systems

Problem Description

Scheduling plays a key role in industrial systems to ensure the efficient use of
resources and timely completion of orders. Briefly summarized, a scheduling prob-
lem can be described as a set of jobs, each having a collection of operations that
are tied to a machine. By specifying the start time of each operation a schedule is
constructed. A number of different types of shops have been described in the litera-
ture such as job shop, flow shop, and open shop [37]. In the flow shop problem, the
sequence of operations is the same for all jobs, while in the job shop, the sequence
may be different for each job. In the open shop there is no predefined sequence. Gen-
erally, scheduling problems such as the job shop scheduling problem are NP hard as
shown in [18, 37].
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Fig. 10 Example of a
tree-encoded priority rule.
The variables d and p
represent job properties, e.g.,
due date, processing time,
batch size

When solving scheduling problems one can make a decision very early and plan
ahead or rather late and decide in time as in the saying “we’ll cross that bridge
when we get to it.” The first case can be seen as an offline approach to determine the
optimal schedule in advance. This yields a high quality schedule, but requires high
runtime and adaption in the face of changing conditions. The second case is denoted
as an online approach, which considers the actual state of the system and which thus
has to to make decisions much more quickly [3]. One popular method in such an
online approach is the use of simple rules [34]: First-in-first-out, earliest-duedate-
first, and many more have been proposed to rank and prioritize the pending order
queue. A combination of simple heuristics to more complex priority rules, as can be
seen in Fig. 10, allows creating tailored and customized rules for specific scheduling
scenarios.

Simulation Model

Simulation is particularly suited to support the optimization of complex priority rules.
When a machine becomes idle all items in its queue are ranked and the best ranked
item is processed next. If a job is finished the performance metrics are updated. At
the end of the simulation run the remaining jobs are also rated; this is important as
otherwise “problematic” jobs, e.g., that require long setup, would potentially starve
in the system and never get picked up.

The model itself describes the flow of the jobs, the entities available in the pro-
duction system, as well as the interactions between them. Workers arrive at the
production plant in the morning and pick up work. They will process jobs on the
machines, make a pause, go for lunch, and continue to work. In the simulation model
the decision of which item the workers are to pick up next is made using the priority
rule as follows:

1. The set of possible decisions is constructed;
2. For each decision a dictionary is created that contains state variables, item char-

acteristics, and more, see Table1 for examples;
3. An interpreter reads the priority rule and computes a rank using the variables in

the dictionary;
4. The set of decisions is sorted according to their rank;
5. The best ranked decision is implemented.
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Table 1 State variables of a production system [38]

p…batch size of an order nr…number of remaining steps

pr…remaining batch size after this step l…queue length of a machine

d…job due date s…setup required (±1)

q…job quantity Q…qualification

t…number of required tools tr…remaining processing time

Some situations require that multiple decisions should be made at the same time,
e.g., selecting a worker and an item that she should process. This can be useful if
the worker qualification or worker satisfaction is taken into account. In this case all
combinations of workers and items constitute the set of possible decisions. However,
as the evaluation of a decision is not without cost, this provides an additional per-
formance hit and prolongs the simulation run. In the concrete studies in [5, 38] the
interpretation of the priority rules was compiled to Microsoft intermediate language
code prior to running the model in order to speed up the simulation runtime.

The performancemetrics are translated into a fitness of the priority rule by a rating
model. The formula may vary depending on the case, but timeliness, troughput, cash
flow, or waste production are important factors. For instance, a linear step function
can be designed to give a slight penalty for jobs that are finished too early and a
heavier penalty for delayed delivery. It is advised to avoid highly discontinuous or
flat transformation functions as this creates a very rough or very flat search space
that may be difficult to optimize.

Optimization

Typically, the enterprise resource planning system of a production company provides
the necessary data such as jobs, working plan, bill of materials, resources, due dates,
processing times, and more to parameterize the simulation model. The importance
of separating this data in training and test scenarios must be emphasized. Optimized
rules may become highly specific to the scenario for which they have been trained
and may not generalize very well. Simulating the optimized rules with data from test
scenarios allows identifying generalizable rules that show good performance in both
training and test. Additionally, maintaining an archive of rules allows exploring the
Pareto front between complexity and quality; simple rules may not appear to perform
well in the training, but might generalize better [38]. Such an archive may also be
used to avoid re-evaluation of already known solutions. Simulation models of such
production systems can become quite complex and, therefore it takes a few seconds
to finish a run of several weeks of the production plant. Distributed evaluation of
the simulation model is quite important in order to obtain good priority rules in
reasonable time.

Using genetic programming [4, 29] tree-based priority rules can be generated
and evolved to match the scenarios at hand. For this purpose trees are generated
randomly and crossed with other trees in a population; better trees have a higher
chance of being used for crossover, and therefore their features will prevail in the
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following generations. While genetic programming traditionally employs a standard
genetic algorithm, variants such as offspring selection genetic algorithm [1, 2] have
worked quite well. Offspring selection introduces an additional selection step that
discards offspring that are inferior to their parents.

Conclusion

Production systems benefit from suitable decision rules that are tuned to improve
long-term goals such as timeliness or throughput. These rules take some time to
optimize, but are quick to evaluate in the production system. Volatility in those
systems is a concern that can be addressed through a continued reoptimization of
these rules and bymaintaining a comprehensive set of production scenarios that show
many different characteristics. In practical implementations it is also important to
assure that the inputs to the rules are available to the rule and that the data is accurate.
For instance, if queue length is a highly relevant variable in such a rule, but it cannot
be obtained in the real system the priority rule cannot be implemented. However, it
would not bewise to omit these variables altogether as itmight indicate that additional
sensory data should be acquired.

3.3 Simulation-Based Optimization of Inventory
Replenishment Rules

This section is based on a study that was previously published by Vonolfen et al. [48]
and deals with the simulation-based generation of inventory replenishment rules for
stochastic inventory routing problems. The evolved rules are evaluated and tested
in the context of retailing based on real-world data with a large number of different
products that are replenished at supermarkets. The methodology is an example of
simulation-based priority rule generation using an integrated simulation optimization
approach (as outlined in Sect. 2) applied to a real-world scenario.

Problem Description

The inventory routing problem (IRP) integrates inventory management and trans-
portation. It is a mathematical model for the concept of vendor managed inventory
(VMI)where the vendor has the responsibility for the replenishment of the customers,
which requires information about the inventory levels to be available. According to
Waller et al. [56], VMI was first popularized by Walmart and then implemented in
various other companies. The goal is to minimize the inventory and transportation
costs while maintaining a certain service level.

The IRP was first presented by Bell et al. [9] who considered the distribution
of industrial gases; since then, many variants of the IRP have been studied. Moin
and Salhi [32] provide an overview where they state that most problem formulations
do not consider stochastic demand patterns and are deterministic. In contrast, the
stochastic IRP (SIRP) considers product usages as probability distributions, but this
also increases the problemcomplexity,whichmotivates a simulation-based approach.

The considered IRP here is a mixed formulation in which some of the cus-
tomers chooseVMI,while the other customers keep an order-based strategy.Multiple
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products P are distributed from a central depot to a set of order-based customers (O)
and a set of VMI-customers (N ) using a homogeneous fleet of vehicles (V ) with a
known capacity Cv for each vehicle v ∈ V . Each VMI-customer n ∈ N has a known
storage capacityCnp for each product. The planning process is performed on discrete
time steps t , which are days in real operation.

A joint probability distribution Pw
np is given for eachweekdayw ∈ [0..6], customer

n and product p from which the product consumption can be sampled for a given
time step during the simulation. The inventory level xt

np at a customer of a certain
product can be measured every day. The order-based customers place fixed orders
dt

op ∈ Dt
f which they derive from an ordering strategy that is not influenced by the

vendor.
Each day, the vendor replenishment dt

np and customer orders dt
op are combined

into vehicle routes Rt . The objective is to minimize the required vehicle fleet size
|M | as well as the driven distance d = ∑

Lr while maintaining the service level by
preventing out-of-stock situations where xt

np falls below a certain safety stock.
The motivation to apply simulation-based priority rule generation stems from

the high problem complexity resulting from the practical case study performed in
cooperation with an Austrian retailer. The considered scenario consists of 84 super-
markets which are served from a central depot. In total, the supermarkets serve 5113
different fast-moving consumer goods that have stochastic demand distributions with
high fluctuations during a week. The supermarkets are served with a fleet of homo-
geneous vehicles. A main challenge is to flatten the peaks in the resource usage and
to balance it more evenly to achieve constant resource usage. This is complicated by
the very limited storage capabilities at the individual supermarkets, while each indi-
vidual product contributes to the service quality since out-of-stock situations may
lead to a potential loss of revenue.

Simulation Model

The simulation model developed for this inventory replenishment problem is an
agent-based formulation consisting of vendor, customer, and vehicle agents.We have
implemented the simulation model based on Repast.net11 agent-based simulation
framework and integrated it into HeuristicLab.

The interactions between the agents are illustrated in Fig. 11: Each customer
agent has an inventory which is updated by sampling from the demand distributions.
Depending on whether the customer has a vendor-managed inventory or places the
orders by itself, different interactions with the vendor occur. In the case of VMI, the
vendor uses a replenishment policy to determine the replenished demands. In the
case of order-based customers, the customer uses an order policy and the vendor has
no access to the inventory. In that case, a classical threshold-based order strategy is
used which keeps a certain security buffer.

For each day of operation, the accumulated demands are converted into a standard
capacitated vehicle routing problem (CVRP) instance which can be solved with any
VRP algorithm available in HeuristicLab. The calculated tours are then executed by

11 http://repast.sourceforge.net.

http://repast.sourceforge.net


Simulation-Based Optimization with HeuristicLab: Practical Guidelines … 23

VRPAlgorithm

CVRPInstance

ReplenishmentPolicy

Demands

VendorAgent VehicleAgent

Orders

Tours

VMICustomerAgent

Inventory

Replenish

Inventory Information

VRPAlgorithm

CVRPInstance

VendorAgent VehicleAgent

Orders

Tours

OrderCustomerAgent

Inventory

Replenish

OrderPolicy

Inventory Information

Demands

VMI Customers

Order-based Customers

Fig. 11 Interactions between the agents for VMI and order-based customers

vehicle agents which execute the tours and replenish the inventories of the customers.
This results in a two-stage approach where first the replenished goods are determined
and then the tours are calculated for each day of operation.

Optimization

The aim is to automatically evolve inventory replenishment policies that are able
to balance the resource usage with fluctuating demands maintaining a given service
quality by preventing out-of-stock situations for each individual product. In order to
reach this goal we apply simulation-based generation of priority rules as described
in Sect. 2.

The inventory replenishment policy has the main goal of constant resource uti-
lization with fluctuating demand distributions. It consists of two priority rules: The
first rule is responsible for choosing a set of customers that should be visited, the
second rule determines the amount of replenishment for each product at these cus-
tomers. This two-stage approach aims at taking into consideration both the routing
(e.g., avoiding to visit customers that are geographically far away) and replenishment
(e.g., avoiding out-of-stock situations). The description of the policies is based on
Vonolfen et al. [48] where the reader is referred to for details.

The replenishment policy is represented as a real-valued vector that consists of
general parameters and parameters of the first and second priority rule. The two
general parameters are CapacityUtilization and PriorityThreshold. The capacity uti-
lization parameter determines the capacity that should be used over time to replenish
the customers. This capacity is used as a basis for the replenishment rule and aims at
constant resource utilization. The PriorityThreshold parameter determines the min-
imum priority a customer must have to be considered for replenishment to avoid
unnecessary detours.
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The first priority rule calculates a priority for each customer n to be replenished
by weighting m = 6 factors fni with an parameterized weight ai to a priority score
pn = (

∑m
i=1 fni ∗ ai )/m. The factors considered for a given customer n are (as

discussed in detail in [48]):

fn1 : The minimum expected amount of days a stock-out will occur
fn2 : The average expected amount of days for stock-outs
fn3 : Number of days since the last delivery
fn4 : Total inventory size
fn5 : Minimum detour to incorporate the customer in existing routes
fn6 : Geographic isolation

The second priority rule determines the amount of a product that should be deliv-
ered to a given customer. If the expected days a customer would run out of a product
falls below a certain RefillThreshold (derived from the stochastic product consump-
tion rate information) or the available stock falls below a certain RefillBarrier (pre-
defined amount of safety stock) it is refilled to a certain level determined by the
RefillFactor which defines this level as a ratio of the maximum storage capacity for
the respective product.

In total, the parameter vector for the replenishment strategy to be optimized
contains 11 parameters: CapacityUtilization, PriorityThreshold, ai (1 ≤ i ≤ 6),
RefillThreshold, RefillBarrier, and RefillFactor. These parameters are optimized
using an evolution strategy as an priority rule optimization algorithm. Each can-
didate solution is evaluated by running a simulation run of a time frame of 60days
and evaluating the resource usage as well as the service quality. For each day of
the simulation, the replenishment amounts are calculated using the parameterized
replenishment strategy and the resulting tours are optimized using a routing algo-
rithm (push-forward insertion heuristic) implemented in HeuristicLab. After each
day, the inventory level at each customer is reduced by using the predefined demand
distribution.

Fig. 12 Average resource utilization over different weekdays for different scenarios [48]. The x-
axis represents the weekday and the y-axis the relative resource utilization. The resource utilization
is divided for the fixed and VMI customers
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Conclusion

As illustrated in Fig. 12, we are able to balance the resource utilization using a vendor
managed inventory.When the customers place the orders themselves using a classical
threshold-based order strategy, the fluctuations in demands over weekdays lead to
a corresponding fluctuation in resource usage, which is undesirable for determining
needed capacities. The biggest smoothing effect could be achieved if all customers
chose to apply a VMI; however, even if only part of the customers are switched to a
VMI, this effect can also be observed.

As a practical guideline for applying simulation optimization it can be concluded
that simulation-based priority rule generation is a powerful method for making
operational decisions in high-dimensional and stochastic problem environments.
By modeling different scenarios and evaluating the optimization potentials,
simulation-based optimization aids in making tactical and strategical decisions.

3.4 Simulation Optimization of Transport Activities
Within Steel Slab Logistics

This section deals with transport optimization within steel slab logistics and is based
on a previously published study of Vonolfen et al. [50]. The main aim is to evaluate
optimization potentials in the transportation of steel slabs in terms of throughput
maximization within cold-charge. The core of the approach is a detailed simulation
model considering constraints of the cold-charge steel production process.According
to the classification presented in Sect. 2, it is an example of parameter optimization
where the parameters are the transport sequence in this case and the simulationmodel
is integrated with the route optimization algorithm in HeuristicLab.

Problem Description

Steel production is a multi-stage process and is generally geographically distributed
and energy as well as capital intensive [43]. The typical production process starts
with raw materials and the melted steel produced in the furnace is transformed into
slabs at the continuous casting machine. The slabs are then rolled into plates or coils
in the rolling mill. Generally, there are two pathways for steel slabs. In the hot-charge
process they are transported directly from the caster to the rolling mill, while in the
cold-charge process a slab yard is used as an intermediate buffer storage.

This work focuses on scheduling the transport activities within the cold-charge
process which are linked to the lifecycle of a steel slab illustrated in Fig. 13. Within
cold-charge three transport activities can be identified: transportation from the caster
to the slab yard, transportation to processing aggregates, and transportation to the
rolling mill. Scheduling the individual transport activities is not a trivial task, since
upstream and downstream processes of steel production have to be considered and
transport links them together.

In the presented case study, straddle carriers transport the slabs and the activities
are scheduled by a human expert. The straddle carriers can carry up to 105 tons
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which usually correspond to around four slabs. An outside slab yard is used as an
intermediate storage which decouples casting and rolling. The slab yard consists of
several fields which are organized in lanes each containing several stacks of slabs.
If a slab that lies beneath other slabs is retrieved, shuffling operations have to occur.
At the continuous caster as well as at the processing aggregates and the rolling mill,
stacks are retrieved and stored in stacks at handover places.

Simulation Model

Simulation optimization is applied to evaluate the optimization potential in schedul-
ing the three types of transport activities optimizing total throughput while consid-
ering all relevant operational constraints. The motivation to use a simulation model
are the dynamic interactions between the individual activities which would be diffi-
cult to represent as a static model. There are several operational constraints for the
individual transport activities (cf. [50]):

• Shuffling constraints concern the retrieval and storage of slabs at handover places
and the slab yard. No shuffling is possible at handover places which means only
the topmost slabs at handover stacks can be retrieved. In the slab yard, only a single
straddle carrier can operate at an individual handover place.

• Rolling constraints ensure the correct transportation of slabs to the rolling mill.
A certain security buffer of slabs scheduled to be rolled has to be present at the
rolling mill which cannot be underrun. Additionally, the rolling sequence has to
be followed to a certain degree, otherwise the cranes at the rolling mill have to
reshuffle the slabs.

• Temporal constraints concern availability of straddle carriers where each straddle
carrier has scheduled maintenance tasks as well as driver breaks. Additionally, the
processing schedule has to be considered which means slabs have to arrive earlier
than their scheduled processing time.

• Capacity constraints are that each carrier can transport up to 105 tons and slabs
must have similar dimensions to be transported together.

The simulation is carried out in discrete time steps where each step represents
a minute of operation. The three types of events that occur are actions performed
by straddle carriers, update of handover places by simulated movements caused by
upstream and downstream activities and the rolling of slabs using the predefined
rolling sequence.

Continous Caster Rolling MillSlab Yard

Processing 
Aggregates

Storage Rolling

Post-processing

Roll
ingPost-processing

Fig. 13 Lifecycle of a slab in the cold-charge steel production process (cf. [50])
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Optimization

For the optimization of the transport schedules, a unified tabu search heuristic is
used which can be applied to several routing problems and was presented for pickup
and delivery problems by Cordeau and Laporte [12]. By neighborhood exploration
it systematically improves the current solution using a tabu list to prevent cycling.
The basic neighborhood operation is moving a request to another vehicle at the best
possible insertion position. Moving back the request to the original vehicle is made
tabu for a given number of iterations.

The quality of a given schedule is evaluatedwith a simulation runwhere key values
concerning throughput and constraint violations are considered. The key values are
combined in a single quality value (cf. [50]):

quality = travelTime + shufflingTime

+ α ∗ shufflingViolations + β ∗ rollingViolations (1)

+ γ ∗ temporalViolations + δ ∗ capacityViolations

The objective is to maximize the total throughput and thus to minimize the total
travel and shuffling time of the straddle carriers. Constraint violations are penalized
using penalty factors which are adapted during the search process. If the current
solution is feasible, the penalty is decreased and if it is infeasible it is increased. This
allows the algorithm to move through infeasible regions of the search space.

During an iteration, a large number of possible insertion positions have to be
evaluated. Since a detailed simulation is very time-consuming a combination of a
static evaluation and a simulation evaluation is used. The full simulation is only run
for interesting insertion positions while the static evaluation serves as a lower bound.
However, the static evaluation does not consider the dynamic interactions which
include the shuffling constraints and the interactions between the straddle carriers
(locking of rows). In preliminary experiments, the best found tradeoff between run-
time and achieved quality was to evaluate the best 10 insertion positions for each
neighborhood operation using a full simulation.

Conclusion

After exporting 10 historical shifts and comparing the optimized schedule with the
schedule created by the domain expert, and by analyzing the optimized schedules,
the main bottleneck that was identified were the shuffling operations in the slab yard.
The algorithmic solution works around this problem by performing more trips to the
storage area and thus avoiding stacking and shuffling operations. The effort to create
temporary stacks, which are required when picking multiple slabs at once from the
yard, is reduced significantly. The reduction of capacity utilization is compensated
by minimizing the time traveled empty by sequencing the individual trips more
efficiently.

To tackle themain identified bottleneck of shuffling operations, an efficient storage
assignment is needed that considers the rolling schedule [28]. Also, when creating the
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rolling schedule the current storage assignment in the slab yard should be considered
to reduce shuffling which is known as the slab stack shuffling problem [44]. In the
long term, a holistic model should be created that combines the optimization of
casting, transport, storage, and rolling due to strong interdependencies.

In terms of practical guidelines, this real-world case study has shown that bot-
tlenecks in the process can be identified by applying simulation optimization. The
optimized schedules are evaluated and compared with original schedules using a
simulation model to identify potential process improvements. When considering a
process where the individual activities are strongly interconnected, it makes sense to
create a holistic model instead of optimizing the activities independently. A possible
approach is to integrate several individual simulation and optimization models [51].

3.5 Material Flow Simulation and Layout Optimization

Problem Description

The design of manufacturing plants is a complex process where several criteria
determine the feasibility and suitability of a certain arrangement. The floor layout
contains the storage zones, paths, and workstations required to store, transport, and
process the materials into intermediate or end products. Simulating the processes on
the computer presents several insights onto the performance of the future plant and
may guide the planners’ decisions. Often, a large amount of data is available when
rearranging the internals of an existing plant which can be obtained from enterprise
resource planning (ERP) systems. In designing new plants from the ground up, some
assumptions will have to be made. A good overview of facility layout problems is
given in [13].

Simulation Model

Common to most ERP systems is the notion of a job, which is split into one or more
operations which in turn demand zero or more resources. The outcome of a job is
either an end or intermediate productwhich is either shipped to the customer or placed
in the company warehouse. Operations describe basic tasks and are executed in a
certain order. Operations are not limited to production tasks; they may also include
management tasks such as monitoring or coaching [6]. In a simulation model the
material flows can be calculated by taking into account the production plan, that is,
the start and processing times of the operations and their assignment to a machine.
In rearrangement tasks it is possible to rely on past data if the future outlook is
similar, but quite a large amount of data must be accommodated as the time period
can stretch over one or several years. In a busy plant this means that hundreds of
thousands operations have to be considered.

Three different kinds of flows can be identified when running a simulation model
that can later be combined to form a similarity matrix between the locations [6]:

1. A sequential flow occurs when there is a transition from one operation to the next.
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Fig. 14 Examples of sequential, parallel, and resource flows on three operations in a job

2. A parallel flow ariseswhen an operation startswhile another operation of the same
job is still running. Parallel flows are less common than sequential flows, but they
can indicate strong collaboration if an assembly part requires the cooperation of
several work centers.

3. A resource flow occurs when an operation demands materials. This demand can
then be satisfied directly through a flow from the last operation of a producing
job or by an unknown source, typically the warehouse.

These flow types are visualized in Fig. 14. Sequential and parallel flows represent
the flows of products or intermediate products and are passed on or shared between
operations. Resource flows represent the flows of items used in the manufacturing of
the products. In a layout optimization scenario the sequential and parallel flowswould
indicate a closeness due to the sequence in themanufacturing process. Resource flows
indicate requirements for buffer capacities or closeness to the storage area of which
they receive the material. However, resource flows also indicate supplier-producer
relationships within the plant.

The strength of a flow is calculated as the sum of weighted transitions between
two operations. These weights can be the occurrence or the number of materials that
are transported or a number of containers. A special case during flow simulation
also occurs in 1:N and N:1 transitions, i.e., when an operation has several possible
successors or predecessors. In such cases it is possible to specify additional data such
as process flowcharts or to either split and combine or duplicate the handling events.
An appropriate assumption depends largely on the problem scenario. It is necessary
to discuss and decide on these possibilities in the preparation stage if the strength of
the flow should be a valid approximation of the closeness between two work centers.

Optimization

The faced optimization problem here is to arrange a set of rectangular shapes R on
a flat surface G such that they lie completely within a boundary polygon P with pi

being the points of the closed polygon. The problem further contains the set B of
fixed blocks, which are immobile locations in the layout. Each shape in R represents a
work center and is specified by the location of the center coordinates, the dimensions
of the rectangle, and a rotation, e.g., in 90◦ intervals. Each shape in B is specified
by the lower left and upper right points. Finally, the matrix F specifying the flow
strength is given as a N × N matrix with N = |R|. Elements of this matrix are called
fij and denote the strength of the flow from i to j .
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A solution to this problem specifies the location as x and y position, the width
w, and rotation of each shape in R. The solution thus can be encoded in the form
of multiple vectors of integer values if G is assumed to be discrete. Two vectors x
and y encode the location on the plane, one vector w denotes the width—the area Ai

remains fixed, so the height is given as Ai
w , and the last vector denotes the rotation

ω. The distance matrix D with elements dij between all shapes i, j ∈ R represents
the shortest Manhattan-distance between the rectangles’ edges.

The main fitness characteristic, the flow-distance-fitness Qflow is defined as

Qflow =
N∑

i=1

N∑

j=1

dij ∗ fij (2)

The second fitness characteristic, the relayouting costs Qrelayout , represent the
costs of transforming the given layout into the optimized layout. For this purpose
each shape i ∈ R can be attributed with a movement cost mmi that depends on
the distance that the shape is moved as well as a fixed cost msi , e.g., for packing
and unpacking or calibration. For this purpose a vector of transition distances ti
is calculated that contains the Manhattan-distance between initial and optimized
location.

Qrelayout =
N∑

i=1

xi ∗ (msi + mmi ∗ ti ) (3)

where xi is a decision variable that is 1 if ti > 0 and 0 otherwise.
Constraints can be modeled as a penalty that is added to each evaluated layout.

The first penalty Coverlap deals with the constraint of nonoverlapping elements; this
can occur frequently as an element’s location is modified in a manner that does not
consider feasibility. The second penalty Cboundary puts a penalty on shapes that lie at
least partly outside P by summing the area that falls beyond the boundary weighted
with the distance to the boundary. The third constraint Cdistance is violated when the
distance of two shapes is smaller or larger than the bounds specified on their mutual
distance. The last constraint Caspect adds a penalty to solutions in which the aspect
ratio of the shape is outside the given bound. The fitness value is then computed as
weighted sum of the qualities and constraints as formulated by

fitness = α1 ∗ Qflow + α2 ∗ Qrelayout

+ α3 ∗ Coverlap + α4 ∗ Cboundary + α5 ∗ Cdistance + α6 ∗ Caspect (4)

Conclusions

Optimizing such a layout presents many alternatives into possible rearrangements
with a strong influence of the connectedness between work centers. The layouts
solved by the current model do not lead to immediate practical layouts, as many
real-world issues, such as infrastructure connections, security, social, and legal
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Fig. 15 Schematic picture
of the electric cart system

requirements are not taken into account. Still, in a planning process together with
a human planner starting points can be identified and good arrangements may be
found that have not been thought of before.

3.6 Parameter Optimization of Continuous
Simulation Models

Problem Description

Parameter identification in this context refers to the identification of the best possible
parameter values of a simulation model: A simulation model has to be adapted to
the concrete circumstances of the modeled system in order to match the real-world
as exactly as possible. If this adaptations were not performed, the whole effort of
creating the simulation model would be pointless because its predictions would be
inaccurate. For example, the friction coefficients of a cart vary depending on the
surface it is moved on and have to be adapted in the according simulation model.
The only prerequisite of this parameter optimization approach is that the structure
of the simulation model has to match the system which is modeled since otherwise,
regardless of the effort used for parameter optimization, an adaptation to the real
system would certainly fail.

Simulation Model

As a reference application we here consider the well-known cart system with an
electric motor, where the vehicle mass m1, the linear friction coefficient d1, and the
static friction coefficient FC are unknown but constant. The simulation model is
implemented in Scilab/XCos with the three free parameters m1, d1 and FC , which
have to be identified based on a known current UA and measurements of the position
x of the cart. Figure15 schematically shows the electric motor and the corresponding
differential equations of the continuous simulation model are displayed below.



32 M. Affenzeller et al.

ẋ = x

v̇ = −d1
m̃

· v − 1

m̃
· FC · sign(v) + km · n

r · m̃
· i A

˙i A = − km · n

L A · r
· v − RA

L A
· i A + u A

L A

m̃ = m1 + JA ·
(n

r

)2

Furthermore, a simulation model of a simplified cart system and of a cart with a
pendulum attached were used to test the suitability of the approach.

Optimization

In the context of parameter optimization, HeuristicLab is used to identify to parame-
ter values of continuous simulation models which are implemented in Scilab/Xcos.
Therefore, a generic coupling between HeuristicLab and Scilab has been imple-
mented (Sect. 2.3.1) that allows the execution of arbitrary Scilab scripts. When a
parameter optimization problem for simulation models should be solved, the script
is responsible for executing the simulation model with suggested parameter values
and calculating a quality value. The quality value expresses the accordance between
the results of the simulation model with the currently used parameter values and the
observed measurements in the real-world. Most of the times the sum of the squared
errors at predefined time steps is calculated and used as quality value.

Every algorithm which is able to handle real-vector encoded problems could be
used to solve this parameter optimization problem for continuous simulationmodels.
HeuristicLab provides several algorithms which are suitable for this task: Genetic
algorithms, evolution strategies, simulated annealing, etc. However, it was observed
that the best results regarding solution quality, convergence speed, and robustness
were obtained using the covariance matrix adaptation evolution strategy (CMA-
ES) [21].

Conclusion

The presented approach for parameter identification has the great advantage that no
information about the simulationmodel is needed, as the only information exchanged
is a parameter vector generated by the optimization algorithm and its according
quality value calculated by the simulation model. Therefore, a whole new range of
optimization algorithms become applicable and one can refrain from implementing
parameter optimization algorithms anew.

3.7 Electric Power System Optimization with Policy Functions

Problem Description

The electric power systems research society early identified the necessity of opti-
mization both for planning and operation tasks, formulations such as the optimal
power flow (OPF) problem shape this research domain ever since [33]. At the same
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time, technological changes to electric power grids challenge newmethods, requiring
optimization in both dynamic as well as uncertain systems. In this context, heuristic
optimization methods have evolved which are capable of managing many of those
upcoming needs. Simulation optimization with metaheuristics provides a promis-
ing ground for handling uncertain dynamic problems, which makes it attractive to
dynamic stochastic optimal power flow (DSOPF) issues [22, 23].

Such multi-period considerations (i.e., dynamic problem formulations) are often
necessary for control issues [42, 46, 47], where optimal decisions have to be made
over time while satisfying constraints robustly under stochastic conditions. Espe-
cially in future smart electric grids, among others the control of huge amounts of
distributed devices (e.g., for the sake of load control) is a crucial challenge. Here,
the optimal control of electric vehicles’ charging processes has been identified as
one of the hot spots in actual smart grids research. It can be formulated as a DSOPF
problem and shall here be considered as an exemplary case.

The main idea of controlled charging is that some kind of central or decentral
control influences the individual charging behavior of each single electric vehicle
(EV) within a given fleet. Common objectives are system-wide peak-load avoid-
ance, correlated charging with renewable supply, and in general the protection of
existing distribution grid equipment. Such charging control decisions would need to
be derived online (e.g., when an EV reaches a charging infrastructure) through con-
sideration of the system’s actual state (e.g. the EV’s actual battery state-of-charge, the
power grid condition, or the current supply from solar/wind power plants). Hence,
similar to the approach of priority-rule optimization, a general function is needed
that provides (near-) optimal charging decisions at runtime.

This is the aim of so-called policy function approximation, where an analytic
function shall be identified that returns a control decision given a state without the
need for embedded optimization. As demonstrated in detail in [23], such a policy
function can be approximated using simulation-based metaheuristic optimization.

Simulation Model

Charging control decisions need to consider the power grid’s point of view on the one
hand (e.g., for avoidance of peak load values, satisfaction of secure power grid opera-
tion), but additionally have to satisfy the end-users’ needs (recharge theneeded energy
for the next tour). While especially in modern considerations the uncertain supply
provided by wind and solar power plants has to be included into load-control for-
mulations, the resulting simulation model needs to contain three parts: the load flow
simulation for deriving the grid’s physical state, the traffic simulation that mimics the
users’ EV usage, and finally the renewable supply simulation that probabilistically
describes the uncertain power injection from solar or wind power plants.

In order to derive a valid charging control decision from a given state, a policy
function has to consider information from all parts and finally derive the resulting
real-valued charging power for the respective EV. This principle is shown in detail
in Fig. 16.

While EV-specific parameters concern the EV’s driving behavior and charging
demand, including its residence time at the actual charging station or its likelihood



34 M. Affenzeller et al.

Fig. 16 Principle of policy function based control and simulation

of getting parked at another charging spot later on, local parameters also consider
other EVs immediately affecting the local situation in the power grid. For example,
if the power grid is stressed locally because of a high amount of EVs charging at
the same grid node, their charging power may has to be reduced in the next time
step in order to avoid critical power flow conditions. Finally, global parameters
consider information describing the entire system’s state, such as the total load to the
distribution grid, total expected supply provided by renewable sources, and financial
aspects considering costs of electrical power supply. Of these information entities,
the policy function finally derives the approximate optimal charging decision for a
given EV at a defined time step. While the mentioned parameters deliver specific
information for each EV, the same policy function can be applied for all EVs in a
fleet and still lead to individual decisions.

Optimization

In order to find such policy functions, genetic programming (GP) provides a fruitful
method for function approximation that does not need a-priori knowledge on the
aspired mathematical function, but only has to know the input variables (parame-
ters as given above) as well as a specific grammar for combining them. Applying a
metaheuristic search process (based on a genetic algorithm), GP searches for high-
performance policies within a space of analytic functions. Similar to the application
of priority rule optimization in the job dispatching example described in the previ-
ous section, formula trees are evolved by GP where leafs represent input variables
describing the system’s state (parameters as given in Fig. 16) that are combined by
given mathematical operators incorporated by inner nodes. This kind of solution
representation allows the evolution of arbitrary analytic functions without knowing
their structure beforehand, which overcomes a severe restriction of existing works
on policy function approximation in the literature.
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Conclusion

Dynamic optimization with policy functions has the great advantage that it avoids
the necessity for computing a specific solution to each state the dynamic system
exhibits over time. Instead, an approximate optimal function is optimized offline
that takes a system’s state and returns control actions online. Unifying this approach
with simulation optimization, the treatment of both dynamic and uncertain problems
is enabled. Furthermore, the usage of GP for function approximation avoids the
need for defining a function’s structure beforehand, and thus overcomes a major
shortcoming of policy function approximation described in the literature. While we
consider here the application ofEVcharging control as in [23], the samemethodology
has been applied successfully to applications such as generation unit scheduling in
power grids [24].

4 Conclusion

The fruitful combination of simulation and optimization provides mutual benefits
for each field. On the one hand simulation engineers are able to improve their mod-
els using optimized parameters. On the other hand, optimization experts are able to
model systems that are much closer to the real-world. Yet, often the initiating part
in simulation-based optimization is the solver with the simulator being merely an
evaluation function. However, a growing number of cases emerge where simulation
will be used to describe optimization in dynamic environments. These cases are
highly interesting from the point of view of optimization as it creates a setup that is
much closer to real-world applicability. As in the simulated environment, optimiza-
tion algorithms in live systems have to deal with changing conditions, uncertainty
about the future, and have to make one decision at a time. In the future it will become
more and more interesting to study and improve these algorithms using simulated
environments.

Interfacing between simulation and optimization has also been a topic that was
much discussed. Interprocess communication and different programming languages
provide technical difficulties. We have described specific as well as generic inter-
faces that can be used to overcome these difficulties and allow exchanging candidate
solution data as well as a quality feedback. We have motivated how the HeuristicLab
architecture is highly suited for these tasks and givenmore insight into the implemen-
tation of these interfaces. The topic of integrated simulation and optimization has
also been discussed and is highly relevant for future activities. In several real-world
examples we have aimed to describe successful applications that may be interesting
and motivating to do further research. These examples can also be seen as guidelines
for a generic approach in simulation-based optimization.

Due to the steady increase of available parallel computing resources, the authors
are convinced that the simulation-based optimization approach has high potential
to model interrelated decision situations, leading again to a more holistic view of
production and logistics optimization. The emerging fields internet of things and
cyber-physical systems, which are a matter of recent research in production and
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logistics optimization, are expected to benefit from the availability of such enhanced
simulation optimization approaches in the future.
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