Miguel Mujica Mota
|dalia Flores De La Mota
Daniel Guimarans Serrano Editors

Applied
Simulation and
Optimization

@ Springer

Applied Simulation and Optimization

Miguel Mujica Mota - Idalia Flores De La Mota
Daniel Guimarans Serrano
Editors

Applied Simulation
and Optimization

In Logistics, Industrial and Aeronautical
Practice

@ Springer

Editors

Miguel Mujica Mota Daniel Guimarans Serrano

Aviation Academy Optimisation Research Group, NICTA
Amsterdam University of Applied Sciences Sydney, NSW

Amsterdam, Noord-Holland Australia

The Netherlands

Idalia Flores De La Mota

Facultad de Ingenieria

Universidad Nacional Autéonoma de México
Mexico City

Mexico

ISBN 978-3-319-15032-1 ISBN 978-3-319-15033-8 (eBook)
DOI 10.1007/978-3-319-15033-8

Library of Congress Control Number: 2015934043

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(wWww.springer.com)

To my parents and Christina

Miguel Mujica Mota

Foreword

There was a time when problem solving relied on analytical models purely
grounded in mathematical optimisation. As problems became more complex,
analytical models reached their limits due to the lack of mathematical formulation
or intractable solutions. Benefiting from the exponential increase in computer
power, numerical models progressively took over to estimate near-optimal solu-
tions, especially for problems that could be distributed across a topological mesh.
This first generation of numerical models achieved significant outcomes in chem-
istry, physics, soil science and climate research. But it is only when network theory,
queuing models and microsimulation reached maturity that operational research
was able to address complex issues involving time and space-dependent decision-
making processes applied to supply chain or logistics management.

As modern supply chains become more sophisticated and more intimately
intertwined with logistical constraints, performance optimisation is increasingly
concerned with the stochastic and dynamic nature of the relationship between offer
and demand. Likewise, optimal solutions often need to accommodate multi-
objective, and sometimes conflicting, decisions. In other words, we have moved
into a world of complex problem solving characterised by ill-defined predicates that
necessitate constant probing of the modelled environment in order to evaluate the
robustness of the optimum solution. Simulation-optimisation techniques aim at
creating this dyadic and dynamic relationship between optimisation and evaluation.

This book comes at its own time as it provides a broad and rich set of examples
of simulation-optimization techniques. From a methodological perspective, coupled
optimisation procedures include queuing models, tree search or evolutionary
algorithms and linear programming. Domains of application include aviation, land

vii

viii Foreword

transportation, health management, communication and manufacturing industries.
Each chapter provides a clear justification of the proposed method and compre-
hensive evidence of its performance. The overall result is a rich but coherent picture
of state-of-the-art applications of simulation-optimisation techniques.

Prof. Pascal Perez

Research Director

SMART Infrastructure Facility

Faculty of Engineering and Information Sciences
University of Wollongong, Wollongong

NSW, Australia

Acknowledgments

The editors would like to thank the anonymous reviewers of the book; it has greatly
benefited from their very valued comments and suggestions.

We would also like to thank the following institutions which supported us during

the development process of the book:

The Aviation Academy of the Amsterdam University of Applied Sciences.

The National Autonomous University of Mexico for supporting the research
through the project DGAPA-PAPIIT IN-116012.

The National Council of Science and Technology of Mexico (CONACYT).
NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre of
Excellence Program. NICTA is also funded and supported by the Australian
Capital Territory, the New South Wales, Queensland and Victorian Govern-
ments, the Australian National University, the University of New South Wales,
the University of Melbourne, the University of Queensland, the University of
Sydney, Griffith University, Queensland University of Technology, Monash
University and other university partners.

ix

Contents

Part I Tools and Techniques Using SimOpt

Simulation-Based Optimization with HeuristicLab:

Practical Guidelines and Real-World Applications

Michael Affenzeller, Andreas Beham, Stefan Vonolfen, Erik Pitzer,
Stephan M. Winkler, Stephan Hutterer, Michael Kommenda,
Monika Kofler, Gabriel Kronberger and Stefan Wagner

Simulation Optimization Approach to Solve a Complex

Multi-objective Redundancy Allocation Problem.

Carlos Henrique Mariano and Carlo Alessandro Zanetti Pece

OR and Simulation in Combination for Optimization

Nico M. van Dijk, René Haijema, Erik van der Sluis,
Nikky Kortbeek, Assil Al-Ibrahim and Jan van der Wal

Tree Search and Simulation.

Jodo Pedro Pedroso and Rui Rei

Part I Scheduling Problems

Integrated Solutions for Delivery Planning and Scheduling

in Distribution Centres

Galina Merkuryeva and Vitaly Bolshakov

Large Neighbourhood Search and Simulation for Disruption

Management in the Airline Industry.

Daniel Guimarans, Pol Arias and Miguel Mujica Mota

xi

http://dx.doi.org/10.1007/978-3-319-15033-8_1
http://dx.doi.org/10.1007/978-3-319-15033-8_1
http://dx.doi.org/10.1007/978-3-319-15033-8_2
http://dx.doi.org/10.1007/978-3-319-15033-8_2
http://dx.doi.org/10.1007/978-3-319-15033-8_3
http://dx.doi.org/10.1007/978-3-319-15033-8_4
http://dx.doi.org/10.1007/978-3-319-15033-8_5
http://dx.doi.org/10.1007/978-3-319-15033-8_5
http://dx.doi.org/10.1007/978-3-319-15033-8_6
http://dx.doi.org/10.1007/978-3-319-15033-8_6

xii

Allocation of Airport Check-in Counters Using

a Simulation-Optimization Approach

Miguel Mujica Mota and Catya Zuniga Alcaraz

Part III Transportation Case-Studies

Simulation and Optimization of the Pre-hospital Care System

of the National University of Mexico

Idalia Flores De La Mota, Alexander Vindel Garduifio
and Esther Segura Pérez

Simulation-Based Optimization Using Greedy Techniques
and Simulated Annealing for Optimal Equipment Selection

Within Print Production Environments.

Sudhendu Rai, Eric Gross and Ranjit Kumar Ettam

Linear Bus Holding Model for Real-Time Traffic Network Control . . .

Leonardo G. Hernandez-Landa, Miguel L. Morales-Marroquin,
Romeo Sanchez Nigenda and Yasmin A. Rios-Solis

Contents

303

http://dx.doi.org/10.1007/978-3-319-15033-8_7
http://dx.doi.org/10.1007/978-3-319-15033-8_7
http://dx.doi.org/10.1007/978-3-319-15033-8_8
http://dx.doi.org/10.1007/978-3-319-15033-8_8
http://dx.doi.org/10.1007/978-3-319-15033-8_9
http://dx.doi.org/10.1007/978-3-319-15033-8_9
http://dx.doi.org/10.1007/978-3-319-15033-8_9
http://dx.doi.org/10.1007/978-3-319-15033-8_10

Contributors

Michael Affenzeller Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria; Institute for Formal
Models and Verification, Johannes Kepler University Linz, Linz, Austria

Assil Al-Ibrahim Department of Economics and Business, University of
Amsterdam, Amsterdam, The Netherlands

Catya Zuniga Alcaraz Logistics & Supply Chain Management Department,
Universidad Popular Autonoma del Estado de Puebla, Puebla, Puebla, Mexico

Pol Arias Smart Logistics and Production Group, Internet Interdisciplinary Insti-
tute (IN3-UOC), Barcelona, Spain

Andreas Beham Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria; Institute for Formal
Models and Verification, Johannes Kepler University Linz, Linz, Austria

Vitaly Bolshakov Riga Technical University, Riga, Latvia

Idalia Flores De La Mota Facultad de Ingenieria, Universidad Nacional Auton-
oma de México, Mexico City, Mexico

Ranjit Kumar Ettam Xerox Corporation, Webster, NY, USA
Eric Gross Xerox Corporation, Webster, NY, USA

Daniel Guimarans Optimisation Research Group, National ICT Australia
(NICTA), Sydney, Australia

René Haijema Department of Economics and Business, University of Amsterdam,
Amsterdam, The Netherlands; Operations Research and Logistics Group, Wagen-
ingen University, Wageningen, The Netherlands

Xiii

Xiv Contributors

Leonardo G. Hernindez-Landa Graduate Program in Systems Engineering,
Universidad Autéonoma de Nuevo Ledén (UANL), San Nicolas, Mexico

Stephan Hutterer Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria; Institute for Formal
Models and Verification, Johannes Kepler University Linz, Linz, Austria

Monika Kofler Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria

Michael Kommenda Heuristic and Evolutionary Algorithms Laboratory, School
of Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria

Nikky Kortbeek Department of Economics and Business, University of Amster-
dam, Amsterdam, The Netherlands; University of Twente, Enschede, The
Netherlands

Gabriel Kronberger Heuristic and Evolutionary Algorithms Laboratory, School
of Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria

Carlos Henrique Mariano Department of Electrical Engineering—DAELT,
Federal Technological University of Paran&—UTFPR, Curitiba, PR, Brazil

Galina Merkuryeva Riga Technical University, Riga, Latvia

Miguel L. Morales-Marroquin Graduate Program in Systems Engineering,
Universidad Auténoma de Nuevo Ledn (UANL), San Nicolas, Mexico

Miguel Mujica Mota Aviation Academy, Amsterdam University of Applied
Sciences, Amsterdam, The Netherlands

Romeo Sianchez Nigenda Graduate Program in Systems Engineering, Universi-
dad Autéonoma de Nuevo Leon (UANL), San Nicolas, Mexico

Carlo Alessandro Zanetti Pece Department of Electrical Engineering—DAELT
—Postgraduate Program in Biomedical Engineering, Federal Technological Uni-
versity of Parana—UTFPR, Curitiba, PR, Brazil

Jodo Pedro Pedroso INESC TEC and DCC-FCUP, Porto, Portugal

Pascal Perez Faculty of Engineering and Information Sciences, University of
Wollongong, Wollongong, NSW, Australia

Erik Pitzer Heuristic and Evolutionary Algorithms Laboratory, School of Infor-
matics, Communications and Media, University of Applied Sciences Upper Austria,
Research Center Hagenberg, Hagenberg, Austria

Sudhendu Rai Xerox Corporation, Webster, NY, USA

Contributors XV

Rui Rei INESC TEC and DCC-FCUP, Porto, Portugal

Yasmin A. Rios-Solis Graduate Program in Systems Engineering, Universidad
Autonoma de Nuevo Leon (UANL), San Nicolas, Mexico

Esther Segura Pérez Instituto de Ingenieria, Universidad Nacional Autéonoma de
México, Mexico City, Mexico

Nico M. van Dijk Department of Economics and Business, University of
Amsterdam, Amsterdam, The Netherlands; University of Twente, Enschede, The
Netherlands

Erik van der Sluis Department of Economics and Business, University of
Amsterdam, Amsterdam, The Netherlands

Jan van der Wal Department of Economics and Business, University of
Amsterdam, Amsterdam, The Netherlands

Alexander Vindel Gardufio Facultad de Ingenieria, Universidad Nacional
Auténoma de México, Mexico City, Mexico

Stefan Vonolfen Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria; Institute for Formal
Models and Verification, Johannes Kepler University Linz, Linz, Austria

Stefan Wagner Heuristic and Evolutionary Algorithms Laboratory, School of
Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria

Stephan M. Winkler Heuristic and Evolutionary Algorithms Laboratory, School
of Informatics, Communications and Media, University of Applied Sciences Upper
Austria, Research Center Hagenberg, Hagenberg, Austria

Part 1
Tools and Techniques Using SimOpt

Simulation-Based Optimization
with HeuristicLab: Practical Guidelines
and Real-World Applications

Michael Affenzeller, Andreas Beham, Stefan Vonolfen, Erik Pitzer,
Stephan M. Winkler, Stephan Hutterer, Michael Kommenda,
Monika Kofler, Gabriel Kronberger and Stefan Wagner

Abstract Dynamic and stochastic problem environments are often difficult to model
using standard problem formulations and algorithms. One way to model and then
solve them is simulation-based optimization: Simulations are integrated into the opti-
mization process in order to evaluate the quality of solution candidates and to identify
optimized system configurations. Potential solutions are evaluated with a simulation
model, which leads to new challenges regarding runtime performance, robustness,
and distributed evaluation. In order to design, compare, and parameterize algorithmic
approaches it is beneficial to use an optimization framework for algorithm design
and evaluation. On the one hand, this chapter shows how arbitrary simulators can be
coupled with the open-source HeuristicLab optimization framework. This coupling
is implemented in a generic way so that the simulators act as external evaluators. On
the other hand, we demonstrate how arbitrary optimizers available within Heuris-
ticLab can be called from a simulator in order to perform complex optimization
tasks within the simulation model. In order to illustrate the applicability of these
approaches, real-world examples investigated by the authors are discussed. We show
here application examples from different fields, namely logistics network design,
vendor managed inventory routing, steel slab logistics, production optimization with
dispatching rule scheduling, material flow simulation, and layout optimization.

M. Affenzeller (X)) - A. Beham - S. Vonolfen - E. Pitzer - S.M. Winkler - S. Hutterer -
M. Kommenda - M. Kofler - G. Kronberger - S. Wagner

Heuristic and Evolutionary Algorithms Laboratory, School of Informatics,
Communications and Media, University of Applied Sciences Upper Austria,
Research Center Hagenberg, Softwarepark 11, 4232 Hagenberg, Austria

e-mail: michael.affenzeller @th-hagenberg.at

M. Affenzeller - A. Beham - S. Vonolfen - S. Hutterer - M. Kofler
Institute for Formal Models and Verification, Johannes Kepler University Linz,
Altenberger Strale 69, 4040 Linz, Austria

© Springer International Publishing Switzerland 2015 3
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_1

4 M. Affenzeller et al.

1 Introduction

The field of simulation optimization [11, 16, 17, 20] is still a rather young flavor in
operations research. One of its key enablers is the efficient utilization of parallel com-
puting infrastructures which allows modeling and optimizing not only toy problems,
but also more complex real-world scenarios from the field of production and logis-
tics as well as other domains. So far, metaheuristic optimization approaches have
been applied successfully in solving combinatorial optimization tasks such as vehi-
cle routing, production scheduling, and layout optimization. However, when using
standardized problem formulations, only singular aspects of the real-world can be
modeled and optimized in a quite restrictive way—which is often not capable to
represent the real-world and its complex interrelations and constraints appropriately.

Discrete event simulation approaches allow modeling complex and interrelated
production and logistic scenarios in a more sophisticated and realistic way. However,
the optimization capabilities of recent discrete simulation packages [17] are still quite
limited and rather aimed to offer robust “broadband” optimizers which are not capable
to explore the full optimization potential of concrete scenarios.

The approach presented in this chapter aims to couple a powerful meta-heuristic
optimization framework offering a huge variety of optimization algorithms with
diverse simulators acting as evaluators of solution candidates in a generic way. By
this means, the user shall be enabled to choose and parameterize an appropriate
optimization method in order to explore more optimization potential compared to
when using built-in solvers (when available). Pursuing this approach we adhere to the
no free lunch theorem of optimization [57] which postulates that a general purpose,
universal optimization strategy cannot be implemented and that the only possibility
for a strategy to outperform another one is to be more specialized to the structure of
the tackled problem.

The generic approach described in this chapter is to couple diverse specific simu-
lation models representing real-world scenarios with the open-source heuristic opti-
mization framework HeuristicLab [53]. Google protocol buffers act as a generic
interface between optimization algorithms and concrete simulation models that here
act as an external evaluator.

From an algorithmic point of view, the main challenges of the proposed approach
are algorithm selection and parameterization, runtime consumption, robustness, and
stability of calculated solutions. One of the major issues in this context is the runtime
consumption aspect: When solving combinatorial optimization problems, the evalu-
ation of a solution candidate usually only takes small fractions of seconds, whereas
in the context of simulation-based optimization the evaluation of a solution candidate
might take several seconds or even minutes. For the combination of optimization and
simulation it is necessary to scale back the complexity of both simulation and opti-
mization to obtain good results in reasonable time. The requirement of this balance
has led to a renaissance of optimization methods that require fewer evaluations such
as evolution strategies [40] and simulated annealing [27].

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 5

Stochastic elements of the simulation model create the need for robustness analy-
sis of solution candidates. This requires multiple evaluations and enhanced multi-
objective fitness functions that also take into account robustness and stability of
solution candidates. These additional requirements motivate on the one hand the use
of massively parallel computing infrastructures for solution evaluation, and on the
other hand the application of enhanced techniques for algorithm selection and para-
meterization in order to choose the appropriate degree of greediness of the algorithm,
which is the basis for exploiting the achievable optimization potential.

This chapter is structured in the following way: Sect.2 describes the technical
basis and implementation of the coupling between simulation models and algorithms
offered by HeuristicLab. Thus, for the reader this section also presents guidelines
on how to couple simulation models with optimization frameworks. Section 3 sum-
marizes several concrete application example scenarios, in which simulation-based
optimization has been used in combination with HeuristicLab for solving real-world
problems. Finally, Sect.4 summarizes this chapter and points out the future research
topics and challenges in the field of simulation-based optimization.

2 Methodology and Approach

Over the last decade, a great deal of research has been devoted to couple simulation
models with optimization. In order to meet the increasing demand for optimization of
simulation model parameters, commercial simulation software packages frequently
offer integrated optimization, for example, Othuest® [41] or the WITNESS® Opti-
mizer [39].

These commercial software solutions frequently apply metaheuristic algorithms
for optimization, for instance, genetic algorithms, evolution strategies, tabu search,
simulated annealing, scatter search, or hill-climbers. Optimization interfaces usually
show only a limited set of tunable algorithm parameters in order to simplify the user
interface. These interfaces often do not expose characteristics of the optimization
run, e.g., convergence behavior, but focus on statistical analysis of optimization
results. This black box approach is certainly favorable with respect to robustness
and usability of an embedded optimization tool, but it also limits the potential of the
applied optimization method. Optimization environments on the other hand provide
a more complex user interface, more algorithms, and allow analyzing the algorithm
behavior in more detail in order to improve results or convergence speed.

But, parameter optimization is only one possibility for simulation-based opti-
mization. As far as an embedded optimization approach is concerned commercial
packages are not in widespread use. Simulation models that encounter decision prob-
lems which would be suited for optimization will have to include their own algorithms
or link optimization frameworks into the model. We aim to describe in this section
common interaction patterns between simulation and optimization, the HeuristicLab
software architecture that is suitable for this kind of optimization, and the interfaces
that mate simulation and optimization.

6 M. Affenzeller et al.

Events

Simulation Optimization

Decisions

Fig.1 Interaction pattern for control optimization. The simulation model (here shown bold) is the
initiating part

2.1 Interaction Patterns Between Simulation and Optimization

Generally, two main interactions patterns, control optimization and parametric opti-
mization can be identified [20]:

e Control Optimization: The optimization problem might arise within the simula-
tion model, a decision has to be made given the state of the model.

e Parametric Optimization: The simulation model might act as a fitness function,
which will take a number of parameters and calculate the resulting fitness value.

The main difference between these patterns is the role of the initiating part that steers
the control flow. In this section we will also describe a third pattern which can be
seen as a combination of the other two. The application of HeuristicLab has been
successful for these patterns [38, 49] of which real-world examples will be given in
Sect. 3.

Control Optimization

Control optimization is schematically depicted in Fig. 1. The optimization here is con-
cerned with decision making in changing and uncertain environments. The simulated
problem scenario changes over time as new events emerge and previous decisions
get executed. It is not possible to undo or change decisions that have been imple-
mented already. Sometimes, a rolling time horizon is allowed to plan ahead, in other
cases only the actual situation may be taken into account for making decisions. This
category can thus also be described as online optimization.

The simulation can be seen as a placeholder for a real-world environment and
models the dynamics of the real system. The optimization or decision-making pro-
cedure has to react to these dynamics. Eventually, events from the simulation envi-
ronment can be replaced with events from the real system. The simulation is mainly
used in place of the real system to test and validate new optimization approaches.
Experiments in the real system would be too costly and too slow to evaluate.

Parametric Optimization

Parametric optimization is illustrated in Fig. 2. A candidate solution (usually a para-
meter vector) is passed to the simulation which then returns a quality value by running
the simulation model using the given parameter set. This approach can be applied
when, for example, a closed-form representation of the evaluation function is not
feasible because it contains complex stochastic elements or dynamic interactions.
Especially, the application of metaheuristics has proven fruitful in this context [45].

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 7

Solution Candidate
(parameters)

Optimization Simulation

Evaluation
(quality)

Fig. 2 Simulation-based parametric optimization. The optimization model is the initiating part
(here shown bold)

PriorityRule
. Optimization Candidate
Rule Quality Rule Parameters
Events
Simulation PriorityRule
Decisions

Fig. 3 Generation of priority rules combining parameter and control optimization. The control
flow is steered by the priority rule optimization (here shown bold)

The candidate solutions are iteratively improved by the metaheuristic algorithm, often
totalling a large number of simulation runs. This category can also be described as
offline optimization. For stochastic simulation models the quality has to be seen as a
random variable and often multiple simulation runs of the same parameter set need
to be performed to estimate the expected quality.

Generation and Parameterization of Heuristic Policies

This approach combines parametric and control optimization. Policies can be seen
as a control strategy that can be used for making decisions online. The simulation
model uses such a policy according to the control optimization pattern. When events
require a decision, the policy is called to make that decision. The policies themselves
are improved offline using the quality that is returned by the simulation model.
Policies should be designed such that they can efficiently compute the next decision
based on the current situation in dynamic environments. Examples of such policies
are priority rules that combine and weight different domain features to rank and
prioritize a number of alternative decisions. Different representations for priority
rules are possible, for example, vector and tree representations. Figure 3 illustrates
this pattern schematically.

8 M. Affenzeller et al.

2.2 Software Architecture

HeuristicLab! [53] is a software environment for heuristic and evolutionary algo-
rithms, developed and successively applied by members of the Heuristic and Evolu-
tionary Algorithms Laboratory® since 2002. Being licensed under the GNU GPL,?
HeuristicLab has a growing community of researchers and practitioners using the tool
in a wide range of scientific as well as commercial areas. It provides a vast number of
already implemented algorithms and problems for optimization and data analysis, an
experiment designer, and support for algorithm and results analysis. Furthermore, a
sophisticated graphical user interface distinguishes HeuristicLab from other heuris-
tic optimization frameworks [35], which usually require substantial programming
skills to extend algorithms and apply them to a given problem. HeuristicLab offers
not only programming-based extensibility, but also allows to add and modify algo-
rithms and problems using the graphical user interface and a graphical algorithm
modeling language. In HeuristicLab, algorithms are described as operator graphs
where an operator represents a node and the connections denote the execution flow.
Changing or rearranging operators can be done by drag-and-drop without actually
writing code [54]. The framework thereby enables users and practitioners to perform
complex tasks such as algorithm development. The possibility to extend the frame-
work on the code level remains, and software engineers benefit from the plugin-based
architecture (Fig. 4) allowing them to develop custom algorithms, data structures for
solution representations, or custom optimization problems. This has led to a signif-
icant level of code reuse across metaheuristic variants and gradually gives users an
understanding of algorithm development [52, 55].

Base and Core Layer

The base layer contains plugins that provide essential functionality required by all
other plugins of the above layers. Every plugin in HeuristicLab is based on the
PluginInfrastructure which loads plugins and checks their dependencies. The base
layer also includes the Persistence which allows to save and load files.

The core layer is situated atop the base layer and includes the algorithm modeling
language. It contains core interfaces, data objects, parameters, operators, and engines.
The algorithm modeling language uses operators to describe small, individual steps in
an algorithm [52]. Algorithms are created by chaining together these operators. This
is called an operator graph and engines are used to execute that graph by applying
one operator after another sequentially. In general, the operators process data that is
stored in the memory of an algorithm which is represented in form of a scope tree.
Each scope can hold several variables, such as a quality value, the current iteration
of an algorithm, or a complex data type like a solution candidate. If it contains sub-
scopes, it can also represent a population. Operators can be applied on any level in
the scope tree and may modify its structure as well as read and write variables. Some

U http://dev.heuristiclab.com.
2 http://heal heuristiclab.com.
3 https://www.gnu.org/copyleft/gpl.html.

http://dev.heuristiclab.com
http://heal.heuristiclab.com
https://www.gnu.org/copyleft/gpl.html

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 9

1

Optimization

1

1
m Programmable Op. Optimization [l GraphVisualization
1
I I T IO T

__ e ——————————

1
Clients.Common Collections Tracing/Logging | ControlExtensions

Common, Resources, External Libraries

Base

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

| Plugininfrastructure

Microsoft .NET 4.0

Foundation

1
Models 1 Views

Fig. 4 Block diagram of the architecture of HeuristicLab with a separation into different logical
layers. HeuristicLab is composed of a number of plugins each containing a defined set of function-
ality. Generally, each of the boxes in this figure represent a plugin, or multiple plugins if a “*” is
added to the name. The horizontal layers are base, core, and optimization. The vertical layers show
the separation between models and views. In the block diagram, a plugin always depends on the
plugins on the layer below as well as the plugins to its /eft on the same layer

operators allow the application of subsequent operators on a number of sub-scopes
in parallel. The ParallelEngine is able to execute those operators in different threads
and further engines exist that allow to make use of distributed computing resources,
such as HeuristicLab Hive [53]. Therefore, HeuristicLab provides an easy way to
incorporate data-based parallelism into algorithms. To obtain the values of variables,
operators specify parameters which can either directly contain a value or provide
only the name of a variable which is used to find a match among the algorithm’s
parameters, the problem’s parameters, and the scope tree. An example of such an
operator is an evaluator that is applied on a solution scope. Evaluators typically read
those variables that contain the solution encoding, those that provide the problem
data and, after computing the fitness, add a quality variable to the scope. Similar to
any other operator, it could also contain additional parameters that would, e.g., read
the algorithm’s state such as the current iteration or a collection which acts as another
memory.

Optimization Layer

The topmost layer in the architecture includes the algorithms, problems, different
standard encodings, and various other plugins for algorithm analysis and random
number generation. HeuristicLab is shipped with several algorithms such as genetic
algorithm [31], evolution strategy [10, 21], offspring selection genetic algorithm [2],
local search, simulated annealing [27], tabu search [19], particle swarm optimiza-
tion [26], and many more. Among the list of available problems in HeuristicLab
are real-valued test functions, combinatorial problems such as the traveling sales-
man, vehicle routing, and the quadratic assignment problem, as well as data analysis
problems such as regression and classification. The optimization layer also contains

10 M. Affenzeller et al.

analyzers that allow to study the performance of algorithms. Basic analyzers pro-
vide a quality progress, more sophisticated analyzers enable an inspection of the
algorithms’ behavior.

2.3 Interfacing with Simulation

In this section we describe three different strategies for performing simulation-based
optimization with HeuristicLab. These strategies differ from each other with respect
to their effort to set up the optimization and their possible applications.

o The first strategy (Sect.2.3.1) is to create interfaces that couple HeuristicLab with
specific simulation frameworks such as MATLAB or Scilab.

e Another possibility is to define a general inter-process communication protocol
for data exchange that allows the coupling of arbitrary software with HeuristicLab
(Sect.2.3.2).

e The third strategy is to implement the simulation model within HeuristicLab, which
results in the tightest coupling between the simulation model and the optimization
algorithm (Sect.2.3.3).

2.3.1 Specific Interface

A possibility to couple a simulation environment with an optimization framework
is to provide a specific interface layer which is responsible for handling the com-
munication between the optimization algorithm and the simulation model. Most
simulation frameworks provide several ways to couple them with other applications
using various kinds of technologies, ranging from direct calls to specialized applica-
tion programming interfaces (API), component object model (COM) interfaces for
interprocess communication, or web services. A drawback of specific interfaces is
that they have to be implemented for each simulation environment and technology.
However, they can be implemented in a generic way to execute arbitrary commands
instead of running a specific simulation model.

HeuristicLab provides specific interfaces for MATLAB and Scilab out of the box.
Both these frameworks excel at numeric computation, which makes them especially
suited to perform continuous simulation. Furthermore, both frameworks provide spe-
cific modules to ease the development of simulation models. The interfaces for these
two software systems have been implemented in a generic way allowing the execution
of arbitrary scripts in the respective programming language. The MATLAB inter-
face is based on the COM technology to enable communication with HeuristicLab,
whereas the Scilab interface calls directly a native C++ APL.

A common problem in continuous simulation is the identification of appropriate
parameter values to adapt the simulation model to the circumstances of the real-
world—a use case is detailed in Sect. 3.6. Therefore, real-vector encoded parameter
optimization problems with a coupling to MATLAB and Scilab have been imple-

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 11

//parameter assignment

p.m = paraml;
p.dl = param?2;
p.Fc = param3;

//import and execution of simulation model
importXcosDiagram(’simulationModel.zcos’) ;
xcos_simulate(scs_m, 4);

//read original data and compute quality metric
originalvalues = csvRead("data.csv",",",".");
simulatedvValues = simulationModel.values(:,2);
quality = sum((values(:,1) - original(:,3))"2);

Fig. 5 Example of an evaluation script implemented in Scilab. The simulation is started using the
defined model and the parameters given by the optimization algorithm (paraml — param3), the
quality is calculated as sum of squared differences between the output of the simulation model and
previously measured values

mented in HeuristicLab. The evaluation of a solution candidate uses the aforemen-
tioned specific interfaces and executes a script in the simulation environment that
calculates the quality of a solution candidate. As a result, every algorithm that can
handle real-vector encoded solutions, such as for example evolution strategies, evo-
lutionary algorithms, or simulated annealing, can be used to solve such parameter
optimization problems.

A benefit of the chosen strategy is that the effort for configuration and program-
ming is minimized for the user. The only part that has to be provided by the user to run
the optimization is the evaluation script; the user can create this script in a familiar
environment (MATLAB or Scilab) and does not have to learn the specifics of the
HeuristicLab framework to execute the optimization. However, this minimal config-
uration effort comes with a price, namely that by default only real-valued parameters
can be optimized with this approach.

Figure5 shows an evaluation script for Scilab that parameterizes and runs a
simulation model. Solution candidates, in this case combinations of real numbers
(paraml — param3), are generated by the algorithm and the quality of the parame-
ter combination is calculated by the simulation framework. The here shown script
loads an existing simulation model, sets its parameters to the values supplied by the
algorithm, runs the simulation model, and finally extracts the quality of this given
parameter vector by converting results of the simulation to a numerical value.

2.3.2 Generic Interface

A generic exchange protocol has been integrated in HeuristicLab that enables com-
munication with external processes, such as simulators, and allows the encoding of
several types of parameters. The protocol has been first described in [8]; in this section
a summary will be given. It has also been enhanced with a cache which prevents the
execution of simulation runs for solutions that have already been evaluated [38].
Since the execution of simulations can consume relatively large amounts of runtime,

12 M. Affenzeller et al.

message SolutionMessage {
message DoubleVariable {
required string name 1;
optional double data = 2;
}
message DoubleArrayVariable {
required string name = 1;
repeated double data = 2;
optional int32 length = 3;
}
//... further sub-messages omitted ...
required int32 solutionId = 1;
repeated IntegerVariable integerVars = 2;
repeated IntegerArrayVariable integerArrayVars = 3;
repeated DoubleVariable doublevVars = 4;
repeated DoubleArrayVariable doubleArrayVars = 5;
repeated BoolVariable boolVars = 6;
repeated BoolArrayVariable boolArrayVars = 7;
repeated StringVariable stringVars = 8;
repeated StringArrayVariable stringArrayVars = 9;
repeated RawVariable rawVars = 10;
}
message QualityMessage {
required int32 solutionId =
required double quality = 2;
extensions 1000 to max;

1;

Fig. 6 Definition of the generic interface messages in .proto format [8]

parallelization is a major aspect. The generic interface allows to specify several target
machines that are running the given simulation with provided parameter settings and
returns the results. The evaluation is thus distributed and allows even longer running
simulation models to be optimized in reasonable time. The generic interface has been
integrated in the form of a customizable problem definition in HeuristicLab and is
explained in this section.

External Evaluation Problem

As the name implies, instances of this problem type have to be evaluated by an
application that is external to HeuristicLab. This problem has no preconfigured rep-
resentation or operators, but it can be customized. The RealVectorEncoding plugin
contains operators that can be added if the simulation exposes real-valued parameters
for optimization; if the parameters are discrete values, operators of the IntegerVector-
Encoding plugin can be used to create and optimize the solutions. These encodings
can also be used in combination if there are simulation parameters of both types.

Interoperability

In HeuristicLab, an evaluator that is applied on a solution scope calculates the
solution’s quality and adds this quality back to the scope. The evaluator of the
ExternalEvaluationProblem collects a user specified set of variables, adds them
to a SolutionMessage, and transmits this message to an external application. The
evaluation operator then pauses and awaits the reply in form of a QualityMessage.

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 13

The quality value given in this message is then stored into the corresponding scope.
This generic definition allows the use of many algorithms that are designed to opti-
mize single-objective problems in HeuristicLab. To encode and transmit messages,
the protocol buffer* framework has been used; the messsages’ structure is shown
in Fig.6.

The protocol buffer format is designed to work with very compact files that are
serialized, which minimizes transmission time. Furthermore, the serialization itself
is also very quick. Google provides implementations of protocol buffers for Java,
C++, and Python, and open-source ports also have been created for other languages
such as C#, R, and many others.® The solution message buffer is a so-called “union
type” protocol buffer, which is a very generic message for potentially unknown use
cases. It includes fields for storing Boolean variables, integers, doubles, and strings
as well as arrays of these types. In HeuristicLab, the SolutionMessageBuilder class
translates the variables in a scope into variables in a SolutionMessage; this message
builder can use custom converters for transcoding custom data types into a field of
the solution message.

Parallelization and Caching

Parallelization is an effective means to reduce overall runtime if the necessary time
to run a simulation model becomes very long. The overhead of the communication
and the optimization procedure then become a negligible part. In HeuristicLab this
is supported through the use of the above-mentioned parallel engine. This engine
allows multiple evaluators to be executed concurrently, which in turn make use of
multiple channels defined in the Clients parameter. In the background the ThreadPool
in .NET is used to provide threads for efficient operations. To further decrease runtime
an EvaluationCache and the respective evaluator can be used that hashes each visited
solution and prevents further simulation runs. The cache can later be persisted to a
file or exported as a comma-separated-values (CSV) file for further analysis [38].

Protocol Extensions

The QualityMessage can also be extended if more results or variables are included
in the solution scope and shall be read and interpreted by an analyzer. This extension
of the quality message can be achieved by creating a new message which extends the
QualityMessage. Field numbers 1000 and higher can be used to declare extension
fields. Figure 7 shows a .proto message definition that adds another field storing the
number of repetitions.

Example Interface with AnyLogic 6

AnyLogic® is a simulation environment implemented in Java that allows to add Java
code in various parts of the modeling process. In general, users are able to create
model as ActiveObjects that might contain other ActiveObjects. A model can then be

4 http://code.google.com/p/protobuf.
3 http://code.google.com/p/protobuf/wiki/ThirdParty AddOns.
6 http://www.xjtek.com.

http://code.google.com/p/protobuf
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
http://www.xjtek.com

14 M. Affenzeller et al.

message MyResponse {
extend HeuristicLab.Problems.ExternalEvaluation.QualityMessage {
required int32 repetitions = 1000;
}
}

Fig. 7 Extension of the quality message to return also the number of repetitions that have been
performed

run in different experiments such as a SimulationExperiment. To couple the model
with HeuristicLab and make use of the generic data-exchange interface, a special type
of experiment is used. In AnyLogic the so-called ParametersVariation experiment
allows to perform a set of simulation runs for certain parameters. These parameters
can be varied automatically given certain bounds and a step size, and they can also
be varied freely by an external program such as HeuristicLab. For this purpose a Java
library HL3ExternalEvaluation.jar was added to the model, which is also available
on the HeuristicLab website.” This Java library abstracts the data-exchange part
and allows to set up the simulation model either as a push or a poll service for
HeuristicLab. When choosing the push service, the model needs to implement an
interface which is passed to the library; when opting for the poll service, the library
can be polled for incoming solution messages and subsequently a quality can be
returned.

2.3.3 Integrated Simulation and Optimization

While the methodologies presented in Sects.2.3.1 and 2.3.2 are dedicated to para-
meter optimization of models that have been created using external simulation envi-
ronments, an alternative approach is to implement simulation models directly in
HeuristicLab and integrate them with optimization algorithms. The HeuristicLab
architecture is generic in the sense that not only optimization algorithms, but arbi-
trary algorithms including simulations can be modeled. The applicability of this
approach has been shown especially in the context of dynamic vehicle routing and
various practical case studies [48, 50, 51].

The direct implementation of simulation models in HeuristicLab allows a tight
coupling with optimization algorithms, which is beneficial in cases where efficient or
sophisticated interactions between simulation and optimization are required. Integra-
tive approaches require that the simulation framework and the optimization frame-
work share a common platform or programming language. For HeuristicLab, this
means that NET based simulation frameworks such as Repast.net® or Sim#’ should
be utilized. This allows using the HeuristicLab API in simulation models and vice
versa.

7 http://dev.heuristiclab.com/howtos.
8 hitp://repast.sourceforge.net.
% http://github.com/abeham/SimSharp.

http://dev.heuristiclab.com/howtos
http://repast.sourceforge.net
http://github.com/abeham/SimSharp

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 15

When tackling control optimization problems an efficient and flexible integration
is needed. In this case standard simulation software usually cannot be applied out
of the box and only few generic and extensible modeling infrastructures exist for
control optimization, e.g., dynamic vehicle routing [36]. Implementing control opti-
mization problems with HeuristicLab requires that the simulation model references
the HeuristicLab plugins. When running the model, the events that require a deci-
sion parameterize the corresponding optimization problem, the solver algorithm, and
await the result. This can be done in a state where the simulation model is paused,
or, in a real-time simulation, while the simulation model continues to run. The added
complexity of real-time operation, such as the occurrence of changes while the opti-
mization is running, has to be taken into account. Real-time simulation optimization
requires a very tight combination of simulation and optimization that may require
implementing customized optimization algorithms.

In parametric optimization problems, where the runtime of the simulation model
is a critical and limiting factor, an integrated simulation and optimization approach
reduces the inter-process communication overhead. Implementing such an approach
requires the definition of a customized problem in HeuristicLab with a custom evalua-
tor. In order to evaluate a candidate solution, the evaluator makes use of the simulation
framework API, initializes the model, executes it, and creates the fitness values out
of the model’s performance indicators [7].

3 Real-World Examples

3.1 Simulation-Based Design of a European-Wide
Logistics Network for Bio Residues

3.1.1 Problem Description

Increasing prices of fossil fuels and other nonrenewable energy sources have led to
an increased interest in the development of alternatives. On the one hand, renewable
energy sources, such as energy crops, are employed more often. On the other hand, we
see an increased use of so-called second-generation bio-fuels which can be obtained
by processing organic residues such as straw, wood chips, lifestock waste, or malt
spent grains that do not compete with other food crops and have a more limited impact
on greenhouse gas emissions [15, 25]. When processing these waste products, two
problems are solved at the same time: Waste amounts are reduced, and precious
resources are replenished. The inherent problem of this idea, however, is that it is
typically rather uneconomical to further process or transport waste products, which
is why they are considered waste in the first place, i.e., the effort invested in their
transport is bigger than the expected revenue. The key to the mitigation of this
problem is to increase the value density of these products by de-central and cheap

16 M. Affenzeller et al.

Process chain

St) . :
LSRR

Biomass logistics Energy carrier logistics

®

g
it
3
g

I
:
i

5

0

Fig. 8 Echelons in the logistics network

“upgrading” to intermediate energy carriers which can be transported over longer
distances more economically.

This is why we have developed an optimized multi-echelon logistics network for
the transport of feedstock, intermediate, and final products on a large scale within
BioBoost.!” In this research project, biomass potentials and key data on conversion
facilities available in Europe have been compiled; this information forms the basis for
planning a large logistics network. Suitable conversion plant locations and capacities
as well as transport routes and product amounts are then optimized using simulation-
based optimization: Many scenarios are iterated and evaluated, and metaheuristics
are used to tune free variables so that the quality of the resulting logistics network
is optimized. The approach described in this section encompasses several modeling
optimizations to enable faster calculations.

3.1.2 Simulation Model

Several free variables are optimized: At each location, a certain amount of feedstock
has to be obtained which is then transported to a certain plant for de-central process-
ing. The intermediate energy carrier is then fransported to a central plant where it
is converted into heat, fuel, or other end products. This overall process is shown in
Fig.8.

The initial solution space size in a naive model would be determined by the number
of free variables. In the case of the logistics network, the following factors have to
be considered:

e Locations of feedstock sources and the utilization levels for each of these sources.
In this case more than 1000 level 3 NUTS regions [14] have been used as possible
source locations.

e Locations of the intermediate and central processing plants placed on any combi-
nation of more than 1000 regions.

10 http://www.bioboost.eu.

http://www.bioboost.eu

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 17

e Connections of sources and targets in each echelon of the logistic network. The
logistics network can be modeled as an adjacency matrix containing the links
between source and target locations. This matrix would then have a size greater
than s = 1000 x 1000. Moreover, every subset of connections will then be a valid
solution candidate giving a total of s! = 8 x 1039798 possible routing networks
for each type of feedstock.

The large size of this original solution space renders a direct solution of the
problem infeasible. For this reason it was attempted to model the solution space so
that it remains susceptible to optimization by providing a meaningful neighborhood
definition, and at the same time removing as many unnecessary scenarios as possible.

3.1.3 Optimization

A very strong simplification can be made by allowing only one target region per
source region. This immediately reduces the number of choices per feedstock to
approximately 10°. However, the solution space for one complete scenario still com-
prises at least two echelons and at least three different feedstock types each of which
contains a choice for source and target region, their connectedness, and the amount
of acquired feedstock. Therefore, the solution space size is still in the area of around
102! per product.

A second reduction of the solution space size can be achieved by eliminating
variables or variable choices that would lead to solutions that can be guaranteed
to be inferior. One naive possibility would be to allow only transport targets that
are directly adjacent to the source region. The variant we have employed was to
automatically select plant locations and capacities based on the transport targets
of different feedstock types as this further reduces the number of free variables
and, simultaneously, the solution space size to 10! possibilities per feedstock type.
After these transformations, the resulting solution space is manageable with current
metaheuristic optimization methods.

In a third round, computationally expensive calculations of routes between source
and target locations have been replaced with precalculated estimates to reduce the
computation time. Furthermore, a speed-up has been achieved through aggregation
into yearly calculations instead of step-wise event-driven simulation [30].

Finally, while the solution space is perceived as fixed for the whole optimization
process, some combinations of variable choices can lead to meaningless, equal, or
inferior results. For this purpose we have developed a mechanism that dynamically
reduces the solution space only during the application of variation operators, hiding
inferior options, which again leads to a significant runtime reduction.

18 M. Affenzeller et al.

Vector Layers

StrawTransportTargets

osyncrudeTranspo

Value Layers

StrawConvederCapa: »
StrawAmounts Transg
MunicipalWastePotes
MunicipalWastePote: =
BiosyncrudeConverte
Biosyncrude Storage(

| BiosyncrudeAmounts ™ |

Fig. 9 Solution visualization within HeuristicLab

3.1.4 Conclusion

The simulation model has been implemented based on the HeuristicLab optimization
environment [52, 53] where the evaluation of a two-echelon scenario takes about 1 ms
on average for one feedstock type and meaningful optimization results are available
after 2—12h when executing the optimization on a single computer with a Core 2
Duo processor. Figure 9 shows a screenshot of the implementation in HeuristicLab
with a visualization of the feedstock utilizations and transport vectors.

Using only a few simplifications and the powerful and flexible optimization
algorithms available within HeuristicLab, an optimization task that initially seemed
intractable has been reformulated to allow its optimization and might help to reduce
the amount of waste while increasing the amount of energy available in the future.

3.2 Simulation-Based Priority Rule Optimization
Jor Scheduling Production Systems

Problem Description

Scheduling plays a key role in industrial systems to ensure the efficient use of
resources and timely completion of orders. Briefly summarized, a scheduling prob-
lem can be described as a set of jobs, each having a collection of operations that
are tied to a machine. By specifying the start time of each operation a schedule is
constructed. A number of different types of shops have been described in the litera-
ture such as job shop, flow shop, and open shop [37]. In the flow shop problem, the
sequence of operations is the same for all jobs, while in the job shop, the sequence
may be different for each job. In the open shop there is no predefined sequence. Gen-
erally, scheduling problems such as the job shop scheduling problem are NP hard as
shown in [18, 37].

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 19

Fig. 10 Example of a
tree-encoded priority rule. °
The variables d and p
represent job properties, e.g.,
due date, processing time, @ ‘
batch size
‘ 1.9222

-0.085 d

©

When solving scheduling problems one can make a decision very early and plan
ahead or rather late and decide in time as in the saying “we’ll cross that bridge
when we get to it.” The first case can be seen as an offfine approach to determine the
optimal schedule in advance. This yields a high quality schedule, but requires high
runtime and adaption in the face of changing conditions. The second case is denoted
as an online approach, which considers the actual state of the system and which thus
has to to make decisions much more quickly [3]. One popular method in such an
online approach is the use of simple rules [34]: First-in-first-out, earliest-duedate-
first, and many more have been proposed to rank and prioritize the pending order
queue. A combination of simple heuristics to more complex priority rules, as can be
seen in Fig. 10, allows creating tailored and customized rules for specific scheduling
scenarios.

Simulation Model

Simulation is particularly suited to support the optimization of complex priority rules.
When a machine becomes idle all items in its queue are ranked and the best ranked
item is processed next. If a job is finished the performance metrics are updated. At
the end of the simulation run the remaining jobs are also rated; this is important as
otherwise “problematic” jobs, e.g., that require long setup, would potentially starve
in the system and never get picked up.

The model itself describes the flow of the jobs, the entities available in the pro-
duction system, as well as the interactions between them. Workers arrive at the
production plant in the morning and pick up work. They will process jobs on the
machines, make a pause, go for lunch, and continue to work. In the simulation model
the decision of which item the workers are to pick up next is made using the priority
rule as follows:

1. The set of possible decisions is constructed;

2. For each decision a dictionary is created that contains state variables, item char-
acteristics, and more, see Table 1 for examples;

3. An interpreter reads the priority rule and computes a rank using the variables in
the dictionary;

4. The set of decisions is sorted according to their rank;

5. The best ranked decision is implemented.

20 M. Affenzeller et al.

Table 1 State variables of a production system [38]

p...batch size of an order n,...number of remaining steps
pr...remaining batch size after this step [...queue length of a machine
d...job due date s...setup required (£1)

q...job quantity Q...qualification

t...number of required tools t,...remaining processing time

Some situations require that multiple decisions should be made at the same time,
e.g., selecting a worker and an item that she should process. This can be useful if
the worker qualification or worker satisfaction is taken into account. In this case all
combinations of workers and items constitute the set of possible decisions. However,
as the evaluation of a decision is not without cost, this provides an additional per-
formance hit and prolongs the simulation run. In the concrete studies in [5, 38] the
interpretation of the priority rules was compiled to Microsoft intermediate language
code prior to running the model in order to speed up the simulation runtime.

The performance metrics are translated into a fitness of the priority rule by arating
model. The formula may vary depending on the case, but timeliness, troughput, cash
flow, or waste production are important factors. For instance, a linear step function
can be designed to give a slight penalty for jobs that are finished too early and a
heavier penalty for delayed delivery. It is advised to avoid highly discontinuous or
flat transformation functions as this creates a very rough or very flat search space
that may be difficult to optimize.

Optimization

Typically, the enterprise resource planning system of a production company provides
the necessary data such as jobs, working plan, bill of materials, resources, due dates,
processing times, and more to parameterize the simulation model. The importance
of separating this data in training and test scenarios must be emphasized. Optimized
rules may become highly specific to the scenario for which they have been trained
and may not generalize very well. Simulating the optimized rules with data from test
scenarios allows identifying generalizable rules that show good performance in both
training and test. Additionally, maintaining an archive of rules allows exploring the
Pareto front between complexity and quality; simple rules may not appear to perform
well in the training, but might generalize better [38]. Such an archive may also be
used to avoid re-evaluation of already known solutions. Simulation models of such
production systems can become quite complex and, therefore it takes a few seconds
to finish a run of several weeks of the production plant. Distributed evaluation of
the simulation model is quite important in order to obtain good priority rules in
reasonable time.

Using genetic programming [4, 29] tree-based priority rules can be generated
and evolved to match the scenarios at hand. For this purpose trees are generated
randomly and crossed with other trees in a population; better trees have a higher
chance of being used for crossover, and therefore their features will prevail in the

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 21

following generations. While genetic programming traditionally employs a standard
genetic algorithm, variants such as offspring selection genetic algorithm [1, 2] have
worked quite well. Offspring selection introduces an additional selection step that
discards offspring that are inferior to their parents.

Conclusion

Production systems benefit from suitable decision rules that are tuned to improve
long-term goals such as timeliness or throughput. These rules take some time to
optimize, but are quick to evaluate in the production system. Volatility in those
systems is a concern that can be addressed through a continued reoptimization of
these rules and by maintaining a comprehensive set of production scenarios that show
many different characteristics. In practical implementations it is also important to
assure that the inputs to the rules are available to the rule and that the data is accurate.
For instance, if queue length is a highly relevant variable in such a rule, but it cannot
be obtained in the real system the priority rule cannot be implemented. However, it
would not be wise to omit these variables altogether as it might indicate that additional
sensory data should be acquired.

3.3 Simulation-Based Optimization of Inventory
Replenishment Rules

This section is based on a study that was previously published by Vonolfen et al. [48]
and deals with the simulation-based generation of inventory replenishment rules for
stochastic inventory routing problems. The evolved rules are evaluated and tested
in the context of retailing based on real-world data with a large number of different
products that are replenished at supermarkets. The methodology is an example of
simulation-based priority rule generation using an integrated simulation optimization
approach (as outlined in Sect.2) applied to a real-world scenario.

Problem Description

The inventory routing problem (IRP) integrates inventory management and trans-
portation. It is a mathematical model for the concept of vendor managed inventory
(VMI) where the vendor has the responsibility for the replenishment of the customers,
which requires information about the inventory levels to be available. According to
Waller et al. [56], VMI was first popularized by Walmart and then implemented in
various other companies. The goal is to minimize the inventory and transportation
costs while maintaining a certain service level.

The IRP was first presented by Bell et al. [9] who considered the distribution
of industrial gases; since then, many variants of the IRP have been studied. Moin
and Salhi [32] provide an overview where they state that most problem formulations
do not consider stochastic demand patterns and are deterministic. In contrast, the
stochastic IRP (SIRP) considers product usages as probability distributions, but this
also increases the problem complexity, which motivates a simulation-based approach.

The considered IRP here is a mixed formulation in which some of the cus-
tomers choose VMI, while the other customers keep an order-based strategy. Multiple

22 M. Affenzeller et al.

products P are distributed from a central depot to a set of order-based customers (O)
and a set of VMI-customers (N) using a homogeneous fleet of vehicles (V) with a
known capacity C, for each vehicle v € V. Each VMI-customer n € N has a known
storage capacity Cp;, for each product. The planning process is performed on discrete
time steps 7, which are days in real operation.

A joint probability distribution P, is given for each weekday w € [0..6], customer
n and product p from which the product consumption can be sampled for a given
time step during the simulation. The inventory level x/,) at a customer of a certain
product can be measured every day. The order-based customers place fixed orders
dgp € D’f which they derive from an ordering strategy that is not influenced by the
vendor.

Each day, the vendor replenishment dy,, and customer orders dj,, are combined
into vehicle routes R’. The objective is to minimize the required vehicle fleet size
| M| as well as the driven distance d = _ L, while maintaining the service level by
preventing out-of-stock situations where xf,p falls below a certain safety stock.

The motivation to apply simulation-based priority rule generation stems from
the high problem complexity resulting from the practical case study performed in
cooperation with an Austrian retailer. The considered scenario consists of 84 super-
markets which are served from a central depot. In total, the supermarkets serve 5113
different fast-moving consumer goods that have stochastic demand distributions with
high fluctuations during a week. The supermarkets are served with a fleet of homo-
geneous vehicles. A main challenge is to flatten the peaks in the resource usage and
to balance it more evenly to achieve constant resource usage. This is complicated by
the very limited storage capabilities at the individual supermarkets, while each indi-
vidual product contributes to the service quality since out-of-stock situations may
lead to a potential loss of revenue.

Simulation Model

The simulation model developed for this inventory replenishment problem is an
agent-based formulation consisting of vendor, customer, and vehicle agents. We have
implemented the simulation model based on Repast.net'! agent-based simulation
framework and integrated it into HeuristicLab.

The interactions between the agents are illustrated in Fig.11: Each customer
agent has an inventory which is updated by sampling from the demand distributions.
Depending on whether the customer has a vendor-managed inventory or places the
orders by itself, different interactions with the vendor occur. In the case of VMI, the
vendor uses a replenishment policy to determine the replenished demands. In the
case of order-based customers, the customer uses an order policy and the vendor has
no access to the inventory. In that case, a classical threshold-based order strategy is
used which keeps a certain security buffer.

For each day of operation, the accumulated demands are converted into a standard
capacitated vehicle routing problem (CVRP) instance which can be solved with any
VRP algorithm available in HeuristicLab. The calculated tours are then executed by

1 http://repast.sourceforge.net.

http://repast.sourceforge.net

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 23

VMI Customers

|_ —>| VehicleAgent |— - | VMICustomerAgent |
1
0

’ Tours : Replenish :

| 1

ReplenishmentPolicy = VRPAIgorithm |- - ! |
) 1
Demands |

1

1 1

: '>| CVRPInstance |- -
1

v

1

1 Orders
1

1

Inventory Information

Order-based Customers | VendorAgent | _ >| VehicleAgent |_ - OrderCustomerAgent
! 1
() !

Tours 1 Replenish :
! 1
1
L

=>| Inventory

! Inventory Information 1

|
CVRPInstance --- ->| OrderPolicy
1

Demands

Fig. 11 Interactions between the agents for VMI and order-based customers

vehicle agents which execute the tours and replenish the inventories of the customers.
This results in a two-stage approach where first the replenished goods are determined
and then the tours are calculated for each day of operation.

Optimization

The aim is to automatically evolve inventory replenishment policies that are able
to balance the resource usage with fluctuating demands maintaining a given service
quality by preventing out-of-stock situations for each individual product. In order to
reach this goal we apply simulation-based generation of priority rules as described
in Sect. 2.

The inventory replenishment policy has the main goal of constant resource uti-
lization with fluctuating demand distributions. It consists of two priority rules: The
first rule is responsible for choosing a set of customers that should be visited, the
second rule determines the amount of replenishment for each product at these cus-
tomers. This two-stage approach aims at taking into consideration both the routing
(e.g., avoiding to visit customers that are geographically far away) and replenishment
(e.g., avoiding out-of-stock situations). The description of the policies is based on
Vonolfen et al. [48] where the reader is referred to for details.

The replenishment policy is represented as a real-valued vector that consists of
general parameters and parameters of the first and second priority rule. The two
general parameters are CapacityUtilization and PriorityThreshold. The capacity uti-
lization parameter determines the capacity that should be used over time to replenish
the customers. This capacity is used as a basis for the replenishment rule and aims at
constant resource utilization. The PriorityThreshold parameter determines the min-
imum priority a customer must have to be considered for replenishment to avoid
unnecessary detours.

24 M. Affenzeller et al.

The first priority rule calculates a priority for each customer 7 to be replenished
by weighting m = 6 factors f;; with an parameterized weight g; to a priority score
Pn = (Z;": 1 Jai * a;)/m. The factors considered for a given customer n are (as
discussed in detail in [48]):

fn1 : The minimum expected amount of days a stock-out will occur
fn2 : The average expected amount of days for stock-outs

Jfn3 : Number of days since the last delivery

fna : Total inventory size

fns5 : Minimum detour to incorporate the customer in existing routes
fne : Geographic isolation

The second priority rule determines the amount of a product that should be deliv-
ered to a given customer. If the expected days a customer would run out of a product
falls below a certain RefillThreshold (derived from the stochastic product consump-
tion rate information) or the available stock falls below a certain RefillBarrier (pre-
defined amount of safety stock) it is refilled to a certain level determined by the
RefillFactor which defines this level as a ratio of the maximum storage capacity for
the respective product.

In total, the parameter vector for the replenishment strategy to be optimized
contains 11 parameters: CapacityUtilization, PriorityThreshold, a;(1 < i < 6),
RefillThreshold, RefillBarrier, and RefillFactor. These parameters are optimized
using an evolution strategy as an priority rule optimization algorithm. Each can-
didate solution is evaluated by running a simulation run of a time frame of 60 days
and evaluating the resource usage as well as the service quality. For each day of
the simulation, the replenishment amounts are calculated using the parameterized
replenishment strategy and the resulting tours are optimized using a routing algo-
rithm (push-forward insertion heuristic) implemented in HeuristicLab. After each
day, the inventory level at each customer is reduced by using the predefined demand
distribution.

0.8 :

0.6 _—
o4 M1-——3 " 1B - W Fixed
02 - — -I—-— ‘ | 1

Sun Mon Tue Wed Thu Fri Sat

Fig. 12 Average resource utilization over different weekdays for different scenarios [48]. The x-
axis represents the weekday and the y-axis the relative resource utilization. The resource utilization
is divided for the fixed and VMI customers

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 25

Conclusion

Asillustrated in Fig. 12, we are able to balance the resource utilization using a vendor
managed inventory. When the customers place the orders themselves using a classical
threshold-based order strategy, the fluctuations in demands over weekdays lead to
a corresponding fluctuation in resource usage, which is undesirable for determining
needed capacities. The biggest smoothing effect could be achieved if all customers
chose to apply a VMI; however, even if only part of the customers are switched to a
VMLI, this effect can also be observed.

As a practical guideline for applying simulation optimization it can be concluded
that simulation-based priority rule generation is a powerful method for making
operational decisions in high-dimensional and stochastic problem environments.
By modeling different scenarios and evaluating the optimization potentials,
simulation-based optimization aids in making tactical and strategical decisions.

3.4 Simulation Optimization of Transport Activities
Within Steel Slab Logistics

This section deals with transport optimization within steel slab logistics and is based
on a previously published study of Vonolfen et al. [5S0]. The main aim is to evaluate
optimization potentials in the transportation of steel slabs in terms of throughput
maximization within cold-charge. The core of the approach is a detailed simulation
model considering constraints of the cold-charge steel production process. According
to the classification presented in Sect.?2, it is an example of parameter optimization
where the parameters are the transport sequence in this case and the simulation model
is integrated with the route optimization algorithm in HeuristicLab.

Problem Description

Steel production is a multi-stage process and is generally geographically distributed
and energy as well as capital intensive [43]. The typical production process starts
with raw materials and the melted steel produced in the furnace is transformed into
slabs at the continuous casting machine. The slabs are then rolled into plates or coils
in the rolling mill. Generally, there are two pathways for steel slabs. In the hot-charge
process they are transported directly from the caster to the rolling mill, while in the
cold-charge process a slab yard is used as an intermediate buffer storage.

This work focuses on scheduling the transport activities within the cold-charge
process which are linked to the lifecycle of a steel slab illustrated in Fig. 13. Within
cold-charge three transport activities can be identified: transportation from the caster
to the slab yard, transportation to processing aggregates, and transportation to the
rolling mill. Scheduling the individual transport activities is not a trivial task, since
upstream and downstream processes of steel production have to be considered and
transport links them together.

In the presented case study, straddle carriers transport the slabs and the activities
are scheduled by a human expert. The straddle carriers can carry up to 105 tons

26 M. Affenzeller et al.

which usually correspond to around four slabs. An outside slab yard is used as an
intermediate storage which decouples casting and rolling. The slab yard consists of
several fields which are organized in lanes each containing several stacks of slabs.
If a slab that lies beneath other slabs is retrieved, shuffling operations have to occur.
At the continuous caster as well as at the processing aggregates and the rolling mill,
stacks are retrieved and stored in stacks at handover places.

Simulation Model

Simulation optimization is applied to evaluate the optimization potential in schedul-
ing the three types of transport activities optimizing total throughput while consid-
ering all relevant operational constraints. The motivation to use a simulation model
are the dynamic interactions between the individual activities which would be diffi-
cult to represent as a static model. There are several operational constraints for the
individual transport activities (cf. [50]):

e Shuffling constraints concern the retrieval and storage of slabs at handover places
and the slab yard. No shuffling is possible at handover places which means only
the topmost slabs at handover stacks can be retrieved. In the slab yard, only a single
straddle carrier can operate at an individual handover place.

e Rolling constraints ensure the correct transportation of slabs to the rolling mill.
A certain security buffer of slabs scheduled to be rolled has to be present at the
rolling mill which cannot be underrun. Additionally, the rolling sequence has to
be followed to a certain degree, otherwise the cranes at the rolling mill have to
reshuffle the slabs.

e Temporal constraints concern availability of straddle carriers where each straddle
carrier has scheduled maintenance tasks as well as driver breaks. Additionally, the
processing schedule has to be considered which means slabs have to arrive earlier
than their scheduled processing time.

e Capacity constraints are that each carrier can transport up to 105 tons and slabs
must have similar dimensions to be transported together.

The simulation is carried out in discrete time steps where each step represents
a minute of operation. The three types of events that occur are actions performed
by straddle carriers, update of handover places by simulated movements caused by
upstream and downstream activities and the rolling of slabs using the predefined
rolling sequence.

Continous Caster TStorage—» Slab Yard Rolling7 Rolling Mill
Y
Qe
% Post-processing N
s, <°
5
2.

\ Processing

Aggregates

Fig. 13 Lifecycle of a slab in the cold-charge steel production process (cf. [50])

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 27

Optimization

For the optimization of the transport schedules, a unified tabu search heuristic is
used which can be applied to several routing problems and was presented for pickup
and delivery problems by Cordeau and Laporte [12]. By neighborhood exploration
it systematically improves the current solution using a tabu list to prevent cycling.
The basic neighborhood operation is moving a request to another vehicle at the best
possible insertion position. Moving back the request to the original vehicle is made
tabu for a given number of iterations.

The quality of a given schedule is evaluated with a simulation run where key values
concerning throughput and constraint violations are considered. The key values are
combined in a single quality value (cf. [50]):

quality = travelTime + shufflingTime
+ o * shufflingViolations + B * rollingViolations Q)

+ y x temporalViolations + § * capacityViolations

The objective is to maximize the total throughput and thus to minimize the total
travel and shuffling time of the straddle carriers. Constraint violations are penalized
using penalty factors which are adapted during the search process. If the current
solution is feasible, the penalty is decreased and if it is infeasible it is increased. This
allows the algorithm to move through infeasible regions of the search space.

During an iteration, a large number of possible insertion positions have to be
evaluated. Since a detailed simulation is very time-consuming a combination of a
static evaluation and a simulation evaluation is used. The full simulation is only run
for interesting insertion positions while the static evaluation serves as a lower bound.
However, the static evaluation does not consider the dynamic interactions which
include the shuffling constraints and the interactions between the straddle carriers
(locking of rows). In preliminary experiments, the best found tradeoff between run-
time and achieved quality was to evaluate the best 10 insertion positions for each
neighborhood operation using a full simulation.

Conclusion

After exporting 10 historical shifts and comparing the optimized schedule with the
schedule created by the domain expert, and by analyzing the optimized schedules,
the main bottleneck that was identified were the shuffling operations in the slab yard.
The algorithmic solution works around this problem by performing more trips to the
storage area and thus avoiding stacking and shuffling operations. The effort to create
temporary stacks, which are required when picking multiple slabs at once from the
yard, is reduced significantly. The reduction of capacity utilization is compensated
by minimizing the time traveled empty by sequencing the individual trips more
efficiently.

To tackle the main identified bottleneck of shuffling operations, an efficient storage
assignment is needed that considers the rolling schedule [28]. Also, when creating the

28 M. Affenzeller et al.

rolling schedule the current storage assignment in the slab yard should be considered
to reduce shuffling which is known as the slab stack shuffling problem [44]. In the
long term, a holistic model should be created that combines the optimization of
casting, transport, storage, and rolling due to strong interdependencies.

In terms of practical guidelines, this real-world case study has shown that bot-
tlenecks in the process can be identified by applying simulation optimization. The
optimized schedules are evaluated and compared with original schedules using a
simulation model to identify potential process improvements. When considering a
process where the individual activities are strongly interconnected, it makes sense to
create a holistic model instead of optimizing the activities independently. A possible
approach is to integrate several individual simulation and optimization models [51].

3.5 Material Flow Simulation and Layout Optimization

Problem Description

The design of manufacturing plants is a complex process where several criteria
determine the feasibility and suitability of a certain arrangement. The floor layout
contains the storage zones, paths, and workstations required to store, transport, and
process the materials into intermediate or end products. Simulating the processes on
the computer presents several insights onto the performance of the future plant and
may guide the planners’ decisions. Often, a large amount of data is available when
rearranging the internals of an existing plant which can be obtained from enterprise
resource planning (ERP) systems. In designing new plants from the ground up, some
assumptions will have to be made. A good overview of facility layout problems is
given in [13].

Simulation Model

Common to most ERP systems is the notion of a job, which is split into one or more
operations which in turn demand zero or more resources. The outcome of a job is
either an end or intermediate product which is either shipped to the customer or placed
in the company warehouse. Operations describe basic tasks and are executed in a
certain order. Operations are not limited to production tasks; they may also include
management tasks such as monitoring or coaching [6]. In a simulation model the
material flows can be calculated by taking into account the production plan, that is,
the start and processing times of the operations and their assignment to a machine.
In rearrangement tasks it is possible to rely on past data if the future outlook is
similar, but quite a large amount of data must be accommodated as the time period
can stretch over one or several years. In a busy plant this means that hundreds of
thousands operations have to be considered.

Three different kinds of flows can be identified when running a simulation model
that can later be combined to form a similarity matrix between the locations [6]:

1. A sequential flow occurs when there is a transition from one operation to the next.

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 29

SA SUIMO TU WE TH FR |SA SU| MO TU WE TH I:I 0 ti
peration
Workcenter 1 OP1 OP3 o
y P Sequential flow
L]
Workcenter 2 = | OIZZ <4=P Parallel flow
n L]
. . . === P Resource flow
Warehouse

Fig. 14 Examples of sequential, parallel, and resource flows on three operations in a job

2. A parallel flow arises when an operation starts while another operation of the same
job is still running. Parallel flows are less common than sequential flows, but they
can indicate strong collaboration if an assembly part requires the cooperation of
several work centers.

3. A resource flow occurs when an operation demands materials. This demand can
then be satisfied directly through a flow from the last operation of a producing
job or by an unknown source, typically the warehouse.

These flow types are visualized in Fig. 14. Sequential and parallel flows represent
the flows of products or intermediate products and are passed on or shared between
operations. Resource flows represent the flows of items used in the manufacturing of
the products. In a layout optimization scenario the sequential and parallel flows would
indicate a closeness due to the sequence in the manufacturing process. Resource flows
indicate requirements for buffer capacities or closeness to the storage area of which
they receive the material. However, resource flows also indicate supplier-producer
relationships within the plant.

The strength of a flow is calculated as the sum of weighted transitions between
two operations. These weights can be the occurrence or the number of materials that
are transported or a number of containers. A special case during flow simulation
also occurs in 1:N and N:1 transitions, i.e., when an operation has several possible
successors or predecessors. In such cases it is possible to specify additional data such
as process flowcharts or to either split and combine or duplicate the handling events.
An appropriate assumption depends largely on the problem scenario. It is necessary
to discuss and decide on these possibilities in the preparation stage if the strength of
the flow should be a valid approximation of the closeness between two work centers.

Optimization

The faced optimization problem here is to arrange a set of rectangular shapes R on
a flat surface G such that they lie completely within a boundary polygon P with p;
being the points of the closed polygon. The problem further contains the set B of
fixed blocks, which are immobile locations in the layout. Each shape in R represents a
work center and is specified by the location of the center coordinates, the dimensions
of the rectangle, and a rotation, e.g., in 90° intervals. Each shape in B is specified
by the lower left and upper right points. Finally, the matrix F specifying the flow
strength is given as a N x N matrix with N = |R|. Elements of this matrix are called
fij and denote the strength of the flow from i to j.

30 M. Affenzeller et al.

A solution to this problem specifies the location as x and y position, the width
w, and rotation of each shape in R. The solution thus can be encoded in the form
of multiple vectors of integer values if G is assumed to be discrete. Two vectors x
and y encode the location on the plane, one vector w denotes the width—the area A;
remains fixed, so the height is given as %, and the last vector denotes the rotation
®. The distance matrix D with elements d;; between all shapes i, j € R represents
the shortest Manhattan-distance between the rectangles’ edges.

The main fitness characteristic, the flow-distance-fitness Qo is defined as

N N
Ofiow = z Zdij * fij @)

i=1 j=1I

The second fitness characteristic, the relayouting costs Q ejayour, T€present the
costs of transforming the given layout into the optimized layout. For this purpose
each shape i € R can be attributed with a movement cost mm; that depends on
the distance that the shape is moved as well as a fixed cost ms;, e.g., for packing
and unpacking or calibration. For this purpose a vector of transition distances #;
is calculated that contains the Manhattan-distance between initial and optimized
location.

N
Qrelayout = in * (ms; +mm; x t;) 3)

i=1

where x; is a decision variable that is 1 if #; > 0 and O otherwise.

Constraints can be modeled as a penalty that is added to each evaluated layout.
The first penalty Coyeriqp deals with the constraint of nonoverlapping elements; this
can occur frequently as an element’s location is modified in a manner that does not
consider feasibility. The second penalty Cpoundary puts a penalty on shapes that lie at
least partly outside P by summing the area that falls beyond the boundary weighted
with the distance to the boundary. The third constraint Cgjsnce 1S Violated when the
distance of two shapes is smaller or larger than the bounds specified on their mutual
distance. The last constraint Cygpec; adds a penalty to solutions in which the aspect
ratio of the shape is outside the given bound. The fitness value is then computed as
weighted sum of the qualities and constraints as formulated by

fitness = ay * Qﬂow + o * Qrelayout
+ o3 * C()verlap + ag * Cboundary + a5 * Cgistance + 06 * Caspect 4

Conclusions

Optimizing such a layout presents many alternatives into possible rearrangements
with a strong influence of the connectedness between work centers. The layouts
solved by the current model do not lead to immediate practical layouts, as many
real-world issues, such as infrastructure connections, security, social, and legal

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 31

Fig. 15 Schematic picture
of the electric cart system i m
Cmm -
B 4 %
W, Q —r
” Me.f
U ;
u ' %ﬂﬁi\
‘ U H Mz
(YaRor

requirements are not taken into account. Still, in a planning process together with
a human planner starting points can be identified and good arrangements may be
found that have not been thought of before.

3.6 Parameter Optimization of Continuous
Simulation Models

Problem Description

Parameter identification in this context refers to the identification of the best possible
parameter values of a simulation model: A simulation model has to be adapted to
the concrete circumstances of the modeled system in order to match the real-world
as exactly as possible. If this adaptations were not performed, the whole effort of
creating the simulation model would be pointless because its predictions would be
inaccurate. For example, the friction coefficients of a cart vary depending on the
surface it is moved on and have to be adapted in the according simulation model.
The only prerequisite of this parameter optimization approach is that the structure
of the simulation model has to match the system which is modeled since otherwise,
regardless of the effort used for parameter optimization, an adaptation to the real
system would certainly fail.

Simulation Model

As a reference application we here consider the well-known cart system with an
electric motor, where the vehicle mass m 1, the linear friction coefficient d;, and the
static friction coefficient F- are unknown but constant. The simulation model is
implemented in Scilab/XCos with the three free parameters m1, d; and F¢, which
have to be identified based on a known current U4 and measurements of the position
x of the cart. Figure 15 schematically shows the electric motor and the corresponding
differential equations of the continuous simulation model are displayed below.

32 M. Affenzeller et al.

X =x

. d 1 . km - .
V=——-v— — . Fc-sign(v) + — - IA

m m r-m

. km - n Ra . ua

A = — V= =1 T
m:m1+JA'(—)

,

Furthermore, a simulation model of a simplified cart system and of a cart with a
pendulum attached were used to test the suitability of the approach.

Optimization

In the context of parameter optimization, HeuristicLab is used to identify to parame-
ter values of continuous simulation models which are implemented in Scilab/Xcos.
Therefore, a generic coupling between HeuristicLab and Scilab has been imple-
mented (Sect.2.3.1) that allows the execution of arbitrary Scilab scripts. When a
parameter optimization problem for simulation models should be solved, the script
is responsible for executing the simulation model with suggested parameter values
and calculating a quality value. The quality value expresses the accordance between
the results of the simulation model with the currently used parameter values and the
observed measurements in the real-world. Most of the times the sum of the squared
errors at predefined time steps is calculated and used as quality value.

Every algorithm which is able to handle real-vector encoded problems could be
used to solve this parameter optimization problem for continuous simulation models.
HeuristicLab provides several algorithms which are suitable for this task: Genetic
algorithms, evolution strategies, simulated annealing, etc. However, it was observed
that the best results regarding solution quality, convergence speed, and robustness
were obtained using the covariance matrix adaptation evolution strategy (CMA-
ES) [21].

Conclusion

The presented approach for parameter identification has the great advantage that no
information about the simulation model is needed, as the only information exchanged
is a parameter vector generated by the optimization algorithm and its according
quality value calculated by the simulation model. Therefore, a whole new range of
optimization algorithms become applicable and one can refrain from implementing
parameter optimization algorithms anew.

3.7 Electric Power System Optimization with Policy Functions

Problem Description

The electric power systems research society early identified the necessity of opti-
mization both for planning and operation tasks, formulations such as the optimal
power flow (OPF) problem shape this research domain ever since [33]. At the same

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 33

time, technological changes to electric power grids challenge new methods, requiring
optimization in both dynamic as well as uncertain systems. In this context, heuristic
optimization methods have evolved which are capable of managing many of those
upcoming needs. Simulation optimization with metaheuristics provides a promis-
ing ground for handling uncertain dynamic problems, which makes it attractive to
dynamic stochastic optimal power flow (DSOPF) issues [22, 23].

Such multi-period considerations (i.e., dynamic problem formulations) are often
necessary for control issues [42, 46, 47], where optimal decisions have to be made
over time while satisfying constraints robustly under stochastic conditions. Espe-
cially in future smart electric grids, among others the control of huge amounts of
distributed devices (e.g., for the sake of load control) is a crucial challenge. Here,
the optimal control of electric vehicles’ charging processes has been identified as
one of the hot spots in actual smart grids research. It can be formulated as a DSOPF
problem and shall here be considered as an exemplary case.

The main idea of controlled charging is that some kind of central or decentral
control influences the individual charging behavior of each single electric vehicle
(EV) within a given fleet. Common objectives are system-wide peak-load avoid-
ance, correlated charging with renewable supply, and in general the protection of
existing distribution grid equipment. Such charging control decisions would need to
be derived online (e.g., when an EV reaches a charging infrastructure) through con-
sideration of the system’s actual state (e.g. the EV’s actual battery state-of-charge, the
power grid condition, or the current supply from solar/wind power plants). Hence,
similar to the approach of priority-rule optimization, a general function is needed
that provides (near-) optimal charging decisions at runtime.

This is the aim of so-called policy function approximation, where an analytic
function shall be identified that returns a control decision given a state without the
need for embedded optimization. As demonstrated in detail in [23], such a policy
function can be approximated using simulation-based metaheuristic optimization.

Simulation Model

Charging control decisions need to consider the power grid’s point of view on the one
hand (e.g., for avoidance of peak load values, satisfaction of secure power grid opera-
tion), but additionally have to satisfy the end-users’ needs (recharge the needed energy
for the next tour). While especially in modern considerations the uncertain supply
provided by wind and solar power plants has to be included into load-control for-
mulations, the resulting simulation model needs to contain three parts: the load flow
simulation for deriving the grid’s physical state, the traffic simulation that mimics the
users’ EV usage, and finally the renewable supply simulation that probabilistically
describes the uncertain power injection from solar or wind power plants.

In order to derive a valid charging control decision from a given state, a policy
function has to consider information from all parts and finally derive the resulting
real-valued charging power for the respective EV. This principle is shown in detail
in Fig. 16.

While EV-specific parameters concern the EV’s driving behavior and charging
demand, including its residence time at the actual charging station or its likelihood

34 M. Affenzeller et al.

Agent/EV
— 18] | —
Residence Period
T -
Charging
T Control Decision
Policy Function
Eavifonient Global Local Agent-Specific
Parameters Parameters Parameters

Fig. 16 Principle of policy function based control and simulation

of getting parked at another charging spot later on, local parameters also consider
other EVs immediately affecting the local situation in the power grid. For example,
if the power grid is stressed locally because of a high amount of EVs charging at
the same grid node, their charging power may has to be reduced in the next time
step in order to avoid critical power flow conditions. Finally, global parameters
consider information describing the entire system’s state, such as the total load to the
distribution grid, total expected supply provided by renewable sources, and financial
aspects considering costs of electrical power supply. Of these information entities,
the policy function finally derives the approximate optimal charging decision for a
given EV at a defined time step. While the mentioned parameters deliver specific
information for each EV, the same policy function can be applied for all EVs in a
fleet and still lead to individual decisions.

Optimization

In order to find such policy functions, genetic programming (GP) provides a fruitful
method for function approximation that does not need a-priori knowledge on the
aspired mathematical function, but only has to know the input variables (parame-
ters as given above) as well as a specific grammar for combining them. Applying a
metaheuristic search process (based on a genetic algorithm), GP searches for high-
performance policies within a space of analytic functions. Similar to the application
of priority rule optimization in the job dispatching example described in the previ-
ous section, formula trees are evolved by GP where leafs represent input variables
describing the system’s state (parameters as given in Fig. 16) that are combined by
given mathematical operators incorporated by inner nodes. This kind of solution
representation allows the evolution of arbitrary analytic functions without knowing
their structure beforehand, which overcomes a severe restriction of existing works
on policy function approximation in the literature.

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 35

Conclusion

Dynamic optimization with policy functions has the great advantage that it avoids
the necessity for computing a specific solution to each state the dynamic system
exhibits over time. Instead, an approximate optimal function is optimized offline
that takes a system’s state and returns control actions online. Unifying this approach
with simulation optimization, the treatment of both dynamic and uncertain problems
is enabled. Furthermore, the usage of GP for function approximation avoids the
need for defining a function’s structure beforehand, and thus overcomes a major
shortcoming of policy function approximation described in the literature. While we
consider here the application of EV charging control as in [23], the same methodology
has been applied successfully to applications such as generation unit scheduling in
power grids [24].

4 Conclusion

The fruitful combination of simulation and optimization provides mutual benefits
for each field. On the one hand simulation engineers are able to improve their mod-
els using optimized parameters. On the other hand, optimization experts are able to
model systems that are much closer to the real-world. Yet, often the initiating part
in simulation-based optimization is the solver with the simulator being merely an
evaluation function. However, a growing number of cases emerge where simulation
will be used to describe optimization in dynamic environments. These cases are
highly interesting from the point of view of optimization as it creates a setup that is
much closer to real-world applicability. As in the simulated environment, optimiza-
tion algorithms in live systems have to deal with changing conditions, uncertainty
about the future, and have to make one decision at a time. In the future it will become
more and more interesting to study and improve these algorithms using simulated
environments.

Interfacing between simulation and optimization has also been a topic that was
much discussed. Interprocess communication and different programming languages
provide technical difficulties. We have described specific as well as generic inter-
faces that can be used to overcome these difficulties and allow exchanging candidate
solution data as well as a quality feedback. We have motivated how the HeuristicLab
architecture is highly suited for these tasks and given more insight into the implemen-
tation of these interfaces. The topic of integrated simulation and optimization has
also been discussed and is highly relevant for future activities. In several real-world
examples we have aimed to describe successful applications that may be interesting
and motivating to do further research. These examples can also be seen as guidelines
for a generic approach in simulation-based optimization.

Due to the steady increase of available parallel computing resources, the authors
are convinced that the simulation-based optimization approach has high potential
to model interrelated decision situations, leading again to a more holistic view of
production and logistics optimization. The emerging fields internet of things and
cyber-physical systems, which are a matter of recent research in production and

36 M. Affenzeller et al.

logistics optimization, are expected to benefit from the availability of such enhanced
simulation optimization approaches in the future.

Acknowledgments Part of the work described in this chapter were sponsored by the European
Regional Development Fund and by Upper Austrian public funds (within the the Regio 13 program
- project 4EMobility), by the Austrian Research Promotion Agency (FFG) (within the the Josef
Ressel Centre for Heuristic Optimization, the project “NPR” #829679, and the K-project “HOPL”
#843532), by the University of Applied Sciences Upper Austria (within the basic research program),
and by the seventh framework programme (within the project BioBoost). HeuristicLab is developed
by the Heuristic and Evolutionary Algorithm Laboratory and can be downloaded from the official
HeuristicLab homepage http://dev.heuristiclab.com.

References

1. M. Affenzeller and S. Wagner. Offspring selection: A new self-adaptive selection scheme for
genetic algorithms. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C.
Steele, editors, Adaptive and Natural Computing Algorithms, Springer Computer Series, pages
218-221. Springer, 2005.

2. M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and Genetic Pro-
gramming - Modern Concepts and Practical Applications. Numerical Insights. CRC Press,
2009.

3. S. Albers. Better bounds for scheduling. STAM Journal on Computing, 29(2):459-473, 1999.

4. W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming: An Introduction.
Morgan Kaufmann, 1998.

5. A. Beham, M. Kofler, S. Wagner, M. Affenzeller, H. Heiss, and M. Vorderwinkler. Enhanced
priority rule synthesis with waiting conditions. In 22nd European Modeling and Simulation
Symposium EMSS 2010, 2010.

6. A. Beham, M. Kofler, S. Wagner, M. Affenzeller, and W. Puchner. Using erp-driven flow
analysis to optimize a constrained facility layout problem. In 22nd European Modeling and
Simulation Symposium EMSS 2010, pages 71-76, 2010.

7. A. Beham, G. K. Kronberger, J. Karder, M. Kommenda, A. Scheibenpflug, S. Wagner, and
M. Affenzeller. Integrated simulation and optimization in heuristiclab. In Proceedings of the
26th European Modeling and Simulation Symposium EMSS 2014, Bordeaux, France, Septem-
ber 2014.

8. A. Beham, E. Pitzer, S. Wagner, M. Affenzeller, K. Altendorfer, T. Felberbauer, and M. Bick.
Integration of flexible interfaces in optimization software frameworks for simulation-based
optimization. In Companion Publication of the 2012 Genetic and Evolutionary Computation
Conference, GECCO’12 Companion, pages 125-132, Philadelphia, PA, USA, July 2012.

9. W. Bell, L. Dalberto, M. Fisher, A. Greenfield, R. Jaikumar, P. Kedia, R. Mack, and P. Prutz-
man. Improving the distribution of industrial gases with an online computerized routing and
scheduling optimizer. Interfaces, 13:4-23, 1983.

10. H.-G. Beyer and H.-P. Schwefel. Evolution strategies - A comprehensive introduction. Natural
Computing, 1(1):3-52, March 2002.

11. Y. Carson and A. Maria. Simulation optimization: methods and applications. In Proceedings
of the 29th conference on Winter simulation, pages 118—126. IEEE Computer Society, 1997.

12. J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological, 37(6):579-594, 2003.

13. A.Drira, H. Pierreval, and S. Hajri-Gabouj. Facility layout problems: A survey. Annual Reviews
in Control, 31(2):255-267, 2007.

14. Eurostat, European Union. Nomenclature of territorial units for statistics.

http://dev.heuristiclab.com

Simulation-Based Optimization with HeuristicLab: Practical Guidelines ... 37

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.
38.

G. Evans. International biofuels strategy project. liquid transport biofuels - technology status
report, nnfcc 08-017. Technical report, National Non-Food Crops Centre, 2008.

M. Fu, F. Glover, and J. April. Simulation optimization: A review, new developments, and
applications. In Proceedings of the 2005 Winter Simulation Conference, pages 83-95, 2005.
M. C. Fu. Optimization for simulation: Theory vs. practice. INFORMS J. on Computing,
14(3):192-215, Summer 2002.

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2):117-129, May 1976.

F. Glover. Tabu search — part I. ORSA Journal on Computing, 1(3):190-206, 1989.

A. Gosavi. Simulation-based optimization: parametric optimization techniques and reinforce-
ment learning, volume 25. Springer, 2003.

N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano, P. Larranaga,
I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on
estimation of distribution algorithms, pages 75—102. Springer, 2006.

S. Hutterer and M. Affenzeller. Probabilistic electric vehicle charging optimized with genetic
algorithms and a two-stage sampling scheme. International Journal of Energy Optimization
and Engineering, 2:1-15, 2013.

S. Hutterer, M. Affenzeller, and F. Auinger. Evolutionary computation enabled controlled
charging for e-mobility aggregators. In Proceedings of the IEEE Symposium Series on Com-
putational Intelligence, Workshop on Computational Intelligence Applications in Smart Grid
(IEEE CIASG 2013, pages 115-121, 2013.

S. Hutterer, S. Vonolfen, and M. Affenzeller. Genetic programming enabled evolution of control
policies for dynamic stochastic optimal power flow. In Companion Publication of the 2013
Genetic and Evolutionary Computation Conference, pages 1529-1536, 2013.

O. R. Inderwildi and D. A. King. Quo vadis biofuels? Energy Environ. Sci., 2:343-346, 2009.
J. Kennedy and R. C. Eberhardt. Particle swarm optimization. In Proceedings of the 1995
IEEE International Conference on Neural Networks, volume 4, pages 1942—1948. IEEE Press,
1995.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671-680, 1983.

M. Kofler, A. Beham, S. Vonolfen, S. Wagner, and M. Affenzeller. Modelling and optimizing
storage assignment in a steel slab yard. In Proceedings of the 4th IEEE International Symposium
on Logistics and Industrial Informatics (LINDI 2013), pages 101-106, Smolenice, Slovakia,
September 2012.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

A. M. Law. Simulation Modeling and Analysis. McGraw-Hill, 2007.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 3rd
edition, 1999.

N. Moin and S. Salhi. Inventory routing problems: a logistical overview. Journal of the
Operational Research Society, 58:1185-1194, 2007.

J. Momoh. Electric Power System Applications of Optimization. CRC / Taylor & Francis,
2009.

S.S. Panwalkar and W. Iskander. A survey of scheduling rules. Operations Research,25(1):45—
61, Jan-Feb 1977.

J. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez. Metaheuristic optimization frameworks:
a survey and benchmarking. Soft Computing, 16(3):527-561, 2012.

V. Pillac, C. Guéret, and A. L. Medaglia. An event-driven optimization framework for dynamic
vehicle routing. Decision Support Systems, 2012.

M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice-Hall, 1995.

E. Pitzer, A. Beham, M. Affenzeller, H. Heiss, and M. Vorderwinkler. Production fine plan-
ning using a solution archive of priority rules. In Proceedings of the IEEE 3rd International
Symposium on Logistics and Industrial Informatics (Lindi 2011), pages 111-116, Budapest,
Hungary, August 2011.

38

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

M. Affenzeller et al.

. i. Rawles. The WITNESS toolbox - A tutorial. In D. Medeiros, E. Watson, J. Carson, and

M. Manivannan, editors, Proceedings of the 1998 Winter Simulation Conference, pages 223—
226, 1998.

I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Frommann-Holzboog, 1973.

D. Sadowski and V. Bapat. The Arena product family: Enterprise modeling solutions. In
P. Farrington, H. Nembhard, D. Sturrock, and G. Evans, editors, Proceedings of the 1999
Winter Simulation Conference, pages 159—-166, 1999.

E. Sortomme, M. M. Hindi, S. D. J. McPherson, and M. Venkata. Coordinated charging of
plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Transactions on
Smart Grid, 2:198-205, 2011.

L.Tang,J. Liu, A.Rong, and Z. Yang. A review of planning and scheduling systems and methods
for integrated steel production. European Journal of Operational Research, 133(1):1-20,2001.
L. Tang, J. Liu, A. Rong, and Z. Yang. Modelling and a genetic algorithm solution for the slab
stack shuffling problem when implementing steel rolling schedules. International Journal of
Production Research, 40(7):1583-1595, 2002.

E. Tekin and I. Sabuncuoglu. Simulation optimization: A comprehensive review on theory and
applications. IIE Transactions, 36(11):1067-1081, 2004.

G. K. Venayagamoorthy. Dynamic, stochastic, computational, and scalable technologies for
smart grids. IEEE Computational Intelligence Magazine, 6:22-35, 2011.

J. G. Vlachogiannis. Probabilistic constrained load flow considering integration of wind power
generation and electric vehicles. IEEE Transactions on Power Systems, 24:1808-1817, 2009.
S. Vonolfen, M. Affenzeller, A. Beham, E. Lengauer, and S. Wagner. Simulation-based evo-
lution of resupply and routing policies in rich vendor-managed inventory scenarios. Central
European Journal of Operations Research, 21(2):379-400, March 2013.

S. Vonolfen, M. Affenzeller, A. Beham, S. Wagner, and E. Lengauer. Simulation-based evolu-
tion of municipal glass-waste collection strategies utilizing electric trucks. In Proceedings of
the IEEE 3rd International Symposium on Logistics and Industrial Informatics (Lindi 2011),
pages 177-182, August 2011.

S. Vonolfen, A. Beham, M. Kofler, M. Affenzeller, and K. Dorner. Simulation-based optimiza-
tion of transport activities within cold charge steel production. In Proceedings of the 5th IEEE
International Symposium on Logistics and Industrial Informatics (LINDI 2013), pages 6773,
Wildau, Germany, September 2013.

S. Vonolfen, M. Kofler, A. Beham, M. Affenzeller, and W. Achleitner. Optimizing assembly line
supply by integrating warehouse picking and forklift routing using simulation. In Proceedings
of the Winter Simulation Conference, page 339. Winter Simulation Conference, 2012.

S. Wagner. Heuristic Optimization Software Systems - Modeling of Heuristic Optimization
Algorithms in the HeuristicLab Software Environment. PhD thesis, Johannes Kepler University,
Linz, Austria, 2009.

S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S. Vonolfen,
M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. Advanced Methods and Applications in
Computational Intelligence, volume 6 of Topics in Intelligent Engineering and Informatics,
chapter Architecture and Design of the HeuristicLab Optimization Environment, pages 197—
261. Springer, 2014.

S. Wagner, G. Kronberger, A. Beham, S. Winkler, and M. Affenzeller. Modeling of heuris-
tic optimization algorithms. In Proceedings of the 20th European Modeling and Simulation
Symposium, pages 106—111. DIPTEM University of Genova, 2008.

S. Wagner, S. Winkler, R. Braune, G. Kronberger, A. Beham, and M. Affenzeller. Benefits
of plugin-based heuristic optimization software systems. In R. Moreno-Diaz, F. Pichler, and
A. Quesada-Arencibia, editors, Computer Aided Systems Theory - EUROCAST 2007, volume
4739 of Lecture Notes in Computer Science, pages 747-754. Springer, 2007.

M. Waller, M. Johnson, and T. Davis. Vendor-management inventory in the retail supply chain.
Journal of Business Logistics, 20:181-203, 1999.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67-82, 1997.

Simulation Optimization Approach
to Solve a Complex Multi-objective
Redundancy Allocation Problem

Carlos Henrique Mariano and Carlo Alessandro Zanetti Pece

Abstract This chapter addresses the problem of redundancy and reliability allocation
in the operational dimensioning of an automated production system. The aim of this
research is to improve the global reliability of the system by allocating alterna-
tive components (redundancies) that are associated in parallel with each original
component. By considering a complex componential approach that simultaneously
evaluates the interrelations among subsystems, conflicting goals, and variables of
different natures, a solution for the problem is proposed through a multi-objective
formulation that joins a multi-objective elitist genetic algorithm with a high-level
simulation environment also known as simulation optimization (SIMO) framework.

1 Introduction

The simulation/optimization framework (SIMO) is an iterative and stochastic
technique for generating multiple optimization scenarios where the optimization
process occurs simultaneously with system simulation analysis. In general, there are
two approaches to SIMO framework. On the first the simulation process is used as
a validation tool or test for the effectiveness of any optimization method as seen
in [9, 32, 46]. The second presents an optimization process through the simulation
applied to the resolution of a complex problem as we see in the texts [22, 36, 44].

The whole process can be summarized in two questions. What happens if? and
How do I get? The first is applicable to the analysis of multiple simulation possibil-
ities or scenarios. The second is applicable to optimization analysis, where we can
maximize or minimize important criteria or objectives to streamline the effectiveness
of the system [30].

C.H. Mariano ()

Department of Electrical Engineering - DAELT, Federal Technological
University of Parand - UTFPR, Curitiba, PR, Brazil

e-mail: mariano @utfpr.edu.br

C.AZ. Pece
Department of Electrical Engineering - DAELT - Postgraduate Program in Biomedical
Engineering, Federal Technological University of Parana - UTFPR, Curitiba, PR, Brazil

© Springer International Publishing Switzerland 2015 39
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_2

40 C.H. Mariano and C.A.Z. Pece

2 Considerations About the Process

In this chapter, the idealized case under consideration assumes the existence of an
automated system characterized by an operational scenario (e.g., machine configu-
ration, maintainers, costs, and individual reliabilities). To obtain an optimal scenario
by considering the inherent analytical difficulties, random factors, and conflicting
multiple objectives, a simulative process combined with an optimization process is
proposed.

This process makes intensive use of computational power and can be defined as
an iterative stochastic technique also known as simulation optimization framework.
The technique generates multiple operational scenarios and those that best meet
the problem objectives and constraints are chosen. A generation of new operational
scenarios is evaluated after each iteration and, after many iterations, a set of scenarios
and solutions can be selected from many possible combinations. The evaluation
process starts at the simulator. In the idealized automated system—a discrete complex
system—the following relationships are observed:

(1) Nonlinear relationships;

(2) Relationships with feedback loops;

(3) Interchanged relationships (input/output) with the environment;

(4) Past-state dependent relationship;

(5) Concatenated relationships; and

(6) Relationships consisting of different types of variables with different natures.

The modeling of such a system requires an appropriate simulation environment.
Among the several options available, the ARENA commercial simulation software
was chosen because it is oriented to discrete events. The present study adopted a
variant of the simulation optimization process, where the simulator is the core of the
process [1]. Due to the high dimensional aspect and complexity of the system, it is
virtually impossible to represent it as a single optimization function (conventional
case). Therefore, the simulation model enables representation of complex system
relationships.

In this variant of the simulation optimization process, system performance is
tested by using indicators and variables captured from the simulation model [1, 37].
Thus, the simulator produces inputs required by the optimizer to guide the selection
of the operational scenarios (solutions) that best fit the objectives and constraints of
the problem.

The term “optimization”, which is commonly used in the computer science field,
is used broadly in this chapter. Optimization can be defined as an iterative process
of global search, where the optimum is approximated through stochastic processes.

The elitist multi-objective genetic algorithm (MOGA) that was chosen for the
present study is the NSGA-II (Nondominated Sorting Genetic Algorithm II), whose
ordination principle is based on the notion of Pareto dominance [6, 7]. In this algo-
rithm, the simulation optimization process is completed once a set of optimal Pareto
solutions is obtained.

Simulation Optimization Approach to Solve a Complex ... 41

In addition to the optimal Pareto set, a procedure to aggregate quantitative and
qualitative information is necessary to determine the best solution. The qualitative
information usually reflects the opinion of the specialists involved in system opera-
tion and maintenance. The quantitative information is obtained from technical and
administrative specifications [5].

3 Some Aspects of Simulation Model

It is worth highlighting the stochastic nature of the simulation model. This character-
istic is the basis of the main argument of this study, particularly the unlikelihood of
building a single function that represents all of the stochastic system relationships.
Therefore, this study proposes a different approach. Significant random aspects of
the model, such as the failure and repair process, the loss of machine production
speeds after a certain number of failures have occurred, and the processing of lines
produced in the machines, are ruled by several variables:

(1) Machine operating time;

(2) Waiting time for a part;

(3) Waiting time for another operation;
(4) Machine failure time; and

(5) Machine repair time.

The events related with failure and repairs of each machine or robot were exponen-
tially distributed with different means. Exponential distributions feature risk func-
tions with constant failure rates throughout the life span of the system. Therefore,
they are frequently used to represent failure or repair of complex systems. Differ-
ent times for scheduled maintenance inspection (preventive) were assigned to each
machine. Such times depend on the particular type of inspection, which is determined
by a certain number of parts produced.

The topology and assignment of values in the simulation model are extremely
dependent on the experience of the modeler. Consequently, a detailed description of
the simulation model used in this study would be lengthy and beyond the scope and
purpose of this paper.

The automatized system adopted and represented by the idealized case under
consideration is discrete. The approach for this type of system requires specific
languages and modeling tools. In the present study, Petri networks were adopted to
specify the conceptual model of the production process.

The Petri conceptual model facilitated the planning of all involved operations and
clearly established system transitions and operations. The model also allowed visual
and facilitated changes to be made in the simulation model and defined hierarchies
in the sequences of operations.

The advantage of this method, as compared with other existing methods, is that its
formalism is based on a simplified graphic model with few syntactic rules [28, 31, 33].
Another interesting characteristic of the Petri model is that its logical development

42 C.H. Mariano and C.A.Z. Pece

resembles the block-oriented programming logic of current simulation environments
such as ARENA, PROMODEL, and SIMULS.

It is worth highlighting the stochastic nature of the simulation model. This char-
acteristic is the basis of the main argument of this study, particularly the unlikelihood
of building a single function that represents all of the stochastic system relationships.
Therefore, this paper proposes a different approach. Significant random aspects of
the model, such as the failure and repair process, the loss of machine production
speeds after a certain number of failures have occurred, and the processing of lines
produced in the machines, are ruled by several variables:

Machine operating time;

Waiting time for a part;

Waiting time for another operation;
Machine failure time; and
Machine repair time.

The events related with failure and repairs of each machine or robot were exponen-
tially distributed with different means. Exponential distributions feature risk func-
tions with constant failure rates throughout the life span of the system. Therefore,
they are frequently used to represent failure or repair of complex systems. Differ-
ent times for scheduled maintenance inspection (preventive) were assigned to each
machine. Such times depend on the particular type of inspection, which is determined
by a certain number of parts produced.

The topology and assignment of values in the simulation model are extremely
dependent on the experience of the modeler. Consequently, a detailed description of
the simulation model used in this study would be lengthy and beyond the scope and
purpose of this chapter.

4 Multi-objective Optimization Models

A multi-objective optimization model strives to minimize or maximize a group of
functions that are usually in mutual conflict. The existence of multiple objective
functions suggests a fundamental difference between multi-objective and mono-
objective optimizations. Therefore, there is no one single solution to the problem,
but a cluster of solutions that invoke different compromises among the values of the
functions to be optimized. Within a set of efficient solutions, the desired solution
is one that exhibits the best compromise for the objectives (e.g., Pareto-optimal
and nondominated solutions). The identification of the best compromise solution
requires that the decision-maker establish a preference because many objectives are
not only in conflict with each other but also represent different phenomena described
by deterministic and stochastic mathematical functions.

The classic multi-objective optimization methods, according to [8] and [5], can
be divided into two categories: complete enumeration methods and preference-based
methods. The former category presents a full group of nondominated solutions to

Simulation Optimization Approach to Solve a Complex ... 43

the decision-maker, which allows him to choose the solution that best suits his goals.
The latter category is based on choosing a solution that offers the best compromise
from a group of nondominated solutions, through the use of an explicit or implicit
criterion. Such compromises indicate that the solution must simultaneously satisfy
the analytical functions of the objectives and the degrees of preference established
by the decision-maker. Deb [5] presents another classification that also divides the
methods into two categories: preference and nonpreference. Deb [5] expands the
preference-based methods into three subcategories: posteriori selection methods,
priori methods, and interactive methods. The following is a list of distinct preference-
based methods:

a. Weighted sum method;

b. Utility function method;

Constraint method—€ (where € is the upper limit of the scenario function
inserted as a constraint to the problem);

Weighted metrics method;

Benson’s method;

Value function method;

Goal programming method;

Pareto method; and

Lexicographic method.

°©

- 50 -o o

The natural complexity inherent to multi-objective optimization problems poses a
challenge to exact algorithms.! For this reason, evolutionary algorithms are becoming
increasingly popular as robust and effective methods to solve single- and multi-
objective optimization problems [4].

The operation of Evolutionary Algorithms (EA) is based on the simulation of
natural evolution [11]. The EA use an iterative technique that applies stochastic
operators to a group of individuals (population) to improve their levels of adaptation
to the problem, performance, or fitness. In most applications, this measure is related
to the objective functions of the problem being considered.

Multi-objective evolutionary algorithms (MOEA) are capable of treating multi-
ple objectives naturally because they operate naturally in parallel on the group of
solutions and develop a set of solutions similar to the Pareto boundary or frontier at
each execution [5]. Such characteristics allow MOEA to approach problems with a
large solution space.

According to Nesmachnow [29], MOEA exhibit two special operators that do not
appear in the generic structure of EAs: a diversity operator and a fitness attribut-
ion operator. The diversity operator represents a technique used to avoid premature
convergence to a sector of the Pareto boundary (e.g., niche, fitness, sharing, and
crowding) and assess diversity. The fitness attribution operator is aimed at ensuring
the permanence of individuals with the best characteristics for future generations by
considering the values of the objective functions and the results of the metrics.

! Enumerative local search algorithms based on gradients or that use standard techniques of deter-
ministic programming, such as greedy algorithms, or branch and bound techniques [14, 29].

44 C.H. Mariano and C.A.Z. Pece

For these reasons above, the MOEA are very suitable to apply in the majority
of actual optimization problems in engineering. In recent decades multi-objective
optimization models have gained a crescent acceptance for multiple applications in
various areas of engineering, Coello and Lamont [4], Zio and Zille [48], Cunkas [25],
Zhuo et al. [47], Tian et al. [42], Tzu-Chieh and Kuei-Yuan [43]. The difficulty in
these cases lies in representing the complex interrelations contained in such systems,
as reported by the following authors below, which are better defined on high-level
simulation environment:

Mattila and Virtanen [23]—Airplane maintenance workshop—To maximize the
availability of airplanes to ensure fleet operation capability, while minimizing the
disparity between scheduled and nonscheduled maintenance operations.

Merkuryeva and Napalkowa [26]—Supply/logistics chain—To minimize total
average cost corresponding to the total cost of storage, production, and procurement
and maximize customer service satisfaction.

Hani et al. [10]—Train maintenance workshop—To maximize the production rate
represented by the number of vehicles that leave the workshop per year, minimize
the waiting time of vehicles, and the occupation rate of maintainers in the different
groups.

5 Reliability Optimization—Redundancy Allocation
Problem to Improve System Reliability—A Review

Analysis of the reliability of engineering systems, particularly industrial systems, can
be performed by two ways: by the classical/binary approach, where, according to
[2], a system subjected to failure can assume only two different states, total standstill
or fully functional. And the multistate approach, where, according to [21], a system
might assume several states between fully functional and total failure.

The multistate approach better describes actual systems because they are subjected
to a series of factors that diminish their life span [21]. The occurrence of failure in
such systems may not necessarily cause complete standstill of the activity despite
the increasing tendency for such standstill.

Whether the approach adopted for the analysis and optimization of the reliability
of a system is binary or multistate, the optimization techniques are typically classified
by the following four methods [17, 18]:

1. Redundancy allocation (RAP)—where the decision variables represent the num-
ber of redundancies;

2. Reliability allocation—in this case, the decision variables are the reliabilities of
the components or subsystems;

3. Redundancy/reliability allocation—the decision variables are a combination of
the number of redundancies and reliabilities of the components or subsystems;
and

4. Components or subsystems allocation—where the system configuration (com-
ponent arrangement) represents the decision variables.

Simulation Optimization Approach to Solve a Complex ... 45

Redundancy allocation problems (RAP) are problems related to the search for
specific combinations of alternative components that, when properly associated with
the components whose reliabilities needs to be improved, enhance the global relia-
bility of the system. Their nature is eminently combinatorial; they can be considered
to be nonlinear mixed integer programming problems or a special case of integer
programming, and they can be solved by the traditional cut or search methods, or by
a combination of both, as presented by Jianping and Xishen [12], Misra and Sharma
[27]. The problems are usually solved by mono- or multi-objective formulations
and, more recently, exploration of multilevel and multistate RAP has been observed,
as presented by [16, 41, 45]. Consequently, these problems have become a focus
of many studies, which adds an even greater degree of complexity to traditional
problems.

The use of RAP-solving methods such as algorithm-hybridization processes,
which combine heuristic methods, neuronal networks, fuzzy techniques, and local
search methods with metaheuristic types, are increasing. The processes are utilized
alone to improve computational efficiency or with exact methods to reduce the search
space. Their use creates the potential for combining two metaheuristics, annealing-
genetic (AG) algorithms and simulated annealing, as indicated by [3, 13, 15, 18, 19,
24, 35, 39].

EA exhibit interesting characteristics that enable them to manage RAP in mono-
objective, multi-objective, and multilevel formulations. They can control noncontin-
uous, nonconvex, and/or nonlinear spaces, as well as unknown objective functions.
Although genetic algorithms are frequently used, current RAP-solving is moving
toward the application of EA that differ from genetic algorithms, as presented by
Salazar et al. [34], Taboada and Coit [38], Lins and Droguett [20], Taboada et al. [40].

To test the algorithms applied to multi-objective RAP-solving, a general formula-
tion s utilized that maximizes the reliability of the system, minimizes costs associated
with the allocation of components, minimizes the weight and volume of the system,
and itis subjected to constraints in cost, volume, weight, number of components to be
allocated, and system reliability limits. Mathematically, this formulation is depicted
in Fig. 1
where

m—number of subsystems or stages

i—subsystem index, i = 1,2,...,m

Jj—index of the components of each subsystem, j = 1,2,...,n
rijj—reliability of component j in subsystem i

¢;j—cost of component j in subsystem i

w;i—weight of component j in subsystem i

R;—total reliability of the parallel-series system

C;—total cost of the parallel-series system

W—total weight of the parallel-series system

C,—allowed system cost

W ,—allowed system weight

a;—number of component choices available for subsystem i

46

Fig. 1 RAP—general
multi-objective formulation

C.H. Mariano and C.A.Z. Pece

Max Rs= ﬁ(l—]ﬂ[(l—rg)""f)

=1 j=1

m n
Min Cs= Z Z CijXij

i=1j=1

Min W;= i Zn: WijXij

t=1j=1

x;j—amount of component j used in subsystem i

n;—total number of components that might be in parallel
Nya—maximum number of components that can be in parallel
Rpip—minimum number of components that can be in parallel.

Simulation Optimization Approach to Solve a Complex ... 47

Thus, RAP can be classified according to the type of redundancy, such as cold
standby, warm standby, hot standby, parallel redundancy, or active redundancy. The
type of components to be allocated can be classified as identical or nonidentical
components; however, nonidentical components are more complex and similar to
the actual systems. The redundancy levels of items can include the component
redundancy level (individual component level), modular redundancy level (subsys-
tem level), or system redundancy level, which produces a multilevel RAP. Based on
its functioning status, a component can be classified as binary, where the compo-
nent might assume one of two possible states (e.g., zero for total failure or one for
fully functional), or multistate, where the component might assume multiple states
between total failure and total functioning. The RAP can also be classified according
to the type of system and whether its nature features repairable or nonrepairable
components.

In the present study, classification was performed with either a basic componential
attribute, where all components were described in terms of three attributes: weight,
volume, and individual reliability, or a complex componential attribute including
other attributes such as failure and repair distributions, inspections, and process
speeds. The last feature increases the degree of complexity of the problem in terms
of computational effort because the number of possible combinations increases.

This chapter considers RAP as linked with subsystems characterized by attributes
not typically found in combinatory problem solving instead of simple components.

In basic and complex componential approaches, a component with an adequate
set of attributes is required that, when combined with the remaining allocated com-
ponents, will result in the total final reliability of the system. The total final reliability
value depends on the structure of the system. A review of current research indicates
that analysis in this area is primarily focused on a classical parallel-series structure.
The present study approached the analysis similar to that of [18], whose general
statement is represented by the following equations:

R = _H};i:1 (1 —r;j) and the system reliability is defined by R, = Hf: | Ri
where

R;—reliability of subsystem i

rijj—reliability of a component j, I < j < n; of subsystem i
n;—components in parallel

k—subsystems in series.

Joining both expressions yields the following equation:

Ry =Ticy [1 =TT (0 =]

The reliability value only acquires its full meaning when it is associated with
a definite timepoint; however, a literature review reveals that this aspect is seldom
addressed. This chapter is rooted in this context and adds an appropriation of time to
the complex componential approach by considering that the values of reliability are
measured in time. The component is replaced by a subsystem whose main attributes
are not only related to weight, volume, and individual reliability but also to time.

48 C.H. Mariano and C.A.Z. Pece

Conversely, the component is now a machine that performs a certain process within
a production line characterized by the following attributes:

(a) operation speed;

(b) repair time;

(c) production cost;

(d) individual reliability; and
(e) production capacity.

The present study considers realistic problems of superior complexity. The mod-
eling of such problems considers different types of variables (real, binary, stochastic,
and nonstochastic) concomitantly as more than one objective is optimized. Given the
high dimension and complexity of the system and the impracticality of representing
the system analytically, a simulative and evolutionary optimizing process combined
with remarkable characteristics was selected to solve this type of problem [7].

To dimension a group of machines in an idealized automated production line,
the process was applied to the project stage as a function of its inherent advantages
and the control of the conjunctural variables of the system (e.g., production stand-
still due to strikes and lack of raw materials). The expected practical objective is to
demonstrate the feasibility of the process rather than to describe an empirical imple-
mentation example. The result is a pragmatic method that can be applied to actual
manufacturing, especially in automated environments.

6 Formulation of the Variables, Objectives,
and Constraints of the Multi-objective Model

The variables of the simulation optimization process can be classified as both exoge-
nous and endogenous to the main code, i.e., the MOGA. The exogenous variables are
processed inside the simulator and based on a given operational scenario. The ele-
ments of each scenario (e.g., configuration, maintainers, costs, and reliabilities) are
represented in the model by a set of endogenous variables that form a chromosome
or individual of a specific age.

The objectives of optimization are calculated from exogenous and endogenous
variables. In the idealized case under consideration, four conflicting objectives, which
must be optimized concurrently, are used:

(1) TCSM—Total cost of system maintenance (minimization)—exogenous variable;
(2) R;—Total reliability of the system (maximization)—exogenous variable;
(3) TOC—Total cost of system operation (minimization)—exogenous variable; and
(4) Numan—Number of maintainers (minimization)}—endogenous variable.

Certain variables are either part of the optimization objectives or represent the
objectives themselves, as is the case of TMFC (total maintenance fixed cost) and
numan (number of maintainers), respectively. It must still be emphasized that vari-
able a;; represents the allocation of a machine/robot i in stage j of the system. Such a

Simulation Optimization Approach to Solve a Complex ... 49

variable plays a crucial role in the production variability of the operational scenarios
and can be presented as follows:

aij

{ 0, fornon allocated machine/robot

1, for allocated machine /robot

Thus, the functioning of the full process is based on the correct definition of
the constraint limits. This task is highly dependent on the degree of familiarity of
the analyst with the system; without such knowledge appropriate limits would not
be imposed on the process. In other words, the limits represent the horizons of the
solution spaces and the problem variables that guide the search process in the desired
direction. So, below is the list of variables used on the models:

(1) (cmitpmjj)—cost of materials, tools, and outsourced manpower applied to the
maintenance of machine i in subsystem j
(2) (cinstjj)—cost of allocation of redundancy maintenance in machine i in sub-
system j
(3) (eplfij)—cost of production loss due to failure of i in subsystem j
(4) General management cost (GMC) corresponding to 10 % of the sum of costs
cmttpm;j cinst;; and cplf;;. [Zle Z';:l ajj * (cinstij + cmttpmy; + cplfij)]
(5) dtmj—total standstill time of machine i in subsystem j
(6) TTPS;j—total standstill time of machine i in subsystem j,
(7) otij—operation time of machine i in subsystem j
(8) csmmyi—cost of specialized manpower to maintain machine i in subsystem j.
(9) crama—cost of applied raw material
(10) cmpol—cost of manpower for operating the line
(11) ceeoc—cost of electricity and other fuel
(12) cpsat—cost of packaging, storing, and transport
(13) TPPS—total number of products produced by the system (exogenous variable)
(14) TNSF—total number of system failures
(15) TSA—rtotal system availability
(16) SDT—system downtime
(17) TGPPS—total of good products produced by the system
(18) TMFC—total fixed costs of maintenance
(19) CMTTPM—total cost of maintenance tools, parts, and manpower of the
machines (exogenous variable)
CMTTPM = 3i_, >7/_, emttpmy; % a; < UB
(20) CINST—total cost of machine installation (exogenous variable)

n m
CINST =)" cinstij * ajj < UB
i=1j=1

50 C.H. Mariano and C.A.Z. Pece

(21) CCPLF—total cost of production loss by the machines due to standstill caused
by failure (exogenous variable)

n m
CPLF = cplf; + ajj < UB
i=1j=1

(22) cost of production loss by the machine i in subsystem j due to standstill caused

by failure
ppm;
cpflyy = | ocmij x) x rtij) * ajj

(23) ocmjj—operation cost of machine i in subsystem j

(24) ppmji—total products produced by machine i in subsystem j

(25) eppmii—expected total of products produced without occurrence of failures of
machine i in subsystem j

(26) rtjj—repair time of machine i in subsystem j.

(27) total General Maintenance Cost, GMC, corresponding to 10 % of the sum of
costs cmitpyj, Cinsgj, and cspy;. (exogenous variable)

n m

GMC = "> (cmiipy + cinsti + cplfy) * aiy < UB
i=1j=1

The complete multi-objective model is shown as

MINTCSM =

1 -
[e Z?:l ajj * [(numan 5 e(70*TTPSy) | (otij + dmmj)) * csmmij:| * a,-j:|

+Q7 Z’j" CPLFjj % aj) + 1.1 % (Z{'C=1 Z?:l ajj * (cinstjj + cmttpmy; + cplfyy))
TSA

+ TMFC

MINTOC = TPPS %0, 05 x crama + TPPS % 0, 15 % cmpol + TPPS
% 0, 10 % ceeoc + TPPS * 0, 06 * cpsat + TMVC

MAX R, = []*_, [1 — T2, =y ag)}

where:

CMTTPM = 3[_; > emttpmij * aij < UB;

CINST = >}, 27’:1 cinstij * a;j < UB;

Simulation Optimization Approach to Solve a Complex ... 51

21 2 j—icplfijx aj < UB
CGM = 3/_ >\ (emitp; + cinstyj + cplfyy) * a;j < UB;

LB < Ry < UB;LB < TOC < UB;LB < TMC < UB;LB < numan < UB;
LB <TMFC < UB

LB < SDT < UB; LB < TNSF < UB; LB < TSA < UB.

LB—lower bound—UB—Upper bound

6.1 Declaration of the Nonlinear, Nonstochastic,
and Mono-Objective Test Model

In addition to the multi-objective problem, a mono-objective model was included
for the purpose of comparison to the full model, which was constructed to reduce its
complexity by removing several stochastic features present in the full model.

Thus, this model was developed on the grounds of €-constraint methods or
approach, according to [5]. Three of the main objectives were transformed into
constraints to maximize the system reliability through allocation of redundancies.
The costs related to the use of tools, parts, and manpower in the maintenance of
machine j in subsystem I (cmttpm;;); with the installation of a machine j in subsys-
tem i (cinstj), and with the loss of production of machine j in subsystem i due to
standstill caused by failure (cppm;j) were predefined for each machine, thus forming
a fixed cost matrix.

The amount of products produced by the system per period of system operation
(720, 1,440, and 2,160 h) was calculated and supplied. Events related to failure or
repair time of the system were not considered. A total system availability (TSA) of
0.90 was established for each simulation period. This model ensures that at least one
machine will be allocated to each subsystem. Constant A is a fixed value in each sim-
ulation period, corresponding to 3,973.99, 7,959.12, and 11,989.40 currency units
(CU) for 720, 1,440, and 2,160 h, respectively. The model was encoded in A Math-
ematical Programming Language (AMPL) and the KNITRO 6.0 solver was used.
A total of forty-five binary and five integer variables with thirteen linear constraints
was used.

The maximized model is shown as
Max R, = []i_, [1 —IT7L, =y *aij)]
where

TCSM = |:numan*BESETTINGA +1.1*(Z{-‘=7{S§/'~'=1aij*(cinstij + cmttpmy; + cplf ;)) i TMFC] < 3500 x 103

52 C.H. Mariano and C.A.Z. Pece

TOC = TPPS % 0, 05 % crama + TPPS * 0, 15 * cmpol + TPPS * 0, 10 * ceeoc +
TPPS % 0, 06 % cpsat + TMVC < 8000 * 103

> -4 =n

CPPROS = 3} 3" (cppm;; * i) < 900 x 10° Currency units
CINST = ZLI D=1 cinstij x a; <900 x 103 Currency units
CPPM =3"%_, >i_1 cppmy; * ajj < 10 x 10 Currency units

CGM = Zle Z;l‘:l ajj * (cinstij+cmitpm+cppm;;) < 260 x 103 Currency units

5 < numan < 20

0.1 <crama <1.0

1.0 < empol < 3.0

1.0 < ceeoc < 7.0

1.0 < cpsat < 5.0

250 x 103 < TMFC < 350 x 10° Currency units (CU)

7 Process of Interaction Between Simulator
and Optimizer

Unlike the traditional optimization process, which is based on the construction of
objective functions by [17, 18], the optimization process described in this chapter
does not employ such functions in the usual manner. The full process is represented
by a set of variables defined in both MOGA and the simulator. Certain variables
are incorporated in the constraints whereas other variables become the objectives of
optimization.

Evolution is guided by a strategy that selects the individuals best adapted for
the solution of the problem and best satisfies the constraints and objectives of the
problem. The MOGA is responsible for producing variability in the operational
scenarios, which is performed automatically with crossover, mutation, and selection
operators.

Each operational scenario, or each MOGA individual, is randomly generated and
consists of the following endogenous variables:

(1) Number of maintainers (number of persons devoted to tasks related to system
maintenance)—numan € 7,
(2) Allocation of machines or robots—binary variable a;j;

Simulation Optimization Approach to Solve a Complex ... 53

(3) Expected reliability of each machine, regardless of whether it is allocated or
nonallocated in the system—real variable between 0 and 1;

(4) The four components of the total cost of system operation—real variables crama,
cmpol, ceeoc, and cpsat; and

(5) TMFC—real variable TMFC.

Thus, the operational scenario for MOGA is a chromosome whose encoding
represents a list of vectors containing:

(1) Forty-five binary variables for the allocation of machines: a;;, fori =1,...,n
componentsand j = 1, .. ., k stages or subsystems, which can assume a value of
0 or 1 and that correspond to the nonallocated and allocated machines, respec-
tively.

(2) Forty-fiveindividual reliabilities, real variables thatrepresent, rjj fori = 1,...,n
components, and j = 1, ..., k stages or subsystems;
(3) Four real variables, c,, p = 1, .. ., z basic production costs;

(4) One real variable numan that represents the number of the system maintainers;
(5) One real variable representing the TMFC of the system for a given operational
scenario.

Thus, a vector with a 96-variable longitude is obtained a follows:
V=@, ...,au/Tij, ... Tui/Cp, ..., c;/TMFC/numan.

The interface between the tools is established by a function inserted in the MOGA
code, which coordinates the full process of reading and exchange of endogenous and
exogenous variables between the programs. The entire simulation is a single process
that is coordinated within the main routine of MOGA. The simulation process plays
an important role in the testing of the fitness of the operational scenario because it
supplies the variables that represent the dynamics and randomness of the process.

The simulator generates partial inputs for the assessment of the scenario; however,
it is not a function of fitness. The stop criterion introduced in the simulation model
is the functional period of the automated system, i.e., the number of hours that the
system must function during simulation.

The position of the simulator in the flowchart of the optimizer (NSGA-II), as
explained by [6], has paramount importance for the employed simulation process.
As Fig. 2 indicates, the MOGA is responsible for sequentially producing operational
scenarios. The simulator receives one scenario at a time and simulates its operation
more realistically the more detailed its respective model is. In a later stage, the
MOGA assesses the fitness of the scenario according to the nondominance criterion
mentioned above.

When an operational scenario is created and sent to the simulator, the configuration
of the machines that will be activated in the process is established, and the following
system exogenous variables are calculated as the system evolves over time: TMVC,
Ry, TPPS, SDT, TSA, TNSF, TGPPS, CPLF, CINST, CMTTPM, CMODC, and CGM.

54 C.H. Mariano and C.A.Z. Pece

Algorithm parameters (mutation, crossover, and selection)
Population length, Number of generations,
Number of objectives, Number of constraints Endogenous
variables and their bounds

v

Generate initial population Py |

- p»{ ARENA — Simulation of
Operation each individual
setting (operation stages)

Evaluate P,

Create P; Exqgenous

variables
Pt
A\ 4

| Apply genetics operators (Selection, mutation and crossover) |

¥

| New population Qt |

Operah »| (ARENA) — Simulation
ptte.ra fon of each individual
setting (operations stages)
Evaluate Qt
Endogenous
variables
| Merge |
Rt=PtuQt
v
Fill Non-dominated and crowding distance sorting create P4
NO | P
Apply genetic operators v

(Selection, mutation and
crossover) to generate
Q1

Converge?

Fig. 2 Flowchart of simulation optimization framework

Simulation Optimization Approach to Solve a Complex ... 55

Some of these variables are included in the calculation of the objectives to be
optimized, whereas other variables describe features related to system efficiency and
the configuration of machines established in the operational scenario. Nevertheless,
all of the variables are either directly or indirectly included in the MOGA-routine of
the verification of the problem constraints.

In the routine, the values of the exogenous and endogenous variables described
above are compared to limits that are preset by the analyst in the problem constraints.
The satisfaction of the limits defines the fitness of the scenario under consideration.
Scenarios are discarded when one or more restrictions are violated and admitted
when all constraints and optimization objectives are satisfied.

Once the fitness of a scenario is established, the simulation process restarts with
a new individual or operational scenario (previously generated in the MOGA). The
global stop criterion of the process is the number of generations, where each gener-
ation consists of a set of individuals or operational scenarios. The MOGA is capable
of handling only one generation at a time. This characteristic requires the inclusion
of a waiting mechanism in the MOGA to allow for the simulator to perform the
simulation of each individual or scenario of the corresponding generation.

8 Description of the Idealized Case

Actual systems, especially automated ones, are characterized by a wide interrela-
tion of subsystems, such as pneumatic, hydraulic, microelectronic, and electrical
systems. Actual systems are essentially complex sets with low human interference
(automated). Due to such complexity, these systems exhibit several types of failure
modes (e.g., electronic and mechanical) with random failure rates. Failure causes
production loss or complete standstill.

Considering the high productivity of these systems, failure mitigation becomes a
crucial activity that justifies the use of redundant operations. A well-allocated set of
redundancies may ensure availability and high levels of systemic reliability.

To dimension a group of machines in an idealized automated production line, the
process was applied to the design stage. Therefore, the present study considered an
automated system represented by a generic and continuous production process. The
process may contain as many as forty-five operations; nine of these operations form
the core of the system functioning. There are also two warehouses; one warehouse
contains production parts (left), and the other warehouse stores finished products
(right), as shown in Fig.2. There is also a conveyor that interconnects the system
with a set of robots.

Each machine in the system corresponds to a different operation, such as milling,
erosion, assembly, and adjustment, which must be performed in a specific sequence.
The robots perform the transference and storage operations of the parts and finished
products. The system as a whole (machines and robots) performs nine operations, as
shown in Fig. 1.

The system can be represented schematically by a set of nine stages in series,
corresponding to the nine basic operations of the system, as illustrated in Fig.3.

56 C.H. Mariano and C.A.Z. Pece

sl] []=
o | [C]=
=] []=
oL][]=
=[] =

-] =
s =
s] [=»
=] []=
o] []=»

ENEEE
IOOnD
DoOoo

- -
> =

3

-l =
> =

3 3 3
333 33
CEE

Parts Conveyor| Robots Milling Erosion | Robots | Con Assembling | Adjustment | Con Robots| Final
Storage machine [machine veyor | machine machine veyor Storage

- Principal robot - Redundant Robot <« Conveyor
I:l Principal machine I:I Redundant Machine Storage

Fig. 3 Schematic diagram of the system

The series of stages represents a parallel system commonly used in RAP. Each stage
or subsystem can be performed by as many as five machines that each have distinct
operational characteristics. At least one of the five machines is assumed necessary
for the basic functioning of the subsystem, whereas the remaining machines are
redundancies that may or may not be allocated in the subsystem. The utilization and
allocation of these redundancies is precisely what makes it possible to increase the
entire availability of the system. The system can have a minimum configuration of
nine machines and a maximum configuration of forty-five machines. The resulting
system contains a large number of combinations, which warrants evaluation.

Each configuration or set of machines and robots chosen for operation has an
associated number of maintainers, their corresponding unitary production costs,

2 The costs of production include

o CRAMA-—cost of the raw materials applied
e CMPOLI—cost of the manpower of the operation of the line

Simulation Optimization Approach to Solve a Complex ... 57

individual reliability, and fixed maintenance costs corresponding to the identified
configuration. This set of variables is called the operational scenario (configuration
of machines, number of maintainers, individual production costs, and total fixed
maintenance costs of the system). Operational scenarios with the same characteristics
differ due to random events such as failures.

Therefore, the problem addressed in this study might be expressed with the fol-
lowing questions:

What is the optimal scenario of operation that maximizes total system relia-
bility and minimizes simultaneously the use of maintainers, and the costs of
maintenance and operation of the system?

9 Experiments

A total of six experiments were conducted, of which five were multi-objective and
one was mono-objective:

e Three multi-objective experiments with 720, 1,440, and 2,160 simulated hours,
respectively, and 50 generations, each comprised of 20 individuals (total of 1,000
individuals).

e One multi-objective experiment with 720 simulated hours and 100 generations,
each comprised of 20 individuals (total of 2,000 individuals).

e One multi-objective experiment with 720 simulated hours and 150 generations,
each comprised of 20 individuals (total of 3,000 individuals).

e One mono-objective experiment, which followed the model described in Sect. 6,
with 720, 1,440, and 2,160 h of uninterrupted system operation.

Each individual corresponds to an operational scenario and each 720 h set cor-
responds to one month of uninterrupted system operation. The individuals were
subjected to the process of evolution for the age that is guided by the reproduction
operators. The probability of occurrence for the operators was 0.7 for the crossover
operator and 0.02 for the mutation operator (real variables).

Such operators are responsible for the magnitude and diversity of the search and
their occurrence probabilities were kept constant to ensure some homogeneity in the
search across the experiments. Thus, substantial differences between the results of
the five multi-objective experiments were avoided.

By keeping the occurrence probabilities of the genetic operators and the number of
individuals per generation (20) in each experiment constant, the present study sought
to demonstrate the influence of the increase in generations and the influence of the
duration of the simulations within the boundaries of the experiments conducted.

(Footnote 2 continued)

e CEEOC—cost of electricity and other combustibles
e CPSAT—cost of packaging, storing, and transport.

58 C.H. Mariano and C.A.Z. Pece

In the case of multi-objective optimization, the algorithms used in the problems
are expected to exhibit a set of solutions that satisfy the objectives. However, because
there is a set of solutions, the final selection of a solution depends on a process to
aggregate information, which can be performed a priori, during the process, or a
posteriori [5].

In the a priori procedure, the criteria are established before the process is devel-
oped and guide the construction of the optimal Pareto set.

In the during-the-process procedure, the criteria are inserted during the devel-
opment of the process and may include variables resulting either from previous
iterations or inserted by the user.

In the a posteriori procedure, the process develops without interference by the
decision-maker and, in the end, the information required to select a solution is added
to the obtained Pareto set.

A procedure that aggregates information can exhibit a technical quantitative nature
or a nontechnical qualitative nature. The former type of procedure treats the technical
data as process specifications and variables related to the adjustment of the entire
system, whereas the latter type of procedure expresses the opinions of the individuals
who participate in decision-making.

In the study, the a posteriori procedure was chosen because the resulting Pareto
set, which was prepared for the application of the selection criteria, became available
at the end of the all experiments, as presented on the tables at Sect. 10.

10 Results—Analysis and Discussion

The main analysis of results is organized into two subanalysis: the firsts subanalysis
concerns the convergence of the simulation optimization process and the second
subanalysis concerns the process of selecting the best operational scenario. The
latter subanalysis also sought to answer the questions posed at the end of section
two:

What is the optimal operational scenario for the idealized case under consideration? Is the
system that maximizes total system reliability while minimizing operation and maintenance
costs and the use of maintainers the ideal scenario?

Four objectives were assessed in each experiment. The assessment included
indexes of reliability, cost, and number of maintainers. The reliability indexes var-
ied between 0 and 1 whereas cost and number of maintainers could have any value,
although the maintainers are integer variables. To compare the objectives, which have
different natures, adjustments were needed. As a result, the following normalization
process was adopted:

Xn no =2

where

xp—value of a normalized point

Simulation Optimization Approach to Solve a Complex ... 59

x;—value of an average individual of generation i withi = 1...n
n—total number of generations.

10.1 Analysis of AGE Convergence

Figures4c, 5b, 6b, 7b, and 8b were plotted by using the averages of the objectives
for each generation to draw a line of tendency toward convergence, which illustrates
reduction of the variability of the responses as a function of the evolution of the
process. The MOGA approached its stop criterion (which in this case was the number
of generations). The plotted graphs of the resulting Pareto boundaries’ are shown
in Figs.4a,b, 5a, 6a, 7a, and 8a for each experiment and reveal an increase in the
concentration of individuals and the number of generations. The experiments did
not result in a larger number of feasible scenarios. An increase in the number of
MOGA generations and computation times resulted in enhanced responses, similar
to scenarios with lower costs and higher reliability indexes. The convergence of the
genetic process is related to the number of generations, the probabilities of the genetic
operators, the type of selection, and the stop criterion. Thus, the convergence of the
process is certain, and a larger number of generations guarantees better results.

By keeping constant the number of generations under various simulation times,
greater oscillation in the values of the objectives was observed in experiments with
1,440 and 2,160 h as compared with the experiment with 720 h, as shown in Figs. 7b
and 8b, respectively. The outcome was due to the presence of undesirable stochastic
events, such as failures, which altered the average availability of the system between
simulations. Oscillation was expected because some modalities of failures were
defined by exponential models with averages greater than 1,000 h. This finding indi-
cates that the system exhibits natural degradation as a function of longer functioning
periods, which is due to the presence of failures and other stochastic events that degen-
erate the system (e.g., reduced operation times and more frequent lines). Longer peri-
ods also cause degradation of the reliability of the system, as shown by the boundaries
in Figs. 4b, 7a, and 8a, which represent the global system variables of reliability ver-
sus maintenance cost.

10.2 Analysis of the Selecting Process of the Best Operational
Scenario

The mono-objective model (MOOM) was surpassed by the multi-objective model
(MUOM) at SIMO framework for several reasons. The main reason is the impracti-
cality of representing the stochastic characteristics inherent to the investigated system
using the mono-objective model, although it produced reliability results similar to
the averages of the optimal boundaries obtained by MOGA in each of the multi-
objective experiments performed, as shown in Table 1. Reliability tended to decrease
with longer simulation times because it is a function that indirectly reveals the aging

60

C.H. Mariano and C.A.Z. Pece

—_
Q
~
1.0

B
. °
o
4 24 N %% 8o ®
g °] .
o ° oY, 88,0
c @] o 09 o
S o s %o
= o %o °o °
[o °0° ° °
2 3 o222 .
o o 0%
o o °% o 8 °
£ o St g%,
0 ° o o
> oo eo8 o Te
— ge’ @
S o oo 898%
e 80
s) 0%t o
= Fa
v % 8
S a
o o
T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0
<Total system maintenance cost>
= T T —— @ © ogme @o @ wope [—
- ° . gy B 4 & o ° o gFogoo g
o o o g o o o0 o
o
o
© ° o o o © o
4 o ° .
= o oo R 3
Qo
g o v ° °
L o
£
o
4
> Y
» o
s
o
o
v o
g, o @oamo o oo ® wo o ° @ oo
T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

(c)

0.4

number of maintenace staff

0.2

Total costs of maintenance and system's operation x reliability x

<Total system maintenance cost>

Comparative between objectives 1,2,3 and 4 - 720 hours -50 generations

= Total system's maintenance costs

Total system's operation costs

Number of maintenance staff

Total system's reliability

21 41

Number of generations

Fig. 4 a Pareto boundary objective 1 versus objective 3 for 720 h—50 generations; b Pareto
boundary objective 2 versus objective 1 for 720 h—50 generations; ¢ Experiment (simulation) for

1,720 h—50 generations

Simulation Optimization Approach to Solve a Complex ... 61

(a)

1.0

T T T T
0.2 0.4 0.6 0.8 1.0
<Total system operation cost - 720 hours - 100 gen.>

ol
o

<Total system maintenance cost - 720 hours - 100 gen.>
S
8

Comparative between objectives 1,2,3 and 4 -720 hours -100 generations

0.8 /\i" NI G N o ———

0.6

0.4 Total system's maintenance costs
- Total system's reliability
0.2 Total system's operation costs

Number of maintenance staff

Total costs of maintenance and system's operation x
reliability x number of maintenace staff

T T T T T
- —

T T
—
< © [c¢}

21

Number of generations

Fig. 5 a Pareto boundary objective 1 versus objective 3 for 720 h—100 generations; b Experiment
(simulation) for 4,720 h—100 generations

of the system. The system is at a higher exposure to future risk of failure with a
reduction in performance because the probability of failure increases with the pas-
sage of time. This situation can be prevented by adding redundancies to the system
and improving the global reliability of the system as a function of the increase of
alternative pathways for the process.

The costs obtained in the simplified mono-objective model were higher than the
averages of the multi-objective simulation, as shown in Table 2.

Although a simplified model is easier to solve, it is not necessarily less complex.
If the development of such a model required many simplifications, the accuracy
of its responses would be impacted and the model would not serve its purpose.
The consistency of the simplified model, as described in Sect. 6.1, is based on the

62

Total costs of maintenance and system's operation x

<Total system maintenance cost - 720 hours - 150 gen>

(b)

1.2

—_

o
©

I
~

reliability x number of maintenace staff
=} o
N [}

1.0

0.8

0.6

0.4

0.2

C.H. Mariano and C.A.Z. Pece

0.4 0.6 0.8 1.0

<Total system operation cost - 720 hours - 150 gen>

Comparative between objectives 1,2,3 and 4 -720 hours -150 generations

] \/I}fg\"ﬂ AN A

Total system's maintenance costs
Total system's operation costs
- Total system's reliability

Number of maintenance staff

N " > " "
¢ O

Number of generations

Fig. 6 a Pareto boundary objective 1 versus objective 3 for 720 h—150 generations; b Experiment

(simulation) 5 for 720 h—150 generations

appropriation of the same cost formulation applied to the simulation model; however,
without the influence of the full stochastic conjuncture (e.g., failures and reduction
of process speeds), which the simulation sought to emulate. Therefore, the process
costs in the simplified model originated exclusively from one specific configuration of
machines and solely from the number of allocated machines. Figure 9 represents the
average values of the main objectives by generation and illustrates that the results of

Simulation Optimization Approach to Solve a Complex ...

63

(a)
o
A o pon g B WS B b gPTSE e S Lo e@m®o oo o
é\) w ® o @ . 8 o ° o °o o o
5 o oo ° g e °, °
2 | a:m%:@ s e e e ° o
o o o
9,. '“m o °° i %o °
3 e . o
'© R ° ol°
z o .
=
8
e < |
IS o
Q
k7]
& o
Tg o
[e]
N
o
=R oo i i oo oo i o i i
0.5 0.6 0.7 0.8 0.9 1.0
<Total system maintenance cost - 1440 hours>
x
z (b) : - :
S Comparative between objectives 1,2,3 and 4 -1440 hours -50 generations
©
g% 12
o w
n @
tg 1
c € v
& =
9 ; 0.6
58 .
§s5 04 Total system's maintenance costs
k=l Total system's reliability
S Total system's operation costs
€2 0.2 ;
s 5 Number of maintenance staff
©
o0 .=
gs 0
° 1 21 41
g .
2 number of generations

Fig. 7 a Pareto boundary objective 1 versus objective 3—1,440 h—50 generations; b Experiment
(simulation) 2 for 1,440 h—>50 generations

the simulation optimization process, which included the above-mentioned stochastic
context, surpass the results of the simplified model (mono-objective) in terms of costs.
The results accurately reflect the evolution of the responses not only by the level of
randomness in the model but also by the level of randomness in the evolutionary
process itself.

Of the 8,000 operational scenarios generated in the study, forty-four scenarios
were selected by the MOGA that satisfied all objectives and constraints of the prob-
lem, as shown in Tables 3 and 6. In spite of the low number of simulations, satisfactory
results were achieved. The selected scenarios were initially clustered according to
the number of machines allocated in the process. According to that criterion, the
minimum number of allocations was fifteen and the maximum number of alloca-
tions was forty-two, within a universe that ranged from a total of nine to forty-five

64 C.H. Mariano and C.A.Z. Pece

@ .
) "% 1
e ° °
.§ g] oo e °7 °
o © o o [
@ ° p ® g, @® 0P o
N o H 8 93 g3 ®Fe o
> S &2 ° g%
£ %% o5 P
5 | o Rt
T« | *®
e o
[}
@
>
2 o
T o |
°
[l
\%
o | °
e T T T T T
0.6 0.7 0.8 0.9 1.0
<Total system maintenance cost - 2160 hours>
(b) Comparative between objectives 1,2,3 and 4 -2160 hours -50 generations
]
® § 1.2
¢
® < 1 =
> @©
s
T u
£0o
g 8 0.8
c £ \ v v \
T S = \4
G 306
EX®
- E 0.4 Total system's maintenance costs
@ ° = Total system's reliability
[%2]
8 g 0.2 Total system's operation costs
g 5 Number of maintenance staff
~ 083_ 0
1 21 41

number of generations

Fig.8 aPareto boundary objective 1 versus objective 3 for 2,160 h—50 generations; b Experiment
(simulation) 3 for 2,160 h—50 generations

machines. By itself; however, this criterion did not facilitate the selection of the most
appropriate operational scenario.

Another criterion that was considered was the reliability of the scenario. The
reliability of the selected scenarios oscillated slightly, with a tendency toward
improvement as the number of allocated machines increased (greater redundancy).
All selected experiments exhibited high reliability (>0.98), which makes that crite-
rion insufficient for decision-making.

The decision-maker might consider other variables of interest such as cost/product,
maintenance costs (objective 1), and operational costs (objective 3), thus creat-
ing a novel criterion. Upon application of this criterion, the resulting minimum

Simulation Optimization Approach to Solve a Complex ...

Table 1 Reliabilities—multi-objective versus mono-objective experiments

65

MUOM—SIMO FRAMEWORK MOOM
Means* 720/1,440 h 2,160 h
Objective 2 720/50 0.870737 0.88 0.78
1440/50 0.863031 0.88 0.78
2160/50 0.752815 0.78 0.78
720/100 0.999761 0.88 0.78
720/150 0.999959 0.88 0.78

Table 2 Maintenance (objective 1) and operation (objective 3) costs of the system—multi- and
mono-objective experiments

MUOM—SIMO framework (mean values)

Multi-objective model

MOOM

Mono-objective model

Simulations Objective 1 Objective 3 Objective 1 Objective 3

720/50 2,071,950.00 2,257,797.00 2,522,403.00 4,123,482.00
720/100 2,014,479.00 2,166,809.00 2,522,403.00 4,123,482.00
720/150 2,371,427.00 2,592,107.00 2,522,403.00 4,123,482.00
1,440/50 1,962,392.00 2,022,221.00 2,700,065 5,902,222.00
2,160/50 1,892,339.00 2,010,936.00 2,930,879.00 7,734,114.00

cost was 5.4 C.U. (experiment 2 720/100/3 and 720/100/4), as shown in Table2,
and the resulting maximum cost was 11.19 C.U. (experiment 1 720/50/6), as dis-
played in Table3, corresponding to 36 and 32 allocated machines, respectively

(C.U. = currency units). When 36 machines were allocated, the six maintainers
© 16
8
¢ 14
5
'g g 1.2 N
081_ % 1 ——— Obejctive 1 MUOM
c g ——— >.2X #~=—— Objective 2 MUOM
© 5
g o8 ——— Objective 3 MUOM
C
£ 206 —— Objective 4 MUOM
L3 \
c © «— Objective 1 MOOM
5= 04 V)
E - ——— Objective 2 MOOM
o
o 02 Objective 3 MOOM
o
r_: 0 Objective 4 MOOM
o 1 6 11 16 21 26 31 36 41 46

Number of generations 720 hours 50 generation

Fig. 9 Comparison between the average fitness of the objectives 1, 2, 3, and 4—multi-versus
mono-objective simulation

66 C.H. Mariano and C.A.Z. Pece

Table 3 Experiment (simulation) for 1,720 h—50 generations

Experiment 1 (run 1) 720 h—>50 generations

Objective 1—Total system’s maintenance cost

Objective 2—Total system’s reliability

Objective 3—Total system’s operation cost

Objective 4—Total number of maintenance staff
Operation | Obj. 1 Obj. 2 Ob;j.3 Obj. 4 Machines | Cost/
set assignments | product
1 2,820,206 | 0.998928 3,624,749 |16 35 6.45
2 2,792,698 | 0.998885 3,709,403 |16 35 5.92
3 1,959,979 0.997946 2,079,463 |16 35 8.23
4 1,606,541 | 0.985626 1,622,457 5 31 9.76
5 1,733,869 | 0.987398 1,676,912 |16 31 10.39
6 1,809,541 |0.996716 1,770,991 |16 32 11.19
7 1,786,686 | 0.996919 1,775,866 | 16 33 10.11
8 2,468,443 | 0.998576 3,081,645 |16 34 6.69
9 2,585,959 10.998631 3,326,377 |16 35 6.28
Means 2,167,227.2 | 0.995818 2,481,908 |12 335 8.33

were found in objective 4, as compared with sixteen maintainers found when 32
machines were allocated.

By adding to this criterion the requirement that the lowest desired number of
maintainers must be less than seven with cost per product lower than 6.00 C.U.
Considering the solutions described in Tables 3, 4, 5 and 6 and striving to answer the
questions in Sect. 2, it was concluded that the most appropriate (optimal) scenarios
for the idealized case were as shown in Table 7.

The costs differed for similar and identical numbers of allocated machines. This
finding reveals an interesting characteristic of the process; specifically, that the quan-
tity of machines, the position of each machine in the system, and the consequences of
the random events to which they were subjected (failures) were all considered. This
consideration causes alterations in production and exposes the system to failures that
might result in longer standstill of an operation. In such cases, despite their quan-
titative accuracy, the results of the combination of machines or of the operational
scenario to which they belong differ; consequently, their performance depends on
the stochastic conjuncture that was produced.

11 Remarks

This chapter discusses the problem of redundancy and reliability allocation in an
automated production system. The purpose of the study is to improve the global
reliability of the system by allocating alternative components (redundancies) that

Simulation Optimization Approach to Solve a Complex ...

Table 4 Experiment (simulation) for 4, 720 h—100 generations

67

Experiment 4 (run 4)

720 h—100 generations

Objective 1—Total system’s maintenance cost

Objective 2—Total system’s reliability

Objective 3—Total system’s operation cost

Objective 4—Total number of maintenance staff

Operation | Obj. 1 Obj. 2 Obj. 3 Obj. 4 Machines | Cost/
set assignment | product
1 1,967,423 | 0.999746 2,162,364 |6 36 6.23
2 1,641,490 |0.999063 1,801,222 |5 35 5.65
3 1,744,774 10.999701 1,955,186 |6 36 5.40
4 1,696,361 | 0.999691 1,893,462 |6 36 5.40
5 1,691,796 | 0.999581 1,885,273 |6 36 5.42
6 2,014,479 10.999761 2,166,809 |6 35 7.00
Means 1,792,721 1 0.999591 1,977,386 |6 35.6 5.85
Table 5 Experiment (simulation) 2—1,440 h—50 generations
Experiment 2 (run 2) 1440 h—50 generations
Objective 1—Total system’s maintenance cost
Objective 2—Total system’s reliability
Objective 3—Total system’s operation cost
Objective 4—Total number of maintenance staff
Operation | Obj.1 Obj. 2 Obj. 3 Obj. 4 Machines | Cost/
set assignment | product
1 2,914,198 |0.9993065 |3,147,688 |6 27 5.81
2 2,043,527 |0.9985866 2,074,511 |7 27 6.81
3 2,742,798 09987716 |2,901,673 |6 27 6.13
4 1,669,170 |0.9797631 |1,641,688 |6 20 7.11
5 1,992,993 | 0.9837161 |2,040,098 |15 21 6.30
6 2,010,620 |0.9800117 1,993,446 |7 20 7.19
7 2,863,146 |0.9991417 |3,064,383 |6 29 5.83
8 2,771,984 10.9990900 |2,931,642 |6 28 6.18
9 2,896,160 |0.9993100 |3,130,280 |6 29 5.77
10 2,788,534 | 0.9988900 (2915434 |6 27 7.10
Means 2,469,313 0.9936590 |2,584,084 |7.1 25.50 6,42

are associated in parallel with each original component and to minimize the use of

maintainers and the associated system maintenance and operation costs.

The simulation optimization process employed uses a model constructed with
variables and constraints. The process differs from conventional optimization prob-
lems because there is no function (or set of functions) that represents the system.

68 C.H. Mariano and C.A.Z. Pece

Therefore, the model can assume various degrees of complexity that allow it to
accurately represent actual industrial situations.

The method used is intimately related to the constraints imposed on the model,
which result from the judgment of the modeler. The process benefits from and depends
on the accuracy (quality) of the work of the modeler.

The setting of the operational scenarios and the choice of the best results is entirely
automatic within an evolutionary process that is part of a genetic algorithm and based
on the production of a large amount of simulations. The optimizing evolutionary
process that was considered revealed few simulations in the discrete system (total
of 8,000) that achieved satisfactory results. Of these 8,000 simulations, forty-four
feasible scenarios were chosen by the MOGA, according to the imposed constraints.
Thus, in spite of the small number of simulations, the proposed approach facilitates
decision-making by permitting the generation of a reduced and feasible set of solu-
tions, which is sufficient to alter the constraint limits and minimize the number of
operational scenarios.

The method used was efficient in developing feasible solutions, in spite of the
existence of multiple conflicting objectives, constraints, systemic interrelations, and
random factors. For this reason, and considering the resulting high degree of reli-
ability of the solutions (>0.98) for 720, 1,440, and 2,160 h of system functioning
and the degree of generalization of the developed model, one might assert that the
suggested method exhibits a wide scope of potential applications for actual industrial
situations.

Table 6 Experiment (simulation) for 3-2,160 h—50 generations

Experiment 3 (run 3) 2160 h—50 generations

Objective 1—Total system’s maintenance cost

Objective 2—Total system’s reliability

Objective 3—Total system’s operation cost

Objective 4—Total number of maintenance staff
Operation | Obj.1 Obj. 2 Obj. 3 Obj. 4 Machines | Cost/
set assignment | product
1 1,658,352 |0.981308 1,623,417 |6 23 10.11
2 1,923,583 | 0.985386 1,899,560 |6 20 11.15
3 2,157,052 | 0.993085 2,287,982 |6 24 7.84
4 1,965,154 |0.989701 2,058,740 |6 21 7.91
5 2,217,531 |0.994180 2,399,669 |6 25 7.24
6 2,405,210 |0.995831 2,726,515 |6 25 6.10
7 2,145,893 | 0.993032 2,287,960 |6 24 7.56
8 2,031,733 10991144 2,119,967 |6 22 8.29
9 2,239,416 | 0.994185 2,418,995 |6 25 7.30
10 2,404,594 1 0.995893 2,728,048 |6 25 6.10
Means 2114856 0.991330 2,255,058 |6 23.4 7.96

69

Simulation Optimization Approach to Solve a Complex ..

€8'S 6T 9 €8€v90°¢ 16660 9P1°€98°C L 0S/0t71

186 LT 9 889°LY1°E $90€666°0 861°V16°C I 0S/0t71

ws 9¢ 9 €LTG88°1 1856660 96L°169°1 S 001/02L

or's 9¢ 9 97°€68°1 1696660 19€°969°1 ¥ 001/02L

or's 9¢ 9 981°656°1 10L666°0 YLLYYLT € 001/02L

S9'¢ Se S TTTI08°1 £90666°0 067 T¥9°T T 001/02L
juowruIsse IoquInu Jas | SUONeIdUSZ /oUW

yonpoidyso) SOUIYIRIA] ¥ Q0 ¢ 190 (Ao} 1'fqo uonerdo uonenuIg

BLIAILID QouaI0jaId 1oyyew-uoIsoap ay) jo uoneordde 10)ye suonnjos Jo 19s [eul L d[qeL

70 C.H. Mariano and C.A.Z. Pece

Although the results are satisfactory given the constraints and the small number of
simulations used, the developed process and model requires further analysis due to
the multiple possibilities that are feasible with more specific variables (to be included
in the model).

The use of production systems with more complex structures or the selection of
alternate objectives should be considered in future studies, such as:

Optimization of the stock of maintenance parts;

Optimization of the number of maintenance inspections to reduce periods of stand-
still;

Optimization of the sequencing of tasks; and

Optimization of the operational parameters to handle changes in productivity
levels.

Acknowledgments To Dr. Deb and his team at the Kanpur Genetic Algorithms Laboratory
(KanGAL) for providing the source code of the MOEA NSGA-II used in this work.

References

1. Azadivar, F. (1992). A tutorial on simulation optimization. In Proceedings of the, (1992). 24th
winter simulation conference, pp. 198-204. doi:10.1145/167293.167332.

2. Billiton, R. A., Ronald N. (1992). Reliability evaluation of engineering systems: Concepts and
techniques (2nd ed). Springer. ISBN-10 0306440636; ISBN-13 978-0306440632.

3. Coelho, L. S. (2009). Reliability-redundancy optimization by means of a chaotic differential
evolution approach. Chaos, Solitons and Fractals, 41(2), 594-602. doi:10.1016/j.chaos.2008.
02.028.

4. Coello, C. A., Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms.
Advances in Natural Computation (Vol. 1). World Scientific Publishing. ISBN 981-256-106-4.

5. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. England: Wiley.
ISBN 047187339X, 9780471873396.

6. Deb, K., Pratap, A., & Agarwal, S. (2002). Fast and elitist multi-objective genetic algo-
rithm: NSGA-II. IEEE-Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.
1109/4235.996017.

7. Ergott, M. & Gandibleux, X. (2004). Approximate solution methods for multi-objective com-
binatorial optimization. Sociedad de Estadistica e Investigacién Operativa. Madrid. Spain TOP
Vol. 12. No. 1. 1-90 June. doi:10.1007/BF02578918.

8. Gen Mitsuo, Cheng Runwei (2000). Genetic Algortihms & Engineering Optimization. Canada.
Wiley. A Wiley-interscience publication. ISBN 0471315311, 9780471315315.

9. Ghiani Gianpaolo, Legato Pasquale, Musmanno Roberto, Vocaturo Francesca. A combined
procedure for discrete simulation-optimization problems based on the simulated annealing
framework. Computational Optimization and Applications, September 2007, Volume 38, Issue
1, Pages 133.145. doi:10.1007/s10589-007-9010-7

10. Hani, Y., et al. (2008). Simulation base optimization of a train maintenance facility. Journal of
Intelligent Manufacturing, 19(3), 293-300. doi:10.1007/s10845-008-0082-8.

11. Holland, John Henry (1975). Adaptation in natural and artificial systems: an introductory
analysis eith applications to biology, control and artificial intelligence. University of Michigan
Press. ISBN 0472084607, 9780472084609.

12. Jianping, L. I., & Xishen, J. (1997). A new partial bound enumeration technique for solving
reliability redundancy optimization. Microelectronics Reliability, 37(2),237-242.doi:10.1016/
S0026-2714(96)00109-6.

http://dx.doi.org/10.1145/167293.167332
http://dx.doi.org/10.1016/j.chaos.2008.02.028
http://dx.doi.org/10.1016/j.chaos.2008.02.028
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/BF02578918
http://dx.doi.org/10.1007/s10589-007-9010-7
http://dx.doi.org/10.1007/s10845-008-0082-8
http://dx.doi.org/10.1016/S0026-2714(96)00109-6
http://dx.doi.org/10.1016/S0026-2714(96)00109-6

Simulation Optimization Approach to Solve a Complex ... 71

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Khalili-Damghani, K., & Maghsoud, A. (2012). Solving binary-state multi-objective reliability
redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start
partial bound enumeration algorithm, and DEA. Reliability Engineering and System Safety,
103,35-44. doi:10.1016/j.ress.2012.03.006.

Kulturel-Konak, S., & Coit, D. W. (2007). Determination of Pruned Pareto sets for the multi-
objective system redundancy allocation problem. /[EEE Symposium on computational intelli-
gence in multicriteria decision making, pp. 390-394. doi:10.1109/MCDM.2007.369118.
Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2006). Multi-objective tabu search using
a multinomial probability mass function. European Journal of Operational Research, 169,
918-931. doi:10.1016/j.ejor.2004.08.026.

Kumar, R., Izui, K., Yoshimura, M., & Nishiwaki, S. (2009). Multi-objective hierarchical
genetic algorithms for multilevel redundancy allocation optimization. Reliability Engineering
and System Safety, 94(4), 891-904. doi:10.016/].ress.2008.10.002.

Kuo, W., Prasad, V. R., Tillman, F. A., & Hwang, C.-L. (2001). Optimal reliability design fun-
damentals and applications. Cambridge University Press. ISBN 0521781272, 9780521781275.
Kuo, W., Zuo, M. J. (2003). Optimal reliability modeling. Principles and applications. New
Jersey: Wiley. ISBN 047139761X, 9780471397618.

Liang, Y.-C., & Lo, M.-H. (2010). Multi-objective redundancy allocation optimization using
a variable neighborhood search algorithm. Journal of Heuristics, 16, 511-535. doi:10.1007/
$10732-009-9108-4.

Lins, Isis Didier, & Droguett, Enrique Lopez. (2011). Redundancy allocation problems consid-
ering systems with imperfect repairs using multi-objective genetic algorithms and discrete event
simulation. Simulation Modelling Practice and Theory, 19, 362-381. doi:10.1016/j.simpat.
2010.07.010.

Lisnianski, A., & Levitin, G. (2003). Multi-state system reliability Assessment optimization
and application (Vol. 6). Singapore: World Scientific Publishing. Series on Quality reliability
and Engineering statistics. ISBN 981-238-306-9.

Loo Hay Lee, Ek Peng Chew, Kee Hui Chua, Zhuo Sun, Lu Zhen. A Simulation Optimisation
Framework for Container Terminal Layout Design. Multi-objective Evolutionary Optimisation
for Product Design and Manufacturing 2011, Pages 385-400. doi:10.1007/978-0-85729-652-
8_14.

Mattila, V., Virtanen, K. (2005). A simulation-based optimization model to schedule periodic
maintenance of a fleet of aircraft. In Proceedings 2005. European simulation and modeling
conference, Porto, Portugal, October 24-26, pp. 479—483.

Meedeniya, I., Aleti, A. & Buhnova, B. (2009). Redundancy allocation in automo-
tive systems using multi-objective optimization. Jacobs school UCSD symposium on
automotive/avionics systems engineering SAASE 2009. http://www.jacobsschool.ucsd.edu/
GordonCenter/g_leadership/l_summer/s_saase/schedule.shtml

Mehmet, Cunkas. (2010). Intelligent design of induction motors by multiobjective fuzzy genetic
algorithm. Journal of Intelligent Manufacturing, 21(4), 393-402. doi:10.007/s10845-008-
0187-0.

Merkuryeva, G., & Napalkova, L. (2008). Development of multi-objective simulation-based
genetic algorithm for supply chain cyclic planning and optimization. In International confer-
ence 204th EURO mini conference continuous optimization and knowledge-based technologies
(EurOPT) May 20.23. Neringa, Lithuania. ISBN 978-9955-28-283-9.

Misra, K. B., Sharma, U. (1991). An efficient approach for multiple criteria redundancy
optimization problems. Microelectronics Reliability, 31(2/3), 303-321. doi:10.016/0026-
2714(91)90216.

Murata. T. (1989). Petri Nets: Properties, Analysis and applications. Proceedings of the IEEE.
Vol. 77. No 4. pp 541-580. doi: 10.1109/5.24143.

Nesmachnow, Sergio (2004). A parallel version of evolutionary algorithm for multiobjective
optimization NSGA-II. Proceedings of X Argentine Computation Science Congress, Buenos
Aires, Argentina, 2004.

http://dx.doi.org/10.1016/j.ress.2012.03.006
http://dx.doi.org/10.1109/MCDM.2007.369118
http://dx.doi.org/10.1016/j.ejor.2004.08.026
http://dx.doi.org/10.016/j.ress.2008.10.002
http://dx.doi.org/10.1007/s10732-009-9108-4
http://dx.doi.org/10.1007/s10732-009-9108-4
http://dx.doi.org/10.1016/j.simpat.2010.07.010
http://dx.doi.org/10.1016/j.simpat.2010.07.010
http://dx.doi.org/10.1007/978-0-85729-652-8_14
http://dx.doi.org/10.1007/978-0-85729-652-8_14
http://www.jacobsschool.ucsd.edu/GordonCenter/g_leadership/l_summer/s_saase/schedule.shtml
http://www.jacobsschool.ucsd.edu/GordonCenter/g_leadership/l_summer/s_saase/schedule.shtml
http://dx.doi.org/10.007/s10845-008-0187-0
http://dx.doi.org/10.007/s10845-008-0187-0
http://dx.doi.org/10.016/0026-2714(91)90216
http://dx.doi.org/10.016/0026-2714(91)90216

72

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

C.H. Mariano and C.A.Z. Pece

Olafsson Sigurdur, Kim Jumi. Simulation Optimization. Proceedings of the IEEE Winter Sim-
ulation Conference, Pages 79-82, 2002.

Peterson. J.L. (1981) Petri Net Theory and the Modeling of Systems. Prentice-Hall. N.J. ISBN
0136619835.

Robin F, Orzati A, Moreno E, Homan O J, Bachtold W. Simulation and evolutionary opti-
mization of electron-beam lithography with genetic and simplex-downhill algorithms. IEEE
Transactions on Evolutionary Computation, Volume 7, Issue 1, February 2003, Pages 69-82.
Rozenberg Grzegorz, Reisig Wolfgang, Desel Jorg (2004). Lectures on concurrency and
Petri Nets. Advances in Petri Nets. Lecture notes in Computer Science. Vol. 3098. doi:
10.1007/b98282.

Salazar, D., Rocco, C. M., & Galvan, B. J. (2006). Optimization of constrained multiple-
objective reliability problems using evolutionary algorithms. Reliability Engineering and Sys-
tem Safety, 91(9), 1057-1070. doi:10.1016/j.ress.2005.11.040.

Shelokar, P. S., Jayaraman, V. K., & Kulkami, B. D. (2002). Ant algorithm for single and multi-
objective reliability optimization problems. Quality and Reliability Engineering International,
18, 497-514. doi:10.1002/qre.499.

Soundharajan, B; Sudheer K.P. Sensitivity analysis and auto-calibration of ORYZA2000 using
simulation-optimization framework. Paddy and Water Environment, January 2013 - Volume
11, Issue 1-4, Pages 59-71. doi:10.1007/s10333-011-0293-z.

Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2000). A survey of simulation
optimization techniques and procedures. In Proceedings of 2000. Winter simulation conference
(Vol. 1, No. 10-13, pp. 119-128). Dec 2000. doi:10.1109/WSC.2000.899706.

Taboada, H. A. & Coit, D. W. (2008). Development of multiple objective genetic algorithm for
solving reliability design allocation problems. In J. Fowler, & S. Masons (Eds), Proceedings
of the 2008 industrial engineering research conference. Available at: http://ie.rutgers.edu/
resource/research_paper/paper_08-004.pdf

Taboada, H. A., Baheranwala, F., Coit, D. W., & Wattanapongsakorn, N. (2007). Practical
solutions for multi-objective optimization: An application to system reliability design problems.
Reliability Engineering and System Safety, 92, 314-322. doi:10.1016/j.ress.2006.04.014.
Taboada, H. A., & Coit, D. W. (2012). A new multiple objective evolutionary algorithm for
reliability optimization of series-parallel systems. Applied Evolutionary Computation, 3(2),
1-18. doi:10.4018/jaec.2012040101.

Tian, Shigang, & Suo, Ming J. (2006). Redundancy allocation for multi-state systems using
physical programming and genetic algorithms. Reliability Engineering and System Safety, 91,
1049-1056. doi:10.1016/j.ress.2005.11.039.

Tian, Z., Lin, D., & Bairong, W. (2012). Condition based maintenance optimization consid-
ering multiple objectives. Journal of Intelligent Manufacturing, 33(2), 333-340. doi:10.1007/
$10845-009-0358-7.

Tzu-Chieh, H. & Kuei-Yuan, C. (2011). Uncertainity quantifications of Pareto optima in mul-
tiobjective problems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0602-
9.

Ullrich, Christian. Exchange Rate Hedging in a Simulation/Optimization Framework. Fore-
casting and Hedging in the Foreign exchange Markets. Lectures Notes in Economics and
Mathematical Systems, Volume 623, 2009, Pages 185-188. doi:10.1007/978-3-642-00495-7_
17.

Wang, Z., & Chen T., Tang K., Yao X. (2009). A multi-objective approach to redundancy
allocation problem in parallel-series systems. IEEE Congress on evolutionary computation—
CEC, pp. 582-589. doi:10.1109/CEC.2009.4982998.

Yang Taho, Chou Pohung. Solving a multiresponse simulation-optimization problem with dis-
crete variables using a multiple-attribute decision-making method. Mathematics and Computers
in Simulation, Volume 68, Issue 1, 3 February 2005, Pages 9-21.

http://dx.doi.org/10.1016/j.ress.2005.11.040
http://dx.doi.org/10.1002/qre.499
http://dx.doi.org/10.1007/s10333-011-0293-z
http://dx.doi.org/10.1109/WSC.2000.899706
http://ie.rutgers.edu/resource/research_paper/paper_08-004.pdf
http://ie.rutgers.edu/resource/research_paper/paper_08-004.pdf
http://dx.doi.org/10.1016/j.ress.2006.04.014
http://dx.doi.org/10.4018/jaec.2012040101
http://dx.doi.org/10.1016/j.ress.2005.11.039
http://dx.doi.org/10.1007/s10845-009-0358-7
http://dx.doi.org/10.1007/s10845-009-0358-7
http://dx.doi.org/10.1007/s10845-011-0602-9
http://dx.doi.org/10.1007/s10845-011-0602-9
http://dx.doi.org/10.1007/978-3-642-00495-7_17
http://dx.doi.org/10.1007/978-3-642-00495-7_17
http://dx.doi.org/10.1109/CEC.2009.4982998

Simulation Optimization Approach to Solve a Complex ... 73

47.

48.

Zhou, L., Yoke San, W., & Kim Seng, Lee. (2011). A manufacturing-oriented approach for
multi-platforming product family design with modified genetic algorithm. Journal of Intelligent
Manufacturing, 22(6), 891-907. doi:10.1007/s10845-009-0365-8.

Zio, E. & Zille, V. (2007). Multi-objective optimization of network systems by using ANT
algorithms. Quality Technology of Quantitative management. 4(2), 211-224. Available at:
http://web.it.nctu.edu.tw/qtqm/qtgmpapers/2007V4N2/2007V4AN2_F4.pdf

http://dx.doi.org/10.1007/s10845-009-0365-8
http://web.it.nctu.edu.tw/qtqm/qtqmpapers/2007V4N2/2007V4N2_F4.pdf

OR and Simulation in Combination
for Optimization

Nico M. van Dijk, René Haijema, Erik van der Sluis,
Nikky Kortbeek, Assil Al-Ibrahim and Jan van der Wal

Abstract This chapter aims to promote and illustrate the fruitful combination of
classical operations research (OR) and computer simulation. First, a highly instruc-
tive example of parallel queues will be studied. This simple example already shows
the necessary combination of OR (queueing) and simulation that appears to be of
practical interest such as for call center optimization. Next, two more ‘real life’
applications are regarded: (1) blood platelet production and inventory management
at blood banks, and (2) train conflict resolution for railway junctions. Both applica-
tions show the useful combination of simulation and optimization methods from OR,
in particular stochastic dynamic programming (SDP) and Markov decision theory
(MDP), to obtain simple rules that are nearly optimal. The results are based on real-
life Dutch case studies and show that this combined OR-simulation approach can
be most useful for ‘practical optimization’ and that it is still wide open for further
application.

1 Introduction

Discrete event simulation is well known as a most powerful tool for logistical process
computation and performance evaluation in a vast majority of fields. Standard appli-
cations are found in the production sector, the service industry (call centers, adminis-
trative logistics), transportation (public transportation systems, road traffic, airports,

N.M. van Dijk (X)) - R. Haijema - E. van der Sluis - N. Kortbeek -
A. Al-Ibrahim - J. van der Wal

Faculty of Economics and Business, University of Amsterdam,
Amsterdam, The Netherlands

e-mail: N.M.vanDijk@uva.nl

N.M. van Dijk - N. Kortbeek
Stochastic Operations Research group, University of Twente,
Enschede, The Netherlands

R. Haijema
Operations Research and Logistics Group, Wageningen University,
Wageningen, The Netherlands

© Springer International Publishing Switzerland 2015 75
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_3

76 N.M. van Dijk et al.

harbors, maritime logistics, express delivery systems, and so on), computer networks,
communication networks and, over the last decade with fast growing attention, in
health care logistics. In most of these applications simulation is required, due to

e the complexity of the system,
e the uncertainties (stochastics) involved at micro up to macro level.

On the one hand, analytic techniques, most notably OR (operations research)
techniques such as queueing analysis and dynamic programming, are generally
restricted to simplified models and simplifying underlying assumptions that have
to be made. On the other hand, simulation by itself does not standardly provide
underlying insights nor techniques for optimization. Clearly, in simple situations
in which an optimization problem can be parameterized by one parameter, such as
by the number of staffing or storage capacity to be determined, simulation search
approaches can be suggested to expedite and automate the search for an optimal
value. An elegant exposé of such methods can be found in Krug [20]. Case-specific
references are found in Sects.2—4.

Unfortunately, in most realistic logistical situations there will be multiple parame-
ters and problem aspects that complicate the optimization. In these situations, at best
a number of different scenarios might be proposed to be evaluated and to be com-
pared by simulation. Alternatively, fast and extensive simulation search approaches
might be developed for optimization, as studied in the last decade. As such, simu-
lation is to be regarded as a most practical and almost unlimited tool for scenario
“optimization”. But, as mentioned, it remains to be realized that simulation by itself
does not provide any of these scenarios nor an automatic tool for optimization. This
is where OR might help out in either of two directions

(i) To suggest scenarios based upon general OR results and insights.
(i1) To provide an OR-optimization technique for the problem included.

Clearly, analytic or OR models are generally too simplistic for realistic model-
ing. Simulation in contrast, hardly seems to have any limitations on the modelling
complexity at all. But to the price of loosing general insights due to this complexity
or at least having to simulate extensively to gain such insights. Here the simplistic
OR model might play an important role of just being generic and providing essential
insights. A similar statement can be made for insights on modeling the underlying
stochasticity. OR models strongly rely upon distributional assumptions, most notably
of exponential nature, which can easily be parameterized by an arrival or a service
rate. Such strict simplifying assumptions can be relaxed by simulation, but to the
price of requiring detailed input data on very specific input distributions. In addition,
the outcomes of a simulation dependent on the sampled random data. For a fair com-
parison of slightly different scenarios of the same system requires many and long
simulation runs to obtain accurate confidence intervals that allow for hypothesis
testing. In contrast, to say the least, analytic or OR models, even though simplis-
tic and whether exact or approximate, provide expressions or algorithms that are
100 % verifiable and replicable.

OR and Simulation in Combination for Optimization 77

Table 1 Combined advantages

OR advantages OR disadvantages
Optimization Simple models
By techniques Strict assumptions
Also by insights

Scenario development

Analytic approximate results

SIM-advantages SIM-disadvantages
Evaluation only Real-life stochastics
By numbers only Real-life complexities

By scenarios only

Computationally expensive

Requires highly detailed data

In short, a combination of OR and simulation might thus become highly beneficial
to compensate for the disadvantages of one another and to exploit the advantages of
either

e OR for insights from simple computation and optimization,
e Simulation for more realistic evaluation and validation.

The disadvantages and combined advantages are summarized in Table 1.

This chapter aims to promote and illustrate the practical potential of the combi-
nation of simulation and optimization (OR). It therefore collects and exposes three
applications based on more detailed and technical papers by the authors, as outlined
in Table 2. The chapter is organized by its separate applications in Sects. 2—4. In each
of these sections, the same structuring is used by its specific problem formulation
and background literature, and also by a presentation of the combined OR-simulation
approach and by its concrete practical numerical results and conclusions. The chapter
will be concluded by an evaluation in Sect.5.

2 Should We Pool or Not?

This section studies the question as simple as whether queues (or line ups) in front
of service desks should be combined (pooled) into a single queue (line up) or not.
The example in this section is based on van Dijk and van der Sluis [30] and van Dijk
and van der Sluis [31].

Table 2 Combination of techniques for three applications

Sections Topic Combination

Sect.2 Pooling in call centers SIM + Q insights
Sect.3 Blood banks SIM + MDP

Sect.4 Railways SIM + Q + semi-MDP

Legend SIM: Simulation; Q: Queueing; MDP: Markov Dynamic Programming

78 N.M. van Dijk et al.

In this section, it will be shown that both OR insights and simulation are essen-
tial for an improvement of either a pooled or an unpooled situation and further
optimization.

2.1 Motivation and Literature

The question relates to a variety of daily-life situations such as at banks, information
desks, ticket offices, up to manufacturing with parts and tools lined up for parallel
machines. A question that seems too simple to be asked as the answer seems so
obvious. In contrast, however, it appears to be surprisingly intriguing.

Capacity pooling is a common concept. The general perception seems to be in
favor of pooling (e.g., see Borst et al. [7], Cattani and Schmidt [8]). From an OR-, or
rather queueing-, point of view, it seems less obvious, if not highly intriguing (e.g.,
Bell and Williams [5]). Counterintuitive examples can already been found in the
book of Wolff [34] and Smith and Whitt [26]. Particularly, motivated by present-day
developments of so-called skill-based routing; over the last decade, it has been given
considerable attention within the application field of call centers (see Gans and Zhou
[14], Wallace and Whitt [33]). The insights and results from the field of queueing
appear to be essential to steps for performance improvement and optimization, such
as by overflow and threshold policies (see van Dijk and van der Sluis [30], Osogami
etal. [23], Squillante et al. [27], Wallace and Whitt [33]). Here, overflow mechanisms
come in for which simulation becomes necessarily required.

2.2 Queueing Insights

2.2.1 A First Queueing Insight

Indeed, the last perception seems supported by the most standard queueing expression
D =1/(n — A) with

w: the service rate (or capacity) of the server (per unit of time)
A: the arrival rate (per unit of time) and
D: the average (or mean) delay

with the implicit assumption of exponential service times. (This assumption can be
regarded as formal justification for speaking in terms of a service rate.) Pooling two
of such servers as if it becomes a twice as faster server with double arrival rate thus
seems to reduce the mean delay by 50 % according to D = 1/(2 — 2A). This delay
reduction seems to result from the efficiency gained by pooling individual queues.
The inefficiencies in the nonpooled case are avoided, as one server can no longer be
idle while there are still customers waiting at another. The intuitive reasoning above
thus seems to be supported by queueing theoretic results and in-line with the general
perception that pooling is beneficial.

OR and Simulation in Combination for Optimization 79

More precisely, by straightforward calculation from standard M/M/s-expressions,
we find

We@.p.1) _1p°/A=p%) _ p
We(l, p,7) /(1 — p) I+p

with Wg (s, p, 7): the mean waiting time for an exponential server group with s
servers, (that is an M/M/s-queue) with traffic load p = A/su per server, with A the
arrival rate and T = 1/u the mean service time.

This shows that the effect of pooling two parallel servers depends on the traffic
load p and will indeed lead to a reduction of at least 50 %.

2.2.2 A Second Queueing Insight: Variability Factor

This reasoning, however, relies upon the implicit assumption of statistically identical
jobs, identical servers, and equal server loads; however, when services are pooled
with different service means, there is also another elementary queueing result that
becomes important. This is the factor of the variability of the service times (in addition
to just the mean). For example, for the case of a single-server system this is expressed
by Pollaczek—Khintchine’s famous formula

1 3
(+C)WE

We =(1+c)Wp — >

where Wi, Wp and W are the expected (average or mean) waiting times for the
situation of a general service distribution (G) with squared coefficient of variation
2, respectively, for a deterministic (or fixed) service time D (hence with 2 =0)

and for an exponential distribution E (for which ¢2 = 1), and where

¢ the squared coefficient of variation = '2/72

o2 the variance of the service time:

T the mean service time.

In words, this formula tells us that also the variation (as expressed by ¢2) around
(relatively to) the mean t of the service times plays an essential factor for the average
delay (as compared to the situation of fixed service times).

80 N.M. van Dijk et al.

Pooled system Unpooled system
PR~ A=50_ Q@O (D)= =1
L=55QBQPYPQ |:’> =182 e
A=5 BE(B)) =10
o r
Wp=6.15 W, =25 W,=250and W,=4.55

Fig. 1 Two-server example (k = 10, p = 0.83) by OR (queuing)

By pooling different services, due to the mix variability introduced and as by the
Pollaczek—Khintchine formula, the effect will thus be less beneficial.

2.2.3 Instructive Example

Consider the situation of two arrival streams of service (e.g., call) requests, referred
to as of type 1 and 2, with arrival rate A; and A;, and mean service time 71 and 1,
with equal workload p = Ait; = A272, and two servers which can handle either
type of service. Let

k=x/d=1n/T1,

T = p171 + p272, With p; = ; /(A1 + 12),

W4 Average waiting time for all jobs,

W1 Average waiting time for type 1 jobs,

W> Average waiting time for type 2 jobs,

Wp Average waiting time for the pooled case.

Figure 1 then illustrates the effect of pooling, for example, with k = 10, A1 = 50
and A = 5 per hour, 71 = 1 and t; = 10min (hence 10 times more short jobs which
are 10 times shorter). Furthermore, the service times are assumed to be deterministic
and the waiting times are expressed in minutes.

2.2.4 A Pooling Formula

With crzm.x denoting the mix coefficient for the pooled case, as computed by:

Cc

1(t1 — D2+ pa(rr — 7)2 712 722
- MmO (e (e

mix ‘EZ ‘E2

the effect of pooling these two servers is then given by

5 ko (k+1 2+ 1 (k+1)° [=1y
C .. = — = —
mE T R4\ 2k k+1\ 2 4k

OR and Simulation in Combination for Optimization 81

Wp 120460 We@ 0D (o0 N D2 p

W 1/2Wg(1, p,) - mx’\14+p) " 4k 1+p

W 120+ 2. YW@, p, T 2%k

wp 12046,)WER p):(1+02.)7 L Vo1pe+n (2
w1 1/2WE(1, p, 71) M+ 1 \1+p I+p

These expressions directly lead to the following conclusions:

Conclusions 1 (As based on OR (queueing), for the two-server case, deterministic
services and identical loads)

1. Pooling is always beneficial for type 2.
2. There can be an increase for a fraction k/(k + 1) of the calls for k > 3.
3. Pooling is not beneficial for k > 5.

Similar results can be just as well for larger server numbers; say instead of 2 single
servers for 2 groups of servers each of size s =5, 10, 20 servers, as of realistic interest
for call center dimensioning. For more details, we refer to van Dijk and van der Sluis
[30, 31].

More generally, by these rather basic but essential OR (queueing) insights and
results, it would seem advantageous to combine the advantages of:

e No (or minimum) idleness as for the pooled case
e No (or minimum) service variability as for the unpooled case.

2.3 Improvement and Optimization by OR and Simulation

2.3.1 Overflow

An overflow system is proposed to further improvement for the overall mean waiting
time. This is where simulation comes in necessarily. Overflow systems are virtually
unsolvable analytically. In Fig. 2, the results by simulation are shown for a two-way
overflow (2WO) and a one-way (1WO-1) scenario as specified by

e Two-way overflow (2WO): A separate queue for each type. An idle server, when
there are no jobs of its own type waiting, will take a job waiting of the other type,
if any.

e One-way overflow (IWO-1): A separate queue for each type. Only an idle server
of type 2 and if there are no jobs waiting of type 2 will take a job from the other
queue, if any.

Figure compares for s = 1 (two parallel servers), k = 10 (hence with 10 times
more short jobs which are 10 times shorter) four basic scenarios of the pooled (P),
the unpooled (U), a two-way overflow (2WO) and a one-way (1WO-1) scenario.

82 N.M. van Dijk et al.

Two-way overflow One-way overflow

r=350 @@@@-u@:} t=1(or10) | A=50 Q)@@@u@;:{) =1

A=5s BR(B))=100D [r=5 waé\-l % =10 (or 1)

W, =3.66, W, =858 and W, =4.11 W, =18, W,=252and W,=3.92

Fig. 2 Two-server example (k = 10, p = 0.83) by OR insights and simulation

Two more simple scenarios to improve the overall average waiting time, as also
based on queueing insights, are to prioritize type 1 jobs, either without preemption
(service interruption) or with preemption of type 2 jobs when a type 1 arrives. In
either way, service for a type 2 job only starts (or is resumed) when no more type 1
jobs are waiting

e Nonpreemptive-Priority-1 (NP1): As in the pooled case and with priority for type
1 jobs when a server idles. Type 2 jobs are served only if there is no type 1 job
waiting.

e Preemptive-Priority-1 (PPI): As scenario NP1. In addition, when a type 1 job
arrives, a type 2 job is preempted. When no more type 1 jobs are waiting, type 2
jobs are resumed.

By simulation the possible improvement is illustrated in Fig. 3 for the situation with
k =10,p = 0.9 and s = 10 (20 servers in total). (To focus on type 1 jobs, the
two-way scenario, which would rank in between the unpooled and one-way scenario
for the allover average, is left out.)

120%
Rank Scenario W, 100% -
5 Pooled 0.71 80%
4 B Unpooled 0.63 60% 1 -
3 O One-way 0.52 580
2 O NP1 0.38
20%
1 E PP1 0.20
0%

P U OWO NP1 PP1

Fig. 3 Average waiting times for different scenarios

OR and Simulation in Combination for Optimization 83

Conclusion 2 As based upon OR insights and by simulation, it appears that overflow
and priority rules perform substantially better.

2.3.2 Single Threshold Optimization

As shown in Sect.2.3.1, a simple priority rule, particularly the preemption scenario
for short (type 1) jobs, generally seems to perform quite well and to be “optimal”
among simple scenarios. Unfortunately, preemption (interruption) of service will
generally be impractical. A further improvement step by queueing and Simulation
might therefore be proposed by using threshold policies, where 7 (6;) indicates a
threshold policy as specified by

a server of either type serves jobs from queue 1,

if either (i) m; > 6; or (il) my=0Am| > 1;
it serves jobs from queue 2,

otherwise.

T o) =

More precisely, by exploiting simulation even an optimization can take place by
determining
W* = n;in W (6)).
1

The results, as had to be obtained by simulation, for some optimal threshold values
compared to the results for the pooled and NP1 scenarios are shown in Table 3.

In fact, it has also been concluded by simulation that these single threshold poli-
cies, with only a threshold value 0; for type 1, are nearly optimal among all policies
that use threshold values for both type 1 and type 2 servers.

Table 3 Optimal threshold values

K Pooled NP1 T61)
Wp Wa Wa or

1 11.53 4.58 4.37 3
2 5.27 2.44 2.27 4
3 333 2.63 1.51 4
4 2.34 1.19 1.12 4
5 1.76 0.93 0.88 5
10 0.71 0.38 0.38 1
15 0.40 0.21 0.21 1
20 0.26 0.14 0.14 1
30 0.13 0.07 0.07 1

84 N.M. van Dijk et al.
2.3.3 Double Optimization

So far, an improvement of the average overall average waiting time was obtained
by particularly improving the mean waiting time for type 1 jobs. Here the average
was computed proportional to the arrival rate ratio for type and type 2 jobs. Though
this averaging makes natural sense, the choice of weights for type 1 and 2 jobs is
still arbitrary. In all scenarios so far, a price still had to be paid by type 2 jobs (even
though for just a small percentage of the jobs).

As an another objective, and supported by insight from queueing, we can address
the question whether a scenario can be found that strictly improves the pooled sce-
nario, that is, in mean waiting time, for both type 1 and type 2 jobs. As mentioned in
Sect.2.3.2, for the overall average mean waiting time, an optimization by threshold
values basically boiled down to just one threshold value 6;. For the purpose of a strict
improvement, in contrast, also a prioritization of type 2 jobs might thus be expected
and be required. Instead of one threshold value 6, we will consider threshold rules
with one threshold values 6 and 6, for either type of jobs. More precisely, let the
threshold rule S(0;, 62) = Thr(0y, 62, 61, 62, 1, 1), i.e., as specified by:

a server of type 1 serves jobs from queue 2,
if either (i) my >6, Amy <6y or (ii) mi =0Amy > 1;
otherwise, it serves jobs from queue 1.

a server of type 2 serves jobs from queue 1,
ifeither (i) mi >0 Amy <6 or (ii) my=0Am; > 1;
otherwise, it serves jobs from queue 2.

S@1,6) =

Among these dynamic (or queue length dependent) rules S(61, 6») by simulation
a rule is sought which strictly improves the pooled scenario. An S(Opt)-rule is
determined that takes into account the waiting times of both job types by:

Step 1: Solve

ming, g, max {W1[S(61, 62)], W2[S(61, 62)]}

This leads to an optimal threshold combination (6, 62)*

and overall average waiting time under (61, 62)*: W4[S(61, 62)*].
Step 2: Solve

WalS(01,62)**] = ming, g, Wa[S(61, 62)]
s.t. max {W[S(01, 62)], Wa[S(61, 62)1} < Wpooiea
Step 3: If (61, 62)™* exists, then
WA[S(Opt)*™] = Wa[S(6y, 62)*],
otherwise

WALS(Op)*™] = Wa[S(61, 62)*].

OR and Simulation in Combination for Optimization 85

8% T
—— Type 1
6% | S 1 T e, S A P N SIS e <, | SRR S
4% + - - - - = 5
o 0 ey e el e R R L i e R
0% L) L L T T T L T T T L L T T L L

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Fig. 4 Relative improvements over the pooled scenario

1 2 3 4 5 & 7 B 9 10 11 12 13 14 15 16 17 18 19 20
@.2) 4.2) 1) D@0 GBI & 1) 21 21 21 21 1) 21 21 3.2 3.2 32 3.2 3.2
@1) 4.1) (31) B4) B1) (52) (52) (52) (5.2) (52) 24) 21) @1 @210 @4 24) @1) 29 21 21)
(51) (7.2) (41) (41) (62) (62) (31) (31) (1) (31) (B1) (3.1 @3.1) 3.1) (52) (52) (21) (21) (21) (21)
(9.2) (8.1) (51) (51) (41) (1) (41) (7.2) (3.1) (31) (31) (31) (1) (31) (31) (31) (1) (62) (62) (62)
8.1 (7,1) (6,1) (51) (51) (51) 41 (41) (41) (41) (3.7) (3.1) (31 (31 (3.1 (3.71) (3.71) (31 (3.1 (370
13.2) (81) (1) (6,1)(10,2) (51) (51) (4,1) @1) @1) @) (41) (@1 (319) G0 (31 G (1) (3.4 G1)
(142) (91) (81) (1) (61)(112) (51) (51) (4.1) (41) (4.1) (41) (41) (92) (1) (31) (92) (92) (9.2) (9.2)
(121) (152) (91) (81) (7.1) (61) (61) (5.1) (5.1) (51) (51) (41) (41) (1) (41) (41) (41) (31) (3.1) (3.1)
(18.2) (12.1) (15.2) (8.1) (7.1) (7.1) (6.1) (6.1) (5.1) (5.1) (5.1) (51) (41) (41) (4.1) (4.1) (41) (41) (3.1) (31

[(81, 82)** solution [(81, 82)" solutien [(81, 82)" solution, pocling average better

=
L R L

o

Fig. 5 Optimal threshold combinations (61, 62)** or (61, 62)* for strict improvements

The improvements are only in the order of a few % but consistently outside 95 %
confidence intervals with a range of 0.5 %. Figure 4 shows the relative improvements
(mean waiting time reduction) that can so be obtained for both type 1 and type 2 jobs
over the pooling scenario for k = 10 and s = 1 up to 20.

Figure 5 lists optimal threshold combinations (0, 6,)** (if existing), for which the
pooled scenario is improved allover, and optimal threshold combinations (61, 6,)*
otherwise, for different values of s, mix ratios k and p = 0.9. It shows that (6, 8)**
does not always exist. For example, for k = 10 and s = 2, at least one of the two job
types will always be worse than for the pooled case. However, for most (s, k)-values
(61, 62)™* appears to exist.

Conclusion 3 By OR (queueing) insights and Optimization using Simulation a strict
improvement over both short and long jobs might be feasible.

2.4 Summary of Combined Queueing and Simulation

To summarize this first application section of combined queueing and simulation,
tailored to question of pooling and possible improvements and optimization, we may
thus conclude that:

e Pooling is not necessarily optimal in all situations.
e Queueing insights appear to be essential.

86 N.M. van Dijk et al.

e Simulation is required.
e Queueing insights and further optimization by simulation may lead to substantial
and even strict improvements.

3 Blood Inventory Management

Blood management is of worldwide and generic concern. This includes the produc-
tion (or rather acquisition of donors) and the inventory management of perishable
blood platelets. No general and practical approach seems to be available. In this
section, therefore, an integrated OR-simulation approach is provided.

3.1 Problem Motivation

Blood inventory management is a problem of general human interest with a num-
ber of concerns and complications. Our problem of interest will concentrate on the
production and inventory management of blood platelets. Here there are a number
of conflicting aspects. On the one hand, the demand is highly “uncertain” and apart
from planned surgeries (if such information is used) roughly 50 % of the demand is
unpredictable. Clearly, as lives may be at risk, shortages are to be minimized. On
the other hand, the supply is voluntary, and also for ethical reasons blood has to be
considered as highly precious. Any spill, by outdating, of blood (products) is thus
highly “undesirable” if not to be avoided at all. As an extra complicating factor, blood
platelets (thrombocytes) have a limited life time or rather “shelf life” of at most 6
days, this in contrast to red blood cells and plasma in all sorts of blood types that
can be kept for months up to over a year. In addition, regular production of a platelet
pool takes about 1 day. Hence production volumes should be set carefully. Another
complicating factor is that part of the patients need the youngest platelets available,
whereas other patients can be transfused with any platelets that do not exceed their
shelf life of 5 or 6 days. Figure 6 shows the product of interest; to help one patient,
platelets of five donors are needed.

3.2 Literature

The above perishable inventory management problem is studied in literature using
various techniques. In the late 1960s and 1970s of last century, the problem is first
analyzed by mathematical analysis of rather simple models that assume zero lead
time, stationary demand, and that neglect the existence of different groups of patients,
etc., see Nahmias [22], Prastacos [24]. More realistic studies use simulation models
to gain insights in the performance of base stock policies, see o.a. Katsaliaki and
Brailsford [18], Sirelson and Brodheim [25].

OR and Simulation in Combination for Optimization 87

Fig. 6 A single platelet pool consists of platelets of five donors

Base stock policies set the order quantity equal to the difference between the actual
stock level (or stock position) and a fixed-up-to level S. The value of parameter S
is weekday dependent as the practical problem is nonstationary: Mean demand are
weekday dependent and no production happens during the weekends. Optimizing
the parameters of order policies is usually very time consuming as the for each day
of the week an optimal parameter setting has to be found and these parameters are
correlated. The number of combinations is often too large to apply enumerated search
using simulation. A recent study that applies simulation based optimization using
meta heuristics is Duan and Liao [12].

It is known that an optimal order policy should consider the ages of the products
in stock, see Fries [13], Nahmias [22]. Base stock policies neglect stock ages but
nevertheless they are commonly applied for being relatively easy to implement and
to analyze. The optimality gap is hardly studied for realistic problem settings with
positive lead time, nonstationary/periodic demand, and multiple types of patients
who require different issuing policies. Main reason is the computational complexity
involved in determining an optimal stockage-dependent policy Blake et al. [6]. This
gap is investigated in the following papers: Haijema et al. [16, 17], Van Dijk et al.
[32]. In these papers, optimal stockage-dependent order policies are derived and
methods are presented that use simulation in combination with optimization to derive
improved but simple ordering policies as well as a way for finding nearly optimal
order-up-to-levels. In this chapter we summarize and integrate the findings of these
studies.

3.3 Combined Optimization-Simulation Approach

In Haijema et al. [16] a combined approach for the blood platelet inventory problem
has therefore been followed, which combines OR and simulation by the following
steps:

88 N.M. van Dijk et al.

Step 1: Optimization model: First, a stochastic dynamic programming (SDP) for-
mulation is provided, which neglects the existence of blood types. This latter
assumptions will be validated in Step 5.

Step 2: Optimal solution: The dimension of the (SDP) formulation is then reduced
(downsized) by aggregating the state space and demands so that the downsized
(SDP) problem can be solved numerically (using successive approximation). That
is, the optimal value and an optimal strategy is determined for the downsized SDP.

Step 3: Simulation for investigation: Then, as essential tying step, this optimal
policy is (re)evaluated and run by simulation in order to investigate the structure
of the optimal strategy. In this simulation, one registers the frequency of (state,
action)-pairs for the downsized problem.

Step 4: Simulation for re-optimization: The results of step 3 are used to derive
practical order rules, like improved base stock policies and to obtain nearly optimal
parameter values. By a heuristic search procedure parameter values of these rules
are fine tuned for the full-size problem.

Step 5: Simulation for validation: The quality (near-to-optimality) of this practical
simple order-up-to strategy is evaluated by detailed simulation. In this step it is
also justified, for Dutch blood banks, that blood types are ignored in the previous
steps.

As the technical (mathematical) details of steps 1 and 2 are somewhat ‘standard’
but also ‘complicated’ and worked out in detail in Haijema et al. [16] and related
references, we present here acompact presentation of the essential OR and Simulation
Steps. The results of Step 5 (validation by simulation) are reported for two cases in
Sects.3.4 and 3.5.

3.3.1 Steps 1 and 2 Optimization by SDP

To give an SDP formulation, the state of the system is described by (d, x) with
d: the day of the week (d =1,2,...,7)
and

x = (x1, X2, ., Xp,) the inventory state

with x,, = the number of pools with a residual life time of r days (maximal m = 6
days) (A pool is one patient-transfusion unit containing the platelets of five different
donations).

Let V,,(d, x) represent the minimal expected costs over n days when starting in
state (d, x). The optimal inventory strategy and production actions are then deter-
mined by iteratively computing (solving) the SDP-equations forn = 1,2, ...

Va(d.x) = min [C(X, k) = Zb:pd(b)Vn—l(d, 1(x, k, b))] (D

OR and Simulation in Combination for Optimization 89

Table 4 Optimal productions by SDP for a selection of states

Production Inventory (old . . . young)
7 0,0,5,0,0,9)

8 0,0,6,0,0,8)

9 ©0,0,38,0,0,6)

10 ©0,6,2,0,0,6)

10 (5,0,3,0,0,6)
with
k the production action,

c(x, k) the one day expected costs in state X under production k,
pd(b) the probability for a (composite) demand b,
t(x, k,b) the new inventory state depending on k, b, X, and some issuing policy,

and
Vo(d, x) = 0 to start up the iterative computations.

However, for a realistically sized problem for one of the Dutch regional blood banks
the computational complexity of this SDP for a one-week iteration already becomes
of an order 1014, which makes the computation times prohibitively large. Therefore,
we have downsized the demands and inventory levels by aggregating the pools into
quantities of four. This strongly reduces the computational complexity, so that an
optimal strategy can be computed for this downsized problem by the optimizing
actions of the SDP. However, in practice one needs a simple rule and this optimal
strategy has no simple structure. See, for example, Table4 which prescribes the
production volumes on Tuesday for five different states, which all have the same
total inventory level of 14 pools, but of varying ages.

3.3.2 Steps 3 and 4 Simulation for Investigation and Re-optimization

In order to derive a simple order-up-to strategy which only depends on the total pre-
dicted inventory, the actual platelet production-inventory process is therefore simu-
lated for 100,000 replications so as to register how often which total predicted final
inventory level (1) and corresponding action occurs under the optimal strategy (as
determined by SDP) for the downsized problem. As an illustration, for a particular
day of the week and the dataset of the regional blood bank, this led to the “simula-
tion table” in Fig. 7. For example, it shows by row 15 and column 7 that during the
100,000 replications 2593 times a state was visited with a total final inventory (/) of 7
followed by a production decision of 8 (order-up-to 15). Order-up-to-level 15 occurs
in 74.5 % of the states visited, however, often a higher production is optimal. The
order-up-to level can be seen as a target-inventory level for Wednesday mornings.

90 N.M. van Dijk et al.

I 2 3 4 5 6 7 8 9 10 11 12 13 14] cum
Order-up-to
23 4 4
22 28 28
21 96 96
20 267 267
19 2748 3 753
18 18 1928 31 1 1978
17 6331 4490 353 26 | 11201
16 8260 2078 783 7 11128
15]3131 14123 20926 23646 10087 2593 39 74545
0
cum.[3131 14123 20926 23646 18347 11002 5330 2290 805 272 96 28 4{100000

Fig. 7 Simulation frequency table of (State, Action)-pairs for tuesdays from simulation of optimal
SDP solution for 100,000 weeks

We conclude that a simple order-up-to rule might perform well. By investigating
the states at which the optimal production volume is higher we have derived even
better rules that closely resembles the optimal production strategy. For example, a
base stock policy that first estimate the quantity that is left upon replenishment is
doing better as it compensates for estimated waste during the lead time. Such a policy
is called in Haijema et al. [16], the final stock rule. Another improved policy applies
two order-up-to levels, one for the demand for young platelets, and one for the total
demand. Both these improved policies are discovered and tested by simulation of the
optimal stockage-dependent policy.

3.3.3 Step 5 Validation by Simulation

The results of Step 5 are reported for two real-life applications that differ in their
motivation. Application 1 was selected for validation of the method with the premier
objective of reducing waste. In Application 2 the focus is on applying the method
such that one issues younger product while maintaining low levels of waste and a
high product availability. The Netherlands can be divided in four regions at which
blood is collected and processed, see Fig. 8. For Application 1, region North-East is
considered, for Application 2 region South-East is selected.

OR and Simulation in Combination for Optimization 91

Fig. 8 The Dutch blood 2 ey
banks divide The e Bt — g 5
Netherlands in four regions

3.4 Application 1: Spill Reduction at Dutch Blood Bank
North-East

3.4.1 Main Results

Applying this combined approach to data from the Dutch regional Blood Bank North-
East, the following conclusions could be drawn

1. A simple order-up-to rule could reduce the spill from roughly 15-20 %, as a figure
that also seems rather standard worldwide, to <1 % (while also shortages were
reduced and nearly vanished).

2. The combined SDP-Simulation approach led to an accuracy within 1% of the
exact optimal value for the downsized problem.

Detailed data and results are discussed below.

3.4.2 Problem Data Dutch Blood Bank North-East

The maximal shelf life of a platelet pools is five days counted from the first morning
that platelet pools are released to the stock located at the blood bank. The demand
for platelet pools is Poisson distributed with means as reported in Table 5.

The demand for young prefers products of at most 3-days old. The any-age demand
can be met by any pools of at most 5-days old. Falling short one pool is considered
to be five times as severe as wasting one platelet pool. This is a managerial trade-off

92 N.M. van Dijk et al.

Table 5 Means of Poisson demands per weekday and per type of demand

Demand Mon Tue Wed Thu Fri Sat Sun Weekly
“Young’ 20 15 26 15 20 0 0 96
‘Any-age’ 6 6 6 6 6 8 10 48
Total 26 21 32 21 26 8 10 144

that is reflected in a penalty costs of 150 € for spilling one pool, and 750 € for
falling short one pool. Inventory costs are estimated to be only 0.1 € per day per
pool. Meeting the demand for young by products with a residual shelf life of only 2
or less days is penalized by a cost of 200 per pool. The objective is to minimize the
sum of these costs.

3.4.3 Results Dutch Blood Bank North-East

An optimal stockage-dependent policy can be obtained by SDP but only after scaling
the demand figures as if demand happens in multiples of 4 pools (=Step 2). The
resulting policy is simulated to investigate its structure (=Step 3). The result of
Steps 3 and 4 are five more rules, which neglect the age of the products in stock while
setting an order quantity. The performance of these rules are compared in Table 6,
using the scaled or downsized demand distributions. Clearly stockage-dependent
ordering (SDP/MDP) gives lowest annual costs. A fixed-order quantity orders every
weekday a fixed weekday dependent quantity and is clearly far from optimal. The
Order-up-to S, which is a base stock policy, provides annual costs that are 9.9 %
above the optimal cost level. For the scaled problem, the weekday dependent order-
up-to levels are multiple of 4; for Monday to Friday we get S = (64, 72, 72, 64, 80).
The new policy Bounded Order-up-to S, adds a minimum and a maximum order
quantity to order-up-to S policy. The effect of these bounds are that are quantities
are more smooth, which results in lower annual costs, primarily due to generating
less mismatches, i.e., it happens less frequently that old pools are used to meet the

Table 6 Performance of optimal policy and derived rules

Rule Outdating® Shortage? MismatchP Annual costs
MDP-optimal 37 1.95% 4.9 0.26 % 0.09 0.01% 36,605 -
Fixed-order-quantity 157 8.41% 14 0.07 % 0.00 0.00 % 98,459 +168.9 %
Order-up-to S rule 36 1.95% 5.7 0.30% 2.17 0.17% 40,236 +9.9 %°
Bounded order-up-to S | 36 1.95% 5.6 0.30% 0.59 0.05 % 39,077 +6.8%°
2D-order-up-to rule 36 1.92% 5.2 0.28 % 2.16 0.17% 38,779 +5.9%°
Final stock rule 36 1.91% 5.1 0.27% 1.98 0.16% 38,389 +4.9 %°

41n batches of 4 pools per year; % of total (1872 batches = 7488 pools)
"In batches of 4 pools per year; % of young-demand (1248 batches = 4992 pools)
“Percentage above optimal cost level (MDP)

OR and Simulation in Combination for Optimization 93

demand for young pools. The 2D-rule, which has both an order-up-to level for young
and for total stock, and the Final stock rule show further cost reductions. The best
policy is still about 5 % above the minimal costs level achieved by MDP-optimal.

3.4.4 Re-optimization and Validation

For the validation, we restrict ourselves to the order-up-to S policy as it is com-
monly used. The parameters are reoptimized by local search and simulation with
the nonscaled demand distributions resulting in S = (65, 74, 80, 64, 82). Validation
happens in a more detailed simulation program that takes into account the blood type
of both patients and donors. Donors are selected mainly form the category O and A
for being the most compatible donor, see Fig. 9. The percentages indicate that the two
blood types cover 89 % of the population. Most donor provide full blood donations
from which three types of blood products are made: Red blood cell concentrates,
plasma products, and platelet concentrates. As for the production of platelet pools
only a third to a half of the donations is needed, one usually has enough platelets
available of the most compatible blood types O and A. In total, we consider eight
blood types by combining O, A, B, and AB with the Rhesus-D factor.

Table 7 report estimates of annual figures by two simulation models: The multi-
group model simulates patients and donors of eight different blood types; the
Universal-group model simulates as if all donors and patients have identical or fully
compatible blood types. The result in annual performance is virtually the same, as
blood of the universal blood group O is plenty available.

If instead of 33 % of the available blood is sued for platelet production, 50 %
or even 67 % is used more of other blood types is used for production. This is
demonstrated in Table 8. The annual production stays the same but if blood is more
scarce, more of the less compatible blood type B is produced which is no problem if
demand is met choosing pools of the least favorite but compatible blood type first.

Donor Patient Donor Patient

47% 16%
2% 84%
8%
3%

Fig. 9 Compatibility of blood types and Rhesus-D factor

94 N.M. van Dijk et al.

Table 7 Impact of blood types on performance of order-up-to S (simulation for 100 million weeks)

Criterion Multigroup model Universal-group model

In pools Relative (%) In pools Relative (%)
Production 7597 7597
Outdating 143 1.9 142 1.9
Shortage 33 0.4 33 0.4
Quality mismatch 9 0.2 9 0.2
Annual costs 48,168 47,726

Table 8 Production per blood group under the rescaled order-up-to S rule (over 100 simulation
runs of 1 million weeks each) when on average a third, a half or two third of the whole blood
donations (WBD) is used for platelet production

Scenario Total | O~ o* A~ AT B~ B* AB~ |ABT
33% of WBD used | 7597

Annual production 1582|5944 |62 10 0 0 0 0

% of total production 20.8% | 78.2%|0.8% |0.1% |0% 0% 0% 0%
50% of WBD used | 7597

Annual production 1018 |5268 |525 |786 |0 1 0 0

% of total production 13.4% |69.3%|6.9% |10.3%|0% 0% 0% 0%
67 % of WBD used | 7597

Annual production 739 4201 | 560 1991 |8 86 0 14

% of total production 9.7% |553%|74% 1262%(0.1% |1.1% [0.0% |0.2%

3.5 Application 2: Age Reduction at Dutch Blood Bank
South-East

As donated, platelets tend to clutter and the number of effective platelets within a
pool decreases as time evolves; the quality of a platelet pool is directly related to
its age when its transfusion takes place. Therefore, besides shortages and outdating,
there is a third quality factor.

The issuing age of the platelets.

This quality factor is most important for treatment of special patients (oncology
and hematology) which constitute roughly 40 % of all demand. Clearly, the SDP by
itself does not take the age into account. By simulation, in contrast, issuing ages can
easily be kept track of. In Kortbeek et al. [19] and Haijema et al. [16], therefore, the
SDP-simulation approach was extended so that also the quality aspect of the issuing
age is addressed. The extension was applied to a new Dutch Blood Bank study, the
Dutch Blood Bank South-East, with a (meanwhile) extended maximal shelf life of
6 days. Below, several strategies are presented that improve the age of the platelets
issued, such as by slightly relaxing the shortage performance, by introducing penalty
costs for older issues or by a special “weekend” production. The results were obtained
by successfully exploiting the strengths of

OR and Simulation in Combination for Optimization 95

Table 9 Performance of base case South-East

Performance indicator Base case

Shortage 0.04 % (in days 0.13 %)

Outdating 0.25%

Average age 3.75

Age distribution (2.5;17.2; 19.1; 30.8; 25.1; 5.3) %

e SDP for optimization, and
e Simulation for evaluation.

In the first study only two cost elements are used, outdating and shortage cost.
Shortage costs are taken to be five times as high as the outdating costs. In this base
variant, there are no penalty costs with respect to age. The issuing policy is FIFO,
that is, the oldest platelets are issued first. At Saturday there is a limited production
capacity of 20 pools, and at Sunday there is no production at all.

Table 9 shows that the shortage and outdating figures are excellent. The issuing
age of the platelets, however, is fairly high, with more than 30 % of the platelets
being issued at shelf ages 5 and 6 days and with an average age of 3.75 days.

At this point, the SDP-Simulation approach is exploited in order to explore sce-
narios and strategies which can improve the issuing age. An obvious first attempt
is to use the LIFO (Last In First Out) issuing policy instead of FIFO, so to always
issue the youngest platelets in stock. Although the average issuing age improves
to 2.26, the price with respect to outdating (11.0 %) and shortages (1.87 %) is very
high. Therefore it was concluded that LIFO is not the solution. A second alternative
is to allow the number of days with shortages to be relaxed to about 1 % (recall this
percentage was (.13 for the base case). 1 % amounts to 3 to 4 days per year and is
considered to be acceptable by the Blood Bank. By allowing more shortages one will
keep fewer inventories, which might result in issuing younger platelets. In order to
find a nearly optimal order-up-to strategy giving 1 % shortage days, the ratio between
shortages and outdating costs is decreased. The results are displayed in Table 10.

There is a considerable improvement of the age distribution, while outdating has
become virtually zero. Only 14 % of the issued platelets is of shelf age 5 and 6 days,
compared to 30 % for the base case and the average age has been decreased from
3.75 to 3.18. In the base case, the maximal shelf life is 6 days. But what happens
if one decides not to use platelets of age 6 days, so that platelets become outdated
at the end of day 5 or even at the end of day 47 It can be expected to lead to lower
order-up-to levels, so more shortages but issuing younger platelets. With respect to
the SDP this results in changes in the state space, the expected costs and the transition
probabilities. Using the same cost structure as in the base case one obtains the results
in Table 11. The results for a shelf life of 5 days for shortages and outdating are
quite good. The percentage of the platelets issued at shelf age 5 is about 16 % and the
average age of the platelets issued is 3.2 days. Although for 4 days the age distribution
improves considerable, the increase in outdating makes this solution unacceptable.

96 N.M. van Dijk et al.

Table 10 Performance South-East, when shortages are tuned to 1 % of days

Performance indicator Shortage are tuned to 1 %

Shortage 0.35 % (in days 0.95 %)
Outdating 0.02%
Average age 3.18

Age distribution (8.4;25.9;20.3; 31.2; 13.1; 1.1) %

Table 11 Performance South-East, when shelf life is reduced

Performance indicator | 5 days 4 days

Shortage 0.24 % (in days 0.66 %) 0.73 % (in days 1.88 %)
Outdating 1.22% 5.38%

Average age 3.23 2.70

Age distribution (6.8;25.8;20.2;31.5; 15.6, =) % | (15.9;29.5;23.0;31.6, —, —) %

Another possibility is to discourage the issuing of older platelets by penalization
in the cost function of the SDP. This penalty is taken to be half the outdating costs.
(It is important to note that the more cost parameters are used, the more difficult it is
to quantify them in such a way that the effect one is aiming for is indeed achieved.)
Compared to the base case, the only change in the SDP is in the costs. Two cases are
considered: In the first case day 4, 5, and 6 are discouraged, and in the second case
day 5 and 6. The results are displayed in Table 12.

Both cases show almost equal results. As expected, shortages have increased, but
the average age went down to 3.12, and issues of day 5 and 6 halved compared to the
base case. The final scenario studies a combination of successful scenarios: a shelf
life of 5 days, a penalization for issuing platelets of age 5, and shortages about 1 %
in days. The results are displayed in Table 13.

The proposed combination appears to be a very satisfactory improvement, with
shortages in the order of 1% in days, outdating just below 1%, the average age
reduced from 3.75 to 3.06 and only 11.0 % issued at age 5.

Table 12 Performance South-East, when discouraging issuance of older pools

Performance indicator

Penalize day 4, 5 and 6

Penalize day 5 and 6

Shortage 0.30 % (in days 0.95 %) 0.33% (in days 1.11 %)
Outdating 0.04 % 0.08 %
Average age 3.12 3.10

Age distribution

(9.5;26.0; 23.1; 27.6; 12.4, 1.5) %

(9.9;26.7; 23.5; 25.1,12.7,2.0) %

OR and Simulation in Combination for Optimization 97

Table 13 Performance South-East, when combining scenarios

Performance indicator Combination

Shortage 0.36 % (in days 1.04 %)
Outdating 0.92%

Average age 3.06

Age distribution (9.0; 27.0; 24.0; 29.0; 11.0; —) %

3.6 Summary Blood Inventory Management

To summarize this section it can thus be concluded that the (perishable inventory)
problem is so complex that it is impossible to obtain practical results by only SDP
or only by Simulation. However, substantial and practical improvements could be
obtained (and have real life been implemented (see Kort et al. [11], Van Dijk et al.
[32]) by their combination.

4 Rail-Track Scheduling

Railroad scheduling is highly complex as punctual and detailed scheduling at minute
basis is confronted with stochastic disruptions on the other. Simple and practical
rules are then required. These in turn are highly situation dependent, including time-
tabling, frequencies up to (country) infrastructures. No general stochastic appears
to be available approach other than simulation. In this section, again an integrated
OR-simulation approach is suggested, as based upon Stochastic (Semi-Markovian)
Dynamic Programming (SDP).

4.1 Motivation

Anexample of yet another class of stochastic decision problems for which acombined
SDP-simulation approach seems most fruitful is found in rail-track scheduling. In the
Netherlands, tracks are heavily used. This implies that these tracks have to be used
in an intelligent way. As an example, consider the junction as depicted in Fig. 10. If
two or more trains enter the junction more or less simultaneously it has to be decided
which train is admitted first. To a certain extent the basis of this decision problem is
deterministic but in practice it is also highly stochastic due to stochastic arrival times,
delays and speed differences. Accordingly, the problem of online dynamic conflict
resolution has the flavor of both a scheduling and a queueing problem.

98 N.M. van Dijk et al.

Fig. 10 The railway ———
infrastructure of The Rt

Netherlands with selected
junction for the test case

Roosendaal

Breda

4.2 Literature

Railway scheduling problems have been extensively studied in the literature and are
known to be NP-hard (Garey and Johnson [15]). Excellent overviews are given in
Assad [4], Cordeau et al. [9], Tornquist [28] and D’ Ariano [10]. In the overview paper
Tornquist [28], the relevant literature is classified into three main categories: Tactical
scheduling, operational scheduling, and rescheduling. While the Tactical and oper-
ational scheduling involved constructing the timetable from scratch, rescheduling is
done when train conflicts arise due to perturbations. The online dynamic conflict
resolution falls in the category of Rescheduling.

Very little literature exists on Rescheduling. The issue has been addressed only
recently due to the complex nature of the problem and the very limited available
computational time. The different approaches that are described in the literature min-
imize delay propagation by setting the train order at crossing points. Amongst these
approaches is the model proposed in Adenso-Diaz et al. [1]. The authors describe
the online conflict resolution problem as a mixed integer programming model and
state that solving this problem by means of the Branch-and-Bound technique is very
time consuming. Instead, the authors propose a heuristic approach that intelligently
reduces the search space by elimination of certain branches that are considered to be
inferior. The approach is implemented at the Spanish national railway company where
the tool preselects the best resolution rules and presents them to a train dispatcher.

OR and Simulation in Combination for Optimization 99

Tornquist and Persson [29] propose a two level procedure to resolve train conflicts.
The authors suggest an approximation strategy, which in most cases does well with
respect to computational time and solution quality. Araya et al. [3] formulate the
online scheduling problem as a 0—1 mixed integer programming problem which is
solved in two steps. First, a suboptimal solution is obtained by a heuristic approach.
The branch-and-bound approach is then used to find the optimal solution. A number
of experiments show the efficiency of the approach in terms of computational time.
Another approach is to formulate the train conflict problem as a Job-Shop problem.
Here, the trains are jobs and the tracks are machines. The problem is then to find the
best assignment of the trains to the tracks so that the overall delay (or some other
optimization function) is minimized. Mascis and Pacciarelli [21] introduce blocking
and no-wait constraints to the Job-Shop scheduling problem and use an ‘Alternative
graph’ to solve it.

These heuristics, however, do not guarantee the optimality of the solution. More-
over they do not account for future uncertainties, such as stochastic train arrivals.
In the next section, a stochastic approach is discussed. These approaches attempt to
model uncertainties which are found in the real world (think of the running times,
dwell times and other operations which are often stochastic).

4.3 Combined Simulation and Optimization Approach

4.3.1 OR-Approach: Optimization

This track conflict problem can partially be regarded as a ‘standard’ OR-scheduling
problem, more precisely, as a job-shop problem with blocking. By considering trains
as jobs and tracks as machines, an ‘optimal train order’ for a track can be found by
branch-and-bound techniques. It is a job-shop problem with blocking because an
occupied track section blocks a successive train to enter that section. Trains at the
preceding section can thus be delayed. The usual job-shop formulation, however,
uses fixed handling times without delays and variability’s.

4.3.2 Simulation Approach

As delay aspects and the variability of travel times are crucial for the track conflict, a
stochastic approach might be able to cover more aspects of the problem. Simulation
would thus be in place, despite the fact that it does not optimize at all. Indeed, in
earlier literature (see references in Al-Ibrahim [2]) simulation is used to analyze a
junction. In those studies, train are assigned by dynamic priorities. The dynamic
priority can be a function of the train type, its experienced delay, the delay caused
by acceleration and possible other conflicts. However, optimization is not involved.

100 N.M. van Dijk et al.
4.3.3 Combined Approach

In Al-Ibrahim [2], therefore, a more extended combination of OR and simulation is
suggested. To include both queueing (time) and scheduling (optimization) aspects a
Semi-Markov Decision Process (SMDP) is formulated.

4.3.4 SMDP-Formulation

The Semi-Markov Dynamic Programming (SMDP) formulation for the stochastic
junction-track scheduling problem essentially takes into account the stochastic nature
and different durations of transitions. It has the form:

c(A,v,d)+
Var1(A, v, d) = min { (t/t5(A, v, d) X4 gy P (A v,)i (A V', d)] V(A Y, d)
C D = A D] Vi (A, v, D)
2

where a state (A, v, d) represents a state of the form:

(A,V,d) = (Al,vl; A2,V2;d1,d2, ...,dN)

with
A; denoting the trains in queue [€ {1, 2}
V] indicating whether the trains are moving (v; = 0) or not (v; = 1)

dj the train type which is occupying the jth position past the junction.

The costs c¢(A, v, d) cover the time that all trains together are spending in the sub-
network up to a next transition. Further

Pk [(A,v, d); (A ,v’,d’)] represents the transition probability from a state
(A,v,d)into (A’,V',d")

rk(A, v, d) is the average duration of a transition in state (A, v, d), when decision
k is taken.

4.3.5 Simulation-SMDP Approach

A combined approach can now be suggested, which combines simulation with the
SMDP optimization algorithm in a number of steps, as briefly outlined below.

Step 1: (SMDP optimization) For the junction under consideration, a semi-Mark-
ovian decision process is formulated and solved. (As shown above and argued in
more detail in Al-Ibrahim [2]). For every possible, state an optimal decision is
registered.

Step 2: (Simulation) Trains are generated for the junction subnetwork according
to a global train schedule but with a number of stochastic elements to include
initial randomness and speed differences. The trains are simulated until a conflict
is detected. The simulation run is interrupted and the conflict is registered.

OR and Simulation in Combination for Optimization 101

Step 3: (Finding the optimal SMDP decision) The train conflict situation is mapped
on to a state of the SMDP model. Then the corresponding optimal decision is read
and communicated to the simulation. The simulation implements this decision
and the simulation continues until the next conflict occurs.

Step 4: The delays, as they occurred in the simulation with the optimal SMDP-
decisions, are registered.

Step 5: Comparison. Simulation is used to also obtain the performance of a number
of other heuristical rules to settle the conflicts.

Step 6: Results. The SMDP results as well as the results for the heuristics are
reported.

In short, simulation is used to capture queueing, to generate conflicts and to evaluate
decisions made while SMDP is used to determine the (within the model) optimal
train order.

4.4 Application Results

4.4.1 Application 1: Junction Case

In cooperation with “ProRail” (the Dutch Railway operator) the approach has first
been applied to a small but complicating and generic junction within The Netherlands.
The junction has 12 arriving trains per hour, 6 fast passenger intercity trains (IC) and
6 slow freight trains (FR); half of the trains on each one of the arriving tracks. After
the junction there are 5 positions (which reflect a distance of more than 13 km). The
FR trains need 170 to accelerate from speed O to speed 80 km/h, while the IC trains
only need 30s to reach the speed of 120 km/h.

To verify that the combined SMDP-simulation approach outperforms simple prac-
tical rules like the FCFS (First Come First Served) rule or a strict priority rule for
passenger or for freight trains, the approach is compared with these rules by simu-
lation. Table 14 shows the results. The values are average delays per train type over
12 days at 15h a day. The results show that the SMDP-simulation approach almost
captures the quality for passenger trains as by strictly prioritizing passenger trains
and for freight trains as by strictly prioritizing freight trains.

4.4.2 Application 2: A Network Case

Next, in close cooperation with the department of “Traffic Control” of the Dutch
Railway operator ProRail the approach has been applied to a more complicated
network structure as shown in Fig. 11, called the corridor “Utrecht—-Gouda.” This is
a heavily utilized corridor with frequent train conflicts. Presently these conflicts are
resolved by ProRail according to so-called TAD rules. (TAD is the Dutch acronym

102 N.M. van Dijk et al.

Table 14 Results by simulation and the SMDP-simulation rule for the FCFS, IC-FR (priority to
passenger trains), and FR-IC (priority to freight trains)

12 trains per hour

Discipline Delay IC(s) Delay FR (s) Avr delay (s) Number conflicts
(per hour)
FCFS 182 86 134 2.6
IC-FR 164 109 137 2.6
FR-IC 175 48 111 2.3
SMDP 162 51 106 22
Area 3 Area 2 Area 1

vl

F1|
ﬁ"
I

Qudewater---

;

L
©
o
=
Q
9

Utrecht
Centraal ------

Fig. 11 Corridor Utrecht—-Gouda (We here confine ourselves to the trains running from Utrecht to
Gouda and do not consider the opposite direction)

for train order document.) These rules are computed offline and prescribe the train
order in case a conflict arises. Table 15 shows an example of such a rule.

It is stated that train service 4000 is scheduled to be the first one to run toward the
Gouda station (Gd) followed by train services 2000, 2800, and a freight train, if its
delay is less than 6 min. If the train service 4000 has a delay between 6 and 10 min,
the TAD rule prescribes that the train should let train services 2000, 2800 and the
freight train go first.

For the corridor Utrecht—Gouda the TAD rules give unsatisfactory results. ProRail,
therefore, was searching for alternative rules that improve the train punctuality for
this corridor. Figure 11 shows the corridor in more detail and indicates the three areas,
which in our approach will be considered separately.

Table 15 Example of a TAD rule

Train | To Arrival time Minimum Maximum Train order

delay delay
4000 | Gd —0.03/-033 | 0 6 4000 — 2000 — 2800 — FR
4000 | Gd —0.03/-0.33 | 6 10 2000 — 2800 — FR — 4000

OR and Simulation in Combination for Optimization 103

After inspecting the corridor and the specific elements that play a role at each
conflict location, we concluded that there are three different areas where conflicts
occur and where a resolution rule is needed. In Area 1, the trains leave the Utrecht
station toward Gouda. When a conflict arises, one needs to establish an optimal
departure order based on some optimization criterion. In Area 2, at Woerden station,
there is a double track over a distance of 8§ km which makes it possible for fast trains
to overtake slower trains without delaying them much. Here, one needs to know if,
and when, a fast train may overtake a slower one. Finally in Area 3, at the place called
Oudewater, it is possible to stop a freight train so that a passenger train can overtake
it. The rule here should prescribe when it is optimal to stop a freight train in favor of
a passenger train. Solving the SMD model, described in the previous section, yields
the so-called SMD strategy which decides about the order of the trains for each area
separately. Just like the TAD strategy the SMD strategy is local and computed offline.
However, while the TAD strategy assumes that only one train is delayed at a time,
the SMD strategy prescribes conflict resolution rules for all possible situations. In
its computation, it does not only consider trains in the direct proximity of a conflict
area but it also includes information about (random) future arrivals.

The performance of the SMD strategy is compared to the performance of the TAD
rules and some other simple heuristics. For this comparison simulation is necessarily
required.

Within the simulation, we have applied the timetable of the year 2007 and used
disturbances which are comparable to the ones recorded in 2007. By means of the
“common random number” technique the different strategies are confronted one by
one to the same set of events so that the differences in performance are solely related
to the strategies themselves and not to the random nature of the simulation process.

Table 16 shows the punctuality in percentages at the three stations Utrecht (Ut),
Woerden (Wd) and Gouda (Gd) for the different strategies. Here, a train is called
“punctual” if the delay is less than 3 min. Each value represents the punctuality aver-
aged over all trains and different train services that cross that station. Upon departure
still 92 % of the trains is “punctual”. As one sees, due to conflicts within the corridor,

Table 16 Punctuality (in %) of Utrecht—Gouda trajectory

Discipline Ut Wwd Gd
TAD 92 86 72
SMD 92 88 82
FCFS 92 85 70
IC-IR-RE-FR 92 89 83
IC-FR-IR-RE 92 89 82
FR-IC-IR-RE 92 89 80
FR-RE-IR-IC 92 86 74
RE-IR-IC-FR 92 87 78
LeastDelayedFirst 92 86 81
MostDelayedFirst 92 87 73

104 N.M. van Dijk et al.

the punctuality decreases toward the end of the corridor. Some strategies resolve
the conflicts in a more beneficial way, which translates into a higher punctuality at
the end of the line. The FCFS strategy turns out to be the worst strategy. The TAD
strategy improves FCFS strategy, but only a bit. The strategy MostDelayedFirst tries
to minimize the delay for the most delayed trains by giving them priority over other
trains, which however leads to poor overall results. Giving priority to the least delayed
train turns out to be a better solution. From the train type priority rules IC-IR-RE-FR
turns out to perform very well. This rule gives Intercity trains (IC) priority over all
other train types. The Inter Regional (IR) trains have the second highest priority then
come Regional trains (RE) and Freight trains (FR) have no priority at all. The SMD
strategy improves the punctuality of the TAD strategy by 10 % points and is among
the best performing strategies. When considering different scenarios, changing the
percentage of freight trains or the total amount of trains, we found that the perfor-
mance of the simple priority rules was quite sensitive to the number and the mix
of the trains. The strategies that performed well in one case were not performing
well at all in other cases. The SMD strategy performed very well in all cases, which
encourages us to apply this approach to other corridors.

4.5 Summary of Rail-Track Scheduling

Summarizing the results of this section, first of all we note that there is no other
way to evaluate the different train scheduling rules than by simulation. We also note
that even for experienced and intelligent train schedulers, it is impossible to generate
and compare all strategies. The SMDP-algorithm though, in principle computes pre-
sumably optimal decisions. In practice, these decisions can be overruled in the light
of other information and expertise of schedulers, which cannot be included in the
SDMP-simulation model. Nevertheless, the combined SMDP-simulation approach
appeared to provide a valuable tool to support practical train scheduling.

5 Evaluation

OR (Operations Research) is well known for its value of mathematical optimization.
Most famous applications considered in OR are the shortest routing problems (in
route planning systems), and standard inventory optimization (e.g., by deterministic
EOQ formulas). Generally, however, stochastics is involved to model uncertainty.
Here the value of OR seems less famous, although simple insights and formulas from
queueing theory (Q) and stochastic inventory theory (on replenishment policies) are
available, next to techniques for stochastic optimization such as Markov decision
theory (MDP).

In contrast, in practice OR techniques are often perceived as being too complex
to apply and OR models are too simple by relying on strong underlying assumptions
such as exponential distributed process times. Simulation, in particular discrete event
simulation, then naturally comes as a manageable and practical tool for evaluation and

OR and Simulation in Combination for Optimization 105

search-based optimization with virtually no restriction on either practical complexity
or stochastic assumptions. The use of OR results, particularly of stochastic nature,
generally seems to be skipped.

This chapter aimed to promote that even in that mathematically unsolvable prac-
tice, results from OR could still be most useful in combination with simulation, in
either of two ways

(1) To provide insights so as to assist the simulation steps in search for optimization.
(ii) To provide an optimization formulation and a technique for its computational
feasibility as well as its evaluation by using simulation.

The three applications discussed in this chapter, are real-life applications but their
description is far from complete. These examples simply show that each practical
problem description requires a tailor-made solution, for which both an OR formu-
lation and the way it is to be integrated with simulation are to made specific and
practical.

Simulation engineers might regard OR as too restricted for real-life scale and
complexity. OR practitioners in contrast might regard simulation as insufficiently
formally supported and specific. This chapter aimed to illustrate the opposite. That
one could well benefit from the other. At practical call center scale by queueing
insights and by simulation for practical improvements. For blood banks and rail-
ways, a theoretical OR solution technique for solvable systems used by simulation
for expansion to simple practical rules. Accordingly, a combination appears to be
highly mutually beneficial. Beyond these and other applications by themselves, this
combination also seems of future research interest such as to integrate simulation for
the nearly open problem of transient queueing applications on the one hand and to
support simulation search approaches by OR on the other.

References

1. B. Adenso-Diaz, M. Oliva Gonzalez, and P. Gonzalez-Torre. On-line timetable re-scheduling
in regional train services. Transportation Research Part B: Methodological, 33(6):387-398,
1999.

2. A. Al-Ibrahim. Dynamic Traffic Management for Railway Networks: A Semi Markovian Deci-
sion approach for train conflict resolution. PhD thesis, University of Amsterdam, the Nether-
lands (Supervisor J.van der Wal), 2010.

3. S. Araya, K. Abe, and K. Fukumori. An optimal rescheduling for online train traffic control in
disturbed situations. In Decision and Control, 1983. The 22nd IEEE Conference on, volume
22, pages 489-494. IEEE, 1983.

4. A.A. Assad. Models for rail transportation. Transportation Research Part A: General,
14(3):205-220, 1980.

5. S.L. Bell and R.J. Williams. Dynamic scheduling of a system with two parallel servers in
heavy traffic with resource pooling: asymptotic optimality of a threshold policy. The Annals of
Applied Probability, 11(3):608-649, 2001.

6. J.T. Blake, S. Thompson, S. Smith, D. Anderson, R. Arellana, and D. Bernard. Optimizing the
platelet supply chain in nova scotia. In Proceedings of the 29th meeting of the European Working

106

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

N.M. van Dijk et al.

Group on Operational Research Applied to Health Services (ORAHS). Prague: European
Working Group on Operational Research Applied to Health Services, pages 47-66, 2003.

. S. Borst, A. Mandelbaum, and M.I. Reiman. Dimensioning large call centers. Operations

research, 52(1):17-34, 2004.

. K. Cattani and G.M. Schmidt. The pooling principle. INFORMS Transactions on Education,

5(2):17-24, 2005.

. J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing and

scheduling. Transportation science, 32(4):380-404, 1998.

A. D’Ariano. Improving real-time train dispatching: models, algorithms and applications.
Number T2008/6. Netherlands TRAIL Research School, 2008.

W. de Kort, M. Janssen, N. Kortbeek, N. Jansen, J. van der Wal, and N. van Dijk. Platelet pool
inventory management: theory meets practice. Transfusion, 51(11):2295-2303, 2011.

Q. Duan and T.W. Liao. Optimization of blood supply chain with shortened shelf lives and abo
compatibility. International Journal of Production Economics, 153:113-129, 2014.

B.E. Fries. Optimal ordering policy for a perishable commodity with fixed lifetime. Operations
Research, 23(1):46-61, 1975.

N. Gans and Y.-P. Zhou. Call-routing schemes for call-center outsourcing. Manufacturing &
Service Operations Management, 9(1):33-50, 2007.

M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of np-
hardness, 1979.

R. Haijema, J. van der Wal, and N.M. van Dijk. Blood platelet production: Optimization by
dynamic programming and simulation. Computers & Operations Research, 34(3):760-779,
2007.

R. Haijema, N.M. van Dijk, J. van der Wal, and C.Th. Smit Sibinga. Blood platelet produc-
tion with breaks: optimization by sdp and simulation. International Journal of Production
Economics, 121(2):464-473, 2009.

K. Katsaliaki and S.C. Brailsford. Using simulation to improve the blood supply chain. Journal
of the Operational Research Society, 58(2):219-227, 2007.

N. Kortbeek, J. van der Wal, N.M. van Dijk, R. Haijema, and W. de Kort. Blood production
and issuing optimization: Strategies for younger platelets. UvA - research report, 2008.

W. Krug. Modelling, Simulation and Optimisation: For Manufacturing, Organisational and
Logistical Processes. SCS-European Publishing House, 2002.

A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research, 143(3):498-517, 2002.

S.Nahmias. Perishable inventory theory: A review. Operations Research, 30(4):680-708, 1982.
T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, and L. Zhang. Exploring threshold-based
policies for load sharing. 2004.

G.P. Prastacos. Blood inventory management: an overview of theory and practice. Management
Science, 30(7):777-800, 1984.

V. Sirelson and E. Brodheim. A computer planning model for blood platelet production and
distribution. Computer methods and programs in biomedicine, 35(4):279-291, 1991.

D.R. Smith and W. Whitt. Resource sharing for efficiency in traffic systems. Bell System
Technical Journal, 60(1):39-55, 1981.

M.S. Squillante, C.H. Xia, D.D. Yao, and L. Zhang. Threshold-based priority policies for
parallel-server systems with affinity scheduling. In American Control Conference, 2001. Pro-
ceedings of the 2001, volume 4, pages 2992-2999. IEEE, 2001.

J. Tornquist. Computer-based decision support for railway traffic scheduling and dispatching:
A review of models and algorithms. In OASIcs-OpenAccess Series in Informatics, volume 2.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2006.

J. Tornquist and J.A. Persson. Train traffic deviation handling using tabu search and simu-
lated annealing. In System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii
International Conference on, pages 73a—73a. IEEE, 2005.

N.M. van Dijk and E. van der Sluis. To pool or not to pool in call centers. Production and
Operations Management, 17(3):296-305, 2008a.

OR and Simulation in Combination for Optimization 107

31. N.M. van Dijk and E. van der Sluis. Practical optimization by OR and simulation. Simulation
Modelling Practice and Theory, 16(8):1113-1122, 2008b.

32. N.M. VanDijk, R. Haijema, J. Van Der Wal, and C.Th. Smit-Sibinga. Blood platelet production:
a novel approach for practical optimization. Transfusion, 49(3):411-420, 2009.

33. R.B. Wallace and W. Whitt. A staffing algorithm for call centers with skill-based routing.
Manufacturing & Service Operations Management, 7(4):276-294, 2005.

34. R.W. Wolff. Stochastic modelling and the theory of queues. Englewood Cliffs, NJ, 1989.

Tree Search and Simulation

Joao Pedro Pedroso and Rui Rei

Abstract This chapter presents a general methodology for embodying simulation
as part of a tree search procedure, as a technique for solving practical problems in
combinatorial optimization. Target problems are either difficult to express as mixed
integer optimization models, or have models which provide rather loose bounds; in
both cases, traditional, exact methods typically fail. The idea then is to have tree
search instantiating part of the variables in a systematic way, and for each particular
instantiation—i.e., a node in the search tree—resort to a simulation for assigning
values to the remaining variables; then, use the outcome of the simulation for eval-
uating that node in the tree. This method has been used with considerable success
in gameplaying, but has received very limited attention as a tool for optimization.
Nevertheless, it has great potential, either as a way for improving known heuristics or
as an alternative to metaheuristics. We depart from repeated, randomized simulation
based on problem-specific heuristics for applications in scheduling, logistics, and
packing, and show how the systematic search in a tree improves the results that can
be obtained.

1 Introduction

Tree search and branch-and-bound variants are among the most powerful search
methods in combinatorial optimization. How to direct the search through the tree,
in terms of the selection of a node, the selection of a variable within a node, and
the selection of a value to assign to that variable, are key factors for performance.
Whereas in some applications these choices are relatively straightforward, in other
cases it is very difficult, mostly due to the absence of good bounds. In this work we
will focus on applications for which the outcome of a decision is very difficult to

J.P. Pedroso - R. Rei (<)
INESC TEC and DCC-FCUP, Porto, Portugal
e-mail: rui.rei@dcc.fc.up.pt

J.P. Pedroso
e-mail: jpp@fc.up.pt

© Springer International Publishing Switzerland 2015 109
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_4

110 J.P. Pedroso and R. Rei

assess before having a complete solution, therefore requiring the simulation of the
whole construction process to probe into the quality of the decision.

Designing effective methods under these circumstances involves decisions that
overcome the main weaknesses of tree search: not reaching a leaf node in a limited
amount of time; unbounded growth of the queue of unexplored nodes; and most
importantly, getting trapped in a particular, limited part of the tree. We will develop
on methods for this, based on good heuristics for constructing a solution; tree search
may be seen as an enhancement of these heuristics which, in the limit case, may
completely explore the search space.

The applications covered in this work are the following:

1. Number partitioning—an easy problem to formulate, which will allow us to
clearly state the important aspects of tree search and simulation in this context
(Sect.3).

2. Stacking—a hard problem involving the choice of a stack to place an item in
such a way that the number of item relocations is minimal (Sect. 4).

3. Recursive circle packing—a variant of circle packing where annular items can
either be placed inside a rectangular container or inside other items (Sect.5).

2 Background

2.1 Tree Search

Tree search is a method for systematically exploring the search space, with the aim
of finding the best solution appearing therein. In its simplest form, all solutions are
enumerated and verified, hence taking exponential time with respect to the number of
variables. In optimization problems for which there is an appropriate mathematical
programming formulation, it is usually easy to find bounds on the solutions that
can be obtained from a node, which allows the search tree to be pruned without
loss of optimality. For a minimization problem, if the lower bound in a given node
is greater than the value of a known solution (i.e., greater than an upper bound on
the optimum), then the tree can be safely pruned at this node. This is the standard
procedure in branch-and-bound (BB) [1, 2]. Literature on BB is ample, as the method
is fully general and can be applied in widely diverse areas. For a sample of recent
applications of BB methods, see, e.g., [3-6].

For the problems we are dealing with here, formulations are very loose, rendering
the provided bounds very ineffective and leading to very little or no pruning at all. This
implies that, except for toy instances, exploration of the whole tree is unreasonable,
either due to time limitations or because the size of the tree would grow unacceptably
large. Consequently, the best solution found may not be optimal because the search
space has not been fully explored. In this context, tree search may be used as an
approximative algorithm.

Tree Search and Simulation 111

There are several ways for exploring the nodes of a search tree. In uninformed
search there is no use of information concerning the value of a node during tree
exploration. For example, in breadth-first search all nodes in a level of the tree (i.e.,
nodes that are equally distant from the root) are explored before proceeding to the
next level. In depth-first search (DFS) each node is expanded down to the deepest
level of the tree, where a node with no expansion—i.e., a leaf —is found; then search
backtracks until a node with unexplored children is found, which is again expanded
until reaching a leaf, and so on, until the whole tree is explored. As only one path
from the root to a leaf has to be stored at any given time, DFS has modest memory
requirements. Problem-specific heuristics may be used in conjunction with DFS for
deciding the order of exploration of each node’s children; as this information is only
considered locally at each node, this is usually called partially informed search. On
informed search, a set of open nodes is; the most common variant is best-first search,
which selects the next node to expand based on problem-specific knowledge. To this
end, an evaluation function is used which conveys information about the worth of
each open node, and the one with the highest rating from all open nodes is selected
at each iteration.

When good guiding heuristics exist, DES is usually very effective. When com-
pared to greedy construction based on such heuristics, DFS allows for substantial
improvements; furthermore, these improvements can be obtained very quickly due
to the simplicity of DFS, which imposes an almost nonexistent overhead on the
greedy construction algorithm. For situations where the exploration of the full tree is
expected to be possible in a reasonable time, DFS is usually an appropriate choice.
However, this is not the case for most practical problems. For sufficiently large trees,
DFS suffers the problem of being unable to recover from poor decisions taken at the
beginning of the search.

For trees with high branching factor, iterative broadening, proposed in [7], at-
tempts to overcome the deficiencies of DFS by running a sequence of restricted
depth-first searches. Each restricted DFS considers a larger subset of the tree than
the previous: the first iteration examines the heuristically preferred node, the second
iteration examines the two top-ranked children of each node, and so on; in a tree of
depth d, at iteration k, iterative broadening visits k91 leaves.

Best-first search tries to overcome the deficiencies of DFS by considering, at
each iteration, nodes from different levels in the tree. A seminal example is the A *
algorithm for the shortest path problem [8], where heuristic information that never
overestimates the cost of the best solution reachable from a node is used to evaluate it.
Best-first search suffers the problem of requiring exponential space, thus becoming
impractical in many situations.

A related algorithm taking only linear space is iterative deepening A* (IDA*):
each iteration is a DFS modified to use heuristic evaluation as in A*, and a limit on
the heuristic value to interrupt the search; the interruption threshold is increased at
each iteration [9]. In practice, for many combinatorial optimization problems IDA*
visits too many internal nodes before reaching its first leaf; this is mainly due to the
underestimation provided by the heuristics being substantially different from the best
value that can be reached from each node. Besides, IDA* does not cope well with the

112 J.P. Pedroso and R. Rei

fact that in many optimization problems every node has a different heuristic value,
only the best of which is expanded at each iteration. In combinatorial optimization
problems the depth of the search tree is bounded, and reaching a leaf is usually
inexpensive; this is not exploited in IDA*.

The most widely used tools for solving combinatorial problems that can be formu-
lated as mathematical programming models are mixed integer linear programming
(MIP or MILP) solvers. These usually incorporate state-of-the-art tools in terms of
pruning the search tree and adding cuts to the model, in a black-box solver targeted
at obtaining the best performance in the widest range of problems possible. Still,
deficiencies similar to those of DFS are often observed in practice, as the solvers
may be stuck in the search for very long periods. Methods for overcoming this are a
current trend, following the observation of heavy-tailed phenomena in satisfiability
and constraint satisfaction [10]. The basic idea is to execute the algorithm for a short
time limit, possibly restarting it from with some changes, usually with an increased
time limit until a feasible solution is found. This has been recently addressed in [11],
where variability of the solutions on which the MIP solver is trapped, for different
initial random start conditions, is exploited. The proposed method consists in making
anumber of short runs with randomized initial conditions, bet on the most promising
run, and bring it to completion, in an approach named bet-and-run. Diversified runs
are produced in several fronts: exchanging rows and columns in the input instance,
perturbing parameters of the MIP solver, and changing coefficients in the objective
function. The choice of the candidate to bring to completion is based on 11 criteria,
the most important of which are the number of open nodes, the lower bound improve-
ment with respect to the root node, and number of integer-infeasible variables among
all open nodes. Results are reported for a set of benchmark instances, showing that
bet-and-run can lead to significant speedups.

We propose to exploit variability in the search in a rather different manner, by
making a dive from each open node until reaching a leaf, and using its outcome in
the evaluation of the dive’s starting node. Dive results are also backpropagated up to
the root node. Each of these dives corresponds to a descent in the tree, possibly in a
randomized way, which in the context of Monte Carlo Tree Search—the subject of the
next section—is called a simulation. The two terms are used interchangeably in the
remainder of this chapter. In the problems dealt with in this work, simulations always
lead to feasible solutions; hence, our method provides both an anytime algorithm and,
for small instances, complete search.

2.2 Monte Carlo Tree Search: State of the Art

Monte Carlo Tree Search (MCTS) is a method for exploring the search tree and
exploiting its most promising regions. Although the idea of combining Monte Carlo
evaluation with tree search had been studied before (see, e.g., [12, 13]), it was not until
recently—with the appearance of MCTS—that it received greater scientific attention.
Coulom [14] proposed the initial version of MCTS and applied it with considerable

Tree Search and Simulation 113

success to the game of Go (9 x 9 board). Gameplaying is still the area where the
algorithm and its many variants are most commonly used [15]. In this context, MCTS
has the aim of finding the most favorable decision at each step, by taking random
samples from the decision space and valuating nodes of the tree according to the
results of those samples. MCTS has had a particularly strong impact on games, where
its application has led to the best gameplaying software, most notably for the game
of Go [16, 17]; but it has also been applied on artificial intelligence approaches
for other domains that can be represented as trees of sequential decisions and for
planning problems (see [18] for a comprehensive survey).

There are, however, very few publications on combinatorial optimization; some
results have been provided for general mixed integer optimization [19], but to the
best of our knowledge, there are no reports of its application for solving specific
optimization problems. This possibility will be illustrated, with a detailed imple-
mentation and results, in the following sections. In the remainder of this section
we describe the basic algorithm that will be used as the foundation for the three
applications presented.

MCTS is an iterative procedure in which a search tree is asymmetrically con-
structed, attempting to expand the tree toward its most promising parts while balanc-
ing exploitation of known good branches with exploration of seemingly unrewarding
branches. The algorithm is based on the idea of Monte Carlo evaluation, i.e., the re-
ward associated with a particular node can be estimated from the results of random
simulations started from that node. Each node keeps track of the number of simu-
lations started from its state as well as their outcomes, and these data are used to
produce an estimate value for the node when deciding how to expand the tree. Each
iteration of MCTS can be divided into the following four steps:

1. Selection: starting from the root node, select the child node which currently
looks more “promising”. This is done recursively until a node » which has not
yet been fully expanded (i.e., some of its children have not yet been generated)
is reached. The definition of promising is one of the key aspects determining
the performance of MCTS. In plain MCTS, average win rate is used for node
selection. The UCT algorithm [20] provides an enhancement to this simple rule,
by posing the selection problem at each node as a multiarmed bandit problem,
and then using the UCB1 policy [21] to achieve an optimal bound on regret. In
UCT, the score or utility U (n) of node n is defined as

Un) = X(n) + E(n), (D

where X (n) is the exploitation utility associated with n, and E (n) is the explo-
ration utility of n. At each node, the child with maximum U (n) is selected, until
an unexpanded node is reached.

In gameplaying, X (n) is typically taken to be the average reward of simulations
run from n. Later in this section, we propose an alternative expression for X (n)
that is more suitable for optimization.

114 J.P. Pedroso and R. Rei

The exploration component is normally defined as

1
E(n) = c |2, @)
Sn

where c is an exploration parameter (theoretically equal to v/2), s () is the num-
ber of simulations done under the parent node p(n), and s, is the number of
simulations done under the child node » (i.e., simulations started from » or any
node in the subtree under n). This expression is designed such that exploration
progressively gives way to exploitation, although all siblings are eventually se-
lected if enough iterations are allowed. This means that the search cannot become
permanently trapped in any region of the search space.
To summarize, selection starts at the root node and proceeds down the tree,
selecting at each node the child with highest utility. Upon reaching an unexpanded
node, selection stops and the current node is chosen for expansion.

2. Expansion: one or more children of the selected node n are created by apply-
ing possible decisions in n to copies of n. We present two strategies for node
expansion:

Single expansion: a single child node is created using a randomly chosen un-
explored decision in n. Other unexplored decisions are kept
for a later time when node n is again selected for expansion.

Full expansion: all children of n are immediately created by generating all
possible decisions in the node.

3. Simulation: from each node created in the expansion step, perform a simulation
until a terminal state (i.e., a solution) is reached, and record the value obtained.
Various approaches can be taken in simulation, ranging from uniform random
decisions—requiring nothing more than a generative model of the problem—to
heuristic construction algorithms incorporating domain-specific knowledge. The
latter approach typically allows for faster convergence at the expense of simplicity
and generality. In the applications presented in this work, we will use problem-
specific construction heuristics for simulation; for each problem, the heuristic
used is detailed in the corresponding section.

4. Backpropagation: propagate the outcome of each simulation up the tree until the
root node is reached; this updates statistics (simulation scores and counts) on all
nodes between the selected node and the root.

Because one simulation is done per new child of the selected node n, the two
expansion strategies described above will exhibit different behavior with respect to
the variation of U (n); namely, the number of children generated is proportional to
the decrease in the exploration term E(n) for the parent node n. This difference
ultimately leads to different search paths in the tree, which may in turn have an
impact on the performance of the algorithm. In trees with high branching factors, if

Tree Search and Simulation 115

single expansion is used, a node may be confirmed (to a certain degree) as a poor
choice before generating all its children, thereby saving both time and space which
can be used to explore other areas of the tree. This effect is dampened in trees with
lower branching factors.

Applying Monte Carlo tree search to solve optimization problems has many sim-
ilarities, but also significant differences to its application in gameplaying. First, the
size of the search trees in both domains is commonly large enough to prevent com-
plete search within reasonable computational time. Hence, MCTS should direct the
search, leveraging all the information gathered up to the moment in the most suitable
way.

A significant difference concerns the evaluation of nodes and their associated
statistics. Whereas in gameplaying a branch with a high average win rate is suggestive
of a strong line of play, in optimization—since we are interested in finding extrema—
the average solution under a node is not a good estimator of the optimal solution to the
node’s underlying subproblem. Additionally, rewards in gameplaying often take 0—1
values for loss and win, respectively; objective functions, on the other hand, may
take arbitrary values. Since UCB1/UCT were designed with rewards in the [0, 1]
interval in mind, we must map objective function values into that interval, in order
to maintain the proper balance between the two components of (1). To address these
two issues, we propose the following expression for X (n):

et —1 . wh -2zt
X(n) = I switha = ———, 3)
e— w* — 2

where Z* and w* are, respectively, the best and the worst simulation results found so
far in the whole tree, and Z' is the best simulation result under node n. A plot of the
proposed reward function can be seen in Fig. 1.

Although our main guiding criterion should be based on the best simulation out-
come Z, the average outcome of simulations under a node—denoted as z,—may

Fig. 1 The proposed reward g
function X (n) (solid line), in \
terms of the best simulation
outcome under node n, Z;;.
The linear reward function
(dotted line) is shown for
reference

o
S

116 J.P. Pedroso and R. Rei

still provide a useful hint on the interest in exploring the node. We propose to use a
function similar to X (n) representing the average reward under node n, and define
it as

b A -

_ -1 -

X(n) = with b = =" @
e—1 w¥ —z*

Instead of incorporating this information directly into the exploitation term, we
integrate X (n) as a factor in the exploration term; we call this average-weighted
exploration, and define it as

E'(n) = X(n)En). (3)

The above ideas, applied to the problem of combinatorial optimization, are sum-
marized in the pseudocode in Algorithm 1.

Algorithm 1: MCTS for (minimization) combinatorial optimization.

Data: problem instance /

Result: upper bound on optimal value (minimization problems)
1 r < create root node with initial state from /
2 7" <00
3 repeat
4 n < starting from r, recursively select child node with maximum U (n)
5 C < set of child nodes obtained from expanding n
6 foreach c € C do
7
8
9

run a simulation from ¢

7 < result of the simulation
propagate z up until reaching r
10 if z < z* then

11 L z* <« Z

12 until computational budget is depleted
13 return z*

3 Number Partitioning

The number partitioning problem (NPP) is a classical combinatorial optimization
problem, with applications in public key cryptography and task scheduling. Given
a set (or possibly a multiset) of N positive integers & = {ay, as, ..., ay}, find a
partition & C {1, ..., N} that minimizes the discrepancy

E(P) = Zai—Zai .

ie? i¢gP

Partitions such that E = 0 or E = 1 are called perfect partitions.

Tree Search and Simulation 117

A pseudo-polynomial time algorithm for the NPP is presented in [22] for the
case where all a; are positive integers bounded by a constant A; for the general
case of exponentially large input numbers (or exponentially high precision, if the
a;’s are real numbers) the problem is NP-hard. If the numbers a; are independently
and identically distributed random numbers bounded by A = 2* N the solution time
abruptly raises at a particular value k¥ = k; this is due to the high probability of
having perfect partitions for k < k., and this probability is close to O for « > k. (see
[23, 24] for more details).

A direct application of the NPP occurs in load balancing of two identical machines.
The common two-way NPP, as well as a generalization to an arbitrary number of
subsets (equivalently, machines) are tackled in [25] by recasting the problem as an
unconstrained quadratic binary program (UQP); the UQP is then solved using a tabu
search algorithm. Another application arises in high-performance multidisk database
systems. To promote parallelization of I/O and minimize query response times in such
systems, data that are likely to be accessed by same queries are distributed across K
disks—a process called declustering. This problem, equivalent to a multiway NPP,
is tackled in [26] using a two-phase approach: the first phase consists in recursive
bipartitioning to obtain an initial K-way partition; in the second phase, the initial
partition is improved through a refinement heuristic.

The best polynomial time heuristic known for the NPP is the differencing method
of Karmarkar and Karp [27] (the KK heuristic). It consists of successively replacing
the two largest numbers by the absolute value of their difference and placing those
items in separate subsets, but without actually fixing the subset into which either
number will go (see Algorithm 2).

Algorithm 2: The Karmarkar—Karp heuristic.

Data: ordered set of positive integers .o/
Result: discrepancy obtained
1 Va; € o/, create a vertex i with label [; < a;
2 8« {}
3 while there is more than one labeled vertex do
4 u, v < vertices with the two largest labels
5 & «— &U {u,v}}
6 setlabel [, < I, — I,
7 remove label [, from vertex v

8 return discrepancy (i.e., the last label)

Extensions of the KK heuristic for a complete search have been proposed in
[28, 29]. In each step of the KK heuristic the two largest numbers are replaced by
their difference; for a complete search, the alternative of replacing them by their
sum must also be considered. For the previous example, the complete search tree is
represented in Fig. 2.

When applied to the set & = {8,7,6, 5, 4}, the KK heuristic leads to the par-
titions {8, 6} and {7, 5, 4} with discrepancy 2 (Fig.3). Figure4 illustrates the graph
corresponding to the optimal solution, as obtained by complete search. Straight edges
connect differencing vertices, that will be in different partitions; curly edges connect

118 J.P. Pedroso and R. Rei

Fig. 2 Search tree for the complete differencing method with the set «# = {8, 7, 6, 5, 4}

46, © @7ﬁ4@ @\@ﬁ4@ Q\@ﬁsﬂ°

@@ O

Fig. 3 Graph created with the KK heuristics, corresponding to the path 1 — 2 — 4 — 8 — 16
in Fig. 2

O
\® @7%4@%%4@?%4%0%
© O ® O ® O

Fig. 4 Graph created while applying complete search: steps followed for creating the optimal
partition, i.e., the path 1 - 3 — 6 — 12 — 24 in Fig. 2

addition vertices, that will be in the same partition. The optimal solution is the par-
tition {8, 7} and {6, 5, 4}, which is a perfect partition.

In the worst case, the complete differencing method has exponential complexity.
Parts of the search tree may be pruned by observing that:

e the KK heuristic is exact for partitioning 4 or less numbers;

e the algorithm can be stopped when a perfect partition is found,;

e when the difference between the largest remaining number and the sum of other
remaining numbers is >1, the best possible solution is to place the largest number
in one set and all the other numbers in the other set.

Algorithm 3 introduces depth-first search for the complete KK.

We propose the application of MCTS to this problem, using the KK heuristic as
the construction method in the simulation step. Since this heuristic is deterministic,
running it from the differencing child (which coincides with the heuristic’s choice)
would lead to the exact same solution as that obtained for the parent node; thus, we can
safely reuse the parent’s solution, and therefore only one new construction is required
for the two children of each node. Another advantage of using this heuristic is that

Tree Search and Simulation 119

Algorithm 3: dfs(.</)—depth-first search.

Data: ordered set of positive integers .o/
Result: optimum discrepancy

if |.&/| < 4 then return KK (/)

u, v < largest and second-largest values in .o/
d =23 o\

if |d| < 1 then return |d|

if d > O then return d

o <« o\ {u, v}

{ «dfs (U {u—v})

if ¢ < 1 then return ¢

r <dfs (U {u+v})

return min(¢, r)

o AN R W N -

—
>

repeated solutions are avoided altogether; such would not be the case with random
or semi-greedy simulations. Finally, the KK heuristic allows the above pruning rules
to be used, reducing the size of the search space without sacrificing completeness.

Due to the very low branching factor, and from empirical observation, we use a
full expansion strategy in the expansion step of MCTS, meaning that both children of
each node are immediately generated once the node is selected. Furthermore, for this
problem, we choose to use the classical exploration term E (n) (see (2)) in the eval-
uation of nodes, instead of the average-weighted exploration term E’(n) (see (5)).
This is motivated by the fact that average node performance can be deceptive in the
NPP; varying just one or two decisions during construction has very deep and unpre-
dictable consequences on the quality of the final solutions; this lack of correlation
between particular decisions and solution quality makes average performance a poor
guiding principle in this problem.

Table 1 presents results obtained with the KK heuristic and with time-limited DFS
and MCTS, run on 10 hard instances from [29].

As expected, both tree search variants provide very considerable improvements
over KK. It is well known that for difficult instances the optimum for NPP is very
hard to find; DFS, being able to explore a much larger portion of the tree—hundreds
to thousands of millions of nodes per hour, for these instances—is very difficult to
beat. Also, as previously mentioned, the performance of DFS is highly dependent on
the construction heuristic used, which in this case provides solutions of very good
quality to begin with.

Although there is no clear indication of a winner from the results obtained, the
observation of mixed results between DFS and MCTS is nonetheless impressive:
MCTS was highly competitive despite exploring less than a thousandth of the nodes
explored by DFS. This suggests that MCTS can effectively guide the search toward
promising regions. In our view, these are very encouraging results.

We conclude with the hypothesis that MCTS’s rate of convergence should improve
over time, not only for this problem but also in general. While DFS gains practically
nothing as the search progresses, MCTS constantly accumulates knowledge of the

120 J.P. Pedroso and R. Rei

Table 1 Results obtained for number partitioning with the KK heuristic, DFS, and MCTS on hard,
large instances from [29]

Instance KK DFS (60 s) MCTS (60s) |DFS (600s) | MCTS (600 s)
Hard0100 73.37 56.12 54.56 53.36 51.20
Hard0200 171.81 151.91 150.88 151.35 149.79
Hard0300 265.77 247.07 248.82 247.07 247.18
Hard0400 366.18 343.36 347.55 339.07 344.84
Hard0500 461.60 443.54 441.42 438.79 437.22
Hard0600 557.09 540.22 542.59 539.13 540.66
Hard0700 659.50 640.48 641.78 637.70 633.84
Hard0800 751.27 737.65 738.49 731.98 735.67
Hard0900 853.36 834.95 837.93 834.95 833.87
Hard1000 952.47 932.55 938.05 932.55 930.23

DFS and MCTS results are reported at 60 s (center columns) and 600 s (right-hand side columns). For
MCTS, the average best solution of 10 independent runs is shown. Values reported are log, (n + 1),
where n is the discrepancy obtained (which for these instances is a very large integer)

search landscape, which should theoretically help convergence toward the optimum.
Having admittedly few results to support this hypothesis, we leave its confirmation
as future work.

4 Stacking

The stacking problem (SP) consists of a series of placement decisions for a set of
items with known dates for entrance and exit from a warehouse (see Fig. 5), denoted
by release and due dates, respectively. Items are placed in vacant positions, or on top
of other items forming stacks, i.e., last-in first-out queues. At any given time, only
the top item of each stack can be taken, so in order to take an item that is not at the
top of a stack, it is necessary to first relocate all items above it to other stacks. The
objective is to store and then deliver all items, while respecting their release and due

Release) |] | | Delivery >

Fig. 5 A warehouse where items are stored in stacks, using a stacking crane that can only handle
one item at a time

Tree Search and Simulation 121

dates, with a minimum number of relocations. In the variant tackled in this work, we
assume that there is no height limit on stacks (uncapacitated SP), movements occur
instantaneously, and releases or deliveries cannot be anticipated or delayed.

Stacking problems have evident practical importance in container port opera-
tions [30, 31] and ship stowage planning [32, 33]. Stacking is also important in the
steel industry as a means of storage for finished products [34].

As demonstrated in [34], the zero-relocation SP (decision problem) is NP-
complete for any fixed number of stacks W > 4, by a polynomial reduction to the
problem of coloring circle graphs. From this it follows that the general r-relocation
SP is also NP-complete, and the optimization version of the SP is NP-hard.

Although the SP is first described in [34], the paper mentions the existence of
similar problems and presents an overview of the literature. One such problem is the
Block Relocation Problem (BRP), which is actually a subset of the SP. In the BRP,
the initial state of the stacks is given as input data along with a (partial) order of
retrieval of the items. The objective is to find the shortest sequence of movements
such that items are retrieved in the given order. In [35], a branch-and-bound algorithm
for the BRP, as well as a simple heuristic for real-time applications are proposed.
The heuristic rule is based on an estimate of the number of additional relocations
for each stack. In [36], an algorithm for the BRP based on the corridor method is
presented. The corridor method combines mathematical programming techniques
with heuristics. The main idea is to exactly solve subproblems where some variables
are fixed, creating a “corridor-like” region where an item is allowed to go.

For tackling the SP itself, in [34], a discrete-event simulation model of the ware-
house is used, and construction of solutions is based on a semi-greedy heuristic.
The heuristic is invoked when deciding the placement of an item during a release
or reshuffle. Reshuffling is defined as the relocation of items that is necessary to
reach an item lower in the stack. For simplicity, the voluntary relocation of items
in-between releases or deliveries—called remarshalling—is not considered during a
simulation. Note, however, that this may potentially leave the optimal solution(s) out
of the search space, therefore losing the guarantee of optimality even for a complete
search.

A simulation consists in traversing a schedule of events (i.e., releases and deliver-
ies) in chronological order and processing each event appropriately. When multiple
events have the same date, deliveries are processed first, in increasing order of item
depth, where the depth of an item is defined as the number of items above it in the
same stack. Then, any releases are processed in inverse order of due date, that is,
items with greater due date are released first. Ties are resolved randomly.

The probabilistic component of the construction heuristic is exploited by repetition
of the process using different seeds for the pseudorandom number generator, in a
simple method called Multiple Simulation (MS). This simple yet effective idea can
also be exploited in Monte Carlo tree search, taking advantage of the tree structure
to implicitly force different simulations to be executed.

In order to accelerate MS, a simulation is interrupted as soon as it is known that the
number of relocations of the incumbent solution cannot be improved. This is actually
a weak form of pruning, as seen in branch-and-bound algorithms. Whenever a better

122 J.P. Pedroso and R. Rei

solution is found, the cutoff value is updated, tightening the upper bound for future
simulations. This optimization is not used in MCTS because, even after a simulation
is known to be poor, the algorithm can still benefit from knowing how poor the
simulation is, and therefore it is run to completion anyway.

We now describe the construction heuristic used in multiple simulation, called
Flexibility Optimization (FO). FO will be used in the MS method, as well as in the
simulation step of MCTS. For details on the remaining steps of the MCTS algorithm,
please refer to Sect.2.2.

First, we need to define the concept of stack movement date: the earliest movement
date of stack s is represented as

mg = min D;,
i€l

where I represents the set of items currently in stack s, and D; is the due date of item
i. When stack s is empty, then my; = oo by definition. Another important concept is
that of due date inversion: an inversion occurs when an item i is placed (directly of
indirectly) above an item j with D; > D;. In order to deliver j, item i will have to
be relocated.

One can view my as an indicator of the flexibility of stack s for receiving new
items without creating inversions. To illustrate this idea, consider an empty stack s,
with my; = oo; this stack is considered as having infinite flexibility, since any item
can be added to it without creating a new inversion. On the other hand, if I; # {},
then m; is finite and only items with due date up to m can be added to s without
creating an inversion.

When placing an item, FO will prefer stacks where loss of flexibility is minimized,
whenever this is possible without creating new inversions. If a new inversion is
unavoidable, the heuristic places the item in the stack with the largest movement
date, in order to postpone the forced relocation as much as possible. The heuristic
makes use of a function associating to each placement decisioni — s ascore f (i, 5);
this function embeds the above rules, and is defined as

) 1+D,+mr —1if D,’ > mg,
fls) = |

1—D;+my

(6)

otherwise.

The graph for this function is shown in Fig. 6. Note that the top branch in (6)
represents the creation of a new inversion (since D; > my), therefore lower scores
(f(@,s) € [—1, 0]) are assigned to it. The bottom branch represents the placement of
an item without creating an inversion, being given a higher score than any inversion-
inducing decision. Given an item i and a set of possible destination stacks 7', the FO
heuristic constructs a restricted candidate list of stacks RCL = {s € T : f(i,s) >
f(i,s"), Vs’ € T}, and randomly selects a stack from the RCL as the destination of
item i.

A computational experiment was conducted on the 24 benchmark instances
of [34], comparing MCTS with the MS method. We use the generic MCTS

Tree Search and Simulation 123

1.0

0.5 r i :]

R0 1o J S SO —

—-0.5

-1.0 ‘ ‘ ‘
-10 -5 0 5 10

Fig. 6 Score function f (i, s) used by the FO heuristic

algorithm presented in Algorithm 1, running simulations with the FO heuristic in
the algorithm’s simulation step. In this case, since the heuristic used is nondeter-
ministic, a new simulation must be run for each node created in MCTS. As for the
expansion strategy used, in this problem we choose single expansion due to the poten-
tially high branching factor. Additionally, we use the average-weighted exploration
term defined in (5).

The two methods were run ten times on each instance, for 600s, using different
seeds for the pseudorandom number generator. Table 2 presents the average number
of relocations of the best solution found after 60s (left-hand side columns), and at
the end of the 600 s period (right-hand side columns).

The tree search is naturally expected to perform better, but the reduced compu-
tational budget (especially the 60s limit) presents some difficulties for MCTS. As
MCTS uses the results of simulations from each node to estimate their worth, it usu-
ally has a warmup period during which its decisions may be poor due to the lack of
available information. As more time is allowed, node evaluation estimates improve
and results are expected to be more consistent. The reduced time is an advantage
for MS also because of its inexistent overhead, as opposed to MCTS which must
traverse the tree from the root to a nonexpanded node at each iteration, must create
and maintain the tree structure in memory, and must propagate simulation results
upward.

The results indicate that even with 60s, MCTS performs better than MS in most
instances; this shows that the search is able to quickly focus on the more promising
branches. As expected, performance is further improved with the increased time limit
of 600s.

124 J.P. Pedroso and R. Rei

Table 2 Results for the stacking problem: average number of relocations over 10 runs with the
MS and MCTS algorithms, for large instances from [34], with a time limit of 60s (left-hand side
columns) and 600s (right-hand side columns)

Instance MS (60 s) MCTS (60) MS (600 s) MCTS (600 s)
2-A 52872.6 52358.1 52794.3 51854.5
2-B 50820.6 50760.2 50799.1 50727.3
2-C 49450.7 48880.0 492492 475143
2-D 50227.2 50230.6 50058.9 49090.4
3.A 231482 231243 22568.4 22502.2
3-B 24608.7 24665.6 24137.5 24201.0
3-C 24627.9 247383 23915.3 24036.8
3-D 24130.7 24065.4 23349.3 23510.7
4-A 14439.4 14441.0 14159.9 14132.4
4B 13355.9 13429.9 13204.6 13150.5
4-C 13981.8 14050.8 13720.9 13854.0
4D 14796.0 14865.8 14501.4 13975.5
10-A 3524.9 3484.1 3494.1 3289.5
10-B 4031.3 3790.9 4013.4 37514
10-C 3644.3 3497.1 3606.1 3421.7
10-D 3416.3 3437.9 3390.3 34104
20-A 883.9 887.5 882.6 885.3
20-B 1029.4 950.6 1022.8 842.2
20-C 1098.0 977.1 1098.0 975.7
20-D 1178.0 1159.2 1178.0 1158.9
40-A 79.0 53.7 79.0 53.4
40-B 59.0 30.5 59.0 9.0
40-C 41.0 32.1 41.0 293
40-D 154.0 99.7 154.0 94.3

5 Recursive Circle Packing

The recursive circle packing problem (RCPP) originates from the tube industry,
where shipping costs represent an important fraction of the total cost of product
delivery [37]. Tubes are produced in a continuous extraction machine and cut to the
length of the container inside of which they will be shipped. Before being placed in
the container they may be inserted into other, wider tubes, so that usage of container
space is maximized—a process called telescoping. As all the tubes occupy the full
length of the container, maximizing container load is equivalent to maximizing the
area filled with circles (or, more precisely, rings/annuli) in a section of the container.

This problem is evidently more general than circle packing, which is known to be
NP-complete (see, e.g., [38]). We propose a heuristic method for tackling it, which
has proven to be able to produce very good solutions for practical purposes.

Tree Search and Simulation 125

A nontechnical, general overview of circle packing is presented in [39]; for a bibli-
ographicreview article see [40], which surveys the most relevant literature on efficient
models and methods for packing circular objects/items into regions in the Euclidean
plane; objects/items and regions considered are either two- or three-dimensional. A
survey of industrial applications of circle packing and of methods for their solution,
both exact and heuristic, is presented in [41].

In the base RCPP, a number A of tubes are available for packing in a container of
width W and height H, in such a way that the value of the packing is maximum. Let
o/ = {1, ..., A} be the index set of the tubes; each tube i € <7 is characterized by
an external radius rl.e"t and an internal radius r}”t, and may be placed in the container
or not. A formulation in mixed integer nonlinear programming, provided in [37],
considers:

e binary variables w;, for all i € o7, where w; = 1 if tube i is placed directly inside
the container, w; = 0 otherwise;

e binary variables uy; for k, i € </ such that r,i(”t > rl.e"t, where uy; = 1if tube i is
placed directly inside tube k, ux; = 0 otherwise (only required if r,icnt > rf"t; other
pairs (k, i) are not excluded for facilitating notation);

e position variables (x;, y;) of the center of tube i, for all i € <7 (only relevant if i
is packed).

Each loaded tube is placed within the bounds of a container, which we assume to
be a rectangle with vertices (0, 0), (W, 0), (0, H), and (W, H). The constraints are
the following:

e inserted tubes must be completely inside the container;

e loaded tubes may be placed either directly in the container or inside other tubes;

e for each pair of tubes (i, j) directly placed in the container, the distance between
them must be greater than or equal to the sum of their external radii;

e the above constraint is likewise applied for each pair of tubes (i, j) directly placed
inside the same tube k;

e if tube i is placed directly in tube k, their centers must be close enough for i to
remain completely inside k.

The objective of this problem is to maximize the value of the packing, i.e., the
sum of a user-defined value v; for loaded tubes:

maximize V = Z vi | wi + Z Ui | - @)
ied/ ket

We now describe a heuristic method for quickly constructing a solution to the
RCPP. The method begins with an empty container and iteratively inserts new tubes
either directly into the container or into a previously packed tube. An auxiliary set
O of open objects is used, which initially has the container as its only element. An
object (a tube or the container) is said to be open while it is possible to insert at least
one of the remaining tubes into it. Whenever a new tube is packed, it is added to &;

126 J.P. Pedroso and R. Rei

and when it is found that no tubes can be inserted into an object, it is removed from
0. The algorithm packs a new tube per iteration until either all available tubes have
been packed or &' becomes empty.

In order to prioritize telescoping—which seems intuitively advantageous because
value is gained without further occupying the container—we choose, if possible, to
insert the next tube into the open object 0 € & with minimum free space/area. It is
then checked if at least one tube can be inserted into o: if it is possible, we move
on to the next step in the algorithm; otherwise, o is removed from & and the object
having the next minimum free space is checked. If during this selection &' becomes
empty, the algorithm stops and the current solution is returned.

After selecting the object o into which a tube will be inserted, the actual tube to
be inserted is selected. In this step, the algorithm greedily chooses the tube # which
has the maximum estimated value-to-area ratio. This ratio is an estimate of the total
value of a tube and all tubes that can potentially be telescoped into it, divided by its
area. It is approximated in a manner similar to the greedy heuristic for the knapsack
problem, which is based on the value-to-weight ratio of items.

Finally, from the set of positions of tube ¢ in the open object o, a position p with
minimum ordinate is chosen; for tiebreaking, the position with smallest abscissa is
selected. An iteration ends by inserting tube ¢ into object o at position p, and updating
0 to include 1.

Since the position variables (x; and y;) in the mathematical model are real vari-
ables, the set of positions for a tube is often infinite. In the computation of candidate
positions for tube 7, we reduce this possibly infinite set to a finite set through a num-
ber of simple rules. When inserting a new tube ¢ directly into the container (Fig.7),
the candidate positions considered are:

e the two positions placing ¢ at the bottom corners of the container;

e for each tube u already packed directly into the container, include all positions
where ¢ is tangent to u and to any wall of the container;

e for each pair of tubes (v, w) already packed directly into the container, include all
positions where ¢ is tangent to both v and w.

Similarly, when ¢ is being inserted into a wider, previously packed tube ¢’ (Fig.8),
the set of candidate positions includes:

e the position placing ¢ at the bottom center of ¢';
e for each tube u packed directly into ', include all positions that are tangent to both
t' (from the inside) and u (from the outside);

Fig. 7 Circle packing inside
a rectangle: positioning
possibilities given previously
placed, fixed circles (in

black) d\

Tree Search and Simulation 127

Fig. 8 Circle packing inside
another circle (telescoping):
positioning possibilities
given previously placed,
fixed circles (in black)

e for each pair of tubes (v, w) already packed directly into ¢/, include all positions
that are tangent to both v and w;

After the set of candidate positions is computed, positions violating any constraint
(e.g., positions where ¢ overlaps with a packed tube) are discarded. It must be noted
that with this simplification we are excluding the majority of the original problem’s
search space, so the property of proven optimality is lost even when this restricted
search space is fully explored. Figure9 shows an example of an optimal solution
which cannot be generated by the described method; whichever the first tube is, it is
not at a corner of the container.

The above construction method is purely greedy, leading to a single solution if
the same data is provided multiple times. The method is converted into a semi-
greedy algorithm by introducing a probabilistic component into one of the choices;
in our implementation, the position into which a new tube is inserted is randomly
selected, giving higher probability to positions closer to the greedy decision. The full
construction method is summarized in Algorithm 4.

This semi-greedy variant is used in both algorithms compared in the computational
experiment. The semi-greedy (SG) algorithm consists in repeating constructions
with different pseudorandom number generator seeds, whereas MCTS uses it for the
simulation step. As in the stacking problem, MCTS uses a single-expansion strategy
and scores nodes using the average-weighted exploration term.

The computational experiment included six instances of the RCPP, adapted
from [37]. The two algorithms were run 10 times on each instance, with a time
limit of 600s. Table 3 reports the average total value of the best solution found after
60s, and at the end of the full 600 s period.

Fig. 9 An optimal solution
which is not contained in the
restricted search space

128 J.P. Pedroso and R. Rei

Table 3 Average value packed in a container, for 10 independent observations, for the RCPP with
semi-greedy construction and with Monte Carlo tree search, with a time limit of 60 s (left-hand side
columns) and 600s (right-hand side columns)

Instance SG (60s) MCTS (605s) SG (600s) MCTS (6005s)
Large03 3660023.3 3660021.8 36600242 3660023.5
Large05 4140042.1 4140044.0 4140043.0 4140047.1
Largel6 30311008.0 30625928.6 30311016.6 311928273
Small03 938000.0 950000.0 940000.0 957000.0
Small05 1090000.0 1120000.0 1090000.0 1120000.0
Small16 10438035.5 10388039.2 10450036.6 10534032.5

Instances adapted from [37]

Although the number of instances is small, the results indicate a superior perfor-
mance of MCTS after 60s, further widening the gap when the full 600 s are allowed.
This is an expected consequence of allowing extra time, as more information is
gathered and MCTS’s estimates of node values are refined.

Algorithm 4: Construction heuristic for recursive tube packing.

Data: container C and set of available tubes &/

Result: set . of tubes packed and their respective positions
1.7 < {}

2 0« {C}

3 while 0 # {} and o7 # {} do

4 0 <« element of ¢ with minimum unused area

5 foreach ¢ € o/ (from largest to smallest value-to-area ratio) do
6 & < positions for ¢ inside o

7 if & # {} then

8 choose position p € & (semi-greedy choice)

9 S «— LU, p)}

10 O <« OU{t}
11 of <« o\ {t}
12 break

13 if could not place any tube inside o then
14 | 6«6\ {o}

15 return .%

6 Conclusion

Tree search is at the heart of the solution of combinatorial optimization problems.
The use of simulation to estimate node values is twofold advantageous: it provides
quick solutions to the problem; and it prevents misleading evaluations given by poor
bounds.

Tree Search and Simulation 129

In this work, we propose the use of tree search in combination with problem-
specific heuristics for three relevant problems in logistics, to provide better esti-
mates of node values and speed up convergence toward good solutions. In the first
application—the number partitioning problem, arising e.g., in load balancing—tree
search exploits the quality of the well-known Karmarkar—Karp construction heuristic.
The second application is the stacking problem, common in container port operations
and in handling warehouse storage, for which full simulation is necessary to evaluate
even the earliest placement decisions. Finally, tree search is applied to the recursive
circle packing problem—a generalization of circle packing in rectangles—where,
once more, early decisions during construction may not be accurately assessed be-
fore the solution is complete. In the two last applications, a random component is
introduced in the construction heuristic for the sake of diversification. A simulation
based on such construction heuristics builds a feasible solution, whose value is used
in the evaluation of all nodes in the path between the root of the search tree and the
node from which the simulation originated.

In logistics, many situations are studied using simulation models, due to the diffi-
culty in fully characterizing them as formal mathematical models. Simulation-based
optimization is a general framework for improving solutions for these models; tree
search provides a systematic way for using the simulation models already available in
an optimization context. One promising application area with relevance in logistics
is resource-constrained scheduling; construction rules can be used for simulation,
and decisions complementary to these rules can be implicitly explored under the tree
search.

The integration of the paradigms of simulation and, potentially, exact search, is
a promising step toward the solution of hard problems, whose formulation in math-
ematical optimization is too loose for mixed integer solvers to provide acceptable
solutions. It also enlarges the scope in which Operations Research exact methods can
be applied, in the sense that the simulation may deal with problems which are not
linear or even well-defined. The only requirements in this regard would be to contain
all relevant solutions in the search tree, and to have consistent evaluations provided
by simulation. Although complete enumeration is usually a remote possibility, so-
lutions found on the searched path may provide excellent, realistic approximations,
as has been illustrated with the study cases of number partitioning, stacking, and
recursive circle packing.

Acknowledgments This work was partially funded by PhD grant SFRH/BD/66075/2009 from the
Portuguese Foundation for Science and Technology (FCT).

References

1. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems.
Econometrica 28 (1960) 497-520

2. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations Research 14
(1966) 699-719

130

3.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J.P. Pedroso and R. Rei

Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex
quadratic integer programming. Mathematical Programming 135 (2012) 369-395

Ng, C., Wang, J.B., Cheng, T.E., Liu, L.: A branch-and-bound algorithm for solving a two-
machine flow shop problem with deteriorating jobs. Computers & Operations Research 37
(2010) 83-90

. Bazin, J., Li, H., Kweon, L.S., Demonceaux, C., Vasseur, P., Ikeuchi, K.: A branch-and-bound

approach to correspondence and grouping problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35 (2013) 1565-1576

. Delling, D., Goldberg, A.V., Razenshteyn, 1., Werneck, R.F.: Exact combinatorial branch-and-

bound for graph bisection. In: Proceedings of the 14th Meeting on Algorithm Engineering and
Experiments (ALENEX’12), Society for Industrial and Applied Mathematics (2012) 30—44

. Ginsberg, M.L., Harvey, W.D.: Iterative broadening. Artificial Intelligence 55 (1992) 367-383
. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum

cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (1968) 100-107

. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelli-

gence 27 (1985) 97-109

. Gomes, C.P,, Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and

constraint satisfaction problems. Journal of Automated Reasoning 24 (2000) 67-100

. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Operations Research 62 (2014)

114-122

. Bouzy, B.: Associating shallow and selective global tree search with Monte Carlo for 9x 9 Go.

In: Computers and Games. Springer (2006) 67-80

. Juille, H.R.: Methods for Statistical Inference: Extending the Evolutionary Computation Par-

adigm. PhD thesis, Waltham, MA, USA (1999)

. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: Proceed-

ings of the 5th International Conference on Computers and Games. CG’06, Berlin, Heidelberg,
Springer-Verlag (2007) 72-83

Winands, M.H., Bjornsson, Y., Saito, J.T.: Monte-Carlo tree search solver. In: Computers and
Games. Springer (2008) 25-36

Takeuchi, S., Kaneko, T., Yamaguchi, K.: Evaluation of Monte Carlo tree search and the
application to Go. In: 2008 IEEE Symposium On Computational Intelligence and Games
(CIG), IEEE (2008) 191-198

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvari, C., Teytaud, O.: The
grand challenge of computer Go: Monte Carlo tree search and extensions. Communications of
the ACM 55 (2012) 106-113

Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE
Transactions on Computational Intelligence and Al in Games 4 (2012) 1-43

Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding combinatorial optimization with UCT. In:
Proceedings of the 9th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2012), Springer
(2012) 356-361

Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In Fiirnkranz, J., Scheffer, T.,
Spiliopoulou, M., eds.: Machine Learning: ECML 2006. Volume 4212 of Lecture Notes in
Computer Science. Springer, Berlin Heidelberg (2006) 282-293

Auer, P, Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem.
Machine Learning 47 (2002) 235-256

Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New York (1979)
Mertens, S.: The easiest hard problem: Number partitioning. In Percus, A., Istrate, G., Moore,
C., eds.: Computational Complexity and Statistical Physics, New York, Oxford University
Press (2006) 125-139

Mertens, S.: Phase transition in the number partitioning problem. Physical Review Letters 81
(1998) 4281-4284

Tree Search and Simulation 131

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

30.

40.

41.

Alidaee, B., Glover, F., Kochenberger, G.A., Rego, C.: A new modeling and solution approach
for the number partitioning problem. Journal of Applied Mathematics and Decision Sciences
9 (2005) 113-121

Koyutiirk, M., Aykanat, C.: Iterative-improvement-based declustering heuristics for multi-disk
databases. Information Systems 30 (2005) 47-70

Karmarkar, N., Karp, R.: The differencing method of set partitioning. Technical Report
UCB/CSD 82/113, University of California - Berkeley, Computer Science Division (1982)
Korf, R.E.: A complete anytime algorithm for number partitioning. Artificial Intelligence 106
(1998) 181-203

Pedroso, J.P., Kubo, M.: Heuristics and exact methods for number partitioning. European
Journal of Operational Research 202 (2010) 73-81

Dekker, R., Voogd, P., Asperen, E.: Advanced methods for container stacking. In Kim, K.H.,
Giinther, H.O., eds.: Container Terminals and Cargo Systems. Springer, Berlin Heidelberg
(2007) 131-154

Hartmann, S.: A general framework for scheduling equipment and manpower at container
terminals. OR Spectrum 26 (2004) 51-74

Auvriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: Complexity and connection
to the coloring of circle graphs. Discrete Applied Mathematics 103 (2000) 271-279

Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container ships to reduce
the number of shifts. Annals of Operations Research 76 (1998) 55-71

Rei, R.J., Pedroso, J.P.: Tree search for the stacking problem. Annals of Operations Research
203 (2013) 371-388

Kim, K.H., Hong, G.P.: A heuristic rule for relocating blocks. Computers and Operations
Research 33 (2006) 940-954

Caserta, M., VoB3, S., Sniedovich, M.: Applying the corridor method to a blocks relocation
problem. OR Spectrum 33 (2011) 915-929

Pedroso, J.P., Cunha, S., Tavares, J.N.: Recursive circle packing problems. International Trans-
actions in Operational Research (2014). doi:10.1111/itor.12107

Lenstra, J., Rinnooy Kan, A.: Complexity of packing, covering, and partitioning problems. In
Schrijver, A., ed.: Packing and Covering in Combinatorics. Mathematisch Centrum, Amsterdam
(1979) 275-291

Stephenson, K.: Circle packing: A mathematical tale. Notices of the American Mathematical
Society 50 (2003) 13761388

Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: Models and
methodologies. Advances in Operations Research 2009 (2009) 1-22

Castillo, 1., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization:
Numerical results and industrial applications. European Journal of Operational Research 191
(2008) 786802

http://dx.doi.org/10.1111/itor.12107

Part 11
Scheduling Problems

Integrated Solutions for Delivery Planning
and Scheduling in Distribution Centres

Galina Merkuryeva and Vitaly Bolshakov

Abstract This chapter presents integrated solutions for product delivery planning
and scheduling in distribution centres. Integration of cluster analysis, forecast-
ing, computer simulation, metaheuristic optimisation and fitness landscape analysis
allows improving planning decisions at both tactical and operational levels. Scheme
for integrated solutions is provided. Integrated solutions are described and illustrated
by a demonstration case for a regional distribution centre and a large network of retail
stores. Cluster analysis and classification methods are applied to determine typical
demand patterns and corresponding tactical product delivery plans. A multi-objective
optimisation approach is introduced for grouping stores by their geographical loca-
tion and demand data. Different simulation optimisation scenarios to define the opti-
mal delivery routes and schedules at the operational planning level are considered
and compared. Potential applications of a fitness landscape analysis for adjusting
an optimisation algorithm are described and applied for product delivery schedul-
ing. Two-stage vehicle routing supplement with vehicle scheduling is described and
shown in application experiments. Optimisation techniques described in this chapter
are applicable to solve specific routing and scheduling tasks in logistics.

1 Introduction

To ensure business competitiveness, modern management practices require appli-
cation of different methods in the fields of information technology and operations
research. To find the best solution to the problem, these methods must be integrated
to complement each other for mutual benefit. Cluster analysis, computer simulation
and metaheuristic optimisation techniques may be applied to provide an integrated
planning and scheduling of deliveries from a distribution centre (DC) to a net of
regional stores.

G. Merkuryeva (&) - V. Bolshakov
Riga Technical University, Riga, Latvia
e-mail: Galina.Merkurjeva@rtu.lv

V. Bolshakov
e-mail: Vitalijs.Bolsakovs @rtu.lv

© Springer International Publishing Switzerland 2015 135
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_5

136 G. Merkuryeva and V. Bolshakov

1.1 What is Problem Complexity?

Product delivery planning and scheduling is a high commercial priority task in trans-
port logistics. In real-life applications the problem has different stochastic perfor-
mance criteria and conditions. Optimisation of transportation schedules itself is com-
putationally time-consuming task which is based on the data from tactical planning
of weekly deliveries. This chapter also focuses on the methodology that allows reduc-
ing the effect of the demand variation on the product delivery planning and avoid
numerous time-consuming planning adjustments and high computational costs.

In distribution centres, this problem is related to deliveries of various types of
goods to a net of stores in predefined time windows, taking into account trans-
portation costs and product demand variability. The problem has a high number
of decision variables, which complicates the problem solution process. In practice,
product demand from stores is variable and non-deterministic. As a result, the prod-
uct delivery tactical plan that is further used for vehicle routing and scheduling has
to be adjusted to real demand data, and product delivery re-planning supervised by
a planner is often required. This task is very time consuming and requires specific
knowledge and experience of planning staff in this domain.

1.2 What is Motivation for Integrated Solutions?

An acceptable vehicle schedule can be created with the help of commercial schedul-
ing software usually based on heuristic optimisation. However, in practice a schedule
created with heuristic algorithms cannot satisfy all constraints of the real-life prob-
lem. In this case, an analyst needs to modify or correct a schedule generated by a
standard software in order to satisfy the problem specific constraints and to adapt
this schedule to a new information received by a planner. Simulation modelling can
be applied in this case to numerically evaluate the efficiency of a new schedule
candidate.

Integration of different techniques such as cluster analysis, forecasting, computer
simulation and optimisation to product delivery planning and scheduling allows
improving tactical and operational decisions in logistics distribution centres. A cluster
analysis of product demand data of stores allows identifying typical dynamic demand
patterns and associated product delivery tactical plans. Customer regional clustering
based on multiple criteria is performed through multi-objective optimisation. Meta-
heuristic optimisation provides effective techniques to define optimal parameters of
product transportation and delivery schedules. Vehicle scheduling may be performed
also for the routed solution. Fitness landscape analysis allows enhancing the opti-
misation process and tuning of parameters of optimisation algorithms. An attention
should be given to simulation optimisation of the vehicle schedule, which allows
incorporating stochastic data. Integration of these technologies advances traditional
optimisation techniques known in operations management and lead to coordinated
decisions in the area of delivery planning and scheduling at different management
(strategic, tactical and operational) levels.

Integrated Solutions for Delivery Planning and Scheduling ... 137

1.3 What are the Main Objective and the Problem Solution?

The main objective is to prepare an effective tactical plan for product deliveries from
DC to anet of stores for the upcoming week. In practice, the real demand can be very
different from the expected or average demand. Hence, significant changes should be
made in the delivery plan for each new week. The reasons for the demand variance
can be product demand seasonal effects or marketing events. In this case, it is very
important to reduce the effect of demand variation on the delivery planning process
and avoid numerous time-consuming adjustments of the base delivery plan.

The problem solution is a detailed delivery plan, in which schedules, routes and
amounts of goods to be delivered are defined as the best ones for the input data defined.
Input data contain information on the historical demand and location of the stores,
available vehicles for the product transportation and existing rural delivery routes.
Additional constraints such as time windows for product deliveries to specific stores
need to be taken into account. An optimal delivery plan should satisfy the following
criteria:

1. An amount of goods delivered to the stores should be equal to the demand of
these stores for a particular day.

2. Product delivery costs have to be minimised. This implies sub-criteria such as the
number of vehicles used to deliver all goods should be decreased, and transporta-
tion costs should be minimised by optimising delivery routes and schedules.

2 Integrated Solution Scheme

This solution scheme provides selecting an appropriate product delivery tactical plan
for the upcoming week and optimising product transportation routes and delivery
schedules. This is achieved by integration of a cluster analysis to define typical
product dynamic demand patterns and identify an appropriate demand cluster and
tactical weekly delivery plan, and using simulation and optimisation techniques to
model and optimise vehicle routes and delivery schedules for product deliveries.
Vehicle routing and schedule optimisation is based on the data from tactical plan-
ning for a week delivery. At the same time, a weekly delivery plan is dependent on
the data about a number of goods to be delivered to stores in a particular day of a spe-
cific week and geographical allocation of stores. In practice, historical data of store
demands can be very different from expected or average one, which is determined
in a predefined or base plan. Thus, significant changes should be made in the base
delivery plan to be adjusted for each new week. So, it is reasonable to specify typical
patterns of dynamic daily demand for different planning weeks and introduce several
base plans each representing an appropriate product delivery timetable for a specific
demand pattern. This will reduce the work of adjusting a typical or base delivery
plan to the current situation. Since there are now more typical delivery plans that are
based on typical demand patterns, the work will be reduced to making a decision,
which delivery plan should be used for the next week and small adjustments of it still

138

G. Merkuryeva and V. Bolshakov

e y demand
Historical demand Identification of
data demand pattemn

Typical
demand
patterns

Definition of typical
A A

¥

Tactical delivery

. Tactical (basic) Operational
a0 i weekdy delivery delivery
(for each group of stores a plans olabriip

eachtypical demand pattern)

5 .
Groups
of stores

Adjusted tactical
plan

_T/"

Operational planning:
vehicle routing and
‘ scheduling

Optimal delivery
schedule and routes
(GOAL)

Grouping of stores

information of stores

Fig. 1 Scheme of integrated solution

may be required. In addition, selecting the most suitable delivery plan may ensure
better scheduling solutions and reduce their computational costs.

The integration scheme for the problem solution (Fig. 1) includes the following
main tasks [20]:

1.

2.

Definition of typical dynamic demand patterns by clustering historical daily
demand data available for different planning weeks.

Grouping of stores based on their geographical locations to leverage the total
product demand over regions.

Tactical weekly delivery planning performed for each group of stores and each
demand pattern.

Identification of a specific demand pattern based on the classification model cre-
ated for typical dynamic demand patterns and selection of an appropriate tactical
delivery plan for the new week.

Adjustment of a selected tactical weekly delivery plan to a new or forecasted
demand.

Vehicle routing and scheduling, e.g. by using metaheuristic optimisation meth-
ods [21, 22].

3 Cluster Analysis of Dynamic Demand Data

This section describes methods for determination and recognition of weekly patterns
of dynamic demand data. Determination of patterns of similar dynamic demand
data allows introducing base delivery plans each representing an appropriate product

Integrated Solutions for Delivery Planning and Scheduling ... 139

delivery timetable for a specific demand pattern. Described methods allow determin-
ing a number of typical demand patterns based on historical demand data, as well
as defining characteristic features of these patterns and identifying which weekly
delivery plan would be the most suitable for the forthcoming week. An example of
cluster analysis of dynamic demand data is provided.

3.1 Motivation

It is assumed that it is possible to specify typical patterns of dynamic daily demand
for different planning weeks and introduce several base plans each representing an
appropriate product delivery timetable for a specific demand pattern [17].

The required weekly factical delivery plan is found based on information on the
weekly demands during one year. The objective is to find certain dynamic demand
patterns, which combines weeks into groups in the way that demand data are similar
for all weeks within a specific group but different from those weeks that belong to
other groups.

In this case, a cluster analysis of historical demand data [27] provides an oppor-
tunity to divide a variety of planning weeks into clusters and to find a number of
clusters that represent weeks with a specific demand pattern. It also gives informa-
tion for the construction of the classification model to identify which weekly delivery
plan would be the most suitable for the forthcoming week [17].

Thus a cluster analysis of dynamic demand data is used to:

1. Find a number of typical dynamic demand patterns and corresponding clusters
of planning weeks;

2. Construct a classification model that for any week allows determining an appro-
priate demand pattern, allocating a specific week to one of previously defined
clusters and determining correspondent product delivery plan.

3.2 Determination of Typical Dynamic Demand Patterns

To identify typical dynamic demand patterns based on historical demand data, or its
observations, the k-means clustering algorithm [15] is applied. It divides n observa-
tions into a user-specified number k of clusters, in which each observation belongs
to a cluster with the nearest mean value representing a cluster centroid. The result is
a set of k clusters that are as compact and well-separated as possible.

K-means clustering is a partitioning method that operates on actual observations
and creates a single level of clusters. Thus, for large amounts of data, k-means
clustering is often more suitable than hierarchical clustering.

K-means clustering uses an iterative algorithm that minimises the sum of distances
from each object to its cluster centroid, over all clusters. This algorithm moves objects

140 G. Merkuryeva and V. Bolshakov

between clusters until this sum cannot be further decreased. The result is a set of
clusters that are as compact and well separated as possible. Like many other types of
numerical minimisations, the solution that k-means clustering reaches often depends
on the starting points. It is possible for an algorithm to reach a local minimum, where
reassigning any one point to a new cluster would increase the total sum of point-to-
centroid distances, but where a better solution does exist. However, it is possible to
overcome that problem by performing a cluster analysis multiple times and selecting
the best result.

While implementing k-means clustering algorithm, its parameter k that defines
a number of the resulted clusters needs to be specified. In case of typical demand
patterns’ determination, this number corresponds to an approximate number of such
patterns and can be calculated using the following methods.

3.3 Definition of an Appropriate Number of Demand Patterns

There exist a number of approaches to find the best number of clusters by completing
cluster validity or measuring goodness of the clustering results compared with ones
created by other clustering algorithms. Here, an appropriate number of & clusters,
or typical demand patterns is defined by using silhouette plots [14]. In this method,
a numerical measure of how close each point is to other points in its own cluster
compared to points in the neighbouring cluster is defined as follows:

b; — a;
(1)

§i=——,
min (a;, b;)

where s; is a silhouette value for point i, a; is an average dissimilarity of point i with
the other points in its cluster, and b; is the lowest average dissimilarity between point
i and other points in another cluster. Higher mean values of silhouettes show better
clustering results that determine better clusters giving the best choice for a number
of clusters.

Another method uses the Davies—Bouldin (DB) index [9], which defines the aver-
age similarity between each cluster and its most similar one and is calculated by a
formula:

1 n
DB, = — Z R;.)
i=1
where n is a number of clusters and R; is defined as follows:

Ri=_max R, and R;; = (s; +5;) /dij, 3)

i=l,..ni#j

Integrated Solutions for Delivery Planning and Scheduling ... 141

where index R;; is a similarity measure between two clusters and is based on a
measure of dispersion s of a cluster i and a dissimilarity measure d;; between two
clusters.

3.4 NBTree for Dynamic Demand Pattern Recognition

A classification model that assigns an appropriate demand cluster is presented by an
NBTree, which induces a hybrid of decision tree and Naive Bayes classifiers. This
algorithm is similar to classical recursive partitioning schemes, except that leaf nodes
created are Naive Bayes categorizers instead of nodes predicting a single class [27].

For a specific week and demand time series, a cluster is identified by determining
a proper leaf number C according to the decision tree. When the leaf number is
known, a cluster is estimated by a formula:

m
C—argmaxP Cj H al|c] 4)
cj=C i=1

where P(c;) defines the probability that weekly demand belongs to cluster ¢, and
P(a;/cj) defines a conditional probability that demand on day a; belongs to cluster
c¢;j. Probabilities P(c;) are calculated from clustering results, while P(a;/c;) are
defined from the classifier according to the above-determined leaf number.

For a specific week, an NBTree allows identifying an appropriate cluster and
then choosing weekly tactical delivery base plan corresponding to this cluster. The
selected weekly delivery plan is then used for the optimisation of parameters of
vehicle schedules.

3.5 Example Applications

Let us assume that historical demand data for 52 weeks are available and specified by
weekly demand time series each representing a sequence of points—daily numbers
of the product deliveries for a specific week (see Fig. 2).

K-means clustering experiments are performed on the historical demand data for
a number of clusters from 2 to 8. Then for each clustering experiment, silhouette
plots are built and mean values of silhouettes per cluster are calculated (Fig. 3).

Analysis of silhouettes mean values leads to the conclusion that the best cluster
separation could be done at k = 4 that gives the highest silhouette mean value equal
to 0.558. Clusters 1-3 seem to be appropriately clustered (see Fig.4).

However, silhouettes values for the cluster 4 are negative. Theoretically, weekly
dynamic demands assigned to this cluster could be better allocated to another cluster.
These weeks are different due to demand dynamics and specific days, where demand
peaks are observed.

142 G. Merkuryeva and V. Bolshakov

Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

2885 3390 3891 4115 4612 4687 3371
2831 3553 3859 3785 4432 4899 3527
2763 3548 4067 | 4431 4838 5057 3511

2951 3820 ,,__;.”ﬁr”’m 5075 |/——==o4 3345 |
m—3l 3101 2988 | S8 3524 2643
— 3150 3459 4339 4377 5187 4956 3545

2394 3229 3643 3693 | 4018 4411 3583

Fig. 2 Sample demand data

- !
y V 5

-1 0.5 1] 0.5 1 -1 0.5 o 0.5 1 -1 0.5 o 0.5 1 -1 -0.5 0 0.5 1
Silhouette value Silhouette value Silhouette value Silhouette value

k=2 k=3 k=4 k=5
mean value =0.4397 mean value =0.5050 mean value =0.5580 mean value =0.3886

E =
) 5

L

W

-1 1 -1 05 o 05 1 -1 -0.5 0 0.5 1
Silhouette value Silhouette value Silhouette value
k=6 k=7 k=8
mean value =0.3617 mean value =0.3564 mean value =0.3496

Fig. 3 Silhouette plots for the number of clusters k = 2 to k = 8

Reallocation of ‘unlike’ weeks avoids receiving negative silhouette values (see
Fig.5). However, this does not provide an increase of the silhouette mean value as
might be expected. In this case, ‘unlike’ weekly demands behave as a ‘noise’ in
their ‘native’ clusters, decreasing silhouette values. Then, clustering experiments
have been performed with 49 weeks, where three ‘unlike’ weeks have been excluded
from a cluster analysis. This has allowed increasing the silhouette mean value up to
0.5822, while getting the same groups of data clusters 1-3.

The DB index is calculated based on the output data from k-means clustering
experiments for k in the range 2-8 clusters (Fig.6). The lower value of DB index
which is equal to 0.899 is received for the number of clusters equal to 4. Thus, the
best number of clusters in this case confirms the results of the silhouette plot analysis.

As a result, a number of clusters is set to k = 4. It is worth noting that a tactical
weekly delivery base plan is defined for a cluster with a silhouette mean value greater
than 0.5. In this case, a tactical product delivery base plan is selected, adjusted or

Integrated Solutions for Delivery Planning and Scheduling ... 143

7000 7000
2 5250 ¥ 5250
3 g
EaP = B s
£ £
£
8 1750 & 1750
0 T T T 1 T T 1 0 T -7 T T m B . T -1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Day of week Day of week
1st cluster 2nd cluster
7000 - 7000 -
i eomn A 2 550 e
- / \ : ~j/\\\
e b
T 3500 - T 3500 -
[} [}
£ E &
& 1750 & 1750 \
0 T T T T T r 1 0 T T T T T : 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Day of week Day of week
3rd cluster 4th cluster

Fig. 4 Sample demand patterns found by k-means analysis for a number of clusters k = 4

| 4
2'

3 ———
4

0 05 1

3 T
-1 -0.5 -1 -0.5 0 0.5 1
Silhouette value Silhouette value

Fig. 5 Silhouette plots for the number of clusters k = 4 with reallocation of ‘unlike’ weeks and
for the number of clusters k = 3 and 49 sample weeks

built for the first three clusters and not analysed for the last one. Dynamic patterns
received for clusters from 1 to 3 are presented in Fig. 4.

To identify an appropriate demand cluster for a specific planning week, NBTree
classification model is built (see Fig. 7). This will allow choosing a weekly delivery
plan which corresponds to this demand cluster.

144 G. Merkuryeva and V. Bolshakov

14

DBIndex
12

10

08

T T T

MNumber of clusters

Fig. 6 Davies—Bouldin index for different numbers of clusters

<=3037 >3037

Leaf number 1 Leaf number 2

Leaf number: 1 Naive Bayes Classifier

) T Tuesday Wednesday Thursday |
¥ |-3298.5) [(3298.5- =) | [-=-3798.5] | (3798.5-w0] | [-e=-3731] | (373 1) |
10400 1.000 0.735] 0.214 0.786 0.214 0.857| 0.143]
2 0.600] 1.000 o200 o.800] 0.050 0950 0.050] 0950
Friday Saturday Sunday
{-==-4315.5] |(4315.5-#2) |{-==-4521.5] | (4521.5-22) | (-e=-3213] |(3213-e=)
0,929 0.071 0.929 0.071 0.543 0.357
0.150! 0.850 0.200) 0.800 0.050| 0.950]
Leaf number: 2 Naive Bayes Classifier
Class |Moday |Tuesday - Thixsday
(-00-4924.5] | (4924.5-00) | (-00-4485.5) | (4485.5-5268] |(5268-00)
1 0.682| 1.000| 1.000 0.941 0.059 0.889 0.056 0.056
2 0.182| 1.000(1.000 0.833 0.167 0.143 0.714 0.143
3 0.136| 1.000(1.000 0.200 0.800 0.333 0.167 0.500
Friday Saturday Sunday
(-2=-5313] |(5313-#=] |(-+=-4081.5] |(4081.5-5218.5] | (5218.5-2) |[-==-2895] | (2895-3989.5] |(3989.5-==)
0.941 0.059 0.056 0.889 0.056 0.056 0.889 0.056
0.167 0.833 0.143 0.143 0.714 0.143 0.286 0.571
0.400 0.600 0.667 0.167 0.167 0.667 0.167 0.167

Fig. 7 NBTree-based classification model

To improve the performance of the classification model, demand data sample size
has been increased up to 156 weeks. Two demand time series were generated for
each planning week by daily demand uniform change within 5 %. In a similar way,
input data for another 52 weeks have been generated to validate a classification model
itself. Built on this data the NBTree-based classification model with an example of
the leaf Naive Bayes classifier is given in Fig. 8. In this case, tenfold cross-validation
showed that only eight weeks have not been classified correctly, which produced an
error value of about 5 %.

Integrated Solutions for Delivery Planning and Scheduling ... 145

FRI <= 4294.5

| TUE <= 3380.5: 1 cluster

| TUE > 3380.5: Leaf Number 1

FRI > 4294.5

| TUE <= 3700.5

| | MON <= 3062: 2 cluster

| | MON > 3062

| | | THU <= 4368.5: Leaf Number 2
| | | THU > 4368.5: Leaf Number 3
| TUE > 3700.5: Leaf Number 4

Leaf ber: 4 Naive Bayes Classifier
Class |Monday|Tuesday Wednesday Thursday
{-e>-4406] | (4406-5152.5] | (5152.5-9) | {-e>-5467.5] | (5467.5-23)
2 0.348 1.000 1.000 0.727 0.182 0.091 0.500 0.100
3 0522 1.000 1.000 0.067 0.867 0.067 0.929 0.071
4 0.130[1.000f 1.000 0.167 0167 0.667 0.200 0.800
Friday Saturday Sunday

[-=5204] | (5204~ | (-=4299.5] I4299.5-490_3] (4903-e) | {-e=1745.5] | {1745.5-3770] | {377 0-2)

0.500 0.100 0.051 0.818 0.051 0.051 0.727 0.182

0.357 0.643 0.067 0.067 0.867 0.067 0.067 0.867

0.200 0.800] 0.667 0.167 0.167 0.667 0167 0167

Fig. 8 Detailed NBTree classification model

Table 1 Weekly demand sample data (in roll containers)
Monday Tuesday Wednesday | Thursday Friday Saturday Sunday
3231 3462 3842 4437 5021 4868 3391

Let us assume that demand for Friday and Tuesday is 5021 and 3462 roll contain-
ers, correspondingly (see Table 1). From the classification model in Fig. 8, the leaf
number 4 is selected.

Then a likelihood for cluster 2 is calculated by multiplication of probabil-
ities received from the Leaf Number 4 Classifier for specific week days, i.e.
0.348, 0.727, 0.9, 0.9, 0.818 and 0.727. This probability is equal to 0.122. Like-
hoods for cluster 3 and 4 are calculated and are equal to 5.2 - 107> and 2.4 - 107,
correspondingly.

The probability that weekly dynamic demand belongs to cluster 2 is defined as
follows:

0.122
C,) = ~ 0,9994. 5
P = 555752 105 1 2.4 105 ©®)

Similar, probabilities that weekly dynamic demand belongs to cluster 3 or 4 are
calculated: p(C3) = 0.0004; p(C4) = 0.0002. Finally, a cluster with the highest
probability is selected. As a result, the considered week belongs to cluster 2 with the
probability which is very close to 100 %.

146 G. Merkuryeva and V. Bolshakov

For a specific week, an NBTree allows identifying an appropriate demand cluster
and then choosing weekly tactical delivery base plan corresponding to this demand
cluster. Then, selected weekly delivery plan is used for optimisation of parameters
of vehicle schedules.

4 Grouping of Stores Based on Geographical Locations

In case of a large number of stores in a delivery network, grouping of stores in
relatively small groups based on their geographical locations allows to simplify the
product delivery optimisation task by decreasing its dimension. In this section, the
problem statement of store grouping that also provides the uniform distribution of
the total demand over geographic regions is given, and problem-solving techniques
are described and provided with illustrative examples.

4.1 Optimisation Problem Statement

In practice, weekly delivery planning is done based on the demand and data about
store allocations to geographical regions. Grouping of stores based on their geo-
graphical locations allows leveraging the total product demand over regions. Let us
suppose that all stores are grouped manually, and rearranging regions in case a new
store is added may require. Also, it would be desirable to have separation of regions
with a similar weekly total demand, or the total demand uniformly distributed over
regions.

The use of a cluster analysis for dividing stores into regions according to their
locations does not allow getting the total product demand equally distributed between
these regions. But the region clustering task may be formulated as a multi-objective
optimisation problem.

Input data contains the number of stores n, the number of regions k, two geo-
graphical coordinates x; and y; for each storei,i = 1, ..., n defined in the Cartesian
coordinate system and the total weekly demand d; for each store i.

Decision variables define a region (or cluster) a; to which a store i is assigned:

ai€{1,2,...,k}; i=1...n. (6)
Additional auxiliary variables are introduced as:
Aj ={blap = j}, @)

where A is a set of stores assigned to each region, and

r i) = =3+ (i = 55) (8)

Integrated Solutions for Delivery Planning and Scheduling ... 147

where r (i, j) defines an Euclidean distance from store i to the centroid of cluster j,
and x; and y; are mean values of coordinates for all stores in cluster j:

2 X 2 Vi

I€A; . I€A;

STl

)

Two objective functions are introduced in the problem. The first objective function
determines how good regions generated from the geographical location point of view
are, and the second one defines if the total demand is equally distributed among these
regions. Both objective functions are minimised, i.e.:

k
A= r(.j)— min, (10)

j=li€A;

k
fzzz Zdi—% — min, (11)

where f defines the sum of distances between centroids of the regions and stores
assigned to them, and f, is the sum of differences of the total demand for each
region and the average demand per region. No additional constraints are defined in
the optimisation problem.

4.2 Multi-objective Optimisation Algorithm

As the problem has two objective functions, a multi-objective optimisation algorithm
should be applied for grouping of stores into geographical regions. Thus for the
grouping task, an application of widely used Nondominated Sorting Genetic Algo-
rithm IT (NSGA-II) [10] is proposed. Further discussion on application of NSGA-II
implemented in the HeuristicLab optimisation framework [32] is given.

The optimisation problem itself is implemented as a multi-objective optimisation
problem plug-in of HeuristicLab with integer encoding of solutions and their evalu-
ation by two mathematical functions (10) and (11). Correspondingly, a chromosome
representing a solution is defined as a string of n integer numbers and formalised as
a vector (a1, as, ..., a,) of decision variables, where a; € [1, k].

In experiments with NSGA-II, the following GA operators are applied: (1) discrete
crossover operator for integer vectors [13], (2) uniform One Position Manipulator
[16] and (3) crowded tournament selector [10].

148 G. Merkuryeva and V. Bolshakov

Parameters of the algorithm may differ for different sizes and complexity of the
problem and should be tuned experimentally. For the case discussed in this chapter,
with a number of stores equal to 88, the following parameters were determined in
experiments: a termination criterion in a number of generations equal to 5000; the
population size equal to 200; the crossover rate of 90 %; the mutation rate of 5 %;
and 400 selected parents in a new generation.

4.3 Examples of Optimisation Experiments

The results of optimisation experiments for grouping of stores into geographical
regions are performed for different numbers of generations with a population size of
200 solutions (see Fig.9). Here, demand quality is equal to the sum of variances of
the total demand for each region, and geographic quality corresponds to the sum of
distances between stores in groups and centroids of these groups. An increase in the
number of generations improves the Pareto front of non-dominating solutions by min-
imising both objective functions. However, when the number of generations exceeds
2000, these improvements are small. Finally, at 5000th generation the grouping of
stores into geographical is reached that lead to a uniform distribution of demand
between regions. Further improvements become minor for the discussed case.
However, graphical representation of the obtained results shows that solutions
with high demand quality give worse results for the second objective function and
vice versa. Thus, a solution in the middle of the Pareto front (see Fig. 10, where
different regions with the stores assigned are shown) is selected which provides
compact clusters of stores in regions. A large number of regions in the central part

90000
*
80000 -
70000
Generation=50
60000 .
__E_‘ M Generation=100
o
3 50000 - < Generation=200
-}
E 40000 A Generation=500
&2 I Generation=1000
30000 -
@ Generation=2000
20000 Generation=5000
10000 - Generation=10000
0
0 10000 20000 30000 40000 50000 60000

Geographical quality

Fig. 9 Pareto fronts for different numbers of generations

Integrated Solutions for Delivery Planning and Scheduling ... 149

Fig. 10 Solution in the
middle of Pareto front

©

of Fig. 10 may be explained by high density of stores with high product demands in
this geographical part, which corresponds to a large city or urban area. Moreover,
there are only two regions with demands that are lower than others. Further gradual
leverage of the regional demand may be experimentally tested. In the example that is
considered, this may worsen the geographical location of high-priority regions (see
Table 2).

Further on, for each group of stores and each demand pattern a weekly delivery
base plan that defines an amount of products to be delivered to stores on specific days
of the calendar week (Table 3) is built. It is based on the average demand for each
store from a specific group in the planning weeks that belong to a certain demand
cluster. Here, a weekly delivery base plan is developed once using knowledge-based
heuristics and updated relatively rare.

Table2 The distribution of Region Total demand | Region Total demand
the total weekly demand

1 28,443 7 25,328

2 21,429 8 21,552

3 23,440 9 21,787

4 21,687 10 12,152

5 23,583 11 14,722

6 23,101 12 21,860
Table 3 Sample delivery Day MON|TUE |WED |THU |FRI |SAT |SUN
plan for one week

Store A |30 35 30 25 45 50 30

StoreB |- 25 - - 35 - -

Store C |20 - 15 - 10 - 25

StoreD |- 25 - 40 - 35 20

= 50 85 45 65 90 85 75

150 G. Merkuryeva and V. Bolshakov

Variation in daily deliveries for specific days of the week may produce extra costs
on peak delivery rates. Thus, variation in daily deliveries needs to be minimised
for each store and each group of stores. Additionally, customers with low demand
would not be served each day as it will produce extra transportation costs to deliver
small order quantities too often. This could be achieved by simple division of the
total weekly demand into a number of delivery dates. For stores with low demand,
a number of delivery days is reduced to minimise transportation costs. Afterwards,
the weekly delivery base plan still needs to be further customised to correspond with
demand dynamics during the week (see Table 3).

To ensure maximal operational effectiveness, the base plan selected is adjusted in
order to match the actual customer demand for the forthcoming week. Then, for each
day of the week, vehicle routes and/or delivery schedules are defined to minimise
their transportation costs.

5 Simulation Optimisation of Vehicle Schedules

When the base delivery plan for the upcoming week is selected and adjusted, product
delivery (vehicle) routes and schedules need to be optimised in order to reduce the
transportation costs. Two types of a vehicle routing and scheduling problem are
discussed. In this section, simulation-based vehicle scheduling when delivery routes
are fixed and known is considered. Later on in this chapter a more complex case is
introduced, when first the vehicle routes have to be determined and then these routes
have to be scheduled.

Here, a vehicle scheduling problem with time windows is discussed, with a
description of a vehicle schedule simulation model and scheduling optimisation sce-
narios.

5.1 Problem Express Analysis

A vehicle schedule defines a schedule of deliveries of various types of goods from
DC to a network of stores. Distribution routes or trips for vehicles are fixed. For each
route, the following parameters are defined: a sequence of stores (route points), aver-
age time intervals for vehicle moving between these points, loading and unloading
average times and types of goods to be carried on this route. Goods are delivered to
stores in the predefined time windows. For each store, an average demand of goods
of each type is defined. Vehicle capacities are limited and known.

Vehicles are assigned to routes and schedules for routes are generated that min-
imise the total costs of a schedule. Samples of predefined vehicle routes and schedules
that define at which time each route has to be started and which vehicle will perform
it are shown in Fig. 11. The vehicle idle time is defined as a sum of time periods,
when a vehicle is waiting for the next trip in the DC depot.

Integrated Solutions for Delivery Planning and Scheduling ... 151

Load and unload

i Trips
points H Vehicles
Valmiera *‘/ 6:30 ?

S H ZK9999
/‘/ : |_DC -> Valmiera = DC |‘
O

/7 ?
DC 'y : ©
: 11:40 ?
H ?
H m - Jelgava > Bauska > DC |‘/ 2J9969

Jelgava

4]

Fig. 11 Examples of vehicle routes

Vehicle Scheduling Problems (VSP) present a class of optimisation problems
that are aimed at assigning a set of scheduled trips to a set of vehicles, in such a
way, that each trip is associated with one vehicle, and a cost function for all trips
is minimised [11, 24]. This problem is often modified with additional constraints,
like time windows, different vehicle capacity, etc. Correspondingly, a VSP with
Time Windows is denoted as VSPTW. A number of methods to solve VSP problems
are proposed in the literature, e.g. integer programming, combinatorial methods,
heuristics [11]. Such problems do not have efficient traditional optimisation methods
and can be solved by application of evolutionary algorithms. Furthermore, an analysis
of a fitness landscape can be used to evaluate the optimisation problem complexity
and to select the most appropriate algorithm.

In practice, the VSP also can be complicated by stochastic processes existing in the
problem, e.g. when the duration of a trip is a random variable. In this case, evaluation
of potential solutions can be made through simulation, and simulation optimisation
could be used to solve such problems. Simulation technology provides a flexible
tool to determine the optimality of each solution. Therefore, the simulation-based
fitness landscape analysis that supposes fitness evaluation of the solution with use of
simulation becomes an important task.

5.2 Problem Statement

Decision variables are introduced to assign vehicles v; to routes and define a start
time #; for each route [21, 22], where i is a route number, v; is a vehicle assigned to
trip i and ¢; is start time of the trip i. The objective function fis aimed to minimise
the total idle time for all vehicles:

N
f=>_Tiy, — min, (12)

i=1

152 G. Merkuryeva and V. Bolshakov

where Tiidle is the total idle time for vehicle i; and N is a number of vehicles.

The problem constraints are divided into three groups presenting vehicle capacity
constraints, delivery time constraints, and gate capacity constraints, correspondingly.
In the last case, anumber of vehicles that can be loaded in a warehouse simultaneously
cannot exceed a number of gates.

Express analysis shows that the problem could have many solutions that are not
feasible within defined constraints. This makes a solution search process non-efficient
in terms of computational time. To increase optimisation efficiency, all constraints are
converted into soft constraints [21], and the objective function f in (12) is modified
by introducing penalties taking into account the total number of times when the
constraints were not satisfied by a potential solution:

fr= Z Tigte + k1T + ko Ty + k3To + kaNoy + ksNoy, (13)

where f* is the modified objective function; 7, defines the total duration of overlap-
ping trips for one vehicle; T, defines the total time of window mismatches; 7, and
N,; determine the total time and a number of vehicles that exceeded the total work-
ing time; N, is a number of vehicles overloaded. In (13), all indexes for unsatisfied
constraints are multiplied with penalty coefficients k; > 1; i = 1...5 that artifi-
cially increase the value of the objective function and make the fitness of a potential
solution worse.

5.3 Simulation of Vehicle Schedules

To estimate fitness of potential schedule solutions, the vehicle schedule simulation
model is introduced. It is built as a discrete-event simulation model, for example
using AnyLogic simulation software [3]. It is based on the object-oriented concep-
tion and presents a simulation model as a set of active objects that are functioning
simultaneously and interact with each other.

In the vehicle schedule model [22], each vehicle is modelled as an active object,
and its behaviour is described by a state chart that defines vehicle states (e.g. parking,
loading, moving and unloading) and transitions between them (see Fig.12). The
objects of each vehicle are aggregated by the model main object. Three classes
are defined for store, trip and job objects to specify input data. During the model
initialisation it is connected to a database of input data and variable collections of the
main active object are set up with data from the database. Processes related to DC
operations are simulated. During simulation the constraint violations are monitored
and a number of violations are stored in the model.

In the model animation screenshot (Fig. 13), utilisation graphs (timelines) of all
vehicles are combined in a Gantt chart for a vehicle schedule where different states
of the vehicle are shown with different colours, e.g. the grey colour for parking in
DC, green one for loading and blue for moving between route points times.

Integrated Solutions for Delivery Planning and Scheduling ... 153

logics

Fig. 12 State chart of active object “Vehicle”

2 vel o - AnyLogic Advanced [EDUCATIONAL USE DALY =102
sl E GO § G| Qe Gl o] L
#3?7.-. g e g B g s Alltrucks bime: 15680 min
By Spe g VRl ORI anvucks tme 1140 mn
Oty Qien @ gpepuarromns
rubing [l oving [e Untsading [Msiesensnce [N tate
] | | | i} | R
FE16T o . 104010 Dot S Sewinis 50D bet sty Ditie
oo
FNEZH 1240|700 Sok-5H Ve 100 5 Pemavas 45N Isia 3
00
FUAMT o Mo (o Rezeine-5N Abrivosanas ke 146
o0 132 HE
P8 o [S | 15|14 | s i
000 o300 a0 0 100 15:00 21:00 o000 L]
e o [————\—— | [| s
000 0000 0600 o500 A0 1500 000 24700 w0 w0
v o [| 17| | 1o e i e
00y 00 0600 o0 [rei) 1500 a0 £ w0 Labe 1]
[—] e [[e
oo o0 000 L 00 1500 w00 2100 - Lo b 1]
s ——— | o0 [0 [t
oh0 RO BRI GWD 1bD B90 8e0 @0 w90 o
s o [| 0 | | o i
= o0 00 a0 00 100 1500 800 100 o000 00

2100 0700 w0

Runc 00 Frished | Tinse: 1440.00 | Sienulation: TN | Memory: BlMdom @ | S

Fig. 13 Screenshot of the simulation model

154 G. Merkuryeva and V. Bolshakov

The utilisation chart for DC gates during the daytime is displayed below the
vehicle utilisation timelines. It shows how many loading gates are busy each time.
Online statistics about the idle time and completed jobs is provided along the timeline
for the corresponding vehicle. A list of performed trips including visited shops is
generated for each vehicle.

5.4 Vehicle Schedule Optimisation Scenarios

Example input data of the VSP contains 37 routes, 17 vehicles and 36 stores. Specific
parameters of vehicles, stores and routes are defined in the simulation model. The
input data for vehicle moving times are interpreted as deterministic and then as
stochastic (depends on the optimisation scenario). As simulation output the total
idle time for all vehicles is calculated. The number of decision variables that define a
vehicle schedule is equal to 74. Thus, exploration of the problem search space requires
evaluation of a huge number of possible solutions [23]. Finally, function (13) is used
for fitness evaluation of the solutions simulated. Two optimisation scenarios based
on using genetic algorithms and a fitness landscape analysis are discussed in this
section, and the third scenario based on scheduling of routed solutions is considered
in Sects. 6 and 7.

5.4.1 Simulation-Based Optimisation with GA

In this scenario, a genetic algorithm (GA) is used to search for the best combination
of the schedule parameters, while simulation model is applied to estimate quality of
a schedule generated. The optimisation tool is implemented as a Java class, which
interacts with the simulation model via ‘Parameter variation’ experiment in Any-
Logic [18].

In GA, solution candidates of the scheduling problem are encoded as integer vector
chromosomes, which length is twice a number of trips (routes). In chromosome, genes
with even sequence numbers represent start times of corresponding trips, and ones
with odd sequence numbers define a vehicle assigned for this trip. For example trip 1
will be performed by vehicle 2 starting at 12:20 a.m. (Fig. 14).

A mutation operator is introduced that changes one randomly selected trip in the
solution candidate. For a selected trip, a new randomly chosen vehicle is assigned,
and the start time is shifted by a certain constant value. One-point crossover with rate

2 20 1 600 2 690 1 120 3 490
Trip 1 Trip 2 Trip 3 Trip 4 Trip 5

Fig. 14 A sample chromosome of the vehicle schedule

Integrated Solutions for Delivery Planning and Scheduling ... 155

of 75 %, above-mentioned mutation operator with rate of 1%, one elite individual
and tournament selection with tournament size of two individuals are involved in
algorithm. Termination condition of GA is set to occur when there is no significant
improvement of the best solution in population after a large number of generations.

Optimisation results show that a feasible schedule which satisfies all defined
constraints can be found. Acceptable results are obtained with a population size of
1000 chromosomes, but larger populations significantly increase computational time.
The solution allows decreasing the total idle time from 1140 to 700 min.

5.4.2 Fitness Landscape Analysis and Optimisation Performance

While a genetic algorithm provides very good solutions in VSP optimisation,
nonetheless it needs tuning of parameters and operator selection by skilled personal.
To make tuning and adjusting of an optimisation algorithm easier Fitness Landscape
Analysis (FLA) is proposed in the literature [26, 29]. FLA provides methods and
techniques for a mathematical analysis of a search space of optimisation problems,
and can be applied as a support tool to enhance optimisation of complex systems.
It was proposed that the structures of a fitness landscape affect the way, in which
a search space is examined by a metaheuristic optimisation algorithm. The fitness
landscape analysis would allow getting more information on the problem’s proper-
ties dependent on a specific optimisation method, which will guide the optimisation
process.

FLA techniques apply different strategies for data collection based on simple
moves, which generate a trajectory through the landscape (e.g. random walk). The
information analysis interprets a fitness landscape as an ensemble of objects, which
are characterised by their form, size and distribution and is based on the information
theory. Four information measures are proposed by [30], e.g. the information content
is ameasure of entropy in the system and partial information content characterises the
modality of the performed walk. Higher information content and partial information
content values indicate higher hardness of the analysed problem. The statistical
analysis proposed in [33], calculates the autocorrelation function in the random walk
to measure the ruggedness of the landscape. In case of a high correlation between
fitness values the landscape is considered less rugged and thus the problem should
be easier. In this section, to analyse the problem fitness landscape the autocorrelation
function is successfully used.

To apply FLA in the vehicle schedule optimisation the methodology described
in [5] is applied. The optimisation problem is experimentally analysed in a compre-
hensive way to find how parameters of the problem and selection of optimisation
operators and representations of solutions influence both FLA measures and optimi-
sation performance. If the relationships between the fitness landscape measures and
optimisation performance are found, afterwards, for the same class of the problem an
optimisation algorithm can be adjusted based on the FLA results to a new problem
instance.

156 G. Merkuryeva and V. Bolshakov

To perform comprehensive optimisation and analysis of the VSPTW, the above
described simulation model [22] was re-implemented as a plug-in of HeuristicLab
framework [32] maintaining all model’s logic and functionality.

Hereinafter two types of mutation operators are defined for the representation
described in this chapter. The single position replacement manipulator (VSPManip-
ulator) changes the start time of the trip to a new uniformly distributed random
number, but the single position shift manipulator (VSPShiftManipulator) shifts the
start time with a uniformly distributed random number.

To enhance the quality of optimisation results, permutation encoding for the VSP
solutions is introduced. The encoding is based on the Alba encoding [2] for a vehicle
routing problem. A chromosome is of the permutation type and contains m +n genes,
where n is a number of vehicles and m is equal to a number of trips in the problem.
Genes that have values less or equal to m encode a trip number and values greater
than m encode delimiters or vehicle designators and define a vehicle number for the
next sequence of trips.

The logic of the simulation model is that if no time window constraints are defined
for the first trip, it starts at midnight; otherwise it starts at time to match the first
customer’s window. The next trip starts immediately after the previous one, unless
its start time should be delayed to satisfy time windows of customers in the route
of this trip. No times are encoded, and hence, the potential solution has no directly
encoded idle time, and its trips cannot overlap. Due to the high universality of this
encoding, different permutation manipulation operators can be applied in the search
of the optimal solution.

A grid of landscape analysis experiments is created to compare values between
different landscapes. First, comparison of different mutation operators is performed.
Second, comparison between existing and proposed encodings is done. Results of
comprehensive analysis experiments are described in [6]. Particularly found, thatin a
random walk, values of autocorrelation function are slightly lower for the replacement
operator. In the up-down walk the situation is the opposite: replacement mutation has
higher correlation than shift mutation, but the three artificial problems are different
to the others (see Fig. 15; black dots are for replacement and green for shift mutator).
Moreover, the value of the autocorrelation function in random and up-down walks is
lower for the permutation encoding, which means that landscapes of this encoding
should be more rugged.

Fig. 15 Autocorrelation in
up-down walks 0.9987

0.9967

0.9947 iy

AutoCorrelation

osez7. ¥

0.9507 VSP_37 VEP_37 13w VEP_s1 VEP 83 VEP_a2(40)

VSP_133 VSP_133 31w VSP 52 VSP_al{40) VEP_a3{40)
Problem Mame

Integrated Solutions for Delivery Planning and Scheduling ... 157
5.4.3 Optimisation with HeuristicLab

A number of VSP optimisation experiments with the algorithms implemented in
the HeuristicLab framework are performed. For the integer encoding both Evolution
Strategy (ES) and Simulated Annealing (SA) algorithms are experimentally found to
be fast and highly successful, but the ES is able to find solutions with better quality
[6]. A genetic algorithm is able to find even better solutions, but with larger num-
bers of evaluations than evolution strategy. Permutation encoding is more effective
in optimisation of the VSP, than integer encoding, as algorithms are able to find
good solutions in less time. Moreover, almost all idle times are eliminated, and trip
overlapping is also avoided. The evolution strategy is more effective than a genetic
algorithm also for the permutation encoding. Even though the search space for this
type of encoding is more complex and rugged, nevertheless, due to its smaller size
the search of the globally optimal solution becomes more effective.

The best results found by different algorithms and for different encodings are
presented in Table 4. Each algorithm for a specific problem has been run 10 times and
the mean fitness of the best solution in each run has been calculated. A GA involved
the population size of 100 chromosomes, tournament selection, 5 % mutation rate
and termination criterion defined by 500 generations. ES (20 + 100) strategy has
been applied with maximum 1000 generations. Simulated annealing has been run
with 3000 iterations and 10 evaluations in each iteration. Each run of GA or ES on
a computer with 4-core CPU required from 8 to 10s, and about 3s for simulated
annealing.

Additional detailed optimisation experiments with similar instances and para-
meters show that there are relations between values of fitness landscape analysis
measures and an ability of the optimisation algorithm to find the best solution. The
genetic algorithm with population size of 100 individuals and termination condition
of 500 generations is applied in one series, and the evolution strategy (20 + 100) with

Table 4 Mean fitness values of the best solutions found by different algorithms

Problem Genetic algorithm Evolution strategy Simulated annealing
Integer Permutation | Integer Perm. Integer
VSP_37 13 144.6 2481 39.6 0 10414.4
VSP_133 111 196.1 132 475 18279.2 0 112 539.1
VSP_37(13) 47313.1 26 367 15 860.1 180 67 904.6
VSP_133(31) | 199 750.8 313750 75 233.6 2 887 230752.4
VSP_sl 33759.3 3600 10 346.1 0 12741.2
VSP_s2 4082.1 0 757.5 0 2708.5
VSP_s3 5666.2 5382 984.6 0 14 274.8
VSP_al 12 446.2 6715 347.7 0 26 530.7
VSP_a2 30575.8 31 880 6377 0 52755.6
VSP_a3 10927.2 11 156 1257.6 0 36 462.7

158 G. Merkuryeva and V. Bolshakov

Fig. 16 Quality of best 200000
found solutions with ES
150000
z
g
& 100000
g s
o ¢
50000 y
L]
0 - ‘ z o - & -
VEP_37 VSP 371w VEP 81 VEP 83 VEP_a2{40)
VSP_133 VEP_13331Iv V5P _s2 VSP_al(40) VSP_ad(40)

Problem Name

crossover and 1000 generations in the second series of experiments. For the problem
instances, which are better solved with the shift operator by GA, the autocorrelation
for this operator also is higher (Figs. 15 and 16; black dots are for replacement and
green for shift mutator). The same dependency is found for the ES algorithm.

Finally, it is concluded, that optimisation using the ES is the best choice for the
solution of a vehicle scheduling problem with time windows. In case of the integer
vector encoding is applied, selection of an appropriate mutation operator is based
on the measures of the FLA, i.e. an operator, which has the highest autocorrelation
value in the up-down walk should be selected.

6 Vehicle Routing

Often the delivery planning at the operational level also requires optimisation of
vehicle routes. The section describes optimisation approach for the vehicle routing
with time windows. First, the problem statement is given, and then an optimisation
algorithm and its experimental adjustment are discussed.

6.1 Problem Statement

The classical statement of the vehicle routing problem with time windows (VRPTW)
[7] is used further. Input data contains a set V of vehicles, a set C of customers and
data about their geographical locations in the form of a directed graph G. The graph
consists of |C| + 2 vertices, whereby the customers are denoted as 1,2, ...,n and
the depot (in this case DC) is represented by vertices O and n + 1. A set of vertices of
G is denoted as N, while a set A of arcs represents connections between customers
and between the depot and customers. For each arc (i, j), where i # j, a distance
cij and a travel time #; are defined. Each customer i has demand d; and should be
served by one vehicle k with capacity g and only once within a planning horizon.
For each customer, time window [a;, b;] when it has to be served is defined. Vehicles
routes start and end in DC.

Integrated Solutions for Delivery Planning and Scheduling ... 159

The VRPTW model contains two sets of decision variables, namely: x and s,
which are defined as flow and time variables, correspondingly. Variable x; jx for each
arc (i, j), where i # j,i #n+ 1, j # 0, and each vehicle k is defined as follows:
x;jk = 1 if vehicle k drives from vertex i to vertex j, and x;j; = 0, otherwise. The
decision variable s;; for each vertex i and each vehicle k denotes the time, when
vehicle k starts to service customer i.

Shortest routes for a fleet of homogenous vehicles with a limited capacity have to

be found, i.e.:
Z Z z CijXijk —> min. (14)

keVieN jeN

The main problem constraints are defined as follows [7]:

—_

. Each customer is visited only once;
2. No vehicle is overloaded:

D di D ik =q: VkeV; (15)

keV jeN

3. Each vehicle leaves depot 0, leaves a customer after its serving and finally arrives
at the depot n + 1;

4. Vehicle k cannot arrive at customer j before time s; + #;; if it is travelling from
customer i to customer j; and

5. Time windows are defined by:

a; < sjp <b;;Vie N,Vk e V. (16)

6.2 Optimisation Algorithm

For vehicle routing, an island genetic algorithm with offspring selection (I0SGA)
described in [31] is used. It presents a coarse-grained parallel genetic algorithm
where population is divided into several islands in which GA works independently.
Periodically, after a certain number of generations best solutions migrate between
islands. The IOSGA is enhanced with an offspring selection to prevent a prema-
ture GA convergence. Offspring selection forces the algorithm to produce offspring
solutions with better fitness than their parents [1].

For the considered problem instances, operators and parameters of the IOSGA
are determined experimentally as follows: a proportional selector; 5 islands; 200
individuals in population; ring migration each 20 generations with 15 % rate: random
individuals are replaced with the best ones from the neighbour island. The maximal
selection pressure was set equal to 200 and the mutation rate equal to 5 %. Mutation
operators provided in HeuristicLab framework were involved, and a GVR crossover
[25] is selected in an experimental analysis below.

160 G. Merkuryeva and V. Bolshakov

L

Fig. 17 Performance of
crossover operators in VRP

NN

——

GVRCr Alba: Alba: Alba: Potvin Potvin Potvin
ossover ERX OBX MPX Insertic RouteB Sequen
nBased ased oeBdasve

Crossover Operator

It is worth mentioning that GA is not considered as the strongest optimisation
method for the VRP [4, 12], and more often the Tabu Search (TS) algorithm with con-
straint relaxation [8] is recommended as more efficient approach. However, genetic
algorithms show good performance for routing problems and are highly robust and
adjustable. Also, for the considered example instance, the [OSGA shows better results
than TS as described below.

6.3 Route Optimisation Experiments

After an optimisation algorithm is selected, its components such as the crossover
operator need to be justified. To select a crossover operator for the IOSGA a set of
route optimisation experiments are performed (see Fig. 17). Here, the GVR crossover
[25], edge recombination (ERX) and maximal preservative (MPX) crossovers for
solutions using Alba encoding [2] are analysed. As the VRP is minimisation problem,
better operators have lower best found quality values in Fig. 17. ERX application
provided better results in terms of the total length of vehicles’ routes, while preserving
an available number of vehicles. However, the results obtained for Alba encoded
solutions lost in terms of capacity constraints. In turn, application of GVR crossover
provided solutions with an overflow of available vehicles, nevertheless the capacity
constraints were satisfied in most cases. Finally, the GVR crossover operator which
works with an unlimited number of vehicles, but provided the best feasible results
in terms of keeping routes not overloaded was selected.

To determine, if selected optimisation algorithm has the best performance for the
reviewed problem, additional route optimisations experiments are performed with
the tabu search algorithm [8]. In these experiments TS was set up with following
parameters: for the move generation and evaluation, the Potvin Shift Exhaustive
Move operator; and the tabu tenure equal to 15 for problems with 109 customers
and 13 for problems with 53 and 56 customers. The initial solution in each run was
created using Push Forward Insertion heuristics witha = 0.7, 8 = 0.1 and y = 0.2.
The termination criterion was defined by 1000 generations.

Integrated Solutions for Delivery Planning and Scheduling ... 161

Table 5 Routing results obtained with different algorithms

Problem Stores I0SGA Tabu search
Distance Vehicles Distance Vehicles
109 6331 44 6396 43
2 53 2561 18 2599 18
56 4346 26 4410 25

Results of IOSGA and TS optimisation experiments for the same problem
instances are compared in Table 5. For each problem instance, the number of stores
is defined. For each algorithm and problem instance, the shortest distance in km and
a minimum required number of vehicles received from 10 optimisation experiments
are given. A sample VRP instance of problem 2 solved by the IOSGA can be seen
in Fig. 20.

The IOSGA provides better results in terms of distances and found solutions
with less number of evaluations. The Tabu Search outperformed in minimisation of
a number of required vehicles, which is supposed to be reduced in the next step
of integrated methodology. Thus, the Tabu Search does not provide the significant
improvement of the routing solution in the considered case.

7 Vehicle Scheduling for Routed Solution

The vehicle scheduling for routed solution is discussed. The approach is similar to
one described in Sect. 5, but the difference is in input data and that scheduling in this
case also aims at minimising a number of required vehicles for the same number
of routes. The section presents the problem statement for routed solution is given
and an optimisation algorithm to solve the problem. Then sequential application of
vehicle routing and route scheduling algorithms is described.

7.1 Problem Statement

Obtained in Sect. 6 the vehicle routing solution provides minimal costs on vehicle
driving distances. At the same time this solution can be improved further with a
proper scheduling of routes between available vehicles to minimise also a number
of required vehicles and related costs. In the classical VRPTW statement vehicle
may perform only one route in the planning horizon. In practice, all routes often are
shortened due to a limited capacity of vehicles. This may lead to ineffective solutions
when a vehicle performs only one short route of a few hours long, while most of the
day it may be idle. Thus, the vehicle scheduling problem is formulated for the routed
solution. Here, routes are assumed to be independent from vehicles, while vehicles
may perform a fair number of routes during the day. To solve the problem, methods
developed in [19] are considered.

162 G. Merkuryeva and V. Bolshakov

As far as the VRPTW solution is feasible for capacity and time window con-
straints, it can be further improved by combining and compacting routes. As a result,
each vehicle can perform a sequence of predefined routes during the day and as a
result, utilisation of vehicles may be significantly increased. A vehicle capacity is
not involved in the statement as in the capacitated VRP all vehicles have the same
capacity and no route of a feasible solution may exceed this value. Finally, input data
is defined as follows: (1) ready time a; for customer i; (2) due time b; for customer
i; (3) service time z; for customer i; (4) a list of routes R obtained in VRP solution,
where each route defines a sequence of visited customers; (5) a set of transportation
times (or vehicle moving times #;; between route sequential points 7 and j; (6) an
estimated number of vehicles |V|.

Decision variables are similar to ones introduced in the VRPTW model, except
that x;jx = 1 means that route j is the next route after i for vehicle k. Two soft
constraints are introduced for each vehicle:

1. a number of times N,4; when a vehicle leaves a customer after due time:
Naa = {ilsik + 2 > bi; Vi € N;Vk € V}; 17)
2. anumber of times when vehicle busy time may exceed 24 h in a day:
Not = [{kI(s(r1)k — Sox) > 24 - 60; Vk € V}|. (18)
Additional constraints are introduced to assure the model integrity and provi-
sions of schedule simulations. Finally, a fitness function f defines a sum of vehicles

idle times due to fitting deliveries to the time windows and a number of constraint
violations multiplied by penalty values:

f= Zlk + PadNad + PorNor — min, (19)
keV
e = > max (a —sit, 0) xiji Vk € V, (20)
ieR jeR

where [} is the total idle time of vehicle k; V defines a set of available vehicles; p,q
and p,, are penalty values or coefficients for late deliveries and vehicle overtimes,
correspondingly, and p,4, p,s are assumed to be significantly greater than 1.

7.2 Optimisation Algorithm

For vehicle scheduling, a problem plug-in in HeuristicLab optimisation framework
is implemented by maintaining the logic of the above described vehicle schedule
simulation model. Here, a fitness evaluator simulates a vehicle schedule candidate

Integrated Solutions for Delivery Planning and Scheduling ... 163

l6 |4 J1o0 3 [8 [7 T2 1 Jurt]s5 J2 J9 |

Fig. 18 A sample chromosome of permutation encoding for vehicle scheduling

and identifies time windows mismatches as well as evaluates vehicle idle and busy
times. As a result, plug-in is used to calculate a fitness of a candidate solution by
formula (19).

The chromosome which represents the schedule candidate is encoded as a permu-
tation of integer numbers. Integers larger than the number of routes encode gaps in
the chromosome when a new sequence of vehicle routes starts. Other integers define
corresponding routes in sequences. The encoding used is similar to that described in
Sect.5.4. A sample chromosome for an instance with a number of vehicles n = 3
and a number of routes m = 9 is shown in Fig. 18. Here, the first vehicle marked as
‘10’ performs the sequence of routes: 3, 8 and 7; the second one the sequence of five
routes: 5-2-9-6-4 and the third vehicle will perform only one route, marked as ‘1°.

The application of permutation-based encoding allows easy use of different
recombination and mutation operators. For schedule optimisation, an Evolution
Strategies (ES) algorithm implemented in HeuristicLab [32] is selected as it has
shown high efficiency in vehicle schedule optimisation [6].

7.3 Schedule Optimisation Experiments

Various series of schedule optimisation experiments are performed to compare
scheduling results obtained by different metaheuristic optimisation algorithms. The
following algorithms are examined: ES (XA,) and (A 4+) algorithms, GA, island
genetic algorithm with 5 islands (IGA), and offspring selection genetic algorithm
(OSGA) [1]. Maximal preservative crossover and insertion manipulator are applied
in all algorithms. Numbers of solution evaluations performed to obtain candidates
with equal fitness values are compared on hard instances, with a low number of vehi-
cles and short time windows. The results of optimisation experiments for a single
instance are shown in Fig. 19. As considered problem is a minimisation problem,
best solutions have lower fitness and are in the bottom of the chart.

Fig. 19 Productivity of 70000
optimisation algorithms for 60000 - o
VSPTW I
> 50000 i |
g 40000 H l " o ES
g 30000 | | n BGA
[+ | |
20000 i | GA
10000 l ' -
KLk Lige 3 1 OSGA
0 P ¢ uRigigd

0 10000 20000 30000 40000 50000 60000
Evaluated solutions

164 G. Merkuryeva and V. Bolshakov

The experimental results show that the same instance is solved with ES and OSGA
algorithms in shorter time, while GA without modifications demonstrated the worst
result. The ES algorithm is selected as the most suitable having an ability to search
for global solutions with fewer evaluations.

7.4 Example

The following is an example of vehicle routes and schedule optimisation for a daily
plan and specific demand data defined for 53 stores. Time windows for most stores
are fixed from 6:00 a.m. to 9:00 p.m. But some stores can be served in any time.
Application of the IOSGA in the VRP has given 34 routes (see Fig.20) in the best
solution. Due to a limited capacity of vehicles, most routes in the solution are very
short, including one or two customers. As most of stores are located close to the DC
(see inset in Fig.20), due to small vehicle moving times, the trip length for many
routes is relatively short. But, in case of large time windows and a long planning
horizon, these routes can be combined.

Finally, evolution strategies (20 + 100) are applied for the routed solution. In
schedule optimisation experiments, the maximal preservative crossover and insertion
mutation operators were applied, and the termination condition was defined by 1000
generations. In experiments it is obtained that the problem instance that required 34
vehicles for deliveries (Fig.20) has globally optimal solutions with all constraints
satisfied when a number of vehicles is equal to 6.

The corresponding schedule Gantt chart for a planning horizon of 24 h is demon-
strated in Fig.21. Here, green lines define loading times in DC and the beginning
of routes from the VRP solution, while blue and yellow lines depict transportation
times and unloading times at stores, correspondingly. For example, the 4th vehicle in

Fig. 20 VRP solution of case instance

Integrated Solutions for Delivery Planning and Scheduling ... 165

00:00 06:00 12:00 18:00 24:00
\ BN BN BE B N BN EN BN N N |

2 EEEEa— S BN BN B B NN | .
kam = BN N BN EE

4 — — ; | CEESe—

5 ! B =N [Evee S S [SENSYEEW

\ I N D | S e | . .
00:00 06:00 12:00 18:00 24:00

Fig. 21 VSP solution of case instance

Fig.21 has to perform two very long trips that go to the stores in bottom left corner
of Fig. 20. At same time the vehicle on first timeline is scheduled to perform 10 very
short trips to the stores located near DC and having large time windows.

Similar experiments performed for multiple problem instances of the business
case shows that vehicle scheduling applied for the routing solution allows reducing
the number of vehicles required for daily deliveries.

To assess the quality of this approach the benchmark instances [28] are used. First,
vehicle routes are found using the IOSGA, and then vehicles are scheduled with the
ES. The experimental results show that these benchmark problems are designed to
fit each route for each vehicle, so that subsequent scheduling does not provide any
significant enhancement. When capacities of vehicles in benchmark instances are
decreased twice to shorten potential vehicle routes and making them similar to those
specified in the business case, the results of experiments on the modified benchmark
problems show the benefit of the proposed approach for a number of instances. For
example instance C102 requires only 16 vehicles instead of 21 to fulfil the product
delivery plan from DC to a network of stores.

8 Conclusions

Modern delivery planning in large distribution networks with various constrain-
ing factors requires application of a number of methods to minimise delivery costs
and cope with stochastic demand. Methods described in this chapter, such as clus-
ter analysis, simulation, optimisation and fitness landscape analysis—are combined
together into an integrated methodology to increase their application efficiencies and
to reduce the computational requirements. Most of these methods are heuristic and
metaheuristic and thus do not ensure obtaining globally optimal solutions, nonethe-
less they provide very good solutions, which are enough in most business cases, in
less computational time comparing with traditional optimisation techniques.

The proposed integrated approach to product delivery tactical planning and
scheduling allows identifying typical dynamic demand patterns and corresponding

166 G. Merkuryeva and V. Bolshakov

product delivery tactical plans as well as finding the optimal parameters of prod-
uct delivery schedules. Application of cluster analysis and classification algorithms
to historic dynamic demand data allows identifying typical weekly demand pat-
terns and developing base tactical delivery plans for groups of weeks with similar
demand dynamics. Both k-means and NBTree methods are simple in implemen-
tation and implemented in a number of existing data mining tools. Store grouping
allows determination of groups of stores, which have nearby location, considering the
total demand of group. Application of multi-objective optimisation algorithm allows
getting a set of non-dominating solutions and provides an opportunity to choose solu-
tion balancing between geographical and demand objectives. Both weekly demand
pattern recognition and store grouping allow developing the base tactical delivery
plan.

Two types of schedule optimisation solutions are provided. The first solution is
designed, which has predefined vehicle routes and is simulation-based that allows
dealing with stochastic factors of the deliveries, e.g. stochastic moving times. Fitness
landscape analysis methods are presented and shortly described for tuning and adjust-
ment of an optimisation algorithm. These methods if necessary could be also used
for the second solution which allows optimising both vehicle routes and schedules
when routes are not predefined. Application of advanced genetic algorithms or Tabu
search methods allows obtaining in a fairly short time vehicle routes, which minimise
transportation costs under constraints such as delivery time windows. Supplement-
ing vehicle scheduling methods allows improving this routed solution by minimis-
ing a number of required vehicles and related costs. Both routing and scheduling
are performed in same open source optimisation framework. Experimental results
show that proposed two-stage routing and scheduling methodology provides good
solutions in cases when vehicle routes are constrained with a small capacity. Joint
sequential application of all presented methods allows obtaining cost-effective solu-
tions in large store network delivery planning. In both solutions the parameters of
the optimisation algorithms should be tuned for a specific case.

The proposed integrated approach to product delivery tactical planning and
scheduling allows reducing the effect of product demand variation on the delivery
planning process and avoids numerous time-consuming adjustments of the delivery
tactical plans. Also, identifying demand pattern and an appropriate delivery plan
ensure more qualitative solutions of the schedule optimisation task and cut down its
computational costs.

References

1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A. (2009) Genetic Algorithms and Genetic
Programming: Modern Concepts and Practical Applications. Chapman & Hall/CRC.

2. Alba, E. and Dorronsoro, B. (2004) ‘Solving the vehicle routing problem by using cel-
lular genetic algorithms’ in Proceedings of EvoCOP 2004, April 5-7, Coimbra, Portugal,
pp- 11-20.

Integrated Solutions for Delivery Planning and Scheduling ... 167

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

AnyLogic (2014). Multimethod Simulation Software and Solutions. [ONLINE] Available at:
http://www.anylogic.com/. (Accessed 01 August 2014).

Baker, B.M. and Ayechew, M. A. (2003) ‘A genetic algorithm for the vehicle routing problem’
in Computers and Operations Research, Vol. 30, pp. 787-800.

Bolshakov, V. (2013) Simulation-based Fitness Landscape Analysis and Optimisation of Com-
plex Systems. PhD Thesis, Riga Technical University, Latvia.

Bolshakov, V., Pitzer, E., and Affenzeller, M. (2011) ‘Fitness Landscape Analysis of Simulation
Optimisation Problems with HeuristicLab’ in Proc. of 2011 UKSim 5th European Symposium
on Computer Modeling and Simulation, November 16-18, 2011, Madrid, Spain, pp. 107-112.
Cordeau, F., Desaulniers, G., Desrosiers, J., Solomon, M.M. and Soumis, F. (2001a) ‘VRP
with Time Windows’ in Toth P. and Vigo D. (Eds.), The vehicle routing problem, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 157-193.

Cordeau, J.F., Laporte, G., Mercier, A. (2001b) ‘A Unified Tabu Search Heuristic for Vehicle
Routing Problems with Time Windows’ in The Journal of the Operational Research Society,
Vol. 52, No. 8, pp. 928-936.

Davies, D.L., Bouldin, D.W. (1979) ‘A cluster separation measure’ in IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(2), pp. 224-227.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) ‘A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II’, IEEE Transactions on Evolutionary Computation, 6(2), pp.
182-197.

. Eliiyi D.T., Ornek A., Karakutuk S.S. (2008) ‘A vehicle scheduling problem with fixed trips

and time limitations’ in International Journal of Production Economics, Vol. 117, No.1., pp.
150-161.

Gendreau, M., Laporte, G., and Potvin, J.Y. (2001) ‘Metaheuristics for the capacitated VRP’
in Toth P. and Vigo D. (Eds.), The vehicle routing problem, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, pp. 129-154.

Gwiazda, T.D. (2006) Genetic algorithms reference Vol. 1. Crossover for single-objective
numerical optimization problems [online]. TOMASZGWIAZDA E-BOOKS. http://www.
tomaszgwiazda.com/ebook_a.htm. (Accessed 10 January 2013).

Kaufman, L. and Rousseeuw, P. J. (1990) Finding Groups in Data: An Introduction to Cluster
Analysis. Hoboken, NJ: John Wiley & Sons, Inc.

MacQueen, J. B. (1967) ‘Some Methods for Classification and Analysis of MultiVariate Obser-
vations’ in Proc. of the 5th Berkeley Symposium on Math. Statistics and Probability, Vol. 1,
pp. 281-297.

Michalewicz, Z. (1999) Genetic Algorithms + Data Structures = Evolution Programs. Third,
Revised and Extended Edition. Springer-Verlag Berlin Heidelberg.

Merkuryeva, G. (2012) ‘Integrated Delivery Planning and Scheduling Built on Cluster Analysis
and Simulation Optimisation’ in Proceedings of the 26th European Conference on Modelling
and Simulation, pp. 164—168.

Merkuryeva, G. and Bolshakov, V. (2012a) ‘Simulation-based Fitness Landscape Analysis and
Optimisation for Vehicle Scheduling Problem’ in Moreno D.R., et al., (Eds.), Computer Aided
Systems Theory — EUROCAST 2011, Part I, LNCS 6927, pp. 280-286.

Merkuryeva, G. and Bolshakov, V. (2012b) ‘Simulation optimisation and monitoring in tactical
and operational planning of deliveries’ in Proceedings of the 24th European Modeling and
Simulation Symposium, EMSS 2012, pp. 226-231.

Merkuryeva, G., Bolshakov, V. and Kornevs, M. (2011) ‘An Integrated Approach to Product
Delivery Planning and Scheduling’, Scientific Journal of Riga Technical University, Computer
Science, Information Technology and Management Science Ser. 5, Vol. 49, pp. 97-103.
Merkuryeva G. and Bolshakovs V. (2010a) ‘Simulation-based vehicle scheduling with time
windows’ in Proc. of First International Conference on Computer Modelling and Simulation,
pp. 134-139.

Merkuryeva, G. and Bolshakovs, V. (2010b) ‘Vehicle schedule simulation with AnyLogic’ in
Proc. of 12th Intl. Conf. on Computer Modelling and Simulation, pp. 169-174.

http://www.anylogic.com/
http://www.tomaszgwiazda.com/ebook_a.htm
http://www.tomaszgwiazda.com/ebook_a.htm

168 G. Merkuryeva and V. Bolshakov

23. Merkuryeva, G., Merkuryeyv, Y. and Bolshakov, V. (2010) ‘Simulation-based fitness landscape
analysis for vehicle scheduling problem’ in Proc. of the 7th EUROSIM Congress on Modelling
and Simulation, September 6-10, 2010, Prague, Czech Republic.

24. Nagamochi, H., Ohinishi, T. (2008) ‘Approximating a vehicle scheduling problem with time
windows and handling times’ in Theoretical Computer Science, Vol. 393, Is. 1-3, pp. 133-146.

25. Pereira, EB., Tavares, J., Machado, P. and Costa E. (2002) ‘GVR: A New Genetic Representa-
tion for the Vehicle Routing Problem’ in Proceedings of the 13th Irish International Conference
on Atrtificial Intelligence and Cognitive Science (AICS *02), September 12—13, Limerick, Ire-
land, pp. 95-102.

26. Pitzer, E., Affenzeller, M. (2012) ‘A Comprehensive Survey on Fitness Landscape Analysis’
in Recent Advances in Intelligent Engineering Systems: Springer, pp. 161-191.

27. Seber, G.A.F. (1984) Multivariate Observations, John Wiley & Sons, Inc., Hoboken, NJ.

28. Solomon, M.M. (2005) VRPTW Benchmark Problems. [online] http://w.cba.neu.edu/
~msolomon/problems.htm (Accessed 26 September 2013).

29. Stadler, PF. (2002) ’Fitness Landscapes’ in Lassig M. and Valleriani A. (Eds.), Biological
Evolution and Statistical Physics, Springer, pp. 183-204.

30. Vassilev, V.K., Fogarty, T.C., Miller, J.F. (2000). ‘Information Characteristics and the Structure
of Landscapes’ in Evolutionary Computation, 8(1), pp. 31-60.

31. Vonolfen, S., Affenzeller, M., Beham, A., Wagner, S. (2011) ‘Solving large-scale vehicle rout-
ing problem instances using an island-model offspring selection genetic algorithm’, in Proc.
of 3rd IEEE International Symposium on Logistics and Industrial Informatics (LINDI), 2011,
August 25-27, 2011, Budapest, Hungary, pp. 27-31.

32. Wagner, S. (2009) Heuristic Optimization Software Systems - Modeling of Heuristic Optimiza-
tion Algorithms in the HeuristicLab Software Environment. PhD Thesis, Institute for Formal
Models and Verification, Johannes Kepler University Linz, Austria.

33. Weinberger, E. (1990) ‘Correlated and Uncorrelated Fitness Landscapes and How to Tell the
Difference’ in Biological Cybernetics, 63(5), pp. 325-336.

http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm

Large Neighbourhood Search
and Simulation for Disruption
Management in the Airline Industry

Daniel Guimarans, Pol Arias and Miguel Mujica Mota

Abstract The airline industry is one of the most affected by operational disrup-
tions, defined as deviations from originally planned operations. Due to airlines net-
work configuration, delays are rapidly propagated to connecting flights, substantially
increasing unexpected costs for the airlines. The goal in these situations is therefore
to minimise the impact of the disruption, reducing delays and the number of affected
flights, crews and passengers. In this chapter, we describe a methodology that tackles
the Stochastic Aircraft Recovery Problem, which considers the stochastic nature of
air transportation systems. We define an optimisation approach based on the Large
Neighbourhood Search metaheuristic, combined with simulation at different stages
in order to ensure solutions’ robustness. We test our approach on a set of instances
with different characteristics, including some instances originating from real data
provided by a Spanish airline. In all cases, our approach performs better than a
deterministic approach when system’s variability is considered.

1 Introduction

Operational disruptions are alterations of originally planned operations due to exter-
nal events. The airline industry is notably one of the most affected industries regard-
ing operational disruptions. The costs associated to them have gained more and
more importance with the increase of fuel costs and the punctuality policies that

D. Guimarans ()

Optimisation Research Group, National ICT Australia (NICTA),
Sydney, Australia

e-mail: daniel.guimarans @nicta.com.au

P. Arias

Smart Logistics and Production Group, Internet Interdisciplinary Institute (IN3-UOC),
Barcelona, Spain

e-mail: pol.arias5 @gmail.com

M. Mujica Mota

Aviation Academy, Amsterdam University of Applied Sciences,
Amsterdam, Netherlands

e-mail: m.mujica.mota@hva.nl

© Springer International Publishing Switzerland 2015 169
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_6

170 D. Guimarans et al.

Airport 1 Airport 2 Airport 3 Airport 4 Airport 5

H—e_|
H—e |
X

\‘\
—'\\\‘\\\
\0\

;X—Q\\'

e

~~ T

Time

;XAircraft @ Flight node [l End node

Fig.1 Flightlegs are, in general, a component of different flight schedules. Hence, a perturbation in
one flight leg may propagate to other elements in the network, affecting aircraft, crew and passenger
connections

airlines have been forced to implement in order to maintain competitiveness [61].
Due to these and other emerging regulations that the aeronautical industry is facing
nowadays [21], the optimisation of resources has become an important issue in the
aeronautical agenda.

Flight plans are usually made several months prior to the actual day of operation.
As a consequence, changes often occur in the period from the development of the
schedule to the day of operation. Those changes may include unforeseen delays due to
weather phenomena, air traffic control delays, reactionary delays, ground operations,
etc. The fact that a single flight leg is, in general, a component of different flight
schedules implies that a single perturbation may propagate to other elements in the
network (Fig. 1). Thus, a delay usually leads to reactionary delays on several other
flights. This effect is in many cases exacerbated by airlines network characteristics,
which for most of the largest carriers relies on a hub-and-spoke configuration. Hence,
a perturbation on the schedule in the hub may easily lead to many parts of the network
being affected by the disruption.

According to the Association of European Airlines [1], 22.4 % of departures of
intra-European flights were delayed more than 15min in the first quarter of 2008,
an increase from 20.5 % in 2007. This figure is consistent with the observed average
delay (22.74 %) during the ten-year period 1998-2007. Breaking down the figures, the
same study found that 7.3 % of delayed departures were due to pre-flight preparation,
i.e. the aircraft is not ready to leave on time because of late loading, crew availability,

Large Neighbourhood Search and Simulation for Disruption Management ... 171

completion of paperwork, etc. Besides, 13.1 % of delays were attributable to air traffic
management (ATM) or airport management-related issues. This figure increased from
11.5% in 2007 to 13.1 % in 2008, suggesting that the European airspace is getting
more congested. Considering 27 major European airports, we observe an average
of 23.1 % of European departures delayed 15min or more, with an average delay
of 41.8 min. Arrival figures are similar, with an average of 25 % of flights delayed
15 min or more, with an average delay of 41.3 min. Among major airports, London
Heathrow is clearly the most affected, with 44.1 % of European departures subject
to delays of 15min or more. Other studies [10, 47] suggest that USA figures are
similar.

Estimating the cost airlines incur due to operational disruptions is difficult because
of the many factors involved and some unquantifiable effects, e.g. passenger incon-
venience. Shavell [47] reported that, for the year 1998, the total estimated costs of
irregular operations incurred by the ten USA airlines that report performance data to
the Department of Transportation was $1.826 billion. Analysing this figure, $858M
were attributable to cancelled flights, $909M to delays and $59M to diversions, i.e.
a flight that is directed to a different airport than the originally scheduled. From a
case study of a heavy snowstorm in Boston, Shavell [47] concludes that the esti-
mated cost per minute of delay over 15min is $13.35. In a more recent study [20],
EUROCONTROL’s Central Office for Delay Analysis (CODA) estimates the cost
per minute of delay at €82 for delays in excess of 15 min. According to their statistics
and extrapolating the percentage of delayed flights to all flights in Europe, CODA
estimated the total cost of delays from all causes at more than €7 billion in 2008.

One of the major problems airlines face on a daily basis is that specific flight legs
are not entirely predictable. It is normal that flights are subject to a certain level of
variability in daily operations, due to the stochastic nature of air transport and the
number of stakeholders involved. Moreover, due to network configurations, a late
arrival of an aircraft often causes delays in the next departure of this aircraft and
connecting flights. Traditionally, airlines cope with this problem in their schedules
by introducing additional buffer time in between flights, aiming to absorb potential
delays in case they occur. However, buffer time increases operations cost significantly.
EUROCONTROL estimates the cost of one minute of buffer time for an Airbus A320
at €49 per flight [19]. Hence, in the last years, airlines and researchers are addressing
more efforts towards solving operational disruptions more efficiently (see Sect. 2).
This way, airlines may configure tighter schedules and reduce operational costs, while
still being able to respond to unforeseen events and disruptions. These problems make
evident the need of decision support tools that help decision makers to cope with
operative problems under urgent circumstances.

Among the different elements involved in a disrupted scenario (aircraft, crews and
passengers), aircraft have received most attention from the research community (see
Sect.2), since it is normally considered the scarce resource and problem dimensions
are relatively small. In general, the main objective is to restore the flight schedule as
much as possible using the existing aircraft, i.e. minimise the number of cancellations
and the total delay, in order to minimise the impact of the disruption. Given an original
flight schedule and one or more disruptions (i.e. flight delays), the optimisation

172 D. Guimarans et al.

approach generates a solution by means of delaying flights, swapping aircraft-to-
flight allocation, or even cancelling flights. Such plan considers all flights scheduled
within a certain period of time by a given fleet, including the original departure,
expected flight durations and connections between airports. This challenging problem
is known as the Aircraft Recovery Problem (ARP) and regarded to be NP-Hard [9].
Introducing variability in the values associated to the problem, i.e. flights duration,
turnaround times or delays, the Stochastic Aircraft Recovery Problem (SARP) arises.
The SARP accounts for all characteristics inherited from the ARP, adding additional
considerations present in realistic problems.

In this work, we propose an optimisation approach for the SARP that integrates
simulation at different stages. On the one hand, optimisation-based methods have
proved their efficiency to deal with operative problems in complex fields, e.g. logis-
tics or manufacturing problems. However, many optimisation approaches lack the
flexibility needed for tackling real operational problems. In most cases, the stochas-
ticity inherent to these systems is not included in the developed models, thus reducing
their applicability to real scenarios. On the other hand, simulation approaches have
great flexibility and allow the modeller to face the problem under a different scope,
including not only stochastic elements but also the dynamics of interest of the sys-
tem. Nevertheless, in most simulation-based approaches the level of optimisation
achieved depends on the number of scenarios evaluated, which in general is just
a small fraction of the whole available configurations. Hence, optimality may not
be guaranteed with the standalone simulation approach, likewise suitability is not
ensured with the standalone optimisation approach. In the present approach, we
combine both methodologies in order to obtain pseudo-optimal solutions which are
robust enough to cope with system’s stochasticity.

We present a methodology based on the Large Neighbourhood Search (LNS)
metaheuristic (see Sect.4.1). In our approach, we developed a Constraint Program-
ming (CP) formulation to tackle the deterministic ARP (see Sect.3.2). This model
was combined with simulation and tested in previous works [7, 8]. In this case, we
use the same model as a repair method in the LNS approach. It should be noticed
that we do not consider cancellations in our approach. In these situations, connecting
flights are generally cancelled so the aircraft may be assigned to a later flight from the
same airport. In other cases, aircraft may be ferried, i.e. flying without passengers, to
the destination airport in order to restore the original schedule. In both situations, we
can represent a cancelled flight or aircraft shortage, e.g. due to temporary mechan-
ical problems, as a long delay at flight’s origin. We include simulation at different
stages of the optimisation process, defining the SimLLNS methodology (see Sect.4).
With this approach, we are able to increase solutions’ robustness, as solutions are
only accepted if they perform better than the incumbent in a variety of simulated
scenarios. The proposed methodology has been assessed on a set of instances with
different characteristics, some of them obtained from real data provided by a Spanish
airline (see Sect.5).

Large Neighbourhood Search and Simulation for Disruption Management ... 173

2 Literature Review

Traditionally, disruption management research is divided into aircraft recovery,
crew recovery and passenger recovery. In this section we review previous acad-
emic research on aircraft recovery. For a more thorough review of academic research
on different aspects of disruption management, including aircraft recovery, we refer
the reader to the comprehensive reviews by Kohl et al. [32], Clausen et al. [15] and
Le et al. [35].

The ARP has received much attention among operational recovery problems as
aircrafts are considered the scarce resource. In addition, rules applied for aircraft
reallocation are often less complex than those governing crew or passenger recovery.
However, in most cases crew recovery permits more flexibility by using standby
crews at airline’s bases. In the case of passenger recovery, it is not uncommon to
reallocate heavily disrupted passengers in flights operated by other airlines. This
solving flexibility is more difficult to achieve in aircraft recovery, since the number
of spare aircraft is normally quite limited or inexistent. Furthermore, research on
aircraft recovery to this date only deals with a single airline and does not support
cooperation between different carriers.

Teodorovi¢ and Guberini¢ [49] are among the pioneers of the ARP. In their work,
given one or more unavailable aircraft, their objective is to minimise the total pas-
senger delay by allowing flight retiming and aircraft swaps. The model is based on
a network flow with side constraints, which is solved using a branch and bound
method [34]. In a later work, Teodorovi¢ and Stojkovi¢ [50] consider aircraft short-
age and propose an improved approach. The authors solve the problem by a heuristic
algorithm based on dynamic programming using an algorithm based on a lexico-
graphic ordering of the flights. The constructed model allows cancellations, retiming
and swaps. The main objective is to minimise the number of cancellations. If there
are several solutions with the same number of cancelled flights, they use the total
passenger delay as secondary objective.

The literature contains several works on different aspects of the ARP. Many of
them are based on a multi-commodity flow problem solved on a time-band network.
Jarrah etal. [29] develop two network flow models to cope with aircraft shortage. Both
models—a delay model and a cancellation model—permit using standby aircraft.
In both cases, the goal is to minimise the cost of the recovery, including not only
cancellation and delay costs, but those associated to swapping or ferrying aircraft. The
main drawback is that models are dissociated: one model handles retiming only, while
the other handles cancellations only. Their work was deployed at United Airlines as
part of their decision support system. Cao and Kanafani [13, 14] extended the delay
model of Jarrah et al. [29] to include cancellations and multiple airports. However,
Lgve and Sgrensen [36] proved that these models have serious deficiencies.

In a later work, Lgve et al. [37] presented a heuristic for the ARP based on local
search. The schedule is represented by the lines of work for each available aircraft. In
order to solve the model, consider the cancellations, delays and aircraft reallocation,
both within a single fleet or between fleets. The objective is to minimise the recovery
costs related to delays, cancellations and swaps. It is even possible to assign costs on

174 D. Guimarans et al.

individual flights to weigh the relative importance of different flights. The proposed
approach was tested on the short-haul operation of British Airways (79 aircraft, 44
airports and 339 flights).

Granberg and Vérbrand [24] proposed a mixed integer multi-commodity flow
formulation with side constraints for the ARP, although they name the problem
as Flight Perturbation Problem. They further reformulate the problem into a set
packing model using the Dantzig—Wolfe decomposition [16]. Cancellations, delays
and aircraft swaps are allowed in order to solve the perturbation. The authors propose
two-column generation strategies and test them with data from a Swedish domestic
airline. Results show that the methods are capable of obtaining high-quality solution,
but running times increase drastically with instance size, e.g. 1139s for one of the
largest instances containing 215 flights.

Argiiello et al. [5, 6] presented a method based on the Greedy Randomised Adap-
tive Search Procedure (GRASP) metaheuristic [42] to reschedule the aircraft routings
if one or more aircrafts are unavailable. The heuristic is capable of cancelling and
retiming flights. As in the approach of Lgve et al. [37], it also allows swaps between
different fleet types. The goal is to produce a recovery plan so the original schedule
is restored by the following day. The cost to be minimised includes measures of
passenger inconvenience and lost flight revenue. Their approach was tested in a fleet
of 16 aircraft, 42 flights and 13 airports, reporting results within 10 % of optimality,
according to the authors.

Yan and Yang [59] and Yan and Tu [58] developed four models to cope with tem-
porary aircraft shortage. The models were specifically developed for small airlines.
In the first model, it is possible to cancel flights to repair the disrupted schedule. In the
second model, ferrying of spare aircraft is also considered together with flight can-
cellations. The third model considers cancelling and retiming flights. The last model
incorporates all previous possibilities. In all models, swaps are allowed within a fleet.
The objective in all models is to minimise the cost of repairing the schedule, includ-
ing passenger revenue. The first two models are built as network flow models and
can be solved to optimality very fast. The other two models contain side constraints
and are solved using Lagrangian Relaxation and subgradient optimisation. In Yan
and Tu [58], a multi-fleet version of these models is presented. In this case, a larger
aircraft can be assigned to a flight that originally was serviced by a smaller aircraft.
Yan and Young [60] also consider multiple aircraft types, but aircraft swaps between
fleets are not allowed. The developed methods were tested on 534 different scenarios
based on China Airlines data, solving all instances to optimality or at most 1 % from
optimality within 5.5 min. Yan and Lin [57] extend these models to solve the special
situation when an airport is temporarily closed. The model presented allows swap-
ping flights, retimings and cancellations, but not diverting flights. Therefore, flights
arriving to or departing from the closed airport have to be cancelled or delayed.

Thengvall et al. [51] extend the models presented in [58, 59] by penalising devia-
tions from the original schedule in the objective function. They use Linear Program-
ming (LP) relaxation to solve the proposed network flow model with side constraints.
In case an integer solution is not reached with this approach, the authors provide a
rounding heuristic that finds feasible solutions within a small fraction of the optimum.

Large Neighbourhood Search and Simulation for Disruption Management ... 175

Their approach is tested on data provided by Continental Airlines. In [52], the same
authors extend their study by developing three multi-commodity network models for
determining a recovery schedule following a hub closure.

Eggenberg et al. [17, 18] proposed a column generation scheme for the ARP with
heterogeneous fleet, made of regular and reserve aircraft, and planned maintenance.
The authors model the problem as a commodity flow problem on a dedicated network,
one for each plane of the fleet. They report results on instances from Thomas Cook
Airlines, ranging from 40 to 760 flights serviced with a fleet of 16 aircraft [18].

Wu and Le [54] also consider maintenance and regulations in their work. They
base their model on flight strings, instead of individual flights, and transform it into
a time-space network. The authors develop a heuristic, called Iterative Tree Growing
with Node Combination, to solve this network model. Results are reported over a set
of instances from China Airlines data consisting of 170 flights, 5 fleets, 35 aircraft
and 51 airports.

Rosenberger et al. [44] were the first to use simulation when studying the ARP. The
authors propose a problem decomposition, where the master problem is defined as a
set partitioning problem (i.e. each flight is either cancelled or flown by an aircraft),
and each subproblem is a route generation problem. The objective is to minimise the
cost of cancellations and delays. In order to make the approach more computation-
ally efficient, they define a heuristic to select only a subset of aircraft to be included
in the set partitioning problem. The authors assess their results using the simula-
tion environment SimAir [45]. They simulate 500 days of operations for 3 fleets,
with datasets ranging from 32 to 96 aircraft and 139 to 407 flights. Nevertheless,
Rosenberger et al. [44] do not use simulation in the optimisation phase in an inte-
grated manner. Recovery procedures are invoked from SimAir any time a disruption
is preventing the system to execute the flying schedule as planned. The disrupted sce-
nario is then solved deterministically using data provided by the simulator, assessing
the provided solution by resuming simulation with the recovery schedule.

In a more integrated approach, Wu [56] used simulation to calculate random
ground operational delays and airborne delays in an airline network, instead of esti-
mating delay propagation through the system. In a previous work [55], Wu showed
that delays are inherent in airline operations due to stochastic delay causes. In [56], the
author applies simulation to assess the robustness of airline schedules. This approach
resembles the one proposed in our work. In a similar fashion, we use simulation to
account for stochasticity in airborne and ground delays in order to obtain a more
robust recovery plan (see Sect.4).

3 Problem Formulation

The proposed formulation for the ARP is based on the Constraint Programming
(CP) formalism. CP is a powerful paradigm for representing and solving combi-
natorial problems, whose nature provides easily adaptable problem representations.
Moreover, constraints can be added or modified, even dynamically, without altering

176 D. Guimarans et al.

search procedures. A brief introduction to CP is provided in Sect. 3.1, whereas the
proposed ARP formulation is described in Sect. 3.2.

3.1 Constraint Programming

Constraint Programming (CP) is a powerful paradigm for representing and solving
a wide range of combinatorial problems [46]. In the last few decades, it has attracted
much attention among researchers due to its flexibility and its potential for solving
hard combinatorial problems in areas such as scheduling, planning, timetabling and
routing. CP combines strong theoretical foundations (e.g. techniques originated in
different areas such as Mathematics, Artificial Intelligence, and Operations Research)
with a wide range of applications in the areas of modelling heterogeneous optimisa-
tion and satisfaction problems. Moreover, CP nature provides other important advan-
tages such as fast programme development, economic programme maintenance and
efficient runtime performance.

Problems are expressed in terms of three entities: variables, their corresponding
domains and constraints relating them. Constraints can be considered as the heart
of CP. They are treated as logical relations among several unknowns (or variables),
each taking a value from a set of accepted values called domain, which can be a
range with lower and upper bounds or a discrete list of numbers. The representation
of the problem, in terms of constraints, results in short and simple programmes easily
adaptable to future changing requirements.

Since CP is the study of computational systems based on constraints, its idea is
to solve problems by stating constraints (requirements) about the problem area and,
consequently, finding a solution satisfying all the constraints. This class of problems
is usually termed Constraint Satisfaction Problems (CSP) and the core mechanism
used in solving them is constraint propagation. Constraint propagation embeds any
reasoning which consists in explicitly forbidding values, or combinations of values,
for some variables of a problem because a given subset of its constraints cannot be
satisfied otherwise [12]. In other words, constraint propagation is a way to produce
the consequences of a decision. In general, when a variable belonging to a constraint
is labelled, that value is propagated to the rest of variables involved in that constraint.

An important contribution of CP is to allow the end user to control the search. The
topic of search comes from the heart of Artificial Intelligence, which has developed
several algorithms to perform the search in a solution space. End user’s search control
is achieved by combining generic techniques, when the generation of the whole search
tree is unfeasible, and problem-specific techniques, when there is an extra knowledge
about special features of the problem. Thus, while mathematical programming is
mainly based in the application of certain algorithms to a model, CP allows the
user to take some decisions on the search stage like the order of instantiation of the
variables and the order of selection of values from domains. This point represents
one of the most important differences with Linear Programming (LP): when using
LP, once the problem is modelled, the rest of the work is done by the solver. In the
CP methodology, the order of variable labelling and value selection is essential to

Large Neighbourhood Search and Simulation for Disruption Management ... 177

drive the search. However, it is important to notice that, although a search improved
by these techniques can be useful to find a faster solution for a problem, it can
significantly slow down the solution of a different problem. Depending on these
choices, the way decisions are made is totally different and the performance of the
search algorithm can be highly affected.

Solutions to a CSP can be found by searching (systematically) through the possible
assignments of values to variables, i.e. generating the whole search tree. From the
theoretical point of view, solving a CSP is trivial using systematic exploration of the
solution space. But that is not true from the practical point of view, where efficiency
takes place. Search methods can be divided into two broad classes: those that traverse
the space of partial solutions (or partial value assignments), and those which explore
the space of complete value assignments (to all variables) stochastically.

The simplest algorithm that searches the space of complete labellings, is called
Generate-and-Test (GT) [33]. The idea of GT is very simple: firstly, a complete
labelling of variables is randomly generated and, consequently, if this labelling
satisfies all the constraints then the solution is already found; otherwise, another
labelling is tried. Its search space corresponds to the Cartesian product of all vari-
ables’ domains. The GT algorithm is clearly a weak generic algorithm with poor
efficiency for two reasons: it has a non-informed generator and there is a late discov-
ery of inconsistence.

Backtracking (BT) [3] is a method used for solving CSPs by incrementally extend-
ing a partial solution that specifies consistent values for some of the variables, towards
a complete solution, by repeatedly choosing a value for another variable consistent
with the values in the current partial solution. BT is a merge of the generating and
testing phases of GT. The variables are labelled sequentially and as soon as all the
variables relevant to a constraint are instantiated, the validity of the constraint is
checked. If a partial solution violates any of the constraints, backtracking is per-
formed to the most recently instantiated variable that still has available alternatives.
Clearly, whenever a partial instantiation violates a constraint, BT is able to eliminate
a subspace from the Cartesian product of all variables’ domains. Hence, BT is strictly
better than GT. However, its running complexity for most non-trivial problems is still
exponential.

BT still has as a major drawback the late detection of conflicts. Consistency
techniques [12] are used to detect inconsistencies in partial solutions sooner in the
search, and they are at the core of constraint propagation. These techniques are based
on the idea of removing inconsistent values from variables’ domains until a solution
is found. It is very important to note that consistency techniques are deterministic.
There exist several consistency techniques, but most of them are not complete [3].
For this reason, these techniques are rarely used alone to solve a CSP completely
and normally are combined with search algorithms such as BT. Attention should be
paid to the use of these consistency techniques. They provide a good mechanism to
remove inconsistent values from variables’ domains during search, but they often
penalise with respect to efficiency terms. For this reason, they are often reduced to
the most basic forms, i.e. node consistency and arc consistency [22].

178 D. Guimarans et al.

To cope with Constraint Optimisation Problems (COP), one should take into
account the cost function. The appropriate modification of the BT search schema is
called Branch and Bound (BB) [34]. During the search, BB maintains the current
best value of the cost function (bound) and, each time a solution with a smaller
cost is found, its value is updated. There are many variations on the BB algorithm.
One consideration is what to do after a solution with a new best cost is found. The
simplest approach is to restart the computation with the bound variable initialised to
this new best cost. A less naive approach is to continue the search for better solutions
without restarting. In this case, the cost function upper bound is constrained to the
bound variable value. Each time a solution with a new best cost is found, this cost is
dynamically imposed through this constraint. The constraint propagation triggered
by this constraint leads to a pruning of the search tree by identifying the nodes under
which no solution with a smaller cost can be present.

Generic techniques for local search, such as Genetic Algorithms (GA) [41], Sim-
ulated Annealing (SA) [38] or Tabu Search (TS) [23], can also be used to aid CP
to find quasi-optimal solutions when it is not feasible to generate the whole search
tree (due to memory or CPU time problems). These methods are used when the size
of the problem is huge and it is not possible to find the optimal solution. Usually,
CP is used to find fast poor solutions which will be used as initial values for these
techniques. A good solution is sought from these input values. If the best solution
found by these techniques is not good enough, a new initial solution is generated
by CP. To avoid the same values than in previous searches, either new constraints
are added or some of the existing constraints are removed. Alternatively, CP may be
embedded at different stages of the local search, either to quickly check feasibility
[28], reduce neighbourhood size by using consistency techniques [27], or to repair
partial solutions in Large Neighbourhood Search approaches (see Sect.4).

3.2 Aircraft Recovery Problem Formulation

The proposed CP formulation for the ARP intends to enhance the use of constraint
propagation, modelling the problem with two sets of variables: predecessors (P) and
successors (). These variables allow us modelling the same search space from two
different perspectives, while redundant constraints propagate decisions made in any
of the two sets to the other one. Thus, search is carried out simultaneously in both
variable sets, increasing overall efficiency and speeding up problem solving. This
formulation is inspired on the Vehicle Routing Problem formulation by Kilby and
Shaw [31].

We consider a set of n flights and a fleet of m aircraft. Then, the variables used in
this formulation are:

o U = ...y, are the flights to be attended;
e A = ay...a, are the available aircraft;
e G = g1...gn+2m 1s the assignment set, with domain G: : [1..m].

Large Neighbourhood Search and Simulation for Disruption Management ... 179

It should be noticed that there is one assignation for each flight and two special
assignations per aircraft: the starting and ending airports for the aircraft. Thus, two
subsets of G, F and L, are defined as the aircraft departure and arrival airports to
ensure the closure of the cycle:

e F =n+ 1..n + m is the set of first assignments;
e L =n+m+ 1..n+ 2m is the set of last assignments.

Then, the predecessor and successor sets are defined as:

e P = pi...pn+m is the predecessors set, with domain P: : [1..n +m]: : (G — L);
e § = 51...8,4m 1S the successors set, with domain S: : [1..n,n +m + 1..n +2m]: :
(G — F).

A set of constraints is imposed to relate all the variables and define the problem.
The predecessor and successor variables form a permutation of G and are therefore
subject to the difference constraints.

pi#p; Vij €GAi<] si#s; Vi,jeGAi<] (1)

Equations (1) force predecessor and successor sets to contain no repetitions. Thus,
one flight can have one and only one predecessor and successor. In practice, these con-
straints are implemented using the CP global constraint alldifferent [53] to enhance
constraint propagation efficiency.

The successor variables are kept consistent with the predecessor variables via the
following coherence constraints:

sp; =i Vi €eG—F pg;=i Vi €eG-L (2)

Equations (2) connect the concepts successor and predecessor as follows: the
former shows that i is the successor of its predecessor, and the latter indicates that i
is the predecessor of its successor.

Along a set of connected flights, all assignations are performed by the same
aircraft. This is maintained by the following leg constraints:

gi=gy Vi eG—F g =g, Vi eG-L 3)

Equations (3) are used to ensure that the aircraft assigned to i is the same as that
assigned to its predecessor and successor.

Other sets of variables are defined to ensure the connections between origin and
destination airports, as well as the times that aircraft are assigned to their flights:

e O = 01...0, is the origin airport set;

D = d,...d, is the destination airport set;

A = §1...8, is the flight duration list, including minimum turnaround times;

T = t1...t, is the departing times list, indicating the time when a flight departs;

T = 11...T, is the scheduled times list, indicating the time when a flight is originally
scheduled to depart;

180 D. Guimarans et al.

e [’ = y1...y, is the list containing the initial delays that have disrupted the system;
e A = Aj...A, is the delays list, indicating the accumulated delays for each flight.

The actual departure time is calculated given the departure time constraints:
ti >ty +6p Vi eG—F t;=<t;—6 Vi eG-L 4

Equations (4) bound the departure time of flight i. This time is, at least, the
departure time plus duration time of its predecessor (8 ,). Equally, this time must be,
at most, the departure time of its successor, minus the duration time of flight i (5;).

The connection between origin and destination airports is done by using the con-
nectivity constraints:

oi=dy Vi €eG—F di=o; Vi eG—1L (5)

Equations (5) are used to narrow down the combinations of flights. The origin of
flight i must be the destination of its predecessor. In the same way, the destination
of flight i is the origin of its successor.

Equation (6) ensures that the departing time of flight i is greater than the scheduled
time plus the initial delay.

ti>t+y; Yi eG—-F—-L (6)

Equation (7) allows to calculate the total accumulated delay by obtaining the
difference between the actual time of departure (¢;) and the scheduled time of depar-
ture (7;).

Ai=ti—1 Yi eG—F—-L (7)

Finally, the objective function (8) to be minimised is defined as the sum of accu-
mulated delays for all flights.

min Z Ai (8)
i=1

4 SimLNS: Large Neighbourhood Search and Simulation

Aiming to solve the SARP, we propose an optimisation approach based on the Large
Neighbourhood Search metaheuristic, which is described in Sect.4.1. This local
search method has proven to be specially successful when combined with CP. There-
fore, we integrate our CP model for the ARP as part of the methodology, embedded in
the so-called operators (see Sect.4.2). In order to deal with the stochasticity present
in the problem, we apply simulation to the obtained solutions in different phases of

Large Neighbourhood Search and Simulation for Disruption Management ... 181

our approach (see Sect.4.3). This way, we improve final solutions’ robustness by
only accepting those solutions which, on average, perform better than previous ones.
Thus, each solution is evaluated in a set of simulated scenarios according to system’s
variability before being accepted or rejected. Rather than just testing the final solu-
tion, as most traditional approaches, we moved the evaluation to previous stages of
the search aiming to detect earlier in the process undesired solutions’ characteristics,
e.g. extremely sensitive solutions due to connection tightness.

4.1 Large Neighbourhood Search

In Large Neighbourhood Search (LNS), proposed by Shaw [48], an initial solution
is gradually improved by alternately destroying and repairing the solution. Over the
years, LNS has proved to be competitive with other local search techniques, especially
when combined with CP. It complements the CP framework as LNS benefits from
improved propagation while CP benefits from this efficient, while simple, search
framework [39]. A complete introduction to the subject can be found in [40].

The LNS metaheuristic belongs to the class of heuristics known as Very Large
Scale Neighbourhood search (VLSN) algorithms [2]. A neighbourhood search algo-
rithm is considered as belonging to the class of VLSN algorithms if the neighbour-
hood it searches grows exponentially with the instance size or if the neighbourhood
is simply too large to be searched explicitly in practice. Although the concept of
VLSN was not formalised until recently, algorithms based on similar principles have
been used for decades [2].

All VLSN algorithms are based on the observation that searching a large neigh-
bourhood results in finding local optima of high quality, and hence a VLSN algo-
rithm may return better solutions. However, searching a large neighbourhood is
time-consuming, therefore various filtering techniques are used to limit the search.
In VLSN algorithms, the neighbourhood is typically restricted to a subset of the
solutions that can be searched efficiently.

Intuitively, searching a very large neighbourhood should lead to higher quality
solutions than searching a small neighbourhood. Nevertheless, in practice, small
neighbourhoods can provide similar or superior solution quality if embedded in a
metaheuristic framework, because they typically can be searched more quickly. Large
neighbourhoods generally lead to local solutions of better quality, but the search is
more time-consuming. Thus, a natural idea is to gradually extend the size of the
neighbourhood each time the search gets trapped in a local minimum (Fig. 2).

In the LNS metaheuristic, the neighbourhoods are implicitly defined by methods
(often heuristics) which are used to destroy and repair an incumbent solution. A
destroy method destructs part of the current solution while a repair method rebuilds
the destroyed solution. The destroy method typically contains an element of sto-
chasticity such that different parts of the solution are destroyed in every invocation
of the method. The neighbourhood N (x) of a solution x is then defined as the set
of solutions that can be reached by first applying the destroy method and then the

182 D. Guimarans et al.

Fig. 2 Neighbourhood
structure usually explored
with Very Large Scale
Neighbourhood (VLSN)
search algorithms

N2

N3

repair method. Since the destroy method can destruct a large part of the solution, the
neighbourhood contains a large amount of solutions, which explains the name of the
heuristic. It should be noticed that the LNS metaheuristic does not search the entire
neighbourhood of a solution, but merely samples it.

The steps of the LNS method are detailed in Algorithm 1 and depicted in Fig. 3.
Three variables are maintained by the algorithm: the variable x? is the best solution
observed so far during the search, x is the current solution, and x’ is a temporary
solution that can be discarded or promoted to the status of current solution. The
function d (-) is the destroy method while 7 (-) is the repair method. More specifically,
d(x) returns a copy of x thatis partially destroyed. Applying 7 (-) to a partly destroyed
solution repairs it, i.e. it returns a feasible solution built from the destroyed one. Both
destroy and repair methods can be implemented in different ways obeying different
criteria. In step 4 the new solution is evaluated, and then the heuristic determines
whether this solution should become the new current solution or whether it should
be rejected. The accept function can be implemented in different ways. The simplest
choice is to only accept improving solutions, as shown in Fig.3. In this case, x”
corresponds to the current solution x at any time and steps 4 and 6 in Algorithm 1
are merged. However, some works propose an acceptance criteria borrowed from
SA [43], that is, accepting solutions that may be worse than the incumbent aiming
to diversify the search.

The destroy method is an important part of the LNS heuristic. The most important
choice when implementing the destroy method is the degree of destruction: if only a
small part of the solution is destroyed then the heuristic may have troubles exploring
the search space as the effect of a large neighbourhood is lost. If a very large part
of the solution is destroyed, then the LNS heuristic almost degrades into repeated
re-optimisation or a multi-start process. This can be time-consuming or yield poor
quality solutions dependent on how the partial solution is repaired. Shaw [48] pro-
posed to gradually increase the degree of destruction, while Ropke and Pisinger [43]
choose the degree of destruction randomly at each iteration from a specific range
dependent on the instance size. The destroy method must also be chosen such that

Large Neighbourhood Search and Simulation for Disruption Management ...

183

Algorithm 1: Large Neighbourhood Search (LNS)

1 x? < find an initial solution x
2 repeat

3 x' =r(dx))

4 if accept(x’, x) then

5 x < x'

6 | if f(x') < f(x*) then

7 xb ¥

8 until stopping condition is met

9 return x?

Fig.3 Large
Neighbourhood Search
(LNS)

Initial solution x

Destroy x: dk(x)

A4

Repair x: r«(x)

Operator O«

Stop?

EXIT

the entire search space can be reached, or at least the interesting part of the search
space where the global optimum is expected to be found. Therefore, it cannot focus
on always destroying a particular component of the solution but must be possible to

destroy every part of the solution.

Diversification and intensification for the destroy methods can be accomplished
as follows: to diversify the search, one may randomly select the parts of the solution
that should be destroyed (random destroy method). To intensify the search, one may
try to remove a number of “critical” variables, i.e. variables having a large cost
or variables spoiling the current structure of the solution (worst destroy or critical

184 D. Guimarans et al.

destroy, respectively). One may also choose a number of related variables that are
easy to interchange while maintaining feasibility of the solution (related destroy
method). Finally, one may use history based destroy, where a number of variables
are chosen according to some historical information.

Choosing the repair method permits much more freedom when implementing a
LNS heuristic. A first decision is whether the repair method should be optimal, in the
sense that the best possible full solution is constructed from the partial solution, or
whether it should be a heuristic, assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower than
a heuristic one, but may potentially lead to high-quality solutions in a few iterations.
However, from a diversification point of view, an optimal repair operation may not
be attractive: only improving or identical-cost solutions will be produced. Therefore,
it can be difficult to leave valleys in the search space unless a significant part of the
solution is destroyed at each iteration.

Finally, several destroy and repair methods may be combined to explore multiple
neighbourhoods within the same search. Neighbourhood structures may be nested
or cover different regions of the search space. In general, these neighbourhoods are
explored in a systematic fashion, i.e. switching to the next neighbourhood whenever
the current solution is not improved, or using different strategies to enhance the
search, such as Variable Neighbourhood Search [26]. A more sophisticated LNS
variant is the Adaptive Large Neighbourhood Search (ALNS) heuristic proposed
by Ropke and Pisinger [43]. In this case, each destroy/repair method is assigned a
weight that controls how often the particular method is attempted during the search.
The weights are adjusted dynamically as the search progresses depending on the
performance of each neighbourhood, so that the heuristic adapts to the instance at
hand and to the state of the search.

4.2 LNS Operators for the ARP

In LNS, neighbourhoods are implicitly defined by the destroy and repair operators.
The destroy method typically contains an element of stochasticity such that different
parts of the solution are destroyed in every invocation of the method. Nevertheless,
deterministic destroy methods can also be implemented.

As introduced in Sect. 3.1, CP search methods are mainly based on assigning val-
ues to variables, in such a way that constraints are satisfied and other variables’
domains are reduced to their compatible values through constraint propagation.
Therefore, CP-based destroy and repair methods will unassign and assign values
to variables, respectively, at different stages of the search. It can be inferred then that
a solution is a complete assignment (or complete labelling) to the variables of the
problem, in such a way that all constraints are satisfied at once.

A CP-based destroy method unassigns some values from a solution, destroying
it partially. For the ARP, we have defined two destroy methods, based on the idea of
extending the size of neighbourhoods to be explored. In the I-airport destroy method,

Large Neighbourhood Search and Simulation for Disruption Management ... 185

Airport 5 Airport 6 Airport 7
\\.\
— \.\
\\‘O‘\\
Initial Scenario
Airport 5 Airport 6 Airport 7 Airport 5 Airport 6 Airport 7

Destroy Phase Repair Phase

@ On-time flight O Delayed flight —— On-time connection - - - Delayed connection Original schedule

Fig. 4 Destroy/repair phases of the 1-airport operator

all aircraft-to-flight allocations are unassigned for all flights departing an airport
(Fig.4). As we are using the formulation introduced in Sect. 3.2, where redundant
sets for predecessor and successor variables are used in order to enhance constraint
propagation, aircraft allocations for previous and next flights should also be removed.
Otherwise, the only feasible solution contained in the neighbourhood would be the
preceding solution. The exploration of this neighbourhood permits swapping aircraft
and delaying flights in one airport. We systematically use this operator to explore the
corresponding neighbourhood for every airport present in the instance at hand. We
only switch to the next operator with a higher degree of destruction when all airports
have been explored and no improvement is found.

The second destroy method is based on the same principle of removing aircraft-
to-flight allocations for particular airports. In this case, we unassign all variables
corresponding to flights departing from three consecutive airports (3-airport destroy
method). Therefore, we extend the size of the previously described neighbourhood
by considering allocations of connected flight legs, rather than individual flights. In
this case, the repair phase of the operator has more freedom to adjust flight departures
(i.e. delaying flights) and swapping aircraft in particular legs.

186 D. Guimarans et al.

It should be remarked that other destroy methods were considered. In particular,
we explored neighbourhoods where the solution was partially destroyed for two
consecutive airports. However, we found that all improvements obtained by means of
this operator were also achieved and often exceeded by the 3-airport destroy method.
All improvements obtained with the 1-airport operator can also be attained with the
3-airport operator, but the time required to explore the latter is higher. Therefore,
we use l-airport neighbourhoods to lead the algorithm to better solutions quicker.
Starting closer to a local optimum reduces the search space for 3-airport operators,
since previously explored feasible non-improving solutions are discarded. This way,
these neighbourhoods can still be explored efficiently while reducing the required
time. In terms of computational burden, we determined that larger neighbourhoods
increase the required time excessively, due to the exact repair method we use.

We have chosen a CP-based repair method according to the formulation presented
in Sect. 3.2. We use the same repair method for both 1-airport and 3-airport operators.
Concretely, we apply a BB method (see Sect.3.1) to repair the partially destroyed
solution. Although slower than heuristic methods, we benefit from high-quality solu-
tions, while not being penalised with an excessive computational time by considering
reasonably sized neighbourhoods. During search, the upper bound is set to the total
delay of the best solution found so far. Aircraft-to-flight allocations may be forbidden
if they take the lower bound on the total delay over the defined upper bound. We
form the lower bound as the current total delay of the partial solution constructed
during search, i.e. the lower bound is not computed separately by any other method.
This makes the repair method faster, but the search tree is larger than it would be if
we calculate an accurate lower bound. In its simplest form, the BB search explores
the whole tree for the reallocation of all flights to aircraft and rescheduling all flights
within their feasible time ranges in order to minimise the total delay.

4.3 Using Simulation: SimLNS

Large Neighbourhood Search has proved to be an efficient metaheuristic to deal
with complex combinatorial optimisation problems [40]. However, LNS is designed
to provide high-quality solutions under deterministic scenarios. In some real-life
problems, like in the case of the ARP and many air transportation applications,
uncertainty is present. In these cases, a deterministic approach may not be accurate
enough, since it does not reflect the real stochastic nature of the system. Therefore,
it is necessary to extend the deterministic framework to account for the variability of
the system. A natural way is to integrate simulation within the optimisation process
to cope with such stochastic combinatorial optimisation problems, e.g. the SARP.
Traditional simulation approaches allow the user to model the stochastic behaviour
of the system, as well as all interactions between different elements. Nevertheless, in
most simulation-based approaches the level of optimisation achieved depends on the
number of evaluated scenarios. In general, this number is a small fraction of available
configurations, not guaranteeing optimality and providing poor feedback regarding

Large Neighbourhood Search and Simulation for Disruption Management ... 187

solution’s quality. On the other hand, deterministic optimisation approaches do not
take into account the uncertainty present in the system. Albeit using simulation to
check the behaviour of different solutions is an extended practice, the decision on
how to use the information provided by simulation is normally left to the final user.
An example of this traditional approach applied to the ARP can be found in [44].

We propose two extensions of the LNS metaheuristic that integrates simulation
at different stages of the search. The proposed approaches are similar to the Iterated
Local Search extensions introduced by Grasas et al. [25]. They all fall within the
SimHeuristics category [30].

In our first approach, which we call SimLoop, we include simulation as the final
step to assess solution’s robustness (Fig.5). Up to this stage, the algorithm only
accepts solutions that reduce the total delay with respect to the previous solution.
Hence, either the initial solution or a solution with minor total delay is returned
by the LNS framework previous to the simulation stage. However, this solution
may not fulfil other desired characteristics, e.g. number of swaps, or may present
an unacceptable degree of variance. We use simulation to test these attributes and
provide feedback to the optimisation schema, extending the application of traditional
simulation approaches.

Fig. 5 SimLoop: Large [Initial solution x

Neighbourhood Search

schema including simulation

as the final step to assess

solution’s feasibility. Final oo

solution’s robustness is i

tested in this final step. In '

case the solution does not i

meet robustness criteria, !
1
1
1
1
1
1
1
1

A A

Destroy x: dk(x)

A\

results obtained from this
process are used as feedback
for further iterations of the
local search process

Repair x: r«(x)

I Operator O«

188 D. Guimarans et al.

Different criteria can be considered to determine whether a solution is robust
or not. First, a solution may be considered to be robust if the standard deviation
of the simulated solutions is proportional to the variation of the used probabilistic
distributions and its expected propagation due to problems size. Second, a solution
may be considered robust if the gap between the average of the simulated solutions
and the deterministic solution falls within a tolerance interval. Third, we may define
the criterion as the number of solutions whose gap to the deterministic solution is
smaller than a given value. Finally, operational considerations such as the number
of swapped flights/aircraft assignments may be introduced. In the practical case
presented in this work, we use the first criterion to determine the robustness of the
obtained solutions.

The proposed methodology for the SARP, which integrates SimLoop as the opti-
misation method, is structured in the following steps:

1. The stochastic problem is simplified to a deterministic instance by using the
average values of the adjusted probability distributions of the different processes.

2. Asthe original flight schedule is known, we compute the total delay (the objective
function) associated to this solution. This provides an initial value for the total
delay, which is used as the initial upper bound for the objective function in the
local search process. As the original flight schedule is known to be feasible, we
use it as the initial solution for our method. Intuitively, starting from the original
schedule and applying local changes leads to solutions with a smaller number of
swaps, a desired characteristic for most airlines.

3. A deterministic LNS framework is then used as a local search process to improve
the initial solution, allowing flights to be delayed and enabling swaps. An
improved flight schedule reducing the total delay is found as the result of this
step.

4. The optimised solution is then checked using simulation to verify its robustness:
a set of stochastic instances is generated using the probability distributions for the
processes, namely flight and turnaround times. Maintaining the improved flight
schedule returned by the LNS, we compute the total delay for each instance.
This way, a single solution is evaluated in different scenarios. The results are
analysed in order to determine the level of robustness of the obtained solution. If
the solution is not robust, its objective function value is used as a lower bound
and the optimisation process is repeated, i.e. the LNS is re-launched with a new
lower bound. This way a worst solution may be found but with better robust-
ness characteristics. Otherwise, the solution is accepted and the algorithm ends.
Thus, the methodology returns either the optimal deterministic solution, if it is
robust enough, or a quasi-optimal one whose properties are more suitable for the
stochastic problem at hand.

In our second approach, which we call SimLNS, we integrate simulation at an ear-
lier stage in the process, as depicted in Fig. 6. In this case, simulation is embedded in
the acceptance criterion instead of being used to evaluate the final result. The solution
obtained after applying destroy and repair methods is then tested in a set of scenarios
before deciding whether it is accepted or discarded. Simulation results may be used

Large Neighbourhood Search and Simulation for Disruption Management ... 189

Fig. 6 SimLNS: Large | Initial solution x |
Neighbourhood Search
schema including simulation
as part of the acceptance
criterion. The solution e ARty
obtained by operator Oy, is i
accepted or discarded E
according to results obtained i
from its simulation !
1
1
1
1
1
1
1
1

Destroy x: dk(x)

A\

Repair x: r«(x)

I Operator O«

Stop?

EXIT

to evaluate the solution in different ways. The most common approach consists of
accepting solutions which, on average, are better than the incumbent. Hence, we are
only accepting solutions whose average behaviour is better than previous solutions.
A different criterion is borrowed from robust optimisation approaches [11], where
we only accept solutions whose simulated worst case improves previous solution’s
worst case. Thus, we aim at accepting solutions able to perform reasonably well
under challenging conditions.

By moving the simulation step to the acceptance criterion, our goal is to detect
earlier in the process solutions with undesired attributes, e.g. extremely variable solu-
tions due to tight connection times. If a solution has a lower deterministic total delay,
but on average presents a worse behaviour due to solution’s variability, it may be
rejected and the local search process may proceed to evaluate the next neighbour-
hood. Using a more traditional approach or the SimLoop method, this solution would
be accepted and would not be tested until the end of the local search process, therefore
detecting late its unwanted aspects. On the other hand, the approach adopted in the
SimLNS increases substantially the number of solutions to be evaluated. Although
simulating a higher number of scenarios may increase the reliability of the final

190 D. Guimarans et al.

solution, so does the required computational time. Therefore, we need to find a trade-
off between algorithm’s execution time and the number of scenarios per solution to
be tested.

5 Application

We have tested the methodologies described in the previous section on a set of
instances with different characteristics. In all cases, tests have been done in a personal
computer with an Intel Core i7 processor at 2.9 GHz and 8 Gb of RAM, running OS
X 10.9. The different SIMLNS variants have been implemented in Java, whereas
the CP model (see Sect.3.2) has been coded using the ECLiPSe 6.0 platform [4].
Simulation processes have also been implemented in Java.

Since most articles devoted to the ARP deal with specific instances (see Sect.2),
there are no accepted benchmarks for the ARP. Thus, we had to define a set of
instances to assess our proposed methodologies. We have generated two separate
sets with different attributes.

The first set contains scenarios with dense networks, i.e. networks with a higher
density of flights and a larger connectivity degree for airports. Since we consider a
dense network, the number of feasible swaps at each airport increases and so does the
size of the neighbourhoods to be explored. These instances are purely theoretical and
their goal is to push our methodology in more challenging and difficult scenarios.
Details of the generated theoretical instances are as follow:

e Scenario 50 (denoted 50_): consists of 49 flights, 3 airports, and 8 aircraft. In this
scenario, all the airports have approximately the same number of flights.

e Scenario 100 (denoted /00_): consists of 98 flights, 6 airports, and 16 aircraft.
Again, airports have approximately the same number of flights. In both the sce-
narios 50 and 100, there is no visible hub.

e Scenario 200 (denoted 200_): consists of 196 flights, 11 airports, and 32 aircraft.
In this scenario, airport 1 has nearly twice the number of flights than other airports,
therefore behaving like a hub. It also gives more opportunities for swapping aircraft.

e Scenario 300 (denoted 300_): consists of 294 flights, 17 airports, and 48 aircraft.
Again, we use the first airport as a hub to get more swapping opportunities.

The second set contains instances derived from real data provided by a Spanish
airline (due to confidentiality agreements we cannot disclose the name of the airline).
This airline relies on a hub-and-spoke network configuration. This kind of network
provides fewer opportunities to swap aircraft between flights outside hub airports
and generally propagates delays much faster to different parts of the network. We
have generated several disrupted scenarios of different sizes from the original flight
data provided by the airline. To keep consistency among instances, all of them have
similar flights per airport and flights per aircraft ratios. Further details of real scenarios
characteristics are described next:

Large Neighbourhood Search and Simulation for Disruption Management ... 191

e Real scenario 50 (denoted real_50_): consists of 49 flights, 17 airports, and 9
aircraft. In this scenario, Madrid’s airport works as a hub.

e Real scenario 100 (denoted real_100_): consists of 110 flights, 23 airports, and 23
aircraft. Madrid’s airport works as a hub.

e Real scenario 150 (denoted real_150_): consists of 163 flights, 35 airports, and 40
aircraft. This scenario is a whole day of operation for the airline. Again, Madrid’s
airport works as a hub.

In the real scenarios, Madrid’s airport is the main hub. Two more airports constitute
secondary hubs for the airline: Palma de Mallorca and Barcelona. As it can be seen,
the density of the real scenarios is substantially smaller than the theoretical scenarios,
i.e. for a similar number of flights, the number of airports and aircraft is significantly
higher for real scenarios.

For each described scenario, we generate four instances with different degrees of
disruption. To do so, we introduce delays at selected flights and airports. These delays
range from 30 to 120 min, increased in 30-minute intervals. The size of disruptions
is denoted as a suffix in scenario’s name, e.g. 50_30 corresponds to an instance of
scenario 50 with 30-minute delays in some flights. In total, we generated 28 instances
corresponding to disrupted scenarios: 16 with a dense network and 12 based on real
data with a hub-and-spoke configuration.

Results for all instances are presented in Table 1. It shows the obtained total delay
and computational times for all described methods: (i) deterministic LNS approach
(Det.), simulating the best solution in the final step but not providing feedback to
the optimisation process; (ii) SimLoop approach (SimLoop), using simulation to
get feedback on solution’s robustness; (iii) SimLNS approach (SimLNS), which uses
simulation in the acceptance criterion optimising the average total delay; (iv) SImLNS
approach optimising the worst solution (SimLNS-W), instead of the average total
delay. Table 1 also contains the total delay of the original flight schedule (Orig.).

The original schedule is used as the initial solution for all approaches. Starting
from the original schedule and performing local moves may lead to solutions with
a minor total delay and few swaps. If a construction heuristic is used to obtain the
initial solution, the algorithm may start at a region of the search space far from the
original schedule. Although the obtained final solution may be better in terms of
total delay, it may imply a large number of swaps regarding the original schedule,
an unacceptable characteristic for most airlines.

In all approaches, we run 20 tests per solution whenever the simulation process is
called. This means that the total number of run simulations may differ depending on
the applied methodology. Probability distributions for flight durations and turnaround
times are adjusted to reflect a similar behaviour to reported observations [19]. For
the SimLoop approach, a 5% limit on the standard deviation has been imposed to
consider a solution as robust.

As for operators, instances /00, 200 and 300 are solved using only the 1-airport
operator. Utilising the 3-airport operator for these instances increases the computa-
tional time dramatically. On the other hand, instances 50 and all real scenarios are
solved using both 1- and 3-airport operators.

D. Guimarans et al.

192

(panunuoo)
£€elr'8 6°¢06 £er'8 0'%06 oy’ ¥°S06 91¥'8 £L06 0906 09 001 va4
980'8 7'0Sy 8618 1'0Sv 9¢6¢'8 SISy 98¢'8 €ISy 908y 0£ 001 Va4
LIO'L 6'¢eS LyeEl Sees 9IL9 9¢s w99 9°9¢¢ 8°6GES 0Tl 0S Va4
1,69 T8¢ 8I¢€°L e8¢ 0168 6'68¢ 1€TL 0°L8¢ ¥7'68¢ 06 0§ Va4
8789 £0ve ¥9¢°9 1rove 9199 6'11¢ 119 e Ive 09 0§ 1va4
0199 0ocl 8YL9 1'ocl1 8169 ¢1cl 8199 0'1¢1 9'0¢C1 0£ 0S Va4
119°001 9°LTYT 716°60C [3x4 8¥C°96 9'LIYC SLY'¥6 0'sere ¥'609¢C 0zl 00¢
G80°¢01 8591 065201 1'6091 CLL'L6 G8¥91 L69°L6 76191 £9181 06 00&
LTS 001 L'1€6 118C8¢ 1°CC6 SYeEv0l 0°S€6 618101 1'0S6 9'0101 09 00¢
611°L6 §66¢ ¥2€96 796¢ S16'66 £y 88€°L6 (Y% 9’1y 0£ 00€
PIT8LI £600¢ €08°0r¢ SE661 18L°161 9'¥00C G86¥0¢ 1°€20T 8 10t¢ 0ZI 00
YIT'L8 1'608 2969 1'coL S61°0L 0°¢I8 88089 9°¢l8 6656 09 00
SANII 8Ly 0L1°29¢C 8°Covl 608°S1 7'OLY1 026'9¢1 1'v811 G691 06 002
9TT6S 1'9¢¢ L9¢°¢Tl 9'61¢ 090°8S eree ¥€C9S £'8¢¢ T68¢ 0£ 002
818°LT 9T 806°LT S0ere 7r8'el L1SYC 91T Y1 6'9LYC 0°LLST 0zl 001
455741 1'09%1 1eevl [40%4! csLel Selsl 969 ¥1 €051 € LLST 06 001
9¢8°Cl1 8°689 LL6'TT 0°L89 0ILCI 0°CIL SLI'EL 9°¢0L 7'8EL 09 001
1€6°11 0S¢ YoL'Tty €Yre 0Ccs' 11 R34 9¢9°11 6'6SC 0'%9¢ 0001
2590 6'90¢¢ 1L8°0 ¥'06CC 8190 G eeeT €290 1'9v¢€C 6°0St¢ 0zl 0§
0LT'1 6'69¢1 6590 7'09¢1 290 1'¢6¢€l 0r9°0 7'ovel 7'8SY1 06 0S
SLI'T 9'Cr9 691 6'S€9 0LS0 0°€S9 LS 0 1259 9'8IL 09 0S
L18°0 Sele SEV0 £0I1¢ 86¢°0 7'ele S6¢°0 ele T'8TC 0€ 08
(8) ndd M-SNTWIS (s) ndd SNTWIS () NdD dooquuig (8) ndd Rd Eit0) dueIsuf

SOOUB)SUI PRISA) §7 10 SINSAY | dqEL

193

Large Neighbourhood Search and Simulation for Disruption Management ...

SOISO[OPOYIAW PAGLIISIP JUAIYIP AY) JO SUBAW AQ PAUTLIqO SUONN[OS PUL d[NPAYDS [BUISLIO AY) J0J paytodar axe own feuoneindwiod pue (seynurur ur) Ae[op [eI0],

Yry 8¢ 4594 §0S5°9CC 0vey SS9'0¥ <Ley 89¢°8¢ (25494 gels 021 0S[o4
SSI°L8 0v0¢ 1178°68 9°€0¢ 80¢° ¢ty 870¢ 6EL'SS $'60¢ [4%33 06 0S[[va1
S08'9% 7881 09L"¢y 7881 0C8°9¢ I'eol IveLe [7961 09 0SI [vai
9¢0°LE 6'86 SANE £96 9¢£6°8¢ S0l 091'9¢ 6'L6 786 0€ 0SI pai
169°1¢C L'G8CC ¥80'¥C 1°68¢¢ 1€6°01 06CC 90801 07C6CT (X444 021 001 24
£6C01 I"sevl ILy'0€ 1"06v1 6S1°01 8'6611 L0l Lvov] 7'S0S1 06 001 1021
() ndd M-SNTUIS () Ndd SNTWIS () ndd doouirg (5) ndD Pd 'S0 QoueIsuy

(ponunuod) | 3[qeL,

194 D. Guimarans et al.

Delay Reduction vs Original Schedule

% Reduction

| (@) (b) © @

Method

Fig. 7 Relative delay reduction with respect to the original schedule for all tested instances using
different methods: Deterministic approach using simulation at the end of the process (a); SimLoop,
using simulation to provide feedback on solution’s robustness (b); SIimLNS using simulation inte-
grated in the acceptance criterion (c¢); SImLNS-W using simulation integrated in the acceptance
criterion, but optimising for the worst obtained solution (d)

In general, we observe that SImLNS performs better than other approaches. For
most instances, the largest reduction on total delay is achieved by means of this
methodology, although computational time is slightly increased due to a higher num-
ber of simulations is required. These results are corroborated in Fig. 7. In this figure,
the relative reduction of the total delay regarding the original schedule is presented
for all approaches over all instances. We observe clearly that major reductions are
obtained by means of the SIimLNS approach. This means that applying simulation
during the search process may lead to better results than performing it as a final step.

It can be noticed that total delay reductions are lower for instances based on real
data than for those based on a dense network. This can be easily explained by the
network topology of real instances, since hub-and-spoke configurations provide less
opportunities to perform swaps in order to reduce delays. In addition, initial delays
account for a bigger proportion of total delay in instances based on real data. As a
general practice to avoid consequences from unforeseen events, airlines introduce
additional buffer time between flights. Since we are using real data for these instances,
these oversized buffers are present and can absorb part of the initial delays, reducing
their propagation through the network. We have defined tighter flight connections in
the theoretical instances.

It is important to notice that total delay is not necessarily higher in large instances.
This is due to the fact that for most instances initial delays are introduced in the first
flights departing the hub airport, i.e. all flights up to one hour from the first departing
flight are delayed. Some large scenarios have less flights departing from the hub
during the first hour, therefore having a smaller initial delay.

As for efficiency terms, we observe that instances based on real data require more
time to be solved. The cause may be attributed to two combined facts: we use the

Large Neighbourhood Search and Simulation for Disruption Management ... 195

Table 2 Results for 28 tested instances when only delays greater than 15 min are considered

Instance Orig. Det. SimLoop SimLNS SimLNS-W
50_30 182.1 168.6 167.4 167.2 172.9
50_60 672.0 607.7 600.1 589.0 592.2
50_90 1421.7 1303.5 1348.1 1309.6 1323.0
50_120 2442.3 2332.1 2325.2 2275.6 2292.0
100_30 187.8 178.1 179.5 171.9 178.1
100_60 672.2 642.4 649.2 620.0 619.8
100_90 1520.5 1445.6 1454.5 1400.4 1393.0
100_120 2555.4 2453.3 2426.8 2406.2 2427.3
200_30 295.7 248.5 2459 239.5 248.7
200_90 1664.9 1395.7 1394.9 1392.2 1396.0
200_60 901.7 703.3 701.8 691.2 703.5
200_120 2372.0 1964.9 1946.9 1928.5 1953.0
300_30 282.1 259.9 254.5 246.0 253.3
300_60 879.9 810.4 793.3 774.6 787.7
300_90 1716.3 1523.9 1515.3 1477.2 1531.8
300_120 2510.7 2312.3 2310.5 2277.2 2312.7
real_50_30 120.0 120.0 120.0 120.0 120.0
real_50_60 240.0 240.0 240.0 240.0 240.0
real_50_90 384.6 385.4 384.4 383.1 383.8
real_50_120 534.9 536.2 534.9 5332 533.0
real_100_30 450.0 450.0 450.0 450.0 450.0
real_100_60 900.0 900.0 900.0 900.0 900.0
real_100_90 1471.0 1459.9 1463.1 1461.4 1462.3
real_100_120 2319.3 2290.4 2287.5 2281.6 2283.9
real_150_30 90.8 90.0 92.9 90.0 90.0
real_150_60 186.1 182.2 184.0 181.0 180.9
real_150_90 317.0 301.9 296.8 296.6 296.2
real_150_120 504.0 417.5 421.6 418.2 417.5

Total delay (in minutes) is reported for the original schedule and solutions obtained by means of
the different described methodologies

two defined airport-based operators and there is major number of airports present in
these instances.

Although we account for total delay, airlines only consider delays larger than
15 min. Table?2 shows our results under this consideration. Equally, Fig. 8 presents
a graphical interpretation on the relative reduction of delays in excess of 15min.
As expected from previous results, embedding simulation in the search yields better
results than using simulation at the end of the process. This is clearly appreciated
in Fig. 8, where we observe that SInLNS provides approximately a 10 % average
delay reduction and over 20 % for some instances. We also see in this figure how
both SimLLNS methods outperform more traditional approaches.

196 D. Guimarans et al.

Delay > 15 min Reduction vs Original Schedule

15
Il

% Reduction
10
Il

o - R — p——

(a) (b) ©)

Method

Fig. 8 Relative delay reduction for delays greater than 15 min with respect to the original schedule
for all tested instances using different methods: Deterministic approach using simulation at the end
of the process (a); SimLoop, using simulation to provide feedback on solution’s robustness (b);
SimLNS using simulation integrated in the acceptance criterion (c); SImLNS-W using simulation
integrated in the acceptance criterion, but optimising for the worst obtained solution (d)

Table 3 Estimated cost of disruptions (in euros) for instances generated from real data

Instance Orig. Det. SimLoop SimLNS SimLNS-W
real_50_30 9,840.00 9,840.00 9,840.00 9,840.00 9,840.00
real_50_60 19,680.00 19,680.00 19,680.00 19,680.00 19,680.00
real_50_90 31,533.10 31,598.70 31,520.80 31,414.20 31,471.60
real_50_120 43,861.80 43,964.30 43,861.80 43,718.30 43,706.00
real_100_30 36,900.00 36,900.00 36,900.00 36,900.00 36,900.00
real_100_60 73,800.00 73,800.00 73,800.00 73,800.00 73,800.00

real_100_90 120,617.90 119,707.70 119,970.10 119,830.70 119,904.50
real_100_120 190,178.50 187,812.80 187,570.90 187,087.10 187,279.80

real_150_30 7,445.60 7,380.00 7,617.80 7,380.00 7,380.00
real_150_60 15,256.10 14,936.30 15,088.00 14,837.90 14,829.70
real_150_90 25,994.00 24,755.80 24,333.50 24,321.20 24,284.30

real_150_120 41,328.00 34,235.00 34,571.20 34,292.40 34,235.00

Results are reported for all described methodologies

As mentioned in Sect. 1, airlines face significant monetary costs when disrup-
tions occur. If we consider the reported cost of delays beyond the first 15 min, €82
per minute according to CODA [20], we can estimate the associated cost of each
solution. We report these results for instances based on real data in Table 3. It can
be seen that consequences of a disruption affecting a reduced number of flights
may escalate quickly to costs over €190,000 (e.g., instance real_100_120). This
observation reinforces the fact that decision support tools can be extremely useful in
disrupted scenarios in order to attain feasible solutions able to reduce incurred costs
in reasonable times.

Large Neighbourhood Search and Simulation for Disruption Management ... 197

6 Conclusions

Operational disruptions are deviations from originally planned operations. Airlines
are among the most affected industries by this kind of events and have to face signifi-
cant associated costs. For this reason, designing methods to deal with operational dis-
ruptions efficiently are getting an increasing attention from airlines and the research
community.

Cancelled, delayed and diverted flights impact different elements involved in
airlines’ operations: aircraft, crews and passengers. Traditionally, aircraft are seen
as the scarce resource, as well as a more tractable problem due to its size. In this
work, we have tackled the Aircraft Recovery Problem, whose goal is to restore the
original flight schedule as much as possible in a disrupted scenario by means of
swapping aircraft-to-flight allocations and delaying flights when necessary. As real
operations are subject to variability, we define an ARP variant which includes this
inherent uncertainty: the Stochastic Aircraft Recovery Problem.

As a first step, we have developed a Constraint Programming model to solve
the deterministic ARP. To the best of our knowledge, it is the first CP formulation
presented for this problem. We integrate this model within a Large Neighbourhood
Search framework, a metaheuristic which has proved to be very efficient when com-
bined with CP to cope with a variety of combinatorial optimisation problems. In our
approach, we embed the CP model in operators and take advantage of constraint
propagation efficiency in the destroy and repair phases of the LNS. Concretely, we
unassign a set of variables in the destroy phase and use an exact branch and bound
method to re-optimise the partially destroyed solution. This method has shown to be
efficient for solving the ARP.

In order to deal with the stochasticity present in the SARP, we have modified our
LNS approach and included simulation at different stages of the search. In particular,
we define two LNS-based frameworks that make extensive use of simulation. In our
first schema, the SimLoop, simulation is performed at the end of the LNS method.
This way, we simulate the solution obtained in the optimisation process to check its
robustness. In this test, different criteria for robustness or solution’s characteristics
may be used. If the solution is rejected, a new lower bound is imposed and the LNS
process is re-launched. In our second approach, the SimLNS, simulation is integrated
at an earlier stage of the search. After the destroy/repair phase of the LNS, we test
the obtained solution in several simulated scenarios and utilise these results in the
acceptance criterion. Therefore, we check solutions’ behaviour before accepting or
rejecting them, allowing to detect undesirable attributes earlier in the process.

Results show that the proposed LNS variants constitute an efficient approach to
tackle the SARP. Indeed, as they are defined as general methodologies, the pre-
sented LNS-based methods can be used to solve any combinatorial problem where
stochasticity is an inherent characteristic of the system. In general, the SimLNS
methodology provides the best solutions for most instances, although computational
times are slightly higher because of a major number of simulated scenarios. Among
defined instances, we have observed that scenarios based on real data provide few

198 D. Guimarans et al.

margin for improvement due to network configuration and oversized buffers. We
believe that further developments on efficient tools to support decision making in
disrupted scenarios may lead to schedules with reduced buffer times, as airlines may
be able to respond more effectively to unforeseen events.

The work presented in this chapter leaves several lines open for future research.
On the one hand, we aim at improving search efficiency and being able to increase
neighbourhood’s size. With this purpose, a more effective CP representation of the
ARP is to be developed in order to enhance constraint propagation. This upgraded
formulation may include other elements present in a disrupted scenario, i.e. crews
and passengers. On the other hand, we contemplate integrating simulation within
the CP search tree. This way, simulation is used to propagate most likely values
in the domain of stochastic variables during search, instead of simulating complete
scenarios after labelling variables in a deterministic fashion.

Acknowledgments NICTA is funded by the Australian Government through the Department
of Communications and the Australian Research Council through the ICT Centre of Excellence
Program.

References

1. Association of European Airlines: European airline punctuality in 1st quarter 2008. Tech. rep.,
Association of European Airlines (2008)

2. Ahuja, R., Ergun, O., Orlin, J., Punnen, A.: A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics 123, 75-102 (2002)

3. Apt, K.: Principles of Constraint Programming. Cambridge University Press, Amsterdam
(2003)

4. Apt, K., Wallace, M.: Constraint Logic Programming using ECLiPSe. Cambridge University
Press, New York, USA (2007)

5. Argiiello, M.F,, Bard, J.F,, Yu, G.: A GRASP for aircraft routing in response to grounding and
delays. Journal of Combinatorial Optimization 5, 211-228 (1997)

6. Argiiello, M.F,, Bard, J.F.,, Yu, G.: Models and methods for managing airline irregular oper-
ations. In: G. Yu (ed.) Operations Research in the Airline Industry, International Series in
Operations Research & Management Science, vol. 9, pp. 1-45. Springer-Verlag (1998)

7. Arias, P, Guimarans, D., Mdjica, M.A.: A new methodology to solve the stochastic aircraft
recovery problem using optimization and simulation. In: International Conference on Interdis-
ciplinary Science for Innovative Air Traffic Management (ISIATM). Toulouse, France (2013)

8. Arias, P, Guimarans, D., Mgjica, M.A., Boosten, G.: A methodology combining optimiza-
tion and simulation for real applications of the stochastic aircraft recovery problem. In: 8th
EUROSIM Congress on Modelling and Simulation, pp. 265-270. Cardiff, UK (2013)

9. Arora, S., Barak, B.: Computational complexity: A modern approach. Cambridge University
Press, New York, USA (2009)

10. Ball, M., Barnhart, C., Nemhauser, G., Odoni, A.: Air transportation: irregular operations and
control, Handbooks in Operations Research & Management Science, vol. 14, chap. 1, pp. 1-67.
Elsevier (2007)

11. Bertsimas, D., Nohadani, O., Teo, K.M.: Robust optimization for unconstrained simulation-
based problems. Operations Research 58(1), 161-178 (2010)

12. Bessiere, C.: Constraint Propagation, vol. Handbook of Constraint Programming, chap. 3, pp.
29-83. Elsevier, Amsterdam (2006)

Large Neighbourhood Search and Simulation for Disruption Management ... 199

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Cao, J., Kanafani, A.: Real-time decision support for integration of airline flight cancellations
and delays. Part I: Mathematical formulation. Transportation Planning and Technology 20(3),
183-199 (1997)

Cao, J., Kanafani, A.: Real-time decision support for integration of airline flight cancellations
and delays. Part II: Algorithm and computational experiments. Transportation Planning and
Technology 20(3), 201-217 (1997)

Clausen, J., Larsen, A., Larsen, J., Rezanova, N.J.: Disruption management in the airline indus-
try — Concepts, models and methods. Computers & Operations Research 37(5), 809-821 (2010)
Dantzig, G.B., Wolfe, P.: Decomposition principles for linear programs. Operations Research
8(1), 101-111 (1960)

. Eggenberg, N., Salani, M., Bierlaire, M.: A column generation algorithm for disrupted air-

line schedules. Tech. Rep. TRANSP-OR 071203, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland (2007)

Eggenberg, N., Salani, M., Bierlaire, M.: Constraint-specific recovery network for solving
airline recovery problems. Computers & Operations Research 37, 1014-1026 (2010)
EUROCONTROL: Report on punctuality drivers at major European airports. Tech. rep., EURO-
CONTROL (2005)

EUROCONTROL: Planning for delay: influence of flight scheduling on airline punctuality.
Tech. Rep. Trends in Air Traffic - Vol. 7, EUROCONTROL (2010)

European Commission: Guide to European Community legislation in the field of civil aviation.
Directorate-General for Energy and Transport (2007)

Freuder, E.C., Mackworth, A.K.: Constraint Satisfaction: an Emerging Paradigm, vol. Hand-
book of Constraint Programming, chap. 2, pp. 13-27. Elsevier, Amsterdam (2006)

Gendreau, M., Potvin, J.Y.: Tabu Search, vol. Handbook of Metaheuristics, chap. 2, pp. 41-60.
Kluwer Academic, Boston, MA (2010)

Granberg, T.A., Virbrand, P.: The flight perturbation problem. Transportation Planning and
Technology 27(2), 91-117 (2004)

Grasas, A., Juan, A.A., Lourenco, H.R.: SimILS: a simulation-based extension of the Iterated
Local Search metaheuristic for stochastic combinatorial optimization. Journal of Simulation
(2014). DOI 10.1057/j0s.2014.25

Guimarans, D.: Hybrid algorithms for solving routing problems. Ph.D. thesis, Universitat
Autonoma de Barcelona, Barcelona (2012)

Guimarans, D., Herrero, R., Ramos, J.J., Padron, S.: Solving vehicle routing problems using
constraint programming and lagrangian relaxation in a metaheuristics framework. International
Journal of Information Systems and Supply Chain Management 4(2), 61-81 (2011)
Guimarans, D., Herrero, R., Riera, D., Juan, A.A., Ramos, J.J.: Combining probabilistic algo-
rithms, constraint programming and lagrangian relaxation to solve the vehicle routing problem.
Annals of Mathematics and Artificial Intelligence 62(3—4), 299-315 (2011)

Jarrah, A.I.Z., Yu, G., Krishnamurthy, N., Rakshit, A.: A decision support framework for airline
flight cancellations and delays. Transportation Science 27(3), 266—-280 (1993)

Juan, A.A., Grasman, S.E., Caceres-Cruz, J., Bektas, T.: A simheuristic algorithm for the single-
period stochastic inventory routing problem with stock-outs. Simulation Modelling Practice
and Theory 46, 40-52 (2014)

Kilby, P., Shaw, P.: Vehicle Routing, vol. Handbook of Constraint Programming, chap. 23, pp.
801-836. Elsevier, Amsterdam (2006)

Kohl, N., Larsen, A., Larsen, J., Ross, A., Tiourine, S.: Airline disruption management —
Perspectives, experiences and outlook. Journal of Air Transportation Management 13(3), 149—
162 (2007)

Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. Al Magazine 13(1), 32—
44 (1992)

Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations Research 14(4),
699-719 (1966)

http://dx.doi.org/10.1057/jos.2014.25

200

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

D. Guimarans et al.

Le, M., Wu, C., Zhan, C., Sun, L.: Airline recovery optimization research: 30 years’ march
of mathematical programming — A classification and literature review. In: 2011 International
Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), pp. 113-117.
IEEE, Changchun, China (2011)

Lgve, M., Sgrensen, K.R.: Disruption management in the airline industry. Master’s thesis,
Technical University of Denmark, Lyngby, Denmark (2001)

Lgve, M., Sgrensen, K.R., Larsen, J., Clausen, J.: Disruption management for an airline —
Rescheduling of aircraft. In: S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G.R. Raidl (eds.)
Applications of Evolutionary Computing, Lecture Notes in Computer Science, vol. 2279, pp.
315-324. Springer-Verlag, Berlin Heidelberg (2002)

Nikolaev, A.G., Jacobson, S.H.: Simulated Annealing, vol. Handbook of Metaheuristics, chap.
1, pp. 1-40. Kluwer Academic, Boston, MA (2010)

Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search. In: M. Wallace
(ed.) 10th International Conference on Principles and Practice of Constraint Programming
(CP-04), Lecture Notes in Computer Science, vol. 3258, pp. 468—481. Springer-Verlag, Berlin
Heidelberg (2004)

Pisinger, D., Ropke, S.: Large Neighborhood Search, vol. Handbook of Metaheuristics, chap.
13, pp. 399-420. Kluwer Academic, Boston, MA (2010)

Reeves, C.R.: Genetic Algorithms, vol. Handbook of Metaheuristics, chap. 5, pp. 109-140.
Kluwer Academic, Boston, MA (2010)

Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: advances,
hybridizations, and applications, vol. Handbook of Metaheuristics, chap. 10, pp. 283-320.
Kluwer Academic, Boston, MA (2010)

Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science 40(4), 455-472 (2006)
Rosenberger, J.M., Johnson, E.L., Nemhauser, G.L.: Rerouting aircraft for airline recovery.
Transportation Science 37(4), 408-421 (2003)

Rosenberger, J.M., Schaefer, A.J., Goldsman, D., Johnson, E.L., Kleywegt, A.J., Nemhauser,
G.L.: A stochastic model of airline operations. Transportation Science 36(4), 357-377 (2002)
Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

Shavell, Z.A.: The effects of schedule disruptions on the economics of airline operations. In:
3rd USA/Europe Air Traffic Management R&D Seminar. Napoli, Italy (2000)

Shaw, P.: Using constraint programming and local search methods to solve vehicle routing
problems. In: 4th International Conference on Principles and Practice of Constraint Program-
ming (CP-98), Lecture Notes in Computer Science, vol. 1520, pp. 417-431. Springer-Verlag,
Berlin Heidelberg (1998)

Teodorovié, D., Guberini¢, S.: Optimal dispatching strategy on an airline network after a
schedule perturbation. European Journal of Operational Research 15(2), 178-182 (1984)
Teodorovié, D., Stojkovié, G.: Model for operational daily airline scheduling. Transportation
Planning and Technology 14(4), 273-285 (1990)

Thengvall, B.G., Bard, J.F., Yu, G.: Balancing user preferences for aircraft schedule recovery
during irregular operations. IIIE Transactions 32, 181-193 (2000)

Thengvall, B.G., Yu, G., Bard, J.F.: Multiple fleet aircraft schedule recovery following hub
closures. Transportation Research A 35, 289-308 (2001)

van Hoeve, W.J., Katriel, I.: Global constraints, vol. Handbook of Constraint Programming,
chap. 6, pp. 169-208. Elsevier, Amsterdam (2006)

Wu, C., Le, M.: A new approach to solve aircraft recovery problem. In: INFOCOMP 2012:
The Second International Conference on Advanced Communications and Computation, pp.
148-154. Venice, Italy (2012)

Wu, C.L.: Inherent delays and operational reliability of airline schedules. Journal of Air Trans-
portation Management 11(4), 273-282 (2005)

Wu, C.L.: Improving airline network robustness and operational reliability by sequential opti-
misation algorithms. Networks and Spatial Economics 6(3—4), 235-251 (2006)

Large Neighbourhood Search and Simulation for Disruption Management ... 201

57.

58.

59.

60.

61.

Yan, S., Lin, C.: Airline scheduling for the temporary closure of airports. Transportation Science
31(1), 72-82 (1997)

Yan, S., Tu, Y.: Multifleet routing and multistop flight scheduling for schedule perturbation.
European Journal of Operational Research 103(1), 155-169 (1997)

Yan, S., Yang, D.: A decision support framework for handling schedule perturbation. Trans-
portation Research B 30(6), 405-419 (1996)

Yan, S., Young, H.: A decision support framework for multi-fleet routing and multi-stop flight
scheduling. Transportation Research A 30(5), 379-398 (1996)

Zhang, X., Zhao, M., Kuang, S.M., Du, Q.: Research on airline company fuel-saving model
based on petri network. Advanced Materials Research 616-618, 1107-1110 (2013)

Allocation of Airport Check-in Counters
Using a Simulation-Optimization Approach

Miguel Mujica Mota and Catya Zuniga Alcaraz

Abstract The aviation industry is expected to grow at a pace of 4% per annum
in the coming years, therefore it is necessary to have techniques that support the
management of the resources at hand in the best possible way so that facility
expansion is delayed as much as possible with the corresponding capital savings.
This chapter presents a methodology that combines evolutionary algorithms and
simulation for performing the allocation of the check-in desks in such a way that the
different stochastic and deterministic variables are taken into account for a more
robust solution. The evolutionary algorithm is developed to satisfy the different
mandatory restrictions for the allocation problem such as minimum and maximum
number of check-in desks per flight, load balance at the counters, opening times of
check-in desks, and other restrictions imposed by the level of service agreement.
Once the solutions are obtained, a second evaluation is performed using a simulation
model of the terminal that takes into account the stochastic aspects of the problem
such as passenger arrival profiles, passenger profile, layout of the facility, among
others, with the purpose of determining an airport terminal’s check-in area which
allocation is the most efficient in real situations to keep the quality indicators at the
desired level. The example presented is for an airport terminal’s check-in area, but
the methodology can be used for similar allocation problems in the aviation industry
and in other industries such as logistics or manufacturing.

1 Introduction

The aeronautical industry is still under expansion, in spite of the rise in oil prices,
limited capacity, and new regulations. Different scenarios have been forecasted to
explore the future of the Air Transportation System, the most likely scenario predicts

M. Mujica Mota (X))

Aviation Academy, Amsterdam University of Applied Sciences, 1097, DZ, Amsterdam,
The Netherlands

e-mail: m.mujica.mota@hva.nl

C.Z. Alcaraz (X))

Logistics & Supply Chain Management Department, Universidad Popular Autonoma
del Estado de Puebla, 17 Sur 901, Barrio de Santiago, 72410 Puebla, Puebla, Mexico
e-mail: catyaatziry.zuniga@upaep.mx

© Springer International Publishing Switzerland 2015 203
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_7

204 M. Mujica Mota and C.Z. Alcaraz

that air traffic will double in the next 15 years. In the forecast of IFR flight movements
in Europe up to 2035, the most likely scenario predicts 14.4 million flights, 50 %
more than in 2012. Even under relatively conservative assumptions a steady 4-5 %
annual growth will lead to a near doubling of total air travel during this period [1-3].

Increased air traffic makes the efficient management of available resources on
both the airside and the landside of an airport even more complex. On the airside, it
is even more evident on the runways and in the airspace surrounding airports, where
the arrivals and departures serve a large number of aircraft that are subject to many
logistical problems, which must continuously be solved to make sure every flight and
passenger travels safely and efficiently. Besides the increased number of flights, there
has also been an increase in the size of aircraft which in turn augments the number of
passengers. These conditions could generate potential bottlenecks or congestion in
the terminal buildings if the available resources are not efficiently managed. Inside
the terminal buildings, they manifest as huge queues at the security filters, baggage
handling systems, and check-in counters, to name but a few. In addition, they also
cause excessive waiting times that the customers see as bad service levels.

For the sustainability of the Air Transportation System (ATS) all over the world,
various ideas have been proposed to alleviate traffic growth and its implications
such as the construction of additional runways or terminal buildings, or improved
sequencing of operations in both air and land side, etc. However, more fundamental
and innovative changes are required to improve the use of available air capacity.

In the case of airport terminals, analysts need to take into account not only the
typical operational restrictions inherent in the system but also other measures that
will make it possible to evaluate the perception of passengers, who are the main
customers of the terminal and will drive the economic and social development of the
system.

The International Air Transport Association (IATA) has published some guidelines
for what is called as Level of Service (LOS) indicators. These measures evaluate char-
acteristics associated with perceived comfort inside the terminal, such as available
area per passenger, the speed at which the passengers can move inside the terminal,
waiting times, queue lengths, etc., in different situations. Those metrics are of par-
ticular interest to airport planners which is why scientific community has focused
on determining the factors that influence perception [4]. Table 1 illustrates some of
these typical values suggested by IATA [5].

Optimization techniques are able to give optimal or close-to-optimal solutions to
problems that are deterministic in nature; on the other hand, simulation approaches
can consider the stochastic nature of the processes that participate in the system
under study, while at the same time being able to describe the studied systems at
different levels of abstraction. This chapter presents a methodology that combines
the two approaches to generate better solutions than the ones that could be achieved
by applying each technique independently. The methodology presented is applied to
the check-in allocation problem for illustrative purposes but the methodology itself
can be used in a wide range of problems from diverse fields to generate more robust
solutions.

Allocation of Airport Check-in Counters ... 205

Table 1 Level of service indicators
m?/Pax A B C D E

1. Few trolleys and passengers with
check-in baggage (row width 1.2 m)
2. Few trolleys and 1 or 2 pieces of | 1.8 1.5 1.3 1.2 1.1
baggage per passenger (row width
1.2m)

3. High percentage of passengers 2.3 1.9 1.7 1.6 1.5
using trolleys (row width 1.4m)
4. Heavy flights with 2 or more |2.6 2.3 2.0 1.9 1.8
items per passenger and high per-
centage of passengers using trolleys
(row width 1.4 m)

_.
Q9
—
N
—_
o
—
—
(=}
N=)

The problem is tackled in the following way. First a brute-force approach is
implemented to obtain initial feasible solutions taking into account quantitative
restrictions such as minimum and maximum number of check-in desks per flight,
load balance in the check-in islands, opening times of check-in desks, and other
restrictions imposed by the LOS.

The initial solutions are then encoded as chromosome-like data structures and
operations are performed in order to obtain the most promising solutions under a
particular cost function. Once the initial solutions are obtained, they are in turn
evaluated using a simulation model of the particular terminal under study includ-
ing in the model stochastic variables that count for the passenger arrival profiles,
opening times, layout of the facility, interactions between passengers, efficiencies
of processes, etc. With these elements it is possible to determine which allocation
is the most quality-efficient in a close-to-real scenario in order to maintain the LOS
indicators at the desired level. The proposed methodology has been put into practice
using information from a real terminal but it can be easily adapted to a different one
with different restrictions imposed by the corresponding LOS agreements between
the airport operator and the corresponding airlines.

The reminder of the chapter continues in the following way: Sect.2 is a brief
review of the principles of both approaches, simulation, and evolutionary algorithms
are presented. Section 3 introduces the proposed methodology, Sect.4 presents and
discusses the check-in problem in detail, and the different steps of the methodology
are described. Finally, Sect.5 wraps up the discussion of the chapter.

2 Evolutionary Algorithms and Simulation

Evolutionary algorithms are a group of so-called metaheuristics. The authors selected
evolutionary algorithms for tackling these problems because they have been widely
used by scientific community and the implementation is rather easy. In the

206 M. Mujica Mota and C.Z. Alcaraz

optimization process, the cost function can be designed using different metrics which
makes the model flexible. However, the solutions obtained do not represent real-life
systems where random factors play an essential role to get optimal results. The draw-
backs of evolutionary algorithms are overcome with the integration of simulation in
the methodology. This integration leads to a more robust approach that can be easily
adapted for problems in other fields by the reader.

There have been several theoretical and practical contributions to evolutionary
algorithms field, as evidenced by the books, papers, and workshops proceedings
published in the last years such as [6—8] or [9] among others. The use of metaheuristics
such as evolutionary algorithms to solve problems of this nature has been motivated
mainly because the population-based nature allows the generation of several elements
of the Pareto optimal set in a single run. Evolutionary algorithms can be very useful for
the selection of parameters to optimize the performance of a system. Furthermore,
The choice of any decision parameters can cause the system to perform better or
worse, which can be measured by some relevant objective or fitness function, as
in real systems, where the interactions between the parameters are not generally
amenable for analytical treatment.

In this section, a review of both approaches, Evolutionary Algorithms and Simula-
tion are presented so that the reader can have a clear understanding of the differences
and advantages between them.

2.1 Evolutionary Algorithms

The Evolutionary Algorithms (EAs) fall within the so-called population-based meta-
heuristics [10]. These techniques, which are considered as a general class of stochastic
optimization algorithms, are employed to find optimal (or as optimal as possible)
solutions to hard problems in a very wide range of areas.

Evolutionary algorithms are a group of methods inspired by the evolutionary
processes found in nature, they borrow some concepts from population biology,
genetics, and evolution such as inheritance, mutation, natural selection, and recom-
bination (or crossover) to guide the search within the solution space. Detailed infor-
mation can be found in [7, 10-14] to mention just some of the literatures.

The general idea behind an evolutionary algorithm is the representation of a
solution to the problem in the form of a vector of decision variables. Using bio-
logical terms, the genotype is the encoded representation of the variables, and the
phenotype, chromosome or genome, the set of variables themselves. In other words,
a genotype or individual, represent a solution to the problem to be solved, and is
represented by a list of parameters, also called chromosomes.

In most cases the transformation or modeling task is not simple but rather a
complex one and depends on the perception of the modeler. Thus the transformation
of the decision variables into a vector-like representation is per se an interesting and
challenging problem. Once the decision variables have been represented in the form
of a vector, the optimization problem can be specified.

Allocation of Airport Check-in Counters ... 207

Let us assume that we have a discrete search space and a function that assigns a
value to each of the elements in the search space.

f:X—>R (D)
The general problem is to find:
minf,x € X 2

Here x is a vector of decision variables, and represents the objective function. Such
a problem is commonly called discrete or combinatorial optimization problem [7].

Basic evolutionary algorithms follow the next steps. First, an initial population
is constructed where several individuals are randomly generated to form the first
initial population POP(k). Then each individual is evaluated, and a value of fitness
is returned by a fitness function. The initial population undergo a selection, mutation,
and recombination process to identify the best adapted individual. Figure 1 illustrates
this transformation process.

There are different ways of selecting individuals and a very popular one is the
deterministic (A, p)-tournament selection. This selection begins by randomly select-
ing X individuals from the current population POP (k). Together with the selection,
a fitness measure f is performed to evaluate each individual to keep the u best ones.
Using this evaluation, solutions that have a higher value of the so-called fitness func-
tion are identified and better opportunities for further evolution are given to those
solutions. These steps are repeated until a new intermediate population (POP;) is
completed. Following selection, the evolutionary operations, mutation, and recom-
bination (crossover) can be applied to improve the original problem.

The chromosomes of the parents are mixed during crossover, hence crossover
results in two new individual child, which are added to the next generation population
POP(k + 1). Parents and children are joined in some fashion to form a new

Fig.l Evolutionary e(e[o]e[e[e]e]o[eo]e]e/o/e[e|e]e[e/e|e|e]e/e[e/e/e[e/e]e
algorithm process Pop (k)
Tournamen
Selection
..............l..............
Pop i

s
AN

' NS

NN T

Pop k+1

A

208 M. Mujica Mota and C.Z. Alcaraz

next-generation population that is different from the initial generation, and the
cycle continues. This generational process is repeated until a termination condition,
imposed by the developer, has been reached.

2.2 Simulation

Simulation is the imitation of the operation of a real system or process over time.
It is used to generate artificial history and data of a system, and for the observation
and analysis of that artificial history to draw inferences concerning the operating
characteristics of the real system [11].

The model usually represents a set of parameters and assumptions concerning the
operation of the system. These assumptions are expressed in mathematical, logical,
and symbolic relationships between the entities, or objects of interest of the system.
Once developed, verified and validated, a model can be used to investigate a wide
variety of “what-if” scenarios about the real-world system [15]. Potential changes
to the system can then be simulated in order to predict their impact on the system’s
performance. Furthermore simulation can also be used to study systems in the design
stage, before such systems are built based on relationships taken from other fields.
Thus, simulation techniques can be used both, as an analysis tool for predicting the
effect of changes to existing systems, and as a design tool to predict the performance
of new systems under varying sets of circumstances. Nowadays, with the evolution
of computer capacities, computer simulation is also able to develop very accurate
and graphically appealing models that can represent a system at different levels of
abstraction, depending on the objective of the study.

A simulation model can be developed using different tools, for example, several
studies have been performed using modeling formalisms such as Coloured Petri Nets
[16] or using commercial software such as SIMIO [17] or ARENA [18] in which the
modeler makes use of a library of objects and just has to put them together.

Simulation alone has been proven to give good solutions in different fields such as
the transport industry [19], manufacturing [20], airport operations [21], etc. However
when it is used as a decision support tool it cannot ensure the best outcome since
the experiments only explore a subset of the whole different configurations of the
system under study and depending on the size of the model and the characteristics
of the computer the number of experiments is limited to the time window for the
decision to be taken.

Simulation recently has been used in combination with other techniques in order to
overcome the aforementioned drawbacks. It has been used to explore scenarios more
efficiently in combination with Petri nets [20] or for the evaluation of disturbances
with the use of constraint programming techniques [15], just to mention a couple of
examples. Thus the decision-making process supported by simulation experiments
always has a certain level of uncertainty that can be minimized as more experiments
are performed, however, this activity is time consuming and penalizes its potential
for timely decisions over the real system.

Allocation of Airport Check-in Counters ... 209

3 Methodological Approach OPT-SIM

The methodology presented has been applied to the case study of an airport terminal
with good results. Nevertheless, the methodology can be implemented in a different
set of problems from the one presented in this chapter. Some typical problems that
can be tackled with this approach are the analysis of counter areas such as those
of banks, service areas, ports, security filters and, in general, in situations where
allocation of resources must be performed and the stochasticity presented in the
system cannot be included in the analytical model, which would otherwise be quite
easily implemented using some mathematical programming techniques. Allocation
problems in particular can benefit from a mathematical programming formulation,
especially when operational or sample size constraints lead away from straightfor-
ward or closed-form solutions.

Figure 2 gives the diagram that illustrates the different steps in the methodology.
At the beginning a brute-force approach or constraint satisfaction problem generates
feasible solutions. The feasible solutions are encoded and are improved by the evo-
lutionary algorithm. Then some solutions are selected and evaluated in the simulated
environment, where the stochasticity is integrated to come up with a more robust
solution.

The Evolutionary Approach starts by representing the problem variables in a
chromosome-like structure to produce some initial feasible set of solutions for the
allocation problem to feed the evolutionary algorithm. As briefly described in Sect. 2,
an initial population is constructed, where several solutions are randomly generated
to conform the initial population POP (k). Then, the evaluation process is performed,
and a value of the fitness function is returned to measure the quality of each solution
to end up with n best solutions. The fitness function is designed in such a way that it

Fig. 2 OPT-SIM
methodology Generation of
Initial Solutions Problem
| Encoding Evolutionary
| Operations <<
o??’i?g;?gl Stopping Best Individual
Solutions Conditions Selection
Selection of Randgm
Solutions Generation of
Solutions
Eva\l;;atior Best Solution
[AEY Solution Obtained
Enviroment

210 M. Mujica Mota and C.Z. Alcaraz

measures the solutions depending on the objectives of the study. The new population
undergoes a mutation and recombination process. After k iterations, a pool of efficient
solutions is obtained. Figure 1 illustrates this transformation process.

The next phase of the methodology integrates the stochastic factors using a
simulation model, where the solutions obtained in the previous phase are further
improved through experiments with the simulation model. With this approach the
simulation model starts in an improved configuration, as the solutions obtained using
the evolutionary algorithm are cost efficient, therefore the improvement with the sim-
ulation approach is less time consuming.

With the previous implementation, the problem is approached by taking as many
characteristics as possible into account instead of restricting only to either the ones
that are limited to the perception of the modeler with an analytical technique or a
time-consuming analysis performed with a simulation approach.

The best solution or solutions are selected depending on how the dynamic model
has performed, thus ending up with a more robust solution than the one that could
have been obtained through the sole use of one technique or the other.

4 Case Study: The Check-In Allocation Problem

An airport terminal is a facility where passengers start on their journey through the air
transport service. In order to board the aircraft, the passenger must undergo different
processes involving management resource. First the passengers must arrive to the
terminal by any mean of transport that, depending on the location, could be public
transport (bus, metro, train) or private transport (private car, taxi, shuttle). Once they
enter the terminal, a registration process starts.

The check-in service consists of passenger registration, commonly known as the
check-in, and handing over their baggage; moreover, this is the moment when passen-
gers get a first impression of the airport and the airline. Although this first impression
is very important, there are other issues involved in the management of resources.
Baggage management is also a vital issue that it must be considered to successfully
monitor the proper operation of the airport and the airline. The baggage has to be
transported to the right airplane using conveyor belts and trolleys.

Passengers have to go to a check-in desk or a common check-in island to get their
boarding passes and to drop off their baggage. The check-in process can be either
manual or automatic. Even though automatic check-in (self check-in) is growing in
popularity, there are still a lot of passengers who prefer the manual process, which
is normally performed by personnel provided by the airline. In some cases, person-
nel provided by the airport may perform this process, depending on the agreement
between the parties involved. The facility and resources needed to perform the check-
in activity are normally provided by the airport through an agreement that sets up
the conditions and also the performance indicators (PI) that will measure the quality
of service provided.

Allocation of Airport Check-in Counters ... 211

At this point, there are two opposing objectives: on the one hand, the airlines
want to provide the best possible service to their customers at the least cost while, on
the other hand the airport needs to provide this service with limited resources that,
in the case of a check-in area, means the available check-in desks and personnel.
Furthermore, due to increased traffic and the consequent large inflow of passengers
and baggage heading for many different flights, the check-in allocation problem has
been gaining importance in the relevant literature.

Aninefficient management of resources such as ground services, personnel, desks,
filters, etc., are appreciated as congestion in terminals. The congestion in turn can be
appreciated in several points throughout the passenger boarding process; for exam-
ple, in the check-in desks, the security filters, passport control, and sometimes at the
boarding gate. These problems have been traditionally faced by the aviation indus-
try through the increase of physical resources (e.g., increase in the check-in desks,
increase in the number of security filters, etc.). Furthermore the increase in competi-
tion between airlines and airports has forced both actors to optimize their resources
at hand in order to reduce their costs and keep competitive. On the other hand, the
increase of passenger traffic in airports makes necessary the development of novel
decision support tools that take into consideration all the different elements that are
involved in the system and influence the correct allocation of resources.

Furthermore the increase in traffic caused mainly by the competition between
airlines, market liberalization, and the increasing number of low-cost airlines will
force the need of efficient strategies and procedures for allocating the resources inside
terminals if the LOS are to be maintained.

The general check-in allocation problem consists of allocating the available desks
of a terminal in such a way that the allocation satisfies a series of restrictions imposed
by the airport and the companies through a service contract. These restrictions may
change depending on the airport, the airlines, the region it serves, and the type of
terminal [22].

The check-in allocation problem is a well-known problem in airport terminals that
has been studied by some authors using evolutionary approaches or mathematical
formulations [23-25]. These techniques have the drawbacks that do not take into
account all the different elements in the terminal’s check-in area or the interactions
of passengers inside the terminal with each other or with other elements of the facility.

The methodology presented in this chapter deals with the problem of performing
the allocation of check-in desks in a terminal, considering not only the internal
policies and quality indicators but also the interactions between passengers and the
physical facilities of a terminal. The various rules and information data were provided
by a terminal in the Middle East under a confidentiality agreement. We shall refer to
this airport, when applicable, as “the airport.”

212 M. Mujica Mota and C.Z. Alcaraz

4.1 Literature Review

The check-in allocation problem has received little attention in the literature over the
last few decades, but in recent years , because of the increasing traffic demand, special
attention has been placed on this process due to its economic and time importance.
It has been defined and studied using different modeling techniques and methods for
its resolution.

Parlar and Sharafali [26] use a dynamic programming approach for the check-in
allocation problem assuming that it is possible to close or open counters depending
on the demand. This practice is efficient from the passengers’ point of view as the
perceived quality of service is high in comparison to a static way of managing the
counters but it is difficult for some companies and the airport to count on having
extra counters when the demand is at its peak.

For these kinds of resolution, the parties have different objectives; the airlines want
to minimize their use, while the airports want to maximize their use. On the other
hand, although the trend in airports now is to use paperless tickets and self check-in
kiosks, this is not the case in many of the airports around the world, especially in
the growing Asia-Pacific region where they are used to more personal treatment.
Besides, some developing regions, such as Latin America or Africa, still depend
strongly on the manual check-in process.

Another similar paper by Littler and Whitaker [27], provides a procedure for
estimating staffing requirements to meet a preset processing time target. It uses a
stochastic simulation of passenger arrivals at the terminal. This paper mainly focuses
on the design phase of a managerial schema for the use of check-in counters.

Another paper on this problem in the Hong Kong Airport was presented by Chun
and Mak [28]. Their work combines simulation with an allocation system, taking
restrictions and desires of the companies at the airport into account. They use a
simulation-based optimization approach to determine the best check-in allocation,
considering the stochasticity of some of the processes involved, such as service and
arrival rates, thus evaluating the fitness of the solutions by analyzing the efficiency
of processing passenger by predicting queue lengths.

More recently, Park and Ahn [29], revisited the problem of passenger arrivals at
Gimpo airport to determine the most appropriate number of check-in counters, again
this work focuses on the sizing of the resources with a view to a particular objective.

With a different scope, Yan et al. [30], provide an integer programming approach to
the assignment of common-use check-in counters for a model of Taipeis International
Airport. However, due to some size limitations they had to come up with a heuristic
method to solve the model. This work aims at assigning the allocation of common-use
counters in a close-to-optimal way.

van Dijk and van der Sluis [31] present a paper that is connected with the work
presented here; the authors use simulation to determine the minimum numbers of
desks and then an integer programming approach to optimize, as much as possible,
the resources spent on allocating passengers. The work presented by these authors
analyzes the problem from the passengers’ point of view, with an eye to shortening

Allocation of Airport Check-in Counters ... 213

service times. It only considers some of the restrictions that are presented in this
chapter.

On the other hand, the problem presented by Hsu et al. [24] deals with the dynamic
allocation of the check-in services required by passengers aiming at reducing the
total time the passengers spend on the check-in procedure. The assumptions made
by the authors are from the standpoint of the passengers, so the model could be
used for assigning the steps the passengers need to follow in order to minimize their
processing time; some assumptions, such as an average processing time, are made,
thus discarding the inherent stochasticity of this operation. Their approach uses th
average values and clustering the passengers.

Very recently Castillo-Manzano and Lopez-Valpuesta [32] analyze the check-in
problem from the sociodemographic factors that influence passengers the decision of
using one type of check-in facility over another (e.g., check-in counters or common-
use self-service desks).

The work presented in this chapter differs from the aforementioned review in the
sense that it performs the allocation of check-in counters through an approach that
combines an analytical approach using evolutionary algorithms with simulation that
allows modeling the dynamic and stochastic characteristics of the system under study.
The combination of a deterministic solution with the stochastic elements stressed in
the simulation model provides a more robust and reliable solution than the one that
could be achieved with the sole use of the evolutionary or the simulated approach.
The applicability of this approach is validated by using information from a real
airport terminal provided under a confidential agreement between the authors and
the airport.

4.2 Technical Approach

The problem consists of performing the check-in desks allocation satisfying a series
of rules provided through a contract between the airlines that use the counters and
the airport. These rules are classified as hard or soft.

The hard rules, i.e., rules that cannot be broken under any circumstances must
be satisfied when the allocation is performed. On the other hand, it is desirable for
soft rules to be satisfied but they can be broken when there is no other available
option. It is important to mention that the violation of soft rules would impact on
the perception of quality by the passengers inside the terminal, so it is an important
factor to be taken into account by the company that performs the allocation.

214 M. Mujica Mota and C.Z. Alcaraz

4.2.1 Hard Rules

The following are the mandatory rules:

1.

Overlap Verification: The current allocation must always be aligned with the
allocation of the previous month in order to avoid having allocated the same
check-in desks or nearby for the last flights of the previous month and for the first
flights of the current month.

. Balanced Loads: Allocating flights to check-in counters will consider an aspira-

tional usage of 20 % for each of areas A, B, C, D, and E. The acceptable deviance
is 1% on a daily basis and 5 % on each 2-hours window. This restriction means
that the terminal is used in a balanced way, therefore the usage of the areas is
maximized with an increase of the passengers perception of quality. Figure3
illustrates the different zones of the terminal area under study.

. Number of Desks: Allocating flights to check-in counters will consider a minimum

standard of one check-in counter per 45 passengers. This restriction has been
defined to provide a good quality of service to the passengers at the check-in
process, but a higher limit of 5 counters per airline will also be established.

. Sorting Hall: Since there are two different sorting areas, the airport authority has

established that the allocation of check-in desks should be done in such a way
that the allocation of check-in desks should be done in such a way that no desks
for the same flight use different sorting lines, as there is a high risk of lowering
the efficiency of the baggage transport process and also of ending on a different
flight. Figure 4 is a diagram of the two baggage conveyors systems. In this system

QRIKUJAHIC Y TKIWYIKC BLSP5VES
%1] w0z] w3] wa] 10z 1o [vo7] ves [s] v] tm [nz] wa] na] ws] el vir [a]vm 1] s=] |
- =
g Area-A
|2
o vz wr[wol e s arrsere [w2 [0 e[s2e[aav[rze [rzs [rza [1 [z | [xesc Cash
= GFISQICHWS/AZTDIDI
= UA/SWIMH JU/OSBG/OAICAKWRETWEIN DM SPHL
i Q 200 20] ant ;2] 213 ;e 218 [awe 217 [avs 29 [2m | 21 | 1
<|83
g g £ Area-B
-
i M2t o[fonaloar[asefome o [annf 2] [0 [o[e [aov[2ze [2as [oe [onn [222 %826 | Camh
AF /KL/UN/DS/KE/BU/BT/IMS/TG/BR/TIVKQ when one fligth opermles DNSPS I PSC
DUBA/CXRNSTIRO DHMAS
201 [202 [203] 304 [302 [20e [207 [3ce 208 | 310 | 211 | 212 | 213] 314 | 218 | 318 | 317 | 218 [31 | 2 3:1“ 10
o
T Area-C
| 2
342] 241 [30 | m9 338 [297 [308 [20¢ [23 [330 | 220 [301 | ;o0 [o0 | aoe [327 [aze [325 | 3z [220 | 32 [ORORE xmac Cash
g LHJO SILX/S K/ME! SVIUGUS 28 Ot FS
AUPK/IR'KO when two flights operales DN ABC
01| w02] 03] w04 s0sTsoe[sor[aos [aoo [aro[an [az] e[ara[areTare [ar7 [ars [are [am [421 [ERRRE »8rc Cah
o
2 Area-D
-
o0 |uz] e [wo|as|eam]awr || |an]em o | a0 o] os|ar|ae|as]|ae|an]] | xBac Cash
25 IC/HY/ETIUL/ SUTNSIUE £ Stores
E! VS RAXY/ASLNMNLIPSIIY/ SDYVVIIT 401G W
w1 | %0z | %03 | 204 | 0% | £o8 | 207 | %08 [209 | &0 | #e1 | 1z | @13 | eva] s1e [sve | o17 [e1s | o1s [e | o2 Mg Mwcane
[0)
] EB Area-E

Fig. 3 The check-in zones in the terminal under study

Allocation of Airport Check-in Counters ... 215

TRANSFER INPUT

BELT
POLICE
SEARCH
). ROOM
AREAE |} SORTING HALL 1
(T I B3 -
fig | = / |
AREA D P : | 2,
AT] 3 ‘ 1 _ e |
g l -
— il \lmI -~/ L
= 1 i —
AREAC) | SORTING HALL 2
P If - YA
mmre] Lot 1t o/ B
= T /. Bt
AREA B o=y ! 4
g 1L_J — [
AREA A | -

OPTIONAL CONNECTION TO C4 FOR
TIME CRITICAL BAGGAGE

Fig. 4 Layout of the baggage handling system inside the terminal

areas A and B are processed in a different hall from areas C, D and E, therefore
allocation must consider the boundary between these areas in order to avoid the
allocation of a flight that could use both baggage systems.

4.2.2 Soft Rules

These rules are directly associated with the quality perceived by passengers; therefore
in order to get a good evaluation of the quality of service, these rules should be largely
satisfied.

1.

Optimized Queuing/Circulation Areas for heavy flights: The allocation will avoid
placing more than 3 heavy flights on the same row island during any given
one-hour window. If this restriction is not satisfied, there is a high risk of conges-
tion inside the island or row with the corresponding perception of poor quality
on the part of the passengers.

. Optimized Queuing/Circulation Areas for any flights: The allocation will avoid
placing 2 flights on consecutive counters in any given one-hour window. The
recommended practice is to leave at least one counter free between two flights
for reasons of redundancy and flexibility. This practice is common in the terminal
but the airport authority claims that better ways of allocation should be explored
in order to make more efficient use of all the available resources, as this practice
reduces the capacity of the check-in resources.

. Airline Preferences: The preferences of the airline for their flights to be allocated

to specific rows or fixed desks are officially taken note of during meetings and

216 M. Mujica Mota and C.Z. Alcaraz

the solution will consider their requests, but only after complying with all the
allocation rules. It is desirable and common practice for companies from the same
alliance to be allocated in the same area most of the time, therefore an efficient
allocation will give priority of use to those airlines belonging to alliances inside
the terminal islands.

4.3 Constraint Satisfaction

The first step of the methodology is the constraint satisfaction problem. This problem
performs a static allocation based on the flight plan provided by the airport. The
allocation algorithm performs an allocation of the planned flights taking into account
the following constraints:

. There is no overlap between flights

. Counters are opened 3 h in advance

. It calculates the number of counters needed in a base of 45 pax/counter

. It leaves one check-in desk in between flights

. The flights are allocated in the corresponding sections of the check-in area, so
that the baggage does not end up in a different baggage hall

6. It randomly allocates check-in desks, trying to distribute the flights uniformly

(load balance).

N B W=

The allocation for the flights is performed sequentially in time slots, taking into
account the aforementioned constraints as it is done in common practice. It takes
every flight at a time and looks for the corresponding available time slot that satisfies
the restrictions and, once allocated, it continues with the next flight on the allocation
list. After all the flights are allocated an initial solution is obtained.

In order to get a variety of solutions for the evolutionary algorithm, a random
selection of flights is performed every time the allocation algorithm is run. Using
this approach a population of initial solutions is generated.

Once the initial solutions are generated, the next challenging task is the transfor-
mation of the solutions into vectors with the information that will be used by the
evolutionary algorithm for improving the initial solutions.

4.4 Chromosome Representation

One of the key tasks in this approach is the proper representation of the solutions in
the form of a vector of information. The representation will significantly influence
the performance of the evolutionary algorithm. Every field of information holds key
information that is useful for the performance of the operations of the evolutionary
algorithm. In this chapter, the vectors have been defined as follows:

Allocation of Airport Check-in Counters ... 217

. ID: Flight Identifier (string)

. CL_OT: check-in Desk Opening time (min)
CI_CT: check-in Desk Closing time (min)

I_C: Initial check-in Counter (integer)

F_C: Final check-in Counter (integer)

. Soft: check-in Allocation Soft Rules (Integer)

. Hard: check-in Allocation Hard Rules (Integer)

NoO U R W

Field 1 holds the Identifier of the corresponding flight. This field is used for
keeping track of the corresponding flight. Fields 2 and 3 refer to the time the check-
in counters are open and closed, respectively. Fields 4 and 5 provide the information
about to which desk numbers are used. The last two fields (Fields 6 and 7) hold the
information of the number of check-in desks needed to satisfy the hard and soft rules.
They are necessary to identify if a counter is left or not in between flights.

4.5 Crossover Operations

Crossover is the main operation used for improving the current solutions. Crossover
is performed in such a way that the feasibility of the new generated solution is
maintained.

The crossing will be performed between chromosomes or elements of two current
solutions (SolA and SolB) and it will perform the crossing between pairs. Figure 5
illustrates the crossing process.

The crossing is performed in the locus associated with the check-in desks being
used, I_C and F_C, see Fig.5. The reason is that the timeslots where the check-in
is performed cannot vary, therefore only the counters will be the ones that will give
variability to the generated solutions. The light blue color elements of the solutions
(offspring) are the ones that have been changed by the crossover operators.

In order to maintain consistency in the generated solutions, the algorithm will
verify three aspects of the new solution:

1. The crossing is performed between pairs that must use the same timeslot:
CI_OTy=CI_OTp 3)
CI_CTy=CI_CTg “4)

In order to choose a proper candidate for the crossing, the algorithm will take one
element of the SolA and randomly choose another one from So/B. After the selection
of the element of SolB it will verify that its timeslot corresponds to the same one as
the element from SolA. If that is not the case it will take another one until a feasible
one is found.

218 M. Mujica Mota and C.Z. Alcaraz

|o/e|efej/efee| |[o]ofofofofo]o]
| ID: |CI_0T| |CI_CT|| LG | F_c.| Soft | Hard.| | Dy |CI_OT||CI_CT|| LG |F_ci| Soft |Hard.-|

SolA SolB

®e 6 ¢ O O e e

IDi |CLOT cLCT| I.G |F_C | Soft | Hard:
Offspring

Fig. 5 Crossover between solutions

2. The crossing does not hinder previous or future flights.
It may be the case that the previous restriction is satisfied but the time and desks
used for the allocation overlap previous or future allocations. So in order to avoid
this situation the algorithm checks that this situation is avoided. Figure 6 illustrates
the potential conflicts that may be encountered when the crossover is performed.

This example is schematized in Fig.6. The counters of Flight]! from SolA are
swapped with the ones from Flight4 of SolB as both flights have the same check-in
time window. If we focus on the new SolB generated (right-hand side of Fig. 6), we
can see that Flight4 is in conflict with Flight2, while in the case of SolA there are no
conflicts.

In order to avoid these types of conflicts, a procedure has been coded for the
crossover operation. It compares the allocation performed against all the different
elements of the current solution that fall within a time window of [open_time — 180,
open_time + 180]. This comparison ensures that the previous allocations do not
conflict with the current allocation, and at the same time that the timeslot of the
present allocation does not conflict with a future one. If the allocation is conflict
free, then the allocation is allowed and performed. However, if the time windows
overlaps (a potential conflict) with some allocation, then the used check-in desks are
verified for overlapping, if there is no conflict then the allocation is allowed. On the
other hand when both conditions occur (time conflict and desks used overlapped),
the crossing is not performed.

Allocation of Airport Check-in Counters ... 219

SolA: Flight1 Time (min.) :SolC: Fiight1 Time (min.)
— . ——
04:00 05:00 06:00 07:00 08:00 E 04:00 05:00 06:00 07:00 08:00
cl | ct |
2 | L 2
S | Flight1 | Qe
£] [4| ==
= S 5| Flight 1
2 Fignz B Fions | R Figniz R Fighs |
fogd @]
25 o 4 G
3 @l 3
8 ool G ol oo]
cli| O |

Crossover

SolC: Fiights ~ T'me (min.)
04:00 05:00 06:00 07:00 08:00

3
3 Flight 1

SolB: Fiights Time (min.)
—_—>

04:00 05:00 06:00 07:00 08:00

[Fign:2— R ot

Counter Number

Fig. 6 Potential conflicts

3. Hard rules consistency
Finally, the crossover will evaluate if the allocation does not violate the hard
rules concerning the number of desks needed (Field7). If the new allocation does
not violate the minimum number of desks needed it will be kept as a feasible
allocation. If the solution does not leave a desk in between flights, it will be kept
as a feasible solution and later on this situation will be evaluated to see whether
or not it affects the fitness of the new solution.

4.6 Objective Function Evaluation

During the performance of the evolutionary algorithm, once a feasible solution is
generated, it is evaluated on a static basis using an objective function. This function
evaluates the fitness of the solution by calculating several factors that make up the
final value assigned by the function. These factors must have a direct impact on the
LOS indicators.

The function used by this approach uses four parameters but it is not only restricted
to those values. The analyst could extend the formula to include more parameters
depending on the particular case of the airport in question. For the case presented

220 M. Mujica Mota and C.Z. Alcaraz

in this chapter, the function F(v1, v2,v3, v4) is made up by a linear form of the 4
parameters:

F = apvl + axv2 + azv3 + agvéd (®)]

where:

v1:is a factor that measures the number of flights in the solution that does not respect
the 1-check-in desk in between flights.

v2: is a factor that evaluates the balance loads for the solution in accordance with the
policies imposed by the airport.

v3: evaluates the number of heavy flights in the same island during 1-hour window.
v4: evaluates the distribution of flights in the islands of the check-in area.

ay: is the weight of the corresponding factor.

In this case study of the different weights were kept at the value of 1 for illustrative
purposes but the parameters can be changed to assign a different priority to one or
several parameters over other ones. These priorities would drive the selection of the
different feasible solutions, depending on the airport’s requirements.

The evolutionary process is performed using the values of the objective function
to calculate the goodness-of-fit of the different allocations and the selection process is
carried out based on those values. Using this approach, the solutions are incrementally
improved until a stop condition is satisfied. This condition is determined arbitrarily.

4.7 Simulation-Based Improvement

A pool of potential solutions for the allocation problem is obtained from the evo-
lutionary algorithm to be later tested using a simulation model of the facility under
study. This evaluation will provide a better estimation of the quality levels that can
be achieved in the real system.

It is important to mention that certain requirements are desirable for the simulator
in order to have the best evaluation of the quality indicators, i.e.:

e Agent-based so that the interaction between entities is more approximated to real-
ity.

e High-description level; the more accurate the better is the evaluation.

e The model must allow interaction between agent—agent and agent—objects, so that
it is possible to determine differences between relative positions among agents and
objects.

There are some simulators in the market that satisfy these requirements [17],
thus the methodology can be implemented making use of the one that suits best the
objective of the study.

The use of the simulated scenario makes it possible to test the potential best
solutions in a close-to-real environment. Sometimes it happens that solutions do

Allocation of Airport Check-in Counters ... 221

Table 2 Departure flight schedule

Airline Passenger Departure flight Departure time
AIC 90 AT 0975 7:10
UAL 220 UA 0807 8:00
CHH 100 CH 9999 8:20
RNA 110 RN 0604 8:00
PIA 120 P10414 7:30
AFR 130 AF 8866 10:00
CSN 140 CS 0582 7:00
DLH 90 DL 0853 11:00
KLM 90 KL 0815 10:00
ABQ 90 AB 7777 12:00
SAI 90 SA 0570 14:00
NAX 90 NA 0835 14:00
SWR 285 SW 0847 10:20
ROT 306 RO 0705 18:00
BBC 120 BB 8888 22:00
AUA 116 UA 0221 21:10
KQA 314 KQ 0432 18:30
BAW 206 BA 0530 15:40
AFL 337 AF 0650 21:20
KLM 120 KL 0814 15:20

not perform well in the real system once they are implemented. The latter could be
caused by some obstacles present in the facilities (e.g., big columns, trolley stations,
etc.) that cause a potential good solution not to be such in reality because of conges-
tion generated by pax—pax or pax—object interaction. Other causes are the emergent
dynamics due to interactions of the entities and these can be easily observed in a
terminal during congestion or during a disruption.

This methodology has been used to develop an initial solver for the check-in desk
allocation for the airport. The initial approach will be used to evaluate the feasibility
of the approach and, once it has been validated as a decision support tool, it will be
extended to an operational level.

An initial flight plan has been used for testing the approach and its implementation
in the simulated environment. Table 2 presents the flight plan used for the example
presented here.

The titles of the columns are self-explanatory. Although Table 2 was not the actual
flight plan, it is sufficient to test and validate the approach presented in the work.

4.8 Initial Solution

The set of initial solutions is generated for hundred desks as it has been explained in
Sects.3 and 2.1. A graphic representation of the solution on one airplane is depicted

222 M. Mujica Mota and C.Z. Alcaraz

TIME

:20 | 4:40 | 5:00 | 5:20 | 5:40 | 6:00 | 6:20 | 6:40 | 7:00 | 7:20 | 7:40 | 8:00 | 8:20 | 8:40 | 9:00 | 9:20 | 9:40 |10:00

IS

Counter] 4:00
cl
c2
c3
o4 PI0414
c5

c6

c7

c8

c9

c10
c11
c12 AF8866
c13
c14
c15
cl16
ic17
c18
c19
c20
c21
c22
c23
c24
c25
c26

Fig. 7 Partial representation of an initial solution

in Fig.7. The horizontal axis represents time and the vertical one represents the
check-in desks used. Figure 7 exemplifies the initial solutions for 3 flights. The main
outcome from the initial phase is a population of feasible solutions that are generated
considering the different requirements for the allocation problem in question.

4.9 Chromosome Encoding and Evolution

The solutions generated in the initial phase are encoded as explained in Sect.4.9 to
start the evolutionary algorithm.

Table 3 gives an example of one encoded solution. The first column entitled Flight
gives information about the Flight number to be allocated. The PAX column provides
the information about the number of passengers registered for the flight. The follow-
ing two columns, called DeskIN and DeskEND, store the information about desks
that have to be allocated for the corresponding flight. The last two columns, Open-
Time and CloseTime, give the information for the opening and closing time of the
corresponding flight. For example, the first row means that flight CS0582, which has
140 passengers, will use the desks from 21 to 24 and they will be open from 4:00
am until 7:00 am.

Allocation of Airport Check-in Counters ... 223

Table 3 Encoded solution

Flight PAX DeskIN DeskEND OpenTime CloseTime
CS 0582 140 21 24 4.00 7.00
AL 0975 90 61 63 4.17 7.17
PI 0415 120 1 3 4.50 7.50
UA 0807 220 71 75 5.00 8.00
RN 0604 110 91 93 5.00 8.00
CH 9999 100 81 83 5.33 8.33
AF 8866 130 11 13 7.00 10.00
KL 0815 90 41 43 7.00 10.00
SW 0847 285 84 88 7.33 10.33
DL 0853 90 31 33 8.00 11.00
AB 7777 90 51 53 9.00 12.00
SA 0570 90 61 63 11.00 14.00
NA 0835 90 71 73 11.00 14.00
KL 0814 120 51 53 12.33 15.33
BA 0530 206 31 35 12.67 15.67
RO 0705 306 91 95 15.00 18.00
KQ 0432 314 21 25 15.50 18.50
UA 0221 116 11 13 18.17 21.17
AF 0650 337 41 45 18.33 21.33
BB 8888 120 1 3 19.00 22.00

For each flight, whether or not they respect the check-in desk in between flights
is evaluated. The number of check-in desks open is calculated based on the rule that
one check-in desk must be open for every 45 passengers. As an example, see the
initial flight on Table 3, for flight CS0582 with 140 passengers, for this rule to be
respected three check-in desks should be opened.

The balance load in each area A, B, C, D, and E is also calculated for the solutions.
This balance load depends on the layout of the airport and the internal policy of the
airport authority. The computation divides the check-in desks into zones and then
calculates how many flights have been allocated to which zones.

The third parameter needed to compute the objective function is the one for heavy
flights. In this case the zoning is performed based on the time of the allocation and
the correspondent zone, this way it is possible to penalize the allocation of heavy
flights in the same island during a time period.

The fourth value is calculated taking into account the number of flights in each
island, so that the flights are evenly distributed. Thus, the space in between flights is
optimized and the level of service improved.

Using the objective function, the selection among the siblings solutions is made
in such a way that the value of the objective function is progressively improved.

224 M. Mujica Mota and C.Z. Alcaraz

Table 4 Values of the cost function

Iterations Avg. cost Value

1 1.36

10 1.012 25.58823529
20 0.6714 50.63235294
30 0.468 65.58823529
40 0.4228 68.91176471
45 0.3542 73.95588235
60 0.15068 88.92058824
624 0.145276 89.31794118
891 0.13397 90.14926471
3858 0.126434 90.70338235
6605 0.125325 90.78492647
6914 0.112363 91.73801471
31,600 0.11074 91.85735294

Table4 illustrates how the objective function is improved as the algorithm evolves.
Meanwhile, Fig. 8 illustrates the evolution of the cost function versus the number of
iterations.

4.10 Performance Evaluation in a Virtual Environment

The model of the terminal area has been developed using a general-purpose simula-
tion software called SIMIO [17]. The simulator has been selected for these studies
as it possesses most of the necessary characteristics previously mentioned. There are

AVG. COST VALUE
1.6

14
1.2 4
1
0.8 —4—AVG. COST VALUE
0.6
0.4

0.2 1

0
0 100 200 300 400 500 600 700 800 900 1000

Fig. 8 Convergence of the cost function

Allocation of Airport Check-in Counters ... 225

other tools that possess better characteristics of agent interaction but for the sake of
illustration the authors consider that SIMIO is good enough for evaluating different
interactions. However, if the reader wants to emphasize in the interactions, other
tools could be more suitable.

The simulation model represents the layout of the area under study, which com-
prises 100 check-in desks in an area of 170 x 70 square meters (see Fig.9). With
the help of the virtual environment, the LOS can be evaluated alongside other per-
formance indicators that are important for assessing the correct management of the
area under study.

Figure 9 presents the simulated layout of the terminal area together with some data
and notation below the model. These notations illustrate how the different sections
of the terminal have been identified in order to dynamically calculate the LOS over
time. In the terminal area there are 5 sections, namely areas A, B, C, D and E; with
5 subsections each. Therefore, a total of 25 areas were monitored in the study.

- —— T —— - —— -
o0 o0 ooog o

Level Of Service Grid
Bl im0 Clpmo Dlpwo £1 o
B2 6 C26 D2 o E2[0
B3 0 c3pme D30 E3 O
B4 o C41000 D4l E4 N0
A5 B5 O Cs N6 D50 Es HO

2ER 2

Fig. 9 The simulated environment

226 M. Mujica Mota and C.Z. Alcaraz
4.10.1 Stochastic Parameters

The advantage of using a simulation model for assessing the different solution, is
that it is possible not only to test the proposed allocations in a close-to-real scenario
but also different characteristics of the passengers can be added to the model, thus
making the evaluation more reliable than the evolutionary algorithm by itself. Some
examples of the dynamic parameters that have been added to the model are presented
in Table 5. These parameters are just an example of common values, however, the
reader should perform a data acquisition exercise to come up with the right values
for its particular study.

Different configurations provided by the allocation algorithm have been evaluated
using the simulation model. Table 6 is useful to illustrate the differences between the
initial allocation and the final one.

It was considered that zones with congestion problems where those areas with
values under 3 m?/pax to be considered as critical. As presented in Table 6, initially,
there were several areas where congestion could be perceived as the LOS indicators
illustrate; namely areas E1, C1, B1, and E2. This configuration presents the worst
LOS value in area E1, with a value of 1.1113 m?/pax. When the allocation provided
by the evolutionary algorithm is evaluated in the simulation environment, the LOS

Table 5 Parameters of the simulation model

Concept Type

Check-in desks processing time Lognormal (0.709, 0.154) with a minimum of 1
Arrival profile Triangular (—180, —90, —40) min

Passenger speed Uniform (0.4, 0.9) m/s

Check-in area 170 x 70m?

Passengers desk 1 person/desk

Passengers do not show earlier than 3 h prior to

departure

Table 6 Level of service indicators

Critical zones Minimum value m?/pax
Initial

Zone E1 1.1113

Zone C1 1.6585

Zone B1 1.8214

Zone E2 1.9767
Final

Zone E1 2.3415

Zone D1 2.1223

Zone C1 2.5617

Allocation of Airport Check-in Counters ... 227

indicators show a significant improvement, see Table 6. For the new allocation, there
were only three critical zones and the minimum value was perceived in zone D1, with
a value of 2.1223 m?/pax. In conclusion, with the use of the evolutionary approach
an aoptimized allocation for desks was found. Due to this, the congested areas in the
terminal could be reduced, thus providing a better allocation than the one that can
be achieved by manual allocation.

5 Discussion

The present work introduces a new methodology that combines an evolutionary
approach with simulation to perform the check-in desk allocation for optimizing
the LOS indicators in an airport terminal. The strength of the methodology lies in
tackling the problem in such a way that it possible to take into account deterministic
and stochastic characteristics resulting in a more robust and reliable solution. The
algorithm uses an evolutionary approach to improve the initial allocation of check-in
desks taking into account the policy restrictions imposed by the airport. Once good
solutions from the mathematical standpoint are obtained, they are further improved
using a simulated environment that takes into account other elements of the problem
such as physical locations, queue policies, passenger arrival profiles, efficiency of
the personnel, etc.

The results show that the methodology is robust enough to provide good solutions
with few iterations and the reliability of the solutions is improved with the simulated
model. In addition the methodology is flexible enough to include more constraints
either in the evolutionary algorithm or the simulation model in order to provide solu-
tions that are in line with the objectives of the airport. The methodology that has been
presented can be easily implemented in other terminals or in other industries follow-
ing the guidelines and suggestions presented here but the simulation model must be
developed for the corresponding terminal. In future implementations a metamodel
can be integrated into the evolutionary algorithm in order to develop a stand-alone
tool for decision-making. This methodology would be recommendable for the plan-
ning phases of new passenger terminals or for assessing the current performance and
to evaluate future implementations that involve policy restrictions.

Acknowledgments The authors would like to thank the Aviation Academy of the HvA, the Mexican
Council for Science and Research (CONACYT) and the Popular Autonomous University of Puebla
for their support for this work.

References

1. BOEING. Current market outlook 2013 2032. commercial airplanes market analysis, 2013.
2. EUROCONTROL. Challenges of growth: summary report, 2013.
3. AIRBUS S.A.S. Global market forecast. future journeys 2013 2032, 2013.

228 M. Mujica Mota and C.Z. Alcaraz

4. AR. Correia, S.C. Wirasinghe, and A.G. Barros. Overall level of service measures for airport
passenger terminals. Transportation Research Part A: Policy and Practice, 42(2):330-346,
2008.

5. R. Neufville, A.R. Odoni, Belobaba P.P., and T.G. Reynolds, editors. Airport Systems: Plan-
ning, Design, and Management. McGraw-Hill Education: New York, Chicago, San Francisco,
Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney,
Toronto, 2013.

6. S. Delahaye, D., Puechmorel. Modeling and Optimization of Air Traffic. Wiley-ISTE, 2013.

7. FE. Glover and G.A. Kochenberger. Handbook of Metaheuristics. Kluwer Academic Publishers,
2003.

8. KingLoong Shiu and K.Y. Szeto. Self-adaptive Mutation Only Genetic Algorithm: An Appli-
cation on the Optimization of Airport Capacity Utilization, volume 5326 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008.

9. Thomas Black. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-
tionary Programming, Genetic Algorithms. Oxford University Press, Oxford, UK, 1996.

10. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

11. M. Affenzeller, S. Winkler, A. Beham, and S. Wagner. On the influence of selection schemes on
the genetic diversity in genetic algorithms.In Roberto Moreno-Daz, Franz Pichler, and Alexis
Quesada-Arencibia, editors, Computer Aided Systems Theory - EUROCAST 2009, volume 5717
of Lecture Notes in Computer Science, pages 777-784. Springer Berlin Heidelberg, 2009.

12. J.R Koza. Genetic Programming. MIT press, 1992.

13. Z.Michalewicz. Genetic algorithms + Data Structures = Evolution Programs. Springer-verlag,
1992.

14. H.P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

15. J.Banks, CarsonJ.S., and B.L. Nelson. Discrete Event System Simulation. Prentice Hall, Upper
Saddle River, NJ, 1996.

16. K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modeling and Validation of Concurrent
Systems. Kluwer Academic Publishers, 2009.

17. SIMIO. Simio homepage, 2002.

18. ARENA. Arena homepage, 2002.

19. F. Longo. Advances of modeling and simulation in supply chain and industry. Simulation,
87(8):651-656, aug 2011.

20. JuanIgnacio Latorre, Emilio Jiménez, and Mercedes Pérez. The optimization problem based on
alternatives aggregation petri nets as models for industrial discrete event systems. Simulation,
89(3):346-361, March 2013.

21. S. Yan, C.Y. Shieh, and M. Chen. A simulation framework for evaluating airport gate assign-
ments. Transportation Research Part A: Policy and Practice, 36(10):885-898, 2002.

22. R.E. Kazda, A.; Caves. Airport Design and Operation. Emerald, Inc., 2007.

23. B. Giuseppe and A. Genovese. A mathematical model for the optimization of the airport check-
in service problem. Electronic Notes in Discrete Mathematics, 36(0):703-710, 2010. {ISCO}
2010 - International Symposium on Combinatorial Optimization.

24. C.I. Hsu, C.C. Chao, and K.Y. Shih. Dynamic allocation of check-in facilities and dynamic
assignment of passengers at air terminals. Computers & Industrial Engineering, 63(2):410-
417, 2012.

25. M. Parlar, B. Rodrigues, and M. Sharafali. On the allocation of exclusive-use counters for
airport check-in queues: static vs. dynamic policies. OPSEARCH, 50(3):433-453, 2013.

26. M. Parlar and M. Sharafali. Dynamic allocation of airline check-in counters: A queueing
optimization approach. Management Science, 54(8):1410-1424, 2008.

27. R.A. Littler and D. Whitaker. Estimating staffing requirements at an airport terminal. Journal
of the Operational Research Society, 48(2):124-131, 1997.

28. H.W. Chun and R. W.T. Mak. Intelligent resource simulation for an airport check-in counter
allocation system. Trans. Sys. Man Cyber Part C, 29(3):325-335, August 1999.

Allocation of Airport Check-in Counters ... 229

29. Y. Park and S.B. Ahn. Optimal assignment for check-in counters based on passenger arrival
behaviour at an airport. Transportation Planning and Technology, 26(5):397-416, 2003.

30. S. Yan, C.H. Tang, and M. Chen. A model and a solution algorithm for airport common use
check-in counter assignments. Transportation Research Part A: Policy and Practice, 38(2):
101-125, 2004.

31. N.M. van Dijk and E. van der Sluis. Check-in computation and optimization by simulation and
ip in combination. European Journal of Operational Research, 171(3):1152-1168, 2006.

32.].I. Castillo-Manzano and L. Lopez.-Valpuesta. Check—in services and passenger behaviour:
Self service technologies in airport systems. Computers in Human Behavior, 29(6):2431-2437,
2013.

Part 111
Transportation Case-Studies

Simulation and Optimization
of the Pre-hospital Care System
of the National University of Mexico

Idalia Flores De La Mota, Alexander Vindel Garduno
and Esther Segura Pérez

Abstract This chapter presents two operational research techniques, simulation
and integer programming, that we used to find a better ambulance location solution
and shorten ambulance response time in the main campus, (Ciudad Universitaria)
of the Universidad Nacional Auténoma de México, México City. Toregas’ integer
programming model, known as the maximal covering model, is best suited for an
approach to the needs of the problem; despite its age, it has proven to be a simple
and efficient model. For this job, we not only employed the location model, but also
linked it to a simulation model whose function was to identify the stochastic demand
and analyze the results of the model so as to find the best possible solution, within
the limits set when creating different scenarios; and, at the same time shorten the
response time.

1 Introduction

Records of the treatment of injured or sick patients go back to biblical times. During
the eighteenth and nineteenth centuries, different methods were used with this pur-
pose, though it was Jean Dominique Larrey who started the first pre-hospital care
system.

The National Autonomous University of Mexico (Universidad Nacional Aut6-
noma de México UNAM) has been offering this service since 1982, using vehicles
with enough capacity for a multidisciplinary team made up by both professionals and
technicians to provide basic and advanced life support. Despite the fact that some
studies have been carried out to improve the efficiency in patient’s transport times in

LF. De La Mota (X)) - A. Vindel Garduiio
Facultad de Ingenierfa, Universidad Nacional Auténoma de México, Mexico City, Mexico
e-mail: idalia@unam.mx

A. Vindel Gardufio
e-mail: alexander.vindel @ gmail.com

E. Segura Pérez
Instituto de Ingenieria, Universidad Nacional Auténoma de México, Mexico City, Mexico
e-mail: ESeguraP @iingen.unam.mx

© Springer International Publishing Switzerland 2015 233
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_8

234 LF. De La Mota et al.

the APH (Pre-hospital care), there is as yet little evidence of any careful study having
been made on this subject either in Mexico or elsewhere. The efficiency of the APH
system is measured by the system’s average response times, which is the time taken
by the emergency medical technicians to arrive at the scene of the accident, attend
to the patient and transfer him or her to hospital if necessary.

In order to meet the Mexican official standards for quality and improve its ser-
vices, a group of professionals from the Department of Operations Research were
asked to make a diagnosis on the performance of this center. On the basis of this
diagnosis, the operations research group developed and applied quantitative plan-
ning techniques to measure the quality of the infrastructure available, pre-hospital
service, and emergency response capacity, among other performance criteria. This
chapter is organized as follows: Section?2 is about concepts and a classification of
location problems. In Sect.3 a state of the art is presented with some historic data
about the problem and recent published papers. Section4 is about simulation, how it
works, and why we need it. Section 5 is the description of the problem, and followed
by Sect. 6 with the methodology that was used and the proposal that was drawn up to
achieve the solution. Finally in Sect.7 we discuss the proposed solution and some
experiments are shown and explained, ending with some discussion and conclusions
aimed at identifying this chapter’s contribution and; in particular, the advantages of
using these two operational research tools.

2 Location Problem

This section covers the problem of finding the best location for ambulances in order
to optimize the service time. In this vein, in the state of the art, the literature on the
ambulance location problem is approached using optimization, simulation, or both
techniques. Some articles are not exactly about ambulance location as there has not
been much work done on this subject in the past. However, it is important to mention
the progress that has been made in this application for medical services.

Location problems arise from the need of finding the most convenient place to
locate facilities such as: Distribution centers, production plants, garbage dumps, and
fire, police and ambulance stations, among many others.

In general terms, the problem can, according to Daskin, be expressed as: Given the
location of each user, demand, and costs (time, distance, etc.) of transport in the region
in question, the number of services, the geographical location and capacity of each
must be determined in order to optimize the costs of transport, operation, etc. [13].

2.1 Components of the Location Models

The basic parameters in these models are [13]:

e The customers that are to be found at points or on routes, depending on the case.
e Facilities that must be situated.

Simulation and Optimization of the Pre-hospital Care System ... 235

e Place where the customers and facilities should be located.
e A metric that indicates the distances, costs, or times between the customers and
the facilities.

To put it another way, the main components of a location model are

(a) Demand, defined as the interaction between services and points of demand.

(b) Number of services, which represent the amount of desired or required services
to be located.

(c) Measurement of distance, which is a measurement of the shape of the journey
between the points of demand and the location of the services in the area being
studied.

(d) Feasible solution space, this indicates the different sites where a service can be
located.

(e) Objective function, this lets us assess alternative solutions and generally repre-
sents the total cost of locating the services [2].

2.2 Classification of Models for the Location Problem

Figure 1 shows the classification of location models based on the space in which the
problems are modeled proposed by [14]. Analytic models are the simplest of location
models and it is assumed that demands are distributed continuously across a service
region and that facilities can be located anywhere within the region. Continuous
Models typically assume that demands arise only at discrete points. The classical
Weber problem is typical of this class [45]. Network models assume that demands
arise, and facilities can be located only on a network composed of nodes and links.
Often demands occur only in the nodes while facilities can be located anywhere on
the network. In the discrete models, there may or may not be an underlying distance
metric. Demands generally arise on the nodes and facilities are restricted to a finite
set of candidate locations [14].

Table 1 gives a classification of the solution models for the discrete location prob-
lem. By this way, one can find the model proposed for the solution of the optimization
problem.

Fig. 1 Taxonomy of

locati‘on models. Source Location
Daskin [14] Models

Analytic Continuous Network Discrete
Models Models Models Models

236

Table 1 Classification of the main location models source: [14]

LF. De La Mota et al.

Discrete location models

Set covering models

Median-based models

Other models

Its main objective is to cover a
demand in full or in part. In
many cases, the distance or
response time between the
customers and the points of
service is decisive for
customer satisfaction

Median-based models
minimize the
demand-weighted average
distance between a demand
node and the facility to which
it is assigned. Such models are
typically used in distribution
planning contexts in which
minimizing the total outbound
or inbound transport cost is
essential

P-dispersion: The model seeks
to maximize the minimum of
the distances between any pair
of facilities

Set covering: The minimum
number of facilities required to
cover all the demand is
obtained, guaranteeing that
each node is covered by at
least one feasible facility

P-median models: The main
goal is to find the location of
facilities in such a way as to
minimize the cost of the
service (cost associated with
the distances between the
demand nodes and the
facilities)

One example of this is when a
location is sought for a
garbage dump, as it should not
be close to inhabited areas

P-center models: It has the
number of facilities wanted to
be installed as an input
parameter, and the model
objective is to minimize the
longest distance between a
facility and the farthest
demand node assigned to it

Fix charge: This problem is
much related with p-median
models and include a fix
facility cost of locating at any
site candidate

Maximum covering:
Constrains the number of
facilities that can be located
and turns the objective
function to coverage,
maximizing with a fixed
number of facilities. The
solutions can only be
constrained to the nodes; this
procedure is known as p-center
problem vertex, and may be
located not only on the nodes
but also on the arcs that join
them, known as p center
complete

Simulation and Optimization of the Pre-hospital Care System ... 237

3 State of the Art

The optimization of various aspects of emergency medical service (EMS) vehicle
systems has been, since at least the mid 1960s, a very active area of research for
applied mathematics and operations research. There have been hundreds of journal
articles dealing with the development of models to support important decisions such
as those used by e.g., [36].

. The locations, capacities and staffing of bases;

. The scheduling of crews;

. The number and type of vehicles to deploy at each base;

. The choice of which vehicle to dispatch to an emergency; and
. The redeployment of vehicles as a function of the system state.

[O I S

According to [21], these decisions can be classified into operational decisions,
such as choice of dispatching policy; strategic decisions, for example, where ambu-
lances should be stationed and what times they should operate, and tactical decisions,
as station location selection. Any solution to this problem requires careful balancing
of political, economic, and medical objectives. This decision process has a direct
influence on the system’s response time for arriving at the place where the patient is
to be found [38].

There are several reasons why the design and operation of EMS systems has
attracted so much attention from the operations research community. On the one hand,
these issues are very important to society. Considering the large costs associated with
obtaining and maintaining EMS equipment and the highly qualified staff needed, it is
of prime importance to make sure that available resources get the best possible use.
On the other hand, the problems are rich and interesting from the mathematical point
of view; so it is important to keep up with the subtleties and complexities inherent
in them as well as to come up with approaches that can be implemented in practice,
given the limitations in data availability and computational resources.

Emergency medical service providers face the problem of allocating a fixed num-
ber of ambulances among a set of bases. The ultimate goal is to ensure the best
possible medical outcomes for patients.

This literature review is based on the modeling approach used, and presented
in chronological order. To complement the analytical works, another application-
oriented articles and case studies developed so far are reviewed in this article.

Mathematical models are designed in operational research whose purpose is to
optimize resources and, in line with this idea; an EMS must guarantee the provision
of optimum care, considering the number of incidents and demand, in the shortest
possible time. According to the type of objective function under which they operate,
according to [32]: “The location and relocation models can be directed toward

e Minimizing the (average or total) time taken to attend to the incidents per time
period.
e Minimizing the maximum time taken to attend to any incident.

238 LF. De La Mota et al.

e Maximizing the area covered in a shorter time, in the time determined as standard
(Ts).

e Maximizing the number of incidents attended within a shorter time than the time
that is established as the standard.

Sometimes some of these criteria are combined to get the configuration that is
most appropriate for the EMS.!”

There can be variants in the objective function and the constraints such as: Objec-
tive function:

e Maximization of balance in coverage
e Minimizing costs
e Multicriterion: maximizing coverage at the lowest cost.

Constraints:

e Number of vehicles per located station
e Number and availability of vehicles.
e Availability of the vehicles over time.

Depending on the availability of vehicles over time, Parra [32] classifies the mod-
els as follows:

(a) Deterministic models are the ones where the resource called vehicle is modeled
as a parameter with 100 % availability the moment an incident is reported. These
models do not take into account the fact that the coverage of an area is partially
lost when a vehicle is dispatched to attend to an incident.

(b) Probabilistic static models are those where the vehicles may or may not be
available, being modeled as servers in a queue system. Calls or incident reports
enter the system and, if the default server (vehicle to be dispatched) is busy, are
assigned to the other servers available in the system.

(c) Dynamic models are the latest ones and focus on solving the vehicle relocation
problem when some zones are left without coverage because the vehicle is busy
attending to an incident in progress.

Table 2 is a summary of static-deterministic models and dynamic models, giving
the names of the authors, the name of the model, the characteristic of the objective
function, the characteristics of the coverage constraints and location constraints, and
finally the characteristics of the ambulances [8].

Table 3 is a summary of probabilistic models, where the same items are observed
as in Table?2, except that a column specifying the time the ambulance is busy has
been added [8].

And finally, Tables 4, 5, and 6 present ambulance location models based on sim-
ulation, optimization, and a combination of both techniques.

! Baker et al. [5].

239

Simulation and Optimization of the Pre-hospital Care System ...

(penunuoo)

souenqure Jo od£) ouo ‘ay1s Jod SoUB[NqUIE QUO JSOUW JY "SAUOZ 9FBIOA0D
Jrdnnuw o Judyxe oy} SurZrurxew A[SNOSUEBINWIS J[IYM SQUOZ [[& JOA0D 0)
POpPaaU SA[OTYAA JO JoqUUNU WNWIUTW 9y} puy Aoy yorgm ur woqoid (DSOH)
3uL19A0D) 19§ 2A1NO(qQ [eoryoIeIdly 2y) asodoid pue wo[qoid (Furea0)) 19§
[euonuUaAU0D) DS Y3 AJIpowt s1oyIny "sosuodsal 1o1sIpIajur Jo douerodur
9y J0J Junodoe Aproridxas 03 sydwane yoeoxdde oy, "s[O1YaA SINH SUIIBOO] 10]

juowAo[dap a[o1yeA
QOTAISS [ROTPAUW AOUIFISUID
J10J [opoul SuLIA0D

wa[qoid SurIeA0d 9A1309[qO [eoTydIRIANY € dJe[nuiIo] sioyine ay) Toded sty ug DSOH [17] u19)S pue UDse(| 39S 9A102[qO [EOTYOTRIAY Y
sooue[nquie jo sadA) g 110dar sioyiny ‘suorne)s
2y Jo uonedo] ayj 10 syuerd Sunoo[as Jo JUTENSUOD JY) JO UONIPPE AP YIm
JNVAL JO UOIBALIOP © ST [opowl AT 9YL A10893e5 ors 10 papo[[e o
pIepuels oy} Ul J[qe[IeAe Jou ST adA) 9[OIY2A B JI PAISA0D 2q 0) PAIAPISUOD J0U
s1jurod puewap € sny[, ‘seoue[nquie jo dnoig e 0} So[qeLIeA JUAIQJJIP USISSE Sumis juowdinba pue
pUE S0UB[NQUIR JUSIJIP 0M] JOPISU0d A3 ey 1dedxa [apowr A'TDIA QY3 uo K)1[1o8] Snodue)nWIs 10}
paseq a1e SPpow YL, ‘S[opout [T pue INVHL oy sesodoxd soded sty | LAHTI/INVHL [6€] Te 32 Burys |sjepowt LA TA/INVHL UL
s 1od souenquue duo pue 2d4) suo J10dar sioyINY SAVI[IOR]
Jo Joquunu paxy e Suneoo] £q § 90UL)SIP 9JTAIIS PAIISIP B UTYIIM (PIIIA0D woqoxd uoneoo]
uonendod) a5e10A00 dz1wrxew o} [opow & asodoid sioyne ‘soded siy) uy dTIDIN | [01] 2I1°A Y pue yoInyD SULIDA0D [RWITXEW Y],
Joquinu payrwipun ue s 2dA) suo suodar sioyine
QU L, "SUOTIN]OS [BUOTIOBIJ QA[OSAI 0 ATESSIIU SE PIppe SuIaq JUrensuod
INo-9[3urs € ‘wa[qoid SuraA0d) aA[os 0} parjdde st Suruwrerdord reaury
pue _‘10A09,, urninbar jurod puewop yors I0J USNLIM ST JUTRIISUOD duQ Jutod
PUBLIAP OB JO 2OUBISIP 10 dwn payroads e uryim syutod Aioe) renuajod yoreasar suoneradQ
9y Jo pesoduwros are sjas ayJ, *20And2[qo oy ur s3s0o [enba ym weqoxd *SONI[IOR] 9JTAIOS
SULIOA0D 19S B SE SONI[Io’) AOUQ3Iow Jo uonedo| Ay} smoys 1aded sy, WDS1 [#+] Te 10 se3a10], | AouaSIoUId JO UONBOO] Y],
uondrosa [°POIN Q0UIRJaI/SIOYINY L

S[OpOW OIWEBUAD pUE d1je)s NSIUILLINAP Jo Arewruing 7 [qEL,

LF. De La Mota et al.

240

doue[nquie Jo ad£) ouQ "paqLIOSIp
ST Wo)sAS JjuowoFeuew doue[nquIe dorwreukp e pue pasodoid st [opowr SrwreuAp
V "soue[nquie Jo 399f © JoJ wajqoid juswkordapar oy s1oprsuood roded sy y,

NSada

[81] ‘e 10 neaIpUaD)

UOIIBO0[aI dUR[NqUIE
Jwmn-[eal J0J dNSLINAY

yoIeas nqe} [orrered
PUB [9poW SIWRUAD Y

Qoue[nquie Jo adA) QuQ "ONSLINAY YOIB3s nqe) € Y)im paA[os pue pasodoid st
[epowt y ‘wa[qoid uoneso] soue[nquie 95819400 A[qNop e s1opIsuod roded siyJ,

NSd

[£1] ‘e 19 nearpuan

[oIeas
nqe) Aq [9pow UoneI0[
doue[nquie ue SUIA[oS

Qouenqure jo ad4) ouo ‘ays 1od oournquUIEL SUO

Jsoul Jy 9810409 Juanbasqns 210w J0 PIIY} 0) S[APOW ISAY) PUAIXD 0) MOY
MOUS OSTe SIOYINE Y], "POMITAI T8 ITLISA0D JO S[OAI] [euonIppe eiodioour
UOIYM SHOJR IO “Yom uasaxd oy ur 95e10400 dnyoeq jsurese jjo

PopeI) ST S[OPOW 9SAY) UI PAUPap St aFeI0A0 1811 "Wwa[qoxd uoneoo] Surroa0d
[ewrxew oy} pue ‘w[qoid uLIOA0D 39S UONEIO] AY) ‘S[OPOW FULIDA0D

1SS0 9Y) JO 1X0JU02 9y} ur parjdde ST UOLINILIO MAU STY T, "9JTAI0S JO [OAJ]
ULIOJIUN 2JOUI B UTBJUTEW 0) SUBSW B SB PUBRWIAP YSIY JO SBare ul 3eI0A00
dnyoeq armbar Aewr ow € e [[€0 oUO A[UO 0) puodsaI ued YOIYM SI[OTYIA

£q puewIop d1SLYO0IS JO SUI[PURY JUIIOYJD YL, “YIOMIAU B UO SITAIIS
Koua3Iows Jo uUOEdO0[YY) SUIOPOW UT UOLIILIO UOTSIOIP B Sk Pajsadns

SI ‘OpouU PUBWIAP B JO 9FBIIA0D PU0Is Y} 10 ‘93eraA00 dnyjoeq e Joded siy) uy

(zdoovd
pue 1JOJVE)
dTON P3YIPOIN

[¢2] 1oAY pue ueSoH

a3e10A00 dnyjoeq jo
suoneordde pue sydoouo)

uonduosaq

[9POIN

Q0UIRJAI/SIOYINY

SPLL

(ponunuoo) g yqel,

241

Simulation and Optimization of the Pre-hospital Care System ...

(penunuoo)

Qoue[nquie jo adA) ouQ SuonNeZINN OIYIA MO] duaLIadx

JBY) SWOISAS [BIIPAW AOUSTIOWS J0J PAIO[IE] ST [9pOW Y], ‘Popnour

ore sosse[o [[ed o[dnnur pue ‘s [9ABI) OIISBYI0IS ‘SUONRZI[IN J[IIYA
[enboun 10§ suorsirolq "swlsAs Sumonb paynquusip A[eneds 10J [opowr
uonewrxoidde own 901419 [BIOULS B UO PIseq ST [9powl Y[, “ZV ‘U0zony,

7V ‘uosong, ur
SO[OIYA [eoIpal AOUSISW
3uneoso[10J [opouwt

Ul S[OIYA [BIIpaW AouagIow Suneoo] jo wajqoid ay) yym steap 1oded sy, | JTOXHN pasnlpy [61] Te 32 S1ogpon | ® Suik[dde pue Suneprres
Joue[nqUIE JO
ad£) ouQ ‘wAYSAS 901AIOS Y} SIJUD [[BD B UAYM J[qe[IeArUN SUIQ SIOAIdS JO
Aniqissod ay) 3unoooe ojut Sunye) Swi SWes Ay} 18 AIYM PUBWP JO 95LIA0D PalISIAQI
pa3oadxa ayy 9zrwrxew 0} Jopio ut Ajrewndo s1oAa1as 3uneoo] Aq (JTDXAIN) (dTDXANY) wo[qoid uoneso] SuLA0D
PSSaIppe ST W[qOIJ UONEI0T 258I10A00) paroadxy rewirxeq ay ‘oded stp uy | JTOXAN pasnlpy [£] Te 1o eneg paroadxa [ewirxew Y],
Qoue[nqure jo adA) ouQ A1) arowmneq syuasaidar jey)
JyIomiau uoneliodsuen) pazIs-wNIpaul € uo paAos pue wa[qord Jurweidord
Jeaul[QUO—OIJZ € St 219y paInionys st wa[qoid AJI[Iqe[rieAe wnwirxew ayJ,
"K)[IQEI[oI 0)IM PIEpUR)S WD B UIYIIM S[qB[IBAR JOAIOS B PUY [[IM UOIYMm
uonerndod oy ozrurxew o) se Aem e yons ur s1oa1ds d suonisod (JTVIN)
wo[qold uoneoo| 9[ge[reAe wnwirxew Y], ‘wa[qoid uorneoo SuoA0o warqold uoneosor
[ewTxeW 9Y) JO UOISIAA dnsIfiqeqoid e paonponur sioyine oy raded sty ug dTVIN | [L€] ueSoH pue o[[oAy | AN[Iqe[ieAe wnWIxXeWw oy],
Qoue[nquie jo adA) ouQ
‘uaA01d axom [opout s1y) Jo sentedoid [e1oadS ((JTOXHIN) Wworqoid uonesog uonnjos JNSLINAY
Sur10A09 payoadxe WNWIXeW Ay} PI[[ed SI [opOW Y], ‘Spuewap o) puodsax pue senodoid ‘uonenuiioy
0) 9[qeun aq Aewr sanI[Ioey eyl AIqissod ay) 10§ sjunodde Jey) wajqoid [opow UoNed0] SULIBA0D
uoned0[SULIDA0D WNWIXeW Ay} Jo jueLrea & pasodoid toyine oy ‘1oded sty uy JdTOXAN [z1] uniseq payoadxe wnwixew y
uonduosag [9POIN JoURIRJRI/SIOYINY L

sjopow dnsijiqeqoid jo Arewung ¢ IqeY,

LF. De La Mota et al.

242

[opowr Surnanb [eUOISUSWIP-0M) B YSNOIY) JUNOII. OJUT AJI[IqR[IBAR
I0AJOS saye) ‘A[orenbope PoAIas aIe ey} 99IAISS J0J S[[D JO Joquinu
Pa102d X2 9} SAZIWTXBUI YOIYM ‘[OPOW Y, ‘PAISPISUOD SI SWISAS SINH
pa1on-om} 10j [opowt 2dA1-3urroaod e ‘1oded sty uf Jrun JUIALLIB-PUOIS
2y} Jo [eALLIe 9y 03 Jouid 901A19s UISaq ued Jun SUIALLIR-ISIY Q) ‘SWA)SAS
SN U ‘ATessaoau a1 sasuodsar 9[o1yoA a[dnnu yorym ur sw)sAs
1910 0 1SeNUOD U "sanI[iqeded JUSIOPIP Yim ‘syun (STV) Hoddns

QJ1 paoueApe pue ‘syun (Sg) Hoddns of1 o1seq ‘s1opraoid jo sodAy

SWIAISAS SAJTAIAS [BITpAW
KOUQ3IoWd PaIAN-0Mm)

0] JO ISISUOD A[UOWIWOD SWRISAS (SJAH) SIOIAIAS [eoIpawt AoudgIouryg WLL [s] 11epueIN 10J S[opow SULIA0D)
Qouenqure jo ad&) auQ “AqIqe[reae

19A19s JO douapuadapur jJo uondunsse 1o1d Jy $1991100 snif} [opou SUOISUQIXd JWOS pue

uonedo[onsi[Iqeqold Jo uoneIouad Mau SIY], "SIUTRISUOD A)I[Iqe[IeA. [97] |worqoid SuroA09 19s uoneI0]

) Jo Juawdo[aaap ay 03 parjdde st K100y Surnanb ‘xoded siy) uy dDS1dO J[[OAY PUB AOULIBIA onsipiqeqold Sumanb oy,

Ayomuay|

Qouenquie Jo 2d£) ouQ "eare 901AISS I} “QI[IASINOT UI SA[OIYA

UTYIIM SO[OIYA 9)eo0[[e 0} s1ouue[d SN pre 03 (SS) waisAs oddns (dTOXANIL) [eorpawr Aoua3Iowe Juneoo|

UOISIOAP & 0jJul pajeIdajut pue pado[aadp St (JTOXHINLL) uonerrea JTIOXAN [ce] | 10F waysAs 1roddns uorsioop

QW) YA [9POW UOTIBIO] 958I9A00 pajoadxa Tewrxew e ‘1oded sny uy

juopuadop-owir],

opIeurag pue apadoy

e Suneprfea pue Surdofoaaq

Qoue[nquue jo odA) auQ ‘Tepowr uonezrumndo

(d1) SurwwresSord 1039jur [—(e pesodoid Aoy ‘aInyrey wois£s jo
Amqeqoid oy uo punoq AJ[Iqer|er e uo paseg "own jo junowre d[qeidesoe
Ue UIYIIA [[20 pUBWSp € 0} puodsal 0] [IIY2A € Jo AJI[Iqeul o) se
pajaxdiajur ST AIn[Ie] WIsAS a1oym ‘aanodadsiad A)I[Iqer[ar wajsAs € woiy
wopqoid ayy Apnys sioyiny ‘uonels yoea ur aoefd 03 SA[OIYA JO Joquinu)
Jo wa[qod [eor}or) AY) PUE ‘SUOTIE)S SIOTAISS KOUSSIOWD 918I0] 0] dISYM

Jo waqoid 21391eMS 9y} 9A[0S Isnw s1ouue[d SIOIAISS AOUaSIoWy "UONEBIo] (d-19%) UuoneI0] A[OIYA AOUdFIoUWD
J[OIYA ITATS AOUIZISWR 10 [opour AJIfIqerfar e sasodoid s[onae sy, WDST PAYIPOIN [9] urg pue [reg |01 pardde [opowr Ajiqerar v
uonduosag [oPOIN QOUQIRJOI/SIOYINY L

(Ponunuod) € AqeL,

243

Simulation and Optimization of the Pre-hospital Care System ...

sooue[nquie ¢ 31odar sIoyIne], "WISAS
(SINH) SJIAIRS [BIIPIIA Adua3Iowry ay) JO (AII[IIN JO) [9AJ] AJTAISS I}
QZIWIXBUI 0) SUONEBOO] ASBQ 0] SAdUBR[NQUIE JO J23Y 211ud Uk uonisod of,

wy)LIo3[e uoneso[[e
Ap2213 ‘uonenuig

[Ly] Te 19 ok

juowkojdopar

S1ureukp pue uoneIO[[e

199y Qoue[nquie 03 yoeoidde
PIseq-uone[nuIs JUAdYJ Uy

soour[nquIe
JO IoquInu UOTIUSW JOU Op SIOYINE Y], “[[& J& SUTISAIp mo[[e

jou saop 1ey) Aorjod e (111) pue ‘uone[nuLIoy (JQIA) SS90I1d UOISIOd
AOYIRJA ® Sursn AQ paureiqo Adrjod e (11) ¢pardnodo are spaq ay) [[e
USYM UOTSIAAIp sayentut jey) Korjod e (1) epnjour pazA[eue sarorjod Qv
9y, "'uone[nuus el sarjod (V) UOISIOAIP ddue[nquie a1edwod o,

(dQN) ss2o01g
UOISTO(] AOYNIBIN

[v€]l 210
JeLIBJRN-ZoIIWeRY

uone[NUIS BIA SAIOT[0d UOISIOATD
doue[nqure Jo uostredwo))

sooue[nquie § 31odar sioyine Ay, -own asuodsar soue[nqure

Qonpai 0) syuawasoldut fenuajod 10§ suoneINIYUOD QANBUI)[E [BIOAS
1e31)$9AUT 0] J1OPIO Ul (9dukL]) Jusunredop ouIB|A-ap-[eA 24l JO NIAVS
9y [opout 03 Pasn are sanbruyoe) uonenuis 9)o10s1p ‘1oded sty ug

sonbruyoo)
uonB[NWIS 9JI0SI]

(1]

‘Te 32 oueulljonoqy

QOIAISS [ROIPAW AOUQFIOW
juoun)redop QUIRIA[OPEA

Jo 9seo ay) :uone[nWIs Sursn

owry asuodsar ooue[nquie 3uronpoy

sooue[nquie 79| 3odar sioyne Y], ‘sijodonow
0AYO], oy} ur wa)sAs soue[nquue 9[eos-o31e] e 0) parjdde pue pasiaop
SI WQ)SAS 9JIAISS ddUR[NQUIR UR JOJ [dpow uonenwis [njromod v

sisATeue
uonenwis oqnorddAHg

[67] Banang
pue ISOYOIOJA!

WSAS
QOTAISS QouB[NqUIE J[eds-05Te] ©
1o stsATeue uone[nwis oqnorddAH

SQouR[NQUIE JO J9qUINU UOT)USW JOU Op SIOYINe Y,
's91391e1s 9AnEIado0d 10] [enIuUSl0d) QUIWEXS 0) AIOJY) SWeS WO
pUE ‘[opoUI UOTJB[NWIS PAseq-}uagde ‘SUOTIB[NWIS JUIAS JIOSIP ‘ssa001d
[Jeap-yiIiq € apn[oul s[oo) ay [, ‘sioje[nga1 opisino woiy ainssaid pue
S10B13U0D SUIPNOUT ‘UOISISAIP 0NPAI 0} SPOYISUI JUSIJJIP asn sIOYINy

K1001) owes owos

pue ‘[opowr uonemuIIs
paseq-juage ‘suonenuils
JUSAQ QJIOSIP

‘ss001d yreop-yIg

[02] 'Te 12 pamBe

UOISIOAIP QduUR[NqUIE
2onpar 0} sarajens aaneradoo))

uondirsaq

[°POIN

QouRIRJal/SIoYINY

SPLL

UONR[NUWIS YIIM PIAJOS W[qoid UONEdI0] ddUL[NqUY I[qEL,

LF. De La Mota et al.

244

(penunuoo)

sooue[nqure /g 31odar sioyjne ay], ‘seoue[nquie JO SIdQUINU PUe SUOHEBIO]
rewmndo amjny pue juarnd aredwos o) wyrrode onsuasd Surdnoisd
payipow e parjdde Aoy, ‘se3ueyo uonendod payorpaid pue eare snsuad

SUOI)BO0] Q0uR[NqUIE
Jo ordwrexa ayy Suruuerd

QY3 JO [9A9] 2y} Je s10)oe) orydeiSowop YIm Sased SIAH JUALINO SUne[o1I0d sunose [8¢] | yreay axmny pue juarmd ozrwndo
£Q 0SOT 01 07T WOl S[eAIdUI JeaK-G 10J sased 1o1paid sioyne oy, o10Ud3 PAYIPOA ‘[e 19 Djeses 03 swiyLIos[e o1ouas uisn
sooue[nquIe 4| 31odar sioyine Y, "YoIeas pooyroqysou dqeLrea
Sursn A[reonsunayejow paAjos st woafqoid oy, “A[snosuejnwis own
ur sjutod snorrea Je 9310409 azrundo o3 oL Yorym ‘puey Je wajqoid
9y 10§ parernuiioy sem weagord 1o3ojur paxtwt v ‘uozroy Juruuerd
9y} Inoy3noIy) pIepue)s 25LI9A0D UTLIIAD Urejurew 0} JOpIo ul pauonisodal sowr) [9ART)
9q 0] POMO[[E 9IE SI[OIYIA AIYM ‘Seare 95eI10A00 Surkrea-owr) JUNOOOE [oIeas [o¥] 1ouI00Qg juopuadop-own Y sweqord
ojur Supye) ‘uorsioa porrad-ninuw e padofoaap sioyine oy Joded siyy up | pooyroqySiou d[qeLrep pUE PIUIYDS |UONEIO[I PUEB UOHEBIO] JdUB[NqUIY
SoouUR[NQUIB UIAJS
110da1 s1oyine oy, -oInol [ewrido oY) JO UOIOIAS AY) U POONPOIUT SEM
UONRIAD [BONSIIRIS pUR UoneIndwod 10J Pasn d1om SOUBISIP AJN0IT [BY
‘pojuswardwir sem Furpod A9y wopuel sasn Jey) (YD) SWYILIOTF[Y dnouan)
‘worqoad oy} 9A0S Of, 'pasn sem SmAy pue weples £q pajusworduwr
(dTDOXAIN) We[qoid uoned0T SULeA0)) paidadxy wWnNWIXeA eueyn ‘stjodonowr
TRQUITUOU AT, ‘PIA[OS ST BUBYED) Ul sfjodonaw 1sewny] ay) se 3umos [c] e ISBUWINY] 9Y) U 9OIAIIS [BIIpaUl
ueqin ue ur weqoid uoreso[soue[nquie ay) Jo Apms ased e roded s1y) uf JTIOXAN yesuodury | AoU93IouIo 90uB[NqUIE JO UOTIROO]
seoue[NqUIR YIIM suone)s 21y 9g 1odar sioyine
Y, "uonnjos st 10 pado[aAap st onbruyosy Jurtrureidord srureuk anbruyoay,
uo paseq wyjLIo3[e Suryoress 1oexa pue pasodoid st [opowr JTON Surwwesdold otweuiq £q
uo paseq [oAd] Suruueld J0J [oPOW SOATIOR(qO [BOTYOTRIANY OM] Y "SBATR [#2] | seary ueqin) ur wo[qoIJ UOHEBIOT
ueqIn Ul UONENIS UoNsaSuod dyjel) AAedy pue uorenIs dyjen rendar 1oy sjopowr SurwwesSold | IyonSrue] pue | doue[nquiy ASudSIow JO [OPOIA
waqoxd uoneso] sour[NqUIE SULIDA0D [eWIIXEW) SIOPIsuod toded siyJ, orwreuk(pue JIDN | seuenedwry Surreao)) Tewrrxe]y & SUIAJOS
Q0uQIJeI
uonduosaq [°POIN /sloyny L

uoneziundo ym paAjos wa[qoid uoneoso| ddueNqUy § qE],

245

Simulation and Optimization of the Pre-hospital Care System ...

G 01 ()€ WOIJ S9oUB[NQUIE JO JOqUINU B UONUSW SIOYINE Y], "UOHN[OS
S)1 10 padofeAap ST O1SLINAY YoIeas nqe) & pue pasodoid st [opouwr
‘woqoid uoreoo] sour[nqUIE 93LIVA0D [qNOP sI9pIsuod toded sy],

yoIeas
nqe[, pue 23eI10A0)

(L1]

‘e 10 neaIpuan)

[oreas nqel Aq
[9pOW UONEIO[ddUB[NqUIE UB SUIA[OS

sooue[NqUIE JO JoqUINU

uonuAW J0U Op SIOYINE AT, ‘Aep 9y} INOYSNOIY} SOOUB[NQUIE 9180[I
A1pareadar 0) pado[oAap U29q dARY S[OPOW OTWBUAD ‘UONIPPE U] '[[8d
B JoMSUR SABM[E JOUUERD puk WaIsAs urnanb e ur s10A19s se ajerado
SoouR[NQUIE JBY) JOBJ) 09I S[OPOW JNSI[IqeqOId "SdouL[nquIe

Jo AjpIqerreae oY) SurpIe3ar SUOTIBISPISUOD ONSLYI0)S 910U pue a3e)s
Suruuerd oy Je pasn 2Ie S[OPOW dNSIUIULINA(SILI0TILD UTeW 0M])

UT PAYISSE[O Ik S[opow Y], "s1eak (¢ 1sed a3 100 pasodod sfopowr
UONBI0[I PUE UOIIBI0] 90UR[NQUIE JO UOTIN[OAD JU) SOJBI) [ONJE SIY [,

sfopour onsifiqeqoxd
puE ONSTUILIN

[8]

‘[e 19 suIodj01g

S[epow
UONEO0[I PUE UONEIO] 9JUB[NQUIY

sooue[nquIe
G¥1 1odar soyne oy, ‘uonerado douL[NqUIE JO ADUIIOYJS I}

01 JYS1oM 20U SIAIS [9pOU SIY L, ‘[[BD JO dUIDS) 0] UONE]S) WOIJ
soouR[NqUE 9} JO 90UEISIP SUI[OALI] [£)0) O} SZIWIUIW 0} ST 9AT)O[q0
oy} ‘[OpOW UBIPAW UI ‘pUBY] JOYI0) UQ ‘[OPOUL PAIUILIO ANTIQRI[I JO
Jy3noy) oq ueod [opouu sty 1aded sty ur pajuasald ST [opowr 93BIA0D

s[opowt
uBIpawW pue 93LIA0D)

[o€] 1soyo1o
TwNZoH

swia[qold uoneso|
souenqure [ewndo jo Apnjs 9sed

soouR[NqUIE JO JAQUINU UOHUAW JOU Op SIOYINE [, "SUONEI0]
959} J8 PAJBOO[[E 9q 0} SIOUB[NQUIE JO JOqUINU Y} PUB SIOUB[NqUIE
JO SUONEOO] 9Y[[IES A} QUIWLIAAP 0) dJe S[e0T Y AIYM ‘(D)
Surwurex3oid 1eo3 oy Sursn pajenuuioy st [powt YL (LdO ZVL)
[opoIA uoneziundQ Suruoz soue[nquiy paseq-awiy, Y3 pI[[ed
[opOW UOTJEdO0[[e PUE UOIIBIO] doue[nquuie (SIAH) SOOTAIRS [EIIPIN
KouaZrowq ue Jnoqe Apns e Jo yromawrely oy sjuasaid roded sryg,

Surwwreigord eon

[1+] wpneyez
pue qnys

waqold
UONBOO[[Y pue UONEO0T] d0uR[nquIy
10J [9PON LdO™ ZV.L JO YIomawel]

uondrosaq

[9POIN

IeaA/s10yIny

9PLL

(ponunuod) g dyqel,

LF. De La Mota et al.

246

(panunuoo)

SoouRINqUIE JO JOQUINU UOTIUSW JOU Op SIOYINe oy,

‘3urpreoq pue ‘Sunrem ‘Suniodsuer) se yons ‘SAMIAIIOR PIPPE dN[BAUOU

ur puads sjuened jey) awm pajoadxe oy ozrwrurw o) eare [eoryderdoas

B UI SaNI[Ioe} oy} [[e 10] sa1o1jod UOISIAIp Jo siojowered orerdoidde

ay) puy 03 yoeoidde uonezrumdQ-uonenuig e sasodoid roded

SIYL, "SONI[I0B] papmoId ss9] 03 sjuaned Funoarpar Aq (sqd) syusunredoq
KouaSiowy ur owr) SunTem 9y} 90nPal 0} PAsh aq UBd (TV ‘IoAMOY
‘uonelrodsuen 3uof Jo s3093je [njuwirey [enuajod ay) Jo asnesaq A)yunuwwod
[eOIpaW Sy} JOJ UIAOUOD JO dNSSI Uk UAAq Sty (V) UOISIQAL(] 20ue[nquIy

yoeoidde
uonezrundo-uonernurg

[e€]

‘[€ 10 dJeLIRyEN

-ZaIruey

uoneziundouonenuirs
Sursn saro1[0d UOISIOAIP
Joue[NqUIE PIZI[LNUID JO USISO(]

soouenqure 19)dodrfey ¢1 110dar sioyine Ay, ‘sased

BUINEI) UBJIOY] JO BIBP [BAI Ul PIseq ‘[opoul) ul s1ajourered uonoely Asnq
arepdn A[eAnje1ont o) uonernuirs pue Jururwrerdord 1939)ur sasn Jey) poyoux
© juasaxd sioyine oy, "SUBR[NQUIE 1B PUR SIAUD BWINEI) JO SUONEBIO]
rewndo 10§ YoIeas 0} poyjow UOHN[OS PAJE[I & PUE [OPOT [BOEWAYIeul

e sjuasaxd 1oded siy, “sjuened ewnen 10§ areds Ajenb Surpraoid

ur 1030BJ A9 © SI AJ1[108] [eorpaw o[qeded e 0) Juaned e jo 11odsuen Afouy,

uone[nWIS pue
SurwrurexSord 1o3ojuy

[eT] Te10 097

wo[qoid uoneso| douenquIL
I1e—I9JUad BWINE) B 10J POyjawl
QATJBIA)I PAseq-uone[nuiIs

seoue[NqUIE JO JOQUINU UOHUSW JOU Op SIoyine

ay [, "eyep yojedsip souenquie [enjoe Sursn spoylowr asoy) jo sojduwrexa
uonesrdde owos Moys SIOYINY "SPOYIAW UOTE[NWIS PUE UOIBIO]
KIoey o' ‘SweansuTew oM} Uo Sursnoog ‘uSIsap 991AIdS doue[nquIe
10J syIom [o1easas suonerado jo AdaIns jouiq e syuasaxd xoded siy,

S[opow UOTJB[NIUIS
pue uoneso| Afroeg

[8¢] eining
pue 1SOYOIOJA!

W)SAS 9JIAIOS dOUR[NqUIE
Suraoxdwir 10 uonerNUITS
pue [opow uonezrundo

uondiosaq

[°POIN

QJURIRJAT
royiny

SBLL

uoneziundo pue UONE[NWIS YIIM PIAJOS W[qoid UONEIO] ddUL[NqUY 9 J[qEL,

247

Simulation and Optimization of the Pre-hospital Care System ...

sooue[nquie Gg 31oda1 sioyine ayJ, ‘seInjea) wajqoid

PAIOPISUOD A} UO PAIO[IE) IOMUIRI] UONB[NWIS B)IM PIISI) ST SUONN[OS
pasodoid ay) Jo I01ABYRq 2} ‘UOTIEMIS 1] [ESI dY) 03 Joadsar yyim
uonoensqe ue pue uonesyrdwis e juasaidor spopowr Yons Sy ‘SUOILIO]
3sod mou Surpuy Jo wire 9Y) YIIM PIISPISU0D a1 s[epowr Jururwreigord
Ieoul] 1)Ul ‘Udy], ‘PIzATeuR I8 JOIABYSQ WIISAS PAISPISUOD YY) UO

BIRp OJI] TI Y3 31y ‘pAjuasaid st yoeordde sdojs oa1y) v "poIspIsuod st
BaIE UBQIN UR JoAO s)sod aouenqure 3uneoo] jo wajqoid oy ‘roded siy) ug

S[opow UOTJB[NWIS pue
Surwwrergord 1030juy

[v]

‘Te 39 LIS ULy

BAOIR URQIN OUE[IJA JO 9SBD
qy [, :uonenurs pue uonezrundo
ySnoiy) uoreso] doue[NqUIy

soouenqure 9 31odar sioyine oy, ‘sarorjod juswkojdopar Aenb-y3siy
9ndwods 03 1x93u0d (JqVv) Surwrerdord orwreukp jewrxoidde ue ur
[opout s1y) asn pue Aorjod uoneso[e uaAls e Jo souewioyrad ay) aen[eAd
0 suone1ado SIAH JO [pOU UOHB[NWIS € JJR[NULIOJ SIOYINE dY], "dWI) [BaI
ur soouenquie J[p1 Suruonisodal a1 Juowkojdopar sour[nquIe SI SOUIT
asuodsar Suronpar ur sjsisse Aewr Jey) yoeoxdde ouQ "pazIwuTuIlx SI S[[Ed
Kouag3rowd 03 puodsar 03 paxmbar awm ay Jey) os seouR[NqUIE FurSeurwr
JO Yse1 oY) Im paSieyd aIe s1apraoid (SIAH) 901AIas [eorpaw KouaSiowyg

SurwreI3old Jrweukq
pue uonE[NWIS

[L2]
‘T8 19 [[OMXBIA]

yoeoxdde Jururwrer3oxd
orwreuAp arewrxoxdde
uy Juowkojdopar aouenqury

sooue[nqure ¢ J1odar sioyne Ay, “ooue[nquIe dy) I0J

S[Teo 2y} SUIPN[OUT $31e)S WIR)SAS JUAISJJIP 2JeIouas 0] Pasn SI UONB[NUIIS
pue (4S.L) woqoid uewsa[es-IuI[[oARI) AU} JA[OS O} PIsn SWYILIOZ[E Uo
paseq st uonezrundo SIy [, ‘SWexe UoISSIpe 1oy} SUIpuSlie d19M S)uapnis
QIoUM S[OOYDS J& PI[[BISUI SA[NPOW 97 SUIAISS JO 9SIeyd Ul ddUB[NqUIE UE
Jo sano1 oy Jo uoneziundo ue sjuasard Apnis SIY], "09IXIIA JO AJSIOATUN)
SNOWOUOINY [BUONEN Y} 0} UOISSTWIPE JOJ SUIEX Iy} Sumjis ore syuepmis
QMIYM A OJIXIA] UI PAIAJJO SI ADIAIIS 2IeOYI[BAY SIY], "soIpawrered

10 (SLINH) SUBIOIUYII], [BIIPSIA AouaSIowy AqQ PoIajjo WISAS

areoyireay [ejdsoy-axd e ur Aouaroyje azAeue o) sanbruyoo) uonenwiIs
pue uonezrundo Sursn 1oded s1y) ur padooaap sem AJojopoyiowt pLqAy v

sfopour uonjezrundo
pue uonR[NUIIS

[zy] T80
73194 ©In3os

swyjIose

wo[qoxd uewsares-3ulfjoaen

3uISn 0JIXaW JO AJISISAIUN [BUOTIBU
Ay} Jo waIsAs axed [eydsoy-oxd

oy jo uoneziundo pue uone[NWIS

uondiosaq

[°POIN

QouIIJI
royny

SPLL

(Panunuoo) 9 JIqEL

248 LF. De La Mota et al.

4 Simulation Paradigm

This technique provides the flexibility for modeling processes and events at different
levels of complexity, dynamism, and stochastic situations. It facilitates the essential
levels of real situation required to properly model the demand of events, including
services such as, in this case, the emergency services.

Simulation has, over time, been used to model events and consider future events.
For the service to be not only timely but efficient, the use of simulation and health-
care can be an invaluable tool where it is possible to eliminate inefficiencies, thus
facilitating an optimum reordering. Simulation has mainly been used in the field of
public health to analyze resource and scheduling requirements, to paraphrase [46].
When these alternatives are analyzed, the standard performance measurements are
reported considering a variety of factors, including times and length of queues.

One of the goals for ambulance service in the main campus is for it to be timely
and efficient, so we need to make decisions that take this service to more competitive
levels, which is why simulation is an important tool for tactical decision-making.
Furthermore, if we consider that the optimization model to be used is integer-based,
sensitivity analysis cannot be used as it is very complex, but we can instead create
scenarios that let us know alternative solutions for the model.

Simulation is an important analytical technique that has been used in management
for some aspects of healthcare, mainly to maximize the system’s efficiency in areas
of direct patient care. Given that the power of simulation lies in its ability to model
alternative systems for comparison studies and estimate the number of varied per-
formance measurements, it lets us make changes to the system that would otherwise
be impossible.

There are tried and tested different techniques for stochastic decision-making
problems, as the model is closer to the real problem it becomes more complex.
Owing to the stochastic nature of the variables involved, the only practical option
is to use simulation. In particular, the digital computer can be used to analyze more
complex problems when, owing to the quantity of data to be processed and the type
of variables, they become intractable. The optimization models are in these cases
expensive and time consuming. In this sense, simulation was used for modeling the
system in particular the stochastic variables as the occurrence of events in the case
of the main campus, where, initially, the current situation of the ambulance service
is presented and the area where the work is to be done defined.

Due to its flexibility as well as its ability to find solutions that can be implemented
inreality and that allow us to consider all the factors involved in the reality of a system,
simulation is proposed as a suitable technique for the analysis and assessment of this
system.

Discrete event simulation refers to the computer modeling of systems that evolve
over time through instant changes to the variables of state. The changes occur at
separate points of time.

Simulation and Optimization of the Pre-hospital Care System ... 249

Distress call Distress call
(random event) (random event)

Distance between zones
L e T
R ettt

S3U0Z UIIMI] IUBRISIQ

Distance between zones

Distress call
(random event)

Distress call
(random event)

Fig. 2 Elements to consider for the simulation

In more mathematical terms, the changes in the system occur in a countable set of
points in time, so we can, in this case, mention that we have a discrete system, where
the changes are predominantly discontinuous. Particularly in this chapter, the events
that require the ambulance service in the main campus, UNAM can be discretely
simulated.

Designing a good simulation project is one of the hardest aspects of the job when
the aim is to solve a real problem. However we can consider a series of characteristics
that a good simulation project should have to give us the opportunity of using cre-
ativity when planning a model and finding the solution. The following model (Fig.2)
was conceived for this case, considering that each zone corresponds to each one of
the faculties in the main campus:

5 The Problem in the Campus

Before the problem is explained a short history about the pre-hospital care system is
presented in order to show how long has been taken to be in this situation nowadays.

250 LF. De La Mota et al.

5.1 The Pre-hospital Care System: A Brief History

Pre-hospital care is defined as an operational and coordination service for urgent
medical problems. This has been in existence for thousands of years. It started when
man first decided to go hunting and to war, when the need for early assistance was
immediately recognized. The timeline (Fig.3) illustrates part of the evolution of
pre-hospital care.

As can be seen, the precursor of pre-hospital was first recorded in Ancient Greece,
with the Greeks being the first to designate specialists, called arrow pullers, to look
after the wounded in battles. Their method of treatment, using rudimentary techniques
that could even cause more harm than good, was to continue for many years.

History followed its course until the middle ages and the arrival of the Arabs, who
brought with them new methods for the treatment of patients. These were translated
into Latin by the clerics of the time who, applying the knowledge they had acquired
from the Arabs, performed the duties of paramedics during the crusades. But it was
not until 1797, in France, that Dominique—Jean Larrey, a surgeon Napoleon’s army,
introduced a new way of treating wounds on the battlefield that significantly lowered
the mortality rate. This innovative system, known as field care, consisted of a wagon
bearing a doctor and the necessary equipment to take care of and stabilize certain
wounds, and then the vehicle collected the wounded from the battlefield, taking the
most serious cases to hospital. This is how the first pre-hospital transport was born,
but it was not until 1865 that a hospital offered a service comparable to the service
we are familiar with nowadays.

In Mexico, as in many other Latin American countries, we follow the Anglo-
Saxon model where the patient is transferred to hospital. The main characteristic of
this model is that pre-hospital care is carried out by emergency medical technicians.
Proper emergency care cuts the number of deaths by 11 % and disabilities by 12 %,
provided this care is swift, specialized and efficacious during what is called the golden
hour. During this hour, the treatments and techniques revolve around resuscitation
and keeping the patient stable, especially as regards keeping their airways open,
and dealing with potentially treatable lifethreatening injuries in the case of patients

Transport sys-
tem for sur-
geons (F.P.

Perry, France)

460-370 Middle Ages 1487 1797 1861 1865
B.C.
Arrow pullers Clerics acted as First Military The system is Interlinked system First Hospital to establish
(Greeks) doctors for the Field Hospitals created for the for the treatment its own service
wounded (Cru- transport and ~ of the wounded
sades) care of the

wounded.
Field doctors
(Larrey, France)

Fig. 3 History of pre-hospital treatment

Simulation and Optimization of the Pre-hospital Care System ... 251

with “time-dependent” clinical profiles where the response time is key. Every minute
counts for patients who have suffered a trauma or heart attack, when each minute of
delay in care lowers the probability of survival by between 10 and 12 %. Therefore it is
essential to look for strategies aimed at promoting the development of health systems
with the emphasis on the need to improve pre-hospital care in the transportation
system. This task is ongoing in any pre-hospital system.

5.2 The Medical Service at the UNAM

The purpose of the UNAM’s Medical Services is: “To promote, protect and restore
the health of university students as part of their overall development as well as
promoting healthy living among the university community and the general public”
Medical Services Bureau (D.G.S.M.) of the UNAM.

In this context, medical care does not just mean the possibility of a cure but is
also the means whereby young people learn to act preventively. This is basically an
educational process, aimed at replacing risky behavior with habits that favor a better
quality of life. This is on top of the emergency services it offers.

5.2.1 The Emergency Service

The emergency service of the University Medical Center has resources to deal with
mild to moderate cases, while only serious cases and ones requiring hospitalization
are sent to other health institutions.

One of the achievements of the Bureau has been the introduction of pre-hospital
care programs as one of the pivotal activities of the department. The purpose of pre-
hospital care is to provide immediate first aid and emergency care in situ during the
first 60 min, “the golden hour”; responding to the needs of the case, by stabilizing,
immobilizing, and moving the patient to the specialist service they require. Timely
care offers the patient a better chance of life and lowers the incidence of invalidity
or its sequels.

The medical emergency service operates 24h a day in the University Medical
Center, with the support of the Emergency Care Headquarters. It has: Four ambu-
lances, two of which have advanced life support equipment and two have just basic
support equipment. At the present time the response time of the ambulances is, on
average, 5 to 6 min to the perimeter of the main campus. They operate through guards
who use the phone or radio. However, in view of the rise in the population of students
and faculty members, as well as administrative and service staff over the last few
years, this service is not enough anymore, which is the reason why we have had to
carry out this analysis to find a way to make it more efficient.

It is worth mentioning that the flow of users does not cease at any time of the year
and the service is still provided during the inter-year or inter-semester periods, with a
2012 population density of 214,364 students, and 45,253 faculty members (estimated

252

LF. De La Mota et al.

Table 7 Number of students and faculty members in the main campus during the 2008-2012

periods

Year University degree Postgraduate Faculty
2008 167,891 22,527 43,151
2009 172,444 23,875 43,252
2010 179,052 25,036 44,348
2011 180,763 25,167 44,869
2012 187,195 26,169 45,253

Fig. 4 Growth of

undergraduate population

Fig. 5 Growth of the
postgraduate population

Total population

Total population

Bachelor's degree

190,000 -

185,000 -
180,000 -
175,000 -
170,000 -

-~ Bachelor's degree

165,000 -

160,000 -

155,000 -

2008 2009 2010 2011 2012
Years
Postgraduate

27,000

Postgraduate
-

26,000
25,000

-

24,000

/

23,000
22,000

S

21,000

20,000

2008 2009 2010 2011 2012
Years

values taken from the UNAM, 2012 University Statistics Webpage) (Table7), as
shown in the following figures. Figures4, 5, and 6 show the population growth for
bachelor, postgraduate, and faculty.

Simulation and Optimization of the Pre-hospital Care System ... 253

Fig. 6 Growth of the Faculty

faculty’s population 45,500
= Faculty

Total population
B
w
n
o
o

2008 2009 2010 2011 2012
Years

As can be observed in the above graphs the growth in the total population of the
UNAM rises year by year, which underlines the need for more effective pre-hospital
systems to look after the university community.

6 Methodology

As has already been mentioned, the methodology will be developed as follows: In
the first place, all the information is collected and employed to fit these data into
probability distributions that will be used in the simulation model which will help to
define the stochastic demand. Then we will work with these data in the maximum
covering model, experimenting with the parameters. Finally we will use the results
to carry out another simulation of scenarios (Fig. 7).

6.1 Information Gathering

A research study for the location of the required ambulance services in the main
campus will be valid when verifiable information is used to estimate future values
and scenarios. This is why it was essential to collect 1919 items of data, such as
place, type of population requiring attention and dates, using, as a sample, the control
records of APH (Pre-Hospital Care) for the period from 2008 to 2011. Said data are
concentrated (Table 8) and analyzed.

In order to simplify our data treatment, we only covered working days while,
considering that each one of the faculties on the main campus, owing to the proximity
of some of them the decision was taken to consider them by areas as per the following
Table 9.

254 LF. De La Mota et al.

Conceptual Simulation Information
Problem > —+»{ and Location = a_ o
Model Gathering
Models
Model Simulation | Data
Validation Model I Fitting
Location Model SPIrc;?osedd
Model Validation o l_onan
Experiments
Model
Verification

Fig. 7 Methodology developed

In the case of events that occurred during the period that was analyzed, we found
a distribution of type of person to whom the service was offered, as shown following
Fig.8.

As can be observed, the population that required the most care was the students,
being the majority. These data were useful for both the fit and the simulation model.

6.2 Data Fitting

The collected data need to be adjusted to some probabilistic distributions since sim-
ulation needs to have this information in order to work with. There is some commer-
cial software for doing it, and the one that in our experience gives good results is the
EasyFit© software that allows to fit data to probability distributions, giving as a result
the parameters that should be considered in the simulation model, they are presented
in the following Table 10.

According to the goodness-of-fit tests (Anderson-Darling and Kolmogérov-
Smirnov that are defined below) provided by this program, only the values given

Simulation and Optimization of the Pre-hospital Care System ... 255
Table 8 Concentrate of events according to the day of the week, for the 2008-2011 periods
Concentrate 1 2 3 4 5 6 7 Total
Architecture 12 16 10 13 9 6 3 69
Political Sc 16 23 8 19 27 10 3 106
Lang. Center 8 17 10 11 4 1 52
Sciences 35 43 62 49 39 9 2 239
Accountancy 29 29 34 37 34 9 3 175
Law 32 46 35 36 54 12 6 221
Economics 12 9 13 13 15 3 2 67
Philosophy 31 39 30 43 38 15 11 207
Engineering 17 19 17 23 21 2 3 102
Medicine 26 25 29 29 31 9 7 156
Dentistry 26 19 20 22 20 6 3 116
Psychology 12 10 17 14 14 2 1 70
Chemistry 18 23 24 29 32 4 2 132
Social work 4 7 11 11 10 0 1 44
Vet. and Zoo. 10 22 19 12 11 4 3 81
Eng. Annex 11 11 18 12 10 3 0 65
Total 299 358 357 373 369 95 51
Table 9 List of zones and faculties
Ref. Zone Faculty Faculty Faculty
7B 1 Law Economics
zC 2 Medicine Dentistry
ZD 3 Engineering Lang center Architecture
ZE 4 Philosophy Central library
ZF 5 Political sciences
G 6 Sciences
ZH 7 Accountancy Administration
Z1 8 Psychology
VA 9 Chemistry
ZK 10 Social work
7L 11 Veterinary
science
M 12 Engineering
annex

256 LF. De La Mota et al.

90% -

W %Student
80% -+ m%Employee
70% B %0thers
60% -

50% -+
40%
30%
20%
10% -

0%

Fig. 8 Percentage of service users

for each zone are considered. These values make it possible to estimate the demands
for service. The following figures represent the fitted data from the different zones
considered in the model (Figs.9, 10, 11 and 12).

Definition 6.1 Anderson-Darling Test: “The Anderson-Darling test [43] is used to
test if a sample of data came from a population with a specific distribution. It is a
modification of the Kolmogorov-Smirnov (K-S) test and gives more weight to the
tails than does the K-S test. The K-S test is distribution free in the sense that the
critical values do not depend on the specific distribution being tested (note that this
is true only for a fully specified distribution, i.e., the parameters are known). The
Anderson-Darling test makes use of the specific distribution in calculating critical

Table 10 Probability density function fitting parameters

Poisson A

Zone 1 3.2462
Zone 2 3.303
Zone 3 3.1667
Zone 4 3.451
Zone 5 3.5926
Zone 6 3.1667
Zone 7 3.2439
Zone 8 3.3333
Zone 9 3.3125
Zone 10 3.7692
Zone 11 3
Zone 12 3.214

Simulation and Optimization of the Pre-hospital Care System ... 257

Probability Density Function

o
S

flx)
cocoo
= b e S

= b s T 00

ol

cooo
oRR&8

3 4 5 6
Day of the week — Samgle

— Poigs0N

fay
L]

Fig. 9 Fitted Data Zone 1

Probability Density Function

f(x)

3 a 5 6 7
Day of the week)

Poisson

=
]

Fig. 10 Fitted Data Zone 2

Probability Density Function

0.26
0.24
0.22
0.2 "\
0.18
0.16 4
= 0.14
« 0.121
0.1 4
0.08 {
0.06 4
0.04
0.02 |
1 2 3 4 5 6 7
Day of the week — Sample

— Poiszon

Fig. 11 Fitted Data Zone 3

values. This has the advantage of allowing a more sensitive test and the disadvantage

that critical values must be calculated for each distribution”.2

Definition 6.2 The Kolmogorov-Smirnov test [9] “is used to decide if a sample
comes from a population with a specific distribution.

2 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm

258 LF. De La Mota et al.

Probability Density Function

0.22

0.2 A
0.18
0.16
0.14

0.12 4

f(x)

0.08 4
0.06
0.04

0.02

1 2 3 4 5 6 7
Day of the week — Sample

— Poizs0n

Fig. 12 Fitted Data Zone 4

The Kolmogorov-Smirnov (K-S) test is based on the empirical distribution func-
tion (ECDF). Given N ordered data points Y1, Y2, ..., Yy, the ECDF is defined as

EN=n(i)/N

where n(7) is the number of points less than Yi and the Yi are ordered from smallest
to largest value. This is a step function that increases by 1/N at the value of each
ordered data point.”>

6.3 Simulation Model

This section shows the simulation model that was used to determine the behavior of
the stochastic demand for which the data was fitted as shown in Sect. 6.2. Considering
a Poisson distribution for each of the zones, we proceeded to construct the simulation
model where each zone is considered a source that generates demand for service or as
in simulation terms, a number of events. These events in turn are attended by servers
which are units of transport that also have their own operating parameters. As soon
as the sources generate an event, it is attended by the servers and taken to a general
sink, in this case the DGSM. As the model is large, considering 12 sources, each
one with its own time between arrivals, 4 ambulances (servers) and a single sink,
the calculation by pencil of a sixmonth simulation would be a cumbersome task
indeed. By this time there were two options, the first one was to simulate the model
constructed by using a general programming language as C+, the advantage is that
the simulation built would be more precise but there are two main disadvantages:
One is that simulation would work just for this problem, and second animation
and presentation of the solution would be less attractive. The second one was to

3 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

Simulation and Optimization of the Pre-hospital Care System ... 259

choose commercial simulation software which is why we opted to employ the SIMIO
software.

SIMIO* uses an object-oriented modeling approach, where the models are con-
structed by combining objects that represent the physical component of the system.
It also provides the user with a simple interface with an attractive display for the
models developed in this software (Figs. 13 and 14).

In this model, the values of events per zone were estimated considering a semester
with ten repeated samples, whose results are shown below.

The results given in the graphs show the quantity of events requiring the service
over six months, Figs. 15, 16, 17 and 18. These results will be used in the location
model as the demands for each zone. The averages of each zone will serve to facilitate
the calculation. Figure 19, also shows the transporting time for the ambulances, and
will be used as a comparison between the current model and the model proposed by
this paper.

Once the demands of each node (zone) are estimated we shall proceed to solve
a location model that allowed us to shorten the response time. Then, when several
proposed solutions have been reached, the results are compared with each other
(experimentation) using simulation, in order to finally provide the best solution that
can be achieved within the parameters.

6.4 Location Model

The main campus has an area of approximately 9.1km? in which the various univer-
sity activities are carried out, such as academia, sports, and recreation, to name but a
few. The needs within the grounds of the main campus necessarily correlate with the
number of accidents that occur within those same grounds in a particular timeframe.

In order to systematize the optimal location of the ambulances for them to be able
to provide a proper and efficient service is necessary to define: Modality, Place, and
Time.

Modality is the protocol itself, which must be respected by the emergency medical
technicians, while place refers to the best location inside the main campus in order
to have a greater area of influence and the above items shall be assessed in such a
way that, comparatively speaking, the response is optimum in terms of time.

This is where location models have an important function in planning. Some of
these models have been used for medical service zones because of their mathemat-
ical similarity to tool selection problems for flexible manufacturing. In ambulance
location cases, the aim is to locate them as close as possible to the demand sites [13]
in order to shorten the response time, when demands can be served by any available
resource. One of these models is the set covering model, where the question to be
answered is: When there are a given number of people who require the service, how
many resources should be located? So that everyone who is to be served is within

4 http://www.simio.com/index.php.

http://www.simio.com/index.php

260 LF. De La Mota et al.

————

Fig. 13 3D View of the L —TT T -
0 UE / " . - -

model in SIMIO

Fig. 14 Top view of the

model in SIMIO
Fig. 15 Total numbers of 16
mZ1
events per zone, zones 1-4 14
mZ2
w 12 -
g Z3
510+
S g mza
b
E 6
3
Z 4
2.4 |
O 1
1 2 3 4 5 6 7 8 9 10

Simulation runs

Simulation and Optimization of the Pre-hospital Care System ...

Fig. 16 Total numbers of
events per zone, zones 5—8

Fig. 17 Total numbers of
events per zone, zones 9—12

Fig. 18 Concentrate of total
number of events per zone
zones 1-12

Fig. 19 Transporting time
(minutes) per ambulance

Number of issues Number os issues

Number of issues

Transporting time

12

261

mis

mi6
mZ7
mZg

1 2 3 4 5 6 7 8 9 10
Simulation runs

mZ9
mZ10

mZ1l
mZ1l2

1 2 3 4 5 6 7 8 9 10
Simulation runs

10

160

140

120 4

100

80 -

60 -

40

20 4

‘. = . . _ - . . 4
21 22 23 Z4 I5 26 Z7 Z8 ZI9 Z10 Z11 Z12
Zone
Ambulance 1 Ambulance 2 Ambulance 3 Ambulance 4

262 LF. De La Mota et al.

Table 11 Distances in km between zones, shaded cells fulfill <= 2 kms

A B c D E F G H 1 J K L M
Zone DGSM* 1 2 3 4 5 6 7 8 9 10 11 12
DGSM* | 0 12 1.5 0.7 1 29 1.7 1.6 0.9 0.8 2 0.9 1%
1 1.85 0 0.5 1.6 1 32 2.6 19 0.8 12 23 1.1 1.3
2 1.39 1.4 0 Ll 2 2.8 1.6 14 1.8 0.7 1.8 0.7 1.1
3 0.27 1.4 1.8 0 1.1 32 2 1.8 1 1 2.1 12 1.3
4 223 0.4 0.9 2 0 3.6 24 23 0.6 L5 2.6 15 1.9
5 2.82 32 3.1 29 3.7 0 1.8 2.1 32 2.4 2.1 2.4 29
6 2 2 2 17 2.1 2 0 0.3 2.1 13 0.7 0.7 1l
7 1.43 2.3 2.7 1.8 2 2 1 0 2 2 0.4 1.4 1.8
8 2.67 12 13 2.4 1.7 4 2.8 2.7 0 2 3.1 19 2.4
9 0.75 1.9 23 0.5 1.3 25 1l 1 1.4 0 1.4 0.4 0.6
10 1 1.9 23 1.5 1.3 2 1.1 1.4 1.4 1.9 0 1.7 2
11 1.3 2.4 2.9 1.1 2.1 2.1 1.4 1.3 2 0.6 1.7 0 0.9
12 1.85 22 1.8 13 2.6 2.1 0.6 0.4 22 il 0.8 0.5 0

a given distance from the nearest resource. One common problem we have when
using this model is that the solution provided is often that more resources should be
located than actually existed, which would increase the costs. As it is, we already
have a fixed number of ambulances and it is not very probable that more resources
are going to be acquired, apart from the fact that these resources might not mean a
significant reduction [13] in the response time. Therefore we employed a variation in
the set covering model which is the maximum covering model, where the objective
is to maximize the coverage provided by the resources, given that the resources are
limited to a certain number, this being an important objective of this research work.

6.4.1 Maximum Covering Model for the Ambulances
on the Main Campus

For the construction of this model, we need to know the number of ambulances to
be located, the demands of the zones (nodes) and the distances between them. These
data are given in Table 11.

These data will be useful for the constraints of the model, where the ambulances
to be located must cover nodes within 2km (distance between nodes). This is to
guarantee their proximity to the node, and thus shorten the response time. This table
can easily be replaced by a table of run times, however for the purposes of this
research, we will use distances. It is worth mentioning that this is a binary integer
programming model as shown below, and the DGSM row and column are excluded.

Simulation and Optimization of the Pre-hospital Care System ... 263

Where in equation 1 we have that 4; is the demand in place i, demands provided
by the simulation model, and Z; is equal to one if node i is covered by a resource,
otherwise zero, this function maximizes the demands covered by the ambulances.

From constraints 2 to 11 we have that each one ensures that every node is covered,
based on the constraint of a distance of two km or less for at least one resource.

From equations 2 to 14 we have that X; takes values of one, if a resource is located
at node i, and zero in every other case. These kinds of constraints are similar to the
ones of an assignment model.

In equation 14 there is a guarantee that only the maximum number of available
resources is located, which, in the case of this research, is a value of four ambulances.
If the number of ambulances increases, then we need to change the right hand side
of this equation.

It is worth mentioning that these constraints are in keeping with the distances
in Table 11 and may vary, depending on the constraint for proximity of nodes, as
shall be seen in the experimentation part, where modifications will be made for said
limitation.

Objective function
Equation 1

maxhpZp + hcZc + hpZp + hgZg + hrZp + hgZg + hgZyg + hiZy + hxZg
+hirZp + hyZy

Subject to:
Equation 2

Xc+Xp+Xe + Xy + X1+ X5+ X1 + Xy > Xp
Equation 3

Xp+Xp+Xe+Xe+Xu+Xi + X5+ Xk + X +Xu > Xc
Equation 4

Xp+Xc+Xe+Xe+Xuy+ X1 + X5+ X0 +Xu > 7Zp
Equation 5

Xp+Xc+Xp+Xi +X;+ X +Xy > Xg

Equation 6

X6 = Zr

Equation 7

Xc+Xp+Xpy+X;+Xg + X +Xu = Zg
Equation 8

Xp+Xg+Xr+Xe+Xi + X5 +Xx + XL+ Xy = Zy

264 LF. De La Mota et al.

Equation 9

Xp+Xc+Xe+ X5+ XL > 27

Equation 10

Xp+Xp+Xg+ X+ Xy + X1 +Xg + X0 +Xu =27
Equation 11

Xp+Xp+Xe+Xr+Xe+Xu+X1 + X5+ X1+ Xy > Zg
Equation 12

Xp+Xe+Xg+Xi+X5+Xg +Xu =7,

Equation 13

Xc+Xp+Xg+Xpg+X)+Xg +XL > Zy

Equation 14

Xp+Xc+Xp+Xg+Xp+Xe+ Xy +Xr+Xg +Xp + Xy <4
Zi=1,0 i=B,CD,....M

Xi=10 i=B,C,D,....M

7 Proposed Solution and Experiments

LINDO™S (linear, nonlinear, integer, stochastic, and global programming solvers
have been used by thousands of companies worldwide to maximize profit and mini-
mize cost on decisions involving production planning, transportation, finance, portfo-
lio allocation, capital budgeting, blending, scheduling, inventory, resource allocation
and more); was used to solve the location model and, as the model is linear and inte-
ger, it can be easily solved using this software, without having to resort to a more
complex one. The model can be written in this software without requiring any special
commands. This makes it possible to have a simple interface with the user where it
is enough to have sufficient knowledge about how problems are set out to be able to
start to solve them with this tool, as shown in Fig. 20.

Solving this model we observe that a maximum demand of Z = 98 events is
covered when the ambulances are located as in Table 12, at nodes Xy, Xi, XG, XF,
in respect of the zones.

In other words, an ambulance located at node Xy will cover nodes: B, C, D, G, J,
K, L M; and ambulance Xy, will respond to demands in nodes: B, C, D, E, G, H, L, J,
K, M; ambulances located at Xg and XF are covering each other. We can notice that,
in combination, all selected nodes offer a full coverage through the zones concerned.

5 http://www.lindo.com/.

http://www.lindo.com/

Simulation and Optimization of the Pre-hospital Care System ... 265

L e ———

Fle G Sehe Repaty Wasdew Help

Disana loevuexe) Dol BAD 2@ W

LTI, N—-—— =)
:;I’ KR o WIC o %D o ITF o BIF o B30 « TR 4 BTT o ALY & TTX o 107 4 YDM -
IC + XD o XX 4 XN o XT 4 L) o XL o+ XM - TR o
IM+MD+IE+Ts D+ s+ I+ILe D=0

YR ¢« IC « XE « IC « XH &« XT o 7 » M1 o e 0

I8+ I+ D+ Xl + L)+ Il + 1N -2K 5+ 0

G -2F s 0

oM eToll o Tollodl=2e0

M+ I+ IF+I+I1+ L)+ M+XL+IN-TH>0

TB + IC + TE 4 L) o XL - 20 = 0

IE « ID « XK + XG » IH « Xl L+ XL + XN & 0

TR+ ID+TE+ TF ¢ TG+ TR+ AT ¢ KT 4 JL &« XN = 2K 5= 00
WesIsMelleolsIXoIx=2L 0

YC ¢ XD ¢ 26 4 X o X7 4 N ¢ XL = M 30 0

IR + XD o XE o IF o 20 o XM o X7 « X3 o XK o XL « XN = 4

BN

ant M

Fig. 20 LINDO Screenshot with the written model

Table 12 Location of ambulances

Node Zone School
H 7 Accountancy and
administration
L 11 Veterinary science and
zootechnics
G 6 Sciences
F 5 Political sciences
Fig. 21 Comparison of Transporting time (min.)
average transporting times 480 -
§ 460 -
2 440
=

w N
400 -+
Ambulanceslocated according Ambulanceslocates at DGSM

to model
Average time

Once we have these data, we shall compare the results for transporting times of
the SIMIO model when the ambulances are located at DGSM and when they are
located as per the result given by the model.

The results of Fig.21 show a reduction in the response time, and we can see the
behavior of the model in Fig.22 and how the transporting times decrease. Thanks
to the simplicity of the models, we can experiment to try to improve the difference
between the two times, as we will do below.

266 LF. De La Mota et al.

Experiments

The purpose of the experiments presented below is to further improve the response
time (reduction of transporting time), through adjustments to the criterion for the
selection of the constraints (equations 2—4) used to solve the model, bearing in mind
that the first criterion used for a first approximation to the result was a distance
between zones of less than or equal to 2km (model “b”), 3 more parameters are
proposed below:

1. Distance between zones less than or equal to 1.7 km apart (model “c”)
2. Distance between zones less than or equal to 1.5km apart (model “d”)
3. Distance between zones less than or equal to 1.1km apart (model “e”)

The experimentation shall start with model “c” from the above list to the end, and
Table 13 is employed to facilitate the writing of the constraints.

Based on Table 11 and comparing it with Table 13, we note a decrease in the
number of nodes involved for each equation, as the objective function of the location
model has not changed, only the rest of the model is modified, in other words from
equation 2 to equation 14, giving us the following equations

Xc+Xp+Xg+Xi + X5+ X +Xy > Zp
Xp+Xp+Xeg+Xg+X;+ X +Xy > Zc
Xg+Xg+Xi+X;+X +Xy > 2Zp
Xp+Xc+Xi+X5+X, > Zg
Xg+X;+Xgk +Xp+Xy > Zg

Fig. 22 Model behavior as —— Ambulanceslocated =——Ambulanceslocated at

it' moves throughout according to model DGSM
simulation runs 490

B
hay]
(=]

. /\ -
=
£ 450 m N—
£
£ 430 -
ol VN —
2 390
c
L]
= 370
350 T T T T T T T

- £ L £
i —t

g b &

7th
8th
Sth

.._;
a 2
—

~

10th

Simulation runs

Simulation and Optimization of the Pre-hospital Care System ... 267
Table 13 Distances between zones <= 1.7 km
A B C D E F G H 1 J K L M
Zone DGSM 2 3 4 5 6 7 8 9 10 | 11 | 12
DGSM* | 0 1.2 1.5 0.7 |1 20117116109 |08] 2 09 1] 12
1 1.85 0 0.5 16 | 1 32126119108 | 12)]23]11] 15
2 1.39 14 10 1.1]2 28116141807 18]07] 1.1
3 0.27 1.4 1.8 0 1.1 | 32| 2 1.8] 1 1 211121 15
4 2.23 04 | 09 2 0 36124123106 15)26]15]19
5 2.82 32 | 3.1 2913710 1.8 121322421]24]29
6 2 2 2 1.7 1212 0 03(21113]07]1]07] 1.1
7 1.43 23 127 1.8 12 2 1 0 2 2 04114118
8 2.67 1.2 1.3 24117 | 4 2812710 2 31119] 24
9 0.75 19 |23 05| 15125111 1410 141041 06
10 1 19 | 23 1511512 1.1 114 14(19]0 1.7 12
11 1.3 24 129 1.1)21 12114 |13]2 061710 0.9
12 1.85 2.2 1.8 151262110604]|22]11]08]05]0
Table 14 Location of ambulances according to model “c”
Node Zone School
D 3 Engineering, languages, and
architecture
L 11 Veterinary science and
zootechnics
B 1 Law and economics
F 5 Political sciences

X+ Xk +X1 >Zy
Xp+Xc =7

Xp+Xe+Xe+Xu+ X1+ Xk + X0 +Xu > Zy

Xp +Xg + X +Xu + X1 > Zg
Xp+Xg+Xg+ X1+ Xk +Xuy =71
Xp+Xg+Xg+Xi+ Xk +Xy > 2Zy

In the new solution, a maximum demand of 98 events is satisfied, locating each
ambulance at the following nodes: Xp, X, Xp and Xp, being interpreted in accor-

dance with Table 14.

268 LF. De La Mota et al.

For the new criterion we get the behavior of the model shown in Fig. 23.

This new behavior shows a reduction in the transporting time (response time)
when a different model is used. We observe that model “c” offers a better solution
than model “b” and we can assume that we will continue to see a reduction in time
for the next models that offer alternative ambulance location strategies.

Just as a table was used to facilitate the writing of constraints in model “c”, we
resorted to Table 15 for model “d”.

It would be a waste of time to list once again the different variations that are
shown, as they tend to be so minor that it is not necessary to describe them, but we
do have to mention the results we got from model “d”, as shown in Table 16.

The results we obtained from the analysis of the selection of ambulance locations,
an analysis that was done using the simulation model, are presented in Fig.24.

We observe that the transporting time between models “c” and “d” has not gen-
erated any major variation but is still shorter than that of models “a” and “b”, which
shows that models “c” and “d” have better strategies.

Table 17 which is the base for model “e” and Table 18, the solution provided by
said model, are presented below.

Based on the strategy proposed by model “e”, we have the following behavior
shown and discussed (Fig.25).

The transporting times calculated for model “e” are notably longer than those
provided by models “c” and “d” but less than the values in models “a” and “b”, in
other words times e> times ¢ and d, times e< times a and b. Hence we can assume
that shortening the distances between faculties to less than 1.5 km is better, but given
the limited number of ambulances (4) we can conclude that the best option is for the
distances to be between 1.5 and 1.7 km as shown in Fig. 26.

As clearly shown by the trend line, the argument holds that the best range of
criterion for a shorter time is located in the 1.5km < distance between zones <

Fig. 23 Comparison of the 500
behavior of models a, b,
and ¢
450
w
£
o 400
E
g
@ 350
E T
= — DG5S M
300 + D<=2KM
D<= 1.7kKM
250 '

1st 2nd 3rd 4th S5th 6th 7th 8th O9th 10th

Simulation runs

Simulation and Optimization of the Pre-hospital Care System ... 269
Table 15 Distances between zones <= 1.5km
A B C D E F G H 1 J K L M

Zone DGSM 1 2 3 4 5 6 7 8 9 10 11 12
DGSM 0 1.2 1.5 0.7 1 29 1.7 1.6 0.9 0.8 2 0.9 1.2
1 1.85 0 0.5 1.6 1 32 | 26 1.9 | 08 12 | 23 1.1 1.5
2 1.39 1.4 0 1.1 2 2.8 1.6 1.4 1.8 0.7 1.8 0.7 1.1
3 0.27 1.4 1.8 0 1.1 3.2 2 1.8 1 1 2.1 1.2 1.5
4 2.23 0.4 0.9 2 0 36 | 24 |23 | 0.6 1.5 | 2.6 1.5 1.9
5 2.82 32 3.1 2.9 3.7 0 1.8 2.1 3.2 24 2.1 24 2.9
6 2 2 2 1.7 2.1 2 0 0.3 2.1 1.3 0.7 0.7 1.1
7 1.43 23 2.7 1.8 2 2 1 0 2 2 0.4 14 1.8
8 2.67 1.2 1.3 24 1.7 4 2.8 2.7 0 2 3.1 1.9 2.4
9 0.75 1.9 23 0.5 1.5 2.5 1.1 1 1.4 0 1.4 0.4 0.6
10 1 1.9 23 1.5 1.5 2 1.1 14 14 1.9 0 1.7 2
11 13 24 29 1.1 2.1 2.1 14 1.3 2 0.6 1.7 0 0.9
12 1.85 2.2 1.8 1.5 2.6 2.1 0.6 | 04 2.2 1.1 0.8 0.5 0

Table 16 Location of ambulances with model “d”

Node Zone School

L 11 Veterinary science and
zootechnics

B Law and economics

H 7 Accountancy and
administration

F 5 Political sciences

1.7km range, where the ambulances will perform better. This point can be referred
to as a local minimum because:

“Let x* be a feasible point for the general case of an optimization problem and a
set of feasible points that are, at most, a distance of x* away from §. Let us say that
point x* is a local minimum if § > 0, so that

270 LF. De La Mota et al.

w——DGSM e D <= 1.7KM
D<=2KM

D<=15KM
500

480 -

460 -+

440 +

420

Transporting time

400

380

360 +— — ————
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Simulation runs

Fig. 24 Comparison of the behavior of models a, b, c, and d

Table 17 Distances between zones <= 1.1 km

A B C D E F G H 1 J K L M
Zone DGSM 1 2 3 4 5 6 7 8 9 10 11 12
DGSM 0 1.2 1.5 | 0.7 1 29 1.7 1.6 109 (08 |2 0.9 1.2
1 1.85 0 0.5 1.6 1 32 | 26 19 | 0.8 1.2 |23 1.1 1.5
2 1.39 14 10 1.1 2 2.8 1.6 1.4 1.8 | 0.7 1.8 | 0.7 1.1
3 0.27 1.4 18 |0 1.1 32 |2 1.8 1 1 2.1 1.2 1.5
4 223 04 109 |2 0 36 |24 |23 |06 1.5 | 26 1.5 1.9
5 2.82 32 | 3.1 29 |37 |0 1.8 | 21 32 |24 |21 24 |29
6 2 2 2 1.7 | 2.1 2 0 03 | 2.1 1.3 107 |07 1.1
7 1.43 23 |27 18 |2 2 1 0 2 2 0.4 1.4 1.8
8 2.67 1.2 1.3 | 24 1.7 | 4 28 |27 |0 2 3.1 19 | 24
9 0.75 19 (23 |05 1.5 |25 1.1 1 14 |0 1.4 (04 |06
10 1 19 |23 1.5 15 |2 1.1 1.4 1.4 19 |0 1.7 |12
11 1.3 24 |29 1.1 2.1 2.1 1.4 13 |2 0.6 L7 {0 0.9
12 1.85 22 1.8 15 26 |21 06 |04 |22 1.1 08 [05 [0

F(x) is defined in N (x*, §) and
F(x) < F(y),¥y e N(x*,8), y # x*

Simulation and Optimization of the Pre-hospital Care System ... 271

Table 18 Location of ambulances according to model “e”

Node Zone School
I 8 Psychology
M 12 Engineering annex
G Sciences
F 5 Political sciences
Fig. 25 Comparison of the e DGS M —D <= 1.5 KM
behavior of models a, b, c, d, —D <=2 KM D<=1.1KM
and e D <= 1.7KM
500

— 480

wi

&

z 460 - - /\

£ 440 s

£

S 420 -

oo

=

‘£ 400

o

a

2 380

i \/J

F 360 -

340 T “ —— — 1 - - - n
I1st 2nd 3rd 4th Sth 6th 7th 8th 9th 10th

Simulation runs

Fig. 26 Results of the 480
comparison 460 -
440 -
420 -
400 -
380 -

Transporting time

360 -

340 -

Another way of knowing that we have reached a local minimum is by comparing
neighboring gradients with the point that is being assessed, if the gradient that is on
the left is negative and the one on the right is positive we can say that a minimum
has effectively been reached. This can also be shown as (m; < 0) and (mq > 0). Of
course, this is only an approximation.

272 LF. De La Mota et al.

Fig. 27 Aerial view of the — g
zones that would include an -

£ o>

ambulance (AP . Oy 2
=S = @ == 2 Der 4 L'I
3 g l | e
5 2 .

q ' Ciudoad <
- @nnlma mm R O -
-; r -1 - T TES ey - 1 ;\-_ _ 3
a1 e
i Y, \
-
< Ll

tom

The best solution found under the parameters reached by the experimentation we
are facilitated by simulation is by means of model “c”, shown in Fig.27.

Here the zones that are marked with an oval are the ones that maximize the covering
of demand and, at the same time, shorten the response time by approximately 16 %
compared with the current time.

8 Discussion

The methodology described in this chapter is a combination of two models, the
first being simulation and the second location, to find solutions for the problem of
shortening ambulance response time on the main campus of the Universidad Nacional
Auténoma de México. The simulation model is used to approach the stochastic nature
of the problem, there being uncertain demands, as well as for the experimentation of
results that allowed us to get a clearer and more precise picture of the nature of the
problem involved with satisfying the demand in the shortest possible time, taking
the constraints of the installed infrastructure into account.

6 Pardines Lence [31].

Simulation and Optimization of the Pre-hospital Care System ... 273

Once we had the simulation model, it was validated against historical data that
the paramedical personnel gave us, and thus we were able to go on to the second
phase, which was the location model.

Thanks to the location model, we were able to consider different scenarios to set
bounds for the possible solutions to the problem; and thus, having future changes
in resource and demand management, we will have a more effective analytical and
optimization tool.

The methodology employed enables us to include a higher number of variables
and pose more complex problems within the same university, such as the transfer of
patients to hospitals or including other university facilities. Likewise bigger problems
such as cities can be considered where there is a larger population and more resources
to be located; it is evident that the simulation model would have to be adapted as
would the location model.

This methodology is recommendable for decision-making sectors where we have
interference in the location of resources.

9 Conclusions

After having experimented, it is worth noting how the use of two Operational
Research techniques can improve our analysis of a system until better results, such
as the reduction of the response time, are achieved. If it were not for simulation and
only the location model had been used, a solution that minimizes the time would,
in effect, have been found but it is necessary to consider two problems: First, simu-
lation gave the chance to build scenarios in the case the optimal solution cannot be
implemented; and second, when the time to look for an optimal solution is short, at
least simulation gives good solutions in short time.

There is a high level of randomness in the ambulance services on the main campus
of Mexico City, with the time taken for the jobs forming part of the routine of the
system. Moreover, there are no clear rules for many of the jobs, so they depend on
the people doing the job. However, discrete event simulation is a useful tool for the
analysis of these systems, and it is possible to develop models that are capable of
satisfactorily representing all the phenomena that form part of all the activities of the
system. These models facilitate the analysis of scenarios with a level of reliability that
is statistically acceptable, assessing scenarios with an increased demand and others
in order to shorten the response time. Therefore the combined use of optimization
techniques, such as the location optimization technique, and simulation improves the
search of optimum values for the system, making the simulation and analysis of a
large number of alternatives possible.

Acknowledgments This research was supported by UNAM-PAPIIT grant IN116012.

274

LF. De La Mota et al.

References

15.

16.

17.

18.

19.

20.

21.

22.

. Aboueljinane, Lina, Jemai, Zied, Sahin, Evren (2012) Reducing ambulance response time using

simulation: the case of Valde-Marne department emergency medical service. Proceedings of
the 2012 Winter Simulation Conference, pp. 943-954.

. Ambrosino, D. et al., (2009). A heuristic based on multi-exchange techniques for a regional

fleet assignment location-routing problem. Computers & Operations Research, 36, 442—460.

. Amponsah, S.K., Amoako, Gordon, Darkwah, K.F., Agyeman, E. (2011). Location of ambu-

lance emergency medical service in the Kumasi metropolis, Ghana. African Journal of Math-
ematics and Computer Science Research Vol. 4(1), pp. 18-26, January, 2011

. Aringhieri, Roberto, Carello, Giuliana, Morale, Daniela (2007). Ambulance location through

optimization and simulation: the case of Milano urban area. http://air.unimi.it/handle/2434/
40782. Accessed 15-02-14.

. Baker J. R., Clayton E. R., Taylor B. W. (1989). A Non-Linear Multi-Criteria Programming

Approach for Determining County Emergency Medical Service Ambulance Allocations. The
Journal of the Operational Research Society, 40(5), 423—432.

. Ball, M. O., Lin, F. L. (1993). A reliability model applied to emergency vehicle location.

Operations Research, 41(1), 18-36.

. Batta, R., Dolan, J., Krishnamurthy, N. (1989). The Maximal Expected Covering Location

Problem Revisited. Transportation Science, 23(4), 277-287.

. Brotcorne, L., Laporte, G., Semet, F. (2003). Ambulance location and relocation models. Euro-

pean Journal of Operational Research, 147, 451-463.

. Chakravari, Laha, Roy. (1967). “Handbook of Methods of Applied Statistics, Volume 17, John

Wiley and Sons, pp. 392-394.

. Church R. L., ReVelle C. (1974). The maximal covering location problem. Papers in Regional

Science, 32(1), 101-118.

. Daskin M. S., Stern E. H. (1981). A hierarchical objective set covering model for emergency

medical service vehicle deployment. Transportation Science, 15(2), 137-152.

. Daskin, M. S. (1983). A maximum expected covering location model Formulation, properties

and heuristic solution. Transportation Science, 17 (1), 48-70.

. Daskin Mark S. (1995). Network and Discrete Location, models, algorithms and applications,

John Wiley & Sons, pp. 92-125, 198, 208.

. Daskin, M.S. (2008). What should know about location modeling. Naval research logistics.

Wiley InterScience. 283-294. doi:10.1002/nav.

Flores de la Mota, Idalia, Mayra Elizondo Cortés. (2006) “Apuntes de Simulacién”. México,
Universidad Nacional Auténoma de México, Facultad de Ingenierfa.

Fraga-Sastrias, Juan Manuel, (2010). “Sistemas médicos de emergencia en México, una per-
spectiva pre hospitalaria” Archivos de Medicina de urgencia en México, Enero - April 2010.
Gendreau, M., Laporte, G., Semet, F. (1997). Solving an ambulance location model by tabu
search. Location Science, 5 (2), 75-88.

Gendreau, M., Laporte, G., Semet, F. (2001). A dynamic model and parallel tabu search heuristic
for real-time ambulance relocation. Parallel Computing, 27, 1641-1653.

Goldberg, J., Dietrich, R., Chen, J. M., Mitwasi, G., Valenzuela, T., Criss, E. (1990). Validating
and applying a model for locating emergency medical vehicles in Tucson, AZ. European Journal
Of Operational Research, 49 (3), 308-324.

Reidar Hagtvedt, Mark Ferguson, Paul Griffin, Gregory Todd Jones, Pinar Keskinocak. (2009).
Cooperative strategies to reduce ambulance diversion. Proceedings of the 2009 Winter Simu-
lation Conference. pp. 1861-1874.

Henderson S.G. and Mason A.J. (2004). Ambulance Service Planning: Simulation and Data
Visualisation. Operations Research and Health Care International Series in Operations Research
& Management Science. 70, 70-102.

Hogan, K., ReVelle, C. (1986). Concepts and applications of backup coverage. Management
Science, 32 (11), 1434-1444.

http://air.unimi.it/handle/2434/40782
http://air.unimi.it/handle/2434/40782
http://dx.doi.org/10.1002/nav

Simulation and Optimization of the Pre-hospital Care System ... 275

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Lee, Taesik, Jang, Hoon, Cho, Soo-Haeng, Turner, John G. (2012). A simulation-based iterative
method for a trauma center — air ambulance location problem. Proceedings of the 2012 Winter
Simulation Conference. pp. 955-966.

Limpattanasiri, W., Taniguchi, E. (2013). Solving a Maximal Covering Model of Emergency
Ambulance Location Problem in Urban Areas by Dynamic Programming Technique. Proceed-
ings of the Eastern Asia Society for Transportation Studies, Vol. 9, 2013.

Mandell, M. (1998). Covering models for two-tiered emergency medical services systems.
Location Science, 6(1-4), 355-368.

Marianov, V., ReVelle, C. (1994). The Queuing Probabilistic Location Set Covering Problem
and some Extensions. Socio-Economic Planning Sciences, 28(3), 167-178.

Matthew S. Maxwell Shane G. Henderson Huseyin Topaloglu. (2009). Ambulance redeploy-
ment: an approximate dynamic programming approach. Proceedings of the 2009 Winter Sim-
ulation Conference. pp. 1850-1860.

Morohosi, Hosumi, Furuta, Takehiro (2013). Optimization model and simulation for improving
ambulance service system. Operations Research and its Applications in Engineering, Technol-
ogy and Management 2013 (ISORA 2013), 23-25 August, 2013.

Morohosi, Hosumi, Furuta, Takehiro (2012). Hypercube simulation analysis for a large-scale
ambulance service system. Proceedings of the 2012 Winter Simulation Conference. pp. 1211-
1218.

Morohosi, Hozumi (2008), A case study of optimal ambulance location problems. The 7th
International Symposium on Operations Research and Its Applications (ISORA’08) Lijiang,
China, October 31-Novemver 3, pp. 125-130.

Pardines Lence, Inmaculada; (2007). Técnicas paralelas aplicadas a optimizacién no lineal en
sistemas de memoria distribuida. Espaia 2007, p. 8.

Parra O. O.J. (2011). Revision del estado del arte en modelos de localizacién y relocalizacién
de vehiculos para atencién de emergencias. Revista Elementos 1.

Ramirez-Nafarrate, Adrian, Fowler, John W., Wu, Teresa. (2011). Design of centralized ambu-
lance diversion policies using simulation-optimization. Proceedings of the 2011 Winter Sim-
ulation Conference, pp. 1251-1262.

Ramirez-Nafarrate, A. Baykal Hafizoglu, Esma S. Gel, John W. Fowler (2012). Comparison
of ambulance diversion policies via simulation. Proceedings of the 2012 Winter Simulation
Conference. pp. 967-978, 2012.

Repede, J., Bernardo, J. (1994). Developing and validating a decision support system for
locating emergency medical vehicles in Louisville, Kentucky. European Journal of Operational
Research, 75(3), 567-581.

Restrepo M. (2008). Computational methods for static allocation and real-time redeployment
of ambulances. Dissertation Faculty of the Graduate School of Cornell University.

ReVelle, C., Hogan, K. (1989). The Maximum Availability Location Problem. Transportation
Science, 23(3), 192-200.

Sasaki S., Comber A., Suzuki H., Brunsdon C. (2010). Using genetic algorithms to optimise
current and future health planning - the example of ambulance locations. International Journal
of Health Geographics, 9(4), 1-10.

Schilling David, et al. (1979). The team / fleet models for simultaneous facility and equipment
siting, Operations Research Society of America, pp. 163-175.

Schimd, Verena, Doerner, Karl F. (2010). Ambulance location and relocation problems with
time-dependent travel times, European Journal of Operational Re-search 207 (2010) 1293—
1303.

Shuib, Adibah, Zaharudin, Zati Aqmar. (2010). Framework of TAZ_OPT Model for Ambu-
lance Location and Allocation Problem. (2010) World Academy of Science, Engineering and
Technology. Vol: 48 2010-12-22.

Segura, Esther, Altamirano, Luis, Flores, Idalia. (2010). Simulation and Optimization of The
Pre-Hospital Care System of the National University of Mexico Using Travelling Salesman
Problem Algorithms. Proceedings of: SummerSim ’10-2010 Summer Simulation Multiconfer-
ence, Ottawa, ON, Canada, July 11-14.

276 LF. De La Mota et al.

43. Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal
of the American Statistical Association, 69, pp. 730-737.

44. Toregas, C., Swain, R., ReVelle, C., Bergman, L. (1971). The Location of Emergency Service
Facilities. Operations Research, 19(6), 1363-1373.

45. Weber, A. (1909) Uber den standort der industrien, tubingen english translation, by J.C.
Frieerich. Translated as Alfred Weber’s Theory of the location of industries. University of
Chicago Press, 1929.

46. Weng, Mark L. and Houshmand, Ali A. (1999). Healthcare simulation: a case study at a local
clinic, Proceedings of the 1999 Winter Simulation Conference, pp. 1577-1584.

47. Yisong Yue, Lavanya Marla, Ramayya, Krishnan. (2012). An Efficient Simula-tion-based
Approach to Ambulance Fleet Allocation and Dynamic Redeployment. http://www.select.cs.
cmu.edu/publications/scripts/papers.cgi? Yue-Marla- Krishnan:aaai2012. Accessed 28-02-14.

http://www.select.cs.cmu.edu/publications/scripts/papers.cgi?Yue-Marla-Krishnan:aaai2012
http://www.select.cs.cmu.edu/publications/scripts/papers.cgi?Yue-Marla-Krishnan:aaai2012

Simulation-Based Optimization Using
Greedy Techniques and Simulated Annealing
for Optimal Equipment Selection Within
Print Production Environments

Sudhendu Rai, Eric Gross and Ranjit Kumar Ettam

Abstract Xerox has invented, tested, and implemented a novel class of operations-
research-based productivity improvement offerings, marketed as Lean Document
Production (LDP), for the $100 billion printing industry in the United States. The soft-
ware toolkit that enables the optimization of print shops is data-driven and simulation-
based. It enables quick modeling of complex print production environments under
the cellular production framework. The software toolkit automates several steps of
the modeling process by taking declarative inputs from the end user and then auto-
matically generating complex simulation models that are used to determine improved
design and operating policies. This chapter describes the addition of another layer of
automation consisting of simulation-based optimization using simulated annealing
and greedy search techniques that enable the search of a large number of design
alternatives in the presence of operational and cost constraints. The greedy search
procedure quickly determines an acceptable solution in a web-based online applica-
tion environment. The simulated annealing technique is more time consuming and
is performed offline. The results of the application of this approach to real-world
problems are described.

1 Introduction

Xerox is the world’s leading enterprise for business process and document manage-
ment solutions. Xerox produces and sells a range of color and black-and-white print-
ers, multifunction systems, photocopiers, digital production printing presses, and
related consulting services and supplies. Xerox participates in the printing indus-
try by providing services, via Xerox Managed Services (XMS), to manage print

S. Rai (X)) - E. Gross - R.K. Ettam
Xerox Corporation, 800 Phillips Road, Webster, NY 14450, USA
e-mail: Sudhendu.Rai @xerox.com

E. Gross
e-mail: Eric.Gross @xerox.com

R.K. Ettam
e-mail: Ranjit. Kumar2 @xerox.com

© Springer International Publishing Switzerland 2015 271
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_9

278 S. Rai et al.

Customer L) Graphics

Survlea Design => Pre-press =>{ Printing =>{ Finishing > Mailing

Fig. 1 A print production workflow showing the various production operations

operations for clients who choose to outsource their in-plant print operations. Xerox
has invented, tested, and implemented a novel class of operations-research-based pro-
ductivity improvement offerings for the printing industry that has been extensively
described in [17]. This work was a finalist in the 2008 Franz Edelman competition.

Print service centers are document manufacturing systems which take raw material
and information as input and through a series of processing steps create final finished
document products such as books, brochures, checks, invoices, and the like. They
are designed to manufacture highly customized documents that are often embedded
in their workflows. The document production steps associated with print jobs are
indicated in Fig. 1. Typically print service centers have departments that support
individual steps in this workflow. Each department supports many different types of
internal workflows resulting from the use of different types of software tools, printing
machines (e.g., offset, digital), and finishing equipments such as cutting, binding,
laminating, and shrink wrapping. For further description of the steps we refer the
reader to [17].

The LDP software toolkit automates several steps of the print production mod-
eling process by taking declarative inputs from the end user and then automatically
generating complex simulation models that are used to determine improved design
and operating points for print shops. In this chapter, we describe the addition of
another layer of automation to the LDP toolkit consisting of simulation-based opti-
mization using greedy search techniques and simulated annealing that enables the
automated search of a large number of design alternatives in the presence of oper-
ational constraints to determine a cost-effective solution for the print production
environment.

The printing industry is highly fragmented with thousands of print shops that
are geographically distributed. This approach lends itself to being utilized for opti-
mizing print shops across multiple geographies by users less skilled in the art of
modeling, simulation and optimization, thereby allowing unprecedented scalability
of a simulation-based optimization approach to a wide user base. This is impor-
tant since users are able to utilize the simulation-based optimization toolkit to make
complex design and operational decisions and develop optimized designs without
the arduous task of building the simulation models and the associated optimization
framework.

This chapter is organized as follows. Section?2 provides a literature review on
simulation-based optimization approaches. Section3 describes the specifics of the
problem being addressed in this chapter. Section4 provides an overview of the Lean
Document Production toolkit. Section 5 describes the existing procedure of selecting
the optimal printing equipment. Section 6 describes the simulation-based optimiza-
tion techniques using the LDP toolkit. Section7 describes some applications and
case studies using real-world examples. Lastly in Sect. 8 we present our conclusions
and future scope of work.

Simulation-Based Optimization Using Greedy Techniques ... 279

2 Literature Review

The problem of constrained simulation optimization over a finite discrete set of
decision variables is common and has received significant attention. A two-phase
statistically valid procedure that detects feasibility of systems in the presence of one
constraint with a prespecified probability of correctness was presented in [3]. This
procedure was extended to the case of multiple constraints in [4]. An algorithm for
optimal sampling allocations using large deviation theory was provided under sto-
chastic settings [19]. Iterative heuristic algorithms [11], optimal computing budget
allocation framework [15] was proposed for selecting the best design from a discrete
number of alternatives in the presence of a stochastic constraint via simulation exper-
iments with limitations on simulation budget or probability of correctness. A novel
method [13] that converts constrained optimization into unconstrained optimization
by using the Lagrangian function was proposed for the problem over discrete sets
with noisy constraints.

The approaches discussed above either visit all the designs or convert the prob-
lem into a single objective function to find the best system. Suppose we conduct
n simulation replications for each of 6 designs, we need né total simulation repli-
cations. If the precision requirement is high, and if the total number of designs in
a problem is large, then nf can be very large, making the system evaluation com-
putationally expensive using the existing methods. In such cases, stochastic search
algorithms such as simulated annealing, tabu search, and genetic algorithms prove
to be the best choice. Simulated annealing [12] has shown successful applications
in a wide range of combinatorial optimization problems, and this fact has motivated
researchers to use simulated annealing in many simulation optimization problems.
But these search techniques need to be adapted for the stochastic environment asso-
ciated with discrete-event systems optimization.

Haddock and Mittenthal have investigated the feasibility of using a simulated
annealing algorithm in conjunction with a simulation model [7]. A variant of the
simulated annealing algorithm was developed for solving discrete unconstrained
stochastic optimization problems by using a constant temperature and convergence
criteria as the number of visits made by the different states in the first m-iterations to
estimate the optimal solution [2]. Two variants of the simulated annealing algorithm
with a decreasing cooling schedule that are designed for solving unconstrained dis-
crete simulation optimization problems was presented in [14]. For solving stochas-
tically constrained simulation optimization systems, an integrated approach using
the simulated annealing algorithm for parameter selection followed by Monte Carlo
simulation for performance evaluation was presented in [1].

Unlike ranking and selection procedures, the application of metaheuristics tech-
niques to simulation optimization problems in stochastic settings may not guarantee
that an acceptable solution, if one exists, will be found. But in most cases we observe
that they converge to acceptable solutions in a reasonable amount of time which is
most desirable in many real-world applications. In this paper we have present the
modified simulated annealing approach that can handle uncertainty in simulation

280 S. Rai et al.

output and stochastic constraint(s). The algorithm starts with an initial feasible solu-
tion and utilizes a decreasing cooling schedule. We perform the student’s t hypothesis
test for determining the feasibility of a solution at the current iteration [1]. Our algo-
rithm is distinct to the procedure in [1] by not restricting the neighborhood search to
feasible moves only.

In a web-based simulation optimization applications, approaches that result in
optimal/near optimal solutions in a reasonable time are desirable. A greedy approach
is frequently a good alternative which makes locally optimal choices at each stage
with the hope of finding a global optimum. An efficient greedy approach to allo-
cate ambulance fleet in emergency medical services system was presented [20]. To
determine the optimal configuration of a conveyor-based automatic material han-
dling systems in wafer fabs, a greedy heuristic was proposed [10]. Discussion on
greedy approximation for dock allocation in a food distribution center can be found
in [6]. In this chapter we present the greedy approach for optimal allocation of equip-
ment in print production environment in a web-based online application. The greedy
algorithm initially starts with sufficient number of production equipment and system-
atically reduces the number. The algorithm removes one or more devices such that
the customer’s performance criteria are not violated. This process is repeated until no
more cost reduction is possible subject to the constraint. Alternatively, the algorithm
can begin with no or a minimal set of equipment and systematically increases that
number.

3 Problem Description

Print service centers experience many sources of variability that make them hard to
analyze and optimize. They exhibit high levels of job size variations, routing complex-
ity, and demand fluctuations as shown in Fig.2. These service centers are primarily
make-to-order service systems that cater to specific requests of each incoming cus-
tomer. The incoming service requests have random arrival and due date requirements
that vary from job to job and often exhibit variability within the same job type. The
job sizes are often characterized by highly non-normal distributions and sometimes
heavy-tailed [16]. In addition to the above challenges, print shops also experience
long bid times, variability in labor and equipment characteristics, etc.

The LDP toolkit automates the workflow modeling and analysis of the print ser-
vice center. In order to optimize the cost and performance of a print service center,
the user manually evaluates a limited number of designs and selects the best design
among them. For example, to select the optimal equipment that minimizes the cost
of equipment, while simultaneously meeting the performance of a print service cen-
ter such as turnaround time, number of late jobs, operator or equipment utilization,
process cycle efficiency, etc., the user have to simulate multiple equipment config-
uration scenarios manually and select the cost-effective solution among them. This
process is labor intensive, time consuming, and often ad hoc. In this chapter we have
described an automated method to assist in selecting cost-effective solutions for a
print service center by integrating the optimization algorithm with the LDP solution.

Simulation-Based Optimization Using Greedy Techniques ... 281

Job Size (Page Count) distributi Job Types (jeb count)

95¢% Confidence Inteval for SIDev
13707 14760

Daily Production Valume
154555657 50859510511 5125162636
00000 — =SS S5 6.5 15 859510 511 512518 263,]
5000000 . g | Ucesoranes

4000000

soccaon | S ek

Vokme

20000004

10000001

1

1 ® 7B 117 156 195 234 273 32 381 390
Day

Fig. 2 Multiple sources of variability in a print production environment such as power law job size
distributions, multiple coexistent job types, and high demand fluctuation

4 The LDP Solution for Print Service Center Environment

To address the complexity of operations associated with the print production
processes, the service center resources are organized into autonomous cells [17].
As a result, the most common jobs can be finished autonomously inside (at least)
one of these cells. Figure 3 shows how traditional print service centers are organized
based on a departmental structure operated by specialized workers and compare it
to the redesigned operational framework based on autonomous cells where diverse
pieces of equipment are collocated and operated by cross-trained workers.

To orchestrate the flow and control of jobs through the parallel hierarchical cell
structure, the Lean Document Production Controller (LDPC) uses 2-level architec-
ture for production management. The LDPC has:

e A service center controller module (Service center CM)—high-level controller, in
charge of global service center management.

e Several cell controller modules (Cell CMs)—low-level controllers, in charge of
local management inside cells.

4.1 Simulation

Simulation is performed to assess the results of improvements resulting from changes
in workflow grouping, operator cross-training, grouping diverse equipment into

282

S. Rai et al.
ShopCM

|CeIICIu11 | |CeIlCIu12 | |ce|tcru13 |
),I \\\ !,/ \\‘ !{I \\‘
[3 . i - i .
! vo! 3 ! 3
1 [I H '
] 4] H] H
A : \l : \l :
1

% Cell1,” cell2,” “cell3,”

b e Nt

Fig. 3 Figure showing how a departmental configuration of a print service center is transformed

into a cellular structure utilizing autonomous cells and the corresponding two-level architecture for
the Lean Document Production Controller

autonomous cells and scheduling policies. Building discrete-event simulation models
is often a time-intensive effort especially when various scenarios have to be inves-
tigated to determine improved solutions. To facilitate the model building process,
the LDP tool is employed to build the simulation models from a declarative user
interface (Fig.4). This allows for fast and efficient evaluation of a large number of
what-if scenarios and greatly aids in determining an improved solution out of a large
search space.

The user specifies the equipment characteristics, elements of the cell, scheduling
policies, number of operators and their skill level, and workflow/job characteristics

LDP Input LDP Output

e
WHHE v ¥ 85

, * |t vt
oy [t L - | g | L
i fmonioin || [RS
@ :

e

=
g

[T ey

1 T

Fig.4 Illustrates the user interface for defining the printing equipment, operators and shop policies,
and simulation results for a sample print service center

Simulation-Based Optimization Using Greedy Techniques ... 283

as inputs to the simulation model using the LDP user interface (Fig.4). Before the
shop is simulated, the user schedules the jobs automatically using the scheduling
architecture as described above. Next the tool simulates the operation of the print
service center and outputs various performance metrics such as average turnaround
time, number of late jobs, operator and equipment utilization, maximum turnaround
time, and process cycle efficiency, etc., as shown in Fig. 4.

5 Existing Procedure for Selecting Optimal Equipment
Design in a Print Service Center

The selection of optimal printing equipment in the print service center is currently
carried out manually. The user first defines the necessary equipment type, cost, and
other characteristics (speed, setup time, failure, and repair rates, etc.) in each cell. The
jobworkflow characteristics and other shop operating policies (job sequencing policy,
batching, and work in progress, etc.) are collected from the shop and uploaded to
the LDP tool. An equipment design is defined as a combination of different numbers
of equipment types in each cell. The user has to create different equipment designs
that he is interested in by varying the quantity of each equipment type in each cell.
Each of these equipment designs is simulated N times in order to create performance
metric distributions (in the case where the simulation is subject to random events
such as machine failures and job variation). Then, the mean performance measure
of interest and total cost of the equipment is computed. Finally, the user selects
the equipment design that has the least cost and meets the desired print service
center performance goal as specified by the user. This process of evaluating multiple
design configurations is labor intensive, time consuming, and can lead to solutions
far from optimal. Figure 5 illustrates the detailed process flow diagram of the existing
procedure.

6 Simulation-Based Optimization Using the LDP Toolkit

The main idea presented here is the integration of the optimization routine and
simulation module within the LDP toolkit that embodies many elements of shop
specification and modeling automation. This enables the automatic search of an
optimal solution for the print production service center. For more detailed discussion,
applications and benefits of integrating optimization with simulation can be found
in [5, 8, 18, 21].

284 S. Rai et al.

q,

Specify the different equipment types, Select a design configuration (I)
cost and other characteristics in each cell J/
) \L - Run LDP simulations N times and compute
Read the job characteristics and other average performance measure of interest
shop operating polices from the shop (X) and the total equipment cost (TEC)

v

Specify the numerical range for each
equipment tvpe, number of simulations
(N) and the maximum desired level on
performance measure of interest ()

\It
v

Record the equipment design and corre-

Create all possible equipment designs (S) sponding total equipment cost

Select the least total equipment cost design as
optimal equipment design

Fig. 5 The existing procedure for selecting optimal equipment configuration using LDP tool in
print service center

6.1 Problem Formulation

The problem of selecting the cost-optimal equipment solution for the print production
environment in the presence of stochastic operational constraints such as average
turnaround time, number of late jobs, maximum turnaround time, etc., over a large
number of design alternatives can be formulated as below.

Objective : min x, es fo(Xi) 0
Subject to : filXep) <8
Ibj <xjj <ubj,i=1.n;, j=1.m
Xi = [x;]

Simulation-Based Optimization Using Greedy Techniques ... 285

where S, the search space, is a finite and discrete set of equipment design configura-
tions; Xy is the kth equipment design configuration, which is the vector combination
in the number of each type of equipment in each cell; k is the index of equipment
design configuration; x;; is the number of the ith type of equipment in the jth cell;
nj is the number of unique equipment types in cell j; m represents the total number
of cells in the print service center; [b;; and ub;; are the lower and upper bounds on the
number of the ith type of equipment in the jth cell; fo(Xy) is the total equipment cost
defined as C;; x x;;, where Cj; is the cost of ith equipment in jth cell; f1(Xy) is the
print service center performance measure such as average turnaround time, number
of late jobs, maximum turnaround time, etc., which cannot be evaluated exactly, but
needs to be estimated via the LDP simulation. Let Aj; be the print service center
performance observation observed from simulation replication [of system k, then
f1(Xx) = E[Ay]; and 6 is the maximum desirable level of the print service center
performance measure.

6.2 Modified Simulated Annealing Algorithm

Here, we present the modified simulated annealing algorithm used for solving Eq. 1.
The algorithm consists of two phases: initial feasible solution phase and optimal
solution phase. In the initial feasible solution phase, the algorithm starts with search-
ing for an initial feasible solution by randomly selecting a solution from the design
search space until the stopping criteria is met. If an initial feasible solution was found,
the algorithm starts with this solution and identifies the optimal solution by utilizing
a decreasing cooling schedule in the optimal solution phase. In the case of initial
unfeasible solution, the algorithm is terminated.

Moreover, the constraints in Eq. 1 are stochastic and the general-purpose simulated
annealing approach has to be adapted to consider the feasibility of a solution when it
moves from one solution to another. A solution is feasible if it meets the print service
center performance goal as specified by the user. To test the feasibility of a solution,
we use the following procedure [1].

Let us consider, an arbitrary stochastic constraint g(#) < §, where g(@) is the
stochastic simulation output for design 6 and § being the maximum desirable level
specified by the user. Letting g; (#) denote the ith simulation replication and running
simulation n times, the mean and variance estimate for g(#) could be determined
over n replications as:

iO =" 6®/n
Gi0y = > (6:(8) = §(0)* /n —1

The hypothesis statements for feasibility conditions are as follows:

286 S. Rai et al.

Null Hypothesis Hy : g(0) <=6
Alternate Hypothesis Hy : g(0) > §

Accept the null hypothesis Hy, if © = §(0) + t,—1,1—a X 85(9)/ﬁ)
where,

n — 1 is the degrees of freedom

1 — « is the upper critical point for the ¢ distribution
§(0) is the mean value of n simulation observations
G;9) is the standard deviation of §(6).

Unlike to the approach [1], our algorithm does not restrict the neighborhood search
to feasible moves only. In their approach the temperature length (M) parame-
ter is not incremented until a neighboring feasible solution is found, resulting in
unknown/more number of evaluations. When the probability of finding a feasible
neighborhood solution is very low, this may result in indefinite looping. In the modi-
fied simulated annealing algorithm, a move to a neighborhood solution is irrespective
of the feasibility of the solution, providing more control on the total number of evalu-
ations by the algorithm. Let T be the initial temperature, Ty be the final temperature
(To/T4eptn) and r the temperature decay rate. This results in the following series of
annealing temperatures:

To, To xr, Tox r2, Toxr> + To x r",
T
Ty = 0 _ Ty x r",
Tdepth

n = IOgl/ Tdepth
r

If the number of times to search a neighborhood solution at a given temperature
is L, then the number of evaluations is n x L. The value of L is fixed throughout the
algorithm and is determined using trial-and-error approach. To estimate the perfor-
mance measure the algorithm makes use of all the historical observations obtained
at that solution. Next, we define the following:

Definition 1 The search space S is a set of equipment design configurations whose
cardinality or [S| is T/ 1Y, (ubyj — b + 1).

Definition 2 For each X € S, there exists a subset N (0) of S — {X } which is called
the set of neighbors of Xy, such that each point in N (@) can be reached from Xy, in
a single transition. For example in Fig. 6, the search space S={A, B, C, D, E, F, G}
and the set of neighbors of Xy =B is N(9) = {A, D, G}.

Simulation-Based Optimization Using Greedy Techniques ... 287

Fig. 6 Illustrates the E F
discrete search space of a
cube

6.2.1 Algorithm

Parameters

Number of times to run the simulations at design (Xx): n

Temperature depth: Tyepsn

Temperature decay rate: r

Maximum desirable level of secondary performance measure: §

No. of times to search a neighborhood solution at a given temperature: L
Fraction of the total search space S for obtaining initial feasible solution in %: B
Significance value for #-test: o

Phase I: Finding initial feasible solution

1. feasibility = false
2. max = |S|*B
3.i=0

4. Repeat:

4.1. Randomly select the design configuration: X; € S

4.2. Generate n simulation observations for performance measures:
{fo(XD}L,» {fi(XD}L,

4.3. Evaluate: fo(Xj), f1(Xj), (}ﬁ)(Xi)&ﬁ (Xi) and th—1,1-a

4.4 I F (X)) + tao1.1—a X 87, x)/~/M < 8 then

4.5. feasibility = true

4.6. End if

47.i=i+1

5. Until feasibility = true or i > max

288 S. Rai et al.

If feasibility = true then
Return X; as initial feasible design configuration
Else
9. Return initial design configuration cannot be found in max iterations
10. End If

® =N

Phase II: Finding optimal design solution

1. value = fo(X;), Tinitial = value/2, Thinal = Tinitial/ Tdepth
2. Repeat:

2.1. For j=1.....L

2.2. Randomly select the neighborhood design X ;, where X; € N(Xj) and N(Xj)
is the set of neighborhood of X;

2.3. Generate n simulation observations for performance measures:
XD (i Xy

2.4. Evaluate: fo(X;), 1 (X)), 8ty x;)+ Oty o) And t—1,1-a
2.5, I F1(X) + ta1.1-a X af.l(xj)/ﬁ <6

2.5.1. newvalue = fo(Xj)
2.5.2. delta = newvalue — value
2.5.3. Generate uniform random number U; ~ U[O0, 1]
2.5.4. If delta <0 or e %1%/ T > Uy then
2.5.5. value = newvalue
2.5.6. Xj =X
2.5.7. End If
2.6. End If
2.7. Nextj

(O8]

. Reduce the temperature: T =r x T

. Until T > Tfpa

5. Return X as the optimum equipment design configuration and value as optimum
total equipment cost value.

N

6.3 A Greedy Algorithmic Approach for Equipment Allocation

In this section we consider another approach in a different class from that of simulated
annealing. That is an approach formulated from a greedy perspective. The greedy
methodology to optimization applies a heuristic that makes the locally optimal choice
at each step. Often the globally optimal solution will not be found but the greedy
heuristic may yield an adequate solution in reasonable time.

Consider the case of assigning a subset of N devices to a production shop. For N
devices, there are 2V possible assignments. Even for moderate values of N this can
be prohibitively large. Also each assignment may require the completion of a time-
consuming simulation run since there is no analytic model capable of expressing

Simulation-Based Optimization Using Greedy Techniques ... 289

the production process characteristics of interest except in the simplest cases. Each
run itself may need to be repeated to obtain distributions on performance metrics.
Also if it is desirable to provide timely production design services via, for example,
a web-based tool, then there may be additional constraints on the timely comple-
tion of a solution. The greedy algorithm initially starts with a sufficient number of
devices. Next, the algorithm removes one or more devices such that the customer’s
performance criteria are not violated. This process is repeated until no more cost
reduction is possible. Alternatively, the algorithm can start with none, or a minimal
set of devices (such that each required function can be performed) and from this
configuration devices can be added one or more at a time until the constrained per-
formance criteria is achieved. The device chosen to be added or removed at each
iteration is the device with the best (as detailed below) cost to benefit trade-off. The
method is analogous to forward selection, backward selection, and mixed selection
methods applied in the area of parsimonious model selection discussed in [9].

To illustrate the approach, we consider a shop model in the form of a discrete-event
simulation that must be exercised over some duration and some job list condition.
We define best performance as that with least cost with a job turnaround time metric
below a specified upper constraint. The discrete-event model provides as output the
turnaround metric and the costs incurred in processing the set of jobs. We will assume
for the example below that the performance metric is the average turnaround time
(TAT). Other performance metrics can be selected. The approach proceeds in the
following steps:

1. Complete a simulation with all N machines, {M1, M> ... MnN}, assigned to the
shop. This will produce as output a turnaround time metric (7AT) and cost (or if
runs are stochastic then the output will be in the form of distributions). Check
that the TAT metric is below the performance constraint(s). If not then stop since
there is no solution possible that would satisfy the constraint. If no solution exists
then one must start with more than N machines. If a solution exists then proceed
to step 2.

2. Run N more simulations. Each of the N simulations will consist of N-1 machines.
For the first simulation remove M; and retain {M>. ..My}, for the second simu-
lation replace M and remove M3, so that we now retain {M1, M3, Ma...MN}.
Repeat until each machine has been removed in turn. From these N simulations
determine the set of TAT metrics and cost that is output from the simulation.

3. Consider the average TAT metric and cost output from step 1 above, and the N
from step 2. This is shown in Fig.7 (For clarity only 4 of the N results, labeled
points A, B, C, and D, are shown from step 2). Here a decision is made in which
one of the machines is removed so as to reduce the set from N machines to N-1.
Any point, such as point D that results in the constraint being violated is not
a candidate and is to be removed. If all points lie above the constraint then no
reduction in machines is permissible, and so the machine removal portion of this
method is stopped. A number of sensible rules can be applied to define which
machine to remove. Example performance heuristics are:

290

S. Rai et al.

e Remove the machine which resulted in the largest cost reduction without
violating the TAT constraint. This would correspond to point A in Fig.7.

e Remove the machine which resulted in the smallest increase in 7AT metric,
this would be point B. Or,

e Remove the machine that resulted in the greatest cost reduction per unit 7AT
increase which would be point C. This would also capture the case in which
a TAT “increase” is actually negative—a very favorable condition.

All three of the above rules can be applied in three completely independent appli-
cations of the method and the best result chosen. This will require approximately
3 times the number of runs.

. Steps 2 and 3 above are repeated until the costs can no longer be achieved subject

to the constraint. This would result in an absolute maximum (N + 1)*N /2 sim-
ulations. So for a pool of 30 machines that would be 465 simulations maximum.
The maximum is unlikely to be run and certain policies can be adopted to reduce
further the number of simulations. For example,

e Step 2is likely to stop because of TAT constraint violations with N substantially
larger than 1in all except the most trivial of problems.

e Also the assumption that the machines are unique is highly unlikely. For exam-
ple, if machines M, M5, and M3 are identical then fewer simulations would
be required since removing M is equivalent to removing M> or M3. In this
way the existence of equivalent machines may reduce the required number of
simulations.

e A final way in which the number of simulations can be reduced is to use as a
guide the utilization results. So, for example, after the completion of step 1, we
have as output the utilization rates of the set of N machines. These should be
ordered from low utilization to high utilization. Step 2 can begin by removing
the machines in the order of lowest to highest utilization. One can then choose
not to run simulations for the machines that are highly utilized.

e Lastly, a modification that may be particularly effective would be to look at
larger groups of machines to be removed and replaced. For example, with the
case of 10 unique machines, instead of removing 1 machine at a time we may
consider removing groups of 2 (or 3, etc...) machines at a time. Suppose we
consider the removal of 2 machines at a time. Then there are 10 x 9/2 = 45
unique 2-tuples (10 % 9 * 8/6 = 120 unique 3-tuples). And so 45 evaluations
would be run after which 2 machines are removed that yielded the best trade-off
in cost and performance. There are now 8 machines left in the pool. The number
of simulations increased from 19 (10 4+ 9) to 45, but the method explores a
larger set of possibilities and is therefore more likely to produce a solution
closer to optimal. If the group size is increased from 1 to 2, then from 2 to
3, and then from 3 to 4, etc... a more extensive area of the search space is
evaluated. As the group size approaches N we approach the state of exhaustive
search. If a time constraint is set on the simulation time then one can proceed
logically through configurations as outlined in this chapter until the time limit
is reached.

Simulation-Based Optimization Using Greedy Techniques ... 291

Average TAT upper constraint 4 (of N) results
_________________ Py _ shown from step 2
TAT metric KX o
g First simulation (step 1) with
Ce i p N machines, will result in
g® b likely (not necessarily)

greatest cost and lowest TAT
Cost

Fig. 7 Plot of TAT metric versus cost

e All the above stated approaches aim at reducing the number of required simula-
tions. Since the operations in step 2 and step 3 can be performed independently,
the method easily lends itself to parallel processing which may further reduce
the computation time.

The final phase of this method can be to introduce machine failures. This final
step is a more conventional approach and so it is only outlined here for completion
(unlike steps 1-4 above, the final step does not constitute a core idea of this chapter).
Directionally to cope with machine failures more machines may need to be added (not
subtracted as in the steps above). A number of simulations are to be run and the TAT
metric distribution estimated. Machine(s) that are bottleneck devices and/or highly
utilized and therefore vulnerable failure points are identified and if their reliability
levels are sufficiently low, backup machines are added until the distribution of the
TAT metric is adequate.

7 Application and Case Study

Print service centers can be classified into three categories based on the activity
that they perform: transaction printing, on-demand publishing, or a combination of
both. A transaction printing environment produces documents such as checks and
invoices. Each document set is different. Mail metering and delivery are part of the
workflow. On-demand publishing environments focus on producing several copies
of identical documents with more finishing options such as cutting, punching, and
binding. Examples of such products include books, sales brochures, and manuals.
Other environments perform both types of document production simultaneously with
varying emphasis on each one.

In this section we illustrate the selection of the equipment configuration in three
print service centers using existing, simulated annealing, and greedy algorithmic
approaches for different performance criteria’s. The total equipment cost is deter-
ministic and defined C;; x x;; as where, C;; is the fixed cost of ith equipment in
the jth cell and x;; is the number of ith type of equipment in the jth cell. The
print service center performance measure f(Xg) is problem specific and can only
be estimated by running simulations using the LDP toolkit.

292 S. Rai et al.

7.1 Print Service Center 1

This print service center has two cells and six stations and can process printing and
inserting job workflows. Table I shows the equipment in each cell and their fixed
cost.

Job data over a period of 10days is collected from the print service center with
a total of 2692 jobs during that period. The number of equipment of each func-
tion/station type in a cell is varied between 1 and 3 and so the total number of pos-
sible equipment configuration is 729. Table 2 illustrates a sample of all the possible
equipment configurations.

Next, we illustrate the selection of optimal or near-optimal equipment configu-
rations for the print service center using the existing approach with N equal to 30
(N is the number of simulations replications for each design configuration), simu-
lated annealing approach with the parameters n = 5, L = 5, Tyeps = 100, 7 = 0.9,
B =5% and o = 0.01, and greedy algorithm starting initially with a solution having
3 number of equipment of each type in each cell for two test cases.

7.1.1 Test Case 1

In this problem, we have consider the print service center performance measure
f1(X%) as the average turnaround time less than or equal to Sh. The average turn-
around time is defined as the arithmetic average of turnaround times (difference
between the completion time and arrival time of job) of all the jobs. Table 3 illus-
trates the results summary.

Table 1 The printing equipment in each cell and their fixed cost

Cell Station Fixed cost ($)
Cell one Printer A 2,448,874
Cell one Inserter A 423,366
Cell one Inserter B 1,443,304
Cell one Printer B 2,448 874
Cell two Printer C 3,000,000
Cell two Inserter B 1,443,304

Table 2 A sample of equipment configuration in print service center 1

Designno | No. of No. of No. of No. of No. of No. of
printer A’s | inserter A’s |inserter B’s | printer B’s | printer C’s | inserter B’s
incellone |incellone |incellone |incellone |incelltwo |in cell two

1 1 1 1 1 1 1
2 1 1 1 1 1 2

729 3 3 3 3 3 3

Simulation-Based Optimization Using Greedy Techniques ... 293

Table 3 Test case 1 results summary

Existing Simulated annealing Greedy algorithm

approach Runl Run2 Runl Run2
Printer A’sin | 1 1 1 1 1
cell one
Inserter A’sin | 1 1 1 1 1
cell one
Inserter B’s in |3 3 3 3 3
cell one
Printer B’sin | 1 1 1 1 1
cell one
Printer C’sin | 1 1 1 1 1
cell two
Inserter B’sin | 2 2 2 2 2
cell two
Optimal total | 15,537,634 15,537,634 15,537,634 15,537,634 15,537,634
station cost ($)
Average 4.8 4.75 4.82 4.78 4.78
turnaround
time (h)
Number of 21870 1120 1115 72 72
simulations
Time in hours |29.94 1.44 1.66 0.106 0.11

7.1.2 Test Case 2

In this problem, we have considered the print service center performance measure
f1(Xk) as number of late jobs less than or equal to 0. A print job is late if the
completion date exceeds the due date. Table 4 illustrates the results summary.

7.2 Print Service Center 2

This print service center has 4 cells and 70 stations and can process job workflows
having printing, cutting, binding, punching, and other finishing and mailing services.
The search for the optimal equipment configuration is performed only for the printing
equipment in the print service center. Only two cells in the print service have printing
equipment. Table 5 shows the printing equipment in each cell and their monthly fixed
costs.

Job data for a period of 20days is collected from the print service center with
2593 jobs in the period. The number of equipment of each type in a cell is varied
between 1 and 3 and the total number of possible equipment configuration is 2187.

S. Rai et al.

294

$60°0 ¥60°0 0S'1 LL'T ¥6°6¢ SInoy ur owiy,

¥9 79 0zZ11 Sort 0L8°1T suone[WIS JO ON

0 0 0 0 0 0 0 sqof are[jo oN

($) 1500 woneI§

T90°T6°LT T90°TH6°'LT T90°T6°LT YE9'LES'ST YE9'LES ST T90°TH6°L1 969°L1S'LT [e10) fewndo

[4 C 4 € € C 7| om0 ur s, g 1011esuy

[4 [4 C T [4 T 7| 0m)[[90 ur's,) UL

I I I I 1 I 1| ouo yeo ur s g 1oung

[4 C C C 4 4 7| ouo [[90 ur s, g Je119SU]

€ € € I I € | ouo [0 ur s,y 19119su]

1 I 1 I 1 I 1| ouo [[oo ur sy IoWuLg
ouny Tunyy cuny Tuny

wyLIog[e ApaaIn Suresuue paje[nuIg yoeoidde Junsixg

Krewrwuns S)nsaI g ased 1S9, § [qel,

Simulation-Based Optimization Using Greedy Techniques ... 295

Table 5 The printing equipment in each cell and their fixed cost

Cell Station Monthly fixed cost ($)
Cell one Printer A 1601
Cell one Printer B 6771
Cell one Printer C 3907
Cell two Printer D 6771
Cell two Printer E 1544
Cell two Printer F 2472
Cell two Printer G 2120

Next, we illustrate the selection of optimal or near-optimal equipment configura-
tions for the print service center using the existing approach with N equal to 5, the
simulated annealing approach with parametersn = 5, L = 5, Tyjeps, = 100,7 = 0.9,
B = 5% and o = 0.01, and the greedy algorithm starting initially with a solution
having 3 number of equipment of each types in each cell for two test cases.

7.2.1 Test Case 3

In this problem, we have considered the print service center performance measure
f1(Xg) as the average turnaround time less than or equal to 2h. Table 6 illustrates
the results summary.

7.2.2 Test Case 4

In this case, we have considered the print service center performance measure f1(Xg)
as the maximum turnaround time less than or equal to 48 h. The maximum turnaround
time is defined as the maximum value of turnaround times over all the jobs. Table 7
illustrates the results summary.

7.3 Print Service Center 3

This print service center has two cells and four stations and can process job workflows
having printing, and inserting. Table 8 shows the printing equipment in each cell and
their monthly fixed costs.

Job data over a period of 30days is collected from the print service center with a
total of 2833 jobs in the period. The number of equipment of each type in a cell is
varied between 1 and 8 and the total number of possible equipment configuration is
4096.

296 S. Rai et al.

Table 6 Test case 3 results summary

Existing approach Simulated annealing Greedy algorithm
Runl Run2 Runl Run2
Printer A’s | 1 2 1 1 2 2
in cell one
Printer B’s | 1 1 1 1 1 1
in cell one
Printer C’s | 1 1 1 1 1 1
in cell one
Printer D’s | 1 1 1 1 1 1
in cell two
Printer E’s |2 1 2 2 1 1
in cell two
Printer F’'s | 1 1 1 1 1 1
in cell two
Printer G’s | 1 1 1 1 1 1
in cell two

Optimal $17,822 $17,860 $17,822 $17,822 $17,860 $17,860
total station
cost
(20days)

Avg 2.0 1.94 1.98 2.0 1.91 1.93
turnaround
time (h)

Number of | 10,935 1105 1110 61 61
simulations

Time in 58.76 5.55 5.53 0.316 0.305
hours

Next, we illustrate the selection of optimal or near-optimal equipment configu-
rations for the print service center using the existing approach with N equal to 5,
simulated annealing approach with the parameters n = 5, L = 5, Tyepm, = 100,
r =098 =5%and ¢« = 0.01, and greedy algorithm starting initially with a
solution having 8 number of each equipment type in each cell for two test cases.

7.3.1 Test Case 5

In this problem, we have consider the print service center performance measure
f1(X%) as the average turnaround time less than or equal to Sh. Table9 illustrates
the results summary.

Simulation-Based Optimization Using Greedy Techniques ...

Table 7 Test Case 4 results summary

297

Existing approach

Simulated annealing

Greedy algorithm

Runl

Run2

Runl

Run2

Printer A’s
in cell one

1

1

1

1

Printer B’s
in cell one

Printer C’s
in cell one

Printer D’s
in cell two

Printer E’s
in cell two

Printer F’s
in cell two

Printer G’s
in cell two

Optimal
total station
cost
(20days)

$17,822 $18,206 $17,822

$17,822

$17,822

$17,822

Max
turnaround
time (h)

41.52 44.30 40.80

41.22

40.97

41.75

Number of
simulations

10,935

1110

1110

67

67

Time in
hours

58.76

5.58

5.67

0.33

0.35

Table 8 The printing equipment in each cell and their fixed cost

Cell

Station

Monthly fixed cost ($)

Cell one

Printer A

19,156

Cell one

Printer B

3907

Cell two

Inserter A

21,267

Cell two

Inserter B

11,485

7.3.2 Test Case 6

In this case, we have considered the print service center performance measure f] (Xy)
as the maximum turnaround time less than or equal to 48 h. Table 10 illustrates the
results summary.

298 S. Rai et al.
Table 9 Test case 5 results summary
Existing approach Simulated annealing Greedy algorithm
Runl Run2 Runl Run2

Printer A’s |8 8 8 8 8 8

in cell one

Printer B’s | 1 2 2 2 1 1

in cell one

Inserter A’s | 1 1 1 1 1 1

in cell two

Inserter B’s |5 5 5 5 5 5

in cell two

Optimal 235,847 239,754 239,754 239,754 235,847 235,847
total station

cost ($)

Average 4.95 4.88 4.9 4.92 497 5
turnaround

time (h)

No of 20,480 1155 1165 67 67
simulations

Time in 57.41 1.58 1.83 0.103 0.092
hours
Table 10 Test Case 6 results summary

Existing approach Simulated annealing Greedy algorithm
Runl Run2 Runl Run2

Printer A’s |5 5 5 5 5 5

in cell one

Printer B’s |4 2 4 2 4 4

in cell one

Inserter A’s | 1 2 1 2 1 1

in cell two

Inserter B’s |3 2 3 2 3 3

in cell two

Optimal 167,130 169,098 167,130 169,098 167,130 167,130
total station

cost ($)

Max 47.82 47.38 47.79 47.29 47.8 47.76
turnaround

time (h)

No of 20,480 1145 1110 99 99
simulations

Time in 57.41 1.44 1.30 0.135 0.133
hours

Simulation-Based Optimization Using Greedy Techniques ... 299

7.4 Results and Discussion

We have demonstrated the selection of optimal equipment in print service envi-
ronments using modified simulated annealing and greedy algorithm techniques for
different test cases. These test cases differ either in the performance measures or the
problem size. In test cases 1 and 4, the simulated annealing and greedy algorithm
finds the optimal solutions for both the experimental runs. Whereas, in test case 3
the simulated annealing outperforms the greedy algorithm solutions and in test case
5 the greedy algorithm outperforms simulated annealing solutions. In test case 2 and
6, the simulated annealing and greedy algorithm performs equally in one experi-
mental run, but the greedy technique outperforms annealing algorithm in the second
experimental run.

The results show that the greedy algorithm and simulated annealing perform ade-
quately for a set of tasks typical in the improvement of print operations irrespective
of the size of the problem. The simulated annealing technique is more time consum-
ing and is performed offline and used during preliminary print service center cost
evaluations. The simulated annealing algorithm is wrapped around the stand-alone
LDP modeling framework, enabling the users to determine the optimal equipment
configuration by evaluating a very large number of possible configurations automat-
ically. In addition, by enabling automated simulation-based optimization, we can
enable less skilled users to utilize the power of the LDP toolkit in making informed
and optimized decisions offline. The business value of this automated simulation
optimization solution can be enhanced further by incorporating this into an online
web-based LDP optimization framework. As the greedy algorithm is much faster
than simulated annealing, it is used in a web-based online application as shown in
Fig.8.

* € [0 usal128as013.naxerownet E .=

{LDP —re

Lean Dacument Production and Design®

Optimal Equipment Cost Configuration Show (10 + | entries Seanch:
Cel =

Shop performance messure Acyriage Tumarcund Time v

e Inserter_P_MPS_Msl_NC_PIL 1443304
, IEMIlPre4100_NC_land4Dupies 2448ET4
= IBMNfoPTRSO00_Color_TKO_2 2448874 3
= Irserter_KAS_S65HS_TRO_1 AT3%06 b
£ MEMPfOPANCA000_NC_3 2440074
- Mo 100_NC_1 2448574
= Eerter_Pll_MPS_Ma_TKO_PI3 1443304
BMInfoPINEA000_TKO_1 2448874
- IBMAOPrINE000_NC_1 2448874
IBMnfcPrRS000_Color_THO_Land2 3000000

Fig. 8 Online web-based LDP tool kit

300 S. Rai et al.

8 Conclusions and Future Work

This chapter presents a simulation-based optimization solution using simulated
annealing as an offline approach and a greedy methodology as an offline or online
approach for optimal print shop equipment selection. It describes how suitable
abstractions and automation of the simulation tool can enable deployment of the
Lean Document Production solution for cost-optimal equipment selection within a
highly fragmented printing industry, while optimizing key performance objectives
such as average turnaround time, number of late jobs, operator or equipment utiliza-
tion, process cycle efficiency, etc. Though the techniques described here are applied
within printing industry, they can also be utilized in other service-based operations
with similar workflow characteristics.

Here we have used simulated annealing as an optimization approach, other evo-
lutionary approaches such as ant colony and genetic algorithms can also be utilized
for this purpose. But, these techniques need to be adapted to suit to the stochastic
environments. The computational speed of these algorithms can be improved further
by parallelizing, running on cloud-based platforms. We carried the above study by
considering a single performance measure; further study can be made to extend the
algorithm for multiple shop performance measures such as labor cost and operational
cost.

References

1. Ahmed MA, Alkhamis TM, Hasan M (1997) Optimizing discrete stochastic systems using
simulated annealing and simulation. Computers & Industrial Engineering 32:823-836

2. Alkhamis TM, Ahmed MA (2004) Simulation based optimization using simulated annealing
with confidence interval. In: Ingalls RG, Rossetti MD, Smith JS, Peters BA (eds) Proceedings
of the 2004 winter simulation conference, Washington DC, 2004

3. Andradéttir S, Goldsman D, Kim SH (2005) Finding the best in the presence of a stochastic
constraint. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005
winter simulation conference, Florida, 2005

4. Batur D, Kim SH (2005) Procedures for feasibility detection in the presence of multiple con-
straints. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005
winter simulation conference, Florida, 2005

5. FuMC, Andradéttir S, Carson JS, Glover F, Harrell CR, Ho YC, Kelly JP, Robinson SM (2000)
Integrating optimization and simulation: research and practice. In: Joines JA, Barton RR, Kang
K, Fishwick PA (eds) Proceedings of the 2000 winter simulation conference, Florida, 2000

6. Gopakumar B, Sundaram S, Wang S, Koli S, Srihari K (2008) A simulation based approach
for dock allocation in a food distribution center. In: Mason SJ, Hill RR, Moench L, Rose O,
Jefferson T, Flower JW (eds) Proceedings of the 2008 winter simulation conference, Florida,
2008

7. Haddock J, Mittenthal J (1992) Simulation optimization using simulated annealing. Computers
& Industrial Engineering 22:387-395

8. Harkan IA, Hariga M (2007) A simulation optimization solution to the inventory continu-
ous review problem with lot size dependent lead time. The Arabian Journal for Science and
Engineering 2:327-338

Simulation-Based Optimization Using Greedy Techniques ... 301

9.

10.

11.

12.

13.

15.

19.

20.

21.

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning with
applications in R. Springer Heidelberg, New York

Johnson A, Carlo HJ, Jimenez JA, Nazzal D, Lasrado V (2009) A greedy heuristic for locating
crossovers in conveyor based ahms in wafer fabs. In: Rossetti MD, Hill RR, Hohansson B,
Dunkin A, Ingalls RG (eds) Proceedings of the 2009 winter simulation conference, Texas,
2009

Kabirian A, Olafsson S (2009) Selection of the best with stochastic constraints. In: Rossetti
MD, Hill RR, Hohansson B, Dunkin A, Ingalls RG (eds) Proceedings of the 2009 winter
simulation conference, Texas, 2009

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220: 671-680

Luo Y, Lim E (2011) Simulation based optimization over discrete sets with noisy constraints.
In: Jain S, Creasey RR, Himmerspach J, White KP, Fu M (eds) Proceedings of the 2011 winter
simulation conference, Arizona, 2011

Prudius AA, Andradéttir S (2005) Two simulated annealing algorithms for noisy objective
functions. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005
winter simulation conference, Florida, 2005

Pujowidianto NA, Lee LH, Chen CH, Yap CM (2009) Optimal computing budget allocation
for constraint optimization. In: Rossetti MD, Hill RR, Hohansson B, Dunkin A, Ingalls RG
(eds) Proceedings of the 2009 winter simulation conference, Texas, 2009

. Rai S (2008) Fat tail inputs in manufacturing systems. In: Flower J, Mason S (eds) Proceedings

2008 industrial engineering research conference, Norcross, GA

. Rai S, Duke CB, Lowe V, Trotter CQ, Scheermesser T (2009) LDP lean document production

-O. R. - enhanced productivity improvements for the printing industry. Interfaces 39: 69-90

. Sandeman T, Stanford C, Fricke C, Bodon P (2010) Integrating optimization and simulation a

comparison of two case studies in mine planning”. In: Johansson B, Jain S, Montoya - Torres
J, Hugan J, Yiicesan E (eds) Proceedings of the 2010 winter simulation conference, Maryland,
2010

Szechtman R, Yiicesan E (2008) A new perspective on feasibility determination. In: Mason
SJ, Hill RR, Moench L, Rose O, Jefferson T, Flower JW (eds) Proceedings of the 2008 winter
simulation conference, Florida, 2008

Yue Y, Marla L, Krishnan R (2012) An efficient simulation based approach to ambulance
fleet allocation and dynamic redeployment. In: proceedings of the 26 AAAI conference on
artificial intelligence, Toronto, Ontario, Canada, 2014

Zeng Q, Yang Z (2009) Integrating simulation and optimization to schedule loading operations
in container terminals. Computers and Operations Research 36: 1935-1944

Linear Bus Holding Model for Real-Time
Traffic Network Control

Leonardo G. Hernandez-Landa, Miguel L. Morales-Marroquin,
Romeo Sanchez Nigenda and Yasmin A. Rios-Solis

Abstract One of the most annoying problems in urban bus operations is bus
bunching, which happens when two or more buses arrive at a stop nose to tail. Bus
bunching reflects an unreliable service that affects transit operations by increasing
passenger-waiting times. This work proposes a linear mathematical programming
model that establishes bus holding times at certain stops along a transit corridor to
avoid bus bunching. Our approach needs real-time input, so we simulate a transit
corridor and apply our mathematical model to the data generated. Thus, the inherent
variability of a transit system is considered by the simulation, while the optimization
model takes into account the key variables and constraints of the bus operation. Our
methodology reduces overall passenger-waiting times efficiently given our linear
programming model, with the characteristic of applying control intervals just every
Smin.

1 Introduction and Problem Description

The study of complex bus operating systems is usually divided into two main
areas, line planning and real-time control [3, 8]. The line planning process involves
strategic, tactical, and operational decisions. Strategic problems relate to long-term
network design decisions. Tactical and operational decisions ultimately define the
service offered to the public; for example, frequency of buses, definition of stops, bus

L.G. Hernandez-Landa - M.L. Morales-Marroquin -

R.S. Nigenda - Y.A. Rios-Solis (5

Graduate Program in Systems Engineering, Universidad Auténoma
de Nuevo Le6n (UANL), San Nicolds, Mexico

e-mail: yasmin.riossls @uanl.edu.mx

M.L. Morales-Marroquin
e-mail: morales.mike @ gmail.com

R.S. Nigenda
e-mail: romeo.sanchezng @uanl.edu.mx

L.G. Herndndez-Landa
e-mail: leogabrielhdz@gmail.com

© Springer International Publishing Switzerland 2015 303
M. Mujica Mota et al. (eds.), Applied Simulation and Optimization,
DOI 10.1007/978-3-319-15033-8_10

304 L.G. Hernandez-Landa et al.

scheduled traffic delay early departure passenger

Stops

timetabling time overflow at stop 1
A s h

/

T T T T T‘ T { T T T
8:00 8:15 8:30 8:00 8:15 8:30 8:00 815 8:25 8:00 8:15 8:30 Time

H £ i

Fig. 1 Causes of bus bunching (modified from Ceder [3])

timetabling, vehicle scheduling, driver scheduling, maintenance scheduling, among
other problems.

Real-time control tries to maintain the bus system operational along the day in
order to minimize passenger inconvenience caused by the inherent stochastic dynam-
ics of the network or traffic situations [8]. Although bus frequency is planned for each
stop in the network, changes in the passenger flow, traffic, or even in the timetabling,
produce perturbations that give rise to one of the most annoying problems in urban
transportation operations, the bus bunching problem (BBP) that happens when two
or more buses arrive at a stop nose to tail. BBP is one of the most common customer
complaints in today’s networks since it reflects an unreliable service that affects
transit operations by increasing passenger-waiting times.

In Fig. 1, we show the causes of bus bunching for a single bus line with three
trips, which have the following timetable: 8:00, 8:15, and 8:30. For the four graphs,
time is represented by the x-axis, while the first two stops are represented by the
y-axis. The first graph shows how the planning should look like if everything were
deterministic. We can see that the lines of the three trips are parallel, so the time
differences between them (called headways) are of exactly 15 min. The second graph
shows the perturbations that arise when a traffic delay hits the second trip between
the depot and the first stop. The dotted lines are the planned schedules, while the
plain lines are the real executed delayed plans. Since the 8:15 bus takes longer to
arrive at stop 1, there are more passengers waiting to board it. When the bus that
departed at 8:30 arrives at stop 1, many of the passengers that should have boarded
it have already boarded the 8:15 bus. Then, these two buses will bunch close to stop
2. Graph three represents bunching situations when the departure time of a trip is
moved earlier. Similarly to the second case, there will be less passengers at stop 1 so
the bus will go faster and catch the 8:15 bus around stop 2. Finally, the fourth graph
considers the case of passenger overflow. This graph shows that since there are extra
passengers at stop 1 the dwell time of the second bus at that stop will be longer. In
other words, the second bus is taking passengers who would be normally assigned
to the third bus. By the time the second and third buses arrive at stop 2, they are
generating a bus bunching situation.

In this work, we provide solutions to the bus bunching problem by maintaining
congruent headways. Furthermore, we show that maintaining congruent headways

Linear Bus Holding Model for Real-Time Traffic Network Control 305

implicitly reduces passenger-waiting times. As mentioned, the headway is a quality
measure given to the time difference between two consecutive buses. A bus line
could have equally distant headways or different ones for each pair of buses Ceder
[2], Ibarra-Rojas and Rios-Solis [14], Ibarra-Rojas et al. [15]. We say that headways
are congruent if the real-time differences between buses are nearly identical to the
originally planned. Headway congruence does not necessarily comply with planned
timetables. Indeed, the time when a bus arrives at a stop may not be the planned one,
but if the distance to its predecessor is almost the planned headway, then it will be
a congruent headway. Congruent headways reflect a reliable service, especially for
cases when timetables are not intended for the public so the users only know estimated
headways for the lines as in Monterrey, Mexico, and many Latino-American cities.

Our methodology interleaves optimization and real-time data retrieving to main-
tain congruent headways and solve BBP along the day. During the optimization
phase, a linear programming model is built and solved to exactly determine the hold-
ing times of the buses at the stops in order to maintain congruent headways. The
real-time data retrieving phase indicates, at every interval of time, the positions of
the buses along a single corridor where only one line operates at a given frequency.
In Fig. 2, we can observe how optimization and real-time data retrieving interleave.
Real-time (or simulated) data are acquired from the bus corridor to obtain the distance
between each bus and its last visited stop, together with the number of passengers
waiting at each stop. Then, these data are used to populate our linear programming
model, which yields the optimal holding times for each bus in the corridor.

Most of the works in the literature base their quality measure on the waiting times
of the passengers, or the variance between the departure times of the buses at the
stops, which are generally modeled with quadratic functions that are harder to solve
and therefore difficult to operate by real-time systems. By using a linear objective
function that minimizes the penalties arising when headways are not congruent, our
methodology returns optimal solutions in a short time. One of the main contributions
of this work is that by maintaining congruent headways, we implicitly reduce the
overall passenger waiting and travel times, as our experimental results will demon-
strate.

The remainder of this chapter is structured as follows. A brief revision of the state
of the art is presented in Sect.2. In Sect. 3, we present our new linear programming

Fig. 2 Framework for
interleaving optimization
(BBP LP modeling) and
real-time data retrieving (or
simulation)

- Holding times for
each bus for its next
stops

BBP

Real-Time data linear

programming

Distance between each bus
and its last visited stop
Number of passengers
waiting at each stop

306 L.G. Hernandez-Landa et al.

model inspired in earliness and tardiness penalties of just-in-time scheduling prob-
lems, which determines the optimal holding times of the buses at the stops. Then,
Sect.4 shows the efficiency of our model on a discrete event simulation of a sin-
gle corridor. Finally, Sect.5 presents our conclusions, and discusses open research
questions that arise from this work.

2 State of the Art Research in Real-Time Bus Operations

Most of the literature related to real-time bus operations deals with models that have
nonlinear objective functions. Therefore, the holding times that each bus must be
held at the stations are approximations. Work by Zhao et al. [24] minimizes the
average waiting cost of passengers, including both off-bus and on-bus costs that
are nonlinear, when there is no capacity imposed on the buses. Eberlein et al. [11]
minimize the variance between the departure times, which is a quadratic function,
and therefore propose heuristic solutions. Sun and Hickman [23] propose a convex
quadratic programming problem to minimize the variance between the departure
times. A closer work to ours is proposed by Ding and Chien [10], since they consider
the minimization of the total variance of headways between buses at all stops.

Daganzo [4] and Daganzo and Pilachowski [5] propose adaptive control schemes
aiming to provide quasi-regular headways, while maintaining as high commercial
speed as possible. In Daganzo and Pilachowski [5] the authors continuously adjust
bus cruising speed based on a cooperative two-way-based approach that considers the
headways of the previous and later buses. Bartholdi IIT and Eisenstein [1] abandon the
idea of any a priori target headway, allowing headways to dynamically self-equalize
by implementing a simple holding rule at a control point. It is worth noting that the
aim of the previously mentioned studies is to maintain headways equally, so they do
not consider timetables where the headways may be different for each pair of buses
and they are not apt for situations when the buses reach their capacities.

Our work deals with the capacity of the vehicles as Zolfaghari et al. [25] do,
where the authors minimize the waiting time of passengers at every stop by taking into
account the variance between the departure times. These authors propose heuristics to
circumvent the complexity of the proposed model. Puong and Wilson [18] propose
a nonlinear mixed-integer linear programming for a real-time disruption response
model with emphasis on the train holding strategy. In Delgado et al. [6, 7] the aim is
to minimize the total waiting times experienced by passengers in the system using a
quadratic model.

Our work aims at maintaining congruent headways considering capacity of the
vehicles, and in doing so, we expect to reduce passenger-waiting times in the bus
corridors. We improve the work of Delgado et al. [7] by reducing the number of
variables in the model and the number of times the model is used in real-time scenar-
i0s, obtaining exact solutions for the holding times. Moreover, in order to reduce the
waiting times of the passengers we bound the holding times of the buses. Another

Linear Bus Holding Model for Real-Time Traffic Network Control 307

@0 @@

K

Depot
S+1

Q-

Fig. 3 Transit bus line model: each bus k leaves the depot according to an established timetable,
serving stops 1 to S before coming back to the depot where all the remaining passengers must alight

advantage of our proposal is that it adapts easily to cases where the headways are
equal or different during different planning horizons along the day.

3 Methodology and Approach

As mentioned earlier, the core of our methodology consists of interleaving optimiza-
tion and real-time data retrieving of the bus lines in a rolling horizon planning. The
optimization phase of our approach builds and solves efficiently a linear model to
maintain congruent headways along the bus line. Our model is used at every given
time interval! to decide how long the buses should be held at the bus stops. Our
model requires a real-time data estimation of the state of the system to operate. Such
data are provided by the real-time retrieving phase, which in our case of study is
supported via simulation. The simulation of the system provides data related to the
position of the buses, number of passengers aboard each bus, and the number of
passengers waiting at the stops to build our model.

More precisely, the Bus Bunching Problem, BBP, consists of K buses, each with
its own capacity and speed that serve all S stops of a single bus corridor. We can
see in Fig. 3 that each bus k leaves the depot according to an established timetable,
serving stops 1-S before coming back to the depot where all the remaining passengers
must alight. Notice that overtaking is not permitted. For the optimization phase, we
consider that travel times between stops, and A (passengers arrival rate per minute)
are deterministic during the period of interest. Moreover, each stop has a dwell time
function depending linearly on the number of passengers that board (board T minutes
per passenger).

The characteristics of the line are as follows. Parameter capy corresponds to the
capacity of bus k, dist; is the distance in meters between stops s and s — 1, speedj

! The time interval is a parameter in our model that could be specified by the control unit of the bus
company.

308 L.G. Hernandez-Landa et al.

is the operating speed in meters per minute of bus k between stops s and s — 1 while
the bus is moving, and ODy is the fraction of passengers boarding bus k at stop s
whose destination is stop s’ (for all s < s"). The headway between buses k and k — 1
in this line must be between the interval [min H ead}, max Heady] to be considered
congruent, which is specified as an input parameter for our model.

At time 79, instant when the holding decisions are needed, we assume that we
have the following state of the transit corridor:

. d,? distance between bus k and its last visited stop at time ¢°. If the bus is still at a
stop, then d,? =0.

e s(k) indicates the last stop that bus k has visited at time 7. If bus k is at stop s’,
then s(k) = s' — 1. In Fig.3, s(2) = 3 and s(3) = 1, and to simplify the notation,
s(K)=0,buts(1)+2=8+1.

) cg is the number of passengers waiting at stop s at time 7°.

Decision variables of our model are the holding times for each bus k at control
point s, denoted by hy. There are auxiliary variables that depend on Ay, like the
departure times of bus k at stop s that is denoted as tdy;. If the departure times
at stop s of buses k and k — 1 are between [minHeady, max Heady], then we
consider that they are complying with the established headways. Nevertheless, if
this difference in departure times is outside this interval, we use the concepts of
earliness and tardiness which is frequent in just-in-time scheduling theory [19-22].
The earliness of the headway between buses k and k — 1 at stop s is defined as
Eys = max(minHeady — (tdys — tdy—15), 0) which can be linearized as follows:

Eys > minHeady — (tdys — tdi—15), k=2,...,K, s =sk)+1,...,5 (1)
Eis>0,k=2,...,K,s=sk)+1,...,5. (2

While the tardiness of the headway is Ty = max((tdxs — tdx—15) — max Heady, 0)
which is equivalent to

Tis > (tdrs — tdy—15) —maxHeady, k=2,..., K,s=sk)+1,...,5 (3
Tis >0, k=2,....,.K,s=stk)+1,...,S. 4

Then, the objective function of BBH is the minimization of the sum of all early and
tardy headways:

K S
min > D YE + €Tk, (5)

k=2 s=s(k)+1

where v and € are linear penalization for the earliness and the tardiness, respectively,
subject to constraints (1)—(4). Additionally, the departure times of each bus k at each
stop s are defined with two different sets of restrictions. The first one is the case
where the bus & at time 70 is between stops s(k) and s(k) + 1 (in Fig.3 this case
would apply for bus 2 that is between stops 3 and 4). Here, the departure time of &

Linear Bus Holding Model for Real-Time Traffic Network Control 309

at s(k) + 1 is the time that needs the bus to arrive at the stop, plus the dwelling time
dwellyg)+1 (that will be computed later) plus the time the model decides that this
bus will hold. This situation is reflected by constraints (6). The second case is similar
but considers that the bus has not yet reached stop s — 1 (constraints (7)). Restrictions
(8) impose a limit of max Hold to each holding time to guarantee a certain traveling
time quality of the passengers.

distg) —d,?

tdks(oy+1 = to + +dwelliggy+1 + hisgy+1, ke K (6)

speedyg i)
disty_|
tds = tdys_1 + ———— +dwells + hyg, ke K,s=sk)+2,...,5—1. (7)
speedys—1

his <maxHold, ke K\{1}, s=sk)+1,...,s¢(k—1). (8)

From the state variables of the system, we can compute the total number of
passengers that will be at stop s when bus k will reach this stop, denoted as passig
in (9) and (10), as the number of passengers who are actually in the stop plus the
ones that will arrive. The number of passengers who will be in bus k at stop s is
equal to the passengers who want to board bus k, passig, minus the proportion of
the passengers that left the bus before stop s (restrictions (11)). In this manner, we
can compute the dwell times of bus k at s (restrictions (12)). Notice that alighting
and friction between the passengers who stay inside the bus could be easily included
in the last restriction set.

passis = X + Ag(tdis —10), ke K, s=stk)+1,...,s(k—1))
passiy = ¢ + As(tdiy — tdgs), s =s(K)+1,...,8 (10)

s—1 s—1
passBusis = min Zpasski 1-— Z ODyij | ,capk | »
i=1 j=i+1

keK,s=sk)y+1,...,S (11)
dwellyy = passBusgsboardT, ke K,s =sk)+1,...,S. (12)

The following restrictions are the different cases that need to be considered in
order to avoid bus overtaking:

tdps —tdy—15 >0, ke K\{1}, s=stk—-1)+1,...,8 (13)
tdyy — tdgs > 0, s=sk)+1,...,s(1) (14)
tdg—15 —tdgs >0, k€ K\{l}, s=sk)+1,...,s(k—1). (15)

310 L.G. Hernandez-Landa et al.
The LP for BBP is then

. K s
min - > o > w1 ¥ Eks + €Tks
S.t.

Es, Tis, his =0, ke K,s€S.

Notice that all variables are required to be positive but not integer, so LP can
be solved by the simplex method or by a polynomial barrier algorithm. Indeed, the
main variables Ay, represent a time interval so we can consider them as continuous
variables. One of the main advantage of LP, besides the fast computational time, is
that we could use linear programming sensitivity analysis. Nevertheless, the holding
times that are going to be transmitted to the drivers at the bus stations should be
integer. Then, variables A should be in seconds or in minutes and therefore integer
variables. Preliminary results showed no drastic increment in the computing times
when bus holding variables &y are integer [1, 4, 6, 15].

Our model improves and differs from the model of Delgado et al. [7] in the
following aspects.

e Our objective function is linear so we can obtain optimal solutions for our model.

e The departure times of the buses are according to their established headway or
timetable. Only perturbations that arise along the trip are taken into account.

e We only take into account the possible holding times of a bus from its actual
position up to the depot instead of considering the holding times for all stops. This
reduces the number of variables and makes the problem more realistic.

e We bound the amount of time that a bus can be held at a stop.

e We may have different headways for every pair of buses. In this way, recent syn-
chronization timetables can be benefited by our approach and dealing with different
planning periods (e.g., rush hour, night time) is natural.

e We do not need to call the model every time a bus arrives at a stop, we can do it
at each fixed interval of time. This fact is more realistic for a bus company. In our
case of study, the company retrieves data of the buses every 2 min.

4 Experimental Results

The BBP LP model described in the previous section needs data to be populated. Data
can be retrieved through the use of monitoring technologies like Global Positioning
Systems (GPS) and Automatic Vehicle Location systems (AVL) in real-time during
the execution of the bus corridor. However, to study the impact of our model under
different scenarios in the traffic corridor we consider a discrete event simulation.

The single corridor is simulated using the discrete event and stochastic simulator
ExtendSim AT version 9.0 [9, 17]. The simulator triggers an event at every fixed
amount of time, in which the positions of the buses and their loads, and the passengers
waiting at the stops, together with their traveling destinations, are updated.

Linear Bus Holding Model for Real-Time Traffic Network Control 311

Our BBP LP model uses deterministic functions to forecast demands and travel
times. Nevertheless, we use stochastic processes in the simulation to reflect a real
system. We use a single corridor of 10km with 30 stops and one depot uniformly
distributed, like in Delgado et al. [7]. There are only 30 stretches, since the last stop
is merged with the depot. Travel times of the buses between each pair of stops are
distributed as Lognormal with a mean of 0.77 min and variance of 0.4 [13, 24]. At
each stop, passengers arrive randomly using a Poisson distribution with rate equal
to one [16]. The mean of the distributions are the parameters used by our model.

When passengers arrive at a bus stop, a destination is assigned to them. Passengers
wait in line to board the bus in a first-in/first-out manner. Boarding and alighting times
of passengers are set to 2.5 and 1.5s respectively, since all buses have two doors,
one for boarding and another for alighting. If passengers cannot enter a bus because
it reached its capacity, they will wait in the stop until the next bus with free space
arrives. This waiting time is denoted as Wjy. The headway time windows are set
to [minHeady, max Head;] = [0.3, 0.46] minutes for all the buses. Note that these
time windows are easily adjustable for cases where there are different periods along
the day, and for the synchronization timetables that favor transfers. We can measure
the waiting and travel times of the passengers and the buses in the simulation since
we have modeled these structures as individual agents.

We use a fleet of 60 buses with a maximum capacity of 100 passengers per bus. At
every fixed amount of time interval, we determine the actions that should be followed
by creating the BBP LP model in Java, and solving it with the linear package of Gurobi
5.6. The solution generated contains the holding times for all the buses for all the
future stops up to the depot. If after a time interval a new solution is generated, then
the holding times are updated using a rolling horizon scheme.

Even if we base our scenarios on the ones generated by Delgado et al. [7], there
is no fair comparison since our methodologies consider different assumptions. Nev-
ertheless, we can observe that our approach indeed improves the overall waiting and
travel times of the passengers.

The scenarios for the simulation are divided into two parts: time interval scenar-
ios and the parameters setting scenarios; and they are described in the following
subsections.

4.1 Time Interval Scenarios

The aim of the time interval scenarios is to determine the optimal policy for control-
ling when new holding times must be computed and given to the system.

In our case study for the city of Monterrey, México, the bus company updates at
every 2 min the positions and all the related data of the buses in the transit corridor.
Following this policy, Table 1 shows the time interval scenarios in which we test our
approach. The first column in Table 1 identifies the scenarios while the second column
sets the time intervals (in minutes) in which our BBP LP model is constructed and
solved to introduce the resulting holding times to the system. We vary these control

312 L.G. Hernandez-Landa et al.

Table 1 Time interval scenarios with earliness and tardiness penalties y =€ = 1

Scen Control maxHold | Wy Travel Pass Wiirse! Travel/
(min) (min) (min) (min) pass pass
Ty X X 1798.0 12035.8 1713.3 1.0 7.0
Th 2 X 1115.88 17045.40 |1703.1 0.66 10.01
Th 5 X 1136.92 18256.20 |1746.2 0.65 10.45
T 7 X 1222.66 18907.13 |1705.8 0.72 11.08
Tl 10 X 1362.68 18652.68 | 1708.5 0.80 10.92
TlIs 2 0.38 1219.52 13112.15 | 17214 0.71 7.62
Tl 5 0.38 1330.89 13171.48 | 17374 0.77 7.58
Th 7 0.38 1463.25 12851.01 |1725.6 0.85 7.45
TIg 10 0.38 1424.52 12450.34 | 1697.7 0.84 7.33

values from 2 to 10min. Scenario 7T I does not have any control, and we use it as a
baseline to compare the performance of our BBP LP model. The third column is an
indicator if restriction (8) is applied; that is, if the holding times are bounded. For
these scenarios, we set the earliness and the tardiness penalties v = € = 1. The
fourth column, W, corresponds to the total average waiting time (in minutes) of
a passenger to board a bus. The fifth column (Travel) represents the total average
travel time of passengers in minutes, while the column Pass indicates the average
number of passengers in the system during the simulation time. The last two columns
indicate the normalized waiting and travel times of each passenger.

Ten simulation runs were executed for every scenario, each of them corresponding
to one hour of bus operations. Each run has the same initial conditions initialized
with random numbers. At the beginning of the simulation the buses are placed evenly
spaced along the corridor. For each simulation run, we let the system evolve freely
for 5 min before making any holding. Indeed, 5 min is enough to observe several bus
bunching situations to arise.

We observe an increase in the passenger riding time, and potentially operation
costs because of the introduction of holding times in the corridor. This behavior is
expected, and in concordance with other works [12]. Nevertheless, the passenger-
waiting times for the first bus are always reduced, which in fact is what we wanted
to show in the first place. Indeed, by controlling the headway we can also control the
passenger-waiting times, without the need for using a quadratic objective function
in the model.

We can also observe that the best passenger-waiting times are for cases where the
holding controls are applied every 2—5 min, and without the bounds on the holding
times. However, the bounds on the holding times induce a reduction in the travel
times, which is an important asset. Figure4 shows the differences in performance
when the control (8) (max Hold) is applied. It shows the percentage of increase in the
passenger-waiting times when bounds are applied and the percentage of increase in
the travel times when they are not applied. As mentioned, we observe that even if there

Linear Bus Holding Model for Real-Time Traffic Network Control 313

Fig. 4 Decrease in the
waiting times and increase in °
the travel times for the time =
interval scenarios with I TR TR
: : - Travel times without holding boun
earhnf?ss and tardiness —e= Travel times with holding bound
penalties Yy = € = 1 and Q- -~ Waiting times with holding bound
applying bound to holding < - ~~ Waiting times without holding bound
time °
(o))
g o
g 97
o
[
o
o |
Yo}
w _J
2
T T T T T
No control 2 5 7 10

Control time (min)

is an increase in the passenger waiting times when the holding times are bounded, the
benefit on the passenger travel times is considerable. Then, maintaining congruent
headways reduces the overall travel time of passenger along the whole network.

For a bus company, the less the traffic controller has to give holding orders to the
system (i.e., to the bus drivers), the better. Therefore, from Table I and Fig.4, we
conclude that the best policy is to consider bounds on the holding times, and apply
the controls to the system at every 5 min, like in the 71 scenarios.

In Fig.5, we show two histograms of the length of the holding times (x-axis
in minutes) for the time interval scenarios with earliness and tardiness penalties

10000 15000
|
6000 8000
L J

Frequency
Frequency
4000
1

5090
2000
L

T T T T 1
0.0 0.1 0.2 0.3 0.4

Holding time (min)

T T T T T 1
0 2 4 6 8 10
Holding time (min)

Fig.5 Holding times histogram without bounds (/eft histogram) and with bounds (right histogram)
for the time interval scenarios with earliness and tardiness penalties v = € = 1, and a control of
Smin

314 L.G. Hernandez-Landa et al.

¥ = e = 1, and a control of 5 min with and without bounds on the holding times. On
the y-axis, we have the frequency the BBP LP model is called for all the simulations
of class T Is. Notice that not all of the holding times are applied, since the rolling
horizon may modify several of them. The case when there are limits on the holding
times shows that the model either chooses to apply the holding times close to these
limits, or not to apply them at all. This is an implicit benefit for the users, and for the
traffic controller.

The aim of the BBP model is to reduce bus bunching by maintaining congruent
headways. To graphically show that this behavior is being improved by our model,
we present Figs. 6, 7, 8 and 9 for the scenarios with bounds on the holding times. The
x-axes in these graphs correspond to time (in minutes), while the y-axes represent
stops. Each line in these graphs represents a bus that departs from the depot and
cruises all the bus stops. Recall from Sect. 1 (see Fig. 1) that in the ideal case, we

Fig. 6 Bus transit behavior S
without control

Stops
1

Fig. 7 Transit with control
every 2min

Stops
1

30 40 50 60
Time (min)

Linear Bus Holding Model for Real-Time Traffic Network Control 315

Fig. 8 Transit with control =3 /
every Smin / /)
o | y
7
IS
2 o] /
g 2
n
e |
. | ///
. W

Fig. 9 Transit with control S
every 7min ! / /
9 - /
- | f
. 7
S v
%)
o |
0 /
/
-] /i

Time (min)

would have parallel lines. Figure6 displays the case without control and shows
that the simulation makes a stochastic scenario. Here the bus bunching problem is
notorious, since there are white gaps between the lines. Figures 7, 8 and 9, have time
interval controls of 2, 5, and 7 min, respectively. We can observe that with 2 and 5 min
controls the BBP is reduced, while for control intervals of 7min the BBP appears
again.

Figure 10 shows two histograms that have in their x-axes the round time of a bus
trip. An aspect that we noticed from Table 1 is that the travel times increase with
the BBP model. This is obvious because the BBP model introduces holding times
for the buses in the corridor. Nevertheless, Fig. 10 shows that the standard deviation
when BBP is applied every 5min (right histogram) is reduced with respect to the
case where no controls are used (left-hand side histogram).

316 L.G. Hernandez-Landa et al.

o o
< <
Q] mean = 28.71 o
® sd =228 ®
> >
o o
c c
g] g]
o =3
o o
I [
Sp e
o o
T T T T T T T T
20 25 30 35 25 30 35 40
Cycle time of buses trips (min) Cycle time of buses trips (min)

Fig. 10 Histogram of travel cycle without control (/eft) and with control interval of 5 min (right)

4.2 Parameter Setting Scenarios

Our next set of experiments modify the earliness ¥ and tardiness € parameters of
the BBP LP objective function to observe the impact they have in the passenger-
waiting times and travel time. We can see this set of experiments in Table 2. The first
column in the table identifies the scenarios. Ten simulation runs were considered per
scenario. The second column represents the values of the earliness parameter, while
the third corresponds to the tardiness one. The column “Board” denotes the average
time (in seconds) a passenger takes to board a bus, while max Hold stands for the
time (in minutes) that the holding times are bounded. This table shows the percentage
of reduction in passenger-waiting times (Wfyy), and the percentage of increase in
the travel times (Travel). Finally, the last column represents the addition of the last
two values. Indeed, if there is a reduction in this last column, the percentage would
be negative.

An interesting observation from these results is that if we reduce the earliness
parameter, we obtain the best results with respect to the passenger-waiting and travel
times. Moreover, the BBP LP model yields better results when the holding times are
limited by 0.19 min, which is also a quality asset for the user.

A statistical analysis confirms the observations from Table 2. The most influential
parameters are the earliness penalty and the max Hold limit. In Table 3, we show
a linear regression of the parameters studied in this section. The first column is the
parameter, the second corresponds to the “Estimate”, the third is the standard error,
the fourth stands for the t value, and the fifth one is the significance.

Linear Bus Holding Model for Real-Time Traffic Network Control 317

Table 2 Improvement in the behavior of waiting time and travel time managing parameters

Scen | ¢ € Board | maxHold | Wy Travel Wyirs: + Travel
(sec) (min) % reduction (%) | % increase (%) | % increase (%)

P 0 1 1.25 0.19 19 -2 —4
P 0 1 1.25 0.38 22 1 -2
P 0 1 2.5 0.19 22 —4 -6
Py 0 1 2.5 0.38 25 —1 —4
Ps 05 |1 1.25 0.19 34 10 4
Ps 05 |1 1.25 0.38 55 39 27
Py 05 |1 2.5 0.19 37 11 5
Pg 05 |1 2.5 0.38 56 41 28
Py 1 0 1.25 0.19 40 11 5
Py |1 0 1.25 0.38 59 42 29
Py |1 0 2.5 0.19 44 12 5
Pp |1 0 2.5 0.38 63 48 34
P3| 1 0.5 | 1.25 0.19 36 10 4
Py |1 05 | 1.25 0.38 54 41 28
Pis |1 05|25 0.19 39 11 5
P |1 0.5 | 2.5 0.38 57 40 27
Py |1 1 1.25 0.19 39 11 5
Pig |1 1 1.25 0.38 48 27 17
Py |1 1 2.5 0.19 39 56 43
Py |1 1 2.5 0.38 57 50 36

Table 3 Linear regression on the main parameters of the BBP model

Estimate Std. error t value Pr(>|t])
(Intercept) 1.0314 0.0928 11.11 0.0000
¥ —0.2234 0.0489 —4.57 0.0004
€ 0.0273 0.0489 0.56 0.5848
Board —0.0845 0.0646 —1.31 0.2106
maxHold —0.2956 0.0646 —4.57 0.0004

5 Concluding Remarks

In this paper, we presented a methodology based on interleaving optimization and
real-time retrieving data to maintain congruent headways in a bus corridor with the
aim of solving one of the most annoying problems in public transit networks, the
Bus Bunching Problem (BBP).

318 L.G. Hernandez-Landa et al.

During the optimization phase of our approach, a linear programming model is
built and solved to determine the optimal holding times of the buses at the stops to
avoid bus bunching. Our model requires real-time data of the state of the system
to operate. Such data is provided by the real-time retrieving phase of our approach,
which in our case is supported via simulation. The simulation phase of the system
provides data related to positions of the buses, number of passengers in the buses,
current bus capacities, and number of passengers waiting at the stops to build our
model.

One of the main advantages of considering simulation in our methodology is the
evaluation of multiple parameters to assess their impact in our BBP linear program-
ming model. Therefore, we presented a comprehensive evaluation of such parameters,
and found that applying holding controls just every 5 min, and bounds on the holding
times reduce not only bus bunching frequency but also passenger-waiting times.

We also discussed that most of the works in the literature minimize passenger
waiting times, or the variance in the departure times of the buses using quadratic
optimization functions, which are more complex to solve. Instead, the linear pro-
gramming model of our approach makes it suitable for returning optimal solutions
efficiently and for interleaving the optimization and real-time retrieving data phases
in real-time scenarios.

Although we observe an increase in the travel time of passengers given the intro-
duction of holding times for the buses in the corridor, our approach performs better
(i.e., less passenger-waiting time and acceptable travel time) than not introducing
any control into the system. A part of our future work will consider the introduction
of other actions into our models to reduce the travel time of the passengers in the
corridor and lower operational costs. Particularly, we believe that the introduction of
bus overtaking actions (i.e., skipping stops) will balance the total time a passenger
spends in the system.

Acknowledgments L.G. Herndndez-Landa and M.L. Morales-Marroquin wish to thank the Mex-
ican National Council of Science and Technology (CONACyT) for graduate scholarship support.

References

1. Bartholdi III JJ, Eisenstein DD (2012) A self-codrdinating bus route to resist bus bunching.
Transportation Research Part B: Methodological 46(4):481-491

2. Ceder A (2001) Bus timetables with even passenger loads as opposed to even headways.
Transportation Research Record: Journal of the Transportation Research Board 1760(1):3-9

3. Ceder A (2007) Public Transit Planning and Operation: Theory, Modeling and Practice. Else-
vier, Butterworth-Heinemann

4. Daganzo CF (2009) A headway-based approach to eliminate bus bunching: Systematic analysis
and comparisons. Transportation Research Part B: Methodological 43(10):913-921

5. Daganzo CF, Pilachowski J (2011) Reducing bunching with bus-to-bus cooperation. Trans-
portation Research Part B: Methodological 45(1):267-277

Linear Bus Holding Model for Real-Time Traffic Network Control 319

6.

10.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Delgado F, Muiioz JC, Giesen R, Cipriano A (2009) Real-time control of buses in a transit
corridor based on vehicle holding and boarding limits. Transportation Research Record: Journal
of the Transportation Research Board 2090(1):59-67

. Delgado F, Munoz JC, Giesen R (2012) How much can holding and/or limiting boarding

improve transit performance? Transportation Research Part B: Methodological 46(9):1202—
1217

. Desaulniers G, Hickman M (2007) Public transit. Transportation, Handbooks in Operations

Research and Management Science pp 69-127

. Diamond B, Krahl D, Nastasi A, Tag P (2010) Extendsim advanced technology: integrated

simulation database. In: Proceedings of the Winter Simulation Conference, Winter Simulation
Conference, pp 32-39

Ding Y, Chien SI (2001) Improving transit service quality and headway regularity with real-
time control. Transportation Research Record: Journal of the Transportation Research Board
1760(1):161-170

. Eberlein XJ, Wilson NH, Bernstein D (2001) The holding problem with real-time information

available. Transportation science 35(1):1-18

. Furth PG, Muller TH (2007) Service reliability and optimal running time schedules. Trans-

portation Research Record: Journal of the Transportation Research Board 2034(1):55-61

. Hickman MD (2001) An analytic stochastic model for the transit vehicle holding problem.

Transportation Science 35(3):215-237

. Ibarra-Rojas OJ, Rios-Solis YA (2012) Synchronization of bus timetabling. Transportation

Research Part B: Methodological 46(5):599-614

. Ibarra-Rojas OJ, Lopez-Irarragorri F, Rios-Solis YA (2015) Multiperiod synchronization bus

timetabling. Transportation Science

. Jolliffe J, Hutchinson T (1975) A behavioural explanation of the association between bus and

passenger arrivals at a bus stop. Transportation Science 9(3):248-282

Krahl D (2009) Extendsim advanced technology: discrete rate simulation. In: Winter Simulation
Conference, Winter Simulation Conference, pp 333-338

Puong A, Wilson NH (2008) A train holding model for urban rail transit systems. In: Computer-
aided Systems in Public Transport, Springer, pp 319-337

Rios-Mercado RZ, Rios-Solis YA (2012) Just-in-time Systems, vol 60. Springer

Rios-Solis YA (2008) Scheduling with earliness-tardiness penalties and parallel machines. 4OR
6(2):191-194

Rios-Solis YA, Sourd F (2008) Exponential neighborhood search for a parallel machine
scheduling problem. Computers & Operations Research 35(5):1697-1712

Sourd F, Kedad-Sidhoum S (2003) The one-machine problem with earliness and tardiness
penalties. Journal of Scheduling 6(6):533-549

Sun A, Hickman M (2008) The holding problem at multiple holding stations. In: Computer-
aided systems in public transport, Springer, pp 339-359

Zhao J, Bukkapatnam S, Dessouky MM (2003) Distributed architecture for real-time coordina-
tion of bus holding in transit networks. Intelligent Transportation Systems, IEEE Transactions
on 4(1):43-51

Zolfaghari S, Azizi N, Jaber MY (2004) A model for holding strategy in public transit systems
with real-time information. International Journal of Transport Management 2(2):99-110

	Foreword
	Acknowledgments
	Contents
	Contributors
	Part I Tools and Techniques Using SimOpt
	Simulation-Based Optimization with HeuristicLab: Practical Guidelines and Real-World Applications
	1 Introduction
	2 Methodology and Approach
	2.1 Interaction Patterns Between Simulation and Optimization
	2.2 Software Architecture
	2.3 Interfacing with Simulation

	3 Real-World Examples
	3.1 Simulation-Based Design of a European-Wide Logistics Network for Bio Residues
	3.2 Simulation-Based Priority Rule Optimization for Scheduling Production Systems
	3.3 Simulation-Based Optimization of Inventory Replenishment Rules
	3.4 Simulation Optimization of Transport Activities Within Steel Slab Logistics
	3.5 Material Flow Simulation and Layout Optimization
	3.6 Parameter Optimization of Continuous Simulation Models
	3.7 Electric Power System Optimization with Policy Functions

	4 Conclusion
	References

	Simulation Optimization Approach to Solve a Complex Multi-objective Redundancy Allocation Problem
	1 Introduction
	2 Considerations About the Process
	3 Some Aspects of Simulation Model
	4 Multi-objective Optimization Models
	5 Reliability Optimization---Redundancy Allocation Problem to Improve System Reliability---A Review
	6 Formulation of the Variables, Objectives, and Constraints of the Multi-objective Model
	6.1 Declaration of the Nonlinear, Nonstochastic, and Mono-Objective Test Model

	7 Process of Interaction Between Simulator and Optimizer
	8 Description of the Idealized Case
	9 Experiments
	10 Results---Analysis and Discussion
	10.1 Analysis of AGE Convergence
	10.2 Analysis of the Selecting Process of the Best Operational Scenario

	11 Remarks
	References

	OR and Simulation in Combination for Optimization
	1 Introduction
	2 Should We Pool or Not?
	2.1 Motivation and Literature
	2.2 Queueing Insights
	2.3 Improvement and Optimization by OR and Simulation
	2.4 Summary of Combined Queueing and Simulation

	3 Blood Inventory Management
	3.1 Problem Motivation
	3.2 Literature
	3.3 Combined Optimization-Simulation Approach
	3.4 Application 1: Spill Reduction at Dutch Blood Bank North-East
	3.5 Application 2: Age Reduction at Dutch Blood Bank South-East
	3.6 Summary Blood Inventory Management

	4 Rail-Track Scheduling
	4.1 Motivation
	4.2 Literature
	4.3 Combined Simulation and Optimization Approach
	4.4 Application Results
	4.5 Summary of Rail-Track Scheduling

	5 Evaluation
	References

	Tree Search and Simulation
	1 Introduction
	2 Background
	2.1 Tree Search
	2.2 Monte Carlo Tree Search: State of the Art

	3 Number Partitioning
	4 Stacking
	5 Recursive Circle Packing
	6 Conclusion
	References

	Part II Scheduling Problems
	Integrated Solutions for Delivery Planning and Scheduling in Distribution Centres
	1 Introduction
	1.1 What is Problem Complexity?
	1.2 What is Motivation for Integrated Solutions?
	1.3 What are the Main Objective and the Problem Solution?

	2 Integrated Solution Scheme
	3 Cluster Analysis of Dynamic Demand Data
	3.1 Motivation
	3.2 Determination of Typical Dynamic Demand Patterns
	3.3 Definition of an Appropriate Number of Demand Patterns
	3.4 NBTree for Dynamic Demand Pattern Recognition
	3.5 Example Applications

	4 Grouping of Stores Based on Geographical Locations
	4.1 Optimisation Problem Statement
	4.2 Multi-objective Optimisation Algorithm
	4.3 Examples of Optimisation Experiments

	5 Simulation Optimisation of Vehicle Schedules
	5.1 Problem Express Analysis
	5.2 Problem Statement
	5.3 Simulation of Vehicle Schedules
	5.4 Vehicle Schedule Optimisation Scenarios

	6 Vehicle Routing
	6.1 Problem Statement
	6.2 Optimisation Algorithm
	6.3 Route Optimisation Experiments

	7 Vehicle Scheduling for Routed Solution
	7.1 Problem Statement
	7.2 Optimisation Algorithm
	7.3 Schedule Optimisation Experiments
	7.4 Example

	8 Conclusions
	References

	Large Neighbourhood Search and Simulation for Disruption Management in the Airline Industry
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	3.1 Constraint Programming
	3.2 Aircraft Recovery Problem Formulation

	4 SimLNS: Large Neighbourhood Search and Simulation
	4.1 Large Neighbourhood Search
	4.2 LNS Operators for the ARP
	4.3 Using Simulation: SimLNS

	5 Application
	6 Conclusions
	References

	Evolutionary Approach with Simulation for the Improvement of Check-In Desk Allocation in Facilities
	1 Introduction
	2 Evolutionary Algorithms and Simulation
	2.1 Evolutionary Algorithms
	2.2 Simulation

	3 Methodological Approach OPT-SIM
	4 Case Study: The Check-In Allocation Problem
	4.1 Literature Review
	4.2 Technical Approach
	4.3 Constraint Satisfaction
	4.4 Chromosome Representation
	4.5 Crossover Operations
	4.6 Objective Function Evaluation
	4.7 Simulation-Based Improvement
	4.8 Initial Solution
	4.9 Chromosome Encoding and Evolution
	4.10 Performance Evaluation in a Virtual Environment

	5 Discussion
	References

	Part III Transportation Case-Studies
	Simulation and Optimization of the Pre-hospital Care System of the National University of Mexico
	1 Introduction
	2 Location Problem
	2.1 Components of the Location Models
	2.2 Classification of Models for the Location Problem

	3 State of the Art
	4 Simulation Paradigm
	5 The Problem in the Campus
	5.1 The Pre-hospital Care System: A Brief History
	5.2 The Medical Service at the UNAM

	6 Methodology
	6.1 Information Gathering
	6.2 Data Fitting
	6.3 Simulation Model
	6.4 Location Model

	7 Proposed Solution and Experiments
	8 Discussion
	9 Conclusions
	References

	Simulation-Based Optimization Using Greedy Techniques and Simulated Annealing for Optimal Equipment Selection Within Print Production Environments
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 The LDP Solution for Print Service Center Environment
	4.1 Simulation

	5 Existing Procedure for Selecting Optimal Equipment Design in a Print Service Center
	6 Simulation-Based Optimization Using the LDP Toolkit
	6.1 Problem Formulation
	6.2 Modified Simulated Annealing Algorithm
	6.3 A Greedy Algorithmic Approach for Equipment Allocation

	7 Application and Case Study
	7.1 Print Service Center 1
	7.2 Print Service Center 2
	7.3 Print Service Center 3
	7.4 Results and Discussion

	8 Conclusions and Future Work
	References

	Linear Bus Holding Model for Real-Time Traffic Network Control
	1 Introduction and Problem Description
	2 State of the Art Research in Real-Time Bus Operations
	3 Methodology and Approach
	4 Experimental Results
	4.1 Time Interval Scenarios
	4.2 Parameter Setting Scenarios

	5 Concluding Remarks
	References

