
TraCI4Matlab: Enabling the Integration
of the SUMO Road Traffic Simulator
and Matlab® Through a Software
Re-engineering Process

Andrés F. Acosta, Jorge E. Espinosa and Jairo Espinosa

Abstract SUMO (Simulation of Urban Mobility) has become one of the preferred
open-source platforms for researchers to perform microscopic road traffic simula-
tion. Thanks to the Traffic Control Interface (TraCI), SUMO offers a high level of
flexibility, allowing a client to retrieve and modify the objects in the simulation.
Two implementations of TraCI have been released to date for Python (TraCI-
Python) and Java (TraCI4j). On the other hand, Matlab® is a software tool with a
programming language with a broad user’s community of researchers. Matlab is
used in many tasks on simulation, control, optimization and it is a preferred tool for
rapid prototyping. Both platforms share strengths that benefit the development of
control strategies for road traffic. The desire of combining both strengths motivated
the interest to develop a TraCI implementation for Matlab. This chapter describes
an adaptive software re-engineering process of TraCI-Python used to implement
TraCI4Matlab (TraCI for Matlab).

1 Introduction

SUMO (Simulation of Urban Mobility) is an open-source software project that
incorporates a set of tools to create and execute microscopic road traffic simulation
scenarios [16]. These tools are grouped in three categories:

J.E. Espinosa
Politécnico Colombiano Jaime Isaza Cadavid, Cra 48 No 7-151, Medellin, Colombia
e-mail: jeespinosa@elpoli.edu.co

A.F. Acosta � J. Espinosa (&)
Universidad Nacional de Colombia, Cra 80 No. 66-223, Medellin, Colombia
e-mail: jespinov@unal.edu.co

A.F. Acosta
e-mail: afacostag@unal.edu.co

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_9

155



• Mapping tools. For creating the “map” (network), where the simulation will be
performed, comprised by intersections, streets, traffic light definitions, polygons
that represent buildings and other structures, and a variety of sensors for output
delivery. The network can be created from scratch or imported from a wide
range of sources. This network is represented as a directed graph, where nodes
define the intersections and edges define the streets.

• Demand modeling tools. For creating vehicle demands from several sources or
even randomly, allowing to define vehicle types according to their physical
characteristics and specify entry times, origins and destinations.

• Simulation tools. The sumo application itself that receives the network, the
demand and some optional information as inputs to execute the simulation and
output results in XML format, a feature that demonstrates the high integration
capacity of the simulator.

SUMO includes the Traffic Control Interface (TraCI), which simplifies the
retrieval and modification of the SUMO objects through an application protocol,
allowing applications like vehicular communications, dynamic routing and traffic
light control algorithms [8]. Furthermore, TraCI subscription and context sub-
scription commands allow to retrieve several attributes of an object, or those of its
surrounding objects, on every simulation step.

The SUMO community has developed two remarkable TraCI clients: one made
in Python by the SUMO developers, which we will call TraCI-Python; and
TraCI4J, made in Java by researchers from Politecnico di Torino (Italy) [6].

Depending on the application of interest, an implementation of TraCI can benefit
from the programming language in which it is developed. In the case of applications
involving control and optimization, Matlab® has proven to be an excellent alter-
native, featuring toolboxes for optimization, robust control and model predictive
control, among others [9]. This motivated the development of an implementation of
the TraCI protocol for the Matlab® programming language, namely TraCI4Matlab.

Particularly, TraCI4Matlab was proposed as a requirement in the MOYCOT
project [11], where optimization-based traffic lights coordination strategies are
being developed using Matlab®.

However, developing a new implementation of TraCI could be more expensive
than doing it based on an existing one, especially taking into account the open-source
nature of the later. In this regard, a re-engineering approach has many advantages
over direct code translation either by hand or using semi-automated tools [7].

This chapter describes a re-engineering process of TraCI-Python used to imple-
ment TraCI4Matlab. This chapter is organized as follows: Sect. 2 describes the
software re-engineering process related to software maintenance, reverse engineer-
ing, refactoring and forward engineering; Sect. 3 describes the reverse engineering
sub-process of TraCI-Python and shows the extracted architectural and design
component models obtained; Sect. 4 describes the refactoring tasks needed to adapt
the obtained models to the constraints imposed by the Matlab® language and the
subsequent forward engineering sub-process resulting in TraCI4Matlab; Sect. 5
shows results and discussion; finally, Sect. 6 shows conclusions and future work.

156 A.F. Acosta et al.



2 The Re-engineering Process

Chikofsky and Cross [3] define software re-engineering as:

The examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form

They also state that the re-engineering process involves some form of reverse
engineering, followed by some form of forward engineering and may include
modifications related to new requirements.

It is important to note that software re-engineering is not only applied in legacy
software, but also in cases where new requirements arise, such as [2] improving
performance, exploiting new technologies and porting the subject software to a new
platform.

In general, Chikofsky and Cross [3] related the re-engineering process with the
software lifecycle and introduced formal definitions regarding the software trans-
formations at different levels of abstraction. In the case of TraCI4Matlab, only the
design level is considered, and the relationships with the software lifecycle take the
form showed in Fig. 1, where the subject software corresponds to TraCI-Python and
the new implementation, to TraCI4Matlab. Levels of abstraction refer to the rep-
resentation of the software in the different phases of the cycle. For example, soft-
ware is usually represented in terms of UML diagrams at the design phase, while in
the implementation phase, the representation corresponds to the source code.

The taxonomy proposed by Chikofsky and Cross includes the following defi-
nitions, represented as sub-processes in Fig. 1:

• Reverse-engineering: In many cases, the subject software needs to be reverse-
engineered because “usually, the system’s maintainers were not its designers”.
Moreover, open-source software can be developed and extended in a distributed
fashion by different developer teams. Therefore, reverse engineering enables

Fig. 1 Re-engineering process used in TraCI4Matlab

TraCI4Matlab: Enabling the Integration of the SUMO … 157



software comprehension by extracting artifacts from different levels of
abstraction. In other words, reverse engineering allows to extract the knowledge
of the software previous to its implementation, in a language that is easier to
understand.

• Restructuring: It involves the “transformation from one representation to
another at the same relative abstraction level, while preserving the subject
system’s external behavior”. Thus, restructuring is related to the modification of
the software without altering or extending its functionality, with the goal of
improving its quality (structure, performance, etc.). In the case of Object-Ori-
ented Programming (OOP), restructuring is known as refactoring [10].

Another important concept related to the software lifecycle is the use of software
patterns, which have been defined by Vincke et al. as “The description of a general
solution to a recurring problem” [19]. Hence, patterns allow to reuse the experience
and best practices in the solution of common problems found in the development of
a software product. Demeyer et al. proposed a set of Object Oriented Re-engi-
neering Patterns [5], which they describe, as follows:

Re-engineering patterns codify and record knowledge about modifying legacy software …
We see re-engineering patterns as stable units of expertise which can be consulted in any re-
engineering effort

Some of these re-engineering patterns were applied in the implementation of
TraCI4Matlab, and will be explained in the subsequent sections that correspond to
the sub-processes mentioned earlier.

Regarding the requirements considered for the implementation of TraCI4Matlab,
there were two-fold:

• The migration to the Matlab® language: Naturally, the main requirement was to
implement the TraCI API in Matlab®, taking into account its features and
limitations.

• Preserving the TraCI-Python’s end-user functions’ structure: Since TraCI4Matlab
was conceived to be open-source, it is important to simplify its use as much as
possible. Therefore, the TraCI4Matlab’s end-user functions’ structure should be
very similar to the TraCI-Python’s.

It is important to note that there were not requirements related to performance,
which favored the rapid release of TraCI4Matlab, this was done at the cost of a
lower performance compared to TraCI-Python’s, as it will be discussed later.
Additionally, the implementation of TraCI4Matlab assumed that TraCI-Python is
well structured, which means that the focus was not put on detecting code dupli-
cation or code smells [12].

The following sections explain the sub-processes involved in the implementation
of TraCI4Matlab.

158 A.F. Acosta et al.



3 Reverse Engineering of the TraCI-Python
Implementation

Re-engineering patterns used
Since the size of the subject software (TraCI-Python) is relatively small (around

4,300 lines of code) and the number of requirements was low, it was not necessary
to apply many Object-Oriented Re-engineering Patterns. Particularly, the following
patterns were used:

• Chat with the maintainers. According to Demeyer et al. [5] the intent of this
pattern is to “Learn about the historical and political context of your project
through discussions with the people maintaining the system”. However, in
TraCI4Matlab it was not important to learn about the historical and political
context of TraCI-Python because it is part of an active software project (SUMO)
and the re-engineering effort is not related to quality improvements, but to the
achievement of the requirements described previously, which are related to an
extension of SUMO. Instead, in TraCI4Matlab, the pattern chat with the
maintainers was applied to learn about the technical aspects of TraCI-Python
that are not clear enough in the documentation or are part of exceptional cases.
Therefore, in this case, the intent of this pattern could be stated more generally
as: “Learn about the context and the technical aspects of the project through
discussions with the people maintaining the system”. It’s important to note that
this pattern couldn’t be possible without the SUMO mailing list system.

• Read all the code in one hour and skim the documentation, whose intent is to
“Assess the state of a software system by means of a brief, but intensive code
review”. These patterns were enough to approach to the recovery of the subject
system’s design (i.e. to identify the components of TraCI-Python, their
responsibilities and how they collaborate) taking into account its small size.

• Step through the execution, whose intent is to “Understand how objects in the
system collaborate by stepping through examples in a debugger”. Two open-
source tools were used to apply this pattern: Winpdb [20], which is a graphical
Python debugger, and StarUML [15], which is a program to draw UML dia-
grams. Thus, the TraCI4Traffic Lights tutorial, provided with the SUMO
installation, was debugged with some modifications to understand all the
components of the subject software.

These tasks helped to conclude that TraCI-Python comprises three main com-
ponents: The TraCI package, the modules representing the SUMO objects (edge,
junction, lane and so on) and the TraCI constants definition. Those components take
the form of namespaces, which, in Python, are accessed through the dot operator.
Thus, TraCI-Python takes advantage of the fact that Python allows to associate
variables, functions and classes to namespaces [1]. Figure 2 shows two UML

TraCI4Matlab: Enabling the Integration of the SUMO … 159



package diagrams that represent the TraCI-Python’s namespaces in terms of their
deployment and their dependence relationships. Note that the sumo_object abstract
package was defined to generalize the namespaces representing the SUMO objects,
which have some variables and functions in common. Additionally, since in UML
namespaces can be represented as packages, these terms will be used inter-
changeably in the remainder of this chapter.

In the following subsections, the components of the TraCI-Python implemen-
tation are described.

3.1 The TraCI Package

This is the top-level package. It contains the namespaces corresponding to the
SUMO objects (the modules variable) plus five public functions and others with, at
most, package visibility. Through these functions, the responsibilities of the TraCI
package could be extracted, being:

• Initialize and close the connection to the SUMO server through the functions
init() and close().

• Allow several SUMO instances to be controlled by the same client and
switching among the corresponding connections, thanks to the port argument in
the init() function and the switch() function.

• Perform a simulation step through the simulationStep() function,
including a step argument, which allow to increase or decrease the simulation
step in milliseconds.

• Populate the subscription results related to each SUMO object, using the
readSubscription() function.

• Construct and send the outgoing messages according to the TraCI protocol,
through a set of functions beginning with the word send, which have been
grouped in an abstract function called sender for illustration purposes. The
sender functions prepare the message variable according to the desired data
type to send to the SUMO server.

• Read the responses from the SUMO server and check them for errors throwing
the corresponding exceptions, using the recvExact() function.

Fig. 2 TraCI-Python’s components: a Deployment diagram, b Dependency diagram

160 A.F. Acosta et al.



Figure 3 shows an UML class diagram including the functions of the TraCI
package. Note that the utility stereotype has been used, since those functions do not
belong to a class but to a namespace.

3.2 Packages Corresponding to the SUMO Objects

These packages can be briefly summarized through the so called getters and setters
which allow the end user to retrieve and modify the properties of the objects in the
SUMO simulation. The get and set processes follow a sequence of functions in the
TraCI components that collaborate by appending the proper command, requested
attribute, and desired value (in the set case) from the TraCI constants to build the
outgoing get/set message according to the TraCI protocol. Here, the
get_wrapper() and set_wrapper() abstract functions are defined to rep-
resent the set of public functions designed for the end user in such a way that he/she
only needs to provide the ID of the SUMO object of interest and the desired
attribute value (in the set case). Finally, the sumo_object packages include
another four wrapper functions related to the TraCI subscriptions: two for sub-
scribing to the desired object and variable, and other two for retrieving the sub-
scription results. Figure 4 shows an UML sequence diagram, which is an example
of the above process in the case of a getter. Note how the different components
collaborate: the end user calls the get_wrapper() which calls the universal
getter of the sumo_object component, which in turn calls the proper TraCI
function to build the outgoing message, read the response from the SUMO server
and check it for errors. Figure 5 shows a class diagram corresponding to the abstract
class sumo_object. It is worth to notice, that this abstract class was not

Fig. 3 Variables and
functions in the TraCI
package

TraCI4Matlab: Enabling the Integration of the SUMO … 161



physically implemented, but serves as a way to explain the packages corresponding
to the SUMO objects and their variables and functions in common.

3.3 TraCI Constants

This is a namespace containing the command, variable-type and data-type codes as
constants from the TraCI protocol specification. TraCI-Python’s components use
these constants as parameters for their functions. For example, referring to Fig. 4,
the parameters varID and cmdID are taken from the TraCI constants module.

Fig. 4 UML sequence diagram for the get process in TraCI-Python

Fig. 5 Abstract package sumo_object representing the namespaces corresponding to SUMO
objects

162 A.F. Acosta et al.



4 Forward Engineering Sub-process

4.1 Re-engineering Patterns Used

As stated in the reverse engineering sub-process, because of the relatively small size
of the subject system and the low number of requirements, some re-engineering
patterns were not necessary. Moreover, since the official Matlab® unit testing
framework is quite new [13] and taking into account that the majority of TraCI-
Python’s functions are not associated to a class, as explained in the previous sec-
tion, tests were created in a single m-file that reproduces the TraCI4 Traffic Lights
tutorial. Therefore, patterns related to use a testing framework were not applied.
Additionally, recall that the focus of the re-engineering process is on the migration
of TraCI-Python, not on the improvement of its quality. Hence, the patterns related
to write tests to understand were not used. Taking into account these consider-
ations, the following patterns were applied:

• Write tests to enable evolution: The test created in the implementation of
TraCI4Matlab allowed to identify the limitations of the Matlab® programming
language that prevented a direct implementation of the subject software’s
recovered design and, consequently, the necessary refactoring tasks to perform.
Thus, according to Demeyer et al. [5], the risk of “failing to accommodate future
change” was mitigated.

• Grow your tests base incrementally: Every time a TraCI4Matlab’s component
was implemented, the corresponding test was modified to incorporate the new
functionalities, which enabled to always have a running version.

• Conserve familiarity: The requirement related to the preservation of the TraCI-
Python’s end-user functions’ structure enabled to conserve familiarity.

• Use profiler before optimizing: During the implementation of TraCI4Matlab, it
was noticed that its performance was lower than TraCI-Python’s. Later, the
stakeholders concluded that a new requirement was necessary to address this
issue. In this regard, the Matlab® profiler helped to identify the bottleneck that
caused the low performance. Consequently, the refactoring tasks needed to
satisfy the related requirement could be identified, as will be explained in brief.

It was found in the implementation and testing phase of TraCI4Matlab that the
Matlab® language specification has some limitations forcing the reverse-engineered
design of TraCI-Python to be re-factored. The most important, is that Matlab®

imposes only one function definition per m-file, at most, including nested functions,
the same holds for class definitions. Moreover, the Matlab’s import statement
allows adding only package-based functions and classes to the current import list.
In contrast, Python allows to have namespace’s variables with the following
properties:

TraCI4Matlab: Enabling the Integration of the SUMO … 163



1. They are not associated with a specific object instance.
2. They can be imported.
3. Their values can be changed by functions in other namespaces.

In order to achieve the same behavior in Matlab®, three options were considered:

• Implement TraCI-Python’s namespaces as classes with static members: This
solution was discarded because, although Matlab® allows to define constant
attributes in a class, the same cannot be done for static ones, i.e. those that do not
need the class to be instantiated and whose values can be changed [4]. Note that
this option conflicts with property 3.

• Execute m-files that load the required variables into the workspace: This solu-
tion would require the Matlab’s package functions to access those variables. In
the Matlab® documentation, it has been stated that the best practice is to pass the
variables as arguments [14]. In this way, not only the workspace would be filled
with variables that should be transparent to the user, but he/she would need to
pass those variables as arguments, which results impractical. Another strategy
listed in the Matlab® documentation, is the use of persistent variables in a
function. However, persistent variables can be changed only by the function that
defined them, which conflicts with property 3. Finally, one could evaluate a
given expression in another workspace, but it has limited flexibility in the sense
that it does not allow the variable to contain indexes. For these reasons, this
solution was discarded.

• Finally, the use of global variables was chosen because it can deal with prop-
erties 1 and 3. Global variables are defined in the functions that require them and
can be accessed by any other function.

There were some special cases where there was no need to use global variables.
For example, it was found that some variables were used only by one function.
Therefore, those variables were defined inside the functions that use them. Another
case is related to the RETURN_VALUE_FUNC dictionary of the sumo_object
packages, which has constant values. In this case, a corresponding new class with
only constant attributes was defined. Finally, it was found that the modules
variable of the TraCI package only was used in two functions of the same package:
readSubscription() and simulationStep(). The modules variable is
a dictionary that associates responses from the SUMO server to the corresponding
sumo_object module, allowing to detect errors and populate the TraCI subscription
results. In the readSubscription() function, the modules variable is used to
populate the TraCI subscription results based on the response of the SUMO server.
For this reason, a new dictionary called subscriptionResults was defined
inside the readSubscription() function. On the other hand, the modules
variable is used in the simulationStep module only to reset its values, i.e. the
subscription results of each sumo_object namespace. Note that, in this case, it is not
necessary to define a map. Therefore, a new array called modules was defined in
the readSubscription() function.

164 A.F. Acosta et al.



Figure 6 shows the re-structured architecture for the implementation of TraC-
I4Matlab, including the addition of the new package of constants RETURN_
VALUE_FUNC.

Figure 7 shows the global variables used in the TraCI4Matlab implementation.
Note that there are 14 global instances of the class SubscriptionResults,
namely edgeSubscriptionResults, guiSubscriptionResults and so
on (including the areal detector introduced in the version 7 of TraCI). If no sub-
scription was made to a particular SUMO object, Matlab® sets the corresponding
global variable to a null object by default. Recall, that the rest of the variables
associated to namespaces are defined in the functions that use them, e.g. the
RESULTS and modules attributes of the TraCI package.

However, as it was explained before, TraCI4Matlab’s performance resulted to be
worse than TraCI-Python’s. Figure 8 shows performance results of both imple-
mentations using the cProfile module in the case of TraCI-Python and the Matlab®

profiler in the case of TraCI4Matlab. It can be seen that TraCI4Matlab spends much
time in sending and receiving messages through the TCP-IP implementation, which
is part of the instrument control toolbox. Particularly, in TraCI-Python the
_sendExact() and _recvExact() functions sum 4.903 s while in TraC-
I4Matab, they sum 119.147 s.

Taking advantage of the high integration capacity of Matlab® and Java, the
proposed solution was to develop a new TCP-IP implementation for TraCI4Matlab
using Java sockets. The solution involved the creation of a Socket class in
Matlab® that wraps a Java socket and uses a DataReader class [17] which
enables to read the entire buffer of the input stream. Figure 9 shows the performance
of TraCI4Matlab including the implementation of the Socket class. It can be seen
that, using Java sockets, the TraCI4Matlab’s performance improved substantially.
In this case, the _sendExact() and _recvExact() functions sum 16.711 s,
which represent a performance improvement of 85.97 %.

Fig. 6 TraCI4Matlab’s components: a Deployment diagram, b Dependency diagram

TraCI4Matlab: Enabling the Integration of the SUMO … 165



5 Results and Discussion

TraCI4Matlab was released on December 24, 2013 under the BSD license. It is free
software and is available for the community at Matlab Central [18], or as part of the
SUMO contributed tools since SUMO 0.20.0.

Fig. 7 Global variables defined in TraCI4Matlab

Fig. 8 Performance results of a TraCI-Python and b TraCI4Matlab

166 A.F. Acosta et al.



Currently, TraCI4Matlab is being used in the project “Modelling and Control of
Urban Traffic in the City of Medellin (MOYCOT)” [11]. One of the objectives of
the MOYCOT project is to design a MPC (Model Predictive Control) traffic lights
control system for the urban traffic network in the city of Medellin. Some param-
eters needed by this system include the length of the queues in vehicles on each
signalized lane and the traffic flow in the edge. Thanks to TraCI4Matlab, pre-
liminary results were obtained in a scenario consisting of an isolated junction,
showed in Fig. 10. Using induction loops and lane area detectors, the number of
vehicles entering the North-South as well as the length of the queues (jam length in
TraCI) on each lane in vehicles were obtained, as shown in Fig. 11.

Fig. 9 Performance results of TraCI4Matlab including a new TCP-IP implementation using Java
sockets

Fig. 10 The isolated junction
scenario used in the
MOYCOT [11] project to
obtain parameters needed for
a MPC traffic lights controller

TraCI4Matlab: Enabling the Integration of the SUMO … 167



6 Conclusions

In this chapter, the re-engineering process of the TraCI API’s Python implemen-
tation (TraCI-Python) used to develop a Matlab® implementation was presented.
Static and dynamic models related to the architectural and component design were
obtained. The authors consider that those models can be used to implement TraCI in
any object-oriented programming language.

0 2 4 6 8 10 12
0

5

10

15

20

25

Time (h)

(V
eh

)

0 2 4 6 8 10 12
0

5

10

(V
eh

)

Lane 1

0 2 4 6 8 10 12
0

5

10

(V
eh

)

Lane 2

0 2 4 6 8 10
0

0.5

1

Time (h)

(V
eh

)

Lane 3

(a)

(b)

Fig. 11 Data obtained in the
north-south edge using
TraCI4Matlab: a Number of
vehicles entering the edge,
b Length of the queue on each
lane in vehicles

168 A.F. Acosta et al.



The re-engineering process was supported with object-oriented re-engineering
patterns, which, in some cases, had to be adapted to the specific case of TraC-
I4Matlab. These patterns provide useful guidelines for a re-engineering project,
including small-sized projects like TraCI4Matlab.

One of the requirements formulated for TraCI4Matlab was to preserve the same
structure of the TraCI-Python’s end-user’s functions. Although it could be
accomplished through the approach described in the forward engineering process,
performance implications were not considered. As a result, it was found that per-
formance of TraCI4Matlab was much lower than TraCI-Python’s. In order to
overcome this issue, a TCP/IP implementation using Java sockets was proposed,
which resulted in a substantial performance improvement.

However, the re-engineering process was focused on the migration of TraCI-
Python to Matlab®, without taking into account the quality of the subject software
in terms of its structure (namespaces as classes, code duplication and code smells).
Future work should concentrate on this topic by using (semi) automated tools and
possibly including a benchmark with TraCI4J. Further performance improvements
should be also considered.

Finally, the design obtained through reverse engineering suggests some private
functions and some others with package visibility. Although Matlab® allows to
define private functions, it has not defined, to date, a similar approach for the case
of functions with package visibility.

Acknowledgments This work was supported by Proyecto Colciencias 111856934640 contrato
941-2012: Modelamiento y Control de tráfico urbano en la ciudad de Medellín. Convocatoria 569.

References

1. Beazley DM (2009) Python essential reference, 4th edn. Addison-Wesley Professional, Upper
Saddle River

2. CanforaHarman G, Di Penta M (2007) New frontiers of reverse engineering. In: Future of
software engineering, FOSE ’07. IEEE Computer Society, Washington, DC, USA, pp 326–
341. doi:10.1109/FOSE.2007.15

3. Chikofsky EJ, Cross I JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE
Softw 7:13–17. doi:10.1109/52.43044

4. Comparing MATLAB with other oo languages—MATLAB and simulink, n.d. URL http://
www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html. Accessed
02 April 2014

5. Demeyer S, Ducasse S, Nierstrasz O (2002) Object-oriented reengineering patterns. Morgan
Kaufmann, San Francisco

6. egueli/TraCI4J GitHub, n.d. URL https://github.com/egueli/TraCI4J. Accessed 01 April 2014
7. Ewer J, Knight B, Cowell D (1995) Case study: an incremental approach to re-engineering a

legacy {FORTRAN} computational fluid dynamics code in C ++. Adv Eng Softw 22:153–
168. doi:http://dx.doi.org/10.1016/0965-9978(95)00021-N

8. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications
of SUMO—Simulation of Urban mobility. Int J Adv Syst Meas 5:128–138

TraCI4Matlab: Enabling the Integration of the SUMO … 169

http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/52.43044
http://www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html
http://www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html
https://github.com/egueli/TraCI4J
http://dx.doi.org/10.1016/0965-9978(95)00021-N


9. MATLAB—the language of technical Computing—B, n.d. URL http://www.mathworks.com/
products/matlab/. Accessed 09 Sept 2014

10. Mens T, Tourwe T (2004) A survey of software refactoring. IEEE Trans Softw Eng 30:126–
139. doi:10.1109/TSE.2004.1265817

11. MOYCOT | MOYCOT, n.d. URL http://www.moycot.org/. Accessed 09 Sept 2014
12. Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact of code smells:

a case study of two open source systems. In: Proceedings of the 2009 3rd international
symposium on empirical software engineering and measurement, ESEM ’09. IEEE Computer
Society, Washington, DC, USA, pp 390–400. doi:10.1109/ESEM.2009.5314231

13. Release notes for MATLAB—MATLAB and simulink, n.d. URL http://www.mathworks.
com/help/matlab/release-notes.html. Accessed 09 Sept 2014

14. Share data between workspaces—MATLAB and simulink, n.d. URL http://www.mathworks.
com/help/matlab/matlab_prog/share-data-between-workspaces.html. Accessed 02 April 2014

15. StarUML—The open source UML/MDA platform, n.d. URL http://staruml.sourceforge.net/
en/. Accessed 30 Jan 2014

16. SUMO_User_Documentation—SUMO—simulation of urban mobility, n.d. URL http://sumo-
sim.org/userdoc/. Accessed 30 Jan 2014

17. TCP/IP socket communications in MATLAB using java classes—file exchange—MATLAB
central, n.d. URL http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-
tcp-ip-socket-communications-in-matlab-using-java-classes. Accessed 09 Sep 2014

18. TraCI4Matlab—file exchange—MATLAB central, n.d. URL http://www.mathworks.com/
matlabcentral/fileexchange/file_infos/44805-traci4matlab. Accessed 01 April 2014

19. Vincke R, Van Landschoot S, Steegmans E, Boydens J (2012) Refactoring sequential
embedded software for concurrent execution using design patterns. Annu J Electron 6:157–160

20. Winpdb—A platform independent python debugger, n.d. URL http://winpdb.org/. Accessed
30 Jan 2014

170 A.F. Acosta et al.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://dx.doi.org/10.1109/TSE.2004.1265817
http://www.moycot.org/
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://www.mathworks.com/help/matlab/release-notes.html
http://www.mathworks.com/help/matlab/release-notes.html
http://www.mathworks.com/help/matlab/matlab_prog/share-data-between-workspaces.html
http://www.mathworks.com/help/matlab/matlab_prog/share-data-between-workspaces.html
http://staruml.sourceforge.net/en/
http://staruml.sourceforge.net/en/
http://sumo-sim.org/userdoc/
http://sumo-sim.org/userdoc/
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-tcp-ip-socket-communications-in-matlab-using-java-classes
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-tcp-ip-socket-communications-in-matlab-using-java-classes
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/44805-traci4matlab
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/44805-traci4matlab
http://winpdb.org/

	9 TraCI4Matlab: Enabling the Integration of the SUMO Road Traffic Simulator and Matlab Through a Software Re-engineering Process
	Abstract
	1 Introduction
	2 The Re-engineering Process
	3 Reverse Engineering of the TraCI-Python Implementation
	3.1 The TraCI Package
	3.2 Packages Corresponding to the SUMO Objects
	3.3 TraCI Constants

	4 Forward Engineering Sub-process
	4.1 Re-engineering Patterns Used

	5 Results and Discussion
	6 Conclusions
	Acknowledgments
	References


