Can Road Traffic Volume Information
Improve Partitioning for Distributed
SUMO?

Ulrich Dangel, Quentin Bragard, Patrick McDonagh,
Anthony Ventresque and Liam Murphy

Abstract Microscopic vehicular simulations can be computationally intensive due
to the sheer size of the road network and number of vehicles. One solution is to
parallelize the simulation through distribution and concurrent execution of the
scenario being simulated. To enable distributed simulation of an area, the partitioning
of the map into different areas for parallel execution on different nodes is required.
How the map is partitioned is also a critical factor for distributed simulation, as a poor
partitioning can lead to a communication overhead and/or an imbalance of workload
among the computing nodes. In this paper, we ask: Can traffic volume information
improve the classical structural partitioning algorithms? In the context of improving
distributed simulation in SUMO, we propose a modification to three existing
mechanisms for road network partitioning, SParTSim, Smart Quadtrees and
Quadtrees, with the aim of creating more balanced partitions (in terms of workload)
derived from traffic volume data.

Keywords Distributed simulation - Road partitioning - Graph partitioning
SUMO

U. Dangel - Q. Bragard (0<) - A. Ventresque - L. Murphy
Lero@UCD, School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

e-mail: quentin.bragard @ucdconnect.ie

U. Dangel
e-mail: ulrich.dangel @ucdconnect.ie

A. Ventresque
e-mail: anthony.ventresque @ucd.ie

L. Murphy
e-mail: liam.murphy @ucd.ie

P. McDonagh
Lero@DCU, School of Electronic Engineering, Dublin City University, Dublin, Ireland
e-mail: patrick.mcdonagh@dcu.ie

© Springer International Publishing Switzerland 2015 61
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_5

62 U. Dangel et al.

1 Introduction

Urban populations are growing dramatically: for instance, the aggregated annual
population increase of six major developing-country cities is already higher than
Europe’s total population [1]. With the increase in the size of cities, traffic simulation
requires more computation time in order to simulate more individual vehicles. This is
particularly the case for microscopic traffic simulation, which can offer interesting
insights to its users, but has a high computation time. Microscopic traffic simulation
can accurately model urban traffic patterns and evaluate different scenarios and their
impact on traffic, e.g. placement of additional bus stops at a route, traffic light
sequencing, etc. By using microscopic simulation, stakeholders can directly observe
the impact of their potential decisions on the traffic. As stated above, microscopic
simulation models are generally slow, as they need to process a large number of
elements (e.g., individual cars). A standard solution to reduce the overall required
computation time is to parallelize and distribute the simulation.

Classically, parallel or distributed systems split the problem space into different
partitions, i.e., sub problems for concurrent execution, this may involve synchro-
nisation between nodes if data from one partition needs to be moved to another
partition. For vehicular simulation, these partitions are typically based on the road
network or the spatial map—we call this style of partitioning, structural. The par-
titioning algorithms are evaluated using two main metrics [2]: (i) the balancing of
computational workload across the nodes that run the partitions; (ii) the com-
munication overhead generated by the distribution.

Distributed simulations are currently an active area of research interest within the
SUMO community. There has been recent work to provide a multi-agent system on
top of SUMO [3] by combining it with an existing multi-agent development
framework [4]. Another approach for distributed SUMO simulation is dSUMO [5],
a framework that interconnects SUMO instances, each running separate, but spa-
tially connected areas of a map. Both solutions require mechanisms to divide the
road-network into different areas for parallel processing on their respective nodes.

In this paper, we propose an enhancement for distributed simulation using
SUMO by using traffic volume data to improve the load balancing of the individual
partitions and minimizing the communication overhead, in order to reduce the
overall required computation time of the distributed simulation. We evaluate this
idea by comparing results against those obtained for SParTSim [6], Quadtrees [7]
and Smart Quadtrees [8].

2 Related Work

Partitioning in general is a key concept in distributed and parallel computing. In
MapReduce [9] the mapping is a partitioning which is responsible for distributing
the input data to different processes. This partitioning step enables the distributed
and parallel execution of the work.

Can Road Traffic Volume Information ... 63

Other, more domain-specific partitioning schemes, provide guidance how to
select and choose appropriate partitioning algorithms.

Space partitioning, for example, is often used in computer graphics [10-12] and
visualisation. An overview about different space partitioning algorithms was pro-
vided by the authors in [13]. Here the authors discussed Quadtrees, unconstrained
k-d trees, constrained k-d trees and region growing with region growing performing
best for their simulation. Space partitioning is widely used in distributed or parallel
computation, such as Massively Multiplayer Online Role-Playing Games
(MMORPG) or Raytracing [14]. Employing a binary space partitioning mechanism,
such as Quadtrees, will lead to the creation of a spatial hierarchy. This hierarchy can
be used to divide a city, and assign pieces of it (partitions) to different nodes.
Another approach for the space partitioning of cities is to reuse existing boundaries
such as postal districts. The problem with both approaches is that they typically do
not use the road-network for the partitioning but only spatial information. With
regards to a distributed vehicular simulation, this can lead to uneven distribution of
workload. This in turn, will lead to decreased simulation performance as a result of
uneven processing times for simulation steps, resulting in some nodes waiting for
others when synchronisation is required.

Graph-partitioning on the other hand, does not consider the space but uses the
graph-structure of the problem. Graph partitioning has been used to parallelize
clustering of documents [15], parallel factorisation of sparse matrices [16] as well as
workload distribution [17]. Graph partitioning has been originally implemented
with heuristics [18] and was later extended to utilize genetic-algorithms [19].
Graph-growing, is a refinement and extension [2] of classical graph partitioning and
expands individual partitions in each step. Region growing, similar to graph-
growing, has been shown to be best solution for crowd simulations [13]. Graph
partitioning is widely used [20, 21] in different domains such as workload distri-
bution, task scheduling and in the VLSI [22] domain. Using graph partitioning for
vehicular simulations solves multiple issues encountered with space partitioning,
such as uneven distribution of roads in a partition as graph partitioning works on the
street level and not on the map. Taking road properties into account can further
refine graph partitioning, i.e. edges provide attributes about the significance of a
particular street. By using additional attributes of street-data, a graph partitioning
targeted for road networks can be derived, such as SParTSim.

3 Experimental Evaluation

In order to use input data for the different partitioning algorithms, we have to extract
volume data to provide the partitioning. In real-world scenarios, such data can be
extracted from existing Traffic Management Systems, such as SCATS [23] or

64 U. Dangel et al.

IRIS." In this work, we use the dataset provided by TAPAS Cologne [24] with
SUMO to extract the volume data. Below, we describe the formula used for pro-
viding a weight for nodes in the road graph based on traffic data, as well as
modifications to the existing algorithms.

3.1 Volume Extraction

As some of the algorithms used are graph based, we provide a weight per node
instead of a weight per edge. This allows us to use the same weighting for all
algorithms, whether they are graph or space-based. We use a weighted sum as
shown in (1), to calculate the weight of a node, N,,, with ¢, being the total number
of cars present at step ?, ¢, the number of cars at node n at step .

Cim
Nwzzw,cit. (1)

where the weight w;, is defined as the number of cars in this step over the maximum
number of observed cars (in any one step), as shown in (2).

Cm
w, = . 2
! Cmax ()

By using (2) we ensure that steps with a low traffic volume have a lower impact
on the overall weight of a node.

3.2 Modification of Quadtrees

Quadtrees are a space-dividing partitioning method, often used to divide two-
dimensional spaces. Quadtrees divide a space recursively into sub-regions, until a
specific stop condition is met, e.g., the space is divided evenly or, into the required
number of partitions.

The original version of the used Quadtree algorithm uses the sum of the street
size (street length * number of lanes) to select the partition to divide. We modify
Quadtrees to not use the sum of the street size but the sum of the volume data from
Sect. 3.1 above, in order to select the partition to divide further. By using the sum of
the volume data for each partition, we choose the area with the highest weight to
divide further.

' http://iris.dot.state.mn.us/.

http://iris.dot.state.mn.us/

Can Road Traffic Volume Information ... 65

3.3 Modification of Smart Quadtrees

Smart Quadtrees, also referred as grid based partitioning, are an extension to
Quadtrees where the map is initially divided into small, independent grids. These
grids are then merged together according to some heuristic, based on the value of an
individual region. This differs to Quadtrees as Quadtree divides a map into 4 similar
regions, while Smart Quadtrees divides a map into small grids and merges them
until all grids are merged (Fig. 1).

The unmodified version of the Smart Quadtree implementation uses the street
size (street lengths * number of lanes) as a heuristic. We modify Smart Quadtrees
by changing the heuristic to use the sum of the volume data, as described in
Sect. 3.1, for each grid. The difference between the two implementations is shown
in Fig. 2.

Fig. 1 Output of the modified quadtree algorithm (/eff) and unmodified quadtree (right) with ten
partitions or three divisions

Fig. 2 Output of the modified smart quadtree algorithm (leff) and unmodified smart quadtree
(right) with eight partitions

66 U. Dangel et al.

3.4 Modification of SParTSim

SParTSim uses the concept of creating a domain-specific partitioning algorithm for
road networks by combining space partitioning (region-growing) with graph parti-
tioning. By utilizing both space-, and graph-partitioning methodologies, SParTSim
aims to produce better partitions for vehicular distributed simulations. SParTSim
determines the starting point of each partition by choosing the node with the highest
degree. After the starting point for the individual partitions is selected, each partition
grows, starting from the starting point. SParTSim grows the partitions based on road-
network attributes, such as number of lanes.

As unmodified version of SParTSim determines the starting point of a partition
by choosing the nodes with the highest degrees, the starting point of a partition
impacts the shape of an individual partition as the partition starts to grow around
this point until it can’t grow any more as a result of all areas now belonging to other
partitions, i.e. all areas on the map are covered. SParTSim then trades road seg-
ments between partitions to minimize the road cuts between partitions and to
achieve load-balanced partitions. The SParTSim algorithm only uses static graph
properties to achieve evenness of road topology between partitions. In order to do
this it uses a heuristic to determine the workload for the individual partitions.
However, SParTSim considers that if the road topology is balanced between par-
titions, then the workload will be similar, irrespective of the actual traffic volume.
Therefore, we modified the starting point selection in SParTSim to use the nodes
with the highest traffic volume (as determined in Sect. 3.1) instead of using the
nodes with the highest degree. Figure 3 shows the partitioning result of both the
unmodified and modified version of SParTSim.

Fig. 3 Output of the modified SParTSim algorithm (left) and unmodified SParTSim (right) with
eight partitions

Can Road Traffic Volume Information ... 67

3.5 Simulation of a Distributed Simulation

In this paper we are only interested in the impact of urban data on the quality of the
partitioning, not on the distributed simulation itself. For more details on the latter,
we refer the reader to our previous work on a distributed version of SUMO [5]. We
have then decided to focus on the partitioning and only “simulate” the distributed
simulation: TAPAS Cologne gives us the position of every vehicle at any given
time, so that we are able to know precisely when a vehicle crosses the border of a
partition for every partitioning schemes; this allows us to run SUMO for each
partition and to manage the passing of vehicles in an ad hoc manner, without using
the communication and synchronisation mechanisms of a real distributed simula-
tion. It is important to tell again that while we avoid here all the characteristics of a
distributed simulation (e.g., communication time and synchronisation mechanism),
this does not have any impact on the focus of our study, i.e., an evaluation of the
improvement of using urban traffic data for the partitioning in a distributed
simulation.

4 Evaluation

In this section, we evaluate the use of traffic volume data for Quadtrees, Smart
Quadtrees and SParTSim. We divide the city for both Smart Quadtrees and
SParTSim into four and eight partitions while we use for Quadtrees four and ten
partitions. The visual partitioning outputs for Quadtrees with 10 partitions is shown
in Fig. 1, with the outputs for Smart Quadtrees with eight partitions is shown in
Fig. 2 and those for SParTSim are shown in Fig. 3.

4.1 Metrics

In the first part of our evaluation we focus on two metrics, communication overhead
and workload balance. For communication overhead, we calculate the number of
messages sent between partitions in each step. These messages represent the
movement of a vehicle on a road segment, which is divided across partitions. We
can calculate this with SUMO by extracting the position of each vehicle in each
step. If a street intersects or touches a partition border, it is part of multiple parti-
tions. This ensures that states are shared between different nodes. If a vehicle is on a
road segment, which is divided across partitions, a message has to be sent to the
neighbouring partition to transfer the state of the vehicle across to the new partition.
As each message has to be communicated and processed by dSUMO, the lower the
number of messages, the better. The results for this metric are provided below.

68 U. Dangel et al.

To evaluate the workload balance between partitions, we calculate the Simpson
Diversity Index [25], as shown in (3), with C, being the cars in partition p, ¢, the
total number of cars in step ¢ and P the number of partitions. The result is between 0
and 1 with 1 being a perfectly load balanced system and O being the opposite for
unbalanced workloads between partitions.

1

Dt = — 2
Zp:O (CP/CI) P

3)

In the second part of our evaluation we simulate the use of a distributed simu-
lation to measure the time required to process each simulation and the real time
factor. In a conservative distributed simulation, the slowest node determines the
time required to run the whole simulation. The more the simulation is load-bal-
anced, the smaller the difference will be between the slowest and the fastest node.
The second metric used is the average time required by a mock distributed simu-
lation to be executed. The third metric is the number of Vehicle Per Second (VPS)
which is measured by adding the number of vehicles processed at each step divided
by the runtime. The last metric is the real time factor correspond to how much faster
the simulation is compared to the real time. For instance, a real time factor of 10
means that the simulation execute 10 s of simulated time in 1 s of real time.

5 Results

We use the TAPAS Cologne [24] 0.17 scenario to evaluate our result. TAPAS
Cologne is a simulation describing the traffic of Cologne on a workday between
06:00 and 08:00 am. The data was captured as part of the TAPAS project [26] and
has been refined multiple times. The scenario consists of 7,200 steps, with one step
representing one second in real-time. TAPAS Cologne contains more than 250,000
vehicles traces for the 2 h period.

Figures 4 and 5 display the number of messages between partitions per simu-
lation step for Quadtrees, Smart Quadtree and SParTSim. We don’t distinguish
between the modified and unmodified Quadtree for four partitions, as both results
are exactly the same.

Due to the regular, rectangular shape of the partitions the Quadtree shows the
best communication properties. In all cases, though, the modified versions of the
algorithms show increased levels of communication, compared to the unmodified
versions. The modified Quadtree algorithm selects the city centre (Fig. 1) for further
partitioning, resulting in additional communication overhead. For the Smart
Quadtree algorithm, our modified version created some small partitions (Fig. 2),
causing additional communication overhead. Our modified algorithms show higher
communication overhead compared to the unmodified versions. This is expected as
our modifications focus on load balanced partitions and does not optimize with
regard to communication. However, as can be seen below (in terms of workload

Can Road Traffic Volume Information ... 69

3000 4
1500 -
7]
3 @ 2000 | M
% 1000 - 8)
%] ©
7] »
> 3
= 500 1 = 1000 4
0 0
0 2000 4000 6000 0 2000 4000 6000
Step Step
—— 4 partitions ~—— 4 partitions — modified
— 10 partitions — modified —— 4 partitions — unmodified
— 10 partitions — unmodified —— 8 partitions — modified

—— 8 partitions — unmodified

Fig. 4 Number of messages sent per simulation step for quadtrees (leff) and smart quadtrees
(right). Modified and unmodified versions are both shown

Fig. 5 Number of messages 5000
sent per simulation step for
SParTSim, both modified and
unmodified for 4 and 8 4000
partitions
¢ 3000
Q
(o)}
It
(2}
(%]
< 2000 -
1000
0 -
T T T T
0 2000 4000 6000
Step

—— 4 partitions — modified
—— 4 partitions — unmodified
—— 8 partitions — modified

—— 8 partitions — unmodified

balance) our algorithms achieve a higher level of balancing between partitions,
which should provide higher utilisation across all compute nodes as delays incurred
by waiting for simulation should be decreased.

70 U. Dangel et al.

SParTSim has a trading phase, which aims to reduce the communication over-
head. This behaviour can be observed in Fig. 5 for the unmodified versions, which
perform better than the Smart Quadtree. Our modified initial starting point selection
for SParTSim caused the increased communication overhead. This shows, that even
though SParTSim has a trading mechanism to reduce the communication overhead,
the initial point selection has a large impact on the resulting partition.

For the case of workload balance between partitions, Table 1 shows the prop-
erties of the Simpson diversity index (the higher the number, the better) over the
complete simulation for all 3 algorithms. For both Quadtree and Smart Quadtree our
modification provides better load-balanced partitions compared to the unmodified
versions of the same algorithm, e.g. for the Smart Quadtree our modifications are
twice as good as the unmodified versions. Our modifications to SParTSim on the
other hand, provide slightly worse results compared to the unmodified algorithms.
This is due to the trading phase of SParTSim, as we did not adjust the trading phase
but only the initial starting point selection.

Comparing the different algorithms to each other shows that our modified Smart
Quadtree produces more even partitions than the other partitioning algorithm. Our
modified version of the Quadtree took 1 h 13 min to compute 10 partitions, Smart
Quadtree took 1 h 22 min to compute eight partitions while SParTSim took 5 h
14 min for eight partitions on a 4 Core I 7-2,600 with 16 GB of memory. As shown
in [27, 28] load balanced simulations are a required to optimize the overall com-
putation time.

The modified Smart Quadtree provides more balanced partitions compared to the
other algorithms. Furthermore, the modification to Quadtree and Smart Quadtree
provide more balanced partitions compared to unmodified versions of their algo-
rithm. In addition to providing more balanced partitions, we can observe that for
Smart Quadtree, the time taken to compute these partitions is significantly lower,
compared to SParTSim. In the case of Quadtree, the time taken to compute the
partitions is significantly lower than SParTSim (and Smart Quadtree) but at the

Table 1 Simpson diversity index for the different partitioning algorithms over the simulation

Name Min Median Mean Max
Quadtree 4 partitions 0.3680 0.7190 0.7318 0.8540
10 partitions—modified 0.3570 0.6070 0.6021 0.6330
10—unmodified 0.2270 0.3530 0.3674 0.5540
Smart quadtree 4 partitions—modified 0.5610 0.9000 0.9157 0.9940
4 partitions—unmodified 0.358 0.431 0.427 0.568
8 partitions—modified 0.4460 0.7760 0.7798 0.8550
8 partitions—unmodified 0.2840 0.3890 0.3889 0.4940
SParTSim 4 partitions—modified 0.4810 0.6650 0.6718 0.7340
4 partitions—unmodified 0.7210 0.7920 0.7854 0.8450
8 partitions—modified 0.4060 0.4540 0.4642 0.6430
8 partitions—unmodified 0.4710 0.6850 0.6573 0.7780

Can Road Traffic Volume Information ... 71

expense of workload balance. Our modification to SParTSim on the other hand, did
not provide better results, due to the unmodified trading phase. We expect that by
modifying the trading phase, the result for SParTSim will improve as well.

While Table 1 shows the theoretical benefits of using urban data for the parti-
tioning in terms of load balancing (i.e., Simpson Index), Table 2 presents some
experimental results from the simulation of the distributed simulation. The results
for Quadtree show that while the average time and the VPS stay stable for both
configurations, the runtime is divided by more than 2 for the modified methods,
using urban data, and the Real time factor is proportionally twice higher. Regarding
Smart QuadTree, the modified versions for 4 and 8 partitions get a runtime
improvement of respectively 13 and 22 %. While the average time and the VPS just
slightly vary, Real time factor is improved in the same way than runtime. As we
previously observed for the load balancing with the Simpson index, using urban
data to optimise SParTSim does not seem to improve the simulation time.

When we increase the number of partitions to 16, the results seem to show a
limited improvement. Despite increasing the number of partitions, QuadTree pre-
sents no improvement between 10 and 16 partitions for the modified version. Again
the modified SParTSim shows results a little bit worse than the original SParTSim
but the improvement due to the increase of the number of partitions goes from 6 to
15 %. On the other side, while the original Smart QuadTree achieves good results,
the modified version shows a slower runtime. This decrease in performance comes
from a bad choice of seeds. It appears that some seeds generated regions inside

Table 2 Execution time for every SUMO instances in the simulated version of a distributed
SUMO

Name Time(s) |Avg time(s) | VPS Real time
factor
Quadtree 4 partitions 24746 | 107.75 78830.22 30.31
10 partitions—modified 104.78 | 47.388 71834.39 71.58
10—unmodified 22352 |44.12 75072.70 33.55
16 partitions—modified 103.1 30.08 35056.79 72.75
16—unmodified 198.11 |27.86 83255.98 37.86
Smart 4 partitions—modified 115.78 | 97.13 112691.76 | 64.78
quadtree 4 partitions—unmodified | 133.33 |92.14 108292.90 |56.26
8 partitions—modified 93.62 51.44 59541.65 80.12
8 partitions—unmodified | 120.61 |45.34 72850.18 34.80
16 partitions—modified 197.79 |27.87 83389.63 37.92
16—unmodified 87.08 23.79 107091.92 |86.13
SParTSim 4 partitions—modified 179.76 | 84.60 115305.59 |41.72
4 partitions—unmodified |176.34 |82.42 110353.29 |42.53
8 partitions—modified 100.34 | 44.43 92839.74 74.75
8 partitions—unmodified | 88.29 42.71 97958.16 84.95
16 partitions—modified 94.09 22.44 86193.98 79.72
16—unmodified 75.45 23.84 86593.48 99.41

72 U. Dangel et al.

others and could not fully grow to form proper regions. As Smart QuadTree does
not have any trading phase, it creates in this case tiny regions inside others, pro-
cessing only few vehicles and spending most of their time communicating vehicles
with other partitions.

These results lead to two observations. Firstly, we can see that the runtime and
the Simpson Index match in most cases. The higher the Simpson Index is, the
smaller the simulation time will be. This observation reinforce us in thinking that
the Simpson Index is a good indicator of the load balanced state of a distributed
simulation. Moreover, as expected, the average time and the number of vehicles per
second prove to give no indication on the load balancing. Secondly, it looks like
there is a direct correlation between the smartness of an algorithm and the
improvement obtained with urban data: the smarter the algorithm, the smaller the
impact of the optimisation. Optimised Quadtree, Optimised Smart Quadtree and
SParTSim provide close results for 8—10 partitions.

6 Conclusion

In this paper we propose the of use volume data to improve road partitioning for
distributed simulations using SUMO. We modify three existing partitioning algo-
rithms to take volume data into account. In general, the volume data can be
extracted by a Transportation Management System for a city or by examining
results from previous simulations. We show the impact of volume data on the
individual partitioning algorithms for the partition topology, as well as the impact
on the distributed simulation by comparing communication overhead and workload
balance between the different algorithms.

We show that partition algorithms have a large impact for distributed simulation,
either providing workload balanced partitions or reducing the overall communi-
cation overhead. SParTSim, the algorithm trying to optimize for both cases, has a
long runtime making it impractical for dynamic load balancing. By using traffic
volume, we can improve the workload balance of simple spatial partitioning
algorithms, which could make them useful for dynamic repartitioning of large
simulations. This means that in order to be able to scale and distribute large-scale
simulations with dSUMO, the focus for dSUMO should be on the communication
overhead with external systems, as balanced partitioning has been shown reduces
the overall computation time. On the other side, we also show that the optimization
using traffic volume has its limitation and cannot make a simple algorithm such as
Smart QuadTree as reliable as a urban traffic dedicated partitioning algorithm such
as SParTSim.

Acknowledgment This work was supported, in part, by Science Foundation Ireland grant 10/CE/
11855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie)

http://www.lero.ie

Can Road Traffic Volume Information ... 73

References

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

. Abbott J (2013) State of the world’s cities: prosperity of cities, Australian Planner, pp 1-2
. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J Sci Comput 20:359-392

. Soares G, Macedo J, Kokkinogenis Z, Rossetti RJ (2013) An integrated framework for multi-

agent traffic simulation using SUMO and JADE. In: SUMO2013, The first SUMO user
conference, 15-17 May 2013—Berlin-Adlershof, Germany, pp 125-131

. Bellifemine F, Bergenti F, Caire G, Poggi A (eds) (2005) JADE—a java agent development

framework. Multi-agent programming, Springer, pp 125-147

. Bragard Q, Ventresque A, Murphy L (2013) dSUMO: towards a distributed SUMO. In:

SUMO2013, The first SUMO user conference, 15-17 May 2013—Berlin-Adlershof, Germany

. Ventresque A, Bragard Q, Liu ES, Nowak D, Murphy L, Theodoropoulos G et al (2012)

SParTSim: a space partitioning guided by road network for distributed traffic simulations. In:
Proceedings of the 2012 IEEE/ACM 16th international symposium on distributed simulation
and real time applications, pp 202-209

. Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta

Informatica 4:1-9

. Wang Y, Lees M, Cai W (2012) Grid-based partitioning for large-scale distributed agent-based

crowd simulation. In: Proceedings of the winter simulation conference, p 241

. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.

Commun ACM 51:107-113

Amanatides J Woo A (1987) A fast voxel traversal algorithm for ray tracing. In: proceedings
of EUROGRAPHICS, pp 3-10

Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning
trees. Image Process IEEE Trans 5:1610-1624

Torres E (1990) Optimization of the binary space partition algorithm (BSP) for the
visualization of dynamic scenes. In: Eurographics, pp 507-518

Steed A, Abou-Haidar R (2003) Partitioning crowded virtual environments. In: Proceedings of
the ACM symposium on virtual reality software and technology, pp 7-14

Freisleben B, Hartmann D, Kielmann T (1997) Parallel raytracing: a case study on partitioning
and scheduling on workstation clusters. In: Proceedings of the thirtieth hawaii international
conference on system sciences, 1997, pp 596-605

Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph
partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on
knowledge discovery and data mining, pp 269-274

Pothen A, Simon HD, Liou K-P (1990) Partitioning sparse matrices with eigenvectors of
graphs. SIAM J Matrix Anal Appl 11:430-452

Hendrickson B, Leland R (1995) An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J Sci Comput 16:452-469

Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst
Tech J 49:291-307

Fjillstrom PO (1998) Algorithms for graph partitioning: a survey. linkdping electron art
comput inf sci 3(10):1-37

Hendrickson B, Leland RW (1995) A multi-level algorithm for partitioning graphs. SC 95:28
Andreev K, Racke H (2006) Balanced graph partitioning. Theor Comput Syst 39:929-939
Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning:
applications in VLSI domain. IEEE Trans Very Large Scale Integr VLSI Syst 7:69-79
Lowrie P (1990) Scats, sydney co-ordinated adaptive traffic system: a traffic responsive
method of controlling urban traffic

SUMO (2014) TAPAS-Cologne dataset. http://sourceforge.net/apps/mediawiki/sumo/index.
php?title=Data/Scenarios/TAPASCologne

Simpson EH (1949) Measurement of diversity. Nature 163:688

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Data/Scenarios/TAPASCologne
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Data/Scenarios/TAPASCologne

74

26.

217.

28.

U. Dangel et al.

Varschen C, Wagner P (2006) Mikroskopische modellierung der personenverkehrsnachfrage
auf basis von zeitverwendungstagebiichern. Stadt Reg Land 81:63-69

Boukerche A, Das SK (1997) Dynamic load balancing strategies for conservative parallel
simulations. In: Proceedings of 11th workshop on parallel and distributed simulation, 1997,
pp 20-28

Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J et al (2005) New
challenges in dynamic load balancing. Appl Numer Math 52:133-152

	5 Can Road Traffic Volume Information Improve Partitioning for Distributed SUMO?
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Evaluation
	3.1 Volume Extraction
	3.2 Modification of Quadtrees
	3.3 Modification of Smart Quadtrees
	3.4 Modification of SParTSim
	3.5 Simulation of a Distributed Simulation

	4 Evaluation
	4.1 Metrics

	5 Results
	6 Conclusion
	Acknowledgment
	References

