
Online Micro Modelling Using Proprietary
Controllers and SUMO

Robbin Blokpoel and Jaap Vreeswijk

Abstract Over the past years the open source traffic simulator SUMO has been
significantly improved and extended. One of the most important elements of urban
traffic simulation is the proper handling of traffic light control. Currently available
are elementary control methods like embedded fixed time and actuated control, but
also controllers external to SUMO that use SUMO’s extensive TraCI interface that
enables reading and changing of many simulation parameters. This interface,
however, has as yet not been used to link to proprietary controllers, which would
enable the use of SUMO for accurate studies in a multivendor environment.
Moreover, the TraCI interface accepts the injection of vehicles from external
sources during the simulation. This opens up possibilities for using real-world
sensor data directly in the simulation environment. This paper describes how state-
of-the-art Imtech controllers are linked to SUMO. The paper covers topics like
architecture, vehicle detection, signal group control, simulation speed optimization
and contains a comparison of the SUMO simulation to the commercial Vissim
simulator for an identical scenario. The last section of this paper introduces
embedded real-time micro simulation as part of the control environment, which was
able to approach.

1 Introduction

Over the past years the open source traffic simulator SUMO has been improved and
extended significantly with at the time of writing a 19th version available. With a
large community involved and a history of more than 10 years, the simulator can be

R. Blokpoel (&) � J. Vreeswijk
Imtech Traffic & Infra, 2542, 3800GB Amersfoort, The Netherlands
e-mail: robbin.blokpoel@imtech.com

J. Vreeswijk
e-mail: jaap.vreeswijk@imtech.com

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_3

35



considered a serious alternative to commercially available solutions. The open
source nature and easy access to almost all parameters during runtime make the
simulator particularly suitable for research projects. Therefore, the European funded
project COLOMBO [1] chose to use SUMO for traffic simulations.

The COLOMBO project works on traffic surveillance algorithms for low pen-
etration cooperative systems [4], in which both vehicle-to-infrastructure (V2I) and
vehicle-to-vehicle (V2V) communications are modelled using the ns-3 [7] com-
munications simulator. The output of these traffic surveillance algorithms is used by
new traffic control algorithms to control signalized intersections.

Currently SUMO supports various kinds of traffic control; fixed time and vehicle
actuated control are fully supported by SUMO. For other types of control and
variations on the embedded vehicle actuated method, external controllers can take
over SUMO’s control through TraCI (Traffic Control Interface). Currently, these
external controllers, like the example Python program that comes with SUMO, are
stand-alone applications specifically made for connection to SUMO. However, for a
good comparison between traffic systems currently running on the street and results
from research projects, it is important to use the same scenario and simulation
environment. Therefore, an interface between SUMO and a real-world controller
would be a very useful tool for COLOMBO to compare its solutions to what is
currently available on the market. This comparison would be even stronger when
real time or historical traffic demands over a long period of time can be fed to the
system. That would prove the system could work over an extended period of time
and not just in one scenario.

Fixed time and vehicle actuated controllers can be realistically approximated by
either SUMOs internal traffic control options or external applications. City specific
rules about pre-starts, not early cutoff and variable safety margins according to
detection information can make this a very complicated task that favour using the
real world controllers. This holds even stronger for traffic adaptive control, like
Imflow [9], which is too complicated to be approximated by the control available in
Sumo. Furthermore, the differences between competing products are too large to
simulate their behavior with a reference application.

For these reasons it was decided to create an interface between Imtech’s real
world controllers and SUMO. This paper describes the architecture, detection,
signal groups, speeding up the simulation and a comparison between Vissim and
SUMO. This is done for the scenario of Assen-Noord, a small network in the north
of the Dutch city Assen. Network conversion between Imflow controlled networks
and SUMO for increased ease of use is described in [2].

Additionally, this interface enables to use the simulation environment as accurate
online model that only requires traffic demand data. Unlike many other models [3]
no data about travel times is required. Exceptional changes in demand, which are
often a problem for traffic models based on travel time measurements and neural
networks [7], are handled better. This is because the real traffic light controllers are
part of the model and behave the same way as the controllers on the street would
behave. The paper shows a test case with a week of data from a network in
Helmond in the Netherlands.

36 R. Blokpoel and J. Vreeswijk



2 Architecture

The architecture of the interface and all involved components is described in the
picture (Fig. 1).

The TLC (Traffic Light Controller) blocks in the diagram use the same software
as is running inside real-world traffic light controller. The TLC blocks can accept
just as easily real sensor input as data generated by the simulation environment. The
equivalent situation holds for the actuators. The TLC interfaces to the simulation
environment by means of the SimInterface. The SimInterface is a C++ dynamic link
library (dll) that can maintain connections to multiple TLCs in parallel. On the other
side it can connect to any external application that supports the dll. This has been
used to connect to the commercial simulators Vissim, Paramics and Aimsun. For
SUMO an intermediate block, the SumoInterface, has been created in Java that
supports both the dll and can talk to TraCI to get information from SUMO. The
flow of information consists of two main flows, detection information going from
SUMO to the TLCs and signal group status from the TLCs to SUMO.

After initialization of the interfaces the main interface process checks detector
status and signal group status every 100 ms. Changes to signal group status are
written to SUMO, while detector status is sent directly to the Siminterface dll.
Finally, SUMO is ordered to execute another simulation step through TraCI.

3 Detection

Detection—the acquisition of traffic sensor data—is a key element for any adaptive
controller, as without detection only fixed time control is possible. Therefore,
having proper detection functionality is vital for accurate simulation. SUMO sup-
ports three kinds of detectors: inductive loop, lane area and multi-entry multi-exit
detectors. Current traffic control is mostly based on detectors that cover an area in a
lane, this can be an inductive loop, but also a marked area in a video detector.
Therefore, the original inductive loop detector of SUMO is actually not sufficient

Fig. 1 Interface architecture

Online Micro Modelling Using Proprietary Controllers … 37



for traffic control simulation, since it’s an infinitely small detector that doesn’t cover
an area in a lane, but just a point on the lane. Even real world inductive loops cover
larger areas, so a real inductive loop cannot be modelled accurately with a SUMO
inductive loop. Many vehicle actuated strategies use long induction loop area
detectors that can cover up to 30 m of the approach to an intersection. By means of
these long detectors gaps in the approaching traffic can be detected, which can be
used to determine the best moment to cut off the green phase.

Figure 2 shows a short loop close to the stopline and a 20 m loopat some 15 m in
the upstream direction. When a vehicle leaves the long loop, the front of the vehicle
is at a distance of at most 12 m from the stopline. Turning the light to amber at this
moment will not make the vehicle stop, since the distance is less than 1 s. This
enables the controller to utilize part of the amber time by letting the last vehicle of a
platoon pass through during amber. This technique of detecting the end of the
platoon would also work at the stopline, but then the amber time cannot be utilized.
The reason for using a long loop of 20 m is to deal with small gaps in platoons due
to different acceleration rates. If the loop would be shorter, a threshold gap time
would have to be introduced that would make usage of the amber time impossible.
The most usable alternative would be a small loop at 15 + 20 = 35 m from the
stopline, but its efficacy would depend on a presumed fixed vehicle speed, which is
not realistic close to an intersection. Moreover, this work focusses on simulating
real world controllers and these expect long area loops. Using different loop con-
figurations in the simulator will give different behavior unless parameters inside the
controllers are changed.

Interfacing with the detectors through SUMO is quite straightforward. During the
development of the interface a small extension to Traci was made to be able to access
occupancy of lane area detectors. This extension is available in version 0.20. This is
done using the command “get LaneAreaDetector Variable” and the variable to
acquire the number of vehicles on the loop. In the dll this is fed back as a list of
detectors that can be occupied (1) or not occupied (0). Main challenge in this is the
configuration, since the dll does not use detector IDs. The order of the detectors has
to be the same as it is configured in the controller executable. This problem was
previously solved for Vissim simulations by a naming convention, detector numbers

Fig. 2 Typical detection field for vehicle actuated control

38 R. Blokpoel and J. Vreeswijk



have an ID number specified as follows: intersection ID * 1000 + detector sequence
number. So the first detector for intersection 37 has an ID of 37000, the second
37001, etc. The network conversion tool of [5] automatically uses the correct naming
conventions when the original network uses the correct numbering scheme.

As described in the architecture section, the update time for detectors is 100 ms.
This is done in order to never miss any detection event. Motorcycles can be as short
as 2 m and on the highway, their speed can be over 30 m per second. This means
they occupy a detector for only 100 ms. When vehicles are shorter and drive faster,
a shorter update time is required. In urban environments the simulation may be
speed up by checking the detectors less frequently if vehicle speeds are lower. For
4 m vehicles at 15 m/s, a 300 ms cycle suffices.

Another important aspect to consider is the stopping distance in front of a red
light. This is shown in the figure (Fig. 3).

The loop indicated by the blue line is not occupied when vehicles stop at 2.5 m
before the signal head, as they did in older SUMO versions. Therefore, the request
is not registered at the traffic light controller and the signal group will never become
green. In SUMO 0.20.0 this stopping distance was decreased to 1.0 m.

4 Signal Groups

Sumo uses a different kind of numbering for the signal groups than is usual in traffic
light controllers. Vissim has one signal head per lane and a signal group can
comprise multiple signal heads, which happens for example when there are two
lanes for a certain direction. SUMO, on the other hands defines connections, which
can be considered signal heads, in the .net.xml. There is one connection per turn
direction per lane. So when there is one lane from which a right turn, the through
direction, a left turn and a u-turn are possible, it will have 4 signal heads as opposed
to only 1 in Vissim. Therefore a translation XML file is used by the interface to
convert TLC signal group numbers to SUMO identification numbers. An example
of a translation file is shown below:

Fig. 3 Problem with detector location and stopping distance

Online Micro Modelling Using Proprietary Controllers … 39



\intersection id ¼ ``1''[
\signalgroup id ¼ ``1000'' sumoSGs ¼ ``2; 3; 4''=[
\signalgroup id ¼ ``1001'' sumoSGs ¼ ``5; 6; 7''=[
\signalgroup id ¼ ``1002''sumoSGs ¼ ``1; 8''=[
\=intersection[

The translation is made as an add-on to the software of [5] during the network
conversion process. Per edge the convertor knows which Imflow signal group
number belongs to it, while the list of connectors per edge in the .net.xml is also
known. The conversion file simply contains per signal group ID, the list of lin-
kIndices. During operation of the interface the traffic light status is translated
according to the file. Suppose the controller wants signal group 1000 green and the
rest red, the SUMO translation is as follows: rGGGrrrr.

Again in the dll there is no ID registration, the order is always the same and
therefore it is important that the translation file has the signal groups numbered
according to the order in which they are configured in the controller executable.
Also, there are more states defined than in SUMO: undefined, green, red, off, red
+amber, amber, amber flashing, red flashing, green flashing, red+green flashing and
green+amber. Some of these states don’t exist in SUMO and are converted to
simpler states, like red+amber is functionally red, so it will just show red in SUMO,
since the driver model wouldn’t take this into account. Similarly, green+amber is
just shown as green. Most flashing states are implemented to show “O” for half a
second and “Y” or “G” for the other half second. Note that the symbols have to be
capital otherwise vehicles may decelerate unnecessarily. For red flashing it is
slightly different, it will just show continuous red to prevent vehicles from entering
the intersection while the light is temporally off as part of the flashing. When no
external controller is connected to the dll, the state is automatically set to amber
flashing. During operation in every 100 ms the software checks whether the status
has changed and if so sends a “Change Traffic Lights State” command with a new
state tuple String. The reason to choose for new state tuples is because the traffic
light can show many combinations of some lights being yellow while others are still
green during stage transitions. Putting all these possible combinations into either a
program or predefine them in a SUMO configuration file and selecting the right
phase index during operation would be a lot of work.

5 Simulation Speed

It was noticed that the network used for testing the SUMO interface between TraCI
and the SimInterface was running much slower after the detectors were connected.
Although the number of detectors is high, with 168 divided over 5 intersections, the
delay was much larger than expected. An implementation that sends separate TraCI
commands for each detector requires up to 30 ms per intersection per simulation

40 R. Blokpoel and J. Vreeswijk



step of 100 ms. This meant that the simulation ran approximately at the same speed
as real-time speed (on a 2.53 GHz core 2 duo). So each second of simulation took
one second on the clock. Without detection this speed was 50x real-time. A
hypothesis that the large number of Traci calls caused this led to combining all
detector requests of one intersection in one call. This led to an increase in simu-
lation speed to almost 2x real-time speed, which is an improvement with respect to
the first implementation, but still not acceptable. It appears there is an internal
SUMO problem with TraCI causing the large delays. Subscriptions are also not
going to solve this problem, because reducing the number of requests from 168 per
timestep to 5 did only marginally decrease the delay. A further reduction from 5 to
0 would not reduce the delay significantly. Further investigation in cooperation with
the SUMO development team is required to investigate this issue.

6 Comparison Between Vissim and SUMO

For the scenario of Assen-Noord, a small network in the north of the Dutch city
Assen, a comparison was made between VISSIM and SUMO. The network only
has pedestrian and bicycle crossings at the middle left intersection. All other
intersections have just vehicles. The larger traffic streams (up to 1500 vehicles per
hour) are going north–south on both sides of the network and the major bottleneck
is the bottom intersection where the two north–south streams join (Fig. 4)

When watching the simulations in both Vissim and SUMO, no clear differences
could be noted, except that SUMO has uniform vehicle injection and the same
acceleration at the stopline. SUMO was used in a standard way creating the routes
with a trip file that injects vehicles with a constant time period in the resulting.rou.
xml. Evaluation in Vissim was done by putting a travel time section for each signal
group and in SUMO a multi-entry multi-exit detector.

When evaluating the results it was found that the vehicle count in SUMO was
off, sometimes only 35 % of the actual volume was measured. It appears to occur
mostly when there is a high density on the multi entry multi exit detector, since
signal groups with low volume were counted correctly. The delay time could be
acquired directly in Vissim, but in SUMO a run with all signal heads switched to
“O” was done to acquire the free flow travel time, which was subtracted from the
measured travel time to get the delay time. From this it could be noticed that on
average the delay for pedestrians and bicycles was 2.0 s higher for SUMO than for
Vissim. On the other hand, for normal vehicles this delay was 1.3 s lower for
SUMO.

These results were obtained using standard settings as much as possible.
However, SUMO has many options for car following models and different vehicle
models with other acceleration parameters for vehicles, bicycles and pedestrians.
Tooling also exists for more random vehicle injections with normal or Poisson
distributions. Using these options will make it possible to have the results closer to
the Vissim simulation results.

Online Micro Modelling Using Proprietary Controllers … 41



7 Online Micromodelling

For accurate online micromodelling there are three main components that should be
considered: traffic behaviour, traffic demand and traffic light control. The latter is
covered by connecting the real traffic light controllers to the simulation. Traffic
behaviour was found to be close to Vissim, which is generally considered an
accurate model [10]. Therefore, the only remaining component is the traffic demand.

Generally, traffic counts are easily available, since traffic light controllers require
counting sensors, like inductive loops to function properly. A lot of research has
already been carried out for estimating OD matrices from loop counts [6, 7]. The
method used in this paper only uses traffic counts, but no vehicle class specific
counts. A method with class specific counts is presented in [8]. For this research the
formula taken from [6] will be used:

X

w2W
pawtw ¼ va

Fig. 4 Simulation network of
Assen-Noord

42 R. Blokpoel and J. Vreeswijk



tw is the number of trips of O-D pair w,w∈W
paw is the proportion of trips O-D pair w∈W traversing link a ∈ A
va is the expected link flow for the link a ∈ A

There are, however, multiple valid solutions for this equation and therefore some
assumptions are needed. The flow per origin can be measured directly since there
are inductive loops at each entry of the simulation network under investigation, but
for destinations there are multiple possibilities.

This is best understood when considering Fig. 5; a vehicle entering the network
at intersection 102 going in the eastern direction can leave the network at 104 in
three different directions. The same holds for a vehicle that entered at 101. Since
these vehicles mix with each other inside platoons, they cannot be distinguished
anymore at the loops of intersection 104. This also demonstrates that this knowl-
edge is not necessary, because of the same mixing effects. Only in extreme cases the
effects of different destination ratios from different origins will be noticable. For
example when all vehicles entering the network at 102 turn left at 104, while none
of 101 and 103 do that, an unexpected gap in a platoon may occur because those
vehicles will still be relatively close together inside the platoon. Similarly, at the
first intersection after entering the network the vehicles of a certain specific origin
will also arrive at a specific time. In this case it is important to have a more specific
indication in which direction they proceed, since this is important to model the
effects of coordination between intersections correctly.

The solution for determining the destination in the online model is to use the
ratios from a detailed static OD model for the first intersection a vehicle encounters
and afterwards group traffic to follow general turning percentages at the following
intersections. This detailed model was made to accurately represent the traffic
demand of the network in agreement with the road operator. The resulting flows per
OD pair are used as the basis of a Poisson arrival process, which injects vehicles
into SUMO through the TraCI interface.

The data of the traffic counts also contains total red phase durations, which
should approximate the total red duration of the online model environment. This
was tested for 2 weeks of data in March 2014. As a comparison the actual total red
time duration of each signal group was compared between the actual street data and

Fig. 5 Simulation network of Helmond for online modelling

Online Micro Modelling Using Proprietary Controllers … 43



the data from the simulation. The resulting difference in total red duration per 5 min
for signal group 3 (left turn from the main direction) at intersection 104 is shown in
the figure (Fig. 6).

As can be seen from the figure, the difference between the actual data and the
simulated data is very irregular on the first 2 days. This can be explained by
sampling effects, a green phase that occurred at the border of an interval can be
either in the first or second interval. Moreover, the Poisson arrival process intro-
duced some randomness in the demand as well, which could easily lead a difference
of one green phase per sampling period. When data is aggregated over 30 min, the
deviation does not vary between −15 and +15, with exceptions up to 30 anymore,
but only increases to −30 to +30 with exceptions up to 60. This effectively doubles
the variation, while the interval length is increased by a factor of 6. However, the
last 2 days have a clear pattern on the difference. From midnight to midday the
simulation has less red time, while at PM hours it is the other way around. A deeper
investigation into the log files revealed that the controller switched to another plan
at the 9th of March at 0:50AM.

When looking at the average deviation for signal group 3 of 1.5 s, it can be
concluded that the simulation was quite accurate. The average absolute error was
4.9 s, but this includes the noise introduced by the Poisson arrival process and the
sampling effects. For all intersections the average error and average absolute error
over all signal groups were calculated and are shown in Table 1. The average
absolute error is partially due to deviations from the Poisson arrival process. When
putting these errors of 0.0 and 8.9 s in perspective with the data aggregation period
of 300 s, the average total error is <0.1 % and the average absolute error is 3.0 %.

30

20

10

0

10

20

30Fig. 6 Difference between
simulation and actual street
data from 7–10th of March
2014

Table 1 Average errors per
intersection Intersection Average error (s) Average absolute

error (s)

101 −0.7 6.2a

102 0.0 9.2

104 −0.6 11.4

Total 0.0 8.9
a When a correction is not applied for the neighboring
intersection switching to a different control mode the average
absolute error for intersection 101 goes up to 8.1 s

44 R. Blokpoel and J. Vreeswijk



Note that 103 is just a pedestrian crossing with only public transport being
allowed to use the street coming from the south. Therefore, it has no complete
logging of the signal phases and only detection counts could be acquired. Apart
from the missing data of intersection 103, some corrections had to be applied for
certain external factors. Intersection 102 went to vehicle actuated mode at the 9th of
March. Therefore, all data after the 9th was discarded. This also had a significant
effect on the neighbor intersection 101, and the same correction was applied to this
data set. Another issue was found with the default stance when there is no traffic on
intersection 101. On the street it stayed in a stage with only signal group 8 and a
long maximum green time, while in simulation it went to the stage with signal
group 2, 8 and all parallel pedestrians and bicycles with a shorter maximum green
time. Therefore, those signal groups were discarded from the data set.

Other inaccuracies of the model for which the data set was not corrected can be
considered directions for future improvement:

• Pedestrians and bicycles were counted by the amount of times the push button
was used. However, this is an inaccurate measure as a pedestrian may get
impatient and push multiple times and a second pedestrian arriving may not
push at all. The time between the start of red and the first time the button gets
pushed would be a better indication for the arrival rate.

• Public transport priority and the respective bus schedules were not included in
the simulation. These priority calls, even though not frequent can have a sig-
nificant impact on the intersection.

• An extension loop at intersection 104 would sometimes freeze in the occupied
state. Therefore, the corresponding signal group got a lot more green time than
in the simulation, which had no broken loop. Conflicting signal groups on the
other hand had fewer green. Correction for this would be difficult, but the
system could create a warning that a detection inconsistency was detected.

• No special train functionality at intersection 104 was implemented in the sim-
ulation. When the railroad crossing to the south of 104 closes, special priority is
given to cars coming from the south to ensure the railroad crossing to be free of
cars. Additionally, after the railroad opens again, there is again a special priority
for these vehicles as they have waited for a long time at the railroad already.

8 Conclusion

The paper has shown a method of coupling Imtech proprietary controllers to
SUMO. The architecture used the same dll as other simulators use to couple to these
controllers and therefore enables a user to freely select the preferred simulation
software. For the interface, the challenges of different methods of assigning IDs to
signal groups, signal heads and detectors between controllers and SUMO were
overcome with a translation xml and a naming convention. On the SUMO side
some extra variables were added to the TraCI interface to be able to access lane area

Online Micro Modelling Using Proprietary Controllers … 45



detectors as well. A test network that was implemented both in Vissim and SUMO
showed that the results do not differ more than could be explained by different
vehicle model configuration parameters.

An extension to combine this work with dynamic traffic demand patterns
demonstrated the possibilities of creating an online micro-model. The results show
that it is possible to model with a mean absolute error of 3.0 % for the resulting total
red time per signal group in 5 min intervals. With this accurate online model,
different traffic management strategies can be tested online before actually effec-
tuating them. It also allows for testing multiple potential strategies in parallel to
assist in the decision of which strategy to select.

Open issues identified during the work were problems with counting vehicles on
the multi-entry multi-exit detectors and slow response to detector status requests
through TraCI. Both issues will be taken up with the SUMO development team.

References

1. Bera S, Krishna Rao KV (2011) Estimation of origin-destination matrix from traffic counts: the
state of the art. Europ Transp 49:3–23

2. Blokpoel RJ (2014) Network conversion for SUMO integration. In: 2nd SUMO conference,
Berlin, Germany

3. Hoogendoorn SP, Bovy PHL (2001) State-of-the-art of vehicular traffic flow modelling. J Syst
Control Eng 215:283–303 (1 June 2001)

4. Koenders E, in‘t Velt R (2011) Cooperative technology deployed. ITS Europe, Lyon, France
5. Krajzewicz D et al (2013) COLOMBO: investigating the potential of V2X for traffic

management purposes assuming low penetration rates. In: ITS Europe congress, Dublin,
Ireland, 4 June 2013

6. Liu H et al (2009) A neurak network model for travel time prediction. In: IEEE conference on
intelligent computing and intelligent system

7. ns-3 (2014). ns-3 project web-pages.http://www.nsnam.org/. Accessed 11 Feb 2014
8. Seungkiri B, Hyunmyung K, Yongteak L, Gangwon L (2001) Multi-vehicle OD trip matrix

estimation from traffic counts. J East Asia Soc Transp Stud 4(2)
9. Van Vliet K, Turksma S (2013) ImFlow: policy-based adaptive urban traffic control first field

experience. ITS Europe, Dublin, Ireland
10. Xiao H et al (2005) Methodology for selecting microscopic simulators: comparative

evaluation of AIMSUN and VISSIM. Research report, University of Minnesota

46 R. Blokpoel and J. Vreeswijk

http://www.nsnam.org/

	3 Online Micro Modelling Using Proprietary Controllers and SUMO
	Abstract
	1 Introduction
	2 Architecture
	3 Detection
	4 Signal Groups
	5 Simulation Speed
	6 Comparison Between Vissim and SUMO
	7 Online Micromodelling
	8 Conclusion
	References


