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Abstract This contribution evaluates and improves the open-source “DFROUTER”
tool that is contained in the SUMO traffic simulation suite. DFROUTER uses vehicle
counts (e.g. from inductive loops) to calculate routes of vehicles through road net-
works. This approach is designed for highway corridors that are covered with mea-
surement facilities at all entry and exit points. The study analyzes DFROUTER’s
current functionality and compares it with other approaches that have a similar
purpose. Tests performed using different networks and sensor coverage amounts are
presented. Additionally, an extension to the software is presented that completes
missing flows, increasing the correctness of the tool’s results.

1 Introduction

Transport planners and traffic engineers worldwide challenge with the increase in
traffic amount. A wide range of measures is implemented to tackle this problem,
ranging from large-scale traffic management strategies to in-vehicle Intelligent
Transport Systems (ITS). Accordingly, the deployed methods range from traffic
access regulations, such as calming areas or speed limits over route guidance, to in-
vehicle solutions that advice a speed to use to pass the next traffic light at green or
that help in changing lanes. All these solutions target the improvement of traffic in
means of safety or efficiency and a more optimal use of natural resources.

One first step to take within the development of such solutions is to model the
situation on roads. Besides the representation of the road networks, a proper
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representation of the traffic demand is one of the major inputs for transportation
system operation, design, analysis, and planning [1]. Origin-destination (O-D)
matrices are one of such representations. They contain information about the spatial
and temporal distribution of activities in different traffic zones in an area. Various
methods for generating origin-destination matrices have been proposed, like
household surveys, roadside interviews, license plate recognition and returnable-
post card interviews [2]. However they are all expensive and obtaining the data is
cumbersome [3].

Meanwhile, many data about vehicles flows (numbers of vehicles) is being
collected for other traffic management purposes. Often, inductive loop detectors are
used that are installed under the road surface. Inductive loops usually collect
information such as vehicle type and speed, traffic volume, and detector occupancy.
Being continuously retrieved for other purposes, such data is usually available at a
lower price than the employment of previously mentioned methods. But while
induction loops are a good source of information about the number of vehicles on a
street, they fail to provide information about the vehicles’ further routes. Hence,
methods for estimating traffic flows between origin/destination pairs have been
developed. Usually, they efficiently combine traffic count based data with other
available information [4].

Within this report, the application “DFROUTER” is analyzed. DFROUTER uses
detector values to calculate routes for simulated vehicles through a given motorway/
corridor simulation network. It is included in the microscopic road traffic simulation
package SUMO [5]. Besides routes, this tool also generates the according demand
for the traffic simulation, consisting of single (microscopic) vehicle insertion defi-
nitions the traffic simulation can read. This paper provides a detailed description of
the tool and compares it with other similar approaches that do not necessarily place
restrictions on the network type. Special attention is given to the accuracy of the
tool where reproduction of the flows’ probabilities is the decisive indicator for this
evaluation.

This report starts with an introduction into the problem of O-D matrix estima-
tion. Then, DFROUTER and the algorithms it uses are discussed. Afterwards,
evaluations of the DFROUTER and comparisons to other approaches are given.
Then, an extension to the DFROUTER is presented that allows using it on highway
networks that are not completely covered with detectors. This report ends with a
conclusion.

2 Theoretical Background

O-D matrices describe traffic demand by dividing a given area into so-called “traffic
assignment zones” (TAZs). For every TAZ at which traffic participants start (the
demand origins), the number of participants that approach a destination TAZ is
given. O-D matrix estimation methods based on traffic counts have been developed
over the last 30 years. There are two major types of O-D matrix estimation: the
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static method assumes O-D flows are constant over time for determining an average
O-D demand for long-time transport planning and design purposes; whereas the
dynamic method considers O-D flows with time variation for short-term strategic
traffic control and management [6]. One could state that dynamic methods are an
extension of static methods considering the time varying dimension. Furthermore,
due to congestion effects, the O-D matrix estimation can use proportional assign-
ment (uncongested) or equilibrium assignment (congested), resulting in four basic
cases of O-D estimation [1].

Contrary to urban road networks where more than one route between one origin-
destination pair exists, an O-D pair in a highway corridor consisting of an on- and
an off-ramp has only one possible route. This less complicated characteristic
facilitates the estimation of vehicle routes and traffic demand based on detector data.
Specifically for highways, the problem of determining an O-D matrix from traffic
counts can be formulated as follows:

X
i

bijOi ¼ Dj ð1Þ

X
j

bij ¼ 1 ð2Þ

where
bij proportion of trip from i to j;
Oi on-ramp counts (origin flows);
Dj off-ramp counts (destination flows).

Considering an example highway section that illustrates the O-D matrix esti-
mation problem, the one shown in Fig. 1 could be used.

As shown in Table 1, several results could satisfy the requirements due to the
under-specification problem: there are fewer equations than variables. The problem
does not have a unique solution.

Many O-D matrix estimation techniques exist, where Information Minimization
(IM) and Entropy Maximization (EM) [2], Maximum Likelihood (ML) [4], Gen-
eralized Least Squared (GLS) [3], or Bayesian Inference approach [7] could be
named as the most popular static ones. Regarding dynamic methods, one can find
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Fig. 1 Sample highway segment
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approaches such as Cross-correlation matrices, Constrained optimization, Recursive
estimation, Kalman filtering [8], Recursive least square [9], Artificial Neural Net-
works [10], and Combined estimators [11].

3 DFROUTER

3.1 Development Context

DFROUTER builds upon experience gained during the set-up of a large-scale traffic
observation and prediction project which results were applied during the Pope’s
visit in Germany in the year 2005 [12]. About 1 Mio persons were expected to
participate in this event that took place on a green field near to the city of Cologne.
The project’s scope was to support the police and the local traffic management with
on-line information about the state on the roads. The deployed system consisted of
an airborne camera-based traffic surveillance system mounted under a zeppelin that
sent information about recognized vehicles to a traffic management center. Together
with measurements from inductive loops, this data was used to calibrate a meso-
scopic traffic simulation. This simulation had the task to extrapolate the traffic
counted at measurement points over the road network as well as to predict the traffic
situation half an hour into the future. The so obtained states of the road network
were visualized at the traffic management center of the city of Cologne (Fig. 2).

To achieve the goal of predicting traffic, an initial demand was needed, that
could be calibrated using on-line measurements after deployment. The available
input data included two commercial O-D matrices. The first one described a usual

Table 1 Some examples for O-D matrices that correctly represent the flows of the example
from Fig. 1

D1 D2 Sum D1 D2 Sum D1 D2 Sum

O1 8 4 12 10 2 12 6 6 12

O2 2 2 4 0 4 4 4 0 4

Sum 10 6 16 10 6 16 10 6 16

Fig. 2 Left the zeppelin that carried the airborne traffic surveillance system; Right the visualization
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working day. The second one was a prediction of the road traffic during the Pope’s
visit, but covered only one half of the area that was defined to be simulated. Both
matrices were static, containing the demand of a complete day. Additionally
available was a microscopic demand from the TAPAS project [13], which was
based on a synthetic population. On-line data were supported by the highway
administration of North Rhine-Westphalia and by the traffic management center of
the City of Cologne.

Besides the amounts of passing vehicles, on-line calibration requires information
about the routes which newly inserted vehicles shall use for continuing their
journey. For the reasons outlined in the following, it was decided to use the
inductive loop measurements not only for adapting the simulated traffic flow vol-
umes to the measured vehicle numbers, but also as the ground truth for computing
routes across the highway part of the simulated area.

The first reason to name is the uncertainty whether the available demand
descriptions were applicable. To obtain routes running over the measurement
points, a traffic assignment [14] would have to be performed, first. But this process
is very sensitive to both, the road network representation as well as to the used
demand. As both were not completely revalidated at this decision step, it was
assumed that the resulting routes distribution would be erroneous. In addition, the
given matrices resembled different traffic conditions (usual day vs. visitors’ traffic)
and had different granularities (microscopic from a synthetic population demand
vs. static O-D matrices). Attempts to combine these matrices were dismissed.

Moreover, first system runs have shown that using the given O-D matrices as
source of routes distributions yields in a too high memory consumption: at each
measurement point, a distribution of routes to use has to be given. The simulated
network was very large and routes are defined as a list of all road network edges the
simulated vehicle shall pass within the used simulation SUMO. To decrease both,
their number as well as the sizes of the routes stored for each measurement point,
the demand was split into highway and non-highway-parts. Every vehicle that
entered the highway was given a new route. When leaving the highway, the vehicle
obtained a new route again. This kept the routes relatively small. This was only
possible, because the area around the city of Cologne is well-covered with sensors,
including all highway entries and exits.

This kind of modelling breaks all previously existent O-D relationships of single
vehicles as their routes are constructed from different route distributions. This was
acceptable, because the project’s target was to resemble the flows on the simulated
road network, not the mobility of single participants. What was realized as a tool for
the Pope’s visit was transformed into DFROUTER in subsequent projects.

3.2 Algorithm

DFROUTER performs several steps to obtain routes and the vehicle insertion
definitions, being mainly:
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1. Reading the road network to route on, the detector positions, and their
measurements,

2. Detector Classification,
3. Routes computation,
4. Flows generation,
5. Writing the results.

The major algorithms and overall features of the DFROUTER are explained
more detailed in the following subsections.

3.2.1 Detector Classification

The needed functionality included a classification of the detectors into the following
types:

• “pure sources”: starting points of routes—vehicles that enter the highway get a
new route assigned;

• “in between”: the simulated vehicle numbers are adapted to the measurements at
these positions; only vehicles that are added obtain a new route;

• “pure sinks”: ending point of routes—vehicles get a new route assigned that is
based on given data from the available demand descriptions.

A detector is classified as a “pure source” if the following constraints are valid:

• there is no other detector on the same street in front of it,
• there is no detector on any foregoing street.

Analogous, a detector is classified as a “pure sink” if

• there is no other detector on the same street behind,
• there is no detector on any following street.

3.2.2 Routes Computation

The main steps of the algorithm that computes the route usage probabilities are as
following. Please note that usually measurements are given per-lane and need to be
summarized for each cross section.

• Step 1: Determine downstream detectors (taking into account downstream road
junctions) for all source and in-between detectors.

• Step 2: Calculate the proportion of flow for each junction using detector data;
junction directions not equipped with detectors get a probability of 1.0 as default
(what is a fallback to work with real-life networks).

• Step 3: Calculate destination distributions for all source detectors by multiplying
all flow probabilities on all edges constructing that route.

8 T.V. Nguyen et al.



Simply spoken, the algorithm computes routes by taking the destination
proportion as route probability at every junction. If all sink detectors are supplied,
the flows should be replicated correctly. But a single solution to the O-D guessing
problem can be only obtained if there is only one origin and the network is fully
covered by detectors. This is rather not the case for real-world networks.

This simple algorithm fails in the case of missing detectors, especially detector
data on split edges (in-between or sink detectors) as it is not able to guess the
missing data and thereby cannot compute the probability to choose one of the
subsequent roads. As a default, the probability to use the non-observed road is set to
100 %, overestimating it. This default is rather arbitrary chosen—any other used
value would be incorrect as well.

3.2.3 Output Generation

Vehicles are inserted at source detector positions. For every detector recognized as
being a “pure source”, DFROUTER generates the routes distributions and a list of
vehicles that shall be inserted into the simulation network at this position. A route
distribution is defined as a route and a probability to choose it, where a route is
defined as a list of edges to pass.

As during computation, a routes distribution was obtained for every cross sec-
tion, DFROUTER can write inputs to in-simulation flow “calibrators” for each in-
between detector. These calibrators may be loaded into a simulation scenario.
There, they adapt the number of passing vehicles to the read values by adding/
removing vehicles into/from the simulation.

A further output consists of “variable speed sign” definitions for sink detectors,
as well readable by the simulation. These simulation instances read a time line of
speeds and apply them to a defined lane. This feature is mainly used in jam
formation analysis to model boundary conditions properly. The speed is read from
the detector measurements while reading the flow amounts. Besides “variable speed
signs”, so-called “rerouters” may be additionally written for sink detectors.
Equipped with—externally generated—route distributions, these in-simulation
instances assign a new route to passing vehicles. Within the Pope’s visit, they were
used to assign new routes to vehicles that leave the highway.

4 Evaluations

In the following, different evaluations of DFROUTER are presented. At first,
synthetic scenarios are given to DFROUTER to determine how well it can repro-
duce an originally completely known flow. In a second step, a single scenario is
used to compare DFROUTER to some selected O-D estimation algorithms.
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4.1 Replication of Synthetic Scenarios

In order to analyze the algorithm, several abstract highway networks and demands,
ranging from simple to complex, were applied. The four factors to be considered are
the network type, the number of detectors, vehicle flows, and routes. These ele-
ments were altered to test the generated results. It was expected that the algorithm
works well in simple cases but may fail when being confronted to more complex
ones.

Beginning with two on- and off-ramps, the initial network was incrementally
extended to more complicated scenarios with extra ramps, lanes, entrances, and
exits (origins and destinations). Basically, there is one main highway line connected
to several on- and off-ramps equipped with detectors.

The evaluation is performed by generating virtual detector data using the sim-
ulation SUMO. The resulting measurements from simulated inductive loops are
then given to DFROUTER for generating routes and demand definitions. Routes
and vehicle flows are the main indicators for this evaluation. In general, the flows/
routes/detectors generated by DFROUTER should be identical to the initial input
for SUMO simulation. The general work flow of this analysis is shown in Fig. 3.

The used synthetic scenarios are shown in the following figures (Figs. 4, 5 and 6).
A comparison of the output generated by DFROUTER against the initial input

for the three cases shows that:

• The algorithm works well if the network is fully covered with detectors and
generates routes comprising all O-D pairs. The algorithm could not detect that
some routes were absent; e.g. in one scenario of CASE 2 there were only 4
routes but DFROUTER created 6 routes, which consist of all possible
connections.

Flows Simulation
(SUMO)

Detector
Output DFROUTER

Road
network

Flows

Routes

Detectors

Routes

Detectors

Comparison

Fig. 3 The work flow of the evaluation process
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• Missing in-between detectors (in three cases) do not cause a big estimation
problem as long as the source and sink detectors are present. This shows that the
in-between detectors do not play an important role in the probability estimation
procedure.

• Basically the estimated probabilities are identical to flow proportions at desti-
nations, therefore sink detectors are the decisive elements in flow computation.

• This simple algorithm does not work successfully in the case of missing
detectors, especially detector data on split edges (in-between or sink detector) as
it is not able to guess the missing data.

Fig. 4 CASE 1—2 origins, 2 destinations

Fig. 5 CASE 2—2 origins, 3 destinations

Fig. 6 CASE 3—3 origins, 3 destinations

DFROUTER—Estimation of Vehicle Routes … 11



4.2 Comparison with Other Approaches

In the following, some O-D matrix estimation approaches are described and
compared with DFROUTER’s algorithm. Some of these approached do not nec-
essarily place restrictions to the network type. For a fair comparison, the same
scenario is given to the compared algorithms. The main used performance indicator
is the route probability.

DFROUTER generates route/demand data based merely on proportions of flows
on split edges. The destination distribution is an average result of different calcu-
lations performed on time slices with a duration of 60 s, as default. Congestion
effects and the travel time between the origin and the destination are not considered.
This method is most likely to work for the static O-D estimation method mentioned
above (a workaround would be to run DFROUTER multiple times with data split
into intervals for which routes are desired, e.g. 15 or 60 min). However the algo-
rithm considers only constraints between link flows (sum of all link proportions
equal to 1.0 in case of full detector coverage) but no optimization function (e.g.
minimization differences between estimated and observed link flows).

The used scenario, summarized in Fig. 7, comprises detector data as shown in
Table 2 and the highway network as used for the initially described CASE 2
(Fig. 5).

The DFROUTER algorithm calculates flow probabilities for each of the split
edges by examining the outflows of each junction considering off-ramp counts and

Fig. 7 Comparison test case configuration

Table 2 Network settings
and detector data used for
comparison

Item Value

Section length 100, 50, 50, 50

On-ramp counts 280, 180

Off-ramp counts 70, 120, 270

Table 3 The DFROUTER O-D matrix

O\D D1 D2 D3

O1 = 1.0 * 0.15 = 1.0 * 0.85 * 0.31 = 1.0 * 0.85 * 0.69

= 0.15 = 0.26 = 0.59

O2 = 1.0 * 0.15 = 1.0 * 0.85 * 0.31 = 1.0 * 0.85 * 0.69

= 0.15 = 0.26 = 0.59
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mainline counts, e.g. 70/460, 390/460, 120/390, 270/390 (equal to 0.15, 0.85, 0.31
and 0.69 respectively).

The destination distribution can be obtained by multiplying the available
probabilities on each route departing from a source detector as shown in Table 3.

This O-D matrix estimation method can be compared to similar approaches,
which generate traffic demand without taking into account an optimization function,
such as the equally split O-D matrix, the proportional O-D matrix, iterative
methods, the gravity model, and turning percentages.

4.2.1 The Equally Split O-D Matrix

This is the simplest method for seed generation. As the name suggests, an equal
proportion is assigned to all destinations. In the test case (Fig. 7) with three des-
tinations, the method concludes that D1, D2 and D3 are equally likely for trips from
origin O1 and O2, so the proportion will be 1/3 (33.3 %) (Table 4).

4.2.2 Proportional O-D Matrix

This is one of the most common and oldest methods to estimate an O-D matrix [15].
It is based on the concept that the attraction of any destination is the function of the
number of trips that end at that destination. In other words, higher attraction yields
in a higher flow proportion. The origin flow will hence be distributed according to
destination flows.

Considering the test case (Fig. 7) where destination flows collected at D1, D2, D3

are 70, 120, 270 vehicles respectively, the proportional O-D matrix can be com-
puted manually as follows, which is identical to DFROUTER’s calculation
(Table 5).

Table 4 The equally split
O-D matrix D1 D2 D3

O1 1/3 1/3 1/3

O2 1/3 1/3 1/3

Table 5 The proportional O-D matrix

D1 D2 D3

O1 = 70/(270 + 120 + 70) = 120/(270 + 120 + 70) = 270/(270 + 120 + 70)

= 0.15 = 0.26 = 0.59

O2 = 70/(270 + 120 + 70) = 120/(270 + 120 + 70) = 270/(270 + 120 + 70)

= 0.15 = 0.26 = 0.59
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4.2.3 Iterative Method

This is considered as a hybrid proportional assignment technique that balances both
inflows and outflows [15], adopted from Wills and May (1981) based on an iter-
ative fitting algorithm. The algorithm computes each O-D cell iteratively until a
convergence is reached. The algorithm steps are given below.

Step 0

set k ¼ 0

set T ð0Þ
ij ¼ 1 for all possible interchanges

0 for all impossible interchanges

�

Step 1

set T 2kþ1ð Þ
ij ¼ O0

iP
j T

2kð Þ
ij

T 2kð Þ
ij for all i; j ð3Þ

where O′i is the observed volume at point i adjusted for all known demands from i.
Step 2

set Tð2kþ2Þ
ij ¼ D0

jP
j T

ð2kÞ
ij

Tð2kÞ
ij for all i; j ð4Þ

where D′j is the observed exit volume at point j adjusted for all known trips that
end at j.
Step 3

if Tð2kþ2Þ
ij � Tð2kÞ

ij \d for all i; j then STOP

else set k ¼ kþ 1 and go to Step 1

Using this algorithm to compute the O-D matrix for the test case (Fig. 7) yields
in the results shown in Table 6. The algorithm produced a converged output after
two iterations.

The final iterative O-D matrix estimation, however, contains the same values as
that of the proportional O-D matrix estimation. This may be because the method
computes O-D elements iteratively but does not consider any constraint such as

Table 6 The iterative O-D
matrix estimate D1 D2 D3

O1 0.15 0.26 0.59

O2 0.15 0.26 0.59
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distance or travel time as inputs to a deterrence function. The following gravity
model will take these parameters into account.

4.2.4 The Gravity Model

The gravity model is one of the oldest trip distribution methods and is widely used
in macroscopic modelling. An extension proposed by Nancy Nihan [16] uses the
impedance function to estimate the trip proportion between ramps. It is related to
the concept that the probability of very long and very short trips is low on the
freeway. The model is based on the Gamma distribution as follows:

Fij ¼ ba

CðaÞ d
ða�1Þ
ij e�bdij ð5Þ

where
Fij is the travel propensity factor between ramp i and j;
α shape factor ≅ 3.0 for the highway;
β size parameter = α/(average trip length);
dij distance between pair (i, j);
average trip length (1/T) * Σ(Link length) * (Link volume);
T sum of all trips generated.

The cell entries in the O-D matrix are defined as:

Tij ¼ bjFijP
j bjFij

Oi ð6Þ

where
Tij trip interchange between pair (i, j);
bj balance factor from iterations;
Oi production at i;
Dj attraction at j.

In addition, the following constraint has to be fulfilled:

X
i

Tij ¼ Dj ð7Þ

In the implementation of the algorithm, the balancing factor was ignored for the
first iteration. The average trip length from the geometry is:

ð100 � 280þ 50 � 460þ 50 � 390þ 50 � 270Þ=ð280þ 180Þ ¼ 183:
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Therefore parameter β = 3/183 = 0.016. Using these parameters and the distance
matrix, the O-D matrix results are calculated accordingly (Table 7).

4.2.5 The Turning Percentage

This is the most intuitive method of estimating an O-D matrix for a freeway section.
Similar to the equally split and proportional O-D estimate methods, it assumes that
turning percentages at any given off-ramp are independent of the trip origin [15].
Therefore the O-D matrix is derived by tracking the turning percentages in each
section. Using the test case (Fig. 7), there are four sections, each between on-ramp
and off-ramp, with turning percentages as follows: 0, 15.2, 30.8 and 100 (0, 70/460,
120/390, 270/270, respectively). The resulting O-D matrix is shown in Table 8.

4.2.6 Discussion

The equally split O-D matrix method did not generate a plausible result. Due to the
missing value for the balance factor bj, the gravity model has not been examined
thoroughly and therefore produced rather incomplete output in the first calculation
iteration. Similar O-D matrices were achieved from various approaches: DFR-
OUTER, the proportional O-D matrix, the used iterative method, and the turning
percentage. The comparison results also indicate that DFROUTER is working most
similarly to the turning percentage approach as it takes each flow proportion at each
split edge into consideration. In contrary to the iterative method, it does not take
distance, time, or any deterrence parameter into account, but performs its compu-
tations based on the number of origin and destination counts only. The results
therefore are proportional to these counts.

Furthermore, DFROUTER and the proportional O-D matrix also have similar
working mechanisms. Considering a tree graph as follows including one origin and
seven destinations where a, b, c, d, e, f are the respective detector data on edges
(Fig. 8).

Table 7 The Gravity model
O-D matrix D1 D2 D3

O1 0.4312 0.3371 0.2317

O2 0.2222 0.3909 0.3869

Table 8 Turning percentage
O-D matrix D1 D2 D3

O1 0.15 = 0.31*(1 − 0.15) = 1 − 0.15 − 0.26

= 0.26 = 0.59

O2 0.15 = 0.31*(1 − 0.15) = 1 − 0.15 − 0.26

= 0.26 = 0.59
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Then the flow probability at each destination, e.g. D4, is computed as:

DFROUTER: pro ¼ b
a
� c
b
� d

c
� e
d
� f
e
¼ f

a

Proportional O-D matrix: pro ¼ fPn
j¼1 Dj

¼ fPn
j¼1 Oi

¼ f
a

From above, it could be said that for the case of one origin, DFROUTER and the
proportional O-D matrix use a basically same approach. The proportional O-D
matrix works more simple than DFROUTER as it does not take into account
in-between detectors or split edges; only the data at sink detectors are used for
calculation. A different approach named SYNOD has been developed to synthesize
the required O-D matrix based on proportional O-D matrix approach. This simple
proportionality scheme is on the other hand considered as a crude approximation
that has the problem of over-predicting the number of very short and very long trips
with 20–30 % level of error as described in [16].

Due to the drawbacks of these methods, they are often used to generate a starting
solution (seed or target, a priori matrix) for the O-D estimation problem to solve the
minimization function of difference between estimated and observed link flows or
O-D matrix [15].

5 Extension for Completing Missing Measurements

From the analysis of DFROUTER and other, already known issues, several
improvements to the algorithm could be considered:

• Guessing missing data based on existing detector flows. This could be done by
considering the relationship between all inflows and outflows at a certain
junction.

• Regarding the travel times when computing route usage probabilities; currently
the probabilities are only computed regarding the same time slice of detector
measurements.

• Computing route probabilities individually for passenger and heavy duty
vehicles; albeit both types are usually explicitly counted and given in according

Fig. 8 A tree graph
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measurements, DFROUTER computes only route probabilities for the overall
vehicle amount.

• Improving DFROUTER’s operation for the case of highway rings or a fully
covered urban intersection.

The most promising improvement is to guess the missing data on one of two
(or several) split edges. By doing this, DFROUTER could perform well even in
case of not all “pure sinks” being covered with detectors. The overestimation
problem of the current DFROUTER that assigns probability = 1.0 as default for
missing detector data could be eliminated. The following subsections describe this
extension. At first, the algorithm to compute the missing data is given, followed by
an evaluation of its function in an abstract road network. This section closes with a
report on the application of the improved DFROUTER for a complex, real-world
network.

5.1 Calculating Missing Data

The initial algorithm takes only those split edges that have a detector on them into
account and omits those without a detector. This problem could be solved by the
algorithm proposed in the following:

• Step 1: Calculate the flow value on each edge of the highway network using
backward or forward recursion.

• Step 2: Determine split edges after a junction for all routes starting from source
or between detectors to sink detectors.

• Step 3: Calculating flow proportion of split edges based on computed flow so
that each split edge contains a different probability.

• Step 4: Calculate destination distribution by multiplying all flow probabilities on
all edges constructing that route for routes starting from source detectors only.

Of all steps above, the first is the most challenging one as there are many
dependencies to consider. Consider an edge e for which detector values are missing.
Forward recursion will be performed when there is no detector before e and
backward recursion works in the opposite way.

If the algorithm could not figure out the value after a certain number of recur-
sions, its probability will be re-set to 1.0.

5.2 Application in an Abstract Network

A hypothetical highway network was developed to test the improved DFROUTER.
It was designed to contain all cases listed in Table 9. There are only seven detectors
at the location of L1, L9, R1, R2, R5, R66, R7, the remaining on- and off-ramps are
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missing, including some in-between and sink detectors. The input probabilities will
be compared with DFROUTER’s output (Fig. 9).

In order to calculate flow at a certain edge, the recursion function will be used,
whatever it is forward or backward. For instance, R3 will be computed as follows
(Fig. 10):

Table 9 Cases to consider in the recursion algorithm

Recursion forward Recursion backward

1 

e = beforeE

2 

e = afterE - x e = beforeE - x 

3 

e = afterE e = beforeE 

afterEe ebeforeE

x

e afterE beforeE e

afterEe beforeE e

x

e = afterE

Fig. 9 Abstract network with missing detectors

Fig. 10 Example of calculating R3
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Calculated results and their comparisons are shown below regarding both
probabilities at destinations and the original input as well. The differences are
evident and significant as the original DFROUTER does not consider missing data
at destinations. The probabilities generated by the improved DFROUTER are
approximate to the destination probabilities and are more accurate compared to the
original DFROUTER (Table 10).

5.3 Application in a Larger Network

To evaluate the algorithm on a more complex, real scenario, a larger network
containing three main interchanges in Nuremberg was converted from Open-
StreetMap data. Each interchange is equipped with different numbers of detectors
(see Fig. 11).

• Interchange 1: fully covered with detectors and there are five routes as an input
to SUMO

• Interchange 2: only detectors in main corridor; only one route toward inter-
change 1

• Interchange 3: only detectors in main corridor; only one route toward inter-
change 1

The flow probabilities produced by the improved DFROUTER are different from
those computed by the original DFROUTER as shown in the Table 11. As
expected, the results from the improved DFROUTER are more accurate.

Table 10 Comparison of the destination probabilities of the original and the improved algorithm

Trip Des-
counts

Des-
pro

Probability Relative error

DFROUTER Improved
DFROUTER

DFROUTER Improved
DFROUTER

From L1/R1/
R2 to R3

900 0.24 1 0.23 3.22 −0.03

From L1/R1/
R2 to R66

500 0.13 0.14 0.13 0.06 −0.01

From L1/R1/
R2 to R7

1,100 0.29 0.69 0.28 1.38 −0.03

From L1/R1/
R2 to R8

700 0.18 0.69 0.20 2.75 0.09

From L1/R1/
R2 to R7_1

300 0.08 0.69 0.09 7.74 0.14

From L1/R1/
R2 to R8_1

300 0.08 0.69 0.06 7.74 −0.24
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int. 3

int. 2

int. 1

1

2

3

4

5

6

7

Fig. 11 Nuremberg highway network

Table 11 Comparison of DFROUTER and improved DFROUTER results with input probabilities

No Trip Input
probability

Probability Relative error

DFROUTER Improved
DFROUTER

DFROUTER Improved
DFROUTER

1 From 1 to 1
left

0.16 0.16 0.16 0.00 0.00

2 From 1 to 2
straight 1

0.13 0.06 0.18 −0.54 0.38

3 From 1 to 2
right

0.09 0.22 0.04 1.44 −0.56

4 From 1 to 3 0.63 0.24 0.62 −0.62 −0.02

5 From 1 to 2
straight 2

1 0.28 0.82 −0.72 −0.18

6 From 2 to 1 1 1 1 0.00 0.00

7 From 3 to 1 1 0.4 0.86 −0.60 −0.14
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6 Conclusion

The study has been conducted to analyze SUMO’s DFROUTER tool. It sought to
answer the following questions:

1. How can DFROUTER be formally described?
2. What are the differences to other approaches?
3. How could the algorithm be improved in order to estimate routes/demand more

accurately?

DFROUTER’s results for several typical highway corridors were examined,
first. Additionally, the algorithm has been compared with some O-D matrix esti-
mation approaches based on the same abstract highway corridor. The literature
review has indicated two main groups of O-D estimation: static and dynamic, which
have been developed over the last 30 years. DFROUTER’s approach of dividing
incoming flow proportionally to off-ramp counts makes it simple and fast in cal-
culating respective flows. In parallel, it computes results that are similar to those
obtained from other algorithms.

An algorithm improvement has been proposed and applied successfully to a
large highway network. It produced reliable results using recursion to guess missing
data, assuring that each edge after a junction will contain a certain traffic count and
relative probability. The method of multiplying individual probabilities is left
unchanged. The sometimes present problem of missing detectors at destinations is
thereby partially solved. The extension will be included in SUMO’s standard
release. The improved algorithm, however, is applicable to highway corridors (one
way street) only. Future research and extension possibilities have been outlined and
may be performed in the future.
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