
Lecture Notes in Mobility

Michael Behrisch
Melanie Weber Editors

Modeling
Mobility with
Open Data
2nd SUMO Conference 2014 Berlin,
Germany, May 15–16, 2014

Lecture Notes in Mobility

Series editor

Gereon Meyer, Berlin, Germany

More information about this series at http://www.springer.com/series/11573

http://www.springer.com/series/11573

Michael Behrisch • Melanie Weber
Editors

Modeling Mobility
with Open Data
2nd SUMO Conference 2014
Berlin, Germany, May 15–16, 2014

123

Editors
Michael Behrisch
Institute of Transportation Systems
German Aerospace Center (DLR)
Berlin
Germany

Melanie Weber
Institute of Transportation Systems
German Aerospace Center (DLR)
Berlin
Germany

ISSN 2196-5544 ISSN 2196-5552 (electronic)
Lecture Notes in Mobility
ISBN 978-3-319-15023-9 ISBN 978-3-319-15024-6 (eBook)
DOI 10.1007/978-3-319-15024-6

Library of Congress Control Number: 2014960040

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The advance of new data sources for traffic networks, especially freely available
mapping sources such as Open Street Map, provides major opportunities to the
scientific and the applied traffic modelling community. Together with readily
available tools, such as the open source package Simulation of Urban Mobility
(SUMO), building a working prototype of a simulation scenario in virtually no time
becomes feasible. Adding demand data, which is usually not openly available yet,
enables the detailed estimation of the effects of engineering measurements as
well as emerging new technologies through the means of individual (microscopic)
traffic simulation. This simulation of every single actor allows the integration of
behavioral data which can interface with the existing models to gather new insights
into the social dynamics of traffic as well.

This volume contains the proceedings of the second SUMO User Conference
(SUMO2014), which was held from 15 to 16 May 2014 in Berlin-Adlershof,
Germany. SUMO is a well-established microscopic traffic simulation suite which
has been available since 2001 and provides a wide range of traffic planning and
simulation tools. The conference proceedings give a good overview of the
applicability and usefulness of simulation tools like SUMO ranging from the
incorporation of mapping data and traffic signals to the simulation of complete
cities. Another aspect of the tool suite, its universal extensibility due to the avail-
ability of the source code, is reflected in contributions covering parallelization and
workflow improvements to govern microscopic traffic simulation results.

Several articles give outlines of detailed aspects of network preparation and
demand modeling when setting up a simulation with SUMO as well as an overview
of the application of the tool in large-scale scenarios or for emission modeling and
for the evaluation of the results. Further contributions include the simulation of
emergency vehicles as well as the extension for the implementation of new
behavioral models or remote control of the simulation using various programming

v

environments. The conference series’ aim is bringing together the large
international user community and exchanging experience in using SUMO, while
presenting results or solutions obtained using the software. This collection should
inspire you to try your next project with the SUMO suite as well or to find new
applications in your existing environment.

Berlin, November 2014 Michael Behrisch
Melanie Weber

vi Preface

SUMO2014 Organization

SUMO2014 was organized by the Institute of Transportations Systems,
German Aerospace Center, Berlin.

International Scientific Committee

Michael Behrisch (German Aerospace Center, Germany)
Laura Bieker (German Aerospace Center, Germany)
Robbin Blokpoel (Imtech Traffic & Infra, Netherlands)
David Eckhoff (University of Erlangen, Germany)
Jakob Erdmann (German Aerospace Center, Germany)
Jérôme Härri (Institute EURECOM, France)
Daniel Krajzewicz (German Aerospace Center, Germany)
Mario Krumnow (University of Technology Dresden, Germany)
Andreas Schadschneider (University of Cologne, Germany)
Christoph Sommer (University of Innsbruck, Austria)
Peter Wagner (German Aerospace Center, Germany)

Organization Committee

Michael Behrisch (German Aerospace Center, Germany)
Melanie Weber (German Aerospace Center, Germany)

vii

Contents

Part I Data Acquisition and Integration

DFROUTER—Estimation of Vehicle Routes from Cross-Section
Measurements . 3
TeRon V. Nguyen, Daniel Krajzewicz, Matthew Fullerton
and Eric Nicolay

Advanced Traffic Light Information in OpenStreetMap
for Traffic Simulations . 25
David Rieck, Björn Schünemann and Ilja Radusch

Online Micro Modelling Using Proprietary Controllers
and SUMO . 35
Robbin Blokpoel and Jaap Vreeswijk

Traffic Simulation for All: A Real World Traffic Scenario
from the City of Bologna . 47
Laura Bieker, Daniel Krajzewicz, AntonioPio Morra,
Carlo Michelacci and Fabio Cartolano

Can Road Traffic Volume Information Improve Partitioning
for Distributed SUMO? . 61
Ulrich Dangel, Quentin Bragard, Patrick McDonagh,
Anthony Ventresque and Liam Murphy

Part II Modelling and Processing

A Situational Awareness Approach to Intelligent Vehicle Agents 77
Vincent Baines and Julian Padget

ix

http://dx.doi.org/10.1007/978-3-319-15024-6_1
http://dx.doi.org/10.1007/978-3-319-15024-6_1
http://dx.doi.org/10.1007/978-3-319-15024-6_2
http://dx.doi.org/10.1007/978-3-319-15024-6_2
http://dx.doi.org/10.1007/978-3-319-15024-6_3
http://dx.doi.org/10.1007/978-3-319-15024-6_3
http://dx.doi.org/10.1007/978-3-319-15024-6_4
http://dx.doi.org/10.1007/978-3-319-15024-6_4
http://dx.doi.org/10.1007/978-3-319-15024-6_5
http://dx.doi.org/10.1007/978-3-319-15024-6_5
http://dx.doi.org/10.1007/978-3-319-15024-6_6

SUMO’s Lane-Changing Model . 105
Jakob Erdmann

Development and Assessment of Cooperative V2X Applications
for Emergency Vehicles in an Urban Environment Enabled
by Behavioral Models . 125
Florian Weinert and Michael Düring

TraCI4Matlab: Enabling the Integration of the SUMO Road
Traffic Simulator and Matlab® Through a Software
Re-engineering Process . 155
Andrés F. Acosta, Jorge E. Espinosa and Jairo Espinosa

An Integrated Framework for Mobile-Based ADAS Simulation 171
João S.V. Gonçalves, João Jacob, Rosaldo J.F. Rossetti,
António Coelho and Rui Rodrigues

Part III Data Generation and Validation

TOMS—Traffic Online Monitoring System for ITS Austria West 189
Karl-Heinz Kastner and Petru Pau

Second Generation of Pollutant Emission Models for SUMO 203
Daniel Krajzewicz, Michael Behrisch, Peter Wagner, Raphael Luz
and Mario Krumnow

Modelling Bluetooth Inquiry for SUMO . 223
Michael Behrisch and Gaby Gurczik

x Contents

http://dx.doi.org/10.1007/978-3-319-15024-6_7
http://dx.doi.org/10.1007/978-3-319-15024-6_8
http://dx.doi.org/10.1007/978-3-319-15024-6_8
http://dx.doi.org/10.1007/978-3-319-15024-6_8
http://dx.doi.org/10.1007/978-3-319-15024-6_9
http://dx.doi.org/10.1007/978-3-319-15024-6_9
http://dx.doi.org/10.1007/978-3-319-15024-6_9
http://dx.doi.org/10.1007/978-3-319-15024-6_9
http://dx.doi.org/10.1007/978-3-319-15024-6_10
http://dx.doi.org/10.1007/978-3-319-15024-6_11
http://dx.doi.org/10.1007/978-3-319-15024-6_12
http://dx.doi.org/10.1007/978-3-319-15024-6_13

Part I
Data Acquisition and Integration

DFROUTER—Estimation of Vehicle
Routes from Cross-Section Measurements

TeRon V. Nguyen, Daniel Krajzewicz, Matthew Fullerton
and Eric Nicolay

Abstract This contribution evaluates and improves the open-source “DFROUTER”
tool that is contained in the SUMO traffic simulation suite. DFROUTER uses vehicle
counts (e.g. from inductive loops) to calculate routes of vehicles through road net-
works. This approach is designed for highway corridors that are covered with mea-
surement facilities at all entry and exit points. The study analyzes DFROUTER’s
current functionality and compares it with other approaches that have a similar
purpose. Tests performed using different networks and sensor coverage amounts are
presented. Additionally, an extension to the software is presented that completes
missing flows, increasing the correctness of the tool’s results.

1 Introduction

Transport planners and traffic engineers worldwide challenge with the increase in
traffic amount. A wide range of measures is implemented to tackle this problem,
ranging from large-scale traffic management strategies to in-vehicle Intelligent
Transport Systems (ITS). Accordingly, the deployed methods range from traffic
access regulations, such as calming areas or speed limits over route guidance, to in-
vehicle solutions that advice a speed to use to pass the next traffic light at green or
that help in changing lanes. All these solutions target the improvement of traffic in
means of safety or efficiency and a more optimal use of natural resources.

One first step to take within the development of such solutions is to model the
situation on roads. Besides the representation of the road networks, a proper

T.V. Nguyen � M. Fullerton
Institute of Transportation, Technische Universität München, Arcisstraße 21,
80333 Munich, Germany

D. Krajzewicz (&) � E. Nicolay
German Aerospace Center, Institute of Transportation Systems, Rutherfordstraße 2,
12489 Berlin, Germany
e-mail: daniel.krajzewicz@dlr.de

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_1

3

representation of the traffic demand is one of the major inputs for transportation
system operation, design, analysis, and planning [1]. Origin-destination (O-D)
matrices are one of such representations. They contain information about the spatial
and temporal distribution of activities in different traffic zones in an area. Various
methods for generating origin-destination matrices have been proposed, like
household surveys, roadside interviews, license plate recognition and returnable-
post card interviews [2]. However they are all expensive and obtaining the data is
cumbersome [3].

Meanwhile, many data about vehicles flows (numbers of vehicles) is being
collected for other traffic management purposes. Often, inductive loop detectors are
used that are installed under the road surface. Inductive loops usually collect
information such as vehicle type and speed, traffic volume, and detector occupancy.
Being continuously retrieved for other purposes, such data is usually available at a
lower price than the employment of previously mentioned methods. But while
induction loops are a good source of information about the number of vehicles on a
street, they fail to provide information about the vehicles’ further routes. Hence,
methods for estimating traffic flows between origin/destination pairs have been
developed. Usually, they efficiently combine traffic count based data with other
available information [4].

Within this report, the application “DFROUTER” is analyzed. DFROUTER uses
detector values to calculate routes for simulated vehicles through a given motorway/
corridor simulation network. It is included in the microscopic road traffic simulation
package SUMO [5]. Besides routes, this tool also generates the according demand
for the traffic simulation, consisting of single (microscopic) vehicle insertion defi-
nitions the traffic simulation can read. This paper provides a detailed description of
the tool and compares it with other similar approaches that do not necessarily place
restrictions on the network type. Special attention is given to the accuracy of the
tool where reproduction of the flows’ probabilities is the decisive indicator for this
evaluation.

This report starts with an introduction into the problem of O-D matrix estima-
tion. Then, DFROUTER and the algorithms it uses are discussed. Afterwards,
evaluations of the DFROUTER and comparisons to other approaches are given.
Then, an extension to the DFROUTER is presented that allows using it on highway
networks that are not completely covered with detectors. This report ends with a
conclusion.

2 Theoretical Background

O-D matrices describe traffic demand by dividing a given area into so-called “traffic
assignment zones” (TAZs). For every TAZ at which traffic participants start (the
demand origins), the number of participants that approach a destination TAZ is
given. O-D matrix estimation methods based on traffic counts have been developed
over the last 30 years. There are two major types of O-D matrix estimation: the

4 T.V. Nguyen et al.

static method assumes O-D flows are constant over time for determining an average
O-D demand for long-time transport planning and design purposes; whereas the
dynamic method considers O-D flows with time variation for short-term strategic
traffic control and management [6]. One could state that dynamic methods are an
extension of static methods considering the time varying dimension. Furthermore,
due to congestion effects, the O-D matrix estimation can use proportional assign-
ment (uncongested) or equilibrium assignment (congested), resulting in four basic
cases of O-D estimation [1].

Contrary to urban road networks where more than one route between one origin-
destination pair exists, an O-D pair in a highway corridor consisting of an on- and
an off-ramp has only one possible route. This less complicated characteristic
facilitates the estimation of vehicle routes and traffic demand based on detector data.
Specifically for highways, the problem of determining an O-D matrix from traffic
counts can be formulated as follows:

X
i

bijOi ¼ Dj ð1Þ

X
j

bij ¼ 1 ð2Þ

where
bij proportion of trip from i to j;
Oi on-ramp counts (origin flows);
Dj off-ramp counts (destination flows).

Considering an example highway section that illustrates the O-D matrix esti-
mation problem, the one shown in Fig. 1 could be used.

As shown in Table 1, several results could satisfy the requirements due to the
under-specification problem: there are fewer equations than variables. The problem
does not have a unique solution.

Many O-D matrix estimation techniques exist, where Information Minimization
(IM) and Entropy Maximization (EM) [2], Maximum Likelihood (ML) [4], Gen-
eralized Least Squared (GLS) [3], or Bayesian Inference approach [7] could be
named as the most popular static ones. Regarding dynamic methods, one can find

O1

O2

D2

D1

12

4

10

6

Fig. 1 Sample highway segment

DFROUTER—Estimation of Vehicle Routes … 5

approaches such as Cross-correlation matrices, Constrained optimization, Recursive
estimation, Kalman filtering [8], Recursive least square [9], Artificial Neural Net-
works [10], and Combined estimators [11].

3 DFROUTER

3.1 Development Context

DFROUTER builds upon experience gained during the set-up of a large-scale traffic
observation and prediction project which results were applied during the Pope’s
visit in Germany in the year 2005 [12]. About 1 Mio persons were expected to
participate in this event that took place on a green field near to the city of Cologne.
The project’s scope was to support the police and the local traffic management with
on-line information about the state on the roads. The deployed system consisted of
an airborne camera-based traffic surveillance system mounted under a zeppelin that
sent information about recognized vehicles to a traffic management center. Together
with measurements from inductive loops, this data was used to calibrate a meso-
scopic traffic simulation. This simulation had the task to extrapolate the traffic
counted at measurement points over the road network as well as to predict the traffic
situation half an hour into the future. The so obtained states of the road network
were visualized at the traffic management center of the city of Cologne (Fig. 2).

To achieve the goal of predicting traffic, an initial demand was needed, that
could be calibrated using on-line measurements after deployment. The available
input data included two commercial O-D matrices. The first one described a usual

Table 1 Some examples for O-D matrices that correctly represent the flows of the example
from Fig. 1

D1 D2 Sum D1 D2 Sum D1 D2 Sum

O1 8 4 12 10 2 12 6 6 12

O2 2 2 4 0 4 4 4 0 4

Sum 10 6 16 10 6 16 10 6 16

Fig. 2 Left the zeppelin that carried the airborne traffic surveillance system; Right the visualization

6 T.V. Nguyen et al.

working day. The second one was a prediction of the road traffic during the Pope’s
visit, but covered only one half of the area that was defined to be simulated. Both
matrices were static, containing the demand of a complete day. Additionally
available was a microscopic demand from the TAPAS project [13], which was
based on a synthetic population. On-line data were supported by the highway
administration of North Rhine-Westphalia and by the traffic management center of
the City of Cologne.

Besides the amounts of passing vehicles, on-line calibration requires information
about the routes which newly inserted vehicles shall use for continuing their
journey. For the reasons outlined in the following, it was decided to use the
inductive loop measurements not only for adapting the simulated traffic flow vol-
umes to the measured vehicle numbers, but also as the ground truth for computing
routes across the highway part of the simulated area.

The first reason to name is the uncertainty whether the available demand
descriptions were applicable. To obtain routes running over the measurement
points, a traffic assignment [14] would have to be performed, first. But this process
is very sensitive to both, the road network representation as well as to the used
demand. As both were not completely revalidated at this decision step, it was
assumed that the resulting routes distribution would be erroneous. In addition, the
given matrices resembled different traffic conditions (usual day vs. visitors’ traffic)
and had different granularities (microscopic from a synthetic population demand
vs. static O-D matrices). Attempts to combine these matrices were dismissed.

Moreover, first system runs have shown that using the given O-D matrices as
source of routes distributions yields in a too high memory consumption: at each
measurement point, a distribution of routes to use has to be given. The simulated
network was very large and routes are defined as a list of all road network edges the
simulated vehicle shall pass within the used simulation SUMO. To decrease both,
their number as well as the sizes of the routes stored for each measurement point,
the demand was split into highway and non-highway-parts. Every vehicle that
entered the highway was given a new route. When leaving the highway, the vehicle
obtained a new route again. This kept the routes relatively small. This was only
possible, because the area around the city of Cologne is well-covered with sensors,
including all highway entries and exits.

This kind of modelling breaks all previously existent O-D relationships of single
vehicles as their routes are constructed from different route distributions. This was
acceptable, because the project’s target was to resemble the flows on the simulated
road network, not the mobility of single participants. What was realized as a tool for
the Pope’s visit was transformed into DFROUTER in subsequent projects.

3.2 Algorithm

DFROUTER performs several steps to obtain routes and the vehicle insertion
definitions, being mainly:

DFROUTER—Estimation of Vehicle Routes … 7

1. Reading the road network to route on, the detector positions, and their
measurements,

2. Detector Classification,
3. Routes computation,
4. Flows generation,
5. Writing the results.

The major algorithms and overall features of the DFROUTER are explained
more detailed in the following subsections.

3.2.1 Detector Classification

The needed functionality included a classification of the detectors into the following
types:

• “pure sources”: starting points of routes—vehicles that enter the highway get a
new route assigned;

• “in between”: the simulated vehicle numbers are adapted to the measurements at
these positions; only vehicles that are added obtain a new route;

• “pure sinks”: ending point of routes—vehicles get a new route assigned that is
based on given data from the available demand descriptions.

A detector is classified as a “pure source” if the following constraints are valid:

• there is no other detector on the same street in front of it,
• there is no detector on any foregoing street.

Analogous, a detector is classified as a “pure sink” if

• there is no other detector on the same street behind,
• there is no detector on any following street.

3.2.2 Routes Computation

The main steps of the algorithm that computes the route usage probabilities are as
following. Please note that usually measurements are given per-lane and need to be
summarized for each cross section.

• Step 1: Determine downstream detectors (taking into account downstream road
junctions) for all source and in-between detectors.

• Step 2: Calculate the proportion of flow for each junction using detector data;
junction directions not equipped with detectors get a probability of 1.0 as default
(what is a fallback to work with real-life networks).

• Step 3: Calculate destination distributions for all source detectors by multiplying
all flow probabilities on all edges constructing that route.

8 T.V. Nguyen et al.

Simply spoken, the algorithm computes routes by taking the destination
proportion as route probability at every junction. If all sink detectors are supplied,
the flows should be replicated correctly. But a single solution to the O-D guessing
problem can be only obtained if there is only one origin and the network is fully
covered by detectors. This is rather not the case for real-world networks.

This simple algorithm fails in the case of missing detectors, especially detector
data on split edges (in-between or sink detectors) as it is not able to guess the
missing data and thereby cannot compute the probability to choose one of the
subsequent roads. As a default, the probability to use the non-observed road is set to
100 %, overestimating it. This default is rather arbitrary chosen—any other used
value would be incorrect as well.

3.2.3 Output Generation

Vehicles are inserted at source detector positions. For every detector recognized as
being a “pure source”, DFROUTER generates the routes distributions and a list of
vehicles that shall be inserted into the simulation network at this position. A route
distribution is defined as a route and a probability to choose it, where a route is
defined as a list of edges to pass.

As during computation, a routes distribution was obtained for every cross sec-
tion, DFROUTER can write inputs to in-simulation flow “calibrators” for each in-
between detector. These calibrators may be loaded into a simulation scenario.
There, they adapt the number of passing vehicles to the read values by adding/
removing vehicles into/from the simulation.

A further output consists of “variable speed sign” definitions for sink detectors,
as well readable by the simulation. These simulation instances read a time line of
speeds and apply them to a defined lane. This feature is mainly used in jam
formation analysis to model boundary conditions properly. The speed is read from
the detector measurements while reading the flow amounts. Besides “variable speed
signs”, so-called “rerouters” may be additionally written for sink detectors.
Equipped with—externally generated—route distributions, these in-simulation
instances assign a new route to passing vehicles. Within the Pope’s visit, they were
used to assign new routes to vehicles that leave the highway.

4 Evaluations

In the following, different evaluations of DFROUTER are presented. At first,
synthetic scenarios are given to DFROUTER to determine how well it can repro-
duce an originally completely known flow. In a second step, a single scenario is
used to compare DFROUTER to some selected O-D estimation algorithms.

DFROUTER—Estimation of Vehicle Routes … 9

4.1 Replication of Synthetic Scenarios

In order to analyze the algorithm, several abstract highway networks and demands,
ranging from simple to complex, were applied. The four factors to be considered are
the network type, the number of detectors, vehicle flows, and routes. These ele-
ments were altered to test the generated results. It was expected that the algorithm
works well in simple cases but may fail when being confronted to more complex
ones.

Beginning with two on- and off-ramps, the initial network was incrementally
extended to more complicated scenarios with extra ramps, lanes, entrances, and
exits (origins and destinations). Basically, there is one main highway line connected
to several on- and off-ramps equipped with detectors.

The evaluation is performed by generating virtual detector data using the sim-
ulation SUMO. The resulting measurements from simulated inductive loops are
then given to DFROUTER for generating routes and demand definitions. Routes
and vehicle flows are the main indicators for this evaluation. In general, the flows/
routes/detectors generated by DFROUTER should be identical to the initial input
for SUMO simulation. The general work flow of this analysis is shown in Fig. 3.

The used synthetic scenarios are shown in the following figures (Figs. 4, 5 and 6).
A comparison of the output generated by DFROUTER against the initial input

for the three cases shows that:

• The algorithm works well if the network is fully covered with detectors and
generates routes comprising all O-D pairs. The algorithm could not detect that
some routes were absent; e.g. in one scenario of CASE 2 there were only 4
routes but DFROUTER created 6 routes, which consist of all possible
connections.

Flows Simulation
(SUMO)

Detector
Output DFROUTER

Road
network

Flows

Routes

Detectors

Routes

Detectors

Comparison

Fig. 3 The work flow of the evaluation process

10 T.V. Nguyen et al.

• Missing in-between detectors (in three cases) do not cause a big estimation
problem as long as the source and sink detectors are present. This shows that the
in-between detectors do not play an important role in the probability estimation
procedure.

• Basically the estimated probabilities are identical to flow proportions at desti-
nations, therefore sink detectors are the decisive elements in flow computation.

• This simple algorithm does not work successfully in the case of missing
detectors, especially detector data on split edges (in-between or sink detector) as
it is not able to guess the missing data.

Fig. 4 CASE 1—2 origins, 2 destinations

Fig. 5 CASE 2—2 origins, 3 destinations

Fig. 6 CASE 3—3 origins, 3 destinations

DFROUTER—Estimation of Vehicle Routes … 11

4.2 Comparison with Other Approaches

In the following, some O-D matrix estimation approaches are described and
compared with DFROUTER’s algorithm. Some of these approached do not nec-
essarily place restrictions to the network type. For a fair comparison, the same
scenario is given to the compared algorithms. The main used performance indicator
is the route probability.

DFROUTER generates route/demand data based merely on proportions of flows
on split edges. The destination distribution is an average result of different calcu-
lations performed on time slices with a duration of 60 s, as default. Congestion
effects and the travel time between the origin and the destination are not considered.
This method is most likely to work for the static O-D estimation method mentioned
above (a workaround would be to run DFROUTER multiple times with data split
into intervals for which routes are desired, e.g. 15 or 60 min). However the algo-
rithm considers only constraints between link flows (sum of all link proportions
equal to 1.0 in case of full detector coverage) but no optimization function (e.g.
minimization differences between estimated and observed link flows).

The used scenario, summarized in Fig. 7, comprises detector data as shown in
Table 2 and the highway network as used for the initially described CASE 2
(Fig. 5).

The DFROUTER algorithm calculates flow probabilities for each of the split
edges by examining the outflows of each junction considering off-ramp counts and

Fig. 7 Comparison test case configuration

Table 2 Network settings
and detector data used for
comparison

Item Value

Section length 100, 50, 50, 50

On-ramp counts 280, 180

Off-ramp counts 70, 120, 270

Table 3 The DFROUTER O-D matrix

O\D D1 D2 D3

O1 = 1.0 * 0.15 = 1.0 * 0.85 * 0.31 = 1.0 * 0.85 * 0.69

= 0.15 = 0.26 = 0.59

O2 = 1.0 * 0.15 = 1.0 * 0.85 * 0.31 = 1.0 * 0.85 * 0.69

= 0.15 = 0.26 = 0.59

12 T.V. Nguyen et al.

mainline counts, e.g. 70/460, 390/460, 120/390, 270/390 (equal to 0.15, 0.85, 0.31
and 0.69 respectively).

The destination distribution can be obtained by multiplying the available
probabilities on each route departing from a source detector as shown in Table 3.

This O-D matrix estimation method can be compared to similar approaches,
which generate traffic demand without taking into account an optimization function,
such as the equally split O-D matrix, the proportional O-D matrix, iterative
methods, the gravity model, and turning percentages.

4.2.1 The Equally Split O-D Matrix

This is the simplest method for seed generation. As the name suggests, an equal
proportion is assigned to all destinations. In the test case (Fig. 7) with three des-
tinations, the method concludes that D1, D2 and D3 are equally likely for trips from
origin O1 and O2, so the proportion will be 1/3 (33.3 %) (Table 4).

4.2.2 Proportional O-D Matrix

This is one of the most common and oldest methods to estimate an O-D matrix [15].
It is based on the concept that the attraction of any destination is the function of the
number of trips that end at that destination. In other words, higher attraction yields
in a higher flow proportion. The origin flow will hence be distributed according to
destination flows.

Considering the test case (Fig. 7) where destination flows collected at D1, D2, D3

are 70, 120, 270 vehicles respectively, the proportional O-D matrix can be com-
puted manually as follows, which is identical to DFROUTER’s calculation
(Table 5).

Table 4 The equally split
O-D matrix D1 D2 D3

O1 1/3 1/3 1/3

O2 1/3 1/3 1/3

Table 5 The proportional O-D matrix

D1 D2 D3

O1 = 70/(270 + 120 + 70) = 120/(270 + 120 + 70) = 270/(270 + 120 + 70)

= 0.15 = 0.26 = 0.59

O2 = 70/(270 + 120 + 70) = 120/(270 + 120 + 70) = 270/(270 + 120 + 70)

= 0.15 = 0.26 = 0.59

DFROUTER—Estimation of Vehicle Routes … 13

4.2.3 Iterative Method

This is considered as a hybrid proportional assignment technique that balances both
inflows and outflows [15], adopted from Wills and May (1981) based on an iter-
ative fitting algorithm. The algorithm computes each O-D cell iteratively until a
convergence is reached. The algorithm steps are given below.

Step 0

set k ¼ 0

set T ð0Þ
ij ¼ 1 for all possible interchanges

0 for all impossible interchanges

�

Step 1

set T 2kþ1ð Þ
ij ¼ O0

iP
j T

2kð Þ
ij

T 2kð Þ
ij for all i; j ð3Þ

where O′i is the observed volume at point i adjusted for all known demands from i.
Step 2

set Tð2kþ2Þ
ij ¼ D0

jP
j T

ð2kÞ
ij

Tð2kÞ
ij for all i; j ð4Þ

where D′j is the observed exit volume at point j adjusted for all known trips that
end at j.
Step 3

if Tð2kþ2Þ
ij � Tð2kÞ

ij \d for all i; j then STOP

else set k ¼ kþ 1 and go to Step 1

Using this algorithm to compute the O-D matrix for the test case (Fig. 7) yields
in the results shown in Table 6. The algorithm produced a converged output after
two iterations.

The final iterative O-D matrix estimation, however, contains the same values as
that of the proportional O-D matrix estimation. This may be because the method
computes O-D elements iteratively but does not consider any constraint such as

Table 6 The iterative O-D
matrix estimate D1 D2 D3

O1 0.15 0.26 0.59

O2 0.15 0.26 0.59

14 T.V. Nguyen et al.

distance or travel time as inputs to a deterrence function. The following gravity
model will take these parameters into account.

4.2.4 The Gravity Model

The gravity model is one of the oldest trip distribution methods and is widely used
in macroscopic modelling. An extension proposed by Nancy Nihan [16] uses the
impedance function to estimate the trip proportion between ramps. It is related to
the concept that the probability of very long and very short trips is low on the
freeway. The model is based on the Gamma distribution as follows:

Fij ¼ ba

CðaÞ d
ða�1Þ
ij e�bdij ð5Þ

where
Fij is the travel propensity factor between ramp i and j;
α shape factor ≅ 3.0 for the highway;
β size parameter = α/(average trip length);
dij distance between pair (i, j);
average trip length (1/T) * Σ(Link length) * (Link volume);
T sum of all trips generated.

The cell entries in the O-D matrix are defined as:

Tij ¼ bjFijP
j bjFij

Oi ð6Þ

where
Tij trip interchange between pair (i, j);
bj balance factor from iterations;
Oi production at i;
Dj attraction at j.

In addition, the following constraint has to be fulfilled:

X
i

Tij ¼ Dj ð7Þ

In the implementation of the algorithm, the balancing factor was ignored for the
first iteration. The average trip length from the geometry is:

ð100 � 280þ 50 � 460þ 50 � 390þ 50 � 270Þ=ð280þ 180Þ ¼ 183:

DFROUTER—Estimation of Vehicle Routes … 15

Therefore parameter β = 3/183 = 0.016. Using these parameters and the distance
matrix, the O-D matrix results are calculated accordingly (Table 7).

4.2.5 The Turning Percentage

This is the most intuitive method of estimating an O-D matrix for a freeway section.
Similar to the equally split and proportional O-D estimate methods, it assumes that
turning percentages at any given off-ramp are independent of the trip origin [15].
Therefore the O-D matrix is derived by tracking the turning percentages in each
section. Using the test case (Fig. 7), there are four sections, each between on-ramp
and off-ramp, with turning percentages as follows: 0, 15.2, 30.8 and 100 (0, 70/460,
120/390, 270/270, respectively). The resulting O-D matrix is shown in Table 8.

4.2.6 Discussion

The equally split O-D matrix method did not generate a plausible result. Due to the
missing value for the balance factor bj, the gravity model has not been examined
thoroughly and therefore produced rather incomplete output in the first calculation
iteration. Similar O-D matrices were achieved from various approaches: DFR-
OUTER, the proportional O-D matrix, the used iterative method, and the turning
percentage. The comparison results also indicate that DFROUTER is working most
similarly to the turning percentage approach as it takes each flow proportion at each
split edge into consideration. In contrary to the iterative method, it does not take
distance, time, or any deterrence parameter into account, but performs its compu-
tations based on the number of origin and destination counts only. The results
therefore are proportional to these counts.

Furthermore, DFROUTER and the proportional O-D matrix also have similar
working mechanisms. Considering a tree graph as follows including one origin and
seven destinations where a, b, c, d, e, f are the respective detector data on edges
(Fig. 8).

Table 7 The Gravity model
O-D matrix D1 D2 D3

O1 0.4312 0.3371 0.2317

O2 0.2222 0.3909 0.3869

Table 8 Turning percentage
O-D matrix D1 D2 D3

O1 0.15 = 0.31*(1 − 0.15) = 1 − 0.15 − 0.26

= 0.26 = 0.59

O2 0.15 = 0.31*(1 − 0.15) = 1 − 0.15 − 0.26

= 0.26 = 0.59

16 T.V. Nguyen et al.

Then the flow probability at each destination, e.g. D4, is computed as:

DFROUTER: pro ¼ b
a
� c
b
� d

c
� e
d
� f
e
¼ f

a

Proportional O-D matrix: pro ¼ fPn
j¼1 Dj

¼ fPn
j¼1 Oi

¼ f
a

From above, it could be said that for the case of one origin, DFROUTER and the
proportional O-D matrix use a basically same approach. The proportional O-D
matrix works more simple than DFROUTER as it does not take into account
in-between detectors or split edges; only the data at sink detectors are used for
calculation. A different approach named SYNOD has been developed to synthesize
the required O-D matrix based on proportional O-D matrix approach. This simple
proportionality scheme is on the other hand considered as a crude approximation
that has the problem of over-predicting the number of very short and very long trips
with 20–30 % level of error as described in [16].

Due to the drawbacks of these methods, they are often used to generate a starting
solution (seed or target, a priori matrix) for the O-D estimation problem to solve the
minimization function of difference between estimated and observed link flows or
O-D matrix [15].

5 Extension for Completing Missing Measurements

From the analysis of DFROUTER and other, already known issues, several
improvements to the algorithm could be considered:

• Guessing missing data based on existing detector flows. This could be done by
considering the relationship between all inflows and outflows at a certain
junction.

• Regarding the travel times when computing route usage probabilities; currently
the probabilities are only computed regarding the same time slice of detector
measurements.

• Computing route probabilities individually for passenger and heavy duty
vehicles; albeit both types are usually explicitly counted and given in according

Fig. 8 A tree graph

DFROUTER—Estimation of Vehicle Routes … 17

measurements, DFROUTER computes only route probabilities for the overall
vehicle amount.

• Improving DFROUTER’s operation for the case of highway rings or a fully
covered urban intersection.

The most promising improvement is to guess the missing data on one of two
(or several) split edges. By doing this, DFROUTER could perform well even in
case of not all “pure sinks” being covered with detectors. The overestimation
problem of the current DFROUTER that assigns probability = 1.0 as default for
missing detector data could be eliminated. The following subsections describe this
extension. At first, the algorithm to compute the missing data is given, followed by
an evaluation of its function in an abstract road network. This section closes with a
report on the application of the improved DFROUTER for a complex, real-world
network.

5.1 Calculating Missing Data

The initial algorithm takes only those split edges that have a detector on them into
account and omits those without a detector. This problem could be solved by the
algorithm proposed in the following:

• Step 1: Calculate the flow value on each edge of the highway network using
backward or forward recursion.

• Step 2: Determine split edges after a junction for all routes starting from source
or between detectors to sink detectors.

• Step 3: Calculating flow proportion of split edges based on computed flow so
that each split edge contains a different probability.

• Step 4: Calculate destination distribution by multiplying all flow probabilities on
all edges constructing that route for routes starting from source detectors only.

Of all steps above, the first is the most challenging one as there are many
dependencies to consider. Consider an edge e for which detector values are missing.
Forward recursion will be performed when there is no detector before e and
backward recursion works in the opposite way.

If the algorithm could not figure out the value after a certain number of recur-
sions, its probability will be re-set to 1.0.

5.2 Application in an Abstract Network

A hypothetical highway network was developed to test the improved DFROUTER.
It was designed to contain all cases listed in Table 9. There are only seven detectors
at the location of L1, L9, R1, R2, R5, R66, R7, the remaining on- and off-ramps are

18 T.V. Nguyen et al.

missing, including some in-between and sink detectors. The input probabilities will
be compared with DFROUTER’s output (Fig. 9).

In order to calculate flow at a certain edge, the recursion function will be used,
whatever it is forward or backward. For instance, R3 will be computed as follows
(Fig. 10):

Table 9 Cases to consider in the recursion algorithm

Recursion forward Recursion backward

1

e = beforeE

2

e = afterE - x e = beforeE - x

3

e = afterE e = beforeE

afterEe ebeforeE

x

e afterE beforeE e

afterEe beforeE e

x

e = afterE

Fig. 9 Abstract network with missing detectors

Fig. 10 Example of calculating R3

DFROUTER—Estimation of Vehicle Routes … 19

Calculated results and their comparisons are shown below regarding both
probabilities at destinations and the original input as well. The differences are
evident and significant as the original DFROUTER does not consider missing data
at destinations. The probabilities generated by the improved DFROUTER are
approximate to the destination probabilities and are more accurate compared to the
original DFROUTER (Table 10).

5.3 Application in a Larger Network

To evaluate the algorithm on a more complex, real scenario, a larger network
containing three main interchanges in Nuremberg was converted from Open-
StreetMap data. Each interchange is equipped with different numbers of detectors
(see Fig. 11).

• Interchange 1: fully covered with detectors and there are five routes as an input
to SUMO

• Interchange 2: only detectors in main corridor; only one route toward inter-
change 1

• Interchange 3: only detectors in main corridor; only one route toward inter-
change 1

The flow probabilities produced by the improved DFROUTER are different from
those computed by the original DFROUTER as shown in the Table 11. As
expected, the results from the improved DFROUTER are more accurate.

Table 10 Comparison of the destination probabilities of the original and the improved algorithm

Trip Des-
counts

Des-
pro

Probability Relative error

DFROUTER Improved
DFROUTER

DFROUTER Improved
DFROUTER

From L1/R1/
R2 to R3

900 0.24 1 0.23 3.22 −0.03

From L1/R1/
R2 to R66

500 0.13 0.14 0.13 0.06 −0.01

From L1/R1/
R2 to R7

1,100 0.29 0.69 0.28 1.38 −0.03

From L1/R1/
R2 to R8

700 0.18 0.69 0.20 2.75 0.09

From L1/R1/
R2 to R7_1

300 0.08 0.69 0.09 7.74 0.14

From L1/R1/
R2 to R8_1

300 0.08 0.69 0.06 7.74 −0.24

20 T.V. Nguyen et al.

int. 3

int. 2

int. 1

1

2

3

4

5

6

7

Fig. 11 Nuremberg highway network

Table 11 Comparison of DFROUTER and improved DFROUTER results with input probabilities

No Trip Input
probability

Probability Relative error

DFROUTER Improved
DFROUTER

DFROUTER Improved
DFROUTER

1 From 1 to 1
left

0.16 0.16 0.16 0.00 0.00

2 From 1 to 2
straight 1

0.13 0.06 0.18 −0.54 0.38

3 From 1 to 2
right

0.09 0.22 0.04 1.44 −0.56

4 From 1 to 3 0.63 0.24 0.62 −0.62 −0.02

5 From 1 to 2
straight 2

1 0.28 0.82 −0.72 −0.18

6 From 2 to 1 1 1 1 0.00 0.00

7 From 3 to 1 1 0.4 0.86 −0.60 −0.14

DFROUTER—Estimation of Vehicle Routes … 21

6 Conclusion

The study has been conducted to analyze SUMO’s DFROUTER tool. It sought to
answer the following questions:

1. How can DFROUTER be formally described?
2. What are the differences to other approaches?
3. How could the algorithm be improved in order to estimate routes/demand more

accurately?

DFROUTER’s results for several typical highway corridors were examined,
first. Additionally, the algorithm has been compared with some O-D matrix esti-
mation approaches based on the same abstract highway corridor. The literature
review has indicated two main groups of O-D estimation: static and dynamic, which
have been developed over the last 30 years. DFROUTER’s approach of dividing
incoming flow proportionally to off-ramp counts makes it simple and fast in cal-
culating respective flows. In parallel, it computes results that are similar to those
obtained from other algorithms.

An algorithm improvement has been proposed and applied successfully to a
large highway network. It produced reliable results using recursion to guess missing
data, assuring that each edge after a junction will contain a certain traffic count and
relative probability. The method of multiplying individual probabilities is left
unchanged. The sometimes present problem of missing detectors at destinations is
thereby partially solved. The extension will be included in SUMO’s standard
release. The improved algorithm, however, is applicable to highway corridors (one
way street) only. Future research and extension possibilities have been outlined and
may be performed in the future.

References

1. Bert E (2009) Dynamic urban origin-destination matrix estimation methodology. EPFL
2. Van Zuylen HJ, Willumsen LG (1980) The most likely trip matrix estimated from traffic

counts. Transp Res Part B: Methodol 14(3):281–293
3. Cascetta E (1984) Estimation of trip matrices from traffic counts and survey data: a generalized

least squares estimator. Transp Res Part B: Methodol 18(4–5):289–299
4. Cascetta E, Nguyen S (1988) A unified framework for estimating or updating origin/

destination matrices from traffic counts. Transp Res Part B: Methodol 22(6):437–455
5. Krajzewicz D et al (2012) Recent development and applications of SUMO—Simulation of

Urban MObility. Int J Adv Syst Meas 5(3 and 4):128–138
6. Kattan L, Abdulhai B (2011) Traffic origin-destination estimation in handbook of

transportation engineering, Volume II: applications and technologies, 2nd edn. McGraw
Hill Professional, Access Engineering, New York

7. Maher MJ (1983) Inferences on trip matrices from observations on link volumes: a Bayesian
statistical approach. Transp Res Part B: Methodol 17(6):435–447

8. Cremer M, Keller H (1987) A new class of dynamic methods for the identification of origin-
destination flows. Transp Res Part B: Methodol 21(2):117–132

22 T.V. Nguyen et al.

9. Nihan NL, Davis GA (1987) Recursive estimation of origin-destination matrices from input/
output counts. Transp Res Part B: Methodol 21(2):149–163

10. Yang H et al (1992) Estimation of origin-destination matrices from link traffic counts on
congested networks. Transp Res Part B: Methodol 26(6):417–434

11. Bell MGH (1991) The real time estimation of origin-destination flows in the presence of
platoon dispersion. Transp Res Part B: Methodol 25(2–3):115–125

12. Niebel W et al (2008) Traffic surveillance and forecast for large-scale events, monitoring and
simulating the world youth day 2005 and the soccer world cup 2006. PROM: list studenata
Fakulteta prometnih znanosti (21):64–66. ISSN:1332-2613

13. Justen A, Cyganski R (2008) Decision-making by microscopic demand modeling: a
case study. In: Transportation decision making: issues, tools, models and case studies.
ISBN:9-78-88-96049-06-8

14. Dafermos SC, Sparrow FT (1969) The traffic assignment problem for a general network. J Res
Natl Bur Stan 73B:91–118

15. Muthuswamy S et al (2005) Improving the estimation of travel demand for traffic simulation:
Part I, in final report 2005, Department of Civil Engineering, University of Minnesota

16. Nihan NL (1979) Use of volume data to reproduce ramp-to-ramp freeway trip patterns—a
pilot study. Technical report standard, Washington State Department of Transportation,
WSDOT-35.1

DFROUTER—Estimation of Vehicle Routes … 23

Advanced Traffic Light Information
in OpenStreetMap for Traffic Simulations

David Rieck, Björn Schünemann and Ilja Radusch

Abstract In this paper, we show the development process of a new proposed
feature for OpenStreetMap (OSM) traffic light tags. We introduce the needs for
such kind of information in OSM and define requirements for our simulation needs.
After comparing different traffic light tagging ideas and matching them to our
requirements we come to the conclusion to extend the current classic way of
tagging with OSM relations, which define turn restrictions and traffic light infor-
mation. As a proof of concept a plugin for the popular OSM editor JOSM is shown
as well as a conversion implementation of a complex intersection from OSM to
SUMO is presented.

1 Introduction

The use of OpenStreetMap (OSM) [2] data in traffic simulation environments is
very common nowadays [1, 4, 6]. No other traffic network data sources offer such
high quality data in urban areas for free without difficult licensing restrictions.
Nevertheless, there are still some areas in OpenStreetMap, which could be
improved to make traffic simulations out of OpenStreetMap data even better.

Traffic lights and lane information are OSM features which are still underrep-
resented even in areas, which already have been mapped in great detail. Reasons for

D. Rieck (&)
Fraunhofer Institute for Open Communication Systems (FOKUS), Automotive Services
and Communication Technologies, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
e-mail: david.rieck@fokus.fraunhofer.de

B. Schünemann � I. Radusch
Daimler Center for Automotive Information Technology Innovations, Technische Universität
Berlin, Sekr. DCAITI Ernst-Reuter-Platz 7, 10587 Berlin, Germany
e-mail: bjoern.schuenemann@dcaiti.com

I. Radusch
e-mail: ilja.radusch@dcaiti.com

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_2

25

this are mostly ease of use or need for this specialized information. Even simple
information such as the number of lanes of a road are still used sparsely.

In this paper, we show how we extended the current OpenStreetMap traffic
signal model with more detailed traffic signal data, how to convert this new
information to a valid SUMO simulation scenario and how to use the traffic signal
information in our Vehicle-2-X Simulation environment.

2 Extending the OSM Format

Traffic Lights in OpenStreetMap are usually modeled using only one node per
intersection, regardless of the number of actual traffic lights, number of lanes at that
intersection or intersection geometry (see Figs. 1, 2).

Today, there exists no concept in OpenStreetMap, which can be used to rep-
resent detailed traffic light information. There are proposed features that try to
model more advanced signals information at intersections with focus on optimized
information for navigation systems, but these cannot be used to include signal
information nor are they optimized for simulation purposes.

To enhance the traffic light model in OSM, we collected different requirements
that a new solution might address and added a weighting from one to ten (ten being
most important) to each requirement (in parentheses):

Fig. 1 Complex traffic light controlled intersection

26 D. Rieck et al.

1. All possible (physical) assignments between lanes and traffic lights can be
captured (10)

2. There are no adjustments needed for simple one-lane intersections (8)
3. Signal phases and timing information can be defined per traffic light head (5)
4. Map visualization is possible (2)
5. Mapping of intersections can be done efficient with existing tools (7)
6. Technical evaluation of intersections, lanes and traffic lights is possible (i.e. no

undefined states, unique interpretation possibilities) (7)
7. Downwards compatibility, i.e. intersection geometry information remains

untouched, existing tools should still work with the extended attributes (10)

To find a suitable solution, we analyzed different traffic light (TL) tagging ideas
(Table 1).

By comparing each requirement with the various traffic light modeling methods,
we came to the following requirements matrix (see Table 2).

One can see that the alternative tagging methods do not do better than the classic
tagging method at least with regard to the defined requirements. Therefore we came
to the conclusion to introduce an extension of the current relation-model by adding
a traffic signal relation, which enables lane precise traffic signal modeling (right,
left, straight or combinations of all directions). This offers a high flexibility but also
keeps the classic tagging system.

By using the common concept of referencing already existing attributes (lanes)
and extending them with new options (from, via, to) existing information can easily

Fig. 2 Satellite view of complex intersection

Advanced Traffic Light Information … 27

be reused. Phase and timing information is described in a similar way to SUMOs
way of representing traffic signal information (|-separated values for phases and
timings). Table 3 shows the extensions made to the relation.

Table 1 Comparison of traffic light tagging ideas

Tagging
type

Pros Cons

Classic TL tagging

• Simple geometry • Phases and timing not possible

• No lane-specific TL-Tagging

Lane TL tagging

• Traffic light tags per lane • Complex geometry

• Turn restrictions per lane • High mapping costs

• Uses huge amount of data

Star TL tagging

• Logic modeling of lanes • Visual representation != logic representation

• TL and turn restrictions
per lane

• Downwards compatible

• Medium mapping costs

Area TL tagging

• Individual lanes • Incompatible with current routing engines

• Improper usage of areas to model intersection-
connections

Table 2 Requirements table

(1) (2) (3) (4) (5) (6) (7)

Load 10 8 5 2 7 7 10

Classic 0 10 0 7 10 10 10

Line 10 10 0 10 0 5 10

Star 10 10 0 3 5 5 10

Area 0 10 0 3 5 0 0

Table 3 Fields of the new traffic_signal relation

Attribute Description

type Type description of the relation (traffic_signals)

ref:lanes:from Mapping of input lanes

ref:lanes:via Mapping of via lanes

ref:lanes:to Mapping of outgoing lanes

phases Description of the traffic signal phases

timing Description of traffic signal timings

28 D. Rieck et al.

We also show the usage of our easy-to-use plugin for the popular Java Open-
StreetMap editor (JOSM), which supports the user in creating new or updating
existing traffic light information in his/her area (see Fig. 8).

3 Conversion of OSM Files

To convert standard OSM data to our simulator specific formats, we already use a
tool called VSimRTI scenario-convert to import OSM data and export to different
formats, e.g. SUMO *.nod.xml, *.edg.xml and *.tll.xml files. We extended this tool
to make use of the additional traffic light information and export the relevant files to
a SUMO and VSimRTI compatible format.

In this paper, we show the conversion process from the raw OSM file to the
SUMO traffic network. Some OSM features can be translated direct to the corre-
sponding parts in the SUMO files (see Fig. 9), while in other parts a more complex
transition is needed (e.g. intersection lane modeling)

A screenshot of the conversion can be seen in Fig. 7. In this example, the
intersection in Fig. 2 was extended with the advanced traffic signal information,
which was gathered by measuring the traffic signal phases. Then, the OSM file was
parsed using VSimRTI scenario-convert and SUMO netconvert created the SUMO
files (Figs. 3, 4, 5, 6).

The SUMO tool netconvert offers also an osm conversion feature to import
OpenStreetMap files directly and write SUMO compatible files, including traffic
light guessing and intersection joining. Unfortunately, this method did not work due
to the intersection complexity. With further effort on modeling the intersections,
better results are expected.

4 Simulation

We use the generated traffic network and traffic light programs in our V2X simu-
lations using the Vehicle-2-X Simulation Runtime Infrastructure (VSimRTI) [5].

VSimRTI is developed by Fraunhofer FOKUS is a framework for simulation of
Vehicle-2-X scenarios by coupling different simulators (e.g., traffic simulator,
network simulator, application simulator…). The framework is based on the High
Level Architecture [3] which offers mechanisms to connect and synchronize dif-
ferent simulators using a common runtime infrastructure.

SUMO is mainly used as traffic simulator in VSimRTI, whereas communication
and applications for vehicles are simulated on other simulators. Information about
traffic lights is simulated in SUMO, but can be altered from an application running
on a vehicle.

Advanced Traffic Light Information … 29

Fig. 3 The classic traffic light
tagging as it is used currently,
contains one traffic light tag
per intersection. Turn
restrictions usually belong to
whole ways

Fig. 4 The lane traffic light
tagging uses a visual way of
traffic light tagging. Each lane
is modeled individually,
traffic lights and turn
restrictions are applied
directly to the lanes

30 D. Rieck et al.

Fig. 5 Star traffic light
tagging is an abstract way to
model lanes logical. The
intersection node as used in
the classic traffic light tagging
stays the same, but roads are
splitted into individual lanes

Fig. 6 The area traffic light
tagging models the whole
intersection as one OSM-area,
where each lane connects to
the intersection

Advanced Traffic Light Information … 31

Fig. 7 SUMO traffic simulation with junction connections shown

Fig. 8 JOSM traffic signal editor plugin

32 D. Rieck et al.

5 Conclusion

The presented extension of the classic traffic light definition in OpenStreetMap
offers a lot of advantages for traffic simulations. By adding relations with infor-
mation of phases, timing and turn restrictions, even complex intersections can be
modeled comparatively easy using only OpenStreetMap. Furthermore, this infor-
mation can also be used easily in traffic simulation tools such as SUMO. Lane based
turn restrictions or even lane numbering alone being one crucial information for
routing engines, this feature can also help to spread OpenStreetMap data even more.

6 Outlook

Although the presented methods allow for tagging complex intersections and
advanced traffic light definitions, the proposed features currently only include static
traffic light information. Further traffic signaling mechanisms, e.g. induction loops or
camera controlled traffic lights, public transportation prioritized traffic lights or green
wavesettingsordaily/weekdaysetupsarenothandledby thepresented feature.Adding
these or offer possibilities to include some kind of online requests for the current status
might add some valuable information to next generation routing applications.

Acknowledgements We would like to thank Tristan Wagner, Andreas Mentz, Andre Beyer and
Rujun Wang for their valuable contribution to this paper.

References

1. Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) Sumo-simulation of urban mobility-an
overview. In: SIMUL 2011, The Third international conference on advances in system
simulation, pp 55–60

2. Mordechai H, Patrick W (2008) Openstreetmap: user-generated street maps. Pervasive
Computing, IEEE 7(4):12–18

Fig. 9 OSM traffic signal extension and corresponding tags and values in SUMO

Advanced Traffic Light Information … 33

3. Institute of Electrical and Electronics Engineers (2000) IEEE standard for modeling and
simulation (M&S) high level architecture (HLA)–framework and rules. IEEE Standard 1516.1.
IEEE, New York

4. Rieck D, Schünemann B, Radusch I, Meinel C (2010) Efficient traffic simulator coupling in a
distributed v2x simulation environment. In: Proceedings of the 3rd international ICST
conference on simulation tools and techniques, p 72

5. Schünemann B (2011) V2x simulation runtime infrastructure vsimrti: An assessment tool to
design smart traffic management systems. Comput Netw 55:3189–3198

6. Zilske M, Neumann A, Nagel K (2011) Openstreetmap for traffic simulation. In: Proceedings of
the 1st European State of the Map–OpenStreetMap conference, number 11-10, pp 126–134

34 D. Rieck et al.

Online Micro Modelling Using Proprietary
Controllers and SUMO

Robbin Blokpoel and Jaap Vreeswijk

Abstract Over the past years the open source traffic simulator SUMO has been
significantly improved and extended. One of the most important elements of urban
traffic simulation is the proper handling of traffic light control. Currently available
are elementary control methods like embedded fixed time and actuated control, but
also controllers external to SUMO that use SUMO’s extensive TraCI interface that
enables reading and changing of many simulation parameters. This interface,
however, has as yet not been used to link to proprietary controllers, which would
enable the use of SUMO for accurate studies in a multivendor environment.
Moreover, the TraCI interface accepts the injection of vehicles from external
sources during the simulation. This opens up possibilities for using real-world
sensor data directly in the simulation environment. This paper describes how state-
of-the-art Imtech controllers are linked to SUMO. The paper covers topics like
architecture, vehicle detection, signal group control, simulation speed optimization
and contains a comparison of the SUMO simulation to the commercial Vissim
simulator for an identical scenario. The last section of this paper introduces
embedded real-time micro simulation as part of the control environment, which was
able to approach.

1 Introduction

Over the past years the open source traffic simulator SUMO has been improved and
extended significantly with at the time of writing a 19th version available. With a
large community involved and a history of more than 10 years, the simulator can be

R. Blokpoel (&) � J. Vreeswijk
Imtech Traffic & Infra, 2542, 3800GB Amersfoort, The Netherlands
e-mail: robbin.blokpoel@imtech.com

J. Vreeswijk
e-mail: jaap.vreeswijk@imtech.com

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_3

35

considered a serious alternative to commercially available solutions. The open
source nature and easy access to almost all parameters during runtime make the
simulator particularly suitable for research projects. Therefore, the European funded
project COLOMBO [1] chose to use SUMO for traffic simulations.

The COLOMBO project works on traffic surveillance algorithms for low pen-
etration cooperative systems [4], in which both vehicle-to-infrastructure (V2I) and
vehicle-to-vehicle (V2V) communications are modelled using the ns-3 [7] com-
munications simulator. The output of these traffic surveillance algorithms is used by
new traffic control algorithms to control signalized intersections.

Currently SUMO supports various kinds of traffic control; fixed time and vehicle
actuated control are fully supported by SUMO. For other types of control and
variations on the embedded vehicle actuated method, external controllers can take
over SUMO’s control through TraCI (Traffic Control Interface). Currently, these
external controllers, like the example Python program that comes with SUMO, are
stand-alone applications specifically made for connection to SUMO. However, for a
good comparison between traffic systems currently running on the street and results
from research projects, it is important to use the same scenario and simulation
environment. Therefore, an interface between SUMO and a real-world controller
would be a very useful tool for COLOMBO to compare its solutions to what is
currently available on the market. This comparison would be even stronger when
real time or historical traffic demands over a long period of time can be fed to the
system. That would prove the system could work over an extended period of time
and not just in one scenario.

Fixed time and vehicle actuated controllers can be realistically approximated by
either SUMOs internal traffic control options or external applications. City specific
rules about pre-starts, not early cutoff and variable safety margins according to
detection information can make this a very complicated task that favour using the
real world controllers. This holds even stronger for traffic adaptive control, like
Imflow [9], which is too complicated to be approximated by the control available in
Sumo. Furthermore, the differences between competing products are too large to
simulate their behavior with a reference application.

For these reasons it was decided to create an interface between Imtech’s real
world controllers and SUMO. This paper describes the architecture, detection,
signal groups, speeding up the simulation and a comparison between Vissim and
SUMO. This is done for the scenario of Assen-Noord, a small network in the north
of the Dutch city Assen. Network conversion between Imflow controlled networks
and SUMO for increased ease of use is described in [2].

Additionally, this interface enables to use the simulation environment as accurate
online model that only requires traffic demand data. Unlike many other models [3]
no data about travel times is required. Exceptional changes in demand, which are
often a problem for traffic models based on travel time measurements and neural
networks [7], are handled better. This is because the real traffic light controllers are
part of the model and behave the same way as the controllers on the street would
behave. The paper shows a test case with a week of data from a network in
Helmond in the Netherlands.

36 R. Blokpoel and J. Vreeswijk

2 Architecture

The architecture of the interface and all involved components is described in the
picture (Fig. 1).

The TLC (Traffic Light Controller) blocks in the diagram use the same software
as is running inside real-world traffic light controller. The TLC blocks can accept
just as easily real sensor input as data generated by the simulation environment. The
equivalent situation holds for the actuators. The TLC interfaces to the simulation
environment by means of the SimInterface. The SimInterface is a C++ dynamic link
library (dll) that can maintain connections to multiple TLCs in parallel. On the other
side it can connect to any external application that supports the dll. This has been
used to connect to the commercial simulators Vissim, Paramics and Aimsun. For
SUMO an intermediate block, the SumoInterface, has been created in Java that
supports both the dll and can talk to TraCI to get information from SUMO. The
flow of information consists of two main flows, detection information going from
SUMO to the TLCs and signal group status from the TLCs to SUMO.

After initialization of the interfaces the main interface process checks detector
status and signal group status every 100 ms. Changes to signal group status are
written to SUMO, while detector status is sent directly to the Siminterface dll.
Finally, SUMO is ordered to execute another simulation step through TraCI.

3 Detection

Detection—the acquisition of traffic sensor data—is a key element for any adaptive
controller, as without detection only fixed time control is possible. Therefore,
having proper detection functionality is vital for accurate simulation. SUMO sup-
ports three kinds of detectors: inductive loop, lane area and multi-entry multi-exit
detectors. Current traffic control is mostly based on detectors that cover an area in a
lane, this can be an inductive loop, but also a marked area in a video detector.
Therefore, the original inductive loop detector of SUMO is actually not sufficient

Fig. 1 Interface architecture

Online Micro Modelling Using Proprietary Controllers … 37

for traffic control simulation, since it’s an infinitely small detector that doesn’t cover
an area in a lane, but just a point on the lane. Even real world inductive loops cover
larger areas, so a real inductive loop cannot be modelled accurately with a SUMO
inductive loop. Many vehicle actuated strategies use long induction loop area
detectors that can cover up to 30 m of the approach to an intersection. By means of
these long detectors gaps in the approaching traffic can be detected, which can be
used to determine the best moment to cut off the green phase.

Figure 2 shows a short loop close to the stopline and a 20 m loopat some 15 m in
the upstream direction. When a vehicle leaves the long loop, the front of the vehicle
is at a distance of at most 12 m from the stopline. Turning the light to amber at this
moment will not make the vehicle stop, since the distance is less than 1 s. This
enables the controller to utilize part of the amber time by letting the last vehicle of a
platoon pass through during amber. This technique of detecting the end of the
platoon would also work at the stopline, but then the amber time cannot be utilized.
The reason for using a long loop of 20 m is to deal with small gaps in platoons due
to different acceleration rates. If the loop would be shorter, a threshold gap time
would have to be introduced that would make usage of the amber time impossible.
The most usable alternative would be a small loop at 15 + 20 = 35 m from the
stopline, but its efficacy would depend on a presumed fixed vehicle speed, which is
not realistic close to an intersection. Moreover, this work focusses on simulating
real world controllers and these expect long area loops. Using different loop con-
figurations in the simulator will give different behavior unless parameters inside the
controllers are changed.

Interfacing with the detectors through SUMO is quite straightforward. During the
development of the interface a small extension to Traci was made to be able to access
occupancy of lane area detectors. This extension is available in version 0.20. This is
done using the command “get LaneAreaDetector Variable” and the variable to
acquire the number of vehicles on the loop. In the dll this is fed back as a list of
detectors that can be occupied (1) or not occupied (0). Main challenge in this is the
configuration, since the dll does not use detector IDs. The order of the detectors has
to be the same as it is configured in the controller executable. This problem was
previously solved for Vissim simulations by a naming convention, detector numbers

Fig. 2 Typical detection field for vehicle actuated control

38 R. Blokpoel and J. Vreeswijk

have an ID number specified as follows: intersection ID * 1000 + detector sequence
number. So the first detector for intersection 37 has an ID of 37000, the second
37001, etc. The network conversion tool of [5] automatically uses the correct naming
conventions when the original network uses the correct numbering scheme.

As described in the architecture section, the update time for detectors is 100 ms.
This is done in order to never miss any detection event. Motorcycles can be as short
as 2 m and on the highway, their speed can be over 30 m per second. This means
they occupy a detector for only 100 ms. When vehicles are shorter and drive faster,
a shorter update time is required. In urban environments the simulation may be
speed up by checking the detectors less frequently if vehicle speeds are lower. For
4 m vehicles at 15 m/s, a 300 ms cycle suffices.

Another important aspect to consider is the stopping distance in front of a red
light. This is shown in the figure (Fig. 3).

The loop indicated by the blue line is not occupied when vehicles stop at 2.5 m
before the signal head, as they did in older SUMO versions. Therefore, the request
is not registered at the traffic light controller and the signal group will never become
green. In SUMO 0.20.0 this stopping distance was decreased to 1.0 m.

4 Signal Groups

Sumo uses a different kind of numbering for the signal groups than is usual in traffic
light controllers. Vissim has one signal head per lane and a signal group can
comprise multiple signal heads, which happens for example when there are two
lanes for a certain direction. SUMO, on the other hands defines connections, which
can be considered signal heads, in the .net.xml. There is one connection per turn
direction per lane. So when there is one lane from which a right turn, the through
direction, a left turn and a u-turn are possible, it will have 4 signal heads as opposed
to only 1 in Vissim. Therefore a translation XML file is used by the interface to
convert TLC signal group numbers to SUMO identification numbers. An example
of a translation file is shown below:

Fig. 3 Problem with detector location and stopping distance

Online Micro Modelling Using Proprietary Controllers … 39

\intersection id ¼ ``1''[
\signalgroup id ¼ ``1000'' sumoSGs ¼ ``2; 3; 4''=[
\signalgroup id ¼ ``1001'' sumoSGs ¼ ``5; 6; 7''=[
\signalgroup id ¼ ``1002''sumoSGs ¼ ``1; 8''=[
\=intersection[

The translation is made as an add-on to the software of [5] during the network
conversion process. Per edge the convertor knows which Imflow signal group
number belongs to it, while the list of connectors per edge in the .net.xml is also
known. The conversion file simply contains per signal group ID, the list of lin-
kIndices. During operation of the interface the traffic light status is translated
according to the file. Suppose the controller wants signal group 1000 green and the
rest red, the SUMO translation is as follows: rGGGrrrr.

Again in the dll there is no ID registration, the order is always the same and
therefore it is important that the translation file has the signal groups numbered
according to the order in which they are configured in the controller executable.
Also, there are more states defined than in SUMO: undefined, green, red, off, red
+amber, amber, amber flashing, red flashing, green flashing, red+green flashing and
green+amber. Some of these states don’t exist in SUMO and are converted to
simpler states, like red+amber is functionally red, so it will just show red in SUMO,
since the driver model wouldn’t take this into account. Similarly, green+amber is
just shown as green. Most flashing states are implemented to show “O” for half a
second and “Y” or “G” for the other half second. Note that the symbols have to be
capital otherwise vehicles may decelerate unnecessarily. For red flashing it is
slightly different, it will just show continuous red to prevent vehicles from entering
the intersection while the light is temporally off as part of the flashing. When no
external controller is connected to the dll, the state is automatically set to amber
flashing. During operation in every 100 ms the software checks whether the status
has changed and if so sends a “Change Traffic Lights State” command with a new
state tuple String. The reason to choose for new state tuples is because the traffic
light can show many combinations of some lights being yellow while others are still
green during stage transitions. Putting all these possible combinations into either a
program or predefine them in a SUMO configuration file and selecting the right
phase index during operation would be a lot of work.

5 Simulation Speed

It was noticed that the network used for testing the SUMO interface between TraCI
and the SimInterface was running much slower after the detectors were connected.
Although the number of detectors is high, with 168 divided over 5 intersections, the
delay was much larger than expected. An implementation that sends separate TraCI
commands for each detector requires up to 30 ms per intersection per simulation

40 R. Blokpoel and J. Vreeswijk

step of 100 ms. This meant that the simulation ran approximately at the same speed
as real-time speed (on a 2.53 GHz core 2 duo). So each second of simulation took
one second on the clock. Without detection this speed was 50x real-time. A
hypothesis that the large number of Traci calls caused this led to combining all
detector requests of one intersection in one call. This led to an increase in simu-
lation speed to almost 2x real-time speed, which is an improvement with respect to
the first implementation, but still not acceptable. It appears there is an internal
SUMO problem with TraCI causing the large delays. Subscriptions are also not
going to solve this problem, because reducing the number of requests from 168 per
timestep to 5 did only marginally decrease the delay. A further reduction from 5 to
0 would not reduce the delay significantly. Further investigation in cooperation with
the SUMO development team is required to investigate this issue.

6 Comparison Between Vissim and SUMO

For the scenario of Assen-Noord, a small network in the north of the Dutch city
Assen, a comparison was made between VISSIM and SUMO. The network only
has pedestrian and bicycle crossings at the middle left intersection. All other
intersections have just vehicles. The larger traffic streams (up to 1500 vehicles per
hour) are going north–south on both sides of the network and the major bottleneck
is the bottom intersection where the two north–south streams join (Fig. 4)

When watching the simulations in both Vissim and SUMO, no clear differences
could be noted, except that SUMO has uniform vehicle injection and the same
acceleration at the stopline. SUMO was used in a standard way creating the routes
with a trip file that injects vehicles with a constant time period in the resulting.rou.
xml. Evaluation in Vissim was done by putting a travel time section for each signal
group and in SUMO a multi-entry multi-exit detector.

When evaluating the results it was found that the vehicle count in SUMO was
off, sometimes only 35 % of the actual volume was measured. It appears to occur
mostly when there is a high density on the multi entry multi exit detector, since
signal groups with low volume were counted correctly. The delay time could be
acquired directly in Vissim, but in SUMO a run with all signal heads switched to
“O” was done to acquire the free flow travel time, which was subtracted from the
measured travel time to get the delay time. From this it could be noticed that on
average the delay for pedestrians and bicycles was 2.0 s higher for SUMO than for
Vissim. On the other hand, for normal vehicles this delay was 1.3 s lower for
SUMO.

These results were obtained using standard settings as much as possible.
However, SUMO has many options for car following models and different vehicle
models with other acceleration parameters for vehicles, bicycles and pedestrians.
Tooling also exists for more random vehicle injections with normal or Poisson
distributions. Using these options will make it possible to have the results closer to
the Vissim simulation results.

Online Micro Modelling Using Proprietary Controllers … 41

7 Online Micromodelling

For accurate online micromodelling there are three main components that should be
considered: traffic behaviour, traffic demand and traffic light control. The latter is
covered by connecting the real traffic light controllers to the simulation. Traffic
behaviour was found to be close to Vissim, which is generally considered an
accurate model [10]. Therefore, the only remaining component is the traffic demand.

Generally, traffic counts are easily available, since traffic light controllers require
counting sensors, like inductive loops to function properly. A lot of research has
already been carried out for estimating OD matrices from loop counts [6, 7]. The
method used in this paper only uses traffic counts, but no vehicle class specific
counts. A method with class specific counts is presented in [8]. For this research the
formula taken from [6] will be used:

X

w2W
pawtw ¼ va

Fig. 4 Simulation network of
Assen-Noord

42 R. Blokpoel and J. Vreeswijk

tw is the number of trips of O-D pair w,w∈W
paw is the proportion of trips O-D pair w∈W traversing link a ∈ A
va is the expected link flow for the link a ∈ A

There are, however, multiple valid solutions for this equation and therefore some
assumptions are needed. The flow per origin can be measured directly since there
are inductive loops at each entry of the simulation network under investigation, but
for destinations there are multiple possibilities.

This is best understood when considering Fig. 5; a vehicle entering the network
at intersection 102 going in the eastern direction can leave the network at 104 in
three different directions. The same holds for a vehicle that entered at 101. Since
these vehicles mix with each other inside platoons, they cannot be distinguished
anymore at the loops of intersection 104. This also demonstrates that this knowl-
edge is not necessary, because of the same mixing effects. Only in extreme cases the
effects of different destination ratios from different origins will be noticable. For
example when all vehicles entering the network at 102 turn left at 104, while none
of 101 and 103 do that, an unexpected gap in a platoon may occur because those
vehicles will still be relatively close together inside the platoon. Similarly, at the
first intersection after entering the network the vehicles of a certain specific origin
will also arrive at a specific time. In this case it is important to have a more specific
indication in which direction they proceed, since this is important to model the
effects of coordination between intersections correctly.

The solution for determining the destination in the online model is to use the
ratios from a detailed static OD model for the first intersection a vehicle encounters
and afterwards group traffic to follow general turning percentages at the following
intersections. This detailed model was made to accurately represent the traffic
demand of the network in agreement with the road operator. The resulting flows per
OD pair are used as the basis of a Poisson arrival process, which injects vehicles
into SUMO through the TraCI interface.

The data of the traffic counts also contains total red phase durations, which
should approximate the total red duration of the online model environment. This
was tested for 2 weeks of data in March 2014. As a comparison the actual total red
time duration of each signal group was compared between the actual street data and

Fig. 5 Simulation network of Helmond for online modelling

Online Micro Modelling Using Proprietary Controllers … 43

the data from the simulation. The resulting difference in total red duration per 5 min
for signal group 3 (left turn from the main direction) at intersection 104 is shown in
the figure (Fig. 6).

As can be seen from the figure, the difference between the actual data and the
simulated data is very irregular on the first 2 days. This can be explained by
sampling effects, a green phase that occurred at the border of an interval can be
either in the first or second interval. Moreover, the Poisson arrival process intro-
duced some randomness in the demand as well, which could easily lead a difference
of one green phase per sampling period. When data is aggregated over 30 min, the
deviation does not vary between −15 and +15, with exceptions up to 30 anymore,
but only increases to −30 to +30 with exceptions up to 60. This effectively doubles
the variation, while the interval length is increased by a factor of 6. However, the
last 2 days have a clear pattern on the difference. From midnight to midday the
simulation has less red time, while at PM hours it is the other way around. A deeper
investigation into the log files revealed that the controller switched to another plan
at the 9th of March at 0:50AM.

When looking at the average deviation for signal group 3 of 1.5 s, it can be
concluded that the simulation was quite accurate. The average absolute error was
4.9 s, but this includes the noise introduced by the Poisson arrival process and the
sampling effects. For all intersections the average error and average absolute error
over all signal groups were calculated and are shown in Table 1. The average
absolute error is partially due to deviations from the Poisson arrival process. When
putting these errors of 0.0 and 8.9 s in perspective with the data aggregation period
of 300 s, the average total error is <0.1 % and the average absolute error is 3.0 %.

30

20

10

0

10

20

30Fig. 6 Difference between
simulation and actual street
data from 7–10th of March
2014

Table 1 Average errors per
intersection Intersection Average error (s) Average absolute

error (s)

101 −0.7 6.2a

102 0.0 9.2

104 −0.6 11.4

Total 0.0 8.9
a When a correction is not applied for the neighboring
intersection switching to a different control mode the average
absolute error for intersection 101 goes up to 8.1 s

44 R. Blokpoel and J. Vreeswijk

Note that 103 is just a pedestrian crossing with only public transport being
allowed to use the street coming from the south. Therefore, it has no complete
logging of the signal phases and only detection counts could be acquired. Apart
from the missing data of intersection 103, some corrections had to be applied for
certain external factors. Intersection 102 went to vehicle actuated mode at the 9th of
March. Therefore, all data after the 9th was discarded. This also had a significant
effect on the neighbor intersection 101, and the same correction was applied to this
data set. Another issue was found with the default stance when there is no traffic on
intersection 101. On the street it stayed in a stage with only signal group 8 and a
long maximum green time, while in simulation it went to the stage with signal
group 2, 8 and all parallel pedestrians and bicycles with a shorter maximum green
time. Therefore, those signal groups were discarded from the data set.

Other inaccuracies of the model for which the data set was not corrected can be
considered directions for future improvement:

• Pedestrians and bicycles were counted by the amount of times the push button
was used. However, this is an inaccurate measure as a pedestrian may get
impatient and push multiple times and a second pedestrian arriving may not
push at all. The time between the start of red and the first time the button gets
pushed would be a better indication for the arrival rate.

• Public transport priority and the respective bus schedules were not included in
the simulation. These priority calls, even though not frequent can have a sig-
nificant impact on the intersection.

• An extension loop at intersection 104 would sometimes freeze in the occupied
state. Therefore, the corresponding signal group got a lot more green time than
in the simulation, which had no broken loop. Conflicting signal groups on the
other hand had fewer green. Correction for this would be difficult, but the
system could create a warning that a detection inconsistency was detected.

• No special train functionality at intersection 104 was implemented in the sim-
ulation. When the railroad crossing to the south of 104 closes, special priority is
given to cars coming from the south to ensure the railroad crossing to be free of
cars. Additionally, after the railroad opens again, there is again a special priority
for these vehicles as they have waited for a long time at the railroad already.

8 Conclusion

The paper has shown a method of coupling Imtech proprietary controllers to
SUMO. The architecture used the same dll as other simulators use to couple to these
controllers and therefore enables a user to freely select the preferred simulation
software. For the interface, the challenges of different methods of assigning IDs to
signal groups, signal heads and detectors between controllers and SUMO were
overcome with a translation xml and a naming convention. On the SUMO side
some extra variables were added to the TraCI interface to be able to access lane area

Online Micro Modelling Using Proprietary Controllers … 45

detectors as well. A test network that was implemented both in Vissim and SUMO
showed that the results do not differ more than could be explained by different
vehicle model configuration parameters.

An extension to combine this work with dynamic traffic demand patterns
demonstrated the possibilities of creating an online micro-model. The results show
that it is possible to model with a mean absolute error of 3.0 % for the resulting total
red time per signal group in 5 min intervals. With this accurate online model,
different traffic management strategies can be tested online before actually effec-
tuating them. It also allows for testing multiple potential strategies in parallel to
assist in the decision of which strategy to select.

Open issues identified during the work were problems with counting vehicles on
the multi-entry multi-exit detectors and slow response to detector status requests
through TraCI. Both issues will be taken up with the SUMO development team.

References

1. Bera S, Krishna Rao KV (2011) Estimation of origin-destination matrix from traffic counts: the
state of the art. Europ Transp 49:3–23

2. Blokpoel RJ (2014) Network conversion for SUMO integration. In: 2nd SUMO conference,
Berlin, Germany

3. Hoogendoorn SP, Bovy PHL (2001) State-of-the-art of vehicular traffic flow modelling. J Syst
Control Eng 215:283–303 (1 June 2001)

4. Koenders E, in‘t Velt R (2011) Cooperative technology deployed. ITS Europe, Lyon, France
5. Krajzewicz D et al (2013) COLOMBO: investigating the potential of V2X for traffic

management purposes assuming low penetration rates. In: ITS Europe congress, Dublin,
Ireland, 4 June 2013

6. Liu H et al (2009) A neurak network model for travel time prediction. In: IEEE conference on
intelligent computing and intelligent system

7. ns-3 (2014). ns-3 project web-pages.http://www.nsnam.org/. Accessed 11 Feb 2014
8. Seungkiri B, Hyunmyung K, Yongteak L, Gangwon L (2001) Multi-vehicle OD trip matrix

estimation from traffic counts. J East Asia Soc Transp Stud 4(2)
9. Van Vliet K, Turksma S (2013) ImFlow: policy-based adaptive urban traffic control first field

experience. ITS Europe, Dublin, Ireland
10. Xiao H et al (2005) Methodology for selecting microscopic simulators: comparative

evaluation of AIMSUN and VISSIM. Research report, University of Minnesota

46 R. Blokpoel and J. Vreeswijk

http://www.nsnam.org/

Traffic Simulation for All: A Real World
Traffic Scenario from the City of Bologna

Laura Bieker, Daniel Krajzewicz, AntonioPio Morra,
Carlo Michelacci and Fabio Cartolano

Abstract A large effort is needed to gather, convert and adapt all the data needed
to replicate a part of a real road network. To allow performing real-world evalua-
tions using SUMO out-of-the-box, three “real-world” traffic simulation scenarios
that represent parts of the city of Bologna are made available to the public. With
these scenarios, researchers are able to start their investigations with little prepa-
ration effort and can concentrate on their research questions. This article describes,
evaluates, and discusses the scenarios.

Keywords Real world traffic scenario � Open data � Validation � Microscopic
simulation

1 Traffic Simulation and Open Data

For modelling real world scenarios a traffic simulation needs data that describe the
infrastructure as well as data about the real-world traffic conditions. Only having
both in an adequate quality allows obtaining valid simulation results. A traffic
simulation requires representations of the following:

1. the road network
2. real traffic lights
3. the traffic demand
4. additional traffic infrastructure

L. Bieker (&) � D. Krajzewicz
German Aerospace Center, Rutherfordstraße 2, 12489 Berlin, Germany
e-mail: laura.bieker@dlr.de

A. Morra � C. Michelacci
Comune di Bologna, Piazza Maggiore 6, 40124 Bologna, Italy

F. Cartolano
Consorzio ib Innovation, Via Altabella 15, 40126 Bologna, Italy

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_4

47

Without these representations, a realistic traffic simulation is hardly possible. But
collecting, processing and validating given input data may be time consuming.
Sometimes, it is already difficult to gather data that describes the real world situ-
ation in the regarded area. Especially traffic light signal plans are rarely open to the
public and are often not available in a digital format. Available road network
representations usually have to be corrected and adapted to the used simulation
model. The demand has to be converted or even generated using given measure-
ments. The measurements must be imported into the simulation system’s archi-
tecture to allow the models’ calibration and validation. Additional road side
structures must be converted into a proper representation and embedded into the
scenario.

Therefore, the preparation of a real-world scenario is usually time-consuming.
Thus, real world scenarios from Bologna were prepared and are described in this
work. They have been made publicly available within the SUMO package since
version 0.21 [1, 2]. By making the scenarios available to the public, the scenarios
can be used for further research with little effort.

2 Bologna Scenarios

The simulation scenarios presented in this paper have been built in the project
iTETRIS (“An Integrated Wireless and Traffic Platform for Real-Time Road Traffic
Management Solutions”) [3]. iTETRIS was co-funded by the European Commis-
sion between 2008 and 2011 and was concerned in developing a simulation system
for evaluations of large-scale traffic management solutions that work via vehicular
communications [4]. A large part of the project was dedicated to determining the
state of the traffic in the city of Bologna (Italy, see Fig. 1) as well as modelling it.
Major contribution to this task was performed by the municipality of Bologna who
was a project partner in iTETRIS. Besides describing the situation and the traffic
problems in Bologna, this municipality also delivered initial ideas for traffic man-
agement applications and additionally a large set of data and simulation scenarios.

The given data included representations of the areas around the “Andrea Costa”
and the “Pasubio” roads, as input files for the commercial microscopic traffic
simulation Vissim, a product of PTV AG [5]. Each of the scenarios modelled the
peak hour in Bologna (8:00 am–9:00 am). Additional data sets supported by the
municipality of Bologna included positions of traffic lights, traffic light plans,
positions of inductive loop and their measures and many others. A further scenario,
“joined”, was implemented within iTETRIS by merging both previously named
Vissim scenarios.

In the following, the three areas of Bologna which are used for the traffic
simulation scenario are described.

48 L. Bieker et al.

2.1 Andrea Costa Scenario

The simulation scenario including the roads around the street named “Andrea
Costa” is described in the following as “Andrea Costa scenario”. The Andrea Costa
scenario is located nearby a football stadium and was set up to simulate the mobility
of big events such as football matches or concerts (see Fig. 2).

In Table 1 a description of the simulation scenario for Andrea Costa is given.
These numbers should help users to identify the appropriate scenario for their
needs.

Fig. 1 Location of Bologna in Italy [12]

Traffic Simulation for All: A Real World Traffic Scenario … 49

2.2 Pasubio Scenario

The simulation scenario around the street “Pasubio” is named in the following
“Pasubio scenario”. The Pasubio scenario extends the scenarios by the area around
the hospital and includes also common routes to the football stadium (see Fig. 3).

The pasubio scenario has almost the same size as the Andrea Costa scenario (see
Table 2). Also the number of traffic lights and induction loops is almost equal. The
major difference is the existence of roads with more than three lanes within the
Pasubio scenario. If a traffic scenario with a street which have more than 3 lanes is
needed the Pasubio scenario should be used.

Fig. 2 Andrea Costa traffic network in SUMO

Table 1 Scenario description
for Andrea Costa Area size of network 2.45 km2

Total number of edges 179

Number of edges with 1 lane 119 (*66 %)

Number of edges with 2 lanes 32 (*18 %)

Number of edges with 3 lanes 28 (*16 %)

Number of edges with 4 or more lanes 0

Total number of nodes 112

Traffic lights 7

Induction loops 60

50 L. Bieker et al.

2.3 Andrea Costa and Pasubio Joined Scenario

Both scenarios, Andrea Costa and Pasubio, cover only a relatively small area.
Therefore, it was decided to generate one scenario composed of both. This scenario
was obtained by joining both given scenarios, as the areas they cover overlap
(Fig. 4).

The joined scenario with its larger size (see Table 3) provides more alternatives
for traffic simulations, for example routes directly from the stadium to the hospital
can be simulated. The network has more route choices and longer routes can be
evaluated.

Fig. 3 Pasubio traffic network in SUMO

Table 2 Scenario description
for Pasubio Area size of network 2.45 km2

Total number of edges 111

Number of edges with 1 lane 56 (*50 %)

Number of edges with 2 lanes 36 (*32 %)

Number of edges with 3 lanes 18 (*16 %)

Number of edges with 4 or more lanes 1 (*1 %)

Total number of nodes 65

Traffic lights 8

Induction loops 64

Traffic Simulation for All: A Real World Traffic Scenario … 51

3 Development of the Scenarios

The conversion of the originally given scenarios (to make them be readable by
SUMO) included different working stages. First it was needed to import the traffic
road network into a SUMO readable format. Next, the traffic lights have been
integrated into the simulation network. Finally, the traffic demand was generated.
The development steps are described in the following.

Fig. 4 Andrea Costa and Pasubio traffic network in SUMO

Table 3 Scenario description
for Andrea Costa-Pasubio
joined scenario

Area size of network 4.15 km2

Total number of edges 268

Number of edges with 1 lane 165 (*62 %)

Number of edges with 2 lanes 63 (*24 %)

Number of edges with 3 lanes 39 (*15 %)

Number of edges with 4 or more lanes 1 (<1 %)

Total number of nodes 159

Traffic lights 13

Induction loops 106

52 L. Bieker et al.

3.1 Traffic Road Network

The Andrea Costa and Pasubio scenarios were supported as VISSIM scenarios.
They describe a slightly pruned road network that does not contain some smaller
streets and/or pathways. Traffic lights are defined, including their positions and
signal plans.

Although VISSIM is a microscopic simulation just as SUMO, it follows a
completely different concept of modelling the road network. The main difference is
that VISSIM is not using a graph concept, consisting of nodes (intersections) and
edges (streets/roads) as SUMO does, but only of roads and connections between
them. This difference makes importing VISSIM networks cumbersome and the
results must often be edited by hand after an initial conversion. Figure 5 shows the
differences between the network representation in Vissim and SUMO.

Because SUMO only supports the import of VISSIM networks stored in German
language (at that time, the VISSIM format used a man-machine language for net-
work descriptions) the supported networks had to be translated from English into
German, first. The complete workflow of importing networks from VISSIM was as
shown in Fig. 6. The manual validation step shown in this figure was done by
comparing the network with images from Google Earth [6] and Google Maps [7],
and with the supported junction telemetries. While the number of lanes was correct
for all edges within the VISSIM networks, manual corrections were done on the
connections between lanes over intersections.

After the road network was successfully imported into SUMO, bus lanes were
integrated into the traffic network. Bus lanes (lanes or even roads which must not be
used by passenger vehicles) were not modelled within the original VISSIM network
explicitly. After the networks have been prepared initially, this information was
manually inserted into them. Rather surprising was the fact that within the given
VISSIM scenarios, some passenger vehicles were using lanes dedicated to busses
only. This was clarified by the municipality of Bologna: the given scenarios rep-
resent the reality—including passenger car drivers which ignore the prohibitions.

While the work on the Andrea Costa and the Pasubio scenario was finished at
this stage, the generation of the “joined” scenario required further steps. For being

Fig. 5 Representation of an intersection in Vissim and SUMO; a as traffic area in Vissim, b as
edges/connections graph in Vissim, c as nodes/edges graph in SUMO

Traffic Simulation for All: A Real World Traffic Scenario … 53

joined, both networks must use distinct ids for naming nodes (intersections) and
edges (roads). The most straight forward approach was to use a prefix for these
structures. All edges’ and nodes’ IDs of both networks were changed by adding an
“a” and a “b”, respectively. For the used networks, their overlapping parts—roads
and intersections included in both—were determined. For each combination, it was
decided which shall be kept and the according one from the other network was not
included in the final, joined network. The unused edges were removed from the
according edges file.

3.2 Traffic Lights

For including traffic lights into an existing road network the positions of the traffic
lights as well as the definition of the signal time plans are needed. The municipally
of Bologna provided in addition to the road network also definitions of traffic lights
given as telemetry files and signal time plans. To import them, a script has been
written that reads information about lane-based linkage (obtained from the telem-
etry files) and time plans (obtained from the signal time plans) and build traffic light
descriptions SUMO can read.

It should be said that the city of Bologna has installed the UTOPIA system for
traffic light control. This traffic light control system adapts timing and in some cases

manual
verification and

adaptation

German
Vissim-files

(*.inp)

NETCONVERT
XML-

descriptions

NETCONVERT

SUMO
network

change descriptions if necessary

quality sufficient

end

English
Vissim-files

(*.inp)

Script

Fig. 6 Workflow of VISSIM network import

54 L. Bieker et al.

even the order of traffic light phases to the current demand on the controlled roads.
The supported data set included 55 telemetry files and 39 signal time plans in the
whole area of Bologna.

3.3 Traffic Demand

Likewise the traffic network and the traffic lights also the traffic demand for the
scenarios were given by the municipal of Bologna. Passenger vehicles are described
in an aggregated manner in both VISSIM simulations: the numbers of vehicles to
insert are given for certain roads located at the network’s border. Following their
initial route, the vehicles pass certain “routing decision points” at which they get a
new route assigned randomly, according to a given distribution. This method is
used for reproducing the turn percentages at intersections measured in reality.

The demand for the joined network was built using a script written especially for
this task. The script reads both route files obtained from the import of the original
VISSIM files. These files contain vehicles with their departure times and routes. At
first, all vehicles from both files which are starting at roads that are not at the
boundaries of the joined network are kept in memory for later use. Then, the script
processes all vehicles which start at the network’s boundaries. Each vehicle’s route
is examined by going through its edges. If an edge occurs in the route which was
included in both networks, routes starting at this edge are retrieved. The route’s
continuation is then chosen randomly from these routes.

In addition to the passenger vehicles, all three scenarios include a description of
the public bus transport in the regarded area. Both, positions of the bus stops as well
as bus routes and schedules are given and were imported into the SUMO scenarios.

3.4 Additional Traffic Infrastructure Data

The resulting networks replicate the scenario descriptions from the VISSIM files. In
addition, induction loops were added to the SUMO scenarios. Their positions were
retrieved from the GIS database.

4 Demand Evaluation

For the demand generation and evaluation the municipality of Bologna supplied
two datasets of detector measures. The first one contains measures from the days
11.11.2008–13.11.2008, Tuesday to Thursday. Choosing these days is conforming
to the fact that Tuesday to Thursday are usually the only “common” weekdays in
means of traffic. Mondays and Fridays have different traffic shapes; on Mondays,

Traffic Simulation for All: A Real World Traffic Scenario … 55

the shape is differing due to the slightly later departure of passenger traffic and
in some countries due to prohibitions of heavy delivery traffic on Sundays. On
Fridays, the afternoon peak is often earlier, due to earlier end-of-business times.

The given measures were aggregated into intervals of half an hour. 636 detection
sites were listed, where about 90 detectors (11.11.2008: 95, 12.11. 2008: 92, 13.11.
2008: 91) reported an error marked as the value “−1”. Each of the given time line
values represents the number of vehicles that passed the detection site. Because the
detection is done using single induction loops, no speed information is available.
Also, no distinction between different vehicle classes is given. Each detection site
may cover more than one lane. The detector data is of a very good quality compared
to other sites where the number of errors in the detector data is known to be higher.

The second data set contains the measures for the same days, aggregated into
intervals of 5 min. The quality corresponds to the data set aggregated into 1800s.
Unfortunately, the detectors are measuring only the amount of vehicles which are
passing the detectors within 5 min there are no other values like speed or vehicle
type available.

Generally, the measured traffic flow looks similar to the detector values which
are shown in Fig. 7. There is only a small amount of vehicles driving during nights.
In the morning hours the traffic flow is rising until there is a morning peak (between
8 a.m. and 9 a.m.). The traffic flow decreases afterwards a little bit and remains at a
certain level. In the evening the traffic flow is rising to another peak.

For the validation of the simulation the real world measurements were compared
to the results of the simulation. As mentioned, only the flows over the detectors
were given, and were used for the evaluation. In the following, comparisons of the
demands imported from VISSIM files against measures from the real world are
presented. Table 4 shows the comparison of the average values of real measures
from all detectors within the according area for the time between 8:00 and 9:00 p.m.
against the ones obtained from the simulation using the demands imported from
VISSIM. The optimal results would be a bisectrix.

Fig. 7 Example traffic flow of 3 days (11.11.2008, 12.11.2008, 13.11.2008)

56 L. Bieker et al.

Table 4 Comparison of the simulation results and the measured values from induction loops

Pasubio: one hour simulated

Andrea Costa Pasubio joined: one hour

Andrea Costa: one hour simulated

Traffic Simulation for All: A Real World Traffic Scenario … 57

As a result the following can be seen: The overall numbers of vehicles which are
simulated in SUMO are relatively well, but it can be seen that the simulation has
problems to simulate the traffic demand in the joined scenario within 1 h. The
reason is very straight forward: with a growing areal size of the scenario, the
vehicles need a longer time to populate it and cross the available induction loops.
As a conclusion, it should be stated that a certain amount of simulation time is
needed to fill the scenario with vehicles, before a stable traffic state is reached. This
simulation “warm-up” is a known need within traffic simulations. Usually, double
of the maximum travel time through the network is used [8].

5 User Guidelines

The Bologna scenarios are a good way to start traffic simulation based research
with. The provided network, traffic demand and additional infrastructure data is
broad and a lot of work was done to improve the simulation quality. For first
simulations with real world data the scenarios can easily be used with less effort.
But the use of the scenarios is also limited. First, the demand is given for only 1 h.
Considering a warming up phase of the simulation, there are only approximately
30 min of simulation which can be used. Furthermore, the network sizes of the
scenarios are relatively small so the route choices in the scenarios are very limited.
Therefore rerouting algorithms are not recommended to be simulated with the
provided scenarios.

6 Examples of Usage

The scenarios have been used to study different research questions. Some of them
are briefly described here to draw a picture of the possible usage of the simulation
scenarios.

6.1 Bus Lane Management

In the iTETRIS project an application for traffic management was evaluated to open
bus lanes for heavy occupied vehicles in case of a big event. For generating a higher
traffic demand the induction loop data from 24 March 2010 when a football match
took place was compared to the traffic flow on the day 1 week in prior. Additional
routes were generated from the analyzed data set [9] (see Fig. 8). If a higher traffic
demand was detected in the simulation, bus lanes were opened also to passenger
vehicles.

58 L. Bieker et al.

6.2 Emergency Vehicle Evaluations

The Bologna scenarios were used for evaluation of the emergency vehicle priori-
tization. Emergency vehicles are sending their position and their desired route via
V2I communication to the road side units. The traffic lights of the route of the
emergency vehicle is set to green when the emergency vehicle is approaching and
to red for all other traffic participants. After the emergency vehicle has passed the
traffic light it continues its normal operation [10].

6.3 Pedestrian Modelling

In the COLOMBO project SUMO was extended by a pedestrian model [11]. The
Bologna scenarios were used to test the new model with real world intersections
and traffic lights.

7 Further Research

The Bologna scenarios provide traffic networks, traffic demands and representations
about the traffic infrastructure to simulate a real world scenario in SUMO. But still
there are open issues which should be improved. The multi-lane roundabouts
produce unrealistic traffic jams.

Fig. 8 Comparison between a normal Wednesday (17.10.2010; dashed line) and one at which a
football match took place (24.10.2010; continues line) as measured by one chosen induction
loop. The vertical lines denote the begin and the end of the football match

Traffic Simulation for All: A Real World Traffic Scenario … 59

On the one hand side, by making the scenario available to the public researcher
can use these scenarios for their purposes and on the other hand side they can
improve the quality of the scenarios by their corrections and enhancements.

References

1. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications
of SUMO—simulation of urban mobility. Int J Adv Syst Meas 5(3 and 4):128–138

2. Simulation of Urban MObility (2014). www.sumo.dlr.de. Accessed 6 Jan 2015
3. iTETRIS (2014). http://www.ict-itetris.eu/10-10-10-community/. Accessed 13 Oct 2014
4. iTETRIS Consortium (publisher): iTETRIS Deliverable 3.2—Traffic Modelling: ITS

Algorithms, April 2010
5. PTV AG (2014) PTV AG web site. http://www.ptv.de/. Accessed 11 Sept 2014
6. Google (2010) Google Earth web site. http://earth.google.com.
7. Google (2010) Google Maps. http://maps.google.com/.
8. Antoniou C, Barcelo J, Brackstone M, Celikoglu HB, Ciuffo B, Punzo V, Sykes P, Toledo T,

Vortisch P, Wagner P (2014) Traffic simulation: case for guidelines. http://publications.jrc.ec.
europa.eu/repository/bitstream/111111111/30680/1/2014_multitude_guidelines_on-line.pdf.

9. Bieker L, Krajzewicz D (2011) Evaluation of opening bus lanes for private traffic triggered via
V2X communication. In: Proceedings of the first forum on integrated and sustainable
transportation systems (FISTS), 29 June–1 July 2011, Vienna, Austria

10. Bieker L (2011) Emergency vehicle prioritization using vehicle-to-vehicle communication.
Young researchers seminar, 8–10 June 2011, Copenhagen, Denmark

11. COLOMBO consortium (publisher): COLOMBO project’s Deliverable D2.1: “Policy
Definition and dynamic Policy Selection Algorithms”, November 2013

12. OpenStreetMap (2014) http://www.openstreetmap.org. Accessed 30 Sept 2014

60 L. Bieker et al.

http://www.sumo.dlr.de
http://www.ict-itetris.eu/10-10-10-community/
http://www.ptv.de/
http://earth.google.com
http://maps.google.com/
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30680/1/2014_multitude_guidelines_on-line.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30680/1/2014_multitude_guidelines_on-line.pdf
http://www.openstreetmap.org

Can Road Traffic Volume Information
Improve Partitioning for Distributed
SUMO?

Ulrich Dangel, Quentin Bragard, Patrick McDonagh,
Anthony Ventresque and Liam Murphy

Abstract Microscopic vehicular simulations can be computationally intensive due
to the sheer size of the road network and number of vehicles. One solution is to
parallelize the simulation through distribution and concurrent execution of the
scenario being simulated. To enable distributed simulation of an area, the partitioning
of the map into different areas for parallel execution on different nodes is required.
How the map is partitioned is also a critical factor for distributed simulation, as a poor
partitioning can lead to a communication overhead and/or an imbalance of workload
among the computing nodes. In this paper, we ask: Can traffic volume information
improve the classical structural partitioning algorithms? In the context of improving
distributed simulation in SUMO, we propose a modification to three existing
mechanisms for road network partitioning, SParTSim, Smart Quadtrees and
Quadtrees, with the aim of creating more balanced partitions (in terms of workload)
derived from traffic volume data.

Keywords Distributed simulation � Road partitioning � Graph partitioning �
SUMO

U. Dangel � Q. Bragard (&) � A. Ventresque � L. Murphy
Lero@UCD, School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland
e-mail: quentin.bragard@ucdconnect.ie

U. Dangel
e-mail: ulrich.dangel@ucdconnect.ie

A. Ventresque
e-mail: anthony.ventresque@ucd.ie

L. Murphy
e-mail: liam.murphy@ucd.ie

P. McDonagh
Lero@DCU, School of Electronic Engineering, Dublin City University, Dublin, Ireland
e-mail: patrick.mcdonagh@dcu.ie

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_5

61

1 Introduction

Urban populations are growing dramatically: for instance, the aggregated annual
population increase of six major developing-country cities is already higher than
Europe’s total population [1]. With the increase in the size of cities, traffic simulation
requires more computation time in order to simulate more individual vehicles. This is
particularly the case for microscopic traffic simulation, which can offer interesting
insights to its users, but has a high computation time. Microscopic traffic simulation
can accurately model urban traffic patterns and evaluate different scenarios and their
impact on traffic, e.g. placement of additional bus stops at a route, traffic light
sequencing, etc. By using microscopic simulation, stakeholders can directly observe
the impact of their potential decisions on the traffic. As stated above, microscopic
simulation models are generally slow, as they need to process a large number of
elements (e.g., individual cars). A standard solution to reduce the overall required
computation time is to parallelize and distribute the simulation.

Classically, parallel or distributed systems split the problem space into different
partitions, i.e., sub problems for concurrent execution, this may involve synchro-
nisation between nodes if data from one partition needs to be moved to another
partition. For vehicular simulation, these partitions are typically based on the road
network or the spatial map—we call this style of partitioning, structural. The par-
titioning algorithms are evaluated using two main metrics [2]: (i) the balancing of
computational workload across the nodes that run the partitions; (ii) the com-
munication overhead generated by the distribution.

Distributed simulations are currently an active area of research interest within the
SUMO community. There has been recent work to provide a multi-agent system on
top of SUMO [3] by combining it with an existing multi-agent development
framework [4]. Another approach for distributed SUMO simulation is dSUMO [5],
a framework that interconnects SUMO instances, each running separate, but spa-
tially connected areas of a map. Both solutions require mechanisms to divide the
road-network into different areas for parallel processing on their respective nodes.

In this paper, we propose an enhancement for distributed simulation using
SUMO by using traffic volume data to improve the load balancing of the individual
partitions and minimizing the communication overhead, in order to reduce the
overall required computation time of the distributed simulation. We evaluate this
idea by comparing results against those obtained for SParTSim [6], Quadtrees [7]
and Smart Quadtrees [8].

2 Related Work

Partitioning in general is a key concept in distributed and parallel computing. In
MapReduce [9] the mapping is a partitioning which is responsible for distributing
the input data to different processes. This partitioning step enables the distributed
and parallel execution of the work.

62 U. Dangel et al.

Other, more domain-specific partitioning schemes, provide guidance how to
select and choose appropriate partitioning algorithms.

Space partitioning, for example, is often used in computer graphics [10–12] and
visualisation. An overview about different space partitioning algorithms was pro-
vided by the authors in [13]. Here the authors discussed Quadtrees, unconstrained
k-d trees, constrained k-d trees and region growing with region growing performing
best for their simulation. Space partitioning is widely used in distributed or parallel
computation, such as Massively Multiplayer Online Role-Playing Games
(MMORPG) or Raytracing [14]. Employing a binary space partitioning mechanism,
such as Quadtrees, will lead to the creation of a spatial hierarchy. This hierarchy can
be used to divide a city, and assign pieces of it (partitions) to different nodes.
Another approach for the space partitioning of cities is to reuse existing boundaries
such as postal districts. The problem with both approaches is that they typically do
not use the road-network for the partitioning but only spatial information. With
regards to a distributed vehicular simulation, this can lead to uneven distribution of
workload. This in turn, will lead to decreased simulation performance as a result of
uneven processing times for simulation steps, resulting in some nodes waiting for
others when synchronisation is required.

Graph-partitioning on the other hand, does not consider the space but uses the
graph-structure of the problem. Graph partitioning has been used to parallelize
clustering of documents [15], parallel factorisation of sparse matrices [16] as well as
workload distribution [17]. Graph partitioning has been originally implemented
with heuristics [18] and was later extended to utilize genetic-algorithms [19].
Graph-growing, is a refinement and extension [2] of classical graph partitioning and
expands individual partitions in each step. Region growing, similar to graph-
growing, has been shown to be best solution for crowd simulations [13]. Graph
partitioning is widely used [20, 21] in different domains such as workload distri-
bution, task scheduling and in the VLSI [22] domain. Using graph partitioning for
vehicular simulations solves multiple issues encountered with space partitioning,
such as uneven distribution of roads in a partition as graph partitioning works on the
street level and not on the map. Taking road properties into account can further
refine graph partitioning, i.e. edges provide attributes about the significance of a
particular street. By using additional attributes of street-data, a graph partitioning
targeted for road networks can be derived, such as SParTSim.

3 Experimental Evaluation

In order to use input data for the different partitioning algorithms, we have to extract
volume data to provide the partitioning. In real-world scenarios, such data can be
extracted from existing Traffic Management Systems, such as SCATS [23] or

Can Road Traffic Volume Information … 63

IRIS.1 In this work, we use the dataset provided by TAPAS Cologne [24] with
SUMO to extract the volume data. Below, we describe the formula used for pro-
viding a weight for nodes in the road graph based on traffic data, as well as
modifications to the existing algorithms.

3.1 Volume Extraction

As some of the algorithms used are graph based, we provide a weight per node
instead of a weight per edge. This allows us to use the same weighting for all
algorithms, whether they are graph or space-based. We use a weighted sum as
shown in (1), to calculate the weight of a node, Nw, with ct being the total number
of cars present at step t, ctn the number of cars at node n at step t.

Nw ¼
X

wt
ctn
ct

: ð1Þ

where the weight wt is defined as the number of cars in this step over the maximum
number of observed cars (in any one step), as shown in (2).

wt ¼ ctn
cmax

: ð2Þ

By using (2) we ensure that steps with a low traffic volume have a lower impact
on the overall weight of a node.

3.2 Modification of Quadtrees

Quadtrees are a space-dividing partitioning method, often used to divide two-
dimensional spaces. Quadtrees divide a space recursively into sub-regions, until a
specific stop condition is met, e.g., the space is divided evenly or, into the required
number of partitions.

The original version of the used Quadtree algorithm uses the sum of the street
size (street length * number of lanes) to select the partition to divide. We modify
Quadtrees to not use the sum of the street size but the sum of the volume data from
Sect. 3.1 above, in order to select the partition to divide further. By using the sum of
the volume data for each partition, we choose the area with the highest weight to
divide further.

1 http://iris.dot.state.mn.us/.

64 U. Dangel et al.

http://iris.dot.state.mn.us/

3.3 Modification of Smart Quadtrees

Smart Quadtrees, also referred as grid based partitioning, are an extension to
Quadtrees where the map is initially divided into small, independent grids. These
grids are then merged together according to some heuristic, based on the value of an
individual region. This differs to Quadtrees as Quadtree divides a map into 4 similar
regions, while Smart Quadtrees divides a map into small grids and merges them
until all grids are merged (Fig. 1).

The unmodified version of the Smart Quadtree implementation uses the street
size (street lengths * number of lanes) as a heuristic. We modify Smart Quadtrees
by changing the heuristic to use the sum of the volume data, as described in
Sect. 3.1, for each grid. The difference between the two implementations is shown
in Fig. 2.

Fig. 1 Output of the modified quadtree algorithm (left) and unmodified quadtree (right) with ten
partitions or three divisions

Fig. 2 Output of the modified smart quadtree algorithm (left) and unmodified smart quadtree
(right) with eight partitions

Can Road Traffic Volume Information … 65

3.4 Modification of SParTSim

SParTSim uses the concept of creating a domain-specific partitioning algorithm for
road networks by combining space partitioning (region-growing) with graph parti-
tioning. By utilizing both space-, and graph-partitioning methodologies, SParTSim
aims to produce better partitions for vehicular distributed simulations. SParTSim
determines the starting point of each partition by choosing the node with the highest
degree. After the starting point for the individual partitions is selected, each partition
grows, starting from the starting point. SParTSim grows the partitions based on road-
network attributes, such as number of lanes.

As unmodified version of SParTSim determines the starting point of a partition
by choosing the nodes with the highest degrees, the starting point of a partition
impacts the shape of an individual partition as the partition starts to grow around
this point until it can’t grow any more as a result of all areas now belonging to other
partitions, i.e. all areas on the map are covered. SParTSim then trades road seg-
ments between partitions to minimize the road cuts between partitions and to
achieve load-balanced partitions. The SParTSim algorithm only uses static graph
properties to achieve evenness of road topology between partitions. In order to do
this it uses a heuristic to determine the workload for the individual partitions.
However, SParTSim considers that if the road topology is balanced between par-
titions, then the workload will be similar, irrespective of the actual traffic volume.
Therefore, we modified the starting point selection in SParTSim to use the nodes
with the highest traffic volume (as determined in Sect. 3.1) instead of using the
nodes with the highest degree. Figure 3 shows the partitioning result of both the
unmodified and modified version of SParTSim.

Fig. 3 Output of the modified SParTSim algorithm (left) and unmodified SParTSim (right) with
eight partitions

66 U. Dangel et al.

3.5 Simulation of a Distributed Simulation

In this paper we are only interested in the impact of urban data on the quality of the
partitioning, not on the distributed simulation itself. For more details on the latter,
we refer the reader to our previous work on a distributed version of SUMO [5]. We
have then decided to focus on the partitioning and only ‘‘simulate’’ the distributed
simulation: TAPAS Cologne gives us the position of every vehicle at any given
time, so that we are able to know precisely when a vehicle crosses the border of a
partition for every partitioning schemes; this allows us to run SUMO for each
partition and to manage the passing of vehicles in an ad hoc manner, without using
the communication and synchronisation mechanisms of a real distributed simula-
tion. It is important to tell again that while we avoid here all the characteristics of a
distributed simulation (e.g., communication time and synchronisation mechanism),
this does not have any impact on the focus of our study, i.e., an evaluation of the
improvement of using urban traffic data for the partitioning in a distributed
simulation.

4 Evaluation

In this section, we evaluate the use of traffic volume data for Quadtrees, Smart
Quadtrees and SParTSim. We divide the city for both Smart Quadtrees and
SParTSim into four and eight partitions while we use for Quadtrees four and ten
partitions. The visual partitioning outputs for Quadtrees with 10 partitions is shown
in Fig. 1, with the outputs for Smart Quadtrees with eight partitions is shown in
Fig. 2 and those for SParTSim are shown in Fig. 3.

4.1 Metrics

In the first part of our evaluation we focus on two metrics, communication overhead
and workload balance. For communication overhead, we calculate the number of
messages sent between partitions in each step. These messages represent the
movement of a vehicle on a road segment, which is divided across partitions. We
can calculate this with SUMO by extracting the position of each vehicle in each
step. If a street intersects or touches a partition border, it is part of multiple parti-
tions. This ensures that states are shared between different nodes. If a vehicle is on a
road segment, which is divided across partitions, a message has to be sent to the
neighbouring partition to transfer the state of the vehicle across to the new partition.
As each message has to be communicated and processed by dSUMO, the lower the
number of messages, the better. The results for this metric are provided below.

Can Road Traffic Volume Information … 67

To evaluate the workload balance between partitions, we calculate the Simpson
Diversity Index [25], as shown in (3), with Cp being the cars in partition p, ct the
total number of cars in step t and P the number of partitions. The result is between 0
and 1 with 1 being a perfectly load balanced system and 0 being the opposite for
unbalanced workloads between partitions.

Dt ¼ 1
P

p¼0 ðCp=CtÞ2P
: ð3Þ

In the second part of our evaluation we simulate the use of a distributed simu-
lation to measure the time required to process each simulation and the real time
factor. In a conservative distributed simulation, the slowest node determines the
time required to run the whole simulation. The more the simulation is load-bal-
anced, the smaller the difference will be between the slowest and the fastest node.
The second metric used is the average time required by a mock distributed simu-
lation to be executed. The third metric is the number of Vehicle Per Second (VPS)
which is measured by adding the number of vehicles processed at each step divided
by the runtime. The last metric is the real time factor correspond to how much faster
the simulation is compared to the real time. For instance, a real time factor of 10
means that the simulation execute 10 s of simulated time in 1 s of real time.

5 Results

We use the TAPAS Cologne [24] 0.17 scenario to evaluate our result. TAPAS
Cologne is a simulation describing the traffic of Cologne on a workday between
06:00 and 08:00 am. The data was captured as part of the TAPAS project [26] and
has been refined multiple times. The scenario consists of 7,200 steps, with one step
representing one second in real-time. TAPAS Cologne contains more than 250,000
vehicles traces for the 2 h period.

Figures 4 and 5 display the number of messages between partitions per simu-
lation step for Quadtrees, Smart Quadtree and SParTSim. We don’t distinguish
between the modified and unmodified Quadtree for four partitions, as both results
are exactly the same.

Due to the regular, rectangular shape of the partitions the Quadtree shows the
best communication properties. In all cases, though, the modified versions of the
algorithms show increased levels of communication, compared to the unmodified
versions. The modified Quadtree algorithm selects the city centre (Fig. 1) for further
partitioning, resulting in additional communication overhead. For the Smart
Quadtree algorithm, our modified version created some small partitions (Fig. 2),
causing additional communication overhead. Our modified algorithms show higher
communication overhead compared to the unmodified versions. This is expected as
our modifications focus on load balanced partitions and does not optimize with
regard to communication. However, as can be seen below (in terms of workload

68 U. Dangel et al.

balance) our algorithms achieve a higher level of balancing between partitions,
which should provide higher utilisation across all compute nodes as delays incurred
by waiting for simulation should be decreased.

Fig. 4 Number of messages sent per simulation step for quadtrees (left) and smart quadtrees
(right). Modified and unmodified versions are both shown

Fig. 5 Number of messages
sent per simulation step for
SParTSim, both modified and
unmodified for 4 and 8
partitions

Can Road Traffic Volume Information … 69

SParTSim has a trading phase, which aims to reduce the communication over-
head. This behaviour can be observed in Fig. 5 for the unmodified versions, which
perform better than the Smart Quadtree. Our modified initial starting point selection
for SParTSim caused the increased communication overhead. This shows, that even
though SParTSim has a trading mechanism to reduce the communication overhead,
the initial point selection has a large impact on the resulting partition.

For the case of workload balance between partitions, Table 1 shows the prop-
erties of the Simpson diversity index (the higher the number, the better) over the
complete simulation for all 3 algorithms. For both Quadtree and Smart Quadtree our
modification provides better load-balanced partitions compared to the unmodified
versions of the same algorithm, e.g. for the Smart Quadtree our modifications are
twice as good as the unmodified versions. Our modifications to SParTSim on the
other hand, provide slightly worse results compared to the unmodified algorithms.
This is due to the trading phase of SParTSim, as we did not adjust the trading phase
but only the initial starting point selection.

Comparing the different algorithms to each other shows that our modified Smart
Quadtree produces more even partitions than the other partitioning algorithm. Our
modified version of the Quadtree took 1 h 13 min to compute 10 partitions, Smart
Quadtree took 1 h 22 min to compute eight partitions while SParTSim took 5 h
14 min for eight partitions on a 4 Core I 7-2,600 with 16 GB of memory. As shown
in [27, 28] load balanced simulations are a required to optimize the overall com-
putation time.

The modified Smart Quadtree provides more balanced partitions compared to the
other algorithms. Furthermore, the modification to Quadtree and Smart Quadtree
provide more balanced partitions compared to unmodified versions of their algo-
rithm. In addition to providing more balanced partitions, we can observe that for
Smart Quadtree, the time taken to compute these partitions is significantly lower,
compared to SParTSim. In the case of Quadtree, the time taken to compute the
partitions is significantly lower than SParTSim (and Smart Quadtree) but at the

Table 1 Simpson diversity index for the different partitioning algorithms over the simulation

Name Min Median Mean Max

Quadtree 4 partitions 0.3680 0.7190 0.7318 0.8540

10 partitions—modified 0.3570 0.6070 0.6021 0.6330

10—unmodified 0.2270 0.3530 0.3674 0.5540

Smart quadtree 4 partitions—modified 0.5610 0.9000 0.9157 0.9940

4 partitions—unmodified 0.358 0.431 0.427 0.568

8 partitions—modified 0.4460 0.7760 0.7798 0.8550

8 partitions—unmodified 0.2840 0.3890 0.3889 0.4940

SParTSim 4 partitions—modified 0.4810 0.6650 0.6718 0.7340

4 partitions—unmodified 0.7210 0.7920 0.7854 0.8450

8 partitions—modified 0.4060 0.4540 0.4642 0.6430

8 partitions—unmodified 0.4710 0.6850 0.6573 0.7780

70 U. Dangel et al.

expense of workload balance. Our modification to SParTSim on the other hand, did
not provide better results, due to the unmodified trading phase. We expect that by
modifying the trading phase, the result for SParTSim will improve as well.

While Table 1 shows the theoretical benefits of using urban data for the parti-
tioning in terms of load balancing (i.e., Simpson Index), Table 2 presents some
experimental results from the simulation of the distributed simulation. The results
for Quadtree show that while the average time and the VPS stay stable for both
configurations, the runtime is divided by more than 2 for the modified methods,
using urban data, and the Real time factor is proportionally twice higher. Regarding
Smart QuadTree, the modified versions for 4 and 8 partitions get a runtime
improvement of respectively 13 and 22 %. While the average time and the VPS just
slightly vary, Real time factor is improved in the same way than runtime. As we
previously observed for the load balancing with the Simpson index, using urban
data to optimise SParTSim does not seem to improve the simulation time.

When we increase the number of partitions to 16, the results seem to show a
limited improvement. Despite increasing the number of partitions, QuadTree pre-
sents no improvement between 10 and 16 partitions for the modified version. Again
the modified SParTSim shows results a little bit worse than the original SParTSim
but the improvement due to the increase of the number of partitions goes from 6 to
15 %. On the other side, while the original Smart QuadTree achieves good results,
the modified version shows a slower runtime. This decrease in performance comes
from a bad choice of seeds. It appears that some seeds generated regions inside

Table 2 Execution time for every SUMO instances in the simulated version of a distributed
SUMO

Name Time(s) Avg time(s) VPS Real time
factor

Quadtree 4 partitions 247.46 107.75 78830.22 30.31

10 partitions—modified 104.78 47.388 71834.39 71.58

10—unmodified 223.52 44.12 75072.70 33.55

16 partitions—modified 103.1 30.08 35056.79 72.75

16—unmodified 198.11 27.86 83255.98 37.86

Smart
quadtree

4 partitions—modified 115.78 97.13 112691.76 64.78

4 partitions—unmodified 133.33 92.14 108292.90 56.26

8 partitions—modified 93.62 51.44 59541.65 80.12

8 partitions—unmodified 120.61 45.34 72850.18 34.80

16 partitions—modified 197.79 27.87 83389.63 37.92

16—unmodified 87.08 23.79 107091.92 86.13

SParTSim 4 partitions—modified 179.76 84.60 115305.59 41.72

4 partitions—unmodified 176.34 82.42 110353.29 42.53

8 partitions—modified 100.34 44.43 92839.74 74.75

8 partitions—unmodified 88.29 42.71 97958.16 84.95

16 partitions—modified 94.09 22.44 86193.98 79.72

16—unmodified 75.45 23.84 86593.48 99.41

Can Road Traffic Volume Information … 71

others and could not fully grow to form proper regions. As Smart QuadTree does
not have any trading phase, it creates in this case tiny regions inside others, pro-
cessing only few vehicles and spending most of their time communicating vehicles
with other partitions.

These results lead to two observations. Firstly, we can see that the runtime and
the Simpson Index match in most cases. The higher the Simpson Index is, the
smaller the simulation time will be. This observation reinforce us in thinking that
the Simpson Index is a good indicator of the load balanced state of a distributed
simulation. Moreover, as expected, the average time and the number of vehicles per
second prove to give no indication on the load balancing. Secondly, it looks like
there is a direct correlation between the smartness of an algorithm and the
improvement obtained with urban data: the smarter the algorithm, the smaller the
impact of the optimisation. Optimised Quadtree, Optimised Smart Quadtree and
SParTSim provide close results for 8–10 partitions.

6 Conclusion

In this paper we propose the of use volume data to improve road partitioning for
distributed simulations using SUMO. We modify three existing partitioning algo-
rithms to take volume data into account. In general, the volume data can be
extracted by a Transportation Management System for a city or by examining
results from previous simulations. We show the impact of volume data on the
individual partitioning algorithms for the partition topology, as well as the impact
on the distributed simulation by comparing communication overhead and workload
balance between the different algorithms.

We show that partition algorithms have a large impact for distributed simulation,
either providing workload balanced partitions or reducing the overall communi-
cation overhead. SParTSim, the algorithm trying to optimize for both cases, has a
long runtime making it impractical for dynamic load balancing. By using traffic
volume, we can improve the workload balance of simple spatial partitioning
algorithms, which could make them useful for dynamic repartitioning of large
simulations. This means that in order to be able to scale and distribute large-scale
simulations with dSUMO, the focus for dSUMO should be on the communication
overhead with external systems, as balanced partitioning has been shown reduces
the overall computation time. On the other side, we also show that the optimization
using traffic volume has its limitation and cannot make a simple algorithm such as
Smart QuadTree as reliable as a urban traffic dedicated partitioning algorithm such
as SParTSim.

Acknowledgment This work was supported, in part, by Science Foundation Ireland grant 10/CE/
I1855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie)

72 U. Dangel et al.

http://www.lero.ie

References

1. Abbott J (2013) State of the world’s cities: prosperity of cities, Australian Planner, pp 1–2
2. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J Sci Comput 20:359–392
3. Soares G, Macedo J, Kokkinogenis Z, Rossetti RJ (2013) An integrated framework for multi-

agent traffic simulation using SUMO and JADE. In: SUMO2013, The first SUMO user
conference, 15–17 May 2013—Berlin-Adlershof, Germany, pp 125–131

4. Bellifemine F, Bergenti F, Caire G, Poggi A (eds) (2005) JADE—a java agent development
framework. Multi-agent programming, Springer, pp 125–147

5. Bragard Q, Ventresque A, Murphy L (2013) dSUMO: towards a distributed SUMO. In:
SUMO2013, The first SUMO user conference, 15–17 May 2013—Berlin-Adlershof, Germany

6. Ventresque A, Bragard Q, Liu ES, Nowak D, Murphy L, Theodoropoulos G et al (2012)
SParTSim: a space partitioning guided by road network for distributed traffic simulations. In:
Proceedings of the 2012 IEEE/ACM 16th international symposium on distributed simulation
and real time applications, pp 202–209

7. Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta
Informatica 4:1–9

8. Wang Y, Lees M, Cai W (2012) Grid-based partitioning for large-scale distributed agent-based
crowd simulation. In: Proceedings of the winter simulation conference, p 241

9. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.
Commun ACM 51:107–113

10. Amanatides J Woo A (1987) A fast voxel traversal algorithm for ray tracing. In: proceedings
of EUROGRAPHICS, pp 3–10

11. Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning
trees. Image Process IEEE Trans 5:1610–1624

12. Torres E (1990) Optimization of the binary space partition algorithm (BSP) for the
visualization of dynamic scenes. In: Eurographics, pp 507–518

13. Steed A, Abou-Haidar R (2003) Partitioning crowded virtual environments. In: Proceedings of
the ACM symposium on virtual reality software and technology, pp 7–14

14. Freisleben B, Hartmann D, Kielmann T (1997) Parallel raytracing: a case study on partitioning
and scheduling on workstation clusters. In: Proceedings of the thirtieth hawaii international
conference on system sciences, 1997, pp 596–605

15. Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph
partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on
knowledge discovery and data mining, pp 269–274

16. Pothen A, Simon HD, Liou K-P (1990) Partitioning sparse matrices with eigenvectors of
graphs. SIAM J Matrix Anal Appl 11:430–452

17. Hendrickson B, Leland R (1995) An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J Sci Comput 16:452–469

18. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst
Tech J 49:291–307

19. Fjällström PO (1998) Algorithms for graph partitioning: a survey. linköping electron art
comput inf sci 3(10):1–37

20. Hendrickson B, Leland RW (1995) A multi-level algorithm for partitioning graphs. SC 95:28
21. Andreev K, Racke H (2006) Balanced graph partitioning. Theor Comput Syst 39:929–939
22. Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning:

applications in VLSI domain. IEEE Trans Very Large Scale Integr VLSI Syst 7:69–79
23. Lowrie P (1990) Scats, sydney co-ordinated adaptive traffic system: a traffic responsive

method of controlling urban traffic
24. SUMO (2014) TAPAS-Cologne dataset. http://sourceforge.net/apps/mediawiki/sumo/index.

php?title=Data/Scenarios/TAPASCologne
25. Simpson EH (1949) Measurement of diversity. Nature 163:688

Can Road Traffic Volume Information … 73

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Data/Scenarios/TAPASCologne
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Data/Scenarios/TAPASCologne

26. Varschen C, Wagner P (2006) Mikroskopische modellierung der personenverkehrsnachfrage
auf basis von zeitverwendungstagebüchern. Stadt Reg Land 81:63–69

27. Boukerche A, Das SK (1997) Dynamic load balancing strategies for conservative parallel
simulations. In: Proceedings of 11th workshop on parallel and distributed simulation, 1997,
pp 20–28

28. Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J et al (2005) New
challenges in dynamic load balancing. Appl Numer Math 52:133–152

74 U. Dangel et al.

Part II
Modelling and Processing

A Situational Awareness Approach
to Intelligent Vehicle Agents

Vincent Baines and Julian Padget

Abstract As an increasing number of technological developments are made in the
field of autonomous vehicles, the question of what intelligent system(s) will be
placed around these vehicles both for the pursuit of individual goals and confor-
mance to regulations as part of a wider collective of vehicles becomes pertinent,
especially in the context of a mixed environment of autonomous and human con-
trolled vehicles. The requirement to conform both to the law and with social
conventions, in unpredictable circumstances, poses the problem of how to encode
such knowledge. This paper adopts a Situational Awareness approach to agent
knowledge, from low level perceptions, through to high level projection of future
events, and explores a number of traffic scenarios where agents adopt different plans
based on expected future states. A variant on such reactions is also presented, where
the use of institutional governance frameworks is adopted to enforce certain
behaviour, offering a ‘late binding’ mechanism for socially complex situations.

1 Introduction

Developments in the field of autonomous vehicles are already visible on the roads
of the world and likely to increase in both quantity and importance with time.
Having been demonstrated operating individually (vehicles such as Google’s [1]
and more recently Nissan’s [2]) as well as collectively in convoys [3], the question
is raised of how can groups of intelligent vehicles act together in order to achieve:
(i) their own goals, (ii) those of the larger collective, and (iii) those of society as a
whole?

V. Baines (&) � J. Padget
University of Bath, Bath, UK
e-mail: v.f.baines@bath.ac.uk

J. Padget
e-mail: j.a.padget@bath.ac.uk

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_6

77

We start from the assumption that some communication between vehicles is a
necessity (and an inevitability) to facilitate coordination, an assumption supported
by a recent announcement from the US National Highway Traffic Safety Admin-
istration (NHTSA) [4] that Vehicle to Vehicle (V2V) communication devices may
become mandatory in a year. With such technology set to enable V2V communi-
cation, there follows the consideration of how much information needs to be
exchanged in order to manage cooperation and coordination between vehicles. We
consider this issue in the context of Endsley’s [5] Situational Awareness work, that
is, “the perception of the elements in the environment within a volume of time and
space, the comprehension of their meaning and the projection of their status in the
near future”. This provides a framework in which to consider knowledge exchange
between system components, that is, ‘low level’ perception data (e.g. a vehicle’s x,
y position) through to ‘high level’ projection considerations (e.g. given speed and
orientation, there will be a collision with that detected vehicle).

Given such an environment, it becomes possible to explore what levels of data
(quantitative, qualitative) and communication (high frequency, low frequency) are
effective in resolving complex interactions between vehicles. We can also take
account of social conventions (e.g. in a given context, what does a flash of head-
lights indicate) as well as regulation (e.g. at red traffic lights with an emergency
vehicle approaching, what action to select).

To investigate these questions, we have built a distributed framework,
connecting intelligent agents (implemented using the Jason1 [6] platform), a rich
simulation environment (SUMO [7]), data analysis tools, plus system and domain-
specific visualization tools, that allows components to publish and subscribe to
information as required. Through the selection of appropriately abstract message
types, components are able to process and react to information regardless of
whether the data originates from the real world, or a simulation. SUMO is used to
provide a realistic traffic and vehicle simulation component, with an intelligent
agent layer controlling representations of autonomous vehicles, in order to explore
what interactions between ‘vehicles of the future’ and ‘vehicles of the past’ may
look like. This is coupled with an institutional framework “InstAL”2 [8], capable of
issuing obligations to these vehicles in an attempt to maximise the broader col-
lective needs and resolve complex social situations. Finally, the simulation is based
as far as possible on real world information, using Open Source Map (OSM) data to
build 3D models and SUMO maps, combined with realistic traffic flows. For this
aspect, data was used from the UK Highways Agency Traffic Flow Database
System (TRADS [9]), where vehicle trips for a section of the M25 motorway over a
15 min period have been extracted, and are used to build flows in SUMO.

In summary, the contributions of this work are: (i) extending the scope of vehicle
control to incorporate the use of intelligent agents (ii) integrating open map data
to allow geographically situated simulations and visualizations (iii) utilizing

1 Jason agent platform, http://jason.sourceforge.net, accessed 19th July 2014.
2 InstAL institution framework, http://www.cs.bath.ac.uk/instal/, accessed 8th September 2014.

78 V. Baines and J. Padget

http://jason.sourceforge.net
http://www.cs.bath.ac.uk/instal/

real-world vehicle data to reproduce actual initial conditions, and (iv) capturing
conventions and regulations in institutional models to provide guidance to vehicle
agents.

2 Research Background

As discussed in Sect.1, this work attempts to adopt themes from Endsley’s [5]
Situational Awareness (SA) work in knowledge representation and exchange. This
work considers Endsley’s concepts of perception, comprehension and projection as
transitions between ‘low level’ data at the perception phase (e.g. a vehicle’s xyz
location) through to ‘high level’ data at the projection phase (e.g. an upcoming traffic
light will be red when arrived at, given current speed and current state of light).

The Belief-Desire-Intention (BDI) [10] model is used in the intelligent agents
implemented in this work, allowing some analogies to be drawn between SA levels
and BDI (e.g. low level beliefs to agent perceptions, high level projections to agent
plans). The Jason [6] multiagent platform is used for the agent component of the
work, integrated into the “Bath Sensor Framework” (BSF)3 [11] which forms the
simulation backbone.

Earlier work [12] considered Hourizi’s [13] findings (identifying relationships
between aircraft accidents and lack of SA) as a motivation to improve shared
knowledge between vehicle convoys; in essence to communicate less but under-
stand more. This theme is developed further as any communication network will
have some performance limits, and as the results presented later in Sect. 3 show,
limitations have been identified with the simulation framework deployed here, that
affect the ability of agents to perform their tasks. Thus, there is a need to com-
municate both at an appropriate level (e.g. within the SA context) and at an
appropriate rate.

Effort to explore cooperative vehicle communication seems timely, with
increasing progress in vehicle convoys such as the ‘SAfe Road TRains for the
Environment’ (SARTRE) project [3] demonstrating the ability of vehicles to
function as vehicle platoons. Continued announcements of increasingly sophisti-
cated autonomous vehicles such as Google’s car [1], the Volkswagen based
‘MadeInGermany’ [14] vehicle, Nissan’s self-drive [2], etc., demonstrate the
increasing maturity of real world vehicles suitable for this work. Whilst SUMO [7]
currently provides the simulation of the vehicles (and allows safe experimentation),
the Bath Sensor Framework enables low overhead substitution of one component
for another, thus improving the relevancy of findings presented in this paper for
potential real world applications.

Motivation to explore scenarios based on projection of future states is provided
by news announcements [15] claiming that controlling vehicle speed based on

3 Bath Sensor Framework, https://code.google.com/p/bsf/, accessed 30th August 2014.

A Situational Awareness Approach … 79

https://code.google.com/p/bsf/

upcoming traffic lights could reduce CO2 emissions by fifteen percent. Similarly,
experimentation in vehicle to traffic light communication [16] is also seeking to
improve fuel consumption and reduce emission levels.

An institutional framework is adopted in order to provide a ‘late binding’
mechanism for agent behaviour, supporting the resolution of complex social con-
ventions (e.g. whether a flash of headlights is to indicate move out of the way, or an
offer to provide space to pull out) as well as an enforcement of dynamic global
requirements (e.g. obey this variable speed limit). The enforcement of some
requirement for the larger collective benefit contrary to an individual’s gain has
been demonstrated in other domains [17], and is explored in a scenario considering
the use of variable speed limits to alleviate congestion, while the need for multiple
institutions [18] interacting (e.g. no lane change in a variable speed limit zone, but
permissible to make way for an emergency vehicle) will be considered in future
work.

Having established the research background around this work, the simulation
framework is now presented in detail.

3 Simulation Framework

One of the central objectives of our work is to use so-called ‘intelligent agents’ in the
context of large-scale agent-based simulation. Such agents have been perceived as
inappropriate for agent-based modelling because of the clearly higher computational
requirements. Our approach here is a mixed strategy, in which we use a few such
agents situated in an environment populated by many more conventional agents, in
order to develop and evaluate behaviours that can operate effectively in typical
scenarios. We establish these scenarios by using data obtained from the UK
Highways Agency to generate SUMO vehicle populations that reflect real-world
traffic patterns observed on the M25 (a circular motorway around London, UK). This
section provides a technical overview of the framework, as well as performance
findings.

3.1 Technical Overview

These informal requirements have lead to the creation of a distributed environment
called the Bath Sensor Framework (BSF) [11], whose primary features are: (i) a
bus-like communications system based on the eXtended Messaging and Presence
Protocol (XMPP) [19], and (ii) a publish/subscribe interface that can be implemented
for a variety of programming languages (we currently use Java, C# and Python).
Similar XMPP-based approaches have been demonstrated in other distributed
applications [20, 21]. A notable additional aspect of our framework, is the adoption
of two de facto standard messaging formats: (i) Resource Description Framework

80 V. Baines and J. Padget

(RDF), allowing the association of semantics with messages by reference to
common ontologies, and (ii) JSON, allowing the low-overhead communication of
structured data. Simulation components interact via publish-subscribe, where each
component provides a ‘Sensor’ (output) and ‘Sensor Client’ (input), that connect to
topic nodes in an XMPP server.

A sketch of the framework appears in Fig. 1 populated with some of the
components making up a typical instantiation of the framework as used for the work
reported here:

• The SUMO interface is based on the traci4j library, allowing commands to be
sent to SUMO (based on received input via BSF subscriptions) and information
extracted from SUMO and published out to the BSF. This component also
controls the update rate of SUMO, allowing the processing and creation of BSF
messages between each simulation step.

• The Jason component provides an intelligent agent capability, and in the case
of vehicle scenarios allows Jason agents to request the creation of a SUMO
vehicle, which they then control. A similar approach has been employed to the
control of non-player-characters in Second Life [22]

• The normative framework component introduces the element of institutions
[8] into the simulation, allowing obligations to be issued to simulation

Fig. 1 Illustration of available BSF system components

A Situational Awareness Approach … 81

participants (e.g. for a vehicle to slow down, or move out of the way), following
the principles set out in [23] and developed for Jason in [24].

• The Area of Interest (AOI) component acts as a data fusion module relative to
individual vehicles for a given ‘interest volume’. This is based on the
assumption that the agents controlling a vehicle have a greater interest in certain
events and states near to their current location, and reduces the level of noise
arising otherwise from being informed about the entire simulation state. This
reports information such as upcoming traffic light states given the vehicle’s
current route, vehicles in the same lane which may become collision hazards,
and so on.

• A 3D engine component is used to provide a human observer with a variety of
views to the simulation. As this subscribes to multiple feeds, it is able to display:
(i) basic spatial information (e.g. a 3D view of the SUMO simulation, traffic
light states) (ii) vehicle state information (e.g. lights, smoke if crashed),
(iii) augmented information from other systems (e.g. calculated collision
volumes, Jason agent belief state data), as well as system information (e.g.
messages per second graph). The visualizer has proved an essential tool in
debugging, as the task of understanding unintended behaviours with a distrib-
uted intelligent system can be very challenging otherwise.

• Finally, there are some runtime tools, one of which is the RDF Monitor suite
that provides analysis tools for the messages being exchanged over the BSF.
This covers measures from lower level performance metrics (e.g. message
delivery time, volume) to higher level simulation specific metrics (SUMO fuel
consumption, mean speed). New metrics can readily be added, collected and
displayed. There is also a database logger and replayer tool, allowing simula-
tions to be recorded, analysed via SparQL queries, and replayed or stepped
through as required.

All simulation components are built around the Open Source Map (OSM) data
format. This has been imported into SUMO, and a corresponding 3D model built
using the osm2world tool [25]. Some modifications to osm2world were necessary
to ensure accurate correlation between the 3D model and SUMO vehicle positions,
but the two now match closely. Therefore, all tools, models, data, and code can be
provided open source to the community and are available for download. Similarly,
whilst the RDF message vocabulary in use has not been formally specified, there is
a reasonable coherence of terms and structures used. This helps to integrate both
new simulation components, as well as analysis tools which might query the RDF
(Allegrograph) database directly.

This framework also allows consideration of what we consider ‘impedance
matching’ between simulation components. Publishers of BSF data include both
their own sensor name as well as some object data definition (e.g. metres per
seconds, miles per hour) in the sensor reading, which offers subscribers some
control over what data they process. For example, considering three simulation
components: the Jason agent layer, the SUMO simulation, and the 3D viewer, there

82 V. Baines and J. Padget

is a substantial difference between suitable data rates. Whilst a 3D engine could be
required to run at 30 frames per second for a human observer [26], this would
require SUMO to have a simulation step of 0.03 s to match as a 1:1 data source rate.
Whilst rendering engines are well suited to such frequencies, simulation (including
data extraction and publishing) at such rates becomes challenging. Furthermore, to
continue the 1:1 ratio the Jason agents would also have to operate at such
frequency. It was found in earlier experimentation with vehicle convoys [12], that
agents can quickly suffer from data deluge: too many queued position updates to be
processed in a given time step, and so the agents start reacting to ‘stale’ data
causing incorrect action selection. Whilst tools have been developed to identify
overall BSF performance (presented in the following section), we have realized the
need for a (non-functional) design requirement to take account of appropriate data
rates for each system component.

3.2 Framework Performance

Whilst the core code and design behind the BSF has been stable for a few years
now, improvements on how it is deployed have lead to a steady improvement in
measured performance. As an overview we can consider the key components being
the publisher, the XMPP messaging server, the subscriber, and the supporting
infrastructure.

Most improvements in BSF reliability have been found in improving the XMPP
server, both in terms of software and hardware configuration. Issues such as poorly
configured WiFi cards and lossy networks, combined with poor out of the box
configuration in some XMPP server software, led to the development of some basic
RDF utilities being included in the BSF. The criticality of reliable message
exchange has led to a number of network tests being included as part of the build
process (and reported back to a Jenkins4 build server, accessed 27th August 2014)
as otherwise simulations may appear to work but have totally unreliable results.

Two key tools are used, both are included in the RDF Utilities suite. Firstly
‘rdfMonitor’ which subscribes to SUMO and Jason data, and displays a set of
realtime graphs of performance. As BSF data readings include a timestamp encoded
during message creation in the publish process, this monitor is able to plot the
message delivery time, functioning essentially as a ping tool for BSF messages.
Supplementing this, graphs are provided for overall message volumes, quantity of
messages by type, and Jason message types.

Figure 2 shows the rdfMonitor GUI, and here a number of characteristics can be
seen. The “RDF Message Volume” and “Message transmission delays” form the
most interesting features in this example, highlighting that the communication
network is currently saturated and messages are suffering from increased delays

4 Jenkins Continuous Integration Server, http://jenkins-ci.org, accessed August 30th 2014.

A Situational Awareness Approach … 83

http://jenkins-ci.org

over time. The test tool creating these RDF messages (described shortly) also
creates an RDF message with details of how many messages were created in the last
time step (shown as “Published Msgs” series in RDF Message Volume graph), in
this case a reasonably steady number of just under 200 every update. By contrast,
the received number of messages can be seen to be frequently below this value
(shown as “Vehicle Msgs” series in RDF Message Volume graph). If the received
message count is lower than the published message count, then there are unpro-
cessed messages awaiting, i.e. a queue is growing. This correlates with the
“Message transmission delays” graph, where as the simulation time increases,
processed messages have an increasing delay, i.e. the queue of delayed messages is
growing.

The component creating this test data is known as the rdfTest tool, and is
developed to run either in publish or subscribe mode. In publish mode, data
is generated either at a specified steady state rate, or published as fast as possible. In
subscribe mode, output is simply the number of messages received per second. This
has allowed quantified testing of improvements to the BSF configuration, and to
define the current ‘safe’ operating characteristics e.g. maximum messages per
second before a backlog will be formed. It is also expected that increasing the
number of subscribers will effect the performance of the system, but as the BSF
configurations used in these experiments so far have involved a low number of
subscriptions, this has not been specifically investigated.

Fig. 2 The BSF rdfMonitor tool

84 V. Baines and J. Padget

The use of these tools helps establish an operating envelope for the intended
configuration. In Fig. 3 the current optimised configuration of the BSF infrastruc-
ture in use for these experiments can be seen. This highlights that the communi-
cation volume could be approaching values where not having the luxury of wired
networks (i.e. in V2V communications) is starting to have an impact. Whilst the
received messages per second for the wired BSF subscriber closely match the
published rate, much more variation can be seen in the BSF subscriber using a WiFi
network.

Currently the largest delay in the publish and subscribe components is the time
taken in serialization of the RDF messages. It is for this reason that JSON has also
been explored as an alternative, and both message types are implemented and easily
interchangeable. JSON offers a significantly improved serialization performance,
but with a reduction in the additional vocabulary provided with the RDF messages.
Examples of the variation in serialization performance are available [27] which
relates to the earlier discussion of identifying the required data rate between specific
system components.

Significant effort has been spent in improving the overall system performance
and developing tools to assess whether the system is performing reliably in real-
time, as without timely and reliable message exchange, unexpected behaviour
occurs. Previous work [12] identified where running CPU intensive components
(Jason and 3D Viewer) could impact the performance of both (e.g. insufficient
reasoning cycles for Jason, frame rate drop off for 3D Viewer) resulting in unex-
pected agent behaviour. Whilst some design decisions have been taken in an effort
to improve the stability of the system (e.g. BDI agents with plan failure
mechanisms, SA approach to communication of higher level information rather
than low level data at high frequency) there is still a time critical nature to message
exchange that is necessary to maintain expected agent behaviour. However, if an
assessment of network performance is made using the included BSF tools, and

0

200

400

600

0 20 40

Time (seconds)

M
es

sa
ge

d
Q

ua
nt

ity

BSF message performance

Type

Wired (Received)
Wired (Published)
Wifi (Published)
Wifi (Received)

Fig. 3 Message delivery
performance comparison
between wired and wifi
networks

A Situational Awareness Approach … 85

message volume is kept below the identified maximum value, then we find that
repeated reliable simulations runs are achievable.

Having discussed the simulation framework in detail, the vehicle scenarios built
upon the BSF implementation are now presented.

4 Experimental Scenarios

This paper presents three scenarios, using the platforms and tools described above,
through which the ‘comprehension’ and ‘projection’ elements of situational
awareness are explored. The institutional framework plays an essential role in each
of these because it provides a form of behavioural specification of what a vehicle
agent ought to do in a given situation. Thus, rather than loading each agent with
every conceivable behaviour for every conceivable situation, it is instead able to
acquire that behaviour via an instance of an institution that is created when a
situation arises, while still retaining the autonomy to decide whether to follow the
direction given by the institution. In this way, it becomes possible to encode
different regulations and different conventions, delivering them through (multiple)
institutional models, enabling both experimentation with regulations and with their
combinations5 as well as re-use. Furthermore, the use of institutions offers a means
for the coordination of multiple vehicles (e.g. to ease congestion), where individual
drivers may be able to perceive the problem, but are unable to bring about a solution
by individual action alone. The details of these three scenarios are now presented in
more depth.

4.1 Scenario 1: Motorway Change Lane Request

In this scenario, we are interested in examining the benefit institutions can have in
resolving inter-vehicle requests. In the UK there are a variety of visual and audible
cues used to transmit some intention or request to another vehicle. These can range
from clear legal obligations (e.g. blue flashing lights of emergency vehicles create
an obligation to allow that vehicle past) to the more ambiguous (e.g. a flash of
headlights can indicate some hazard, or a desire to overtake). Given the improved
capacity to communicate via V2V technology, this “headlight flash” request is
explored in conjunction with an institution, allowing one vehicle to inform the
institution of its desire to overtake, and for the institution to resolve this (by issuing
an obligation to the other vehicle to change lanes).

5 Conflict between regulations is inevitable and while there are mechanisms to resolve these (not
discussed here), in the first instance, the decision about which regulation to follow can be left to the
vehicle agent.

86 V. Baines and J. Padget

Figure 4 shows this scenario in the 3D viewer, where a semi-transparent
rectangular volume is projected ahead to indicate the ‘collision volume’, as
computed by the Jason agent based on its current speed. Based on the distance
ahead to a vehicle detected in this collision volume, Jason agents can take various
actions. In this scenario, two variations are presented between a Jason agent as the
leading car (V1) and a Jason agent as the following car (V2). Both variations share
a similar starting set of events:

1. Vehicle V1 injected at 8 s into SUMO from Jason with speed of 29 m/s.
2. Vehicle V2 injected at 11 s into SUMO from Jason with speed of 30 m/s.
3. After 7 s, V2 increases speed to 32 m/s.
4. V2 agent belief added of aoiVehicleDetection with position of V1,

which triggers call to checkCollisionVolume.
5. If V1 within collision volume, then agent belief added detectionInCol-

lisionZone(Name, Distance).
6. If Distance is less than 45 m then agent plan brakeHard is triggered, if

Distance greater than 45 m and less than 65 m then plan flashLights is
triggered.

Fig. 4 M25 Scenario in 3D viewer

A Situational Awareness Approach … 87

4.1.1 Lights Flash with No Institution

In this case, when approaching the vehicle, V2 flashes its lights at V1 but there is no
response. V2 continues to gain on V1 until the distance is below 45 m. The
brakeHard plan causes the vehicle to slow to 10 m/s until V1 is outside of the
collision zone, after which it resumes the previous speed. This behaviour then
repeats, as V2 begins to gain on V1 again, and will show the same brakeHard
behaviour as a result.

4.1.2 Lights Flash with Institution

This repeats the same background as the previous baseline except that now the
institution is active.

1. V2 publishes the event flashLights(V1) to the institution.
2. Institution issues permission for V1 to change lane perm(changeLane

(Agent)) and also the obligation obl(changeLane(Agent), dead-
line, violation).

3. V1 agent receives changeLane which triggers a quickLaneChange
request to be sent to SUMO.

4. The TraCI4j interface to SUMO implements quickLaneChange by changing
one lane across.

5. V1 moves to inside lane, and V2 is able to overtake.

4.2 Scenario 2: City Traffic Lights

In this scenario, the capability for reasoning about future states is explored,
combining the Situational Awareness concept of ‘projection’ with the Area of
Interest component. A city context is used, based on Bath in the UK, which gen-
erates more complex routes as well as interactions with traffic lights. It is the effect
of such traffic light interactions which are explored in this scenario, investigating
the role institutions could play in managing vehicles’ speed in order to coordinate
with traffic light states.

The context of this scenario is shown in Fig. 5 where the vehicle can be seen
stationary at the first traffic light it encounters. As with the previous scenario, two
variations are presented: firstly a baseline with no institution active and secondly
with an institution issuing obligations to slow down depending on the distance to,
and state of, upcoming traffic lights.

88 V. Baines and J. Padget

4.2.1 City Journey with No Institution

This case is quite simple, as no activity takes place from the institution, and the
vehicle simply drives along the predetermined route.

1. Jason vehicle is inserted in SUMO simulation at 30 s.
2. Vehicle progresses along route, stopping at red traffic lights.

4.2.2 City Journey with Institution

In this case, the vehicle receives obligations from the institution, and so the
procedure followed is slightly more complex:

1. Jason vehicle is inserted in SUMO simulation at 30 s.
2. Area of interest module retrieves vehicle route info, and identifies upcoming

traffic lights controlling sections of that route.
3. Area of interest module publishes upcomingLight, Distance, Colour

of detected first upcoming traffic light on vehicle’s approach.

Fig. 5 City scenario in 3D viewer

A Situational Awareness Approach … 89

4. Institution framework reacts to upcomingRedLight and issues permission
reduceSpeed(Agent) and obligation obl(reduceSpeed(Agent),
deadline, vioQueue(Agent)).

5. Agent receives reduceSpeed, triggering shortCruise plan.
6. This plan reduces vehicle speed to 7 m/s for 35 s, after which speed control

returns to SUMO.
7. Vehicle arrives at traffic lights after they have turned back to green and proceeds

along route.

4.3 Scenario 3: Variable Speed Limits

Having demonstrated the application of institutions to resolving the ambiguity of a
flash of headlights, and in managing vehicle speeds such that they arrive at traffic
lights when they are in a green state, a third scenario is now presented, which
focusses on the use of institutions targeted at the enforcement of variable speed
limits. The motivation for deploying a Variable Speed Limit (VSL) is that there are
a variety of situations where traffic flow can be improved by reducing the speed
allowed, such as following an accident or lane closures due to maintenance. Speed
has been put forward [28] as a direct link to the severity of a crash, and as a weaker
link to the probability of a crash occurring. Three justifications are put forward [28]
for imposing speed restrictions on an individual: (i) their misjudgement of impact
on other individuals (e.g. cost, risk), (ii) that a driver may have insufficient infor-
mation to judge an appropriate speed, and (iii) that a driver may be unable to judge
the impact of their speed on the likelihood and severity of a crash. In [29] the use of
VSL is attributed to reducing accidents by 25–50 %. From this, we conclude that
imposing a VSL removes the element of the driver travelling at potentially unsafe
speeds, and combined with the physical implications of driving slower (i.e. shorter
braking distances, greater time to react) may not only reduce the likelihood of an
accident, but improve the possibility of managing congestion as the incidence and
impact of undesirable behaviour (excessive braking, harsh acceleration, late reac-
tions) may be reduced. There are a number of road sections in the UK where such
VSL areas have been established, with studies considering their effectiveness on
UK motorways [30, 31], which observe some benefits (speed homogenization, and
reduced variance in journey times) but also highlight a challenging problem,
namely that of suppressing the shock waves induced by braking events. In this case,
shock waves are the phenomenon of traffic slowing down for no apparent reason,
but which is typically triggered by some event (such as a driver slowing down), that
establishes a wave-like pattern of vehicles arriving at the congestion, slowing down,
until they are able to accelerate back to their previous speed. The wave is main-
tained by new vehicles arriving at the back of the wave and slowing, while vehicles
ahead of them travel through the congestion and eventually depart from the front of
the wave.

90 V. Baines and J. Padget

In this scenario, the problem of shock waves is considered as a case where a
disturbance occurs and triggers the formation of a wave-like pattern, that can be
detected by vehicles being closely grouped together in terms of distance or speed.
Variable Speed Limits are a mechanism that can potentially dampen this wave, in
order to ease congestion and improve the flow rate of traffic. Details of a specific
motorway control scheme are provided in earlier referenced work [31], where
measured speed and flow levels are used to determine the congestion level, at which
point signs can be activated along the route to display a new speed limit. We consider
this as a global speed limit, as the speed limit applies to all vehicles travelling in that
lane, up until a sign stating that the national speed limit applies is encountered. In this
work [31] goes on to suggest that such an approach to the implementation of VSL
may struggle to achieve the goal of suppressing such waves. In response, we put
forward a number of observations. Firstly, there is the time lag between the wave
triggering action (e.g. a vehicle suddenly braking hard) and action being taken to
issue the VSL. Secondly, there is the problem that drivers are likely to wish to
continue to travel as fast as possible, and so may travel above this (temporary,
variable) speed limit, with some vehicles significantly in excess of the limit.

Thus, in addition to the question of the effectiveness of VSL, existing approa-
ches are also quite coarse, as the speed limit is imposed over relatively long road
sections, with the aim of reducing all vehicle speeds in each lane. In contrast, we
propose to investigate the question of whether shock wave suppression can be
achieved through tailored speed modifications for a smaller number of vehicles.
Assuming the availability of V2V communication (as discussed in Sect. 1), the
braking vehicle could communicate its action immediately, at which time vehicles
likely to be affected could be advised to implement appropriate changes to their
speed. To achieve this, we draw on the institution approach to issue appropriate
obligations to vehicles that are potentially affected, with the intention of dampening
the behaviour that triggers wave formation, before the wave becomes established,
thus addressing the time-lag issue identified above.

The context of the scenario is shown in Fig. 6, where in a flow of motorway
traffic, a braking vehicle causes disruption to the vehicles behind, which have to
adjust their speed to avoid a collision, establishing a standing wave. Three varia-
tions of the scenario are considered: in the first no VSL is used and a shockwave
should form, in the second a global VSL is set with the aim of dampening the
shockwave, and in the third an institution issues obligations to specific vehicles to
reduce their speed, with the same aim. The no-VSL scenario is used to test the
assertion that a hard braking vehicle can cause a shockwave to form, and to support
the development of metrics aimed at capturing what this event looks like. The
global-VSL approach aims to replicate the existing approach to speed management
in order to measure the impact this has on the shockwave itself but also on
the overall vehicle population. The institutional-VSL approach seeks to assess the
feasibility of targeting specific vehicles rather than the global population. If the
no-VSL and global-VSL variations are show an impact on vehicle behaviour and
congestion, then they provide a benchmark to compare the institution approach
against.

A Situational Awareness Approach … 91

In all scenario variations, five Jason controlled vehicles are inserted: jason-
Car1 is the lead vehicle which performs the hard brake, jasonCar2 is the
vehicle immediately behind jasonCar1, and so on up to jasonCar5. With this
experimental context established, we now present the specific events of each
scenario.

4.3.1 No VSL

This case provides the baseline, where we seek to establish an undesirable
congestion pattern of a shock-wave forming, which can be measured using the
existing BSF monitoring tools described in Sect. 3. In this scenario, the following
events occur:

1. The lead jasonCar1 vehicle is inserted into the SUMO simulation at 35.5 s.
2. Following Jason vehicles (jasonCar2 to jasonCar5) are inserted into the

same lane at 40, 44.5, 49 and 53.5 s.
3. At 110 s, the jasonCar1 vehicle brakes for a period of 6.5 s.
4. The following vehicles are forced to reduce their speed in order to avoid col-

liding with the vehicle ahead.
5. The scenario runs for 240 s, to allow observation of emerging shockwave

pattern.

The hypothesis of this scenario variation is that after selecting appropriate
parameters for the SUMO vehicles to represent bad driving behaviour (e.g. late

Fig. 6 Traffic congestion shockwave example

92 V. Baines and J. Padget

reactions, over braking), that jasonCar2 will over compensate for the hard brake
of jasonCar1, with jasonCar3 reacting in similar fashion, and so on, causing
the wave to form. This will provide a comparison for findings from the other two
scenarios, and support refinement of metrics to ensure this congestion pattern can be
captured.

4.3.2 Global VSL

For this case, a similar initial set of events occurs, up to the point of the lead vehicle
breaking, however following this event, a global VSL is established and all vehicles
reduce speed. Variation in the timing of the imposition of the VSL is a matter for
further exploration, but in this case, it is assumed that the braking behaviour can be
detected and a VSL introduced immediately, with the following set of events
occurring:

1. The lead jasonCar1 vehicle is inserted into the SUMO simulation at 35.5 s.
2. Following Jason vehicles (jasonCar2 to jasonCar5) are inserted into the

same lane at 40, 44.5, 49 and 53.5 s.
3. At 110 s, the jasonCar1 vehicle brakes for a period of 6.5 s.
4. Also at 110 s, a global VSL of 22 m/s is imposed on all lanes.
5. At this point all vehicles reduce their speed to the new limit.
6. The Jason vehicles (jasonCar2 to jasonCar5) have to reduce their speed

further so as to avoid colliding with the braking vehicle.
7. The scenario runs for 240 s, to allow observation of any shockwave pattern.

The hypothesis with this approach is that the global impact on all vehicle speeds
should be observable in the captured metrics, though any impact on the shockwave
is difficult to predict. However, if this approach is found to be capable of sup-
pressing or removing the shockwave, then it provides a competitor to the institution
VSL approach.

4.3.3 Institution VSL

In this version of the scenario, the braking vehicle broadcasts the fact it is
performing an emergencyBrake, and the institution receives this message.
Along with this message, the braking vehicle transmits details of the vehicles
behind it (this could be calculated by the Area of Interest module described earlier
in the technical overview, but is fixed in this experiment). Based on this infor-
mation, the institution issues obligations to these vehicles, that if met result in
appropriate speed reductions. In this scenario, the duration of the speed reduction
has been set to 5 s, as no reasoning has been implemented as to when the vehicles
should return to their previous speed. The aim of this short speed reduction is to
have reduced the speed of these vehicles before they (over)react to a braking
vehicle ahead. The set of events occurring in this scenario are as follows:

A Situational Awareness Approach … 93

1. The lead jasonCar1 vehicle is inserted into the SUMO simulation at 35.5 s.
2. Following Jason vehicles (jasonCar2 to jasonCar5) are inserted into the

same lane at 40, 44.5, 49 and 53.5 s.
3. At 110 s, the jasonCar1 vehicle brakes for a period of 6.5 s.
4. At the same time, the lead vehicle transmits emergencyBrake, along with

vehicle positions vehiclePosition(jasonCar2, p1), vehiclePo-
sition(jasonCar3, p2), vehiclePosition(jasonCar4, p3).

5. The institution issues obligations slowDown(jasonCar2, slow), slow-
Down(jasonCar3, mediumSlow), slowDown(jasonCar4,
medium).

6. Jason agents resolve these obligations according to their beliefs about
speedModifier(medium, 20), speedModifier(mediumSlow, 12),
speedModifier(slow, 5) and reduce their speed accordingly.

7. After 5 s at reduced speed, Jason vehicles jasonCar2 to jasonCar5 con-
sider the slowDown obligation fulfilled and return to their previous speed.

The corresponding institution state change is shown in Fig. 7, with the initial
state S0, containing the values for vehiclePosition, and the emergen-
cyBrake(jasonCar1) bringing about the new state S1 where the slowDown
obligations arise.

The hypothesis of this scenario is that the effect on an individual vehicle of the
VSL should be clearly observable, but that any impact on the wider vehicle pop-
ulation may be harder to identify. Ideally, by managing the behaviour of the
vehicles initially affected by the excessive braking behaviour, the shockwave may
be prevented from occurring. However, this is optimistic, and instead if the
mechanism is shown to have an effect, then future work could refine and tune the
parameters (i.e. how many vehicles should slow down, to what speed, and for how
long) of the VSL and vehicles it is applied to.

Having described the main features of and differences between the scenarios, we
now present the experiment results.

S0

vehiclePosition(jasonCar2, p1): vsl
vehiclePosition(jasonCar3, p2): vsl
vehiclePosition(jasonCar4, p3): vsl

S1

emergencyBrake(jasonCar1): vsl

obl(slowDown(jasonCar2, slow), deadline,
vioSlowDown(jasonCar2)): vsl

obl(slowDown(jasonCar3, mediumSlow),
deadline, vioSlowDown(jasonCar3)): vsl

obl(slowDown(jasonCar4, medium), deadline,
vioSlowDown(jasonCar4)): vsl

vehiclePosition(jasonCar2, p1): vsl
vehiclePosition(jasonCar3, p2): vsl
vehiclePosition(jasonCar4, p3): vsl

Fig. 7 Institution state change during VSL scenario

94 V. Baines and J. Padget

5 Results

In this section, the simulation results for the motorway and traffic lights scenarios
(as described in the previous Sect. 4) are presented.

5.1 Scenario 1: Motorway Change Lane Request

In this scenario, the objective is to measure the impact of the institution on
maintaining average traffic speed and ameliorating congestion. To do so, we
measure the speed of each vehicle and the distance to the vehicle ahead. Initially the
use of detector locations was considered, but this mechanism is only able to report
gaps between adjacent vehicles at one location, whereas we need to establish inter-
vehicle gaps in a region of the simulation. Another possibility would be to use
multiple detectors at regular intervals over a multi-kilometre section of road, but
given the focus on intelligent vehicles in our simulation, we chose to use a vehicle-
centric rather than an infrastructure-derived metric, leaving the latter for future
investigation.

The results of this scenario can be seen in Fig. 8, which presents both the vehicle
speeds and distance to the vehicle in front, of each vehicle along the route. The most
significant observation is in vehicle speeds approximately 500 m along the route,
where with the institution active speeds remain at a reasonably constant 70 mph.
With the institution not active, as outlined in Sect. 4 V2 will continue to gain on V1
until it is forced to perform a hard brake to avoid a collision. The impact of this can
be seen in the reduced speed both of V2, and furthermore the vehicle behind V2 has
also been forced to brake to avoid colliding into V2.

The results shown in the vehicle gap section are more difficult to draw any strong
conclusions from. It can been seen that either side of this disruption (i.e. ahead by

50

100

150

200

20

30

40

50

60

70

V
ehicle G

ap (m
)

V
ehicle Speed (m

ph)

0 250 500 750

Distance along route (m)

V
al

ue

Speed and gaps - Motorway Scenario

Type
No Inst
With Inst

Fig. 8 Vehicle speed and
gaps for change lane scenario

A Situational Awareness Approach … 95

625 m or behind by 375 m) is largely identical for both with and without institution
variations, confirming that this is a localised disturbance. In this particular scenario,
the gap becomes difficult to interpret, as this concerns vehicles in a single lane, and
as soon as V1 complies with the obligation to change lane, there is an immediate
disruption to the reported gaps. However, with no institution active, there does
seem to be some decrease in gaps. As V2 had to perform a hard brake (as shown by
speed decrease in upper graph), it must have become close to V1, which would
show as a decreased gap. But as V2 brakes hard, the vehicles behind will start to
become closer (until they also brake) and so there is likely to be a decrease in gaps
for a number of vehicles behind V2. The management of this of this kind of ‘ripple
effect’ is precisely the kind of behaviour considered by the variable speed limit
scenario presented in this work.

5.2 Scenario 2: City Traffic Lights

In this scenario, the objective is to measure the effect of the institution in managing
vehicle arrival times at traffic lights. The key metric being used is the measurement
of fuel consumption, based on the premise that by modifying the vehicle speed
such that it arrives at the traffic lights when they are green, it will result in less
wasted fuel sat idling, and less fuel consumed in accelerating from stationary.

In Fig. 9 the results of two experiments are shown, showing the contrast between
running the scenarios with and without institution involvement. In the case of no
institution, the vehicle progresses along its route, until it is held up by a red light at
a junction. This results in fuel expended while sat idling, and also in fuel required to
accelerate from rest after the light changes to green. In contrast, with the institution
active, an obligation is issued for the vehicle to slow down due to the state of an
upcoming traffic light. By doing so, the vehicle arrives at the light when it is green,
and the graph shows this results in a fuel saving. The expectation is that there would

0

50

100

150

0

1

2

3

T
otal Fuel

Instantaneous Fuel

0 25 50 75

Time (s)

Fu
el

 C
on

su
m

pt
io

n
(m

l)

Fuel consumption - Traffic Lights

Type
No Inst
With Inst

Fig. 9 Impact on fuel
consumption

96 V. Baines and J. Padget

be an increase in journey time, but in fact the vehicle only loses approximately 10 s
which can be traded off against the saved fuel. However, it can also be seen that
considerable fuel saving is made simply due to the slower speed adopted by the
vehicle due to the institution obligation to slow down. Further analysis is required
with more variance in the scenario, as well as alternative fuel consumption models.

Whilst elements of the scenario presented may not be totally realistic at this stage
(e.g. reduced speed value is very low, signal sequence may not stay red for such a
length of time), the ability of SUMO to represent fuel and emission consumptions
in different use cases, coupled with improved development of the institutions in use,
suggests a promising avenue for exploration.

5.3 Scenario 3: Variable Speed Limits

In this scenario, the objective is to explore congestion shockwaves within SUMO,
specifically how different approaches to establishing a Variable Speed Limit (VSL)
can reduce such a wave. Whilst a human observer of the simulation GUI is able to
spot when such congestion occurs (e.g. as shown earlier in Fig. 6), developing a
metric to quantify such an occurrence proves challenging. The mean speed per lane
or number of vehicles per lane were considered, but as lanes can be arbitrarily long
and congestion may be localised to a small region, alternative approaches were
sought, leading to the speed and gap analysis shown in Fig. 8. Analysis based on
the gap-ahead technique did not show particularly useful results for this scenario,
and so instead we focus on vehicle speeds. There is a drawback to this approach in
that vehicle speeds can only be shown for a given point in the simulation time, and
so any temporary state occurring just at that time (i.e. a vehicle braking because
another vehicle changed lane) could appear to be more significant, despite it not
being present in the next simulation time step. For this reason, we capture a set of
vehicle speeds at 240 s into the simulation (the end of the simulation run) as well a
set of speeds as at 200 s into the simulation. This allows for comparison of vehicle
states at two different time points, in an effort to de-emphasize temporary effects
and observe trends instead.

The outcome of this analysis is shown in Fig. 10 for three data series: with no
VSL, with a global VSL and with an institution VSL, captured at 200 and 240 s
during the scenario. These data series are presented from two different times, as it is
difficult to show the vehicle speed of the entire traffic population changing over
time. Comparing the results at these two time samples, there are some consistencies
which can be identified. It can be seen in both cases that with no VSL there is a
significant cluster of slow vehicles near the 3,750 m route distance mark. It can also
be seen that before and after this distance, both the no VSL and institution VSL
show vehicle speeds in the region of 80 mph, and that the global VSL shows speeds
reduced to the region of 55 mph.

There are a number of interesting differences that may be observed in Fig. 10,
concerning the behaviour of global and institutional VSL approaches. At the 200 s

A Situational Awareness Approach … 97

point, the institution VSL seems to have only slightly improved the situation, but
40 s later at the 240 s sample there is a significant improvement. The global VSL
approach shows the opposite behaviour, where at 200 s all vehicles are travelling at
approximately 60 mph, but at 240 s a cluster of slow moving vehicles is visible.
This suggests an area where further work would be beneficial, and we would
propose two areas specific to the results seen in Fig. 10. Firstly, that a more
advanced metric, capable of analysing all vehicle speed changes over time is
developed. The intention is this would show whether changes occur over a few time
steps, or are persistent over a longer time period and indicate a more substantial
congestion behaviour occurring. This could be implemented as a derivative of the
existing speed metric, taking a number of samples over time and reporting the
measured rate of change in speed. Secondly, that using such a metric, it should be
possible to tune the scenario parameters (e.g. how long to apply a speed limit for,
how many vehicles to apply it to, and so on).

Shifting focus from the entire vehicle population to the vehicles controlled by
Jason agents, in Fig. 11 the speed behaviour over time is shown for five Jason
vehicles. With a smaller set of vehicles, it is possible to view how their behaviour
changes over time, and the distinct impact of the VSL approaches can be seen. With
the no VSL approach, we can see the lead vehicle C1 brakes suddenly at 110 s, and
vehicles C2 to C5 slowly reduce their speed as they gain on the vehicle in front. In
the institution VSL variation, all vehicles can be seen to brake hard at 110 s, but
after this vehicles C2 to C5 increase their speed again, before having to reduce it as
they gain on the vehicle ahead. This suggests that the institution slowDown
obligation was not of a sufficient duration. Finally, in the global VSL variation it
can be seen that all vehicles decrease their speed at 110 s, with vehicles C2 to C5
travelling at the new maximum speed for 10–20 s, before a gradual slow down as
they gain on the vehicle ahead.

There is also some variation visible in Fig. 11 during the 150–200 s period,
where both the global VSL and no VSL variants of the scenario settle to the

40

50

60

70

80

90

40

50

60

70

80

90

S
cenario at 200s

S
cenario at 240s

0 2500 5000 7500

Distance along route (m)

S
pe

ed
 (

m
ph

)

Vehicle speeds at 200s and 240s

Type
No VSL
With Inst VSL
Global VSL

Fig. 10 Speed comparison at
200 versus 240 s

98 V. Baines and J. Padget

permitted speed, while in the institution variation vehicles C2–C5 remain slower
than vehicle C1 for approximately 50 s. This is an area requiring further investi-
gation, as the institution obligation has expired after the 5 s period specified in the
scenario description (see Sect. 4.3), yet vehicle behaviour is still disrupted, and
shows different behaviour to the no VSL and global VSL variants of the scenario.
One potential development would be to augment the 3D-viewer tool, following on
from Sect. 3 where it was described that the 3D representation of vehicles could be
augmented with additional vehicle state information, to extract data from SUMO in
order to supplement this view with additional explanatory messages (e.g. reason
why braking, distance to vehicle ahead). It may also be that the vehicle parameters
regarding driver behaviour (i.e. reaction time, acceleration and deceleration, mini-
mum gap to vehicle head) need improvement, as the vehicles may be over-sensitive
to road conditions, which although not manifesting itself in the no VSL and global
VSL variations, appears in the institution VSL approach. It could be that the
institution approach of controlling five vehicles (to prevent the shockwave) causes
the gaps between these vehicles to be small during the institution obligation (per-
missible as they are travelling at slower speeds) but when the obligation expires and
they resume normal speed that they struggle to balance increasing speed with the
requirements of maintaining a safe gap to the vehicle ahead. Whilst this would need
further analysis to establish the necessary evidence, it offers a further role of the
institution, that perhaps these vehicles could ignore their braking distance while
under control of an institution, because the coordination is being performed by that
external body, and that the institution should govern not just their slowDown
behaviour, but also their return-to-normal behaviour.

10

20

30

40

10

20

30

40

10

20

30

N
o V

S
L

Institution V
S

L
G

lobal V
S

L

50 100 150 200 250

Time (seconds)

S
pe

ed
 (

m
/s

)

Agent vehicle speed comparisons

Type
C1
C2
C3
C4
C5

Fig. 11 Speed comparison of intelligent agent vehicles

A Situational Awareness Approach … 99

6 Discussion and Future Work

The work presented here demonstrates the use of an open source solution combined
with realistic traffic data, real world metrics and a sophisticated architecture, in
modelling a number of vehicle scenarios. Three scenarios are presented, in the first
a city scenario is used to investigate the effect of an institution model in regulating
arrival times at traffic lights in order to improve fuel consumption. In the second, a
motorway based scenario is used to explore the application of an institution that
issues obligations to move out of the way in order to prevent excessive braking and
acceleration of following vehicles. In the third scenario, a motorway congestion
scenario is presented, where three approaches to variable speed limits are assessed:
no speed limit, a global speed limit, and an institutionally determined speed limit
targeted at specific vehicles.

Whilst the results presented in this work suggest promise, further work is
planned to validate the metrics used and develop improvements. The gap-speed
metric is still relatively new and requires development to run for multiple lanes,
which will be a useful measurement when trying to identify the impact of vehicles
switching lanes (e.g. in the flash lights scenario presented in this paper) and the
effect of speed limits across the entire motorway section. Alternative metrics are
also desirable, to provide better observability of changes over time.

There are a number of areas of future work for the variable speed limit scenario
to be developed. In the version presented, parameters such as how quickly any VSL
should be established, how long it should last for, and how much the speed should
be decreased to, have all been chosen somewhat arbitrarily. However, as the
experiment is simulation based, it would be feasible to repeat over multiple itera-
tions and tune these parameters, in order to develop improved handling of the
shockwave congestion. However, further work should also take place in validating
vehicle parameters concerning driver behaviour and physical vehicle performance,
in order to improve the credibility of any findings. Finally, enhanced metrics would
provide a suitable feedback signal for any iterative tuning of the scenario, and also
improve the ability to analyse the outcome beyond vehicle gaps and speeds.

Having demonstrated potential benefits in the combination of the SA approach
and institutional governance in the scenarios presented, future work is planned to
develop a larger, multiple institution scenario. One such example under consider-
ation is shown in Fig. 12, where a stationary vehicle is causing disruption. This
particular example is an extension to the existing flash-lights scenario, where the
following vehicle did not reduce its speed for some reason and collided with the
vehicle ahead. There is now some post-accident traffic flow management required,
with potential institutional agreements indicated numerically. Institution number 1
allows the first vehicle to move one lane right but requires the approaching vehicle
to slow down. Similarly institution number 2 allows the second queued vehicle to
move one lane left, but requires the oncoming lorry to slow down, and finally
institution number 3 allows the last stationary vehicle to move one lane right.

100 V. Baines and J. Padget

The work we have presented demonstrates the application of institutional models
as a ‘late-binding’ regulation mechanism, providing directed control for the
achievement of social objectives, in the domain of intelligent vehicles. Information
exchange between such vehicles has been considered in terms of Situational
Awareness, to allow intelligent vehicles to communicate a rich set of semantically-
annotated RDF messages. All experimentation has been based on open source data
and software, so this approach to socio-cognitive intelligent vehicles can readily be
explored in further scenarios and traffic contexts.

References

1. Markoff J (2010) Google cars drive themselves, in traffic. http://www.nytimes.com/2010/10/
10/science/10google.html. Accessed 8 Oct 2011

2. Nikki Gordon-Bloomfield (2013) Nissan takes Japanese PM on autonomous LEAF test drive.
http://transportevolved.com/2013/11/11/nissan-takes-japanese-pm-on-autonomous-leaf-test-
drive/. Accessed 19 Jan 2014

Fig. 12 Incident management example

A Situational Awareness Approach … 101

http://www.nytimes.com/2010/10/10/science/10google.html
http://www.nytimes.com/2010/10/10/science/10google.html
http://transportevolved.com/2013/11/11/nissan-takes-japanese-pm-on-autonomous-leaf-test-drive/
http://transportevolved.com/2013/11/11/nissan-takes-japanese-pm-on-autonomous-leaf-test-drive/

3. Bergenhem C, Huang Q, Benmimoun A, Robinson T (2010) Challenges of platooning on
public motorways. In: 17th world congress on intelligent transport systems

4. Naylor N (2014) U.S. Department of Transportation Announces Decision to Move Forward
with Vehicle-to-Vehicle Communication Technology for Light Vehicles. http://www.nhtsa.
gov/About+NHTSA/Press+Releases/2014/USDOT+to+Move+Forward+with+Vehicle-to-
Vehicle+Communication+Technology+for+Light+Vehicles. Accessed Feb 2014

5. Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. Hum Factors:
J Hum Factors Ergon Soc 37(1):32–64

6. Bordini RH, Hübner JF, Wooldridge M (2007) Programming multi-agent systems in
AgentSpeak using Jason. Wiley, Hoboken

7. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications
of SUMO—Simulation of Urban MObility. Int J Adv Syst Meas 5(3 and 4):128–138

8. Cliffe O, De Vos M, Padget J (2006) Answer set programming for representing and reasoning
about virtual institutions. In: Inoue K, Satoh K, Toni F (eds) CLIMA VII. Lecture notes in
computer science, vol 4371, pp 60–79. Springer

9. UK Highways Agency (2014) Traffic flow database system. https://trads.hatris.co.uk.
Accessed 26 Jan 2014

10. Bratman ME, Israel DJ, Pollack ME (1988) Plans and resource-bounded practical reasoning.
Comput Intell 4:349–355

11. Lee JH, Baines V, Padget J (2012) Decoupling cognitive agents and virtual environments. In:
Dignum F, Brom C, Hindriks KV, Beer MD, Richards D (eds) CAVE. Lecture notes in
computer science, vol 7764, pp 17–36. Springer

12. Baines V, Padget J (2012) Communication and metrics in agent convoy organization. In: 7th
international workshop on agents in traffic and transportation (ATT 2012 at AAMAS 2012),
pp 69–77, June 2012

13. Hourizi R (1999) Awareness beyond mode error. Ph.D. thesis, University of Bath
14. Freie Universitat Berlin (2011) Autonomous car navigates the streets of Berlin. http://

autonomos.inf.fu-berlin.de/news/press-release-92011. Accessed 8 Oct 2011
15. Volkswagen (2013) Audi in the simTD large-scale test study: the “traffic light info online”

project. http://www.volkswagenag.com/content/vwcorp/info_center/en/news/2013/06/audi_
simTD.html. Accessed 19 Jan 2014

16. Kim KT (2012) STVC: secure traffic-light to vehicle communication. In: ICUMT, pp 96–104.
IEEE

17. Balke T (2011) Towards the governance of open distributed systems: a case study in wireless
mobile grids. Ph.D. thesis, University of Bayreuth, September 2011

18. Cliffe O, De Vos M, Padget JA (2007) Specifying and reasoning about multiple institutions.
In: Coordination, organizations, institutions, and norms in agent systems. Lecture notes in
artificial intelligence, Springer

19. XMPP Standards Foundation (2014) The XMPP standards foundation homepage. http://www.
xmpp.org, 20130129, no date

20. Stout L, Murphy MA, Goasguen S (2009) Kestrel: an XMPP-based framework for many task
computing applications. In: Proceedings of the 2nd workshop on many-task computing on
grids and supercomputers, MTAGS’09, pp 11:1–11:6. New York, NY, USA. ACM

21. Wagener J, Spjuth O, Willighagen E, Wikberg J (2009) XMPP for cloud computing in
bioinformatics supporting discovery and invocation of asynchronous web services. BMC
Bioinform 10(1):279

22. Lee JH, Li T, Padget J (2013) Towards polite virtual agents using social reasoning techniques.
Comput Anim Virtual Worlds 24(3–4):335–343

23. Alechina N, Dastani M, Logan B (2012) Programming norm-aware agents. In: Proceedings of
the 11th international conference on autonomous agents and multiagent systems, AAMAS’12,
vol 2, pp 1057–1064. Richland, SC, International Foundation for Autonomous Agents and
Multiagent Systems

102 V. Baines and J. Padget

http://www.nhtsa.gov/About+NHTSA/Press+Releases/2014/USDOT+to+Move+Forward+with+Vehicle-to-Vehicle+Communication+Technology+for+Light+Vehicles
http://www.nhtsa.gov/About+NHTSA/Press+Releases/2014/USDOT+to+Move+Forward+with+Vehicle-to-Vehicle+Communication+Technology+for+Light+Vehicles
http://www.nhtsa.gov/About+NHTSA/Press+Releases/2014/USDOT+to+Move+Forward+with+Vehicle-to-Vehicle+Communication+Technology+for+Light+Vehicles
https://trads.hatris.co.uk
http://autonomos.inf.fu-berlin.de/news/press-release-92011
http://autonomos.inf.fu-berlin.de/news/press-release-92011
http://www.volkswagenag.com/content/vwcorp/info_center/en/news/2013/06/audi_simTD.html
http://www.volkswagenag.com/content/vwcorp/info_center/en/news/2013/06/audi_simTD.html
http://www.xmpp.org
http://www.xmpp.org

24. Lee JH, Padget J, Logan B, Alechina N, Dybalova D (2014) Run-time norm compliance in
BDI agents. In: International conference on autonomous agents and multi-agent systems,
AAMAS’14, Paris, France, May 2014. IFAAMAS (to appear)

25. Tobias Knerr (2013) Merging elevation raster data and OpenStreetMap vectors for 3D
rendering. Master’s thesis, University of Passau, May 2013

26. Claypool KT, Claypool M (2007) On frame rate and player performance in first person shooter
games. Multimedia Syst 13(1):3–17

27. Smith E (2013) JVM-Serializers. https://github.com/eishay/jvm-serializers/wiki. Accessed 2
Feb 2014

28. National Research Council (U.S.) (1998) Transportation Research Board. Committee for
Guidance on Setting and Enforcing Speed Limits. Managing speed: review of current practice
for setting and enforcing speed limits. Number no. 254 in managing speed. Transportation
Research Board, National Research Council, National Academy Press

29. Coleman JA, Paniati JF, Cotton RD, Parker MR Jr, Covey R, Pena HE Jr, Graham D,
Robinson ML, MaClauley J, Taylor WC et al (1996) Fhwa study tour for speed management
and enforcement technology. US Department of Transportation, Washington DC

30. Papageorgiou M, Kosmatopoulos E, Papamichail I (2008) Effects of variable speed limits on
motorway traffic flow. Transp Res Rec 2047(1):37–48

31. Tafti MF (2008) An investigation on the approaches and methods used for variable speed limit
control. In: 15th world congress on intelligent transport systems and ITS America’s 2008
annual meeting

A Situational Awareness Approach … 103

https://github.com/eishay/jvm-serializers/wiki

SUMO’s Lane-Changing Model

Jakob Erdmann

Abstract SUMO is an open source microscopic traffic simulation. A major com-
ponent of modelling microscopic vehicle behavior is the lane-changing behavior on
multi-lane roads. We describe a new model which uses a 4-layered hierarchy of
motivations to determine the vehicle behavior during every simulation step and
motivate in which ways it improves the current lane-changing model.

Keywords Microscopic simulation � Lane changing

1 Introduction

The SUMO application suite [1, 2] provides tools for the Simulation Of Urban
MObility. It consists of a microscopic simulator for multimodal road traffic and a
host of applications for preparing simulation input data (network import and
modification, traffic import, routing) and for working with simulation outputs. The
microscopic driving dynamics of road vehicles are determined by the interplay of
several models briefly listed below:

– Car-following model: determines the speed of a vehicle in relation to the
vehicle ahead of it.

– Intersection model: determines the behavior of vehicles at different types of
intersections in regard to right-of-way rules, gap acceptance and avoiding
junction blockage.

– Lane-changing model: determines lane choice on multi-lane roads and speed
adjustments related to lane changing.

When simulating traffic on complex road networks with multi-lane roads, most
routes which a vehicle might use require changing lanes. Even where there are no

J. Erdmann (&)
German Aerospace Center, Berlin, Germany
e-mail: jakob.erdmann@dlr.de

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_7

105

such hard necessities, lane-changing behavior is often a major determinant for
traffic efficiency which underscores the importance of the respective model.

The lane-changing model in SUMO has been under continuous development
since the start of the project in 2001 and will certainly undergo changes in the
future. Due to a large number of improvements in 2013 we see the need to report on
the current state of the model. These changes were prompted by problems and
visibly implausible behavior in some of our simulation scenarios.

– Motorway traffic which requires many vehicles to change lanes at a point where
the motorway splits exhibited heavy jamming contrary to real-world measure-
ments (A92 scenario).

– Heavy jamming where motorway traffic in the main direction came to a stop
because of vehicles merging at on-ramps (Braunschweig scenario).

– Jamming because vehicles did not change to their respective turn lanes in time
and thus blocked the flow (Braunschweig scenario).

– Jamming because vehicles only used the outer lanes of a two-lane roundabout
(ACOSTA scenario)

The model changes which were undertaken to alleviate these problems are
tightly interwoven with the previous model which makes it impractical to discuss
them in isolation. Instead we will describe the new model fully in the following
sections and then describe areas of improvement relating to the above scenarios in
Sect. 10.

The lane-changing model described herein fulfills two main purposes: It com-
putes the change decision of a vehicle for a single simulation step based on the
route of the vehicle and the current and historical traffic conditions in the vehicles
surroundings. Furthermore, it computes changes in the velocity for the vehicle itself
and for obstructing vehicles which promote the successful execution of the desired
lane change maneuver.

In comparison to other microscopic lane-changing models, this model explicitly
discriminates between four different motivations for lane-changing:

(1) Strategic change
(2) Cooperative change
(3) Tactical change
(4) Obligatory change

After discussing the general architecture of lane-changing within the simulation
in Sect. 3, the handling of these four motivations will be discussed in detail in
Sects. 4–6. The complete formulas and decision trees used in the implementation
cannot be given due to lack of space. For those wishing to re-implement or modify
these models, this paper should serve as a useful guide when reading the source files
of the implementation in SUMO [3]. In Sect. 7 external control of the lane-changing
model via the TraCI interface [1] is discussed. Section 8 gives a detailed account of
the way conflicting lane-change motivations are resolved. Section 9 documents
simulation results of the lane changing model in comparison to older models and
Sect.10 gives an outlook on further developments.

106 J. Erdmann

This paper is an extension of [4]. It gives a more detailed account of the decision
trees for effecting speed adjustments (Sect. 3.3) and covers changes which were
made since that publication. One major change is the handling of obligatory lane
changes discussed in Sect. 7. Furthermore, it contains additional evaluation results.

2 Architecture

Road traffic simulation in SUMO represents the road network in terms of edges
which are unidirectional street segments between intersections and remain constant
in their number of lanes, and their maximum speed (among other attributes). An
edge consists of one or more parallel lanes which correspond to the (mostly
marked) lanes found in European road networks. These lanes are indexed from
right to left starting at 0. The route of a vehicle is stated in terms of the edges it
needs to follow but during the simulation it moves along the lanes with mostly free
choice of lane usage (except where lane usage restrictions are explicitly defined).
Connectivity in the road network is defined on the level of lanes, with each lane
having 0 or more successor lanes. If the lane on which a vehicle drives does not
have a successor lane which belongs to the next edge along this vehicles route, the
vehicles must change its lane in order to continue.

SUMO simulates the movement of vehicles along the aforementioned lanes. In
the context of this work the term vehicle refers to the model of a real-world vehicle
and its driver (sometimes called vehicle-driver unit). The speed of a vehicle is
mainly determined by the next vehicle in front of it called the leader, which may be
on the same lane or on the preferred successor lane after the current lane. This
preference is discussed in Sect. 3.1. The speed for following the leader is defined by
the car-following model which is not discussed in this paper [5]. A vehicle may
only change its lane if there is enough physical space on the target lane and if it
neither comes to too close to the leader on the target lane nor to its immediate
follower on the target lane (too close being defined by the car-following model). If
either of these conditions is not met, the vehicle is said to have a blocking leader or
a blocking follower. To distinguish the vehicle currently under consideration from
its leaders and followers we will refer to it as the ego vehicle. A vehicle that
advances to a lane on the next edge is said to advance the lane, whereas a vehicle
that changes to a parallel lane on the same edge is said to change lane. By default,
lane changes are instant.1 A vehicle is situated completely on the original lane in
one simulation step and in the next simulation step it is situated completely on the
target lane.

1 There exists the simulation option—lanechange.duration which enables continuous lane
change maneuvers. The vehicle occupies both lanes for a part of the given duration depending on
its width. This functionality is less mature than the default.

SUMO’s Lane-Changing Model 107

During each simulation step, the following sub-steps are executed in order for
every vehicle:

(1) Computation of preferred successor lanes (called bestLanes)
(2) Computation of safe velocities under the assumption of staying on the current

lane and integration with lane-changing related speed requests from the pre-
vious simulation step

(3) Lane-changing model computes change request (left, right, stay)
(4) Either execute lane-changing maneuver or compute speed request for the next

simulation step (involves planning ahead for multiple steps). Whether speed
changes are requested depends on the urgency of the lane-changing request.

The sub-steps 3 and 4 are handled by a customizable software component the
laneChangingModel. This gives a high amount of configurability within the bounds
of the architecture. The laneChangingModel described in this paper is can be
swapped against the previous model by setting user-configurable parameters. In the
following, the four motivations for lane-changing are discussed in the order of their
priority beginning with the most important. In Sect. 9 we explain how conflicts
between these motivations are resolved.

3 Strategic Lane Changing

Whenever a vehicle must change its lane in order to be able to reach the next edge
on its route, we call this type of lane changing strategic. This happens whenever the
current lane of the vehicle has no connection to the next edge of the route. In this
case we say that the vehicle is on a dead lane. Note that such a lane does not have
to be a dead-end in the common sense. A left-only turn lane is dead from the
perspective of a vehicle that wants to go straight. A vehicle may perform a stra-
tegically motivated lane change well in advance before reaching the dead lane if no
other motivation prevents it. This topic is discussed in the next two sections.

3.1 Evaluating Subsequent Lanes

Vehicles (or rather their assumed drivers) need to decide a sequence of lanes to
follow along their route of edges. In this they have some degree of restriction
(because some lanes are dead-ends) and they have some degree of freedom because
there are multiple lane sequences available. In SUMO a data structure is computed
which allows retrieving the following information necessary for subsequent
computations:

(a) For every lane on the current edge, a sequence of lanes that can be followed
without lane changing up to the next dead-end or to a maximum distance
(bestLanes).

108 J. Erdmann

(b) For every lane on the current edge, the traffic density along the bestLanes
(occupation)

(c) For every lane on the current edge, the offset in lane index to the lane which is
strategically advisable (bestLaneOffset)

Note, that multiple lanes may have a bestLaneOffset of zero. In this case, the
bestLaneOffset of other lanes points to the closest best lane. Most parts of this data-
structure are only updated whenever the vehicle advances to the next lane. The
algorithm for computing this data structure is discussed in [3]. The strategically
advisable direction is not part of the customizable architecture because it is rather
unambiguous (being based on maximizing the drivable distance without changing
lanes and minimizing the number of necessary lane changes). Nevertheless multiple
bugs were resolved in this part of the code base during the work on improving the
lane-changing model in SUMO. Figure 1 illustrates the bestLaneOffset at a
motorway off-ramp.

3.2 Determining Urgency

While approaching a dead-end lane, a vehicle has some amount of freedom to
pursue the strategically advisable lane (which may involve changing or staying) or
to follow conflicting motivations. The urgency for following the strategic neces-
sities (i.e. changing to the left if bestLaneOffset < 0 and changing right if best-
LaneOffset > 0) correlates with the following factors:

(a) remaining distance to the dead-end (negative correlation)
(b) the presumed speed while approaching the end of the dead lane

(lookAheadSpeed)
(c) magnitude of the bestLaneOffset
(d) occupation on the ultimate target lane (lane with bestLaneOffset = 0)
(e) occupation of the intermediate target lane (next target in direction of the

bestLaneOffset

Fig. 1 The ego vehicle (green) needs to move to the bottom lane (with index 0) in order continue
on its desired route (green). This lane has a bestLaneOffset of 0. The yellow lane (with index 1) has
a bestLaneOffset of—1 indicating a necessary lane change to the right. The red lane (with index 2)
has a bestLaneOffset of—2 and is strategically unadvisable

SUMO’s Lane-Changing Model 109

A strategic change is deemed urgent if the following relation holds true:

d � o\lookAheadSpeed � abs bestLaneOffsetð Þ � f

where the d is the distance to the end of the dead lane, o is a discount due to
occupation and f is a factor that encodes the time typically needed to perform a
successful change maneuver set to 10 for changing to the left and 20 for changing to
the right.

Notably, if there are multiple lanes in between the current lane and the ultimate
target lane, all their occupations should also matter, but are not currently evaluated.
The lookAheadSpeed depends on the current and historical speed of the vehicle.
This is necessary to avoid vehicles which temporarily have to slow down from losing
all sense of urgency. The expected number of seconds until reaching the end of the
dead lane is divided by the number of necessary lane changes (bestLaneOffset) to
obtain the available time for the current lane change (remainingSeconds). This
value is used in subsequent computations. Currently, urgency is only considered for
strategic lane changes but we discuss how it could apply to other motivations in
Sect. 10.

3.3 Speed Adjustment to Support Lane-Changing

Whenever a desired lane change cannot be executed due to blocking vehicles, a
vehicle may adjust its speed to allow the lane change to succeed in later steps.
Furthermore a vehicle may exert an influence on the speed of blocking vehicles (in
reality this typically happens as a reaction to observing the turn signals of the ego
vehicle). Due to the importance of completing strategic lane changes, it is assumed
that the ego vehicle will take careful adjustments to enable the change. Basically,
vehicles are assumed to drive at the maximum safe speed, so speeds can only ever
be adjusted downwards. However, as a part of the car-following model, vehicles
may have a stochastic component which prevents them from using their maximum
possible acceleration. Preventing this stochasticity (called dawdling) is a way of
increasing vehicle speeds somewhat.

To compute the desirable speed adjustments, the following hierarchy of situa-
tions is distinguished by comparing the plannedSpeed of the ego vehicle, blocker
speed, gaps and remainingSeconds:

(1) Leader is blocking

a. able to overtake leader: request leader to refrain from speeding up, prevent
ego dawdling, (prevent overtaking on the right where forbidden by law)

b. unable to overtake leader

i. slow down to stay behind the leader
ii. keep speed since the leader is faster anyway

110 J. Erdmann

(2) Leader is not blocking: set a maximum speed to ensure that the distance to
the leader remains sufficiently high

(3) There is no leader: drive with the maximum safe speed

The decision whether a blocking leader may be overtaken (1a vs. 1b) is illus-
trated in Fig. 2. The choice is made by checking a list of necessary conditions for
overtaking:

a. The ego vehicle is faster than the blocker (dv = plannedSpeed-blocker speed > 0).
The plannedSpeed incorporates speed requests by surrounding vehicles.

b. The blocking vehicle is to the left of ego or overtaking on the right is allowed (in
urban situations, on congested motorways or if the simulation option—lane-
change.overtake-right is set)

c. The remaining space to the end of the dead lane is sufficient for overtaking
d. The time remainingSeconds is sufficient to overtake the leader at the current

speed difference dv

The above decision tree results in an updated value of plannedSpeed with
regard to a blocking leader. Another decision tree is used to compute the behavior
in regard to a blocking follower. This decision tree considers plannedSpeed, blocker
speed, gaps and remaining seconds.

(4) Follower is blocking

a. will be able to cut in before follower

i. fast enough to do so with current speeds: request follower to refrain
from speeding up, prevent ego dawdling

ii. follower decelerating once is sufficient to open a gap: request
follower to decelerate as much as needed, prevent ego dawdling

b. needs to be overtaken by follower

i. follower should slow down a bit to increase the chance that sub-
sequent followers will be slow enough: request follower to decelerate
a bit, slow down to be overtaken fast enough

ii. follower should overtake quickly: prevent follower from dawdling,
slow down to be overtaken fast enough

c. follower cannot overtake on the right: request follower to slow down if
above a minimum speed threshold

Fig. 2 The ego vehicle (green) needs to change to the right to continue with its route. It could
either change behind the truck or it could overtake the truck and change in front of it

SUMO’s Lane-Changing Model 111

(5) Follower is not blocking: request follower to maintain speed so as to remain
non-blocking

(6) There is no follower: drive with the maximum safe speed

Speeds, computed in this way are integrated with the maximum safe speed
(vSafe) as computed by the car-following model by using the minimum of vSafe
and all requested speeds.

The distinction between cases (4)b.i and (4)b.ii warrants further explanation.
Whenever a vehicle tries to change from an on-ramp onto the motorway it has to
yield to vehicles already on the motorway. These vehicles may slow down slightly
to help merging vehicles, but they must not cause the flow on the motorway to
break down. For this reason, vehicles that try to change to the left only cause
blocking followers to slow down if their own speed exceeds a threshold value
(currently 27 m/s).

3.4 Preventing Deadlock

If a vehicle needs to stop on a dead lane because changing to a continuing lane did
not succeed it creates an undesirable impediment to traffic flow. The measures in the
previous section help to prevent this situation from occurring too often (and it does
occur in reality as well). However, if two vehicles on adjacent lanes both need to
change to the lane occupied by the other vehicle (refered to as counterLane-
Change) and both vehicles reach the end of a dead lane, a deadlock occurs. Neither
vehicle has the option of driving any further nor can either vehicle get the space it
needs to execute the strategic lane change (vehicles in SUMO cannot go back-
wards). This situation blocks the flow of traffic on both lanes and is highly unde-
sirable. Currently, it can only be resolved by moving vehicles in a non-standard
way (teleporting) after a time threshold is elapsed. Figure 3 illustrates situations
which may lead to a deadlock.

To prevent deadlock, special care is taken whenever two vehicles are in a
counterLaneChange relation. We refer to the vehicle which is closer to the end of
the dead lane as the blocking leader and the other vehicle as the blocking fol-
lower. Note that this relation may change from one simulation step to the next.
Generally, the blocking follower slows down when approaching the dead-end to

Fig. 3 A deadlock may arise between the purple vehicle which needs to change left and the green
vehicle which needs to change right to continue with its route. Another deadlock may arise
between the purple vehicle and the yellow vehicle which needs to change to the right twice

112 J. Erdmann

ensure that the blocking leader has enough space to complete its lane change. In
some cases the blocking follower is too fast or the blocking leader is too long. In
this case the blocking leader must slow down to leave enough space for the follower
before the dead-end.

Unfortunately, dead-lock situations can still arise if vehicles need to perform
strategic lane changes across multiple lanes. In this case, a counterLaneChange
situation can arise at a time where both vehicles have already reached the dead-end
and are unable to move. To prevent this, vehicles reserve additional space in front
of the dead-end whenever they have to change across more than one lane. Cur-
rently, additional space of 20 m is reserved for vehicles which need to change to the
right by more than one lane and 40 m for vehicles which need to change to the left
by more than one lane. The asymmetry is necessary to prevent yet another type of
deadlock. The values were selected because they were found to perform well in
preventing deadlock. Eventually they should be made configurable and be subject
to rigorous calibration.

An important aspect of preventing stopping at a dead lane (and thus deadlocks)
is avoiding detrimental lane changes. Generally speaking, the fewer lane change
maneuvers vehicles have to perform, the less chance they have to become stuck.
One change that was found to be quite beneficial was the avoidance of changing to
a dead lane which continues elsewhere. This is most often the case for turn-lanes at
an intersection. A vehicle which intends to go straight should not use the left-only
turn lane to get ahead because it will find it difficult to go back onto the required
lane. In reality these turn-lanes often have directional markings at their start and
there are rules which prohibit their use by vehicles which follow another direction.

4 Cooperative Lane-Changing

In some real-world situations vehicles (or rather their drivers) perform lane-changing
maneuvers with the sole purpose of helping another vehicle with lane-changing
towards their lane. In the current model, vehicles are informed by other vehicles about
being a blocking follower (the reason being that the turn-signals of the vehicle being
blocked are always visible to the follower, whereas being a blocking leader is less
obvious). If there are no strategic reasons against changing the lane, the ego vehicle
may change in either possible direction to clear a gap for the blocked vehicle. Con-
trary to expectation, this may have a beneficial impact on traffic flow even if the ego
vehicle attempts to change towards the blocked vehicle. This effect is not yet
understood and warrants further investigation.

Vehicles which cannot perform a cooperative lane change adjust their own
speeds slightly to increase the success probability for subsequent simulation steps.
However, they do not request speed changes if they are blocked.

A special case for cooperative behavior arises at multi-lane roundabouts.
Typically, all vehicles enter the roundabout at the outermost lane and also need to
leave again at the outermost lane. Due to the short distances involved, this means

SUMO’s Lane-Changing Model 113

they should always remain on the outermost lane for strategic reasons. However,
this effectively turns all multi-lane roundabouts into one-lane roundabouts and thus
degrades throughput. For this reason, the lane-changing model compels vehicles
which are not yet on their final roundabout edge to change towards the inner lane.
While this ignorance of strategic motivations sometimes results in stranded vehicles
it has a beneficial impact on roundabout performance (see results for the ACOSTA
scenario).

5 Tactical Lane-Changing

Tactical lane-changing refers to maneuvers where a vehicle attempts to avoid fol-
lowing a slow leader. It requires balancing the expected speed gains from lane
changing against the effort of lane-changing (which is arguably a very driver-
subjective value). The expected speed gains must also be balanced against the
obligation for keeping the overtaking lane free. Failure to do so results in situations
where slow vehicles with minor speed differences become major impediments to
traffic flow. Figure 4 show a situation in which tactical lane changing may take
place.

This part of the model is left unchanged from the old model [6]. Each vehicle
maintains a signed variable speedGainProbability which by its sign indicates the
beneficial change direction (-1 for right, 1 for left) and by its magnitude the
expected benefit. If the magnitude exceeds a threshold value, a tactical lane change
is attempted. If the lane change succeeds the value is reset to 0. The accumulation
over multiple time steps prevents oscillations. During each simulation step and for
each considered change direction d, the potential gain g ¼ ðv� uÞ=v is computed.
If g is positive, the variable speedGainProbability is incremented by d * g. If g is
nonpositive and speedGainProbability has the same sign as d, it is halved instead.

Under some circumstances, overtaking another vehicle on its right side is for-
bidden. To overtake in this case, the ego vehicle needs to change lanes to the left

Fig. 4 The ego vehicle (green) is faster than its leader vehicle (purple). To prevent slow down, the
ego vehicle may change to the left in order to overtake its leader

114 J. Erdmann

and wait for the slower leader to move to the right itself (effectively swapping
lanes). If there are more than two lanes available, to ego vehicle may also change to
the left twice in order to overtake the leader on its left side. As one of the additions
of the new car following model, this behavior is now triggered if all of the fol-
lowing conditions are met:

• The option—lanechange.overtake-right is not set
• The ego vehicle is driving at a speed of 60 km/h or above
• There is a leader vehicle on the adjacent lane to the left
• The leader is slower than the ego vehicle
• The ego vehicle would need to slow down if it were to follow the leader vehicle

(on the same lane)

In this case the ego vehicle will slow to the safe following speed and receive an
impulse to change to the right by incrementing speedGainProbability by a fixed
amount (enough to exceed the threshold if the conditions hold for three simulation
steps). It should be noted that the 60 km/h check in the above conditions stands as a
rough approximation for a far more complex set of rules which are dependent on
legal rulings in the applicable country to be modelled [7]. For Germany, the value
of 60 km/h corresponds not to a text of law but to a legal precedent which con-
cretizes the wording of “slow speed”.

6 Obligatory Lane Changing

In jurisdictions with right-handed driving, the left lane(s) are designated as over-
taking lanes. Drivers are under the obligation to clear that lane whenever they do
not use it for an overtaking maneuver. The obligation to clear the overtaking lane
could be framed as cooperative behavior because it helps other faster moving
vehicles. However, contrary to the cooperative lane-changing behavior described in
Sect. 5 which is optional, the behavior described in this section is mandated by
traffic laws [8]. Figure 5 illustrates a situation which calls for obligatory lane
changing.

In the current lane-changing model, each vehicle maintains a variable keep-
RightProbability which is decremented over time and triggers a lane change to the
right once a lower threshold value is exceeded (negative values are used in allusion
to the variable speedGainProbability). The formula for computing the new value

Fig. 5 The ego vehicle (green) is about to overtake. After finishing the maneuver, it is required to
move back onto the rightmost unobstructed lane

SUMO’s Lane-Changing Model 115

of keepRightProbability q0 from the old value q is designed for clearing the over-
taking lane as soon as possible while at the same time avoiding oscillations from
repeated cycles of overtaking on the left and changing back to the right lane.

q0 ¼ q� T
t � m
d � v

Here, t denotes the expected time which for which the ego vehicle will be able to
drive on the right lane with full speed (based on the distance to the leader vehicle
and its speed). The value of m denotes the speed limit on the target lane while
d denotes the desired speed of ego and v its current speed. T is a constant for tuning
the urgency of obligatory changing.

7 Remote Controlled Lane Changing (TraCI)

Running SUMO simulations can be controlled by external programs using an
interface called TraCI (Traffic Control Interface). Among the things that can be
controlled is the choice of lane among the available lanes for each vehicle. External
requests to change to a target lane or keep the current lane must be integrated with
the “internal” requests computed by the lane-changing model. This is accomplished
by letting the user determine the urgency and the priority of remote requests by
setting appropriate flags.

For each of four change motivations discussed above the following options can
be independently configured:

(a) Ignore internal request
(b) Ignore internal request when in conflict by an external request
(c) Always follow internal request regardless of external request

Furthermore, the following options for configuring the urgency of external
requests:

(a) Following request regardless of surrounding vehicles, perform urgent speed
adaptions

(b) Follow request unless it would cause an immediate collision but ignore safety
gaps to surrounding vehicles, perform urgent speed adaptions

(c) Only change if all safety constraints are met, perform urgent speed adaptions
(d) Only change if all safety constraints are met, perform no speed adaptions

As an example, the interface allows the remote program to specify that a given
vehicle should try to change to the left lane with urgency (i.e. with speed adjust-
ments to itself and to blockers), unless there are urgent strategic reason against
changing to the left and that the vehicle should ignore all other requests by the lane-
changing model.

116 J. Erdmann

8 A Hierarchy of Lane Changing Motivations

The four motivations discussed above are considered in a hierarchical fashion as
described by the following decision schema. The first statement which applies
determines the vehicles change request. In every simulation step, each vehicle first
considers changing to the right, and if no change to the right is performed, a change
to the left is considered as well. Accordingly, the currently considered direction d is
either right (−1) or left (1) according to the resulting change in lane index.

1. Urgent strategic change to d needed: change (strategic)
2. Change to d would create an urgent situation: stay (strategic)
3. Vehicle is a blocking follower for another vehicle with urgent strategic

change request: change (cooperative)
4. speedGainProbability above threshold and its sign matches d: change

(tactical)
5. keepRightProbability above threshold and d = −1: change (obligatory)
6. non-urgent strategic change to d needed: change (strategic)

9 Improvements Over the Earlier Model

In the following we present measurements which document the effect of model
changes on traffic flow and lane changing efficiency. Section 9.2 presents additional
measurements which were undertaken since [4] when working on the model for
obligatory lane changing.

9.1 Efficiency of Lane Changing

For a quantitative evaluation of the improvements, the following metrics were
computed for a selection of benchmarking scenarios.

– avgWaitingTime: the average time each vehicle spent with speed below 0.1 m/s
– wrongLaneTeleports: the count of vehicles which had to be moved artificially

(teleported) because they could not complete a strategic lane change (after a
threshold time t)

– jamTeleports: the count of vehicles which had to be moved artificially (tele-
ported) because the successor lane was occupied (after a threshold time t)

The scenario Braunschweig contains the urban area of the German city of
Braunschweig (Brunswick) and the surrounding area with sections of motorway.
The scenario spans one day and contains 650,000 vehicle movements. The
threshold time for teleporting was set to 120 s.

SUMO’s Lane-Changing Model 117

The scenario A92 consists of a motorway section in southern Germany with a
length of 20 km. It contains 63,000 vehicle movements over the course of 1 day.
The threshold time for teleporting was set to 300 s.

The scenario ACOSTA is comprised of a section of the Italian city of Bologna
and contains 9,000 vehicles over the course of 1 h. It is notable for containing a
2-lane roundabout. The threshold time for teleporting was set to 300 s.

The algorithms old and new correspond to the SUMO vType parameters lane-
ChangeModel = “DK2008” and laneChangeModel = “JE2013”. As can be seen in
Table 1, the new algorithm brings a significant improvement in all considered
scenarios. Additional topics for future improvement are discussed in the next
section.

Compared to the old lane-changing model described in [6], the new model
shows improvements in the following areas:

– Fine grained control over speed adjustments to ego vehicle and blockers lead to
higher fulfillment rate of change request. In the old model, vehicles always
reacted to blocking leaders by slowing down and they always slowed down
when being a blocking follower (improved all metrics and all scenarios).

– Extrapolation of dynamics over multiple steps allows better choices between
overtaking blockers and allowing to be overtaken (also improves the success
rate and thus improves all metrics).

– Improved checking for deadlock-prone situations avoids deadlocks in more
cases. In the old model, some cases of deadlock were avoided by allowing
neighboring vehicles with opposite change requests to swap their positions
instantly. This oversimplification is no longer necessary (primary impact on
wrongLaneTeleports but secondary effect for the other metrics).

– Asymmetrical behavior when helping other vehicles with lane-changing
(depending on the direction of change) prevents the main flow from breaking
down at busy highway on-ramps (improved avgWaitingTime especially in
Braunschweig).

– Special behavior within multi-lane roundabouts ensures that all lanes are used
whereas in the earlier model only the outer lane was ever used (improved
avgWaitingTime and jamTeleports, only ACOSTA).

– The explicit discrimination between the 4 different motivations for lane
changing allows fine grained control for integrating model dynamics with

Table 1 Performance metrics for old and new lane-changing model and different scenarios

Scenario/Algorithm avgWaitingTime wrongLaneTeleports jamTeleports

Braunschweig/old 89.73 845 464

Braunschweig/new 46.66 7 9

A92/old 17.16 21 1

A92/new 0.02 0 0

ACOSTA/old 144.59 0 7

ACOSTA/new 76.69 0 0

118 J. Erdmann

external change requests (TraCI). This was necessary to successfully complete a
project which simulated automated platooning (not discussed here).

Note, that a large number of model changes were tested in isolation using the
above metrics. To simplify the presentation of our results we only show the effect of
all combined model changes. It can be seen that all metrics improved for all
scenarios except for the few cases where they had the best possible value to begin
with, thus validating the usefulness of the new lane changing model.

The A92 scenario is based on fine grained detector measurements which showed
no jamming in the real world data (in contrast to simulation with the old model).
Also, the Braunschweig scenario exhibited deadlocks and jamming with a fre-
quency that was utterly implausible for the demand model of a normal working day
when simulation with the old model. Although improved traffic flow is not gen-
erally a sign of a more realistic model (after all, jams are a fact of life), for the above
scenarios an increase in realism can be posited.

9.2 Lane Usage

In the old model, obligatory changing was conflated with tactical lane changing by
giving an additional decrement to speedGainProbability whenever the right lane
allowed a high enough speed (for the next simulation step). This way, the decision
for performing an obligatory lane change was strongly based on accumulated
knowledge about the past rather than anticipated behavior in the future. The
noticeable disadvantage of this design was the high delay between passing a slower
vehicle and pulling back into the rightmost lane which had a detrimental effect on
average road speed. The new model is designed to change to the right shortly after
overtaking whenever the desired speed can expectedly be maintained on the right
lane for a sufficient time.

To investigate lane usage properties a simulation scenario based on measure-
ments from the German motorway A3 was set up. The input data consists of single
vehicle detections from a detector cross-section with 3 lanes measured over a whole
day.2 The motorway experiences an average flow of 1,800 vehicles per hour with a
peak flow of 3,500 vehicles per hour. The data is described in detail in [9]. Each
data point contains a high-resolution time stamp, as well as the speed and the length
of the vehicle. This data was fed into a simulated 3 lane motorway with a length of
30 km. The simulated vehicles were inserted with normally distributed values for
tau and sigma by generating an individual vType element for each vehicle. The
maximum speed, departure time and vehicle length were taken from the real-world
measurements.

Simulated detectors were placed with a spacing of 1 km to accumulate the
absolute number of vehicles passing on each lane as well as the average speed.

2 1995, 11th of March, a Saturday.

SUMO’s Lane-Changing Model 119

The investigation assumes that vehicles at the measurement location are in an
equilibrium state in regard to their speeds and lane usage. Under that assumption,
the absolute count of vehicles on each lane should remain nearly constant over the
length of the motorway. Likewise, the average speed on each lane should remain
constant over the length of the motorway.

Figure 6 shows the evolution of lane usage for different versions of the lane-
changing model. It can be seen that older versions of the lane changing model
deviate much stronger from the equilibrium assumption whereas newer versions
deviate less. Specifically, the old model DK2008 placed excessive weight on

Fig. 6 Lane usage measurements for different versions of the lane changing model. Top left
DK2008 sumo 0.18.0, top right JE2013 sumo 0.19.0, bottom left JE2013 sumo 0.20.0, bottom
right JE2013 sumo 0.22.0. Version 0.21.0 is not shown due to being the same as 0.20.0 (The lane
changing model slated for the upcoming release version 0.22.0 is already available as source code
revision 17,102)

120 J. Erdmann

obligatory lane changing whereas the intermediate version of the JE2013 model in
revision 0.19.0 had no obligatory changing at all due to an implementation bug.

In addition to the lane usage and speeds, the average number of lane changes per
vehicle and driven kilometer was measured for different lane change models. A
survey by Lee et al. measured an average number of 0.26 lane changes per kilo-
meter and vehicle while driving on American highways and interstates [10].3

Table 2 gives the corresponding value for different model versions. A large jump
can be seen from sumo version 0.19.0–0.20.0 when the new formula for effecting
obligatory lane changes was introduced. However, due to a bug that was causing
oscillations between tactical and obligatory lane changing4 the number of lane
changes was higher than intended. This bug is fixed in the upcoming version 0.22.0
resulting in a reduced number of lane changes. Overall an improvement in realism
can be posited based on the measured values.

10 Outlook

The focus of the recent improvements of the lane-changing model was on deadlock-
prevention and success rate of lane-changing as well as lane usage. The next goal is
to perform calibration in order to reproduce lane-changing frequency.

To perform model calibration, several hard-coded model parameters shall be
exposed to the end user. There should at the very least be one parameter for each of
the four motivations:

– Urgency of strategic changes
– Tradeoff between altruistic and egoistical behavior
– Eagerness to realize speed-gains
– Eagerness to clear the overtaking lane

Table 2 Lane changing
statistics for different model
versions

Model SUMO
version

Lane changes per vehicle and
km

DK2008 0.18.0 0.03

JE2013 0.19.0 0.04

JE2013 0.20.0 0.45

JE2013 0.21.0 0.45

JE2013 0.22.01 0.26
1 Upcoming release. Source code revision 17,102

3 Lee et al. report 0.36 lane change maneuvers per mile or 0.22 per km with 16 % of the
maneuvers consisting of more than one lane change.
4 Vehicles were changing to the left in anticipation of overtaking a slower vehicle which was still
very far away and shortly afterwards changing back to the right by obligation.

SUMO’s Lane-Changing Model 121

Using these parameters the model should be calibrated and validated using real
world measurements.

The type of deadlock discussed in Sect. 3.4 could be considered as a network
modelling error. In reality, vehicles have the option of moving “diagonally” from
their current lane to the target lane on a subsequent edge without requiring free
space for their full length on the target lane. Typical traffic regulations would
prohibit this kind of maneuver except for preventing deadlock. These connections
are currently not modelled because SUMO currently cannot handle multiple con-
nections from the same edge to the same target lane. It may be necessary to extend
the network model to achieve more realistic traffic flow in deadlock-prone
scenarios.

Cooperative lane-changing has not been extensively looked at and is a probable
candidate for model improvements. Currently, only blocking followers change
cooperatively whereas real-world situations are conceivable in which blocking
leaders change as well. A typical situation which is not yet considered by the lane-
changing model is the coercion to change to the right because a faster vehicle is
approaching from the rear on the same lane. Another point is the usage of multi-
lane roundabouts where currently, some vehicles become stuck on a dead-end
inside lane. Additional checks should be done to prevent these situations from
arising. It would also be helpful to know the degree in which inner lanes are used in
reality. The fact that cooperative lane changes towards the blocked vehicle benefit
simulation performance should also be investigated.

Some of the above issues might be resolved by extending the concept of urgency
to all four motivations. A cooperative lane change is more urgent if the supported
vehicle is about to suffer a bigger speed loss unless it receives help. Likewise a
tactical lane change is more urgent if the ego vehicle is about to suffer a bigger
speed loss (due to a slow leader on its lane). Changes with the intent of clearing the
overtaking lane are more urgent if the follower on this lane is about to suffer a
bigger speed loss as well.

Another point that should be addressed in the future is the interaction between
lane-changing and car-following. In SUMO vehicles always maintain sufficient
gaps to allow safe stopping if their leader vehicle were to brake with maximum
deceleration until stopped. Likewise, the ego vehicle only changes to a new lane
when the follower vehicle has enough space to stop safely if the ego vehicle were to
brake with maximum deceleration until stopped.

In reality, drivers may accept much lower front-headways during lane-changing
which may be justified by any of the following arguments:

– Their leader vehicle will usually not start to brake hard (especially when there is
no apparent blockade)

– They may change the lane again to avoid collision if necessary
– They have a lower reaction time by concentrating on a critical maneuver and

thus are able to use smaller gaps safely

122 J. Erdmann

Likewise, drivers in reality may accept much lower rear-headways during
lane-changing by using the following justifications:

– They will not suddenly start braking hard when there is no obstacle (which they
could see in advance if it was there)

– They may plan to continue their lane change maneuver one lane further which
only requires them to remain safely clear of the follower vehicle for a brief time
window

Some of these justifications may be applicable to SUMO vehicles and could be
used for altering the parameters of the car-following model when evaluating the
safety of a lane change maneuver. This would go a long way towards increasing
the realism in scenarios such as highway on- and off-ramps where urgent strategic
changes are needed.

References

1. Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) SUMO—simulation of urban
mobility: an overview. In: SIMUL 2011, the third international conference on advances in
system simulation

2. DLR and contributors: SUMO homepage (2013) http://sumo.sourceforge.net/
3. SUMO source code corresponding to this document. http://sumo-sim.org/trac.wsgi/browser/

trunk/sumo/src/?rev=16164
4. Erdmann J (2014) Lane-changing model in SUMO. In: Proceedings of the SUMO2014

modeling mobility with open data, 24, Seiten 77–88. Deutsches Zentrum für Luft—und
Raumfahrt e.V. SUMO2014, 16–16. Mai 2014, Berlin, Deutschland. ISSN 1866-721X

5. Krauß S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow.
Phys Rev E Am Phys Soc 55:5597–5602

6. Krajzewicz D (2010) Traffic simulation with SUMO—simulation of urban mobility. In:
Barceló J (ed) Fundamentals of traffic simulation, series: international series in operations
research and management science, vol 145, Springer, ISBN 978-1-4419-6141-9

7. Section 7 StVO (German Straßenverkehrsordung)
8. Section 2 StVO (German Straßenverkehrsordung)
9. Knospe W, Santen L, Schadschneider A, Schreckenberg M (2002) Single-vehicle data of

highway traffic: microscopic description of traffic phases. Phys Rev E Am Phys Soc
65:056133

10. Lee SE, Olsen ECB, Wierwille WW (2004). A comprehensive examination of naturalistic
lane-changes. Report no. DOT HS 809 702. National Highway Traffic Safety Administration,
Washington, DC

SUMO’s Lane-Changing Model 123

http://sumo.sourceforge.net/
http://sumo-sim.org/trac.wsgi/browser/trunk/sumo/src/?rev=16164
http://sumo-sim.org/trac.wsgi/browser/trunk/sumo/src/?rev=16164

Development and Assessment
of Cooperative V2X Applications
for Emergency Vehicles in an Urban
Environment Enabled by Behavioral
Models

Florian Weinert and Michael Düring

Abstract Statistically, emergency vehicles (EVs) encounter a higher risk of getting
involved in accidents during their missions than other road users. The successful
completion of these missions can be facilitated by new applications. Simulations
may support the development of applications, as it is not possible to test them in a
real traffic system. Simulation of Urban Mobility (SUMO) is one possible tool to
conduct simulations of real traffic systems. However, SUMO is not capable of
modelling a realistic behavior of EVs, new types of infrastructure, and individual
vehicles (IVs) concerning EVs by a predefined function. We propose models for
each of the missing pieces towards an integrated approach to simulate EVs in an
urban environment. Therefore, we adjust them with a video analysis and simulate
them. Further, an assessment analyzes their usability as a reference for testing new
applications. In order to identify supportive applications, we created and carried out
a survey with 252 EV drivers. The deduced applications are a traffic light pre-
emption via V2I and an automated formation of a rescue lane via V2V. We assess
the models and applications by evaluating the travelling time, a speed profile of the
EV, and speed profiles of the IVs. Additionally, we show the usefulness of the two
applications for the EV as well as the IVs.

Keywords Simulation of an emergency vehicle � Simulation of EVs � Urban �
Intersection � Real EV behavior � Rescue lane � Intelligent transportation system �
Intelligent traffic light � V2X � Preemption � Automated formation of a rescue
lane � Travelling time

F. Weinert (&) � M. Düring
Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany
e-mail: Florian.Weinert@Volkswagen.de

M. Düring
e-mail: Michael.Duering@Volkswagen.de

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_8

125

1 Introduction

Statistics about missions of rescue services in Germany indicate over 14 million
missions a year [1]. This corresponds to several ten thousand missions of emergency
vehicles (EVs) every day. Each mission is carried out under enormous time pressure
as regional response time regulates the maximal time difference between the
incoming call and the arrival of the rescue team [2]. The travelling time of an EV
may be influenced by any incident on the road. Especially in an urban environment,
red traffic lights are a serious threat for reaching the destination in time [3–6]. A red
traffic light has two effects on the trip. First, the red light itself which indicates
possible crossing traffic and second the obstruction by other road users waiting in
front of the red light. This leads to a reduced speed as well as a higher risk of getting
involved in an accident [7, 8]. A study examined the likelihood of having an accident
by comparing accidents per kilometer of EVs and individual vehicles (IVs).
According to the study, the risk of being killed is four times higher, being severely
injured is eight times higher, and having a material damage is seventeen times higher
while being on a mission in an EV [8].

For supporting EVs in urban situations, research and development presented
various systems [4–6, 9]. A new set of applications for EVs may further enhance the
safety and efficiency of rescue services. These applications may require new types of
traffic infrastructure and communication among vehicles (V2V) and vehicles and
infrastructure (V2I). In short this communication is called V2X communication. In
order to evaluate the potential of new applications, prototype systems need to be
deployed in a real traffic environment and analyzed over a long time period. As this
is a severe alteration of the traffic system, it is hardly imaginable that local authorities
allow such a procedure. However, simulations are a suitable tool to perform the
necessary potential analysis.

2 Survey of EV Drivers

Only few studies investigate accidents related to missions of EVs. Müller [8] did his
studies based on traffic data from 1994. Since then, no reliable source stated data in
comparable quality. One reason might be that accidents involving EVs are not
monitored centrally. Potential sources to collect relevant data are emergency vehicle
drivers who know about the problems and dangerous situation which occur on
missions. Hence, we carry out a systematic survey with EV drivers, aiming to
discover critical traffic situations and deduce possible solutions. In the following,
we present the survey and an initial analysis. We intent to give a first outline about
the answers on selected questions.

The online survey enfolds 252 drivers of police cars, ambulances, and fire
trucks. Personnel driving fire trucks comprise drivers within the professional fire
brigade and the voluntary fire brigade. The survey starts with sociodemographic

126 F. Weinert and M. Düring

questions, continues with statements about “Driving and Situational Awareness”
and “Accidents”, and closes with opinions about technical assistance systems.

Within the “Driving and Situational Awareness” section, the drivers have to
answer questions concerning their medical condition before starting a mission and
the assessment of different situations on their missions. 54 % of EV drivers indicate
that pull-outs are routine for them.

However, 55 % admit that a mission means stress and 84 % say they are tensed
during the pull-out. For 98 % of the interviewees, safety is more important than
celerity. Regarding the different traffic situations, it becomes apparent that drivers
categorize intersections as more critical than any other type of street. Moreover,
they perceive driving through red traffic lights (96 %) and crossing intersections
without traffic lights (80 %) as critical, while only 12 % define straight roads as
critical. Blue light and siren gain enough attention to make others aware of the
approaching EV according to 59 % of the EV drivers. The 41 % denying this
statement mention that other drivers are distracted by media such as mobile phones
or the radio. Additionally, the harmonic tone sequence might reduce the percepti-
bility of the siren.

The section “Accidents” reveals that 35 % of the interviewees already have had an
accident. 93 % agree with the sentence “Accidents are caused by the individual
traffic”. Moreover, 91 % think that abrupt braking and wrong steering reaction cause
accidents. Thesemaneuvers aremore critical than not reacting at all according to 79%
of the interviewees. Beyond, 56 % agree that “Accidents are caused by EV drivers”.

The reasons of accidents may be divided into driving too fast near/in the
intersection area (92 %) and driving through red lights (91 %). Moreover, they think
that accidents mostly occur on the way to the place of assignment (91 %) and not on
the way back to the department (13 %).

Concerning the technical assistance systems, we classified two different types:
assistance systems for the EV and assistance systems for the IV. For the EV, we
asked for the usefulness of a preemption system. For IVs, we wanted to know if
additional information or even an automated reaction of IVs may help. The inter-
viewees say that preemption systems can save time (92 %) and reduce the danger of
driving through intersections (90 %). This also leads to less stress (75 %).
Regarding the IV, we divided systems into three types: warning IV drivers about an
approaching EV, advising the drivers on how to react, and an automatically reacting
system that may override the drivers. Interviewees categorize that “detailed warning
about the approaching EV” (91 %) is useful, 64 % think that “the advice on how to
react” helps drivers. 30 % of the EV drivers find a system useful that conducts
automated reactions on EVs. Concluding the comment areas of this last application,
we can see that automated systems achieve only small acceptance because the
drivers apprehend technical difficulties and the lack of robustness. Figure 1 shows
the results in short.

Summarizing this initial analysis of the survey, we gather information on what
would make missions of EVs safer. We deduce that assistance systems are useful

Development and Assessment of Cooperative V2X Applications … 127

for EV drivers. There is a demand for support at traffic light controlled and blind
intersections. Moreover, the EV drivers state that the IV has a major influence and
is responsible for hazardous situations. IV drivers could be supported by warning
and advice systems. An automated vehicle reaction may also support the IV driver,
but, according to the interviewees, such a system is beyond the technical possi-
bilities and not realizable.

0 20 40 60 80 100

…other road users

…EV drivers

Accidents are caused by...

0 20 40 60 80 100

EV driver's misbehavoir during overtaking

Driving against the driving direction

Driving too fast at intersections

Wrong indication of the driving direction

Crossing a red traffic light

Breaking into moving traffic

Yielding the right of way

Critical situation leads to accident during a
pull‐out

0 20 40 60 80 100

…at red traffic lights

…at gateways

…in turns

…on straights

…at intersections with traffic lights

…at intersections without traffic lights

I categorize situations as critical during a
pull‐out, if they happen...

Fig. 1 Excerpt of answers to the EV survey (in percent)

128 F. Weinert and M. Düring

3 Problem Statement

An applicable simulation framework allows us to conduct research concerning
effects of new applications for EVs on the traffic system. We decided to use the
simulation tool Simulation of Urban MObility (SUMO) as its strength is to simulate
V2X applications improving traffic efficiency [10]. However, the simulation of
special situations—e.g. situations comprising EVs—is not covered. EVs may
override general traffic rules. They can drive faster, may drive through red lights,
and are allowed to use their siren and light bar to inform others about their arrival
and their right of way. Thus, the EV has an effect on the behavior of individual
vehicles (IVs). The research community does not agree whether these effects need
to be modelled in order to evaluate new applications e.g. preemption systems.
Driving through red lights and the behavior of IVs may be neglected because only
the difference in travelling time with and without the application is significant [11].
Others argue that by neglecting these effects the potential of new applications may
be overestimated [12]. Bieker [13] does not implement a driving through red lights
because the EV coincidental arrives during the green phase. According to her, a
model needs to be investigated to overcome the red light issue. Additionally, the
study implements the behavior of IVs as stopping when an EV is approaching.

The effects mentioned above issue a challenge for SUMO. Within this article, we
want to present models enabling SUMO to simulate V2X applications improving
traffic efficiency and safety involving EVs and conduct simulations of two appli-
cations, namely a preemption and an automated cooperative formation of a rescue
lane by IVs. This article is organized as follows. Section 4 describes the simulative
environment with all boundary conditions and input parameters. Section 5 explains
the different implementations. Section 6 deals with the calibration of the proposed
models. Section 7 describes two example applications as well as the simulation.
Moreover, it contains the assessment of both the models and applications. Section 8
completes the article by giving a conclusion and outlook.

4 Simulative Environment

Material provided by OpenStreetMap is the basis for the traffic system used in this
article. It is shown in Fig. 2 and includes three urban intersections in Braun-
schweig,1 Germany. Apart from this realistic traffic system, a real traffic signal
timing plan and a collected traffic census data is the basis for an approximated real
traffic flow. Figure 3 shows the underlying data of the traffic census. Straight arrows
and the corresponding numbers indicate straight traffic whereas angled arrows and
corresponding numbers indicate turning traffic (left or right). The percentage share

1 Intersections from west to east: Rebenring/Pockelsstraße, Rebenring/Hagenring, and Hans-
Sommer-Straße/Langer Kamp.

Development and Assessment of Cooperative V2X Applications … 129

of trucks is 3 % with a distribution of semi-trailer trucks (Truck 1) and short trucks
(Truck 2) in a ratio of 1:1. The remaining road users are passenger cars divided into
three groups in a ratio of 1:2:1 (Car1:Car2:Car3). They differ in vehicle dimensions,
maximal speeds, reaction times of the drivers, and driver’s attention. Values for
type Car 1 are comparable to the vehicles of the A00 segment. Type Car 2 rep-
resents the A segment, type Car 3 equals the B segment, and type EV a fire truck.
Values for the maximal acceleration and maximal deceleration consider a com-
fortable acceleration and are not equal to the maximal physical values. Table 1
shows vehicle related parameters and used driver models (minGap, Sigma and
Impatience). The table also contains parameters used for the EV.

Fig. 2 The simulated traffic system

Fig. 3 Collected data of a traffic census at the relevant intersections during the peak hour

Table 1 Vehicle parameters and driver behaviors

Type Max.
speed
(m/s)

Speed-
factor
(–)

Max.
accel
(m/s2)

Max
decel
(m/s2)

Length
(m)

minGap
(m)

Sigma
(–)

Impatience
(–)

Car 1 40 0.8 1.9 3.0 3.5 2.00 0.6 0.3

Car 2 50 0.95 2.6 3.5 4.2 1.20 0.8 0.5

Car 3 60 1.0 3.1 4.0 4.7 0.65 0.8 0.8

Truck 1 22 1.0 0.8 3.5 18.4 0.75 0.9 0.7

Truck 2 22 1.0 0.8 3.5 12.4 0.75 0.9 0.5

EV 30 1.2 2.5 7.0 12.4 0.5 1 1

130 F. Weinert and M. Düring

5 Models

5.1 EV Behavior

As stated before, EVs are allowed to override general traffic rules and SUMO is not
able to model this necessary behavior with a predefined internal function. Our
implementation concerning the EV’s behavior considers speeding and the ability to
drive through red lights. The usage of a siren and a light bar is not visualized within
the simulation. However, their effect on the IV is described in Sect. 5.3.

5.1.1 Speeding

The EV may override speed restrictions by using the implemented speed factor.
Table 1 shows the maximum speed of the EV (30 m/s) and the speed factor (1.2).
By setting the speed factor to a value greater than 1.0 (=100 %), the related vehicle
may drive faster than the speed limit. The speed limit is set to 13.8 m/s (equals
50 km/h), as the traffic system is located in an urban environment. Thus, the EV can
drive 16.56 m/s (1.2 * 13.8 m/s ≈ 60 km/h) within the traffic system, as the
maximum speed of the EV (30 m/s) is not exceeded.

5.1.2 Drive Through Red Lights

The TraCI (Traffic Control Interface) enables an enhanced alteration of the EV’s
behavior. Using this interface, the EV may cross an intersection while having a red
light. Normally, an EV approaching a red traffic light in the simulation would start
to brake in order not to violate traffic rules. Even if no vehicle congests the
intersection, the EV will wait until the traffic light switches to green. Figure 4 shows
a flowchart of the implemented algorithm which allows an EV to drive through red
lights. First, the algorithm determines the speed and the lane of the EV as well as
the signal state of the intersection. Additionally, a minimal and maximal speed
value is read from a configuration file which allows modeling a realistic
approaching behavior (see Sect. 6). Second, it checks whether the EV is in front of
an intersection. As a third step, the EV’s speed is checked against the minimal
speed value and the maximal speed value. If the EV is driving slower than the lower
threshold the green signal is held or the red signal is switched to green.

If the EV is driving faster than the upper threshold, the signal is held or switched
to red. This leads to an averaged approaching behavior of the EV which can be
observed in real situations with EVs approaching intersections. The algorithm is
executed every time step in the simulation.

Development and Assessment of Cooperative V2X Applications … 131

5.2 Intelligent Infrastructure

New applications require a novel type of infrastructure. Characteristics of a new
infrastructure, for instance accessibility by special road users, influence the mod-
ulation. We propose a model to interact with traffic infrastructure using TraCI and
inductive loops. Inductive loops are a trigger to start an application on the infra-
structure, e.g. setting a new traffic signal timing plan. The implemented loops only
react to vehicles of the type EV. The distance between the loops and the intersection
represents the V2X reception radius.

5.3 IV Behavior

Road users respond in a certain way when perceiving a siren or blue light. The most
favorable way is to respond in a cooperative manner as discussed in [14]. One
possibility to behave cooperatively is described in the Road Traffic Regulations [15]
as creating a rescue lane in order to let the EV drive through the congested area
quickly. A method to implement such a behavior is presented hereinafter. An
example situation clarifies the functional principle of the method.

Figure 5 (top) shows a oneway road with three lanes. Ten vehicles drive on that
road as an EV approaches on the middle lane from behind. In this example, the
method clears the middle lane by forcing the obstructing vehicles to change the
lane. It induces a lane change maneuver by using the SUMO internal ChangeLane
()-function based on the SUMO vehicle dynamics. Figure 5 (middle) shows the turn
signals indicating a lane change of the obstructing vehicles. The direction of the
lane change may be parameterized according to the vehicles’ destinations. Figure 5
(bottom) shows the final rescue lane. The flowchart in Fig. 6 shows the algorithm.

Start

getSpeed(EV”)
getLane(EV”)

GetSignalState()
GetMinSpeed(EV”)
GetMaxSpeed(EV”)

Speed(EV”) <
MinSpeed(EV”)

SignalState ==
red”?

Speed(EV”) >
MaxSpeed(EV”)

TrueEV in front of
Intersection?

End

False

True

SignalState ==
True

False

SetSignalState() =
green”

True

SetSignalState() =
red”

EndFalse

False

True

False

”

”
”

”

”
””

”
” ”

green”?

”

”

Fig. 4 Flowchart showing one EV model

132 F. Weinert and M. Düring

The algorithm determines the number of vehicles on the EV’s lane (amount) and
their identification number. After that, a procedure checks each vehicle. First, it
determines the speed of the vehicle. Afterwards, a check clarifies if the vehicle
entered the EV lane within the last simulation step. If so, a reacting distance is
calculated in which the vehicle reacts on the EV’s presence (see Sect. 6 for the sub
function). If not, the old values are used. The algorithm calculates the distance

Fig. 5 Example situation for the IV behavior

Start

GetVehiclesOnLane(EV”)
amount = NumberOfVehiclesOnEVLane()

i = 1

i = i + 1

GetPositionVehicle(i)

New vehicle?True

0 <
ReactingDistance(i)

< DistanceToEV

GetReactingDistance(i)
GetSpeed(i)

False

Speed(i) > 3 m/s

True

ChangeLane(i)

i <= amount?

True

False

False

End

SetReactingDistance(i)

True

False

”

Fig. 6 Flowchart showing the model “IV behavior”

Development and Assessment of Cooperative V2X Applications … 133

between the vehicle and the EV. The calculated distance to the EV needs to be
lower than the reacting distance and the vehicles speed needs to be higher than a
certain value. This procedure is repeated for each vehicle and each time step in the
simulation. In the following, two different settings will be presented: IV behavior a
and IV behavior b. Both IV behavior models have a threshold of 5 m/s for the
vehicle’s speed to induce a lane change.

5.3.1 Behavior a

The algorithm induces a lane change without taking the route of the vehicles into
account. It may be possible that a vehicle is not able to reach its destination, because
the algorithm forces it to change the lane to an undesired one. This behavior is the
base for the investigations in [16].

5.3.2 Behavior b

This model takes the route of the vehicles into account. That may lead to longer
travelling times caused by obstructing vehicles but has the advantage that every
vehicle is able to reach its destination.

6 Calibration

The calibration of the models implementing EV and IV behavior aims to resemble a
realistic behavior. Therefore, different methods are conceivable. For instance,
assessments of traffic census comprising missions of EVs indicate the effect on the
EV’s travelling time. Using this data, it is possible to estimate an average time loss.
We forego using such a method. First, a traffic census in required dimensions
involving EVs does not exist. Second, and more important, an average time loss
may not be representative to the scene and ineligible to calibrate the models in
required detail. Some intersections and urban roads may cause only little time loss
whereas others are a major issue for EV’s travelling time. That is why we focus on a
real data analysis using videos at congested urban roads and intersections. The
videos reveal the behavior and retarding effects in real situations. This analysis
gives several example situations to adjust parameters of the models.

Buchenscheit et al. [17] assessed videos to gain insights of interactions between
EVs and IV. They mounted a camera on the dashboard of an EV and recorded 21
typical emergency response trips with a total length of 147 min. They came to the
conclusion that dangerous and/or retarding factors can be condensed to a late
perception of the approaching emergency vehicle and a non-optimal switching of
traffic lights. Red traffic lights, which occur in 50 % of the trips, cause a delay of
15–30 s each. Moreover, on average 2.5 drivers are misbehaving which leads to a

134 F. Weinert and M. Düring

loss of 1 min in average for each trip. As we want to calibrate the proposed models,
we need a more detailed analysis. However, we seize the idea of assessing recorded
EV missions. Because data protection laws require a certain protection for people,
we decide to assess already declassified videos available of different rescue services
in Germany. The selection of video files is based on the following factors:

• The regional rescue service declassified a couple of videos (not only a few). This
reduces the risk of extracting unique environmental/traffic impacts and come to
flawed conclusions.

• The database comprises different videos of different rescue services. This
reduces the risk of adjusting the models according to a regional instruction of
EV drivers.

• The videos do not include exceptional situations (e.g. missions during natural
disasters, educational films).

The video database consists of urban and suburban/rural missions. Necessary
parameters such as distances between road users and speeds are either recorded or
estimated. The overall length of the video material is 90 min with 116 traffic light
controlled intersections and a variety of numbers and composition of vehicles and
environments. Concerning the traffic lights, the traffic light was red 56 times at the
moment of passing whereas it was green in 60 instances. This indicates that the EVs
had red in 48 % of the times an EV passes a traffic light controlled intersection.
Although the EV drivers reduced their speed in these instances dramatically (on
average 20 km/h), crossing IVs almost leads to accidents in two instances. Addi-
tionally, 36 instances showed heedless behavior of IV which leads to critical sit-
uations caused by wrong perception of the situation. Concerning the analysis of
distance for the noticeable first reaction regarding the EV, the reacting distance is
divided into the three clusters: “50 m and more”, “50–20 m”, and “20 m and less”.
Depending on the environment and the perception of the EV’s presence, approxi-
mately 25 % of the IVs react in a distance of 50 m and more. Around 50 % of the
IV’s drivers react in a distance between 50 and 20 m, whereas 25 % of the drivers
react in a distance of 20 m and less. However, the time to form a rescue lane is
strongly depended on the traffic density. This is why the model is adjusted con-
cerning the distance for first reaction and not the time for successfully creating a
rescue lane. With this analysis, the models can be calibrated. The average speed for
the EV crossing an intersection while having a red light is about 20 km/h. Hence,
the upper speed limit is set to 7 m/s whereas the lower speed limit is set to 4 m/s
(see Fig. 4). Thus, the average speed equals 5.5 m/s (=19.8 km/h).

The IV reaction model is calibrated according to the estimated values which are
used as shown in the flowchart in Fig. 6. The discovered distribution over the
obtained reacting distances is modelled by a random, uniformly distributed float
generator. Figure 7 shows the IV reaction model.

Development and Assessment of Cooperative V2X Applications … 135

7 Simulation of the Models and V2X-Applications

We present an intelligent traffic infrastructure and near realistic behavior of IVs
and an EV to enable tests of different V2X applications related to EVs. We conduct a
simulation with the normal SUMO models and a simulation with the proposed
models to show differences. Afterwards, we conduct simulations for two applica-
tions: a preemption system and an automated formation of a rescue lane. The next
subsections describe the applications, the simulation procedure, and their assessment.

7.1 Preemption

A preemption is a technical system that enables an EV to register its arrival at a
traffic light regulated intersection. A special infrastructure at the intersection runs
the necessary application. This application switches to a special phase program that
allows the EV to pass while having green. The principle is shown in Fig. 8. The
algorithm determines if an EV preemption program is active. If not, it checks for a
request at the starting induction loop, which represents the V2I reception distance.
When an EV triggers the loop, the signal program and signal phase is determined.
Depending on the current program and phase, the algorithm chooses a suitable,
German Guidelines for Traffic Signals (RiLSA) [18] conform, predefined EV
preemption program and starts a timer. If the EV preemption is active, the algorithm

RN = RandFloat(0,1)

RN < 0,25

RN < 0,75

False

False

RD =
RandFloat(6,19.99)

RD =
RandFloat(20,49.99)

RD =
RandFloat(50,75)

True

True

End

Start

SetReactingDistance = RD

Fig. 7 Flowchart to calibrate the IV behavior model (SetReactingDistance)

136 F. Weinert and M. Düring

checks whether the EV triggered the ending induction loop or the maximal time-
span has expired. There are two factors that influence the success of the preemption
system.

First, the moment of registration at the infrastructure influences the possibilities
to switch the signal phase according to the RiLSA.2 Second, the communication
distance depending on the intersection’s topology and environmental message
signal attenuation. In general, there are two initial states when the preemption
request is sent: the EV’s traffic light shows green or yellow/red. When having
green, the green light may be held as long as the other directions do not have a red
light for more than 3 min. When the traffic light is yellow or red, the phase program
is shifted to a special phase program at the next possible moment. This also leads to
the maximum requirement for the communication distance. When the EV is having
a red light, under certain circumstances, the RiLSA standards require a secure time
to shift the phase program. The distance between registration and the intersection
must be great enough to allow the EV driving as fast as possible while the phase
shift takes place. In this article, the communication distance for the intersections is
(west to east) 165 m, 450 m, and 165 m. The goal of a preemption is to reduce the
travelling time of the EV in an urban environment. Moreover, the safety of the EV
and IVs may be enhanced while minimizing the adverse impact on IVs.

Start

GetInductionData(Start”)

EV triggered
Induction loop?

GetSignalProgramm()
GetSignalPhase()

True

Start EV-Preemption
Program

EV-Preemption
Program active?

SetTimerMax()

EV crossed
intersection

Timestep >
TimerMax

False

True

GetPreemptionProgram()

End False

List of EV-
Preemption
Programs

True

GetInductionData(End”)

End

Stop EV-Preemption
Program

False

True

ResetTimerMax()

False

” ”

Fig. 8 Flowchart of the traffic light preemption

2 By observing the guidelines, our method does consider pedestrians implicitly.

Development and Assessment of Cooperative V2X Applications … 137

7.2 Automated Formation of a Rescue Lane

The second application is a system that supports drivers to automatically form a
rescue lane. By doing so, it makes the vehicles behavior cooperatively according to
an operationalization of cooperative behavior as shown in [14]. Applying the
aforementioned concept of cooperative behavior, both the EV and the IV require a
cost function. In this elementary assessment, the EV wants to pass through this area
as quickly as possible, meaning that the cost increases when the travelling time
increases. The IV wants to let the EV pass by, which results in a cost function that
also increases when the EV has to wait longer. This means that every reaction of the
IV improving the travelling time of the EV is a cooperative behavior. A conceptual
system assisting drivers forming a rescue lane by proving additional information
can be found in the literature [17]. Depending on the characteristic of the system, it
gives additional information and thus assists the driver, gives direct advices, or
induces maneuvers itself. V2X communication enables sharing necessary infor-
mation. The information itself needs to meet two requirements: First, the
obstructing vehicles know that they are blocking the EV and get helpful information
on how to solve that issue. Second, the information needs to be consistent among
different IVs. A cooperative coordination among IVs can be obtained by using
different methods. In this application, a rule based approach is employed. Figure 6
shows the implemented algorithm to model IV behavior. The automated formation
of a rescue lane is based on this flowchart, but the SetReactionDistance function of
Fig. 7 is substituted by a constant value of 150 m. The threshold for inducing the
ChangeLane() command is set to 10 m/s. The application obeys the route and
the destination of the vehicles. It has one master and several slaves. The master with
the implemented rules runs on the EV, determining what the IVs have to do. The
slave instances run on the IVs which send ego information such as own lane and
own position to the master. Additionally, it is assumed that the slaves execute the
commands sent by the master without sending an acknowledgement.

7.3 Simulation Procedure

The simulation procedure describes the configuration of executed simulations.
Table 2 shows employed models and applications for different runs of the
simulation.

The simulation runs for 500 s without modification. After that, the EV enters the
simulation and drives through the traffic system on a designated route. It always
uses the most right lane possible to reach its destination. In contrast, the IVs starting
on an edge with multiple lanes use a randomized departing lane.

The moment the EV enters the simulation is varied from the 500th s in steps of
1 s to the 585th s. The timespan of 85 s matches the timespan of one phase shift for
all three intersections. Each test is performed 50 times to take randomized effects

138 F. Weinert and M. Düring

into account and ends when the EV reaches a specific point at the end of the
simulation. Models are implemented as discussed in Sect. 5. The two applications
are employed as shown in Sects. 7.1 and 7.2. The first test has only the speeding
model activated to show the travelling time of an EV as implemented in SUMO.
The second test includes the proposed models to show the difference in travelling
time.

The assessment of simulations enables to decide for a realistic reference. This
reference serves to measure the effectiveness of the applications which are simu-
lated and evaluated.

Test A1 includes the first application, which is a traffic light preemption system.
Test A2 shows the effects on the travelling time when the models driving through
red lights and IV reaction are not activated. The last two tests include the other
application, the automated formation of a rescue lane. Test A3 simulates the
application alone whereas Test A4 includes both applications. The figures in the
following assessment have the following properties: The x-axis denotes the intro-
duction second in which the EV entered the simulation whereas the y-axis indicates
the travelling time of the EV through the traffic system. The gray area marks the
range of values obtained during the 50 simulations. The dashed line represents the
median of travelling times in order to classify the resulting range of the travelling
time. The solid line is a trendline to illustrate the general course of the travelling
times over the introduction second.

7.4 Assessment of Models

Figure 9 shows the travelling time of the EV within Test M1. The EV behaves like
a normal road user, as none of the models is activated. The travelling time is not
constant over the introduction second. This variance is caused by a randomized
starting lane and behavior of IVs. This leads to direct interference (e.g. changing the
lane very late) and indirect interference (e.g. that the EV is slowed down so that it
does not arrive within the green phase at the next traffic light). At small introduction
seconds, the first traffic light is red and switches to green. This leads to a delay of

Table 2 Setup of the different tests

No Speeding Driving through red
lights

IV
reaction

Preemption Autom. rescue
lane

M1 X

M2 (b) X X X

A1 X X X X

A2 X X

A3 X X X X

A4 X X X X X

Development and Assessment of Cooperative V2X Applications … 139

the EV due to waiting vehicles and causes a travelling time around 190 s. These
vehicles have more time to start with increasing introduction time of the EV.
Around introduction second 43, a green wave is established with a travelling time
of around 165 s. After that introduction second, the travelling time is increasing and
has its maximum value (about 200 s) around introduction second 78. Considering
the data scope, noticeable differences around introduction second 50, 60, and 70 can
be observed. These introduction seconds are mainly affected by waiting vehicles as
the green wave breaks down and the EV has to wait for one complete cycle to cross
at least one of the intersections.

Figure 10 shows Test M2 with all three models activated. It shows that the
travelling time depends on the introduction second. Moreover, there are different

Fig. 9 Travelling time in
Test M1

Fig. 10 Travelling time in
Test M2

140 F. Weinert and M. Düring

values for one introduction second. This distribution of values is also caused by
randomized behavior of IVs. The trendline reveals four distinct areas that can be
interpreted as follows. At introduction second 8 and a travelling time around 100 s,
the EV approaches the first intersection while having a green light. The vehicles in
line are already moving and are slowly clearing the path. In comparison with
introduction seconds smaller than 8, the EV is approaching in an advantageous
moment, because the waiting vehicles have more time to start. The second traffic
light is red and some vehicles are waiting in line. If trucks are waiting on the EV’s
lane, the travelling time is severely affected (as indicated by the gray area). In
introduction second 8, the vehicles waiting in front of the second traffic light can
clear the lane quick enough so that the EV reaches the third traffic light at green.

However, around introduction second 23, the IV interferes with the movements
of the EV in a way that it reaches the third traffic light while having red. This
explains the local maximum of about 90 s around introduction second 23. The
global minimum of 85 s around introduction second 43 can be explained as the
optimal entrance second to catch the green wave. This introduction second is barely
influenced by variations of IV behavior as the data scope is relatively small.
Vehicles which are located at the intersections may start early enough to clear the
route when the EV arrives. After that introduction second, the green wave gets
interrupted easily by obstructing vehicles. Considering the median graph, intro-
duction seconds 23, 28, 72, 75 and 82 have relatively high travelling times (about
100 s) for the EV. At least one traffic light is red with waiting and obstructing
vehicles. This leads to an additional delay for the EV as a following traffic light also
might change to red.

The comparison of the two simulations Test M1 and Test M2 shows that the
travelling time of the EV is reduced by half by using the EV and IV models. Using
the first simulation results as a reference, applications improving the EV’s travelling
time would be overestimated as the behavior of the IV and EV is neglected.
Additionally, the peaks at introduction seconds 50, 60 and 70 can be considerably
reduced. This is mainly caused by the EV model that allows the EV to drive
through red lights. Therefore, it does not have to wait for one cycle in order to pass
the intersection. That suggests using Test M2 as a reference estimating the potential
of EV applications.

However, the following analysis compares the results of the two different IV
behaviors, namely behavior a and behavior b (see Sect. 5.3). Figure 11 shows the
results of IV behavior b. Remember the difference of IV behavior a and IV behavior
b which is that within IV behavior a the vehicles clear the lane at any cost whereas
IV behavior b takes the designated route into account. The results of Test M2b
show that the course of the trendline fits the results of Test M2a with an offset of
about 15 s. Moreover, the data scope is also greater which indicates a wider range
of possible obstructions for the EV.

However, studying the different behavior models with the SUMO internal GUI
yields arguments for IV behavior b: Vehicles that clear the lane at all costs can not
follow their desired route and end up in a wrong lane obstruct succeeding traffic.

Development and Assessment of Cooperative V2X Applications … 141

This leads to situations in which vehicles end in a turning lane waiting to go straight
which is not possible by settings. Finally, these vehicles are teleported after a period
of 3 min. This situation does not occur in IV behavior b, because vehicles are only
clearing the lane if they are still able to follow their route. This seems to be a more
realistic behavior of the traffic systems. Consequently, the simulations use IV
behavior b for further investigations and the results of Test M2b as a reference for
estimating the potential of EV applications.

7.5 Assessment of Applications

The assessment is divided into two parts: Firstly, an analysis of the travelling time
and the distribution of travelling times over the signal phase time takes place.
Secondly, speed profiles of the EV give some indication about the usefulness of the
two applications.

7.5.1 Travelling Time and Their Distribution

Figure 12 shows the travelling time over the introduction second for Test A1. The
course of the trendline drops from a value of around 95 s at introduction second 1 to
a minimum of 82 s around introduction second 35. Afterwards, it rises to a trav-
elling time around 105 s at introduction second 78. Then it decreases again. The
maximum at small introduction seconds can be explained by the late preemption at
the first traffic light. The congested intersection cannot be cleared in time so that the
EV has to wait. Between introduction seconds 15–45, the preemption comes in time

10 20 30 40 50 60 70 80
60

70

80

90

100

110

120

130

140

Introduction second [s]

T
ra

ve
lli

ng
 ti

m
e

[s
]

Test M2b

Data scope
Median of travelling time of the EV
Trend of the travelling time of the EV

Fig. 11 Travelling time in
Test M2b

142 F. Weinert and M. Düring

to either hold the green phase or change the red/yellow traffic light to green. The
variances are caused by IVs randomly merging into the EVs lane. Taking median
values into account, introduction seconds 26, 28, 43, 53, and 55 are advantageous
moments for the preemption so that the travelling time is less than 83 s. Intro-
duction second 65 shows that the randomized IV behavior does not necessarily
have an effect of the EV’s travelling time as the maximum and minimum values of
the 50 runs are in a range of 2 s.

Overall, the travelling time can be reduced by using a traffic light preemption
system. The trendline indicates that the EV is faster for all introduction seconds
compared to results of Test M2b. The difference in travelling time is about 15 s for
all introduction seconds except for a range of 15 s from introduction second 65 up
to introduction second 80 in which the difference is smaller. During these intro-
duction seconds, the preemption system for all three traffic lights needs to be
triggered. The queue of vehicles obstructs the EV three times. This leads to the
insight that a more detailed calibration of the traffic light preemption should
take place. Analyzing the influences of parameters such as the distance between the
induction loops and the intersections, congestion in front of the intersection, and the
speed of participants will help to adjust a better system behavior. This study is out
of scope of this contribution but will be addressed in further work.

The travelling time of Test A2 is represented by the graph in Fig. 13. The gray
area is not very distinct as the IV behavior and the drive through red lights models
are deactivated. From this point of view, it is comparable to Test M1. The course of
the trendline starts at a travelling time of about 95 s, then declines to a minimum
around 80 s at introduction second 36 and eventually rises to a maximum of 105 s
around introduction second 75.

For small introduction seconds, the EV encounters delays by obstructing vehi-
cles at the first intersection. However, for later introduction seconds, the vehicles

10 20 30 40 50 60 70 80
60

70

80

90

100

110

120

130

140

Introduction second [s]

T
ra

ve
lli

ng
 ti

m
e

[s
]

Test A1

Data scope
Median of travelling time of the EV
Trend of the travelling time of the EV

Fig. 12 Travelling time in
Test A1

Development and Assessment of Cooperative V2X Applications … 143

have more time to start. Moreover, the preemption shows its efficiency by holding
the green phase at the first intersection. After a minimum around introduction
second 35, the EV reaches the first traffic light while it changes to red. The pre-
emption takes some time and does not switch to green fast enough which causes the
EV to slow down. As none of the two models IV reaction and drive through red
light is active, IVs do not clear the lane while waiting at a red traffic light to let the
EV drive through. Additionally, they stay in the EV’s lane and obstruct its mission
until they voluntary change the lane or turn at an intersection. The maxima at
introduction seconds 64 and 68–79 are caused by this effect at one and/or multiple
intersections.

The results indicate that the travelling time is dramatically reduced compared to
Test M1. The difference to Test M2b is much smaller. This indicates that studies
comparing a preemption system to a reference situation without considering IV
reaction and the EV behavior vastly overestimate the potential of a preemption
system.

Comparing the results of Test A1 and Test A2 shows that the data scope of Test
A2 is much smaller. The trendline of Test A2 drops below a travelling time of 80 s
whereas the trendline of Test A1 has its minimum around a travelling time of 83 s.
Except for this range around the minimum, the travelling times of Test A1 are
slightly smaller. This shows that the IV behavior models have only little effect on
the travelling time when the preemption system is activated.

Figure 14 shows the travelling time with the second application, namely the
automated formation of a rescue lane. Taking a look at the trendline, the graph
drops until introduction second 8, then increases until introduction second 18,
declines until second 43, rises until second 85 with a local minimum at second 75.

Starting from introduction second 1 to 8, the first traffic light switches to green,
and vehicles have more time to start and clear the lane for the EV. On the EV’s

10 20 30 40 50 60 70 80
60

70

80

90

100

110

120

130

140

Introduction second [s]

T
ra

ve
lli

ng
 ti

m
e

[s
]

Test A2

Data scope
Median of travelling time of the EV
Trend of the travelling time of the EV

Fig. 13 Travelling time in
Test A2

144 F. Weinert and M. Düring

route between the first and the second traffic light, the vehicles clear the lane for the
EV if this corresponds with their route. Results of vehicles clearing the lane despite
their routes can be found in [16].

The travelling time starts around 112 s and decreases to a minimum around
introduction second 43 with a travelling time of 97 s. Afterwards it rises until a
travelling time of 115 s for introduction second 85. The course of the graph is very
alike compared to the results of Test M2b. However, the data scope is smaller in
tests with the application running. This means that the 50 simulations for one
introduction second lead to similar results.

The application may support the EV in reaching its destination in a more
deterministic manner. The main issue, the waiting vehicles that obstruct the EV’s
route, cannot clear the lane because of the small speeds. This simple approach with
fixed distances and fixed speed thresholds shows that the application does not
decrease the performance. However, additional potential may be addressed by smart
rules. For instance, the IV can be forced to slow down to reach their individual
goals after the EV drove away. Additionally, the lane change of other vehicles to
the EV’s lane should be prohibited. Even if the vehicle tries to immediately leave
the EV’s lane after it changed to it, the EV still needs to slow down.

Figure 15 shows the travelling time of the EV in Test A4. The trendline declines
from a travelling time of 95 s at the first introduction second to a local minimum of
85 s at introduction second 20. After that, the trendline rises to a maximum of 105 s
around introduction second 78 and then declines to 95 s of travelling time at
introduction second 85. At small introduction seconds, the two applications cannot
clear the path for the EV effectively which leads to delays. With rising introduction
seconds, the effectiveness of the applications rises, because the obstructing vehicles
have enough time to start and afterwards clear the lane. After introduction second
13, the first traffic light is green and the IVs have enough time to start without

10 20 30 40 50 60 70 80
60

70

80

90

100

110

120

130

140

Introduction second [s]

T
ra

ve
lli

ng
 ti

m
e

[s
]

Test A3

Data scope
Median of travelling time of the EV
Trend of the travelling time of the EV

Fig. 14 Travelling time in
Test A3

Development and Assessment of Cooperative V2X Applications … 145

obstructing the EV. The introduction seconds between 15 and 40 are advantageous
for the EV, because green phases may be held by the preemption system and the
intersections are too short to make the vehicles disappear, especially at the first and
the third intersection.

Comparing these results to the reference Test M2b shows that the two appli-
cations are advantageous for the travelling time of the EV. Around introduction
second 78, the travelling times for both tests are very similar. The relatively high
values for Test A4 originate from obstructing vehicles in front of the third inter-
section. The preemption system switches the traffic light of the second intersection
in time with the third intersection still having red. The vehicles approach the third
intersection, slow down, and eventually have to stop again. Thus, the EV needs to
decelerate as well, because the triggering point for the preemption of the third
intersection is located too near to the intersection. So, the vehicles do not have
enough time to clear the path.

Comparing Test A1 and Test A4, it becomes apparent that the trend lines are
more or less identical with a much smaller data scope for Test A4. This means that
the formation of the rescue lane leads to a more predictable travelling time for an
EV in this traffic system. A combination of a traffic light preemption system and an
automated formation of a lane change integrates the advantages of both systems to
support the EV reaching its destination as fast and predictable as possible.

7.5.2 EV’s Speed Profiles

Speed profiles enable statements about the trip of the considered vehicle. Deviations
in the velocity profiles may lead to losses in comfort and safety. Strong gradients in
the velocity express emergency stops which may be used to describe safety critical

10 20 30 40 50 60 70 80
60

70

80

90

100

110

120

130

140

Introduction second [s]

T
ra

ve
lli

ng
 ti

m
e

[s
]

Test A4

Data scope
Median of travelling time of the EV
Trend of the travelling time of the EV

Fig. 15 Travelling time in
Test A4

146 F. Weinert and M. Düring

states. Especially braking needs a reaction of the adjacent traffic—thereby every
braking situation is a potential danger.

The following figures express the results of three different tests: Test M2b, Test
A1, and Test A4. The plots underlie the starting parameter (introduction second 18
for the EV) in which the travelling time does neither reach a maximum nor a
minimum. Also the data scope has an average variation for this introduction second.
Figures 16, 17 and 18 show the diagrams of the three difference applications.
Within these plots, the x-axis denotes the travelling time in seconds while the y-axis
denotes the velocity in m/s. Each plot contains 25 speed profiles of the EV. If the
speed profiles are equal, they cannot be distinguished in the plot.

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of the EVFig. 16 EV in Test M2b

0 10 20 30 40 50 60 70 80 90
4

6

8

10

12

14

16

18

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of the EVFig. 17 EV in Test A1

Development and Assessment of Cooperative V2X Applications … 147

Figure 16 represents the reference behavior Test M2b. The speed profiles’ trends
are similar until second 12. During this time the EV is on its way to the first traffic
light and not influenced by the IV. It only has to brake for slowly driving vehicles
in front of it. After this period, distinctions become apparent caused by two sto-
chastic effects: The first one makes vehicles use random lanes if they enter the
simulation on a multi-lane road. As three different types of cars and two types of
trucks exist, this leads to a variety in, e.g. the starting behavior and the maximum
velocity. The dissolution to traffic jams is also influenced by this fact. The second
effect deals with a randomized reacting distance model which allocates a reacting
distance to each vehicle which is in the EV’s way. The algorithm calculates the
distance randomly in each run of the simulation. This leads to a different behavior
of the IV which is still within the constraints and boundary conditions of the
acquired IV model. As a consequence, the EV may reach the traffic light while
having a green phase or a red phase. From second 50 to 80, the graphs show an
approximated comparable trend. During that time span, the EV comes to a stop at
the second traffic light and makes use of the “driving through red lights” model
which leads to the W-shaped course of the graphs. After that, the courses of the
graphs differ caused by the EV’s arrival time at the traffic light. Except the short
plateau in the beginning of the simulations, there is no continuous trend in the
graphs. Rather, there is a temporal permanent braking, which is followed by
acceleration to the maximum speed which cannot be kept for a longer time. This
leads to the conclusion that the trends are neither comfortable nor time efficient in
Test M2b.

Figure 17 shows the graph for Test A1. The graphs start around 12 m/s and drop
until 11 m/s. Except for some outliers, the speed does not drop below 10 m/s for the
entire simulation. In contrast, a plateau at a relatively high speed (16.56 m/s)
emerges. Some graphs drop to low values. That is caused by a late preemption and

0 20 40 60 80 100
4

6

8

10

12

14

16

18

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of the EVFig. 18 EV in Test A4

148 F. Weinert and M. Düring

thus a need for the driving through red light model at the third traffic light. Overall,
there is less variance in the velocity profiles.

Comparing Fig. 17 with Fig. 16, it attracts attention that the second diagram has
a plateau until second 40, which is visible in the first diagram, too. However, the
second diagram has only few outliers. There is no distinctive minimum (W-shape)
of the velocity between 60 and 100 s. Moreover, Fig. 17 shows a higher level of
maximal speed than visible in Fig. 16. This leads to a reduction in travelling time by
20 to 30 s.

Figure 18 shows the speed profiles of Test A4. The speed profiles start around
12 m/s, drop until 11 m/s at 15 s. After that, three distinctive courses of the graphs
can be observed. Two of those have in common that they drop and afterwards rise
to the maximum of 16.56 m/s. The third graph rises to the maximum and decreases
afterwards to rise to the same plateau with some delay. Together, they develop a
plateau for about 20 s, and drop below 10 m/s. This speed is also the speed at the
end of simulation after between 85 and 95 s.

Comparing these results with Figs. 17 and 16, the reduced variety of graphs
attracts attention. The application formation of a rescue lane assigns a higher and
consistent reacting distance to the IV. As planned by the algorithm the behavior
gets more deterministic. The randomized entering lane and different vehicles types
remain as variation parameter and lead to the derivations. The travelling time and
speed profile gets more predictable by using both applications.

7.5.3 IVs' Speed Profiles

While the models and applications have an effect on the EV, there should also be an
effect on the IVs. Two different crossing vehicles represent the IVs in conflict
situations with the EV. The first vehicle profits whereas the second vehicle is
impaired by the EV applications. The assessment is based on speed profiles, too.
The measurement of the speed profile begins when the EV enters the simulation and
ends when either the EV or the considered IV leaves the simulation.

The two plots in Fig. 19 describe the vehicle that profits from the applications
and Fig. 20 shows a vehicle getting delayed by the applications. The two plots in
both figures show speed profiles during Test M2b (top) and Test A4 (bottom).

Each diagram contains 25 graphs. Some graphs may be hidden behind a graph of
an identical simulation result.

In Fig. 19 it becomes apparent, that until second 50 both diagrams have nearly
the same course. Due to the EV’s driving through red lights model, the IV has to
stop and wait until second 110 in Test M2. In Test A4 the preemption speeds up the
EV, so that it is not relevant for the specific IV. Hence, the IV is able to cross the
intersection without obstruction. The IV drives faster and is not forced to stop by
the applications. Thus, it reaches its destination after around 80 s.

The considered vehicle of Fig. 20 loses time with applications activated. The
first 20 s of the diagrams are comparable. Afterwards the vehicle comes to a stop in

Development and Assessment of Cooperative V2X Applications … 149

both cases. In the upper diagram the IV is not obstructed by the EV at all. It only
has to wait for the normal red phase and continues its route after the traffic light
switches to green again.

In the lower diagram, the EV is preempted just in the moment before the IVs
traffic light switches to green. Thus, the IV’s red phase is extended and the IV has to
wait for a longer period of time. Before the IV’s traffic light switches to green again,
the simulation ends because the EV reaches its destination.

As a brief conclusion, we can say that there are vehicles and situation which
profit from the applications. Vice versa, the application may increase waiting times
of IVs. Further work analyzes the effects and uses the obtained insights to develop
an advanced cooperative system behavior.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of an IV

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of an IV

Fig. 19 IV profits by the
applications

150 F. Weinert and M. Düring

8 Conclusion and Outlook

Within this article, we showed that emergency vehicles (EVs) encounter a higher
risk of getting involved in accidents during their missions. For supporting EVs, new
applications may be developed and tested with the issue that such prototypes cannot
be tested in real life traffic systems. Simulations however, are a suitable tool to do
so. We decided to use SUMO as it is applicable to simulate V2X applications
improving traffic efficiency. Yet, SUMO does not feature necessary models such as
a realistic EV behavior, enhanced infrastructure, and realistic individual vehicle
(IV) behavior responding to EVs. In addition, the research community disagrees

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of an IV

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Time [s]

S
pe

ed
 [m

/s
]

Speed Profile of an IV

Fig. 20 IV needs to wait
because of the applications

Development and Assessment of Cooperative V2X Applications … 151

whether these effects have to be modelled to assess applications regarding EVs. We
created a traffic system based on a real traffic system in Braunschweig, Germany.
The traffic flow within this traffic system was based on traffic census data during
peak hour. We presented models regarding the road users EV and IV and the
infrastructure. The EV model implements speeding and driving through red lights.
The infrastructure model consists of an interface for access by special road users (in
this case EVs) to initiate infrastructure based applications. The IV model imple-
ments a response behavior to the EV. A calibration of these models took place. We
showed that a realistic reference scenario is needed to not overestimate the potential
of new applications.

We created, conducted, and evaluated a survey with 252 EV drivers to deduce
supportive applications. We simulated two applications: a traffic light preemption
system via V2I and an automated formation of a rescue lane via V2X. By assessing
the results of the simulations, we showed that neglecting aspects of EV or IV
behavior leads to different travelling times of the EVs. Concerning the applications
it can be stated that a preemption system reduces the travelling time of the EV
compared to a reference travelling time. The automated formation of a rescue lane
does not necessarily reduce the travelling time as it does not accelerate the queuing
vehicles. However, a combination of both applications has the potential to support
an EV on its mission best by allowing the EV to pass through congested and traffic
light controlled urban environments quickly and predictable.

As the field of simulating EVs in urban environments is very important but only
little investigated, further work needs to be done. As shown, realistic models are
necessary to estimate the potential of EV applications. Hence, a wider calibration
and validation for the proposed models may take place, e.g. by driver studies or
suitable traffic data. We also want to investigate additional aspects that are not yet
covered by our models. Some areas to mention are: realistic delays in road users’
starting behavior (e.g. shown in [19]), IV behavior receiving multiple requests of
EVs to form a rescue lane, occurrences of critical situations while forming a lane,
and misbehavior and the consequences for the travelling time. Concerning the two
applications, further research needs to be conducted as well. For the preemption
system, a study concerning parameters such as communication distance, phase
program, and communication requirements and their effect on the travelling time is
necessary. The automated formation of a rescue lane needs to be further investi-
gated, too. Challenges regarding penetration rate, communication requirements, and
security need to be addressed as well as more enhanced methods to determine
intelligent cooperative maneuver combinations for the IVs. We showed that even
by enhancing the concept of static rules, a fairly good result can be obtained.
However, instead of using static rules, other maneuver planning methods may
calculate better behaviors of IVs by considering additional information.

152 F. Weinert and M. Düring

References

1. Bundesanstalt für Strassenwesen (2011) Leistungen des Rettungsdienstes 2008/09. In:
Berichte der Bundesanstalt für Straßenwesen—Mensch und Sicherheit 217

2. Niedersachs GVBl (1993) Verordnung über die Bemessung des Bedarfs an Einrichtungen des
Rettungsdienstes (BedarfVO-RettD). p 1

3. Bycraft J (2000) Green light pre-emption of traffic signals for emergency vehicles. Technical
report on City of Richmond traffic signal control system

4. Cetin M, Jordan CA (2012) Making way for emergency vehicles at oversaturated signals under
vehicle-to-vehicle communications. In: IEEE international conference on vehicular electronics
and safety (ICVES), pp 279–284

5. Traffic signal preemption for emergency vehicles. Technical report, U.S. Department of
Transportation (2006)

6. Traffic signal priority control for emergency vehicle preemption. Technical report on Global
Traffic Technologies, LLC, (2011)

7. Kahn C, Pirrallo R, Kuhn E (2001) Characteristics of fatal ambulance crashes in the United
States: an 11-year retrospective analysis. In: Prehospital emergency care 5, pp 261–269

8. Müller D (2007) Typische Gefahren bei Einsatzfahrten des Rettungsdienstes. Technical report,
Institut für Verkehrsrecht und Verkehrsverhalten Bautzen

9. Eltayeb AS, Almubarak HO, Attia TA (2013) A GPS based traffic light pre-emption control
system for emergency vehicles. In: International conference on computing, electrical and
electronics engineering (ICCEEE), pp 724–729

10. Krajzewicz D et al (2012) Recent development and applications of SUMO—simulation of
urban mobility. Int J Adv Syst Meas 5(3, 4):128–138

11. McHale G, Collura J (2002) Improving emergency vehicle traffic signal priority system
assessment methodologies. Technical report, Federal Highway Administration and Virginia
Polytechnic Institute and State University

12. Zhang L et al (2010) Simulation modeling and application with emergency vehicle presence in
CORSIM. Technical report, Mississippi State University and Turner-Fair Bank Highway
Research Center

13. Bieker L (2011) Emergency vehicle prioritization using vehicle-to-infrastructure
communication. Technical report, German Aerospace Center—Institute of Transportation
Systems

14. During M, Pascheka P (2014) Cooperative decentralized decision making for conflict
resolution among autonomous agents. In: IEEE international symposium on innovations in
intelligent systems and applications (INISTA) proceedings, pp 154–161, 23–25 June 2014 10.
1109/INISTA.2014.6873612

15. Bundesanzeiger Verlag. Verordnung zur Neufassung der Strassenverkehrs-Ordnung (StVO).
Bundesminisiterium der Justiz, (2013)

16. Düring M, Gonter M, Thiel F, Weinert F (2014) Models enabling simulations of V2X
applications regarding emergency vehicles in urban environment. In: SUMO2014—modeling
mobility with open data, S. 55–75. ISSN:1866-721X

17. Buchenscheit A et al (2009) A VANET-based emergency vehicle warning system. In: IEEE
vehicular networking conference (VNC), pp 1–8

18. Arbeitsgruppe Verkehrsmanagement, ed. Richtlinien für Lichtsignalanlagen.
Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) Verlag (2010)

19. Bosserhoff D (2010) Handbuch für Verkehrssicherheit und Verkehrstechnik der Hessischen
Straßen- und Verkehrsverwaltung. In: Follmann J (ed) Forschungsgesellschaft für Straßen-
und Verkehrswesen (FGSV), Chap. Knotenpunkte mit Lichtsignalanlagen, pp 4.5–1–4.5.131

Development and Assessment of Cooperative V2X Applications … 153

http://dx.doi.org/10.1109/INISTA.2014.6873612
http://dx.doi.org/10.1109/INISTA.2014.6873612

TraCI4Matlab: Enabling the Integration
of the SUMO Road Traffic Simulator
and Matlab® Through a Software
Re-engineering Process

Andrés F. Acosta, Jorge E. Espinosa and Jairo Espinosa

Abstract SUMO (Simulation of Urban Mobility) has become one of the preferred
open-source platforms for researchers to perform microscopic road traffic simula-
tion. Thanks to the Traffic Control Interface (TraCI), SUMO offers a high level of
flexibility, allowing a client to retrieve and modify the objects in the simulation.
Two implementations of TraCI have been released to date for Python (TraCI-
Python) and Java (TraCI4j). On the other hand, Matlab® is a software tool with a
programming language with a broad user’s community of researchers. Matlab is
used in many tasks on simulation, control, optimization and it is a preferred tool for
rapid prototyping. Both platforms share strengths that benefit the development of
control strategies for road traffic. The desire of combining both strengths motivated
the interest to develop a TraCI implementation for Matlab. This chapter describes
an adaptive software re-engineering process of TraCI-Python used to implement
TraCI4Matlab (TraCI for Matlab).

1 Introduction

SUMO (Simulation of Urban Mobility) is an open-source software project that
incorporates a set of tools to create and execute microscopic road traffic simulation
scenarios [16]. These tools are grouped in three categories:

J.E. Espinosa
Politécnico Colombiano Jaime Isaza Cadavid, Cra 48 No 7-151, Medellin, Colombia
e-mail: jeespinosa@elpoli.edu.co

A.F. Acosta � J. Espinosa (&)
Universidad Nacional de Colombia, Cra 80 No. 66-223, Medellin, Colombia
e-mail: jespinov@unal.edu.co

A.F. Acosta
e-mail: afacostag@unal.edu.co

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_9

155

• Mapping tools. For creating the “map” (network), where the simulation will be
performed, comprised by intersections, streets, traffic light definitions, polygons
that represent buildings and other structures, and a variety of sensors for output
delivery. The network can be created from scratch or imported from a wide
range of sources. This network is represented as a directed graph, where nodes
define the intersections and edges define the streets.

• Demand modeling tools. For creating vehicle demands from several sources or
even randomly, allowing to define vehicle types according to their physical
characteristics and specify entry times, origins and destinations.

• Simulation tools. The sumo application itself that receives the network, the
demand and some optional information as inputs to execute the simulation and
output results in XML format, a feature that demonstrates the high integration
capacity of the simulator.

SUMO includes the Traffic Control Interface (TraCI), which simplifies the
retrieval and modification of the SUMO objects through an application protocol,
allowing applications like vehicular communications, dynamic routing and traffic
light control algorithms [8]. Furthermore, TraCI subscription and context sub-
scription commands allow to retrieve several attributes of an object, or those of its
surrounding objects, on every simulation step.

The SUMO community has developed two remarkable TraCI clients: one made
in Python by the SUMO developers, which we will call TraCI-Python; and
TraCI4J, made in Java by researchers from Politecnico di Torino (Italy) [6].

Depending on the application of interest, an implementation of TraCI can benefit
from the programming language in which it is developed. In the case of applications
involving control and optimization, Matlab® has proven to be an excellent alter-
native, featuring toolboxes for optimization, robust control and model predictive
control, among others [9]. This motivated the development of an implementation of
the TraCI protocol for the Matlab® programming language, namely TraCI4Matlab.

Particularly, TraCI4Matlab was proposed as a requirement in the MOYCOT
project [11], where optimization-based traffic lights coordination strategies are
being developed using Matlab®.

However, developing a new implementation of TraCI could be more expensive
than doing it based on an existing one, especially taking into account the open-source
nature of the later. In this regard, a re-engineering approach has many advantages
over direct code translation either by hand or using semi-automated tools [7].

This chapter describes a re-engineering process of TraCI-Python used to imple-
ment TraCI4Matlab. This chapter is organized as follows: Sect. 2 describes the
software re-engineering process related to software maintenance, reverse engineer-
ing, refactoring and forward engineering; Sect. 3 describes the reverse engineering
sub-process of TraCI-Python and shows the extracted architectural and design
component models obtained; Sect. 4 describes the refactoring tasks needed to adapt
the obtained models to the constraints imposed by the Matlab® language and the
subsequent forward engineering sub-process resulting in TraCI4Matlab; Sect. 5
shows results and discussion; finally, Sect. 6 shows conclusions and future work.

156 A.F. Acosta et al.

2 The Re-engineering Process

Chikofsky and Cross [3] define software re-engineering as:

The examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form

They also state that the re-engineering process involves some form of reverse
engineering, followed by some form of forward engineering and may include
modifications related to new requirements.

It is important to note that software re-engineering is not only applied in legacy
software, but also in cases where new requirements arise, such as [2] improving
performance, exploiting new technologies and porting the subject software to a new
platform.

In general, Chikofsky and Cross [3] related the re-engineering process with the
software lifecycle and introduced formal definitions regarding the software trans-
formations at different levels of abstraction. In the case of TraCI4Matlab, only the
design level is considered, and the relationships with the software lifecycle take the
form showed in Fig. 1, where the subject software corresponds to TraCI-Python and
the new implementation, to TraCI4Matlab. Levels of abstraction refer to the rep-
resentation of the software in the different phases of the cycle. For example, soft-
ware is usually represented in terms of UML diagrams at the design phase, while in
the implementation phase, the representation corresponds to the source code.

The taxonomy proposed by Chikofsky and Cross includes the following defi-
nitions, represented as sub-processes in Fig. 1:

• Reverse-engineering: In many cases, the subject software needs to be reverse-
engineered because “usually, the system’s maintainers were not its designers”.
Moreover, open-source software can be developed and extended in a distributed
fashion by different developer teams. Therefore, reverse engineering enables

Fig. 1 Re-engineering process used in TraCI4Matlab

TraCI4Matlab: Enabling the Integration of the SUMO … 157

software comprehension by extracting artifacts from different levels of
abstraction. In other words, reverse engineering allows to extract the knowledge
of the software previous to its implementation, in a language that is easier to
understand.

• Restructuring: It involves the “transformation from one representation to
another at the same relative abstraction level, while preserving the subject
system’s external behavior”. Thus, restructuring is related to the modification of
the software without altering or extending its functionality, with the goal of
improving its quality (structure, performance, etc.). In the case of Object-Ori-
ented Programming (OOP), restructuring is known as refactoring [10].

Another important concept related to the software lifecycle is the use of software
patterns, which have been defined by Vincke et al. as “The description of a general
solution to a recurring problem” [19]. Hence, patterns allow to reuse the experience
and best practices in the solution of common problems found in the development of
a software product. Demeyer et al. proposed a set of Object Oriented Re-engi-
neering Patterns [5], which they describe, as follows:

Re-engineering patterns codify and record knowledge about modifying legacy software …
We see re-engineering patterns as stable units of expertise which can be consulted in any re-
engineering effort

Some of these re-engineering patterns were applied in the implementation of
TraCI4Matlab, and will be explained in the subsequent sections that correspond to
the sub-processes mentioned earlier.

Regarding the requirements considered for the implementation of TraCI4Matlab,
there were two-fold:

• The migration to the Matlab® language: Naturally, the main requirement was to
implement the TraCI API in Matlab®, taking into account its features and
limitations.

• Preserving the TraCI-Python’s end-user functions’ structure: Since TraCI4Matlab
was conceived to be open-source, it is important to simplify its use as much as
possible. Therefore, the TraCI4Matlab’s end-user functions’ structure should be
very similar to the TraCI-Python’s.

It is important to note that there were not requirements related to performance,
which favored the rapid release of TraCI4Matlab, this was done at the cost of a
lower performance compared to TraCI-Python’s, as it will be discussed later.
Additionally, the implementation of TraCI4Matlab assumed that TraCI-Python is
well structured, which means that the focus was not put on detecting code dupli-
cation or code smells [12].

The following sections explain the sub-processes involved in the implementation
of TraCI4Matlab.

158 A.F. Acosta et al.

3 Reverse Engineering of the TraCI-Python
Implementation

Re-engineering patterns used
Since the size of the subject software (TraCI-Python) is relatively small (around

4,300 lines of code) and the number of requirements was low, it was not necessary
to apply many Object-Oriented Re-engineering Patterns. Particularly, the following
patterns were used:

• Chat with the maintainers. According to Demeyer et al. [5] the intent of this
pattern is to “Learn about the historical and political context of your project
through discussions with the people maintaining the system”. However, in
TraCI4Matlab it was not important to learn about the historical and political
context of TraCI-Python because it is part of an active software project (SUMO)
and the re-engineering effort is not related to quality improvements, but to the
achievement of the requirements described previously, which are related to an
extension of SUMO. Instead, in TraCI4Matlab, the pattern chat with the
maintainers was applied to learn about the technical aspects of TraCI-Python
that are not clear enough in the documentation or are part of exceptional cases.
Therefore, in this case, the intent of this pattern could be stated more generally
as: “Learn about the context and the technical aspects of the project through
discussions with the people maintaining the system”. It’s important to note that
this pattern couldn’t be possible without the SUMO mailing list system.

• Read all the code in one hour and skim the documentation, whose intent is to
“Assess the state of a software system by means of a brief, but intensive code
review”. These patterns were enough to approach to the recovery of the subject
system’s design (i.e. to identify the components of TraCI-Python, their
responsibilities and how they collaborate) taking into account its small size.

• Step through the execution, whose intent is to “Understand how objects in the
system collaborate by stepping through examples in a debugger”. Two open-
source tools were used to apply this pattern: Winpdb [20], which is a graphical
Python debugger, and StarUML [15], which is a program to draw UML dia-
grams. Thus, the TraCI4Traffic Lights tutorial, provided with the SUMO
installation, was debugged with some modifications to understand all the
components of the subject software.

These tasks helped to conclude that TraCI-Python comprises three main com-
ponents: The TraCI package, the modules representing the SUMO objects (edge,
junction, lane and so on) and the TraCI constants definition. Those components take
the form of namespaces, which, in Python, are accessed through the dot operator.
Thus, TraCI-Python takes advantage of the fact that Python allows to associate
variables, functions and classes to namespaces [1]. Figure 2 shows two UML

TraCI4Matlab: Enabling the Integration of the SUMO … 159

package diagrams that represent the TraCI-Python’s namespaces in terms of their
deployment and their dependence relationships. Note that the sumo_object abstract
package was defined to generalize the namespaces representing the SUMO objects,
which have some variables and functions in common. Additionally, since in UML
namespaces can be represented as packages, these terms will be used inter-
changeably in the remainder of this chapter.

In the following subsections, the components of the TraCI-Python implemen-
tation are described.

3.1 The TraCI Package

This is the top-level package. It contains the namespaces corresponding to the
SUMO objects (the modules variable) plus five public functions and others with, at
most, package visibility. Through these functions, the responsibilities of the TraCI
package could be extracted, being:

• Initialize and close the connection to the SUMO server through the functions
init() and close().

• Allow several SUMO instances to be controlled by the same client and
switching among the corresponding connections, thanks to the port argument in
the init() function and the switch() function.

• Perform a simulation step through the simulationStep() function,
including a step argument, which allow to increase or decrease the simulation
step in milliseconds.

• Populate the subscription results related to each SUMO object, using the
readSubscription() function.

• Construct and send the outgoing messages according to the TraCI protocol,
through a set of functions beginning with the word send, which have been
grouped in an abstract function called sender for illustration purposes. The
sender functions prepare the message variable according to the desired data
type to send to the SUMO server.

• Read the responses from the SUMO server and check them for errors throwing
the corresponding exceptions, using the recvExact() function.

Fig. 2 TraCI-Python’s components: a Deployment diagram, b Dependency diagram

160 A.F. Acosta et al.

Figure 3 shows an UML class diagram including the functions of the TraCI
package. Note that the utility stereotype has been used, since those functions do not
belong to a class but to a namespace.

3.2 Packages Corresponding to the SUMO Objects

These packages can be briefly summarized through the so called getters and setters
which allow the end user to retrieve and modify the properties of the objects in the
SUMO simulation. The get and set processes follow a sequence of functions in the
TraCI components that collaborate by appending the proper command, requested
attribute, and desired value (in the set case) from the TraCI constants to build the
outgoing get/set message according to the TraCI protocol. Here, the
get_wrapper() and set_wrapper() abstract functions are defined to rep-
resent the set of public functions designed for the end user in such a way that he/she
only needs to provide the ID of the SUMO object of interest and the desired
attribute value (in the set case). Finally, the sumo_object packages include
another four wrapper functions related to the TraCI subscriptions: two for sub-
scribing to the desired object and variable, and other two for retrieving the sub-
scription results. Figure 4 shows an UML sequence diagram, which is an example
of the above process in the case of a getter. Note how the different components
collaborate: the end user calls the get_wrapper() which calls the universal
getter of the sumo_object component, which in turn calls the proper TraCI
function to build the outgoing message, read the response from the SUMO server
and check it for errors. Figure 5 shows a class diagram corresponding to the abstract
class sumo_object. It is worth to notice, that this abstract class was not

Fig. 3 Variables and
functions in the TraCI
package

TraCI4Matlab: Enabling the Integration of the SUMO … 161

physically implemented, but serves as a way to explain the packages corresponding
to the SUMO objects and their variables and functions in common.

3.3 TraCI Constants

This is a namespace containing the command, variable-type and data-type codes as
constants from the TraCI protocol specification. TraCI-Python’s components use
these constants as parameters for their functions. For example, referring to Fig. 4,
the parameters varID and cmdID are taken from the TraCI constants module.

Fig. 4 UML sequence diagram for the get process in TraCI-Python

Fig. 5 Abstract package sumo_object representing the namespaces corresponding to SUMO
objects

162 A.F. Acosta et al.

4 Forward Engineering Sub-process

4.1 Re-engineering Patterns Used

As stated in the reverse engineering sub-process, because of the relatively small size
of the subject system and the low number of requirements, some re-engineering
patterns were not necessary. Moreover, since the official Matlab® unit testing
framework is quite new [13] and taking into account that the majority of TraCI-
Python’s functions are not associated to a class, as explained in the previous sec-
tion, tests were created in a single m-file that reproduces the TraCI4 Traffic Lights
tutorial. Therefore, patterns related to use a testing framework were not applied.
Additionally, recall that the focus of the re-engineering process is on the migration
of TraCI-Python, not on the improvement of its quality. Hence, the patterns related
to write tests to understand were not used. Taking into account these consider-
ations, the following patterns were applied:

• Write tests to enable evolution: The test created in the implementation of
TraCI4Matlab allowed to identify the limitations of the Matlab® programming
language that prevented a direct implementation of the subject software’s
recovered design and, consequently, the necessary refactoring tasks to perform.
Thus, according to Demeyer et al. [5], the risk of “failing to accommodate future
change” was mitigated.

• Grow your tests base incrementally: Every time a TraCI4Matlab’s component
was implemented, the corresponding test was modified to incorporate the new
functionalities, which enabled to always have a running version.

• Conserve familiarity: The requirement related to the preservation of the TraCI-
Python’s end-user functions’ structure enabled to conserve familiarity.

• Use profiler before optimizing: During the implementation of TraCI4Matlab, it
was noticed that its performance was lower than TraCI-Python’s. Later, the
stakeholders concluded that a new requirement was necessary to address this
issue. In this regard, the Matlab® profiler helped to identify the bottleneck that
caused the low performance. Consequently, the refactoring tasks needed to
satisfy the related requirement could be identified, as will be explained in brief.

It was found in the implementation and testing phase of TraCI4Matlab that the
Matlab® language specification has some limitations forcing the reverse-engineered
design of TraCI-Python to be re-factored. The most important, is that Matlab®

imposes only one function definition per m-file, at most, including nested functions,
the same holds for class definitions. Moreover, the Matlab’s import statement
allows adding only package-based functions and classes to the current import list.
In contrast, Python allows to have namespace’s variables with the following
properties:

TraCI4Matlab: Enabling the Integration of the SUMO … 163

1. They are not associated with a specific object instance.
2. They can be imported.
3. Their values can be changed by functions in other namespaces.

In order to achieve the same behavior in Matlab®, three options were considered:

• Implement TraCI-Python’s namespaces as classes with static members: This
solution was discarded because, although Matlab® allows to define constant
attributes in a class, the same cannot be done for static ones, i.e. those that do not
need the class to be instantiated and whose values can be changed [4]. Note that
this option conflicts with property 3.

• Execute m-files that load the required variables into the workspace: This solu-
tion would require the Matlab’s package functions to access those variables. In
the Matlab® documentation, it has been stated that the best practice is to pass the
variables as arguments [14]. In this way, not only the workspace would be filled
with variables that should be transparent to the user, but he/she would need to
pass those variables as arguments, which results impractical. Another strategy
listed in the Matlab® documentation, is the use of persistent variables in a
function. However, persistent variables can be changed only by the function that
defined them, which conflicts with property 3. Finally, one could evaluate a
given expression in another workspace, but it has limited flexibility in the sense
that it does not allow the variable to contain indexes. For these reasons, this
solution was discarded.

• Finally, the use of global variables was chosen because it can deal with prop-
erties 1 and 3. Global variables are defined in the functions that require them and
can be accessed by any other function.

There were some special cases where there was no need to use global variables.
For example, it was found that some variables were used only by one function.
Therefore, those variables were defined inside the functions that use them. Another
case is related to the RETURN_VALUE_FUNC dictionary of the sumo_object
packages, which has constant values. In this case, a corresponding new class with
only constant attributes was defined. Finally, it was found that the modules
variable of the TraCI package only was used in two functions of the same package:
readSubscription() and simulationStep(). The modules variable is
a dictionary that associates responses from the SUMO server to the corresponding
sumo_object module, allowing to detect errors and populate the TraCI subscription
results. In the readSubscription() function, the modules variable is used to
populate the TraCI subscription results based on the response of the SUMO server.
For this reason, a new dictionary called subscriptionResults was defined
inside the readSubscription() function. On the other hand, the modules
variable is used in the simulationStep module only to reset its values, i.e. the
subscription results of each sumo_object namespace. Note that, in this case, it is not
necessary to define a map. Therefore, a new array called modules was defined in
the readSubscription() function.

164 A.F. Acosta et al.

Figure 6 shows the re-structured architecture for the implementation of TraC-
I4Matlab, including the addition of the new package of constants RETURN_
VALUE_FUNC.

Figure 7 shows the global variables used in the TraCI4Matlab implementation.
Note that there are 14 global instances of the class SubscriptionResults,
namely edgeSubscriptionResults, guiSubscriptionResults and so
on (including the areal detector introduced in the version 7 of TraCI). If no sub-
scription was made to a particular SUMO object, Matlab® sets the corresponding
global variable to a null object by default. Recall, that the rest of the variables
associated to namespaces are defined in the functions that use them, e.g. the
RESULTS and modules attributes of the TraCI package.

However, as it was explained before, TraCI4Matlab’s performance resulted to be
worse than TraCI-Python’s. Figure 8 shows performance results of both imple-
mentations using the cProfile module in the case of TraCI-Python and the Matlab®

profiler in the case of TraCI4Matlab. It can be seen that TraCI4Matlab spends much
time in sending and receiving messages through the TCP-IP implementation, which
is part of the instrument control toolbox. Particularly, in TraCI-Python the
_sendExact() and _recvExact() functions sum 4.903 s while in TraC-
I4Matab, they sum 119.147 s.

Taking advantage of the high integration capacity of Matlab® and Java, the
proposed solution was to develop a new TCP-IP implementation for TraCI4Matlab
using Java sockets. The solution involved the creation of a Socket class in
Matlab® that wraps a Java socket and uses a DataReader class [17] which
enables to read the entire buffer of the input stream. Figure 9 shows the performance
of TraCI4Matlab including the implementation of the Socket class. It can be seen
that, using Java sockets, the TraCI4Matlab’s performance improved substantially.
In this case, the _sendExact() and _recvExact() functions sum 16.711 s,
which represent a performance improvement of 85.97 %.

Fig. 6 TraCI4Matlab’s components: a Deployment diagram, b Dependency diagram

TraCI4Matlab: Enabling the Integration of the SUMO … 165

5 Results and Discussion

TraCI4Matlab was released on December 24, 2013 under the BSD license. It is free
software and is available for the community at Matlab Central [18], or as part of the
SUMO contributed tools since SUMO 0.20.0.

Fig. 7 Global variables defined in TraCI4Matlab

Fig. 8 Performance results of a TraCI-Python and b TraCI4Matlab

166 A.F. Acosta et al.

Currently, TraCI4Matlab is being used in the project “Modelling and Control of
Urban Traffic in the City of Medellin (MOYCOT)” [11]. One of the objectives of
the MOYCOT project is to design a MPC (Model Predictive Control) traffic lights
control system for the urban traffic network in the city of Medellin. Some param-
eters needed by this system include the length of the queues in vehicles on each
signalized lane and the traffic flow in the edge. Thanks to TraCI4Matlab, pre-
liminary results were obtained in a scenario consisting of an isolated junction,
showed in Fig. 10. Using induction loops and lane area detectors, the number of
vehicles entering the North-South as well as the length of the queues (jam length in
TraCI) on each lane in vehicles were obtained, as shown in Fig. 11.

Fig. 9 Performance results of TraCI4Matlab including a new TCP-IP implementation using Java
sockets

Fig. 10 The isolated junction
scenario used in the
MOYCOT [11] project to
obtain parameters needed for
a MPC traffic lights controller

TraCI4Matlab: Enabling the Integration of the SUMO … 167

6 Conclusions

In this chapter, the re-engineering process of the TraCI API’s Python implemen-
tation (TraCI-Python) used to develop a Matlab® implementation was presented.
Static and dynamic models related to the architectural and component design were
obtained. The authors consider that those models can be used to implement TraCI in
any object-oriented programming language.

0 2 4 6 8 10 12
0

5

10

15

20

25

Time (h)

(V
eh

)

0 2 4 6 8 10 12
0

5

10

(V
eh

)

Lane 1

0 2 4 6 8 10 12
0

5

10

(V
eh

)

Lane 2

0 2 4 6 8 10
0

0.5

1

Time (h)

(V
eh

)

Lane 3

(a)

(b)

Fig. 11 Data obtained in the
north-south edge using
TraCI4Matlab: a Number of
vehicles entering the edge,
b Length of the queue on each
lane in vehicles

168 A.F. Acosta et al.

The re-engineering process was supported with object-oriented re-engineering
patterns, which, in some cases, had to be adapted to the specific case of TraC-
I4Matlab. These patterns provide useful guidelines for a re-engineering project,
including small-sized projects like TraCI4Matlab.

One of the requirements formulated for TraCI4Matlab was to preserve the same
structure of the TraCI-Python’s end-user’s functions. Although it could be
accomplished through the approach described in the forward engineering process,
performance implications were not considered. As a result, it was found that per-
formance of TraCI4Matlab was much lower than TraCI-Python’s. In order to
overcome this issue, a TCP/IP implementation using Java sockets was proposed,
which resulted in a substantial performance improvement.

However, the re-engineering process was focused on the migration of TraCI-
Python to Matlab®, without taking into account the quality of the subject software
in terms of its structure (namespaces as classes, code duplication and code smells).
Future work should concentrate on this topic by using (semi) automated tools and
possibly including a benchmark with TraCI4J. Further performance improvements
should be also considered.

Finally, the design obtained through reverse engineering suggests some private
functions and some others with package visibility. Although Matlab® allows to
define private functions, it has not defined, to date, a similar approach for the case
of functions with package visibility.

Acknowledgments This work was supported by Proyecto Colciencias 111856934640 contrato
941-2012: Modelamiento y Control de tráfico urbano en la ciudad de Medellín. Convocatoria 569.

References

1. Beazley DM (2009) Python essential reference, 4th edn. Addison-Wesley Professional, Upper
Saddle River

2. CanforaHarman G, Di Penta M (2007) New frontiers of reverse engineering. In: Future of
software engineering, FOSE ’07. IEEE Computer Society, Washington, DC, USA, pp 326–
341. doi:10.1109/FOSE.2007.15

3. Chikofsky EJ, Cross I JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE
Softw 7:13–17. doi:10.1109/52.43044

4. Comparing MATLAB with other oo languages—MATLAB and simulink, n.d. URL http://
www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html. Accessed
02 April 2014

5. Demeyer S, Ducasse S, Nierstrasz O (2002) Object-oriented reengineering patterns. Morgan
Kaufmann, San Francisco

6. egueli/TraCI4J GitHub, n.d. URL https://github.com/egueli/TraCI4J. Accessed 01 April 2014
7. Ewer J, Knight B, Cowell D (1995) Case study: an incremental approach to re-engineering a

legacy {FORTRAN} computational fluid dynamics code in C ++. Adv Eng Softw 22:153–
168. doi:http://dx.doi.org/10.1016/0965-9978(95)00021-N

8. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications
of SUMO—Simulation of Urban mobility. Int J Adv Syst Meas 5:128–138

TraCI4Matlab: Enabling the Integration of the SUMO … 169

http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/52.43044
http://www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html
http://www.mathworks.com/help/matlab/matlab_oop/matlab-vs-other-oo-languages.html
https://github.com/egueli/TraCI4J
http://dx.doi.org/10.1016/0965-9978(95)00021-N

9. MATLAB—the language of technical Computing—B, n.d. URL http://www.mathworks.com/
products/matlab/. Accessed 09 Sept 2014

10. Mens T, Tourwe T (2004) A survey of software refactoring. IEEE Trans Softw Eng 30:126–
139. doi:10.1109/TSE.2004.1265817

11. MOYCOT | MOYCOT, n.d. URL http://www.moycot.org/. Accessed 09 Sept 2014
12. Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact of code smells:

a case study of two open source systems. In: Proceedings of the 2009 3rd international
symposium on empirical software engineering and measurement, ESEM ’09. IEEE Computer
Society, Washington, DC, USA, pp 390–400. doi:10.1109/ESEM.2009.5314231

13. Release notes for MATLAB—MATLAB and simulink, n.d. URL http://www.mathworks.
com/help/matlab/release-notes.html. Accessed 09 Sept 2014

14. Share data between workspaces—MATLAB and simulink, n.d. URL http://www.mathworks.
com/help/matlab/matlab_prog/share-data-between-workspaces.html. Accessed 02 April 2014

15. StarUML—The open source UML/MDA platform, n.d. URL http://staruml.sourceforge.net/
en/. Accessed 30 Jan 2014

16. SUMO_User_Documentation—SUMO—simulation of urban mobility, n.d. URL http://sumo-
sim.org/userdoc/. Accessed 30 Jan 2014

17. TCP/IP socket communications in MATLAB using java classes—file exchange—MATLAB
central, n.d. URL http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-
tcp-ip-socket-communications-in-matlab-using-java-classes. Accessed 09 Sep 2014

18. TraCI4Matlab—file exchange—MATLAB central, n.d. URL http://www.mathworks.com/
matlabcentral/fileexchange/file_infos/44805-traci4matlab. Accessed 01 April 2014

19. Vincke R, Van Landschoot S, Steegmans E, Boydens J (2012) Refactoring sequential
embedded software for concurrent execution using design patterns. Annu J Electron 6:157–160

20. Winpdb—A platform independent python debugger, n.d. URL http://winpdb.org/. Accessed
30 Jan 2014

170 A.F. Acosta et al.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://dx.doi.org/10.1109/TSE.2004.1265817
http://www.moycot.org/
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://www.mathworks.com/help/matlab/release-notes.html
http://www.mathworks.com/help/matlab/release-notes.html
http://www.mathworks.com/help/matlab/matlab_prog/share-data-between-workspaces.html
http://www.mathworks.com/help/matlab/matlab_prog/share-data-between-workspaces.html
http://staruml.sourceforge.net/en/
http://staruml.sourceforge.net/en/
http://sumo-sim.org/userdoc/
http://sumo-sim.org/userdoc/
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-tcp-ip-socket-communications-in-matlab-using-java-classes
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/25249-tcp-ip-socket-communications-in-matlab-using-java-classes
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/44805-traci4matlab
http://www.mathworks.com/matlabcentral/fileexchange/file_infos/44805-traci4matlab
http://winpdb.org/

An Integrated Framework
for Mobile-Based ADAS Simulation

João S.V. Gonçalves, João Jacob, Rosaldo J.F. Rossetti,
António Coelho and Rui Rodrigues

Abstract The increasing number of vehicles and mobile users has led to a huge
increase in the development of Advanced Driver Assistance Systems (ADAS). In
this paper we propose a multi-agent-based driving simulator which integrates a test-
bed that allows ADAS developers to compress testing time and carry out tests in a
controlled environment while using a low-cost setup. We use the SUMO micro-
scopic simulator and a serious-game-based driving simulator which has geodata
provided from standard open sources. This simulator connects to an Android device
and sends data such as the current GPS coordinates and transportation network data.
One important feature of this application is that it allows ADAS validation without
the need of field testing. Also important is the suitability of our architecture to serve
as an appropriate means to conduct behaviour elicitation through peer-designed
agents, as well as to collect performance measures related to drivers’ interaction
with ADAS solutions.

Keywords Mobile ADAS � Driving simulators � Serious games � SUMO

J.S.V. Gonçalves � R.J.F. Rossetti (&)
Departamento de Engenharia Informática, Faculdade de Engenharia da Universidade
do Porto, Laboratório de Inteligência Artificial e Ciência de Computadores,
R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
e-mail: rossetti@fe.up.pt

J.S.V. Gonçalves
e-mail: joao.sa.vinhas@fe.up.pt

J. Jacob � A. Coelho � R. Rodrigues
Departamento de Engenharia Informática, Faculdade de Engenharia da Universidade
do Porto, INESC TEC, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
e-mail: joao.jacob@fe.up.pt

A. Coelho
e-mail: acoelho@fe.up.pt

R. Rodrigues
e-mail: ruirodrig@fe.up.pt

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_10

171

1 Introduction

The technological advances in both the mobile and the transportation industries are
remarkable. This has made the development of ADAS an interesting topic [1].
However, even though most high-end cars nowadays ship with built-in embedded
systems, most of the older cars do not have such devices. This brings about an
interesting research opportunity, which is to develop and test ADAS that run on
low-cost devices, such as an Android tablet or smartphone.

The main goal of this paper is to describe the methodology of our Multi Agent
System (MAS) based driving simulator, integrating SUMO microscopic simulator
with driving simulators. We also intend to describe our implementation of a test-bed
to easily develop ADAS using the system, simulating their use in a low-cost and
controlled environment.

There are several benefits to testing ADAS in a simulated environment rather
than in real-world scenarios. As the tests are not conducted in a real physical
location, they are not subjected to travel times, traffic or other adverse conditions
which could render them mute. This, as well as being able to deploy the simulator
in low-cost computers, and therefore reaching more test subjects, leads to time
compression of the tests. Noticeably, cost reduction is another significant benefit as
the electrical cost of running a simulator is dismissive when compared to fuel costs
of real-world testing. Besides preventing the safety risks inherent to driving, sim-
ulation allows us to control the test environment and manipulate it according to the
specificities of the ADAS being tested.

The objective of our work was to develop the MAS and include a test-bed that
was easy to implement and replicate in low-cost environments. We aimed to
combine SUMO microscopic simulator with IC-DEEP, which is a driving simulator
developed at LIACC [2], with the Geostream framework developed at SI and CG,
as well as to enhance them with logs of simulated GPS positions in a mobile device.
To achieve so, a mobile application/service was developed in order to receive this
communication from the simulator and override the default GPS sensor of the
device. We wanted to make it easy to extend the communication between the
simulator and a mobile device, providing the latter with more information such as
the current speed limit, semaphoric information, or other data from the network.

This work aims to contribute with a novel multi-faceted methodology to sim-
ulate and research multiple human factors in Intelligent Transportation Systems
(ITS) and, particularly, with a novel approach to test ADAS that will enable
developers to validate and test their applications more easily and efficiently while
reducing costs.

In the following sections we describe the development and results of our
implementation. In Sect. 3 we introduce some related state-of-the-art works on the
subject of ITS, focusing on simulation, on the integration of different scope sim-
ulators and also on the topic of serious games. We then describe our approach,

172 J.S.V. Gonçalves et al.

architecture and development details. Finally we present our preliminary verifica-
tion as well as their analysis in Sect. 5. We finish this paper with a set of con-
clusions and interesting future work.

2 Background and Related Work

The Artificial Transportation Systems (ATS) [3, 4] concept has been one of the
main research topics in the IEEE ITS Society [5]. A typical approach to ATS
modeling and development is the MAS metaphor. Another potentially concomitant
approach is the HLA concept, which is based on the idea of distributed simulation
so as to meet the requirements of all usages and users rather than of a single
simulation model and analysis perspective [6].

In [7], authors propose to integrate a driving simulator and a traffic microsi-
mulator, in an attempt to tackle the mutual-dependence between the driver’s
behavior and traffic conditions.

Combining SUMO microscopic traffic simulation [8], using MAS capabilities,
with other simulators has also been researched [9]. Authors in [6] have studied an
HLA-based approach to simulate electric vehicles in Simulink and SUMO. Driver-
centric simulation has been researched by authors in [10], where they have
developed a simulation tool that provides feedback to the network based on the
driver’s behaviour.

Driving simulators are no doubt an important tool when researching ATS,
specially so when studying the influence of human factors in driving faults [2].
These faults often occur in direct consequence of performing secondary tasks while
driving [11]. In [12] authors introduce a game-engine-based modeling and com-
puting platform for ATS. They describe the artificial population both in their
macroscopic and microscopic aspects.

Regarding driving simulators with ADAS testing capabilities, authors in [13]
propose a reconfigurable driving simulator with several components to accommo-
date different ADAS testing or training. A framework for ADAS assessment and
benchmarking has been developed in [14], with configurable scenarios and 3D
scenes and multiple sensors input.

Authors in [15] developed a Full Speed Range Adaptive Cruise Control with
their platform for ADAS prototyping and evaluation, SiVIC. The platform is
capable of reproducing vehicle and sensor behaviors in a realistic fashion,
according to the configured environment in the simulator. The developed platform
also simulates noised and imperfect data.

A system comprising a large scale driving simulator, built in a 360° full dome
with 3D scenes from real city area has been developed in [16]. The system contains
a multitude of features such as real-time hardware-in-the-loop, wireless commu-
nication devices and bio signal analysis and is used to develop and test ADAS as
well as Advanced Safety Vehicle, ITS infrastructure and others.

An Integrated Framework … 173

3 Methodological Approach

The proposed system architecture is as described in Fig. 1. The main module of the
system is the SUMO simulator, which is responsible for the network’s multi-agent
microscopic simulation, and has multiple driving agents. This module provides an
overview of the whole MAS and can be manipulated directly.

The SUMO module also acts as a “central server”, providing all the essential
information for both IC-DEEP and the High Fidelity Simulator. This information
consists of the network infrastructure and the agents in the system, whereas terrain
morphology and road or building geometry are provided by the Geostream
framework.

Both of the driving simulators have a local representation of the whole MAS and
are capable of controlling any driving agent. The simulators are also able to connect
to an Android device and pass along all the information deemed necessary, such as
the GPS coordinates of the current driving agent being controlled. The Android
device is running a service that receives the incoming connections from the sim-
ulator and also the ADAS being tested. The dotted area in Fig. 1 corresponds to the
developed components as of the writing of this paper.

3.1 Simulators and Framework

The proposed system architecture has two simulators; however, as of the writing of
this paper, only the IC-DEEP simulator has been enhanced and integrated into the
framework. The latter is implemented in Unity3D and has the Geostream frame-
work embedded directly. The Geostream framework connects with Open Street
Maps, Google Geolocation API, Google Altitude API and other data providers in
order to fetch the required geographical information of a given location and

Fig. 1 Overview of the system’s architecture

174 J.S.V. Gonçalves et al.

remodel it in a fashion which can be interpreted by all the simulators in a coherent
and consistent way. This is especially important to the SUMO microscopic simu-
lator as the raw network data imported from Open Street Maps, typically, generates
unrealistic ways and intersections. The information generated by Geostream
framework is then parsed into both simulators to generate a 3D scene that is
representative of the chosen test location. The Geostream framework is explained in
further detail in the following section.

3.2 The Geostream Framework

The Geostream Framework was originally designed to aggregate location-based
data from multiple sources and recreate urban and rural environments for use in
location-based games. One of the issues in location-based games is the need to
accurately determine the user’s current context. As such, the Geostream provides a
foundation on top of which location-based games can be developed. However,
since the information is of use to other areas (simulation, procedural modeling), the
framework was further altered so that it can be used in non-game development.

The framework accesses the following web services, using them as providers for
the respective context-sensitive data (Table 1):

The data retrieved by these sources is then combined as a means to recreate the
current location context of the player (or in this case, the user). Certain sources may
be optionally not used if their data adds little to the problem at hand. After loading
data from the above sources, the scene graph looks similar to that of Fig. 2.

As Fig. 2 depicts, the typical scene graph of a Geostream based application
consists of a World Map gameobject, and other several Geo-gameobjects (objects
not based on the external sources of data, but that are placed in the game world,
such as a player, enemies, cars, etc.). The World Map game object consists of

Table 1 Geostream currently used services and their data

Service Data requested

Open street maps Human structures information and meta-data (buildings, roads,
bridges, traffic lights…) of a given area

Microsoft bing maps Aerial photos and traffic information of given area

Google places API Information about POIs (Points of Interest) in given area

Google elevation API Altitude of given coordinates

Google geocoding API Coordinates of a given address

Open weather Detailed, current weather information of given location

Map quest Aerial photos of a given area

An Integrated Framework … 175

several Map chunks. Each Map chunk holds the information of a specific part of a
location, such as the geometry of the terrain of that part (its elevation) and its aspect
(the corresponding part of an aerial photo).

As Fig. 3 shows, a World Map is comprised of several World Chunks. In the
above image, the grid mesh that is drawn with a blue color, represents the limits of a
given World Chunk. In this case, the World Map consists of 16 World Chunks,
each responsible for computing the information that belongs to itself (not only its
geometry or texture, but those of the structures that belong to it: POIs, roads,
buildings, natural structures, etc.). The behaviour of each World Chunk is sum-
marized in the fluxogram of Fig. 4.

When a World Map is created, using a certain coordinate or address as a center
reference, it will procede to create NxN World Chunks, each with a predefined
width and height of fractions of degrees. Then, each World Chunk will proceed to
look at the information it needs to reconstruct itself. Additionally, a World Map can
have a Geo-Gameobject to “follow”. This means that as the referenced Geo-
Gameobject moves around, new World Chunks may be dynamically loaded, while
others are unloaded to preserve memory.

New sources of information can be added to a World Chunk for it to make use
of. Additionally, it is possible to change, in design time, how certain types of meta
data are processed. For instance, in Unity, in the editor view, one can visualize what
current tags of Open Street Maps or Google Places are being processed and how (as
it can be seen in Fig. 5).

World
Map

World
Chunk #1

…
World
Chunk

#N

Building
#4

Geo-
Gameobjects

Road #2 Park #12

Fig. 2 Example of a Geostream scene graph

176 J.S.V. Gonçalves et al.

As seen in Fig. 5, a dictionary is created in design time, pairing tags with the script
classes responsible for treating information related to a specific tag. When the world
object is created, it will instantiate, through C# Reflection feature, the necessary
scripts (all derived from the Structure Script super-class). So, whenever a structure’s
information with a certain tag is compiled after consulting the multiple sources, it is
passed on to the respective script for treatment. In Fig. 5, we can see that “residential”,
“motorway”, “bridge” and “highway” are all treated by the Road Script, a script
responsible for generating roads with different features. This allows for further
expanding the possibilities or procedurally generating other real-world objects based
on the information compiled from external sources. For instance, one could add the
tag “traffic light”, present in the information gathered via Open Street Maps, coupled
with a Traffic Light Script that would be capable of treating that specific data. It could,
for example, instantiate a semaphore prefab in that structure’s position. Same thing
could be done with trees, lamps, and other simple and repeatable structures.

The biggest drawback of Geostream Framework, is that it is limited by the
availability of the context-related sources, and the quality (or existence) of infor-
mation. Performance wise, as most operations are threaded, loading of World
Chunks is made in a smooth manner, albeit for areas with many structure-related
information available, it can take some time to generate all the needed geometry
(even so, the FPS of the simulation rarely becomes affected). In locations with
abundant information and with the needed scripts performing procedural generation
of structures, the results are both visually appealing and accurate (note that gen-
erated structures fit with the structures captured by the aerial photos).

Fig. 3 Screenshot of the reconstruction of the Mount St. Helens crater

An Integrated Framework … 177

Notice how in Fig. 6, some buildings are red, while some are not. Red buildings
are those that have all their geometry’s height defined at the source, while textured
buildings have their height generated based on the height of neighboring buildings
and those whose heights are known from the source. Buildings with extra detail can
also be computed by further developing the Building Script, associated with the
creation of those structures.

Is the mesh cached
locally

Is the texture
cached locally?

Are the structures
and POIs cached

locally?

Download from
Google Altitude API

Load from local
cache

Download from
Map Provider and

cache it

Load from local
cache

Download from
Open Street Maps/

Google

Load from local
cache

YesNo

No Yes

No Yes

Finished Loading

Compute mesh and
cache it

Foreach structure,
compute mesh,

texture and cache

Fig. 4 Depiction of the loading behavior of a World Chunk

178 J.S.V. Gonçalves et al.

3.3 Mobile Device

The Android service sets the current GPS location using Mock Location API to
override the default location provider. All applications running on the mobile device
that use or perceive the current location will also be affected by the running service.

The new GPS coordinates are sent from the simulator every second; however,
this value is a parameter of the simulator and so can be adjusted to the specific
needs of each scenario. The developed service can be run as a standalone appli-
cation, and thus testing the ADAS mobile applications independently, as shown in
the left side of Figs. 1 and 2. There is also the option to use the service as a library
in any Android application, as long as it matches API level 19, as shown in the right
side of Fig. 7.

3.4 Interaction of Driving Simulators and Android

A typical interaction between the simulators and the mobile devices is shown in
Fig. 8. The modules are connected via TCP-IP sockets due to implementation
simplicity. The communication messages are formatted in JSON and therefore the
message contents can be easily changed to add different kind of data.

Fig. 5 Subsection of the World Map behaviour script

An Integrated Framework … 179

The basic message template contains two compulsory fields, which are latitude
and longitude. Other optional fields are the current speed, the GPS accuracy, the
message timestamp or even the speed limit from the current location. A specific
instantiation of this interaction is discussed in the next section.

Fig. 6 Geostream procedural generation of Monaco (above) and New York (below)

Fig. 7 Standalone mobile application (left) and mobile application with included library (right)

180 J.S.V. Gonçalves et al.

The coupling of SUMO microscopic simulator with the driving simulators,
namely with IC-Deep, uses the same methodology as implemented and described
elsewhere [17]. However, this raises some issues regarding the communication
channel, as the SUMO TraCI protocol uses sockets and currently does not support
more than one active socket. This is obviously a bottleneck when controlling
multiple driving agents and a possible SUMO extension to support parallelism in
terms of communication is in study.

4 Preliminary Verification

The preliminary verification to assess the proof of concept and also the efficiency of
the developed architecture focused on the modules in the dotted area of Fig. 1, the
remainder of the system will be developed later on, as mentioned in the next
section. We have divided the verification into two independent tests. Both of the
tests were performed in the same geographical location, which was down-
town Porto, on Avenida dos Aliados, as seen in Fig. 9.

Fig. 8 Typical interaction between IC-DEEP simulator and an ADAS

An Integrated Framework … 181

In the first experiment we test the simulator accuracy to represent real-world
scenarios using the Geostream framework. The other test aims to emulate the GPS
signal on the mobile device.

4.1 Simulator Accuracy

To test the simulator accuracy we have collected multiple GPS trace logs while
driving a real car in the selected geographical location. We have then overlayered a
visual representation of the obtained traces on the simulator and on Google Earth,
both results can be seen in Fig. 10. The results show that the generated 3D scene is
highly representative of the real-world location. In one of the trace logs we have
noticed an error and highlighted it in Fig. 10 (see labels 1 and 2), this error happens
due to the data being collected as raw, untreated GPS, where the road matching
algorithm [18] has not been applied. This is also an interesting result, as the error
can been seen in both the simulator and Google Earth alike.

Apart from testing the fidelity of the simulation with GPS trace logs, it is also
noticeable that the orthographic view of the generated 3D scene very much
resembles the satellite image of the same location, as it can be seen in Fig. 11.

Fig. 9 Generated 3D Scene ortographic view

182 J.S.V. Gonçalves et al.

Fig. 10 GPS traces on the simulator (left) and Google Earth (right)

Fig. 11 Satellite image of Av. dos Aliados

An Integrated Framework … 183

4.2 Mobile Device ADAS

To test the communication and emulation in the mobile device the setup consisted
of a basic usage scenario, using a simple ADAS that shows the user his current and
average speed, the total kilometers traveled, and, most importantly, warns him
when he exceeds the speed limit of the current location as shown in Fig. 12.

The interaction between the simulator and the mobile application followed that
of Fig. 8. To run the simulation the mobile application must be started and the
device’s IP address, which is shown in the application initial screen, must be
entered in the simulator configuration screen. After this the simulation can start and
the simulator internally updates the geographical coordinates as the driver traverses
the network. These coordinates are passed on to the mobile device as described
above, every second and via a JSON formatted message over a TCP-IP socket.

In this particular simulation the information sent to the mobile device consists of
the current GPS coordinates and the speed limit of the current location. The heading
of the vehicle is calculated internally by the mobile application using a simple
algorithm that computes the bearing with the last two known locations and thus,
even though this can be done easily, there is no need to pass on an orientation
variable from the simulator.

The main goal of this experimentation was to understand whether or not the
mobile device simulated GPS position and calculated speed matched those of the
simulator. We have used the driving simulator and Google Maps application to
compare the marked position while driving. To compare the driving speed we have
used the developed ADAS.

Even though the results from the simulator and the mobile device were not
recorded, any inaccuracies were not noticed when testing. The only possible minor
differences would be due to the fact that the Google Location API on the Android
device automatically adjusts the current position to the nearest road, which is, as
mentioned above, a technique called road matching.

Fig. 12 Developed ADAS

184 J.S.V. Gonçalves et al.

5 Conclusion

In this paper we presented a multi-faceted MAS-based driving simulator method-
ology. The presented framework can be used to simulate and test multiple aspects in
human factors in ITS, generally. Among others we identify some that we consider
more expressive of the system’s spread, such as supporting a Serious Game [19] to
test driving behaviors and ergonomics, simulating driver’s idiosyncrasies effects on
the ATS with peer-designed agents, and also prototyping and validating Advanced
Driver Assistance Systems.

The preliminary verification has illustrated the system efficiency and usability, as
well as its ability to accurately represent real-world scenarios without the need of
extensive 3D modeling or expensive hardware setups. This ability allows
researchers to conduct studies regarding singularities of the different geographical
locations.

As a great advantage over other systems we point out the fact that our system is
always up to date in terms of real-world mapping, and also that there is no need to
waste any time creating a scene when the sole purpose is to test an ADAS or do any
other kind of simulation.

In addition to implementing the remaining components of the proposed meth-
odology, there is an ambitious workload of further developments. We would like to
point out some that we consider proprietary and more challenging. We believe it
would be interesting to support batch simulations, in order to collect significant data
and extract more elaborate conclusions. There are also improvements specific to
driving simulators that we envisage, such as more detailed scenarios and improved
physics.

It would also be interesting to develop cache servers that could store the
responses from external services, and thus improve loading times. Another inter-
esting enhancement would be to allow multiple agents to connect to multiple
ADAS, simulating distributed ADAS applications while extending SUMO capa-
bilities. There are also refinements to be done in the Geostream framework, espe-
cially regarding road generation and also importing models and textures for
different buildings.

References

1. Baumann M, Keinath A, Krems JF, Bengler K (2004) Evaluation of in-vehicle HMI using
occlusion techniques: experimental results and practical implications. Appl Ergon 35(3):197–
205

2. Goncalves J, Rossetti RJF, Olaverri-Monreal C (2012) IC-DEEP: a serious games based
application to assess the ergonomics of in-vehicle information systems. In: 2012 15th
International IEEE conference on intelligent transportation systems (ITSC), pp 1809–1814

3. Wang F-Y (2003) Integrated intelligent control and management for urban traffic systems. In:
Intelligent transportation systems, 2003. Proceedings 2003 IEEE, vol 2, pp 1313–1317

An Integrated Framework … 185

4. Wang F-Y, Tang S (2005) A framework for artificial transportation systems: from computer
simulations to computational experiments. In: Intelligent transportation systems, 2005.
Proceedings of IEEE, pp 1130–1134

5. Rossetti RJF, Liu R, Tang S (2011) Guest editorial special issue on artificial transportation
systems and simulation. IEEE Trans Intell Transp Syst 12(2):309–312

6. Macedo J, Kokkinogenis Z, Soares G, Perrotta D, Rossetti RJF (2013) A HLA-based multi-
resolution approach to simulating electric vehicles in simulink and SUMO. In: 2013 16th
International IEEE conference on intelligent transportation systems—(ITSC), pp 2367–2372

7. Punzo V, Ciuffo B (2011) Integration of driving and traffic simulation: issues and first
solutions. IEEE Trans Intell Transp Syst 12(2):354–363

8. Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) Sumo-simulation of urban mobility-
an overview. In: The third international conference on advances in system simulation SIMUL
2011, pp 55–60

9. Maia R, Silva M, Araujo R, Nunes U (2011) Electric vehicle simulator for energy
consumption studies in electric mobility systems. In: 2011 IEEE forum on integrated and
sustainable transportation system (FISTS), pp 227–232

10. Gomes P, Olaverri-Monreal C, Ferreira M, Damas L (2011) Driver-centric VANET
simulation. In: Communication technologies for vehicles, Springer, Germany, pp 143–154

11. Kern D, Müller M, Schneegaß S, Wolejko-Wolejszo L, Schmidt A (2008) CARS-
Configurable automotive research simulator. In: Mensch and computer workshop band,
pp 256–260

12. Miao Q, Zhu F, Lv Y, Cheng C, Chen C, Qiu X (2011) A game-engine-based platform for
modeling and computing artificial transportation systems. IEEE Trans Intell Transp Syst 12
(2):343–353

13. Hassan B, Berssenbrugge J, Al Qaisi I, Stocklein J (2013) Reconfigurable driving simulator
for testing and training of advanced driver assistance systems. In: 2013 IEEE International
symposium on assembly and manufacturing (ISAM), pp 337–339

14. Noth S, Edelbrunner J, Iossifidis I (2012) An integrated architecture for the development and
assessment of ADAS. In 2012 15th International IEEE conference on intelligent transportation
systems (ITSC), pp 347–354

15. Gruyer D, Pechberti S, Glaser S (2013) Development of full speed range ACC with SiVIC, a
virtual platform for ADAS prototyping, test and evaluation. In: 2013 IEEE intelligent vehicles
symposium workshops (IV Workshops), pp 93–98

16. Yu S, Lee S-Y, Kim M-S, Lee D-G (2006) Development and evaluation of ITS devices using
KAAS(KATECH Advanced Automotive Simulator) system. In: International joint conference
SICE-ICASE, 2006, pp 2116–2120

17. Pereira JLF, Rossetti RJF (2012) An integrated architecture for autonomous vehicles
simulation. In: Proceedings of the 27th annual ACM symposium on applied computing,
pp 286–292

18. El Najjar M, Bonnifait P (2005) A road-matching method for precise vehicle localization using
belief theory and kalman filtering. Auton Robots 19(2):173–191

19. Rossetti RJF, Almeida JE, Kokkinogenis Z, Goncalves J (2013) Playing transportation
seriously: applications of serious games to artificial transportation systems. Intell Syst IEEE 28
(4):107–112

186 J.S.V. Gonçalves et al.

Part III
Data Generation and Validation

TOMS—Traffic Online Monitoring
System for ITS Austria West

Karl-Heinz Kastner and Petru Pau

Abstract ITS Austria West is a long-term Austrian project whose goal is to
continuously generate and publish real-time traffic data. TOMS—a traffic moni-
toring system developed in the frame of this project—integrates sensor data,
coming in real time from various data sources, into periodical snapshots of the
traffic situation. Our system relies heavily on the open source package SUMO to
generate and maintain the road network and to simulate the traffic in order to obtain
estimates for traffic values on roads that are not covered by sensors. Due to inac-
curacies in the original demand model, a series of calibration steps are executed.
The resulting demand model achieves an acceptable level of stability and confor-
mity with the reality. A traffic simulation runs with this demand model in parallel
with the traffic monitoring software and is continuously adjusted in order to comply
with the current traffic situation, as reported by sensors.

Keywords Traffic monitoring � Traffic simulation

1 Introduction

In the frame of the “ITS Austria West” project we developed a system that monitors
the traffic on Upper Austrian roads. The system integrates real-time sensor data with
traffic simulation results in order to generate snapshots of the traffic situation. The
road infrastructure of Upper Austria is modelled by a trimmed road network; this is
used by the traffic simulation as well, together with a calibrated demand model for
an average working day.

K.-H. Kastner � P. Pau (&)
RISC Software GmbH, Softwarepark 35, 4232 Hagenberg, Austria
e-mail: petru.pau@risc-software.at

K.-H. Kastner
e-mail: karl-heinz.kastner@risc-software.at

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_11

189

There are two categories of real-time data: floating car data (FCD) from sensors
installed in roaming cars, and data coming from static detectors (vehicle detection
loops—VDL—or radar detectors) installed at fixed positions on a number of roads.
FCD are used to estimate the current average velocities on corresponding roads; the
static detectors are basically vehicle counters that also provide velocity and vehicle
type information.

Since real-time data do not cover all roads, a traffic simulation can be used to fill
the gaps. Every few minutes, the results of the simulation are compared with the
real-time data. Whenever flagrant discrepancies are observed between the simulated
traffic and the real-time data, adjustments are computed and injected back into the
simulation. Simulation results and real-time data are eventually aggregated into a
snapshot of the traffic situation, which is subsequently published.

The simulation needs an accurate demand model for obtaining results that clo-
sely resemble the real-time development of traffic conditions. The current demand
model provided by the Upper Austrian authorities requires series of calibration
steps so that, as much as possible, dramatic discrepancies between the reality and
the simulated traffic are removed.

In this paper we give an overview of our system, with emphasis on aspects
related to the use of SUMO [1] concepts and components. In Sect. 1 we describe the
system architecture, at a high level of abstraction. Further, we show how the static
data, fundamental to all sub-systems, is generated. Another section contains a
description of the calibration process, executed as a preliminary step. In Sect. 4 we
explain how the static and real-time sensor data are processed and integrated. We
continue by describing TOMS, the main component of our system. Finally, Sect. 6
contains some conclusions and a few words regarding future work.

2 System Overview

Figure 1 contains the system architecture of ITS Austria West.

• In the preprocessing phase, a road network file, as well as a routes file, is
generated from the static incoming data:

– GIP—Graph Integration Platform, the main, most comprehensive database
of Austrian roads;

– VLSA—traffic lights description file.
– Besides these data collections, the demand model—a file with all origin-

destination relations—is taken as input by our system.
– The generated files (the internal road network as well as the set of routes and

daily trips) follow the respective SUMO formats.

• The calibration process is meant to balance the trips, so that eventually a routes
file is computed, with which a traffic simulator (e.g. SUMO) produces a good
approximation of the traffic situation. With the initial, unprocessed demand

190 K.-H. Kastner and P. Pau

model, SUMO needs more than 5 days to simulate all trips—which in fact cover
no more than one working day.

• The Traffic Online Monitoring System (TOMS) periodically collects real-time
data (FCD and static detectors) and aggregates them with simulation (SUMO,
MATSim) results, in order to generate snapshots of the traffic situation.

• Currently, TOMS sends its output to VAO (“Verkehrsauskunft Östereich”, the
Austrian traffic information system) and to a WMS (Web Mapping Service)
layer that can be accessed by various applications. An HTML5-based web page,
as well as an app for Android and IPad, integrate these WMS layers.

3 Preprocessing Static Data

In this phase, the internal data collections used by all components of ITS Austria
West are generated from external data.

3.1 The Road Network

From the GIP database, information concerning relevant road segments is extracted
and filtered, based on specific criteria:

1. Geographically: The system monitors only roads from a rectangular area which
encloses Upper Austria (Fig. 2a).

2. Functionally: Only roads with a certain level of significance are taken. The
relevant significance levels vary according to road position (e.g. in urban or rural
areas). Figure 2b contains the monitored roads in Linz city center.

Management Console

Scenario
Builder

Scenario

SUMO

GIP

VLSA

Sensors

Demand
Result

VDL FCD

Road Network

Traffic Online Monitoring System

TMC VAO

P
re

pr
oc

es
si

ng

S
ta

tic
 D

at
a

Calibration

Routes

Output

Real-Time Data

Data collection
Equipment

Fig. 1 Architecture of ITS Austria West

TOMS—Traffic Online Monitoring System for ITS Austria West 191

Both criteria are necessary in order to produce a manageable network of road
segments. The geographical criterion is natural and self-explanatory: no foreign
roads need to be maintained in the internal data structures. The functional criterion
helps filtering out roads of reduced significance with respect to the traffic; while also
necessary, this trimming has a few drawbacks:

• In the reality, trips normally begin and end on side-roads or alleys. Since most of
these roads are eliminated, there remain fewer possible points of insertion for
vehicles in the simulation. Some road segments will inevitably become con-
gested with new vehicles, and queues of vehicles waiting to be inserted into the
simulation will occur with higher frequency.

• Vehicles equipped with sensors may drive on streets that have been eliminated
from the internal data structures. Interpreting measurements sent from those road
segments requires carefully tailored algorithms, which we describe in some detail
in Sect. 4.2.

The remaining road segments are used to generate two files, containing “nodes”
and “edges”, in SUMO-specific XML format. These two files are given as input to
the program NETCONVERT, the component of SUMO which generates a road
network file.

Special care must be given to entry or exit points to and from highways. The
usual 100 m of tangential driveway (the ramp) is not explicitly contained in the GIP
database. We programmatically detect such situations and the computed list of
ramps is given as parameter to NETCONVERT.

Our first results led to a road network that was not fully connected. We traced the
problem to inaccuracies in the original data (GIP is by no means finalized, corrections and
updates are continuously performed). The original information associated to some road

(a) (b)

Fig. 2 a The whole road network. b Part of an urban area (Linz)

192 K.-H. Kastner and P. Pau

segments marked them (mistakenly) as insignifficant, and they were consequently not
inserted into the final road network; the resulting graph was not connected.

In order to address this problem we had to run an additional preprocessing phase,
in which we worked with a richer road network and a demand model adapted to it:

1. Routes for each trip from the demand model are generated.
2. Road segments that will be part of the final network (the segments with a

suitable functional class) are identified and marked.
3. Road segment with lower functional class contained in sufficiently many routes

generated in step 1 are marked as well.
4. All marked road segments are selected for the trimmed network.

Theoretically, this algorithm does not necessarily lead to a connected network;
however, in our particular case the results are quite satisfactory.

Further lists are used to refine and improve the road network, with traffic light
signal systems (VLSA) and manual changes or corrections. Lastly, and very
importantly, the static detectors (see Sect. 4.1) provide their own list of objects to be
included into the network: Their positions define locations of induction loops for
the simulated traffic. Data collected in these induction loops is used for the on-line
calibration of the simulation.

Eventually, a suitable network is obtained; it can be generated in either SUMO
or MATSim format.

3.2 The Routes File

The currently available demand model was generated in 2013 by the department
“Gesamt-verkehrsplanung und öffentlicher Verkehr” of the Upper Austrian gov-
ernment. It reflects all traffic in Upper Austria for a working day and is given as a
source-destination matrix with the hourly summary of trips, for which the source
and destinations are districts. We generate a set of routes, distributed over a day, in
a three-step process:

1. We produce trips with clear origin-destination streets and start times.
2. For each origin-destination pair, we compute the best route. Routing algorithms

(e.g. Dijkstra) can be employed, or tools already provided by traffic simulation
software (SUMO makes a routing program available: DUAROUTER).

3. We try to balance the routes (see the next section for a detailed description), by

• sending vehicles on alternative routes, to avoid congestions on critical road
segments;

• shifting vehicles temporally, in order to reach a demand model with which
the simulated traffic does not differ too much from the reality.

For the first step, the hourly trips are randomly distributed within the hour. The
exact departure and arrival positions are also distributed randomly among the nodes
situated within the corresponding departure and arrival districts.

TOMS—Traffic Online Monitoring System for ITS Austria West 193

The routes are calculated in step 2 with a fast Dijkstra algorithm, parallelized so
that, for each source, the shortest paths to all destinations are computed in a separate
thread. The computation of all routes (around a million) on a 3.7 GHz computer
with four cores with hyperthreading takes under 2 minutes.

The third step takes place in the calibration process, described in the next
section.

3.3 Calibrating the Demand Model

The calibration starts with the road network and the original routes file and runs
SUMO repeatedly with increasing end times, from 6:00 AM to 8:00 PM. For each
end time, a limited number of SUMO runs are allowed. If the number of vehicles
arriving too late is relatively small (e.g. below 1,000), the process starts working
with the next end time (the end times advances with 1 h). At the end of each run, a
new routes file is generated and given as input to the next SUMO run.

In order to assess whether a vehicle arrives too late (or too early), we need
estimated times of arrival (ETA). Currently we compute these times, for each
vehicle, considering the average speed per edge and an estimated time for traversing
crossroads.

During the calibration process, the simulation output is obtained via the dumping
mechanism implemented in SUMO. Since SUMO normally produces such a dump
every second, we had to modify it so that the periodicity can be given as a
parameter in the SUMO configuration file.

Every 2 min a SUMO dump is analyzed, and all vehicles currently running are
checked against their expected arrival times.

• If a vehicle is found on the road after its ETA, it will be considered as delayed. If
the delay is considerable (the minimum acceptable delay is parameterizable;
currently we work with 5 min), the vehicle will need to be shifted (it will depart
earlier) or sent on an alternative route. The decision is taken at random, with a
ratio shift/reroute given as a parameter to the calibration process.

• A vehicle that has arrived too early will be shifted forward, so that in the
calibrated routes file it will depart later.

3.3.1 Alternative Routes

The alternative routes are generated with a modified Dijkstra algorithm that seeks
new, not-yet-traversed routes between any given source and destination.

The method starts by increasing the weights of all edges in the already traversed
routes, thus adding a handicap to the old routes. A shortest-path algorithm follows:
Whenever a new node is reached, the ‘weight’ of the shortest path from the source
to this node is computed, as in e.g. a normal Dijkstra algorithm. The percentage of

194 K.-H. Kastner and P. Pau

this path that has not been traversed by any previous route (the alternative part of
the shortest path) is also computed.

If the new node belongs to (at least) one of the old routes, the alternative part is
checked to ensure that the current shortest path is significantly different—for
example, 50 % of its length or 10 min drive time should differ from each of those
already computed (see Fig. 3). Failure to comply with this condition leads to the
current “shortest path” being discarded, and the next “shortest path” takes this place.

After SUMO ends, a new routes file is generated, in which the vehicles that
arrived too late or too early are either shifted or follow different alternative routes.
This new routes file is given as input to SUMO for the next run.

The goal of the calibration process is to reach a stable simulated traffic, where
there are no catastrophic traffic jams and overly delayed vehicles.

In our experience, SUMO runs with the initial routes file for more than 5 days
simulation time, in order to have all vehicles reach their destinations; in other
words, the vehicles caught in simulated traffic jams need more than 5 days to reach
their destinations. Since a lot of road segments are filled with unmoving vehicles,
huge queues of new vehicles wait to be inserted into the simulation. These defi-
ciencies lead to unrealistic and in fact unusable outcome. Last but not least, the rush
hours are simulated by SUMO below real-time, quite unacceptable if we want to
run SUMO alongside a real-life traffic monitoring system.

On the other hand, the calibrated route files obtained so far produced very
satisfactory results: The simulation was more fluid, and the simulated traffic jams—
inevitable during the rush hours—did not become persistent.

4 Integration of Real-Time Data

Real-time traffic data is made available by various providers in different formats and
on different locations. We produced small applications that regularly intercept this
data and save it in dedicated databases, using a uniform format.

In the following, we describe in some detail each type of real-time traffic data
and we explain shortly how this information is interpreted in order to generate
traffic situation snapshots.

Old route

Alternative part

Fig. 3 Alternative route

TOMS—Traffic Online Monitoring System for ITS Austria West 195

4.1 Static Detectors

The vehicle detection loops (VDL) and radar detectors are automatically geocoded
in the preprocessing step, so that their location (edge, position on edge, direction) is
precisely identified in the network.

In the online system, the latest measurements from static detectors are aggregated
and used to compute average traffic velocities on their corresponding road segments.
These measurements also provide the number of passed vehicles, information which
is used for the online calibration of the simulation: If the observed traffic is heavier
(or lighter) than the simulated traffic, new vehicles are inserted into the simulation,
with randomly chosen routes (or are removed from the simulation).

Figure 4 shows positions of vehicle counters installed on Upper Austrian roads
(white markers denote vehicle counters from which no data has been received in the
last 15 min).

4.2 Floating Car Data

Floating car data (FCD) come from providers in intervals between 1 and 30 s. The
measurements contain position information in geographic units, which is used to
match the readings against the edges (road segments) of the road network.

Fig. 4 Locations of vehicle counters (Upper Austria)

196 K.-H. Kastner and P. Pau

In order to correctly interpret FCD, it is not sufficient to determine the most
probable road segments where readings were taken. Indeed, we received a lot of
measurements with very slow speed values which were not due to real traffic
problems but rather to waiting at a traffic light or slowing down and stopping for
picking up a passenger (some of the sensors are installed on taxi cabs).

We designed a method for interpreting FCD where vehicles’ trajectories are
computed and analyzed with respect to time and velocity. We had to tackle the
following problems:

• For a normally running car, measurements coming with a 30 s interval between
them can be located on quite distant, non-adjacent road segments in the network.
The missing road segments need to be guessed.

• The geographical coordinates can give a position that is far from any street
(recall that the route network is an inherently incomplete sub-graph of the whole
Upper Austrian road network). There may be more than one road segment
equally distant from this point.

Figure 5 shows the road segments mapped to the most recent measurements sent
by a taxi cab equipped with a FCD sensor. The markers denote the exact positions
of the measurements (the first and last measurement are colored in red).

Fig. 5 The probable trajectory of a vehicle, computed from FCD

TOMS—Traffic Online Monitoring System for ITS Austria West 197

In order to validate the data of the last few minutes, a modified Dijkstra algo-
rithm is employed. From a number of specific attributes (number of measurements,
distance from the measurement to the road segment, direction, etc.) a value is
computed, which is subtracted from the so-called weight of a road segment (usually
its length, or drive time), a concept used by the Dijkstra algorithm: The shortest
path is a sequence of road segments with minimal sum of weights. Consequently,
the road segments containing (in the same direction, or closer to) measurements are
preferentially chosen by the Dijkstra algorithm, so that the most probable trajectory
is eventually generated.

On this trajectory, a plausible matching of measurements to road segments can
be performed. The travel time can be used to compute velocity values on all road
segments contained in the trajectory (including those not matched to any
measurement).

4.3 Roadworks and Roadblocks

The roadworks information is obtained via the Traffic Message Channel (TMC)
published by VAO. This is a real-time data link, where information from different
providers is bundled into a single connection. We currently use this information to
create another WMS layer, which in fact provides markers for the corresponding
roadworks/roadblocks positions. Ancillary information for each roadwork can be
visualized as well—see Fig. 6.

Fig. 6 Markers for roadblocks and roadworks

198 K.-H. Kastner and P. Pau

5 TOMS

The main task of the Traffic Online Monitoring System TOMS is to generate
periodically an online snapshot of the traffic situation of Upper Austria.

TOMS starts by loading the static data and instantiating internal data structures
which are fundamental for all processing steps:

• The road network—from which it produces an internal data structure (a con-
nected graph) suitable for all graph algorithms. The edges of this graph corre-
spond to road segments. Among other attributes, they hold the current velocity:
its value is updated according to simulated or real-life data.

• The routes file—used mainly for on-line calibration of running simulations.

Further, TOMS starts the real-time data loop. With a 1 min periodicity, TOMS:

• downloads the latest traffic information provided by static detectors or FCD;
• interprets the measurements and computes current speed values for corre-

sponding road segments;
• overrides the default or simulated velocities on these road segments;
• generates an LOS (Level of Service) output, which is saved as a set of WMS

layers and sent to VAO as an XML file.

If so configured, or by user requests, TOMS can start a simulation and initiates a
simulation loop. Within this loop, TOMS:

• collects the simulation output and extracts traffic values for all roads with
simulated vehicles;

• modifies the traffic values on road segments which have simulated traffic;
• calibrates the simulation, inserting adjustments computed from the real-time data.

In Fig. 7 we show a diagram of this process.
We have to emphasize that the traffic values computed from real-time data have

priority over those coming from simulation: They always override the simulated
values.

Real-time data

Network and
vehicle routes

Simulation

TOMS

Traffic values

calibration

WMS

every minute

every 5 minutes

Fig. 7 The two main loops in which TOMS collects traffic information

TOMS—Traffic Online Monitoring System for ITS Austria West 199

The scenario builder (see Fig. 1) is responsible for the dialog with the traffic
simulation applications:

• it prepares scenarios—the input for simulations—in the form of routes files;
• it starts simulations, establishes channels for communication and control;
• it sends calibration orders, etc.

The most important requirement that must be met by the simulation is that it runs
faster than real-time. Our initial attempts at integrating SUMO showed that, with
the uncalibrated demand model, the rush hours cannot be simulated faster than real-
time. Our first attempt to speed up the simulation, namely by parallelizing SUMO,
is described in [2]. With a calibrated demand model, the simulation speed is con-
siderably greater than the real time, even with congested traffic.

Usually, a simulation runs in 5 min steps. At the end of each step, the results are
collected (as a SUMO dump) and sent to the scenario builder. These results contain
two sets of information:

1. the status of every vehicle in the simulated network,
2. the statistics from induction loops.

From the first set, the average simulated velocities on each road segment are
computed; they are used unmodified, for road segments not covered by sensors.

Data from the second set is compared with the current real-time information
from the corresponding static detectors and adjustment decisions are accordingly
taken: Vehicles whose routes contain road segments with static detectors are added
to or removed from the simulation. These adjustments are sent to the simulation, to
be integrated for the next simulation step.

We use TraCI, the online control interface integrated in SUMO, to control and
calibrate the simulation. The messages that TOMS currently sends to SUMO via
TraCI are:

1. “Simulate To”: SUMO is announced that it has to run until a given time
(contained in the message) is reached.

2. “Add New Route”: A new route is defined, its ID and edges constitute the body
of the message.

3. “Add Vehicle”: A new vehicle is introduced into the simulation. The message
contains the ID of the new vehicle and the ID of its route.

4. “Remove Vehicle”: A vehicle is removed from the simulation. The vehicle ID is
given in the message.

A detailed description of our use of TraCI is contained in our paper [2].
We have to mention that it is possible to further calibrate the simulation with the

average velocity on monitored road segments (and on roads with floating car data).
For normal traffic situations, our experiments were unsatisfactory, leading to sim-
ulated traffic far slower than the real traffic. We reserve this calibration method for
cases where the traffic is stopped due to events on the roads (e.g. accidents).

200 K.-H. Kastner and P. Pau

6 Conclusions and Future Work

In this paper, we gave an overview of the traffic monitoring system developed in the
project “ITS Austria West”. Based on soon-to-be public collections of road data, the
system integrates real-time information received from various types of sensors to
generate periodic snapshots of the traffic situation. Traffic simulation applications
can be used to generate plausible traffic information on streets not covered by
sensors. The output of our system is used by the Austrian traffic information system
VAO, which provides services for multimodal routing.

The system is configured to monitor the traffic on Upper Austrian roads, but can
be effortlessly set up for any other regional scenario.

The project is by no means finalized. Here are some directions in which we shall
concentrate our efforts:

1. Currently only SUMO (microscopic edition) was used in our simulation sce-
narios. We intend to integrate MATSim as well, both in the offline calibration
and in TOMS.

2. We are working on integrating the mesoscopic version of SUMO, provided by
DLR for testing purposes. The calibration, which takes several weeks with the
microscopic simulation, should be accomplished in reasonable time.

3. As a means to validating our traffic snapshots, streams from a set of video
cameras are visually inspected and checked against the traffic situation exported
by TOMS. However, most of the currently available video cameras are posi-
tioned in rather irrelevant locations, with little or no traffic, or where traffic jams
are not probable.
We plan to contact other providers of visual traffic information, either with static
or airborne cameras.

4. An important point on our agenda is replaying the traffic development in the last
week, in addition to the online generation of traffic snapshots. It shall thus be
possible to check our results against videos or images older than a day.

References

1. Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) SUMO—simulation of urban mobility:
an overview. In: SIMUL 2011, Barcelona, Spain, pp 63–68

2. Kastner K-H, Keber R, Pau P, Samal M (2013) Real-time traffic conditions with SUMO for ITS
Austria West. In: Proceedings of the 1st SUMO conference. Springer, Berlin (to appear)

TOMS—Traffic Online Monitoring System for ITS Austria West 201

Second Generation of Pollutant Emission
Models for SUMO

Daniel Krajzewicz, Michael Behrisch, Peter Wagner, Raphael Luz
and Mario Krumnow

Abstract Traffic puts a high burden on the environment in means of emitted pollu-
tants and consumed fuel. Different attempts exist for reducing these impacts, ranging
from traffic management actions to in-vehicle ITS solutions. When equipped with a
model of vehicular pollutant emissions,microscopic traffic simulations are assumed to
be helpful in predicting the performance of such approaches. SUMO includes amodel
for vehicular emissions since 2008. In the context of the projects COLOMBO and
AMITRAN, two further models were implemented. Herein, these models are pre-
sented and discussed, pointing out the progress in emissions modelling.

Keywords Vehicular emissions � Emission modelling � Environment � Traffic
management

1 Introduction

Air pollution is a well-known problem that ranges from local air quality issues up to
global effects the humanity is confronted with, such as global warming. Following the
International Transport Forum [1], “[the] Transport-sector CO2 emissions represent
23 % (globally) and 30 % (OECD) of overall CO2 emissions from Fossil fuel com-
bustion. The sector accounts for approximately 15 % of overall greenhouse gas
emissions.”

Different actors are involved in reducing road traffic’s environmental impact and
its resource consumption, often forced to do so by law. In Europe, automobile

D. Krajzewicz (&) � M. Behrisch � P. Wagner
German Aerospace Center, Rutherfordstraße 2, 12489 Berlin, Germany
e-mail: daniel.krajzewicz@dlr.de

R. Luz
Institut für Verbrennungskraftmaschinen und Thermodynamik, Inffeldgasse 19/I,
8010 Graz, Austria

M. Krumnow
Technische Universität Dresden, Institut für Verkehrstelematik, 01062 Dresden, Germany

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_12

203

manufacturers shall reduce their fleet emissions [2]. Cities try to keep the amounts
of pollutant concentrations below the thresholds formulated in according regula-
tions, such as [3]. Finally, pollutant emission is correlated to the consumption of
fuel. As fuel price has increased in the past years, the reduction of emissions is also
in the focus of end users—individuals as well as (e.g. logistics) companies. This
large variety of actors and customers yields in an accordingly large amount of
solutions. They range from large-scale traffic management actions, such as the
introduction of environmental zones, down to in-vehicle solutions that propose the
driver a speed that minimizes emissions.

The development of technical solutions for critical systems usually includes a
step where the solution is modelled as software and simulated. This step allows
validating the assumptions about the solution’s functionality and to benchmark or
prove its performance a priori. In the context of evaluating on-road solutions, traffic
simulations are an established tool used for this purpose by both, consultants and
researchers. Academic approaches, such as the traffic simulation SUMO [4, 5] that
is discussed herein, attempt to simulate large, city-wide areas using so-called
microscopic models that simulate every traffic participant individually.

To evaluate a solution that was designed to reduce road traffic’s impact on air
quality the used traffic simulation must be capable to compute the amount of the
emitted pollutants the solution attempts to reduce. A large variety of emission
models is described in the scientific literature. They differ in the required input
parameters, the covered pollutants, the coverage of the real-world emission fleet,
and the aggregation of the results in time and area. Therefore, according require-
ments must be formulated before choosing a model that shall be embedded or
implemented into the used traffic simulation.

In the following, recent work on vehicular emissions modelling in SUMO will
be presented. This work has been performed within the projects “COLOMBO” [6,
7] and “AMITRAN” [8, 9]. The models implemented within these projects are
going to replace SUMO’s initial emissions model that was developed within the
project “iTETRIS” [10, 11]. All three projects are, or respectively were, co-funded
by the European Commission.

The remainder is structured as follows. A discussion of SUMO’s requirements to
an emission model is given, first, followed by an overview about emissions mod-
elling and available emission models. A description of the emission models
implemented into SUMO is given afterwards. Then, using and extending the
emission models embedded in SUMO is described. Some use cases are presented
afterwards. The report ends with a summary.

2 SUMO’s Requirements to an Emission Model

Briefly said, the emission model to choose should be capable to be used as a source
of further measurements for the applications the traffic simulation is usually used
for. In other words, it should not change the way the traffic simulation is used.

204 D. Krajzewicz et al.

Instead, it should generate additional information, not available before. As SUMO’s
goal is to simulate real-world traffic in large areas, the model should cover the
complete emission fleet found on roads nowadays. This counts for passenger
vehicles as well as for heavy duty vehicles, busses, motorcycles, etc. One should
also take into regard that the deployment of currently developed ITS applications
will be realized in the future. Therefore, the model should be capable to represent
future fleet compositions. Some types of investigations require a distinction of
regulative emission classes, e.g. the Euro norm. Such a classification also helps in
representing the population of vehicles over time, as most statistics on past and
current vehicle fleets are represented this way. Of course, a clear distinction
between passenger vehicles, heavy duty vehicles, and busses is necessary, because
some regulations affect only vehicles of one of these classes, mainly the heavy duty
vehicles.

A second top-level requirement is that the emission model should match the
resolution of the traffic simulation. It should be sensible to all vehicle (or traffic) state
attributes the simulation offers. In the case of a microscopic simulation, a vehicle’s
acceleration, speed, and the slope of the road beneath the vehicle are the major
attributes to consider. On the contrary, the model is wanted to use only those vehicle
parameters that are offered by the traffic simulation model. Such a close connection to
the traffic model implies the possibility to compute emission values for each simu-
lated time step, usually having a length of one second or below. To achieve this, the
emissions model must compute emissions at the same time scale.

Not all available models cover all pollutants emitted by road traffic. As well, not
all gases emitted by road traffic are relevant. Therefore the pollutants assumed to be
needed should be a part of the requirements. Within the iTETRIS project (see [12]),
it was decided to model the emission of CO, CO2, NOx, PMx, and HC, because
these emissions are toxic (CO), cause cancer (PMx), are responsible for ground-
level ozone increase and smog generation (NOx and HC) or are greenhouse gases
(CO2). Additionally, the fuel consumption should have been modelled.

An emission model for SUMO has to fulfil some other, non-functional
requirements. It should be portable matching SUMO’s overall portability. It should
be fast in execution for being applicable to large-scale scenarios. And it should be
directly embedded into the simulation to avoid additional interaction between
programs (e.g. socket-based) or file exchange.

SUMO’s viral GPL license requires the implementation of the model under the
same license. And, of course, the model should be easily usable. Summarizing, the
following requirements are put on a model:

• Cover the complete vehicle fleet (in means of emission classes);
• Offer a classification of classes into Euro-norms;
• Compute certain pollutants (CO, CO2, NOx, PMx, HC, and fuel consumption

were chosen);
• (Be) sensible to microscopic parameters available in the simulation;
• Require only information that is available in the simulation;
• (Be) able to compute emissions in simulated time steps;

Second Generation of Pollutant Emission … 205

• (Be) easy to parameterize;
• (Be) portable, fast in execution, and directly embedded into the simulation;
• (Be) licensed under a GPL-compatible license.

3 Emission Models Overview

Most of nowadays vehicles burn petroleum-derived fuel for propulsion. When
regarding small time scales, fuel consumption depends on the vehicle’s engine
characteristics and on the current load of the engine. The load is dictated by the
force a vehicle needs to overcome as well as by the chosen gear (see [13] for a very
good explanation). Most of the fuel burns to the greenhouse gas CO2 and to water.
But other, often toxic gases are generated as well. Catalytic converters convert a
major portion of some of these pollutants into non-toxic gases. The performance of
the catalytic converter mainly depends on the catalyst’s temperature as well as on
the engine’s current operating point. The amount of emitted pollutants depends on
other influences, such as drive train losses, the road’s slope, or the air-fuel ratio at
combustion. Additionally, long-term effects of a driving style may change a
vehicle’s emission behavior.

In summary, every single vehicle has an individual emission behavior. But when
investigating road traffic, many vehicles of different type have to be regarded. It is
thereby necessary to find a tradeoff between the amount of vehicle emission classes
a model covers and the details in modelling each single vehicle or single emission
class. The literature accordingly distinguishes the following classes of emission
models:

• “inventory” emission models that include data for the major portion of the
vehicle emission classes; their input usually consists of a vehicle population
composition and the amount of driven distances, optionally also the average
speed or an abstract traffic state. Such models usually cover a large set of
different pollutants.

• “instantaneous” (or “modal”) emission models that simulate a single vehicle’s
emission, where [14] proposes a further distinction into emission maps,
regression-based models, and load-based models. Trying to model the emissions
for a single vehicle as exact as possible, these models usually regard a small
number of vehicles only.

It follows that the models differ in granularity and input parameters they need as
well as in the number of covered pollutants. One should note that some “instan-
taneous” models exist which databases were incrementally extended over the years
to cover a large portion of real-world’s vehicle emission classes. The model PHEM
(“Passenger and Heavy Vehicles Emission Model”) [15, 16], which derivate was
included in SUMO as shown in Sect. 4.2, is one of such models. Its sub-modules
and their inter-dependencies are shown in Fig. 1.

206 D. Krajzewicz et al.

Within the iTETRIS project, 15 non-commercial (freely available in means of
data or a document that completely defines them) emission models have been
examined to determine candidates for being embedded into SUMO. Commercial
models have not been included in this investigation. None of the 15 models fulfilled
the posed requirements directly. The inventory models were found to be too coarse
due to being insensitive to the vehicle’s acceleration. But most instantaneous
models compute only few of the required pollutants. Additionally, the needed input
parameters were often not completely given. As well, most instantaneous models
use parameter that are not originally covered by SUMO’s simulation model and
would introduce a high number of additional parameters into SUMO’s vehicle type
description.

As a conclusion, none of the evaluated models could be directly embedded into
SUMO. Instead, one of the inventory models was chosen and reformulated to be
continuous in speed and acceleration, as described in the following chapter.

4 Implemented Emission Models

As no emission model could be found that on the one hand is instantaneous in
means of regarding vehicle attributes used in a microscopic simulation but on the
other hand still covers a major part of the vehicle population, the decision to build
an own model based on data from the HBEFA [18] database was taken. HBEFA, in
version 2.1 at that time, was one of the investigated inventory models. This initial

Fig. 1 Schematic representation of the PHEM emission model [17]

Second Generation of Pollutant Emission … 207

implementation of an emission model into SUMO will be described in the fol-
lowing section. Two recently developed emission models will be presented after-
wards: “PHEMlight”, which is derived from PHEM and a new approach to
reformulate the emissions stored in the inventory database HBEFA, using its ver-
sion 3.1. The models have been implemented in the projects “COLOMBO” and
“AMITRAN”, respectively.

4.1 Initial HBEFA V2.1 Derivation

The model was implemented by extracting the data from HBEFA and fitting them
to a continuous function that was obtained by simplifying the function of the power
the vehicle engine must produce to overcome the driving resistance force (see [13,
19]). The simplified function for accordingly computing the energy consumption
rate e is thereby [12]:

e v; að Þ ¼ c0 þ c1vaþ c2va
2 þ c3vþ c4v

2 þ c5v
4 ð1Þ

This function has been used for all pollutants, only the coefficients change per
emission class and pollutant. HBEFA’s lack of a dependency on acceleration was
compensated by using the contained information about the dependency of the
emissions on the road slope. But it should be noted that only the values up
to ±0.6 m/s2 can be determined this way, the dependency on higher acceleration/
deceleration was obtained by extrapolating the given values. The used version 2.1
of HBEFA lacked data for rare vehicle classes (e.g. Euro-Norm-6 vehicles at that
time). Both low as well as high velocities, the latter mainly for heavy duty vehicles,
were missing for some emission classes as well. As a result, the obtained curves did
not match some basic emission properties, such as being always above zero or
producing emissions at a velocity of 0 m/s. To avoid major misbehavior, emission
classes that were recognized to be badly represented by the fitted function were
removed.

The so obtained curves for the remaining vehicle classes were clustered into
groups of similar behavior. The initial idea for performing this step was to reduce
the number of emission classes to ease the definition of a simulation scenario. In
Fig. 2, the development of the residual sum of squares (RSS) in dependence to the
cluster number is given individually for passenger (left) and heavy duty (right)
vehicles. As shown, no clear thresholds in the development were found that
motivate to select a certain cluster size. Therefore, the decision to define more than
one cluster per passenger/heavy duty emission classes was taken. Resulting, pas-
senger vehicles can be chosen from three sets that include 3, 6, and 12 emission
classes, respectively. Clusters with 7 and 14 emission types can be used for
modelling heavy duty vehicles.

While working with the obtained model, several issues were found, partially
grounded in the decisions taken during the development. The simplification

208 D. Krajzewicz et al.

attempted by clustering emission classes was found to be not beneficial. E.g., the
lack of an explicitly given Euro norm does not allow to perform investigations of
regulatory actions such as environmental zones that distinguish between emission
classes. Additionally, the lack of a projection from the clusters back to the original
emission classes makes setting up a realistic emission population complicated.

These issues were regarded during the implementation of the new HBEFA-based
emission model described in Sect. 4.3. Further information about the development
of this first emission model in SUMO can be found in [12].

4.2 PHEMlight

PHEMlight is an instantaneous emission model based on PHEM. It has been
designed and implemented within the COLOMBO project by the Technical Uni-
versity of Graz, the originator of PHEM. PHEM itself provides basic emission
factors for HBEFA 3 and COPERT and thus can be regarded as a de facto European
reference.

The amount of emissions produced by a vehicle (as well as the amount of
consumed fuel) during a simulation step are determined by computing the power
needed by the vehicle, first. The overall power is computed as:

Pe ¼ PRoll þ PAir þ PAccel þ PGradð Þ=ggearbox ð2Þ

where

PRoll ¼ mvehicle þ mloadð Þ � g� Fr0 þ Fr1vþ Fr2v
4� �� v ð3Þ

PAir ¼ cd � A� q
2

� �
v3 ð4Þ

Fig. 2 The development of the error for an increasing amount of clusters. Chosen clusters are
shown in black

Second Generation of Pollutant Emission … 209

PAccel ¼ mvehicle þ mrot þ mloadð Þav ð5Þ

PGrad ¼ mvehicle þ mloadð Þ � Gradient � :01� v ð6Þ

with:
ηgearbox driver train loss (set to 0.95)
mvehicle, mload masses of the vehicle and its load, respectively
g Gravitational constant (6.673 × 10−11 m3/(kg × s2))
Fr0, Fr1, Fr2 friction coefficients
v the current vehicle velocity
cd vehicle’s drag coefficient
A cross-sectional area (m2)
ρ air density (*1.225 kg/m3)
mrot rotational mass

PHEMlight uses so-called “Characteristic Emission curves over Power” (CEPs)
which define the emission amount (g/h) as function of the current engine power of
the vehicle. These curves were computed using PHEM with representative dynamic
real world driving cycles. To compute the amount of an emitted pollutant, the CEPs
are used as look-up tables for the previously computed power.

PHEMlight defines 112 vehicle emission classes. The major distinction is on the
level of “vehicle classes”. The following ones are modeled by PHEMlight: Pas-
senger cars (PKW), Light duty vehicles (LNF), Motorcycles (MR), Scooters
(KKR), Hybrid passenger cars (H_PKW), Tractor/Trailer (LSZ), Coaches (RB),
Urban and inter-urban buses (LB), and Trucks (Solo_LKW). Each of those top-
level classes is subdivided if appropriate, based on the type of fuel (Gasoline vs.
Diesel) and the Euro norm (0–6). Light duty vehicles and Trucks are additionally
subdivided by their weight.

PHEMlight is available as a commercial add-on to SUMO. The implementation
itself is included in the usual, open SUMO version. But the major information is
stored in CEP and vehicle attribute files. This data is included in SUMO’s open source
release for only two emission classes: a Euro-4 passenger car with a gasoline engine
and a passenger car with the same emission class, but running on Diesel. The
remaining emission class definitions have to be purchased from the Technical Uni-
versity of Graz. A more complete description of PHEMlight can be found in [17].

4.3 HBEFA v3.1 Derivation

Given the lessons learned while implementing and using the initial HBEFA v2.1-
based emission model and the availability of a new HBEFA version that includes
data on modern Euro-Norm-6 vehicles, a new attempt to build a free emission
model was done in the scope of the AMITRAN project.

210 D. Krajzewicz et al.

The applied procedure is similar to the one used for the initial HBEFA deri-
vation: values included in HBEFA are extracted for each emission class and
function (1) is fitted against them. Again, the slope information given in HBEFA is
used to take the part of the missing dependency on acceleration. The restrictions
concerning available acceleration values therefore remain as in the initial
implementation.

Fitting the values to the given function is a linear problem, since only the linear
coefficients c0–c5 need to be evaluated. The fitting was performed using a linear
model estimation algorithm from Python’s “statsmodels” package. Since a linear fit
usually does not lead to a clear answer whether a coefficient is zero or not, a couple
of slightly different models were tested in each case (one emission class and one
vehicle class) where some of the coefficients of (1) were set to zero and not
estimated in the according fit. By comparing these candidate functions, the best one
(based on RMS and t-value) was used as the final result, i.e. a set of fitting
parameters for this case at hand. This works quite well in most of the cases, the
remaining challenges are that not all emissions seem to be well represented by
function (1).

In principle, emission curves could be fit to all emission classes included in
HBEFA’s version 3.1 resulting in some hundreds of different coefficient sets. But to
keep the model lean and to ease the preparation of a vehicle population, it has been
decided to use the most common emission classes only. In its current implemen-
tation, the model includes 45 emission classes: light duty vehicles (LDV) and
passenger cars (PC), both sub-divided by fuel type and Euro norm and heavy duty
vehicles (HDV) sub-divided by Euro norm. Additionally, average classes for LDVs,
PCs, Busses, Coaches, and HDV exist. Some special classes model the emission
behavior of an Eastern LDV, an Eastern HDV, and an alternative PC. Further
classes may be added on purpose, by fitting the desired emission data to function
(1) and embedding the so obtained coefficients into SUMO. The model as well as
all obtained coefficients are publicly available as a part of SUMO’s open source
version.

4.4 Comparisons

In a first step, fulfilling the requirements formulated in Sect. 3 by the models is
presented. It should be mentioned that all models compute the desired pollutants’
emissions (CO, CO2, NOx, PMx, HC, and fuel consumption). Table 1 shows a
summary of other named requirements.

The number of respectively covered emission classes requires some explana-
tions, given in the following:

• The initial model derived from HBEFA v2.1 duplicates all vehicle classes where
the second set ignores the current acceleration. These acceleration-free models
were used within the investigations on emission-optimal routing (see Sect. 6.2).

Second Generation of Pollutant Emission … 211

• As discussed in Sect. 4.1, the HBEFA v2.1-derivation does not include 56
distinct emission classes but rather 56 clusters of similar emission classes.

• As mentioned in Sect. 4.3, the number of emission classes in the HBEFA 3.1-
based model could be increased when necessary.

In order to verify the emission output of PHEMlight, calculations using the
ERMES real world driving cycle were performed with PHEM and PHEMlight
using the average EURO 4 Diesel passenger car. Figures 3, 4 and 5 show fuel
consumption, NOx and PM results for each model.

Table 1 A comparison of features for the three implemented models

Requirement HBEFA 2.1-based HBEFA 3.1-based PHEMlight

No. of emission
classes

56*2 45 112

Coverage No modern (Euro 6) vehicles
and other seldom classes

Major passenger, heavy
duty, and bus classes

Almost
complete

Euro-Norms – x x

Covers chosen
pollutants

x x x

Uses speed x x x

Uses
acceleration

x x x

Uses slope – – x

Needs further
attributes

– – – (are
included)

Step-size
resolution

x x x

Easy
parameterization

x x x

Fig. 3 Fuel consumption comparison between PHEM and PHEMlight

212 D. Krajzewicz et al.

The results present very good correlation between the two models over the
whole cycle despite the fact that PHEMlight uses a significantly simpler approach
with no consideration of gear shifting and engine speed. Table 2 shows the average
emission results for the same components.

The deviation is to a high extent caused by the fact that PHEMlight calculates no
emissions (i.e. 0 g/h) when the engine is in motoring operation. In PHEM the
motoring emissions are based on measurements on the chassis dynamometer where,
due to technical limitations, the measured emission level is not entirely cut off at the

Fig. 4 NOx comparison between PHEM and PHEMlight

Fig. 5 PM comparison between PHEM and PHEMlight

Second Generation of Pollutant Emission … 213

same moment as the engine stops injecting fuel. For PHEMlight it was decided to
implement fuel cut off explicitly to depict the influence of optimized deceleration
behavior on emission levels correctly.

In a further approach to compare the models, the New European Driving Cycle
was applied to all comparable emission classes of the HBEFA3 and the PHEMlight
model. This includes Diesel and Gasoline powered vehicles of the seven currently
available Euro norms (0–6).

There is one point in the scatter plot for each emission class. Down-facing
triangles describe Diesel fueled light duty vehicles (LDV), up-facing the Diesel (D)
passenger cars, circles are Gasoline (G) fueled LDVs and squares Gasoline pas-
senger cars. The brightness encodes the Euro norm. For better orientation, the
diagonal line representing identical values has been drawn into the figure as well.
For light duty vehicles there are up to three points for each emission class on the
plot because every HBEFA3 class is subdivided by vehicle weight in up to three
PHEMlight classes (Fig. 6).

While in general the values are close (please note that the axes do not start at
zero), HBEFA seems to give higher fuel consumption values especially for the
older gasoline-powered passenger cars. The values for Diesel engines are almost
identical.

Table 2 Average emissions
in ERMES cycle for PHEM
and PHEMlight

FC (g/h) NOx (g/h) PM (g/h)

PHEM 3352.8 33.83 1.18

PHEMlight 3183.6 33.13 1.12

Deviation (%) −5.0 −2.1 −4.9

Fig. 6 Fuel consumption comparison for comparable classes between HBEFA3 and PHEMlight

214 D. Krajzewicz et al.

5 Working with SUMO’s Emission Models

Besides realizing an emissionmodel, thework on vehicular emissions included a large
variety of actions that target topics such as the implementation of proper visualisation
of the generated emissions data, support to handle emissions by other tools in the suite
than the simulation only, as well as opening the applications to the inclusion of further
emission models. In the following subsections, the implemented features are descri-
bed. Additionally, a summary on open issues in modelling emissions is given.

5.1 Simulation

The implementation tries to give the user the highest grade of flexibility by allowing
him to compose the vehicle fleet using the implemented emission classes. In
SUMO, so-called “vehicle types” may be defined that may be shared by an arbitrary
number of vehicles to simulate. These vehicle types describe the assigned vehicles’
physical and model attributes including their respective emission class. It is addi-
tionally possible to define so-called “vehicle type distributions”. A vehicle type
distribution is composed of several vehicle types, each having a probability to be
selected. If a vehicle lists such a distribution as its vehicle type, one of the included
vehicle types is selected according to the given probability.

The simulation was extended by a large variety of outputs that collect and
aggregate the computed emissions in different ways. The available outputs include:

• aggregation of emissions per lane with variable interval time spans,
• aggregation of emissions per edge with variable interval time spans,
• aggregation of emissions for each simulated vehicle,
• non-aggregated (step-wise) vehicle emissions,
• a vehicular trajectory file as defined in AMITRAN.

The AMITRAN trajectory format is an intermediate data exchange format that
may be converted into inputs for emission models such as VERSIT+, PHEM, and
HBEFA. It is interchangeably usable among different traffic simulation ecosystems
such as SUMO, VISSIM and TNO ITS Modeler. A similar approach was used to
generate input files for the PHEM emission model: a converter script was set up that
obtains an “fcd-output” as generated by SUMO and converts it to files that resemble
the vehicle fleet, the road network, and the trajectories as read by PHEM.

In addition, SUMO’s on-line interaction interface “TraCI” has been extended by
methods for retrieving the emissions a single vehicle “produced” in the last sim-
ulation step, as well as aggregated emissions produced on edges or lanes. The
visualization allows coloring lanes and/or vehicles by the amount of pollutants
emitted on them or generated by them, respectively.

Emission computation is performed as soon as the user (a) asks for an according
output, (b) asks to visualize the emissions, and/or (c) asks for a vehicle’s current

Second Generation of Pollutant Emission … 215

emissions via TraCI. All these interfaces are supported by all implemented emission
models, cover all of the modelled pollutants, and—despite the visualization of
emissions—are available in both, the command line and the graphical version of the
simulation.

SUMO’s user documentation includes a description of the output functionalities
and has been extended by a chapter on emissions modelling.

5.2 Router Support

Besides enabling the traffic simulation to compute pollutant emissions, the route
computation applications included in the SUMO suite were extended as well. The
wish was to perform route computation based on the amount of emitted pollutants
instead of the conventionally used travel time. To achieve this purpose, the shortest-
path router was extended to read time lines of vehicular emissions. The imple-
mentations of the shortest-path algorithms were reworked to use these values as
edge weights and additionally keep track of the travel time to obtain these weights
from the correct time slice of the loaded emissions time line. This extension has
already been used for different purposes, as outlined in Sect. 6.2.

5.3 Tools

Several additional tools support the development and usage of emission models in
SUMO context.

“emissionsDrivingCycle” takes trajectories consisting of speed, acceleration
(optional), and slope (optional) for each time step of a virtually driven driving cycle
for one or multiple vehicles and computes the according emissions. The obtained
emission time lines can be visualized using additionally available scripts. The tool
reads trajectories in the AMITRAN format mentioned above as well and can thus be
employed to use SUMO’s emission models with trajectories from other simulation
tools.

“emissionsMap” computes a matrix that contains the emission amounts of
modeled pollutants in dependence to a driven speed, acceleration, and slope for a
named emission class. An additional visualization script shows the so obtained
matrices.

5.4 Embedding New Emission Models into SUMO

The co-existence of different emission models was realized by deriving a common
“interface”. This interface is kept very simple. For each known pollutant, a method

216 D. Krajzewicz et al.

exists that returns its computed emission amount in mg/s (ml/s for fuel). The
method obtains the vehicle’s emission class, its speed, acceleration, and the slope of
the road it drives on. Internally, the emission class is encoded as a 32 bit integer.
The upper 16 bits are used to encode the used model while the lower 15 bits define
a single emission class within this model. Bit 15 (the 16th bit) denotes whether the
regarded emission type is a heavy duty or a light (passenger) vehicle. This infor-
mation is needed to compute the vehicles’ noise emissions using the embedded
Harmonoise model [20]. When being asked to compute the amount of a pollutant’s
emissions, the interface determines the model to use based on the upper 16 bits,
first. It then asks the model implementation for computing the emission amount,
passing all given values.

Besides giving access to the emission computation, the interface holds several
further methods, mainly for computing parameters needed for file exchange
between AMITRAN tools. As SUMO does not force emission models to fulfill a
common view on emission classes, these methods derive information such as the
fuel type, the Euro norm, or the type of the vehicle based on the information known
to the emission model implementations only.

The interface offers a clean access to the implemented models, but it should be
noted that currently only models that rely on the selected parameters—emission
class, speed, acceleration, and slope—can be implemented. As soon as other
parameters have to be taken into account, the interface would have to be extended.

5.5 Open Issues

The implemented models allow a large variety of investigations as shown in the
next section. Nonetheless, some peculiarities of vehicular emissions are still
neglected and may be addressed in next development steps.

The first to name are “cold start emissions”; vehicles produce more emissions as
long as the engine and the catalytic converter are not at their optimal working
temperature. For taking this effect into regard, the time the vehicle was driving
before entering the simulated network has to be known. It should be stated that
modelling this information for transit traffic—vehicles that do not start or end
within the simulated network—is complicated.

The second peculiarity is the dependence on the vehicle mass. Both HBEFA-
based models include this information implicitly. PHEMlight holds the average
mass of vehicles of the respective emission class within the emission class defi-
nition files. Still, the mass is given as a constant value. But when fleet management,
other logistics approaches or public transport shall be simulated, changes in the
vehicles’ masses may be an important factor. In such cases, the vehicle mass would
have to be moved into SUMO’s internal vehicle type definition.

The last simplification to name is the gear choice that has as well a major effect
on produced emissions. Gear choice is not considered by usual car-following

Second Generation of Pollutant Emission … 217

models and is as well not explicitly taken into regard by the emission models
discussed before. Both parts would have to be extended to model gear choice
properly.

6 Use Cases

Being available for several years, the emission models have been already used in a
large variety of investigations of which some are outlined in the following.

6.1 Investigating Environment Impacts of ITS Solutions

The major application is surely to measure changes in produced emissions when
investigating new methods that influence traffic. In such cases, the computed
emissions are used as a further performance indicator besides the commonly used
traffic efficiency measures, such as travel time or waiting times. Given SUMO’s
output capabilities, such measurements can be easily obtained and were used in a
large variety of evaluations.

As increasing traffic efficiency usually reduces pollutant emission, often no new
insight can be gained from such evaluations. But it is interesting to note that in
some cases, the deployment of a new ITS solution may increase the amounts of
produced emissions. This was shown for a GLOSA (Green Light Optimal Speed
Advisory) implementation [21] where, when assuming long communication ranges
of more than 500 m, a vehicle may be advised to run at a low velocity (below
25 km/h) for a long time, yielding in emissions above the non-equipped situation. It
was found that the used function to compute the speed to advice was the reason and
other GLOSA algorithms are well capable to reduce emissions. Still, it shows that
environmental performance indicators should be included when evaluating a new
method or system.

6.2 Emission-Optimal Routing

Usually, route computation is performed using travel times as weights for the edges
of a road network. But what if one would use the emitted pollutants instead? Would
the overall emissions be reduced? First investigations on this topic were performed
using a real-world network [22]. To gain a deeper understanding about the
dynamics of the processes, later investigations [23] were performed using synthetic
scenarios. At the time being, neither a singular user nor a singular system optimum
is assumed to be computable using currently available methods. The main problem
in this case is that for most emissions (in most emission classes) there is some kind

218 D. Krajzewicz et al.

of an optimal speed which violates the general assumption that the cost function on
a single edge is monotone in the number of vehicles driving that edge.

6.3 Evaluation of Real Traffic Management Actions

The “Directive 2008/50/EC of the European Parliament and of the Council” [3]
forces European authorities to assure a certain air quality. Traffic management,
usually operated by local authorities, has the duty to perform corrective actions to
reduce emissions caused by road traffic, if needed. A proof-of-concept for simu-
lating such actions that used SUMO and the HBEFA 2.1-based model was pre-
sented in [24] where three speed limit changes were investigated—30 and 60 km/h
for urban areas and 80 km/h for highways.

In his Master thesis [25], Tomàs Josep Vergés investigates the MARLIS [26]
database that lists actions performed by traffic management authorities, first, to
evaluate which of the actions can be simulated when using a microscopic traffic
simulation only. The evaluation showed that most actions target at a change in the
population’s mobility behavior, mainly for using a more environment-friendly
transport mode. This can only be simulated using an according population model
that was not available within his research. The following traffic management actions
were selected and modeled within the thesis: (a) a reduction of the allowed velocity
in inhabited areas to 30 km/h, (b) a restrictive environmental zone, and (c) a
permissive environmental zone. These actions were modeled and a new user
equilibrium was computed, first. The obtained vehicle routes were then simulated
using PHEMlight.

As expected, in case of a speed limit, traffic moves out of the influenced areas,
yielding in an according shift in pollutant emission. Additionally, speed limits were
found to not reduce emissions, as already known from the literature. After the
introduction of an environmental zone, the mobility patterns change in a more
complex way as prohibited vehicles have to drive around it what makes the roads
within the zone more attractive to be used by allowed vehicles. The resulting
changes in road usage span over a bigger area. The results related to the speed limit
were similar in both investigations, independent of the emission model.

7 Summary

Recent steps in modelling vehicular emissions within the open source traffic sim-
ulation SUMO were presented. Three emission models that are currently imple-
mented in SUMO were discussed: issues regarding the initial model derived from
HBEFA were recognized and named, and a recently implemented model that tries
to solve them was described. In addition, the extension of SUMO by a commercial
emission model, PHEMlight, was presented.

Second Generation of Pollutant Emission … 219

As shown, the inclusion of emission models in a microscopic road traffic sim-
ulation allows gaining insights about the effects of evaluated solutions on the
environment. In most cases the induction “smoother traffic → less emissions”
holds. But evaluating pollutant emission behavior may offer some surprises, as
named for the GLOSA example in Sect. 6.1. Besides evaluating the environmental
benefit of ITS solutions the models were successfully applied to the simulation of
large-scale regulatory actions.

The presented extensions cover the work defined for the projects “COLOMBO”
and “AMITRAN” well. Nonetheless, several possible extensions that may be tar-
geted in the future were identified and listed. But given the currently implemented
models, it is assumed that next steps towards a further quality improvement should
be performed by reworking the simulation’s representation of single vehicles’
longitudinal behavior; it is known that nowadays car-following models do not
replicate the decelerations and accelerations of vehicles well. These simulation
model characteristics should be addressed next.

Acknowledgments The authors want to thank the European Commission for co-funding the
work in the context of the projects “iTETRIS”, “COLOMBO”, and “AMITRAN”.

References

1. International Transport Forum (2010) Reducing transport greenhouse gas emissions: trends
and data, OECD

2. European Parliament and the Council of the European Union, regulation (EC) no 443/2009
setting emission performance standards for new passenger cars as part of the community’s
integrated approach to reduce CO2 emissions from light-duty vehicles, 2009

3. European Parliament and the Council of the European Union, directive 2008/50/EC on
ambient air quality and cleaner air for Europe, 2008

4. Krajzewicz D, Erdmann J, BehrischM, Bieker L (2012) Recent development and applications of
SUMO—Simulation of UrbanMObility. Int J Adv SystMeas 5(3, 4):128–138. ISSN:1942-261x

5. DLR and Contributors (2013) SUMO homepage. http://sumo.dlr.de/
6. Krajzewicz D, Heinrich M, Milano M, Bellavista P, Stützle T, Härri J, Spyropoulos T,

Blokpoel R, Hausberger S, Fellendorf M (2013) COLOMBO: investigating the potential of
V2X for traffic management purposes assuming low penetration rates. In: ITS Europe 2013,
Dublin

7. COLOMBO Consortium (2013) COLOMBO web pages. http://colombo-fp7.eu/. Accessed 10
April 2014

8. Jonkers E, Klunder G, Mahmod M, Benz T (2013) Methodology and framework architecture
for the evaluation of effects of ICT measures on CO2 emissions. In: Proceedings of the 20th
ITS world congress, Tokyo, Japan

9. AMITRAN Consortium (2013) AMITRAN web pages. http://www.amitran.eu/. Accessed 10
April 2014

10. Rondinone M, Maneros J, Krajzewicz D, Bauza R, Cataldi P, Hrizi F, Gozalvez J, Kumar V,
Röckl M, Lin L, Lazaro O, Leguay J, Härri J, Vaz S, Lopez Y, Sepulcre M, Wetterwald M,
Blokpoel R, Cartolano F (2013) ITETRIS: a modular simulation platform for the large scale
evaluation of cooperative ITS applications. In: Simulation modelling practice and theory.
Elsevier. doi:10.1016/j.simpat.2013.01.007. ISSN:1569-190X

220 D. Krajzewicz et al.

http://sumo.dlr.de/
http://colombo-fp7.eu/
http://www.amitran.eu/
http://dx.doi.org/10.1016/j.simpat.2013.01.007

11. iTETRIS Consortium (2011) iTETRIS web site. http://www.ict-itetris.eu/. Accessed 8 Jan
2014

12. Krajzewicz D, Nippold R, Lazaro O (2009) iTETRIS deliverable 3.1—traffic modelling:
environmental factors, public deliverable

13. Treiber M, Kesting A, Thiemann C (2008) How much does traffic congestion increase fuel
consumption and emissions? Applying a fuel consumption model to the NGSIM trajectory
data, presentation no 08-2715. In: Annual meeting of the transportation research board, 13–17
Jan 2008, Washington, DC

14. Cappiello A, Chabini I, Nam EK, Lue A, Abou Zeid M (2002) A statistical model of vehicle
emissions and fuel consumption. In: Proceedings of the IEEE 5th international conference on
intelligent transportation systems, pp 801–809. doi:10.1109/ITSC.2002.1041322

15. Hausberger S, Rexeis M, Zallinger M, Luz R (2009) Emission factors from the Model PHEM
for the HBEFA version 3, report nr. I-20/2009 Haus-Em 33/08/679

16. Technical University of Graz (2014) Pages of the institute for internal combustion engines and
thermodynamics (IVT). Accessed 10 Jan 2014

17. Hausberger S, Krajzewicz D (2014) Deliverable 4.2—extended simulation tool PHEM
coupled to SUMO with user guide, public project report. http://www.colombo-fp7.eu/results_
deliverables.php

18. INFRAS (2013) Handbuch für Emissionsfaktoren. http://www.hbefa.net/. Accessed 06 Feb
2014

19. Schnabel W, Lohse D (1997) Grundlagen der Straßenverkehrstechnik und der
Verkehrsplanung. Verlag für Bauwesen, Berlin, pp 557–577. ISBN 3-345-00565-4

20. Nota R, Barelds R, van Leeuwen H (2005) Harmonoise WP 3—engineering method for road
traffic and railway noise after validation and fine-tuning. Harmonoise technical report
HAR32TR-040922-DGMR20 (deliverable 18)

21. Krajzewicz D, Bieker L, Erdmann J (2012) Preparing simulative evaluation of the GLOSA
application. In: Proceedings CD ROM 19th ITS world congress 2012, paper id: EU-00630.
ITS World Congress 2012, 22.-26. Okt. 2012, Wien, Austria

22. Krajzewicz D, Wagner P (2011) Large-scale vehicle routing scenarios based on pollutant
emission. In: Meyer G, Valldorf J (eds) Advanced microsystems for automotive applications
2011, AMAA 2011. Springer, New York, pp 237–246

23. Flötteröd Y-P, Wagner P, Behrisch M, Krajzewicz D (2012) Simulated-based validity analysis
of ecological user equilibrium. In: Winter simulation conference archive, 2012 Winter
simulation conference

24. Krajzewicz D, Flötteröd Y-P (2013) Simulative Untersuchung abstrakter und realer
Verkehrsmanagementansätze zur Emissionsreduktion. In: Kolloquium Luftqualität an
Straßen 2013, pp 42–57. Bundesanstalt für Straßenwesen

25. Josep Vergés T (2013) Analysis and simulation of traffic management actions for traffic
emission reduction. TU Berlin, Berlin

26. BASt (2012) MARLIS—Datenbank mit Maßnahmen zur Reinhaltung der Luft in Bezug auf
Immissionen an Straßen, Version 3.1, to be found on BASt web pages

Second Generation of Pollutant Emission … 221

http://www.ict-itetris.eu/
http://dx.doi.org/10.1109/ITSC.2002.1041322
http://www.colombo-fp7.eu/results_deliverables.php
http://www.colombo-fp7.eu/results_deliverables.php
http://www.hbefa.net/

Modelling Bluetooth Inquiry for SUMO

Michael Behrisch and Gaby Gurczik

Abstract SUMO provides an interface for the implementation of arbitrary addi-
tional vehicle devices. This paper describes how this interface was used to
implement Bluetooth devices with a special focus on the inquiry process and how
its modelling relates to real world measurements and a simplified analytic model.

Keywords Traffic simulation � Bluetooth � Inquiry modelling

1 Introduction

Bluetooth [1] is a short-range, low-power, IEEE open standard for implementing
wireless personal area networks. Bluetooth operates in the globally unlicensed
2.4 GHz short-range radio frequency spectrum. Since there is a potential problem of
interference from other devices using this frequency band, Bluetooth uses a Fre-
quency-Hopping Spread Spectrum (FHSS) scheme, where devices alternate rapidly
among the 32 available frequencies (divided in two 16 frequencies long trains A
and B) to transmit data. To set up an actual connection to exchange the necessary
information between two Bluetooth devices, the so called inquiry process is
designed to scan for other devices within range and thereby to discover each other.
During the inquiry (discovery) process, one Bluetooth device (the master) enters the
inquiry substate, whereas the other Bluetooth device (the slave) enters the inquiry
scan substate. In the inquiry process the 48-bits unique MAC address and the
internal clock-offset are exchanged in order to set up a lasting connection [1, 2, 3].

M. Behrisch (&) � G. Gurczik
German Aerospace Center, Institute of Transportation Systems, Rutherfordstraße 2,
12489 Berlin, Germany
e-mail: Michael.Behrisch@DLR.de

G. Gurczik
e-mail: Gaby.Gurczik@DLR.de

© Springer International Publishing Switzerland 2015
M. Behrisch and M. Weber (eds.), Modeling Mobility with Open Data,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-15024-6_13

223

Bluetooth devices are available in a number of vehicles and depict an easy way
of detecting motions of persons and goods. Since every device is uniquely iden-
tifiable via its MAC address the devices can also be used to redetect vehicles over
long ranges giving way to new applications of traffic monitoring. Since every
Bluetooth device can be detected, the data is ubiquitously available from headsets
and navigational devices and also from in-vehicle detectors such as tire pressure
measurements. It is also easy to equip small devices such as smartphones to act as a
detector making Bluetooth a universally accessible data source (Fig. 1).

The German Aerospace Center (DLR) developed a traffic monitoring approach,
called DYNAMIC [4, 5], which combines the advantages of Floating Car Data
(FCD) and Floating Observer Data (FOD) principles. DYNAMIC is based on
detections which are made by floating traffic observers using wireless radio-based
technologies such as Bluetooth while passing other traffic objects (vehicles, cyclists,
pedestrians). For the evaluation of the performance of DYNAMIC it is crucial to
know how likely it is that a detectable traffic object (i.e. with Bluetooth device on
board) within the detection range will be monitored. The major point to answer this
question is the inquiry process which sets up the connection between Bluetooth
devices and which can take up to several seconds. Given the possibly high speed of
the vehicles and the relatively small detection range this poses a major problem to
this detection mechanism. This paper focuses on a simplified model for the inquiry
process, describes its outcomings and the implementation of the process in the
Bluetooth model of SUMO [6, 7] and compares it to real world measurements. The
first section will focus on the analytical part, the second will describe the imple-
mentation in SUMO and the scenario used for evaluation and finally we will
compare the theoretical and the simulative results with real world measurements.

This paper is an extended version of the conference paper [8] with the same title.

Fig. 1 The Bluetooth
detection principle

224 M. Behrisch and G. Gurczik

2 State of the Art

In this paper we deal with the modelling of the inquiry process performance due to
integrate the model in SUMO so that we can simulate Bluetooth detection behavior
for stationary as well as mobile Bluetooth traffic monitoring systems. Since
empirical analyses are complex and costly, a benchmarking implement is of par-
ticular importance. Unfortunately, researches in terms of evaluating Bluetooth
traffic monitoring take Bluetooth performance mostly for granted. Therefore, they
consider only frame conditions like distance between detector location and street,
detection range and vehicle speed [9, 10]. The inquiry process and with it the
Bluetooth technology in itself is no object of research.

Thus, we had a closer look at related works from special field computer engi-
neering where several researches deal with formal analysis or empirical approaches
to model the inquiry process performance. For example in [11] a formal analysis
using probabilistic model checking is developed to compute the expected time
required for a master device to successfully receive replies from listening slave
devices. On the basis of two different empirical approaches (first model using
observation windows, second model using FHS interval times), [2] try to find out
whether the number of inquirer and inquiry scanners has an effect on the discovery
time. In [3] a detailed analysis of the interaction between Bluetooth devices in the
inquiry and inquiry scan substates is given to analytically derive the inquiry time
probability density function. Nevertheless, they state that precise inquiry time
characterization is difficult due to the complex temporal and spectral interactions
between two devices (for details see [3, 12, 13]).

Difficulties in using these models occur since that work is in the majority of
cases older research of the time when Bluetooth was introduced as short-range
communication technology between electronic devices. Therefore, these researches
typically refer to Bluetooth specification version 1.1 which is important to know
since the main difference in terms of the protocol is that, in version 1.1, the inquiry
scanner randomly selects the frequency on which it sends out messages from all 32
possible frequencies, that is one cannot predict if the current scan frequency is from
frequency train A or B. Furthermore the inquiry scanner scans for the chosen
frequency (and only this one) for 2,048 timeslots (1.28 s). Only afterwards the next
frequency is scanned. Hence, it takes much longer for a device to be discovered as
the receiver only sends replies to every second message received [11]. From
Bluetooth core version 1.2 [1] on, so called interlaced scan mode has been intro-
duced with which two frequencies (one from each frequency train) are scanned
within the 2,048 timeslots at once. Therefore Bluetooth discovery times could be
speeded up (cf. Sect. 3). Another drawback of older researches is that they are
mostly based on the assumption of an ideal, error-free environment, where mes-
sages never get lost [3]. This is, especially in our special field of studies, not
realistic.

Modelling Bluetooth Inquiry for SUMO 225

For this reason, we investigate a simplified model for the inquiry process in this
paper, which fulfils our purpose while at the same time considering the specific
behavior of the Bluetooth inquiry process.

3 Analytical Modelling of the Inquiry

3.1 Modelling Based on Two Scanning Intervals

The inquiry will be modelled as a frequency scanning process which lets the
detector determine the frequency the vehicle device is using for the communication.
Since the detector may change the order in which it scans for every pass and the
device may change its frequency as well and we have no a priori knowledge about
the distribution we assume every frequency and every order is equally likely.

The real inquiry process as described in [1, 14] is much more complicated. It
involves two trains of frequencies which change after every scan while the device to
be detected only shows up in regular intervals. We will make use of these properties
in our modelling later on.

Assuming a length of the scanning interval of l then the target frequency is one
point in each of the successive intervals. The task is now to calculate the probability
that another interval of length t (modelling the travel time in the detection range)
contains at least one of the points (Fig. 2).

We distinguish three cases depending on the relation of travel time and scanning
interval:

1. t\l
2. l� t\2l
3. t� 2l: The detection probability is obviously 1

We solve case 1 and 2 by integrating over the position of the starting point of the
travel interval in the first scanning interval and then dividing by the length of the
interval. The integration always needs to be split into the cases where t lies com-
pletely in l and where t can be divided into a part a in l and a part outside l:

Time

t

l

Fig. 2 Model of the inquiry process with two scanning intervals of length l

226 M. Behrisch and G. Gurczik

t < l:

P2 t; lð Þ ¼
R l
0 p t; l; xð Þdx

l

¼ 1
l

Zl�t

0

t
l
dxþ 1

l

Z l

l�t

1� 1� l� x
l

� �
1� t � l� xð Þ

l

� �
dx

¼ t
l
� t3

6l3

ð1aÞ

l ≤ t < 2l:

P2 t; lð Þ ¼
R l
0 p t; l; xð Þdx

l

¼ 1
l

Z2l�t

0

1� 1� l� x
l

� �
1� t � ðl� xÞ

l

� �
dxþ 1

l

Z l

2l�t

1dx

¼ 1� ð2l� tÞ3
6l3

ð1bÞ

The resulting function depicting the probability depending on the travel time ratio
is shown in Fig. 4. For the length of the scanning interval l we assume that each
frequency train is repeated 256 times and the time to cover one frequency train takes
16 timeslots with 625 μs per slot. Therefore l is 16 × 625 μs × 256 = 2.56 s. [1]

3.2 Modelling with Simplified Exponential Approach

During the evaluation of the theoretical result we found a simpler exponential
model to fit the data even better. The major drawback of the first approach is that
the detection is assumed to be for sure if the interval is larger than 2l, so there is no
possibility of a miss right after this point. To handle this case more gracefully and
also get closer to the real world functions presented below, we assume that we have
a fixed detection probability pd whenever the detector happens to be online
simultaneously with the device to be detected. We assume this probability to be
close to 0.5, because the detector as described above may be in the wrong train
when the device appears and so it may scan the wrong frequencies. On the other
hand the device is long enough online that it is possible in principle that (provided
the train is correct) every frequency is detected. The number of tries for a detection
is calculated by the ratio of the travel time t and the interval between two online
events b of the device. The interval between two online events (so called backoff
time) is specified in [1] as being randomly chosen from range [0, 1023] time slots.

Modelling Bluetooth Inquiry for SUMO 227

Having a duration of 625 μs to cover one timeslot, the maximum random backoff
time is 0.64 s. We assume that there are on average t/b detection tries, so the
simplified resulting formula is:

P1 t; pd; bð Þ ¼ 1� ð1� pdÞ
t
b ð2Þ

3.3 Modelling Adjusted by Laboratory Measurements

A third function was taken into account when evaluating the first practical results
which also resembles the fact that the detector might need an additional amount of
time to recover after each detection and thus may take a longer period before
detecting all of a number of available devices. The function is of a similar general
shape as the binomial formula above, but to get a better fit an additional empirical
exponent was introduced. Fitting to the data resulted in:

P3 tð Þ ¼ 1� e�0:24�t2:68 ð3Þ

A comparison of the three functions together with the results of the following
section is shown in Fig. 4. Since we saw that our simplified exponential approach
did not fit the real world measurement as we expected it to be, we took a closer look
at the Bluetooth core specification. The following section refers to a specific inquiry
mode that gives a significant reason for deviations.

3.4 Modelling Considering Interlaced Frequency Scanning

Starting with the Bluetooth specification 1.2 [1] a new interlaced scan mode was
introduced which should dramatically reduce detection times at the expense of
higher energy consumption on the side of the device being detected. Since this has a
major influence on the average detection time we decided to redo a preciser
modelling of the detection mechanism based on the analysis of Chakraborty et al.
[14]. We focused only on a single case in the Chakraborty model which gives a
very detailed analysis of the detection process based on the timing offsets between
the detector and the device. However, for the majority of the cases it boils down to
the following scenario (in [14] without interlaced mode):

1. The device sends on a frequency which is in the current train of the detector,
then it gets detected more or less immediately (with an average delay less than
10 ms)

2. If not, the device may only get detected after the train switch which results in a
delay of up to 1.28 s.

228 M. Behrisch and G. Gurczik

3. In the rare case of an overlap of the scanning interval with both trains we might
get another miss incurring another delay of up to 1.28 s.

4. In all cases a random backoff time of up to 0.64 s (1,024 time slots) is added
before the second detection (resulting in final identification) can take place.

In interlaced mode there is no difference between the trains so essentially there is
always immediate detection (average delay less than 20 ms) with the additional
backoff. Unfortunately it is not clear in advance whether a vehicle uses interlaced
mode or not so we have to assume some proportion of vehicles using that mode.
The specifications recommend this mode for rather powerful devices like mobile
phones. Since we assume a high proportion of those devices in our urban traffic
scenarios, we did tests with detection probabilities between 60 and 80 % shown in
Fig. 3a. The second parameter which allows for variation is the backoff limit which
is set to 1,024 slots (0.64 s) in the original specification but may be smaller in some
implementations [1]. We decided to investigate here the values recommended in the
Chakraborty paper, see Fig. 3b.

In general, the influence of both parameters seems to be rather minor concerning
the general shape of the function. While the interlaced rate influences the value up
to which the first incline (which is solely based on the devices using the interlaced
mode) raises, the backoff limit mostly influences the steepness of this first incline
which is clear from the fact that it is dominated by the random backoff. As a result,
we decided to use the interlaced rate of 0.7 and the standard backoff limit of 0.64 s
in the further evaluations. Comparing the approaches from above we see that the
“fastest” detection model is the final one incorporating the interlaced modes (cf.
Fig. 4), which also has the additional property of bimodality in the higher proba-
bilities which will be of importance in the later comparison with the real world data.

Fig. 3 Detection probability depending on interlace rate (left Fig. 3a) and backoff limit (right
Fig. 3b)

Modelling Bluetooth Inquiry for SUMO 229

4 The Simulation Implementation

To evaluate our analytical results SUMO was extended by the functionality to
specify whether a traffic object works as Bluetooth transmitter (BTsender) or
Bluetooth receiver (BTreceiver). BTsender are all the vehicles which can be
detected by the BTreceivers. In practice that means that these vehicles have a
Bluetooth device on board. Furthermore they have no additional functionality. The
vehicles which are defined to be BTreceivers are our Floating Traffic Observers
which are used for traffic monitoring. Every simulated vehicle can be a BTsender or
a BTreceiver, it can also have both properties or none of them (i.e. being a pure
traffic object with no additional Bluetooth features). To control the Bluetooth
detection in SUMO, global parameters like equipment rates for BTsender and/or
BTreceiver or the detection range can be stated using the command line options.
The mentioned functionalities where implemented for SUMO version 0.19.0.

The implemented detection process in SUMO calculates the time the BTsender
is in the detection range of the BTreceiver and determines the probability whether a
detection took place purely based on this time. The first implementation also
available in SUMO 0.19.0 used the function P3 above but was found to have two
major drawbacks compared to real world data as well as analytical evaluation: The
relatively slow incline at the start and later increase of the first derivative in
the process. There is no delay to be expected in the detection of the first device so
the new detections should become less and less in the course of the process as it
happens with P1 and P2.

Fig. 4 Comparison of the
different analytical
approaches

230 M. Behrisch and G. Gurczik

4.1 Independence of Detections

When choosing between P1 and P2 there is (beside the property of not being fixed
to 1 after a certain amount of time mentioned above) an additional benefit of P1

related to the implementation. Since the simulation determines in every simulation
step anew whether a detection took place, the probabilities should be additive, that
is, it should be easy to calculate the probability that there was a detection in the
joined interval t1 + t2 from the individual probabilities that there were detections
either in t1 or t2. As it turns out this can be easily achieved with the exponential
distribution above.

P1 t1 þ t2; pd; bð Þ ¼ 1� 1� pdð Þ
t1þt2

b ¼ 1� 1� pdð Þ
t1
b 1� pdð Þ

t2
b

¼ 1� ð1� P1 t1; pd; bð ÞÞð1� P1 t2; pd ; bð ÞÞ
ð4Þ

In that formula the last term denotes exactly the probability of two independent
throws in successive intervals. This combination of probabilities is not possible
with the other approaches.

This property is also crucial for the fact that the simulation should deliver
comparable results independent of the length of the time step applied in the sim-
ulation. We verified this property by running the simulation with different time step
lengths without noting any difference in the detection curves (see Sect. 6.1).

4.2 The Interlaced Mode

The implementation of the interlaced mode needs a fundamental change in the
architecture of the Bluetooth module in the simulation. Instead of independent
decisions in every timestep we need to calculate a probable detection time on the
entry in the detection radius and keep that information while the vehicle travels.
Since this approach is so different it was not implemented and evaluated in the
simulation yet but will be pursued in future versions.

5 The Simulation Scenario

The underlying network for our simulation scenario is a representation of the DLR
test track, the Ernst-Ruska-Ufer (abbreviated ERU in Fig. 5) in Berlin-Adlershof. It
includes a total track length of about 4 km with one major road (1.4 km with two
directions) and several incoming and outgoing minor roads. We simulated a whole
day with the demand and the route choices being calculated directly from induction
loop data for the 11.01.2011.

Modelling Bluetooth Inquiry for SUMO 231

There is a total demand of about 30,000 vehicles including about 4 % trucks and
busses. In a first step the scenario was calibrated to the detector data so that network
effects as a major traffic jam in the late afternoon on the eastbound direction are
correctly reflected in the simulation.

The Bluetooth related parameters are the following:

• one fixed BTreceiver in each direction (see the green spots)
• fixed BTsender equipment rate of 30 %
• detection range 100 m.

6 Comparison to Real World Measurements

In order to derive the exponential function mentioned above, laboratory as well as
field experiments with Bluetooth receivers and senders were conducted to measure
detection rates as a function of inquiry times.

In the laboratory test one (respectively two) BTreceivers were stationary
installed to find 1, 2, 4 or 6 BTsender within the detection range. The BTsenders
were transmitting their signal continuously, whereas the BTreceiver(s) were peri-
odically restarted after 10 s of being in inquiry mode. Every time, one of the
BTsenders was detected, a data set including timestamp, BTsender-ID and signal
strength value was stored to a log file.

Figure 6 illustrates the results from the laboratory test. For the varying number of
BTreceivers and/or BTsenders the probability density is given. There you can see

Fig. 5 Test track scenario in the final SUMO simulation (green points denote the Bluetooth
detectors)

232 M. Behrisch and G. Gurczik

that more than 80 % of all detections are realised within a time interval of 1 s
(1,000 ms). For the probability density we looked at the intertimes. The intertimes
are the time differences between a detection of a BTsender and the starting time of
the inquiry mode of the BTreceiver respectively a previous detection time of that
specific BTsender. That means the intertimes are exactly that times it took a
BTreceiver to detect a BTsender providing that it is in the detection range. In the
laboratory test nearly 100 % of all detectable devices were detected after 3 s irre-
spective of the number of BTreceivers and BTsenders.

In the laboratory test almost perfect conditions were given for the BTreceiver to
detect BTsenders. The reality looks somewhat different—besides several error
sources (e.g. Bluetooth signal reflections or shading effects), the to be detected
BTsenders are moving objects which makes detection less likely since the BTs-
enders are not permanently within detection range. Furthermore, the speed factor
reduces the time the BTsender is within detection range additionally.

To evaluate how the inquiry time process is influenced from real environment a
2-h field test which took place on August 20th 2013 between 6 and 8 a.m. was
conducted. In that field test 4 BTreceiver objects (observer) in form of cars moving
along the street Ernst-Ruska-Ufer (two lanes per direction; approximately 1.4 km)
on the so called WISTA area in Berlin-Adlershof were used (see Fig. 7). Con-
temporaneously, these objects were considered as BTsender (i.e. the traffic partic-
ipants), which should be detected by the other observers. Within the observer cars
our prototyped Bluetooth monitoring systems (called Bluetooth-Box, shortened
“BluB”) was installed. The observers moved freely according to their desired speed
respectively to local feasibility and under consideration of the German Road Traffic
Act (StVO).

The Ernst-Ruska-Ufer is both at once, public place and our DLR test track where
additionally traffic monitoring infrastructure is installed to observe real-time traffic
situations. Therefore, we could benefit from reference data collected from stationary

Fig. 6 Probability density for
the laboratory tests

Modelling Bluetooth Inquiry for SUMO 233

Bluetooth detectors so that during the 2-h two different types of data were collected.
On the one hand, we monitored the traffic via stationary Bluetooth detectors. On the
other hand, a mobile detection was done by our four moving observer vehicles. For
both data types, the same data sets as in the laboratory test were stored containing
timestamp, BTsender-ID and signal strength value.

The results of the stationary Bluetooth measurements are given in Fig. 8a. The
left figure shows the results from the specific field test day (August 20th 2013). For
higher reliability we permanently installed our BluBs at two points of the Ernst-
Ruska-Ufer for several months so that we could benefit from long-term measure-
ments. Figure 8b shows the results from the long-term measurements. It is obvious
that the probability density is quite similar. Due to still undefined explicit error

Fig. 7 Defined field test observer routes (map source Google): Ernst-Ruska-Ufer (upper right),
car and cyclist routes (lower right and left) in second field test

Fig. 8 Probability density for field test results on Ernst-Ruska-Ufer (left Fig. 8a: 2-h test on
August 20th 2013; right Fig. 8b: permanent stationary Bluetooth detection)

234 M. Behrisch and G. Gurczik

values, the increase is less sharp in comparison to the laboratory data. Especially
between 1 and 6 s the course of the function is smoother than that under laboratory
conditions. The effects where no inclination is observable within longer time slots
(e.g. from 1,500 to 5,000 ms in Fig. 8a and from 2,000 ms to nearly 4,000 ms in
Fig. 8b) can probably be attributed to the devices in non interlaced scanning mode
which need considerably longer detection times (compare to Fig. 4). This topic
needs further investigation however.

The results collected from moving Bluetooth observer vehicles are illustrated in
Fig. 9. The course of the functions is similar to that of the stationary Bluetooth
measurements for all four observers even if that of observer car 1 seems to be more
consistent. A reason might be the amount of collected data which was the biggest
from car 1. Interesting is that the same effect of time-slots without inclination is
observable in that case as well. It seems to occur always between approximately
2,000 and 7,000 ms.

In addition to the field test on Ernst-Ruska-Ufer, several test runs with 8 moving
observers using multimodal BTreceiver objects (i.e. cars and cyclists) were con-
ducted on other routes on the WISTA area (Fig. 10) to see whether the results affirm
our conclusion. These additional field tests took even place on August 20th 2013,
but from 9 to 10 a.m. and 1 to 3 p.m. Note that in these field tests observer car 3 (red
line) had some major problems in collecting data. Nevertheless the results from
these area wide measurements show better accordance with the results derived from
laboratory tests.

Figure 11 shows the results from the simulation scenario. For both simulated
stationary Bluetooth detection units (modelling the East and West measuring
bridges on the Ernst-Ruska-Ufer), the probability density to detect vehicles with
Bluetooth devices on board within a specific time interval (in seconds) is given.

Fig. 9 Probability density for field test results on Ernst-Ruska-Ufer using moving observer (cars)

Modelling Bluetooth Inquiry for SUMO 235

One can see that in more than 80 % the equipped traffic objects are discovered in a
time interval less than one second. The results differ between the two monitoring
positions. That is possibly due to the jam occurring in the eastern part of the

Fig. 10 Probability density for additional field test results on WISTA area using cars and cyclists
as moving observers

Fig. 11 Probability density for simulation results (top left Fig. 11a) compared to a summary of
most important results from real world measurements (top right Fig. 11b) and the theoretical
results (bottom Fig. 11c)

236 M. Behrisch and G. Gurczik

scenario which leads to far more (re-)detections of waiting vehicles in shorter time
intervals. All in all, the density probabilities look very similar especially to the
results from the real world stationary Bluetooth measurements (see Fig. 8, cf. curve
‘ERU_ost’ and ‘ERU_west’ in Fig. 8b).

What we learn from this comparison is that the probability density seems to be
best fitted by an exponential distribution which makes sense since the number of
detections based on Bluetooth is a sequence of n independent seen/not seen trials
each of which occurs with probability p. This follows from the assumption that the
number of vehicles equipped with Bluetooth devices and the number of observer
vehicles within the network are small, so that the chances to encounter are statis-
tically independent events. Therefore, the existence of those encounter respectively
detection events can be described using an exponential distribution.

Please note that Fig. 11a was wrong in the conference version of this paper [8]. It
was not calculated with a sufficient time resolution and did not incorporate all
measurements and did thus not reflect the correct inter-detection times.

6.1 Validating the Independence of Detections

As we already noted in Sect. 4.1 there are some assumed properties of the detection
delay function which need to be validated in the simulation. The first one is the
independence concerning the length of the simulation time step. We verified this
property by running the simulation with time step lengths of 0.01, 0.02, 0.05 and
0.1 s without noting any difference in the detection curves (see Fig. 12a).

Another property should be the independence of the detection delay concerning
the traffic demand (or rather the number of detectable vehicles). This is not as
obvious as it might seem at first sight because it includes the verification of our core
assumption that the interval between two successive detections is a valid approx-
imation for the length of the detection interval itself. While this assumption is

Fig. 12 Independence of detection probability of time step size (left Fig. 12a) and traffic
demand (right Fig. 12b)

Modelling Bluetooth Inquiry for SUMO 237

clearly wrong for very small traffic demands (if there is only one vehicle per minute,
the interval between two detections cannot be smaller, provided redetections of the
same vehicle are ignored), we still assumed that in our scenario described above we
can get good data even for equipment rates below 1 %. To validate this we ran the
simulation scenario with different equipment rates ranging from 0.3 to 30 %. The
results are shown in Fig. 12b.

7 Conclusions and Discussions

To sum up the following results can be stated from the experiments:

• The probability density seems to be best fitted by an exponential distribution.
• Within 1 s more than 90 % of all detections are done under laboratory condition;

in real environment conditions at least 80 %. That means most of the detectable
BTsenders in detection range are found within the first second.

• In case of moving observers field test results show better accordance with
laboratory results than the stationary Bluetooth measurements. It has to be kept
in mind that laboratory results reflect perfection.

• Simulation results fit the stationary Bluetooth monitoring results quite well.
• The simulations carried out are in fairly good agreement with the empirical data

as well as the theoretical model.

One weakness of our approach is that we can not detect the inquiry time directly
but can only detect the interval between two successful inquiries, so in the case of
small traffic densities we will need different measurements to validate our data. This
will be a subject to further research.

Additionally we need to investigate further the unusual plateau behavior in the
dynamic cases (see Fig. 8) where we often had no additional detections between
second 2 and second 7. A reason might be a potential collision of so called FHS
(frequency hopping sequence) packets, which are the response from detectable
devices nearby to the inquirers transmitted identifier packets (send out on different
frequencies within the inquiry process). That collision of FHS packets is strongly
addicted to the number of potential detectable devices, that is, if the number of
devices is increased, the device discovery will be delayed due to more packet
collisions. But even when there are only two devices, in [14] they found out that if a
device discovery is not successful within a few hundreds of time-slots, the dis-
covery time will—more often than not—be delayed by more than 4,000 time-slots
which is approximately 2.5 s.

As we find out from comparing the simulation and empirical data to our theo-
retical model, a pure simplified exponential approach lacks in the speed of dis-
covery times (the incline of the curve is not steep enough). Further improvements
are expected from including the preciser theoretical modelling based on the so
called interlaced scan mode in the simulation. Since that needs a fundamental

238 M. Behrisch and G. Gurczik

change in the architecture of the Bluetooth module in the simulation, the imple-
mentation will be pursued in future versions.

Acknowledgments We thank Daniel Krajzewicz for the initial implementation of the Bluetooth
detection mechanism in SUMO and Andreas Luber for performing the laboratory experiments and
providing their data.

References

1. Specification of the Bluetooth system, core version 2.0 and higher, Bluetooth special interest
group (SIG), 2004. http://www.bluetooth.com

2. Franssens A (2010) Impact of multiple inquirers on the Bluetooth discovery process—and its
application to localization. University of Twente, Enschede

3. Peterson BS, Baldwin RO, Kharoufeh JP (2006) Bluetooth inquiry time characterization and
selection. IEEE Trans Mobile Comput 5(9):1173–1187

4. Ruppe S, Junghans M, Haberjahn M, Troppenz C (2012) Augmenting the floating car data
approach by dynamic indirect traffic detection. In: Proceedings of transport research arena—
Europe 2012, Athens, Greece

5. Gurczik G, Junghans M, Ruppe S (2012) Conceptual approach for determining penetration
rates for dynamic indirect traffic detection. In: ITS world congress 2012, Vienna, Austria

6. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications
of SUMO—Simulation of Urban MObility. Int J Adv Syst Meas 5(3, 4):128–138

7. SUMO—Simulation of Urban Mobility. http://sumo-sim.org/
8. Behrisch M, Gurczik G (2014) Modelling Bluetooth inquiry for SUMO. In: 2nd SUMO

conference 2014, Berlin, Germany
9. Hoyer R, Leitzke C (2011) Verfahrenstechnische Bedingungen für die Reisezeitbestimmung

mittels Bluetooth-Technologie. In: Proceedings of Heureka 2011, Kassel, Germany
10. Wasson JS, Sturdevant JR, Bullock DM (2008) Real-time travel time estimates using media

access control address matching. Inst Transp Eng J (ITE J) 78(6):20–23
11. Duflot M, Kwiatkowska M, Norman G, Parker D (2006) A formal analysis of Bluetooth

device discovery. Int J Softw Tools Technol Transf 8(6):621–632
12. Peterson BS, Baldwin RO, Kharoufeh JP (2004) A specification-compatible Bluetooth inquiry

simplification. In: Proceedings of the 37th Hawaii international conference on system sciences
(HICSS’04), Waikoloa, Hawaii

13. Kasten O, Langheinrich M (2001) First experiences with Bluetooth in the Smart-ITS
distributed sensor network. In: Proceedings of 2001 international conference on parallel
architectures and compilation techniques (PACT’01), Barcelona, Spain

14. Chakraborty et al (2008) Analysis of the Bluetooth device discovery protocol. Wireless
network (WINET). Springer Science+Business Media, LLC, New York

Modelling Bluetooth Inquiry for SUMO 239

http://www.bluetooth.com
http://sumo-sim.org/

	Preface
	SUMO2014 Organization
	Contents
	Part I Data Acquisition and Integration
	1 DFROUTER---Estimation of Vehicle Routes from Cross-Section Measurements
	Abstract
	1 Introduction
	2 Theoretical Background
	3 DFROUTER
	3.1 Development Context
	3.2 Algorithm
	3.2.1 Detector Classification
	3.2.2 Routes Computation
	3.2.3 Output Generation

	4 Evaluations
	4.1 Replication of Synthetic Scenarios
	4.2 Comparison with Other Approaches
	4.2.1 The Equally Split O-D Matrix
	4.2.2 Proportional O-D Matrix
	4.2.3 Iterative Method
	4.2.4 The Gravity Model
	4.2.5 The Turning Percentage
	4.2.6 Discussion

	5 Extension for Completing Missing Measurements
	5.1 Calculating Missing Data
	5.2 Application in an Abstract Network
	5.3 Application in a Larger Network

	6 Conclusion
	References

	2 Advanced Traffic Light Information in OpenStreetMap for Traffic Simulations
	Abstract
	1 Introduction
	2 Extending the OSM Format
	3 Conversion of OSM Files
	4 Simulation
	5 Conclusion
	6 Outlook
	Acknowledgements
	References

	3 Online Micro Modelling Using Proprietary Controllers and SUMO
	Abstract
	1 Introduction
	2 Architecture
	3 Detection
	4 Signal Groups
	5 Simulation Speed
	6 Comparison Between Vissim and SUMO
	7 Online Micromodelling
	8 Conclusion
	References

	4 Traffic Simulation for All: A Real World Traffic Scenario from the City of Bologna
	Abstract
	1 Traffic Simulation and Open Data
	2 Bologna Scenarios
	2.1 Andrea Costa Scenario
	2.2 Pasubio Scenario
	2.3 Andrea Costa and Pasubio Joined Scenario

	3 Development of the Scenarios
	3.1 Traffic Road Network
	3.2 Traffic Lights
	3.3 Traffic Demand
	3.4 Additional Traffic Infrastructure Data

	4 Demand Evaluation
	5 User Guidelines
	6 Examples of Usage
	6.1 Bus Lane Management
	6.2 Emergency Vehicle Evaluations
	6.3 Pedestrian Modelling

	7 Further Research
	References

	5 Can Road Traffic Volume Information Improve Partitioning for Distributed SUMO?
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Evaluation
	3.1 Volume Extraction
	3.2 Modification of Quadtrees
	3.3 Modification of Smart Quadtrees
	3.4 Modification of SParTSim
	3.5 Simulation of a Distributed Simulation

	4 Evaluation
	4.1 Metrics

	5 Results
	6 Conclusion
	Acknowledgment
	References

	Part II Modelling and Processing
	6 A Situational Awareness Approach to Intelligent Vehicle Agents
	Abstract
	1 Introduction
	2 Research Background
	3 Simulation Framework
	3.1 Technical Overview
	3.2 Framework Performance

	4 Experimental Scenarios
	4.1 Scenario 1: Motorway Change Lane Request
	4.1.1 Lights Flash with No Institution
	4.1.2 Lights Flash with Institution

	4.2 Scenario 2: City Traffic Lights
	4.2.1 City Journey with No Institution
	4.2.2 City Journey with Institution

	4.3 Scenario 3: Variable Speed Limits
	4.3.1 No VSL
	4.3.2 Global VSL
	4.3.3 Institution VSL

	5 Results
	5.1 Scenario 1: Motorway Change Lane Request
	5.2 Scenario 2: City Traffic Lights
	5.3 Scenario 3: Variable Speed Limits

	6 Discussion and Future Work
	References

	7 SUMO's Lane-Changing Model
	Abstract
	1 Introduction
	2 Architecture
	3 Strategic Lane Changing
	3.1 Evaluating Subsequent Lanes
	3.2 Determining Urgency
	3.3 Speed Adjustment to Support Lane-Changing
	3.4 Preventing Deadlock

	4 Cooperative Lane-Changing
	5 Tactical Lane-Changing
	6 Obligatory Lane Changing
	7 Remote Controlled Lane Changing (TraCI)
	8 A Hierarchy of Lane Changing Motivations
	9 Improvements Over the Earlier Model
	9.1 Efficiency of Lane Changing
	9.2 Lane Usage

	10 Outlook
	References

	8 Development and Assessment of Cooperative V2X Applications for Emergency Vehicles in an Urban Environment Enabled by Behavioral Models
	Abstract
	1 Introduction
	2 Survey of EV Drivers
	3 Problem Statement
	4 Simulative Environment
	5 Models
	5.1 EV Behavior
	5.1.1 Speeding
	5.1.2 Drive Through Red Lights

	5.2 Intelligent Infrastructure
	5.3 IV Behavior
	5.3.1 Behavior a
	5.3.2 Behavior b

	6 Calibration
	7 Simulation of the Models and V2X-Applications
	7.1 Preemption
	7.2 Automated Formation of a Rescue Lane
	7.3 Simulation Procedure
	7.4 Assessment of Models
	7.5 Assessment of Applications
	7.5.1 Travelling Time and Their Distribution
	7.5.2 EV's Speed Profiles
	7.5.3 IVs' Speed Profiles

	8 Conclusion and Outlook
	References

	9 TraCI4Matlab: Enabling the Integration of the SUMO Road Traffic Simulator and Matlab Through a Software Re-engineering Process
	Abstract
	1 Introduction
	2 The Re-engineering Process
	3 Reverse Engineering of the TraCI-Python Implementation
	3.1 The TraCI Package
	3.2 Packages Corresponding to the SUMO Objects
	3.3 TraCI Constants

	4 Forward Engineering Sub-process
	4.1 Re-engineering Patterns Used

	5 Results and Discussion
	6 Conclusions
	Acknowledgments
	References

	10 An Integrated Framework for Mobile-Based ADAS Simulation
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodological Approach
	3.1 Simulators and Framework
	3.2 The Geostream Framework
	3.3 Mobile Device
	3.4 Interaction of Driving Simulators and Android

	4 Preliminary Verification
	4.1 Simulator Accuracy
	4.2 Mobile Device ADAS

	5 Conclusion
	References

	Part III Data Generation and Validation
	11 TOMS---Traffic Online Monitoring System for ITS Austria West
	Abstract
	1 Introduction
	2 System Overview
	3 Preprocessing Static Data
	3.1 The Road Network
	3.2 The Routes File
	3.3 Calibrating the Demand Model
	3.3.1 Alternative Routes

	4 Integration of Real-Time Data
	4.1 Static Detectors
	4.2 Floating Car Data
	4.3 Roadworks and Roadblocks

	5 TOMS
	6 Conclusions and Future Work
	References

	12 Second Generation of Pollutant Emission Models for SUMO
	Abstract
	1 Introduction
	2 SUMO's Requirements to an Emission Model
	3 Emission Models Overview
	4 Implemented Emission Models
	4.1 Initial HBEFA V2.1 Derivation
	4.2 PHEMlight
	4.3 HBEFA v3.1 Derivation
	4.4 Comparisons

	5 Working with SUMO's Emission Models
	5.1 Simulation
	5.2 Router Support
	5.3 Tools
	5.4 Embedding New Emission Models into SUMO
	5.5 Open Issues

	6 Use Cases
	6.1 Investigating Environment Impacts of ITS Solutions
	6.2 Emission-Optimal Routing
	6.3 Evaluation of Real Traffic Management Actions

	7 Summary
	Acknowledgments
	References

	13 Modelling Bluetooth Inquiry for SUMO
	Abstract
	1 Introduction
	2 State of the Art
	3 Analytical Modelling of the Inquiry
	3.1 Modelling Based on Two Scanning Intervals
	3.2 Modelling with Simplified Exponential Approach
	3.3 Modelling Adjusted by Laboratory Measurements
	3.4 Modelling Considering Interlaced Frequency Scanning

	4 The Simulation Implementation
	4.1 Independence of Detections
	4.2 The Interlaced Mode

	5 The Simulation Scenario
	6 Comparison to Real World Measurements
	6.1 Validating the Independence of Detections

	7 Conclusions and Discussions
	Acknowledgments
	References

