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Abstract. Microbiome and metagenomic research continues to grow
as well as the size and complexity of the collected data. Additionally,
it is understood that the microbiome can have a complex relationship
with the environment or host it inhabits, such as in gastrointestinal dis-
ease. The goal of this study is to accurately predict a host’s trait us-
ing only metagenomic data, by training a statistical model on available
metagenome sequencing data. We compare a traditional Support Vector
Regression approach to a new non-parametric method developed here,
called PKEM, which uses dimensionality reduction combined with Ker-
nel Density Estimation. The results are visualized using methods from
Topological Data Analysis. Such representations assist in understand-
ing how the data organizes and can lead to new insights. We apply this
visualization-of-prediction technique to cat, dog and human microbiome
obtained from fecal samples. In the first two the host trait is irritable
bowel syndrome while in the last the host trait is Kwashiorkor, a form
of severe malnutrition.

1 Introduction

In recent years there has been an explosion of interest in microbiomes and
metagenomics, which has been coupled with a dramatic increase in data to
process and analyze. The microbiome is understood to be the community of
microorganisms that inhabit some environment, such as the human gut, the soil
surrounding plant roots, sewage treatment, etc. Metagenomics is the study of
the genetic material of the microbes inhabiting some microbiome. Some studies
focus on whole genomic sequencing of all organisms in the microbiome, providing
massive amounts of data to analyze. Often though, many studies focus primar-
ily on the diversity and specific abundance of each type of microorganism in
one or many samples. To this end, sequencing typically targets the 16S rRNA
gene which is present in most organisms. Equipped with 16S rRNA sequences,
researchers are able to estimate which microorganisms are present in the en-
vironmental sample and classify the them from coarser to finer categories by
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phylum, class, order, family, and genus, with a loss of accuracy as one moves
from coarser to finer classification.

It is understood that the microbiome plays a crucial role in the environment it
inhabits, and may have a complicated relationship with the host or organism of
interest. For example, the microbiome surrounding plant soil can have a dramatic
effect on drought resistance [1], and conversely plants can effect the microbiome
of the soil they inhabit [2] and changes in the health of a human host can
directly impact the microbiome in the gut [3,4]. However, many microbiome
collection efforts are focused on collecting samples from some environment and
do not consider information about the environment or host, such as host disease
status or other host phenotypes. As such, many studies and data sets contain
an abundance of microbiome samples from multiple hosts, with little or no data
on the host itself. Additionally, it is often difficult to understand and compare
multiple microbiomes with respect to host traits. Nevertheless, we are interested
in the relationship of a microbiome with respect to its associated host’s traits.

The goal of this study is two-fold. First, to quantify the host status (e.g.
disease status or some phenotype) by training a statistical model on available
host and metagenomic data. From this, one can then attempt to predict a host’s
trait using only metagenomic data. This study is focused on Operational Tax-
onomic Unit (OTU) information for each microbiome and binary host traits.
Second, provide a low-dimensional visualization of multiple host’s microbiomes
using tools from topological data analysis. The visualization is able to break
down multiple microbiomes with respect to the host traits as well as highlight
differences seen only at the microbiome level. The visualization is able to retain
important structures of the high-dimensional data with the goal of leading to
new insights and understanding of the otherwise opaque complicated data.

2 Methods

Quantifying Host Trait. All datasets that we studied contain multiple micro-
biome samples across multiple hosts. For each microbiome, OTU tables and the
host’s binary trait ({0, 1}) were obtained. The first step involves the training of
a statistical model on available OTU and host trait data. Two approaches were
used for this step, widely used Support Vector Regression (SVR) – a paramet-
ric approach – and a new non-parametric algorithm called Prediction through
Kernel density Estimation of Metagenomic data, or PKEM for short. Both ap-
proaches are described below.

Support Vector Machines (SVMs) have been utilized in microbiome data anal-
ysis [5,6] due to their observed empirical performance on this type of data, as well
as due to several theoretical considerations as summarized in [5]: SVMs perform
well in data with limited sample size, are relatively insensitive to high dimen-
sionality of the data, prevent overfitting by using regularization techniques, and
can learn both simple and complex decision functions. Hence we also included
SVMs as a state of the art method in our comparison.

The topological data analysis visualization then uses the above predictions of
the host trait, as well as a distance measure between OTU tables. If available,
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the weighted UniFrac [7] distance was used. The output is a low-dimensional
representation of the microbiome data and is described below.

UniFrac distance is also used by existing microbial community analysis sys-
tems such as QIIME [8] that employs Random Forests for trait classification.
Here we focus on SVM as the benchmark method for classification, for the above
mentioned reasons.

Support Vector Regression. SVR [9,10,11,12,13] attempts to model the relation-
ship between the explanatory and response variables by finding a hyperplane
(high-dimensional generalization of a 3d-plane), where all the data points lay
either on the hyperplane or as close as possible to it. The real trick here is that
the data are first mapped to a different high-dimensional space using possibly a
non-linear kernel.

Following [14], given a training set (xi, yi), i = 1, . . . l, where xi ∈ R
n, the

goal of ε-SV regression is to find a function f(x) that is at most ε deviation
from the explanatory variable yi over the response variable xi, while remaining
as flat as possible in the feature space. In our case, the response variables will be
OTU data, and the explanatory variable will be the host trait associated with
the microbiome. Training an SVR requires solving

min
w,b,ξ

1

2
w�w + C

(∑
ξi +

∑
ξ∗i
)

subject to

{
yi −w�φ(xi)− b ≤ ε+ ξi
w�φ(xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0.

(1)

The data vectors xi are mapped to another space via the function φ, and
SVR attempts to fit the data in this higher dimensional space. Thus, the choice
of φ, referred to as the kernel, has a large impact. The de-facto SVR software
libsvm [15] provides four kernels:

Linear: u�v,

Polynomial: (γu�v + r)d, γ > 0,

Radial: exp(−γ‖u− v‖2), γ > 0,

Sigmoid: tanh(γu�v + r).

Conversely, Support Vector Machine (SVM) attempts to find a hyperplane
separating a set of data points and is used for binary classification. In this case
the inequalities in Equation 1 are reversed and thus data points are penalized
for being too close to the separating hyperplane via the ξ and ξ∗ parameters
appearing the cost function. The CRAN e1071 [16] R [17] package was used for
all SVR and SVM computations.

PKEM. A second non-parametric prediction method was developed called
Prediction through Kernel density Estimation of Metagenomic data, or PKEM
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for short. It combines a dimensionality reduction step with multivariate kernel
density estimation. The dimensionality reduction step is often required since ker-
nel density estimation can lead to improper fitting of the data when sample sizes
are small relative to the dimension of the data. Classical principal component
analysis is used for the dimensionality reduction step.

Principal Component Analysis (PCA) [18,19] is a well-established method
which uses orthogonal transformations such that the first principal component
contains the largest variance, the second principal component contains the sec-
ond largest variance, and so on. PCA is often used on high-dimensional data to
transform and truncate the data to a lower dimensional space, while attempting
to preserve as much variance as contained in the original data. That is, PCA
reformulates the data according to the principal components, ranking from most
important to least important. By truncating the least important principal com-
ponents, one retains the most important parts of the original data while reducing
its dimension.

PCA can be accomplished using a singular value decomposition. Any real
m × n matrix M can be written M = UΣV �. Here, U is an m × m unitary
(U�U = UU� = I) matrix,Σ is anm×n rectangular diagonal matrix containing
the singular values from largest (upper left) to smallest (lower right), and V �

is the transpose of an n × n unitary matrix. The PCA transformation is given
by UΣ, and the pth PCA truncation is given by UpΣp where Up and Σp are the
first p rows of U and Σ respectively.

Kernel density estimation (KDE) [20,21] is a non-parametric approach to
estimate the probability distribution of a random variable. That is, if one has
a sample of a random variable, kernel density estimation can be used to find
an approximation of the unknown distribution underlying the random variable.
Conceptually, kernel density estimation is similar to a histogram of the sample
data, but with a smoothing out operation.

In the univariate case, if (x1, . . . , xn) are sampled identically and indepen-
dently from a distribution with some unknown density function f , the goal of
kernel density estimation is to estimate f via some function f̂h. It does this by
giving a little bit of weight to each sample and is formulated as

f̂h(x) :=
1

nh

n∑
i=1

K(x− xi).

The function K(·) is the kernel and it is assumed to be symmetric and inte-
grates to 1. The parameter h is called the bandwidth and is chosen as small as
the data will allow. Typically a Gaussian kernel is used for K(·). One way to
visualize kernel density estimation is to imagine that for each data point on the
real line, a handful of dirt is dropped (which makes a nice Gaussian dirt hill).
Thus, if a group of data points are close on the real line, then a large mound
of dirt accumulates around the group of data points since one dropped many
handfuls of dirt around there. See Figure 1 for an example.

Multivariate kernel density [22] estimation is nearly identical to the above
univariate case, except the kernel is almost always a multivariate Gaussian and
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Fig. 1. Histogram of 140 data points (top left) sampled from some unknown distri-
bution. Kernel density estimation using 0.25 of normal bandwidth (top right). Kernel
density estimation using normal bandwidth (bottom).

the bandwidth parameter h is replaced by a bandwidth matrix H which is sym-
metric and positive definite. The bandwidth matrix H determines the shape of
the multivariate Gaussian kernel K(·).

The PKEM algorithm can be summarized:

1. Let X be a matrix where the rows are the OTU fractions and the columns
are the N hosts being studied.

2. Let Y be the {0, 1} host traits.
3. Let p be the user-input truncation dimension.
4. Perform PCA on the subsets of columns of X with host trait Y equal to 0

(or 1). Use obtained PCA transformation on all data X , call transformed
data B.

5. Train a multivariate kernel density estimation function F using columns of
B with host trait Y equal to 0 (or 1).

6. Output kernel density estimation function F which takes as input any OTU
table data and outputs an estimate of its density estimation of the associated
host trait to be 0 (or 1).

The PKEM algorithm can be trained on either the OTU data taken from hosts
with traits valued 0 or valued 1, which may lead to different results depending on
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the data. The prcomp function in the stats base package of R [17] was used to
compute PCA and the np [23] R package was used to perform multivariate kernel
density estimation. Additionally, the function F output by KDE is normalized
by the largest estimated value, yielding values in [0, 1].

2.1 Topological Data Analysis

Topology is the mathematical study of spaces and their qualities, such as prop-
erties of spaces that are preserved under continuous deformations. Topological
Data Analysis (TDA) is the application of the mathematically rigorous field
of algebraic topology towards understanding large and high-dimensional data.
Recently there has been a rapid growth in interest in TDA and its many appli-
cations [24,25,26,27,28].

One exciting application of TDA is forming reliable low-dimensional repre-
sentations of high-dimensional data, with the ambition that the low-dimensional
representation maintains important relationships and can be easier to interpret,
leading to new insights on the otherwise opaque high-dimensional data. One
recently introduced popular approach called mapper [29] has been successfully
applied in many additional studies [28,26]. The fundamental concept of mapper
is that the output is a combinatorial graph, as opposed to a set of data points
or some subspace. Additionally, TDA is more robust to noise, can handle large
data sets, and can handle any notion of distance. That is, one does not need to
use Euclidean distance of data and may choose a more appropriate measure of
distance. Lastly, mapper requires a filter function on the high-dimensional data,
which is some real-valued function. That is, the filter function f assigns some
real value for each high-dimensional data point.

The mapper approach works roughly as follows: The filter function is applied
to the input high-dimensional data X and the filter values are saved. Then the
range of filter values are divided up into k overlapping intervals. For each interval
of filter values, the subset of data from X corresponding to the current filter
interval is clustered. This clustering is performed for each filter interval. Once
all the clusters have been formed, a graph is drawn with a node for each cluster.
Since the filter intervals were overlapping, two clusters may share a data point
from X in common. Thus, if two nodes (clusters) share at least one data point
then an edge is drawn between the nodes. This completes the original mapper
algorithm, but additional visualization can be performed such as coloring each
node based on the average filter values as well as plotting any additional meta
data about the data points in each node. For an example of mapper see Figure 2.

It must be emphasized that the output of mapper is highly dependent on
the filter function chosen, the amount of overlap in the filter intervals, and the
distance used for clustering as well as the clustering method. However, the output
low-dimensional representation will often reflect the properties of the original
high-dimensional data.

For this study, the PKEM and SVR algorithms were used to compute filter val-
ues. If the host trait was disease (0 healthy, 1 disease), than each algorithm esti-
mates a host’s disease status from 0 to 1 depending on its associated microbiome
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F

F

Fig. 2. Example of mapper algorithm. First a filter function F is applied to the data. In
this case, data are given a high value if they are to the left (red) and a low value if they
are to the right (green). Second, the range of filter values are formed into overlapping
intervals, creating corresponding collections of the original data. Third, each collection
of data is independently clustered. Lastly, an edge is drawn between two clusters if
they have at least one element of the data in common.

OTU data. The distance between OTU tables was either the weighted UniFrac
distance if available, or the Euclidean distance. Clustering was performed using
hierarchical clustering and the Ward method. Further, the number of clusters was
determined in an unsupervisedway by choosing the number of clusters whichmax-
imized the mean silhouette score [30].

2.2 Data

Cat and Dog Data. All samples were from dogs and cats that lived in home
environments and were collected by veterinarians who evaluated the animals for
their GI disease. Healthy animals were owned by students and staff at Texas
A&M University. All samples were stored frozen at -80◦C until processing of
samples for DNA extraction. A 100mg (wet weight) aliquot of feces was ex-
tracted by a bead-beating method using a commercial DNA extraction kit (ZR
Fecal DNA KitTM, Zymo Research Corporation) following the manufacturer’s
instructions. The bead beating step was performed on a homogenizer (FastPrep-
24, MP Biomedicals) for 60 s at a speed of 4 m/s. The collection and analysis
of fecal samples was approved by the institutional Clinical Research Review
Committee of the college of Veterinary Medicine, Texas A&M University.
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Cat Data. Fecal samples were obtained from healthy cats (n = 23) and cats with
diarrhea (n = 76). Diseased cats were further compared based on the duration
of their diarrhea: duration < 21 days (n = 32) vs. duration > 21 days (n = 44).
None of the animals received antibiotics within 3 months of sample collection.
Sequencing was performed targeting the V4 region of the 16S rRNA gene using
forward and reverse primers: 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and
806R (5’- GGACTACVSGGGTATCTAAT-3’) using the Ion Torrent platform
at a depth of 15,000 sequencing reads per sample. Operational taxonomic units
(OTUs) were assigned based on at least 97% sequence similarity using QIIME
v1.7. The sequences were deposited in SRA under accession number SRP047088.
A similar data collection and analysis process is described also elsewhere [31].

Dog Data. Fecal samples were collected from healthy dogs (n = 98), dogs with
chronic enteropathy (IBD, n = 79), and dogs with acute hemorrhagic diarrhea
(n = 15). All dogs with CE were evaluated by endoscopic examination and intesti-
nal inflammation was confirmed by histopathology. Dogs with acute diarrhea were
worked up for the GI disease and were all diagnosed with uncomplicated diarrhea
that resolved with routine symptomatic treatment within one week of presenta-
tion. None of the animals received antibiotics within 3months of sample collection.
Sequencing was performed targeting the V4 region of the 16S rRNA gene using
forward and reverse primers: 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and
806R (5’- GGACTACVSGGGTATCTAAT-3’) using the Illumina platform at a
depth of 5,000 sequencing reads per sample. Operational taxonomic units (OTUs)
were assigned based on at least 97% sequence similarity using QIIME v1.7. A sim-
ilar data collection and analysis process is described also elsewhere [32].

Kwashiorkor Data. Publicly available data was taken from a study of gut mi-
crobiomes of Malawian twins suffering from Kwashiorkor, a form of sever acute
malnutrition [33] 1. In the study, 317 Malawian twin pairs were followed for three
years during which 43% became discordant (Kwashiorkor). In such discordant
cases, both twins were fed ready-to-use therapeutic food (RUTF). The authors
of the above study observed that the consumption of RUTF by discordant indi-
viduals eventually led to an improved health of the individuals’ microbiome, and
if RUTF was stopped prematurely the microbiomes regressed to their discordant
state. Additionally, when the authors transplanted discordant microbiomes into
gnotobiotic mice and provided a Malawian diet, the kwashiorkor microbiome
lead to drastic weight loss as well as changes in their metabolism.

Phylum, class, order, family, and genus level 16S OTU data was taken from
the original study for all individuals. Additional data was included here, specif-
ically weight-for-height z (WHZ) score, RUTF consumption, and age. Multiple
microbiome samples were available for each individual, each labeled with the
state healthy or kwashiorkor. All kwashiorkor samples were included in the anal-

1 Data retrieved from Jeffrey Gordon website:
http://gordonlab.wustl.edu/SuppData.html

http://gordonlab.wustl.edu/SuppData.html
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ysis presented here, however, if an individual had multiple healthy microbiome
samples, only the sample with the highest WHZ score was included.

3 Results

3.1 Prediction Accuracy

The ability of SVR, SVM, and PKEM to accurately predict the host’s trait was
tested by tenfold cross validation. That is, OTU and host trait data were split
into ten evenly sized sets. Then SVR, SVM, and PKEM were trained on 90%
of the available data and each method was used to predict the remaining 10%
of the data. Both SVR and PKEM can be coerced to output a [0, 1] continuous
estimate of the host’s binary trait. Thus a threshold is used to determine if
the predicted host trait is 0 or 1. Figure 3 show the false positives vs. true
positives as the threshold for the {0, 1} classification varies. The parametric SVR
outperforms the non-parametric PKEM. However, PKEM does remain viable
as a classifier, as long as the threshold is low (approximately 0.2–0.3). Note,
the linear, polynomial, and sigmoid SVR kernels were also studied but did not
perform as well as the radial kernel.

Thresholds were set to 0.25 for PKEM and 0.50 for SVR and the F-score and
accuracy of SVR, SVM, and PKEM were computed, see Table 1. Accuracy is
reported in term of the F-score (F1) and the accuracy (ACC). Let TP=True Pos-
itives, TN=True Negatives, FP=False Positive, FN=False Negatives, P=Positive
instances, and N=Negative instances, then F1 := 2TP/(2TP + FP + FN) and
ACC := (TP + TN)/(P +N). Notice that the F1 score is primarily influenced
by the TP .

In the Dog data, PKEM (truncation dimension 6) is comparable to SVR
(linear) and SVM (linear) in terms of best accuracy 0.60. However, PKEM suffers
from fewer TP, and thus has a lower F1 score. SVM slightly outperforms SVR in
terms of F1, but not by a large margin, likely due to a poor choice of threshold
for SVR (0.50).

In the Cat data, SVR (radial) and SVM (radial) have highest accuracy (0.81),
while PKEM (truncation dimension 6) is slightly behind (0.78). Again, PKEM
under performs in the F1 score due to low TP, although it has better F1 score
than SVR (linear, polynomial) and SVM (polynomial, radial). In this case, SVM
seems to suffer from very low TP and thus low F1 scores.

In the Kwashiorkor data, SVM (radial, sigmoid) ties for highest accuracy
(0.64) and SVM (radial) has the highest F1 (0.76). The Kwashiorkor data set
presents the largest difference in F1 and accuracy between SVM versus SVR and
PKEM. It is good to note that, in this case, SVR and PKEM perform similarly.

Across all data, SVM attains the highest accuracy, or is at least as good as
SVR and PKEM. Although, SVM performs poorly in terms of F1 score on the
cat data. It is clear that all methods are able to use OTU microbiome data alone
in order to predict the host’s trait value. Additionally, the linear and radial kernel
often perform best. For this reason, the radial kernel was chosen for use in the
TDA visualization. PKEM performs well in terms of accuracy, although it does
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Fig. 3. Receiver of Operator Curves (ROC). The threshold to decide the {0, 1} host
trait was varied and the false positive vs. true positive rates were recorded. An ideal
classifier would have ROC points in the upper left. The diagonal reflects a random
classifier.

fall behind in terms of F1 score due to low TP. However, PKEM does not suffer
from a choice of a kernel, since it is non-parametric.

Although SVM has high accuracy, the fact that it gives a binary {0, 1} classi-
fication does not allow its use in the Topological Data Analysis described herein,
whereas SVR and PKEM both give an estimate of the host trait value in the
range of [0, 1].
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Table 1. Mean F-score (F1) and accuracy (ACC) of SVR, SVM, and PKEM on
Dogs, Cats, and Kwashiokor data under ten-fold cross validation. Let TP=True Pos-
itives, TN=True Negatives, FP=False Positive, FN=False Negatives, P=Positive and
N=Negative instances, then F1 := 2TP/(2TP + FP + FN) and ACC := (TP +
TN)/(P +N). PKEM discrimination threshold set to 0.25. SVR threshold set to 0.50.

Dog Cat Kwashiorkor
F1 ACC F1 ACC F1 ACC

SVR

Linear 0.68 0.60 0.41 0.58 0.49 0.51
Polynomial 0.68 0.56 0.38 0.68 0.58 0.53
Radial 0.66 0.58 0.66 0.81 0.58 0.57
Sigmoid 0.66 0.59 0.57 0.76 0.60 0.57

SVM

Linear 0.69 0.60 0.58 0.83 0.73 0.65
Polynomial 0.69 0.54 0.07 0.76 0.74 0.62
Radial 0.69 0.54 0.33 0.81 0.76 0.64
Sigmoid 0.69 0.54 0.49 0.83 0.74 0.64

PKEM

Trunc Dim 2 0.59 0.56 0.43 0.52 0.50 0.44
Trunc Dim 4 0.56 0.58 0.45 0.69 0.56 0.57
Trunc Dim 6 0.53 0.60 0.46 0.78 0.56 0.60
Trunc Dim 8 0.47 0.57 0.24 0.76 0.46 0.55
Trunc Dim 10 0.38 0.54 0.10 0.78 0.32 0.49

3.2 Topological Data Analysis on Metagenomic Data

Topological data analysis, specifically the mapper algorithm, was applied to the
Cat, Dog, and Kwashiorkor data. Recall that mapper requires as input a set of
filter values, the number of overlapping intervals to break the filter values into,
the percentage overlap of each interval, a pairwise distance between points, and
a clustering method. The SVR (radial) and PKEM algorithms were trained on
each data set, where each algorithm was trained on the entire data set and the
prediction was used as the filter values. The number of intervals was set to six
with an overlap of 90%.

For clustering, the hierarchical method was used with Ward criteria for joining
two clusters, which merges two clusters that minimize the resulting within-cluster
variance. Here an unsupervised approach was taken by cutting the hierarchical
clustering dendogram at 1.0, which in effect does hierarchical clustering using
the Ward criteria and merges clusters as long as the within-cluster variance does
not exceed 1.0. In the case of the Cat and Dog data the weighted UniFrac dis-
tance was used as input to the mapper algorithm in order to perform the cluster
analysis. Whereas in the Kwashiorkor data the Euclidean distance between OTU
samples was used as the distance measure.

Figure 4 shows the output of mapper applied to the Cat, Dog, and Kwashiorkor
data. Additionally recall that mapper connects two nodes (two clusters) if they
share an individual in common. In Figure 4 the number of overlapping individuals
is given on the edge in orange. Lastly, summaries of metadata for each dataset
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Fig. 4. Output of mapper applied to the Cat, Dog, and Kwashiorkor data. Left, the
PKEM algorithm is used to compute the filter values where on the right the SVR
algorithm with a radial kernel is used. Both used the weighted UniFrac distance.

and each cluster are also presented in Figure 4 and the details of each figure are
discussed below.

The TDA of the Cat data using PKEM is given in the upper left of Figure 4.
Inner curved bar plots give normalized mean Age, Appetite, Sex, Weight, and
Weight Loss. In the bottom a bifurcation of the healthy-like cats appears where
on the left the individuals appear to have higher weight and higher weight loss.
The healthy-like individuals on the right contain some mis-classified individuals
with IBD. The middle portion of clusters that are between healthy and disease
also shows a splitting of the data, where sex and appetite may play a role.
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The TDA of the Cat data using SVR (radial) is given in the upper right
of Figure 4, with the same meta-data as above. In this case there are few mis-
classifications in terms of IBD and acute. However, the most healthy-like individ-
uals do not seem to distinguish much in terms of the given meta data. However,
for the middle portion of the graph the disease-like to healthy-like data seems
to separate into two connected lines primarily by sex.

The TDA of the Dog data using PKEM is given in the second row and left of
Figure 4. Inner curved bar plots give normalized mean Age, Antibiotics, Weight,
and Gender. As in the Cat data using PKEM, there are some misclassification
of IBD and acute. On the bottom a bifurcation can be seen of the healthy-like
individuals noticeably by the application of Antibiotics or not and Age. In the
second row from the top of the clusters, there are three disease-like clusters
where it appears the cluster in the center distinguishes itself from the other two
by Weight.

The TDA of the Dog data using SVR (radial) is given in the second row and
right of Figure 4. In this case the healthy-like clusters are more abundant, but
with some more misclassification compared to the Cat data using SVR (radial).
For these healthy-like clusters, the distinguishing information seems to be the
Age and Gender of the individuals involved. Additionally, the center healthy-like
cluster has a high use of antibiotics. The second and third row of disease-like
clusters show a partitioning of the data distinctly by Gender, and the use of
Antibiotics or not.

The TDA of the Kwashiorkor data using PKEM is given in the last row and left
of Figure 4. Inner curved bar plots give normalized mean Age, Gender, andWHZ.
Again, there are some misclassification in the case of PKEM. Additionally in this
case, the most healthy-like individuals cluster together. The third row down of
clusters of in between healthy-like and disease-like appears to cluster first by
Age (right cluster) and then the remaining two clusters appear to distinguish
from one another by WHZ. In the case of the disease-like clusters they appear
to distinguish from one another by either Age, WHZ, or Gender indicating each
may be an important factor in the composition of the microbiome.

The TDA of the Kwashiorkor data using SVR (radial) is given in the last
row and right of Figure 4. In this case, the healthy-like individuals are quite
separated into multiple clusters where Gender and Age may play the biggest
role. In the middle section of clusters in between healthy-like and disease-like
there is a bifurcation of individuals primarily by Age and a Gender. In the case
of the most disease-like surprisingly Gender, and to a lesser degree WHZ, appears
to be a large factor in distinguishing microbiomes

4 Discussion

Research into microbiomes and metagenomics will only continue to grow, as well
as the size and complexity of the available data. Additionally, the connection
between host traits and the microbiome is only beginning to be elucidated and
needs further study. We demonstrated here that, in fact, statistical models can
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be trained on OTU metagenomic data and applied to accurately predict host
traits.

Gastrointestinal disease is most likely a combination of various environmental
factors and therefore it is not possible to define a clear cut host trait. Thus while
feces would have lower sensitivity for separation, intestinal biopsies may have a
much higher rate. This is also corroborated in Crohn’s disease [34] where the
authors observed a lower sensitivity when classifying disease status using fecal
samples (See Figure 4) as compared to using tissue samples.

Finally there is a need to visualize and understand the ever-growing complex
metagenomic data. Combining traditional prediction algorithms or novel non-
parametric prediction methods such as PKEM with powerful topological data
analysis can lead to improved insights into the data. For example, visualizing
the data along with annotations such as antibiotic usage, age, and weight can
assist in understanding the separation between healthy and afflicted individuals.
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