
Discrete Control-Based Design
of Adaptive and Autonomic Computing Systems�

Xin An1, Gwenaël Delaval2, Jean-Philippe Diguet3, Abdoulaye Gamatié4,
Soguy Gueye2, Hervé Marchand5, Noël de Palma2, and Eric Rutten6

1 Hefei University of Technology, Hefei, China
xin.an@hfut.edu.cn

2 LIG, Grenoble, France
{gwenael.delaval,Soguy-Mak-Kare.Gueye,noel.depalma}@imag.fr

3 Lab-STICC, Lorient, France
jean-philippe.diguet@univ-ubs.fr

4 LIRMM, Montpellier, France
abdoulaye.gamatie@lirmm.fr

5 INRIA, Rennes, France
herve.marchand@inria.fr
6 INRIA, Grenoble, France
eric.rutten@inria.fr

https://team.inria.fr/ctrl-a/members/eric-rutten

Abstract. This invited paper makes an overview of our works address-
ing discrete control-based design of adaptive and reconfigurable comput-
ing systems, also called autonomic computing. They are characterized
by their ability to switch between different execution modes w.r.t. ap-
plication and functionality, mapping and deployment, or execution ar-
chitecture. The control of such reconfigurations or adaptations is a new
application domain for control theory, called feedback computing. We ap-
proach the problem with a programming language supported approach,
based on synchronous languages and discrete control synthesis. We con-
cretely use this approach in FPGA-based reconfigurable architectures,
and in the coordination of administration loops.

Keywords: Autonomic computing, adaptive systems, reconfigurable
architectures, reactive systems, synchronous languages, discrete control.

1 Adaptive Computing Systems, and their Control

Computing systems are present in ever more aspects of society, and they have
to comply with two complementary, and sometimes contradictory, requirements:
adaptability to continuous changes in their environment or functionality, and
dependability w.r.t. the goal they fulfill and the persons in their contact.
� This presentation is an overview of work done with support from several projects: Mi-

nalogic MIND, ANR Famous, CNRS PEPS API, ANR Ctrl-Green, Labex Persyval-
Lab Projet Exploratoire Staars, Inria Action Exploratoire Ctrl-A.

R. Natarajan et al. (Eds.): ICDCIT 2015, LNCS 8956, pp. 93–113, 2015.
c© Springer International Publishing Switzerland 2015

https://team.inria.fr/ctrl-a/members/eric-rutten

94 X. An et al.

1.1 Administration Loops in Computing Systems

Motivations for being dynamically reconfigurable or adaptive are manifold: on
the one hand, systems should dynamically react to changes in application ob-
jectives, in environment of operation, and also in their implementation platform
or infrastructure, especially in open systems like the Cloud. On the other hand,
systems are too large or complex to be administrated manually and must be
automated, in order to avoid error-prone or slow decisions and manipulations.

This trend can be observed at very diverse levels of services and application
software, middleware and virtual machines, operating systems, and hardware re-
configurable architectures. The automation of such dynamical adaptation man-
ages various aspects such as computing and communication resources, quality
of service, fault tolerance. It can concern small embedded systems like sensors
networks, up to large-scale systems such as data-centers and the Cloud. For
example, data-centers infrastructures have administration loops managing their
computing resources, typically with energy-aware objectives in mind, and possi-
bly involving management of the cooling system. At a lower level, FPGA-based
architectures (Field-Programmable Gate Arrays) are hardware circuits that can
be configured at run-time with the logics they should implement: they can be
reconfigured dynamically and partially (i.e. on part of the reconfigurable surface)
in response to environment or application events; such reconfiguration decisions
are taken based on monitoring the system’s and its environment’s features.

Autonomic computing [21,20] is an approach for the design of systems evolving
in a self-managed way while continuing to run and deliver the service. It is based
on an engineering of the administration of systems in the form of a feedback loop,
automating the decisions and actions to be taken according to observations on
the state and events of the system.

1.2 The Need for Control

The other vital requirement for these systems is dependability, be it w.r.t. dam-
age in the finality of the system (information, business, ...) or w.r.t. safety (goods,
persons, ...) [6]. The need for guarantees and assurances on the behavior of these
automated systems can benefit from generally meaningful and classical formal
methods in Computer Science like Model Checking for logical or temporized as-
pects, or can make use of models from performance evaluation, or concerning
probabilistic aspects (e.g. Markov chains).

A specificity of autonomic systems is that they are based on a feedback loop,
the behavior of which calls for a corpus of design theories and techniques stem-
ming from Control Theory, where they have been studied for many decades.
This control oriented approach to autonomic computing [18] is a new interac-
tion between control and computer science, along with classically established
ones:

– computer science for control systems, widely considered in embedded and
real-time systems for the digital implementation of control;

Control-Based Design of Adaptive and Autonomic Computing System 95

– theoretical computer science and control theory, designing hybrid systems as
mathematical models to combine discrete and continuous dynamics;

– control theory for computing systems, considered here, for designing well-
behaved automated computer management loops.

The autonomic loop is also naturally reactive, hence a new potential domain
for reactive languages and models, like synchronous languages [3], different from
hard real-time safety critical embedded systems, and bringing different perspec-
tives for their validation and verification tools.

1.3 Approach and Outline

We address the problem of combining adaptivity and dependability, requiring
run-time abilities to detect or even predict changes requiring an adaptation,
decide upon the appropriate adaptation, with possible anticipation, and give
guarantees on this appropriateness as a notion of correction of the control.

We propose an approach which is language-based and tool-supported, and
which we validated early on by confronting the method and its supporting lan-
guage and tools to concrete real-life systems from different domains, in order to
insure relevance and generality. This paper makes an overview of the approach,
as well as mentioning different facets of the work, that have been developed in
more specialized and detailed presentations elsewhere.

In the remainder, first Section 2 recalls basic notions in relevant domains:
Autonomic Computing in Section 2.1 ; reactive systems and their control in
Section 2.2. Then Section 3 presents the BZR language on which the approach is
based. Subsequently, Section 4 shows how the approach is validated in a range of
domains : software components and coordination of multiple autonomic loops in
Section 4.3 ; reconfigurable FPGA architectures in Section 4.2. Lastly, Section 5
concludes, discusses results and draws perspectives.

2 Background

2.1 Autonomic Computing

The aim of Autonomic Computing is to have networked computing systems able
to manage themselves, trough decisions made automatically, without direct hu-
man intervention. The Autonomic Computing Initiative (ACI) initiated by IBM
aims at providing the foundation for autonomic systems [21]. It is inspired by the
autonomic nervous system of the human body. This nervous system controls im-
portant bodily functions (e.g. respiration, heart rate, and blood pressure) with-
out any conscious intervention. In the past dozen years Autonomic Computing
has gained momentum, both academically and industrially [20].

Autonomic objectives have been defined for self-management aspects, often
called self-*, covering essential features:

96 X. An et al.

sensor

execute
knowledge

monitor

analyse plan

actuator

managed element

Fig. 1. MAPE-K autonomic manager for administration loop

– Self-configuration: automatic configuration of the system components at de-
ployment time, or also later during runtime, typically without stopping;

– Self-healing: automatic discovery, and correction of faults;
– Self-optimization: automatic monitoring and control of resources to ensure

the optimal functioning with respect to the defined requirements;
– Self-protection: identification and protection from arbitrary attacks: this se-

curity aspect can be addressed on external or internal aspects [9].

Interestingly, these objectives can interact, and their interferences can require
coordination, typically between self-protection and self-optimization.

The autonomic loop is a general feedback loop structure to take this into
account [21]. In this closed loop, systems are instrumented with monitors or
sensors, and with reconfiguration actions or actuators; these two kinds of in-
terfaces with the managed element (ME) have to be related by a control and
decision component, the autonomic manager (AM), which implements the dy-
namic adaptation policy or strategy. It can be defined as shown in Figure 1 with
the MAPE-K approach, with sub-components for:

– Monitoring: extracting relevant information from sensors, probes or monitors
instrumenting the managed element, and available at its API;

– Analysis: using the monitored information as well as other knowledge e.g.,
on past history, to decide on reactions to take;

– Planning: transforming the decisions into actions
– Execution: implementing the action according to the managed element con-

trol interfaces or actuators;
– Knowledge: storing and maintaing relevant information of the managed ele-

ment, used in the other sub-components, and updated by them.

Such autonomic loops can be designed and developed in many different ways,
relying on techniques from e.g. Artificial Intelligence, but an important issue
remains in providing guarantees on the behavior of such automated closed-looped
systems as the are generally difficult to master. A typical example is the so-
called “state-flapping” problem [20, p. 7:21], where reconfigurations altern back
and forth between two states because transition conditions are too close.

Control-Based Design of Adaptive and Autonomic Computing System 97

Control for feedback computing is therefore a particularly interesting ap-
proach where this feedback loop is considered as a case of a control loop, where
techniques stemming from control theory can be used to design efficient, safe,
and predictable controllers [18]. Control theory provides designers with a frame-
work of methods and techniques to build automated systems with well-mastered
behavior. It involves sensors and actuators that are connected to the process or
“plant” i.e., the system to be controlled. A model of the dynamic behavior of
the process is built, and a specification is given for the control objective, and
on these bases the control is derived, following a formal computation. Although
there are approaches to the formal derivation of software from specifications, this
methodology is not usual in Computer Science, where often a solution is designed
directly, and only then it is analyzed and verified formally, and the distinction
between the process and its controller is not made systematically. This approach,
sometimes called Feedback Computing [18,29], although well identified, is still
only emerging. Works are scattered in very separate and dispersed efforts, in
different communities. Some surveys exist [5,8,10], offering a classification [25],
or concentrating on Real-Time computing systems [2].

The control approach advantages [29] come from its rigorous methodology
for modeling, designing, and analyzing feedback loops. It supports the design
of controllers that effectively manage uncertainties in computing systems, with-
out needing accurate models. They bring interesting properties of stability or
robustness, which, in the context of computer systems improves predictability.
On the other hand, there are of course difficulties and limitations. Making the
mapping from high-level management objectives to actual system-level sensors
and actuators, and to appropriate control models can be hard. Modeling com-
puting systems does not easily fit classical control methodologies: difference in
cultures shows for example in that many classical control problems are formu-
lated as regulation or tracking problems, rather than optimization, and deal only
with continuous metrics. On the side of the objects of control, most computing
systems were not designed to be controllable in the first place, and it is a real
architectural research problem to build and instrument them appropriately.

2.2 Reactive Systems, their Programming, and Discrete Control

The AM shown above is intrinsically a reactive component, therefore some design
approaches originally intended for embedded systems and general feedback loops
can be of interested for autonomic managers, for which they can be adapted.

Reactive systems and synchronous languages are characterized by their
continuous interaction with their environment, reacting to flows of inputs by
producing flows of outputs. They are classically modeled as transition systems
or automata, with classically famous languages like StateCharts [17]. We adopt
the approach of synchronous languages [3], because we then have access to the
control tools used further. Well known languages feature the imperative Esterel,
the equational declarative Lustre and Signal. The synchronous paradigm refers

98 X. An et al.

(a)

= false = false a a

= true a

e /
r and c / s

 c / s

r and not c / s

Active

WaitIdle

delayable (r, c, e) = a, s

(b)

node de layabl e (r , c , e : bool) r e tu rns (a , s : bool)
l e t automaton

s ta t e I d l e
do a = f a l s e ; s = r and c
un t i l r and c then Active
| r and not c then Wait

s ta t e Wait
do a = f a l s e ; s = c
un t i l c then Active

s ta t e Active
do a = true ; s = f a l s e
u n t i l e then I d l e

end
t e l

Fig. 2. Heptagon/BZR example: : (a) graphical / (b) textual syntax

to the automata parallel composition that we use in these languages, allowing for
clear formal semantics, while supporting modelling asynchronous computations
[15]: actions can be asynchronously started, and their completion is waited for,
without blocking activity continuing in parallel.

The Heptagon/BZR language [13] supports programming of mixed synchr-
onous data-flow equations and automata, called Mode Automata, with parallel
and hierarchical composition. The basic behavior is that at each reaction step,
values in the input flows are used, as well as local and memory values, in order
to compute the next state and the values of the output flows for that step. Inside
the nodes, this is expressed as a set of equations defining, for each output and
local, the value of the flow, in terms of an expression on other flows, possibly
using local flows and state values from past steps. This can already be seen as a
programmatic solutions for reconfiguring the data flow between in- and outputs,
providing for control and coordination of data-flow tasks.

Figure 2 shows a small Heptagon/BZR program. The node delayable pro-
grams the control of a task, which can either be idle, waiting or active. When it
is in the initial Idle state, the occurrence of the true value on input r requests
the starting of the task. Another input c can either allow the activation, or tem-
porarily block the request and make the automaton go to a waiting state. Input
e notifies termination. The outputs represent, resp., a: activity of the task, and
s: triggering the concrete task start in the system’s API.

Such automata and data-flow reactive nodes can be reused by instantiation,
and composed in parallel (noted ";") and in a hierarchical way, as illustrated
in the body of the node in Figure 3, with two instances of the delayable node.
Particularly, in the second instance, input c is fed with the constant flow true:
hence, the behavior of this instance is specialized in that the requests are always
immediately starting the task. They run in parallel, in a synchronous way: one
global step corresponds to one local step for every node. In particular, when
r1, r2, c1 are received true at the same step from the initial state, the resulting
state is such that a1 ∧ a2.

Synchronous languages are tool-supported, and compilers automatically gen-
erate executable code, e.g., in C or Java, typically structured as a reset function
to initialize variables, and a step function, implementing the global transition

Control-Based Design of Adaptive and Autonomic Computing System 99

function. The code calling this function is application-dependent, and can be an
infinite loop, a periodical call, or an event-based or interruption mechanism.

Verification and discrete control are the available when using a reactive
language, which gives all the support of the the classical formal framework of
Labelled Transition Systems (LTS): they involve two main features. On the one
hand there is a memorization of a state, the current value x(k) resulting from
the previous transition at k − 1 (with an initial value x(0)). On the other hand
is a transition function T computing the next value of the state in function of
the current observed input value y(k) and current state. It also computes output
values o(k), to send commands to the controlled system:

(x(k + 1),o(k)) = T (y(k),x(k)), x(0) = x0

Particularly, we benefit from state-space exploration techniques, like Model-
Checking, in order to check whether or not a temporal logic formula is satisfied
by all the possible executions of the program.

More originally, the LTS of a program can be applied the operation of Discrete
Controller Synthesis (DCS). Initially defined as supervisory control of discrete
event systems in the framework of language theory [26], DCS has been adapted
to symbolic LTS and implemented in synchronous tools [23]. The LTS variables
y are partitioned into controllable ones c and uncontrollable ones uc. For a given
control objective (e.g., staying invariantly inside a given subset of states, consid-
ered “good”, or keeping some states reachable), the DCS algorithm automatically
computes, by exploration of the state space, the constraint on controllable vari-
ables, depending on the current state, for any value of the uncontrollables, so
that remaining behaviors satisfy the objective. This constraint is inhibiting the
minimum possible behaviors, therefore it is called maximally permissive. The
resulting synthesized controller C gives values to controllable variables c, which
are part of the parameters of the transition function T . In brief:

x(k + 1) = T (uc(k), c(k),x(k)), x(0) = x0

c(k) = C(uc(k),x(k))

Algorithms are related to model checking techniques for state space exploration.
If no solution is found, because the problem is over constrained, then DCS plays
the role of a verification. Discrete control objectives can be logical : ensuring,
for a given subset of states characterized by a predicate, its invariance (by con-
trol, it will not be left), reachability (from all visitable states), attractivity (no
cyclic sequence of transitions can avoid it). They can involve weights associated

twotasks(r1, c1, e1, r2, e2) = a1, s1, a2, s2

(a1, s1) = delayable(r1, c1, e1) ;

(a2, s2) = delayable(r2, true, e2)

Fig. 3. Heptagon/BZR example: nodes composition

100 X. An et al.

with states for quantitative aspects : bounding capacity, optimizing performance.
Multiple criteria optimization can also be supported. In the framework of the
synchronous languages and technology, the tool Sigali [23] is integrated in the
programming environments, and in the compiler of the BZR language [19].

Discrete feedback computing i.e., applying discrete control theory to com-
puting systems, is more recent than using classical control theory [18], as was
noted by other authors, essentially because it is less well-known than classical
control and less developed than classical verification and model-checking. Earli-
est works deal with controlling workflow scheduling [27] or application-specific
task schedulers [24,22]. A whole line of work focuses on the computing systems
problem of deadlock avoidance in shared-memory multi-threaded programs [28].
Another kind of software problem concerns run-time exceptions raised by pro-
grams and not handled by the code [14].

Some related work can be found in computer science, in the notions of pro-
gram synthesis. It consists in translating a property on inputs and outputs of a
system, expressed in temporal logics, into a lower-level model, typically in terms
of transition systems. For example, it is proposed in a UML-related framework,
with the synthesis of StateChart from Live Sequence Charts [16]. These program
synthesis approaches do not seem to have been aware of Discrete Control Theory,
or reciprocally: however there seems to be a relationship between them, as well
as with game theory, but it is out of the scope of this paper. Also, interface syn-
thesis [7] is related to Discrete Controller Synthesis. It consists in the generation
of interfacing wrappers for components, to adapt them for the composition into
given component assemblies w.r.t. the communication protocols between them.

3 The BZR Language for Tool-Supported Design

Given our goal of combining adaptivity and dependability in adaptive and re-
configurable computing systems, we will combine reactive languages and models
with the autonomic computing structures and objectives. A central aspect in our
tool-supported approach is the specification and programming language Hep-
tagon/BZR, which provides for high-level design of controllers, and encapsulates
discrete control as a compilation operation.

Contracts on nodes are defined in the Heptagon/BZR language [19] using
a behavioral contract syntax [13]. It allows for the declaration, using the with
statement, of controllable variables, the value of which are not defined by the
programmer. These free variables can be used in the program to describe choices
between several transitions. They are defined, in the final executable program,
by the controller computed off-line by DCS, according to the Boolean expres-
sion given in the enforce statement. Knowledge about the environment such
as, for instance event occurrence order can be declared in an assume statement.
This is taken into account during the computation of the controller with DCS.
Heptagon/BZR compilation invokes a DCS tool, and inserts the synthesized con-
troller in the generated executable code, which has the same structure as above:

Control-Based Design of Adaptive and Autonomic Computing System 101

observer(s1, s3, e1, e2) = err

e2 ∧ ¬s3 ∧ ¬s1

s3

s1 ∧ ¬s3

err = false

err = true

s3 ∧ ¬e1

e1

e2 ∧ ¬s3 ∧ s1

err = falseerr = false

e2 ∧ s3

(a) Observer: always 1 between 2 and 3

ar, sr, ag, sg = twotasks(r, cr , er, g, eg)

enforce not err

with cr

insert(r, er, g, eg) = ar, sr, ag, sg

err = observer(sg, sr, eg, er)
assume true

(b) Contract node for task insertion

Fig. 4. Observer and contract node

reset and step functions. Figure 4(b) shows an example of contract coordinating
two instances of the delayable node of Figure 2(a), as assembled together in
the twotasks node of Figure 3. The insert node has a with part declaring
controllable variable cr, and the enforce part asserts the property to be en-
forced by DCS: not err. The assume part is set to true, meaning that there is
no assumption on the environment. The contract can itself feature a program,
typically automata observing traces and defining states, to express a variety of
safety properties. For example, an error state can be defined where the intended
property is false, with the intention to keep it outside an invariant subspace.
Such an observer is illustrated in Figure 4(a) : given input flows for the starting
and stopping events of three tasks, it outputs value true on flow err when a
sequence is observed such that task 3 is started (upon s3) after task 2 (upon
its end event e2), without a complete execution of task 1, from s1 to e1, having
taken place in between : this sequence violates the property that we have always
1 between 2 and 3. The contract in Figure 4(b) uses this observer for having
always an execution of the simple task between two executions of the delayable
task; this amounts to make invariant the state space where err is false. To en-
force this, cr will be used by the synthesized controller to delay the starting of
the delayable task until a full execution of the other one ends. The constraint
produced by DCS can have several solutions: the Heptagon/BZR compiler gen-
erates deterministic executable code by favoring, for each controllable variable,
value true over false, in the order of declaration.

The need for modularity comes when designs become complex. Advantages
of our DCS-based approach, more constructive than classical verification, are:

– (i) high-level language support for controller design (tedious and error-prone
to code manually at lower C or Java level) with declarative objectives ;

– (ii) correctness of the controller, w.r.t. the objectives, by definition of the
algorithms (hard to guarantee manually) ;

– (iii) maximal permissiveness of controllers : they are minimally constraining,
and in that sense optimally flexibile (even harder to obtain manually);

– (iv) automated formal synthesis of these controllers (rather than tedious
hand-writing followed by verification);

– (v) automated executable code generation in C or Java.

102 X. An et al.

node(...) = ...
assume A enforce G

with c1, ...cq

subnode1(...) = ...
assume A1 enforce G1

; . . . ;
subnoden(...) = ...
assume An enforce Gn

Fig. 5. Modular contracts in Heptagon/BZR

However, when considering a large number of managers, this monolithic ap-
proach might not succeed, because exploring the large state space is very time
consuming, and can fail due to computing resource limits, which limits the scal-
ability of the approach. Furthermore, a modification, even partial, leads to a
recompilation of the overall coordinated composition invalidating previous gen-
erated codes which limits the re-usability of management components.

To address this issue, we exploit modular DCS, where the control objectives
can be decomposed in several parts, each part managed by a controller. Each
controller manages a limited number of components. This decreases the state
space to explore for the synthesis of each controller. The recompilation of a con-
troller that has no impact on other controllers does not require the recompilation
of the latter. This makes possible the re-use of controllers generated codes.

Modular contracts in Heptagon/BZR are based on the modular compila-
tion of the nodes: each node is compiled towards one sequential function, regard-
less of its calling context, the inside called nodes being abstracted. Thus, modular
DCS is performed by using the contracts as abstraction of the sub-nodes. One
controller is synthesized for each node supplied with local controllable variables.
The contracts of the sub-nodes are used as environment model, as abstraction
of the contents of these nodes, to synthesize the local controller. As shown in
Figure 5, the objective is to control the body and coordinate sub-nodes, using
controllable variables c1, ..., cq, given as inputs to the sub-nodes, so that G is
true, assuming that A is true. Here, we have information on sub-nodes, so that
we can assume not only A, but also that the n sub-nodes each do enforce their
contract :

∧n
i=1(Ai =⇒ Gi). Accordingly, the problem becomes that: assuming

the above, we want to enforce G as well as
∧n

i=1 Ai. Control at composite level
takes care of enforcing assumptions of the sub-nodes. This synthesis considers
the outputs of local abstracted nodes as uncontrollable variables, constrained by
the nodes’ contracts. A formal description, out of our scope here, is available [13].

Control-Based Design of Adaptive and Autonomic Computing System 103

outputs

managed system

inputs

current state

controllables

transition functionobjectives / controller

Fig. 6. Autonomic loop based on discrete control

4 Discrete Control-Based Autonomic Managers

The specification and programming language presented before, independently
of AM design, can now be integrated in a method first exposed generally in
Section 4.1, and then illustrated by brief summaries of works concerning recon-
figuration control in DPR FPGA-based architectures in Section 4.2, and the
coordination of administration loops in Section 4.3.

4.1 General Design Method

An interpretation of the MAPE-K loop of Figure 1 in terms of the discrete
control framework of Section 2.2 is illustrated in Figure 6. For simplification, the
Monitoring and Execution parts are considered as simply forwarding sensor in-
puts and action outputs to the ME. The Knowledge part is assimilated to the
current state of the reactive system. The Analysis part is in charge of making
decisions w.r.t. choices in reconfiguration, according to the adaption strategy or
policy : we assimilate it to the specification of the control objectives, at design
time, which is then transformed by DCS and compilation into a controller tak-
ing the same place at execution time. The decisions are encoded as values on
choice points corresponding to the controllable variables, which are internal to
the AM. The Planning part in assimilated to the transition function, computing,
from the previous choice and current state (as well as inputs, here shown through
the controller for simplification), which are the actions to be executed to imple-
ment them. Our discrete control-based approach is an effective tool-supported
method for the design of AMs, which at the same time provides the designer
with guarantees on the behaviour of the controller, through the use of DCS.

Typical modeled features appearing in the design of AM are related to
computing systems and their common aspects in different fields. Of course the
management of data-centers supporting the Cloud is not identical to the re-
configuration controllers of embedded FPGA architectures. However there are
similarities in the manipulated objects, all resorting to computing.

104 X. An et al.

The computing activities under control are tasks for which typical observabil-
ity involves the state of activity (idle, active, waiting or other application specific
aspects), as well as relevant events notifying end of task or check points ; con-
trollability through choice points concerns firing the task or not, and choosing
variants or modes of the delivered service distinguished by the use of different
implementations and resources. Such tasks can be scheduled according to an
application workflow: this knowledge can usefully be integrated in the model, in
that it provides a predictive view of tasks to come in the future, which can in-
fluence the present choices. Resources can also feature observability (their usage
level according to metrics, their charge level in the case of energy supply) and
controllability (adding or removing computing resources, sleep modes).

The adaptation policies or strategies have to be explicited and formulated
formally themselves, in the form of control objectives. The typically concern
resource access control (exclusivity or bounded capacity), application termina-
tion (reaching a target state), fault tolerance (maintaining activity on other
resources upon failures), or more elaborate sequencing patterns. These common-
alities observed in case studies suggest a level of generality of the problem and
the proposed solutions.

Granularity levels can be quite diverse, both in time or pace (the period of the
loop can be in minutes or even hours) and detail (the managed computations can
be whole systems). At the lowest level of MEs, computations should, just as
usual, of course be as fast as possible and the possible overhead of monitoring and
sensing should not interfere with system performance. Especially in parallel and
distributed systems the feedback loop should not impose costly synchronizations.

At the level of an AM, it is indeed the case however that the MAPE-K loop
is not supposed to run at that pace, and is mostly much slower or even sporadic
when event-based. This depends completely on the level of the decision to be
made, and on the duration of the execution of actions implementing it. As such,
it is similar to the period of control systems begin determined by the dynamics
of the process that has to be controlled. This dictates the maximal allowable
period between two significants events to be observed, and not to be missed ;
in turn, the latter gives an upper bound to the decision technique used, which
should not cost more time (hence limiting e.g., optimization techniques).

At the level of AMs coordination the pace can be naturally considered
even slower, and the feedback loop makes a step sufficiently rarely (compared
to e.g., processor frequency) for enabling the use of synchronizations such as in
distributed algorithms (e.g., leader election) when needed.

In our case, the most costly part in our method is DCS, but it is performed
off-line and therefore is not limited by the ME dynamics, but rather by the
design-time computing resources. The run-time cost is only that of the execution
of a decision diagram function i.e., very low. However an important aspect is the
size of the state space, in which DCS algorithms are exponential: therefore it is
vital to determine the highest possible level of the model, abstracting away from
fine-grain computations and from detailed fine-grain state-spaces.

Control-Based Design of Adaptive and Autonomic Computing System 105

4.2 Reconfiguration Control in DPR FPGA-Based Architectures

Dynamically reconfigurable hardware has been identified as a promising solution
for the design of energy efficient embedded systems. However, its adoption is
limited by the costly design effort including verification and validation, which is
even more complex than for non dynamically reconfigurable systems. Therefore,
we appley our tool-supported formal method to automatically design a correct
control of the reconfiguration [1]. We design generic modeling patterns for a class
of reconfigurable architectures, taking into account both hardware architecture
and applications, as well as relevant control objectives. We validate our approach
on case studies implemented on Dynamic Partial Reconfigurable (DPR) FPGA.

The considered class of architectures is presented informally through an
example. Three levels are modeled separately, for which we will control the in-
teractions according to global objectives:

– architecture is multiprocessor on n reconfigurable tiles A1–An, plus a gen-
eral purpose processor A0 (e.g., ARM core). A tile Ai can be configured by
uploading a bitstream encoding the function to be executed, and put to sleep
mode with a clock gated mechanism to consume a minimum static power. A
battery supplies energy, with a sensor for charge going up or down.

– tasks are defined with choices, upon request, between starting immediately
or delaying ; between different bitstreams characterized each by : tiles used,
WCET (Worst Case Execution Time), reconfiguration time, power peak.

– application is specified as a dependency graph between tasks: upon end
notification of a task, requests are emitted for its following task(s);

The control problem is to use choices in order to satisfy global constraints
according to resource state and activities in parallel or further in the application.
The desired reconfiguration policy informally involves :

1. resource usage constraint: e.g., exclusive use of reconfigurable tiles A1-A4;
2. energy constraint: switch tiles to active mode if and only if needed;
3. power peak constraint: bounded by a maximum w.r.t battery level;
4. reachability: application graph execution can always finish once started;
5. optimizing e.g., global power peak is also possible [1].

A typical example of decision to be made is that, upon progress in the task
graph, new tasks must be started by choosing the mode or bitstream compatible
with available resources constraints, taking into account possible futures in the
application, which can require to keep resources for a later task. Figure 7 sum-
marizes, in the framework of Figure 6, what we need to formalize, and identifies
controllable and uncontrollable variables, as well as the relevant state informa-
tion, which determine the model abstraction level.

Generic models are shown in Figure 8, with patterns for modelling relevant
states and controllable or uncontrollable events. Architecture is modeled in (a)

106 X. An et al.

transition function
tiles exclusivity, on/off

bound power peak / batt.
reach end of DAG

mode or delay
sw. on/off tile

progress in DAG (incl. possible futures)
activity of task modes (incl. costs),

state of tiles and battery

battery charge
ends of tasks start task mode

sw. on/off tile

FPGA, tasks, application, battery

Fig. 7. Autonomic loop for DPR FPGA

(a) (b)

(c) (d)

Fig. 8. Generic models: (a) tile i, (b) task graph, (c) two modes task, (d) battery

for each tile (with state acti, controlled by c_ai), and (d) battery observer (giving
its state st, high, medium or low, according to received sensor values). In (c) a
task example with two modes has uncontrollable requests ri and end notifications
ei, and controllables c1, c2 to choose between modes, emitting state es and values
characterizing them. In (b) an application example with 4 tasks (A; (B||C);D)
shows states recording progress in the graph, giving predictive model on which
tasks can be fired in the future, in reaction to end notifications ei, emitting
requests ri towards tasks, with terminal state T. In order to model possible
behaviors of the system, these patterns are instantiated for all components, and
composed in parallel: (RM1||...||RM4||BM ||TMA||...||TMD||Application) with
values from modes of the active tasks being also composed, defining global values
for the different resources metrics (e.g., sum of local ppi into PP , union of rs).

Invariance and optimal control objectives are defined in contracts upon this
global behavior model. Controllable variables are declared in the with statement,
other inputs being uncontrollable inputs. The policy above can be formulated
in a generic way [1] in terms of properties mentioned in Section 2.2: Objective
1 to 3 are invariance objectives on state variables and associated metrics con-
stant values, e.g., for 3 : PP < (v1 if st = h else v2 if st = m else v3 if st = l).
Objective 4 concerns reachability of terminal state T .

Control-Based Design of Adaptive and Autonomic Computing System 107

Two experimental case studies have been implemented to demonstrate the
previous control models on real FPGAs [1]. After compilation towards executable
code, the controller is running on a Microblaze soft core (i.e. A0) on the FPGA.

4.3 Coordination of Administration Loops

Real autonomic systems require multiple management loops, each complex to
design, and possibly of different kinds (quantitative, synchronization, involving
learning, ...). However their uncoordinated co-existence leads to inconsistency
or redundancy of action. Therefore we apply our method to the discrete control
of the interactions of managers [11]. We follow a component-based approach
and explore modular discrete control, allowing to break down the combinatorial
complexity inherent to the state-space exploration technique. It also allows re-
using complex managers in different contexts without modifying their control
specifications. We validate our method on a multiple-loop multi-tier system.

The administration loops and their need for coordination are considered
in the context of JEE multi-tier applications which consist of: an apache web
server receiving incoming requests, and distributing them with load balancing
to a tier of replicated tomcat servers. The latter access to a database through
a mysql-proxy server which distributes the SQL queries, with load balancing, to
a tier of replicated mysql servers The global system running in the data-center
consists of a set of such applications in parallel.

A set of autonomic managers are used to administrate the system: Self-sizing
decides on the degree of replication of servers depending of the system over- or
under-load measured through the CPU usage. It aims at lowering the resources
usage while preserving the performance. It can add new replicas (which takes
time), or remove some (considered immediate); each of these two actions can be
inhibited. Self-repair targets a load balancer as well as replicated servers. It
manages fail-stop failure detected through heartbeat. It aims at preserving
the availability of the service. It triggers repair actions (taking time), which
can be inhibited. Consolidation targets the global virtualized data-center. It
adapts the computing capacity made available in a virtualized data-center, to
either decrease or increase it. It can be controlled by delaying the actions.

Coordination problems can occur when e.g., several loops react to the same
overload whereas one would have sufficed, or a failed load balancer leads to down-
sizing followed by upsizing again right after repair. Also, consolidation requires
to operate on a stable system in order to be consistent. The desired coordination
policy informally involves the following constraints:

1. In a replicated tier, avoid size-up when repairing.
2. In a load-balanced tier, avoid size-down when repairing the load-balancer.
3. In general, avoid size-down in a successor tier when repairing a predecessor.
4. At global data-center level, when consolidating, avoid self-sizing or repairing.
5. Wait until repairs or add finish before consolidation decreasing, and until

removals finish before increasing.

108 X. An et al.

transition function
objectives 1−5

state of activity of managers

 rem or rep
suspend add,

delay Incr, Decr

add, rem, rep,
Incr, Decr

o, u, fail, i, d
notif. : na, nr, e

autonomic managers for sizing, repair, consolidation
multi−tier servers system

Fig. 9. Autonomic loop for Coordination

Figure 9 summarizes, in the framework of Figure 6, what we need to formalize.
It shows that the relevant information here is the state of activeity of AMs,
abstracting away from the way the individual controllers are working: we do not
consider how they perform, but observability on their activity and controllability
on their actions. The pace at which the coordination loop must work is defined
by the input events, much slower than the underlying data-center computations.

Their coordination by modular control is based on generic models for each
of them. Self-sizing control is an instance of node ctrl-mgr in Figure 10(a),
with outputs la for long action add, sa for short action rem and s for busy
state adding ; and with inputs for control: ca and crm for the actions, and for
monitoring: ml for overload o, ms for underload u, and notification nl for adding
na. This defines (add, rem, adding) = self-sizing(ca, crm, o, u, na).
Self-repair control is a simpler case, with only a long action of repairing, also
an instance of ctrl-mgrwith outputs: long action rep, and busy state repairing
; and inputs: control ca, failure fail, and notification of repair done nr. Unused
parameters can be, for inputs, given the constant value false, and for outputs be
left unused. This defines: (rep, repairing) = self-repair(cr, fail, nr).
Consolidation control in Figure 10(b) presents essentially the waiting mecha-
nism of the delayable action of Figure 2(a), for each of its two long actions, the
activity of which is given by Incr and Decr. In the initial Idle state, when i is
true (increase is required), if ci is true it goes to I and emits si to start the
increase plan, otherwise it goes to WaitI and awaits ci to go to Incr and emit si.
When in Incr, it awaits until the notification of end e then returns back to Idle.
The case for decrease is similar.

Coordination Objectives. The models are instantiated for each AM in the
system, and their composition gives the global behavior before control. The
control is specified on this composed behavior. We formalize the strategy above:

Control-Based Design of Adaptive and Autonomic Computing System 109

S1 S2

nl /

ml / la
 ms/ sa

cl, cs,

andcs
andcl

=False =Truess

(la, sa, s) = ctrl−mgr(ml, ms, nl)

(a) AM controllability model

i and not ci

IdleWaitI WaitD
d and not cd

cd / sd

i and ci /
si

d and cd /
sd

e / e /
ci / si

DI

Decr = false Decr Decr
IncrIncr

= false
= false

= false
= false

Decr= false = true Decr
Incr = true = false Incr

= false Incr

(si, sd, Incr, Decr) = consolidation (ci, cd, i, d, e)

(b) Consolidation control behavior model

Fig. 10. Modelling managers control

Repair Sizing

CtrlrM1

Coord-rep. tier

Repair Coord-rep. tier

CtrlrM2

Coord-lb-Rep. tier

Coord-lb-Rep. tier Coord-lb-Rep. tier

CtrlrM3

Multi-tier system

Fig. 11. Bottom-up re-use of nodes

1. not (repairing and add).
2. not (repairingL and rem) with repairingL from load-balancer self-repair.
3. between predecessor and successor tiers: not (repairingpred and remsucc).
4. not ((Incr or Decr) and (repairing* or adding* or rem*)) where *

stands for conjunction of all corresponding states.
5. not ((repairing* or or adding*) and sd) and not (rem* and si).

These properties can be grouped into a global contract to synthesize an in-
variance controller, but in order to have scalability and reusability, the system
can be built up bottom-up as shown in Figure 11. A first node Coord-rep. tier
cares for coordination within a replicated tier, with Objective 1. In order to be
re-usable, the node has to have a contract that exposes to upper nodes that when
a long action is started it is actually executed [11]. It is re-used in Coord-lb-Rep.
tier, composed with the load-balancer self-repair, with Objective 2. For complete
application, this node can be re-used twice, to form node Multi-tier system, with
Objective 3. At data-center level, this last node is instantiated for each applica-
tion, and composed with the consolidation model, with Objectives 4 and 5. This
decomposition of DCS operations improves synthesis time dramatically, and the
modular code generation enables distributing the controller. These controllers
have been validated on an experimental data-center [11].

5 Discussion and Perspectives

Results. This invited paper makes an overview of our works addressing discrete
control-based design of adaptive and reconfigurable computing systems, also
called autonomic computing. We propose a tool-supported method, involving

110 X. An et al.

a reactive language and its compiler encapsulating techniques stemming from
discrete control theory. We validate the approach in domains ranging from soft-
ware components and smart environments to hardware reconfigurable architec-
tures. Our results demonstrate that control-based techniques for the design of
autonomic loops can augment computing systems with, at the same time, self-
adaptation capabilities and also predictability.

Limitations and extensions are of course made visible by our experiments,
and there is still much to be done for supporting efficiently at the same time
predictable and adaptive computing systems through behavioral model-based
methods. Some perspectives are as follows.

Modeling is bound to be an important part of the work for spreading behavioral
model-based control methods. Indeed, as is the case also for classical control-
based approaches [29], formulating autonomic management problems in terms
of systems behaviors and control objectives is hard, especially as computing
systems are usually not at all designed to be controllable. Our work explored
aspects related to computing resources like servers or cores on a multiprocessor
architecture, but other aspects of computing systems should be considered, such
as memory management issues (migration for proximity with a cache ; Software
Transactional Memory contention management), communications (choice of me-
dia between e.g., wire, WiFi, Bluetooth, ..., w.r.t. throughput, energy cost, ...)
or also security aspects. There often are favorable situations where the choices
to be made at run-time are between predefined sets of configurations: the control
is to enable efficient and appropriate use of these resources following dynamical
changes in the environment and system. Changes anticipated at design time can
be reified as variation points and exploited by the controller.

Expressivity and scalability of the modeling formalism need to be extended in
order to improve the applicability of discrete control to realistic systems. Ex-
pressivity can be extended in order to account for more aspects of the systems,
and incorporate logico-numeric properties [4], or have a combined control where,
amongst the possibly several solutions satisfying the objective, determined by
discrete control, a choice can be specified according to other criteria e.g., prob-
abilistic or related to the continuous dynamics of the system.

Scalability requires efficiency in the DCS tools, which can benefit from progress
made in Model Checking: algorithms have similar cost, intrinsically exponential
in the worst case. This limits dramatically the above requirements of expres-
sivity, as timed or hybrid formalisms have even higher costs. However, there is
a way to attack this problem in the modeling phase, by identifying carefully
chosen levels of abstraction, for acceptable overhead / cost, at least in small to
medium systems. With modular and hierarchical decomposition of the problems,
controllers can be built for the different levels of decision, with different paces,
as mentioned in Section 4.1.

High-level languages and Domain Specific Languages (DSLs) are a useful help
for usability of these methods: their aim is to allow of designers to describe their

Control-Based Design of Adaptive and Autonomic Computing System 111

systems in terms of the entities and components they manipulate, rather than
in terms of the formalisms. we are building upon the experience of Nemo [12] in
order to define a component-based systems language, extending known Archtec-
ture Description Languages (ADLs), where not only assemblies of components
are structurally defined, but also the different configurations and the reconfig-
uration behavior between them are described explicitly. As for other languages
built on top of underlying tools, this poses problems for diagnostic, when there
are several layers of translation between DSL and verification or synthesis tool.
Also, the specifity of DCS is that it works like a constraints solving tool, making
diagnostic in case of failure difficult to isolate and locate in the program.

Adaptive control is a desirable feature for autonomic computing, especially in
open systems, typically the Cloud, where new components can enter, and oth-
ers can leave the system to be managed. Another source of change is that new
policies or strategies must be enforced, which translates into a change of con-
trol objective. Adaptive discrete control has hardly been studied in research on
Discrete Event Systems, and can be seen as a new challenge motivated from
applications such as Autonomic Computing. Directions to address it can be
seen amongst having an upper controller switching between previously prepared
controllers, or, for slow-paced systems, having a DCS phase at run-time (for
reasonably sized subsystems) producing a new controller.

References

1. An, X., Rutten, E., Diguet, J.-P., le Griguer, N., Gamatié, A.: Autonomic man-
agement of dynamically partially reconfigurable fpga architectures using discrete
control. In: In Proc. of the 10th International Conference on Autonomic Computing
(ICAC 2013) (June 2013)

2. Årzén, K.-E.: al. Conclusions of the ARTIST2 roadmap on control of computing
systems. ACM SIGBED (Special Interest Group on Embedded Systems) Review
3(3) (July 2006)

3. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages twelve years later. Proc. of the IEEE, Special issue
on Embedded Systems 91(1), 64–83 (2003)

4. Berthier, N., Marchand, H.: Discrete Controller Synthesis for Infinite State Systems
with ReaX. In: IEEE International Workshop on Discrete Event Systems, Cachan,
France, pp. 420–427 (2014)

5. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer,
Heidelberg (2009)

6. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM 55(9),
69–77 (2012)

7. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
bidirectional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

112 X. An et al.

8. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009)

9. Chess, D.M., Palmer, C., White, S.R.: Security in an autonomic computing envi-
ronment. IBM Syst. J. 42(1), 107–118 (2003)

10. de Lemos, R., et al.: Software engineering for self-adaptive systems: A second re-
search roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013)

11. Delaval, G., Gueye, S.M.-K., Rutten, E., De Palma, N.: Modular coordina-
tion of multiple autonomic managers. In: Proceedings of the 17th International
ACM Sigsoft Symposium on Component-based Software Engineering, CBSE 2014,
pp. 3–12. ACM, New York (2014)

12. Delaval, G., Rutten, É.: A domain-specific language for multitask systems, apply-
ing discrete controller synthesis. EURASIP Journal on Embedded Systems 2007,
084192 (2007)

13. Delaval, G., Rutten, E., Marchand, H.: Integrating discrete controller synthesis into
a reactive programming language compiler. Discrete Event Dynamic Systems 23(4),
385–418 (2013)

14. Gaudin, B., Vassev, E.I., Nixon, P., Hinchey, M.: A control theory based ap-
proach for self-healing of un-handled runtime exceptions. In: Proceedings of the
8th ACM International Conference on Autonomic Computing, ICAC 2011, pp.
217–220. ACM, New York (2011)

15. Halbwachs, N., Baghdadi, S.: Synchronous modeling of asynchronous systems. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 240–251. Springer, Heidelberg (2002)

16. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: Generating statechart mod-
els from scenario-based requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)

17. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Trans. Softw.
Eng. Methodol. 5(4), 293–333 (1996)

18. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback Control of Computing
Systems. Wiley-IEEE (2004)

19. Heptagon/BZR language, http://bzr.inria.fr
20. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing: degrees, mod-

els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)
21. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36(1), 41–50 (2003)
22. Kloukinas, C., Yovine, S.: Synthesis of safe, qos extendible, application specific

schedulers for heterogeneous real-time systems. In: Proceedings of 15th Euromicro
Conference on Real-Time Systems, pp. 287–294 (July 2003)

23. Marchand, H., Bournai, P., Le Borgne, M., Le Guernic, P.: Synthesis of discrete-
event controllers based on the signal environment. Discrete Event Dynamic Sys-
tems: Theory and Applications 10(4), 325–346 (2000)

24. Marchand, H., Rutten, É.: Managing multi-mode tasks with time cost and quality
levels using optimal discrete control synthesis. In: 14th Euromicro Conference on
Real-Time Systems (2002)

http://bzr.inria.fr

Control-Based Design of Adaptive and Autonomic Computing System 113

25. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In:
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), Zurich, Switzerland (2012)

26. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

27. Wallace, C., Jensen, P., Soparkar, N.: Supervisory control of workflow scheduling.
In: Advanced Transaction Models and Architectures Workshop (ATMA), Goa, In-
dia (1996)

28. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of deadlock
avoidance via discrete control. In: Principles of Programming Languages, POPL,
Savannah, USA, pp. 252–263 (2009)

29. Zhu, X.: Application of control theory in management of virtualized data cen-
tres. In: Fifth International Workshop on Feedback Control Implementation and
Design in Computing Systems and Networks (FeBID), Paris, France (2010),
http://controlofsystems.org/febid2010/program.html

http://controlofsystems.org/febid2010/program.html

	Discrete Control-Based Design of Adaptive and Autonomic Computing Systems
	1Adaptive Computing Systems, and their Control
	1.1Administration Loops in Computing Systems
	1.2The Need for Control
	1.3Approach and Outline

	2Background
	2.1Autonomic Computing
	2.2Reactive Systems, their Programming, and Discrete Control

	3The BZR Language for Tool-Supported Design
	4Discrete Control-Based Autonomic Managers
	4.1General Design Method
	4.2Reconfiguration Control in DPR FPGA-Based Architectures
	4.3Coordination of Administration Loops

	5Discussion and Perspectives
	References

