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Abstract. Cloud computing appeals to private individuals and partic-
ularly enterprises at a progressive rate, but a noticeable percentage of
them refuse it due to mistrust or missing commitment to security. The
cryptosystem SecureString 2.0 was designed to outweigh these deficits
through the support of blind computations on character strings. Repe-
tition pattern attacks count among the most hazardous enemies of Se-
cureString 2.0 objects because reoccurring ciphergrams within them may
reveal linguistic identifying features of the correspondent plaintext. This
paper analyzes and compares the success probability of repetition pattern
attacks on the following three sorts of SecureString 2.0 objects: single-
word-containing ones, multi-word-containing ones with a known number
of words plus unknown delimiter positions, and multi-word-containing
ones with an unknown number of words plus unknown boundary loca-
tions. The latter type is expected to provide the highest privacy.
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1 Introduction

These days, private individuals and particularly enterprises have to administer
and process huge masses of data. Either they house and compute their binary
goods in their private computer centers respectively in their home workstations,
or they resort to outsourced virtual environments – well-known as (public) cloud
computing. While in-house solutions let their owners know where their data
reside, redundancy through geographical replicas and scalability lack or demand
expensive expansions. Cloud computing offers the opposite with great flexibility
and resilience, but the detention of sensitive data as well as reading or writing
activities on them become nontransparent and thus probably dangerous.

The resulting challenge consists in the maximum yield of the advantages of
both paradigms accompanied by the eradication or mitigation of the disadvan-
tages. An imaginable approach could focus on costly enhancements of the own
physical IT-infrastructure to a private cloud to achieve all benefits. The cheaper
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way is taken by bringing (convenient) security to a public cloud. Security poses
as a coarse term and needs further specification. Privacy, integrity, authentic-
ity and resilience represent intersubjective desirable security goals that shall be
maintained at all.

Many scientific disquisitions have proposed ways to sustain data security in
outsourced unconfident or semiconfident domains. These ones for secure numeric
calculations try to explore feasible homomorphic functions. Most of those ones
for secure string computations tackle issues in enciphered databases and key-
word search in encrypted documents, mainly by dint of trapdoor functions. Both
function types – homomorphic and trapdoor ones – form the heart algorithms of
blind computing. Blind computing indicates that a cloud application computes
ciphertext data without becoming aware of the meaning of input, output and
intermediate results. A comparative overview of state-of-the-art published work
about blind computing can be found in [7].

SecureString 1.0 [6] belongs to the kind of cryptosystems for blind comput-
ing on nonnumerical data. It bases upon a topical underlying symmetric cryp-
tosystem and polyalphabetical encryption. The ciphering scheme encrypts each
n-gram (substring of length n) of a word together with the beginning position of
the n-gram within the word. Thereby, the start index of each n-gram stipulates
the applied alphabet on it. SecureString 1.0 brings the ciphertext n-grams out
of sequence after their encryption without losing the possibility to operate on
them because their order can be restored after their decryption through their
enveloped position information. Due to the finiteness of character string lengths
that can be fully supported through querying and replacing operations, every Se-
cureString 1.0 object intendedly contains exactly one word. Disadvantageously,
this discloses the string boundaries and abets repetition pattern attacks on them.

Among other improvements, the succeeding SecureString 2.0 [7,8] overcame
this limitation to permit an arbitrary number of cohered words per Secure-
String 2.0 object. In detail, SecureString 2.0 heads for monoalphabetical (sub-
stitutional) encryption within each character string, but every utilized alphabet
(alphabet = encryption transformation) must not become effective for more than
one word. Normally, each encryption transformation depends on a dedicated key,
but SecureString 2.0 enciphers each character of the same plaintext character
string together with an identical salt (salt = arbitrary nonce). If the salt always
transmutes from word to word, then the encryption transformation also changes
from word to word, even in case the same key would be employed for all character
strings. Automatic salt updating [1,9] is applicable, which means that each salt
serves as input for a hash function that outputs the salt for the encryption of the
successive plaintext word. This non-size-preserving behavior of SecureString 2.0
entails the advantage that the decryption scheme can simply ignore salts rather
than care about them. Optionally for flow control, the salts can be shortened to
make room for an appended sequential number that becomes verified during the
decryption scheme.

Howsoever SecureString 2.0 ensures a unique encryption transformation for
each character string, this treatise examines the first time how the success
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probability of repetition pattern attacks varies according to the foe’s knowl-
edge respectively nescience of the amount of enclosed words in SecureString 2.0
objects whose delimiters (e.g. blanks or full stops) appear as ciphertext char-
acters of ordinary words. The answer for this first inquiry strongly correlates
with the upshot of the following second raised question: Does the recognizability
of the proper word boundaries, whereupon each of them shares the salt with its
left-neighbored character string, abate if an opponent is unaware of the amount
of included words in SecureString 2.0 objects? The detectability of the genuine
delimiters and hence the success probability of repetition pattern attacks are
anticipated to recede if the quantity of ciphered character strings in Secure-
String 2.0 objects stays unclear for an opponent. The findings of these research
questions allow to assess the privacy of SecureString 2.0 objects for various rep-
etition pattern attack scenarios.

Apart from the introductive section, this paper is structured as follows: Sec-
tion 2 treats of preliminaries that are to be found in related work about repetition
pattern attacks. While Section 3 embodies a formal view on repetition pattern
attacks on single-word-containing SecureString 2.0 objects, Section 4 does the
same for multi-word-containing ones. Ultimately, Section 5 summarizes the ob-
tained examination results and suggests worthwhile future work.

2 Preliminaries

2.1 Repetition Patterns

A repetition pattern characterizes regularities of an observed text through map-
ping its characters to natural numbers. Appearing equal numbers indicate re-
occurring characters. Definition 1 expresses the generator function of a mono-
graphic repetition pattern for an arbitrary input text.

Definition 1. Let Σ be an alphabet, let v ∈ Σl be plaintext of length l ∈ IN,
and let vj ∈ Σ|j ∈ IN ∧ 1 ≤ j ≤ l be the jth character of v.

Then rp(vj) computes the jth number of the repetition pattern of v as follows.

rp(vj) :=

⎧
⎪⎨

⎪⎩

1 if j = 1

rp(vi) if (∃i ∈ IN|1 ≤ i < j)(vi = vj)

1 +max{(rp(v1), · · · , rp(vj−1)}) if (�i ∈ IN|1 ≤ i < j)(vi = vj)

The complete repetition pattern of v emerges from the ordered set RP (v) :=
{rp(vj)|1 ≤ j ≤ l}.

For example, the word ”cabbages” causes the repetition pattern ”12332456”,
just as the the character string ”guttural” ends in. Evidently, the generator func-
tion for repetition patterns is not injective. ”Idiomorphs” denote text particles
with the same repetition pattern [2]. Cryptanalysts name instantiations of pat-
terns without repetitions as pangrams [5]. The theoretical maximum of distinct
repetition patterns with length l equals the count of partitions of a set with
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Table 1. Bell numbers

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B(l) 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322

cardinality l [2], the Bell number B(l) :=
∑l−1

k=0

(
l−1
k

)
B(k) [3,4]. Table 1 depicts

the exponential growth of the Bell numbers. The most recent publication about
SecureString 2.0 [8] inadvertently supposed the Catalan numbers as upper limits
for producible differing repetition patterns that are growing more slowly than
the Bell numbers.

An encryption scheme behaves monoalphabetically if it substitutes each occur-
rence of a specific plaintext character or of an n-gram with the same ciphertext.
This statement even holds for contemporary ciphers with large block sizes (256
bits or more), but the odds (for hackers) look bad that such long plaintext blocks
recur. Even if plaintext block repetitions happen, more sophisticated operation
modes than ECB (Electronic Code Book) mode [10] impede the use of just one
alphabet and therefore ciphertext recurrences. Anyway, if a cryptosystem (such
as SecureString 2.0) deliberately processes shorter block lengths (e.g. 7, 8 or
16 bits at monographical substitutional encryption) to maintain the viability of
string operations directly on encrypted texts, then repetitive ciphertexts become
more probable. For this reason, the incorporated volatile salt in SecureString 2.0
grants ciphertext repeats within character strings only. Nonetheless, recurring
plaintext characters or n-grams induce related ciphertext repetitions. The first
invariance theorem in [2] confirms that all monoalphabetical substitutions pre-
serve identical repetition patterns between plaintexts and their counterpart ci-
phertexts. Shannon divides all plain- and ciphertexts into residue classes on the
basis of their repetition patterns [14]. In contrast, homophonic and polyalpha-
betical substitutions as well as transpositions destroy this heredity of repetition
patterns [2]. SecureString 2.0 exploits polyalphabetism to avert repeating ci-
phertext in different words and therefrom deductions of relationships between
them.

2.2 Repetition Pattern Attacks

A repetition pattern attack stands out as a subtype of dictionary attacks. To
conduct a dictionary attack, an offender requires a repository with an exhaustive
list of potentially occurring words [15]. A conventional dictionary attacker tries
to break (a secret password of) an authorization mechanism by testing it out
with one repository word after another until they reveal the correct element [12].
A repetition pattern attack on a sole ciphertext character string differs from a
traditional dictionary offense against an authorization mechanism in two points.

Firstly, only the repetition patterns of a subset of repository words coincide
with the repetition pattern of the attacked character string and come into con-
sideration as plaintext candidates. One could assume that a dictionary compre-
hends |Σ|l words with length l and thus |Σ| times more than such ones with with
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length l − 1 (corresponding to |Σ|l
|Σ|l−1 = |Σ|). Additionally, it is assumable that

the repetition patterns of the |Σ|l character strings with length l split into the
B(l) maximally possible alternatives equably. Both assumptions seldom persist
in practice. Already the recent survey about SecureString 2.0 [8] remarked that
the frequency scale of natural language words with various lengths resembles
almost normal distribution rather than equipartition. Also, only the minority
of the potential B(l) repetition patterns per length l matches for the vocables
of a natural language. The extremely rare incidence of more than two identical
letters in a row describes one obvious cause therefor.

Secondly, there exists no primitive deciding algorithm to unambiguously de-
termine the correct candidate. In case of natural languages, programs can de-
cide on orthographical and grammatical mistakes at the best rather than on the
meaningfulness of sentences or texts. Computers can combinatorially assemble
all candidate combinations and perform rudimentary preselections, but only hu-
mans possess sufficient feel for language to can make the final decision on useful
text constructs. In case of repetition pattern attacks on character strings that do
not appertain to a natural language, solely the evaluation of the most frequently
occurrent candidate could help.

If an assailant expects certain words or phrases (ideally such ones without
known idiomorphs) in a monoalphabetically enciphered cryptotext, then they
can look there for the appearance of the accordant repetition pattern and save a
lot of time instead of attempting to link all ciphered character strings to appro-
priate candidates in the dictionary. Each such discovered cryptotext fragment
together with the probable word forms a ”crib” [2]. The prosperous detection of
cribs claims the normalization of all search positions in the ciphertext as detailed
in example 1.

Example 1. Let Σ be an alphabet, let v := ”Hide the bomb near the pump”
be the targeted plaintext and w ∈ Σ27 its monographically monoalphabetically
encrypted counterpart, let u := ”bomb” be the sought keyword and q ∈ Σ4 its
monographically monoalphabetically enciphered counterpart, then the function
in Definition 1 generates the same repetition pattern RP (v) = RP (w) := ”1 2 3 4
6 7 4 8 9 10 8 11 4 12 13 6 7 4 14 15 10 14” for v and w respectively the

same repetition pattern RP (u) = RP (q) := ”1 2 3 1” for u and q.
Subsequently, RP (q) must be compared with each repetition pattern of all

six embraced character strings of w as follows: ”1 2 3 4”, ”1 2 3”, ”1 2 3 1”,
”1 2 3 4”, ”1 2 3” and ”1 2 3 1”. The bold repetition patterns label the two
idiomorphic substrings ”bomb” and ”pump”. The keyword ”bomb” poses as a
suboptimal example due to a bulk of coexisting idiomorphic English expressions
for the repetition pattern RP (q), but quests for words with inimitable repetition
patterns would promise better success.

Even if the spaces in v would become ciphered monograms in w rather than
staying invariant and thence exposed, the comparison of RP (q) with each of the
following 24 repetition patterns (which reflect all four characters long substrings
of w) identifies ”bomb” and ”pump”: ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”,
”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 1”, ”1 2 3 4”,
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”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”,
”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4”, ”1 2 3 4” and ”1 2 3 1”.

(Especially long) terms with unique repetition patterns can also be spotted
through those of their subpatterns that are unique as well. Queries for shorter
words respectively their resultant repetition patterns skimp on time. For the
same purpose, ciphergram look-ups for the nominative case of nouns respec-
tively for infinitive verbs may take place before continuing with their declined
or conjugated variants.

3 Repetition Pattern Attack on Single-word-containing
SecureString 2.0 Objects

In case of the SecureString 2.0 cryptosystem, the most easily breakable cipher-
text accrues if an opponent has the knowledge that it only incorporates such
SecureString 2.0 objects whereupon each of them comprises of exactly one en-
crypted dictionary entry. If a plaintext includes a dictionary word vm|m, o ∈
IN ∧ 1 ≤ m ≤ o with an unrivaled repetition pattern, and a SecureString 2.0
object merely consists of vm’s ciphered form wm in accordance with Theorem 1,
then |Um| = 1 and thence p(vm) = p(wm) = 1

1 = 1 ⇒, i.e. a repetition attack can
uncover wm very easily. Consequently, the probability of exposing one character
string of w attains the maximum value 1 with 1−∏o

k:=1 1−p(wk) = 1−0 = 1 be-
cause the factor 1−p(wm) = 1−1 = 0 zeros the entire product

∏o
k:=1 1−p(wk).

Theorem 1. Let Σ be an alphabet, let v ∈ Σ∗ be a plaintext with o ∈ IN|o > 0
delimited character strings, let vk ∈ Σ∗|k ∈ IN ∧ 1 ≤ k ≤ o be the kth word of v
and wk ∈ Σ∗ its correspondent SecureString 2.0 object, let w := {wk|1 ≤ k ≤ o}
be the ordered set of all SecureString 2.0 objects (each with an enciphered word
of v), let the function in Definition 1 generate the correct repetition pattern
RP (vk) = RP (wk) for each vk respectively wk, let Q ⊆ Σ∗ be a dictionary with
at least all o words that occur in v, and let Ωk ⊆ Q be the probability space with
all events (dictionary words) that precisely own the repetition pattern RP (wk).

1. Then

p(wk) :=
1

|Ωk| |(∀u ∈ Ωk)(RP (wk) = RP (u))

is the probability of choosing the right dictionary item for wk,

2.

1−
o∏

k:=1

1− p(wk)

is the probability of guessing the true dictionary word for at least one char-
acter string of w,
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3. and

p(w) :=

o∏

k:=1

p(wk)

is the probability of choosing the right dictionary item for each character
string of w.

Proof:

1. wk encapsulates only a single event. Therefore, the set Ak ∈ P(Ωk) with
the correct events must be singleton and incloses just vk. The incidence rate
p(Ak) = p(vk) = p(wk) can differ from text to text and hence is presumed
equally as that of the other members of Ωk with p(u)|(∀u ∈ Ωk)(u 	= vk).
If all events in a finite probability space resemble uniform distribution, then
the incidence rate for each of them is p(u) = p(Ak) = p(vk) = p(wk) =
|Ak|
|Ωk| =

1
|Ωk| referred to Laplace’s formula.

2. On the contrary, the probability of selecting not the correct event in Ωk arises
from the probability of picking one of the mutually exclusive, complementary
events p(Ωk\Ak) := 1 − p(Ak). The probability of opting the wrong event
for each element of w results from the product of the individual converse
incidence rates

∏o
k:=1 1− p(wk). The converse probability of this product (1

-
∏o

k:=1 1− p(wk)) shows the chances of choosing not all events wrongly, i.e.
at least one event correctly.

3. The probability of guessing the proper event for each element of w is the
product of the individual incidence rates

∏o
k:=1 p(wk). 
�

A SecureString 2.0 object, which embraces all o units of w with recognizable
boundaries, implies just a single data structure with the equivalent vulnerability
magnitude as o SecureString 2.0 objects, each with one item of w. The succes-
sional subsection investigates the implications of wrapping all elements of w in
one SecureString 2.0 object while keeping their boundaries covertly.

4 Repetition Pattern Attack on Multi-word-containing
SecureString 2.0 Objects

Malicious parties that snap up a multi-word-containing SecureString 2.0 object
with concealed character string delimiters interest themselves in the recognition
of these boundaries in order to seek dictionary words with the repetition pat-
terns of the segregated words. Foremost, an evildoer must designate all possible
positions of a targeted repetition pattern that suit as delimiter candidates. If
multi-word-containing SecureString 2.0 objects do not imbed additional delim-
iters or miscellaneous characters to create intentional confusion for villains, then
Theorem 2 itemizes the characteristics of potential word boundary candidates
in repetition patterns.

Theorem 2. Let Σ be an alphabet, let w be a SecureString 2.0 object that se-
cures a plaintext v ∈ Σl without additional confusing delimiters or miscellaneous
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characters, whereupon each word boundary shares the salt with its left-neighbored
character string, let wj ∈ Σ|j ∈ IN∧ 1 ≤ j ≤ l be the jth encased character in w
and rp(wj) its number in the repetition pattern RP (w) agreeable to Definition 1.

Then each rp(wj) represents a potential word delimiter candidate if it fulfills
all of the following requirements.

1. 1 < rp(wj) < l

2. (∀i ∈ IN|1 ≤ i < j)(rp(wi) < rp(wj))

3. (∀i ∈ IN|j < i ≤ l)(rp(wi) > rp(wj))

Proof:

1. Supposedly, if the jth encased character of w tags a word delimiter with
rp(wj) = 1 respectively rp(wj) = l, then j = 1 respectively j = l in agree-
ment with Definition 1. The first respectively the last character of w as
word delimiter contradicts the presumption that w does not embed addi-
tional confusing delimiters or miscellaneous characters. On account of this,
1 < rp(wj) < l must be valid for a word delimiter candidate wj .

2. Assuming that the jth encased character of w marks a word delimiter and an
i|1 ≤ i < j with rp(wi) ≥ rp(wj) exists, then at least one f ∈ IN|1 ≤ f ≤ i
with rp(wf ) = rp(wj) must occur in RP (w), because (∀rp(h) ∈ IN|rp(f) <
rp(h) ≤ rp(i))(∃g|rp(g)+1 = rp(h) in compliance with Definition 1. The va-
lidity of rp(wf ) = rp(wj) contravenes the premise that only a non-repetitive
number in a repetition pattern can flag a word boundary, because each de-
limiter shares the salt with its left-neighbored character string and each
word exhausts a unique salt. On that account, a word boundary candidate
wj demands that (∀i ∈ IN|1 ≤ i < j)(rp(wi) < rp(wj)).

3. Granted that the jth encased character of w typifies a word delimiter and
an i|j < i ≤ l with rp(wi) ≤ rp(wj) exists, then at least one f ∈ IN|1 ≤
f ≤ j with rp(wf ) = rp(wi) must appear in RP (w), because (∀rp(h) ∈
IN|rp(f) < rp(h) ≤ rp(j))(∃g|rp(g) + 1 = rp(h) pursuant to Definition 1.
Plural existences of the same ciphertext character connote that they adhere
to the same salt. Therefrom, rp(wf ) and rp(wi) and all interjacent enciphered
characters belong to the identical word. Accordingly, the also-intermediary
rp(wj) is surrounded by characters of the same character string and cannot
act as word boundary anymore. That is why (∀i ∈ IN|j < i ≤ l)(rp(wi) >
rp(wj)) must have validness for a character string delimiter wj . 
�

There may be void combinations of word delimiter candidates. In particular,
those ones are invalid in which adjacent candidates deny character strings be-
twixt them. For this reason, upon ascertainment of the potential word bound-
aries, all valid combinations of them must be descried in order to calculate the
success probability of a repetition pattern attack on each of them and to derive
an overall success probability.
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4.1 Repetition Pattern Attack on a SecureString 2.0 Object That
Contains a Known Number of Multiple Words

If a miscreant becomes aware how many separate character strings a targeted
SecureString 2.0 object protects and reckons that exactly one delimiter symbol
divides contiguous words, they can stint expenses and continue only with such
word delimiter combinations that contain one item fewer than the set of sepa-
rated words. The number of scrutinized boundary combinations ensues from the
amount of all potential delimiters |D| and the quantity of o character strings in
a SecureString 2.0 object. Theorem 3 displays the case for a SecureString 2.0
object without a punctuation mark as the last character, i.e. one with o words
and o−1 boundaries. Furthermore, the Theorem excludes all combinations with
adjoining delimiter candidates.

Theorem 3. Let Σ be an alphabet, let w be a SecureString 2.0 object that se-
cures all o ∈ IN|o > 0 delimited character strings of a plaintext v ∈ Σ∗, let
D � RP (w) be the ordered set of all potential word boundary candidates subject

to the outcome of Theorem 2, let Dm ⊆ D|m ∈ IN ∧ 1 ≤ m ≤ ( |D|
o−1

)
be the

mth combination of o− 1 character string delimiter candidates out of D, and let
bm ∈ {1,∞} be a dichotomous flag that indicates if Dm constitutes a valid word
boundary combination.

Then

bm :=

{
1 if (�d, e ∈ Dm)(|d− e| = 1)

∞ otherwise

Proof: Due to the familiar fact of o shielded words inside w, an iniquitous cryp-
tographer may presume o− 1 delimiter symbols that divide them. The binomial
coefficient determined by |D| and o − 1 gives the number of subsets of D with
o− 1 elements. All of these subsets with conterminal boundaries, i.e. such ones
with an arithmetic difference of 1, are invalid and hence their binary marks set
to infinite. The flags of unobjected combinations are assigned to 1. 
�

Eventually, a wretch executes a repetition pattern attack in virtue of Exam-
ple 1 for the o words of each valid boundary combination. Theorem 4 pursues
Theorem 3 and outlines his overall success probability of breaking w with it.

Theorem 4. Let Q be defined as in Theorem 1, let Σ, v, o, w,D,m,Dm, bm be
defined as in Theorem 3, let wk,m ∈ Σ∗|k ∈ IN∧1 ≤ k ≤ o be the kth encapsulated
word in w if the elements of Dm act as character string delimiters in w, and let
p(wk,m) be the probability of choosing the right item for wk,m in Q.

Then

p(w) :=
1

∑( |D|
o−1)

m:=1
1

bm∗∏|Dm|+1
k:=1 p(wk,m)

=
1

∑( |D|
o−1)

m:=1
1

bm∗∏o
k:=1 p(wk,m)

is the probability of revealing the right word delimiters and the correct dictionary
item for each character string of w.
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Proof: As proved in Theorem 1, the probability of tipping the right event for each
element of w is the product of the individual incidence rates

∏o
k:=1 p(wk,w) if the

elements ofDm act as character string delimiters in w. The multiplicative inverse
1

bm∗∏o
k:=1 p(wk,m) counts the quantity of suitable dictionary word combinations. If

Dm encompasses an invalid word boundary combination, then Theorem 3 returns
bm := ∞ by what the amount of fitting dictionary word combinations becomes
zeroed. Each valid combination of character string delimiters contributes such a
quantity of matching dictionary word combinations. As a result, all these quanti-
ties must be summated to a total amount of suited dictionary word combinations
∑( |D|

o−1)
m:=1

1
bm∗∏o

k:=1 p(wk,m) . The reciprocal value
1

∑( |D|
o−1)

m:=1
1

bm∗∏o
k:=1

p(wk,m)

is the prob-

ability of culling the right character string boundaries and the correct dictionary
item for each word of w. 
�

Despite a criminal’s lore about o for a multi-word-containing SecureString 2.0

object, they need to look up the repetition patterns of
∑( |D|

o−1)
m:=1 bm ∗ o ciphertext

words instead of o look-ups in summary for o comparable single-word-containing
SecureString 2.0 objects. On these grounds, the usage of one o-word-containing
SecureString 2.0 object in place of o single-word-containing SecureString 2.0
objects improves privacy rather than abides it.

4.2 Repetition Pattern Attack on a SecureString 2.0 Object That
Contains an Unknown Number of Multiple Words

This subsection deals with the success probability of repetition pattern attacks
on SecureString 2.0 objects which conceal their amounts and positions of pro-
tected words and boundaries. For that reason, a felon must check all subsets of
the list with the potential word delimiter candidates D for validity rather than
only those with o−1 items as demonstrated in Theorem 3. Theorem 5 copies the
principle from Theorem 3 how to differentiate between valid and void boundary
combinations, but significantly more subsets than in Theorem 3 can incur that
need to be processed.

Theorem 5. Let Σ, v, o, w,D be defined as in Theorem 3, let Dm ⊆ D|m ∈
IN ∧ 1 ≤ m ≤ 2|D| be the mth combination of string delimiter candidates out of
D, whereby each of the |D| bits of the binary representation of m − 1 decides
the incorporation of a particular candidate of D in Dm, and let bm ∈ {1,∞}
be a dichotomous flag that indicates if Dm constitutes a valid word boundary
combination.

Then

bm :=

{
1 if (�d, e ∈ Dm)(|d− e| = 1)

∞ otherwise

Proof: In addition to the proof of Theorem 3, it needs an evidence that an m for
each subset of D exists, so that Dm equates the subset. P(D) is the power set
of D and enfolds all 2|D| diverse subsets of D (inclusive the empty subset with
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nary a potential character string delimiter candidate and D with all potential
word boundary candidates). Let m be stored in an array with as many binary
elements as candidates in D, whereupon each bit ofm determines the presence of
a dedicated candidate in Dm. A bit can adopt one of 21 = 2 states. An array with
|D| bits can adopt one of 2|D| states. Accordingly, m possesses barely enough
states to enumerate all 2|D| items of P(D). 
�

Finally, a delinquent can move on to execute a repetition pattern attack on the
character strings of all valid word delimiter combinations as shown in Theorem 6.

Theorem 6. Let Q be defined as in Theorem 1, let Σ, v, o, w,D be defined as
in Theorem 3, let m,Dm, bm be defined as in Theorem 5, let Δ(bm, 0) be the
Hamming weight [11,13] of bm, i.e. the number of ones in bm, let wk,m ∈ Σ∗|k ∈
IN ∧ 1 ≤ k ≤ Δ(bm, 0) + 1 be the kth encapsulated word in w if the elements of
Dm act as character string delimiters in w, and let p(wk,m) be the probability of
choosing the right item for wk,m in Q.

Then

p(w) :=
1

∑2|D|
m:=1

1

bm∗∏|Dm|+1
k:=1 p(wk,m)

=
1

∑2|D|
m:=1

1

bm∗∏Δ(bm,0)+1
k:=1 p(wk,m)

is the probability of revealing the right word delimiters and the correct dictionary
item for each character string of w.

Proof: Further to the proof of Theorem 4, the differing upper bounds of the
product and of the summation sign require to be proved.

Like in Theorem 3, it is assumed that the last wrapped character in w con-
cludes the closing word rather than being a punctuation mark. Thence, each sur-
mised character string of w is followed by a delimiter symbol except the last word.
Thereby, w shields |Dm| = Δ(bm, 0) boundaries and |Dm| + 1 = Δ(bm, 0) + 1
character strings. This explains the product of |Dm| + 1 = Δ(bm, 0) + 1 word
incidence rates.

The upper bound of the summation sign 2|D| follows from the number of
vetted subsets as per Theorem 5. 
�

The deficiency of knowing the amounts and positions of safeguarded character
strings and boundaries in SecureString 2.0 objects aggravates the odds to break
them. In the most secure case, v is a pangram, i.e. in obedience to the first
condition of Theorem 2, |v| − 2 = l − 2 (all but the first and the last) guarded
characters in w qualify for potential word delimiters and entail

p(w) :=
1

∑2|v|−2

m:=1
1

bm∗∏Δ(bm,0)+1
k:=1 p(wk,m)

=
1

∑2l−2

m:=1
1

bm∗∏Δ(bm,0)+1
k:=1 p(wk,m)

.

5 Conclusion

Repetition pattern attacks stick out as the most striking measure to break Se-
cureString 2.0 objects because repetitive ciphertext characters may occur in
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them. On these grounds, this paper provides an investigation over the success
probability of such offensives.

After an introduction of the cryptosystem SecureString 2.0 and its predecessor
SecureString 1.0, the preliminaries set out with Definition 1 that specifies and
exemplifies how to generate and offend a monographic repetition pattern for an
arbitrary input text.

Thereafter, Theorem 1 handles the success probability of repetition pattern
attacks on SecureString 2.0 objects if an assaulter knows that they just shelter
single words. The privacy of such objects becomes highly vulnerable if their
repetition patterns merely mesh with few dictionary elements, or, more seriously,
only with a lone one.

If a SecureString 2.0 object allegedly harbors several character strings, then
the potential boundaries between them can be figured out with the aid of The-
orem 2 which presents the necessary properties that a number of a repetition
pattern must have to become a candidate.

The Theorems 3 and 4 clarify the two research questions of Section 1 for
a known amount of unknown words and their unknown boundaries in Secure-
String 2.0 objects. Expectedly, such objects proffer harder recognizability com-
pared to single-word-containing ones.

The Theorems 5 and 6 treat the two research questions of Section 1 in case a
thug is even not aware of the number of character strings (and of their delimiters)
in SecureString 2.0 objects. Such objects come along with the most difficult
detectability in comparison with the other two settings but still do not cope
modern privacy needs.

The finding of the last attack scenario notably is that the aim of stronger
secrecy could be reached with SecureString 2.0 objects that convert every ar-
bitrary plaintext into pangram ciphertext, i.e. ciphergrams never reoccur. The
advancement of SecureString 2.0 to accomplish this goal would be valuable future
work.

Acknowledgments. Many thanks to Bettina Baumgartner from the University
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