
Time and Cost Aware Checkpointing

of Choreographed Web Services

Vani Vathsala Atluri and Hrushikesha Mohanty

CVR College of Engineering and University of Hyderabad
Hyderabad, India

atlurivv@yahoo.com, mohanty.hcu@gmail.com

Abstract. Complex business processes can be realized by composing
two or more web services into a composite web service. Due to the
widespread reachability of Internet, more and more web services are
becoming available to the consumers. Quality aware consumers look for
resilience in services provisioned on Internet. This paper proposes mes-
sage logging based checkpointing and recovery for web services to make
them resilient to faults. It presents an algorithm that checkpoints services
participating in a choreography in such a way that the execution time
and cost of service constraints are always met. It identifies checkpoint
locations by considering the costs involved in checkpointing, message log-
ging and replaying for service recovery. The cost estimation is carried out
using service interaction patterns and QoS values of the services involved.
Performance of the proposed checkpointing strategy is corroborated with
the results obtained from experiments.

Keywords: Web services, choreography, checkpointing, QoS.

1 Introduction

There are several algorithms that are proposed in literature for checkpointing
distributed applications. Any checkpointing scheme has to satisfy the require-
ment of resilient service provisioning [13]. Checkpointing a choreographed web
service needs special care so that recovery does not need a chain of restarts of
component services. Hence checkpointing web services is of interest. We propose
to perform checkpointing of choreographed web services at three different stages
of web service development: 1. Design time 2. Deployment time 3. Run time.

A group of web services interacting with each other by means of message
exchanges, to accomplish a business task are called as a choreographed web ser-
vices. Choreographed web services have the information about their sequence
of message based interactions, and actions to be performed by each of them,
documented in a design time artefact called as choreography document. Us-
ing this document, we have proposed a design time checkpointing approach in
our previous work [12] that introduces checkpoint locations in a choreography,
at places where non repeatable actions are performed. In the event of transient

R. Natarajan et al. (Eds.): ICDCIT 2015, LNCS 8956, pp. 207–219, 2015.
c© Springer International Publishing Switzerland 2015

208 V.V. Atluri and H. Mohanty

failures(temporary failures) this checkpoint arrangement avoids chain of rein-
vocation of web services, specifically when a non repeatable action is executed.
But, it does not handle the issue of meeting deadlines in case of transient fail-
ures. This paper addresses this issue using Quality of Service(QoS) values (like
response time, reliability, cost of service etc.) and other quantities like check-
pointing time, message logging time etc which can be measured at the time of
deployment. We propose a time and cost aware checkpointing algorithm that
introduces minimum number of checkpoints so that execution time and cost con-
straints are met even in the event of transient failures. The trade-off between
number of checkpoints and recovery time is experimentally analysed. As part of
our future work we intend to take up revision of checkpoint locations at run
time using dynamically predicted QoS values and dynamic composition of web
services. We have presented our approaches on response time prediction of web
services in our previous works [11] [14].

This paper is organised as follows: in section 2 we discuss existing checkpoint-
ing approaches and compare them with our approach, in section 3 we give an
overview of our choreography model and three stage checkpointing approach, in
section 4 we brief on our proposed approach for deployment time checkpointing.
Checkpointing algorithm is given in section 5 along with experimental results.
Conclusion and future work are discussed in section 6.

2 Related Work

Well understood techniques[6] for checkpointing and recovery of distributed ap-
plications are not readily applicable for that of web services. This is because a
recovery strategy for distributed applications requires other processes also, in
addition to failed process, to rollback. Such a strategy is not suitable for com-
posite web services since requiring chain of rollbacks of the remaining services
leads to a compromise in quality of the composite service.

Fault handling strategies proposed in the field of web services are of two
types [13]: Checkpointing and recovery [2], [10], [9], and Substitution [4], [3], [5].
In the proposed checkpointing and recovery strategies [2],[10], responsibility of
specifying checkpointing locations in the design document is bestowed on the
user. Success of such strategies lies in the knowledge and skillset of the users.
In another checkpointing strategy[9], checkpointing is used to save the work of
constituent services that have not failed but, the faulty constituent service has
to restart from the beginning. Substitution approaches proceed by substituting
the faulty web service with a functionally equivalent one. The main drawback
of this approach can be seen when the invoking service itself fails. The failed
instances would have to be reexecuted from the beginning. This implies recalling
the invoked services again resulting in increased execution times.

QoS aware checkpointing has been proposed in various areas like embedded
systems [1], and mobile computing [8]. In [1] authors propose QoS aware message
logging based checkpointing of embedded and distributed systems. They formu-
late the problem of finding an optimal checkpoint interval, in a process, that

Time and Cost Aware Checkpointing of Choreographed Web Services 209

maximizes systems overall quality as a Mixed Integer Non-Linear Programming
(MINLP) problem and provide an algorithm for finding the solution. They do
not consider QoS values of other processes participating in the composition, in
checkpointing decisions. In [8], authors work on mobile computing environment
where in hosts going out of range transfer their checkpointed data to other hosts.
It uses link reliability values to dynamically maintain superior checkpointing ar-
rangement.

Considering QoS values of the constituent services while taking checkpoint-
ing decisions for a choreographed web service is pivotal in meeting promised
deadlines. In our survey we have not come across any web service checkpointing
strategy that focuses on this issue. Hence in this paper we advocate time and
cost aware checkpointing strategy that makes use of QoS values of constituent
services, to decide on checkpoint locations while meeting the promised deadlines.

In the next section we present concepts [12] required here for putting the
proposed strategy at right perspective.

3 Checkpointing Choreographed Web Services

A choreography of web services describes in a document, called choreography
document, series of interactions that are to be performed by constituent web
services to accomplish common business goals. A choreography of web services
is modelled as a composition of interaction patterns in our previous work. We
use this model to aid in checkpointing decisions. In the following subsection we
give a brief on our model, details can be obtained from [12].

3.1 Modelling Choreographed Web Services

Each participant ξ of a service choreography performs some local actions and
communicates necessary information with other participants. Thus, broadly,
operations of a service are classified into two categories: local action and inter-
action. An interaction pattern, or a pattern in short, is defined as a sequence
of operations wherein the first operation in the sequence is an interaction. In our
previous paper [12] we have proposed different types of interaction patterns and
detailed on modelling service choreographies using these patterns.

To make the description in this paper self-contained, and to keep up with the
space requirements, we use only one of our proposed patterns, pattern P2 (Chose
P2 as it has maximum number of interactions) in this paper. In P2, the initiator
ξ sends an invoke message and continues to execute a sequence of operations,
before getting a reply from ξr. Upon receiving the invoke message, ξr executes a
sequence of operations and sends a reply message back to ξ (refer to Fig 1(a)).

In [12] we propose that service interaction patterns may be combined in differ-
ent ways using composition operators to give composite patterns. We proposed
four kinds of composite patterns: sequential pattern, nested pattern, iterative
pattern, and concurrent pattern whose operators are ”.”,[],* and | respectively.
Fig 1(f) depicts an example choreography which is modelled as a composition of

210 V.V. Atluri and H. Mohanty

Fig. 1. Modelling service choreographies and checkpointing rules

our patterns. A composite web service is compactly represented in text using a
pattern string. A pattern String represents a choreographed web service whose
composition is expressed in terms of patterns and composition operators. The
pattern string for the example choreography is pa.pb[pc].pd[pe].pf

In a step towards identifying possible checkpoint locations in a given choreog-
raphy, we associate each pattern with what are called as C-points. A C-point
is a probable checkpointing location. We define three types of C-points: service
point, must save point and invocation Point. Fig 1(b) depicts C-points in pat-
tern P2. A service point is marked in the initiator of the pattern after the reply
message is received. An invocation point is marked in the initiator of the pattern
after it sends the invoke message. A must Save point is marked in a participant
of a pattern after a nonrepeatable action, if any.

The example choreography depicted in Fig 1(f) is used to assist in illustration
of concepts. In this example, web service ξ interacts with few other web services
resulting in a composite web service. We illustrate checkpointing the web
service ξ in this paper, which is applicable to other constituent web
services.

To start with, we define what are called as sequential components. The part
of pattern string which is delimited by ”.” operator is called as a sequential
component ”s” . The sequential components in our example are pa, pb[pc],
pd[pe], pf which are named as s1, s2, s3, s4 respectively (Fig 2(a)).

Each sequential component is a pattern(can be either atomic or composite)
and hence has C-points associated with it. Sequential components are referred to
as components for ease of writing from here on. If the web service ξ initiates ns

number of components we have a maximum of 2ns C-points to be converted into
checkpoints. It may not be possible to convert all these C-points since conversion
of all the C-points might result in violation of deadlines.

Time and Cost Aware Checkpointing of Choreographed Web Services 211

Fig. 2. A choreography and its recovery components

3.2 Recovery Components

A recovery component is defined as an execution unit that is delimited by check-
points. A failure at anywhere in a recovery component results in rollback to the
checkpoint placed at the beginning of the recovery component. In case check-
points are inserted into a web service either at design time or later, the pattern
string that reflects the choreography must reflect the checkpoint locations also.
Hence we use the following notation: For a component s if its invocation point is
converted to a checkpoint then symbol ”!” is added to the left of it, if its service
point is converted to a checkpoint then symbol ”!” is added to the right of it
and if both the C-Points of a component are checkpointed then the component
is removed from the pattern string along with its two ”!” marks. A recovery
component is that part of a pattern string which is delimited by ”!” mark.

Fig 2(a) depicts the example choreography with checkpoints inserted at de-
sign time. It’s pattern string annotated with ”!” marks at design time is given by
s1.!s2.s3.s4. Thus we have initially two recovery components s1, s2.s3.s4 for the
example choreography. Fig 2(b) depicts the choreography and its recovery com-
ponents after a service point is converted into checkpoint at deployment time.
By this time we have three recovery components s1, s2.s3, s4.

3.3 Proposed Approach on Deployment Time Checkpointing

We assume that occurrence of transient failures in a web service follow Poisson
distribution with the mean failure rate given by λ. It is assumed that failures do
not occur during recovery time. Each failure has to be followed by recovery of
the failed service for successful completion of its execution.

Recovery of a web service has the following two overheads: execution time
overhead and cost overhead. Execution overhead is the additional time

212 V.V. Atluri and H. Mohanty

required during recovery that includes: i)rollback to the checkpointed state ii)
replay logged messaged iii) re-execute unsaved activities. Cost overhead is the
additional overhead to be paid to reinvoke a constituent web service in case its
reply is not logged. Every web service has deadlines for execution time and cost
which have to be met even in case of failures to provide a quality service.

Deployment time checkpointing aims at inserting minimum number of check-
points to reduce recovery overhead in case of failures so that constraints are met.
Minimum number of checkpoints ensure minimal execution time in case of failure
free executions. Minimal recovery overhead requires more number of checkpoints
to be inserted which results in undesirable increase in time for failure free execu-
tions (execution instances which do not fail). Hence we do not aim at minimal
recovery overhead, instead we aim at minimum number of checkpoints which re-
sult in minimum overhead during failure free executions. Detailed procedure for
checkpointing is presented in the next section.

4 Procedure for Deployment Time Checkpointing

Deployment time checkpointing is performed in three stages. 1) Measurement of
execution time and other quantities at deployment time. 2)Collection of QoS val-
ues of constituent services. 3)Computation of recovery overhead and placement
of checkpoints.

4.1 Measurement of Quantities

Initially all the participants of a choreography should insert checkpoints in their
code at the locations according to design time checkpointing policy. Let ξ be
the participant which is currently being checkpointed. Let TC , TL, TR and TCR

represent checkpointing time, message logging time, message replay time and
time to restore ξ to a saved state, respectively. These quantities have to be
determined experimentally at deployment time. Let CD represent the cost of
service charged by ξ when service is provided with in the promised maximum
execution time TD.

4.2 Collection of QoS Values

We have identified and modeled those QoS attributes which play a crucial role
in checkpointing decisions. The considered QoS attributes are response time,
vulnerability and cost of service provision.

Let ξr be the service provider in a component s initiated by ξ. Response
time s.trt of s, is defined as the response time of ξr. Vulnerability s.vl of s to
failures is defined as vulnerability of ξr which in turn is defined using reliability
of ξr. Reliability rl is defined as the success rate of the service i.e. the ratio of
number of times the service is successfully delivered to total number of service
invocations. ξr.vl = 1 − (ξr.rl). Cost of a service is defined as the price to be
paid for providing the requested service. Cost of service s.ct of s is defined as
cost of service provided by ξr of the component.

Time and Cost Aware Checkpointing of Choreographed Web Services 213

4.3 Computation of Recovery Overhead

Recovery overhead is measured in terms of additional execution time and cost of
service to be paid, to recover ξ from failures. Recovery overhead for each of the
recovery components is computed using the quantities measured at deployment
time and QoS attributes defined above.

4.3.1 Execution Time Overhead

For each of the components s, initiated by the participant ξ, let s.tat and s.trt
represent average local activity time and response time of the callee. These val-
ues are determined experimentally at deployment time. For every component
s, there can be only one invocation point, one service point, and one or more
must save points in ξ. According to our design time checkpointing policy[12],
only invocation point and must save points of a component may be converted
into checkpoints, service points cannot be. Let s.nmp ≥ 0 and s.nip ∈ (0, 1)
represent number of must save points and invocation points which are converted
into checkpoints at design time. Let s.nsp ∈ (0, 1) represent number of service
points which are converted into checkpoints. According to the design time policy,
s.nsp = 0 indicating that zero service points are checkpointed yet.

Let Tpure(s) represent pure execution time of a component s without includ-
ing any of checkpointing and message logging times. Tpure(s) = max(s.tat, s.trt).
Let Tfixed(s) represent the fixed execution time of component s after including
checkpointing and message logging times for checkpoints and logs inserted at
design time. Checkpointing time is given by (s.nmp + s.nip) ∗ TC . These check-
points are never revised at deployment time and run time. Hence we call it
as Tfixed(s). If an invocation point or a must save point is converted into
checkpoint, the reply message received by ξ has to be logged, refer [12]. Let
s.nml ∈ (0, 1) represent number of message logs at design time for component s.
Tfixed(s) = Tpure(s) + (s.nmp + s.nip) ∗ TC + s.nml ∗ TL.

We use the notation α0(s) to represent Tfixed(s), 0 indicates that 0 C-points
of s are converted into checkpoint in deployment stage. Let Tfixed(ξ) represent
fixed execution time of the participant ξ before converting any of the C-points of
ξ into checkpoints in deployment stage. It is in short represented as α0(ξ) where 0
indicates that 0 C-points are already converted into checkpoints in deployment
stage. Tfixed(ξ) = α0(ξ) =

∑ns

i=1 α0(si) where ns is number of components
initiated by ξ.

αk(ξ) represents failure free execution time of ξ after k C-points are
converted into checkpoints and lg messages are logged in deployment stage.
αk(ξ) =

∑ns

i=1 α0(si) + k ∗ TC + lg ∗ TL.
Let TW (ξ) represent worst case execution time of the participant ξ which

is defined as follows: TW (ξ) = αk(ξ) + Trec(ξ), which includes αk(ξ), and time
Trec(ξ) to recover the web service in case of its failure. To satisfy the promised
maximum execution time, TW (ξ) must be ≤ TD. In the next subsection we de-
scribe recovery time Trec(ξ) computation.

214 V.V. Atluri and H. Mohanty

Recovery Time Computation. In a component if its invocation point is check-
pointed, then the service s.ξr is not invoked again and hence Trec(s) includes i)
the time taken, TCR, to restore the web service from its latest checkpoint, ii) mes-
sage replay time TR and iii) time to execute unsaved local activities. Maximum
unsaved work in a component results when a failure occurs almost at the end
of the component, i.e just before receiving reply. If s’s invocation point is con-
verted into checkpoint at design time Trec(s) = TCR + TR + s.tat, else Trec(s) =
max(s.tat, s.trt). Table 2 (fifth column) gives recovery time values for the exam-
ple choreography. Trec(r) =

∑
s∈r f(s) ∗Trec(s), where f(s) = (λ ∗Trec(s)) gives

average number of failures in the component s. Trec(ξ) =
∑n

i=1 Trec(ri) where
n is the number of recovery components of ξ.

Relative recovery time of component s is defined as: Trrec(s) =
Trec(s)
Trec(r)

.

Relative recovery time of recovery component r is: Trrec(r) =
Trec(r)
Trec(ξ)

.

4.3.2 Cost Overhead

Let Ctotal indicate failure free cost of service for all the components of ξ, Ctotal =∑ns

i=1 si.ct. Let Crec(s) indicates additional cost incurred in component s during
recovery in case of a failure.

In a component if its invocation point is checkpointed, then the service ξr
is not invoked again and hence there is no additional cost of invocation. Thus,
Crec(s) = 0 if s.nip = 1, else Crec(s) = s.ct.
Crec(r) =

∑
s∈r f(s) ∗ Crec(s). and Crec(ξ) =

∑n
i=1 Crec(ri).

Relative recovery cost for s is defined as: Crrec(s) =
Crec(s)
Crec(r)

.

Relative recovery cost for r is defined as: Crrec(r) =
Crec(r)
Crec(ξ)

.

Let CW (ξ) indicate worst case cost of service which is defined as CW (ξ) =
Ctotal + Crec(ξ). Cost constraint is satisfied if CW (ξ) ≤ CD.

4.3.3 Checkpointing Score

Checkpointing score cs of a component s quantifies suitability of the component
for checkpointing. It is defined as the following weighted sum. Higher values of
cs indicate greater need for checkpointing the component.

s.cs = W1 ∗ Trrec(s) +W2 ∗ s.vl +W3 ∗ Crrec(s)

where
∑3

i=1 Wi = 1 and they represent weights to be used to alter the effects
of individual components on the checkpointing score. Similarly, checkpointing
score cs of a recovery component r is defined as:

r.cs = W1 ∗ Trrec(r) +W2 ∗ r.vl +W3 ∗Crrec(r).

4.3.4 Deciding on Checkpoint Locations

Recovery component rj which has the highest checkpointing score is selected for
checkpointing. From among all components of rj , the component so that has got

Time and Cost Aware Checkpointing of Choreographed Web Services 215

maximum checkpointing score is selected for placing the checkpoint. Further, if
local activity time of so is greater than or equal to so’s response time the next
checkpoint is placed at service point of so. Else the next checkpoint is placed at
invocation point of so, i.e if so’s response time is larger, the service provider of
so is not reinvoked in the event of failure of ξ by placing a checkpoint at the
invocation point (refer to Fig 1 (d,e)).

5 Time and Cost Aware Checkpointing Algorithm

We propose Time and Cost aware Checkpointing algorithm [Algorithm 1] that
incrementally converts C-points into checkpoints, one at a time. It takes as in-
put all the quantities measured and collected at deployment stage, and pattern
string representing the composition with checkpoints inserted at design stage
(line no 1). Algorithm starts by computing recovery overhead of all components
(line nos 4,5). In each iteration it finds out recovery components and computes
their execution cost and time overhead (line nos 12,14). It then computes worst
case execution cost CW (ξ) and time TW (ξ) (line nos 13,16). Then it checks to
see if TW (ξ) is within TD and CW (ξ) is within CD. If so, it terminates. Gener-
ally TW (ξ) is large and is greater than TD. After conversion of a C-point into
checkpoint, TW (ξ)) decreases. Also, total checkpointing time increases. We con-
tinue converting C-points into checkpoints until time and cost constraints are
met. Exact checkpointing location is decided using the deployment checkpointing
strategy presented in subsection 4.3. Due to space constraints we do not present
the algorithm RecoveryComponents(ps, ξ) that extracts recovery components
from a given pattern string.

5.1 Experimental Results

To illustrate the effectiveness of our approach, we have developed, tested and
monitored the performance of sample web services using Oracle SOA suite 11g
[7]. We have used weblogic server which is configured to work as SOA server.
Oracle JDeveloper is used for development and deployment of web services.
Oracle Enterprise Manager which is also a part of Oracle SOA suite, is used to
collect performance related metrics. The weblogic server is hosted on a machine
using 4GB RAM, 2.13GHz CPU and J2SDK5. Oracle 11g Database is installed
on a machine having 4GB RAM and 3.00GHz CPU. All the PCs run on Windows
7 OS and are connected via high speed LAN through 100Mbps Ethernet cards.

To aid in our experimental results, we have developed the following web ser-
vices: WS1: web service which invokes currency converter web service and then
calculator web service. WS2: web service which invokes currency converter web
service. WS3: web service which invokes calculator web service. WS4: web
service takes an Indian state and returns its capital. WS5: web service which
returns the Indian state to which a given capital city belongs. WS6: web service
which invokes four web services in the order: WS4, WS3,WS2,WS5. For testing
the efficiency of the proposed algorithm, we have used web service WS6, the

216 V.V. Atluri and H. Mohanty

Algorithm 1. Time and Cost aware Checkpointing Algorithm

1 Input: Read TC , TL, TR, TCR, TD, CD, λ and QoS values of components, pattern
string ps.

2 k = 0//k indicates number of C-points checkpointed at deployment time
3 lg = 0// ml indicates number of messages logged at deployment time
4 for each component s do
5 Compute Crec(s) , Trec(s)
6 Ctotal =

∑ns
i=1 si.ct

7 R = RecoveryComponents(ps, ξ)
8 while R is not Null do
9 n = |R| // Number of recovery components

10 for each recovery component r ∈ R do
11 Compute Crec(r) , Trec(r)
12 Crec(ξ) =

∑n
i=1(Crec(ri))

13 CW (ξ) = Ctotal + Crec(ξ)
14 Trec(ξ) =

∑n
i=1(Trec(ri))

15 αk(ξ) = α0(ξ) + k ∗ TC + lg ∗ TL

16 TW (ξ) = αk(ξ) + Trec(ξ)
17 if (TW (ξ) ≤ TD) and (CW (ξ) ≤ CD) then
18 break. // deadlines can be met
19 //else select a component from recovery component r for checkpointing
20 for each recovery component r ∈ R do

21 Crrec(r) =
Crec(r)
Crec(ξ)

22 Trrec(r) =
Trec(r)
Trec(ξ)

.

23 r.cs = CHS(r) //CHS computes checkpointing score of r

24 j = index of recovery component whose cs is returned by maxn
i=1(ri.cs)

25 Let the recovery component rj consist of sequential components from index
l to l+h where 1 ≤ h ≤ ns − l

26 for each component s ∈ r do
27 s.cs = CHSP (s) //CHSP computes checkpointing score of s

28 o = index of component whose cs is returned by maxl+h
i=l (si.cs)

29 if so.tat ≥ so.trt then
30 so.nsp = 1 //Place the next checkpoint at service point of so
31 else
32 so.nip = 1 //Place the next checkpoint at invocation point of so
33 so.nml = 1 //log the reply message received
34 lg = lg + 1

35 k=k+1
36 R = RecoveryComponents(ps, ξ)

37 Print no of checkpoints inserted = k

Time and Cost Aware Checkpointing of Choreographed Web Services 217

Table 1. Execution Time Parameters for WS6

Quantity Value Time in msec, Cost in units

TC 78

TL 24

TR 15

TCR 36

Tpure, α0(ξ) 4171, 4171+78+24=4273

TD, CD 6000,150

W1,W2,W3, λ 0.333,0.333,0.333,.001

Table 2. Checkpointing score calculation for constituent web services

s WS s.tat α0(s) Trec(s) s.vl s.ct Crec(s) cs f(s)
s1 WS4 125 642 642 0.43 25 25 (0.2533+0.43+0.555)

*0.333=0.413
0.642

s2 WS3 240 1286 240 + 36+
15 = 291

0.56 30 0 (0.115+0.56+0)*
0.333=0.225

0.291

s3 WS2 1024 1460 1460 0.38 25 25 (0.576+0.38+0.555)*
0.333=0.504

1.460

s4 WS5 245 783 783 0.24 20 20 (0.308+0.24+0.444)*
0.333=0.330

0.783

Table 3. Algorithm 1 Trace for k=1

Quantity Value

Q,Q0 {s1, s2, s3, s4}
R = {r1, r2} r1 = s1,r2 = s2.s3.s4

Crec(ξ)
∑

(Crec(r1), Crec(r2)) =
∑

(25 ∗ 0.642, 0+25 ∗ 1.46+20 ∗ 0.783) = 68

Trec(ξ)
∑

(Trec(r1), Trec(r2)) =
∑

(642 ∗ .642, 291 ∗ .291 + 1460 ∗ 1.46 + 783 ∗
.783) = 3241

αk(ξ), TW (ξ) 4273 +0 = 4273, 4273+3241=7514

Ctotal(ξ), CW (ξ) 100,68

r1 Trrec = 642
3241

= 0.198, vl = 0.43, Crrec = 25
68

= .5555, cs = .367

r2 Trrec = 2534
3241

= .8727, vl = 0.81, Crrec = 45
68

= .661, cs = .780

k, j, l, h 0, 2, 2, 2

max(s2.cs, s3.cs, s4.cs) max(0.225, 0.504, 0.330) = 0.504

o 3, Place checkpoint at ip of s3 and log reply message.

218 V.V. Atluri and H. Mohanty

choreography document of which is depicted in Fig 2(a). Numbers in the figure
depict fixed execution time, α0(s), of each of the components.

Table 1 depicts the values of various required quantities that are recorded
and read into the algorithm. Table 2 shows checkpointing score calculation for
components. Table 3 gives a trace of the algorithm for k = 1. According to
computations component s3 is selected for converting its invocation point into
checkpoint.

Graphs in Fig 3 depict variation of important quantities computed by the
algorithm with increase in k value. It can be seen that TW and CW cross time
deadline for k = 0 (Fig 3(c),(d)). TW and CW decrease considerably after con-
verting a C-point into checkpoint. Also, failure free execution time increases due
to this checkpoint. But conversion of another C-point into checkpoint is not taken
up because deadline is already met with k = 1 and also failure free execution
time increases further with k = 2 (Fig 3(b)). Hence the algorithm terminates
when k=1.

Fig. 3. Plots of important quantities in three iterations of algorithm

6 Conclusion and Future Work

In this paper we have detailed on time and cost aware checkpointing algorithm
that has to be adopted at deployment stage for resilient execution of chore-
ographed web services. We define units of execution called as recovery compo-
nents and compute their checkpointing score by using execution time and other

Time and Cost Aware Checkpointing of Choreographed Web Services 219

quantities measurable at deployment time and QoS values of constituent ser-
vices. It aims at introducing minimum number of checkpoints in a web service
so that time and cost constraints are met during both failure free executions and
failed and recovered executions. Web services operate in highly dynamic Internet
where response times are bound to vary from the advertised values. We intend
to take up run time revision of checkpoint locations as part of our future work.
It is mainly intended to consider actual values of all response times and revise
checkpoint locations accordingly.

References

1. Chen, N., Yu, Y., Ren, S.: Checkpoint interval and system’s overall quality for mes-
sage logging-based rollback and recovery in distributed and embedded computing.
In: ICESS 2009 (2009)

2. Elnozahy, E.N(M.), Alvisi, L., Wang, Y.-M.: A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv. (2002)

3. Ezenwoye, O., Sadjadi, S.M.: Trap/bpel: A framework for dynamic adaptation of
composite services. In: Proc. WEBIST 2007 (2007)

4. Mansour, H.E., Dillon, T.: Dependability and rollback recovery for composite web
services. IEEE Transactions on Services Computing (2011)

5. Liu, A., Qing, L., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Computing
(2010)

6. Elnozahy, E.N.(M.), Alvisi, L., Wang, Y.-M.: A survey of rollback-recovery proto-
cols in message-passing systems. ACM Comput. Surv. (2002)

7. Oracle White Paper, editor. Oracle SOA Suite 12c A Detailed Look. Oracle (2014)
8. Darby, P.J., Tzeng, N.-F.: Decentralized qos-aware checkpointing arrangement in

mobile grid computing. IEEE Transactions on Mobile Computing (2010)
9. Rukoz, M., Cardinale, Y., Angarita, R.: Faceta*: Checkpointing for transactional

composite web service execution based on petri-nets. Procedia Computer Science
(2012)

10. Urban, S.D., Gao, L., Shrestha, R., Courter, A.: Achieving recovery in service
composition with assurance points and integration rules. In: Meersman, R., Dil-
lon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 428–437. Springer,
Heidelberg (2010)

11. Vani Vathsala, A., Mohanty, H.: Using hmm for predicting response time of web
services. In: Proceedings of the CUBE International Information Technology Con-
ference. ACM (2012)

12. Vani Vathsala, A., Mohanty, H.: Interaction patterns based checkpointing of chore-
ographed web services. In: Proc of the 6th International Workshop on Principles
of Engineering Service-Oriented and Cloud Systems. ACM (2014)

13. Vathsala, A.V., Mohanty, H.: A survey on checkpointing web services. In: Proc of
the 6th International Workshop on Principles of Engineering Service-Oriented and
Cloud Systems. ACM (2014)

14. Vathsala, A.V., Mohanty, H.: Web service response time prediction using hmm
and bayesian network. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent
Computing, Communication and Devices. AISC, vol. 308, pp. 327–335. Springer,
Heidelberg (2015)

	Time and Cost Aware Checkpointing
of Choreographed Web Services
	1 Introduction
	2 Related Work
	3 Checkpointing Choreographed Web Services
	3.1 Modelling Choreographed Web Services
	3.2 Recovery Components
	3.3 Proposed Approach on Deployment Time Checkpointing

	4 Procedure for Deployment Time Checkpointing
	4.1 Measurement of Quantities
	4.2 Collection of QoS Values
	4.3 Computation of Recovery Overhead

	5 Time and Cost Aware Checkpointing Algorithm
	5.1 Experimental Results

	6 Conclusion and Future Work
	References

