
SMCDCT: A Framework for Automated

MC/DC Test Case Generation Using
Distributed Concolic Testing

Sangharatna Godboley, Subhrakanta Panda, and Durga Prasad Mohapatra

Department of CSE, National Institute of Technology,
Rourkela-769008, Odisha, India

sanghu1790@gmail.com, {511cs109,durga}@nitrkl.ac.in

Abstract. In this paper we propose a framework to compute MC/DC
percentage for distributed test case generation. MC/DC stands for Mod-
ified Condition/Decison Coverage [1]. This approach uses several client
nodes to generate the non-redundant test cases in a distributed and scal-
able manner. To achieve an increase in MC/DC, we transform the input

C program, P , into its transformed version, P
′
, using Ex-NCT. A cover-

age analyzer accepts P along with the generated test cases as input from
SCORE framework and outputs the MC/DC percentage. The experi-
mental studies show that SMCDCT approach achieves 6.5 % (approx.)
of average increase in MC/DC. This increase in MC/DC percentage is
achieved in an average computation time of 7.1622715 seconds.

Keywords: MC/DC, Distributed Concolic Testing, Coverage Analyser.

1 Introduction

We propose an approach to calculate MC/DC percentage using SMCDCT
(Scalable MC/DC percentage Calculator using Distributed Concolic Testing) for
structured C programs. SMCDCT consists of mainly three modules: i) Code
Transformer (Ex-NCT) [2], ii) Concolic Tester (SCORE) [3], and iii) Cover-
age Anlyser (CA) [2]. The experimental studies in [2] shows that Ex-NCT gives
better MC/DC percentage as compared to Program Code Transformer (PCT).
Hence, in SMCDCT we use Ex-NCT for code transformation of the target
programs. In this approach, we use SCORE in SMCDCT to improve the ef-
fectiveness and efficiency of the framework, as compared to traditional concolic
testing. SCORE is based on distributed concolic testing to generate test cases for
the program under consideration. This process reduces the computation time for
measuring MC/DC percentage. The coverage analyser takes the non-transformed
program and the generated test cases to calculate the MC/DC percentage.

2 SMCDCT Framework

First we present an overview of the proposed SMCDCT framework in Section
2.1, then discuss the steps of our proposed approach in Section 2.2.

R. Natarajan et al. (Eds.): ICDCIT 2015, LNCS 8956, pp. 199–202, 2015.
c© Springer International Publishing Switzerland 2015



200 S. Godboley, S. Panda, and D.P. Mohapatra

2.1 Overview of SMCDCT Framework

As the CREST concolic tester supports only linear-integer arithmetic (LIA) for-
mulae, the non linear arithmetic operations in a target C program may not be
analyzed symbolically [4,5]. The concolic testing consumes a significant amount
of time in exploring the possible execution paths, and this forms a big challenge
in its reification. We have proposed a framework to overcome some of the above
mentioned limitations. Our main objective is to achieve an increase in MC/DC
percentage without affecting the time value. We have used six distributed com-
puting nodes connected through network in order to decrease the time cost of
traditional concolic testing. To achieve high scalability, SMCDCT framework en-
ables distributed nodes to generate test cases independently. SMCDCT consists
of three modules these are discussed below:

Code Transformer. The Code Transformer (Ex-NCT [2]) uses transformation
technique to instrument the C program by augmenting it with additional nested
if-else conditional statements. This augmentation of code with additional state-
ments causes MC/DC to vary.

Fig. 1. Schematic representation of the proposed SMCDCT Framework

SCORE. SCORE consists of the library code and symbolic execution engine
modules to achieve full path coverage without generating any redundant test
cases. SCORE supports the bit vector symbolic path formulae by using Z3 2.19



SMCDCT: A Framework for Automated MC/DC Test Case Generation 201

SMT Solver [6] to solve the non-linear arithmetic operations symbolically. A dis-
tributed concolic algorithm in SCORE decreases the communication overhead
among the distributed nodes and increases the speed of test case generation [3].

Coverage Analyser (CA). The module CA [2,7] accepts original C program
under test and set of test cases generated from concolic tester as inputs to
compute the MC/DC percentage.

As SMCDCT is based on SCORE, so it overcomes the limitations of tradi-
tional concolic testing. Therefore, SMCDCT is efficient to effectively perform a
distributed and scalable concolic testing in less time.

2.2 Steps of Our Proposed Approach

In this section, we describe in detail the steps of our proposed approach to
compute the MC/DC percentage difference. These steps are as follows:

Step1: Generate Test Suite1 for the target program P.
Step2: Compute MC/DC 1 percentage.
Step3: Transform P into P’.
Step4: Generate Test Suite2 for P’.
Step5: Compute MC/DC 2 percentage.
Step6: Compare MC/DC 1 percentage and MC/DC 2 percentage.

3 Experimental Study

In this section, we discuss the experimental analysis of the obtained results. The
experimentation is carried out on two benchmark C programs (sed and grep)
taken from SIR repository [8]. The results are presented under four different
experimental scenarios as described below:

i. The first scenario corresponds to the experimentation carried out with the
CREST tool that ran on a stand-alone machine.

ii. The second scenario corresponds to the experimentation carried out with
Ex-NCT and CREST tool that ran on a stand-alone machine.

iii. The third scenario corresponds to the experimentation carried out with
SCORE tool that ran on a client-server architecture implemented with six
distributed nodes.

iv. The fourth scenario corresponds to the experimentation carried out with Ex-
NCT and SCORE tool that ran on a client-server architecture implemented
with six distributed nodes.

The readings in Table 1 show that we achieve 6.5 % (approx.) of average increase
in MC/DC for both the experimental programs. The Table 2 shows, the differ-
ent timing results for the two experimental programs. From Table 2, it can be
observed that the average of total computation times for the two experimental
programs is 7.1622715 seconds.



202 S. Godboley, S. Panda, and D.P. Mohapatra

Table 1. Comparison of MC/DC percentages

S.No Program MCDC %(CREST) MCDC %(Ex-NCT + CREST) MCDC %(SCORE) MCDC %(Ex-NCT + SCORE) MCDC %(difference)

1 sed 58.5 % 79.7% 82.4% 89.7% 7.3%

2 grep 53.8% 76.2% 79.68% 85.37% 5.69%

Table 2. Timing Reqiurements

S.No Program Ex-NCT (Sec) SCORE (Sec) CA (Sec) Total Time (Sec)

1 sed 2.213746 0.871246 3.812357 6.897349

2 grep 2.523712 1.114357 3.789125 7.427194

4 Conclusion and Future Work

We proposed a framework for distributed test case generation named SMCDCT
that is based on coverage analysis of C programs. We discussed the detailed
steps of our proposed approach along with the working principles of the mod-
ules (Code transformer, SCORE, and Coverage Analyzer) of SMCDCT. The
experimental results show that the proposed approach achieves better MC/DC
in comparison to the existing approaches. SMCDCT approach achieved 6.5 %
of average increase in MC/DC. This increase in MC/DC percentage is achieved
in an average computation time of 7.1622715 seconds. In future, we will aim at
developing an approach to find MC/DC of OOPs.

References

1. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: practical tutorial
on modified condition/decision coverage, Tech. rep. (2001)

2. Godboley, S.: Improved modified condition/ decision coverage using code transfor-
mation techniques, M. tech thesis. NIT Rourkela (2013)

3. Kim, Y., Kim, M.: Score: A scalable concolic testing tool for reliable embedded
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 420–423. ACM
(2011)

4. Kim, M., Kim, Y., Rothermel, G.: A scalable distributed concolic testing approach:
An empirical evaluation. In: Software 2012 IEEE Fifth International Conference
on Testing, Verification and Validation (ICST), pp. 340–349 (2012)

5. [link], http://www.code.google.com/p/crest
6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Godboley, S., Mohapatra, D.P.: Time analysis of evaluating coverage percentage
for c program using advanced program code transformer. In: Computer Society
of India, 7 th CSI International Conference on Software Engineering, pp. 91–97
(2013)

8. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Softw.
Engg. 10(4), 405–435 (2005)

http://www.code.google.com/p/crest

	SMCDCT: A Framework for Automated MC/DC Test Case Generation Using Distributed Concolic Testing
	1 Introduction
	2 SMCDCT Framework 
	2.1 Overview of SMCDCT Framework
	2.2 Steps of Our Proposed Approach

	3 Experimental Study
	4 Conclusion and Future Work
	References




