
A Routing Calculus with Flooding Updates

Manish Gaur1,2,�, Simon J. Gay2, and Ian Mackie3

1 Department of Computer Sc and Engg, IET Lucknow, India
2 School of Computing Science, University of Glasgow, Glasgow, UK

3 LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract. We propose a process calculus which explicitly models routing
in a distributed computer network. We define a model which consists of
a network of routers where the topology of routers is fixed. The calcu-
lus has three syntactic categories namely processes, nodes and systems.
Processes reside in nodes which are connected to a specific routers which
forms a system. Upon creation of new nodes, the routing tables are up-
dated using flooding method. We show that the proposed routing calculi
is reduction equivalent to its specification asynchronous distributed pi-
calculus (ADpi). We believe that such modeling helps in prototyping the
distributed routing algorithms.

Keywords: Routing, Process Calculi, Flooding, Specification, Computa-
tional Cost.

1 Introduction

In the last decade, we have witnessed the birth of many calculus intended to sup-
port programming of global distributed systems. These formalisms, in
[7,12,6,4,11,1,2,10], in general provide constructs and mechanisms at different
abstraction levels. These models don’t consider the actual topology or routing
of the process communication as the Internet connectivity is neither a clique
nor a forest of trees. We present a name passing calculus, DRπ, (an elaboration
of ADpi calculus [7]) with a realistic topology of nodes with routers to act as
functions in determining the path from a source node to the destination node.
We characterise the cost of communication to prove certain properties, such as
path determination, about the routers with an aim to show their impact on the
quality of service of the network. We develop the calculus for describing dis-
tributed computations explicitly in the presence of routers in an Internet like
network. The new concept is that of a site for computational activity. It consists
of named routers which host computational entities called nodes. Each node is
directly connected to specific router. These sites run in parallel to form a large
distributed network called a system. The communication between processes of
any two nodes in this network is possible only through their respective routers.
In Fig.1 we present a very simple network for the purpose of illustration. This
network consists of three routers R1,R2 and R3.
� We gratefully acknowledge the support received from commonwealth scholarship

commission, UK (Ref: INCS-2005-145 and INCF-2012-252).

R. Natarajan et al. (Eds.): ICDCIT 2015, LNCS 8956, pp. 181–186, 2015.
c© Springer International Publishing Switzerland 2015

182 M. Gaur, S.J. Gay, and I. Mackie

r

R2R1

n
m

l

R3

p q

o

Fig. 1. A Simple Distributed Network with
Routers

The nodes l,m, n, o, p, q and r are
connected to their respective routers
R1,R2 and R3 as shown. The routers
are connected through a fixed topol-
ogy. There connectivity is a directed
graph and is defined as Γc. We shall
view the routers as named functions
which map set of node names to
router names. Therefore the entries in
the router function form a table called
a routing table. The routing table at
a router R is expressed as 〈R〉. The
routing tables at each router are used
to determine the path of communica-
tion between the communicating pro-
cesses.

In DRπ, we describe a method for routing table update where upon creation
of a new node we update all the routing tables in the network. The fundamental
approach followed is very similar to breadth first traversal [3] of a graph. In
DRπ, we use two types of messages. One called as control messages which are
involved in propagating the update information and updating the routing tables
about newly created nodes in the network. The other is a value propagating
message which is used to propagate and deliver values to the waiting input
processes. Whenever a new node is created a set of control messages propagate
in a breadth first search manner across the network of routers to update all the
routing tables. As soon as all the routing tables are updated the control messages
are automatically discarded by the semantics of the language. This method of
routing table update is known as Flooding[13]. We use two types of control
messages; one for propagating the update information to all the connected
routers and another for updating the router tables. The control messages don’t
participate in the communication of values between the processes.

A typical system in DRπ looks like 〈R〉�n[P]�where a process is P is located at
node n. The node n is directly connected to the router R. The systems reduce with
respect to the router connectivity Γc and therefore the reductions are defined
on configurations. A configuration Γc � S consists of router connectivity Γc and
system S.

In Sections 2 and 3 we describe the syntax and semantics of DRπ. Section
4 discusses the equivalence between DRπ and its specification. Section 5 is the
conclusion.

2 Syntax

We will use v, u, . . . to describe values which may be a name or a variable. We
use variables a, b, c, . . . to range over channel namesC or node namesN . n,m, . . .
are used to range over node namesN and we use R,R1,R2, . . . to range over set

A Routing Calculus with Flooding Updates 183

of router names R. The variables k, l, . . . range over integers to represent the cost
of communication.

Further, we assume that sets of channel names, node names and router
names are disjoint from each other. We also assume that router and node
names are unique. There are three syntactic categories in the calculus: Sys-
tems, Nodes and Processes. The syntax of this calculus is described in Fig. 2.

S, T ::= Systems
〈R〉�M� Router
S | T Concurrency
[R]Mk

sg(n,m, v@c) Value Messages
[R]Msg(update,m,R′) Update message
[R]Msg(prop,m) Propagate message
(new d) S New name
ε Identity

M, N ::= Nodes
m[T] Named processes
M |N Concurrency
(new d) M New name
0 Identity

T, U ::= Process terms
c?(x) T Input
m!〈v@c〉 Output
if u = v then T else U Matching
(new b) T Channel name creation
newnode m with P in Q New node creation
T |U Concurrency
∗ T Repetition
stop Identity

Fig. 2. Syntax of DRπ

We describe a system as 〈R〉�M�
where R is a router and M
is a nodes. All components in
M are directly connected to the
router R. Concurrency between
two systems is expressed as S | T.
[R]Mk

sg(n,m, v@c) is a message at
router R. This message propagates
a value v sent by a process at node
n to another process located at des-
tination node m. Value v is sup-
posed to be delivered at channel
c of a waiting process at node m.
k is an integer representing the
number of hops the message has
crossed on its way to the destina-
tion.

The control messages are cat-
egorised as update and prop-
agate messages which we de-
note as [R]Msg(update,m,R′) and
[R]Msg(prop,m) respectively. The
update message [R]Msg(update,m,R′) is used to update the routing table 〈R〉
with an entry {m → R′} about the newly created node m. For example the
message [R]Msg(update,m,R′) will update the routing table at R with an entry
{m → R′} provided the router R does not know about the node name m. If R
already knows about m then this message at R is discarded. In this calculi we use
a notation 〈R〉(m) ↓ to denote that node m is defined at the router R. Similarly
we use 〈R〉(m) ↑ to denote that node m is undefined at router R.

The propagate message [R]Msg(prop,m) is used to propagate the new node
name m across the network. The propagate message [R]Msg(prop,m) generates
set of update messages at all the routers which are directly connected to R with
an update entry {m→ R}.

We call these messages, update and propagate, control messages. Since control
messages don’t deliver any values therefore they are not used in determin-
ing the quality of services in delivery of values. For this reason the super-
script representing the number of hops a message has already crossed in a
routers network has been left blank in control messages whereas in the value

184 M. Gaur, S.J. Gay, and I. Mackie

carrying message [R]Mk
sg(n,m, v@c), which is different than control messages,

it has been represented as k. The term (new d) S is a scoping mechanism for
names as usual [9,7]. The syntax for nodes are described in [7]. Similarly the
process terms are very similar to the terms in [7,9]. The definitions of bound
variables and names in [7,9] are extended in a similar way in this calculus as
well. Since names of routers and nodes are fixed and disjoint therefore they
can’t be renamed in this calculi. However α-conversion may be applied to
channel names. We use a formal relation between the systems called struc-
tural equivalence, intuitively to represent the systems as same computational
entities. This is defined in a conventional way [7,9]. We use the notion ≡ to
represent this relation. Structural equivalence is defined for each syntactic cate-
gories. However, the process equivalence is inherited by the node equivalence
and the node equivalence is inherited by the system equivalence. For example
〈R〉�N� ≡ 〈R〉�S� is true provided N ≡ S where N and S are nodes at router
R. There are certain axioms which are standard and applicable to all syntactic
categories. These standard axioms are similar to standard pi-calculus structural
equivalence axioms [7,9]. The standard axioms for structural equivalence, which
is applicable at all syntactic categories, is same as described in the conventional
manner at [7]. We use two additional notations; one as Adj(R1) to represent
Adj(R1) = {R2 | (R1,R2) ∈ Γc} and the other Γc �

∏

Adj(R1)
[R]Msg(update, k,R1) to

mean [R2]Msg(update, k,R1) | [R3]Msg(update, k,R1) | . . . | [Rn]Msg(update, k,R1)
where Adj(R1) = {R2, . . . ,Rn} .

3 Reduction Semantics

The reduction semantics of DRπ are defined on configurations Γc � S. A typical
configuration reduction step is described asΓc�S−−→kΓc�S′where the cost of this
reduction is k and a system S reduces to S′ with respect to the router connectivity
Γc. The reduction rules for DRπ are given in Figures 3 and 4. The reduction
rules (r-contx), (r-struct) in Figure 4 are about compositional reductions
and reductions that are defined upto structural equivalence. These rules are
directly inherited from [7]. The rules (r-out) and (r-in) in Figure 3 are about
message creation and delivery. We have only one rule for message forwarding
for those messages which carry a value for delivery to a waiting input process at
some node. For example in a configuration Γc � [R1]Mk

sg(n,m, v@c) | 〈R2〉�N� | S,
suppose 〈R1〉(m) = R2 then this message is hopped to router R2. This means
that the configuration Γc � [R1]Mk

sg(n,m, v@c) | 〈R2〉�N� | S is reduced to Γc �
[R2]Mk+1

sg (n,m, v@c) |〈R2〉�N� |S. Note that the superscript k is incremented by one
to record the number of hops the message has travelled so far. This reduction is
irrespective of the knowledge of the routing table 〈R2〉 about the n(v) if v ∈ NN .
This is because, in case 〈R2〉(v) ↑, there are separate control messages which will
eventually update the router table of R2 about n(v).

The reduction rules about new node creation and routing table updates are
significant and they follow flooding mechanism (in a breadth first traversal

A Routing Calculus with Flooding Updates 185

mechanism [3]) to update the routing tables about the newly created nodes.
These rules, (r-newnode − creation), (r-update − I), (r-update − II) and
(r-propagate), are self explanatory in Figure 3.

(r-out)

Γc � 〈R〉�n[m!〈v@c〉 | P] |N� −→ Γc � [R]M0
sg(n,m, v@c) | 〈R〉�n[P] |N�

(r-msg−fwd)

(R1,R2) ∈ Γc
〈R1〉(m) = R2

Γc � [R1]Mk
sg(n,m, v@c) | 〈R2〉�N� | S −→ Γc � [R2]Mk+1

sg (n,m, v@c) | 〈R2〉�N� | S
(r-in)

〈R〉(m) = R
Γc � [R]Mk

sg(n,m, v@c) | 〈R〉�m[c?(x) P] | N� −→k Γc � 〈R〉�m[P{|v/x|}] |N�
(r-newnode−creation)

Γc � 〈R〉�n[newnode m with P in Q]� −→ Γc � (new m)〈R〉�n[Q] |m[P]� | [R]Msg(update,m,R)

(r-match)

Γc � 〈R〉�n[if v = v then P else Q]� −→ Γc � 〈R〉�n[P]�

(r-mismatch)

Γc � 〈R〉�n[if v1 = v2 then P else Q]� −→ Γc � 〈R〉�n[Q]� v1 � v2

(r-update−I)
〈R1〉(m) ↑
Γc � 〈R1〉�N� | [R1]Msg(update,m,R2) −→ Γc � 〈R1{m→ R2}〉�N� | [R1]Msg(prop,m)

(r-update−II)
〈R1〉(m) ↓
Γc � 〈R1〉�N� | [R1]Msg(update,m,R2) −→ Γc � 〈R1〉�N�
(r-propagate)

Γc � [R1]Msg(prop,m) | S −→ Γc �
∏

Adj(R1)
[R]Msg(update,m,R1) | S Adj(R1) ∈ S

Fig. 3. Reduction semantics for DRπ

(r-struct)

S ≡ S′ , Γc � S′ −→k Γc � R′, R′ ≡ R
Γc � S −→k Γc � R

(r-contx)

Γc � S1 −→k Γc � S
′
1

Γc � S1 | S2 −→k Γc � S
′
1 | S2

Γc � S2 | S1 −→k Γc � S2 | S′1
Γc � (new d) S1 −→k Γc � (new d) S

′
1

Fig. 4. contd...Reduction semantics for DRπ

How do we know that the reduc-
tion semantics is reasonable and does
not introduce inconsistencies in the
system? We know because we can
prove that if a configuration is “coher-
ent” before we apply a reduction it re-
mains “coherent”. “Coherence” will
mean a series of properties, which
summed together gets us the notion
of a well-formed configuration. As an
example all the routing tables must
have knowledge of the propagating
node names. Therefore this should be
a condition on a well formed configurations. The notion of well formed con-
figurations in DRπ is adapted from the established theory of typed behavioural
equivalence [8,5]. It’s easy to show that conditions on well-formed configura-
tions are preserved by semantic reductions.

186 M. Gaur, S.J. Gay, and I. Mackie

4 Equivalence between DRπ and its Specification

We shall now try to establish an equivalence of DRπ with a specification of it.
ADpi [7] like language where located processes are called nodes, and each pair
of nodes are directly connected can be a specification for DRπ. In [7], as all pair
of nodes are directly connected they form a clique of the graph of connected
nodes. Intuitively, Dπ is a top level view of DRπ.

We show that both languages, DRπ and Dπ, are reduction equivalent after abstract-
ing away the details of routers and paths from DRπ. For the purpose of abstraction
of routers and paths from DRπ we define a function, �, over DRπ system to a Dπ
system. Function � abstracts away the routers from a DRπ term.

5 Conclusion

We described the routing calculi DRπ, where the crucial role of routers in de-
termining the quality of communication services in a distributed network is
demonstrated. We justified this model by showing that this is, in fact, imple-
mentation of ADpi [7]. The basic design of the model itself shows that it is
closer to the real distributed networks.

References

1. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: A calculus of
bounded capacities. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896,
pp. 205–223. Springer, Heidelberg (2003)

2. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press (2003)

4. Gaur, M., Hennessy, M.: Counting the cost in the picalculus (extended abstract).
Electronic Notes in Theoretical Computer Science (ENTCS) 229(3), 117–129 (2009)

5. Gay, S.J., Hole, M.: Subtyping for session types in the pi-calculus. Acta Inf. 42(2-3),
191–225 (2005)

6. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: SIGCOMM, pp. 1–12 (2005)
7. Hennessy, M.: A distributed Pi-Calculus. Cambridge University Press (2007)
8. Hennessy, M., Rathke, J.: Typed behavioural equivalences for processes in the pres-

ence of subtyping. Mathematical Structures in Computer Science 14(5), 651–684
(2004)

9. Milner, R.: Communicating and mobile systems: The π-Calculus. Cambridge
University Press (1999)

10. Nicola, R.D., Gorla, D., Pugliese, R.: Basic observables for a calculus for global com-
puting. Inf. Comput. 205(10), 1491–1525 (2007)

11. Orava, F., Parrow, J.: An algebraic verification of a mobile network. Formal Asp.
Comput. 4(6), 497–543 (1992)

12. Sewell, P., Wojciechowski, P.T., Pierce, B.C.: Location-independent communication
for mobile agents: A two-level architecture. In: Bal, H.E., Cardelli, L., Belkhouche, B.
(eds.) ICCL 1998 Workshop. LNCS, vol. 1686, pp. 1–31. Springer, Heidelberg (1999)

13. Tanenbaum, A.S.: Computer Networks. Pearson Education, Inc., Upper Saddle River
(2003)

	A Routing Calculus with Flooding Updates
	1 Introduction
	2 Syntax
	3 Reduction Semantics
	4 Equivalence between DR and its Specification
	5 Conclusion
	References

