
Finding RkNN Set in Directed Graphs

Pankaj Sahu1, Prachi Agrawal2, Vikram Goyal1, and Debajyoti Bera1

1 Indraprastha Institute of Information Technology-Delhi (IIIT-D), India
{pankaj1244,vikram,dbera}@iiitd.ac.in

2 LNM Institute of Information Technology, Jaipur, India
happyprachi.1@gmail.com

Abstract. The reverse k-nearest neighbors of a query data point q character-
izes the influence set of q, and comprises of data points which consider q among
their k-nearest neighbours. This query has gained considerable attention due to
its importance in various applications involving decision support systems, profile-
based marketing, location based services, etc. Although this query is reasonably
well-studied for scenarios where data points belong to Euclidean spaces, there
has not been much work done for non-Euclidean data points, and specifically, for
large data sets with arbitrary distance measures. In this work, a framework has
been proposed for performing RkNN query over data sets that can be represented
as directed graphs. We present a graph pruning technique to compute the RkNN
of a query point which significantly reduces the search space. We report results
of extensive experiments over some real-world data sets from a social network,
a product co-purchasing network of Amazon, the web graph, and study the per-
formance of our proposed heuristic in various settings on these data sets. These
experiments demonstrate the effectiveness of our proposed technique.

1 Introduction

A common problem that arises in many marketing and decision support systems is to
determine the “influence” of a data point on other data points of a database. Korn, Flip
and Muthukrishnan introduced the concept of reverse nearest neighbor[4] in 2000 to
compute the set of influenced points for datasets with a notion of “closeness” between
the points. The underlying idea is that a nearby point have a larger influence than a
point farther away, which immediately leads to the concept of reverse nearest neighbor
(RNN), and its generalisation reverse k-nearest neighbor (RkNN).

The most common application of reverse nearest neighbor query for computation of
influential sets can be illustrated by a facility location scenario. Suppose a company is
exploring the option of opening a new restaurant in a location and wants to find likely
customers – people who would be “more likely” to use this restaurant compared to
another one; in our terminology, we say these people are influenced by the location and
profile of this restaurant.

The important issue, therefore is to efficiently compute the data points influenced by
a query point. Technically, the reverse nearest neighbor (RNN) of a query point consists
of all those data points for which the query point is their nearest neighbor (NN). Reverse
k-nearest neighbor (RkNN) is a generalisation of RNN, where kNN is used in the place
of NN in the earlier definition.

R. Natarajan et al. (Eds.): ICDCIT 2015, LNCS 8956, pp. 162–173, 2015.
c© Springer International Publishing Switzerland 2015

Finding RkNN Set in Directed Graphs 163

Efficient algorithms for computing RkNN have been designed for various types of
data [2,3] and several variants of nearest neighborhood query. Majority of these works
have focused on data with a well-defined concept of distance or similarity, such as
Euclidean distances, similarity measures for word vectors, and other distances that are
metric in nature. However, the problem becomes fundamentally different for data points
with arbitrary distances between the points such as people, products, movies, etc. Data
with an arbitrary notion of distance is well represented by a weighted graph. The focus
of this paper are data which can be represented as such graph, and furthermore, as
weighted directed graphs. The nodes in the graph are the data points, and the weighted
and directed edges represent the distance and relation, respectively, between related
points.

Given such a graph, it is often meaningful to consider the shortest-path distance as
the distance between two points. There are a few major hurdles in computing RkNN of a
query point in such a graph. First similar to the general problem, the concept of nearest
neighborhood is not symmetric, so we cannot simply run one single-source shortest
path query from the query point.

Fig. 1. Nearest Neighborhood using Shortest-path Distance

For example, in Fig. 1, P1 is the nearest neighbor of query point q but P2 is the NN of
P1 and not of q. This also implies that the points in RNN need not be in the immediate
vicinity of the query point, and a large segment of the graph may have to be traversed.
This presents a major challenge for large graphs because we cannot benefit from locality
conditions. A solution based on running a Dijkstra’s algorithm from every point (to
compute the kNN of each point) would be correct, but computationally very expensive.
Secondly, we are interested in a non-index based solution; index/pre-processing based
techniques are often not much efficient or directly possible for situations where k is not
fixed and due to relationship constraints present in graphs.

An interesting application of RkNN query in directed graphs can be seen in social
networks; here, RkNN can be used to determine the influence set of any person. The
weights on the directed edges of such network can represent the influence of one person
on another, say, regarding forwarding of messages, and the RkNN query for a person
would then give a set of individuals who would play an important role in diffusing any
information initiated or forwarded by the query person.

164 P. Sahu et al.

In an earlier work, a graph-pruning based algorithm was designed by Papadias et
al.[11] for undirected graphs. However their technique does not work for directed graphs.
The main contribution in this paper is an approach for computing reverse nearest neigh-
borhood for directed graphs. We give two algorithms, Directed Eager (D M) and an op-
timized version for large graphs, Directed Eager Materialization (D EM) for processing
(monochromatic) RkNN for arbitrary k. Another important contribution is extensive ex-
perimentation on large directed networks coming from real datasets including that of a
social network, a product co-purchasing network from Amazon and a web network of
Berkeley-Stanford university.

The rest of the paper is organized as follows: Section 2 presents the necessary back-
ground and related work. Section 3 discusses our algorithm. Section 4 reports our exper-
imental results on some real world data sets including performance comparisons with
respect to various parameters. Section 5 concludes the paper suggesting some directions
for future work.

2 Background and Related Work

2.1 Reverse Nearest Neighbor Query

We will now formally define the relevant terms.
Given a dataset P , the monochromatic RkNN of a query point q not in P is defined

as:

RkNN (q) = {p∈P | dist(p, q) ≤ dist(p, pk(p)), where pk∈P is the kth NN of p}

Similarly, given two datasets P and Q and a query point q∈Q, the bi-chromatic
RkNN of a query point q returns all those data points p ∈ P which are nearer to q than
any other points of Q.

bRkNN (q) = {p∈P | dist(p, q) ≤ dist(p, qk(p)), where qk∈Q is the kth NN of p}

In this paper, we are interested in only monochromatic RkNN.
Furthermore, like [11], we consider a generalized scenario where not all nodes in the

graph are data points. For instance, not every author in a co-authorship graph works in
some specified field. Such networks are called restricted networks. Consider the exam-
ple in Fig. 2(a). Suppose it represents a DBLP co-authorship (collaboration) network.
An (monochromatic) R1NN query for query point q will return authors whose 1NN is
q, among authors of his same field {P1, P2, P3, P4}. Other nodes, such as n1, n2 and n3

represent the authors which are not working in the author’s field and, thus, are irrelevant
for this query.

In this figure, RNN(q)={P4}, because P4’s NN is q, and R2NN(q)={P1,P2,P4}. The
other type of network, where the data and query points can be any node of the graph,
is called an unrestricted network. However, we give a solution for the more general
restricted network.

Finding RkNN Set in Directed Graphs 165

(a) Monochromatic RNN query (b) Bi-chromatic RNN query

Fig. 2. Types of RNN Queries

2.2 Related Work

A lot of work has been done on RNN queries. The work was started by a paper [4] in
2000 where the authors define the notion of influence set and show that nearest neigh-
bour set of a point is different from a reverse nearest neighbour set of the point. They
show multiple applications of RNN query whereas finding a facility location is one of
them. To solve RNN query efficiently, the authors propose to have a pair of R-tree struc-
tures on spatial objects and MBR regions of objects containing their nearest neighbour,
respectively. Subsequently, there has been more work [7,10] on providing efficient so-
lutions using better data structures or methods constraining the search to a well defined
set of candidates. Our work focuses on finding RkNN set for weighted directed graphs
and uses network distances as well relationship of nodes for search.

The other work for RNN query has been done on Road networks [8,5,11,9,6] and
for continuous RNN queries [1,3]. In continuous RNN queries case, the problem is to
continuously report the RkNN set of a moving query point. The brute force solution
of computing RNN set afresh would not be good and hence an incremental solution
was proposed by the authors. The approach is based on the concept of safe region that
defines the boundary around a query point, crossing which there is a need to recompute
the RNN set.

The work on RNN query over road network was done in [8,5]. Safar et al. [5] used
a network Voronoi diagram (NVD) for efficiently processing the RNN queries over
road networks. The NVD uses the Voronoi cell that has the nodes & the edges which
are nearer to the generator point of the cell compare to other points in the network.
The authors in [11] model the road network as an undirected graph and presents two
versions of problem, restricted case where data objects/points can be only at intersection
nodes and unrestricted case where objects can be anywhere on the edges. The authors
gave two different algorithms called eager and lazy approaches that use heuristic rules
to prune the search space.

166 P. Sahu et al.

3 Proposed Solution

Here we present our proposed algorithms for solving an RkNN query for a given
directed graph (digraph) G, and edge weight function d(·). As explained earlier,
our algorithm is based on the results of Papadias et al.[11] with crucial modifications
necessary to handle directed networks.

We maintain two graphs, one GM and another graph GR whose edges are reverse of
that of G. This is required because our algorithm traverses in a best-first manner starting
at q (which uses GM), but to ascertain the inclusion of a node p in RkNN(q) we need to
check the neighborhood of p for which we use GR.

Our algorithm is based on the following key lemma which is used to optimize explo-
ration of the graph. Using the rule given in the lemma, unpromising nodes are identified
those need not be further explored. As exploring them further would not be useful due
to the reason that if a successor of the node have its short path to the query point through
the node, it would not be in RkNN.

Fig. 3. Lemma

Lemma 1. For a query point q, a data point p and a node n, if d(n, q) > d(n, p) and
there is another data point p′�= p whose shortest path to q passes through n, then point
p′ is not in the RNN set of q.

Proof. The proof is really straight forward.
d(p′,q) = d(p′,n)+d(n,q)>d (p′,n)+d(n,p) ≥ d(p′,p).
Since, d(p′,p)<d(p′,q), p′ �∈ RNN(q). ��

Therefore, in such a situation, the node n can be pruned and need not be further
expanded. As an illustration, refer to Fig. 3. There, d(n2, q) = 2 > d(n2, p1) = 1.
According the lemma, any data point (in Fig. 3 p4) whose shortest path to q passes
through n2 cant be the RNN of q as the data point p4 is nearer to p1. In this case, node
n2 will be pruned and need not be expanded further.

Finding RkNN Set in Directed Graphs 167

Fig. 4. Example of Directed Eager (a) Main Graph GM (b) Reverse Graph GR

Similar to [11], we use two subroutines range-NN query and verify query. A straight
forward modification of these subroutines given in their paper turn out to be suffi-
cient for directed graphs, so we skip their implementation details in our paper. The
range-NN(n,k,q) query returns (at most) k nearest data points with shortest-path dis-
tance smaller than d(n, q). The query verify(n,k,q) is similar to range-NN(n,k,d(n,q)),
except that it stops as soon as q is encountered.

3.1 Directed Eager(D E) Algorithm

Our main algorithm traverses the reverse graph GR starting from the query point q, in
a best-first manner, and every encountered node n in GR is inserted into a min-heap H.
H is also used to select the next node to explore. For every point node n deheaped from
the queue, we proceed as given below. The range-NN and verify queries are executed
on the main digraph GM and all other operations are done on the reverse graph GR.
The only difference between the range-NN query and the verify query is that range-NN
returns the set of k nodes whereas verify returns boolean value to decide whether to
explore the node further.

– If the node contains a data point p∈P, then we need to take two decisions:
1. Whether p ∈ RkNN(q)? This we determine by running range-NN(p,k,q).
2. Whether p should be explored further? This we determine using Lemma 1 by

using verify(p,k,q). If k (or more) points are found, then there is no need to
explore further the neighbors of p.

– If the node does not contain a data point, then we only need to determine whether
that node should be explored further. We employ the same treatment as (2) above.

– In the case of node is not to be explored further, no adjacent nodes of the currently
explored node with respect to GR are enqueued in the heap H .We now illustrate our algorithm on Fig. 4, on which we run a query RNN(q) for k=1.

The algorithm starts its traversal from node n1 (source node which contains the query
point q) and insert < n1(q),0> into H (currently empty). After this, n1 is deheaped.

168 P. Sahu et al.

Algorithm. D Eager(q, k)
insert < n(q), 0 > into H // n(q) is the node containing query point q
while (not-empty(H) do

< n, d(q, n) >:= de-Heap(H);
if (n is not visited before) then

mark n as visited
if (n does not contain a point) then

kNN(n) = range-NN(n,k,d(q,n)) in main digraph GM .
end
else if (n contains a point p) then

kNN(p) = verify(p,k,q) too check in main digraph GM .
if q discovered by verification add p to RkNN(q)

end
if (| kNN(n) |< k or | kNN(p) |< k) then

For (each non-visited adjacent node ni of n in reverse digraph GR)
insert < ni, d(q, n) + w(n, ni) < into H

end
end

end
return RkNN(q)

Since it does not contain any data point, and since d(n1,q)=0, range-NN returns the
empty set trivially. Therefore, it’s adjacent nodes in reverse graph GR, <n2, 2> <n4,
2> and <n7, 3>, are now inserted into H .

The next deheaped node is n2 which also does not contain a data point. A range-
NN(n2,1,2) query in GM again does not return any point within distance 2 from n2.
Similar to the previous case, its adjacent node < n3, 3> in GR is inserted into H .

The subsequent deheaped node is n4, which too, does not contain a data point. How-
ever, a range-NN(n4,1,2) in GM returns a data point p2, because d(n4, p2) = 1 <
d(q, n4) = 2. Hence node n4 can be pruned, and so its adjacent nodes are not inserted
into H .

Next node n7 is deheaped which contains a data point p4. We run a range-NN(n7,1,3)
query that returns p4 itself, however running verify(p4,1,q) in GM returns the data point
p2. Therefore, neither p4 belongs to RkNN(q), nor should p4 be explored further. In
case of verify query at a node, data point located at the node itself is not considered.

At last node n3, containing data point p1, is deheaped and range-NN(n3,1,3) returns
point p1. The verify(p1,1,q) query in GM) finds q and returns true. So p1 is added into
RkNN(q) and no adjacent of n3 is added in heap H .

At this stage, H is empty which means that our algorithm is terminated with final
result containing RNN(q)={p1}.

3.2 Directed Eager Materialization

Materialization is the technique of pre-computing the shortest distances between all
pairs of nodes and store it in a lookup table. A naı̈ve approach for materialization is
to apply the kNN query on each node, but this method is not scalable for large graph.

Finding RkNN Set in Directed Graphs 169

Therefore, an all-NN algorithm is proposed that accessed the network only once to
compute the distance value for different values of k for each node.

The algorithm is as given below.

Algorithm. Directed All-NN (k)
for (each node n those contains point p in main digraph GM) do

insert < n, p, 0 > into H
end
while (not-empty(H)) do

< n, p, d(p, n) >:= de-Heap(H)
if (| kNN(n) |< k and p/∈ kNN(n)) then

add < p, d(p, n) > to kNN(n)
for (each adjacent node ni of n in reverse graph GR) do

if (| kNN(ni) |< k and p/∈ kNN(ni)) then
insert < ni, p, d(p, n)+w(n, ni) > into H

end
end

end
end
return kNN

Our directed eager materialization algorithm (Directed EM or D EM) utilizes the
materialized lookup table build above to retrieve the kNN of any n in constant time.
This replaces the costly range-NN and verify operations to constant time table look-up
operation.

4 Experimental Evaluation

In this section, we show our experimental results for processing RkNN query over di-
rected graphs. In the graph |V| represents number of nodes in the graph, |P| represents
data points cardinality and D=|P| / |V| represents data density. However, if D = 1
then R1NN query returns a point situated on the query node itself. For providing more
meaningful results, we restricted value of D from 0.1 to 0.4. All the experimental re-
sults show the average value of 50 queries generated randomly from all the data points
in the network. All algorithms are implemented in Java and experiments are run on an
Intel Xenon 2.00 GHz machine with Windows environment. In our experiments, we
evaluate the performance of the algorithms in terms of (i) computation time in millisec-
onds(ms), (ii) number of accessed nodes, (iii) number of accessed points. We study the
performance with respect to the size of requested data points (k), and the density (D)
of a graph. The value of k <<| P |.

4.1 Directed Graph

We study the performance of directed eager (D E), directed eager materialization
(D EM) and the naı̈ve approach on different datasets.

170 P. Sahu et al.

The first set of experiments has been performed on a social network dataset of Face-
book 1. The dataset contains 1862 users and 20k directed edges among the users. A user
is represented as a node n and an edge direction between two users e(i,j) refers, if a user
’i’ has sent at least one online message to a user ’j’. The strength measure or weight on
the edge e(i,j) represents the 1/(number of messages) between users ’i’ to ’j’.

(a) k (requested points) (b) D (data density)

Fig. 5. Facebook Social Network (a) Effect of K on Computation Time (ms) (b) Effect of D (data
density) on Computation Time

In the first experiment, we measure the effect of query parameter k on computation
time when density D is 0.4. Figure 5(a) shows the result. When k increases, the com-
putation cost also increases. It is because of the increase in the number of accesses of
nodes/points with increase in k. In the second experiment, effect of density D on the
computation cost is evaluated. Fig. 5(b) shows the results. It is seen that when D in-
creases (value of K is set to 10 as a default value), the computation time cost decreases.
It is due to the fact that increase in density of points in the graph makes availability of
data points near to the query points as well as increases the proximity of data points to
each other and other graph nodes. The probability of finding k data points within the
distance d(n,q) from a node increases and hence the adjacent nodes of the node need not
be put in the heap. This results in better pruning and less graph is searched for RkNN.

It can be seen that when the data density D is very low, D E performs worse as
compared to the naı̈ve approach. It is because of non-pruning of nodes. Most of the
nodes in the graph do not find k data points and hence their adjacent nodes are enqueued
in the heap, and the algorithm D E ends up in accessing more nodes for retrieving k
points. When D increases, the computation cost of algorithmD E drastically decreases
and performs better than the naı̈ve approach. During this experiment, we also observe
that when D increases, then the number of accesses nodes decreases and the number of
points increases, because more points need to be verified.

The second set of experiment has been performed on product co-purchasing network
of Amazon 2. The dataset contain 410,235 nodes and 3.3 million edges. Each node
represents the product which was purchased by a customer from the Amazon sites.
Two products i and j are linked by a directed edge from i to j if the product j is

1 (http://toreopsahl.com/datasets/#online_social_network)
2 http://snap.stanford.edu/data/amazon0505.html

(http://toreopsahl.com/datasets/#online_social_network)
http://snap.stanford.edu/data/amazon0505.html

Finding RkNN Set in Directed Graphs 171

purchased after product i. The edge can be interpreted as a causal relation, i.e., if item i
is purchased then item j is also purchased. All the edge weights are assigned randomly
for our experiments.

Table 1. Effect of K on Computation Time,
D = 0.4, Amazon Dataset

K D E D EM Naive
1 0.56 0.32 1424.08

2 0.64 0.36 2460.92

4 1.18 0.52 5138.54

8 3.36 1.62 11371.42

16 9.94 4.28 24444.34

32 37.68 13.74 48922.28

Table 2. Effect of D on Computation Time,
K = 10, Amazon Dataset

D D E D EM Naive
0.1 64.06 7.32 16852.38

0.2 19.1 4.2 15140.12

0.3 9.56 3.2 14445.6

0.4 4.58 2.08 13986.24

(a) (b)

(c)

Fig. 6. Amazon product co-purchasing Directed network (a) Effect of k on Computation Time
(b) Effect of k on Accessed Nodes (c) Effect of k on accessed Points

Table 1 shows the computation cost for different values of k when D is 0.4. The
experimental results show that when k increases, then computation time increases. The
naı̈ve algorithm takes too much time as compared to D E. It is because of early pruning
of the search space by algorithm D E and exploring only few nodes. Fig. 6 shows
the performance of the directed eager materialized (D EM) algorithm with respect to
the directed eager(D E) algorithm. (D EM) algorithm performs much better due to its

172 P. Sahu et al.

constant time cost for verification step (Naı̈ve showed worst amongst all and not shown
in the graph). However the graph for the value of D as 1 are not shown, in this case
D E would perform best as the probability of finding k data points is very high within
k hops from the node. As we will go farther from the query point, their probability of
being in RkNN set would decrease.

Next experiment shows the effect of D, given in Table 2. It shows that when D in-
creases the computation cost decreases. It is because of the reason that the algorithm
D E finds more points near around the query point and expansion happens to a small
set of nearby nodes. Figure 7 shows this experimental result for D E and D EM al-
gorithms. Figure 7(b) & 7(c) show qualitative results in terms of accessed nodes and
accessed points. It may be noted that we do not count an accessed node twice.

(a) (b)

(c)

Fig. 7. Amazon product co-purchasing Directed network (a) Effect of D on Computation Time
(b) Effect of D on Accessed Nodes (c) Effect of D on accessed Points

5 Conclusion and Future Work

We have presented two algorithms for RkNN query on directed graphs in the paper. The
optimized version, D EM algorithm, performs best amongst all and takes very less
time for finding out an RkNN set. We have performed an extensive set of experiments
on three real graphs to study the performance of the algorithms. Results show that the
pruning rule we have proposed in the paper is very effective.

Acknowledgement. Authors will like to acknowledge the support provided by ITRA
project, funded by DEITy, Government of India, under grant with Ref. No. ITRA/15(57)/
Mobile/HumanSense/01

Finding RkNN Set in Directed Graphs 173

References

1. Cheema, M., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors
queries in euclidean space and in spatial networks. The VLDB Journal 21(1), 69–95 (2012)

2. Goyal, V., Likhyani, A., Bansal, N., Liu, L.: Efficient trajectory cover search for moving
object trajectories. In: Proceedings of the 2013 IEEE Second International Conference on
Mobile Services, MS 2013, pp. 31–38. IEEE Computer Society, Washington, DC (2013)

3. Goyal, V., Navathe, S.B.: A ranking measure for top-k moving object trajectories search. In:
Proceedings of the 7th Workshop on Geographic Information Retrieval, GIR 2013, Orlando,
Florida, USA, pp. 27–34 (November 5, 2013)

4. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries.
SIGMOD Rec. 29(2), 201–212 (2000)

5. Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing
on spatial networks. Multimedia Systems 15(5), 295–308 (2009)

6. Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations:
reverse path nearest neighbor query in road networks. In: GIS 2011, pp. 181–190 (2011)

7. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pp. 44–53 (2000)

8. Tran, Q.T., Taniar, D., Safar, M.: Reverse k nearest neighbor and reverse farthest neighbor
search on spatial networks. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Transactions
on Large-Scale Data- and Knowledge-Centered Systems I. LNCS, vol. 5740, pp. 353–372.
Springer, Heidelberg (2009)

9. Wang, Y., Xu, C., Gu, Y., Chen, M., Yu, G.: Spatial query processing in road networks for
wireless data broadcast. Wirel. Netw. 19(4), 477–494 (2013)

10. Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest neighbor queries. In:
ICDE, pp. 485–492 (2001)

11. Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbors in large graphs.
IEEE Transactions on Knowledge and Data Engineering 18(4), 540–553 (2006)

	Finding RkNN Set in Directed Graphs
	1 Introduction
	2 Background and Related Work
	2.1 Reverse Nearest Neighbor Query
	2.2 Related Work

	3 Proposed Solution
	3.1 Directed Eager(D_E) Algorithm
	3.2 Directed Eager Materialization

	4 Experimental Evaluation
	4.1 Directed Graph

	5 Conclusion and Future Work
	References

