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Abstract Fault Attacks exploit malicious or accidental faults injected during the
computation of a cryptographic algorithm. Combining the seminal idea by Boneh,
DeMillo and Lipton with Differential Cryptanalysis, a new field of Differential
Fault Attacks (DFA) has emerged. DFA has shown that several ciphers can be
compromised if the faults can be suitably controlled. DFA is not restricted to old
ciphers, but can be a powerful attack vector even for modern ciphers, like the
Advanced Encryption Standard (AES). In this book chapter, we present an overview
on the history of fault attacks and their general principle. The chapter subsequently
concentrates on the AES algorithm and explains the developed fault attacks. The
chapter covers the entire range of attacks finally showing that a single random byte
fault can reduce the AES key to 28 values, with a time complexity of 230. Further
extensions of the fault attack to multiple byte fault models and attacks targeting
the AES key schedule are also presented in the chapter. These attacks emphasize
the requirement of counter-measures to detect the underlying faults and accordingly
suppress the invalid output. The chapter then presents a survey of existing DFA
countermeasures, concluding with the efficient Concurrent Error Detection (CED)
schemes which have been developed utilizing the invariance properties in AES.
Such a strategy provides near 100 % fault coverage at a less overhead. The combined
chapter shows that DFA against AES are practical, and can be prevented using
suitable techniques.
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1 Introduction: Faults and Cryptosystems

The growing complexity of the cryptographic algorithms and the increasing appli-
cations of ciphers in real time applications has lead to research in the development
of high speed hardware designs or optimized cryptographic libraries for these
algorithms. The complex operations performed in these designs and the large state
space involved indicates that a complete verification is ruled out. Hence these
designs have a chance of being fault prone. Apart from these unintentional faults,
faults can also be injected intentionally. Literature shows several ways of fault
injection: accidental variation in operating conditions, like voltage, clock frequency,
or focussed laser beams in hardware. Software programs can also be subjected to
situations, like missing of certain instructions to inflict faults. Apart from the general
issue of fault tolerance in any large design, faults bring a complete new aspect when
dealing with cryptographic algorithms: security.

The first thing that comes to mind is the relation between faults and secrets.
In this section, we first attempt to motivate the impact of faults in the leakage of
information.

Motivating Example Consider a pedagogical example comprising of two hard-
ware devices as illustrated in Fig. 1.

The first device has a register storing the values R1 D .6; 0/, and computes the
product yleft D .6; 0/ � .a; b/T D 6a mod m. The value of m is fixed as say 8.
The second device on the other hand has the register with value R2 D .0; 2/ and
computes yright D .0; 2/ � .a; b/T D 2b mod m. The users can feed in values of
.a; b/, st. .a; b/ 2 f2; 6g � f2; 6g. For the rest of the discussion all the computations
are mod 8 and are not explicitly stated.

The user can only input the values .a; b/ chosen from the 4 values of f2; 6g �
f2; 6g. On receiving the inputs .a; b/ both the hardwares compute the values of yleft

and yright. However the user is given either yleft or yright, chosen on the basis of a
random toss of an unbiased coin which is hidden from the user. The challenge of
the user is to guess the outcome of the random coin with a probability better than 1

2
.

Fig. 1 Effect of faults on
secrets
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The user is allowed to make multiple queries by providing any of the 4 inputs .a; b/.
It can be assumed that the random choice is kept constant for all the inputs.

It may be easily observed that yleft D yright for all the 4 values of .a; b/ which
implies that the output yleft or yright does not reveal which output is chosen by the
random toss. For all the input values of .a; b/ the output is 4.

Now consider that one of the hardwares is subjected to a permanent stress, which
creates a fault in either the registers R1 or R2. Hence, either R1 D r ¤ 6 or R2 D
r ¤ 2. If the fault occurs in R1, y0left D ra, while yright D 2b. Else if the fault occurs
in R2, yleft D 6a, while y0right D rb. WLOG. assume that the fault is in the first
device.

Now the attacker provides two inputs: .2; 2/ and .6; 6/ to the hardware devices.
The attacker observes both of the outputs. If both the outputs are the same then the
attacker concludes that the right output is chosen, while if they are different the left
output is chosen with probability 1.

Thus this simple example shows that a fault can leak information which seemed
to be perfectly hidden in the original design. Thus apart from the malfunction of
hardware or software designs, algorithms which hide information (like ciphers)
should be analyzed w.r.t. faults. Next, we consider a more non-trivial example of
fault based analysis of the popular RSA cryptosystem.

1.1 Fault Analysis of the RSA Cipher

The first fault based attack was mounted on the well-known public key cryptosystem
RSA. We know that RSA works by considering two keys: a public key is known
to every one, while a private key is secret. Encryption of a message is performed
using the public key, but decryption requires the knowledge of the private key. All
the operations are done mod n, where n is the product of two large distinct prime
number p and q. The values of p and q are however private and hence not disclosed
to all. The encryption key, which is public is a value b, where 1 � b � �.n/ where
�.n/ is the Euler-Totient function. The decryption key is a private value a, which is
selected such that ab � 1 mod �.n/. The owner of the private key .p; q; a/ publishes
the value .b; n/ which is the public key.

The encryptor chooses a message x, where x 2 Zn. It may be mentioned that
Zn D f0; 1; : : : ; n � 1g. The encryption process is computing the cipher as y �
xb mod n using the public key b. Since the decryptor knows the value of a, which is
the private key, he computes the value of x from y by computing ya � .xb/a mod n �
x mod n. The security of RSA is based on the assumption that decryption can be
performed only by the knowledge of the private key b. However to obtain the private
information from the public value a requires one to compute the modular inverse of
a modulo �.n/. It is believed that to obtain �.n/ from n requires the knowledge of
the prime factors of n, namely p and q. The security of RSA is thus based on the
hardness assumption of factorization of large n.
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However we explain that under situation of faulty computations the value of the
secret exponent a can be retrieved by efficient algorithms. In the attack it is assumed
that the attacker is in possession of certain number of plaintext and ciphertext pairs.
The attacker has the ability to flip one bit of the value a during computation. Say,
the ith bit ai of a is flipped and modified to Oai, where 0 � i � jaj and jaj is the
bit-length of a. The attacker has access to both fault-free X and faulty plaintexts OX.

Therefore, he can compute, X
OX D YOa

Ya D Y2i
Oai

Y2iai
mod n. If the ratio is equal to Y2i

, the

attacker can be sure that ai D 0. On the other hand if the ratio is 1

Y2i , the attacker
ascertains that ai D 1. The same technique is repeated for all the values of i, thus a
can be retrieved. The attack is also applicable when the fault is induced in Y. It is
also possible in cases when the fault flips two or more bits. The details are left to
the reader as an exercise.

These attacks show that fault analysis can be a powerful tool for attacking
ciphers. Significant research has been performed in the field of fault based crypt-
analysis of various ciphers of different types. From the seminal paper of [10] fault
attacks have been improved with the ideas of differential analysis to attack block
ciphers, like Data Encryption Standard (DES). However, after the acceptance of the
128-bit version of the Rijndael block cipher, designed by Vincent Rijmen and Joan
Daemen, as the Advanced Encryption Standard (AES) in 2001, the main focus of
fault attacks have been AES. In the following section we present an overview on the
AES algorithm.

2 Preliminaries

The chapter focuses on AES and its fault analysis. The present section provides a
top level description of the block cipher algorithm.

2.1 AES Algorithm

AES is an iterative block cipher, designed by Vincent Rijmen and Joan Daemen. The
algorithm, originally designed to support both block and key lengths of 128, 192,
and 256 bits, the standardizes AES supports only block length of 128 bits, though
the key can be of all the three specifications: 128, 192 and 256 bits.

The AES algorithm is an iterated block cipher, meaning the plaintext is applied
over several rounds to obtain the final ciphertext. The three versions of AES, ie.
AES-128, AES-192, and AES-256 has 10, 12, and 14 rounds. The 128-bit input
plaintext is transformed by the rounds into a 128-bit output ciphertext. All the
rounds of AES are identical except the last round with a slight change.

Each round of AES encryption consists of SubBytes, ShiftRows, MixColumns,
and AddRoundKey denoted by B, S, M, and A, respectively, as shown in Fig. 2.
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Fig. 2 One AES encryption round

The plaintext is first mixed with the input key through a key XORing operation.
Subsequently the rounds are applied, which are composed of the above mentioned
four operations, B, S, M, and A. The last round is only distinct as MixColumns is
not performed.

2.2 Round Transformations of AES

Each operation in every round acts on a 128-bit input state, where each state element
is a byte in GF.28/. Each byte is denoted by sr;c (0 � r; c � 3) indicating that this
byte is in row r and column c in the state matrix.

S D

2
664

s0;0 s0;1 s0;2 s0;3

s1;0 s1;1 s1;2 s1;3

s2;0 s2;1 s2;2 s2;3

s3;0 s3;1 s3;2 s3;3

3
775 D Œsr;c�

3
r;cD0 (1)

In SubBytes, all bytes are processed separately by 16 S-boxes (SBs in Fig. 2).
Each SB performs a nonlinear transformation of the input byte. If X is the input, the
output is:

Y D B.X/ D Œxr;c�
3
r;cD0 (2)

In ShiftRows, the rows of the state are shifted cyclically byte-wise using a
different offset for each row. Row 0 is not shifted, while rows 1, 2, and 3 are
cyclically shifted to the left by 1, 2, and 3 bytes respectively. The resulting output is:
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Z D S.Y/ D

2
664

y0;0 y0;1 y0;2 y0;3

y1;1 y1;2 y1;3 y1;0

y2;2 y2;3 y2;0 y2;1

y3;3 y3;0 y3;1 y3;2

3
775 D Œyr;.rCc/ mod 4�

3
r;cD0 D Œzr;c�

3
r;cD0 (3)

In MixColumns, the output state is obtained by multiplying the output of
ShiftRows by a constant matrix. The resulting output is:

U D M.Z/ D Œur;c�
3
r;cD0 D

2
664

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

3
775

2
664

z0;0 z0;1 z0;2 z0;3

z1;0 z1;1 z1;2 z1;3

z2;0 z2;1 z2;2 z2;3

z3;0 z3;1 z3;2 z3;3

3
775 (4)

In AddRoundKey, the round key K D Œkr;c�
3
r;cD0 is added (modulo-2) to the

128-bit state U. The resulting round output is:

V D A.K; U/ D Œkr;c�
3
r;cD0 C Œur;c�

3
r;cD0 D Œvr;c�

3
r;cD0 (5)

2.3 Key Scheduling Algorithm

The round keys are generated by the AES key scheduling algorithm, as shown in
Algorithm 1. The master key K is used to derive all the round keys, where Nk, Nr

and Kr represent the key length in words (4 bytes), number of rounds and the rth
round key respectively. The input key is of size 4Nk bytes. The algorithm produces
the rth round key, which is denoted by Kr. As 0 � r � Nr , the total expanded round
keys can be stored in the vector WŒNb.Nr C1/�, where Nb is the block length of AES.
The algorithm consists of operations: SubWord and RotWord, which are explained
as follows: The operation SubWord consists of SubByte operations applied to each
of the 4 bytes separately on every byte of a word. The RotWord operation is a
cyclic circular left shift on the bytes of an input word. Finally, the round constant
abbreviated as RconŒn� D .f02gn; f00g; f00g; f00g/. For more details one can refer
to the AES specification [43].

3 Introduction to Differential Fault Analysis

The first fault attack was applied to the RSA cryptosystem. Biham and Shamir pro-
posed a new fault based attacking technique which is wildly known as Differential
Fault Analysis (DFA)[10]. DFA attack is a very powerful attack model which can
threaten a large class of ciphers. However, the actual attack procedure may vary
from cipher to cipher, and one has to exploit the fault propagations suitably to
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Algorithm 1: AES Key Scheduling Algorithm
Input: K the initial key of length Nk bytes
Output: Kr the round key where 0 � r � Nr

for i D 0 to Nk � 1 do
WŒi� fKŒ4 � i�; KŒ4 � iC 1�; KŒ4 � iC 2�; KŒ4 � iC 3�g;

for i D Nk to Nb � .Nr � 1/ do
temp WŒi� 1�;
if i mod Nk D 0 then

temp SubWord.RotWord.temp//˚ RconŒi=Nk�;

else if Nk > 6 and i mod Nk D 4 then
temp SubWord.temp/;

WŒi� WŒi� Nk�˚ temp;

return W

extract the key of a given cipher. The foremost DFA proposed was on the DES
cipher, which is essentially a Feistel cipher. Later, DFA has been extensively applied
on other ciphers, with greater focus on the AES algorithm. Before discussing on
fault based analysis of the AES cipher, we would discuss a general idea on DFA of
block ciphers. We would restrict ourselves to the Substitution Permutation Network
(SPN), as AES belongs to this family. However, similar observations and results
can be obtained for Feistel structures, putting to threat all block ciphers of the
modern day.

3.1 General Principle of DFA of Block Ciphers

In this section, we study the basic principle of DFA which shall be subsequently
applied for the AES algorithm. As apparent from the name, DFA combines the
concepts of differential cryptanalysis with that of fault attacks. DFA is applicable
to almost any secret key cryptosystem proposed so far in the open literature such as
DES, IDEA, and RC5 [10].

There has been considerable number of work about DFA of AES. Some of the
DFA proposals are based on theoretical model [11, 15, 16, 36, 40, 45, 46, 54], while
others launched successful attacks on ASIC and FPGA devices using previously
proposed theoretical models [2, 8, 28, 46, 49]. The key idea of DFA is composed
of three steps as shown in Fig. 3. (1) Run the cryptographic algorithm and obtain
non-faulty ciphertexts. (2) Inject faults, i.e., unexpected environmental conditions
into cryptographic implementations, rerun the algorithm with the same input, and
obtain faulty ciphertexts (3) Analyze relationship between the non-faulty and faulty
ciphertexts to significantly reduce the key space.

Practicality of DFA depends on the underlying fault model and the number of
faulty ciphertext pairs needed. In the following section we will analyze all the
fault models DFA of AES uses and point out their relationships. In this section,
we continue the discussion on the working principle of DFA w.r.t. a generalized
block cipher model.



170 S. Ali et al.

Fig. 3 Three steps of DFA

DFA works under the assumption of underlying faults. These faults are often
caused by various mechanisms, like: fluctuation of operating voltage, varying the
clock frequency, changing the temperature of a device and with the most accurate
injection of laser beams. However, in all of the above techniques the faults are
created by sudden variation of the operating conditions. It may be noted that apart
from the above means of malicious or intentional fault injections, faults can be also
unintentional. With the growing complexity of crypto devices, chances of mistakes
in the design also increase.

Faults can be categorized depending on whether they are permanent or transient.
From the point of view of cryptography, we would like to point out that transient
faults are of high concern as they are hard to detect. These faults can be of such
a short duration that most simulation based techniques of fault detection may be
unable to detect the advent of the faults. However, as we shall soon observe that few
faults are enough to leak the entire key of a standard cipher, like AES.

3.1.1 Fault Models

The faults can be of varying nature but can be categorized as follows:

1. Bit Model: This fault model assumes that the faults is localized to one bit. The
fault control is crucial here, as there is a high probability that a random fluctuation
of the operating conditions can lead to more than one bit getting affected. Hence
attacks based on such models are often unrealistic and may not be practically
viable.

2. Single Byte: A more practical and most common fault model is the single byte
model. This fault model assumes that the faults are spread to bytes and the fault
model can be any random non-zero value. This non-specificity of the fault value
makes these types of DFAs very powerful and practical techniques.

3. Multiple Byte: In this fault model, it is assumed that the faults propagate to
more than 1 byte. More often, these models are more practical, in the sense that
the DFAs based on them work even with lesser fault control. In context to DFA of
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Fig. 4 Basic structure of
SPN ciphers

K0
r−1 K1

r−1 K2
r−1 Kn−1

r−1

Cn−1C2C1C0

Pn−1P2P1P0

S S S S

S S S S

S S S S

K0
1 K1

1 K2
1 Kn−1

1

K0
r K1

r K2
r Kn−1

r

Dr−1

D0

WK0 WK1 WK2 WKn−1

AES, we shall observe a special fault model, namely the Diagonal Fault Model
which helps to generalize the DFA of AES to a large extent. The fault values are
again arbitrary, and hence makes these attacks very powerful.

3.1.2 The Effect of Faults on a Block Cipher

It is expected that the induced fault changes certain bits or bytes during a particular
round of the encryption and generates certain differences. Most often the DFAs
target the non-linear transformations, namely S-Boxes of the block ciphers. As the
faults are induced during the encryption process, the fault propagation patterns give
some relations between the input and output difference of certain S-boxes. In most
of the ciphers like AES, the S-boxes are known and therefore, one can easily deduce
the difference distribution table of the S-box being used. Generally, the S-boxes have
inputs which are combined with part of the keys through some mixing operation.
Using the difference distribution table and the relations between the input and output
difference one reduces the search space of a part of the key. This divide and conquer
mechanism helps to recover the entire key quite efficiently for most ciphers. We
explain the working in more details for the generalized SPN cipher, as modeled
in Fig. 4.

Figure 4 shows the basic structure of r-round Substitution Permutation Network
(SPN) cipher with block length n-bytes. Each round consists of confusion layer S
which is realized by non-linear S-box operation, and a linear transformation called
diffusion layer D, followed by an addition with the round key. There is an addition
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with the whitening key WK at the beginning of the encryption called key-whitening
phase. The diffusion layer is generally provided by multiplication with MDS matrix
followed by some rotation operations. The diffusion operation plays a major role
in DFA. If a byte is modified at the input of the diffusion operation, the induced
difference spreads to multiple bytes at the output depending on the branch number
of the diffusion layer. The disturbed bytes are often referred to as the active bytes
in the literature of differential cryptanalysis. Branch number for a diffusion matrix
on bytes is used to observe how a non-zero input differential spreads in a cipher
through the diffusion layer. Branch number is defined as the sum of the minimum
number of active bytes at the input and output of the diffusion layer.

As the diffusion layer is a linear operation w.r.t. the key mixing operation namely
XOR, the output difference can be expressed as a linear relation of the input
differences. The attacker exploits these properties in the following fashion to obtain
the key. Say a single byte fault is induced at the input of .r � 1/th (penultimate)
round and the corresponding difference at the input of Dr�1 is ˛ ¤ 0. If the branch
number of the diffusion layer is b, the input byte fault will spread to b � 1 bytes
.˛�0 ; : : : ; ˛�b�2 / at the output of Dr�1, where � denotes the transformation of the
diffusion layer. Each of these active bytes then pass through the S-boxes, which non-
linearly transform them. The attacker then represents these output bytes in terms of
a pair of fault-free and faulty ciphertexts .C; C�/ as follows:

˛�j D S�1.C�j ˚ Kr
�j

/ ˚ S�1.C��j
˚ Kr

�j
/ (6)

where j 2 f0; : : : ; b � 2g and S�1 represent the inverse of the S-box operation.
Now the attacker knows the S-box input difference C�j ˚ C��j

. From the difference
distribution table he knows on an average few values satisfy a chosen .˛�j ; C�j ˚C��j

/

pair.
Further, because of the linear mapping in Dr�1, ˛�j depends linearly on ˛.

Therefore, the attacker guesses the value of ˛ and get the values of ˛�j i.e. the
output differences. Using the input–output difference he retrieves the value C�j ˚K�j

from the difference distribution table of the S-box. As C�j and C��j
are known to the

attacker, hence he can retrieve the value of K�j . The attacker may need to induce
faults multiple times in order to get all the bytes of the round key.

In the next section, we present the fault models used for DFA of AES in the
literature and a summary of all the attacks performed. Subsequently, we present the
fault attacks on AES.

4 DFA and Associated Fault Models

DFA exploits a small subspace of all possible faults. The practicality of a fault attack
largely relies on the underlying fault model: the nature of the faults and the ability
to actually obtain such faults in practice. Any random fault is not attackable. Only
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certain fault models are feasible enough to reveal the secret key in practical time.
In the following section, we classify the DFA fault models in four scenarios by the
location and round in which faults are injected.

4.1 Fault Models for DFA of AES

Table 1 is a summary of the published DFA of AES. Faults can be injected either
(I) in AddRoundKey in round 0, (II) between the output of seventh and the input
of eighth round MixColumns, or (III) between the output of eighth and the input
of ninth round MixColumns. In each scenario, we analyze the (A) fault models, (B)
number of faulty ciphertexts needed, (C) the key space for brute force after obtaining
the faulty outputs to recover the secret, and (D) the experimental validation of the
attack. The considered transient faults are categorized into single bit, single byte,
and multiple byte transient faults. It may be noted that we have purposefully omitted
faults of permanent nature: namely stuck-at-1 or stuck-at-0 as they are not relevant
from the DFA perspective. Rather transient faults are more relevant, because of their
stealthy nature and ability to defeat counter-measures for classical fault tolerance.
For detailed discussion in this direction, we would redirect the author to [56].

In the following discussions in this section we elaborate the fault models present
in Table 1.

Table 1 A summary of DFA of AES

Fault model No. of faulty CTs ? Key space Experiment

Section 4.1.1 Faults are injected in AddRoundKey in round 0

Single bit [11] 128 1 No

Section 4.1.2 Faults are injected between the output of seventh and the input of eighth round

MixColumns

Single byte [45] 2 240 Underpowering [28, 49]

[40] 2 232 No

[54] 1 28 No

Multiple byte DM0 [46] 1 232 Overclocking [46]

DM1 [46] 1 264

DM2 [46] 1 296

DM3 [46] 2128 2128

Section 4.1.3 Faults are injected between the output of eighth and the input of ninth round

MixColumns

Single bit [16] � 50 1 Overclocking [2]

Single byte [15] � 40 1 Underpowering [8]

[36]� 6 1 No

Multiple byte DM0 [36]� 6 1 No

DM0 [36]Þ 1500 1 No

? CT ciphertext, � Only 1 byte in a word is faulty, � 2 or 3 bytes in a word are faulty, Þ All 4
bytes in a word are faulty
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4.1.1 Faults are Injected in AddRoundKey in Round 0

The only fault model an attacker uses in this scenario is single bit transient fault.

Single Bit Transient Fault In [11], the attacker is able to set or reset every bit of
the first round key one bit at a time. This attack recovers the entire key using 128
faulty ciphertexts with each faulty ciphertext uniquely revealing one key bit. Hence,
the key space required to reveal the key is one. However, as transistor size scales,
this attack becomes impractical even with expensive equipments such as lasers to
inject the faults, because it requires precise control of the fault location [1].

4.1.2 Faults are Injected Between the Output of Seventh and the Input
of Eighth MixColumns

The attacker uses various fault models and analysis in this scenario including single
and multiple byte fault.

Single Byte Transient Fault The three different attacks using this fault model
are shown in Table 1. In the first DFA [45], two faulty ciphertexts are needed
to obtain the key. This fault model is experimentally verified in [28, 49]. In
[49], underpowering is used to inject faults into a smart card with AES ASIC
implementation. Although no more than 16 % of the injected faults fall into the
single byte fault category, only 13 faulty ciphertexts are needed to obtain the key. In
[28], the authors underpower an AES FPGA implementation to inject faults with a
probability of 40 % for single byte fault injection.

Multiple Byte Transient Fault Saha et al. [46] proposes a general byte fault model
called diagonal fault model. The authors divide the AES state matrix into four
different diagonals and each diagonal has 4 bytes. A diagonal is a set of 4 bytes of
the AES state matrix, where the ith diagonal is defined as follows:

Di D fsj;.jCi/mod4 I 0 � j < 4g (7)

We obtain the following four diagonals.

D0 D .s0;0; s1;1; s2;2; s3;3/; D1 D .s0;1; s1;2; s2;3; s3;0/;

D2 D .s0;2; s1;3; s2;0; s3;1/; D3 D .s0;3; s1;0; s2;1; s3;2/

Fault in diagonal Di will affect the entire ith column of the state matrix after the
MixColumns operation. The diagonal fault model is classified into four different
cases, denoted as DM0, DM1, DM2, and DM3. As shown in Fig. 5, for DM0, faults
can be injected in one of the diagonals; D0, D1, D2, or D3. For DM1, faults can be
injected in at most two diagonals. For DM2, faults can be injected in at most three
diagonals. Finally, for DM3, faults can be injected in at most four diagonals (Fig. 5).

The authors also validate the diagonal fault model with a practical fault attack on
AES FPGA implementation using overclocking.
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Fig. 5 Fault propagation of diagonal faults. The upper row shows the diagonals that faults are
injected in. The lower row shows the corresponding columns being affected

4.1.3 Faults are Injected Between the Output of Eighth and the Input
of Ninth MixColumns

Single Bit Transient Fault In [16], the attacker needs only three faulty ciphertexts
to succeed with a probability of 97 %. The key space is trivial. Agoyan et al. [2]
validates this single bit attack on a Xilinx 3AN FPGA using overclocking. It is
reported that the success rate of injecting this kind of fault is 90 %.

Single Byte Transient Fault In [15], the authors use a byte level fault model. They
are able to obtain the key with 40 faulty ciphertexts, and the key is uniquely revealed.
This model is used in a successful attack by underpowering a 65 nm ASIC chip [8].
In this attack, 3,9881 faulty ciphertexts are collected during the ten experiments;
3,0386 of them were actually the outcome of a single byte fault. Thus, it has a
successful injection rate of 76 %.

Multiple Byte Transient Fault Moradi et al. [36] presents a DFA of AES when
the faults are injected in a 32-bit word. The authors propose two fault models. In
the first model, they assume that at least one of the bytes among the four targeted
bytes is non-faulty. This means the number of faulty bytes can be 1, 2, or 3 bytes.
So this fault model includes the single byte fault model. If only one single byte fault
is injected, 6 faulty ciphertexts are required to reveal the secret key. Whereas the
second fault model requires around 1500 faulty ciphertexts. These faulty ciphertexts
derive the entire key at constant time. Though the second fault model is much more
general, the amount of faulty ciphertexts it requires is very large, it is difficult for
the attacker to get all the ciphertexts without triggering the CED alarm.

In summary, the attacker can obtain the secret key with one or two faulty
ciphertexts when single or multiple byte transient faults are injected. In the
following subsection, we present a detailed analysis on the inter-relationships of
the fault models discussed so far.
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4.2 Relationships Between the Discussed Fault Models

As previously mentioned, DFA of AES does not exploit all possible faults. Rather, it
exploits a subset of faults, namely single bit, single byte, and multiple byte transient
faults injected in selected locations and rounds. Therefore, understanding the rela-
tionships among various fault models is the basis for understanding and comparing
the various fault attacks on AES. Further the inter-relationships developed also help
in analyzing the security of the counter-measured: both conventional as well as
for designing new DFA-specific CED. Because DFA of AES targets the last few
rounds,1 we synthesize the relationships between different fault models based on
the locations and rounds they are injected in.

4.2.1 Faults are Injected in AddRoundKey in Round 0

As we mentioned previously, this attack uses a very restricted fault model, and it is
not practical. Thus, this fault model is also not useful for the attacker.

4.2.2 Faults are Injected Between the Output of Seventh and the Input
of Eighth MixColumns

Figure 6a summarizes the relationships between the DFA-exploitable fault models
by injecting faults in the output of seventh round MixColumns and the input of
eighth round MixColumns.

Single byte faults are, in turn, a subset of the DM0 faults which, in turn, are a
subset of the DM1 faults, and so on. The relationship is summarized in (8).

Single Byte � DM0 � DM1 � DM2 � DM3 (8)

A more careful look reveals that 2 byte faults can be either DM0 or DM1 but not
DM2. Similarly, 3 byte fault can not be DM3. The relationship between faulty bytes
from 5 to 12 and diagonal fault models are summarized in Fig. 6a.

As shown in Fig. 6a, DM3 includes all possible byte transient faults. The attacks
proposed in [46] show that DFA based on DM0, DM1, and DM2 leads to the
successful retrieval of the key. Remember that DM3 faults are the universe of all
possible transient faults injected in the selected AES round. These faults spread
across all four diagonals of the AES state and hence, are not vulnerable to DFA as
mentioned in Sect. 4.1.2. These fault models are multiple byte transient faults and
thus, attacks based on these models are more feasible than those based on single
byte transient faults, which are a subset of the model DM0. The more encompassing
the fault model is, the more realistic the attacks based on it are.

1In general, the practical faults used in DFA target the seventh, eighth, and ninth rounds.
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Fig. 6 Relationships between DFA fault models when faults are injected between (a) the output
of seventh and the input of eighth round MixColumns, (b) output of eighth and the input of ninth
round MixColumns

4.2.3 Faults are Injected Between the Output of Eighth and the Input
of Ninth MixColumns

Figure 6b summarizes the relationships between the DFA-exploitable fault models
by injecting faults in the output of eighth and the input of ninth round MixColumns.
Single bit transient faults are a subset of single byte faults. Single byte faults are
again a subset of DM0 faults. Two and three byte faults are a subset of DM0 faults.
Again, attacks based on multiple byte faults are more feasible than those based on
single bit and single byte faults.

In the following section, we detail the above mentioned fault attacks on AES.

5 Differential Fault Attacks on AES: Early Efforts

A very central property which is used in the algorithms to perform a DFA of AES
is the differential features of the AES S-boxes. The following section presents the
differential property of the AES S-Box.

5.1 Differential Properties of AES S-Box

In this section we discuss differential properties of S-box, which will be useful for
DFA. In case of AES, the input to the S-box in each round is the XOR of previous
round output and the round key. Figure 7a shows two S-box operations: one with
normal input in and the other with a difference ˛ to the input.
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Fig. 7 Differential property of AES. (a) Difference across S-box. (b) Flow of fault in the last
round

Here in is the previous round output byte and K is the round key byte. The AES
S-box is a non-linear operation, therefore, input difference ˛ will change to ˇ at the
S-box output out. Now if we replace the value of in ˚ K by X, we can relate the
input output differences by following equation:

ˇ D S.X ˚ ˛/ ˚ S.X/ (9)

According to the properties of AES S-box for a particular value of ˛ and ˇ the above
equation can have 0, 2, or 4 solutions of X [44]. For a fixed value of ˛, among the 256

possible values of ˇ, only one value leads to four solutions of the equation and 126

values lead two solutions. The rest of the values will not produce any solution. This
implies only 127 out of 256 choices of ˇ produce solutions for X and the average
number of solutions of X is one. It may also be noted that if we know the values
of ˛; ˇ, and in, we can get the values of K from the above equation. This property
is being used in most of the advanced DFAs on AES. In the subsequent part of the
chapter we explain DFA of AES using these properties.
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5.2 DFA of AES Using Bit Faults

When AES was introduced at that time side-channel analysis and fault analysis
were become two very prominent fields of research in the research community.
The first DFA was already proposed on DES. Therefore, it was a challenge for the
researchers in this field to analyze AES in the light of DFA. The initial attempts were
further inspired by the fault injection techniques, which practically demonstrated
that flipping a single bit of an intermediate computation result is possible using
relatively less expensive devices like simple camera flash installed on a microscope
or laser equipments [51]. However byte faults are more realistic compared to the bit
faults.

In the following sections we discuss about DFA using bit level and byte level
fault models. The induced fault is assumed to be random in nature and the attack
algorithm is oblivious of the fault value. Let us first study the DFA which targets the
last round of the AES encryption.

5.3 Bit Level DFA of Last Round of AES

In this attack, originally proposed in [16], it is assumed that the fault is induced at
any particular bit of the last round input. However, the exact fault location, i.e., the
exact bit where the fault is created is unknown.

Let us consider AES with 128-bit key for the sake of simplicity, though the
discussion can be easily extended to the other AES versions. Figure 7b shows the
flow of fault corresponding to the single-bit difference at the input of the tenth round.
In the figure, K9 and K10 denotes the ninth and tenth round keys respectively. The
state matrices S0, S1 and S2 show the corresponding XOR differences of the fault-
free and the faulty states. As the fault is induced in a bit, therefore, the disturbance is
confined within a single byte. So, from the XOR difference of fault-free and faulty
ciphertexts one can easily get the location of the faulty byte (note that the bit is not
evident because of the S-Box).

Consider the fault induced at the .i; j/th byte of the tenth round input state matrix
S0. Let x be the fault-free value at the tenth round input and " be the corresponding
fault value. Note that the attacker is aware of the fault-free .C/ and faulty .C�/
ciphertexts. As already stated, from the XOR difference of C and C� one can get
the byte position .i; j/, where the fault is induced. The .i; j/ byte where the bit fault
is induced in the byte x can be represented in terms of .C; C�/ as follows:

Ci;l ˚ C�i;l D SR.S.xi;j// ˚ SR.S.xi;j ˚ "// (10)

Note that l D .j � i/ mod 4 provides the corresponding column index, where the
faulty byte in the jth column and ith row shifts due to the Shiftrows operation. In
other words, the fault location .i; j/ in the difference matrix S0 changes to .i; l/ at the
tenth round output.
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Having obtained the location of the fault, the attacker is now set to ascertain
the value of the fault. Note the similarity of the above equation with that of Eq. (9).
The value of Ci;l ˚C�i;l being known to the attacker, in order to get the value of xi;j he
guesses eight possible values of ". For each possible value of ", he gets on an average
one hypotheses for xi;j, which will satisfy the above equation (refer Sect. 5.1). Thus,
for all the eight possible values of ", he gets on an average eight candidates for xi;j.
In order to identify the unique value for xi;j he obtains another faulty ciphertext by
injecting another fault (i.e., the fault location is a different bit) in the same byte.
A similar approach leads to another set of eight values for xi;j. Intersection of these
two sets from the two different faulty ciphertexts is expected to determine the exact
value of xi;j.

This same technique is repeated for the other bytes in order to get all the 16 bytes
of x. On an average thus 2 � 16 D 32 faulty ciphertexts are needed to determine the
value of the state matrix x. Thus, the attacker obtains the fault-free input of tenth
round. Being aware of the fault-free ciphertext C, one can easily retrieve the tenth
round key K10 from the relation C D SR.S.x/˚K10/. Then, as the AES key-schedule
is invertible one trivially retrieve the master key.

5.4 Bit Level DFA of First Round of AES

In this section we describe another bit level DFA, where the fault is induced in
the first round of AES encryption. This is a more general attack and applicable
to most of the ciphers. The main difference of this attack from the previous ones
and the others which follow is the underlying fault model. The fault model is a bit
reset model, which implies that the attacker has capability to reset a specific bit at
a targetted byte location of the AES encryption. The attacker targets the first key
whitening operation before the SubBytes operation. The plaintext is set to a zero
string of length 128 bits, denoted as Pzero. The plaintext is fixed throughout the
attack and the objective of the attack is to obtain the whitening key K.

To start with, an encryption is done using Pzero and K under normal environment
and the fault-free ciphertext Czero is obtained and stored. Now a fault is induced
according to the fault model discussed. It is assumed that the induced fault resets
the lth bit of the .i; j/ byte at the input to the first SubBytes operation. Let us assume
that the fault free input to the SubBytes operation is x. Therefore, we can write
x D Pzero ˚ K. The attacker tries to detect the value of l by repeating the following
simple steps: He compares the fault-free ciphertext, Czero with that of the faulty one,
C�zero. If they are equal it implies that the lth bit of the .i; j/th byte of x, which was
reset due to the fault, was already zero and thus the effect of the reset fault was
inconsequential. Thus the corresponding bit of the .i; j/th key byte was zero (as the
plaintext is all zero). On the other hand, a different value of Czero and C�zero implies
that the induced fault reset the bit xl

i;j with effect. That means the fault-free value
of xl

i;j was one and after fault induction it changes to zero. This also means the
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corresponding bit value of K is one. The fault thus reveals whether a particular bit
of the whitening key is one or zero. The same technique is repeated for all the 128

bits, and thus 128 faulty ciphertexts are needed to get the master key.
The attack is relatively simple in nature, however is relatively less practical. The

assumed fault model is impractical as it requires very precise control over the fault
location to enable fault in every bit positions. Thus fault attacks on AES with more
relaxed fault models and lesser fault induction requirements are desirous and topics
of the future sections.

6 State-of-the-Art DFAs on AES

In this section, we present an overview on some of the more recent fault attacks on
AES. These attacks use more practical fault model, namely the byte faults.

6.1 Byte Level DFA of Penultimate Round of AES

In byte level DFA, we assume that certain bits of a byte is corrupted by the induced
fault and the induced difference is confined within a byte. Due to the fact that
the fault is induced in the penultimate round, implies that apart from using the
differential properties of S-box (as used in the bit level DFA on last round of AES),
the attacker also uses the differential properties of the MixColumns operation of
AES. As already mentioned in the AES, diffusion is provided using a 4 � 4 MDS
matrix in the MixColumns. Due to this matrix multiplication, if 1 byte difference is
induced at the input of a round function, the difference is spread to 4 bytes at the
round output.

Figure 8a shows the flow of fault. The induced fault has generated a single byte
difference at the input of the ninth round MixColumns. Let f be the byte value
of the difference and the corresponding 4-byte output difference is .2f ; f ; f ; 3f /,
where 2; 1; and 3 are the elements of the first row of the MixColumns matrix.
The 4-byte difference is again converted to .f0; f1; f2; f3/ by the non-linear S-box
operation in the tenth round. The ShiftRows operation will shift the differences to
four different locations. The attacker has access to the fault-free ciphertext C and
faulty ciphertext C�, which differs only in 4 bytes. Now, we can represent the 4-
byte difference .2f ; f ; f ; 3f / in terms of the tenth round key K10 and the fault-free
and faulty ciphertexts by the following equations:

2 f D S�1.C0;0 ˚ K10
0;0/ ˚ S�1.C�0;0 ˚ K10

0;0/

f D S�1.C1;3 ˚ K10
1;3/ ˚ S�1.C�1;3 ˚ K10

1;3/

f D S�1.C2;2 ˚ K10
2;2/ ˚ S�1.C�2;2 ˚ K10

2;2/

3 f D S�1.C3;1 ˚ K10
3;1/ ˚ S�1.C�3;1 ˚ K10

3;1/

(11)
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Fig. 8 Flow of faults in AES rounds. (a) Differences across the last two rounds. (b) Differences
across the last three rounds

The above four equations can be expressed as the basic equation (9). Therefore, it
can be represented in the form A D B˚C where A; B, and C are bytes in F28 , having
28 possible values each. Now a uniformly random choice of .A; B; C/ is expected to
satisfy the equation with probability 1

28 . Therefore, in this case 216 out of 224 random
choices of .A; B; C/ will satisfy the equation.

This fact can be generalized. Consider we have M such related equations. These
M equations consist of N uniformly random byte variables. The probability that a
random choice of N variables satisfy all the M equations simultaneously is . 1

28 /M .
Therefore the reduced search space is given by . 1

28 /M � .28/N D .28/N�M . For our
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case we have four equations which consist of five unknown variables: f ; K10
0;0, K10

1;3,
K10

2;2, and K10
3;2. Therefore, the four equations will reduce the search space of the

variables to .28/5�4 D 28. That means out of 232 hypotheses of the four key bytes,
only 28 hypotheses will satisfy the above four equations. Therefore, using one fault
the attacker can reduce the search space of the four key byte to 28. Using two such
faulty ciphertexts one can uniquely determine the key quartet. This implies, for one
key quartet, one has to induce two faults in the required location. For all the four key
quartets i.e., the entire AES key, an attacker needs to induce eight faults. Therefore
using eight faulty ciphertexts and a fault-free ciphertext, it is expected to uniquely
determine the 128-bit key of AES.

6.1.1 DFA Using Two Faults

The attack can further be improved. It was shown in [45] that instead of inducing
fault in ninth round, if we induce fault in between seventh and eighth round
MixColumns, we can determine the 128-bit key using only two faulty ciphertexts.
Figure 8b shows the spreading of faults when it is induced in such a fashion. The
single byte difference at the input of eighth round MixColumns is spread to 4 bytes.
The Shiftrows operation ensures that there is one disturbed byte in each column
of the state matrix. Each of the 4-byte difference again spreads to 4 bytes at ninth
round MixColumns output. Therefore the relation between the fault values in the
four columns of difference state matrix S4 is equivalent to four faults at four different
columns of ninth round input state matrix as explained in the previous attack. This
implies that using two such faults we can uniquely determine the entire AES key.

Note that the exact working of the DFA proposed in [45] is slightly different
from above, though the underlying principle is the same. The attack maintains a list
D for each column of the difference matrix S4 assuming a 1-byte fault in the input
of the penultimate round MixColumns. The size of the table D is thus 4 � 255 4-
byte values, as the input fault can occur in any byte of a column and can take 255
non-zero values. Assuming that the fault occurs in the difference matrix S3 in the
first column, then equations similar to Eq. (11) can be written, with the left hand
side of the equations being a 4-byte tuple .�0; �1; �2; �3/. It is expected that the
correct guess of the keys K10

0;0; K10
1;3; K10

2;2, and K10
3;2 should provide a 4-byte tuple

which belongs to the list D. There are other wrong keys which also pass this test,
and analysis shows that on an average 1036 elements pass this test with a single
fault. Repeating the same for all the 4-columns of the difference matrix S4, reduces
the AES key to 10364 � 240 (note that as the fault is assumed to be between seventh
and eighth round each column of S3 has a byte disturbed). However, if two faults
are induced, the unique AES key is returned with a probability of 0.98.

This is the best known DFA of AES till date when the attacker does not have
access to the plaintext and he needs to determine the key uniquely. However
when the attacker has access to the plaintexts, he can still improve the attack by
performing the DFA using only one fault and a further reduced brute force guess.
Also it is possible to reduce the time complexity of the attack further from 232 to 230.
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6.1.2 DFA Using Only One Fault

The attack proposed in [45] can be further improved when the attacker has access to
the plaintexts in addition to the ciphertexts [39]. In that case, he can do brute-force
on the possible keys. The objective of this attack or its extensions is to perform the
attack using only one fault. While a unique key may not be obtainable with a single
fault, the AES key size can reduce to such a small size that a brute force search can
be easily performed. It may be noted that reducing the number of fault requirements
from 2 to 1 should not be seen in terms of its absolute values. In an actual fault
attack, it is very unlikely that the attacker can have absolute control over the fault
injection method and hence may need more number of trials. Rather, these attacks
are capable of reducing the number of fault requirements by half compared to the
attacks proposed in [45].

Consider Fig. 8b, where from the first column of S4 we get four differential
equations [similar to Eq. (11)] corresponding to the 4-tuple .2p0; p0; p0; 3p0/.
Using these four differential equations we only guess the 28 values of p0 and get
the corresponding possible 28 hypotheses of the key quartet by applying the S-box
difference distribution table. Therefore, one column of S4 will reduce the search
space of one quartet of key to 28 choices. Similarly, solving the differential equations
from all the four columns we can reduce the search space of all the four key quartets
to 28 values each. Hence, if we combine all the four quartets we get .28/4 D 232

possible hypotheses of the final round key K10. We have assumed here that the initial
fault value was in the .0; 0/th byte of S1. If we allow the fault to be in any of the
16 locations, the key space of AES is around 236 values. This space can be brute
force searched within 1 min and hence, shows that effectively one fault is sufficient
to break AES.

The search space of the final round key can be further reduced if we consider the
relation between the fault values at the state matrix S2, which was not utilized in
the previous attacks. This step serves as a second stage, which is coupled with the
first stage on all the 232 keys (for an assumed location of the faulty byte). We can
represent the fault value in the first column of S2 in terms of the ninth round key
K9 and the ninth round fault-free and faulty output C9 and C�9 respectively by the
following four differential equations:

2 p D S�1.14.C9
0;0 ˚ K9

0;0/ ˚ 11.C9
1;0 ˚ K9

1;0/˚
13.C9

2;0 ˚ K9
2;0/ ˚ 9.C9

3;0 ˚ K9
3;0//˚

S�1.14.C�9
0;0 ˚ K9

0;0/ ˚ 11.C�9
1;0 ˚ K9

1;0/˚ (12a)

13.C�9
2;0 ˚ K9

2;0/ ˚ 9.C�9
3;0 ˚ K9

3;0//

p D S�1.9.C9
0;3 ˚ K9

0;3/ ˚ 14.C9
1;3 ˚ K9

1;3/˚
11.C9

2;3 ˚ K9
2;3/ ˚ 13.C9

3;3 ˚ K9
3;3//˚

S�1.9.C�9
0;3 ˚ K9

0;3/ ˚ 14.C9
1;3 ˚ K�9

1;3/˚ (12b)

11.C�9
2;3 ˚ K9

2;3/ ˚ 13.C�9
3;3 ˚ K9

3;3//
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p D S�1.13.C9
0;2 ˚ K9

0;2/ ˚ 9.C9
1;2 ˚ K9

1;2/˚
14.C9

2;2 ˚ K9
2;2/ ˚ 11.C9

3;2 ˚ K9
3;2//˚ (12c)

S�1.13.C�9
0;2 ˚ K9

0;2/ ˚ 9.C�9
1;2 ˚ K9

1;2/˚
14.C�9

2;2 ˚ K9
2;2/ ˚ 11.C�9

3;2 ˚ K9
3;2//

3 p D S�1.11.C9
0;1 ˚ K9

0;1/ ˚ 13.C9
1;1 ˚ K9

1;1/˚
14.C9

2;1 ˚ K9
2;1/ ˚ 9.C9

3;1 ˚ K9
3;1//˚ (12d)

S�1.11.C�9
0;1 ˚ K9

0;1/ ˚ 13.C�9
1;1 ˚ K9

1;1/˚
14.C�9

2;1 ˚ K9
2;1/ ˚ 9.C�9

3;1 ˚ K9
3;1//

In order to utilize the above equations we need the ninth round key. The ninth
round key can be derived from the final round key by the following conversion
matrix:

0
BBB@

.K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2� ˚ h10/ K10

0;1 ˚ K10
0;0 K10

0;2 ˚ K10
0;1 K10

0;3 ˚ K10
0;2

.K10
1;0 ˚ SŒK10

2;3 ˚ K10
2;2�/ K10

1;1 ˚ K10
1;0 K10

1;2 ˚ K10
1;1 K10

1;3 ˚ K10
1;2

.K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/ K10

2;1 ˚ K10
2;0 K10

2;2 ˚ K10
2;1 K10

2;3 ˚ K10
2;2

.K10
3;0 ˚ SŒK10

0;3 ˚ K10
0;2�/ K10

3;1 ˚ K10
3;0 K10

3;2 ˚ K10
3;1 K10

3;3 ˚ K10
3;2

1
CCCA :

Thus for each of the possible hypotheses of K10 produced by the first stage, and
using the ciphertexts, .C; C�/, we get the values of .K9; C9; C�9/. Then the attacker
tests the above four equations with these values. If satisfies, the candidate key is
accepted, else rejected. For completeness, we state the detailed equations as follows:

2p D S�1
�
14.S�1ŒK10

0;0 ˚ C0;0� ˚ K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2� ˚ h10/˚

11.S�1ŒK10
1;3 ˚ C1;3� ˚ K10

1;0 ˚ SŒK10
2;3 ˚ K10

2;2�/˚
13.S�1ŒK10

2;2 ˚ C2;2� ˚ K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/˚

9.S�1ŒK10
3;1 ˚ C3;1� ˚ K10

3;0 ˚ SŒK10
0;3 ˚ K10

0;2�/
�˚

S�1
�
14.S�1ŒK10

0;0 ˚ C�0;0� ˚ K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2�/˚

11.S�1ŒK10
1;3 ˚ C�1;3� ˚ K10

1;0 ˚ SŒK10
2;3 ˚ K10

2;2�/˚
13.S�1ŒK10

2;2 ˚ C�2;2� ˚ K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/˚

9.S�1ŒK10
3;1 ˚ C�3;1� ˚ K10

3;0 ˚ SŒK10
0;3 ˚ K10

0;2�/
�

(13)



186 S. Ali et al.

Similarly, the other three faulty bytes can be expressed by the following equations:

p D S�1
�
9.S�1ŒK10

0;3 ˚ C0;3� ˚ K10
0;3 ˚ K10

0;2/˚
14.S�1ŒK10

1;3 ˚ C1;3� ˚ K10
1;3 ˚ K10

1;2/˚
11.S�1ŒK10

2;1 ˚ C2;1� ˚ K10
2;3 ˚ K10

2;2/˚
13.S�1ŒK10

3;0 ˚ C3;0� ˚ K10
3;3 ˚ K10

3;2/
�˚

S�1
�
9.S�1ŒK10

0;3 ˚ C0;3� ˚ K10
0;3 ˚ K10

0;2/˚
14.S�1ŒK10

1;3 ˚ C1;3� ˚ K10
1;3 ˚ K10

1;2/˚
11.S�1ŒK10

2;1 ˚ C2;1� ˚ K10
2;3 ˚ K10

2;2/˚
13.S�1ŒK10

3;0 ˚ C3;0� ˚ K10
3;3 ˚ K10

3;2/
�˚

(14)

p D S�1
�
13.S�1ŒK10

0;2 ˚ C0;2� ˚ K10
0;2 ˚ K10

0;1/˚
9.S�1ŒK10

1;1 ˚ C1;1� ˚ K10
1;2 ˚ K10

1;1/˚
14.S�1ŒK10

2;0 ˚ C2;0� ˚ K10
2;2 ˚ K10

2;1/˚
11.S�1ŒK10

3;3 ˚ C3;3� ˚ K10
3;2 ˚ K10

3;1/
�˚

S�1
�
13.S�1ŒK10

0;2 ˚ C�0;2� ˚ K10
0;2 ˚ K10

0;1/˚
9.S�1ŒK10

1;1 ˚ C�1;1� ˚ K10
1;2 ˚ K10

1;1/˚
14.S�1ŒK10

2;0 ˚ C�2;0� ˚ K10
2;2 ˚ K10

2;1/˚
11.S�1ŒK10

3;3 ˚ C�3;3� ˚ K10
3;2 ˚ K10

3;1/
�

(15)

3p D S�1
�
11.S�1ŒK10

0;1 ˚ C0;1� ˚ K10
0;1 ˚ K10

0;0/˚
13.S�1ŒK10

1;0 ˚ C1;0� ˚ K10
1;1 ˚ K10

1;0/˚
14.S�1ŒK10

2;3 ˚ C2;3� ˚ K10
2;1 ˚ K10

2;0/˚
9.S�1ŒK10

3;2 ˚ C3;2� ˚ K10
3;1 ˚ K10

3;0/
�˚

S�1
�
11.S�1ŒK10

0;1 ˚ C�0;1� ˚ K10
0;1 ˚ K10

0;0/˚
13.S�1ŒK10

1;0 ˚ C�1;0� ˚ K10
1;1 ˚ K10

1;0/˚
14.S�1ŒK10

2;3 ˚ C�2;3� ˚ K10
2;1 ˚ K10

2;0/˚
9.S�1ŒK10

3;2 ˚ C�3;2� ˚ K10
3;1 ˚ K10

3;0/
�

(16)

We thus get four differential equations and the combined search space of
.K9; C9; C�9/ and p is 232 � 28 D 240. Therefore, the four equations will reduce
this search space of K10 to 240

.28/4 D 28. Hence, using only one faulty ciphertext,
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one can reduce the search space of AES-128 key to 256 choices. However, the time
complexity of the attack is 232, as we have to test all the hypothesis of K10 by the
above four equations. In the next subsection, we present an improvement to reduce
the time complexity of the attack to 230 from 232.

6.1.3 DFA with Reduced Time Complexity

The above second phase of the analysis is based on four equations: (13), (14), (15),
and (16). All the 232 possible key hypotheses are tested by these four equations. The
key hypotheses which are satisfied by all four equations are considered and rest are
discarded.

However, if we consider the above four equations in pairs we observe that each
possible pair does not contain all the 16 bytes of the AES key. For example, the pair
of Eqs. (14) and (15) contains 14 key bytes excluding K10

0;0 and K10
0;1. This fact can be

utilized to reduce the time complexity of the attack. We use this observation to split
the lists of key which are exported in the first phase of the attack and subsequently
filtered in the second phase.

In the first phase of the attack we have four quartets .K10
0;0; K10

1;3; K10
2;2; K10

3;1/,
.K10

0;1; K10
1;0; K10

2;3; K10
3;2/, .K10

0;2; K10
1;1; K10

2;0; K10
3;3/, and .K10

0;3; K10
1;2; K10

2;1; K10
3;0/ Let us

assume one value of the first quartet is .a1; b1; c1; d1/. As per the property of
the S-Box, there will be another value a2 of K10

0;0, which satisfies the system of
equations generated from the first column of S4, with the rest of the key byte values
remaining same.

Using this idea, we can divide the list for the quartet (K10
0;0; K10

1;3; K10
2;2; K10

3;1) into
two sublists, L1, L2. As depicted in Fig. 9 The list L1 contains the pair values for
the key byte K10

0;0 (note that the key byte K10
0;0 has always an even number of possible

choices). The list L2 contains the distinct values for the remaining part of the quartet,
(K10

1;3; K10
2;2; K10

3;1). Thus the expected size of the lists L1 and L2 is 27 each, compared
to the previous list size of 28 with 4-tuple (K10

0;0; K10
1;3; K10

2;2; K10
3;1).

Similarly, we store the possible values of quartet .K10
0;1; K10

1;0; K10
2;3; K10

3;2/ in two
lists, L3 and L4. Here L3 stores the pair values for the key byte K10

0;1, while the list
L4 contains the distinct values for the key bytes .K10

1;0; K10
2;3; K10

3;2/. Next, we select
the key bytes from the six lists, L1; L2; L3; L4; L5; L6, to solve the equations of the
second phase of the attack such that the time complexity is reduced.

Because of the observations regarding the pair of Eqs. (13), (16) and (14), (15),
the second phase can be divided into two parts. In part one, we test the keys
generated from the first phase of the attack by the pair of Eqs. (14) and (15). In Fig. 9
this is denoted as Test1. As the two equations for Test1 does not require key bytes
K10

0;0 and K10
0;1, we only consider all possible keys generated from lists L2; L4; L5; L6.

There are 230 such possible keys. In the second part we combine each of the 14

byte keys satisfying Test1 with one of the four possible values arising out of the
four combinations of the pair of values for K10

0;0 in L1 and K10
0;1 in L3. These keys

are further tested in parallel by Eqs. (13) and (16). In Fig. 9, we refer to this test as
Test2.



188 S. Ali et al.

Test 1

Test 2 Test 2 Test 2 Test 2

h1

h1

h2

h2g2

g2

g1

g1f1
f1
f2
f2e4

e3

e2

e1

L1 L3
L2 L4

d1

d1

d2

d2c2

c2

c1

c1b1

b1

b2

b2a4

a3

a2

a1

k0 k0 k1 k1

k7 k4 k14 k11 k12 k9 k6 k3 k8 k5 k2 k15k10k13

k7 k4 k14 k11 k12 k9 k6 k3 k8 k5 k2 k15k10k13

k4k7k10k13 k3k6k9k12
k15k8 k5 k2

28

28

27

28

t1
t1
t2
t2s2

s2

s1

s1r1
r1
r2
r2q4

q3

q2

q1p1

p1

p2

p2o2

o2

o1

o1n1

n1

n2

n2

L5

m1

m2

m3

m4

L6

a2
a4

e2
e3 e4

e1a1
a3

b1
b2

c1
c2

d1
d2 h2

h1g1

g2f2

f1

k1k0k0
k11k14k1

Fig. 9 Model for data-flow parallelization in the second phase

The size of the lists L2 and L4 is 27; and the size of lists L5 and L6 is 28. Therefore
the number of possible keys generated from this four lists is 27 � 27 � 28 � 28 D
230. These 230 keys are fed as input to Test1 which is expected to reduce the key
hypotheses by 28. Therefore each instance of Test2 will receive input of . 230

28 / D 222

expected key hypotheses. The chance of each key satisfying Test2 is 2�16 which
implies each instance of Test2 will result in 26 key hypotheses.

It may be easily observed that the time required is because of step 3, which is
equal to 230, making the overall attack four times faster on an average, and still
reducing the overall keyspace of AES to around 28 values.

The above fault models are based on single byte fault models, which assume
that the fault is localized in a single byte. However due to impreciseness in the
fault induction, the fault can spread to more than 1 bytes. Such a multiple-byte fault
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requires a revisit at the DFA methods. In [47], a technique for performing DFA when
such faults occur where presented, which generalize further the DFA proposed in [6]
and later extended in [30]. The underlying fault models assumed in this attack were
already introduced in Sect. 4.1.3 and were called as diagonal fault models. In the
next section, we outline the idea of these attacks.

7 Multiple Byte DFA of AES-128

In this section, we present the DFAs under the multiple byte fault models. The DFAs
are efficient to obtain the AES key using 2–4 faults, when the faults corrupt upto
three diagonals of the four diagonals of the AES state matrix at the input of the
eighth round MixColumns. In the next subsection, we first observe the DFAs when
the fault is confined to one diagonal of the state matrix, i.e., the fault is according to
the fault model DM0.

7.1 DFA According to Fault Model DM0

We first show that faults which are confined to one diagonal are equivalent and can
be used to retrieve the key using the same method.

7.1.1 Equivalence of Faults in the Same Diagonal

Let us first observe the propagation of a fault injected in diagonal D0 through the
round transformations from the input of the eighth round to the output of the ninth
round.

Figure 10 shows some cases of fault induction in diagonal D0. The faults vary in
the number of bytes that are faulty in D0 at the input of the 8 round. We emphasize
the fact that irrespective of the number or positions of bytes that are faulty in D0,
due to the subsequent ShiftRows operation the fault is confined to the first column
C0 of the state matrix at the end of the eighth round. So the fault propagation in the
ninth round for all these cases is similar and leads to the same byte inter-relations at
the end of the ninth round.

In general any fault at the input of the eighth round in the ith diagonal, 0 � i � 3,
leads to the ith column being affected at the end of the round. There are four
diagonals and faults in each diagonal maps to four different byte inter-relations at
the end of the ninth round. These relations are depicted in Fig. 11. These relations
will remain unchanged for any combination of faults injected within a particular
diagonal. Each of the four sets of relations in Fig. 11 will be used to form key
dependent equations. Each of the equation sets will comprise of four equations of
similar nature as shown in Eq. (11).
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Fig. 10 Equivalence of different kinds of faults induced in diagonal D0 at the input of eighth round
of AES

Fig. 11 Byte inter-relations
at the end of ninth round
corresponding to different
diagonals being faulty

As before these equations reduce the AES key to an average size of 232. If the
attacker is unaware of the exact diagonal, he can repeat for all the above four sets
of equations, and the key size will still be 232 � 4 D 234, which can be brute forced
feasibly with present day computation power.

Next, we consider briefly the cases when the faults spread to more than one
diagonal.

7.2 DFA According to Fault Model DM1

In Fig. 12, we observe the propagation of faults when the diagonals, D0 and D1 are
affected at the input of the ninth round MixColumns.
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Fig. 12 Fault propagation if diagonals D0 are D1 are affected

We observe that the nature of the faults in the state matrix at the input of the ninth
round MixColumns and hence at the output remains invariant for all possible faults
in these two diagonals. This property is exploited to develop equations which are
used to retrieve the correct key.

We denote the fault values in the first column of the output of the ninth round
MixColumns by a0; a1; a2; a3, where each ai is a byte 0 � i � 3. Then using the
inter-relationships among the faulty bytes one can easily show that:

a1 C a3 D a0

2a1 C 3a3 D 7a2

We can express a0; a1; a2; a3 in terms of the fault free ciphertext (CT), faulty
ciphertext (CT�) and 4 bytes of the tenth round key (K10). The equations reduce the
key space of 4 bytes of the key to 216. Similarly, performing the analysis for other
columns, helps to reduce the AES key to a size of .216/4 D 264. Using two such
faulty inductions it is expected that the unique key is returned.

Depending on the combination of two diagonals affected out of the four
diagonals, there are six such sets of equations. Hence even in such case, the attacker
reduces the AES key space to 6 possible keys, which he can easily brute force.

In the next section, we present an attack strategy if the fault gets spread to atmost
three diagonals. This fault model, DM2 thus covers the first two models of fault.

7.3 DFA According to Fault Model DM2

In Fig. 13, we observe the propagation of faults when the diagonals, D0, D1 and D2

are affected.
From Fig. 13, we note that for all possible faults corrupting the diagonals D0, D1

and D2, the nature of the faults at the input of the ninth round MixColumns is an
invariant. The fault nature at the output of the ninth round MixColumns is as seen
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Fig. 13 Fault propagation if diagonals D0, D1 and D2 are affected

in the figure, also an invariant. We denote the fault values in the first column of
the output of the ninth round MixColumns by a0; a1; a2; a3, where each ai is a byte
0 � i � 3.

The following equation can be obtained by observing the inter-relationships
(refer Fig. 12):

11a0 C 13a1 D 9a2 C 14a3

As before in case of faults modeled by DM1, we can express a0; a1; a2; a3 in
terms of the fault free ciphertext (CT), faulty ciphertext (CT 0) and the tenth round
key (K10). One equation reduces 4 bytes of the key to 224 values. We can have
similar equations for each of the remaining three columns of the state matrix after
the ninth round MixColumns, and thus the AES key space reduces to an expected
value of .224/4 D 296. However, using four faults and taking the intersection of the
key space, it is expected that the key space reduces to a unique value.

It may be noted that when the faults occur according to the model DM3, that is
all the four diagonals are affected, the DFA fails.

8 Extension of the DFA to Other Variants of AES

In the previous sections we described DFAs using different fault models on AES
with 128-bit key. However, AES has two more variants: AES-192 and AES-256
with key length 192 and 256 bits. These to variants of AES follows different key
scheduling. If we observe the key scheduling algorithm, we see that for AES-192
and AES-256, last round is not sufficient to retrieve the master key. It requires to
retrieve the last two round keys rather any two consecutive round keys. For the sake
of simplicity we consider the last two round keys. In case of AES-192, the last
round key and the last two columns of penultimate round key is sufficient. Because
the first two columns of penultimate round key can be directly derived from the final
round key.
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The first complete DFA on AES-192 and AES-256 was proposed in [33].
The proposed attacks were based on two different fault models which requires 6
and 3000 pairs of fault free and faulty ciphertexts. A new attack was proposed
in [52] which first time exploited the relations between the round keys of the key
scheduling algorithm. The attack on AES-192 required three pairs of correct and
faulty ciphertexts and the attack on AES-256 required two pairs of correct and
faulty ciphertexts and two pairs of correct and faulty plaintexts. The attack was
further improved in [29] where the DFA on AES-192 required two pairs of fault free
and faulty ciphertexts, and on AES-256 required three pairs of fault free and faulty
ciphertexts. Recently a DFA on AES-256 was proposed in [4], which required two
pairs of fault-free and faulty ciphertexts and a brute-force search of 16 bits with
attack time complexity of 232. This is the best known attack on AES-256 till date.
More details of the attacks on the other versions of AES can be obtained from [14].

9 DFA of AES Targeting the Key-Schedule

In the previous sections we described how an induced difference at the state of a
particular round of AES can be exploited to reveal the secret key. In order to protect
AES from such attacks a designer has to use some countermeasures which will
not allow the attacker to induce faults in AES round operations. Even if fault is
induced, the attacker will not be able to get the faulty ciphertexts to apply a DFA.
Subsequently, the attackers have developed new attacking technique known as DFA
on AES key schedule which work even if the rounds of the AES are protected against
faults. In this kind of DFAs, faults are induced at the round keys. Therefore, even if
the rounds are protected against DFA, the attack will work as the protection will not
be able to distinguish between a fault-free round key and a faulty round key.

However, the DFA on AES key schedule are more challenging than DFA on
AES state. A difference induced in a round key will spread to more number of
bytes in the subsequent round keys during the key schedule operation, which in turn
creates more number of unknown variables in the differential equations. Therefore,
the differential equations are more complex than the differential equations in a DFA
on AES state.

The first complete DFA on AES key schedule was proposed in [13]. The attack
was targeted on AES-128 and required less than 30 pairs of fault-free and faulty
ciphertexts. An improved attack in [53] showed that a DFA on AES key schedule
is possible using two pairs of fault-free and faulty ciphertexts and a brute-force
search of 48-bit. Subsequently, there are two more attacks proposed in [32] and [31]
using two pairs of fault-free and faulty ciphertexts each. Most optimum attack on
AES key schedule was proposed in [3, 5], which required only one pair of fault-free
and faulty ciphertexts. The attack used a complex divide and conquer strategy to
solve the differential equations. The most recent attacks on AES, both state and key
schedule, can be found in [7].
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Table 2 Comparison of CED techniques

CED/original
CED �Fault coverage Throughput (%) Hardware (%)

Hardware redundancy [18] 91 % �100 �200

[42] 25 % �100 126

Time redundancy [35] 99.9 % �100 136

[46] 100 % 50–90.9 102.3

Information redundancy [55] 48–53 % �100 122.3

[9] 99.997 % 67.86 188.9

[41] 99.20 % – 137.35

[19] 1� 2�56 87 177

Hybrid redundancy [22] 100 % 73.45 197.6

[48] – 85.6 188.9

� Fault coverage are based on multiple bit random fault model, � Estimated values:
authors did not give precise figures

10 CED for AES

Faults that occur in VLSI chips are classified into two categories: transient faults
that eventually die away and permanent faults. The origin of these faults could
be internal phenomena in the system, such as threshold changes, shorts, opens,
etc., or external influences, such as electromagnetic radiation. These faults affect
the memory as well as the combinational parts of a circuit and are detected using
concurrent error detection (CED) [50]. Cryptographic chips are sensitive to faults in
the hardware. A small number of excited faults can cause a large number of output
bits of AES to be faulty [9]. As previously explained, attackers have injected faults
into cryptographic circuits to steal secret information. Previous work on CED can
be classified into four types of redundancy: hardware, time, information, and hybrid
redundancy. Table 2 shows a comparison of different CED techniques based on fault
coverage, throughput and hardware utilization. The fault coverage is obtained from
the multiple bit random fault model. The throughput and hardware are the ratio
between the CED implementation and the original.

10.1 Hardware Redundancy

Hardware redundancy duplicates the function and detects faults by comparing the
outputs of two copies.

In [18], the authors propose a novel hardware redundancy technique for AES to
detect faults. Because an attacker can potentially inject the same faults to both of
the AES circuits, the straightforward hardware redundancy can be bypassed by the
attacker. As shown in Fig. 14, the idea is to mix byte states between the operations in
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Fig. 15 Datapath mixing (bit level)

two pieces of hardware, in different ways and at different locations. The mixing can
be done at byte level or bit level as shown in Figs. 14 and 15. Because the attacker
does not know how the circuits are mixed, the attacker needs to reverse engineer
the circuit layout to figure out where to inject the faults. Although this technique
adds an extra layer of obscurity on top of the straightforward hardware redundancy,
its effectiveness is yet to be proven. It also requires significant changes to the AES
datapath. Because the entire hardware is duplicated, hardware redundancy has high
fault coverage, low fault detection latency, and low performance overhead. However,
because one extra piece of hardware and comparison circuitries are needed, the
hardware overhead is approximately 200 % as shown in Table 2. It provides 91 %
fault coverage and the performance is close to the original implementation.

To reduce the hardware overhead, [42] proposes a partial hardware redundancy
technique as shown in Fig. 16. This technique focuses on parallel AES architecture
and S-box protection. The idea is to add an additional S-box to every set of four
S-boxes, and perform two tests of every S-box per encryption cycle (10 rounds).
Although the hardware overhead is reduced to 26 %, this process has a fault
coverage of 25 % at a certain clock cycle, because it can only check one S-box
among every four in one clock cycle.
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Fig. 16 Partial hardware redundancy
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Fig. 17 Candidate operation for DDR application, and operation computing after DDR
application

10.2 Time Redundancy

Time redundancy computes the same input twice using the same function and
compares the results.

In [35], the authors propose time redundancy with a Double-Data-Rate (DDR)
mechanism as shown in Figs. 17 and 18. The pipelined AES data path logic is
partitioned into two classes, where nonadjacent stages in the pipeline are driven
by two opposite clock signals. The DDR architecture allows us to halve the number
of clock cycles per round, though maybe with a light impact on clock frequency as
compared to a design without protection. This takes advantage of the free cycles
for recomputing the round on the same hardware. Two successive round operation
outputs obtained from two copies of the same input data are checked for possible
mismatches. It shows an almost maximal fault coverage on the datapath at the
cost of 36 % hardware overhead. Under some conditions, this technique allows the
encryption to be computed twice without affecting the global throughput. However,
this technique becomes difficult to implement as technology scales.

A technique that is suited for any pipeline-based block cipher design is proposed
in [46]. The key idea is to use different pipeline stages to check against each other
by shifting the computation from one stage to another. Let us assume the pipeline
has n stages as shown in Fig.19. In the normal computation, the plaintext will be
computed by the first stage and the then the second stage and so on. The nth stage
will produce the ciphertext. In the CED computation, the plaintext will be computed
by the nth stage, and then the output of the nth stage will be computed by the first
stage. Therefore, the output of the .n � 1/th stage is the ciphertext and it will be
compared with the previous ciphertext. Compared to the original design, this CED
provides a throughput of 50–90.0 %, depending on the frequency of the redundant
check from every one to ten rounds. Hardware overhead is only 2.3 %.
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10.3 Information Redundancy

Information redundancy techniques are based on error detecting codes (EDC).
A few check bits are generated from the input message; then they propagate
along with the input message and are finally validated when the output message
is generated. Parity code and robust code are proposed for CED in various research
[9, 24, 25, 27, 37–39].

10.3.1 Parity-1

A technique in which a parity bit is used for the entire 128-bit state matrix is
developed in [55]. The parity bit is checked once for the entire round as shown
in Fig. 20. This approach targets low-cost CED. Parity-1 is based on a general
CED design for Substitution Permutation Networks (SPN) [23], in which the input
parity of SPN is modified according to its processing steps into the output parity
and compared with the output parity of every round. The authors adapt this general
approach to develop a low-cost CED. First, they determine the parity of the 128-bit
input using a tree of XOR gates. Then for the nonlinear S-box, inversion in GF.28/

and a linear affine transformation. They add one additional binary output to each
of the 16 S-boxes. This additional S-box output computes the parity of every 8-bit
input and the parity of the corresponding 8-bit output.

Each of the modified S-boxes is 8-bit by 9-bit. The additional single-bit
outputs of the 16 S-boxes are used to modify the input parity for SubBytes.
Because ShiftRows implements a permutation, it does not change the parity of the
entire state matrix from its input to output. MixColumns does not change the parity
of the state matrix from inputs to outputs either. Moreover, MixColumns does not
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Fig. 21 Parity-16 CED

change the parity of each column. Finally, the bit-wise XOR of the 128-bit round
key needs a parity modification by a single precomputed parity bit of the round key.
Because the output of a round is the input to the next round, the output parity of a
round can be computed with the same hardware for computing the input parity of
the previous round.

Although this technique has only 22.3 % hardware overhead, it has 48–53 % fault
coverage for multiple bit random fault model.

10.3.2 Parity-16

Parity-16 is first proposed in [9]. In this technique, each predicted parity bit is
generated from an input byte. Then, the predicted parity bits and actual parity bits
of output are compared to detect the faults.

In [9], the authors propose the use of a parity bit that is associated with each byte
of the state matrix of a 128-bit iterated hardware implementation with LUT-based
S-Boxes as shown in Fig. 21. Predicted parity bits on S-Box outputs are stored as
additional bits in the ROMs (nine bits instead of eight in the original S-Boxes). In
order to detect errors in the memory, the authors propose increasing each S-box to
9-bit by 9-bit in such a way that all the ROM words addressed with a wrong input
address (i.e. S-Boxes input with a wrong associated parity), deliberately store values
with a wrong output parity so that the CED will detect the fault. As before, the parity
bit associated with each byte is not affected by ShiftRows. In Parity-1, the global
parity bit on the 128 bits remains unchanged after MixColumns. Conversely, at the
byte level, the parity after MixColumns is affected. Therefore, parity-16 requires the
implementation of prediction functions in MixColumns. Finally, the parity bits after
AddRoundKey are computed as before, by adding the current parity bits to those
of the corresponding round key. This technique incurs 88.9 % hardware overhead
because of the LUT size is doubled. The throughput is 67.86 % of the original.
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Fig. 22 Parity-32 CED
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10.3.3 Parity-32

As shown in Fig. 22, a technique that strengthen fault detection on S-Boxes is
proposed in [41]. With respect to parity-16, this technique still uses one parity bit
for each byte in all the operations except SubBytes. It adds one extra parity bit for
each S-box in SubBytes; one parity bit for the input byte and one for the output byte.
The actual output parity is compared with the predicted output parity, and the actual
input parity bit is compared with the predicted input parity. It has 37.35 % hardware
overhead and 99.20 % fault coverage.

10.3.4 Parity Code vs Residue Code

In [12], the authors try to apply EDCs in a systematic way by investigating 11 differ-
ent symmetric key encryption algorithms. They study the feasibility of two EDCs
for different cryptographic operations mainly from a hardware overhead point of
view. For EDCs, parity and residue code are considered. Cryptographic algorithms
are divided into XOR, AND/OR, finite field addition/subtraction (mod n), finite field
multiplication [mod n and mod G.x/], expansion, S-Box, word rotation, word shift,
and permutation. The conclusion is that parity code is superior to residue code in
logic operations, while residue code is more feasible for arithmetic operations. The
authors recommend one parity bit per byte for the AES error detection from a low-
cost and high fault coverage point of view.

10.3.5 Robust Code

Robust codes is first proposed in [19]. The idea is to use non-linear EDC instead of
linear. Robust codes can be used to extend the error coverage of any linear prediction
technique for AES. The advantage of non-linear EDC is because it has uniform
fault coverage. If all the data vectors and error patterns are equiprobable, then the
probability of injecting an undetectable fault is the same for all of them.
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Fig. 23 Robust code
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The architecture of AES with robust protection is presented in Fig. 23. In this
architecture, two extra unit are needed. One is the prediction unit at the round
input, and it includes a linear predictor, a linear compressor, and a cubic function.
The other one is the comparison unit at the output of the round, and it includes a
compressor, a linear compressor, and a cubic function This architecture protects the
encryption and decryption as well as key expansion.

Let us first introduce the prediction unit. A linear predictor and linear compressor
is designed to generate an 32-bit output, and we call them the linear portion in
the rest of the chapter. The output of the linear portion is linearly related to the
output of the round of AES as shown in Fig. 23. They offer a relatively compact
design compared to the original round of AES. They simplify the round function
by XORing the bytes in the same column. The effect of MixColumns is removed
by the linear portion. As a result, the linear portion is greatly simplified as it
no longer needs to perform multiplication associated with the MixColumns or
InvMixColumns. For the cubic function, the input of is cubed in GF.2r/ to produce
the r-bit output, and thus it is non-linear with respect to the output of the round.

In the comparison unit, the compressor and the linear compressor are designed
to generate a 32-bit output from the 128-bit round output. The bytes in the same
column of the output is XORed. Again, the 32-bit output is cubed in the cubic
function to generate r-bit output. This output is then compared with the output from
the prediction unit.

This technique provides 1 � 2�56 fault coverage, and it has a 77 % hardware
overhead.
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Although these countermeasures can thwart DFA, the designer needs to be
cautious when implementing information redundancy-based techniques. Because
they increase the correlation of the circuit power consumption with the processed
data, the side channel leakage is also increased [34].

10.4 Hybrid Redundancy

In [20–22], the authors consider CED at the operation, round, and algorithm levels
for AES. In these schemes, an operation, a round, or the encryption and decryption
are followed by their inverses. To detect faults, the results are compared with the
original input.

The underlying assumption is that a complete encryption device operating in
ECB mode consists of encryption and decryption modules, Thus, a low-cost and
low-latency systematic CED is proposed for encryption and decryption datapaths.
They describe algorithm-, round-, and operation-levels CEDs that exploit the inverse
relationship properties of AES. Because AES uses the same set of round keys for
both encryption and decryption, they can be generated a priori, stored in the key
RAM, and retrieved in any order depending upon whether encryption or decryption
is in progress. They then extend the proposed techniques to full duplex mode by
trading off throughput and CED capability.

As shown in Fig. 24a, the algorithm-level CED approach exploits the inverse rela-
tionship between the entire encryption and decryption. Plaintext is first processed
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by the encryption module. After the ciphertext is available, the decryption module
is enabled to decrypt the ciphertext. While the decryption module is decrypting
ciphertext, the encryption module can process the next block of data or be idle.
A copy of plaintext is also temporarily stored in a register. The output of decryption
is compared with this copy of the input plaintext. If there is a mismatch, an error
signal will be raised, and the faulty ciphertext will be suppressed.

For AES, the inverse relationship between encryption and decryption exists at
the round level as well. Any input data passed successively through one encryption
round are recovered by the corresponding decryption round.

For almost all the symmetric block cipher algorithms, the first round of encryp-
tion corresponds to the last round of decryption; the second round of encryption
corresponds to the next-to-the-last round of decryption, and so on. Based on this
observation, CED computations can also be performed at the round level. At the
beginning of each encryption round, the input data is stored in a register before
being fed to the round module. After one round of encryption is finished, output is
fed to the corresponding round of decryption. Then, the output of the decryption
round is compared with the input data saved previously. If they are not the same,
encryption is halted and an error signal is raised. Encryption with round-level CED
is shown in Fig. 24b.

Depending on the block ciphers and their hardware implementation, each round
may consume multiple clock cycles. Each round can be partitioned into operations
and subpipelined to improve performance. Each operation can consume one or more
clock cycles, such that the operations of encryption and corresponding operations
of decryption satisfy the inverse relationship. As shown in Fig. 25a, applying input
data to the encryption operation and the output data of the encryption operation
to the corresponding inverse operation in decryption yields the original input data.
The boundary on the left shows the rth encryption round while the boundary on
the right shows the .n � r C 1/th decryption round, where r is the total number
of rounds in encryption/decryption. Figure 25a also shows that the first operation
of the encryption round corresponds to the mth operation of the decryption round,
which is the last operation of the decryption round. Output from operation one of
encryption is fed into the corresponding inverse operation m of decryption.

Although these techniques has close to 100 % fault coverage, their throughput is
73.45 % of the original AES in half-duplex mode. It can suffer from more than
100 % throughput overhead if the design is in full-duplex mode. The hardware
overhead is minimal if both encryption and decryption are on the chip. However,
if only encryption or decryption is used in the chip, it will incur close to 100 %
hardware overhead.

To reduce the hardware overhead of the previous technique, [48] proposes a novel
hardware optimization, and thus, reduced the hardware utilization significantly.
Figure 25b shows the architecture. It divides a round function block into two
sub-blocks and uses them alternatively for encryption (or decryption) and error
detection. Therefore, no extra calculation block is needed, even though only a
pipeline register, a selector and a comparator are added. The number of operating
cycles is doubled, but the operating frequency is boosted because the round function
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block in the critical path is halved. Therefore, the technique provides 85.6 %
throughput compared to 73.45 % in the previous one. The hardware overhead also
decrease from 97.6 to 88.9 %.

10.5 Other Techniques

In [24, 37, 39], parity is obtained for S-box implementation in finite field arithmetic
with polynomial basis. In [25, 27, 38], parity is obtained for S-box implementation
in finite field arithmetic with normal basis. In [26], an AES parity detection method
with mixed basis is proposed. All these parity schemes share the same limitation. If
an even number of faults occur in the same byte, none of these schemes can detect
them.

While traditional CED techniques have their strengths and limitations, techniques
based on algorithmic invariances can offer new tradeoff choices. An invariance-
based CED is proposed in [17]. It utilizes a round-level invariance of the AES and
checks for the invariance property. Because the invariance does not constrain the
input pattern of the round, it is very flexible and the fault coverage is very high.
Because the invariance property is a permutation property, the hardware overhead
only includes the comparator and muxes that are used to select the regular or the
permuted datapath.
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11 Conclusion

The chapter first shows that faults can be threatening to the security of modern day
block ciphers. Taking the present day standard block cipher, AES, as an example the
chapter shows techniques for performing differential fault analysis of block ciphers.
The attacks have been described on the assumptions of various types of fault models:
namely bit, single byte, and multiple byte. The fault analysis of AES using only one
instance of a random single byte fault have been shown to reduce the key space
of AES to on an average 28 values through an attack with time complexity 230.
Likewise, the chapter also shows even when the faults spread to multiple bytes,
corrupting 12 out of 16 bytes of the AES state matrix, DFA of AES is feasible. All
these attacks unfurl that DFA of block ciphers is a very strong attack model, where
even random faults can completely collapse the security of even very strong block
cipher algorithms.

The practicality of such fault models and the requirement of such small number
of faulty computations, emphasizes the need for CED techniques. We present a
study on CED techniques deployed for detecting DFA of AES hardware imple-
mentation. We classify the CED techniques into hardware, time, information, and
hybrid redundancies. We also summarize the overheads and fault coverage of the
countermeasures. Hardware and hybrid redundancies provides high security and
reliability but the hardware overhead is also high. Time redundancy is low cost
but also decrease the performance. It also has limitations when there are permanent
faults and long transient faults. Information redundancy provides high reliability
with relatively low hardware and performance overhead. Although these counter-
measures can thwart DFA, the designer needs to be cautious in implementation.
Some techniques may enable backdoors for other types of attacks. For example,
information redundancy-based techniques tend to increase the correlation of the
circuit power consumption, with the processed data increasing the side channel
leakage. While traditional CED techniques have their strengths and limitations,
techniques based on algorithmic invariances can offer new tradeoff choices.
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