
Chip-Hong Chang · Miodrag Potkonjak
 Editors

Secure System
Design and
Trustable
Computing

Secure System Design and Trustable Computing

Chip-Hong Chang • Miodrag Potkonjak
Editors

Secure System Design
and Trustable Computing

123

Editors
Chip-Hong Chang
School of EEE, Nanyang Technological

University
Singapore

Miodrag Potkonjak
University of California Los Angeles
Los Angeles, CA, USA

ISBN 978-3-319-14970-7 ISBN 978-3-319-14971-4 (eBook)
DOI 10.1007/978-3-319-14971-4

Library of Congress Control Number: 2015945618

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Preface

Computer systems and internet-enabled smart electronic gadgets are increasingly
integrated into our society. As a consequence of our heightened intimacy with
this parallel cyberspace, security is becoming an integral part of any technology
trend and affects stakeholders from all walks of life. Associated with the rise of
social networking, consumerization of information technology, exponential growth
of mobile devices and the many new services that leverage the omnipresence of
Internet is a new battlefield between the attackers and defenders of information
and privacy. The economic value and dependency on digital interconnectivity of
people and “things” have come to the point that exploitation, even in a limited
form, can be tremendously profitable. Malefaction can also be readily reinforced
by technology to evade detection, bringing unique challenges to law enforcement
of digital rights, protection of privacy, and combat against high-tech crimes. With
attacks growing increasingly sophisticated, demand for better security will continue
to drive technology innovation. As two transcendent topics, security and trust cut
across many research areas and technological domains.

The aim of this book is to create an awareness of the ultimate challenges
in addressing the security issues and vulnerabilities of embedded and integrated
electronic systems, and to provide an insight into the emerging countermeasures and
theoretical advancement in the design of secure and trustable computing circuits,
systems, design platforms, and communication protocols. This book solicits and
summarizes some key research topics and contributions in secure system design
and trustable computing towards the goal of equipping the reader with sufficient
background for further study of advanced topics. It consists of 17 chapters organized
into three parts: Part I: Hardware Cryptographic Primitives, Part II: Hardware
Counterfeiting and Integrity Protection, and Part III: Trust in Software, Networks
and Services, with a deliberate emphasis on hardware-oriented security in view of
the enormous attention and its rapid progress in recent years.

The rapid development of powerful embedded processors for mobile and embed-
ded devices has endowed smartphones with the capability to serve as a unified
platform for financial transactions, private information storage, and generation of
authentication tokens for secure information exchange. Given the inherent mobility

v

vi Preface

of such devices and their autonomy in handling the sensitive information, the threats
of the device operating in an untrusted environment and the physical access to the
system by the adversary are lifting. To replace the current best practice of using non-
volatile and battery-backed random access memories for secret key storage, physical
unclonable function (PUF) emerges as a lightweight and more vigilant entropy
source and secret key generator in mobile system. The first three opening chapters
of Part I are thus devoted to the overview, architectures, applications, design, and
implementation of this promising cryptographic primitive. Specifically, the chapter
“Disorder-Based Security Hardware: An Overview” introduces various examples of
using disorder-based methods to avoid the long-term presence of keys in vulnerable
hardware, and even completely evade the need for any security-critical information
in hardware. This is followed by an extensive review of techniques proposed
in the recent years for the design and implementation of high-quality PUFs for
resource-constrained platforms in the chapter “Design and Implementation of High-
Quality Physical Unclonable Functions for Hardware-Oriented Cryptography”. The
chapter “Digital Bimodal Functions and Digital Physical Unclonable Functions:
Architecture and Applications” highlights the susceptibility of existing PUFs to
environmental and operational variations and the difficulty of their integration
into digital circuitry. A new notion of digital PUF is proposed to overcome these
deficiencies. It exploits the time gap between the compact and expanded forms
of digital bimodal function to realize public key communication and remote trust
protocols.

For applications where the hardware authentication is performed by automatic
identification technology such as magnetic stripes, barcode, smart cards, biometric
identity cards, and RFID tags, there is a dire need for efficient on-chip implementa-
tion of public-key cryptosystem. It turns out that modular multiplication on data of
very large word length is the most area-, time-, and power-consuming operation
that determines to a large extent the overall cryptosystem performance. Due to
the insurmountable carry-propagation of arithmetic in the accustomed weighted
binary number system, the ancient Residue Number System (RNS) has resurged
as a key player in boosting the cryptosystem performance. The chapter “Residue
Number Systems in Cryptography: Design, Challenges, Robustness” provides a
systematic and holistic treatment of the pivotal concepts of residue arithmetic
and RNS applications in modern cryptography, from algorithm and complexity
analysis to state-of-the-art hardware implementations. Efficient implementation of
a cryptographic algorithm alone is inadequate as an attacker can perform a fault-
based cryptanalysis to extract the embedded secrets if he has the physical access to
a tamper-proof device to induce deliberate faults into it. The last chapter of Part I,
“Fault Attacks on AES and Their Countermeasures” demonstrates an emerging field
of powerful fault attacks known as Differential Fault Attacks (DFA) that can weaken
modern ciphers like Advanced Encryption Standard (AES), and suggests an efficient
Concurrent Error Detection (CED) scheme as an effective countermeasure.

Preface vii

Over the years, the geographical dispersion of chip design activities, coupled
with the heavy reliance on third party hardware intellectual properties (IPs), has
led to the infiltration of counterfeit and malicious chips into the integrated circuit
(IC) design and fabrication flow due to the lack of effective mechanisms to detect
and trace the use of semiconductor IPs. Reusable IPs sold in the form of high-
level description language or Field Programmable Gate Array (FPGA) configuration
bitstreams have been embedded into chips that control electronic systems and
infrastructures of far greater value than their tangible worth. Unfortunately, these
highly flexible expressions of hardware IPs are vulnerable to cloning, misappro-
priation and reverse engineering, and easily contaminated by hardware Trojans
(HTs). Fabless semiconductor companies and field programmable device vendors
that outsource their devices to merchant foundries for fabrication also find it difficult
to prevent grey market sale of excess production, which can open out backdoors
to catastrophic higher-level attacks on software, content, networks, and critical
infrastructures. The consequence can be disastrous yet identifying compromised
ICs is extremely difficult. New attack scenarios could put the integrated electronics
ecosystem in dire peril if nothing is done to avert these hardware security treats.
Part II addresses these problems. After the preamble of seven distinct categories of
counterfeit electronics, the chapter “Circuit Timing Signature (CTS) for Detection
of Counterfeit Integrated Circuits” discusses the use of Circuit Timing Signature
(CTS) techniques to identify recycled, cloned, overproduced, and remarked ICs.
The chapters “Hardware Trojan Detection in Analog/RF Integrated Circuits” and
“Obfuscation-Based Secure SoC Design for Protection Against Piracy and Trojan
Attacks” deal with HT detection in analog/RF and digital ICs, respectively. Using
a wireless cryptographic IC as vehicle, the chapter “Hardware Trojan Detection in
Analog/RF Integrated Circuits” demonstrates the effective field detection of HTs
by combining side-channel fingerprinting with advanced statistical analysis and
machine learning methods. In the chapter “Obfuscation-Based Secure SoC Design
for Protection Against Piracy and Trojan Attacks”, two different approaches based
on the principle of design obfuscation are proposed to protect a System-on-Chip
(SoC) design flow against HT attacks and IP piracy with minimal impact on the end-
user experience. With the traditional finite state machine (FSM) synthesis procedure,
there exist simple and effective ways to attack a sequential system and insert HT
with negligible design overhead. The chapter “Towards Building Trusted Systems:
Vulnerabilities, Threats, and Mitigation Techniques” identifies trust vulnerabilities
in current industrial design tools and proposes a new practical approach to design
trusted sequential system based on the FSM specification. The chapter “Hardware IP
Watermarking and Fingerprinting” further elaborates the key ideas and dominating
trends in hardware IP protection by watermarking and fingerprinting. It sheds light
on the changing focus from watermark and fingerprint embedding and detection
techniques to economically rewarding remote enforcement of semantic hardware
and software IP rights. The chapters “IP Protection of FPGA Cores Through a Novel
Public/Secret-Key Encryption Mechanism” and “Secure Licensing of IP Cores on
SRAM-Based FPGAs” address the prospect of license violation and IP core over-
deployment problems in FPGA IP market. Both chapters investigate mechanisms

viii Preface

to assure the secure installation of FPGA IP cores onto contracted devices agreed
upon by the IP provider and IP buyer through design encryption and public-key
based authentication protocols in different perspectives of trustable design exchange
scenarios.

As a consequence of the pervasiveness of computing devices, malicious software
(Malware in short), such as worm, viruses, spyware, botnets, Trojan horses, rootkit,
keyloggers, etc., have broadened their targets from desktop PCs and servers
to smartphones and implantable medical devices. Malware penetration through
cyberspace has threatened the economic growth and efficiency that a single, global
interoperable network has brought us by bringing unique challenges to the security
practitioners. Easy-to-use malware toolkits can automatically create hundreds of
unique variants. The volume of new malware is growing at an exponential rate,
amounted to an average of a million of new variants a day as reported by the
Symantec Internet Security Threat Report (ISTR) in 2011. The security issues
are further aggravated by the cloud computing paradigm, Online Social Network
(OSN) and Mobile Adhoc Network (MANET) that make offloading of computing
tasks, locating and collection of unprecedented amount of private information easier
than ever. Part III is devoted to the problems and solutions pertaining to the safe
deployment and trustworthiness of software, distributed networks, services, and
infrastructures. The chapter “Heterogeneous Architectures: Malware and Counter-
measures” discusses the threat of malicious software on heterogeneous platforms
and explains how advanced virtualization technology can monitor, analyze, and pro-
tect heterogeneous software and hardware architectures from malware attacks. The
chapter “Trusted, Heterogeneous, and Autonomic Mobile Cloud” surveys state-of-
the-art research on theoretical advancement and practical implementations of trusted
computing on mobile cloud, featuring different levels of resiliency against malicious
and misbehaved nodes. The chapter “Infiltrating Social Network Accounts: Attacks
and Defenses” looks into the infiltration attacks on social network accounts. Venue
centric location verification solutions that use certified location information are
proposed for privacy protection in cyberspace social networking. The chapter “An
Economical, Deployable and Secure Architecture for the Initial Deployment Stage
of Vehicular Ad-Hoc Network” explores economical, deployable, and secure vehic-
ular ad-hoc network (VANET) system design to facilitate the gradual deployment
of wireless communication among vehicles. Workable models for multi-confidence
level data verification and time-location based secure positioning systems are
established to achieve connectivity with a high degree of confidence using only a
small number of smart vehicles and economical roadside units that do not need
expensive internet access. Critical systems like VANET demand more than just fault
tolerance and security. They must be able to continue delivering essential services
during attacks, faults, or accidents. The last chapter “Deception-based Survivability”
of this book examines a new generation of defense systems that are smart, adaptive,
and possess deception-based survivability to make them stay ahead of the malicious
actors. It presents a high-level deployment architecture that uses deception to trace
attacker intent, objective and strategies (AIOS) for the development of targeted
recovery and adaptation procedures.

Preface ix

The threat landscape has become increasingly complex with the pervasiveness
of smart devices, immense data, extensive virtualization, and dense connectivity.
It is impossible to cover all aspects of attack scenarios and defence methodologies
in one edited book volume. We would like to thank the expert researchers who have
contributed to the broad spectrum of insightful techniques and solutions presented
in this book. With supporting motivation and background material, it is our hope,
that the historical notes, rigorous treatment, breadth and extensive bibliography will
make this book a comprehensive source and an important reference for the design
of security and trustable computing systems, that serves students, instructors, and
research professionals in the community. It is our hope that this edited book volume
will facilitate further advancement of the field and that we have helped play a small
part in it.

Singapore Chip-Hong Chang
Los Angeles, CA, USA Miodrag Potkonjak

Contents

Part I Hardware Security Primitives

Disorder-Based Security Hardware: An Overview . 3
Ulrich Rührmair

Design and Implementation of High-Quality Physical
Unclonable Functions for Hardware-Oriented Cryptography 39
Siarhei S. Zalivaka, Le Zhang, Vladimir P. Klybik,
Alexander A. Ivaniuk, and Chip-Hong Chang

Digital Bimodal Functions and Digital Physical Unclonable
Functions: Architecture and Applications. 83
Teng Xu and Miodrag Potkonjak

Residue Number Systems in Cryptography: Design,
Challenges, Robustness . 115
Dimitris Schinianakis and Thanos Stouraitis

Fault Attacks on AES and Their Countermeasures . 163
Subidh Ali, Xiaofei Guo, Ramesh Karri,
and Debdeep Mukhopadhyay

Part II Hardware Counterfeiting and Integrity Protection

Circuit Timing Signature (CTS) for Detection of Counterfeit
Integrated Circuits . 211
Kan Xiao, Domenic Forte, and Mohammad (Mark) Tehranipoor

Hardware Trojan Detection in Analog/RF Integrated Circuits 241
Yier Jin, Dzmitry Maliuk, and Yiorgos Makris

Obfuscation-Based Secure SoC Design for Protection Against
Piracy and Trojan Attacks . 269
Rajat Subhra Chakraborty, Yu Zheng, and Swarup Bhunia

xi

xii Contents

Towards Building Trusted Systems: Vulnerabilities, Threats,
and Mitigation Techniques . 301
Carson Dunbar and Gang Qu

Hardware IP Watermarking and Fingerprinting . 329
Chip-Hong Chang, Miodrag Potkonjak, and Li Zhang

IP Protection of FPGA Cores Through a Novel
Public/Secret-Key Encryption Mechanism . 369
Bassel Soudan, Wael Adi, and Abdulrahman Hanoun

Secure Licensing of IP Cores on SRAM-Based FPGAs . 391
Li Zhang and Chip-Hong Chang

Part III Trust in Softwares, Networks and Services

Heterogeneous Architectures: Malware and Countermeasures 421
Flavio Lombardi and Roberto Di Pietro

Trusted, Heterogeneous, and Autonomic Mobile Cloud . 439
Flavio Lombardi and Roberto Di Pietro

Infiltrating Social Network Accounts: Attacks and Defenses 457
Rahul Potharaju, Bogdan Carbunar, Mozhgan Azimpourkivi,
Venugopal Vasudevan, and S.S. Iyengar

An Economical, Deployable and Secure Architecture for
the Initial Deployment Stage of Vehicular Ad-Hoc Network 487
Baber Aslam, Ping Wang, and Cliff C. Zou

Deception-Based Survivability . 521
Ruchika Mehresh and Shambhu J. Upadhyaya

Part I
Hardware Security Primitives

Disorder-Based Security Hardware:
An Overview

Ulrich Rührmair

Abstract The explicit utilization of physical disorder and of random, micro- and
nanoscale phenomena is a recently emerging trend in hardware security. The
associated fields of research could be termed disorder-based security or also nano-
security. In this chapter, we give an overview of this arising area. We start by a
motivation of alternative approaches in hardware security. This is followed by a
brief description of physical disorder and its useful features.

Subsequently, readers are introduced to the main concepts of the area via a
number of concrete examples. We show how disorder-based methods can avoid the
long-term presence of keys in vulnerable hardware, allow the derivation of keys in
systems without non-volatile memory, and sometimes even evade the need for any
security-critical information in hardware at all. Our examples include optical as well
as electrical implementations.

Towards the end, we take a broader perspective of the field: We illustrate its
history from its first presence in patent writings in the 1960s over the pivotal role of
physical unclonable functions (PUFs) to its current state and future challenges.

1 General Context and Chapter Overview

Several of the earliest documented examples of cryptographic techniques are owed
to the Greek historian Herodotus. Among others, he describes an ancient case of a
steganographic technique in the conflict between Persia and Greece around 500 BC:
In order to communicate sensitive information, the Greek tyrant Histiaeus shaved
the head of a slave and tattoed a confidential message onto the scalp. Once the hair
had re-grown, the slave could serve as a secret message carrier, passing adversarial
territory unrecognizedly [24]. Herodotus also reports that around the same time, the
Spartans encoded their military messages by use of a wooden stick of a well-defined
diameter. A leather belt was wrapped around the stick, and the message was written

U. Rührmair (�)
Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
e-mail: ruehrmair@ilo.de

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_1

3

mailto:ruehrmair@ilo.de

4 U. Rührmair

across the bends. Without the stick, the symbols appeared randomly distributed over
the belt; but by winding it around a stick with the same diameter, the message could
be recovered [160].

Said two techniques are, to our knowledge, the first documented methods that
explicitly use physical and even biological phenomena for information protection.
Nothing else holds for the newly emerging fields of “disorder-based security” or
“nano-security” that we discuss in this chapter—with the difference, however, that
the focus is now on phenomena at the micro- and nanoscales, and on the explicit
utilization of physical disorder at these minuscule scales.

This chapter provides a first introduction and overview of these recent and fast-
moving areas: Sect. 2 motivates why alternative approaches in security are useful
and sometimes necessary. Section 3 discusses the general phenomenon of physical
disorder and its usefulness. Section 4 provides readers with three central application
examples. We thereby didactically take a inductive approach, introducing readers
to the central concepts in the area by concrete examples. Section 5 summarizes
concrete advantages of disorder-based methods. Section 6 then takes a broader,
partly historic perspective of the field. We conclude by a summary in Sect. 7.

2 Why Investigate Alternative Approaches?

Why should one investigate alternative approaches to hardware security at all? Why
should one be bothered to investigate the complex phenomena of physical disorder
and randomness? We give some of the main reasons below.

2.1 Vulnerabilities of Classical Secret Keys

In agreement with Kerckhoffs’ principle [56], most current cryptographic and
security methods rest on the concept of a secret key. This forces security hardware
to permanently store a bit string that is unknown to the adversary. This requirement
can be unexpectedly difficult to realize in practice: On the physical level, invasive
techniques, semi-invasive methods and side channel attacks can be used to extract
valuable key information [2]. On the software side, malware like Trojan horses or
viruses may read out and transfer keys, even without the notice of users [2].

Three aspects play into the hands of attackers in this context. Firstly, keys stored
in non-volatile memory (NVM) are permanently present in the hardware system
in a relatively easily accessible digital form [2]. What makes things worse, the
permanent storage can even leave traces in the memory that allow recoverage of
the key after it has been erased [42, 140, 161]. Secondly, keys are mostly strings
with high entropy, allowing their identification within other, less entropic data in
computer memory relatively easily [135]. Finally, the requirement that modern
hardware should be lightweight, mobile, and inexpensive often leaves little room

Disorder-Based Security Hardware: An Overview 5

for sophisticated key protection. Functionality and cost aspects dominate security
requirements in many commercial scenarios [2].

Ron Rivest accurately subsumed the situation in a keynote talk at Crypto 2011 by
commenting that “calling a bit string a secret key does not make it secret, but rather
identifies it as an interesting target for the adversary” [92]. This makes effective key
protecting mechanisms—or better still: methods to entirely avoid classical secret
keys in vulnerable hardware—an important research topic.

2.2 Practicality and Cost Aspects

There is one second issue of classical methods. As R. Pappu et al. put it in their
seminal article on Physical One-Way Functions in SCIENCE MAGAZINE [89]:
“Cryptosystems don’t protect information if they’re not used.” Indeed, the classic
implementation of secret key schemes in hardware makes two implicit assumptions:
Firstly, that the security hardware contains non-volatile memory (NVM) cells, in
which the key can be stored. Secondly, that it has sufficient computational capacities
to implement the cryptographic schemes which process the key.

Both assumptions are not met in certain situations. To start with, not all
security-relevant hardware contains NVM cells. This includes central processing
units (CPUs), several types of field programmable gate arrays (FPGAs), certain
lightweight security systems, etc. If the keys are stored in a second, accompanying
piece of hardware (for example the computer’s hard disk), the transfer of the key to
units where the key is needed (CPU, FPGA, etc.) creates an explicit attack point.
This is obviously disadvantageous—a self-contained security solution would be
preferable.

Secondly, in several very low-cost scenarios, the security hardware does not
possess extensive computational capacities. As an example, consider the forgery-
proof tagging or “labeling” of valuable objects, such as branded products, electronic
components, valuable documents, and the like. There is no computational capacity
in a Rolex watch, a Nike shirt, or a paper document. Adding such capacity by RFID
tags may be too expensive, apart from the obvious privacy problems it creates. Still,
as pointed out by Kirovski, 7–10 % of the world trade consists of forged products,
causing an overall economic loss of the order of hundreds of billions of dollars [59].

The example illustrates the existence of highly relevant security problems that
are difficult to address by standard techniques.

3 Physical Disorder and Its Useful Features

The discussion of the last section motivates the search for other methods. This chap-
ter indeed provides an overview of an alternative approach that has emerged over
the last decade(s), so-called “disorder-based security” or “nano-security”. This area

6 U. Rührmair

Fig. 1 Microscopic images of several everyday objects: Pollen of Lilium auratum (upper left)
[132], ordinary (filter) paper (bottom left) [133], a customary CD (upper right) [134], and a cross
section through Apple’s A5 chip (bottom right) [51]

explores how small-scale, random physical disorder and hardware imperfections can
be exploited advantageously in security and cryptography.1 Said physical disorder is
actually omnipresent in our everyday world: Essentially all physical systems exhibit
it intrinsically and “for free” on small enough length scales.

Four illustrating examples are given in Fig. 1: Firstly, many biological struc-
tures show fascinating small-scale irregularities, in our example pollen of the
Lilium auratum (top left). Also customary paper exhibits notable three-dimensional
randomness, for example in its interwoven “paper fibers”; our image shows a
close-up of customary filter paper (bottom left). Thirdly, modern integrated circuits
exhibit complex manufacturing variations as well. These do not affect their digital
functionality, but still notably influence their exact analog properties, for example
the runtime delays in their individual components (bottom right). Finally, also
storage media such as compact discs are subject to imperfections, for example in
the exact shape and length of their information-carrying indentations. The deviations

1This focus distinguishes the area from other, well-known and non-standard approaches in crypto
and security, such as quantum cryptography [8], noise-based crypto [25], or the bounded storage
model [5, 79].

Disorder-Based Security Hardware: An Overview 7

are too small to affect the stored content, but still constitute a unique sub-structure
of each disc (top right).

What are the features that makes physical disorder useful in cryptographic and
security applications? At least four of them are discussed below.

Omnipresence

As already emphasized, essentially all physical objects exhibit a certain amount
of random disorder at sufficiently small length scales.2 This phenomenon is not
limited to the examples of Fig. 1. Readers may take a short virtual tour through their
offices: Any chairs, tables, walls, windows, pens, etc. exhibit small-scale disorder
and imperfections, be it due to their production process, wear and tear, or both.

In fact, it is very difficult to imagine a macroscopic system or production process
that is disorder-free. Usually, this is regarded as disadvantageous, for example in the
context of semiconductor fabrication or nanofabrication. The approaches presented
in this thesis turn the inevitability of disorder into an advantage, though, exploiting
it for hardware identification, secret key derivation, and other security applications.

Hard to Clone

A second central feature of physical disorder is that it is infeasible to perfectly
clone it with current fabrication technology.3 This is often referred to as (physical)
“unclonability” in the literature [36, 89] and in this thesis. Interestingly, the
unclonability of a system may still hold even if its entire structure is known down
to every single atom to an attacker. Note that in the physical world, knowing the
structure of a system and rebuilding it accurately are two different things. Consider
the paper surface as of Fig. 1 as an example: Even if the exact position of all paper
fibers would be known, it would still remain prohibitively difficult to refabricate
it perfectly. This physical feature stands in sharp contrast to the conditions in a
mathematical or Turing machine world: If you know a bitstring exactly, it is trivial to

2The only macroscopic or mesoscopic counterexamples known to the author are highly regular
crystal structures, but even they can exhibit defects or surface roughness. In addition, there are
certain microscopic objects like photons or electrons which appear to be the same for every
specimen (compare [162] for an amusing assessment of the similarities of all electrons by two
great physicists). But such microscopic objects or even elementary particles are not our topic in
this thesis.
3Please note that this type of unclonability differs from another well-known type of unclonability,
namely quantum unclonability. The latter is based on inherent features of quantum mechanics,
the former on the technological limitations of available two- and three-dimensional fabrication
techniques.

8 U. Rührmair

copy it with perfect accuracy. The underlying physical phenomenon could be termed
(re-) fabrication complexity, in analogy to the well-known term computational
complexity that underlies mathematical cryptography.

Hard to Fully Characterize

Disordered systems can possess a very large entropy or random information
content. As an example, consider the random information contained in the random
microscopic structure of a A4-sized sheet of paper (see again Fig. 1). It is infeasible
to completely measure (i.e., to “characterize” in physical parlance) this information
with current technology in short time. At the same time, the generation of this
disorder is very inexpensive, occurring as a natural byproduct in the fabrica-
tion process. This points to a certain asymmetry in the physical world between
generating randomness and measuring it. Again, this asymmetry has no direct
analog in the Turing world: On a Turing machine, reading a bit from the tape and
generating a random bit on the tape take essentially the same effort. The associated
physical phenomenon could be termed measurement complexity or characterization
complexity, again analog to the well-known computational complexity.

Hard to Simulate on a Turing Machine

Simulating the input-output behavior of complex, disordered physical structures on
a Turing machine can be laborious. A straightforward example are the interference
patterns created by disordered optical systems upon laser illumination (see [88, 89]
and Sect. 4.3), but also electrical and quantum systems with similar properties
exist [7, 26, 31, 33, 94, 96]. One reason for the observed simulation overheads
are the inherently parallel and analog interactions in solid state systems. They are
usually expensive to emulate on digital, sequential computers. This usually makes
the digital simulation of a given physical system notably slower than the systems’
real-time behavior, and can even render such simulation practically infeasible at
all (compare [33]). The associated phenomenon could be called the simulation
complexity of physical structures. Interestingly, the presence of disorder is no
necessary prerequisite of simulation complexity, since also quantum systems may
be hard to emulate. But in the classical physical systems that are considered in
this chapter, the occurrence of complex disorder usually increases the simulation
overhead.

Similar to our above discussion, the phenomenon of simulation complexity
has no direct counterpart in mathematical cryptography. In our sense, it can only

Disorder-Based Security Hardware: An Overview 9

emerge when two different worlds, like the physical and the Turing world, and their
“computational speeds” are compared to each other.4

Simulation complexity can be utilized in different ways: Firstly, it may render the
simulation of certain disordered structures too complex to be practically feasible at
all (compare Pappu et al. [89] and Sect. 4.3). Secondly, simulation may be possible
in practice, but notably more time consuming than the real-world behavior of the
disordered structure. The latter is explicitly exploited by the recently emerging
primitives of “SIMPL systems” [94] and “Public PUFs” [7].

How to Utilize Physical Disorder?

Given the above discussion, it seems almost straightforward to exploit physical
disorder in a security context. Just to name two examples: Why not derive
unforgeable “fingerprints” for all everyday objects, valuable products, and security
items from their individual surfaces? Why not straightforwardly derive internal
secret keys from the individual disorder that is present in every piece of silicon
hardware, and identify this hardware via this key? However, as common in scientific
research, the problems and scientific challenges lie in the details. Certainly all
everyday objects exhibit disorder on small length scales, ultimately when being
scanned with an (expensive) atomic force microscope. But which features can be
measured particularly inexpensively, are stable over time, and are still most difficult
to forge or imitate? Which nanostructures and materials lead to particularly secure
and practical fingerprints? How can honest users know the “correct” fingerprints of
authentic objects, as opposed to the fingerprints of unauthentic objects? Etc.

Around these questions, a rich research landscape has emerged within the last
years [71, 109]. It spans from nanophysics and electrical engineering to theoretical
computer science and mathematics, and is concerned with implementational ques-
tions as well as with the theory behind disorder-based security. Some main examples
are discussed throughout the rest of this book chapter.

4It is interesting to comment that any physical action can in principle be interpreted as a
computation and, vice versa, that computation can be understood as an inherently physical process.
This view has been expressed by Deutsch and others [31, 32, 143], and, in a non-scientific context,
even a few years before Deutsch by novelist Douglas Adams [1]. In this sense, it appears legitimate
to talk about “computational speed” also when one is actually referring to physical interactions, as
we do above.

10 U. Rührmair

4 Examples of Disorder-Based Security Methods
and Hardware

We will now illustrate the practical usability of physical disorder by three concrete
examples. Among other things, our discussion details the concrete security advan-
tages of the examples over classical techniques.

4.1 Certificates of Authenticity from Paper Irregularities

According to Kirovski [59], it is estimated that 7–8 % of world trade, 10 % of
the pharmaceutical market, and 36 % of the software market consist of counterfeit
products, causing a loss of hundreds of billions of US-Dollars every year [59]. This
calls for inexpensive and effective methods that verify the authenticity of products
and other objects of value. Ideally, one would like to set up a system where certain
“certification authorities”, for example product manufacturers or state authorities,
can create unforgeable “certificates of authenticity (COAs)” for valuable objects
[59]. The COAs should be machine readable, and should be verifiable by a large
number of widespread “testing devices” [59]. Ideally, but not necessarily, the latter
might be handheld and owned by security-aware consumers themselves.

Since paper is a very widespread material, it seems suggestive to utilize the ran-
dom and unclonable structure of paper in this context (compare Fig. 1). Recall that
the latter induces an individual fingerprint of any paper medium, including paper
documents, paper packages, and paper banknotes. Approaches in this direction have
indeed been suggested by a number of researchers in the past [14, 40, 43, 59, 141].
We describe their technique by the example of paper banknotes below.

Protocol 1: CERTIFICATES OF AUTHENTICITY (COAS) FOR PAPER BANKNOTES

Set-Up Assumptions:

1. The banknote manufacturer (BM) holds a secret signing key SK from some
cryptographic digital signature scheme.

2. All testing devices (TDs) hold the public verification key VK that corresponds to
SK.

3. The BM has implemented a physical method to measure the random structure
of a given paper surface. The method produces a compact digital strong UF.S/

describing the structure.5

4. All TDs have implemented a similar method and can reproduce the measurement
results of the BM in a reliable fashion. That is, given the same piece of paper S
as the BM, each TD will derive the same description UF.S/, within some error
thresholds.

5One advantageous approach is shining a laser beam at the structure and measuring the resulting
reflective interference pattern [14], but there are also other suitable techniques [43, 155, 156].

Disorder-Based Security Hardware: An Overview 11

This presumes that the measured paper features are sufficiently stable against
wear-and-tear and aging.

COA Generation:

1. The BM fabricates a paper banknote. It measures the random paper structure in a
selected, marked subregion S of the banknote, producing a digital string UF.S/

that describes the structure.
2. The BM creates a digital signature DigSigSK.UF.S/; I/, and prints the informa-

tion

UF.S/; I; DigSigSK.UF.S/; I/

onto the bank note, for example via a two-dimensional barcode.
Thereby I can be an arbitrary accompanying information, for example the

banknote’s value, its printing date and place, etc.

The unit consisting of an unclonable physical structure S, a digital string UF.S/ that
describes the unclonable features of S, and a digital signature DigSigSK.UF.S/; I/,
is then termed a “COA” in our sense [59].
COA Verification:

1. The TD reads the information UF.S/; I; DigSigSK.UF.S/; I/ from the banknote.
2. The TD verifies the validity of the digital signature DigSigSK.UF.S/; I/ by use

of its verification key VK.
3. The TD measures the random paper structure of the banknote, and checks if the

results match the information UF.S/ printed on the banknote, again within some
error thresholds.

4. If the tests in step 2 and 3 are passed, the TD regards the banknote as genuine.

4.1.1 Security Discussion

The above scheme is secure under the following assumptions:

• The adversary cannot gain access to the secret signing key stored at the
manufacturer.

• The digital signature scheme is secure.
• The adversary cannot clone the paper structure, i.e., he cannot fabricate any

physical system that “looks” like the original paper within the accuracy limits
of the applied measurement method.

It is not too difficult to see that all of these assumptions are also necessary: If
the adversary has access to the signing key, he can create COAs by himself. The
same holds if the digital signature scheme is insecure, and if the adversary can forge
signatures for any given plaintext. Thirdly, if the adversary can clone the paper in

12 U. Rührmair

the above sense, he can fake notes by (1) copying the paper structure of a given
banknote, and by (2) using the very same digital signature from this note on the
new, forged note.

4.1.2 Potential Advantages and Drawbacks

What are the advantages and disadvantages of the above approach? One notable
upside lies in the way it treats secret keys. Astonishingly, there is no secret key
or other security-critical secret information on the banknotes/COAs. One could
allow an adversary to inspect every atom of the banknote, and still the COAs could
not be forged: Knowing the paper structure and physically reproducing it are two
different things. Even the testing devices do not need to contain any security-critical
information, since the adversary does not benefit from learning the public key that
is stored in them! Both features particularly shine in applications where adversaries
can easily gain long-term access the COAs (including banknotes), or whenever there
are many, widespread testing devices that can potentially be accessed by adversaries
(for example widespread devices in retail stores, supermarkets, pharmacies, etc.).

The only secret key of the entire scheme rests in the hands of the manufacturer,
where it can usually be very well protected. There is one further noteworthy aspect
in this context: Think about a scenario with many decentral fabrication sites, all of
which manufacture products that need to be equipped with COAs. It seems that all
of these sites would then need to be equipped with a secret signing key, potentially
creating security gaps. However, some thinking shows that indeed all necessary
digital signatures could even be created centrally by one authority, and later be
distributed to the sites. The sites merely send the strings UF and perhaps I to the
central authority, which returns the signature DigSigSK.UF.S/; I/. Without going
into the details, we remark that such an approach could be well applied against of
gray-market IC overproduction, in particular whenever IC fabrication is outsourced.
While the design is given to external manufacturers abroad, the certification process
and signing key remains under the full control of the IP owner.

There is a third security upside of the above COAs. Standard security features of
banknotes can be mass produced by the right printing equipment. In other words,
the technology to produce many identical specimen exists already; if the adversary
gains access to it, he will succeed. The security of current banknotes hence rests on
the assumption that fraudsters will not gain access to a certain, existing technology.
To the contrary, currently no technology exists that could exactly clone the complex,
three-dimensional structure of paper. Even if developed some day, it would likely
not immediately lend itself to cost-efficient mass fabrication. This creates an extra
security margin against fraudsters, some sort of “technological security”, as opposed
to the access security assumption of traditional money printing.

Readers well-versed in mathematical cryptography may object at this point: Can
digital signatures provide the long-term security required in banknotes? Recall that
schemes with fixed key length may become insecure after a few decades [15].

Disorder-Based Security Hardware: An Overview 13

However, there are a few counterarguments to this objection. Firstly, banknotes are
steadily exchanged in relatively short intervals. According to information provided
by the Deutsche Bundesbank and Giesecke and Devrient [117], for example, all
German banknotes are exchanged every one to five years. The newly printed
notes could use longer signature keylengths, steadily adjusting security. Similar
considerations hold for archival uses of COAs where long-term security is a
necessity, such as birth certificates: The digital signatures could be “refreshed”
by techniques well-known in the community [147]. Finally, careful choice of
keylengths and elliptic curve schemes may already in itself provide strong long-
term guarantees, as detailed in [65].

Let us conclude this discussion by looking at some practical aspects. While our
approach offers strong security advantages, the cost and practicality aspects are
rather mixed. On the upside, it becomes unnecessary to attach dedicated labels to
the banknotes, creating some cost advantages. On the other hand, extra costs in the
production process are generated: The random paper structure needs to be measured,
the signature must be generated, and individualized information has to be printed
on each note. Furthermore, verification potentially requires a costly measurement
device, for example in order to position the banknote very accurately and re-generate
the original measurement value. This can partially eat up the cost savings gained by
avoiding dedicated labels.

4.1.3 Variants

The above COA-technique based on digital signatures and unclonable structures
has manifold variations. Firstly, one can attach dedicated, tailor-made unclonable
structures (“labels”) to the valuable objects, instead of exploiting intrinsic features
of the objects themselves. This partly creates extra cost. But at the same time, it
can increase unforgeability, and may make the measurement process more efficient
and inexpensive. The reason is that dedicated, tailormade labels can have extra
secure and more easily measurable unique features. Various dedicated unclonable
structures have been suggested to this end; see, e.g., [14, 17, 21, 22, 29, 44, 57, 58,
136, 158], and references therein.

Secondly, COAs can be used for content protection [40, 44, 53, 158]. The key
observation here is that storage media may have random, unclonable features, too.
For example, the small-scale structure S of the lands and pits of a CD is subject
to manufacturing variations, and thus exhibits unique features UF.S/ [44, 158].
Creating a digital signature DigSigSK.UF.S/; I/, where I contains a hash value of
the digital content stored on the CD, links this very content to its unique storage
medium, thus certifying it. Copying the content onto another data carrier invalidates
this certificate. Similar considerations hold for content printed on paper, such as
business contracts, as discussed in [21, 40, 136].

14 U. Rührmair

4.2 Secret Cryptographic Keys from SRAM Power-Up States

Secret keys are at the heart of most modern cryptographic and security schemes. But
as mentioned earlier, storing them in hardware can be non-trivial: On the security
side, powerful attacks have been developed, ranging from invasive to side channel
techniques [2]. On the cost/practicality side, not every hardware system contains
NVM cells for storing secret keys.

An alternative approach, which can potentially improve both on security and
practicality, is to exploit physical disorder, more precisely the random and individual
manufacturing variations in each hardware system, as a secret key source. Perhaps
the most prominent example for this technique are SRAM cells: Upon power-up,
each cell contains either a zero or one, depending on the random manufacturing
variations present in the cells [41, 49, 50]. The power-up states are relatively well
repeatable upon multiple power-ups for each single cell, but they statistically vary
almost uniformly from cell to cell in an SRAM array. The k cells in an SRAM array
thus together create an individual power-up state “fingerprint”, allowing derivation
of an individual key. In the parlance of the field, an SRAM cell can act as a so-called
“physical unclonable function” or “PUF”, leading to the widespread terminology
“SRAM PUF” for the above phenomenon [41].

If this approach is used in practice, there must not be a single bit flip in the derived
secret key. Error correction (EC) therefore is vital, since not all states are perfectly
stable upon multiple power ups. Most EC techniques thereby have in common that
some public, non-secret “helper data” or “error-correcting data” is provided to the
hardware system, allowing derivation of a stable key from the noisy power-up states
[41]. it is well-known that this error-correcting helper data can be constructed in
such a way that the helper data alone—i.e., without knowledge of the power-up
values of the SRAM cells—does not leak any knowledge about the derived key. It
is interesting to observe that the use of helper data shifts the problem of storing
data permanently: Instead of a binary key, now the helper data needs to be stored in
NVM. One difference is, though, that the helper data can be stored publicly, since
it does not leak information about the key. It needs to be provided to the secure
hardware only whenever key derivation is necessary.

An illustrative example application of the above phenomenon and of “SRAM
PUFs” is the protection of intellectual property (IP) of FPGA designs [41]. Many
FPGA types do not contain non-volatile memory cells and hence cannot store
application designs permanently [41]. The designs are thus put in external memory
and uploaded onto the FPGA when needed. This has the disadvantage that fraudsters
can intercept the uploaded bitstream and learn the designs, which often represent a
very substantial IP value. In principle, the bitstream could be encrypted, but the lack
of NVM on the FPGA prevents the storing of classical secret keys on the FPGA.
At the same time, however, SRAM cells are present on many FPGAs, and their
power-up states can be used to derive a key. This enables IP protection schemes
between the manufacturer, the FPGA, and an external memory device storing the

Disorder-Based Security Hardware: An Overview 15

design [41]. We give one basic example of such a scheme below [41]; other, more
involved techniques are described in the same reference [41].

Protocol 2: IP PROTECTION OF FPGA DESIGNS VIA SRAM PUFS [41]

Set-Up Assumptions:

1. The scheme involves four parties: The IP provider (IPP); a system integrator
or designer (SYS); the FPGA-manufacturer (HWM); and a trusted third party
(TPP).

2. The communication channels between HWM and TTP, and between TTP and
IPP, are authenticated and confidential.

3. The TTP and the HWM are fully trusted.
4. The HWM can disable access to the SRAM cells after reading them out in the

enrollment phase (for example by blowing some fuses). No one can access the
cells anymore after this operation, including adversaries.

5. For simplicity of exposition, we do not explicitly deal with error correction in
this protocol. In practice, error correcting helper data does need to be used to
obtain stable responses.6

Initialization Phase (aka “Enrollment Protocol” [41]):

1. The HWM associates an IDHW to a given FPGA. It reads out different sets of
SRAM-power up states R1; : : : ; Rn of this FPGA.

2. The HWM disables external access to those SRAM-cells that have provided the
above response R1; : : : ; Rk. Internal access for the FPGA itself to these cells must
remain intact.

3. The HWM sends

IDHW; R1; : : : ; Rn

to the TTP.

IP Authentication Protocol:

1. SYS sends

IDSW; IDHW

to TTP, indicating which software IDSW shall be utilized on which FPGA
hardware IDHW.

2. The TTP sends IDSW to the IPP, and the IPP returns the software SW to the TTP.
3. The TTP encrypts the software with the key Ri, creating a value

6Following a convention stipulated in [41], readers may interpret the protocol in such a way that
Ci denotes the PUF challenge and the corresponding helper data required to reconstruct the PUF
response Ri from a noisy version R0

i .

16 U. Rührmair

D D EncRi.SW; IDSW/:

4. The TTP sends the message

Ci; Cj; D; MACRj.Ci; Cj; D/

to SYS.

Design Upload and Decryption on the FPGA:

1. The FPGA uploads the encrypted bitstream created by SYS, which is stored in a
(non-confidential) storage medium accompanying the FPGA.

The bistream potentially contains k encrypted and authenticated software
blocks of the above form

Ck
i ; Ck

j ; Dk; MACRk
j
.Ck

i ; Ck
j ; Dk/:

2. For each k, the FPGA internally reproduces the responses Rk
i and Rk

j by accessing
and measuring the respective SRAM cells.

(Please note again that in practice, error correcting helper data must be used
to this end, which must be provided from and external non-volatile, but not
confidential storage medium. In the case of FPGAs, the same medium can be
used that stores the encrypted upload bitstream.)

The FPGA decrypts the bitstream and verifies the authentication.
3. The FPGA is configured by the decrypted bitstream.

4.2.1 Security Discussion

Our security discussion below follows [41]. The protocol’s aim is to achieve
confidentiality and integrity of the software blocks and thus of the related IP. It
achieves this aim under the following assumptions:

• The TTP and the HWM are trusted.
• The mutual communication channels TTP-HWM and TTP-IPP are confidential

and authenticated.
• No adversaries can externally read-out the responses Ri and Rj after access to

them has been disabled by the HWM, while the FPGA itself can still access the
responses internally.

We comment that these are relatively strongly assumptions. In particular, the
third hypothesis is at the least in part comparable to the standard assumption that a
classical key cannot be read-out by the adversary.

Disorder-Based Security Hardware: An Overview 17

4.2.2 Potential Advantages and Drawbacks

Perhaps the main advantage of the above scheme is that it enables security (and
encryption) in an environment without NVM. Without using SRAM cells as key
source, no encryption would be possible at all. This could be regarded as a
practicality advantage or as a security advantage, depending on personal taste.

It has also been argued that the use of SRAM PUFs brings about general security
advantages in comparison with NVM cells, i.e., even in comparison with systems
that do possess NVM. Such claims require further analysis, we believe. It is true that
SRAM cells allow to derive a key only whenever it is needed within the hardware.
This means that the key is not present permanently in the system in more or less
digital form, as in the case of NVMs. On the other hand, invasive or other access to
the SRAM cells [84] does allow derivation of the key, just as in the case of NVMs.
Furthermore, also cloning of SRAM PUFs has been reported recently [45]. Overall,
we recommend that the exact security gains of using SRAM PUFs over NVMs
should be analyzed separately and carefully for any given system and application
by its users.

One potential drawback of the approach is that SRAM PUFs require error-
correcting helper data for deriving a stable key. This needs to be provided either
from external, non-volatile memory, or from a trusted third party during a certain
protocol. On the other hand, as mentioned earlier, the helper data can be constructed
in such a way that it does not leak any information (in an information-theoretic
sense) about the key, as long as the power-up states of the SRAM cells are unknown
to an attacker. This means that in opposition to a classical key, the helper data at
least does not need to be kept secret.

4.2.3 Variants

Every communication of the above scheme runs over the TTP; as described in [41],
this can be resolved by additional protocol steps. We also remark that it is possible
to develop other protocols in which the TTP does not have direct access to the IP
and SW; interested readers are again referred to [41].

There is a second, important security use of the power-up states of SRAM
cells that should not go unmentioned: Holcomb et al. show that those SRAM cells
whose power-up states are unstable (i.e., those whose power-up states flip randomly
between zero and one from power-up to power-up) can be used as a hardware-
internal random number generator [49, 50].

Finally, a number of alternative hardware implementations have been proposed,
using other PUF types that are similar to SRAM PUFs: For example so-called
Butterfly PUFs [63] or Buskeeper PUFs [139]. Also the use of diodes has been
proposed [52, 105].

18 U. Rührmair

4.3 Remote Identification by Light Scattering
in Random Media

Our last example is an identification scheme suggested by Pappu et al. [88, 89] in
2001/2002, which rests on optical interference phenomena. At the heart of their
method is a transparent, cuboid-shaped plastic platelet of size 1 cm � 1 cm �
2.5 mm, in which a large number of micrometer-sized glass spheres have been
distributed randomly during the production process. The varying sizes, shapes and
positions of the spheres induce strong disorder in the platelet, making it practically
infeasible to build two specimen which are exactly the same. The platelet is
“unclonable” by use of current technology, similar to the examples that we discussed
earlier.

When a laser beam is directed at the platelet, the light is scattered multiple times
in transition, creating a so-called “speckle pattern”, i.e., an interference pattern of
dark and bright regions. This pattern can be recorded conveniently by a CCD camera
placed behind the platelet. Asides from the relative positioning of the platelet and
the camera, which we imagine as fixed and do not consider further here, this speckle
pattern sensitively depends on:

(a) the random positions, sizes and shapes of the spheres (i.e., on the disorder inside
the token), and

(b) on the angle ˛ and point r of incidence of the laser beam.

The latter can be varied, with each new pair of parameters .r; ˛/ leading to new
patterns. Leaving aside measurement noise, or assuming perfect error correction,
the input-output behavior of the token as a function f that maps measurement
parameters .r; ˛/ into speckle patterns f .r; ˛/. The situation is depicted in Fig. 2.

The function f has a number of interesting properties. First, f possesses a very
large number of input-output pairs ..r; ˛/; f .r; ˛//. In the parlance of the field,
these are also called “challenge-response pairs (CRPs)”, with C D .r; ˛/ being

Plas�c platelet
(with randomly distributed

glass spheres)

Interference pa�ern
(= “f(r, α)” or “response R”)

Laser beam
(incident at point r

and angle α)

Fig. 2 Illustration of Pappu’s optical, interference-based physical one-way function [88, 89]

Disorder-Based Security Hardware: An Overview 19

the challenge, and R D f .r; ˛/ being the response. Pappu et al. estimate that
the above platelet size allows around 2:37 � 1010 challenges/inputs which lead to
computationally independent speckle patterns as responses/outputs. If an adversary
has got access to the platelet merely for a limited time period on the order of days or
weeks, he will find himself unable to measure all possible input-output pairs and to
complete characterize the function f . Secondly, an adversary knowing only a subset
of all challenge-response pairs will be unable to numerically predict the speckle
pattern to a new, unknown input r; ˛ without making a physical measurement on
the token. The main reason is that the input-output behavior of the object is too
laborious to simulate on a computer. As analyzed by Pappu et al. [89], in the worst
case every cubic subunit of the platelet whose side length is around the wavelength
� of the incoming laserlight would play a role in the scattering process. For a cube
with side length 1 cm, this leads to one Terabit of relevant subunits whose interaction
would need to be considered in a simulation, making the latter practically infeasible.
Similar considerations, thirdly, hold for the non-invertibility of f : Given a speckle
pattern, it is practically impossible to determine which challenge C D .r; ˛/ created
this speckle pattern, even if one has access to the token. This non-invertibility
property of f originally inspired the name “physical one-way function” or “POWF”
[88, 89] for the above structure; today, it is often refereed to as “optical PUF”.

How can these properties of f , and of POWFs in general, be exploited in
cryptography and security? How can we make use of their unclonability and
unpredictability? Perhaps their best known security application are identification
protocols, for example in a bank card scenario. In the following protocol, k is the
security parameter, and l is the number of envisaged executions of the identification
phase.

Protocol 3: BANK CARD IDENTIFICATION WITH LIGHT SCATTERING TOKENS

Set-Up and Security Assumptions:

1. The bank can securely store secret data on some server.
2. Each bank terminal is connected to the bank server by a non-confidential, but

authenticated channel.
3. The bank can fabricate light scattering platelets or has access to a trusted

manufacturer.

Initialization Phase:

1. The bank fabricates a light scattering platelet or obtains such a platelet from
a trusted manufacturer. It attaches it as token to a bank card, which bears the
customer identification number ID.

2. The bank chooses at random k � l parameters ri; ˛i, and applies a laser beam at
position ri and under angle ˛i to the token. It measures the resulting speckle
patterns, and derives from the raw data the error-corrected responses Ri D
f .ri; ˛i/, for example by applying image transformation or error correction.

3. The bank stores the list LID D .r1; ˛1; R1/; : : : ; .rk�l; ˛k�l; Rk�l/ together with the
identification number ID of the card on its server.

20 U. Rührmair

4. The bank card is released to the field.

Identification Phase (can be executed maximally l times):

1. When the card is inserted into a terminal, the terminal reads the ID from the card
and sends ID to the server.

2. The server looks up the list LID. It chooses the first k entries .r1; ˛1; R1/; : : : ;

.rk; ˛k; Rk/ from the list, and sends the parameters .r1; ˛1/; : : : ; .rk; ˛k/ to the
terminal.

3. The terminal applies laser beams with the incidence coordinates and angles given
by .r1; ˛1/; : : : ; .rk; ˛k/ to the token, and measures the corresponding speckle
patterns. It derives the responses R01 D f .r1; ˛1/; : : : ; R0k D f .rk; ˛k/ from the
raw data by applying the same image transformations or error correction as the
bank in the set-up phase.

4. The terminal returns R01; : : : ; R0k to the server.
5. The server compares the responses R1; : : : ; Rk and R01; : : : ; R0k. If they match

better than given error threshold, the server sends an “OK!” message to the
terminal. Otherwise, it sends an abort message.

6. The first k entries are erased from the list LID.

4.3.1 Security Discussion

A meaningful discussion requires us to first fix the underlying attack model. It
is reasonable to assume that an attacker will be able to physically access the
plastic platelet several times between different executions of the identification
phase: He could set up faked terminals, or gain possession of the bank card when
the customer employs it on other occasions, for example for paying in shops or
restaurants, etc. Furthermore, we should suppose that the attacker can eavesdrop
the binary communication in the identification protocol and learn the used CRPs
.C1; R1/; : : : ; .Ck; Rk/. Under this relatively strong attack model, the security of
the scheme is nevertheless upheld by the above properties of the physical one-
way function f and of the token. An adversary will be (1) unable to clone the
token physically, and (2) cannot predict the unknown input-output-pairs (or CRPs)
numerically, even if he knows a large number of other CRPs. This renders him
unable to complete the identification protocol successfully without actual possession
of the real token, guaranteeing the security of the above identification method.
Interestingly, the scheme does not utilize the one-way property of f , but only the
features of unclonability and unpredictability.

4.3.2 Potential Advantages and Drawbacks

Compared to standard identification schemes, Pappu et al.’s method exhibits a few
notable advantages. First and foremost, no secret digital keys need to be stored on
the bank card. Assuming that the token is too complex to simulate and rebuild,

Disorder-Based Security Hardware: An Overview 21

there is indeed no security-critical information at all present on the card whose
disclosure would break the security of the system. Even if the adversary knew all
positions of the scatterers and all irregularities of the structure, he still could not
rebuild or simulate it, since both would be practically infeasible. We can allow him
to possess any information in the scattering object without endangering the security
of the scheme! This feature is in sharp contrast to any classical techniques, which
necessitate that at least some information on the card remains secret. It is also in
contrast to some PUF-based techniques, for example the SRAM PUFs presented
in Sect. 4.2, where a disclosure of the SRAM power-up states to the adversary
breaks the security of the system. Secondly, no potentially laborious numerical
identification schemes need to be executed on the card in Pappu et al.’s scheme.
The card does not even need to carry integrated circuitry, making it extremely
cost effective, at least on the card side. Furthermore, it seems to potentially realize
improved security against side channel attacks, which circuit implementations of
classical identification schemes would be faced with. One last advantage is that the
scheme enables remote identification (to the bank headquarters in our case) without
circuitry on the card.

The scheme’s main drawback is perhaps its mediocre practicality: The apparatus
for measuring the speckle pattern (i.e., the response of the optical PUF) is expensive,
bulky and potentially error prone. The extra costs for the measurement apparatus can
partly eat up the savings from avoiding electrical circuitry on the card.

4.3.3 Variants

There are a number of variants of the above scheme. Firstly, other hardware systems
than the described optical PUF can be employed. Any other so-called Strong PUFs
[109] can be used, for example Arbiter PUFs and variants [36, 77, 144], the Bistable
Ring PUF [18, 19], PUFs based on non-linear current mirrors [62], or PUFs based
on non-linear voltage transfer characteristics [157], as long as they are secure
against modeling [35, 66, 78, 87, 103, 106, 111] and other attacks, for example
side channels [30, 74, 81, 82, 113]. Also secure integrated optical PUFs would be
an option, preferably with non-linear scattering materials (compare [110]). Finally,
the hardware of optical PUFs can be used for a number of other, more advanced
cryptographic protocols, including key exchange [13, 97, 154], bit commitment
[13, 86, 88, 100, 101], or oblivious transfer [13, 86, 95].

5 Advantages of Disorder-Based Security Hardware

Let us condense and summarize the advantages of disorder-based security hardware
in this section. We thereby take a pure hardware-centered perspective, ignoring some
of the specific cryptographic advantages.

22 U. Rührmair

Better Protection or Even Avoidance of Keys

One of the most important upsides of disorder-based techniques lies in their relation
to cryptographic keys. All techniques of the last Sect. 4 avoid the presence of
“classical secret keys” in vulnerable hardware, i.e., the presence of digital keys that
are stored permanently in NVM. This has been described in all detail throughout
Sect. 4.

Some of the presented approaches go even one step further, however, which can
be seen most easily if we generalize the notion of a classical secret key. Let us call
a “security-critical information” (SCI) any information that is present in a piece of
hardware at least at one point in time, and whose disclosure to the adversary breaks
the security of the system. One can then ask: Do the hardware systems of Sect. 4
contain any SCI in the above sense? Please note that this question goes far beyond
our earlier point of avoiding the permanent presence of digital keys.

The answer differs for the three systems of Sect. 4. To start with, the paper
structure of system Sect. 4.1 does not contain any security-critical information at all,
since the adversary would be unable to refabricate the complex paper structure, even
if he knew it atom by atom. Something similar holds for the optical PUF of Sect. 4.3:
It could not be cloned, and its output could not be simulated for complexity reasons,
even if the entire structure would be known to the adversary in arbitrary detail. On
the other hand, the SRAM PUFs of Sect. 4.2 lead to systems that do contain SCI:
The power-up states of the SRAM cells constitute SCI; and so does the internal key
obtained from the power-up states after error correction. In this sense, the SRAM
PUFs differ from optical PUFs, or from the paper based COAs of Sect. 4.1.

We would like to stress that this distinction is not just academic, but has a direct
practical relevance. For example, the presence of SCI eventually enables the invasive
attacks on SRAM PUFs that recently have attracted considerable attention [84].
Furthermore, the delays in Arbiter PUFs also represent a form of SCI, a fact that
eventually allows modeling attacks on this type of structure [106]. In essence, the
presence of SCI in a hardware system necessarily creates unwanted attack points,
and well-versed adversaries will in the end exploit these. This makes it preferable
to construct disorder-based systems without any SCI, and disorder-based methods
offer this perhaps stunning possibility. We would like to encourage readers to
pay increasing attention to the above distinction, and to categorize disorder-based
security approaches with respect to the feature of “being free of any SCI” whenever
possible.

Replacing Standard Mathematical Assumptions
by Other Hypotheses

A noteworthy theoretical aspect of disorder-based schemes is that they avoid mathe-
matical assumptions in cryptographic and security schemes. Take the identification

Disorder-Based Security Hardware: An Overview 23

scheme of Sect. 4.3 as an example: Its security is not based on the same stan-
dard mathematical and number-theoretic assumptions as traditional identification
methods. It does rest on computational assumptions, too, namely the fact that the
optical response cannot be simulated efficiently, and also depends on other, physical
assumptions, like the unclonability of the optical PUF. But these hypotheses
notably differ from the standard mathematical assumptions like factoring or discrete
logarithm. In this sense, PUF-based cryptography could be seen in the context
of other non-standard approaches, such as quantum cryptography [8], noise-based
crypto [25], or the bounded storage model [5, 79]. It is also in alignment with “post-
quantum cryptography” [9], since the underlying computational problems are not
known to be attackable by quantum computers.

This theoretical aspect also has practical consequences: Identification schemes
based on so-called “Strong PUFs” [98, 104, 109], like the method of Sect. 4.3, do
not require the implementation of standard identification schemes in hardware. Such
implementations have always been a potential target for attacks in the past, including
side channels. This target can potentially be removed by use of Strong PUF based
identification schemes. On the other hand, it should not go unmentioned that side
channel attacks on certain electrical PUFs have been reported recently, even though
this subarea of PUF research is just about to develop [30, 74, 113].

Security Hardware Without NVM or Even Without ICs

From a practicality perspective, the most important upside of the techniques of
Sect. 4 is that they enable security functionalities in hardware without NVM, and
partly even in hardware without integrated circuits (ICs). The use of SRAM cells
on FPGAs without NVM (Sect. 4.2) is one known example for the former, while
the exploitation of surface irregularities or optical PUFs (Sects. 4.1 and 4.3) are
examples for the latter. Both can be decisive practicality and cost factors, as
they bring security to systems where otherwise elaborate and dedicated security
measures would be impossible. Recall in this context that adding non-volatile keys
to hardware systems without NVM requires significant additional production steps
and costs, disallowing it in certain commercial settings.

6 General Overview and Historic Perspective

This chapter would not be complete without a general overview and historic
perspective of the area. Our discussion reveals that the field has older and broader
roots than usually acknowledged. It also shows the different branches of research in
disorder-based security: While physical unclonable functions are clearly the central
and dominant subfield, there are also other noteworthy subareas, which should be

24 U. Rührmair

distinguished from PUFs for historic or scientific reasons. Providing such a basic
distinction will be useful in inspiring and guiding future research, we believe.

Origins of the Field

It is non-trivial to trace back the field to its exact origins. To the knowledge of
the author, the first public source utilizing random, uncontrollable manufacturing
variations in a security context is a US-patent with priority date 1968 by Lindstrom
and Schullstrom of Saab AB, Sweden [68]. It suggests that randomly, non-uniformly
distributed magnetic materials could be employed for individualizing and securing
“identification documents like driver’s licences and credit cards”. It further proposes
that concealed, internal layers of such materials might protect sensitive regions
of identification documents, for example the picture of the card holder, against
alteration, and could detect manipulation of these regions. The latter foreshadows
a security feature that today is called tamper-sensitivity. The inventors also suggest
that electrical or optical materials could be used to the same end.

It has also been reported that in the 1970s, Bauder and Simmons of Sandia
National Laboratories, USA, exploited the optical behavior of physically disorder
media for security purposes [17, 59, 83] (Kirovski, 2008, Personal communication,
Dagstuhl). Their goal was to conduct secure weapons inspection during the cold
war era. To this end, they reportedly spray-painted epoxy onto nuclear warheads,
shed light at it from a certain angle, and recorded pictures of the resulting optical
patterns [17, 59, 83] (Kirovski, 2008, Personal communication, Dagstuhl). These
images could later be used to re-identify each single warhead in a forgery-proof
manner [17, 59, 83] (Kirovski, 2008, Personal communication, Dagstuhl).

Perhaps the first to combine modern public-key methods with physical disorder
was Goldman of Light Signatures Inc., USA. In a patent writing with priority date
1980, he details the use of paper irregularities in connection with digital signatures
for certifying documents [40]. Light Signatures commercialized this technique in
order to authenticate stock certificates in the mid 1980s, but their activities were
apparently not profitable and abandoned in 1988 [119]. Presumably independently
of Goldman, Bauder [reportedly together with Simmons [17], Kirovski (2008,
Personal communication, Dagstuhl)] suggested a similar concept at Sandia National
Laboratories for the protection of banknotes, also combing unique paper structures
with digital signatures [59]. A Sandia-internal source that is multiply quoted in this
context is by Bauder [6], dating from 1983.7

7However, copies of this paper seem unavailable to a broad public. The author of this chapter has
been unsuccessful in gaining access despite considerable efforts, including multiple e-mail requests
to the Sandia National Laboratories. Other researchers made partly similar experiences (Kirovski,
2008, Personal communication, Dagstuhl).

Disorder-Based Security Hardware: An Overview 25

With some right, the three above, independent research groups could be seen
as early forefathers of disorder-based security and also of physical unclonable func-
tions. This would imply that the field has older roots than sometimes acknowledged.

First Presence at Scientific Conferences

The groundbreaking ideas of Lindstrom and Schullstrom, Goldman, and Bauder
and Simmons, seemingly were not discussed much in public scientific conferences
or journals until the 1990s. Perhaps the earliest scientific paper that points in the
relevant direction is by Simmons, dating from 1991 [138]. Independently and a few
years later, a number of publications by van Renesse treat similar ideas, focusing
on optical product protection systems [155, 156]. Suggestions based on magnetic
materials, which are in principle related to the early patent of Lindstrom and
Schullstrom, have been made independently by Chu et al. [20] and Vaidya [151]
at scientific venues in 1995.

In 1998, Haist et al. [43] also discuss paper and optical probing for product
protection, making explicit use of digital signatures in a similar fashion as Goldman.
A closely related scientific publication is by Smith et al. [141] from 1999. It uses
paper irregularities with digital signatures in order to create unforgeable postal
stamps.

In 2000, Lofstrom et al. [69] for the first time suggest the variations in standard
integrated circuit components for security purposes, exploiting the random threshold
mismatches in transistors to identify individual circuits (compare Sect. 4.2). Their
paper could be seen as a direct precursor of the modern PUF era, foreshadowing
so-called intrinsic PUFs like SRAM PUFs and Butterfly PUFs (without explicit use
of the term “PUF”, though).

DNA-Based Steganography

Before we eventually turn to PUFs, let us quickly mention another independent
research avenue. In 1999, the randomness in complex mixtures of DNA strands
was suggested for use in security and steganography by Clelland et al. in Nature
magazine [22]. If a secret message or other critical information is encoded in DNA
strands, and if these strands are mixed with a huge number of other, random strands,
an adversary would find it practically impossible to identify and isolate the “secret”
strands. He would be faced with the proverbial search for the needle in the haystack.
The fact that complex DNA mixtures can be generated by simple means adds to the
value of this method [22]. In follow-up work, DNA-based public and private key
cryptography has been discussed, for example, in [39, 64]. The approach of Clelland
et al. has even led to commercially available products [120].

26 U. Rührmair

DNA-based security might appear off topic and seems generally less known
within the PUF community. Still, it has established its own research strand, with
hundreds of citations, presence at DNA-related scientific venues, and a certain
level of commercial activities [120–122]. Furthermore, it historically seems the
first approach that ever exploited truly nanoscale phenomena for security. This
foreshadows a recently emerging trend towards nano-security in the PUF area
[52, 93, 107, 108].

Physical Unclonable Functions (PUFs)

Despite all above contributions, it seems fair to say that the interest of the broader
security community was not sparked until 2001/02, when a few seminal works were
published at major scientific venues: Firstly, Pappu [88] in 2001, and Pappu et al.
[89] in Science magazine in 2002, presented the idea of so-called “physical one-
way functions” or “POWFs”. Secondly, Gassend et al. published the concept of
silicon, circuit-based “physical random functions” at ACM CCS 2002 [36], and of
“controlled physical random functions” at ACSAC 2002 [37]. The latter two papers
also use the term “physical unclonable function” or “PUF” for the first time, which
today is frequently employed as a synonym for the entire research area.

Compared to earlier works, said four publications make a number of central
innovations. Among other things, they are the first to link disordered, unclonable
media to more established cryptographic and security concepts, including one-
way functions or pseudo-random functions. Moreover, they use disordered systems
with a very large number of possible inputs, whose input/output behavior could be
regarded as a complex “physical function” [4]. The mathematical properties of this
function, such as unpredictability or one-wayness, can then be explicitly exploited
in cryptographic protocols. This new view of the field, and the links it establishes to
known concepts, helped attracting the interest of the broader security community,
and contributed to spreading the new approach quickly.

Other seminal PUF works in the early period from 2002 to 2007 include (but
are not limited to): The AEGIS security architecture by Suh et al. [145] from 2003;
first information-theoretic analyses of PUFs by Tuyls et al. in 2004/2005 [148, 149];
the security use of laser illuminated paper surfaces by Buchanan et al. in Nature in
2005 [14] (compare Sect. 4.1); and the usage of disordered electrical structures as
tamper sensitive coatings by Tuyls et al. [150] in 2006. A further groundbreaking
idea was the use of the individual, but repeatable power-up states of SRAM cells as
secret key source. This concept is particularly useful in hardware that does not carry
non-volatile memory cells. It was independently put forward by Holcomb et al. [49]
and Guajardo et al. [41] in 2007.

Disorder-Based Security Hardware: An Overview 27

Certificates of Authenticity (COAs)

Starting a few years later than PUFs, a parallel and independent strand of works
helped popularizing the idea of disorder-based security. The strand roots quite
directly in the original ideas of Lindstrom and Schullstrom, Goldman, and Bauder
and Simmons, using very similar techniques: It combines the unique and unclonable
features of disordered media with digital signatures to form so-called “certificates
of authenticity” or “COAs” for objects of value. Example works include COA-
specific error correction [57, 58] in 2004, optical COAs [17] (which pick up the
early ideas of Bauder and Simmons [6]) in 2005, and radiowave based COAs [29]
in 2007. Also work on unique optical fingerprints of compact discs by DeJean et al.
[158] and Hammouri et al. [44] in 2009 could be associated with this strand. A
good summary of the subarea is given by Kirovski in [59]. Most COA papers are
somewhat demarked from PUFs in terms of nomenclature and scientific content.
Furthermore, the COA-idea arguably dates back earlier than PUFs, being present
in its full-fledged form in combination with digital signatures already in the 1980s
[6, 40]. We thus found it appropriate to devote a separate paragraph to it. At the same
time, we stress that the current focus of the community appears to be on PUFs, both
regarding research activities, quotation numbers, and nomenclature.

Status Quo

From 2008 onwards, a rapidly growing activity on disorder-based security and PUFs
takes place. It is mostly, but not exclusively focused on PUFs, and often regards the
two works by Pappu et al. [89] and Gassend et al. [36] as root publications of the
field. Listing all published works of the last 6 years is beyond the intention and scope
of this section; we refer the interested reader to recent survey articles [71, 98, 109]
or PUF bibliographies [118] to this end.

Instead, we will list several exemplary facts that testify the rapid establishment of
the area. To start with, according to Google scholar, the two root articles of Pappu
et al. [89] and Gassend et al. [36] have been quoted many hundred times to date,
with increasing citation figures almost every year. Since 2008, papers on PUFs
and related topics have been published at CHES [10, 12, 44, 48, 54, 55, 61, 70,
70, 72, 73, 85, 100, 146, 152, 163, 167], EUROCRYPT [86], ASIACRYPT [3, 27],
CRYPTO [13], ACM CCS [106, 136], IEEE S&P [4, 102], IEEE T-IFS [23, 76, 111],
ACM TISSEC [38], and the Journal of Cryptology [75], i.e., in all top publication
channels of the general cryptography and security community. Since 2010, the two
large hardware security conferences CHES and HOST continuously had one or even
two dedicated PUF sessions each year (see [115, 116]). DATE, one of the two
largest design automation conferences, in 2014 offered both a standard technical
session on PUFs [123], a hot topic session on PUFs [112, 124], a related tutorial on
counterfeiting ICs [125], and a record of overall eleven (!) PUF papers at one single

28 U. Rührmair

conference [130]. This extraordinary accumulation is not just one singular event,
but the culmination of a longer development: DATE already from 2010 to 2013
[19, 28, 60, 114, 130, 142, 153, 159, 164, 166], and its counterpart DAC from 2009
onwards [16, 34, 46, 47, 80, 91, 131, 165, 168], continuously hosted at least one
PUF-paper every year, illustrating that PUFs have long spread from their original
field of security into neighboring areas like circuit design. Also the first coursebooks
on PUFs have appeared lately [11]. Even on the commercial side, PUFs achieved
some recent breakthroughs, appearing in the product lines of major companies like
NXP [126, 127] and Microsemi [128, 129].

It therefore seems justified to say that almost 15 years after its popularization
in scientific circles [36, 37, 69, 88, 89], and around 45 years since its very first
presence in patent writings [68], the field has developed into a central subarea
of hardware security, and currently shows no signs of slowing down in its rapid
progress. Particularly strong research activity thereby have appeared and still appear
in the fields of PUF hardware implementations; error correction; PUF protocols; and
PUF attacks. Again, we refer the interested readers to recent surveys for a detailed
treatment of the very latest PUF literature [98].

Future Research

It is always difficult to predict exact future developments in a field as complex as
PUFs. But in our opinion, there are good reasons to believe that the most promising
and active subareas in the upcoming years will likely include the following:

• Formalization and Classification: A solid formalization of the area, including
formal definitions and security proofs, seems vital for a sound long-term
development of the field. It should include a classification and specification of
the different primitives, their basic applications, and the exact security features
required by a given application. Such specification will be essential not only for a
sound long-term development of the field, but also for an efficient communication
within multi-disciplinary PUF research teams, ranging from programmers over
application designers to electrical engineers.

• Attacks and Countermeasures: The large number of recent, successful attacks
has shown that PUFs are no magic toolbox that can create security from nothing.
Extending existing attack techniques, and possibly creating entirely new ones,
will likely constitute a very active field of research in future years. The same
holds for the development and implementation of countermeasures. This process
will partly be comparable to the consolidation that classical security hardware
has undergone already several years ago.

• Applications of Nanotechnology: Nanotechnology and security are two of the
most active and prosperous subdisciplines in the sciences in the last decades.
Disorder-based security lies exactly at their intersection. It seems very likely that
a merger between the two fields will create new research opportunities, partly

Disorder-Based Security Hardware: An Overview 29

exceeding the current topics in the area. It will allow new primitives and security
features and new, advantageous implementations.

• New Uses of Physical Disorder in Security, and new Disorder-Based Primitives:
Besides PUFs, COAs, and related existing methods, there seems to be potential
for new, currently unseen uses of physical disorder in security and new disorder-
based primitives. Any new discovery will spark and guide new research, keeping
the field prospering.

• Improved or New Implementations: PUFs and all other abstract concepts within
disorder-based security can only shine if suitable hardware realizations of these
concepts are developed. Strong and continuous research potential therefore lies
in improving existing implementations of disorder-based primitives, or in the
development of yet new ones. Such optimization might be carried out with
hindsight to costs, stability, area and size, power consumption, security, or yet
other aspects.

• Commercialization: One last subfield where a predictably strong activity will
occur lies in the area of commercialization. What are the exact use cases of PUFs
in commercial contexts? How can the scientific developments of recent years
be applied and utilized in concrete commercial scenarios? How can PUFs be
integrated into commercial system?

7 Summary and Outlook

In this chapter, we surveyed a recently emerging subfield of hardware security that
could be called “disorder-based security” or also “nano-security”. It exploits the
small-scale, random physical disorder that is present in essentially all solid state
systems. The roots of the field reach back surprisingly far, with first appearances
in patent writings in the late 1960s. Today, its most active subfield are by far
physical unclonable functions (PUFs); two other, but considerably smaller subareas,
which might be distinguished for historic and also scientific reasons, are DNA-based
cryptography and so-called “certificates of authenticity” (COAs).

The main motivation for disorder-based hardware techniques are practicality/cost
and security advantages. Both relate to the way we currently treat secret keys in
security hardware: Usually, the keys are stored in non-volatile memory cells (NVM)
or comparable structures, and are processed by mathematical crypto-algorithms.
Disorder-based methods, for example PUFs and COAs, offer several potential
improvements in this situation.

Firstly, they allow keys in hardware without NVMs, potentially cutting on costs.
Recall that not all hardware systems possess NVMs, one much discussed example
being certain types of FPGAs. Using disorder-based methods, keys can potentially
be derived from the hardware-internal physical disorder instead of dedicated NVM.
One prime example are SRAM cells (see Sect. 4.2): The cells show individual
power-up states due to small manufacturing variations, and can hence be used as
key source. A second example are optical PUFs (see Sect. 4.3), which even allow
remote identification without electrical circuitry in the hardware itself.

30 U. Rührmair

Secondly, disorder-based methods avoid the long-term presence of keys in digital
form in the hardware. Again, this leads to potential security advantages: Keys
derived from SRAM cells, for example, are present in the hardware system in digital
form only for very short times frames; they are only derived whenever needed by a
cryptographic algorithm. This can make attacks more difficult: As long as the system
is powered off, it is more difficult or even impossible for adversaries to obtain the
keys. Going yet one step further, systems like optical PUFs or paper-based COAs do
not contain any type of keys or security critical information at all; security systems
built on them remain secure even if an adversary knows their structure atom by
atom. This unusual and unexpected feature of these systems appears to be a major
asset in comparison with standard approaches.

Thirdly, certain disorder-based methods can replace the use of mathemati-
cal cryptographic schemes. One example is once more the optical PUF based
identification scheme of Sect. 4.3, which makes the employment of classical,
mathematical algorithms for identification purposes obsolete. This can potentially
increase security levels, too: As a first aspect, the resulting schemes no longer rest on
the unproven standard mathematical assumptions like the intractability of factoring
or of computing discrete logarithms (albeit on other unproven assumptions).
Interestingly, this is in alignment with the area of “post-quantum cryptography”
[9] and its recent efforts. As a second aspect, the concrete implementation of
mathematical algorithms in hardware has always been a potential target for attacks
in the past, including side channel techniques. This target is partly removed if no
such mathematical algorithms are necessary in identification schemes. On the other
hand, it should not go unnoticed that also side channel attacks on certain electrical
PUFs have been reported recently, even though this area is just about to develop
[30, 74, 113].

We believe that the field will continue to rapidly expand and flourish in the
foreseeable future. Current publication activity is extraordinarily high, and the
presence at scientific venues has been steadily increasing. It seems important to
mention that besides a very large number of scientific innovations, also some first
commercial breakthroughs could be achieved recently [126–129]. Regarding future
activities, six promising subareas lie in (1) formalization and classification, (2)
attacks and countermeasures, (3) the merger of nanotechnology and security, (4)
new uses of physical disorder in security, including new disorder-based primitives,
(5) improved or new implementations, and finally (6) the integration in commercial
systems. The fact that these subareas span from theoretical computer science over
electrical engineering to nanophysics gives the field an unusually broad focus and
attractivity.

References

1. Adams, D.: The Hitchhiker’s Guide to the Galaxy. Pan Books, London (1979)
2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems,

2nd edn. Wiley, New York (2008)

Disorder-Based Security Hardware: An Overview 31

3. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-resilient
encryption based on physically unclonable functions. In: Proceedings of ASIACRYPT 2009,
pp. 685–702 (2009)

4. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., Wachsmann, C.: A formal
foundation for the security features of physical functions. In: IEEE Symposium on Security
and Privacy 2011, pp. 397–412 (2011)

5. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage model.
IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

6. Bauder, D.W.: An anti-counterfeiting concept for currency systems. Technical Report, PTK-
11990. Sandia National Labs, Albuquerque, NM (1983)

7. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public physi-
cally unclonable functions. In: Information Hiding 2009, pp. 206–220. Springer, Heidelberg
(2009)

8. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing.
IEEE Int. Conf. Comput. Syst. Signal Process. 175(150), 8 (1984)

9. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography. Springer,
Berlin (2009) [ISBN 978-3-540-88701-0]

10. Bhargava, M., Mai, K.: A high reliability PUF using hot carrier injection based response
reinforcement. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013, pp. 90–106. Springer,
Heidelberg (2013)

11. Böhm, C., Hofer, M.: Physical Unclonable Functions in Theory and Practice. Springer, Berlin
(2013) [ISBN 978-1-4614-5040-5]

12. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper data key
extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008, pp. 181–197. Springer,
Heidelberg (2008)

13. Bruzska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physical unclonable functions in
the universal composition framework. In: CRYPTO 2011, pp. 51–70 (2011)

14. Buchanan, J.D.R., Cowburn, R., Jausovec, A., Petit, D., Seem, P., Xiong, G., Atkinson,
D., Fenton, K., Allwood, D., Bryan, M.: Fingerprinting documents and packaging. Nature
436(7050), 475 (2005)

15. Buchmann, J., May, A., Vollmer, U.: Perspectives for cryptographic long-term security.
Commun. ACM 49(9), 50–55 (2006)

16. Chakraborty, R., Lamech, C., Acharyya, D., Plusquellic, J.: A transmission gate physical
unclonable function and on-chip voltage-to-digital conversion technique. In: Design Automa-
tion Conference (DAC), paper no. 59, 10 p. (2013)

17. Chen, Y., Mihcak, M.K., Kirovski, D.: Certifying authenticity via fiber-infused paper.
SIGecom Exch. 5(3), 29–37 (2005)

18. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The Bistable ring PUF: a new
architecture for strong physical unclonable functions. In: IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST 2011), pp. 134–141 (2011)

19. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: Characterization of the
Bistable Ring PUF. In: Design, Automation and Test in Europe (DATE), pp. 1459–1462
(2012)

20. Chu, M.C., Cheng, L.L., Cheng, L.M.: A novel magnetic card protection system. European
Convention on Security and Detection, pp. 207–211 (1995)

21. Clarkson, W., Weyrich, T., Finkelstein, A., Heninger, N., Halderman, J.A., Felten, E.W.:
Fingerprinting blank paper using commodity scanners. In: IEEE Symposium on Security and
Privacy 2009, pp. 301–314 (2009)

22. Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature
399(6736), 533–534 (1999)

23. Cobb, W.E., Laspe, E.D., Baldwin, R.O., Temple, M.A., Kim, Y.C.: Intrinsic physical-layer
authentication of integrated circuits. IEEE Trans. Inf. Forensics Secur. 7(1), 14–24 (2012)

24. Cox, I.J., Miller, M.L., Bloon, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and
Steganography. Morgan Kaufmann, Elsevier (2008)

32 U. Rührmair

25. Crepeau, C.: Efficient cryptographic protocols based on noisy channels. In: EUROCRYPT
1997, pp. 306–317 (1997)

26. Csaba, G., Ju, X., Ma, Z., Chen, Q., Porod, W., Schmidhuber, J., Schlichtmann, U.,
Lugli, P., Rührmair, U.: Application of mismatched cellular nonlinear networks for physical
cryptography. In: IEEE CNNA 2010, pp. 1–6 (2010)

27. Damgard, I., Scafuro, A.: Unconditionally Secure and Universally Composable Commitments
from Physical Assumptions. In: ASIACRYPT 2013, pp. 100–119 (2013)

28. Das, A., Kocabas, Ü., Sadeghi, A.-R., Verbauwhede, I.: PUF-based secure test wrapper design
for cryptographic SoC testing. In: Design, Automation and Test in Europe (DATE), pp. 866–
869 (2011)

29. DeJean, G., Kirovski, D.: RF-DNA: Radio-frequency certificates of authenticity. In: Proceed-
ings of CHES 2007, pp. 346–363 (2007)

30. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65nm arbiter PUFs exploiting
CMOS device noise. In: IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 137–142 (2013)

31. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

32. Deutsch, D., Ekert, A., Luppachini, A.: Machines, Logic and Quantum Physics (1999). Down-
loaded from http://arxiv.org/abs/math.LO/9911150, August 2012 [arXiv:math/9911150v1]

33. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488
(1982)

34. Forte, D., Srivastava, A.: On improving the uniqueness of silicon-based physically unclonable
functions via optical proximity correction. In: Design Automation Conference (DAC), pp. 96–
105 (2012)

35. Gassend, B.: Physical random functions. M.Sc. thesis, MIT (2003)
36. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions.

In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160
(2002)

37. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Controlled physical random functions.
In: Annual Computer Security Applications Conference (ACSAC), pp. 149–160 (2002)

38. Gassend, B., van Dijk, M., Clarke, D.E., Torlak, E., Devadas, S., Tuyls, P.: Controlled physical
random functions and applications. ACM Trans. Inf. Syst. Secur. 10(4), 3 (2008)

39. Gehani, A., LaBean, T., Reif, J.: DNA-based cryptography. Aspects of Molecular Computing,
pp. 167–188. Springer, Berlin (2004)

40. Goldman, R.N.: Non-counterfeitable document system. US-Patent 4,423,415. Publication
date: 1983. Priority date: 1980

41. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP
protection. In: Proceedings of CHES 2007, pp. 63–80 (2007)

42. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In: USENIX
Security Symposium (1996)

43. Haist, T., Tiziani, H.J.: Optical detection of random features for high security applications.
Opt. Commun. 147(1), 173–179 (1998)

44. Hammouri, G., Dana, A., Sunar, B.: CDs have fingerprints too. In: Proceedings of CHES
2009, pp. 348–362 (2009)

45. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.-P.: Cloning physically unclonable func-
tions. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
pp. 1–6 (2013)

46. Helinski, R., Acharyya, D., Plusquellic, J.: A physical unclonable function defined using
power distribution system equivalent resistance variations. In: Design Automation Conference
(DAC), pp. 676–681 (2009)

47. Helinski, R., Acharyya, D., Plusquellic, J.: Quality metric evaluation of a physical unclonable
function derived from an IC’s power distribution system. In: Design Automation Conference
(DAC), pp. 240–243 (2010)

48. Hofer, M., Böhm, C.: An alternative to error correction for SRAM-Like PUFs. In: Proceedings
of CHES 2010, pp. 335–350 (2010)

http://arxiv.org/abs/math.LO/9911150

Disorder-Based Security Hardware: An Overview 33

49. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true
random numbers for RFID tags. In: Conference on RFID Security (2007)

50. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-Up SRAM state as an identifying fingerprint
and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)

51. Image by Chipworks Inc. (www.chipworks.com): Oral permission for reproduction
granted by D. James of Chipworks Inc. to the author on June 10, 2014. Downloaded
from http://www.chipworks.com/components/com_wordpress/wp/wp-content/uploads/2013/
08/A5-Processor-from-ipad-Mini-300x249.jpg (2014)

52. Jaeger, C., Algasinger, M., Rührmair, U., Csaba, G., Stutzmann, M.: Random pn-junctions
for physical cryptography. Appl. Phys. Lett. 96, 172103 (2010)

53. Kariakin, Y.: Authentication of articles. Patent writing, WO/1997/024699 (1995). Available
from http://www.wipo.int/pctdb/en/wo.jsp?wo=1997024699

54. Katzenbeisser, S., Kocabas, Ü., van der Leest, V., Sadeghi, A.-R., Schrijen, G.-J., Schröder,
H., Wachsmann, C.: Recyclable PUFs: logically reconfigurable PUFs. In: Proceedings of
CHES 2011, pp. 374–389 (2011)

55. Katzenbeisser, S., Koçabas, Ü., Rozic, V., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.:
PUFs: myth, fact or busted? A security evaluation of physically unclonable functions (PUFs)
cast in silicon. In: Proceedings of CHES 2012, pp. 283–301 (2012)

56. Kerckhoffs, A.: La cryptographie militaire. J. Sci. Mil. IX, 5–38 (1883)
57. Kirovski, D.: Toward an automated verification of certificates of authenticity. In: ACM

Electronic Commerce (EC), pp. 160–169 (2004)
58. Kirovski, D.: Point compression for certificates of authenticity. In: Data Compression

Conference 2004, p. 545 (2004)
59. Kirovski, D.: Anti-counterfeiting: mixing the physical and the digital world. In: Sadeghi, A.-

R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, pp. 223–233. Springer, Berlin
(2010)

60. Koeberl, P., Kocabas, Ü., Sadeghi, A.-R.: Memristor PUFs: a new generation of memory-
based physically unclonable functions. In: Design, Automation and Test in Europe (DATE),
pp. 428–431 (2013)

61. Krishna, A.R., Narasimhan, S., Wang, X., Bhunia, S.: MECCA: a robust low-overhead PUF
using embedded memory array. In: Proceedings of CHES 2011, pp. 407–420 (2011)

62. Kumar, R., Burleson, W.: On design of a highly secure PUF based on non-linear current
mirrors. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST
2014), pp. 38–43 (2014)

63. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF: protecting
IP on every FPGA. In: IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 67–70 (2008)

64. Leier, A., Richter, C., Banzhaf, W., Rauhe H.: Cryptography with DNA binary strands.
BioSystems 57(1), 13–22 (2000)

65. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4), 255–293
(2001)

66. Lim, D.: Extracting secret keys from integrated circuits. M.Sc. thesis, MIT (2004)
67. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting secret keys

from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205 (2005)
68. Lindstrom, G., Schullstrom, G.: Verifiable identification document. US-Patent 3636318.

Publication date: 1972. Priority date: 1968
69. Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit using device mismatch. In:

International Solid-State Circuits Conference (ISSCC), pp. 372–373 (2000)
70. Maes, R.: An accurate probabilistic reliability model for silicon PUFs. In: Proceedings of

CHES 2013, pp. 73–89 (2013)
71. Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state of the art

and future research directions. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-
Intrinsic Security, pp. 3–37. Springer, Heidelberg (2010)

www.chipworks.com
http://www.chipworks.com/components/com_wordpress/wp/wp-content/uploads/2013/08/A5-Processor-from-ipad-Mini-300x249.jpg
http://www.chipworks.com/components/com_wordpress/wp/wp-content/uploads/2013/08/A5-Processor-from-ipad-Mini-300x249.jpg
http://www.wipo.int/pctdb/en/wo.jsp?wo=1997024699

34 U. Rührmair

72. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft decision helper
data algorithm for SRAM PUFs. In: Proceedings of CHES 2009, pp. 332–347 (2009)

73. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-based
cryptographic key generator. In: Proceedings of CHES 2012, pp. 302–319 (2012)

74. Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined modeling and side
channel attacks on strong PUFs. IACR Cryptology ePrint Archive, Report 2013/632 (2013)

75. Maiti, A., Schaumont, P.: Improved ring oscillator PUF: an FPGA-friendly secure primitive.
J. Cryptol. 24(2), 375–397 (2011)

76. Maiti, A., Kim, I., Schaumont, P.: A robust physical unclonable function with enhanced
challenge-response set. IEEE Trans. Inf. Forensics Secur. 7(1), 333–345 (2012)

77. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In: IC-CAD 2008,
pp. 607–673 (2008)

78. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:
IEEE International Test Conference (ITC), pp. 1–10 (2008)

79. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J.
Cryptol. 5(1), 53–66 (1992)

80. Meguerdichian, S., Potkonjak, M.: Device aging-based physically unclonable functions. In:
Design Automation Conference (DAC), pp. 288–289 (2011)

81. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and fuzzy
extractors. In: TRUST 2011, pp. 33–47 (2011)

82. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of RO PUFs. In: IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 19–24 (2013)

83. Mihcak, M.K.: Overview of recent content authentication research at MSR Crypto,
Redmond. Available from https://www.yumpu.com/en/document/view/10835269/m-kivanc-
mihcak-uvigo-tv, or from http://tv.uvigo.es/uploads/material/Video/91/Kivanc_Mihcak.pdf

84. Nedospasov, D., Seifert, J.-P., Helfmeier, C., Boit, C.: Invasive PUF analysis. In: Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 30–38 (2013)

85. Oren, Y., Sadeghi, A.-R., Wachsmann, C.: On the effectiveness of the Remanence decay side-
channel to clone memory-based PUFs. In: Proceedings of CHES 2013, pp. 107–125 (2013)

86. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computa-
tion with (malicious) physically uncloneable functions. In: EUROCRYPT 2013, pp. 702–718
(2013)

87. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive
devices. In: IEEE PerCom 2008, pp. 170–178 (2008)

88. Pappu, R.: Physical one-way functions. Ph.D. thesis, MIT (2001)
89. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297,

2026–2030 (2002)
90. Potkonjak, M.: Personal Communication (2011)
91. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Differential public physically

unclonable functions: architecture and applications. In: Design Automation Conference
(DAC), pp. 242–247 (2011)

92. Rivest, R.: Illegitimi non carborundum. Invited keynote talk, CRYPTO 2011. Downloaded
from http://www.rsa.com/rsalabs/presentations/Riv11b.slides.pdf, August 2012

93. Rostami, M., Wendt, J.B., Potkonjak, M., Koushanfar, F.: Quo Vadis, PUF? Trends and
challenges of emerging physical-disorder based security. In: Design, Automation and Test
in Europe (DATE) (2014)

94. Rührmair, U.: SIMPL systems: on a public key variant of physical unclonable functions.
IACR Cryptology ePrint Archive, Report 2009/255 (2009)

95. Rührmair, U.: Oblivious transfer based on physical unclonable functions (extended abstract).
In: Proceedings of the 3rd International Conference on Trust and Trustworthy Computing
(TRUST), pp. 430–440 (2010)

96. Rührmair, U.: SIMPL systems, or: can we build cryptographic hardware without secret key
information? In: SOFSEM 2011. Lecture Notes in Computer Science. Springer, Heidelberg
(2011)

https://www.yumpu.com/en/document/view/10835269/m-kivanc-mihcak-uvigo-tv
https://www.yumpu.com/en/document/view/10835269/m-kivanc-mihcak-uvigo-tv
http://tv.uvigo.es/uploads/material/Video/91/Kivanc_Mihcak.pdf
http://www.rsa.com/rsalabs/presentations/Riv11b.slides.pdf

Disorder-Based Security Hardware: An Overview 35

97. Rührmair, U.: Physical turing machines and the formalization of physical cryptography. IACR
Cryptology ePrint Archive, Report 2011/188 (2011)

98. Rührmair, U., Holcomb, D.E.: PUFs at a glance. In: Design, Automation and Test in Europe
(DATE), pp. 1–6 (2014)

99. Rührmair, U., Holcomb, D.: PUFs at a glance. In: Design, Automation and Test in Europe
(DATE 2014) (2014)

100. Rührmair, U., van Dijk, M.: Practical security analysis of PUF-based two-player protocols.
In: Proceedings of CHES 20120, pp. 251–267 (2012)

101. Rührmair, U., van Dijk, M.: On the practical use of physical unclonable functions in oblivious
transfer and bit commitment protocols. J. Cryptogr. Eng. 3(1), 17–28 (2013)

102. Rührmair, U., van Dijk, M.: PUFs in security protocols: attack models and security evalua-
tions. In: IEEE Symposium on Security and Privacy 2013, pp. 286–300 (2013)

103. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable functions.
Cryptology e-Print Archive (2009)

104. Rührmair, U., Busch, H., Katzenbeisser, S.: Strong PUFs: models, constructions and security
proofs. In: Sadeghi, A.-R., Tuyls, P. (eds.) Towards Hardware Intrinsic Security: Foundation
and Practice. Springer, Berlin (2010)

105. Rührmair, U., Jaeger, C., Hilgers, C., Algasinger, M., Csaba, G., Stutzmann, M.: Security
applications of diodes with unique current-voltage characteristics. In: Financial Cryptography
and Data Security (FC). Lecture Notes in Computer Science, vol. 6052, pp. 328–335.
Springer, Berlin (2010)

106. Rührmair, U., Sehnke, F., Sölter, J., Dror, J., Devadas, S., Schmidhuber, J.: Modeling attacks
on physical unclonable functions. In: ACM Conference on Computer and Communications
Security (ACM CCS), pp. 237–249 (2010)

107. Rührmair, U., Jaeger, C., Algasinger, M.: An attack on PUF-based session key exchange
and a hardware-based countermeasure: erasable PUFs. In: Financial Cryptography and Data
Security 2011, pp. 190–204 (2011)

108. Rührmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P., Csaba, G.: Applications of
high-capacity crossbar memories in cryptography. IEEE Trans. Nanotechnol. 10(3), 489–498
(2011)

109. Rührmair, U., Devadas, S., Koushanfar, F.: Security based on physical unclonability and
disorder. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust,
pp. 65–102. Springer, New York (2012)

110. Rührmair, U., Hilgers, C., Urban, S., Weiershäuser, A., Dinter, E., Forster, B., Jirauschek, C.:
Optical PUFs reloaded. IACR Cryptology ePrint Archive, Report 2013/215 (2013)

111. Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G.,
Schmidhuber, J., Burleson, W., Devadas, S.: PUF modeling attacks on simulated and silicon
data. IEEE Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)

112. Rührmair, U., Schlichtmann, U., Burleson, W.: Special session: how secure are PUFs really?
On the reach and limits of recent PUF attacks. In: Design, Automation and Test in Europe
(DATE) (2014)

113. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F., Burleson, W.:
Efficient power and timing side channels for physical unclonable functions. In: CHES 2014,
pp. 476–492 (2014)

114. Schrijen, G.J., van der Leest, V.: Comparative analysis of SRAM memories used as PUF
primitives. In: Design, Automation and Test in Europe (DATE), pp. 1319–1324 (2012)

115. See http://www.informatik.uni-trier.de/~Ley/db/conf/ches/index.html
116. See http://www.informatik.uni-trier.de/~LEY/db/conf/host/index.html
117. See http://www.gi-de.com/en/trends_and_insights/banknote_circulation/\life_of_a_

banknote/life-of-a-banknote.jsp
118. See http://rmaes.ulyssis.be/pufbib.php
119. See http://www.answers.com/topic/certegy-inc-1
120. See http://www.adnas.com/products/signaturedna
121. See http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315910/

http://www.informatik.uni-trier.de/~Ley/db/conf/ches/index.html
http://www.informatik.uni-trier.de/~LEY/db/conf/host/index.html
http://www.gi-de.com/en/trends_and_insights/banknote_circulation/ life_of_a_banknote/life-of-a-banknote.jsp
http://www.gi-de.com/en/trends_and_insights/banknote_circulation/ life_of_a_banknote/life-of-a-banknote.jsp
http://rmaes.ulyssis.be/pufbib.php
http://www.answers.com/topic/certegy-inc-1
http://www.adnas.com/products/signaturedna
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315910/

36 U. Rührmair

122. See http://www.polestarltd.com/ttg/isspeeches/pisec03/index.html
123. See http://www.date-conference.com/conference/session/4.3
124. See http://www.date-conference.com/conference/session/12.2
125. See http://www.date-conference.com/category/session-types/tutorial
126. See www.nxp.com/documents/other/75017366.pdf
127. See http://www.nxp.com/news/press-releases/2013/02/nxp-strengthens-smartmx2-security-

chips-with-puf-anti-cloning-technology.html
128. See http://investor.microsemi.com/releasedetail.cfm?ReleaseID=731250
129. See http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
130. See http://www.informatik.uni-trier.de/~LEY/db/conf/date/index.html
131. See http://www.informatik.uni-trier.de/~Ley/db/conf/dac/index.html
132. See http://en.wikipedia.org/wiki/Pollen#mediaviewer/File:Lilium_auratum_-_pollen.jpg
133. See http://en.wikipedia.org/wiki/Filter_paper#mediaviewer/File:Filter_paper_840_3x3_

copy.jpg
134. See http://de.wikipedia.org/wiki/Compact_Disc#mediaviewer/Datei:REM_CD_GEPRESST.

jpg
135. Shamir, A., van Someren, N.: Playing hide and seek with stored keys. In: Financial

Cryptography, pp. 118–124. Springer, Berlin (1999)
136. Sharma, A., Subramanian, L., Brewer, E.A.: PaperSpeckle: microscopic fingerprinting of

paper. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 99–
110 (2011)

137. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

138. Simmmons, G.J.: Identification of data, devices, documents and individuals. In: Annual
International Carnahan Conference on Security Technology, pp. 197–218 (1991)

139. Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising alternative to D
Flip-Flop PUFs. In: HOST 2012, pp. 7–12 (2012)

140. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical Report, UCAM-
CL-TR-536, Computer Laboratory, University of Cambridge (2002). Available from http://
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

141. Smith, J.R., Sutherland, A.V.: Microstructure based indicia. In: Second Workshop on
Automatic Identification Advanced Technologies, pp. 79–83 (1999)

142. Sreedhar, A., Kundu, S.: Physically unclonable functions for embeded security based on
lithographic variation. In: Design Automation Conference (DAC), pp. 1632–1637 (2011)

143. Stepney, S.: Journeys in non-classical computation. In: Hoare, T., Milner, R. (eds.) Grand
Challenges in Computing Research, pp. 29–32. BCS, Swindon (2004)

144. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret
key generation. In: Design Automation Conference (DAC), pp. 9–14 (2007)

145. Suh, G.E., Clarke, D.E., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: architecture for
tamper-evident and tamper-resistant processing. In: Proceedings of the 17th International
Conference on Supercomputing (ICS), pp. 160–171 (2003)

146. Suzuki, D., Shimizu, K.: The glitch PUF: a new delay-PUF architecture exploiting glitch
shapes. In: Proceedings of CHES 2010, pp. 366–382 (2010)

147. Troncoso, C., De Cock, D., Preneel, B.: Improving secure long-term archival of digitally
signed documents. In: Kim, Y., Yurcik, B. (eds.) Proceedings of the 4th International
Workshop on Storage, Security and Survivability (StorageSS 2008), pp. 27–36 (2008)

148. Tuyls, P., Skoric, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: An information theoretic
model for physical uncloneable functions. In: IEEE International Symposium on Information
Theory, p. 141 (2004)

149. Tuyls, P., Skoric, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-theoretic
security analysis of physical uncloneable functions. In: Financial Cryptography, pp. 141–155
(2005)

150. Tuyls, P., Schrijen, G.J., Skoric, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof
hardware from protective coatings. In: Proceedings of CHES 2006, pp. 369–383 (2006)

http://www.polestarltd.com/ttg/isspeeches/pisec03/index.html
http://www.date-conference.com/conference/session/4.3
http://www.date-conference.com/conference/session/12.2
http://www.date-conference.com/category/session-types/tutorial
www.nxp.com/documents/other/75017366.pdf
http://www.nxp.com/news/press-releases/2013/02/nxp-strengthens-smartmx2-security-chips-with-puf-anti-cloning-technology.html
http://www.nxp.com/news/press-releases/2013/02/nxp-strengthens-smartmx2-security-chips-with-puf-anti-cloning-technology.html
http://investor.microsemi.com/releasedetail.cfm?ReleaseID=731250
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
http://www.informatik.uni-trier.de/~LEY/db/conf/date/index.html
http://www.informatik.uni-trier.de/~Ley/db/conf/dac/index.html
http://en.wikipedia.org/wiki/Pollen#mediaviewer/File:Lilium_auratum_-_pollen.jpg
http://en.wikipedia.org/wiki/Filter_paper#mediaviewer/File:Filter_paper_840_3x3_copy.jpg
http://en.wikipedia.org/wiki/Filter_paper#mediaviewer/File:Filter_paper_840_3x3_copy.jpg
http://de.wikipedia.org/wiki/Compact_Disc#mediaviewer/Datei:REM_CD_GEPRESST.jpg
http://de.wikipedia.org/wiki/Compact_Disc#mediaviewer/Datei:REM_CD_GEPRESST.jpg
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

Disorder-Based Security Hardware: An Overview 37

151. Vaidya, A.W.: Keeping card data secure at low cost. In: European Convention on Security and
Detection, pp. 212–215 (1995)

152. van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision error correction for compact
memory-based PUFs using a single enrollment. In: Proceedings of CHES 2012, pp. 268–282
(2012)

153. van der Leest, V., Tuyls, P.: Anti-counterfeiting with hardware intrinsic security. In: Design,
Automation and Test in Europe (DATE), pp. 1137–1142 (2013)

154. van Dijk, M.: System and method of reliable forward secret key sharing with physical random
functions. US Patent No. 7,653,197 (2004)

155. van Renesse, R.L.: 3DAS: a 3-dimensional-structure authentication system. In: European
Convention on Security and Detection, pp. 45–49. Institution of Electrical Engineers, London
(1995)

156. van Renesse, R.L.: Optical Document Security, 3rd edn. Artech House (2005) [ISBN-10:
1580532586]

157. Vijayakumar, A., Kundu, S.: A novel modeling attack resistant PUF design based on non-
linear voltage transfer characteristics. In: Design, Automation and Test in Europe (DATE
2015), pp. 653–658 (2015)

158. Vijaywargi, D., Lewis, D., Kirovski, D.: Optical DNA. In: Financial Cryptography 2009,
pp. 222–229 (2009)

159. Wang, X., Tehranipoor, M.: Novel physical unclonable function with process and environ-
mental variations. In: Design, Automation and Test in Europe (DATE), pp. 1065–1070 (2010)

160. Wikipedia’s article on cryptography (2012). Downloaded from http://en.wikipedia.org/wiki/
Cryptography, August 2012

161. Wikipedia’s article on data remanence (2012). Downloaded from http://en.wikipedia.org/
wiki/Data_remanence, August 2012

162. Wikipedia’s article on a one-electron universe (2014). Downloaded from http://en.wikipedia.
org/wiki/One-electron_universe, April 2014

163. Yamamoto, D., Sakiyama, K., Iwamoto, M., Ohta, K., Ochiai, T., Takenaka, M., Itoh, K.:
Uniqueness enhancement of PUF responses based on the locations of random outputting RS
latches. In: CHES 2011, pp. 390–406 (2011)

164. Yao, Y., Kim, M., Li, J., Markov, I.L., Koushanfar, F.: ClockPUF: physical unclonable
functions based on clock networks. In: DATE 2013, pp. 422–427 (2013)

165. Yin, C.-E.D., Qu, G.: Improving PUF security with regression-based distiller. In: Design
Automation Conference (DAC), paper no. 184, 6 p. (2013)

166. Yin, C.-E.D., Qu, G., Zhou, Q.: Design and implementation of a group-based RO PUF. In:
Design, Automation and Test in Europe (DATE), pp. 416–421 (2013)

167. Yu, M.-D., M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and secure PUF key storage
using limits of machine learning. In: Proceedings of CHES 2011, pp. 358–373 (2011)

168. Zheng, Y., Hashemian, M., Bhunia, S.: RESP: a robust physical unclonable function
retrofitted into embedded SRAM array. In: Design Automation Conference (DAC), paper
no. 60, 9 p. (2013)

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Data_remanence
http://en.wikipedia.org/wiki/Data_remanence
http://en.wikipedia.org/wiki/One-electron_universe
http://en.wikipedia.org/wiki/One-electron_universe

Design and Implementation of High-Quality
Physical Unclonable Functions
for Hardware-Oriented Cryptography

Siarhei S. Zalivaka, Le Zhang, Vladimir P. Klybik, Alexander A. Ivaniuk,
and Chip-Hong Chang

Abstract Physical Unclonable Functions have emerged as effective primitives for
varieties of security applications. With the advent of mobile computing, designing
and implementing high-quality PUFs for resource-constrained platforms become a
great challenge. This chapter presents an extensive review of the techniques pro-
posed in the recent years for the design and implementation of high-quality and/or
alternative PUF instances with marginal overhead. With a preamble of the motiva-
tions, fundamentals, quality metrics and application scenarios of PUF, some existing
approaches to improving the quality of PUFs are unfolded. Subsequently, some
representative PUF designs for RFIDs and fingerprint extractions are illustrated. In
addition, applications for true random number generation based on PUF instances
are delineated. Finally, two emerging types of PUF implementations that can be used
for more advanced protocols are presented. The practices summarized in this chapter
aim to help the engineers and researchers in the hardware security community to
design and implement PUFs that suit their applications and constraints.

1 Introduction

The proliferation of connected mobile devices has boosted the growth of consumer
web and services of all types. Driven by economies of scale, a large scale
distributed computing paradigm has emerged, in which a cloud of abstracted vir-
tualized, dynamically-scalable, distributed computing power, storage and services
are delivered online and on demand to consumers over the internet. As electronic
devices become ubiquitous and interconnected, people are increasingly relying on

S.S. Zalivaka • L. Zhang • C.-H. Chang (�)
School of Electrical and Electronic Engineering, Nanyang Technological
University, 639798 Singapore
e-mail: zali0001@e.ntu.edu.sg; LZHANG15@e.ntu.edu.sg; ECHChang@ntu.edu.sg

V.P. Klybik • A.A. Ivaniuk
Department of Computer Science, Belarusian State University
of Informatics and Radioelectronics, P. Browki Str., 6 Minsk 220013, Belarus
e-mail: klybik@bsuir.by; ivaniuk@bsuir.by

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_2

39

mailto:zali0001@e.ntu.edu.sg
mailto:LZHANG15@e.ntu.edu.sg
mailto:ECHChang@ntu.edu.sg
mailto:klybik@bsuir.by
mailto:ivaniuk@bsuir.by

40 S.S. Zalivaka et al.

integrated networked devices to perform security sensitive tasks as well as handling
large amount of confidential digital information. The association of internet and
infocomm technology has created tremendous economic values that even a limited
form of exploitation can yield enormous returns or losses. Responding to this
nascent shift in the volume of valuable information traffic is a host of up and coming
cyber-terror and hackings. The cryptography community has recently expressed
concerns about whether the software-oriented security alone is adequate to combat
the imminent threats of the cyberspace, the largest ever interdependent network of
information system.

Physical cryptography has emerged as an effective approach to solving issues
such as the secure key storage, a problem that has troubled the designers of
crypto-system for ages with the conventional cryptography. Instead of relying on
certain specifically safeguarded components that may be easily invaded via physical
means to preserve the secret keys, physical cryptography exploits the inherent
non-reproducible characteristics of electronic devices to guarantee the physical
unbreakability of crypto-system. One of the promising representatives of physical
cryptographic primitives is the Physical Unclonable Function (PUF). The feasibility
of PUFs stems from the fact that most devices fabricated using sub-micron or
nano-scale technologies are highly susceptible to the impacts of process variations.
That is, the physical parameters of devices after the manufacturing process are
often stochastically distributed. The physical parameters may refer to different
kinds of physical effects depending on the media used for implementing the PUF,
e.g., speckle pattern of optically sensitive material [58], frequencies of oscillating
structures [24], transmission-speed difference of racing signals in delay paths [43],
property disparities of coating layers [61], randomness of initial state of memory
or memory-like circuitry [29]. While these parametric variations appear to be a
fundamental evil for useful circuit design in general, they turn out to be an excellent
entropy source for cryptographic primitives to generate device-specific secret bits.
Normally a randomly selected stimulus is applied on the PUF devices to produce
a random output signal. The stimulus is called the “challenge” while the output
signal is called the “response”. To make a PUF compatible with the contemporary
integrated system, challenges and responses are normally digitized and represented
as binary bits.

The desiderata of a good PUF are: firstly, its responses should be random so that
they cannot be predicted by the adversaries; secondly, its responses to the same
challenges must be reproducible over time, and the reproducibility of responses
should be maintained under all possible working conditions; lastly, the responses
generated from a device using different challenges or from different devices using
the same challenge must be unique and distinctive from each other.

Though the recent years have witnessed a number of new PUF implementations,
some emerging security problems, implementation and technical challenges are
awaiting for better solutions. The problems may arise from the stringent require-
ments of PUF quality under varying operating conditions and/or the security
level of the cryptographic protocol. Some of these challenges have been partially
addressed by the new development of PUF but they remain the stumbling blocks

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 41

since its inception, while others become teething problems with the advance of
modern communication technologies such as wireless network, internet of things,
and mobile computing where the area and power budget is thinning aggressively.
To this end, the interest of PUF research has shifted from merely “looking for
the feasibility of designing a PUF” at the beginning to “looking for a better
medium/method/structure/protocol of designing and using a PUF”. More specifi-
cally, the new focus can be viewed from two aspects:

1. Enhancing the response quality. Techniques at architecture-level such as the
application of Error Correction Code (ECC), fuzzy response analysis, post-
processing using hash function, etc. have been proposed and widely used by
the community to improve the qualities of PUFs, but device- and circuit-level
engineering techniques that achieve the same goal with lower area/power cost
are rarely exploited. Second-order characteristics of CMOS devices (e.g., aging
effects, thermal characteristics, etc.) as well as the emerging technologies based
on alternative nano-materials may help to realize this goal.

2. Implementing and designing PUF for new applications. Novel PUF instances
such as public PUF, reconfigurable PUF and new PUF architectures were
proposed to be incorporated in more advanced protocols, where PUFs are
endowed with new features to be used as more powerful primitives. Compared to
conventional PUFs, these types of PUFs may have more sophisticated structures,
thus more dedicated design and analysis methods are required to prove the
efficiency and effectiveness.

The remainder of the chapter is organized as follows. Section 2 presents the PUF
fundamentals and an overview of the basic concepts of PUF hardware identification,
authentication and main areas of application. Section 3 introduces several tech-
niques to improve the reliability of PUFs. These include architecture-level methods
such as fuzzy response analysis and application of ECC, and circuit-level design
techniques such as temperature-aware stability compensation in ring-oscillator PUF
and reliability enhancement in memory-based PUFs. Hybrid PUF architectures
will also be discussed in this section. Section 4 reviews some representatives of
classical PUF implementations. General scheme and commercial implementation
of RFID crypto-processor are introduced. FPGA IP-protection approaches and their
experimental results are presented. Dual-mode PUF circuits for true random number
and unique ID generation are also discussed. Section 5 presents new derivatives of
PUFs, where reconfigurable and public PUF are discussed. The chapter is concluded
in Sect. 6.

2 Physical Unclonable Function (PUF) Fundamentals

Physical Unclonable Function (PUF) is also called Physical One-Way Function
(POWF) and Physical Random Functions (PRF) [24, 25, 58, 59]. Although the two
latter terms were introduced earlier, the term Physical Unclonable Function (PUF),

42 S.S. Zalivaka et al.

coined by Tuyls et al. in [83], is more commonly used today. However, the notion of
“Physical One-Way Function” introduced by Pappu in [58, 59] definitely owns the
merit of being the first formal attempt to define the deterministic physical interaction
between a probe and system in some unknown state as a primitive for physical
cryptography.

2.1 Definitions

Two variants of PUF definition are widely considered:

Definition 1. PUFs consist of inherently unclonable physical systems. They inherit
their unclonability from the fact that they consist of many random components
that are present in the manufacturing process which cannot be controlled. When
a stimulus is applied to the system, it reacts with a response. Such a pair of stimulus
(challenge) C and response R is called a challenge-response pair (CRP). In this
respect, a PUF can be considered as a function that maps challenges to responses.

According to this definition, PUFs have been introduced as challenge response
entities that are undetachably embedded in a physical system [40], possibly a silicon
integrated circuit. The physical system is, explicitly or implicitly, produced in such
a way that it contains uncontrollable random elements. An applied challenge reacts
with these elements in a complex and unpredictable way to produce a certain random
response. The presence of random elements and the impossibility of controlling
them at manufacturing time make each PUF unique and physically unclonable.
A more general definition of PUFs as Super High Information Consent systems
(SHICs) has also been made by Ruhrmair [71].

Definition 2. Physical Unclonable Functions are complex disordered physical
systems with extraordinarily high amount of structural information that satisfy the
following conditions:

– The information content of the system can be extracted reliably and repeatedly
through measurement with different challenge (interrogation) Ci to obtain the
resulting response (answer) Ri.

– The number of possible challenges C is so large that the values of all correspond-
ing responses R cannot be determined for all possible challenges C within limited
time.

– Due to the very high information content of the system, it must also be impossible
to model, computationally learn, simulate or otherwise numerically predict the
challenge-response pair (Cj, Rj) based on the known pair (Ci, Ri).

– It must be prohibitively difficult to physically reproduce or clone a PUF although
the physical system itself is easy to make.

The fundamental idea behind many implementations for the silicon based PUFs is to
create an integrated circuit whose output will be determined by the timing deviation

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 43

Table 1 Definitions of used notations

Notation Definition

N The number of devices.

K The number of different IDs generated per device.

T The number of tests performed per ID.

L The length of an ID.

n The index of a device. 1 � n � N. The n-th device is denoted by n for simplicity.

k The index of an ID. 1 � k � K. The k-th ID is denoted by k for simplicity.

t The index of a test. 1 � t � T. The t-th test is denoted by t for simplicity.

l The bit position of an ID. 1 � l� L. The l-th bit is denoted by l for simplicity.

IDn;k The correct ID k expected to be generated in device n.

IDn;k;l The empirically generated ID k by device n in test t.

bn;k;l The correct response bit l of ID k expected to be generated by device n. bn;k;l 2 f0; 1g
bn;k;t;l The empirically generated response bit l of ID k by device n in test t. bn;k;t;l 2 f0; 1g

resulting from the underlying silicon device variation. Due to the variation of the
imperfect scaled silicon manufacturing process, the timing of certain paths through
the devices will vary slightly from chip to chip [1].

2.2 Metrics of Evaluation: Randomness, Stability
and Uniqueness

For practical implementations, it is necessary to quantify and measure the figures of
merit of PUF. The most important of all are the randomness, stability and unique-
ness. These metrics are estimated or measured from the physical manifestation of
the desired properties of PUF. They are useful for the purpose of benchmarking and
assessing the acceptability of an implemented PUF instance for a given application
or to attain certain security strength. For the ease of reference and exposition, the
notations used in the definitions of these metrics are listed in Table 1.

2.2.1 Correct IDs

Suppose a PUF in device n outputs K different IDs from K different challenge sets.
Let IDn;k be the correct ID k generated in device n. IDn;k is empirically determined
through T tests where the same ID k is to be generated T times.

Let IDn;k;t be the ID k generated in device n in test t, and bn;k;t;l 2 f0; 1g be the
l-th bit value of IDn;k;t. Then, IDn;k;t can be expressed as follows:

IDn;k;t D bn;k;t;1 k bn;k;t;2 k � � � k bn;k;t;L (1)

where k is an associative operator denoting the concatenation of two operands.

44 S.S. Zalivaka et al.

Let pn;k;l be the relative frequency that the l-th bit of IDn;k;t is 1 in a test. pn;k;l is
defined as the average number of 1’s in IDn;k;t generated in T tests, i.e.,

pn;k;l D 1

T

TX

tD1

pn;k;t; (2)

Let bn;k;l be the l-th bit of the correct ID, IDn;k. Then bn;k;l is defined as follows:

bn;k;l D b.pn;k;l C 0:5/c D
(

1 if pn;k;l � 0:5

0 otherwise:
(3)

With the definition of bn;k;l, the correct ID, IDn;k is defined as follows:

IDn;k D bn;k;1 k bn;k;2 k � � � k bn;k;L (4)

2.2.2 Randomness

A PUF is expected to output 0 and 1 ideally with the same probability. Randomness
indicates the balance of 0s and 1s in the responses of the PUF.

Let pn be the relative frequency of 1 appearing in all the response bits generated
in device n. The pn is given by:

pn D 1

K � T � L
KX

kD1

TX

tD1

LX

lD1

bn;k;t;l (5)

The device randomness Hn is defined by the min-entropy, which is suitable for
evaluating the randomness of a bit sequence.

Hn D �log2max.pn; 1 � pn/ (6)

The undefined log2.0/ is set to 0. Hn takes the highest value 1 when pn D 0:5, and
the lowest value 0 when pn D 0 or pn D 1.

2.2.3 Stability

When the same ID is generated T times in the same device, the l-th bits of the
output IDs are expected to be identical. The stability is an indicator of how stable
is an output bit in the PUF response to the same challenge, or in other words, how
strongly is pn;k;l biased towards 0 or 1.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 45

Let Sn;k;l be the stability of the l-th bit of IDn;k. Then Sn;k;l is defined by using
min-entropy as follows:

Sn;k;l D 1C log2max.pn;k;l; 1 � pn;k;l/ (7)

with the undefined log2.0/ set to 0. Then, the device stability Sn is defined by taking
the mean of Sn;k;l as follows:

Sn D 1

K � L
KX

kD1

LX

lD1

Sn;k;l D 1C 1

K � L
KX

kD1

LX

lD1

log2max.pn;k;l; 1 � pn;k;l/ (8)

Sn takes the highest value 1 when pn;k;l D 0 or pn;k;l D 1, and the lowest value 0
when pn;k;l D 0:5.

2.2.4 Uniqueness

When the same challenge sets are given to different PUFs, the output IDs are
expected to be different. Uniqueness indicates how different are the generated IDs
among the devices. Since uniqueness is an inter-device characterization, all the
possible device combinations should be considered. As proven in [31], the sum
of the Hamming distance of the possible ID-combinations among all devices does
not exceed L � .N=2/2. Based on this study, the device uniqueness Un is defined as
follows:

Un D 4

K � L � N
KX

kD1

LX

lD1

NX

jD1;j¤n

.bn;k;l ˚ bj;k;l/ (9)

Then, the sample mean NU is defined as

NU D 1

N

NX

nD1

Un D 4

K � L � N2

KX

kD1

LX

lD1

N�1X

iD1

NX

jDiC1

.bi;k;l ˚ bj;k;l/ (10)

NU takes the highest value 1 when the sum of the Hamming distance of the
possible ID-combinations reaches its asymptotical upper bound, and the lowest
value 0 when the IDs in device n are completely identical.

2.3 PUF for Identification and Authentication

2.3.1 Hardware Identification

Identification is the act of finding out who someone is or what something is. For
the digital devices, this procedure is used in different aspects, and in most cases

46 S.S. Zalivaka et al.

Fig. 1 Hardware metering classification

to address the question: “what is the identity of this device?” as an attempt to
find out indirectly who owns the device. This device tagging problem has been
encountered and solved in the manufacturing, sale, maintenance and operation
of various hardwares. Figure 1 shows a classification of hardware identification
methods.

Previously, the identification problem was solved by the hardware pre-
programmed digital ID, for example, RFID product identification [44] and battery
packs authenticity check chip [22]. The implementation required a separate
phase for recording the IDs and the adoption of special measures to ensure their
uniqueness.

With a properly designed PUF, the output response is unique for each physical
copy of the work unit [84]. This property allows the use of PUF to obtain a
unique device identifier during its production phase without the need to introduce
customization for each instance. Using PUF to identify the device as built can reduce
costs in mass hardware production [46].

2.3.2 Device Authentication

Besides identification, digital device authentication is also required in many
applications [10, 60]. Unlike identification, for which the purpose is to find the
desired device, authentication is to confirm that the device is what it claimed to be,
i.e., the confirmation of its authenticity.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 47

Device authentication demands more than just the interaction between the two
devices in communication. In some case, the device is also required to perform
certain operations to validate its integrity and origin. The digital device that is
endowed with this capability is said to be self authenticable. One of the most
common attacks on digital devices, which are implemented on the FPGA, is
the cloning of bitstream. Due to the fact that the original circuit implementation
description (netlist, VHDL-codes) and bitstreams for FPGA configuration are
presented in an open format, the attacker can easily replicate them without much
effort. If left unprotected, the attacker can also reverse engineer the plain FPGA
bitstream to obtain the netlist and figure out the functionality to tamper with the
digital circuit. More often than not, the bitstream was effortlessly cloned (e.g.
for implementation on cheaper FPGA) as a “black box”, without analyzing and
changing its operation.

One of the options to protect digital bitstreams of FPGA devices against unautho-
rized usage is to use conventional hardware cryptographic primitives, in particular
for the authentication of pre-programmed digital ID. Device authentication based
solely on external cryptographic components may not be adequate in view of
the potential technical failure or intentionally released duplicate devices that are
indistinguishable from the original. Failure or vulnerability in device authentication
can be critical when the authenticated device is used in:

– control access to important objects or infrastructure,
– IP protection,
– interaction of mission-critical equipments.

Such duplication is impossible for PUF-based digital device authentication
because the device authenticity is determined by the innate variations of the
production process that cannot be deterministically controlled.

2.3.3 Area of Applications

The main PUF applications lie in the tasks of enhancing the security of digital
devices themselves and processes associated with their use. The following are some
applications of PUF in the identification and authentication of digital devices. Each
of them has subtly different requirements on the properties of PUF and certain types
of PUF are preferred in some areas.

– True random number sequence generation
– Secret key generation
– Preventing IC piracy and digital rights management
– Hardware Trojan and recycled IC detection
– Product authentication in supply chain applications
– Unique serial numbering
– Shooter authentication for weapon control
– ID and authentication for self-destructing electronics

48 S.S. Zalivaka et al.

Truly random sequences is used to create encryption keys for digital signatures,
as session keys for message encryption in communication, and as password to access
the protected systems. If the sequence is not truly random, but pseudorandom, it will
adversely weaken the reliability of the protection scheme and may render the entire
system security to be broken [43].

Identifying malicious hardware implants (Trojans) is a very time-consuming and
non-trivial task for hardware developers and for security professionals. Using PUF
enables the features associated with the physical characteristics of a genuine device
to be extracted in the form of PUF responses and used as a set of reference signatures
to winnow the Trojan-infected chips from the good chips. For example, the addition
of the hardware implant changes the distribution of power profile, resulting in a
distinguishable deviation in the response profile of the on-chip PUF [99].

The profile of PUF responses changes with the passage of time due to device
aging. The use of special algorithms to analyze the response characteristics of
PUF help to dispose used hardware that has degraded performances or hardware
that requires replacement due to natural aging. Detection of such equipment is
an important task in critical applications in aviation, military industry, medical
equipment, etc., where degraded or recycled parts or equipment are endangered
threat to human life or cause of man-made disasters.

Authentication of products in supply networks is important to protect the original
manufacturers of the losses due to the contaminated supply chain. Counterfeit
products undermine company’s brand and impact customer loyalty. Consumers need
to acquire authentication of their devices for protection against counterfeiting when
applying to the service center for warranty. Production of counterfeit goods has
become a big problem in physical products as well as in the content. In both cases,
there is a dire need to protect the intellectual property (IP) rights of the authors and
developers [5, 67]. For content protection, Digital Rights Management (DRM) is
used [39]. The basis of this system is a content playback device authentication and
a cryptographic binding of the content to specific devices. The PUF implemented
in the playback device forms the basis for the authentication of such devices in the
DRM system.

An apt application of PUF is in hand weapon authentication. Weapon embedded
authentication device is used for additional security and liability associated with the
use of a weapon to identify the weapon to its authorized users. In case of loss or
theft of weapons, the attacker cannot use it against the owner or other people [2].

New direction for using PUF was explored in the creation of self-destruction
electronics. This type of electronics is of great demand in the military and defense
sectors to protect secrets and techniques contained in devices left in the battlefield
and captured by the enemy. A special signal can be sent to activate the device
self-destruction mechanisms without the possibility of recovery. Authentication is
mandatory to avoid false alarms as the enemy could also send a similar signal to
permanently destruct or disable the device [20]. In commercial applications, PUFs
can also be used to authenticate and disable devices to limit the lifespan of the
devices or upon expiry of the license agreement.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 49

3 Quality Enhancement of PUF

One of the main concerns of using PUF for authentication is its raw response
instability. There are a lot of techniques to make PUF responses more reliable in
practice. On the other hand, the response instability may be beneficial for certain
applications like true random number generation.

3.1 PUF Response Analysis and Fuzzy Identification

Usually, there is no stable challenge-response (CRP) pair in real PUF implementa-
tion. Bit error rate (BER) is used to describe PUF response errors. It is a ratio of
the number of error bits to the length of the response. Without any post-processing,
PUF responses with BER of about 10 % or more is common [78]. The probability
of response can be computed by

P.r D 1; n/ D

nP
iD1

ri

n
; (11)

where n is number of experiments and ri is the value of response after the i-th
experiment.

Thus, a PUF can also be represented as a fuzzy set CRPF.n/ D f.c1; fp.r1 D
0; n/=r1; p.r1 D 1; n/=r1g/; .c2; fp.r2 D 0; n/=r2; p.r2 D 1; n/=r2g; : : : ; .ck; fp.rk D
0; n/=rk; p.rk D 1; n/=rkgg, where k is the number of challenges, and single-bit
response is assumed. If the response is multi-bit, the probabilities of every possible
response values will be calculated and the challenge fuzzy-set will have greater
cardinality. The fuzzy set CPRF.n/ can be used as the digital device identifier.
However, as storing and processing this data is not as fast and simple, the following
steps are needed to compute the ID.

– Defuzzification. This procedure transforms the fuzzy set CRPF into the ordinary
CRP. The values of the transformed CRP may be different from the original.
For example, all CRPF values may be divided into five groups: zero (Z) for
p.r; n/ = 0, almost zero (AZ) for 0 < p.r; n/ < 0:3, unstable (U) for 0:3 �
p.r; n/ � 0:7, almost one (AO) for 0:7 < p.r; n/ < 1 and one (O) for p.r; n/ = 1.0.
Thus, CRPF will be transformed into CPR D f.c1; rs

1/; .c2; rs
2/; : : : ; .ck; rs

k/g,
where rs

i 2 R D fZ; AZ; U; AO; Og. If almost all the response values are stable
(i.e., more than 60 % of the values belong to Z or O), it is possible to use a simpler
set R D fZ; U; Og, where U = AZ, U or AO. Finally, the ID can be computed by
the majority rule in Eq. (12).

50 S.S. Zalivaka et al.

rs
i D

(
0; p.ri; n/ < 0:5

1; p.ri; n/ � 0:5
(12)

– Signature Analysis. The complexity of comparing, storing and processing k-
bit identifiers, where k D 2m and m is the number of bits of the challenge, grows
exponentially with the challenge length m. To transform the set CRP into a digital
device ID, signature analysis is used, where the signature is obtained by means of
some lossy data compression algorithm. The classic method of signature analysis
is based on the polynomial division over the Galois field of two elements [91].

There are three possible ways of fuzzy identification:

– Comparing Probabilities. The digital identifiers represented by the sets CRPF

is compared directly. If the absolute difference of the probabilities of every
challenge-response pair is less than 3

n , it is sufficient to identify the digital device.
This approach has a great disadvantage that all operations with the set CRPF

involve floating-point numbers, which are slow and inefficient. This approach
may be implemented if the responses are unstable and n � 1;000.

– Comparing Multiple Values. If the responses are more stable, the probabilities
can be transformed into the values from the set R. To process these values, only 2
or 3 bits are needed. Nevertheless, if the cardinality of the set CRPF is relatively
big (�1;000), it will be compressed by the signature analysis algorithm. This
approach has moderate rate and reliability.

– Comparing Binary Values. Finally, it is possible to process digital identifiers
which are computed by majority rule or signature analysis. The CRP sets can
be compared by their Hamming distances. Small distances (0–3 % of k) imply
true identification and greater distances imply false identification. The signatures
have to be compared directly because its size is much smaller than the cardinality
of the set CRP.

Thus, the fuzzy identification algorithm contains four main steps: collection of
challenge response pairs (n times), computation of the set CRPF, different ways of
creating the CRP set and signature analysis to obtain the set CRP (if needed).

3.2 Application of ECC

To improve the quality of the CRPF set, different Error Correction Codes (ECCs)
are used. An ECC is used to correct the errors after data transmission. In this case,
the PUF is treated like a data channel, where the “ideal” (i.e., the most probable)
CRP set is a message that is transmitted through the noisy PUF channel. After the
correction, the corrected set CRPC will be as close as possible to the “ideal” set
CRP.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 51

The ECC approach is evaluated by three criteria:

– Redundancy. This is a ratio of the total number of bits (response + helper data)
to the length of the response. Codes with low redundancy is easier to implement
and faster to process but its error correction capability is limited. If the response
reliability is more important, the redundancy of the ECC may be increased.

– Complexity. The computational time and hardware resource requirements of
different ECC algorithms are different. Some approaches are harder to implement
in hardware. Choosing an appropriate method is a trade-off between the quality
and implementation cost.

– Efficiency. One of the most important features of ECC is to improve the BER.
The efficiency can be represented as a ratio of the BERs before and after the
correction. Reduction of BER is almost always necessary to implement a reliable
design unless the error rate of the raw response is tolerable by the application.

Some of the most widely used ECC techniques include Hamming code [28],
repetition code [45, 56], Hocquenghem and Raj Chandra Bose and Dwijendra
Kumar Ray-Chaudhuri code (BCH code) [55] and the newest one—soft decision
code [93].

Repetition Code is the simplest ECC. The main idea is to repeat the PUF
responses n times and the final PUF response is obtained by majority voting.
It should be noted that this approach has high redundancy, but reasonably good
reliability. The BER after correction is very low. This approach has been used
in some PUF implementations [9]. Their investigation shows that PUF responses
with high initial BER ([0.2,0.5] and higher) are not very well corrected by different
repetition codes (Rep(11), Rep(21) and Rep(31)). However, if the BER is not that
high, its effectiveness increases linearly with increasing n. The main advantage
of this ECC technique is its implementation simplicity and high corrected PUF
response reliability with BER less than 0.2. Some kind of repetition code is also
used for fuzzy identification (see Sect. 3.1 below).

Hamming Code is a more complex ECC. To detect up to two-bit errors and
correct one-bit errors in some binary word, parity bits (or check bits) are embedded.
The most widely used Hamming code is Hamming(7, 4), i.e., 4-bit word with
3 parity bits. Different versions of Hamming code are shown in Table 2. The
redundancy decreases rapidly with increasing word length. Thus, the unstable bits
in PUF response are divided into an appropriate number of groups (binary words)
and corrected. Hamming code is not widely used by PUF developers, but there are
some investigations of its use [24]. Despite its low capability to correct many errors,
it has low redundancy and can be easily implemented.

BCH Code is a cyclic ECC designed based on the primitive polynomial. It can
be described by a triple (n, l, d), where n is the length of the codeword, l is the

Table 2 Different versions
of Hamming code

Word length 1 4 11 26 57 120 247

Number of parity bits 2 3 4 5 6 7 8

52 S.S. Zalivaka et al.

Table 3 Comparison of ECCs

Code Redundancy (rank) Complexity (rank) Efficiency (rank) Aggregate rank

Repetition High (3) Low (1) High (1) 5

Hamming Low (1) Middle (2) Low (3) 6

BCH Middle (2) High (3) Middle (2) 7

Fig. 2 Frequency versus temperature characteristics of (left) unstable and (right) stable RO pairs
(subscripts A and B refer to the two oscillators of the pair)

length of the original word and d is the minimum Hamming distance between all
pairs of words. Thus, d�1

2
errors can be corrected by this code. The error correction

capability of BCH code is better than Hamming code and the ratio of redundancy to
efficiency is better than the repetition code. It has been widely used to correct noisy
PUF responses. For example, BCH (127, 64, 21) code was used to correct 64-bit
secret keys generated by the ring oscillator PUF (RO-PUF) [79].

The ECCs described above are compared in Table 3. According to Table 3,
repetition code has the best overall performance. The choice of a suitable code,
however, depends on the priorities of the PUF performances. For example, if low
hardware cost is more desirable and fewer errors are allowed, then repetition code
with high redundancy may not be the best choice. On the other hand, low error rate
with faster implementation and higher hardware cost is a more preferred solution
for PUF of high reliability requirements.

3.3 Temperature-Aware PUF

One of the main reasons for PUF response instability is temperature variations. For
instance, the response of RO-PUF is obtained by comparing the frequency of a
pair of oscillators, but some pairs have almost identical frequency. Therefore, the
simplest approach is to choose two oscillators out of a set of n � 4 oscillators. Due
to the temperature variations, the response value of the chosen pair may change.
Thus, the RO pairs may be divided into two groups: stable and unstable (see Fig. 2).

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 53

Fig. 3 Frequency versus supply voltage relation of (left) unstable and (right) stable RO pairs
(subscripts A and B refer to the two oscillators of the pair)

Due to the response instability, the RO pairs are categorized into three
types [63]:

– Good Pair. In this type, ROA has much higher frequency than ROB (or vice
versa) over the entire operating temperature range. This pair will produce a
reliable bit one (or zero) and will be used without any transformations.

– Bad Pair. This type will produce unstable bit over the whole range of operating
temperatures. It will be disconnected from the power source and will not be used.

– Contributing Pair. This type of RO pair will produce unstable bit over some
temperature range. The unsafe temperature ranges [tmin; tmax] for each such pair
are stored in a non-volatile memory (NVM).

This approach reduces the redundancy and stablizes the RO responses. To imple-
ment this approach, small NVM and temperature sensors are required. The informa-
tion stored in the memory is useless for the attacker even if he has access to it.

The unstable responses of temperature dependent RO pairs can also be corrected
by changing the supply voltage [87]. The correction circuit is composed of three
main parts: temperature sensor, reconfigurable ROM and RO-PUF block. The Tem-
perature sensor is required for adjusting the supply voltage. Every temperature
range from �15;�5; 5; : : : ; 75 ıC has a corresponding voltage. A Reconfigurable
ROM is used to store the information during the testing phase. At every temperature
point, the required supply voltage for each RO pair to produce a stable response bit
is selected. The principle behind tuning the supply voltage to rectify the unstable RO
pairs in a chosen temperature range can be explained by the linear relation between
the frequency and supply voltage in Fig. 3. The RO-PUF block contains N RO
chains, each is composed of an odd number of inverters with negative feedback.
The authors investigated inverter chains of 5, 11 and 21 inverters and concluded that
shorter chain leads to better stability.

A more effective way to build the temperature-aware RO-PUF based on supply
voltage modulation is proposed in [52]. Its circuit is depicted in Fig. 4. According
to Fig. 4, the PUF challenge determines which pair of RO will be chosen. At the
same time, the supply voltage configuration corresponding to the PUF challenge
is extracted from the NVM. The configuration is applied to the circuit by PMOS

54 S.S. Zalivaka et al.

Fig. 4 Schematic of Temperature-aware PUF [52]

switches. The supply voltage for reliable operation in the entire temperature range
for every RO pair is stored in the NVM during the testing phase. L voltage levels are
stored and the voltage level for each of the C RO columns may be different. Thus,
there are LC different supply voltage combinations. The memory capacity Cap for
R RO pairs is given by:

Cap D dlog2Le � C � R � .R � 1/

2
(13)

Leakage of the content of the NVM does not divulge any secret to the attacker.
This is because the NVM does not contain the RO frequencies. The supply voltages
are pre-computed during the post-manufacturing testing phase. This approach does
not require any temperature sensors and requires only halve the memory of [63].

In summary, selecting the RO pair based on its safe temperature range or by
changing its supply voltage level is very useful for PUF response stabilization. Very
reliable unique ID generator can be constructed by RO-PUF with such kind of pre-
processing at low hardware cost.

3.4 Reliability Enhancement of Memory-Based PUFs

Memory-based PUFs (MemPUFs) such as SRAM-based PUF, butterfly PUF, sense-
amplifier PUF, flip-flop PUF, buskeeper PUF, or the most recent non-volatile
memory based PUFs (e.g., Phase Change Memory (PCM) based PUF and Spin-
Transfer Torque (STT) Magnetic RAM (MRAM) based PUF) refer to a group
of PUFs that exploit the mismatches of individual memory elements to generate
the response bits. Similar to other types of PUFs, MemPUF is also susceptible
to the noise effects such that the response bit generated from each cell cannot be
reproduced stably over time. For example, if the mismatch of driving ability between
the two cross-coupled inverters in an SRAM-based PUF is too small, the response
bit generation process can be easily distorted by noise which makes the output
bit unreliable. The BERs of most PUFs are as high as 10 %, and can be further

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 55

Temperature
Sensor

Controller

ADC
Module

Vdd Ramp-up
time

SRAM PUF array

Fig. 5 Adapting the ramp-up time of supply voltage to improve the reliability of SRAM PUF

Q=1 QB=0
0

PMOS is stressed
and Vth is
increased

Vdd

BL BLB

WL

Select a cell and
produce the initial

response bit

According to the
initial bit, stress the

corresponding
transistors.

Read the response bit
again and enroll the

response bits with post-
processing modules

Fig. 6 (Left) Aging effects to skew the threshold voltages of transistors in the SRAM-based PUF
cell. (Right) Enrollment of SRAM-based PUF with accelerated aging procedure

aggravated by the variations of environmental conditions such as the change of
ambient temperature and fluctuation of supply voltage.

One approach to improving the reliability of memory-based PUFs is to adapt the
ramping time of the power-up process to generate random bits, [see Fig. 5]. The
experimental results in [8, 48, 76] show that ramping the power-up time helps to
reduce the BER by � 71 % at room temperature. The simulation results in [15] also
demonstrate that adapting the ramp-up time reduces the original BER for different
types of memory-based PUFs effectively at different temperatures.

Another approach proposed in [8] used aging effects to improve the reliability
of bi-stable PUFs [see Fig. 6]. It deliberately skews the characteristics of the
two cross-coupled inverter structure to its preferred data bit after the chip is
manufactured. Since aging effects (negative bias temperature instability (NBTI),
hot carrier injection (HCI), etc.) can be accelerated if the transistors in the inverters
are properly stressed, the characteristics of the two inverters will be biased towards
the preferred data bit to make the output state more distinguishable. An additional
procedure is required to orchestrate this reinforcement after the chip is fabricated

56 S.S. Zalivaka et al.

WL WL

RA RB

Initial read-out

WL WL

RA RB

Initial read-out bit
is written back to

one of the two cells

Write-back

WL

RA RB

Bit regeneration

Noise
effects

Noise
effects

Immune to
noise effects

WL

Fig. 7 Initial read-out response bit when two resistive memory cells in identical state are unstable
in the presence of noise effects. Write-back operation sets one of the cells to an opposite state with
respect to the other. The regenerated response bit from the cells in complementary states is more
stable

and before it is used. A similar method to enhance the reliability of SRAM-based
PUF is also proposed in [23]. The difference is that the later method can also be
used for optimizing the entropy of the PUF cells. The idea of using HCI effects to
age the PUF cell is developed in [7]. The advantage of using HCI is the shorter time
required to stress the devices to obtain an acceptable distinguishability. Furthermore,
the aging procedure is autonomously controlled by an internal circuit so that no
response bits generated from the PUF will be leaked to the outside world.

Without relying on the aging effects as well as the testing procedure, an automatic
write-back scheme is used directly in the non-volatile memory (NVM) based PUF
to improve the reliability of bit generation [101]. To illustrate this idea, an STT-
MRAM based PUF was designed, whose initially generated bit can be written back
to the cell upon completion of the read operation. The response bit can be reliably
regenerated from the cell. This scheme is depicted in Fig. 7. Since the two NVM
cells selected by the challenge to generate a response bit are in complementary state
after a write-back operation, the BER of response bit regeneration from the cell will
be very low, which is in the order of� 10�6 according to the analysis in [101].

3.5 Hybrid PUF Architectures

To improve the quality of earlier discussed classical PUFs, hybrid combinations of
PUFs are used [33, 92].

Figure 8 shows the R-S latch based on the main building block for SRAM based
PUF. If the R and S inputs are not tied together as in Fig. 8, the inputs, S and R,
can take any of the four possible combinations, namely RS 2 f00; 01; 10; 11g. For
normal operation, to obtain a predicted state of this latch, the input transition from
SR D 00 to SR D 11 is forbidden. In this case the R-S latch will converge quickly
back to one of the two stable states, which is either 1 0 or 0 1 , with a certain

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 57

Fig. 8 RS latch based PUF RS (0Æ1)
RS-PUF

Q (1Æ?) Q (1Æ?)

s00

s01

s10

s11

preference depending on the manufacturing mismatch between the two symmetric
half circuits consisting of gates and interconnecting wires. This forbidden transition
can be regarded as the power-up simulation of SRAM-based cell and used as R-S
latch based PUF.

After applying consecutive values of 0 and 1 in a row to the circuit input shown in
Fig. 8, the stable state of Q will be random and unpredictable. This state depends on
the manufacture process variations. When this circuit is replicated, manufacturing
variations cause appreciable differences in the circuit delays. Across a die, device
delays vary due to mask variations—this is sometimes called the system component
of delay variation. There are also random variations in dies across a wafer, and
from wafer to wafer due to, for instance, temperature and pressure variations during
various manufacturing steps. The magnitude of delay variation due to this random
component can be 5 % or more for metal wires, and is sufficiently higher for devices
(gates).

Usually the device delay is evaluated as the propagation delay. The propagation
delay of each gate is a function which is the product of the on resistance of
the gate and the parasitic output capacitance. The equivalent gate resistance and
the output capacitance are both related to the transistor dimension and that is why the
delay is strongly dependent on the manufacture process variation. To increase the
randomness of the variations of timing delay, the hybrid integration of two PUFs is
proposed. This solution combines two approaches, namely the arbiter PUF and the
R-S latch PUF, as shown in Fig. 9.

The key idea behind the proposed hybrid arbiter and RS PUF is to increase the
path delays between the output of one gate of R-S latch and the input of another
(see Fig. 9). The lengths of these paths are extended by n MUXs stages, which cause
the delay to be strongly dependent on not only the manufacturing process variations
of gates and their propagation delay, but also on the value of the applied challenge
C. Depending on C, the response value will be obtained at the output of the last
stage of MUXs.

58 S.S. Zalivaka et al.

LINK0 LINK1 LINKn-1

...

...

C0=0 C1=1 Cn-1=1

RS
(0 1)

RS-PUF

Q (R)

Arbiter PUF

R

S

Q

Q Q

Fig. 9 Hybrid arbiter and RS latch PUF

LINK0 LINK1 LINKn-1

...

...

C0=0 C1=1 Cn-1=1

RO-PUF
Arbiter PUF

>? R

counter

counter

1

m

m
CMP

CNT

CNT

cnt_0

cnt_1

cmp_0

PG

RO-PUF

Fig. 10 Ring oscillator and arbiter PUF

Another example of hybrid PUF solution is the combination of RO PUF and
arbiter PUF, as shown in Fig. 10.

4 Practical Examples of PUF Implementation

This section presents some examples of PUF implementation for identification,
authentication and secret key generation.

4.1 PUF-Based Crypto-Processor for the RFID Systems

Radio Frequency IDentification (RFID) systems are widely used in retailing, assem-
bly lines, pharmaceuticals, transport, access control systems, libraries, custom,
agriculture, livestock and pets, etc., to transfer data wirelessly for the purpose

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 59

Fig. 11 PUF-based RFID system structure

Fig. 12 PUF-based encryption processor

of automatically identifying and tracking the tags attached to objects. Cost and
privacy protection are the two major concerns in using RFID-based identification
and tracking systems. By using PUF as the data storage and processing unit,
unauthorized reading of sensitive personally-linked information can be prevented
with lower hardware cost.

A simple RFID system comprises at least a reader and a transponder (RFID tag)
as shown in Fig. 11. To identify the RFID tag with the reader, some challenge (or
challenges) to the tag is sent. The PUF, upon receiving the challenge, generate a
response. The unstable response is corrected by the ECC-block. The post-processed
stable response is sent back to the RFID reader for checking against the local
database or a database located on a remote server. If the response of RFID-tag is
found in the database, the RFID tag is authenticated. This decision making process
is both fast and secure because PUF is a low-cost hardware entity and its responses
are unique and unpredictable.

The structure of a PUF-based crypto-processor for RFID applications [14] is
depicted in Fig. 12.

Decryption module receives the encrypted challenge, the length of the challenge
and the random number from the server to decrypt the challenge. The encryption
method depends on the instruction code, which is based on XORing some bits of

60 S.S. Zalivaka et al.

1

0

MUX(1,0)

0

1

MUX(0,0)

C0

1

0

MUX(1,1)

0

1

MUX(0,1)

1

0

MUX(1,2)

0

1

MUX(0,2)

CLK

1

0

MUX(1,n-2)

0

1

MUX(0,n-2)

Cn-2

...

... 1

0

MUX(1,n-1)

0

1

MUX(0,n-1)

Cn-1

D
DFF RiS

PG

D
DFF

1

0

MUX0 C0'
D

DFF

1

0

MUX1 C1'

C1

1

0
C2

D
DFF

1

0
D

DFF

...
C2'MUX2 MUXn-2

1

0
D QQQQQ

DFF

MUXn-1

RST

Cn-2' Cn-1'

Sel

Q

Fig. 13 An N-bit arbiter based PUF

the challenge and the random number generated from the server. The length of an
instruction code is N=2 bits. Therefore 2N=2 encryption methods are possible. These
methods have to be simple because the communication between the RFID-tag and
the reader has to be as fast as possible.

The N-bit PUF is designed based on the classic arbiter PUF. To get an N-bit
response from a 1-bit response, N-bit shift register is proposed for the challenge
modification. Every response bit is obtained from the shift register by feeding back
the previous response. N such iterations are used to produce an N-bit unique PUF
response. The structure of the arbiter PUF is depicted in Fig. 13.

The ECC-block corrects the noisy PUF response to achieve a strong authentica-
tion. The correction code used was not mentioned. As the responses generated by
the arbiter PUF are very stable, the use of Hamming or repetition codes is adequate
to eliminate the noise.

Finally, two tasks are performed by the Encryption module, which are encrypt-
ing the corrected PUF response and providing the feedback information for the N-bit
PUF iterations.

This authentication protocol meets the cost and speed criteria for RFID appli-
cations. The method is resistant against various kinds of attacks, such as physical,
modeling, spoofing and location tracking. The shortcoming of this work [14] is that
the impact due to the variations of environmental conditions was not investigated.

The first commercially available RFID tag with embedded PUF was developed
by Verayo Inc. [86]. The RFID system uses authentication protocol and its PUF-
responses are checked by Hamming distances. The general structure of the system
is similar to the one mentioned above (see Fig. 11) without the ECC block. The
details of the actual implementation is proprietary, but the test data are provided

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 61

by [36]. The test results confirmed its reliability and uniqueness. The developed
RFID tag shows excellent performance under a wide range of temperature (from
�45 to 95 ıC). In addition, Verayo Inc. also uses PUF for FPGA IP-protection, anti-
counterfeiting, secure IDs and access, and several other security solutions.

4.2 FPGA IP-Protection with PUF

Digital Watermarking is widely used for the copyright protection of digital artifacts.
Its salient feature, as suggested in 1992 by Andrew Tirkel and Charles Osborne [81],
is “The watermark is capable of carrying such information as authentication or
authorization codes, or even a legend essential for image interpretation”. Today,
digital watermarking is used for more than the copyright protection of images. The
watermark is usually a secret that is used to prove the ownership or authorship of
a digital IP and is stealthily embedded into any form of IPs to be protected against
piracy or misappropriation. Digital fingerprint is an extension of digital watermark.
It carries both the information about the IP-owner and the legal user of the IP. From
the application point of view, the PUF responses can be considered as the fingerprint
of a digital device. Extensive research works have been devoted to the use of PUF
as device fingerprints [21, 29, 30, 57]. Due to the flourishing FPGA IP market and
the vulnerability of FPGA bitstreams to illegal copying and cloning, the bitstream
are usually encrypted but the storage of the encryption key poses additional costs
and security concern. Unique fingerprints generated from an intrinsic PUF without
overhead by exploiting the internal SRAMs of FPGA chips have been proposed as
an alternative solution. Each SRAM bit-cell is essentially an RS-latch implemented
with six transistors arranged as two cross-coupled inverters and two access switches.
When the SRAM cell is off, the R and S inputs are both set, which gives rise to an
unstable state. When the voltage supply to the cell is turned on, the two unstable
logical states must change values and the final stable logic value read out from the
output Q (or Q) will be unpredictable [29]. The variations in the relative threshold
voltages of the transistors making up each cell cause the bit to flip randomly after the
initial state. All memory cells can thus be divided into three classes: zero-skewed
(the values after power-up tend to zeros), one-skewed (the values tend to ones),
mix-skewed (the values are almost uniformly distributed). Experiments conducted
on three identical Virtex II Pro boards [47] show that greater than 90 % of the 4096
SRAM cells are zero-skewed, less than 10 % are one-skewed and the remaining less
than 1 % are mix-skewed.

A typical fingerprint extraction algorithm consists of the following two main
steps:

– Preselection. The digital device is powered-up n times. The most reliable bits
are chosen to be the fingerprint bits. The reliability r for bit bi can be calculated
by Eq. (14), where m is the larger value of the number of occurrences of zeros
and of ones. For example, the bit is reliable if r.bi/ � 95 %.

62 S.S. Zalivaka et al.

Start

RO_OUT

...
INV0

0 1 M/2-1...

ADR

1

1

INV1 INV2 INV3 INVM-2 INVM-1

MUX

AND

INVM

log2(M/2)

CRO

Fig. 14 Configurable ring-oscillator structure

r.bi/ D m.bi/

n.bi/
� 100 % (14)

– Helper data collection. The bits with the high reliability may be corrected by
simple and low hardware cost ECC. Therefore, helper data for the chosen ECC
algorithm is collected to perfectly reproduce the response bits. If identification is
provided by the Hamming distance comparison, then ECC is not necessary.

According to [29], only 19 % of all SRAM cells are selected as the fingerprint
bits. Thus, SRAM-based approach is highly redundant for fingerprint extraction and
unreliable by both Hamming distance based and exact matching. Another problem
is that there are too few unique chips per fingerprint size (64-bit identifier for the
identification of only about 4,000 devices).

Another approach is based on the modified Ring Oscillator PUF (RO-PUF) [32].
A configurable ring-oscillator structure is depicted in Fig. 14. Two parameters,
START pulse duration and address ADR to the multiplexer data select lines are
associated with the circuit implementation of this PUF. The registered pulse count
on the output port ROOUT is the response of the PUF.

Fingerprint extraction experiments are conducted on two Xilinx SPARTAN-
3E (XC3s500e-5FG320) FPGA prototype chips, B0 and B1. The digital device
(see Fig. 15) for pulse registration consists of a start pulse generator SPG, a con-
figurable ring-oscillator CRO, a pulse counter CNT and a LED-indicator controller
SLC. The 50 MHz system clock generator CLKG, the hardware buttons BNT1
(asynchronous initialization signal), BTN2 (result display controller) and three
switches SW(2:0) are included in the digital system Digilent Nexys-2 to control
the device’s operation.

The first stage of the experiment is digital pulse monitoring. The graph in
Fig. 16 plots the difference between the pulse counts NR.k/ of the two boards
versus the scaling coefficient of enabling signal delay time (DS), where k D 2i

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 63

50 MHz

CLKG

BTN1
SPG

Stop_Mask

CRO CNT SLC

BTN2

SW(2:0)

Start RO_OUT

ADR

NR

7-segment
indicators

FPGA Spartan-3E

Digilent Nexsys-2

8.8.8.8.

Fig. 15 Digilent Nexys-2 digital device structure

ADR

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11
i

D NR (k)

0
1
2
3
4
5
6
7

Fig. 16 Difference between the pulse counts of the two broads for different scaling coefficient
k D 2i and all possible values of ADR

for i D 0; : : : ; 10. �NR.k/ becomes non-zero when k D 24 and increases linearly
with k for k � 27 for all addresses (ADR in Fig. 14) of the RO pair.

Experimental data for k D 210 (kDs D 210 � 20 D 20; 480 ns) are shown in
Table 4, where NB0

R .k/ and NB1
R .k/ are the numbers of registered pulses expressed

in hexadecimal number format for the digital systems B0 and B1, respectively. The
arithmetic difference between the two pulse counts are listed in the row labeled
D�.k/ and the Hamming distance in the row labeled H�.k/. Their average values
for this experiment are D�.k/ D 7 and H�.k/ D 2, respectively.

The second stage of experiment is performed by running the digital devices
B0 and B1 100 times with kDS D 20480ns for all values of ADR to monitor the
pulse number deviations. The most frequently appeared number of registered pulses
(NBi

R .k/) in the 100 trials is recorded. The absolute values of deviation for all values

64 S.S. Zalivaka et al.

Table 4 Experimental data for kDs D 20; 480 ns

Parameters
ADR

0 1 2 3 4 5 6 7

NB0

R .k/ 7FC 671 55D 4BB 40F 396 33D 2F2

NB1

R .k/ 7F8 666 557 4B3 408 38F 334 2ED

D�.k/ 4 11 6 8 7 7 9 5

H�.k/ 1 4 2 1 3 3 2 5

Table 5 Probabilities of occurrences of symbol “1”

Parameters
Binary bit positions
10 9 8 7 6 5 4 3 2 1 0

NB0

R .k/ 1.0 0:0 0:0 0:0 0:0 0:0 0:9 0:1 0:1 0:1 0:15

NB1

R .k/ 1.0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0 0:07 0:92

Table 6 Binary identifiers of
digital systems B0 and B1 Parameters

Binary bit positions
10 9 8 7 6 5 4 3 2 1 0

ID.B0/ 1 0 0 0 0 0 1 0 0 0 0
ID.B1/ 1 0 0 0 0 0 0 1 0 0 1

of ADR is less than 2. For example, for ADR = 4, the pulse generator implemented in
B0 produces the following NR.k/ values in hexadecimal representation: 410 (85 %),
40F (10 %), 411 (5 %) and that implemented in B1 produces 409 (92 %), 40A
(7 %), 408 (1 %). The probabilities of occurrences of symbol “1” in every output
bit positions in this experiment are given in Table 5.

To extract the unique chip fingerprints, the above probabilities are used. The
resulting chip IDs are computed by majority principle and given in Table 6. The
different bit values between the two identifiers are printed in bold. The experiment
results show that the Hamming distance between two 11-bit fingerprints (for scaling
coefficient k D 211) is 3, which means that about 400 XC3s500e-5FG320 FPGA
chips can be strongly identified. Increasing the value of k will enable more devices
to be identified.

4.3 PUF-Based True Random Number Generator (TRNG)

Random number sequences are widely used in cryptography, modeling, gaming
industry, random sampling, decision making processes, art and etc. [11]. For
cryptography, the random numbers have to be unpredictable to avoid any security
vulnerabilities. Typically, a TRNG has three major components.

– Entropy Source. To create true random number sequence, a source of ran-
domness based on some physical process (atmospheric noise, thermal noise,

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 65

Fig. 17 Frequency distribution of random sequences of RO-PUF before and after augmented by
LFSR

electromagnetic and quantum phenomena, etc. [65]) is needed. As PUF responses
are generated based on the intrinsic chip process variations, PUF can be used as
an entropy source. FPGA based implementations of TRNG use different sources
like ring-oscillator PUF (RO-PUF) [3, 27, 38, 50, 80, 82], SRAM-PUF [29],
arbiter PUF [75], automatic phase locked loop (PLL) [16, 17, 85], delay locked
loop (DLL) [42], thermal noise [64] and others. PUFs are high-quality and high-
speed entropy sources which are easy to implement and have low hardware cost.

– Compression Scheme. A single source of randomness may yield low quality
random sequence. The quality of a random sequence is assessed by NIST [74]
and Diehard [53] statistical test results. The following approaches are used to
enhance the random sequence quality: XOR tree [17, 27, 50], linear feedback
shift register (LFSR) [75], sampler [38, 42], von Neumann corrector [16] and
alternative step generator for oscillator-phase-noise decorrelation [82]. Our
investigation [98] shows that augmenting the entropy source (RO-PUF) by
LFSR and XOR-tree makes the random sequence more uniformly distributed
(see Fig. 17).

– Random Number Register. After post-processing (compression), the random
number will be stored in register. The stored information may be transmitted
directly to the end-user or used as cryptographic nonces in authentication
protocol.

Experiments were conducted for different PUF based TRNGs implemented on
Xilinx SPARTAN-3E (XC3s500e-5FG320) FPGA chips mounted on two Digilent
Nexys-2 prototype boards, B0 and B1. Xilinx ISE WebPack [89] was used for
the VHDL project design and the FPGA was configured with Digilent Adept
software [18]. The data analysis was conducted with NIST and Diehard statistical
test packages and STATISTICA line of software [77].

66 S.S. Zalivaka et al.

Fig. 18 Modified RO-PUF structure

Fig. 19 RO-PUF based TRNG

4.3.1 RO-PUF Based TRNG

Figure 18 shows the modified RO-PUF structure used for the construction of entropy
source. It is built up of 2n+1 inverters with a feedback path. The number of inverters
should be odd to create a meander output signal. Instead of counters in the classical
structure, multiplexer is added to provide two modes of operations: SRAM-PUF
(EN = “0”) and RO-PUF (EN = “1”).

In RO-PUF mode, the output frequency FQ will be unique, unclonable and
unpredictable for each chip. Therefore, this mode can be used to generate random
numbers. However, as mentioned earlier, this randomness has low quality. To
overcome this problem, the TRNG circuit shown in Fig. 19 is proposed.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 67

Table 7 Sample Pirson correlation coefficients for RO-PUF based TRNG

B0 first launch B0 second launch B1 first launch B1 second launch

B0 first launch 1:000000 0:003840 �0:002286 �0:001483

B0 second launch 0:003840 1:000000 0:003972 �0:002834

B1 first launch �0:002286 0:003972 1:000000 �0:004674

B1 second launch �0:001483 �0:002834 �0:004674 1:000000

Table 8 RO-PUF based
TRNG hardware costs

Resource Used Available % of used

Slice flip flops 273 9,312 3

LUTs 1,883 9,312 20

This circuit consists of four blocks:

– Single Pulse Generator. This block generates single pulse with pulse width X.
This pulse defines the RO-PUF’s behavior.

– PUF-chain. k RO-PUF entities are chained to generate the initial random number
sequence.

– XOR-tree. A k-input XOR-gate is used to obtain one output bit from k PUF
response bits.

– LFSR. This block is used to generate pseudo random number sequences but with
true random seed. A D-digit true random number is produced by this block. It
also represents a one-channel signature analyzer.

Thus, the TRNG is configured by the tuple (n, X, k, D). The configuration (n D 2,
X D 262144, k D 256, D D 2) is used to generate 1:6 � 108 random bits. More than
90 % of the samples have successfully passed all NIST tests for both chips. The
Diehard tests results also confirm the high random sequence quality.

The correlation between four random sequences generated by B0 and B1 was also
investigated. The sample Pirson correlation coefficients are shown in Table 7. Our
experiment results show that the sample Pirson correlation coefficients are small
(the absolute value is less than 0.005). Our statistical hypothesis test shows no
Pirson correlation between different sequences at a significance level of ˛ D 0:05.
In conclusion, our test results confirm that this TRNG can produce unclonable,
unpredictable, non-reproducible and uncorrelated true random number sequences.

The hardware resources required to implement this TRNG with n D 2, X D
262; 144, k D 256 and D D 2 on FPGA are shown in Table 8. Comparing with other
RO-PUF based TRNGs, the proposed implementation uses four times less number
of flip-flops but double the LUTs [50]. Other TRNGs like [82] would require twice
as much hardware costs of our implementation.

68 S.S. Zalivaka et al.

Ci

Mux

U1

U2

Ri

Output Output

cba

1

0

Fig. 20 Dual-mode hybrid PUF: (a) complete structure, (b) RO-PUF mode, (c) SRAM-PUF mode

Fig. 21 General structure of SRAM-based TRNG and unique ID generator

4.3.2 SRAM-PUF Based TRNG

The hardware overhead of the TRNG can be reduced by creating entropy source
from hybrid PUF [95]. A dual-mode hybrid PUF is implemented by two invertors
and a multiplexer, as shown in Fig. 20a. Similar to the modified RO-PUF of Fig. 18,
this circuit can also operate in two modes: RO-PUF (Challenge = “0”) (Fig. 20b)
and SRAM-PUF (Challenge = “1”) (Fig. 20c).

In the SRAM-PUF mode, the SRAM-cell behavior is emulated by the bistable
element (i.e., couple of invertors). This device can be used for unique chip ID
generation and to create random sequences from the IDs. The general structure is
illustrated in Fig. 21.

The circuit needs to be powered up to generate the ID. Experimental results
show that the ID repetition probability is 0.02 and about 81.25 % of the ID bits
are stable. Thus, the power-up states of the SRAM-PUF can be used as chip ID with
preselection and error correction. There is no need for ID stabilization if the main
objective is to build a TRNG.

Figure 22 provides a visual interpretation of a 64-bit ID. For each cell ci, a fully
black cell represents p.ci/ D 1:0, a fully white cell represents p.ci/ D 0:0 and a

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 69

Fig. 22 The probabilities of
state one output for the
SRAM-cells in (a) chip B0

and (b) chip B1

Table 9 Distance metrics between IDs of B0 and B1

Distance metric Min distance Max distance Avg distance
Distance between
chip ID

Euclidean distance 4:58257 5:29150 4:90749 5:19615

Hamming distance 21:0000 28:0000 24:11000 27:00000

Minkowski distance (p = 3) 7:00000 9:33333 8:03667 9:00000

Correlation distance 0:66386 0:89579 0:76400 0:85820

Cosine distance 0:27994 0:39975 0:33585 0:49015

Correlation distance 0:32812 0:43750 0:37672 0:42188

Table 10 Average Hamming
distance between projects, P0,
P1 and P2, loaded in B0

Project P0 Project P1 Project P2

Project P0 0:0 27:05 33:26

Project P1 27:05 0:0 29:25

Project P2 33:26 29:25 0:0

Gray color cell represents 0:0 < p.ci/ < 1:0, where p.ci/ is the probability of
logic one output for each SRAM-cell ci in n power-up experiments. More black cells
imply larger p.ci/ value.

To calculate the chip ID, majority principle was used. As shown in Fig. 22, the
probability distribution of the SRAM cells for each chip is different. This is also
evident from the different distance metrics between the IDs of the prototype boards,
B0 and B1, obtained in Table 9. The relatively large Hamming distances are good
evidences that the 64-bit chip IDs generated by this PUF are distinctive.

Different FPGA projects result in different circuit topologies. The average
Hamming distances of three different projects loaded onto the same prototype board
are shown in Table 10. It can be seen that the IDs generated by the SRAM PUF differ
not only between chips, but also vary with the projects loaded in a chip.

Adaptive signature analyzer (ASA) [35] were proposed as a compression scheme
to generate unique, unclonable and unpredictable random number sequences from
the chip ID. The 64-bit chip ID is compressed into a 6-bit number S by:

S D ˚N�1
iD0 Ai;8IDŒAi� D 1 (15)

70 S.S. Zalivaka et al.

Table 11 Hardware costs of
SRAM-PUF based TRNG

Resource Used Available % of used

Slice flip flops 15 9,312 0.2

LUTs 710 9,312 7.6

Fig. 23 Arbiter PUF based
TRNG

PUF
Arbiter0

N-bit Multichannel LFSR

Random number register

PUF
Arbiter1

PUF
Arbitern-1

1
R1

1
R0

1
Rn-1

n

n n n

C

where Ai is the SRAM cell address (a number in [0, 63]), N is the number of SRAM
cells and IDŒi� is the bit value of the ID stored in address i.

To test the randomness, a 6�107-bit sequence is generated by the proposed TRNG.
This bit-sequence was tested by NIST and Diehard packages. Pirson correlation test
was also conducted. The test results proved that the generated true random number
sequences are of high quality.

Thus, this approach accomplishes two complementary tasks: unique chip iden-
tification and true random number generation. Similar results were obtained by
Holcomb et al. [29] but our results are better in terms of resource utilization,
especially in the number of flip-flops used, and bit stability. The hardware costs,
excluding the cost of the signature analyzer, for the generation of a 256-bit ID are
shown in Table 11.

4.3.3 Arbiter PUF Based TRNG

Instability of classic arbiter PUF responses is a well-known problem [26]. The use of
N parallel arbiter PUFs to whiten the responses was proposed in [97]. Multichannel
LFSR [4] was used to compress the generated bit-sequence. The general TRNG
structure is shown in Fig. 23.

To generate random number sequences, all possible n-bit challenges are applied
to the arbiter PUF’s inputs. The PUF responses are fed to the multichannel LFSR
to obtain a uniform distribution. Similar experiments as before are conducted and
random sequences of high quality are also confirmed by statistical testing (NIST,

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 71

Table 12 Hardware costs of
arbiter PUF based TRNG

Resource Used Available % of used

Slice flip flops 20 9,312 0.2

LUTs 163 9,312 1.8

id

idcnt: Ci
PUF
(CR)
enable

ASA
adr

data compress

n 1 k

1

request

CR*

GSt

BW t

Control
FSM

cnt: m

cnt: t

msb
+1cnt: Ri

Fig. 24 Arbiter PUF based identification device structure

Diehard, statistical hypothesis). The hardware costs, excluding multichannel LFSR,
are shown in Table 12. The most prominent advantage of this implementation is the
savings of more than four times of hardware resources over other TRNGs. Its main
drawback is the very slow generation of random sequences (about 10 Kb per second
by USB interface).

Another approach to use arbiter PUF for unique chip ID generation is proposed
in [34]. The identification device structure is depicted in Fig. 24. The CR� block
generates unstable challenge-response pairs. The GSt block generates the bit
probabilities while the BWt block stabilizes the responses. Finally, the id block
generates the identifier.

The arbiter PUF challenge-response pairs were formed by challenge repetition
(tD 15 times). Experiment results indicated that the responses were unstable. To
obtain stable response, the t responses are transformed into a binary number by
majority principle. As it is inconvenient to use a n = 256-bit stable response to
identify an FPGA chip, the response is compressed by an ASA. According to our
experimental results, the two FPGA chips B0 and B1 were found to have different
stable 8-bit IDs (ID.B0/ D “01111000” and ID.B1/ D “11101100”).

Our investigation of the above mentioned FPGA PUF implementations show
that PUF can be used as a source of unique chip fingerprint (identifier) and true
random number sequences. To accomplish these two opposite tasks, the PUF
responses will have to be processed in different ways. From the experiments
conducted on the physical prototypes, the investigated PUFs are very attractive

72 S.S. Zalivaka et al.

entropy sources with high security, low hardware resources utilization, response
uniqueness, unpredictability and unclonability [96].

5 Emerging Types of PUFs

Besides conventional types of PUF, there is a group of emerging PUF instances
featuring new properties and/or retrofitting applications.

5.1 Reconfigurable PUF

Reconfigurable PUF (rPUF) is a kind of PUF whose challenge-response mapping
characteristics can be altered given a different configuration state (denoted as s
hereafter).

The original conception of rPUF was proposed by Kursawe [41], though there
are some other PUF instances that have similar feature but different notations. Le
et al. [102] categorize rPUF into two groups, namely Logically rPUF (L-rPUF) and
Physically rPUF (P-rPUF). By definition, the L-rPUF relies on logical interfaces
(often called control logic) to obfuscate the challenge-response pairs of its internal
PUF according to the configuration state. P-rPUF exploits the intrinsically alterable
properties of the PUF device itself to realize the reconfiguration. This physical
property alteration is triggered by stimulating the PUF with an external effect. The
operation mechanisms of L-rPUF and P-rPUF are shown in Fig. 25.

In [41], the authors introduce an implementation of P-rPUF that exploits the sen-
sitivity to optical stimulation of certain material to achieve physical reconfiguration.
Each time the material is exposed under a laser beam, its physical characteristics will
be disordered. The response bits extracted from the PUF change after this process.

Control
Logic

Internal
PUF

Control
Logic

S

CintC Rint R

Block diagram of L-rPUF

PUFC R PUFC R'

External effects
regulated by s

Block diagram of P-rPUF
R'≠R

Fig. 25 Block diagrams of L-rPUF (top) and P-rPUF (bottom)

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 73

Another P-rPUF instance proposed in [41, 100] exploits the measurable resis-
tance of phase change memory (PCM) cells to produce the response bits. By
re-programming the cell with new electrical pulses, resistance values of the PCM
cells can be changed, which in turn changes the response bits. Detailed analysis
and experimental demonstration of PCM-based rPUF are further presented in [102].
A novel design of PCM-based rPUF that has enhanced security against prediction
attacks was also developed. Instead of relying on the measurable resistance, the
number of electrical pulses that converges a cell resistance to a pre-determined value
is used as a response.

Rhumair et al. [73] defined a PUF primitive called “Erasable” PUF, which is
essentially a P-rPUF. It is constructed based on resistive memory structured as
a cross-bar array. Whenever a voltage across the memory cell is higher than the
threshold, the I-V characteristics of the cell will be altered. Therefore, the measured
electrical characteristic that is digitized as response bit is refreshed.

Device aging effects were also applied to change the device physics so as to
alter the challenge-response mapping of a PUF. Meguerdichian and Potkonjak [54]
proposed the aging PUF to match the challenge-response characteristics of two
PUFs to establish an authentication protocol between two parties.

On the other hand, L-rPUF can be dated back to [25] where the “Controlled”
PUF was proposed. It is basically a hash function that interfaces the input challenge
and the output response. Due to the diffusion effect of the hash function, the real
challenge and response of the PUF are hidden. The controlled PUF can be used to
thwart certain man-in-the-middle attack. A generalized version of the controlled
PUF is the “Logically Recyclable” PUF [19, 37]. It also uses control logic to
interface the challenge and response, but the interface is implemented as block
cipher whose state is kept secret. By initializing the PUF with different configuration
states, the challenge and response are diffused by the cipher module in a different
way.

rPUF has the following advantages over the conventional PUFs for use in
security-critical systems and highly information-sensitive applications.

• Its challenge-response behavior can be dynamically updated.
• The space of possible responses of PUF is expanded.

In [41], rPUF is proposed to use for the protection of persistent storage of security
module. Owing to the reconfigurability of rPUF derived keys, malicious update of
the keys such as invasive setting of the internal states of the storage, can be detected.
In [102], the advantage of rPUF is discussed for its enhanced resilience against
prediction attack. The authors of [73] introduce a key-exchange scheme based on
the Erasable PUF to resolve a security issue in a conventional protocol.

Apart from using rPUF to improve the security level of the PUF primitive itself or
the protocol constructed from it, rPUFs are also proposed to improve the reliability
of certain PUF instances. The authors of [49, 90, 94] independently proposed the
use of configurable structure on FPGA platform to design ring-oscillator PUF that
has better quality. The basic idea is to choose fundamental elements through a

74 S.S. Zalivaka et al.

multiplexer to achieve a ring-oscillator PUF that has the best performance in terms
of reliability and uniqueness.

Logically recyclable PUF introduced in [37] makes PUF reusable in certain
applications such as recyclable RFID-based authentication token, air flight luggage
tags, secure update of secret keys, prevention of malicious downgrading of software
version, etc.

5.2 SIMPL/Public PUFs

Simulation-Possible-but-Laborious (SIMPL) systems [12, 13, 68–70, 72] and Public
PUFs (PPUFs) [6, 51, 54, 62, 66, 88] refer to a group of PUFs (or PUF systems)1

that can be used in a way analogous to public-key cryptography. Basically, a PPUF
has the following features [70]:

• PPUF is a physical system that can generate a device-specific response R when
stimulated by a challenge C due to the physical disordered properties of the
system;

• The challenge-response mapping behavior of the physical system is assumed to
be stable over time;

• A numerical algorithm, denoted as Sim, exists to calculate R according a given C.
But the speed of obtaining a response using Sim from the system is remarkably
slower than directly deriving the responses from the system.

Owing to the asymmetry between physical evaluation and computer simulation,
the PPUF always computes the responses to the given publicly known challenges
faster than any other means. While the asymmetry of public-key cryptography
stems from the use of different keys to perform the function and its inverse, PPUF
relies on the heavy mismatch between the efficiency of physically synthesized and
software simulated response generation to establish security protocols that can
achieve similar effects. Instead of relying on the mathematical intractability of
deriving the private key from the public key, the strength of PPUF protocol lies
in the fact that the adversaries are unable to obtain the secret keys in time to break
the cryptographic system.

As an example, assuming Alice (denoted as A) and Bob (denoted as B) are
communicating based on a simple identification protocol. A physically holds the
PPUF and has made the simulation method Sim of the PPUF public. A can then
prove her identity to B via the protocol as shown in Fig. 26 [70].

Other protocols such as authentication, key-exchange, bit-commitment and zero-
knowledge proof can also be established based on PPUFs.

There are a number of implementations of PPUF proposed in the literature. In
[12, 72], SRAM based and Cellular Non-linear Network based SIMPL systems

1For convenience, we refer to both SIMPL system and PPUF as PPUF hereafter.

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 75

Fig. 26 Identification protocol based on PPUF

are proposed. The former design essentially exploits the reliance of SRAM write
operation on the scaling of power supply voltage. If the supply voltage is over-
scaled, write malfunction will occur and the data bit will fail to be written into
the cell. Simulating successive write-after-read operations performed iteratively
on a large array is always much less efficient compared to the realistic physical
execution of the same procedure on SRAM chips. The latter design exploits the
two-dimensional analog array to realize a PPUF. Since the communication with the
CNN is by nature via the transmission of analog signals, it is much faster compared
to software simulation. A speed gap between the physically evaluated responses
using the CNN based PUF and the simulated response is big enough to construct a
public-key cryptography from it.

In [6, 51], PPUFs are constructed based on a network of XOR gates. Though the
delays of the XOR gates are publicly known, owing to the interleaving inputs and
outputs of the gates, numerically evaluating the output with the known XOR gate
delays is a much tedious job compared to obtaining the results directly from the
circuit itself. The idea of PPUF was further developed in [62] as differential PPUF.
This new primitive removes the reliance of the XOR-gate based PPUF on accurate
clock manipulation. Instead, it uses two input signals to race against each other for
the purpose of evaluating a final output. Matched PPUF is another variant following
this train of thoughts [54]. It exploits aging effects of IC devices to achieve accurate
match of two individual PPUF devices that cannot be matched with a third one. In
this manner, two parties can establish a secure communication protocol by using
their matched PPUFs, and any other malicious attempts to match the devices will be
futile owing to their extremely low efficiency.

Besides conventional CMOS based implementation, PPUF can also be realized
by emerging technologies. In [66], the PPUF is designed by memristors configured
in a cross-bar array. By making use of the non-linearity of memristive device and
the bi-directionality of signal transmission between adjacent devices, sneak path
that is exponential to the size of the array can possibly be found. By randomly
selecting M-omino shapes from the array to transmit signals to obtain the outputs at

76 S.S. Zalivaka et al.

certain nodes, it takes much longer time to obtain the results via software simulation
than physical evaluation. A similar idea was proposed in [88] as “Bidirectional
Polyomino Partitioned” PPUF where either memristors or nanowires are used
as media to construct a PPUF that relies on the uniqueness of the partitions of
bidirectional array to achieve the asymmetry between simulation and physical
evaluation.

6 Conclusion

Physical cryptography has become heated research topics in the recent years.
Physical Unclonable Functions that exploit the physical disordered properties
of integrated devices/systems to produce device-specific responses given certain
stimulus, have been studied for a variety of security applications such as hard-
ware identification, device authentication, secret key generation, random number
sequence generation, unique serial numbering, etc. The past few years have
witnessed a great many research achievements triggered by the invention of PUF
including new applications of PUFs, quality enhancement techniques, and novel
implementations of PUF primitives and associated protocols.

In this chapter, we reviewed the fundamentals of PUF, and then gave an extensive
introduction of how PUF can be applied in the contemporary hardware-based
security applications. We also presented a broad overview of the classical as well as
the state-of-the-art techniques for PUF quality enhancement. We then presented the
implementation methods of conventional PUFs for alternative usages and emerging
types of PUFs that feature appealing properties not usually found in earlier PUFs.
In the long term, we envision that the innovations in this area will continue in
a direction that will result in commercially viable security-enhanced integrated
products with PUF as an integral part of the networked terminals and mobile
devices.

References

1. Agarwal, A., Blaauw, D., Zolotov, V.: Statistical timing analysis for intra-die process
variations with spatial correlations. In: IEEE/ACM International Conference on Computer-
Aided Design, San Jose, pp. 900–907 (2003)

2. Armatix. Armatix ip1 limited edition set. http://www.armatix.us/iP1-Limited-Edition.804.0.
html?&L=7 (2014). Accessed 23 April 2014

3. Ayat, M., Atani, R.E., Mirzakuchaki, S.: On design of PUF-based random number generators.
Int. J. Netw. Secur. Appl. 3(3), 30–40 (2011)

4. Bardell, P.H., McAnney, W.H., Savir, J.: Built In Test for VLSI: Pseudorandom Techniques.
Wiley, New York (1987)

5. Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC piracy using reconfigurable logic
barriers. http://www.univ-st-etienne.fr/salware/Bibliography_Salware/ICProtection/article/
Baumgarten2010.pdf (2010). Accessed 23 April 2014

http://www.armatix.us/iP1-Limited-Edition.804.0.html?&L=7
http://www.armatix.us/iP1-Limited-Edition.804.0.html?&L=7
http://www.univ-st-etienne.fr/salware/Bibliography_Salware/IC Protection/article/Baumgarten2010.pdf
http://www.univ-st-etienne.fr/salware/Bibliography_Salware/IC Protection/article/Baumgarten2010.pdf

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 77

6. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public physi-
cally unclonable functions. In: Information Hiding, Darmstadt, pp. 206–220. Springer, New
York (2009)

7. Bhargava, M., Mai, K.: A high reliability PUF using hot carrier injection based response
reinforcement. In: Workshop on Cryptographic Hardware and Embedded Systems, Santa
Barbara, pp. 90–106 (2013)

8. Bhargava, M., Cakir, C., Mai K.: Reliability enhancement of bi-stable PUFs in 65nm bulk
CMOS. In: IEEE International Symposium on Hardware-Oriented Security and Trust, San
Francisco, pp. 25–30 (2012)

9. Bohm, C., Hofer, M., Pribyl, W.: (2011) A microcontroller SRAM-PUF. In: IEEE Interna-
tional Conference on Network and System Security, Milan, pp.269–273 (2012)

10. Canada, I.: Archived – principles for electronic authentication. A Canadian framework. http://
www.ic.gc.ca/eic/site/ecic-ceac.nsf/eng/h_gv00240.html. Accessed 23 April 2014

11. Charmaine, K.: Random number generators: An evaluation and comparison of random.org
and some commonly used generators. Technical report, Trinity College Dublin (2005)

12. Chen, Q., Csaba, G., Ju X., Natarajan, S., Lugli, P., Stutzmann, M., Schlichtmann, U.,
Ruhrmair U.: Analog circuits for physical cryptography. In: IEEE International Symposium
on Integrated Circuits, pp. 121–124 (2009)

13. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Stutzmann, M., Ruhrmair, U.: Circuit-based
approaches to SIMPL systems. J. Circ. Syst. Comput. 20(01), 107–123 (2011)

14. Choi, W., Kim, S., Kim, Y., Park, Y., Ahn, K.: PUF-based encryption processor for the
RFID systems. In: IEEE International Conference on Computer and Information Technology,
Bradford, pp. 2323–2328 (2010)

15. Cortez, M., Hamdioui, S., van der Leest, V., Maes, R., Schrijen, G.J.: Adapting voltage ramp-
up time for temperature noise reduction on memory-based PUFs. In: IEEE International
Symposium on Hardware-Oriented Security and Trust, Austin, pp. 35–40 (2013)

16. Danger, J.L., Guilley, S., Hoogvorst, P.: High speed true random number generator based on
open loop structures in FPGAs. Microelectron. J. 40(11), 1650–1656 (2009)

17. Dejun, L., Zhen, P.: Research of true random number generator based on PLL at FPGA. In:
International Workshop on Information and Electronics Engineering, Harbin, Heilongjiang,
vol. 29, pp. 2432–2437 (2012)

18. DigilentInc (2014) Digilent adept for windows. http://www.digilentinc.com/ (2014).
Accessed 15 March 2014

19. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-based
secure key storage. In: ACM workshop on Scalable Tusted Computing, Chicago, pp. 59–64
(2011)

20. Fedbizoppsgov (2014) Vanishing programmable resources (vapr). https://www.fbo.gov/
index?s=opportunity&mode=form&tab=core&id=880ecdf170660730fe0fb8745f5c2bec
(2014). Accessed 23 April 2014

21. Fruhashi, K., Shiozaki, M., Fukushima, A.: The arbiter-PUF with high uniqueness utilizing
novel arbiter circuit with delay-time measurement. In: IEEE International Symposium on
Circuits and Systems, Rio de Janeiro, pp. 2325–2328 (2011)

22. Gainsford, P.: DS2703 SHA-1 Battery Pack Authentication IC. Maxim Integrated, San Jose
(2014)

23. Garg, A., Kim, T.T.: Design of SRAM PUF with improved uniformity and reliability utilizing
device aging effect. In: IEEE International Symposium on Circuits and Systems, Melbourne,
pp 1941–1944 (2014)

24. Gassend, B.: Physical random functions. Master’s thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology (2003)

25. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Controlled physical random functions.
In: Annual Computer Security Applications Conference, Las Vegas, pp. 149–160 (2002)

26. Gassend, B., Clarke, D., vanDijk, M., Devadas, S.: Silicon physical random functions. In:
ACM Conference on Computer and Communications Security, Washington, pp. 148–160
(2002)

http://www.ic.gc.ca/eic/site/ecic-ceac.nsf/eng/h_gv00240.html
http://www.ic.gc.ca/eic/site/ecic-ceac.nsf/eng/h_gv00240.html
http://www.digilentinc.com/
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=880ecdf170660730fe0fb8745f5c2bec
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=880ecdf170660730fe0fb8745f5c2bec

78 S.S. Zalivaka et al.

27. Guler, U., Ergun, S.: A high speed IC random number generator based on phase noise in ring
oscillators. In: IEEE International Symposium on Circuits and Systems, Paris, pp. 425–428
(2010)

28. Hamming R.: Error detecting and error correcting codes. Bell. Syst. Tech. Syst. 29, 147–160
(1950)

29. Holcomb, D.E., Burleson, P.W., Fu, K.: Power-up SRAM state as an identifying fingerprint
and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)

30. Holotyak, T., Voloshynovskiy, S., Koval, O., Beekhof, F.: Fast physical object identification
based on unclonable features and soft fingerprinting. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, Prague, pp. 1713–1716 (2011)

31. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical performance
evaluation of arbiter physical unclonable functions on FPGAs. In: IEEE International
Conference on Reconfigurable Computing and FPGAs, Cancun, pp. 298–303 (2010)

32. Ivaniuk, A.A.: Application of configurable pulse generator for FPGA identification. Infor-
matika (Informatics) (4), 113–123, (2011, in Russian)

33. Ivaniuk, A.A.: Embedded Systems Design. Bestprint, Minsk (2012, in Russian)
34. Ivaniuk, A.A.: Physical unclonable functions unique FPGA chip identification algorithm

hardware implementation. In: International Conference Information Technologies and Sys-
tems, Minsk, pp. 184–185, (2013, in Russian)

35. Ivaniuk, A.A., Yarmolik, V.N.: Testable Design of Digital Devices. Bestprint, Minsk (2006,
in Russian)

36. Kang, H., Hori, Y., Satoh, A.: Performance evaluation of the first commercial PUF-embedded
RFID. In: IEEE Global Conference on Consumer Electronics, Tokyo, pp. 5–8 (2012)

37. Katzenbeisser, S., Kocabaş, Ü, van der Leest, V., Sadeghi, A.R., Schrijen, G.J., Wachsmann
C.: Recyclable PUFs: Logically reconfigurable PUFs. J. Cryptogr. Eng. 1(3), 177–186 (2011)

38. Kohlbrenner P., Gaj K.: An embedded true random number generator for FPGAs. In: ACM
International Symposium on Field Programmable Gate Arrays, Monterey, pp. 71–78 (2004)

39. Koushanfar, F.: Integrated circuits metering for piracy protection and digital rights manage-
ment: An overview. In: Great Lakes Symposium on VLSI, Lausanne, pp. 449–454 (2011)

40. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF: Protecting
IP on every FPGA. In: IEEE International Symposium on Hardware-Oriented Security and
Trust, Anaheim, pp. 67–70 (2008)

41. Kursawe, K., Sadeghi, A., Schellekens, D., Skoric, B., Tuyls, P.: Reconfigurable physical
unclonable functions-enabling technology for tamper-resistant storage. In: IEEE International
Symposium on Hardware-Oriented Security and Trust, San Francisco, pp. 22–29 (2009)

42. Kwok, S., Lam, E.: Fpga-based high-speed true random number generator for cryptographic
applications. In: TENCON IEEE Region 10 Conference, Hong Kong, pp. 1–4 (2006)

43. Lee, J.W, Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build
a secret key in integrated circuits for identication and authentication applications. In: IEEE
Symposium on VLSI Circuits, Honolulu, pp. 176–179 (2004)

44. Lehtonen, M., Staake, T., Michahelles, F., Fleisch, E.: From identification to authentication –
a review of RFID product authentication techniques. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.330.8769&rep=rep1&type=pdf (2008). Accessed 23 April 2014 (2008)

45. Lin, S., Costello, D.: Error Control Coding, Fundamentals and Applications. Pearson
Education International, New Jersey (2004)

46. Lofstrom, K.: (2007) ICID a robust, low cost integrated circuit identification method. http://
www.siidtech.com/white9.pdf(2014). Accessed 23 April 2014

47. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable
devices. http://www.cosic.esat.kuleuven.be/publications/article-1173.pdf (2008). Accessed
30 Jan 2014

48. Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., Van der Sluis, E., van der Leest, V.:
Experimental evaluation of physically unclonable functions in 65 nm CMOS. In: IEEE
European Solid-State Circuit conference, Bordeaux, pp. 486–489 (2012)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.8769&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.8769&rep=rep1&type=pdf
http://www.siidtech.com/white9.pdf
http://www.siidtech.com/white9.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1173.pdf

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 79

49. Maiti, A., Schaumont, P.: Improving the quality of a physical unclonable function using
configurable ring oscillators. In: IEEE International Conference on Field Programmable
Logic and Applications, Prague, Czech Republic, pp. 703–707 (2009)

50. Maiti, A., Nagesh, R., Reddy, A., Schaumont, P.: Physical unclonable function and true
random number generator: a compact and scalable implementation. In: ACM Great Lakes
Symposium on VLSI, Boston Area, pp. 425–428 (2009)

51. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for design and implementation of
secure reconfigurable PUFs. ACM Trans on Reconfigurable Technol. Syst. 2(1), 5 (2009)

52. Mansouri, S.S., Dubrova, E.: Ring oscillator physical unclonable function with multi level
supply voltages. In: International IEEE Conference on Computer Design, Montreal, pp. 520–
521 (2012)

53. Marsaglia, G.: Diehard: A battery of tests of randomness. http://stat.fsu.edu/_geo (1996).
Accessed 28 Jan 2014 (1996)

54. Meguerdichian, S., Potkonjak, M.: Matched public PUF: ultra low energy security platform.
In: IEEE/ACM International Symposium on Low Power Electronics and Design, Fukuoka,
pp. 45–50 (2011)

55. Moon, T.: Error Correction Codeing: Mathmatical Methods and Algorithms. Wiley, New York
(2005)

56. Moreira, J.: Essentials of Error-Control Coding. Wiley, New York (2006)
57. Okumura, S., Yoshimoto, S., Kawaguchi, H., Yoshimoto, M.: A physical unclonable function

chip exploiting load transistors’ variation in SRAM bitcells. In: IEEE Asia and South Pacific
Design Automation Conference, Yokohama, pp. 79–80 (2013)

58. Pappu S.R.: Physical one-way functions. PhD thesis, School of Architecture and Planning,
Massachusetts Institute of Technology (2001)

59. Pappu, R., Recht B., Taylor J., Gershenfeld N.: Physical one-way functions. Science 297,
2026–2030 (2002)

60. Pasupathinathan, V.: Hardware-based identification and authentication systems. PhD thesis,
Faculty of science, Macquarie University (2009)

61. Porsch, R.: Protecting devices by active coating. J. Univ. Comput. Sci. 4(7), 652–668 (1998)
62. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Differential public physically

unclonable functions: architecture and applications. In: ACM Design Automation Confer-
ence, San Diego, pp. 242–247 (2011)

63. Qu, G., Yin, C.E.: Temperature-aware cooperative ring oscillator PUF. In: IEEE International
Workshop on Hardware-Oriented Security and Trust, San Francisco, pp. 36–42 (2009)

64. Ranasinghe D., Lim D., Devadas S., Abbott D., Cole P.: Random numbers from metastability
and thermal noise. Electron. Lett. 41(16), 13–14 (2005)

65. Randomorg (2014) Introduction to randomness and random numbers. http://www.random.
org/randomness/(2013). Accessed 03 Feb 2013

66. Rose G.S., Rajendran J., McDonald N.R., Karri R., Potkonjak M., Wysocki B.T.: Hardware
security strategies exploiting nanoelectronic circuits. In: IEEE Asia and South Pacific Design
Automation Conference, Yokohama, pp. 368–372 (2013)

67. Roy, J.A., Koushanfar F., Markov I.L. EPIC: Ending piracy of integrated circuits. Computer
43(10), 30–38 (2007)

68. Rührmair, U.: SIMPL systems: On a public key variant of physical unclonable functions.
IACR Cryptology ePrint Archive 2009:255 (2009)

69. Rührmair, U.: SIMPL systems, or: can we design cryptographic hardware without secret key
information? In: Conference on Current Trends in Theory and Practice of Computer Science,
Novy Smokovec, Slovakia, pp. 26–45 (2011)

70. Rührmair, U.: SIMPL systems as a keyless cryptographic and security primitive. In: Cryptog-
raphy and Security: From Theory to Applications. Spinger, New York , pp. 329–354 (2012)

71. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable functions.
http://eprint.iacr.org/2009/277.pdf (2009). Accessed 23 April 2014

72. Rührmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, U., Csaba, G.: Towards
electrical, integrated implementations of SIMPL systems. In: International Workshop on

http://stat.fsu.edu/_geo
http://www.random.org/randomness/
http://www.random.org/randomness/
http://eprint.iacr.org/2009/277.pdf

80 S.S. Zalivaka et al.

Information Security Theory and Practices. Security and Privacy of Pervasive Systems and
Smart Devices, Passau, pp. 277–292 (2010)

73. Rührmair, U., et al.: An attack on PUF-based session key exchange and a hardware-based
countermeasure: Erasable PUFs. In: International Conference on Financial Cryptography and
Data Security, Divi Flamingo Beach Resort, Bonaire, pp. 190–204 (2012)

74. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M.,
Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite For Random And Pseudoran-
dom Number Generators For Cryptographic Applications. NIST Special Publication 800–22,
Gaithersburg (2010)

75. Sadr, A., Zolfaghari-Nejad, M.: Physical unclonable function (puf) based random number
generator. Adv. Comput. Int. J. 3(2), 139–145 (2012)

76. Selimis G., Konijnenburg M., Ashouei M., Huisken J., de Groot H., van der Leest V., Schrijen
G.J., van Hulst M., Tuyls P.: Evaluation of 90nm 6t-SRAM as physical unclonable function
for secure key generation in wireless sensor nodes. In: IEEE International Symposium on
Circuits and Systems, Rio de Janeiro, pp. 567–570 (2011)

77. StatSoftInc. Statistica line of software. http://www.statsoft.com/ (2014). Accessed 15 March
2014

78. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pj/bit chip identification circuit using process
variations. IEEE J. Solid-State Circuits 43(1), 69–77 (2008)

79. Suh, G., O’Donnell C., Devadas S.: Aegis: A single-chip secure processor. IEEE Des. Test
Comput. 24(6), 570–580 (2007)

80. Sunar, B., Martin, W., Stinson, D.: A provably secure true random number generator with
built-in tolerance to active attacks. IEEE Comput. 56(1), 109–119 (2007)

81. Tirkel, A.Z., Rankin, G.A., Van-Schyndel, R.M., Ho, W.J., Mee, N.R.A. Osborne, C.F.:
Electronic water mark. In: IEEE International Conference on Digital Image Computing:
Techniques and Applications, Sydney, pp. 666–673 (1993)

82. Tsoi, K., Leung, K., Leong, P.: High performance physical random number generator. IET
Comput. Digit. Tech. 4(1), 349–352 (2007)

83. Tuyls, P., Skoric, B., Kevenaar, T.: Security with Noisy Data. Springer, New York (2007)
84. Tuzzio, N., Xiao, K., Zhang, X., Tehranipoor, M.: A zero-overhead IC identification technique

using clock sweeping and path delay analysis. In: ACM Great Lakes Symposium on VLSI,
Salt Lake Cit, pp. 95–98 (2012)

85. Varchola, M., Drutarovsky, M., Fouquet, R., Fischer, V.: Hardware platform for testing
performance of TRNGs embedded in actel fusion FPGA. In: IEEE International Conference
Radioelektronika, Prague, pp. 1–4 (2008)

86. VerayoInc. Verayo inc. http://www.verayo.com/ (2014). Accessed 15 March 2014
87. Vivekraja, V., Nazhandali, L.: Feedback based supply voltage control for temperature varia-

tion tolerant PUFs. In: IEEE International Conference on VLSI Design, Chennai, pp. 214–219
(2011)

88. Wendt, J.B., Potkonjak, M.: The bidirectional polyomino partitioned PPUF as a hardware
security primitive. In: IEEE Global Conference on Signal and Information Processing, Austin,
pp. 257–260 (2013)

89. XilinxInc. Xilinx ise design tools. http://www.xilinx.com/ (2014). Accessed 15 March 2014
90. Xin, X., Kaps, J., Gaj, K.: A configurable ring-oscillator-based PUF for xilinx FPGAs. In:

IEEE Euromicro Conference on Digital System Design, Architectures, Methods and Tools,
Oulu, pp. 651–657 (2011)

91. Yarmolik, V., Demidenko, S.: Pseudorandom Signals Generation and Use in the Control and
Test Systems. Nauka and Technika, Minsk (1986, in Russia)

92. Yarmolik, V.N., Vashinko, Y.G.: Physical unclonable functions. Informatika (Informatics) 2,
92–103 (2011, in Russian)

93. Yu, M.D., Devadas, S.: Correction for physical unclonable functions. IEEE Des. Test Comput.
27 48–65 (2010)

94. Yu, H., Leong, P.H.W., Xu, Q.: An FPGA chip identification generator using configurable ring
oscillators. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(12), 2198–2207 (2012)

http://www.statsoft.com/
http://www.verayo.com/
http://www.xilinx.com/

Design and Implementation of High Quality PUF for Hardware-Oriented Cryptography 81

95. Zalivaka, S.S., Ivaniuk, A.A.: Combined physical unclonable function circuit implementation
for generation true random number sequences. Doklady BGUIR 7(77), 37–43 (2013, in
Russian)

96. Zalivaka, S.S., Ivaniuk, A.A.: Physical unclonable functions as entropy source to build true
random number generator. In: Belarus-Korea forum Science. Innovation. Production, Minsk,
pp. 87–88 (2013)

97. Zalivaka, S.S., Ivaniuk, A.A.: True random number sequences generation with arbiter physical
unclonable function. In: International Conference Information Technologies and Systems,
Minsk, pp. 204–205, (2013, in Russian)

98. Zalivaka S.S., Ivaniuk A.A. The use of physical unclonable functions for true random number
sequences generation. Autom. Control Comput. Sci. 47(3), 156–164 (2013)

99. Zhang, X.: On-chip structures and techniques to improve the security, trustworthiness
and reliability of integrated circuits. http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?
article=6219&context=dissertations. Accessed 23 April 2014 (2013)

100. Zhang, L., Kong, Z.H., Chang, C.H.: PCKGen: a phase change memory based crypto-
graphic key generator. In: IEEE International Symposium on Circuits and Systems, Beijing,
pp. 1444–1447 (2013)

101. Zhang, L., Fong, X., Chang, C.H., Kong, Z.H., Roy, K.: Highly reliable memory-based
physical unclonable function using spin-transfer torque MRAM. In: IEEE International
Symposium on Circuits and Systems, Melbourne, VIC (2014, to appear)

102. Zhang, L., Kong, Z.H., Chang, C.H., Cabrini, A., Torelli, G.: Exploiting process variations
and programming sensitivity of phase change memory for reconfigurable physical unclonable
functions. IEEE Trans. Inf. Forensics Secur. 9, 921–932 (2014)

http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=6219&context=dissertations
http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=6219&context=dissertations

Digital Bimodal Functions and Digital Physical
Unclonable Functions: Architecture
and Applications

Teng Xu and Miodrag Potkonjak

Abstract Security and low power have emerged to become two essential
requirements to modern design. The rapid growth of small form, mobile, and remote
sensor network systems require secure and ultra-low power data collection and
communication solutions due to their energy constraints. The physical unclonable
functions (PUFs) have emerged as a popular new type of modern security primitive.
They have the properties of low power/energy, small area, and high speed.
Moreover, they have excellent security properties and are resilient against physical
and side-channel attacks. However, traditional PUFs have two major problems.
The first is that the current designs are analog in nature and lack stability in
environmental and operational variations, e.g., supply voltage and temperature. The
second is that due to the analog nature, the analog PUFs are difficult to be integrated
into existing digital circuitry.

In order to leverage the disadvantages of traditional analog PUF, we have
proposed two new security primitives, respectively the digital bimodal function
(DBF) and the digital PUF. The proposed security primitives preserve all the good
properties of traditional analogy PUFs and are stable in the same sense that digital
logic is stable. Moreover, both design can be easily integrated into existing digital
circuitry. The key idea of DBF is to build a mapping of randomly generated Boolean
functions that has two forms: fcompact and fcomplex, among which fcompact can be
computed rapidly and requires only a small amount of energy while fcomplex can
only be computed using a very high amount energy, hardware resources, and an
unacceptable amount of time. The performance difference can be applied to enable
security protocols. The digital PUF is one more step beyond the DBF, it is designed
on the top of DBF to make the DBF design to be unclonable. The key observation
is that for any analog delay PUF, there is a subset of challenge inputs for which the
PUF output is stable regardless of operational and environmental conditions. We
use only such stable inputs to initialize the look-up tables (LUTs) in DBFs that are
configured in such a way that the overall structure is unclonable.

We summarize the goal of designing DBF and digital PUF by identifying
the architectural, security, and application desiderata. The architectural desiderata

T. Xu • M. Potkonjak (�)
University of California, Los Angeles, Los Angeles, CA, USA
e-mail: xuteng@cs.ucla.edu; miodrag.potkonjak@gmail.com

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_3

83

mailto:xuteng@cs.ucla.edu
mailto:miodrag.potkonjak@gmail.com

84 T. Xu and M. Potkonjak

include (1) low energy, delay, and area costs; (2) stability against temperature and
voltage variations. The security desiderata include (3) resiliency against security
attacks; (4) high outputs randomness; (5) low inputs-outputs correlations. Finally,
the application desiderata include (6) small computation, low bandwidth secure
protocols.

1 Introduction

The rapid proliferation of mobile systems and devices that operate in potentially
hostile environments has elevated security to be one of the most important design
metrics. For example, security is essential in smart phones, laptops, and wireless
sensor networks. Classical software-based public-key cryptography provides a
spectrum of elegant and powerful security protocols. However, it is also subject to
several important limitations and drawbacks. The most important drawbacks include
susceptibility to physical and side channel attacks and high implementation and
energy costs.

The physical unclonable function (PUF) is a cryptographic primitive that has
been suggested for many secure domains due to its low power requirements.
PUFs are physical devices that have a random but deterministic mapping of inputs
to outputs. Their unclonability and functionality are often inextricably tied to
the physical characteristics of the device components (e.g. gate delay, leakage
energy). While PUFs receive and generate digital inputs and outputs, they are
analog in nature due to their reliance and design based on their inherent physical
characteristics. Thus, current PUFs have many limitations. The most limiting of
which includes susceptibility to environmental and operational conditions. Many
PUFs, including the standard delay-based PUF require arbiters to operate. These
memory components limit the PUF in terms of placement and coordination in
circuitry since their outputs cannot be used directly in the current clock cycle like a
combinational module, but instead, require an additional clock cycle to be used.

These main limitations can be removed by creating a security primitive purely in
digital domain. The digital security primitive must be stable in the same sense that
digital logic is stable against environmental and operational conditions and must
produce deterministic outputs for all input vectors. The digital security primitive
must be integrable with existing combinational logic without requiring additional
clock cycles to use its outputs. And lastly, the digital security primitive must be
flexible in the sense that its structure can be altered for different tradeoffs between
security, energy, and delay as required by the pertinent task.

In this chapter, we present two security primitives with such characteristics,
respectively DBF and digital PUF. The essential idea behind the DBF is to have two
forms of a function in which one form is fast and compact (fcompact) and the other
is slow and complex (fcomplex). Both forms have exactly the same functionality, (i.e.
given the same input, both forms produce the same output). Figure 1 demonstrates
an example of the FPGA-based implementation of fcompact. The architecture is

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 85

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

in
te

rs
ta

ge
 sh

uffl
in

g

in
te

rs
ta

ge
 sh

uffl
in

g

4

4

4 4

4

4

in
te

rs
ta

ge
 sh

uffl
in

g

4

4

4

Primary
Inputs

in
te

rs
ta

ge
 sh

uffl
in

g

4

4

4

Final
Outputs

Fig. 1 Example of an FPGA-based DBF LUT network

composed of a randomly connected FPGA network. The hierarchical structure is
constructed by feeding the output of the previous stage’s LUTs as the input to the
next stage. Meanwhile, we use the direct mapping between the primary input and
the final output as fcomplex of the DBF. As a result, both forms have exactly the
same functionality. However, as the number of primary inputs and stages in the
LUT network grows, the hardware implementation of fcompact stays in a relatively
compact form while fcomplex grows exponentially.

The second security primitive digital PUF incorporates the standard analog delay
PUF into the design of DBF. The key observation is that for any analog delay PUF,
there is a subset of challenge inputs for which the PUF output is stable regardless
of operation and environmental conditions. We use only such stable inputs to
initialize the look-up tables (LUTs) in the DBF so that the digital PUF is formed.
We claim that our design forms a digital PUF in the following sense. In the first
place, the basic idea of our proposed design is to utilize the digital functionality
of the pseudorandomly connected LUT network to generate multi-input and multi-
output mappings. However, traditional PUFs rely on the effect of process variation
in the analog properties of the circuit (e.g., delay, frequency, leakage) to generate
unique outputs. In our design, although we also utilize the delay-based PUF to
ensure unclonability, the responses are only used to initialize the LUT cells of the
DBF. Another important argument is that our FPGA-based digital PUF is not subject
to operational and environmental conditions. For instance, it is a known fact that
many analog systems are highly sensitive to variations, especially temperature, and
supply voltages. Our FPGA-based digital PUF completely removes this problem
because of the digital nature of the DBF and the utilization of the stable challenge-
response pairs for the part of the delay-based PUF.

Our technical goal is to propose DBF and digital PUF as two new types of low-
power hardware security primitives. Since digital PUF inherits the properties of
DBF and shares the similar architecture, besides, it has the advantage of unclon-
ablility, we briefly compare digital PUF with traditional cryptographic cyphers,
analog PUFs. Compared to the traditional cryptographic cyphers, digital PUF has

86 T. Xu and M. Potkonjak

the advantage of low-power, low-area, and high-speed. E.g, using our proposed
structure of LUT networks, the encryption/decryption only requires one clock
cycle computation. Compared to traditional analog PUFs, digital PUF resolves the
problem of instability by completely operating in the digital domain. To be more
specific, it utilizes the digital logic functions to build the inputs-outputs mapping.
Consequently, it is resilient to the environmental and operational variations.

In this chapter, we first review the previous work on PUFs, then we demonstrate
the FPGA-based architecture of the DBF and the digital PUF. Afterwards, we
analyze the security of the DBF and digital PUF by applying the NIST randomness
benchmark test suite [1] and demonstrating that it passes all the tests. We also
analyze the outputs of both security primitives using the security principles of
confusion and diffusion, as presented by Shannon [2], through demonstration of the
avalanche criterion. Lastly, we explore two important security protocols. Our first
protocol is public key communication with DBF. It utilizes the unique property of
DBF to enable low-energy, high-speed, small-area public key communication. The
second protocol is remote trust, which utilizes digital PUF to enable authentication
between parties remotely.

2 Related Work

In this section, we first review the previous works on PUFs, then we give more
specific introductions on various types of public PUFs (PPUFs).

2.1 Physical Unclonable Functions

Pappu et al. introduced the concept of the first PUF and demonstrated it using
mesoscopic optical systems [3]. Devadas’ research group at MIT developed the
first family of silicon PUFs through the use of intrinsic process variation in
deep submicron integrated circuits [4]. Guajardo and his coworkers at Philips
Research in Eindhoven demonstrated how PUFs can create unique startup values
in SRAM cells [5]. Consequently a great variety of technologies were used for PUF
creation including IC interconnect networks, thyristors, memristors, and several
nanotechnologies. Although a variety of PUF structures have been proposed, arbiter-
based (APUF) [4], ring oscillator-based (RO-PUF) [6], and SRAM PUFs [5] are by
far most popular.

PUFs were immediately applied to a number of applications including authen-
tication, cryptographic key generation and secure storage [7], anti counterfeiting
[8], FPGA intellectual property (IP) protection [9], remote enabling and disabling
of integrated circuits [10], remote trusted sensing [11, 12], and random number
generator [13]. PUFs are also used in conjunction with traditional creation and
operation of remote secure processors [14]. The security role of the PUF has been

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 87

greatly enhanced with several proposals for employing PUFs in public key security
protocols in systems such as the public PUF (PPUF), SIMPL, and one time pads
[15, 16]. Recently, the matched PPUF (mPPUF) [17] has been proposed as a new
public key security primitive. mPPUF uses both process variation and device aging
to create pairs of identical PPUFs that can be matched only with negligible small
probability. It is a very energy efficient security primitive that can be used in a
variety of cryptographic protocols.

Our DBF/digital PUF is also a type of PPUF which enables public key cryptog-
raphy. In the next part of related work, we will give more specific introduction on
various types of PPUFs and compare them with our DBF/digital PUF.

2.2 Public PUFs

PPUFs have extended the practicality of PUFs by enabling the creation of public
key protocols. While PUFs require that their characterization and structure remain
hidden and secret, the PPUF design and characterization is disclosed to the public.
In this way, the design itself becomes the public key. PPUFs have small area
footprint and orders of magnitude lower energy consumption than their traditional
cryptographic counterparts. The applications of PPUFs in securing internet of things
are proposed in [18].

2.2.1 XOR Network Delay PUF

Beckmann et al. proposed the first PPUF model along with accompanying protocols
for public key cryptography [15]. The public key consisted of the complete charac-
terization of the design, including gate-level characteristics, such as leakage energy
and delay. Due to the effects of process variation, inherent doping concentrations
variances and line-edge roughnesses manifested as different values of effective
channel lengths and threshold voltages which ultimately effect leakage energy and
delay of each transistor. In this way, the public key was random, and unclonable,
however, still able to be simulated, although very arduous to do so due to the design.

The architecture of Beckmann’s PPUF is a gridded network of XOR gates.
Due to inherent intrinsic manufacturing variability, the physical characteristics of
each XOR gate differ. Specifically, due to variations in doping concentrations
and line edge roughness, differences in threshold voltages and effective channel
lengths emerge. When sending an input through the gates, the rising edges will race
throughout the gridded network. Each XOR gate will transition upon the arrival of
a new rising or lowering edge and emit the output corresponding to its input at that
particular time. These signals will propagate throughout the circuit, causing multiple
transitions at each XOR gate. The input challenge is a combination of both the input
vectors (x.0/, x.1/) as well as a time delay (t) at which to read the outputs of the
network.

88 T. Xu and M. Potkonjak

The design of this PPUF takes advantage of the glitching effects of multiple
propagating and delayed signals throughout the XOR network. This architecture
also requires ultra accurate, ultra precise, and ultra high frequency clocks in order
to operate on the physical PPUF, and, for larger PPUFs, requires much longer
simulation times for the communicating parties wishing to initiate authorized
contact with a PPUF owner.

2.2.2 Differential PUF

The differential PPUF eliminates the need for ultra accurate clock manipulation for
high precision timing as well as long simulation times [19]. Like its predecessor,
the unclonability of the differential PPUF relies on the inherent randomness in
manufacturing variability, specifically manifesting as variances in gate delays. A key
novelty of this architecture is that the challenge vector is reduced from two input
vectors plus a timestamp to a single input vector. This eliminates the need for
accurate clock capturing of glitch temporal characteristics because it only requires
the measurement of the frontier signal.

Consider the differential PPUF booster example depicted in Fig. 2. If the input
switches from 0000 to 0101, output i will switch at times 6 and 11, j at times 9 and
12, k at times 8 and 9, and l at times 7 and 12. By placing an arbiter with inputs from
i and k and a second arbiter with inputs from j and k, we eliminate the need for high
precision timing by only capturing the first winner of the two paths. Hence, only
frontier signals are necessary. However, since one has to simulate only these frontier
signals, an architecture in which one can predict which frontier signals will not cause
transitions is not secure. Thus, in addition to booster cells, the differential PPUF
includes represser cells consisting of a NAND gate network to terminate subsets of
propagating signals in an unpredictable manner, such as the one depicted in Fig. 3.
Together, the alternation of booster cells followed by represser cells creates a highly
non-linear system that is exponentially hard to simulate with a linear size increase.

Fig. 2 Differential PPUF
booster cell example. The
delay of a rising edge from
input i to output j is denoted
by ıij

δae 3 δei 7
δbe 4 δfi 2
δcf 5 δej 5
δdf 4 δfj 8
δag 4 δgk 5
δbg 5 δhk 4
δch 8 δgl 7
δdh 4 δhl 3

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 89

Fig. 3 Differential PPUF
represser cell example

2.2.3 Device Aging and Matched PUFs

All previously proposed PPUFs, including the differential PPUF, are potentially sub-
ject to long-term reverse engineering attacks. The device aging-based PPUF design
eliminates the possibility of these attacks through dynamic reconfiguration. The key
idea is to leverage device aging to alter the PUF’s physical properties, thus changing
its behavior. Specifically, device aging through techniques such as NBTI can
permanently alter the threshold voltages of gates, thus increasing their delay [20].

The key limitation to the original device aging-based PPUF, along with all
other previously designed PPUFs, is that they employ a large time gap between
execution and simulation to enable public key communication. While each PPUF
design provided faster simulation time on the part of the authentication party than its
predecessor, the fact remains that at least one participating party requires significant
resources for communication in comparison to the participant in possession of the
physical PPUF.

The matched PPUF architecture attempts to remove the need for simulation
entirely by supplying both communicating parties with physical PPUFs that are
globally unique post fabrication, but can be made identical through a novel matching
procedure. This procedure is executed in such a way that only the two participating
PPUFs become identical while it is probabilistically negligible that a third snooping
adversary is able to match as well.

The architecture of the matched PPUF utilizes booster cells and represser cells,
similar to those designed for the differential PPUF and depicted in Figs. 2 and 3. The
first matched PPUF architecture consisted of h stages of b booster cells followed by
r represser cells, and interstage networks connecting them as depicted in Fig. 4.
Matching is done post fabrication when two communicating parties, each with their
own PPUF, enable, disable, and age their individual sets of gates until a portion of
gates are matched between the two of them and their PPUFs now implement the
same functionality.

An adversary snooping on the matching protocol is still only able to match
58.3 % of the configuration [17]. Attempting to match the remaining gates through
simulation or special purpose hardware is not quick enough to successfully imitate
the physical PUF. Furthermore, the task is made even more difficult by increasing
the size of the PPUF, thereby increasing the total number of unmatched adversarial
gates which has an exponential increase in simulation complexity.

90 T. Xu and M. Potkonjak

Fig. 4 Device aging-based matched PPUF architecture

Compared to all the previous work on PPUFs, our DBF/digital PUF have the
advantage of completely operating in the digital domain. Besides, they have even
faster speed and lower energy. Starting from the next section, we formally introduce
the DBF/digital PUF. Since digital PUF is built based on the structure of DBF, we
first introduce the design of DBF, then explain how we build digital PUF from DBF.

3 Digital Bimodal Functions

We demonstrate the design of DBF in this section. We start from a motivational
example, then explain the architecture of DBF for both fcompact and fcomplex. Lastly,
we compare the two forms of DBF using experimental data.

3.1 A Motivational Example

The concept of the digital bimodal function (DBF) was first proposed by Xu et al.
[21]. The essential idea behind the DBF is to represent a set of binary functions in
two forms, one which is fast and compact (fcompact) and the other which is slow and
complex (fcomplex). Both forms have exactly the same functionality, in other words,
given the same inputs, both forms produce the same outputs.

Equations (1)–(3) illustrate an example of a DBF. As a prerequisite, ai, bi, and ci

are binary values, and the function sets f and g are Boolean functions in the form
of sums of products (SOP) and/or products of sums (POS) representing fcompact and
fcomplex, respectively. Equation (1) represents the relationship between ai and bi and
Eq. (2) represents the relationship between bi and ci. Note that each function f has 4
binary inputs assigned in a random and permanent order.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 91

Equation (3) is generated by substituting (1) into (2), yielding a direct rela-
tionship between ai and ci. Note that substitutions are expanded and simplified
so that each sub function in g is in the form of a SOP or a POS. The key
observation here is that while both f and g implement the same functionality, f
can be computed much more rapidly than g since it is in a compact format in which
each subfunction requires only four inputs, while g is in an expanded format in
which each subfunction requires up to n variables. It has been shown that the size
difference between fcompact and fcomplex increases exponentially with an increase in
input variables and additional levels of substitution [21].

In order to visualize the size difference between fcompact and fcomplex, we first set
up a few premise, then quantify their size difference.

The first premise is that we put both fcompact and fcomplex into the form of a sum
of products and simplify them by using the tool Simple Solver. We then compare
the total number of products. Note that the simplification procedure reduces the
size of the Boolean functions, but only by a constant factor. In Example I, after
simplification, fcompact can be expressed by the group of functions in (1c), which has
19 products, and fcomplex can be expressed by the functions in (1e), which have 67
products.

Inputs: ai 2 f0; 1g; i 2 f0; 1; 2 : : : n � 1g
Outputs: ci 2 f0; 1g; i 2 f0; 1; 2 : : : n � 1g
Variables: bi 2 f0; 1g; i 2 f0; 1; 2 : : : n � 1g

rj 2 f0; 1; 2 : : : n � 1g; j 2 f0; 1; 2 : : : 8n � 1g
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

b0 D f0.ar0 ; ar1 ; ar2 ; ar3 /

b1 D f1.ar4 ; ar5 ; ar6 ; ar7 /

b2 D f2.ar8 ; ar9 ; ar10 ; ar11/

� � �
bn�1 D fn�1.ar4n�4 ; ar4n�3 ; ar4n�2 ; ar4n�1/

(1)

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

c0 D fn.br4n ; br4nC1
; br4nC2

; br4nC3
/

c1 D fnC1.br4nC4
; br4nC5

; br4nC6
; br4nC7

/

c2 D fnC2.br4nC8
; br4nC9

; br4nC10
; br4nC11

/

� � �
cn�1 D f2n�1.ar8n�4 ; ar8n�3 ; ar8n�2 ; ar8n�1/

(2)

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

c0 D g0.a0; a1; a3; : : : ; an�1/

c1 D g1.a0; a1; a3; : : : ; an�1/

c2 D g2.a0; a1; a3; : : : ; an�1/

� � �
cn�1 D gn�1.a0; a1; a3; : : : ; an�1/

(3)

92 T. Xu and M. Potkonjak

Table 1 Size comparison between fcompact and fcomplex with different number of iterations
and different number of primary inputs

of iterations # of inputs Avg. # of products .fcompact/ Avg. # of products .fcomplex/

4 8 23.2˙2.8 259.2˙16.1

5 10 28.7˙3.1 765.6˙68.7

6 12 34.6˙3.5 3816.0˙245.2

7 14 39.0˙3.8 11454.8˙758.1

8 16 46.7˙4.1 49206.4˙2684.8

9 18 52.1˙4.3 142491.6˙7520.1

10 20 57.8˙4.6 369656.8˙19265.5

The average number of products are tested with 95 % interval confidence

The second premise is that each single sub-function in fcompact has at most 4
inputs, just as shown in Example I, which is used to limit the size of fcompact.

The third one is that the number of outputs is the same as the number of inputs
in each iteration, e.g., in Example I, the number of ai equals to the number of bi and
ci; i 2 f0; 1; 2; : : : ; 7g.

The last premise is that the number of iterations is half of the number of inputs.
While iterations can create size difference between fcompact and fcomplex, the size is
also limited by the number of inputs. Therefore the number of iterations should be
proportional to the number of inputs, as an example, we set it to be half.

Based on the above definition, with the increase in the number of inputs, we
randomly generate a group of functions as fcompact and the corresponding fcomplex,
then compare the number of products.

The size difference between fcompact and fcomplex determines their difference in
computation complexity. According to Table 1, the number of products in fcompact

grows linearly while the number of products in fcomplex grows exponentially. For
example, when the number of inputs is 20, the average # of products in fcompact

is 57.8 while the average # of products in fcomplex reaches approximately 370,000
which is 6,400 times larger. Therefore, by increasing the number of inputs as well
as the number of iterations, it is very easy to create a huge computation gap between
fcompact and fcomplex.

3.2 FPGA-Based Implementation

Figure 5 depicts the FPGA-based implementation of the fcompact of the DBF defined
in Eqs. (1)–(3). The architecture is composed of two levels of 4-input LUTs. Note
that each 4-input LUT implements a 4-input Boolean function from f . A hierarchy
structure is constructed by feeding the outputs of the previous level of LUTs to the
inputs of the next level of LUTs which is equivalent to the function substitution.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 93

Fig. 5 An example of the
FPGA-based DBF fcompact

LUT network

Fig. 6 A combinational logic implementation of DBF fcompact LUT network

Therefore, the LUT network directly implements fcompact in the DBF. As the number
of inputs and the number of levels in the LUT network grow, the expanded form of
fcomplex becomes very difficult to be implemented in hardware (grows exponentially)
while fcompact remains in a relatively compact form (grows linearly).

An even more compact FPGA implementation is to use sequential logic. The
key idea is to iteratively use one level of LUT networks. This requires each level of
sub functions in fcompact to have the same format. For example, the combinational
logic in Fig. 6 can be replaced with the sequential logic in Fig. 7. Compared to

94 T. Xu and M. Potkonjak

Fig. 7 A sequential logic implementation of DBF fcompact LUT network

Table 2 Average synthesis
resources compared between
DBF form fcompact and form
fcomplex

Levels Inputs fcompact LUT # fcomplex LUT #

4 8 8 81

5 10 10 396

6 12 12 1616

7 14 14 4353

8 16 16 13576

9 18 18 31155

10 20 20 98282

The Input # does not have to be twice as the circle
#, we set it here as an example. The tests are based
on the Spartan-3 XC3S50-5 FPGA and synthesized
using the Xilinx ISE

the combinational logic, the sequential logic saves the number of LUTs required.
It takes iterations (each iteration is corresponding to a clock cycle) to produce
the outputs while the number of clock cycles is equal to the levels of LUT in the
combinational logic.

Now we consider the hardware implementation of fcomplex. We use the Xilinx ISE
Design Suite to synthesize fcomplex and compare the resources it requires with fcompact.
For a fcompact structure with a given number of inputs and cycles, we generate the
corresponding fcomplex, then convert it to a netlist and synthesize it to acquire the
number of LUTs required in order for it to be implemented on the FPGA. We change
the input # in the experiment and set the cycle # to the half of the inputs #. Table 2
indicates that fcomplex requires many more LUTs than fcompact and the difference keeps
growing with the increase of the input #, which could easily reach the extent that
the hardware implementation of fcomplex costs so much that it can only be simulated.
Through this technique, due to the time difference between implementation and
simulation, the time difference between fcompact (private key) and fcomplex (public key)
can be further expanded.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 95

Table 3 Comparisons between fcompact and fcomplex

fcompact fcomplex

Operation Implementation Simulation

Time (8 inputs, 4 iterations) 29:2˙ 3:67(ns) .1:18˙ 0:08/ � 104(ns)

Time (10 inputs, 5 iterations) 37:0˙ 4:02(ns) .4:33˙ 0:49/ � 104(ns)

Time (12 inputs, 6 iterations) 45:1˙ 5:48(ns) .1:63˙ 0:12/ � 105(ns)

Time (14 inputs, 7 iterations) 53:9˙ 5:51(ns) .5:77˙ 0:48/ � 105(ns)

Time (16 inputs, 8 iterations) 61:4˙ 6:49(ns) .2:31˙ 0:25/ � 106(ns)

Time (18 inputs, 9 iterations) 69:5˙ 7:36(ns) .6:75˙ 0:49/ � 106(ns)

Time (20 inputs, 10 iterations) 77:2˙ 7:99(ns) .1:61˙ 0:19/ � 107(ns)

The results show an average implementation/simulation time with the standard
deviation

3.3 fcompact and fcomplex Comparisons

Based on the above discussion, Table 3 shows the comparisons between fcompact

and fcomplex. Both of them can be simulated, but only fcompact can be implemented
by the sequential logic on an FPGA using a reasonable amount of resources.
As implementation is generally faster than simulation, we choose to implement
fcompact rather than to simulate it. When applying 20 inputs and 10 iterations, the
implementation of fcompact takes only 77.2 ns while the simulation of fcomplex takes
more than 1:6�107 ns. The ratio of time difference reaches 2�105. Note that for an
fcompact structure with a larger size, the time difference can grow easily very large.
For different applications, the size of fcompact structure can vary.

The LUT network architecture based on configurable logic blocks (CLBs) on
FPGA provides a very intuitive and simple way to implement fcompact, while for
fcomplex the implementation on FPGA takes too many resources, requiring it to be
simulated. The time and efficiency difference between fcompact and fcomplex on FPGAs,
which would be utilized for security purposes, offers us a strong reason to choose
FPGA as an ideal platform.

4 Digital PUF

The concept of digital PUF is first proposed by Xu et al. [22, 23]. It is built on the
top of the DBF architecture. The key idea is to incorporate the design of DBF with
the traditional delay-based PUF to build the digital PUF. To be more specific, there
are two major components that compose the digital PUF: a stable delay-based PUF
and a lookup table (LUT) network from DBF. In the following parts of the section,
we first explain our technique to create stable challenges of delay-based PUF, then
we demonstrate the detail architecture and operations to create the digital PUF.

96 T. Xu and M. Potkonjak

Fig. 8 Applying a 3-bit input challenge to a delay-based PUF. The challenge is intentionally
chosen in this example in such a way that the delay difference between the two paths (red and
blue) are maximized

Table 4 Delay differences
between all possible paths in
the example delay-based PUF
in Fig. 8

Challenge Delay difference

000 3

001 �3

010 �11

011 11

100 �3

101 3

110 �5

111 5

4.1 Stable Challenges and Outputs

Figure 8 depicts an example of a 3-bit delay-based PUF. Each challenge bit controls
the inputs of two multiplexers. An output bit is generated by assigning a challenge
vector and sending a rising edge through the PUF. The two paths traverse the three
delay segments, swapping positions (top and bottom) depending on the input bit at
each segment, before arriving at the arbiter which determines the final output. For
example, an input challenge of 011 generates the blue and red paths depicted. An
arbiter will set its value to 0 or 1 depending on which path (top or bottom) arrives
first, effectively selecting the path that has the smaller delay. Table 4 consists of
the delay differences between the top and bottom paths for all possible paths in the
example PUF in Fig. 8.

A key observation is that for each unique delay-based PUF there exists a
set of challenges that produce stable outputs. Consider the situation in which
environmental conditions affect the physical characteristics of the circuit. For
example, variations in temperature cause variations in individual gate delays,
thereby affecting the overall path delays in the analog PUF. Since challenges 011
and 010 result in a large difference in delay between the two racing paths, it is
still with high possibility that the red path will have a larger delay compared to the
blue path despite the effects temperature may have on the individual gate delays. We

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 97

label this challenge, and any other challenges that are resilient to such environmental
changes, as stable inputs.

For path delay analysis we introduce a delay ratio metric, which is defined as
the delay differences of two paths divided by the delay of the shorter path. For the
purposes of testing, we assume that gate delays follow a normal distribution due to
the effects of process variation.

Delay Ratio D Delayp1 �Delayp2

min.Delayp1; Delayp2/
(4)

We use the delay ratio, as defined in Eq. (4), to evaluate the relative delay
difference between the two PUF paths. In the following test we assume that the
gate delays of the PUF follow a normal distribution due to the effects of process
variation.

The distribution of the delay ratio for random challenges on a 32-bit PUF and a
64-bit PUF are depicted in Fig. 9. In both cases, they follow a normal distribution
with their means at 0. The standard deviation of the 64-bit PUF is smaller than the
32-bit PUF. To better visualize the probability that the delay ratio is larger than some
value, we use Table 5 to show the quantified result.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

Delay Ratio

P
ro

ba
bi

lit
y

D
en

si
ty

32−bit PUF, μ=0, σ=0.0348

64−bit PUF, μ=0, σ=0.0304

Fig. 9 Distributions of delay ratios for a 32-bit PUF and a 64-bit PUF

98 T. Xu and M. Potkonjak

Table 5 Probability that the delay ratio (R) is larger than the labelled threshold value for a
32-bit and 64-bit PUF

P.R � 0:04/ (%) P.R � 0:06/ (%) P.R � 0:08/ (%) P.R � 0:1/ (%)

32-bit PUF 12.51 4.27 1.07 0.21

64-bit PUF 9.34 2.44 0.43 0.05

Table 6 Probability that outputs of the 32-bit PUF are stable over varying
temperatures for different delay ratios

Delay ratio (TD 300 K)
Temperature (K) 0.04 0.05 0.06 0.07 0.08 0.09 0.1

250 0.979 0.987 0.994 0.997 1 1 1

350 0.969 0.975 0.989 0.994 0.997 1 1

400 0.937 0.951 0.959 0.977 0.988 0.996 1

Table 7 Probability that outputs of the 64-bit PUF are stable over
varying temperatures for different delay ratios

Delay ratio (TD 300 K)
Temperature (K) 0.04 0.05 0.06 0.07 0.08 0.09 0.1

250 0.984 0.986 0.996 0.998 1 1 1

350 0.982 0.986 0.993 0.998 1 1 1

400 0.954 0.974 0.986 0.991 0.997 1 1

We simulate and test the stability of our PUF under different environmental
temperatures. In our test, we assume that the original distribution of the gate delay
Dold at temperature 300 K follows the Gaussian distribution Dold � N .�; �2/.
When temperature changes, the delay changes: Dchange � N .˛�; j˛j�2/ where
˛ is a ratio which is decided by the new temperature, thus yielding the new
delay Dnew D Dold C Dchange. We use the Hotspot tool [24] to compute ˛ under
different temperatures. For example, ˛ under 400 K is approximately 1. Based on
this assumption, under different original delay ratios and after applying temperature
changes, we measure the probability that the same challenge produces the same
stable outputs. Table 6 shows the results of a 32-bit delay-based PUF. As expected,
a higher original delay ratio yields higher probabilities for stable outputs. For
example, for an original delay ratio of 0.1, the probability that the PUF output
remains stable across temperatures ranging from 250 to 400 K remains 1.

The results of our 64-bit PUF tests are shown in Table 7. Compared to the 32-bit
test case, the 64-bit test case demonstrates a similar trend and exhibits even better
stability under the same conditions. As long as the original delay ratio reaches a
particular threshold (e.g. 0.1 in this experiment), the outputs remain stable for a wide
range of temperatures. Hence, we select those challenges that satisfy this delay ratio
threshold as the stable challenges.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 99

Fig. 10 Architecture of the digital PUF. Note that the stable outputs from the analog PUF are used
only once at startup to initialize and configure the LUTs in the DBF

4.2 Architecture

Figure 10 depicts the architecture of the digital PUF. At startup, the user selects
and applies stable challenge vectors, supplied by the digital PUF manufacturer,
to an array of delay-based PUFs. The resultant stable outputs are then used to
initialize and configure individual LUT cells in the DBF. This procedure is applied
to a random subset of LUT cells, while the remaining cells are initialized by the
user. This bifurcation in initialization enables self trust by preventing malicious
manufacturers from completely controlling the DBF configuration process.

After PUF initialization, the user generates an input-output mapping for the DBF
which serves as a specification of fcomplex. This is easily done by traversing all the
possible inputs and generating the corresponding output. The mapping is stored as
Boolean functions in both SOP and POS forms.

By applying only stable challenges to the delay-based PUF at initialization
we ensure that the entire digital PUF system is completely stable. Furthermore,
the intrinsic unclonability of the delay-based PUF along with its integration with
the DBF guarantees that the overall architecture is unclonable. Since the delay-based
PUF is used only at initialization and is subsequently disregarded and the rest of the
digital PUF operation is delegated to the DBF, we inherit the small power, area, and
low delay properties of the DBF.

100 T. Xu and M. Potkonjak

4.3 Operations

In order to use the FPGA-based digital PUF, a set of operations need to be done,
we divide them into the following two steps: (1) FPGA configuration and (2) DBF
generation.

4.3.1 FPGA Configuration

The essential step before using the DBF is to reconfigure the FPGA for DBF
initialization. As we mentioned in the previous section, in every clock cycle the user
needs to choose a stable challenge vector fC0; : : : ; Ck�1g and feed it to the delay-
based PUF. Each challenge is randomly chosen from a pool of stable challenges
that is provided by the manufacturer. Note that if we reverse all the challenge bits to
fC0; : : : ; Ck�1g, the output is reversed too. Hence, there will not be any bias between
the number of stable challenges that produce the 0 output and the 1 output. As a
result, the output randomness of the delay-based PUF is not reduced because of the
use of only stable challenges. Each of the generated output will be used to initialize
one cell in a LUT. This procedure is repeated until a random portion of the LUT
cells in the DBF are initialized, and the rest are initialized by the user. The reason
to choose only a random part of LUTs to initialize is to enable self trust in order to
prevent malicious manufacturers, because the manufacturers have no clue how the
rest of the LUTs are initialized.

4.3.2 DBF Generation

After initialization of the DBF in the FPGA, the user generates the input-output
mapping for the DBF which serves as fcomplex. This can be easily done by traversing
all the possible inputs and generating the corresponding outputs. The mapping is
stored in the form of Boolean functions. Therefore, until now, the initialized DBF
embedded in the FPGA serves as fcompact and the direct inputs-outputs mapping
forms fcomplex.

5 Security Properties

In this section, we adopt a set of standard statistical tests to analyze the security
properties of the digital PUF. Note that since DBF and digital PUF share the same
hardware structure, the test results will be the same for DBF. We describe possible
statistical attacks and test the resilience of our digital PUF against such attacks. We
use the standard digital PUF structure with 64-bit inputs and outputs and 32 levels
of substitution. We assume that the digital PUF is initialized randomly.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 101

Table 8 NIST randomness
test results on the digital PUF

Statistical test Avg. success ratio (%)

Frequency 100

Block frequency (m D 128) 98.7

Cusum-forward 97.8

Cusum-reverse 97.9

Runs 98.4

Longest runs of ones 97.9

Rank 99.3

Spectral DFT 97.5

Non-overlapping templates (m D 9) 97.5

Overlapping templates (m D 9) 97.5

Universal 100

Approximate entropy (m D 8) 98.1

Rand. excursions (x D 1) 98.8

Rand. excursions variant (x D �1) 97.6

Serial (m D 16) 99.3

Linear complexity (M D 500) 98.0

1000 bitstreams of 10,000 bits are provided to each test. Each
test passes for p-value � � , where � D 0:01

5.1 Output Randomness

We quantify the output randomness of the digital PUF by applying the industry
standard statistical test suite provided by the National Institute of Standards and
Technology (NIST). We generate a stream of outputs in the following way: a random
seed is used as the primary inputs to the digital PUF after random configuration and
the corresponding outputs are generated. In each subsequent clock cycle, the outputs
are XORed with the previous inputs to generate the inputs for the next clock cycle.
We repeat the process until we collect enough outputs required by the benchmark
suite. The results in Table 8 indicate that the output stream of the digital PUF passes
the NIST randomness tests with considerably high success ratio.

5.2 Avalanche Effect

In this attack, an adversary attempts to predict the outputs of the digital PUF using
the knowledge of outputs for similar inputs. In cryptography, cipher diffusion is
achieved if a change in the input by one bit results in a dramatic change in the
outputs in an unpredictable manner. This is otherwise known as the avalanche effect.
To test this, we measure the hamming distance between two output vectors whose
input vector differ by one bit. Ideally, the distribution should be in the form of a

102 T. Xu and M. Potkonjak

0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

0.
00

0.
05

0.
10

0.
15

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

Fig. 11 Distribution of output hamming distances testing the avalanche effect. The error bars
depict the max, 0.75 quantile, mean, 0.25 quantile, and min frequencies

binomial distribution with the peak at half of the number of output bits. The result
in Fig. 11 shows an almost perfect binomial distribution which indicates our digital
PUF satisfies the avalanche criterion and is highly resilient against this type of
attack.

5.3 Input-Based Correlation

Another type of attack utilizes correlations between individual output bits, Oi, and
input bits, Ij, for prediction. The goal in this attack is to predict the conditional
probability, P.Oi D c1jIj D c2/, where c1 and c2 are either 1 or 0. For example, if the
attacker observes that output Oi is equal to 1 when the input Ij is 1 a large majority
of the time, then he can guess with a high probability that output Oi is 1 when Ij is 1.
The ideal situation is when all conditional probabilities are 0.5. Figures 12 and 13
depict the distribution of conditional probabilities, P.Oi D 1jIj D 1/, for the digital
PUF. The majority of probabilities cluster around 0.5, thus indicating low potential
for prediction.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 103

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i

P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12 Colormap of conditional probabilities between output bits Oi and input bits Ij

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P(Oi=1|Ij=1)

Fr
eq

ue
nc

y

Fig. 13 Distribution histogram of conditional probabilities between output bits Oi and input bits Ij

104 T. Xu and M. Potkonjak

10 20 30 40 50 60

10

20

30

40

50

60

Output Oj

O
ut

pu
t O

i

P(Oi=1|Oj=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 14 Colormap of conditional probabilities between output bits Oi and Output bits Oj

5.4 Output-Based Correlation

Similar to the previously described attack, this attack attempts to predict an output
bit Oi according to the value of a corresponding output bit Oj. In this case, if
two output bits have a strong correlation, then the attacker can deduce the output
vector through knowledge of a subset of output bits. We present the distribution
of conditional probabilities, P.Oi D 1jOj D 1/ in Fig. 14 and the corresponding
histogram of the probability distribution Fig. 15 which depicts low potential for
prediction based on output to output correlation.

5.5 Comparisons

Finally, we briefly compare the statistical test results of our FPGA-based digital
PUF with the traditional delay-based PPUF. The results depicted in Table 9 are
tested on the 64-input 64-output FPGA-based digital PUF and 64-input 64-output
traditional delay PPUF. We conclude that both our PUF and the traditional delay
PPUF demonstrate excellent properties regarding output frequency and conditional
probability, but only our digital PUF demonstrates an ideal output hamming distance
satisfying the avalanche criterion.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 105

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P(Oi=1|Oj=1)

Fr
eq

ue
nc

y

Fig. 15 Distribution histogram of conditional probabilities between output bits Oi and Output
bits Oj

Table 9 Statistical test results comparison between the FPGA-based digital
PUF and the traditional delay PPUF

Output frequency Hamming distance P.Oi D 1jIj D 1/

Digital PUF 0:5˙ 0:07 30:9˙ 3:6 0:49˙ 0:01

Delay PPUF 0:5˙ 0:09 1:4˙ 0:4 0:52˙ 0:01

The ideal case for output frequency is 0.5, for hamming distance is 32, and
for P.Oi D 1jIj D 1/ is 0.5. The results shown in the table are the average
values and corresponding standard deviations

6 Protocols

6.1 Public Key Communication

Public key communication is one of the most widely used communication protocols.
We use it as an example to explain how digital PUF works as a security primitive in
security protocols. The basic setting for this protocol is shown below.

– Private Key—fcompact, denoted by Kpriv .
– Public Key—fcomplex, denoted by Kpub.
– Alice—the owner of Kpriv . The party to receive and decrypt messages.
– Bob—the party to send and encrypt messages.
– TTP—trusted third party. The party that administrates Kpub.

106 T. Xu and M. Potkonjak

Before explaining how this protocol works, we need to note that the private key
fcompact is actually a piece of the digital PUF, in which the hardware implementation
of fcompact is offered but not detected. By using Kpriv , given input vectors, the output
vectors can be calculated promptly. Meanwhile, the public key is the functions in
fcomplex.

Algorithm 1 Public Key Communication
1: Bob has a message m to send to Alice, m is in the form of binary vector.
2: Suppose there are l single Boolean sub-functions in Kpub, all of which have the form of a

sum of products and the form of a product of sums. In the first round, for the ith
(i 2 f1; 2; : : : ; lg) function fi in Kpub, Bob randomly requests either one product from the a
sum of products or one sum from the a product of sums from TTP. According to that
product or sum, Bob generates a binary input vector pi, making ri D fi.pi/ D 1 (case of
product) or ri D fi.pi/ D 0 (case of sum). Then Bob concatenates p1 to pl to generate
binary vector P1 and concatenates r1 to rl to generate binary vector R1.

3: Bob repeats step 2 for N rounds, generates Pj and Rj (j 2 f1; 2; : : : ; Ng).
4: Bob calculates E D m˚ R1 ˚ R2 : : :˚ RN .
5: Bob broadcasts E and all Pj (j 2 f1; 2; : : : ; Ng).
6: Alice computes all the sub vector pi (i 2 f1; 2; : : : ; lg) in each Pj (j 2 f1; 2; : : : ; Ng) with

Kpriv to find out the corresponding value of ri, then Alice concatenates all the ri to form
each vector Rj.

7: Alice computes m D E˚ R1 ˚ R2 : : :˚ RN and gets Bob’s message.

The core idea in Protocol 1 is to take advantage of the calculation time difference
of fcompact and fcomplex, making only the holder of Kpriv be the only person who can
calculate Rj (j 2 f1; 2; : : : ; Ng) in a reasonable amount of time. Another important
design is that we use the trusted third party to administrate Kpub. Note that whenever
Bob wants to send a message to Alice, he only needs to request one product or one
sum of each function in Kpub from TTP, then he can create the binary vectors to
encrypt his messages. This makes use of the sum of products and product of sums;
by knowing one product in a sum of products, one input vector that makes the output
to be 1 can be deduced and by knowing one sum in a product of sums, one input
vector that makes the output 0 can be deduced. This design minimizes the key size as
well as the energy for calculation that Bob requires during the encryption of public
key communication. However, for an attacker, if he/she wants to find out the right
cx in C, since he/she does not have Kpriv , he/she can only request all the information
of Kpub from TTP to simulate. Therefore, for an attacker, the public key size and
the calculation scale are not minimized at all, the expected effort of an attacker is to
scan half of a sum of products as well as half of a product of sums. In Protocol 1, N
rounds of operations are used to boost the calculation expense of fcompact and fcomplex

N times simultaneously. As it takes much more time to calculate fcomplex than fcompact,
after both calculation expense increasing N times, the calculation time for fcompact is
still trivial but the time for fcomplex increases significantly. N is a flexible number that
can be adjusted according to the size of fcompact and fcomplex.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 107

6.1.1 Time Gap

We estimate the decryption time gap between the private key holder and the attacker
in Protocol 1. Suppose the private key holder uses an fcompact structure with 64 inputs
and 32 cycles to implement fcompact and the attacker simulates the corresponding
fcomplex. For fcompact, the implementation time is tested on the Spartan-3 XC3S50-5
FPGA and was measured at approximately 239 ns. For the computation of fcomplex,
the simulation time is too long and can only be estimated. It is obvious that the
simulation time is proportional to the size of the fcomplex. According to Table 1, we
find that the size of fcomplex increases by at least 2.5 times with an increase of 1
iteration and 2 inputs. As a consequence, we can assume the simulation time for
fcomplex also grows similarly. Therefore, by combining the results in Table 3, the
simulation time for an fcompact structure with 64 inputs and 32 iterations can be
estimated at 1:61 � 107 � 2:522 D 9:15 � 1015 .ns/. We further assume that the
number of rounds N in public key communication is 103, therefore, the time for
private key calculation is 239 � 103 D 2:39 	 105 .ns/ while the time for public
key calculation is 9:15 � 1015 � 103 D 9:15 	 1018 .ns/� 290 years, which is not
acceptable. Note that N can be designed to be smaller with a larger size public key.

6.1.2 Performance Comparisons

We estimate the performance of the digital PUF based public key communication
protocol and compare it with other cryptographic methods. For decryption, suppose
the digital PUF uses a 64 input fcompact structure, as a result, the area of 64 LUTs is
required. The static power value of the Xilinx FPGA is approximately 24 �W=CLB.
Suppose each CLB contains 4 LUTs, then 16 CLBs are required with a total
power of approximately 384 �W. According to the synthesis result, the maximum
delay of the fcompact structure circuit is 7:47 ns and 32 cycles are needed to compute
the outputs. We repeat step 2 in Protocol 1 ND 103 times, so that the total clock
cycle that decryption requires is 3:2�104. For encryption, according to the protocol,
the public key user only needs to calculate one product or one sum of each function
in fcomplex in step 2 of protocol 1, compared to the decryption part, the expense of the
encryption can be neglected. We therefore have an energy consumption estimation
for digital PUF based public key communication through Eq. (2) .

Energy D Power � ClockCycle # �MaximumDelay (5)

Table 10 shows the comparisons for DBF based public key communication with
traditional block cyphers and RSA with respect to area, delay, and energy in FPGAs.
The DBF in the table utilizes one fcompact structure with 64 primary inputs and 32
iterations, and we suppose that the number of rounds N in the protocol is 103. We
can obviously conclude from the table that DBF, as a security primitive, owns the
implementation of ultra low energy that is competitive with the traditional security
key block cyphers and outperforms the RSA with at least three orders of magnitude.

108 T. Xu and M. Potkonjak

Table 10 Comparisons for DBF based cryptography with the traditional block cyphers and RSA

Design Flip Flops LUTs (Area Slices)
Maximum
Delay (ns)

Clock
Cycles Energy (�J)

Present[25] 114 159 117 8.78 256 3.16�10�3

HIGHT[25] 25 132 91 6.12 160 1.07�10�3

AES[25] 338 531 393 14.21 534 3.58�10�2

RSA[26] 1870 2811 1553 7.62�103 907 128.80

RSA
radix-2[26]

7564 11496 6282 8.21�103 1058 654.80

RSA
radix-4[26]

9944 14907 8328 4.23�103 560 236.73

DBF 64 64 32 7.47 32000 9.18�10�2

Block Size
(bits)

Throughput
(Mbps) at fmax

Throughput/Energy
(Mbps/�J) Device

64 28.46 9.01�103 xc3s50�5

64 65.48 6.12�104 xc3s50�5

128 16.86 4.71�102 xc3s50�5

� 0.15 1.16�10�3 xc3s500e

� 0.12 1.83�10�4 xc2v6000

� 0.43 1.82�10�3 xc2v6000

� 267.74 2.92�103 xc3s50�5

The results for Present, HIGHT and AES are cited from [25], the results for RSA are the parts of
multiplication modular and are cited from [26], the results for DBFs are tested on the Spartan-3
XC3S50-5 FPGA and generated by the Xilinx ISE Design Suite 14.3

6.2 Remote Trust

When using a data centre to adopt remote computations, trust plays a very important
role. On one hand, users need to authenticate the data centre, on the other hand, users
also want to monitor the flow of their requested calculations to ensure the processing
of the data is being carried out correctly. Digital PUFs provide an ultra low-energy
and easy solution to authenticate the data centre as well as monitor the calculation
flow. The basic approach is to use a hash tree.

The calculation flow shown in Fig. 16 is an example of how a data centre
processes calculations to generate the outputs. Four basic calculations (C;�;�;
)
are adopted as operation nodes in the flow. The data centre is required to randomly
choose n places to “cut” the calculation flow, and generate n corresponding inter-
mediate results. The calculation expense between the adjacent intermediate results
is trivial. A hash tree is constructed based on the n intermediate results. Figure 17
shows an example of a hash tree with 4 leaf nodes, where each node represents a
intermediate result from the data flow. A binary tree structure is generated in which

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 109

Fig. 16 Example calculation flow and corresponding cuts. Each node in the graph represents a
basic operation (e.g. C;�;�;�) or even blocks of operations (e.g. if-else, while, functions). Cut
1 to cut n represent random cuts in the calculation flow which can be thought of as intermediate
results or states of the procedure

Fig. 17 An example of a Hash tree for our low overhead remote trust protocol. The intermediate
results at each cut in the calculation flow (e.g. cut i, i 2 f1; 2; : : : ; ng in Fig. 16) are hashed as leaf
nodes. The arrow shows the direction of calculation flow

every non-leaf node is the hash of the its two children nodes. Depends on the scale
of the calculation, a hash tree may include millions of intermediate results, and
the leaf nodes from left to right coordinate with the sequence of the intermediated
results generated in the data flow.

110 T. Xu and M. Potkonjak

To apply a digital PUF on the structure of hash tree, we use the following basic
settings.

– Use DBF as the hash function.
– Only the data centre has the digital PUF, which is the hardware implementation

of DBF form fcompact.
– DBF form fcomplex is public.

Based on these settings, every time a client wants to monitor the calculation,
he/she randomly chooses a leaf node of the hash tree and requests the data centre
to offer the “corresponding hashed results” to calculate the path from the leaf
node to the top node. For example, in Fig. 17, the top value of the hash tree can
be verified by iteratively hashing intermediate result 2 with the results in hash 1
and hash 6. In this case, the results in hash 1 and hash 6 are the corresponding
hashed results for intermediate result 2. After acquiring the “corresponding hashed
results”, the client hashes the chosen intermediate result and confirms the rightness
of the hashing path afterwards. By repeating this procedure the consistence of the
whole hash tree is checked. Another verification that a client can do is to check
the calculation between the adjacent intermediate results, e.g., intermediate result 2
and 3. By knowing intermediate result 2, the client can follow the calculation flow to
calculate and confirm the intermediate result 3. As the calculation expense between
adjacent results is trivial, the client can easily verify the consistence of the adjacent
nodes. Therefore, the client can detect the hash tree both horizontally and vertically.
Due to the randomness of every request, only the party that has the whole structure
of the hash tree can respond to all the requests correctly, therefore, the calculation
flow is monitored and detected.

Monitoring of the calculation flow is used to verify whether the data centre is
processing the flow correctly. Now suppose the data centre is not honest and mixes
some wrong or irrelevant calculations in the flow. Figure 18 shows the possibility
that the data centre can pass all the adjacent nodes tests from the client with only
some percentage of right calculations in the flow. The results show that with a linear
decrease of the proportion of right calculation, the passing ratio drops exponentially.
For example, when the right calculation proportion reaches 1 % in the case of 10 test
pairs, the passing ratio drops to be 10�20, which is ridiculously small.

Note that since the data centre needs to hash millions of intermediate results
during the calculation flow, to complete the hashes in a reasonable short time, fcompact

must be used. Any unauthenticated party who only has fcomplex suffers a long time
of hashing. As an example, suppose we use the fcompact structure with 20 inputs
and 10 iterations in remote trust. Again, we emphasize that we have flexibility in
choosing fcompact structure’s size for different applications. Suppose that the number
of intermediate results is 106 and the client makes 10 hash operations. According
to Table 9, the calculation time for the data centre is 77:2 � 106 ns D 0:0772 s
and the calculation time for the client is 1:61� 107 � 10 ns D 0:161 s. However, the
calculation time for an attacker reaches 1:61�107�106 ns D 1:61�104 s D 4:47 h.
As a consequence, only the party that can offer requested hash results correctly in a
reasonably short period of time will be certified by the client. In this way, the only
party that can be authenticated is the data centre with the digital PUF.

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 111

Fig. 18 Passing ratio with the proportion of right calculation. The three curves respectively shows
the passing ratio under the circumstance that the client requests 10, 20, and 30 pairs of adjacent
nodes to test

7 Conclusion

We have presented the concept of DBF and digital PUF which resolve two essential
problems in traditional analog PUF. The first problem is stability. Analog PUF is
unstable in the same sense that analog system is unstable. Digital PUF resolves this
by leveraging a stable delay-based PUF for initializing its connected network of
LUTs of digital bimodal functions (DBFs). The stability in the delay-based PUF is
ensured by selecting challenges that have a delay ratio of at least 10 % which ensures
that the output is always stable for temperatures ranging from 250 to 400 K. This
process guarantees the system to be both unclonable and stable. The second problem
of analog PUF is hard to be integrated with digital logic. Digital PUF resolves this
problem by employing completely digital system.

Digital PUF is built based on the structure of DBF. DBF has two forms of
functions, among which one form is fast and compact, the other form is slow and
complex. We proposed the architecture of DBF on FPGA and analyzed the security
properties. The security analysis indicates that DBF can pass all benchmark tests
from the NIST randomness suite, as well as the avalanche criterion.

Finally, two security protocols are demonstrated, respectively security protocols
and remote trust. For security protocols, a fast speed, low overhead public key
communication protocol is proposed. It employs the huge computation gap between
the two forms of functions in DBF. We have also demonstrated the application of
the digital PUFs in a remote trust protocol in which both communicating parties
experience very low overhead in terms of both time and energy.

112 T. Xu and M. Potkonjak

References

1. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. National Institute of Standards and Technology (NIST) Special Publication
800-22, Rev. 1a, April 2010

2. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715
(1949)

3. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science
297(5589), 2026–2030 (2002)

4. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions.
In:Proceedings of the 9th ACM conference on computer and communications security,
pp. 148–160. ACM, New York (2002)

5. Guajardo, J., Kumar, S., Schrijen, G., Tuyls, P.: FPGA intrinsic PUFs and their use for IP
protection. In: Paillier P., Verbauwhede I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, pp. 63–80. Springer, Berlin/Heidelberg (2007)

6. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of the 44th annual Design Automation Conference (DAC 2007),
pp. 9–14. ACM, New York (2007)

7. Lee, J.W., et al.: A technique to build a secret key in integrated circuits for identification and
authentication applications. In:Symposium on VLSI Circuits, pp. 176–179 (2004)

8. Devadas, S., et al.: Design and implementation of PUF-based “Unclonable” RFID ICs for
anti-counterfeiting and security applications. In: IEEE International Conference on RFID,
pp. 58–64. IEEE (2008)

9. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable
platforms. In: Goubin, L., Matsui M. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2006, pp. 311–323. Springer, Berlin/Heidelberg (2006)

10. Alkabani, Y., Koushanfar, F.: Active hardware metering for intellectual property protection and
security. In: USENIX Security Symposium, pp. 291–306 (2007)

11. Potkonjak, M., Meguerdichian, S., Wong, J.L.: Trusted sensors and remote sensing. In: IEEE
Sensors, pp. 1104–1107 (2010)

12. Wendt, J.B., Potkonjak, M.: Nanotechnology-based trusted remote sensing. In: IEEE Sensors,
pp. 1213–1216 (2011)

13. Xu, T., Potkonjak, M.: Lightweight digital hardware random number generators. In: IEEE
Sensors, pp. 1–4 (2013)

14. Suh, G.E., et al.: Design and implementation of the AEGIS single-chip secure processor
using physical random functions. In: ACM SIGARCH Computer Architecture News, vol. 33,
pp. 25–36 (2005)

15. Beckmann, N., Potkonjak, M.: Hardware-Based Public-Key Cryptography with Public
Physically Unclonable Functions. In: Information Hiding: 11th International Workshop,
pp. 206–220, Darmstadt, Germany (2009)

16. Rührmair, U.: SIMPL systems, or: can we design cryptographic hardware without secret key
information? In: C̆erná I., et al. (eds.) SOFSEM 2011: Theory and Practice of Computer
Science, pp. 26–45. Springer, Berlin/Heidelberg (2011)

17. Meguerdichian, S., Potkonjak, M.: Matched public PUF: ultra low energy security platform.
In:IEEE/ACM ISLPED, pp. 45–50 (2011)

18. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT Systems: Design Challenges and
Opportunities. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 417–423 (2014)

19. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Differential Public, Physically
Unclonable Functions: Architecture and Applications. In: ACM/IEEE Design Automation
Conference, pp. 242–247 (2011)

20. Alam, M.A., Mahapatra, S.: A comprehensive model of PMOS NBTI degradation. Microelec-
tron. Reliab. 45(1), 71–81 (2005)

Digital Bimodal Functions and Digital Physical Unclonable Functions. . . 113

21. Xu, T., Wendt, J.B., Potkonjak, M.: Digital Bimodal Function: An Ultra-Low Energy Security
Primitive. In: International Symposium on Low Power Electronics and Design (ISLPED),
pp. 292–297 (2013)

22. Xu, T., Potkonjak, M.: Robust and Flexible FPGA-based Digital PUF. In: International
Conference on Field Programmable Logic and Applications, pp. 1–6, Sept 2014

23. Xu, T., Wendt, J.B., Potkonjak, M.: Secure Remote Sensing and Communication using
Digital PUFs. In: Symposium on Architectures for Networking and Communications Systems,
pp.1–12, Oct 2014

24. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.R.: Hotspot:
A compact thermal modeling methodology for early-stage VLSI design. IEEE Trans. VLSI
Syst. 14(5), 501–513 (2006)

25. Yalla, P., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: International Conference on
Reconfigurable Computing and FPGAs, 2009. ReConFig’09. IEEE (2009)

26. Oksuzoglu, E., Savas, E.: Parametric, secure and compact implementation of RSA on FPGA.
In: International Conference on Reconfigurable Computing and FPGAs, 2008. ReConFig’08.
IEEE (2008)

Residue Number Systems in Cryptography:
Design, Challenges, Robustness

Dimitris Schinianakis and Thanos Stouraitis

Abstract As conventional arithmetic solutions have improved at a fine-grain level,
researchers have turned their attention to alternative number system representations
in an effort to further boost up cryptosystem performance. The ancient Residue
Number System (RNS) has emerged as a key-player in this endeavor. This chapter
attempts to highlight important concepts of residue arithmetic and new RNS
applications in modern cryptography are presented in a systematic and holistic
manner. Progressing from algorithm and complexity analysis to state-of-the-art
hardware implementations and useful cryptanalytic properties, the prospective
reader is acquainted with most of the implications and challenges of this emerging
field, while open research points are also highlighted.

1 History

The Residue Number System (RNS) is a data representation system that allows
representing an integer number as a set of smaller numbers. RNS was originally
described in terms of a riddle by Nicomachus of Gerasa (60-120 CE) in his book
“Introduction to Arithmetic”. Later, the problem was re-described by Sun Tzu in a
fifth century book entitled “Sunzi Suanjing”(The Mathematical Classic of Sunzi).
Sun Tzu described the problem of determining the value of a number x by knowing
only the residues after its division with a predefined number of divisors.

Sun Tzu devised a methodology for manipulating remainders of an integer
after division by 3, 5, and 7. This contribution is commemorated today as the
Chinese Remainder Theorem (CRT). This theorem, as well as the theory of residue
arithmetic, were further explored and new advances were presented in the nineteenth
century by Carl Friedrich Gauss in his famous “Disquisitiones Arithmetical” [57].

D. Schinianakis
Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
e-mail: dsxoiniana@gmail.com

T. Stouraitis (�)
Department of Electrical and Computer Engineering, University of Patras, Rio 26110, Greece
e-mail: thanos@upatras.gr

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_4

115

mailto:dsxoiniana@gmail.com
mailto:thanos@upatras.gr

116 D. Schinianakis and T. Stouraitis

The first attempt to explore some of the remarkable RNS properties was made
by D. H. Lenhmet who, in 1932, built a special-purpose machine he named
“photo-electric sieve”. This device factored Mersenne numbers. Then, in the mid-
1950s, two Czech researchers, Svadoba and Valach, experimented with a hardwired,
small-moduli RNS device, which was used to study error codes. The same idea was
conceived by Aiken and Garner around the same period [57]. Perhaps the most
remarkable advance from the late 1950s to mid-1960s, was the research work of
Szabo and Tanaka at Lockheed. They worked on a special-purpose correlator, while
at the same period a research group from RCA designed a general-purpose machine.
These efforts however did not meet much success, since the technology in 1950s and
1960s could not cope with the unique demands of RNS arithmetic. Perhaps the most
important result of this research work is a comprehensive text by Szabo and Tanaka
which survived only one printing [54, 57].

Since the mid-1970s, however, technology and theory slowly started converging.
More than 150 papers had been produced from mid-1970s until mid-1980s, while
the first patents and books on RNS also found their way during this period.
Initially, the main application area of RNS was Digital Signal Processing (DSP).
Huang built and tested a two-dimensional, RNS, matched filter capable of 20M
operations per second [20], while Smith at Martin-Marietta developed a high-speed
FFT in the RNS [52]. Jullien reported an RNS comb filter in [22] while Taylor
published on RNS systems with VLSI hardware [56]. Numerous works on RNS
DSP applications are still being published. In the 1990s, Taylor et al. presented the
so-called “Gauss-machine”, a DSP processor with high RNS content [55], while
Claudio et al. proposed some fast combinatorial RNS arithmetic modules for DSP
use [11]. Ramirez et al. proposed in 2001 an RNS implementation for the Discrete
Wavelet Transformation (DWT) [40].

While research on the properties and DSP design implications of RNS arithmetic
bloomed in the 1980s and 1990s, cryptography was just starting to make its way
through the research community, especially when it comes to digital design. The
reasons are quite simple; during the 1980s, the need for securing digital data was
minimal and at the same time technology was struggling to support operations on
data of very large word length, as it is required by public-key cryptosystems [42].
This discouraged researchers from exploring RNS for use in cryptography and it
was not until the mid-1990s when the work of Posch and Posch [38, 39] set the
basis for a new research field. This work did not explicitly refer to cryptosystem
design. It proposed a method to embed RNS arithmetic in modular multiplication
which, as we will see later, it is the most time- and area-consuming operation that
determines to a large extent the overall cryptosystem performance.

In modern cryptosystem design, the main RNS application is related to Mont-
gomery modular multiplication [35], as it is well-suited to RNS arithmetic, since it
avoids hard divisions. The work by Kawamura et al. in the 2000s is considered as
a cornerstone for the implementation of competitive RNS-based crypto-processors
[24, 37]. Since mid-2000s a considerable amount of research on RNS Montgomery
multiplication and efficient cryptosystem design has been published; the first
exploitation of RNS arithmetic in Elliptic Curve Cryptography (ECC) was presented

Residue Number Systems in Cryptography: Design, Challenges, Robustness 117

in [45], while RNS was also applied in RSA cryptography [5, 14, 15, 48]. Studies on
the underlying security of RNS Montgomery multipliers have also appeared in the
literature, contributing significantly to the expansion of RNS-based cryptosystems
and their establishment as a viable design option [2, 47].

This 2000 year old system is now turning to a competitive key-player next to
more traditional options for performing modular operations on data of large word
length. In the following we will analyze the design challenges of RNS arithmetic
in cryptographic systems, present design methodologies and important algorithmic
advances, and discuss useful side effects of RNS exploitation in cryptosystem
security.

2 Cryptographic Algorithms of Interest

In the following, we focus on some of the most widely used public-key cryp-
tography algorithms, which pose extra difficulties in their implementation due to
their data-intensive character, namely the RSA algorithm [42] and Elliptic Curve
Cryptography (ECC) [26, 33]. Regarding the underlying arithmetic, we assume that
the reader is acquainted with basic field operations in Galois fields of the forms
GF.p/ and GF.2n/. In GF.p/, elements are all integers in Œ0; p � 1� and arithmetic
is performed modulo p, where p a prime. Field elements in GF.2n/ are polynomials
represented as binary vectors of dimension n, relative to a given polynomial basis
.1; ˛; ˛2; : : : ; ˛n�1/, where ˛ is a root of an irreducible polynomial p.x/, of degree
n, over GF.2/. The field is then realized as GF.2/Œx�=.p/ and the arithmetic is that
of polynomials of degree at most n�1, modulo p [7, 10, 12, 25]. The addition of two
polynomials a and b in GF.2n/ is performed by adding the polynomials, with their
coefficients added in GF.2/, i.e., modulo 2. This is equivalent to a bit-wise XOR
operation on the vectors a and b.

2.1 The RSA Cryptosystem

RSA is an algorithm for public-key cryptography that is based on the presumably
difficult mathematical problem of factoring large integers. RSA stands for the
initials of Ron Rivest, Adi Shamir and Leonard Adleman, who first publicly
described the algorithm in 1977 [42]. Clifford Cocks, an English mathematician,
had developed an equivalent system in 1973, but it was not classified until 1997.

In the RSA cryptosystem, the public and private keys are generated by two
distinct prime numbers, p and q. We calculate the public modulus N D pq and the
quantity '.N/ D .p � 1/.q � 1/, where ' is the Euler’s totient function. We choose
e 2 Z, a co-prime to '.N/, and we compute d D e�1 mod '.N/. The public key

118 D. Schinianakis and T. Stouraitis

is the pair .N; e/ and the private key is d. The primes p; q are also kept secret. The
public and private keys are referred to as public and secret exponent, respectively.
The encryption of a message M is defined by

C D Me mod N (1)

and decryption by

M D Cd mod N: (2)

2.1.1 RSA-CRT Algorithm

The security of RSA depends on the key size. With large keys varying from 1024
bits, appropriate for protecting data through the year 2015, to 2048 bits, appropriate
through the year 2035 [23], it is apparent that efficient arithmetic operations on large
operands are crucial for optimal RSA implementations.

A step towards efficiency was the introduction of the Chinese Remainder
Theorem (CRT) to the RSA protocol, namely the RSA-CRT [28, 29]. In RSA-CRT,
the digital signature operation S D Md mod N is split in two operations Sp D Mdp

mod p and Sq D Mdq mod q, where dp D d mod .p�1/ and dq D d mod .q�1/.
CRT ensures that the combination of Sp and Sq produces signature S as

S D Sq C
��

Sp � Sq
� � �q�1 mod p

�
mod p

� � q; (3)

denoted from now on as S D CRT.Sp; Sq/ [25], with a speedup of operations of
approximately four times [28, 29].

2.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC), presented by Koblitz [26] and Miller [33]
independently in 1985, has withstood a large number of attacks and has evolved
significantly, so that it is considered nowadays a mature public-key cryptosystem.
Extensive research work is currently focusing on the underlying mathematics,
security, and its efficient implementations.

By exploiting the Elliptic Curve Discrete Logarithm Problem (ECDLP), ECC
offers the highest strength per bit and the smallest key size, when compared to other
public-key cryptosystems. ECDLP states that given two points P; Q; on an elliptic
curve, such that Q D Œk�P, it is computationally infeasible to calculate Œk� [7].

Although elliptic curves can be defined on a variety of different fields, only finite
fields are employed in cryptography. Among them, prime fields, GF.p/, and binary
extension fields, GF.2n/, are considered to be the ones that offer the most efficient
and secure implementations [7].

Residue Number Systems in Cryptography: Design, Challenges, Robustness 119

ba

Fig. 1 Operations on elliptic curves. (a) Point doubling. (b) Point addition

2.2.1 Elliptic Curves Over GF.p/

An elliptic curve E over GF.p/ is defined by an equation of the form

y2 D x3 C axC b; (4)

where a; b 2 GF.p/ and 4a3 C 27b2 ¤ 0.mod p/, together with a special point
O, called the point at infinity. The set E .GF.p// consists of all points .x; y/; x; y 2
GF.p/, that satisfy (4), together with O. Addition of two points on an elliptic curve
can be defined by the group law. Together with the addition operation, the set of
points E .GF.p// forms a group, with O serving as its identity element. It is this
group that is used in the construction of elliptic curve cryptosystems. The special
case of adding a point to itself is called a point doubling.

Examples of point addition and point doubling are depicted in Fig. 1. The double
of a point P0 is obtained by taking the tangent line on P0 until a second intersection
point on the curve is found (there is always a second point due to the form of
(4)). The mirror point of this second intersection with respect to the x-axis is 2P0.
Similarly, to add two points P0; P1, a third intersecting point is found by the line that
connects P0; P1. The mirror point of the third intersection point is P2 D P0 C P1.

Let P0 D .x0; y0/; P1 D .x1; y1/ ¤ O and P0 ¤ �P1. The coordinates of their
sum, P2.x2; y2/ are

P2 D P0 C P1 D
(

x2 D �2 � x0 � x1

y2 D .x0 � x2/� � y0;
(5)

120 D. Schinianakis and T. Stouraitis

where � D y1�y0

x1�x0
. The double of a point is given by

P2 D 2P0 D
(

x2 D �2 � 2x0

y2 D .x0 � x2/� � y0;
(6)

where � D 3x2
0Ca
2y0

.

From (5), (6), it is apparent that in order to perform an addition or a doubling of
a point in affine representation, one needs to compute the inverse of an element in
GF.p/, which is a time consuming operation [7]. In order to avoid inversions, the
use of projective coordinates of the Elliptic Curve (EC) points has been proposed
[7]. Given a point P D .x; y/ in affine coordinates, the projective coordinates P D
.X; Y; Z/ are given by

X D xI Y D yI Z D 1: (7)

There are various projective coordinate representations that lead to more efficient
implementations than using the one in (7). Jacobian coordinates are an example of
such a representation [7]. Using Jacobian coordinates, the affine representation of
an EC point is given by

x D X

Z2
I y D Y

Z3
: (8)

while the point at infinity is given by O D .0; 0; 1/.
Using the representation in (8), (4) rewrites to

E .GF.p// W Y2 D X3 C aXZ4 C bZ6: (9)

Let P0 D .X0; Y0; Z0/; P1 D .X1; Y1; Z1/ 2 E.GF.p//. The sum P2 D
.X2; Y2; Z2/ D P0 C P1 2 E.GF.p// can be computed as follows.
If P0 D P1 then

P2 D 2P1 D

8
ˆ̂<

ˆ̂:

X2 D M2 � 2S

Y2 D M.S � X2/� T;

Z2 D 2Y1Z1

(10)

where M D 3X2
1 C aZ4

1 ; S D 4X1Y2
1 and T D 8Y4

1 . On the other hand, if P0 ¤ P1,
then

P2 D P0 C P1 D

8
ˆ̂<

ˆ̂:

X2 D R2 � TW2

2Y2 D VR �MW3;

Z2 D Z0Z1W

(11)

Residue Number Systems in Cryptography: Design, Challenges, Robustness 121

where R D Y0Z3
1 �Y1Z3

0 ; T D X0Z2
1 CX1Z2

0 ; W D X0Z2
1 �X1Z2

0 ; M D Y0Z3
1CY1Z3

0 ,
and V D TW2 � 2X2.

Elliptic curves over GF.2n/ are defined in a similar manner; it is, however, out of
scope of this chapter to emphasize further [7].

2.2.2 Point Multiplication

With the operations of point doubling and point addition available, the next step is to
implement the scalar point multiplication, which is the most important operation in
ECC. Among various options [7], the binary method algorithm is frequently chosen,
because it is easy to implement and minimizes memory requirements. The binary
method algorithm [7] is based on the binary expansion of the scalar Œk�, as follows.

Algorithm 1 Binary method for EC point multiplication

Input: A point P, an l-bit integer k DPl�1
0 kj2

j

Output: QD Œk�P
1: Q � O
2: for j D l� 1 to 0 do
3: Q � Œ2�Q
4: if kj D 1 then
5: Q � QC P
6: end if
7: end for
8: return Q

The binary method requires l � 1 point doublings and W � 1 point additions,
where l is the length and W the Hamming weight of the binary expansion of k.
For any positive integer k, the notation Œk� is used to denote the multiplication-by-
k map from the curve to itself. The notation Œk� is extended to k � 0 by defining
Œ0�P D O, and Œ�k�P D �.Œk�P/. Other methods based on various representations
for the scalar Œk� include window-based algorithms, signed-digit representations,
NAF representations, etc [7], which are out of scope of this chapter to analyze
further.

3 Residue Arithmetic

RNS consists of a set of L, pair-wise relatively prime integers .m1; m2; : : : ; mL/,
called the moduli. The set M D .m1; m2; : : : ; mL/ is called the RNS base. Each
RNS base is associated with a corresponding range, computed as

M D
LY

iD1

mi: (12)

122 D. Schinianakis and T. Stouraitis

Any integer Z 2 Œ0; M � 1� has a unique RNS representation ZM D
.z1; z2; : : : ; zL/ D .hZim1 ; hZim2 ; : : : ; hZimL/, where hZimi denotes the operation
Z mod mi.

Assuming two integers X; Y; in RNS format, i.e., XM D .x1; x2; : : : ; xL/ and
YM D .y1; y2; : : : ; yL/, one can perform the operations˝ 2 .C;�;	/, in parallel, as

XM ˝ YM D .hx1 ˝ y1im1 ; hx2 ˝ y2im2 ; : : : ; hxL ˝ yLimL/ : (13)

It is important to note that the ith RNS digit of the result is defined in terms of hxi˝
yiimi only, meaning that no carry information needs to be communicated between
residue digits. Since there is no carry propagation from one RNS channel to another,
the carry-related overhead that plagues traditional, weighted number systems is
eliminated. The result is high-speed, parallel operations. For a signed number
system, any integer Z 2 .�M=2; M=2/ also has an RNS L-tuple representation
zi D Z mod mi, if Z > 0, and .M � jZj/ mod mi, otherwise.

In order to build up a competitive RNS system it is essential to build efficient
blocks that handle the operations hxi ˝ yiimi . Next, we elaborate on particular
modular operations.

3.1 Division, Magnitude Comparison, Sign Detection

Although addition, subtraction, and multiplication are efficiently supported by RNS
arithmetic, unfortunately this is not the case for other operations, like division
[19, 62], magnitude comparison [53], or sign detection [58]. Division is basically
a combination of nested subtractions and magnitude comparisons, so it is inefficient
to perform in RNS, not to mention that RNS is an integer system and so it is not
closed under division.

On the other hand, in a weighted number system, we can compare numbers
in a bit-by-bit manner, starting from the MSB. Sign detection is a special case of
magnitude comparison of a number with 0; also a difficult operation in RNS. For
example, for the base M D .3; 4; 5/, one can not tell by simply comparing the RNS

digits if 7
RNS��! .1; 3; 2/ < 10

RNS��! .1; 2; 0/. Fortunately, such operations are not
that common in cryptography. Therefore, we won’t elaborate on the implications
and peculiarities of RNS regarding these operations.

3.2 Residue-to-Decimal Conversion

Converting an integer from RNS to binary representation is a significant operation
in RNS applications. Its efficiency determines to a great extent the efficiency of the
overall RNS processor [45]. For the rest of this discussion let us assume, that each

Residue Number Systems in Cryptography: Design, Challenges, Robustness 123

Fig. 2 General architecture of an RNS processor

modulus is r-bit long. To reconstruct an integer from its residues, two methods may
be employed, namely the Chinese Remainder Theorem (CRT) and Mixed Radix
Conversion (MRC) [57]. A general architecture of an RNS processor is depicted
in Fig. 2.

3.2.1 The Chinese Remainder Theorem

CRT is based on the following equation

X D
*

LX

iD1

˝
xi �M�1

i

˛
mi
�Mi

+

M

; (14)

where Mi D M=mi and M�1
i is the inverse of Mi modulo mi. An observation on

(14) reveals the main characteristics and implications of CRT realization. CRT is a
modulo multiply-accumulate procedure decomposed in:

• L inner modular products of small r-bit quantities to formulate
˝
xi �M�1

i

˛
mi

• L non-modular multiplications to formulate
˝
xi �M�1

i

˛
mi
�Mi

• addition of the previous results modulo M

It is apparent that CRT suffers from the large multiplications in the second step
(note that Mis are r.L � 1/-bit long) but also from the large modulo M addition in
the final step. The addition of the inner products can be achieved in O.log L/ time
using standard addition techniques.

Important reductions of the complexity of this schema have been carried-out
during the last 20 years [24, 37, 50, 51, 60, 61]. In addition to reducing the
complexity of inner product calculation, they substitute the final modulo M addition
with smaller and simpler operations.

124 D. Schinianakis and T. Stouraitis

The works in [24, 50] are based on the observation that the result in (14) is
congruent modulo M. In order to obtain the exact value of X, we must compute

X D
LX

iD1

˝
xi �M�1

i

˛
mi
�Mi � �M; (15)

where � is an integer correction factor. In other words, the large modulo M
addition is replaced by a subtraction and a multiplication. Efficient calculation of the
correction factor � is critical. Shenoy and Kumaresan [50] developed an algorithm
which requires a redundant modulus, mr � L, so that the RNS base M is extended
to M D .m1; m2; : : : ; mL jj mr/. This adds an extra channel of calculations. Let
X be an integer with an RNS representation XM D .x1; x2; : : : ; xL jj xr/, where
xr D hXimr . By reducing both sides of (15) mod mr, we obtain

hXimr D
**

LX

iD1

˝
xi �M�1

i

˛
mi
�Mi

+

mr

� h�Mimr

+

mr

)

h�imr D
*
˝
M�1

˛
mr

0

@
*

LX

iD1

˝
xi �M�1

i

˛
mi
�Mi

+

mr

� xr

1

A
+

mr

D

D
D˝

M�1
˛
mr

.ı � xr/
E

mr

; (16)

where ı D
DPL

iD1

˝
xi �M�1

i

˛
mi
�Mi

E

mr

. Since � < L and mr � L, it follows that

� D h�imr [50]. As all terms on the right hand side of (16) are known, the correction
factor � can be substituted in (15) to obtain X. Kawamura et al. [24] employed a
different approach for the � calculation. Starting again from (15) and using

	i D
˝
xi �M�1

i

˛
mi

; (17)

we obtain

X D
LX

iD1

	i �Mi � �M: (18)

Dividing both sides by M, we obtain

LX

iD1

	i

mi
D X

M
C �: (19)

Residue Number Systems in Cryptography: Design, Challenges, Robustness 125

Since 0 � X=M < 1, it holds that � �PL
iD1

	i
mi

< � C 1. Therefore,

� D
$

LX

iD1

	i

mi

%
(20)

with 0 � � < L, since 0 � 	i=mi < 1. Two approximations were employed to avoid
hard divisions in (20). The denominator mi is replaced by 2r, where 2r�1 < mi � 2r,
while the numerator 	i is approximated by its most significant q bits, where q < r.
Thus, instead of � , an approximated value �� can be calculated by

�� D
$

LX

iD1

trunc.	i/

2r
C ˛

%
; (21)

where trunc.	i/ D 	i ^
q‚ …„ ƒ

.1 : : : 1/

.r�q/‚ …„ ƒ
.0 : : : 0/ and ^ denotes an AND operation. An

offset value 0 � ˛ < 1 is introduced to compensate the error produced by the
approximations. Since division by powers of 2 are simple shifts, (21) can be realized
by additions alone. The offset value ˛ can be determined so that the error issued by
the approximations is zero [24].

Fig. 3 The MRC process

126 D. Schinianakis and T. Stouraitis

3.2.2 Mixed-Radix Conversion

Another popular method for residue-to-decimal conversion is through the Mixed-
Radix Conversion (MRC) algorithm (Fig. 3) [27]. The MRC of an integer X with an
RNS representation XM D .x1; x2; : : : ; xL/ is

X D U1 CW2U2 C � � � CWLUL; (22)

where Wi D Qi�1
jD2 mj;8i 2 Œ2; L� and W1 D 1; The mixed-radix digits

U1; U2; : : : ; UL are referred as the Mixed-Radix System (MRS) representation of
X and can be computed as

U1 D x1

U2 D
˝
.x2 �U1/ m�1

1;2

˛
m2

U3 D
˝�

.x3 � U1/ m�1
1;3 �U2

�
m�1

2;3

˛
m3

(23)

:::

UL D
˝�

: : : .xL �U1/ m�1
1;L � � � � �UL�1

�
m�1

L�1;L

˛
mL

;

where mim�1
i;j � 1 mod mj. Equation (23) requires L L�1

2
modular multiplications.

Another version of MRC that simplifies (23) and reduces the total number of
modular multiplications to only L � 2 is based on

U1 D x1

U2 D hx2 � x1im2

U3 D hx3 � x1 �W2U2im3
(24)

:::

UL D hxL � x1 �W2U2 �W3U3 � � � � �WL�1UL�1imL
;

provided that the predetermined factors V1 � 1 and Vi �
��Qi�1

jD1 mj

��1
	

mi

D
1; 8i 2 Œ2; L� [63].

The main characteristic of MRC is its sequential nature. As any term Ui can’t
be calculated before Ui�1 is available, the delay of the scheme is O.L/. In practical
cryptosystem implementations, (15) is preferred since it avoids the large mod M
reduction of (14) [4, 14, 15, 24]. MRC has also contributed to realistic cryptosystem
implementations as in [48], where a matrix-based decomposition of operations was
presented to simplify the conversion process.

Residue Number Systems in Cryptography: Design, Challenges, Robustness 127

3.3 Base Extension

Base extension (BE) is a critical operation when RNS is employed in cryptographic
applications. Base extension increases the dynamic range of an RNS system by
adding moduli to a predefined base. In real implementations, this is equivalent
to extending an integer expressed in an RNS base to another RNS base repre-
sentation. Let us assume two RNS bases M D .m1; m2; : : : ; mL/ and M� D
.mLC1; mLC2; : : : ; mK/ such as gcd.mi; mj/ D 1;8.i; j/ 2 Œ1; K� and K > L.
Assume also that the moduli are ordered from the smaller to the larger one, i.e.,
m1 < m2 < : : : mL < mLC1 < mLC2 < � � � < mK (a restriction very easy to satisfy).
Then, base extension of a number X expressed in base M can be defined as the
transformation operation

X � XM
BE�! X0 � XM�jX � X0 mod M (25)

To accomplish such transformations, it is required that X is obtained from XM
and then XM� is calculated from X. In other words, a base extension can be
seen as a residue-to-decimal operation followed by a decimal-to-residue operation
in the new RNS system. From a complexity point of view, and compared to a
single residue-to-binary operation, base extension requires additional efforts. Base
extension techniques are reviewed in the following sections.

3.3.1 Szabo-Tanaka Method

The Szabo-Tanaka method for the BE operation is actually the MRC process
expressed in (22) and (23) slightly modified to accommodate the calculation of an
RNS digit xi; i 2 ŒL C 1; K� in the new RNS base M�. Let us use the RNS digit
xLC1 as an example. The calculation is as follows

xLC1 D
*

U1 C U2W2 C � � � C ULWL„ ƒ‚ …
MRC

+

mLC1

(26)

which can be rewritten as

xLC1 D
D
ULWL C

˝
UL�1WL�1 C � � � C hU3W3 C U2W2 CU1imLC1

: : :
˛
mLC1

E

mLC1

D
D
ULhWLimLC1

C ˝UL�1hWL�1imLC1
C � � � C hU3hW3imLC1

C
C U2hW2CimLC1

C U1imLC1
: : :
˛
mLC1

E

mLC1

(27)
The advantage of (27) is that the calculation of xLC1 can be overlapped with the
computation of the mixed radix coefficients, by using them as soon as they become

128 D. Schinianakis and T. Stouraitis

Fig. 4 Szabo-Tanaka base
extension

available. Figure 4 shows this procedure. The pre-computed constants hWiimLC1
are

issued so that all operands participating in the base extension process have a word
length equal to the modulus word length, resulting in more compact designs.

3.3.2 Redundant Modulus Method

We have already referred to the process proposed by Shenoy and Kumaresan [50]
for residue-to-decimal conversion. In the same context, the authors presented a
methodology for fast base extension, using an extra modulus. Starting from (15),
we consider again the base extension to a modulus mLC1 of the new RNS base
M�. The desired residue xLC1 is

xLC1 D
**

LX

iD1

˝
xi �M�1

i

˛
mi
�Mi

+

mLC1

� h�MimLC1

+

mLC1

(28)

The correction factor � can be calculated from (16), since it depends only on the
known residues xi;8i 2 Œ1; L�, and the redundant residue xr. The value of � can then

Residue Number Systems in Cryptography: Design, Challenges, Robustness 129

Fig. 5 Shenoy-Kumaresan redundant modulus method for base extension

be substituted in (28) to calculate the residue xLC1. The same process can be carried
out simultaneously for the moduli mi;8i 2 ŒLC 1; K� of the new RNS base. A fully
parallel architecture for the evaluation of xLC1 is illustrated in Fig. 5.

3.3.3 Kawamura et al. Base Extension

In 2000, Kawamura et al. presented a method for base extension that more or less
defined the modern standards for a realistic RNS deployment in cryptographic
hardware [24]. Their approximation method has been already presented in the
conversions Sect. 3.2.1. The corresponding base extension algorithm is illustrated
below as Algorithm 2 (we assume that the two bases have the same number of
moduli L); the algorithm cleverly combines the calculation of the correction factor
� presented in (17)–(21) with the modulo reduction of the result by the moduli of
the new RNS base.

The upper-bound of � < L in “Kawamura et al.” method [24], is identical to the
upper-bound obtained by the “Shenoy-Kumaresan” method [50] and much lower
than the “Posch and Posch” method .G < Lmmax/ [38, 39] (Fig. 6).

130 D. Schinianakis and T. Stouraitis

Algorithm 2 Base extension algorithm by Kawamura et al. [24]

Input: XM� D
�
x0

1; x0

2; : : : ; x0

L

�
;M;M�; ˛

Output: XM D .x1; x2; : : : ; xL/

Precompute:
�
M0�1

i

�
m0

i
;
�
M0

i

�
M .8i D 1 : : : L/,.�M0/M

1: �0 D ˛

2: for all i D 1 : : : L do
3: 	i D

˝
x0

i �M0�1
i

˛
m0

i

4: ıi;0 D 0

5: end for
6: for all i D 1 : : : L do
7: for j D 1 : : : L do
8: �j D �.j�1/ C trunc.	j/=2r

9: ��

j D b�jc, {��

j D f0; 1g}
10: �j D �j � ��

j

11: ıi;j D ıi;.j�1/ C 	j �
D
M0

j

E

mi
C ��

j � h�M0imi

12: end for
13: end for
14: for all i D 1 : : : L do
15: xi D ˝

ıi;L

˛
mi

16: end for

Fig. 6 “Kawamura et al.” approximated base extension

3.4 Polynomial Residue Number System

Similar to RNS, a Polynomial RNS (PRNS) is defined through a set of L, pair-
wise relatively prime polynomials M D .m1.x/; m2.x/; : : : ; mL.x//. We denote by

Residue Number Systems in Cryptography: Design, Challenges, Robustness 131

M.x/ D QL
iD1 mi.x/ the dynamic range of the PRNS. In PRNS, every polynomial

z.x/ 2 GF.2n/, with deg fz.x/g < deg fM.x/g, has a unique PRNS representation:

zM D .z1; z2; : : : ; zL/ ; (29)

such as zi D z.x/ mod mi.x/; i 2 Œ1; L�, denoted as hzimi . For simplicity, in the
rest of this chapter, the notation ".x/" to denote polynomials shall be omitted. The
notation z will be used interchangeably to denote either an integer z or a polynomial
z.x/, according to context.

Assuming aM D .a1; a2; : : : ; aL/ and bM D .b1; b2; : : : ; bL/ as the PRNS
representation of two polynomials a; b 2 GF.2n/, then all operations˝ 2 .C;�;	/
can be performed in parallel, as

aM ˝ bM D .ha1 ˝ b1im1 ; ha2 ˝ b2im2 ; : : : ; haL ˝ bLimL/ : (30)

Conversion from PRNS to weighted polynomial representation is identical to
the MRC for integers. The only difference is that, the subtractions in (23) and (24)
are substituted by polynomial additions. In the case of CRT for polynomials, the
conversion is based on

z.x/ D
LX

iD1

˝
zi.x/ �M�1

i .x/
˛
mi.x/
�Mi.x/; (31)

where Mi.x/ D M.x/=mi.x/ and M�1
i .x/ is the inverse of Mi.x/ modulo mi.x/.

Unlike the integer case in (14), the final reduction by the product polynomial M.x/

is not necessary in the case of polynomials over GF.2n/.

4 RNS Modular Multiplication

Mathematician P.L. Montgomery presented in 1985 an ingenious method for
efficient modular multiplication without trial divisions [35]. This 3-page paper is
perhaps the most cited work in the field during the last 30 years and changed
radically the available implementation options for efficient cryptosystem design.
A modification of Montgomery’s modular multiplication (MMM) algorithm to
handle RNS data was proposed 10 years later by Karl C. Posch and Reinhard Posch
[39]. Later, researchers produced more robust algorithms and implementations,
mainly for use in the context of modular exponentiation for RSA [5, 14, 24]. Let
us rewrite here the original MMM for convenience.

132 D. Schinianakis and T. Stouraitis

Algorithm 3 Montgomery modular multiplication [35]

Input: a; b; N; R; R�1 { a; b < N }
Output: c 	 abR�1 mod N, { c < 2N }
1: s a � b
2: t s � ��N�1

�
mod R

3: u t � N
4: v sC u
5: c v=R

Condition gcd.R; N/ D 1 ensures the existence of N�1 mod R. Condition N <

R is sufficient for c < 2N since

c D abC tN

R
<

N2 C NR

R
D

N

R
C 1

�
N < 2N: (32)

Since cR D abC tN, cR � ab mod N holds. By multiplying R�1 mod N on both
sides of (32), c � abR�1 mod N, where R is the Montgomery radix.

The algorithm requires first to transform the input operands to their correspond-
ing Montgomery representations [35]. Assuming an integer a, its Montgomery
representation is defined as Na D aR mod N. This conversion may be realized by
means of an extra Montgomery multiplication by R2 mod N, i.e. Na D a � .R2

mod N/ � R�1 mod p D aR mod N. With these inputs the algorithm outputs the
Montgomery residue of the result, i.e., Nc D cR mod N D abR mod N.

An extra Montgomery multiplication converts the Montgomery residue back to
the integer domain representation. This iteration accepts as inputs the result Nc D cR
mod N of the Montgomery multiplication and 1 mod N to produce cR � 1 � R�1

mod N D c mod N.
The challenges to transform this algorithm to RNS format are in steps 2 and 5.

Step 2 is a modulo R operation. In non-RNS implementations, R is usually chosen
to be a power of 2, thus modulo R operations amount to simple shifts. A method
that provides the modulo operation of step 2 within RNS representation needs to
be devised for the RNS version of the algorithm. Similar problems arise for step 5,
where division by the Montgomery radix needs to be performed in RNS.

The trick to overcome these issues is to choose a new Montgomery radix.
Assume that a base M� D fm01; m02; : : : ; m0Lg is employed with a corresponding
range M0. By assigning the Montgomery radix to be the range M0 itself, step 2
is transformed to a step computed modulo M0, since RNS is a closed modulo M0
system. Unfortunately, computations in the same base cannot be continued, since
in step 5 a quantity of the form M0�1 mod M0 needs to be computed, which
mathematically does not exist. For this reason, a new base M D fm1; m2; : : : ; mLg
is employed and a base extension from base M� to base M is performed after step
2 of the algorithm.

Steps 3, 4, and 5 are computed in the new base M, since now it is feasible
to compute M0�1 mod M in step 5. The complete RNS Montgomery Modular

Residue Number Systems in Cryptography: Design, Challenges, Robustness 133

Multiplication (RNSMMM) algorithm is shown below as Algorithm 4. An extra BE
is issued at the end of the algorithm so that inputs and outputs are compatible with
each other, and the algorithm may be used repeatedly in the context of any modular
exponentiation algorithm. This applies both to RSA and ECC applications, where
consecutive modular multiplications constitute the heart of the cryptosystems’
design. Steps performed in both bases are denoted as T D M [M�. Clearly,
the complexity of the algorithm depends on the BE steps.

Algorithm 4 RNS Montgomery modular multiplication
Input: aT; bT { a; b < 2N }
Output: cT, { c < 2N and c 	 abM0�1 mod N }
Precompute:

��N�1
�
M� ; M0�1

M ; NM
1: sT aT � bT
2: tM� sM� �

��N�1
�
M�

3: tM tM� { base extension step }
4: uM tM � NM
5: vM sM C uM
6: cM vM �M0�1

M
7: cM� cM { base extension step}

We have already referred to the base extension options in Sect. 3.3. When it
comes to cryptosystem design, three algorithms for RNSMMM have been proposed
since the 2000s, which either employ these BE options or modified versions of
them. Kawamura et al. [24] proposed an RNSMMM algorithm that utilizes their
BE Algorithm 2, while the RNSMMM proposed by Bajard et al. [5] utilizes the
“Shenoy-Kumaresan” BE method. Finally, Gandino et al. offered optimizations
for both algorithms by reducing the total number of steps required using pre-
computations [14]. We analyze these options below.

4.1 RNS Montgomery Multiplication by Bajard et al.

Bajard et al. employed two different methods for the first and second base
extension of the RNSMMM [5]. The first, shown below as Algorithm 5, involves
an approximation error but performs faster than Kawamura’s algorithm, while the
second, depicted as Algorithm 6, is the one originally proposed by Shenoy and
Kumaresan [50] and corrects the previous result. The two algorithms convert the
corresponding quantities in Algorithm 4, i.e., the values of t and c respectively. Note
also that the first algorithm is nothing more than the CRT expression in (14), while
the second computes the correction factor � of the CRT expression in (15).

The key idea is that if larger bases are selected, such as M; M0 > N.LC 2/2, the
restriction to obtain a correct result during the first base extension can be relaxed
without affecting the final result [5].

134 D. Schinianakis and T. Stouraitis

Algorithm 5 First BE algorithm by Bajard et al. [5]

Input: tM� D
�
t01; t02; : : : ; t0L

�

Output: tM[mr D .t1; t2; : : : ; tL; tr/

Precompute:
D
M0�1

i

E

m0

i

.8i D 1 : : : L;
�
M0

i

�
M[mr

1: 	i D t0i �
D
M0�1

i

E

m0

i

;8i D 1 : : : L

2: for all j D 1 : : : L and j D r do

3: tj D
DPL

iD1 	i �M0

i

E

mj

4: end for

Algorithm 6 Second BE algorithm by Bajard et al. [5]
Input: cM[mr D .c1; c2; : : : ; cL; cr/

Output: cM� D �
c0

1; c0

2; : : : ; c0

L

�

Precompute:
D
M�1

j

E

mj
.8j D 1 : : : L; r/,.�M/M� ;

�
Mj

�
M�[mr

.8j D 1 : : : L/

1: for all j D 1 : : : L do

2: Qcj D
D
cj �M�1

j

E

mj

3: end for
4: c00

r D
DPL

jD1 Qcj �Mj

E

mr

5: � D ˝
.c00

r � cr/M�1
r

˛
mr

6: for all i D 1 : : : L do
7: c0

i D
DPL

jD1 Qcj �Mj

E

m0

i

8: end for
9: for all i D 1 : : : L do

10: c0

i D
˝
c0

i � �M
˛
m0

i

11: end for

4.2 RNS Montgomery Multiplication by Gandino et al.

Gandino et al. [14] improved both of the solutions presented previously by issuing
pre-computation steps. In the following, values with a chat symbol denote values
multiplied by M�1

j in base M, where Mj D M=mj;8j D 1 : : : L. Also, the
form A�1

B denotes the multiplicative inverse of A on B. The re-organized versions
of Kawamura’s et al. BE are shown below as Algorithms 7 and 8, while the
re-organized versions of Bajard et al. BE correspond to Algorithms 9 and 10
respectively.

Interestingly, while the BE algorithms proposed by Kawamura et al. and Bajard
et. al convert only one value at steps 3 and 7 of Algorithm 4, the corresponding
reorganized versions proposed by Gandino et al. include in the BE algorithm all
other steps of Algorithm 4 as well. This results in fewer modular multiplications
required for one RNSMMM, as shown in Table 1 [15].

Residue Number Systems in Cryptography: Design, Challenges, Robustness 135

Algorithm 7 Reorganized first BE algorithm for Kawamura et al. [14]

Input: sM�; ˛ D 0; OOsM
Output: OcM
Precompute:

�
M0�1

M Mj

�

M
;
��NMj

�
M ;

�
M0

i NM0�1
M M�1

j

�

M
;
D
�N�1M0�1

i

E

m0

i

.8i D 1 : : : L/

1: 	i D
˝
si �
��N�1M0�1

i

�˛
m0

i
, 8i D 1 : : : L

2: � D ˛

3: Ocj D
DOOsj �

�
M0�1

M Mj

�E

mj
, 8j D 1 : : : L

4: for i D 1 : : : L do
5: � D � C trunc.	i/=2r

6: �� D b�c
7: � D � � ��

8: Ocj D
D
Ocj C 	i �

�
M0

i NM0�1
M M�1

j

�
C �� �

�
�NM�1

j

�E

mj
, 8j D 1 : : : L

9: end for

Algorithm 8 Reorganized second BE algorithm for Kawamura et al. [14]
Input: OcM; ˛ D 0:5

Output: cM�
Precompute:

˝
Mj

�
M� ; .�M/M�

1: � D ˛

2: ci D 0, 8i D 1 : : : L in M�
3: for j D 1 : : : L do
4: � D � C trunc.Ocj/=2r

5: �� D b�c
6: � D � � ��

7: ci D
˝
ci C Ocj �Mj C �� � .�M/

˛
m0

i
, 8i D 1 : : : L

8: end for

Algorithm 9 Reorganized first BE algorithm for Bajard et al. [5]

Input: sM�[mr D .s1; s2; : : : ; sL; sr/ ; OOsM
Output: OcM; cr

Precompute:
�

M0�1
M Mj

�

M
;
D
M0�1

M

E

mr
;
D
M0

i NM0�1
M

E

mr
.8i D 1 : : : L/;

�
M0

i NM0�1
M M�1

j

�

M

.8i D 1 : : : L/;
D
�N�1M0�1

i

E

m0

i

.8i D 1 : : : L/

1: m0

i D
D
si �
�
�N�1M0�1

i

�E

m0

i

, 8i D 1 : : : L

2: Ocj D
DOOsj �M0�1

M Mj CPL
iD1 m0

i �
�

M0

i NM0�1
M M�1

j

�E

mj
, 8j D 1 : : : L

3: cr D
D
sr �M0�1

M C
PL

iD1 m0

i �
�

M0

i NM0�1
M

�E

mr

136 D. Schinianakis and T. Stouraitis

Algorithm 10 Reorganized second BE algorithm for Bajard et al. [5]
Input: OcM D .c1; c2; : : : ; cL/ ; hcimr

Output: cM� D �
c0

1; c0

2; : : : ; c0

L

�

Precompute:
˝
M�1

r

˛
mr

;
�
Mj

�
M� .8j D 1 : : : L/; hMjimr .8j D 1 : : : L/; .�M/M�

1: c00

r D
DPL

jD1 Ocj �Mj

E

mr

2: � D ˝
.c00

r � cr/M�1
r

˛
mr

3: c0

i D
DPL

jD1 Ocj �Mj

E

m0

i

, 8i D 1 : : : L

4: c0

i D
˝
c0

i � �M
˛
m0

i
, 8i D 1 : : : L

Table 1 Number of modular multiplications in state-of-the-art RNSMMM

Steps in RNSMMM [24] [5] [14] applied in [24] [14] applied in [5]

1, 3, 4 5L 5L 2L 2L

First BE L2 C 2L L2 C L L2 C 3L L2 C 2L

Second BE L2 C 2L L2 C 2L L2 C L L2 C L

Total 2L2 C 9L 2L2 C 8L 2L2 C 6L 2L2 C 5L

4.3 Modular Reduction by the RNS Moduli

The modular reduction technique by each RNS modulus is identical for all the works
in [5, 14, 24], since not only it offers simple implementations but also allows for fair
comparisons. Assuming moduli of the form mi D 2r�ci, where ci < 2h and h < r�1

2
,

the reduction of an integer X < 22r requires two multiplications and three additions
according to

y D X mod 2r C ..X << r/ mod 2r/ � ci C .X << 2r/ � c2
i ; (33)

where << denotes a left-shift operation [14].

4.4 Conversions to/from RNS

Kawamura et al. offered also an efficient method for conversions to/from RNS
representations [24]. The key-idea was to employ high-radix representations so that
each high-radix digit can be assigned to an RNS channel. In that way handling of
very large integers can be achieved. A radix-2r representation of an integer X as a
L-tuple

�
x.L�1/; : : : ; x.0/

�
satisfies

Residue Number Systems in Cryptography: Design, Challenges, Robustness 137

X D
L�1X

iD0

x.i/2ri D �2r.L�1/; : : : ; 2r; 1
�

2

6664

x.L�1/

:::

x.1/

x.0/

3

7775 ; (34)

where 0 � x.i/ � 2r�1. By applying the modulo mj operation in (34) we can convert
the integer X to its associated RNS representation by

hXimj D
*

L�1X

iD0

x.i/
˝
2ri
˛
mj

+

mj

;8j 2 Œ1; L�: (35)

If constants
˝
2ri
˛
mj

are precomputed, this computation is a typical multiply-
accumulate operation and can be computed in L steps, when executed by L units in
parallel.

As (15) is the basis of the presented RNSMMM algorithms, it is useful to employ
it also for the RNS-to-decimal conversion. Let us rewrite (15) as

X D
LX

iD1

˝
xi �M�1

i

˛
mi
�Mi � �M D

D �
2r.L�1/; : : : ; 2r; 1

� LX

iD1

8
ˆ̂̂
<

ˆ̂̂
:

	i �

2
6664

Mi.L�1/

:::

Mi.1/

Mi.0/

3
7775 � �

2
6664

M.L�1/

:::

M.1/

M.0/

3
7775

9
>>>=

>>>;
;

(36)

where 	i D
˝
xi �M�1

i

˛
mi

. As soon as � has been evaluated using the methods of

section 3, each row of (36) can be computed in parallel in each modulus channel by
means of multiply-accumulate operations. In this case, carry should be propagated
from channel 1 until channel L [24].

All works in [5, 14, 24] utilize cell-based architectures for implementing the
algorithms in [24] and [5, 14] respectively. Each cell corresponds to a single RNS
modulus and utilizes a multiply-accumulate (MAC) unit followed by a modular
reduction unit which performs reduction by the corresponding RNS modulus using
(33). Actually, with slight modifications, the architecture in [14] supports both
algorithms in [5, 24]. The cell structure is shown in Fig. 7 [14]; a common bus
that connects the cells as well as lines connecting one cell to a subsequent one are
omitted, for simplicity reasons. The multiply-accumulate unit is depicted at the top
of the cell and the modular reduction units at the bottom are a straightforward imple-

138 D. Schinianakis and T. Stouraitis

Fig. 7 MAC cell [15]

mentation of (33). An in-depth analysis on the number of clock-cycles required to
accomplish all operations along with an architectural comparison presentation can
be found in [14].

5 Dual-Field Residue Arithmetic Architectures

CRT has dominated the available options for base extension and residue-to-binary
conversion since the introduction of RNS in cryptography. However, MRC has been
recently employed as it avoids the evaluation of the � factor of (15) and can form
the basis of alternative RNS-based Montgomery multiplication [44, 48]. The derived
algorithm is identical to Algorithm 4, however the BE algorithm is now based on the
modified version of MRC shown in (22) and (24). Compared to the “Szabo-Tanaka”
approach in (23), which requires L L�1

2
modular multiplications, the optimized MRC

requires only L � 2 modular multiplications.
Algorithm 11 depicts the base extension process that converts an integer X

expressed in an RNS base M� as XM� to the RNS representation of another

Residue Number Systems in Cryptography: Design, Challenges, Robustness 139

base M. It implements (24) in steps 1–8 to obtain the mixed-radix digits Ui of
X. In steps 9–15, (22) is realized, while the whole summation is computed modulo
each modulus mi of the new base M.

Algorithm 11 RNSMMM base extension based on MRC

Input: XM� D
�
x0

1; x0

2; � � � ; x0

L

�
;M;M�

Output: XM D .x1; x2; � � � ; xL/

1: W1 0

2: U1 x0

1

3: for all i D 2; : : : ; L do
4: Ui x0

i � x0

1

5: for j D 1 to i� 1 do
6: Ui

˝
Ui �WjUj

˛
m0

i

7: end for
8: end for
9: x1 0

10: for all i D 1; : : : ; L do
11: for j D 1 to L do
12:
ij D hWjMjimi

13: xi
˝

ij C xi

˛
mi

14: end for
15: end for

Contrasted to the other algorithms that employ CRT and utilize approximation
methods to compute the correction factor � of (15) [5, 14, 15, 24], the MRC-based
base extension is error-free. Conditions gcd.M0; N/ D 1 and gcd.M; M0/ D 1 are
sufficient for the existence of .�N�1/M� and M0�1

M, respectively. As it holds that

c D v

M0
D abC tN

M0
<

.2N/2 CM0N
M0

D

4N

M0
C 1

�
N � 2N; (37)

it follows that 4N � M0 is sufficient for c < 2N to hold when a; b < 2N. Finally,
(37) also shows that 2N � M is sufficient for c < M0 and v < MM0. Since v is the
maximum intermediate value, all values are less than MM0 [24, 46].

5.1 Embedding PRNS in GF.2n/ Montgomery Multiplication

Modifications of the Montgomery algorithm for multiplication in GF.2n/ that
encompass PRNS have also been proposed in the literature [6, 44, 48]. For example,
the algorithm in [48] employs general polynomials (of any degree), and is an
extension of an algorithm [6], which employs trinomials for the PRNS modulus set.

The PRNSMMM algorithm for GF.2n/ is illustrated as Algorithm 12, while the
corresponding algorithm for base extension in GF.2n/ is identical to Algorithm 11.

140 D. Schinianakis and T. Stouraitis

Algorithm 12 Polynomial RNSMMM in GF.2n/

Input: aT; bT; N�1
M�; M0�1

M ; NM, {deg fag < n, deg fbg < n}
Output: cT, {deg fcg < n, c D abM0�1 mod N}
1: sT aT � bT
2: tM� sM� � N�1

M�
3: tM tM�
4: uM tM � NM
5: vM sM C uM
6: cM vM �M0�1

M
7: cM� cM

The only difference is that integer additions/subtractions and multiplications are
replaced by polynomial ones. Again, the degrees of the input and output polynomi-
als are both less than n, which allows the construction of a modular exponentiation
algorithm by repetition of the PRNSMMM. Base extension in step 7 is employed
for the same reason.

5.2 Versatile Architectures

An examination of the RNSMMM and PRNSMMM algorithms reveals potential
for unification into a common Dual-field Residue Arithmetic MMM (DRAMMM)
algorithm and a common Dual-field Base Extension (DBE) algorithm [44, 48].
The unified DRAMMM algorithm is depicted below as Algorithm 13, where ˚
represents a dual-field addition/subtraction and ˇ represents a dual-field multipli-
cation. For simplicity, the DBE algorithm is omitted since it is identical to the
BE Algorithm 11, considering ˚, ˇ dual-field operators instead of the typical
additions/multiplications.

Both the DRAMMM and the DBE algorithm maintain the MAC characteristics
of the previously presented BE algorithms and each channel handles operations
of word length equal to the modulus word length r. This allows for a fully-
parallel hardware implementation, employing parallel MAC units, each dedicated
to a modulus of the RNS/PRNS base.

Algorithm 13 The dual-field residue arithmetic MMM algorithm

Input: aT; bT;
��N�1

�
M� ; M0�1

M ; NM, { a; b < 2N }

Output: cT; { c < 2N and c 	 abM0�1 mod N }
1: sT aT ˇ bT
2: tM� sM� ˇ ��N�1

�
M�

3: tM tM� { base extension step }
4: uM tM ˇ NM
5: vM sM ˚ uM
6: cM vM ˇM0�1

M
7: cM� cM { base extension step}

Residue Number Systems in Cryptography: Design, Challenges, Robustness 141

It has been proved that a valid RNS/PRNS transformation of the Montgomery
algorithm requires

deg fMg > n
deg fM0g > n

M � 2N
M0 � 4N

9
>>=

>>;
; (38)

which means that RNS/PRNS ranges should be selected to be of word length

dlog Me � max fdlog 2Ne ; ng
dlog M0e � max fdlog 4Ne ; ng (39)

for the bases M and M�, respectively [48]. DRAMMM and DBE algorithms
along with conditions (38) and (39) provide the necessary conditions for a dual-
field residue arithmetic Montgomery multiplication.

As described before, the structure of the DRAMMM algorithm allows it to be
reused in the context of any exponentiation algorithm. A possible implementation
is depicted in Algorithm 14, requiring in total 2n C 2 DRAMMM multiplications
[30, 32]. Using Fermat’s little theorem, field inversion can be realized by field expo-
nentiation [18]. Thus, it can be efficiently mapped to the DRAMMM architecture as
well without extra hardware.

Algorithm 14 Modular exponentiation based on DRAMMM algorithm
Input: zT; eD .en�1 : : : e1e0/2

Output: bT , b 	 hzeiN
1: b 1

2: for i D n� 1; : : : ; 0 do
3: b DRAMMM.b; b/

4: if ei D 1 then
5: b DRAMMM.b; z/
6: end if
7: end for
8: return b

Fig. 8 Dual-field full-adder cell

142 D. Schinianakis and T. Stouraitis

Fig. 9 Task distribution in DRAMMM algorithm [48]

5.2.1 Residue-to-Binary Conversion

As all operands in (24) are of word length r, they can be efficiently handled by an
r-bit MAC unit. However, (22) employs multiplications with large values, namely
the Wis. To overcome this problem, (22) can be rewritten in matrix notation, as in
(40), which implies a fully parallel implementation of the conversion process [48].

The inner products of a row i are calculated in parallel in each MAC unit. Each
MAC then propagates its result to the next MAC, so that at the end the last MAC(L)
outputs the radix-2r digit z.i/ of the result. In parallel with this summation, inner
products of the next row iC 1 can be formulated, since the adder and multiplier of
the DRAMMM MAC unit may operate in parallel.

z D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

U1 ˇ

2

666664

0
:::

0

0

1

3

777775
˚ U2 ˇ

2

6666664

0
:::

0

W.1/
2

W.0/
2

3

7777775
˚ U3 ˇ

2

6666664

0
:::

W.2/
3

W.1/
3

W.0/
3

3

7777775
˚ � � � ˚ UL ˇ

2

6666664

W.L�1/
L
:::

W.2/
L

W.1/
L

W.0/
L

3

7777775

9
>>>>>>=

>>>>>>;

ˇ V

D

2
6666664

0 ˚ 0 ˚ 0 ˚ � � � ˚ UL ˇW.L�1/
L

::: ˚ ::: ˚ ::: ˚ ::: ˚ :::

0 ˚ 0 ˚ U3 ˇW.2/
3 ˚ � � � ˚ UL ˇW.2/

L

0 ˚ U2 ˇW.1/
2 ˚ U3 ˇW.1/

3 ˚ � � � ˚ UL ˇW.1/
L

U1 ˚ U2 ˇW.0/
2 ˚ U3 ˇW.0/

3 ˚ � � � ˚ UL ˇW.0/
L

3
7777775
ˇ V D

2

666664

z.L�1/

:::

z.2/

z.1/

z.0/

3

777775
ˇ V

(40)

Residue Number Systems in Cryptography: Design, Challenges, Robustness 143

5.3 Dual-Field Addition/Subtraction

A dual-field full-adder (DFA) cell is basically a full-adder cell equipped with a field-
select signal (fsel) that controls the operation mode, as depicted in Fig. 8 [43]. When
fsel D 0, the carry output is forced to 0 and the sum outputs the XOR operation of the
inputs. As already mentioned, this is equivalent to the addition operation in GF.2n/.
When fsel D 1, GF.p/ mode is selected and the cell operates as a normal FA
cell. Obviously, dual-field adders in various configurations (carry-propagate, carry-
skip, etc) can be mechanized by utilizing DFA cells. With this cell serving as the
basic constructing component, hardware modules for dual-field addition/subtraction
(DMAS), dual-field multiplication (DM), and dual-field modular reduction can be
mechanized [48].

5.4 Dual-Field Modular Reduction

A final modular reduction by each RNS/PRNS modulus is required, for each
multiplication outcome, within each MAC unit. Assume a 2r-bit product c that needs
to be reduced modulo an integer modulus mi. By selecting mi of the form 2r � �i,
where the h-bit �i � 2r, the modular reduction process can be simplified as

hcimiD
*

E‚ …„ ƒ
r�1X

iD0

ci2
iC2r

F‚ …„ ƒ
r�1X

iD0

crCi2
i

+

mi

D
d‚ …„ ƒ

hEC 2rFimi
D
*

	‚ …„ ƒ
r�1X

iD0

di2
i C �i

hX

iD0

drCi2
i

+

mi

:

(41)

From (41), it is apparent that

hcimi D
�Pr�1

iD0 	i2
i; 	 < 2r � �Pr

iD0 	i2
i C �i; 2r � � < 	 < 2r:

(42)

The same decomposition can be applied to polynomials and, consequently, if dual-
field adders and dual-field multipliers are employed, a dual-field modular reduction
(DMR) unit can be mechanized as shown in Fig. 10. The word length h of �i can be
limited to a maximum of 10 bits for a base with 66 elements [24].

5.5 Multiply-Accumulate Unit

The circuit organization of the basic unit that performs all operations, the multiply-
accumulate (MAC) unit, is shown in Fig. 11. Its operation is analyzed below in three
steps, corresponding to the three phases of the calculations it handles, i.e., binary-to-
residue conversion, RNS/PRNS Montgomery multiplication, and residue-to-binary
conversion.

144 D. Schinianakis and T. Stouraitis

Fig. 10 Dual-field modular
reduction unit (DMR)

Fig. 11 The DRAMMM MAC unit

5.5.1 Binary-to-Residue Conversion

Initially, r-bit words of the input operands, as implied by (34), are cascaded to each
MAC unit and stored in RAM1 at the top of Fig. 11. These words serve as the first
input to the multiplier, along with the quantities

˝
2ri
˛
mi;m0

i
or
˝
xri
˛
mi;m0

i
, which are

stored in a ROM. Their multiplication produces the inner products of (34) which

Residue Number Systems in Cryptography: Design, Challenges, Robustness 145

are added recursively in the DMAS unit. The result is stored via the bus in RAM1.
The process is repeated for the second operand and the result is stored in RAM2, so
that when the conversion is finished, each MAC unit contains the residue digits of
the two operands in the two RAM units. The conversion requires L steps.

5.5.2 Montgomery Multiplication

The first step of DRAMMM is a modular multiplication of the residue digits of the
operands. Since these digits are immediately available by the two RAMs, a modular
multiplication is executed and the result in R1 is stored in RAM1 for base M�
and in RAM2 for base M. Step 2 of DRAMMM is a multiplication of the previous
result with a constant provided by the ROM. The results correspond to x0i inputs
of the DBE algorithm and are stored again in RAM1. All MAC units are updated
through the bus with the corresponding RNS digits of all other MACs and a DBE
process is initiated.

To illustrate the DBE process, a task distribution graph is presented in Fig. 9
for a DRAMMM requiring L D 4 moduli. Two cases are represented; the first
corresponds to a fully parallel architecture with ˇ D 4 units and the second shows
how the tasks can be overlapped when only ˇ D 2 MAC units are available. Each
MAC unit has been assigned to a different shading pattern, thus in the overlapped
case the color codes signify when a MAC unit performs operations for other units.
In the example of Fig. 9, MAC(1) handles MAC(4) and MAC(2) handles MAC(3).

In each cycle, modular additions and multiplications are performed in parallel
in each MAC. To depict this, each cycle is split in two parts: the operations on the
left correspond to modular additions and on the right to modular multiplications.
The results obtained by each operation are depicted in each cycle (they correspond
to Algorithm 11), while idle states are denoted by dashed lines. An analysis on the
number of clock cycles required, and how MAC units can be efficiently paired is
presented in the next section.

The remaining multiplications, additions, and the final base extension opera-
tion required by the DRAMMM algorithm are computed in the same multiply-
accumulate manner and the final residue Montgomery product can be either driven
to the I/O interface, or it can be reused by the MAC units to convert the result to
binary format.

5.5.3 Residue-to-Binary Conversion

Residue-to-binary conversion is essentially a repetition of the DBE algorithm,
except for steps 9–14, which are no longer modulo operations. Instead, (40) has been
developed to map efficiently the conversion process to the DRAMMM architecture.
An important observation is that, whenever the preceding operation of a residue-to-
binary conversion is a DRAMMM, which ends with a DBE execution, time savings

146 D. Schinianakis and T. Stouraitis

Fig. 12 DRAMMM general architecture

are achieved, since the upper part of the DBE algorithm (steps 1–8) is common with
the conversion. Thus, the intermediate results from steps 1–8 can be stored until
DBE is finished and then reused to implement (40).

To illustrate the conversion process assume the generation of the inner products in
row 1 of (40). Each product is calculated in parallel in each MAC unit and a “carry-
propagation” from MAC(1) to MAC(L) is performed to add all inner products.
When summation finishes, the first digit z.0/ of the result is produced in MAC(L).
In parallel with this “carry-propagation”, the inner products of line 2 are calculated.
As soon as a MAC unit completes an addition of carry-propagated inner products for
line 1, a new addition for line 2 is performed. The process continues for all lines of
(40) and the result is available after L steps. The complete DRAMMM architecture
is depicted in Fig. 12.

5.5.4 Delay

Assume that ˇ � L parallel MAC units are utilized in a real implementation. To
simplify the discussion, it is assumed that ˇ is a multiple of L, i.e., L D kˇ. This
means that each one of the first MAC(i), i D 1; 2; : : : ; ˇ, will provide results for k�1

more channels. By construction of the MRC, the DBE process in Fig. 9 requires
2L � 1 clock cycles in the full parallel case. Each channel 1 � i � ˇ requires L
cycles for multiplications and LC i � 2 cycles for additions, thus each channel has
L � 1 free slots for multiplications and L� iC 1 free slots for additions (idle states
in Fig. 9).

Let us assume, for simplicity, that k D 3. The free slots in each MAC(i) will
accommodate operations from one MAC(j), j D ˇ C 1; : : : ; 2ˇ, and one MAC(l),
l D 2ˇ C 1; : : : ; 3ˇ. Since each MAC(j) requires L multiplications and L C j � 2

additions and each MAC(l) requires L cycles for multiplications and LC l�2 cycles
for additions, the cycles required to accommodate the results are 2L C .j C l/ � 4.
The free slots in each MAC(i) are L�iC1 thus the extra cycles to produce all results
in each MAC(i) are 2LC .jC l/ � 4 � .L � iC 1/ D LC .iC jC l/� 5. The best
combinations for .i; j; l/ to minimize the quantity LC .iC jC l/ � 5 can be found
using the pseudo-code [44, 48]

Residue Number Systems in Cryptography: Design, Challenges, Robustness 147

1: for all i D 1; : : : ; ˇ do
2: for j D ˇ C 1; : : : ; 2ˇ do
3: ˛ijl LC .iC jC l/ � 5 {8l 2 Œ2ˇ C 1; 3ˇ�}
4: end for
5: end for
6: find � D max .˛ijl/ common 8i
7: for all i D 1; : : : ; ˇ do
8: match i with j and l, such that ˛ijl � �

9: end for

which calculates all possible values of extra cycles for all combinations of .i; j; l/
and in step 6 we select � as the maximum common value for all MAC(i). For
every distinct combination .i; j; l/ that satisfies ˛ijl < �, we match the corresponding
units until all distinct pairs of units in positions .j; l/ are assigned to a distinct unit
in position i. The remaining 6 steps of the DRAMMM require 6k cycles, in total
[44, 48].

6 Application to Elliptic Curve Cryptography

In the following, an application of RNSMMM algorithm to ECC is demonstrated.
The design employs bases of moduli offering efficient arithmetic and differs
from the approaches analyzed before in the sense that dedicated components are
employed for IO conversions and BE operations. The design employs Eq. (23) to
obtain the MRS digits of the result, while (22) is computed modulo each modulus
of the new base.

Sets of three and four moduli are used in implementing the RNSMMM of
Algorithm 4. The form of the moduli determines to a large extent the efficiency
of the arithmetic operations and the layout of the input/output converters [36]. The
RNS bases employed are shown in Table 2. In the first base, RNS moduli of the form
2r � 2ti � 1, where ti < r=2, are employed, which offer simple modulo reduction
operations [3]. The second base is realized by sets of three or four moduli of the
special forms f2r; 2rC1 � 1; 2r � 1g [34] and f2r; 2r � 1; 2rC1 � 1; 2r�1 � 1g, which
also provide efficient arithmetic operations and IO conversions [3]. In order to use
the result of RNSMMM in subsequent modular multiplications, it is required that
4N < M < M0 [3], which is true for the provided bases.

6.1 Modular Adders and Multipliers

For the first base, where moduli of the form 2r�2ti�1 are utilized, the modular adder
and multiplier depicted in Fig. 13 are employed. Regarding modular multiplication,
two r-bit operands are multiplied and a 2r-bit value is obtained. Modular reduction

148 D. Schinianakis and T. Stouraitis

Table 2 RNS bases for use in ECC

Field (bit) First base M Second base M�
3�modulus

RNSbases
160 f256 � 211 � 1;

256 � 216 � 1;

256 � 220 � 1g

f256;

256 � 1;

257 � 1g
3�modulus

RNSbases
192 f266 � 217 � 1;

266 � 218 � 1;

266 � 224 � 1g

f266;

266 � 1;

267 � 1g
4�modulus

RNSbases
192 f250 � 220 � 1;

250 � 222 � 1;

250 � 218 � 1;

250 � 210 � 1g

f250;

250 � 1;

251 � 1;

249 � 1g
4�modulus

RNSbases
224 f258 � 222 � 1;

258 � 213 � 1;

258 � 210 � 1;

258 � 216 � 1g

f258;

258 � 1;

259 � 1;

257 � 1g
4�modulus

RNSbases
256 f266 � 222 � 1;

266 � 224 � 1;

266 � 218 � 1;

266 � 217 � 1g

f266;

266 � 1;

267 � 1;

265 � 1g

Fig. 13 (a) Modulo p adder/subtractor [45]. (b) Modulo 2r � 2ti � 1 multiplier. (c) Reduction
circuit [13]

of a 2r-bit value c with moduli of the form 2r�2ti�1 can be written using its higher
r bits, denoted as ch, and its r lower bits, denoted as cl, as

hci2r�2ti�1 D hch2r C cli2r�2ti�1 : (43)

Residue Number Systems in Cryptography: Design, Challenges, Robustness 149

Since 2r mod .2r � 2ti � 1/= 2ti C 1, it holds that

hci2r�2ti�1 D
˝˝

ch.2ti C 1/
˛
2r�2ti�1

C cl
˛
2r�2ti�1

D
* .rCt/�bits‚ …„ ƒ˝

ch2ti
˛
2r�2ti�1

Cch C cl

+

2r�2ti�1

D hhchh2r C chli2r�2ti�1 C ch C cli2r�2ti�1

D ˝˝
chh2ti C chh

˛
2r�2ti�1

C chl C ch C cl
˛
2r�2ti�1

D
*

chh 0 : : : 0„ƒ‚…
ti�bits

Cchh C chl C ch C cl

+

2r�2ti�1

D
*

chhchh„ƒ‚…
concatenation

Cchl C ch C cl

+

2r�2ti�1

(44)

For the second base, the reconfigurable modular (RM) adder shown in Fig. 14
is employed. Based on this adder, addition and multiplication modulo 2r, 2r�1 � 1,
2r � 1, and 2rC1 � 1 can be accommodated in the same hardware module. Note
that the RM adder shown in Fig. 14 has .r � 1/-bit FA delay less than the modulo
adder in Fig. 13 (worst case), thus the second base supports more efficient arithmetic
operations. Regarding multiplication, the 2F-bit result R is split into two F-bit LSD
and MSD parts (Rl and Rh respectively), where .F D r; r � 1; rC 1/ and reduction
modulo 2F � 1 can be achieved by a modular addition of Rl and Rh [3].

Fig. 14 (a) Reconfigurable modular (RM) adder, (b) RM Multiplier, .F D r; r� 1; rC 1/ [13]

150 D. Schinianakis and T. Stouraitis

Fig. 15 Calculation of core operation H in RNS-to-MRS conversion for the first base (a) area
efficient design, (b) fast design [13]

6.2 Conversion from Base M� to Base M

In step 3 of RNSMMM, a base conversion from base M� to base M is required,
which consists of a residue-to-MRS conversion in base M� and then an MRS-to-
residue conversion in base M. The core operation in calculation of Ui;8i D 2; 3; 4,
in (23) is

H D ˝�xj � Ui
�

m�1
i;j

˛
mj

: (45)

Hardware implementations of (45) for area and time efficient designs are shown
in Fig. 15. Considering four-modulus RNS bases, for each Ui (i D 2; 3; 4), the
implementation shown in Fig. 15 is employed. The bit re-organizer provides the
required shifts according to the pre-calculated multiplicative inverses.

Residues in M must be calculated after the calculation of mixed radix digits in
base M�. In the calculation of MRS-to-RNS conversion from base M� to base
M for the four-modulus RNS bases, it holds that

xj D hU1 C m1 .U2 C m2.U3 C m3U4//imj
; (46)

where mj are the moduli of the forms 2r; 2r�1; 2rC1�1; 2r�1�1, and mi; i D 1; 2; 3,
are moduli of the form 2r � 2ti � 1. The form of the considered bases with simple
multiplicative inverses allows for fast or area-efficient adder-based structures, which
can be realized by using one RM adder for each modulus [13].

Residue Number Systems in Cryptography: Design, Challenges, Robustness 151

6.3 Conversion from Base M to Base M�

In order to mechanize RNS-to-MRS conversion in base M D .2r; 2r�1; 2rC1�1/,
based on (23) and considering m1 D 2r; m2 D 2r � 1; m3 D 2rC1 � 1, we get

U1 D x1 (47)

U2 D
˝
.x2 � U1/ m�1

1;2

˛
m2

(48)

U3 D
˝�

.x3 �U1/ m�1
1;3 � U2

�
m�1

2;3

˛
m3

: (49)

The required multiplicative inverses in (48) and (49) are
˝
m�1

1

˛
m2
D 1,

˝
m�1

1

˛
m3
D 2

and
˝
m�1

2

˛
m3
D �2 [34]. Due to the simple form of multiplicative inverses, the

aforementioned adder-based structure can be employed both for the fast and the area
efficient design. Regarding the MRS-to-RNS conversion to base B, it holds that

xj D hU1 C m1 .U2 C m2 .U3 Cm3U4//imj
: (50)

It is apparent that all calculations in (50) consist of simple shifts and addition
operations.

6.4 Hardware Architecture for RNS Montgomery
Multiplication

Pipelined RNS architectures for the RNSMMM are shown in Fig. 16. The area
efficient design employs one modulo 2r � 2ti � 1 multiplier, one RM multiplier,
one RM adder, and two base extension units with adder-based structure, connected
in a four-stage pipelined layout (Fig. 16b). The alternative design optimized for
high-speed implementations utilizes a six-stage pipelined layout, shown in Fig. 16a.
In each modulus channel of stages 1 and 4 of the pipelined implementations, the
modular multipliers and adders in Figs. 13 and 14 are employed. For the base
extension operations, the modulo adders and multipliers described in respective
subsections are utilized.

A complete ECC processor is illustrated in Fig. 17. It consists of IO converters
for the conversions to/from RNS representations, a register file, the ALU unit
with the presented RNSMMM architectures and the converter from projective to
affine coordinates. Based on the control unit a corresponding algorithm for point

152 D. Schinianakis and T. Stouraitis

Fig. 16 Pipelined RNSMMM architectures for ECC, (a) Fast design, (b) Area efficient design

multiplication is performed, like for example the Algorithm 1, based on the binary
expansion of scalar Œk�. Since the presented bases support efficient arithmetic, the IO
converters encompass an architecture similar to the ones presented for the modular
addition, subtraction, and base extension.

Residue Number Systems in Cryptography: Design, Challenges, Robustness 153

Fig. 17 General architecture
of an ECC processor

7 Robustness Issues

In an RSA-CRT scheme, the digital signature operation S D Md mod N is split in
two operations Sp D Mdp mod p and Sq D Mdq mod q, where dp D d mod (p-1)
and dq D d mod .q � 1/. CRT ensures that the combination of these two values
produces the signature S as

S D Sq C
��

Sp � Sq
� � �q�1 mod p

�
mod p

� � q (51)

denoted from now on as S D CRT.Sp; Sq/ [25]. In this way, an approximate 4-time
speedup of operations is achieved [28, 29].

Despite this significant performance improvement, RSA-CRT was proved to be
extremely vulnerable against hardware-fault attacks [1, 9, 16]. Assume an erroneous
output generated randomly during the execution of a cryptographic operation.
Without loss of generality, let the fault be in the modulus p channel, denoted as
QSp. This will produce a faulty signature QS D CRT

�QSp; Sq
�
. An adversary can

then factorize the public modulus n by computing its prime factor q as q D
gcd

˚�QSe �m
�

mod n; n

and consequently obtain p D n=q.
In [49], Shamir modified the basic RSA-CRT algorithm in (51) by introducing a

random prime r so that Spr D md mod .p�1/.r�1/ mod pr and Sqr D md mod .q�1/.r�1/

mod qr. The method checks whether Spr � Sqr mod r holds before combining
them with CRT. If Spr � Sqr mod r, the computation is error-free, but the step
of CRT combination is left unprotected. Moreover, Shamir’s method requires the
knowledge of the straightforward RSA private key d in an RSA-CRT context, which
is unpractical since the key material is given in CRT format [59].

154 D. Schinianakis and T. Stouraitis

Shamir’s countermeasures were broken by exploiting this weakness [1]. The
authors proposed an improved implementation that included the protection of the
CRT re-combination step. But random number generation is a problem in this
scheme, since generating random numbers for each signature operation results in
large time overhead.

In [59], the authors proposed a method based on modulus expansion. It computes
md mod n in ZNr2 , where r is a small random integer co-prime with n. The message
m is transformed tobm such thatbm D m mod n andbm D 1Cr mod r2. Then, S and
bS are computed as S D md mod n andbS D bmd mod nr2. IfbS � S mod n, then the
protocol is error-free. However, the method did not improve much the performance
overhead [31].

The Maximum Likelihood Estimation (MLE) algorithm was also exploited as
a countermeasure scheme [1]. Unlike the square-and-multiply algorithm which
performs on average 1.5 modular multiplications per bit of the exponent, the MLE
algorithm performs two modular multiplications for each bit of exponent, and
thereby increases execution time.

An ingenious fault-attack based on the safe-error concept has been developed in
[64]. It was observed that during a modular exponentiation using typical Square
and Multiply algorithms, if the exponent bit is 0, then the result of a modular
multiplication is not used. By inducing an error during multiplication and by testing
whether the result is correct or not, the attacker can deduce the bit of the secret
exponent. However, a countermeasure was provided using MLE [21].

Another class of countermeasures is based on “fault-infective” techniques [8, 65].
They are based on the idea of modifying the RSA-CRT computations in such a way
that a faulty signature in one channel will infect the final signature after the CRT
recombination. Unfortunately, like in [49], not only the knowledge of d is required,
but also the techniques rely on some very strong assumptions. For example, some
parameters t1 and t2 introduced in [8] require that gcd .t1; t2/ D gcd .d; '.t1// D
gcd .d; '.t2// D 1, where ' is the Euler’s totient function. t1; t2 should normally
be generated once, along with the RSA key, and the same values should be used
throughout the lifetime of the key. However, these values cannot be stored in such a
personalized context, meaning that the generation of t1; t2 for each signature is not
a task of negligible computational complexity.

The majority of the aforementioned countermeasures are based on modifications
of the RSA-CRT protocol, which amount to extra operations and increased algorith-
mic complexity for the RSA-CRT execution. These solutions rely on the 2-modulus
splitting of RSA calculations using a naive RNS consisting of just the moduli p
and q. In a different approach, the multi-modulus RNS Montgomery multipliers
presented in the previous sections are examined from a hardware-fault tolerance
point of view [47], which is examined next.

Residue Number Systems in Cryptography: Design, Challenges, Robustness 155

7.1 Hardware-Fault Tolerance in MRC-Based RNS
Montgomery Multipliers

It is apparent that steps 1,2,4,5 and 6 of the RNSMMM Algorithm 3 are performed
in parallel in each modulus channel. If the algorithm was completely parallel, an
error in modulus channel i would not influence the remaining channels and thus
the GCD attack would hold. Fortunately, it has been shown that the base extension
provides the desired mechanism for fault tolerance [47].

Assume a permanent error Qti in modulus channel 1 � i � L. Note that, since step
2 of Algorithm 3 uses the result of step 1, the faulty result will always amount to Qti.
By observation, employing Qti in the base extension of step 3 yields

Qti
˝�Qti � tj

�
q�1

j;i

˛
m0

i
; i 2 Œ2; L�;8j 2 Œ1; i� 1�: (52)

Equation (52) corresponds to the steps 1–7 of Algorithm 15 and implies that an
error occurred in position i will always cascade to the other channels and produce a
faulty QtL, even if the error occurs at the very last step of calculations in channel L.
This value is used in step 9 to continue the base extension process. An important
observation is that at this step the faulty QtL is injected to all channels according to

Qt0i hQtLimi
;8i 2 Œ1; L� (53)

and similarly the faulty Qt0is produce

Qt0i
˝Qt0i � m0j C Qtj

˛
mi

;8i 2 Œ1; L�;8j 2 Œ1; L� 1�: (54)

As a result, a faulty QtM is generated at step 3 of Algorithm 15 and injected in step 4
for subsequent calculations. Note that due to (53), it is assured that all channels after
the first base extension will be infected. Using a similar analysis, it is easy to show
that even if the error occurs after the first base extension, the second base extension
at step 7 of Algorithm 3 will infect all channels in the same manner, thus making
the GCD attack infeasible [47].

A special case is when the error is not permanent and is inserted in a channel
i; i 2 Œ1; L�, during the base extension. If the error is generated during steps 1–7
of Algorithm 15, step 9 will inject the error to all other channels, according to
(53). The case that an error is inserted in channel i; i 2 Œ1; L�, during step 11 of
Algorithm 15 should also be examined. Although step 11 is executed in parallel
for all channels, each channel calculation reuses the results from all other channels.
This is also apparent from the recursive form of (53). Due to this, all channels are
affected, making GCD attack infeasible. A similar analysis may be conducted for
the MRC-based BE in Algorithm 11 [47].

156 D. Schinianakis and T. Stouraitis

Algorithm 15 MRC-based base extension
Input: xM� D .x1; x2; : : : ; xL/

Output: xM D .x0

1; x0

2; : : : ; x0

L/

1: U1 x1

2: for all i D 2; : : : ; L do
3: Ui xi

4: for j D 1 to i� 1 do

5: Ui
D�

Ui � Uj

�
q�1

j;i

E

m0

i

6: end for
7: end for
8: for all i D 1; : : : ; L do
9: x0

i hULimi

10: for j D L� 1 to 1 do

11: x0

i
D
x0

i m
0

j CUj

E

mi

12: end for
13: end for

7.2 Hardware-Fault Tolerance in CRT-Based RNS
Montgomery Multipliers

In [24], the first practical and efficient implementation of RNS Montgomery
multiplier based on CRT was presented. The CRT-based algorithm for RNSMMM
is identical to Algorithm 3, thus only the BE is represented below as Algorithm 2.
Clearly, steps 1–5 and 14–16 of Algorithm 2 involve completely parallel operations
in all channels, so fault-tolerance should be examined for the steps 6–13. In the
case of a permanent error, a faulty Q��j ; j 2 Œ1; L�, is generated in steps 8–9, which
consequently produces

Qıi;j D ıi;.j�1/ C 	j �
˝
M0j
˛
mi
C Q��j �

˝
.�M0/

˛
mi

;8i; j 2 Œ1; L�: (55)

This means that all channels are affected by the error, thus the parallel operations of
steps 14–16 are also affected.

However, if an adversary is able to insert an error during the steps 14-16,
only one (or several) channels can be affected, which makes the GCD attack
easily mountable. To overcome this issue, an extra checking procedure could
be inserted in steps 14–16 of Algorithm 2 based on the following pseudo code

1: for all i D 1; : : : ; L do
2: if ıi;L DD ıi;L of step 11 then
3: x0i D hıi;Limi

4: else
5: error detected
6: end if
7: end for

Residue Number Systems in Cryptography: Design, Challenges, Robustness 157

The solution checks whether the quantities ıi;L are identical to the values obtained
in the previous step 11, and, if not, a malicious error has been detected. The solution
requires the storage of the L values of step 11 and a comparison with the ıi;Ls
employed in step 15. Note that this solution does not issue significant overhead,
since the checking procedure can be executed only once at the end of an RSA
exponentiation.

7.3 Performance

Presenting performance metrics of RNS Montgomery multipliers is out of scope of
this section. We have already presented comparative studies in the previous sections
as well as in [48], while trade-offs between state-of-the art RNS solutions appear
in [15]. There is, however, an important derivative of the presented hardware-fault
analysis on RNS Montgomery multipliers. As described in the previous paragraphs,
current countermeasures appearing in the literature provide immunity at the cost of
extra operations or checking procedures in the RSA-CRT protocol itself, thus the
4-time speedup offered by the use of RSA-CRT is somehow sacrificed to achieve
tolerance against hardware-fault attacks.

The presented analysis shows that if RNS Montgomery multipliers are employed
instead of non-RNS ones in crypto-hardware design, security is offered for free, with
no need for extra checking procedures or modifications to the RSA-CRT protocol
as in [1, 8, 16, 31, 49, 59, 64, 65]. At the same time, since immunity comes for free,
the 4-time speedup between RSA and RSA-CRT is maintained.

8 Summary and Research Outlook

Being exposed in an unprecedented number of threats and frauds, safe connectivity
for all network-based systems has become a predicate necessity. Cryptographic
hardware plays a dominant role in the implementation of systems that could offer
the desired levels of security. The prospective crypto-hardware designer should not
only care for performance but also resistance against attacks. Under this perspective,
cryptographic hardware design poses extra difficulties and challenges considering
especially the fact that, as years pass by, the security standards need to be constantly
strengthened.

This chapter attempted to approach the problem of cryptographic hardware
design with the use of unconventional arithmetic in a holistic manner, covering
aspects of algorithmic analysis, crypto-hardware design, and security validation of
the presented architectures.

An important class of algorithms, namely the RNSMMM and PRNSMMM
algorithms were presented for the case of RNS incorporation in GF.p/ and PRNS
incorporation in GF.2n/ calculations respectively. The most important features and

158 D. Schinianakis and T. Stouraitis

characteristics of these algorithms were analyzed and new, improved versions for
both algorithms were presented that support operations in both fields. An extensively
analyzed application example for ECC was also presented.

An important security property of the residue arithmetic architectures was
also revealed. It was shown that the use of a well-designed, residue-arithmetic,
Montgomery multiplier overcomes hardware-fault attack threats, with no need to
alter the basic RSA-CRT protocol, while, at the same time, the speed-gains offered
by RSA-CRT are maintained.

New parallelization prospects offered by state-of-the-art multi-processor systems
could also be investigated. A possible scenario could be that parallel processors
perform parallel multiplications on different data-sets of a single message. In such
cases, the existence of equivalencies between a serial and a parallel algorithm, if
any, should be mathematically proven. Also, in case parallelization is possible,
any required algorithmic overhead should be carefully determined and assessed
for performance impact. There are various design issues when it comes to multi-
processor system design. A careful examination of the impact of interconnections,
system I/O delays, etc., on the system’s performance and area should be carried out.
It should be also considered that these systems require full availability of all input
data beforehand, which does not allow for real-time encryption/signing.

Finally, the cryptanalytic properties of RNS-based architectures can also be
further extended, to include attacks other than hardware-fault related. The role
of BE operation should be meticulously analyzed to reveal new possibilities for
cryptanalytic resistance. An interesting derivative is the security potential offered
by the presented versatile architectures, by means of changing seamlessly the
underlying cryptographic protocols during an established communication channel.
Investigating the applicability of RNS to other PKC systems, like for example
the emerging lattice-based cryptography [17, 41], could also generate new and
interesting cryptanalytic properties, architectures, and algorithms.

In general, current solutions employing conventional binary arithmetic for mod-
ular multiplication are based on Montgomery’s algorithm (systolic, semi-systolic,
etc). These architectures have been extensively analyzed and the optimizations
proposed are so fine-grained, that the research space on the field steadily narrows.
On the other hand, this chapter provided solid indications that non-conventional
arithmetic like RNS and PRNS may provide new means for tackling design prob-
lems of crypto-hardware and further extend the research space in this active field.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on RSA with CRT:
concrete results and practical counter-measures. In: Proceedings of International Workshop
Cryptographic Hardware and Embedded Systems (CHES ’02), pp. 260–275, 2002

2. Bajard, J., Eynard, J., Gandino, F.: Fault detection in rns montgomery modular multiplication.
In: 21st IEEE Symposium on Computer Arithmetic, ARITH, pp. 119–126, 2013

Residue Number Systems in Cryptography: Design, Challenges, Robustness 159

3. Bajard, J., Kaihara, M., Plantard, T.: Selected RNS Bases for Modular Multiplication. In: 19th
IEEE International Symposium on Computer Arithmetic, pp. 25–32, 2009

4. Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extensions in residue
number systems. In: Proceedings of the 15th Symposium on Computer Arithmetic, ARITH
’01, pp. 59–65, 2001

5. Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Trans. Comput. 53,
769–774 (2004)

6. Bajard, J.C., Imbert, L., Jullien, G.A.: Parallel Montgomery multiplication in GF.2k/ using
trinomial residue arithmetic. IEEE Symp. Comput. Arith. 0, 164–171 (2005). doi:10.1109/
ARITH.2005.34

7. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge University
Press, Cambridge (2002)

8. Blömer, J., Otto, M., Seifert, J.P.: A new CRT-RSA algorithm secure against bellcore attacks.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security,
CCS ’03, pp. 311–320, 2003

9. Boneh, D., DeMillo, R., Lipton, R.: On the importance of eliminating errors in cryptographic
computations. J. Cryptol. 14, 101–119 (2001)

10. Deschamps, J.P., Bioul, G.J.A., Sutter, G.D.: Synthesis of Arithmetic Circuits: FPGA, ASIC
and Embedded Systems. Wiley, Hoboken, New Jersey (2006)

11. Di Claudio, E.D., Piazza, F., Orlandi, G.: Fast combinatorial rns processors for dsp applica-
tions. IEEE Trans. Comput. 44(5), 624–633 (1995)

12. Ercegovac, M., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco (2004)
13. Esmaeildoust, M., Schinianakis, D., Javashi, H., Stouraitis, T., Navi, K.: Efficient RNS

Implementation of Elliptic Curve Point Multiplication Over GF.p/. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 8(21), 1545–1549 (2013)

14. Gandino, F., Lamberti, F., Montuschi, P., Bajard, J.: A General Approach for Improving RNS
Montgomery Exponentiation Using Pre-processing. In: 20th IEEE Symposium on Computer
Arithmetic, ARITH, pp. 195–204, 2011

15. Gandino, F., Lamberti, F., Paravati, G., Bajard, J.C., Montuschi, P.: An algorithmic and
architectural study on Montgomery exponentiation in RNS. IEEE Trans. Comput. 61(8),
1071–1083 (2012)

16. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power analysis.
IEEE Trans. Comput. 55(9), 1116–1120 (2006)

17. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction
problems. In: Kaliski, B.J. (ed.) Advances in Cryptology CRYPTO ’97. Lecture Notes in
Computer Science, vol. 1294, pp. 112–131. Springer Berlin/Heidelberg (1997). doi:10.1007/
BFb0052231. http://dx.doi.org/10.1007/BFb0052231

18. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curves Cryptography. Springer
and Hall/CRC, New York (2004)

19. Hiasat, A., Abdel-Aty-Zohdy, H.: A high-speed division algorithm for residue number system.
In: IEEE International Symposium on Circuits and Systems, 1995. ISCAS ’95, vol. 3,
pp. 1996–1999, 1995

20. Huang, C.H., Taylor, F.J.: A memory compression scheme for modular arithmetic. IEEE Trans.
Acoust. Speech Signal Process. ASSP-27, 608–611 (1979)

21. Joye, M., Yen, S.M.: The Montgomery powering ladder. In: Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems (CHES’02) LNCS, pp. 291–302, 2002

22. Jullien, G.A.: Residue number scaling and other operations using rom arrays. IEEE Trans.
Comput. C-27(4), 325–336 (1978)

23. Kaliski, B.: TWIRL and RSA key size. http://www.rsasecurity.com/rsalabs/node.asp?id=2004
24. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-Rower architecture for fast parallel

Montgomery multiplication. In: EUROCRYPT’00: Proceedings of the 19th international
conference on Theory and application of cryptographic techniques, pp. 523–538. Springer,
Berlin/Heidelberg (2000)

http://dx.doi.org/10.1007/BFb0052231
http://www.rsasecurity.com/rsalabs/node.asp?id=2004

160 D. Schinianakis and T. Stouraitis

25. Knuth, D.E.: The Art of Computer Programming : Seminumerical Algorithms, 3rd edn. vol. 2.
Addison-Wesley Longman Publishing, Boston, MA (1997)

26. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
27. Koren, I.: Computer Arithmetic Algorithms. A K Peters, Natick, Massachusetts (2002)
28. Lab, R.: High-speed RSA implementation (2011). ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
29. Lab, R.: RSA hardware implementation (2011). ftp://ftp.rsasecurity.com/pub/pdfs/tr801.pdf
30. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge

University Press, New York (1986)
31. Ma, K., Liang, H., Wu, K.: Homomorphic property-based concurrent error detection of RSA:

a countermeasure to fault attack. IEEE Trans. Comput. 61(7), 1040–1049 (2012)
32. McEliece, R.J.: Finite Field for Scientists and Engineers. Kluwer Academic, Norwell (1987)
33. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology (CRYPTO’85)

LNCS, vol. 218, pp. 47–426, 1986
34. Mohan, P.: RNS-to-binary converter for a new three-moduli Set f2nC1 � 1; 2n; 2n � 1g. IEEE

Trans. Circuits Syst. Express Briefs 54(9), 775–779 (2007)
35. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 16, 519–521

(1985)
36. Navi, K., Molahosseini, A., Esmaeildoust, M.: How to teach residue number system to

computer scientists and engineers. IEEE Trans. Educ. 54(1), 156–163 (2011)
37. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.: Implementation of RSA algorithm

Based on RNS Montgomery multiplication. In: Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems (CHES’01) LNCS, vol. 2162, pp. 364–376, 2001

38. Posch, K., Posch, R.: Base extension using a convolution sum in residue number systems.
Computing 50(2), 93–104 (1993)

39. Posch, K., Posch, R.: Modulo reduction in residue number systems. Trans. Parallel Distrib.
Syst. 6(5), 449–454 (1995)

40. Ramirez, J., Fernandez, P., Meyer-Base, U., Taylor, F., Garcia, A., Lloris, A.: Index-based rns
dwt architectures for custom ic designs. In: IEEE Workshop on Signal Processing Systems,
pp. 70–79, 2001

41. Regev, O.: Lattice-based cryptography. In: Advances in Cryptology CRYPTO ’06. Lecture
Notes in Computer Science, pp. 131–141. Springer, Berlin/Heidelberg (2006)

42. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commum. ACM 21, 120–126 (1978)

43. Savaş, E., Tenca, A., Koç, Çetin.: A scalable and unified multiplier architecture for finite
fields GF.p/ and GF.2m/. In: Cryptographic Hardware and Embedded Systems (CHES 2000).
Lecture Notes in Computer Science, vol. 1965, pp. 277–292. Springer, Berlin (2000)

44. Schinianakis, D.: Versatile architectures for cryptographic systems, Ph.D. dissertation. Univer-
sity of Patras, Patras, Greece, 2013

45. Schinianakis, D., Fournaris, A., Michail, H., Kakarountas, A., Stouraitis, T.: An RNS
implementation of an Fp elliptic curve point multiplier. IEEE Trans. Circuits Syst. I 56(6),
1202–1213 (2009)

46. Schinianakis, D., Stouraitis, T.: A RNS Montgomery multiplication architecture. In: IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1167–1170, 2011

47. Schinianakis, D., Stouraitis, T.: Hardware-fault attack handling in RNS-based Mont-
gomery multipliers. In: IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 3042–3045, 2013

48. Schinianakis, D., Stouraitis, T.: Multifunction residue architectures for cryptography. IEEE
Trans. Circuits Syst. I: Reg. pap. 61(4), 1156–1169 (2014)

49. Shamir, A.: Improved method and apparatus for protecting public key schemes from timing
and fault attacks. U.S Patent, 1999

50. Shenoy, M., Kumaresan, R.: A fast and accurate RNS scaling technique for high speed signal
processing. IEEE Trans. Acoust. Speech Signal Process. 37(6), 929–937 (1989)

ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr801.pdf

Residue Number Systems in Cryptography: Design, Challenges, Robustness 161

51. Skavantzos, A., Wang, Y.: New efficient rns-to-weighted decoders for conjugate-pair-moduli
residue number systems. In: Conference Record of the Thirty-Third Asilomar Conference on
Signals, Systems, and Computers, vol. 2, pp. 1345–1350, 1999

52. Smith, W.: Swift. In: Symposium on Very High Speed Computing Technology (held with IEEE
ICASSD Conference) 1980

53. Sousa, L.: Efficient method for magnitude comparison in RNS based on two pairs of conjugate
moduli. In: 18th IEEE Symposium on Computer Arithmetic, 2007. ARITH ’07, pp. 240–250,
2007

54. Szabo, N., Tanaka, R.: Residue Arithmetic and its Applications to Computer Technology.
McGraw-Hill, New York (1967)

55. Taylor, F., Zelniker, G., Smith, J., Mellott, J.: The gauss machine-a dsp processor with a high
rns content. In: International Conference on Acoustics, Speech, and Signal Processing, 1991.
ICASSP-91, vol. 2, pp. 1081–1084, 1991

56. Taylor, F.J.: A vlsi residue arithmetic multiplier. IEEE Trans. Comput. C-31(6), 540–546
(1982)

57. Taylor, F.J.: Residue arithmetic: a tutorial with examples. IEEE Comput. 17, 50–62 (1988)
58. Tomczak, T.: Fast sign detection for RNS .2n�1; 2n; 2nC1/. IEEE Trans. Circuits Syst. Regul.

Pap. 55(6), 1502–1511 (2008)
59. Vigilant, D.: RSA with CRT: a new cost-effective solution to Thwart fault attacks. In:

Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 08), pp. 130–145, 2008

60. Wang, W., Swamy, M., Ahmad, O., Wang, Y.: New Chinese Remainder Theorems applications
to special moduli sets. In: CCECE99, vol. 2, pp. 1345–1350, 1999

61. Wang, Y.: Residue-to-binary converters based on new chinese remainder theorems. IEEE
Trans. Circuits Syst. II: Analog Digit. Signal Process. 47(3), 197–205 (2000)

62. Yang, J.H., Chang, C.C., Chen, C.Y.: A high-speed division algorithm in residue number
system using parity-checking technique. Int. J. Comput. Math. 81(6), 775–780 (2004)

63. Yassine, H.M., Moore, W.: Improved mixed-radix conversion for residue number system
architectures. IEE Proc. G Circuits Devices Syst. 138(1), 120–124 (1991)

64. Yen, S., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis.
IEEE Trans. Comput. 49(9), 967–970 (2000)

65. Yen, S., Kim, S., Lim, S., Moon, S.: RSA speedup with Chinese remainder theorem immune
against hardware fault cryptanalysis. IEEE Trans. Comput. 52(4), 461–472 (2003)

Fault Attacks on AES and Their
Countermeasures

Subidh Ali, Xiaofei Guo, Ramesh Karri, and Debdeep Mukhopadhyay

Abstract Fault Attacks exploit malicious or accidental faults injected during the
computation of a cryptographic algorithm. Combining the seminal idea by Boneh,
DeMillo and Lipton with Differential Cryptanalysis, a new field of Differential
Fault Attacks (DFA) has emerged. DFA has shown that several ciphers can be
compromised if the faults can be suitably controlled. DFA is not restricted to old
ciphers, but can be a powerful attack vector even for modern ciphers, like the
Advanced Encryption Standard (AES). In this book chapter, we present an overview
on the history of fault attacks and their general principle. The chapter subsequently
concentrates on the AES algorithm and explains the developed fault attacks. The
chapter covers the entire range of attacks finally showing that a single random byte
fault can reduce the AES key to 28 values, with a time complexity of 230. Further
extensions of the fault attack to multiple byte fault models and attacks targeting
the AES key schedule are also presented in the chapter. These attacks emphasize
the requirement of counter-measures to detect the underlying faults and accordingly
suppress the invalid output. The chapter then presents a survey of existing DFA
countermeasures, concluding with the efficient Concurrent Error Detection (CED)
schemes which have been developed utilizing the invariance properties in AES.
Such a strategy provides near 100 % fault coverage at a less overhead. The combined
chapter shows that DFA against AES are practical, and can be prevented using
suitable techniques.

The authors “Subidh Ali” and “Xiaofei Guo” have equally contributed to this book chapter.

S. Ali
New York University Abu Dhabi, Abu Dhabi 129188, UAE
e-mail: subidh.ali@nyu.edu

X. Guo • R. Karri
Five MetroTech Center Brooklyn, New York University School of Engineering,
Brooklyn, NY 11201, USA
e-mail: xg243@nyu.edu;rkarri@nyu.edu

D. Mukhopadhyay (�)
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur,
Kharagpur, West Bengal 721302, India
e-mail: debdeep@cse.iitkgp.ernet.in

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_5

163

mailto:subidh.ali@nyu.edu
mailto:xg243@nyu.edu
mailto:rkarri@nyu.edu
mailto:debdeep@cse.iitkgp.ernet.in

164 S. Ali et al.

1 Introduction: Faults and Cryptosystems

The growing complexity of the cryptographic algorithms and the increasing appli-
cations of ciphers in real time applications has lead to research in the development
of high speed hardware designs or optimized cryptographic libraries for these
algorithms. The complex operations performed in these designs and the large state
space involved indicates that a complete verification is ruled out. Hence these
designs have a chance of being fault prone. Apart from these unintentional faults,
faults can also be injected intentionally. Literature shows several ways of fault
injection: accidental variation in operating conditions, like voltage, clock frequency,
or focussed laser beams in hardware. Software programs can also be subjected to
situations, like missing of certain instructions to inflict faults. Apart from the general
issue of fault tolerance in any large design, faults bring a complete new aspect when
dealing with cryptographic algorithms: security.

The first thing that comes to mind is the relation between faults and secrets.
In this section, we first attempt to motivate the impact of faults in the leakage of
information.

Motivating Example Consider a pedagogical example comprising of two hard-
ware devices as illustrated in Fig. 1.

The first device has a register storing the values R1 D .6; 0/, and computes the
product yleft D .6; 0/ � .a; b/T D 6a mod m. The value of m is fixed as say 8.
The second device on the other hand has the register with value R2 D .0; 2/ and
computes yright D .0; 2/ � .a; b/T D 2b mod m. The users can feed in values of
.a; b/, st. .a; b/ 2 f2; 6g � f2; 6g. For the rest of the discussion all the computations
are mod 8 and are not explicitly stated.

The user can only input the values .a; b/ chosen from the 4 values of f2; 6g �
f2; 6g. On receiving the inputs .a; b/ both the hardwares compute the values of yleft

and yright. However the user is given either yleft or yright, chosen on the basis of a
random toss of an unbiased coin which is hidden from the user. The challenge of
the user is to guess the outcome of the random coin with a probability better than 1

2
.

Fig. 1 Effect of faults on
secrets

* *

(0,2)

m=8

(a,b)

2b mod m 6a mod m

(6,0)

Fault Attacks on AES and Their Countermeasures 165

The user is allowed to make multiple queries by providing any of the 4 inputs .a; b/.
It can be assumed that the random choice is kept constant for all the inputs.

It may be easily observed that yleft D yright for all the 4 values of .a; b/ which
implies that the output yleft or yright does not reveal which output is chosen by the
random toss. For all the input values of .a; b/ the output is 4.

Now consider that one of the hardwares is subjected to a permanent stress, which
creates a fault in either the registers R1 or R2. Hence, either R1 D r ¤ 6 or R2 D
r ¤ 2. If the fault occurs in R1, y0left D ra, while yright D 2b. Else if the fault occurs
in R2, yleft D 6a, while y0right D rb. WLOG. assume that the fault is in the first
device.

Now the attacker provides two inputs: .2; 2/ and .6; 6/ to the hardware devices.
The attacker observes both of the outputs. If both the outputs are the same then the
attacker concludes that the right output is chosen, while if they are different the left
output is chosen with probability 1.

Thus this simple example shows that a fault can leak information which seemed
to be perfectly hidden in the original design. Thus apart from the malfunction of
hardware or software designs, algorithms which hide information (like ciphers)
should be analyzed w.r.t. faults. Next, we consider a more non-trivial example of
fault based analysis of the popular RSA cryptosystem.

1.1 Fault Analysis of the RSA Cipher

The first fault based attack was mounted on the well-known public key cryptosystem
RSA. We know that RSA works by considering two keys: a public key is known
to every one, while a private key is secret. Encryption of a message is performed
using the public key, but decryption requires the knowledge of the private key. All
the operations are done mod n, where n is the product of two large distinct prime
number p and q. The values of p and q are however private and hence not disclosed
to all. The encryption key, which is public is a value b, where 1 � b � �.n/ where
�.n/ is the Euler-Totient function. The decryption key is a private value a, which is
selected such that ab � 1 mod �.n/. The owner of the private key .p; q; a/ publishes
the value .b; n/ which is the public key.

The encryptor chooses a message x, where x 2 Zn. It may be mentioned that
Zn D f0; 1; : : : ; n � 1g. The encryption process is computing the cipher as y �
xb mod n using the public key b. Since the decryptor knows the value of a, which is
the private key, he computes the value of x from y by computing ya � .xb/a mod n �
x mod n. The security of RSA is based on the assumption that decryption can be
performed only by the knowledge of the private key b. However to obtain the private
information from the public value a requires one to compute the modular inverse of
a modulo �.n/. It is believed that to obtain �.n/ from n requires the knowledge of
the prime factors of n, namely p and q. The security of RSA is thus based on the
hardness assumption of factorization of large n.

166 S. Ali et al.

However we explain that under situation of faulty computations the value of the
secret exponent a can be retrieved by efficient algorithms. In the attack it is assumed
that the attacker is in possession of certain number of plaintext and ciphertext pairs.
The attacker has the ability to flip one bit of the value a during computation. Say,
the ith bit ai of a is flipped and modified to Oai, where 0 � i � jaj and jaj is the
bit-length of a. The attacker has access to both fault-free X and faulty plaintexts OX.

Therefore, he can compute, X
OX D YOa

Ya D Y2i
Oai

Y2iai
mod n. If the ratio is equal to Y2i

, the

attacker can be sure that ai D 0. On the other hand if the ratio is 1

Y2i , the attacker
ascertains that ai D 1. The same technique is repeated for all the values of i, thus a
can be retrieved. The attack is also applicable when the fault is induced in Y. It is
also possible in cases when the fault flips two or more bits. The details are left to
the reader as an exercise.

These attacks show that fault analysis can be a powerful tool for attacking
ciphers. Significant research has been performed in the field of fault based crypt-
analysis of various ciphers of different types. From the seminal paper of [10] fault
attacks have been improved with the ideas of differential analysis to attack block
ciphers, like Data Encryption Standard (DES). However, after the acceptance of the
128-bit version of the Rijndael block cipher, designed by Vincent Rijmen and Joan
Daemen, as the Advanced Encryption Standard (AES) in 2001, the main focus of
fault attacks have been AES. In the following section we present an overview on the
AES algorithm.

2 Preliminaries

The chapter focuses on AES and its fault analysis. The present section provides a
top level description of the block cipher algorithm.

2.1 AES Algorithm

AES is an iterative block cipher, designed by Vincent Rijmen and Joan Daemen. The
algorithm, originally designed to support both block and key lengths of 128, 192,
and 256 bits, the standardizes AES supports only block length of 128 bits, though
the key can be of all the three specifications: 128, 192 and 256 bits.

The AES algorithm is an iterated block cipher, meaning the plaintext is applied
over several rounds to obtain the final ciphertext. The three versions of AES, ie.
AES-128, AES-192, and AES-256 has 10, 12, and 14 rounds. The 128-bit input
plaintext is transformed by the rounds into a 128-bit output ciphertext. All the
rounds of AES are identical except the last round with a slight change.

Each round of AES encryption consists of SubBytes, ShiftRows, MixColumns,
and AddRoundKey denoted by B, S, M, and A, respectively, as shown in Fig. 2.

Fault Attacks on AES and Their Countermeasures 167

Fig. 2 One AES encryption round

The plaintext is first mixed with the input key through a key XORing operation.
Subsequently the rounds are applied, which are composed of the above mentioned
four operations, B, S, M, and A. The last round is only distinct as MixColumns is
not performed.

2.2 Round Transformations of AES

Each operation in every round acts on a 128-bit input state, where each state element
is a byte in GF.28/. Each byte is denoted by sr;c (0 � r; c � 3) indicating that this
byte is in row r and column c in the state matrix.

S D

2

664

s0;0 s0;1 s0;2 s0;3

s1;0 s1;1 s1;2 s1;3

s2;0 s2;1 s2;2 s2;3

s3;0 s3;1 s3;2 s3;3

3

775 D Œsr;c�
3
r;cD0 (1)

In SubBytes, all bytes are processed separately by 16 S-boxes (SBs in Fig. 2).
Each SB performs a nonlinear transformation of the input byte. If X is the input, the
output is:

Y D B.X/ D Œxr;c�
3
r;cD0 (2)

In ShiftRows, the rows of the state are shifted cyclically byte-wise using a
different offset for each row. Row 0 is not shifted, while rows 1, 2, and 3 are
cyclically shifted to the left by 1, 2, and 3 bytes respectively. The resulting output is:

168 S. Ali et al.

Z D S.Y/ D

2

664

y0;0 y0;1 y0;2 y0;3

y1;1 y1;2 y1;3 y1;0

y2;2 y2;3 y2;0 y2;1

y3;3 y3;0 y3;1 y3;2

3

775 D Œyr;.rCc/ mod 4�
3
r;cD0 D Œzr;c�

3
r;cD0 (3)

In MixColumns, the output state is obtained by multiplying the output of
ShiftRows by a constant matrix. The resulting output is:

U D M.Z/ D Œur;c�
3
r;cD0 D

2

664

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

3

775

2

664

z0;0 z0;1 z0;2 z0;3

z1;0 z1;1 z1;2 z1;3

z2;0 z2;1 z2;2 z2;3

z3;0 z3;1 z3;2 z3;3

3

775 (4)

In AddRoundKey, the round key K D Œkr;c�
3
r;cD0 is added (modulo-2) to the

128-bit state U. The resulting round output is:

V D A.K; U/ D Œkr;c�
3
r;cD0 C Œur;c�

3
r;cD0 D Œvr;c�

3
r;cD0 (5)

2.3 Key Scheduling Algorithm

The round keys are generated by the AES key scheduling algorithm, as shown in
Algorithm 1. The master key K is used to derive all the round keys, where Nk, Nr

and Kr represent the key length in words (4 bytes), number of rounds and the rth
round key respectively. The input key is of size 4Nk bytes. The algorithm produces
the rth round key, which is denoted by Kr. As 0 � r � Nr , the total expanded round
keys can be stored in the vector WŒNb.NrC1/�, where Nb is the block length of AES.
The algorithm consists of operations: SubWord and RotWord, which are explained
as follows: The operation SubWord consists of SubByte operations applied to each
of the 4 bytes separately on every byte of a word. The RotWord operation is a
cyclic circular left shift on the bytes of an input word. Finally, the round constant
abbreviated as RconŒn� D .f02gn; f00g; f00g; f00g/. For more details one can refer
to the AES specification [43].

3 Introduction to Differential Fault Analysis

The first fault attack was applied to the RSA cryptosystem. Biham and Shamir pro-
posed a new fault based attacking technique which is wildly known as Differential
Fault Analysis (DFA)[10]. DFA attack is a very powerful attack model which can
threaten a large class of ciphers. However, the actual attack procedure may vary
from cipher to cipher, and one has to exploit the fault propagations suitably to

Fault Attacks on AES and Their Countermeasures 169

Algorithm 1: AES Key Scheduling Algorithm
Input: K the initial key of length Nk bytes
Output: Kr the round key where 0 � r � Nr

for i D 0 to Nk � 1 do
WŒi� fKŒ4 � i�; KŒ4 � iC 1�; KŒ4 � iC 2�; KŒ4 � iC 3�g;

for i D Nk to Nb � .Nr � 1/ do
temp WŒi� 1�;
if i mod Nk D 0 then

temp SubWord.RotWord.temp//˚ RconŒi=Nk�;

else if Nk > 6 and i mod Nk D 4 then
temp SubWord.temp/;

WŒi� WŒi� Nk�˚ temp;

return W

extract the key of a given cipher. The foremost DFA proposed was on the DES
cipher, which is essentially a Feistel cipher. Later, DFA has been extensively applied
on other ciphers, with greater focus on the AES algorithm. Before discussing on
fault based analysis of the AES cipher, we would discuss a general idea on DFA of
block ciphers. We would restrict ourselves to the Substitution Permutation Network
(SPN), as AES belongs to this family. However, similar observations and results
can be obtained for Feistel structures, putting to threat all block ciphers of the
modern day.

3.1 General Principle of DFA of Block Ciphers

In this section, we study the basic principle of DFA which shall be subsequently
applied for the AES algorithm. As apparent from the name, DFA combines the
concepts of differential cryptanalysis with that of fault attacks. DFA is applicable
to almost any secret key cryptosystem proposed so far in the open literature such as
DES, IDEA, and RC5 [10].

There has been considerable number of work about DFA of AES. Some of the
DFA proposals are based on theoretical model [11, 15, 16, 36, 40, 45, 46, 54], while
others launched successful attacks on ASIC and FPGA devices using previously
proposed theoretical models [2, 8, 28, 46, 49]. The key idea of DFA is composed
of three steps as shown in Fig. 3. (1) Run the cryptographic algorithm and obtain
non-faulty ciphertexts. (2) Inject faults, i.e., unexpected environmental conditions
into cryptographic implementations, rerun the algorithm with the same input, and
obtain faulty ciphertexts (3) Analyze relationship between the non-faulty and faulty
ciphertexts to significantly reduce the key space.

Practicality of DFA depends on the underlying fault model and the number of
faulty ciphertext pairs needed. In the following section we will analyze all the
fault models DFA of AES uses and point out their relationships. In this section,
we continue the discussion on the working principle of DFA w.r.t. a generalized
block cipher model.

170 S. Ali et al.

Fig. 3 Three steps of DFA

DFA works under the assumption of underlying faults. These faults are often
caused by various mechanisms, like: fluctuation of operating voltage, varying the
clock frequency, changing the temperature of a device and with the most accurate
injection of laser beams. However, in all of the above techniques the faults are
created by sudden variation of the operating conditions. It may be noted that apart
from the above means of malicious or intentional fault injections, faults can be also
unintentional. With the growing complexity of crypto devices, chances of mistakes
in the design also increase.

Faults can be categorized depending on whether they are permanent or transient.
From the point of view of cryptography, we would like to point out that transient
faults are of high concern as they are hard to detect. These faults can be of such
a short duration that most simulation based techniques of fault detection may be
unable to detect the advent of the faults. However, as we shall soon observe that few
faults are enough to leak the entire key of a standard cipher, like AES.

3.1.1 Fault Models

The faults can be of varying nature but can be categorized as follows:

1. Bit Model: This fault model assumes that the faults is localized to one bit. The
fault control is crucial here, as there is a high probability that a random fluctuation
of the operating conditions can lead to more than one bit getting affected. Hence
attacks based on such models are often unrealistic and may not be practically
viable.

2. Single Byte: A more practical and most common fault model is the single byte
model. This fault model assumes that the faults are spread to bytes and the fault
model can be any random non-zero value. This non-specificity of the fault value
makes these types of DFAs very powerful and practical techniques.

3. Multiple Byte: In this fault model, it is assumed that the faults propagate to
more than 1 byte. More often, these models are more practical, in the sense that
the DFAs based on them work even with lesser fault control. In context to DFA of

Fault Attacks on AES and Their Countermeasures 171

Fig. 4 Basic structure of
SPN ciphers

K0
r−1 K1

r−1 K2
r−1 Kn−1

r−1

Cn−1C2C1C0

Pn−1P2P1P0

S S S S

S S S S

S S S S

K0
1 K1

1 K2
1 Kn−1

1

K0
r K1

r K2
r Kn−1

r

Dr−1

D0

WK0 WK1 WK2 WKn−1

AES, we shall observe a special fault model, namely the Diagonal Fault Model
which helps to generalize the DFA of AES to a large extent. The fault values are
again arbitrary, and hence makes these attacks very powerful.

3.1.2 The Effect of Faults on a Block Cipher

It is expected that the induced fault changes certain bits or bytes during a particular
round of the encryption and generates certain differences. Most often the DFAs
target the non-linear transformations, namely S-Boxes of the block ciphers. As the
faults are induced during the encryption process, the fault propagation patterns give
some relations between the input and output difference of certain S-boxes. In most
of the ciphers like AES, the S-boxes are known and therefore, one can easily deduce
the difference distribution table of the S-box being used. Generally, the S-boxes have
inputs which are combined with part of the keys through some mixing operation.
Using the difference distribution table and the relations between the input and output
difference one reduces the search space of a part of the key. This divide and conquer
mechanism helps to recover the entire key quite efficiently for most ciphers. We
explain the working in more details for the generalized SPN cipher, as modeled
in Fig. 4.

Figure 4 shows the basic structure of r-round Substitution Permutation Network
(SPN) cipher with block length n-bytes. Each round consists of confusion layer S
which is realized by non-linear S-box operation, and a linear transformation called
diffusion layer D, followed by an addition with the round key. There is an addition

172 S. Ali et al.

with the whitening key WK at the beginning of the encryption called key-whitening
phase. The diffusion layer is generally provided by multiplication with MDS matrix
followed by some rotation operations. The diffusion operation plays a major role
in DFA. If a byte is modified at the input of the diffusion operation, the induced
difference spreads to multiple bytes at the output depending on the branch number
of the diffusion layer. The disturbed bytes are often referred to as the active bytes
in the literature of differential cryptanalysis. Branch number for a diffusion matrix
on bytes is used to observe how a non-zero input differential spreads in a cipher
through the diffusion layer. Branch number is defined as the sum of the minimum
number of active bytes at the input and output of the diffusion layer.

As the diffusion layer is a linear operation w.r.t. the key mixing operation namely
XOR, the output difference can be expressed as a linear relation of the input
differences. The attacker exploits these properties in the following fashion to obtain
the key. Say a single byte fault is induced at the input of .r � 1/th (penultimate)
round and the corresponding difference at the input of Dr�1 is ˛ ¤ 0. If the branch
number of the diffusion layer is b, the input byte fault will spread to b � 1 bytes
.˛0 ; : : : ; ˛b�2 / at the output of Dr�1, where denotes the transformation of the
diffusion layer. Each of these active bytes then pass through the S-boxes, which non-
linearly transform them. The attacker then represents these output bytes in terms of
a pair of fault-free and faulty ciphertexts .C; C�/ as follows:

˛j D S�1.Cj ˚ Kr
j

/˚ S�1.C�j
˚ Kr

j
/ (6)

where j 2 f0; : : : ; b � 2g and S�1 represent the inverse of the S-box operation.
Now the attacker knows the S-box input difference Cj ˚ C�j

. From the difference
distribution table he knows on an average few values satisfy a chosen .˛j ; Cj˚C�j

/

pair.
Further, because of the linear mapping in Dr�1, ˛j depends linearly on ˛.

Therefore, the attacker guesses the value of ˛ and get the values of ˛j i.e. the
output differences. Using the input–output difference he retrieves the value Cj˚Kj

from the difference distribution table of the S-box. As Cj and C�j
are known to the

attacker, hence he can retrieve the value of Kj . The attacker may need to induce
faults multiple times in order to get all the bytes of the round key.

In the next section, we present the fault models used for DFA of AES in the
literature and a summary of all the attacks performed. Subsequently, we present the
fault attacks on AES.

4 DFA and Associated Fault Models

DFA exploits a small subspace of all possible faults. The practicality of a fault attack
largely relies on the underlying fault model: the nature of the faults and the ability
to actually obtain such faults in practice. Any random fault is not attackable. Only

Fault Attacks on AES and Their Countermeasures 173

certain fault models are feasible enough to reveal the secret key in practical time.
In the following section, we classify the DFA fault models in four scenarios by the
location and round in which faults are injected.

4.1 Fault Models for DFA of AES

Table 1 is a summary of the published DFA of AES. Faults can be injected either
(I) in AddRoundKey in round 0, (II) between the output of seventh and the input
of eighth round MixColumns, or (III) between the output of eighth and the input
of ninth round MixColumns. In each scenario, we analyze the (A) fault models, (B)
number of faulty ciphertexts needed, (C) the key space for brute force after obtaining
the faulty outputs to recover the secret, and (D) the experimental validation of the
attack. The considered transient faults are categorized into single bit, single byte,
and multiple byte transient faults. It may be noted that we have purposefully omitted
faults of permanent nature: namely stuck-at-1 or stuck-at-0 as they are not relevant
from the DFA perspective. Rather transient faults are more relevant, because of their
stealthy nature and ability to defeat counter-measures for classical fault tolerance.
For detailed discussion in this direction, we would redirect the author to [56].

In the following discussions in this section we elaborate the fault models present
in Table 1.

Table 1 A summary of DFA of AES

Fault model No. of faulty CTs ? Key space Experiment

Section 4.1.1 Faults are injected in AddRoundKey in round 0

Single bit [11] 128 1 No

Section 4.1.2 Faults are injected between the output of seventh and the input of eighth round

MixColumns

Single byte [45] 2 240 Underpowering [28, 49]

[40] 2 232 No

[54] 1 28 No

Multiple byte DM0 [46] 1 232 Overclocking [46]

DM1 [46] 1 264

DM2 [46] 1 296

DM3 [46] 2128 2128

Section 4.1.3 Faults are injected between the output of eighth and the input of ninth round

MixColumns

Single bit [16]
 50 1 Overclocking [2]

Single byte [15]
 40 1 Underpowering [8]

[36]� 6 1 No

Multiple byte DM0 [36]� 6 1 No

DM0 [36]Þ 1500 1 No

? CT ciphertext, � Only 1 byte in a word is faulty, � 2 or 3 bytes in a word are faulty, Þ All 4
bytes in a word are faulty

174 S. Ali et al.

4.1.1 Faults are Injected in AddRoundKey in Round 0

The only fault model an attacker uses in this scenario is single bit transient fault.

Single Bit Transient Fault In [11], the attacker is able to set or reset every bit of
the first round key one bit at a time. This attack recovers the entire key using 128
faulty ciphertexts with each faulty ciphertext uniquely revealing one key bit. Hence,
the key space required to reveal the key is one. However, as transistor size scales,
this attack becomes impractical even with expensive equipments such as lasers to
inject the faults, because it requires precise control of the fault location [1].

4.1.2 Faults are Injected Between the Output of Seventh and the Input
of Eighth MixColumns

The attacker uses various fault models and analysis in this scenario including single
and multiple byte fault.

Single Byte Transient Fault The three different attacks using this fault model
are shown in Table 1. In the first DFA [45], two faulty ciphertexts are needed
to obtain the key. This fault model is experimentally verified in [28, 49]. In
[49], underpowering is used to inject faults into a smart card with AES ASIC
implementation. Although no more than 16 % of the injected faults fall into the
single byte fault category, only 13 faulty ciphertexts are needed to obtain the key. In
[28], the authors underpower an AES FPGA implementation to inject faults with a
probability of 40 % for single byte fault injection.

Multiple Byte Transient Fault Saha et al. [46] proposes a general byte fault model
called diagonal fault model. The authors divide the AES state matrix into four
different diagonals and each diagonal has 4 bytes. A diagonal is a set of 4 bytes of
the AES state matrix, where the ith diagonal is defined as follows:

Di D fsj;.jCi/mod4 I 0 � j < 4g (7)

We obtain the following four diagonals.

D0 D .s0;0; s1;1; s2;2; s3;3/; D1 D .s0;1; s1;2; s2;3; s3;0/;

D2 D .s0;2; s1;3; s2;0; s3;1/; D3 D .s0;3; s1;0; s2;1; s3;2/

Fault in diagonal Di will affect the entire ith column of the state matrix after the
MixColumns operation. The diagonal fault model is classified into four different
cases, denoted as DM0, DM1, DM2, and DM3. As shown in Fig. 5, for DM0, faults
can be injected in one of the diagonals; D0, D1, D2, or D3. For DM1, faults can be
injected in at most two diagonals. For DM2, faults can be injected in at most three
diagonals. Finally, for DM3, faults can be injected in at most four diagonals (Fig. 5).

The authors also validate the diagonal fault model with a practical fault attack on
AES FPGA implementation using overclocking.

Fault Attacks on AES and Their Countermeasures 175

Fig. 5 Fault propagation of diagonal faults. The upper row shows the diagonals that faults are
injected in. The lower row shows the corresponding columns being affected

4.1.3 Faults are Injected Between the Output of Eighth and the Input
of Ninth MixColumns

Single Bit Transient Fault In [16], the attacker needs only three faulty ciphertexts
to succeed with a probability of 97 %. The key space is trivial. Agoyan et al. [2]
validates this single bit attack on a Xilinx 3AN FPGA using overclocking. It is
reported that the success rate of injecting this kind of fault is 90 %.

Single Byte Transient Fault In [15], the authors use a byte level fault model. They
are able to obtain the key with 40 faulty ciphertexts, and the key is uniquely revealed.
This model is used in a successful attack by underpowering a 65 nm ASIC chip [8].
In this attack, 3,9881 faulty ciphertexts are collected during the ten experiments;
3,0386 of them were actually the outcome of a single byte fault. Thus, it has a
successful injection rate of 76 %.

Multiple Byte Transient Fault Moradi et al. [36] presents a DFA of AES when
the faults are injected in a 32-bit word. The authors propose two fault models. In
the first model, they assume that at least one of the bytes among the four targeted
bytes is non-faulty. This means the number of faulty bytes can be 1, 2, or 3 bytes.
So this fault model includes the single byte fault model. If only one single byte fault
is injected, 6 faulty ciphertexts are required to reveal the secret key. Whereas the
second fault model requires around 1500 faulty ciphertexts. These faulty ciphertexts
derive the entire key at constant time. Though the second fault model is much more
general, the amount of faulty ciphertexts it requires is very large, it is difficult for
the attacker to get all the ciphertexts without triggering the CED alarm.

In summary, the attacker can obtain the secret key with one or two faulty
ciphertexts when single or multiple byte transient faults are injected. In the
following subsection, we present a detailed analysis on the inter-relationships of
the fault models discussed so far.

176 S. Ali et al.

4.2 Relationships Between the Discussed Fault Models

As previously mentioned, DFA of AES does not exploit all possible faults. Rather, it
exploits a subset of faults, namely single bit, single byte, and multiple byte transient
faults injected in selected locations and rounds. Therefore, understanding the rela-
tionships among various fault models is the basis for understanding and comparing
the various fault attacks on AES. Further the inter-relationships developed also help
in analyzing the security of the counter-measured: both conventional as well as
for designing new DFA-specific CED. Because DFA of AES targets the last few
rounds,1 we synthesize the relationships between different fault models based on
the locations and rounds they are injected in.

4.2.1 Faults are Injected in AddRoundKey in Round 0

As we mentioned previously, this attack uses a very restricted fault model, and it is
not practical. Thus, this fault model is also not useful for the attacker.

4.2.2 Faults are Injected Between the Output of Seventh and the Input
of Eighth MixColumns

Figure 6a summarizes the relationships between the DFA-exploitable fault models
by injecting faults in the output of seventh round MixColumns and the input of
eighth round MixColumns.

Single byte faults are, in turn, a subset of the DM0 faults which, in turn, are a
subset of the DM1 faults, and so on. The relationship is summarized in (8).

Single Byte DM0 DM1 DM2 DM3 (8)

A more careful look reveals that 2 byte faults can be either DM0 or DM1 but not
DM2. Similarly, 3 byte fault can not be DM3. The relationship between faulty bytes
from 5 to 12 and diagonal fault models are summarized in Fig. 6a.

As shown in Fig. 6a, DM3 includes all possible byte transient faults. The attacks
proposed in [46] show that DFA based on DM0, DM1, and DM2 leads to the
successful retrieval of the key. Remember that DM3 faults are the universe of all
possible transient faults injected in the selected AES round. These faults spread
across all four diagonals of the AES state and hence, are not vulnerable to DFA as
mentioned in Sect. 4.1.2. These fault models are multiple byte transient faults and
thus, attacks based on these models are more feasible than those based on single
byte transient faults, which are a subset of the model DM0. The more encompassing
the fault model is, the more realistic the attacks based on it are.

1In general, the practical faults used in DFA target the seventh, eighth, and ninth rounds.

Fault Attacks on AES and Their Countermeasures 177

Fig. 6 Relationships between DFA fault models when faults are injected between (a) the output
of seventh and the input of eighth round MixColumns, (b) output of eighth and the input of ninth
round MixColumns

4.2.3 Faults are Injected Between the Output of Eighth and the Input
of Ninth MixColumns

Figure 6b summarizes the relationships between the DFA-exploitable fault models
by injecting faults in the output of eighth and the input of ninth round MixColumns.
Single bit transient faults are a subset of single byte faults. Single byte faults are
again a subset of DM0 faults. Two and three byte faults are a subset of DM0 faults.
Again, attacks based on multiple byte faults are more feasible than those based on
single bit and single byte faults.

In the following section, we detail the above mentioned fault attacks on AES.

5 Differential Fault Attacks on AES: Early Efforts

A very central property which is used in the algorithms to perform a DFA of AES
is the differential features of the AES S-boxes. The following section presents the
differential property of the AES S-Box.

5.1 Differential Properties of AES S-Box

In this section we discuss differential properties of S-box, which will be useful for
DFA. In case of AES, the input to the S-box in each round is the XOR of previous
round output and the round key. Figure 7a shows two S-box operations: one with
normal input in and the other with a difference ˛ to the input.

178 S. Ali et al.

S S

in ⊕ α

out out ⊕ β

K K

in
a

SubByte

ShiftRow10th Round

S2

K10

K9

S0

S1

b

Fig. 7 Differential property of AES. (a) Difference across S-box. (b) Flow of fault in the last
round

Here in is the previous round output byte and K is the round key byte. The AES
S-box is a non-linear operation, therefore, input difference ˛ will change to ˇ at the
S-box output out. Now if we replace the value of in ˚ K by X, we can relate the
input output differences by following equation:

ˇ D S.X ˚ ˛/˚ S.X/ (9)

According to the properties of AES S-box for a particular value of ˛ and ˇ the above
equation can have 0, 2, or 4 solutions of X [44]. For a fixed value of ˛, among the 256

possible values of ˇ, only one value leads to four solutions of the equation and 126

values lead two solutions. The rest of the values will not produce any solution. This
implies only 127 out of 256 choices of ˇ produce solutions for X and the average
number of solutions of X is one. It may also be noted that if we know the values
of ˛; ˇ, and in, we can get the values of K from the above equation. This property
is being used in most of the advanced DFAs on AES. In the subsequent part of the
chapter we explain DFA of AES using these properties.

Fault Attacks on AES and Their Countermeasures 179

5.2 DFA of AES Using Bit Faults

When AES was introduced at that time side-channel analysis and fault analysis
were become two very prominent fields of research in the research community.
The first DFA was already proposed on DES. Therefore, it was a challenge for the
researchers in this field to analyze AES in the light of DFA. The initial attempts were
further inspired by the fault injection techniques, which practically demonstrated
that flipping a single bit of an intermediate computation result is possible using
relatively less expensive devices like simple camera flash installed on a microscope
or laser equipments [51]. However byte faults are more realistic compared to the bit
faults.

In the following sections we discuss about DFA using bit level and byte level
fault models. The induced fault is assumed to be random in nature and the attack
algorithm is oblivious of the fault value. Let us first study the DFA which targets the
last round of the AES encryption.

5.3 Bit Level DFA of Last Round of AES

In this attack, originally proposed in [16], it is assumed that the fault is induced at
any particular bit of the last round input. However, the exact fault location, i.e., the
exact bit where the fault is created is unknown.

Let us consider AES with 128-bit key for the sake of simplicity, though the
discussion can be easily extended to the other AES versions. Figure 7b shows the
flow of fault corresponding to the single-bit difference at the input of the tenth round.
In the figure, K9 and K10 denotes the ninth and tenth round keys respectively. The
state matrices S0, S1 and S2 show the corresponding XOR differences of the fault-
free and the faulty states. As the fault is induced in a bit, therefore, the disturbance is
confined within a single byte. So, from the XOR difference of fault-free and faulty
ciphertexts one can easily get the location of the faulty byte (note that the bit is not
evident because of the S-Box).

Consider the fault induced at the .i; j/th byte of the tenth round input state matrix
S0. Let x be the fault-free value at the tenth round input and " be the corresponding
fault value. Note that the attacker is aware of the fault-free .C/ and faulty .C�/
ciphertexts. As already stated, from the XOR difference of C and C� one can get
the byte position .i; j/, where the fault is induced. The .i; j/ byte where the bit fault
is induced in the byte x can be represented in terms of .C; C�/ as follows:

Ci;l ˚ C�i;l D SR.S.xi;j//˚ SR.S.xi;j ˚ "// (10)

Note that l D .j � i/ mod 4 provides the corresponding column index, where the
faulty byte in the jth column and ith row shifts due to the Shiftrows operation. In
other words, the fault location .i; j/ in the difference matrix S0 changes to .i; l/ at the
tenth round output.

180 S. Ali et al.

Having obtained the location of the fault, the attacker is now set to ascertain
the value of the fault. Note the similarity of the above equation with that of Eq. (9).
The value of Ci;l˚C�i;l being known to the attacker, in order to get the value of xi;j he
guesses eight possible values of ". For each possible value of ", he gets on an average
one hypotheses for xi;j, which will satisfy the above equation (refer Sect. 5.1). Thus,
for all the eight possible values of ", he gets on an average eight candidates for xi;j.
In order to identify the unique value for xi;j he obtains another faulty ciphertext by
injecting another fault (i.e., the fault location is a different bit) in the same byte.
A similar approach leads to another set of eight values for xi;j. Intersection of these
two sets from the two different faulty ciphertexts is expected to determine the exact
value of xi;j.

This same technique is repeated for the other bytes in order to get all the 16 bytes
of x. On an average thus 2 � 16 D 32 faulty ciphertexts are needed to determine the
value of the state matrix x. Thus, the attacker obtains the fault-free input of tenth
round. Being aware of the fault-free ciphertext C, one can easily retrieve the tenth
round key K10 from the relation C D SR.S.x/˚K10/. Then, as the AES key-schedule
is invertible one trivially retrieve the master key.

5.4 Bit Level DFA of First Round of AES

In this section we describe another bit level DFA, where the fault is induced in
the first round of AES encryption. This is a more general attack and applicable
to most of the ciphers. The main difference of this attack from the previous ones
and the others which follow is the underlying fault model. The fault model is a bit
reset model, which implies that the attacker has capability to reset a specific bit at
a targetted byte location of the AES encryption. The attacker targets the first key
whitening operation before the SubBytes operation. The plaintext is set to a zero
string of length 128 bits, denoted as Pzero. The plaintext is fixed throughout the
attack and the objective of the attack is to obtain the whitening key K.

To start with, an encryption is done using Pzero and K under normal environment
and the fault-free ciphertext Czero is obtained and stored. Now a fault is induced
according to the fault model discussed. It is assumed that the induced fault resets
the lth bit of the .i; j/ byte at the input to the first SubBytes operation. Let us assume
that the fault free input to the SubBytes operation is x. Therefore, we can write
x D Pzero ˚ K. The attacker tries to detect the value of l by repeating the following
simple steps: He compares the fault-free ciphertext, Czero with that of the faulty one,
C�zero. If they are equal it implies that the lth bit of the .i; j/th byte of x, which was
reset due to the fault, was already zero and thus the effect of the reset fault was
inconsequential. Thus the corresponding bit of the .i; j/th key byte was zero (as the
plaintext is all zero). On the other hand, a different value of Czero and C�zero implies
that the induced fault reset the bit xl

i;j with effect. That means the fault-free value
of xl

i;j was one and after fault induction it changes to zero. This also means the

Fault Attacks on AES and Their Countermeasures 181

corresponding bit value of K is one. The fault thus reveals whether a particular bit
of the whitening key is one or zero. The same technique is repeated for all the 128

bits, and thus 128 faulty ciphertexts are needed to get the master key.
The attack is relatively simple in nature, however is relatively less practical. The

assumed fault model is impractical as it requires very precise control over the fault
location to enable fault in every bit positions. Thus fault attacks on AES with more
relaxed fault models and lesser fault induction requirements are desirous and topics
of the future sections.

6 State-of-the-Art DFAs on AES

In this section, we present an overview on some of the more recent fault attacks on
AES. These attacks use more practical fault model, namely the byte faults.

6.1 Byte Level DFA of Penultimate Round of AES

In byte level DFA, we assume that certain bits of a byte is corrupted by the induced
fault and the induced difference is confined within a byte. Due to the fact that
the fault is induced in the penultimate round, implies that apart from using the
differential properties of S-box (as used in the bit level DFA on last round of AES),
the attacker also uses the differential properties of the MixColumns operation of
AES. As already mentioned in the AES, diffusion is provided using a 4 � 4 MDS
matrix in the MixColumns. Due to this matrix multiplication, if 1 byte difference is
induced at the input of a round function, the difference is spread to 4 bytes at the
round output.

Figure 8a shows the flow of fault. The induced fault has generated a single byte
difference at the input of the ninth round MixColumns. Let f be the byte value
of the difference and the corresponding 4-byte output difference is .2f ; f ; f ; 3f /,
where 2; 1; and 3 are the elements of the first row of the MixColumns matrix.
The 4-byte difference is again converted to .f0; f1; f2; f3/ by the non-linear S-box
operation in the tenth round. The ShiftRows operation will shift the differences to
four different locations. The attacker has access to the fault-free ciphertext C and
faulty ciphertext C�, which differs only in 4 bytes. Now, we can represent the 4-
byte difference .2f ; f ; f ; 3f / in terms of the tenth round key K10 and the fault-free
and faulty ciphertexts by the following equations:

2 f D S�1.C0;0 ˚ K10
0;0/˚ S�1.C�0;0 ˚ K10

0;0/

f D S�1.C1;3 ˚ K10
1;3/˚ S�1.C�1;3 ˚ K10

1;3/

f D S�1.C2;2 ˚ K10
2;2/˚ S�1.C�2;2 ˚ K10

2;2/

3 f D S�1.C3;1 ˚ K10
3;1/˚ S�1.C�3;1 ˚ K10

3;1/

(11)

182 S. Ali et al.

f

SubByte

ShiftRow

K10

f0

f2

f1
S3

f3

K9

S2

S1

MixCol

f

f

3f

2f

(9)th Round

10th Round

SubByte

ShiftRow

K10

2p
p

p

3p

p2

p1

p3

p0

8th Round

MixCol

2p0
p0

2p3

p3
3p2
2p2
p2

3p1
2p1
p1
p1

p3
p0 3p3
3p0

p2

K8

S3

K9

9th Round

10th Round

S4

S2

S1

SubByte

ShiftRow

MixCol

p

b

a

Fig. 8 Flow of faults in AES rounds. (a) Differences across the last two rounds. (b) Differences
across the last three rounds

The above four equations can be expressed as the basic equation (9). Therefore, it
can be represented in the form A D B˚C where A; B, and C are bytes in F28 , having
28 possible values each. Now a uniformly random choice of .A; B; C/ is expected to
satisfy the equation with probability 1

28 . Therefore, in this case 216 out of 224 random
choices of .A; B; C/ will satisfy the equation.

This fact can be generalized. Consider we have M such related equations. These
M equations consist of N uniformly random byte variables. The probability that a
random choice of N variables satisfy all the M equations simultaneously is . 1

28 /M .
Therefore the reduced search space is given by . 1

28 /M � .28/N D .28/N�M . For our

Fault Attacks on AES and Their Countermeasures 183

case we have four equations which consist of five unknown variables: f ; K10
0;0, K10

1;3,
K10

2;2, and K10
3;2. Therefore, the four equations will reduce the search space of the

variables to .28/5�4 D 28. That means out of 232 hypotheses of the four key bytes,
only 28 hypotheses will satisfy the above four equations. Therefore, using one fault
the attacker can reduce the search space of the four key byte to 28. Using two such
faulty ciphertexts one can uniquely determine the key quartet. This implies, for one
key quartet, one has to induce two faults in the required location. For all the four key
quartets i.e., the entire AES key, an attacker needs to induce eight faults. Therefore
using eight faulty ciphertexts and a fault-free ciphertext, it is expected to uniquely
determine the 128-bit key of AES.

6.1.1 DFA Using Two Faults

The attack can further be improved. It was shown in [45] that instead of inducing
fault in ninth round, if we induce fault in between seventh and eighth round
MixColumns, we can determine the 128-bit key using only two faulty ciphertexts.
Figure 8b shows the spreading of faults when it is induced in such a fashion. The
single byte difference at the input of eighth round MixColumns is spread to 4 bytes.
The Shiftrows operation ensures that there is one disturbed byte in each column
of the state matrix. Each of the 4-byte difference again spreads to 4 bytes at ninth
round MixColumns output. Therefore the relation between the fault values in the
four columns of difference state matrix S4 is equivalent to four faults at four different
columns of ninth round input state matrix as explained in the previous attack. This
implies that using two such faults we can uniquely determine the entire AES key.

Note that the exact working of the DFA proposed in [45] is slightly different
from above, though the underlying principle is the same. The attack maintains a list
D for each column of the difference matrix S4 assuming a 1-byte fault in the input
of the penultimate round MixColumns. The size of the table D is thus 4 � 255 4-
byte values, as the input fault can occur in any byte of a column and can take 255
non-zero values. Assuming that the fault occurs in the difference matrix S3 in the
first column, then equations similar to Eq. (11) can be written, with the left hand
side of the equations being a 4-byte tuple .�0; �1; �2; �3/. It is expected that the
correct guess of the keys K10

0;0; K10
1;3; K10

2;2, and K10
3;2 should provide a 4-byte tuple

which belongs to the list D. There are other wrong keys which also pass this test,
and analysis shows that on an average 1036 elements pass this test with a single
fault. Repeating the same for all the 4-columns of the difference matrix S4, reduces
the AES key to 10364 � 240 (note that as the fault is assumed to be between seventh
and eighth round each column of S3 has a byte disturbed). However, if two faults
are induced, the unique AES key is returned with a probability of 0.98.

This is the best known DFA of AES till date when the attacker does not have
access to the plaintext and he needs to determine the key uniquely. However
when the attacker has access to the plaintexts, he can still improve the attack by
performing the DFA using only one fault and a further reduced brute force guess.
Also it is possible to reduce the time complexity of the attack further from 232 to 230.

184 S. Ali et al.

6.1.2 DFA Using Only One Fault

The attack proposed in [45] can be further improved when the attacker has access to
the plaintexts in addition to the ciphertexts [39]. In that case, he can do brute-force
on the possible keys. The objective of this attack or its extensions is to perform the
attack using only one fault. While a unique key may not be obtainable with a single
fault, the AES key size can reduce to such a small size that a brute force search can
be easily performed. It may be noted that reducing the number of fault requirements
from 2 to 1 should not be seen in terms of its absolute values. In an actual fault
attack, it is very unlikely that the attacker can have absolute control over the fault
injection method and hence may need more number of trials. Rather, these attacks
are capable of reducing the number of fault requirements by half compared to the
attacks proposed in [45].

Consider Fig. 8b, where from the first column of S4 we get four differential
equations [similar to Eq. (11)] corresponding to the 4-tuple .2p0; p0; p0; 3p0/.
Using these four differential equations we only guess the 28 values of p0 and get
the corresponding possible 28 hypotheses of the key quartet by applying the S-box
difference distribution table. Therefore, one column of S4 will reduce the search
space of one quartet of key to 28 choices. Similarly, solving the differential equations
from all the four columns we can reduce the search space of all the four key quartets
to 28 values each. Hence, if we combine all the four quartets we get .28/4 D 232

possible hypotheses of the final round key K10. We have assumed here that the initial
fault value was in the .0; 0/th byte of S1. If we allow the fault to be in any of the
16 locations, the key space of AES is around 236 values. This space can be brute
force searched within 1 min and hence, shows that effectively one fault is sufficient
to break AES.

The search space of the final round key can be further reduced if we consider the
relation between the fault values at the state matrix S2, which was not utilized in
the previous attacks. This step serves as a second stage, which is coupled with the
first stage on all the 232 keys (for an assumed location of the faulty byte). We can
represent the fault value in the first column of S2 in terms of the ninth round key
K9 and the ninth round fault-free and faulty output C9 and C�9 respectively by the
following four differential equations:

2 p D S�1.14.C9
0;0 ˚ K9

0;0/˚ 11.C9
1;0 ˚ K9

1;0/˚
13.C9

2;0 ˚ K9
2;0/˚ 9.C9

3;0 ˚ K9
3;0//˚

S�1.14.C�9
0;0 ˚ K9

0;0/˚ 11.C�9
1;0 ˚ K9

1;0/˚ (12a)

13.C�9
2;0 ˚ K9

2;0/˚ 9.C�9
3;0 ˚ K9

3;0//

p D S�1.9.C9
0;3 ˚ K9

0;3/˚ 14.C9
1;3 ˚ K9

1;3/˚
11.C9

2;3 ˚ K9
2;3/˚ 13.C9

3;3 ˚ K9
3;3//˚

S�1.9.C�9
0;3 ˚ K9

0;3/˚ 14.C9
1;3 ˚ K�9

1;3/˚ (12b)

11.C�9
2;3 ˚ K9

2;3/˚ 13.C�9
3;3 ˚ K9

3;3//

Fault Attacks on AES and Their Countermeasures 185

p D S�1.13.C9
0;2 ˚ K9

0;2/˚ 9.C9
1;2 ˚ K9

1;2/˚
14.C9

2;2 ˚ K9
2;2/˚ 11.C9

3;2 ˚ K9
3;2//˚ (12c)

S�1.13.C�9
0;2 ˚ K9

0;2/˚ 9.C�9
1;2 ˚ K9

1;2/˚
14.C�9

2;2 ˚ K9
2;2/˚ 11.C�9

3;2 ˚ K9
3;2//

3 p D S�1.11.C9
0;1 ˚ K9

0;1/˚ 13.C9
1;1 ˚ K9

1;1/˚
14.C9

2;1 ˚ K9
2;1/˚ 9.C9

3;1 ˚ K9
3;1//˚ (12d)

S�1.11.C�9
0;1 ˚ K9

0;1/˚ 13.C�9
1;1 ˚ K9

1;1/˚
14.C�9

2;1 ˚ K9
2;1/˚ 9.C�9

3;1 ˚ K9
3;1//

In order to utilize the above equations we need the ninth round key. The ninth
round key can be derived from the final round key by the following conversion
matrix:

0

BBB@

.K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2�˚ h10/ K10

0;1 ˚ K10
0;0 K10

0;2 ˚ K10
0;1 K10

0;3 ˚ K10
0;2

.K10
1;0 ˚ SŒK10

2;3 ˚ K10
2;2�/ K10

1;1 ˚ K10
1;0 K10

1;2 ˚ K10
1;1 K10

1;3 ˚ K10
1;2

.K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/ K10

2;1 ˚ K10
2;0 K10

2;2 ˚ K10
2;1 K10

2;3 ˚ K10
2;2

.K10
3;0 ˚ SŒK10

0;3 ˚ K10
0;2�/ K10

3;1 ˚ K10
3;0 K10

3;2 ˚ K10
3;1 K10

3;3 ˚ K10
3;2

1

CCCA :

Thus for each of the possible hypotheses of K10 produced by the first stage, and
using the ciphertexts, .C; C�/, we get the values of .K9; C9; C�9/. Then the attacker
tests the above four equations with these values. If satisfies, the candidate key is
accepted, else rejected. For completeness, we state the detailed equations as follows:

2p D S�1
�
14.S�1ŒK10

0;0 ˚ C0;0�˚ K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2�˚ h10/˚

11.S�1ŒK10
1;3 ˚ C1;3�˚ K10

1;0 ˚ SŒK10
2;3 ˚ K10

2;2�/˚
13.S�1ŒK10

2;2 ˚ C2;2�˚ K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/˚

9.S�1ŒK10
3;1 ˚ C3;1�˚ K10

3;0 ˚ SŒK10
0;3 ˚ K10

0;2�/
�˚

S�1
�
14.S�1ŒK10

0;0 ˚ C�0;0�˚ K10
0;0 ˚ SŒK10

1;3 ˚ K10
1;2�/˚

11.S�1ŒK10
1;3 ˚ C�1;3�˚ K10

1;0 ˚ SŒK10
2;3 ˚ K10

2;2�/˚
13.S�1ŒK10

2;2 ˚ C�2;2�˚ K10
2;0 ˚ SŒK10

3;3 ˚ K10
3;2�/˚

9.S�1ŒK10
3;1 ˚ C�3;1�˚ K10

3;0 ˚ SŒK10
0;3 ˚ K10

0;2�/
�

(13)

186 S. Ali et al.

Similarly, the other three faulty bytes can be expressed by the following equations:

p D S�1
�
9.S�1ŒK10

0;3 ˚ C0;3�˚ K10
0;3 ˚ K10

0;2/˚
14.S�1ŒK10

1;3 ˚ C1;3�˚ K10
1;3 ˚ K10

1;2/˚
11.S�1ŒK10

2;1 ˚ C2;1�˚ K10
2;3 ˚ K10

2;2/˚
13.S�1ŒK10

3;0 ˚ C3;0�˚ K10
3;3 ˚ K10

3;2/
�˚

S�1
�
9.S�1ŒK10

0;3 ˚ C0;3�˚ K10
0;3 ˚ K10

0;2/˚
14.S�1ŒK10

1;3 ˚ C1;3�˚ K10
1;3 ˚ K10

1;2/˚
11.S�1ŒK10

2;1 ˚ C2;1�˚ K10
2;3 ˚ K10

2;2/˚
13.S�1ŒK10

3;0 ˚ C3;0�˚ K10
3;3 ˚ K10

3;2/
�˚

(14)

p D S�1
�
13.S�1ŒK10

0;2 ˚ C0;2�˚ K10
0;2 ˚ K10

0;1/˚
9.S�1ŒK10

1;1 ˚ C1;1�˚ K10
1;2 ˚ K10

1;1/˚
14.S�1ŒK10

2;0 ˚ C2;0�˚ K10
2;2 ˚ K10

2;1/˚
11.S�1ŒK10

3;3 ˚ C3;3�˚ K10
3;2 ˚ K10

3;1/
�˚

S�1
�
13.S�1ŒK10

0;2 ˚ C�0;2�˚ K10
0;2 ˚ K10

0;1/˚
9.S�1ŒK10

1;1 ˚ C�1;1�˚ K10
1;2 ˚ K10

1;1/˚
14.S�1ŒK10

2;0 ˚ C�2;0�˚ K10
2;2 ˚ K10

2;1/˚
11.S�1ŒK10

3;3 ˚ C�3;3�˚ K10
3;2 ˚ K10

3;1/
�

(15)

3p D S�1
�
11.S�1ŒK10

0;1 ˚ C0;1�˚ K10
0;1 ˚ K10

0;0/˚
13.S�1ŒK10

1;0 ˚ C1;0�˚ K10
1;1 ˚ K10

1;0/˚
14.S�1ŒK10

2;3 ˚ C2;3�˚ K10
2;1 ˚ K10

2;0/˚
9.S�1ŒK10

3;2 ˚ C3;2�˚ K10
3;1 ˚ K10

3;0/
�˚

S�1
�
11.S�1ŒK10

0;1 ˚ C�0;1�˚ K10
0;1 ˚ K10

0;0/˚
13.S�1ŒK10

1;0 ˚ C�1;0�˚ K10
1;1 ˚ K10

1;0/˚
14.S�1ŒK10

2;3 ˚ C�2;3�˚ K10
2;1 ˚ K10

2;0/˚
9.S�1ŒK10

3;2 ˚ C�3;2�˚ K10
3;1 ˚ K10

3;0/
�

(16)

We thus get four differential equations and the combined search space of
.K9; C9; C�9/ and p is 232 � 28 D 240. Therefore, the four equations will reduce
this search space of K10 to 240

.28/4 D 28. Hence, using only one faulty ciphertext,

Fault Attacks on AES and Their Countermeasures 187

one can reduce the search space of AES-128 key to 256 choices. However, the time
complexity of the attack is 232, as we have to test all the hypothesis of K10 by the
above four equations. In the next subsection, we present an improvement to reduce
the time complexity of the attack to 230 from 232.

6.1.3 DFA with Reduced Time Complexity

The above second phase of the analysis is based on four equations: (13), (14), (15),
and (16). All the 232 possible key hypotheses are tested by these four equations. The
key hypotheses which are satisfied by all four equations are considered and rest are
discarded.

However, if we consider the above four equations in pairs we observe that each
possible pair does not contain all the 16 bytes of the AES key. For example, the pair
of Eqs. (14) and (15) contains 14 key bytes excluding K10

0;0 and K10
0;1. This fact can be

utilized to reduce the time complexity of the attack. We use this observation to split
the lists of key which are exported in the first phase of the attack and subsequently
filtered in the second phase.

In the first phase of the attack we have four quartets .K10
0;0; K10

1;3; K10
2;2; K10

3;1/,
.K10

0;1; K10
1;0; K10

2;3; K10
3;2/, .K10

0;2; K10
1;1; K10

2;0; K10
3;3/, and .K10

0;3; K10
1;2; K10

2;1; K10
3;0/ Let us

assume one value of the first quartet is .a1; b1; c1; d1/. As per the property of
the S-Box, there will be another value a2 of K10

0;0, which satisfies the system of
equations generated from the first column of S4, with the rest of the key byte values
remaining same.

Using this idea, we can divide the list for the quartet (K10
0;0; K10

1;3; K10
2;2; K10

3;1) into
two sublists, L1, L2. As depicted in Fig. 9 The list L1 contains the pair values for
the key byte K10

0;0 (note that the key byte K10
0;0 has always an even number of possible

choices). The list L2 contains the distinct values for the remaining part of the quartet,
(K10

1;3; K10
2;2; K10

3;1). Thus the expected size of the lists L1 and L2 is 27 each, compared
to the previous list size of 28 with 4-tuple (K10

0;0; K10
1;3; K10

2;2; K10
3;1).

Similarly, we store the possible values of quartet .K10
0;1; K10

1;0; K10
2;3; K10

3;2/ in two
lists, L3 and L4. Here L3 stores the pair values for the key byte K10

0;1, while the list
L4 contains the distinct values for the key bytes .K10

1;0; K10
2;3; K10

3;2/. Next, we select
the key bytes from the six lists, L1; L2; L3; L4; L5; L6, to solve the equations of the
second phase of the attack such that the time complexity is reduced.

Because of the observations regarding the pair of Eqs. (13), (16) and (14), (15),
the second phase can be divided into two parts. In part one, we test the keys
generated from the first phase of the attack by the pair of Eqs. (14) and (15). In Fig. 9
this is denoted as Test1. As the two equations for Test1 does not require key bytes
K10

0;0 and K10
0;1, we only consider all possible keys generated from lists L2; L4; L5; L6.

There are 230 such possible keys. In the second part we combine each of the 14

byte keys satisfying Test1 with one of the four possible values arising out of the
four combinations of the pair of values for K10

0;0 in L1 and K10
0;1 in L3. These keys

are further tested in parallel by Eqs. (13) and (16). In Fig. 9, we refer to this test as
Test2.

188 S. Ali et al.

Test 1

Test 2 Test 2 Test 2 Test 2

h1

h1

h2

h2g2

g2

g1

g1f1
f1
f2
f2e4

e3

e2

e1

L1 L3
L2 L4

d1

d1

d2

d2c2

c2

c1

c1b1

b1

b2

b2a4

a3

a2

a1

k0 k0 k1 k1

k7 k4 k14 k11 k12 k9 k6 k3 k8 k5 k2 k15k10k13

k7 k4 k14 k11 k12 k9 k6 k3 k8 k5 k2 k15k10k13

k4k7k10k13 k3k6k9k12
k15k8 k5 k2

28

28

27

28

t1
t1
t2
t2s2

s2

s1

s1r1
r1
r2
r2q4

q3

q2

q1p1

p1

p2

p2o2

o2

o1

o1n1

n1

n2

n2

L5

m1

m2

m3

m4

L6

a2
a4

e2
e3 e4

e1a1
a3

b1
b2

c1
c2

d1
d2 h2

h1g1

g2f2

f1

k1k0k0
k11k14k1

Fig. 9 Model for data-flow parallelization in the second phase

The size of the lists L2 and L4 is 27; and the size of lists L5 and L6 is 28. Therefore
the number of possible keys generated from this four lists is 27 � 27 � 28 � 28 D
230. These 230 keys are fed as input to Test1 which is expected to reduce the key
hypotheses by 28. Therefore each instance of Test2 will receive input of . 230

28 / D 222

expected key hypotheses. The chance of each key satisfying Test2 is 2�16 which
implies each instance of Test2 will result in 26 key hypotheses.

It may be easily observed that the time required is because of step 3, which is
equal to 230, making the overall attack four times faster on an average, and still
reducing the overall keyspace of AES to around 28 values.

The above fault models are based on single byte fault models, which assume
that the fault is localized in a single byte. However due to impreciseness in the
fault induction, the fault can spread to more than 1 bytes. Such a multiple-byte fault

Fault Attacks on AES and Their Countermeasures 189

requires a revisit at the DFA methods. In [47], a technique for performing DFA when
such faults occur where presented, which generalize further the DFA proposed in [6]
and later extended in [30]. The underlying fault models assumed in this attack were
already introduced in Sect. 4.1.3 and were called as diagonal fault models. In the
next section, we outline the idea of these attacks.

7 Multiple Byte DFA of AES-128

In this section, we present the DFAs under the multiple byte fault models. The DFAs
are efficient to obtain the AES key using 2–4 faults, when the faults corrupt upto
three diagonals of the four diagonals of the AES state matrix at the input of the
eighth round MixColumns. In the next subsection, we first observe the DFAs when
the fault is confined to one diagonal of the state matrix, i.e., the fault is according to
the fault model DM0.

7.1 DFA According to Fault Model DM0

We first show that faults which are confined to one diagonal are equivalent and can
be used to retrieve the key using the same method.

7.1.1 Equivalence of Faults in the Same Diagonal

Let us first observe the propagation of a fault injected in diagonal D0 through the
round transformations from the input of the eighth round to the output of the ninth
round.

Figure 10 shows some cases of fault induction in diagonal D0. The faults vary in
the number of bytes that are faulty in D0 at the input of the 8 round. We emphasize
the fact that irrespective of the number or positions of bytes that are faulty in D0,
due to the subsequent ShiftRows operation the fault is confined to the first column
C0 of the state matrix at the end of the eighth round. So the fault propagation in the
ninth round for all these cases is similar and leads to the same byte inter-relations at
the end of the ninth round.

In general any fault at the input of the eighth round in the ith diagonal, 0 � i � 3,
leads to the ith column being affected at the end of the round. There are four
diagonals and faults in each diagonal maps to four different byte inter-relations at
the end of the ninth round. These relations are depicted in Fig. 11. These relations
will remain unchanged for any combination of faults injected within a particular
diagonal. Each of the four sets of relations in Fig. 11 will be used to form key
dependent equations. Each of the equation sets will comprise of four equations of
similar nature as shown in Eq. (11).

190 S. Ali et al.

Fig. 10 Equivalence of different kinds of faults induced in diagonal D0 at the input of eighth round
of AES

Fig. 11 Byte inter-relations
at the end of ninth round
corresponding to different
diagonals being faulty

As before these equations reduce the AES key to an average size of 232. If the
attacker is unaware of the exact diagonal, he can repeat for all the above four sets
of equations, and the key size will still be 232 � 4 D 234, which can be brute forced
feasibly with present day computation power.

Next, we consider briefly the cases when the faults spread to more than one
diagonal.

7.2 DFA According to Fault Model DM1

In Fig. 12, we observe the propagation of faults when the diagonals, D0 and D1 are
affected at the input of the ninth round MixColumns.

Fault Attacks on AES and Their Countermeasures 191

Fig. 12 Fault propagation if diagonals D0 are D1 are affected

We observe that the nature of the faults in the state matrix at the input of the ninth
round MixColumns and hence at the output remains invariant for all possible faults
in these two diagonals. This property is exploited to develop equations which are
used to retrieve the correct key.

We denote the fault values in the first column of the output of the ninth round
MixColumns by a0; a1; a2; a3, where each ai is a byte 0 � i � 3. Then using the
inter-relationships among the faulty bytes one can easily show that:

a1 C a3 D a0

2a1 C 3a3 D 7a2

We can express a0; a1; a2; a3 in terms of the fault free ciphertext (CT), faulty
ciphertext (CT�) and 4 bytes of the tenth round key (K10). The equations reduce the
key space of 4 bytes of the key to 216. Similarly, performing the analysis for other
columns, helps to reduce the AES key to a size of .216/4 D 264. Using two such
faulty inductions it is expected that the unique key is returned.

Depending on the combination of two diagonals affected out of the four
diagonals, there are six such sets of equations. Hence even in such case, the attacker
reduces the AES key space to 6 possible keys, which he can easily brute force.

In the next section, we present an attack strategy if the fault gets spread to atmost
three diagonals. This fault model, DM2 thus covers the first two models of fault.

7.3 DFA According to Fault Model DM2

In Fig. 13, we observe the propagation of faults when the diagonals, D0, D1 and D2

are affected.
From Fig. 13, we note that for all possible faults corrupting the diagonals D0, D1

and D2, the nature of the faults at the input of the ninth round MixColumns is an
invariant. The fault nature at the output of the ninth round MixColumns is as seen

192 S. Ali et al.

Fig. 13 Fault propagation if diagonals D0, D1 and D2 are affected

in the figure, also an invariant. We denote the fault values in the first column of
the output of the ninth round MixColumns by a0; a1; a2; a3, where each ai is a byte
0 � i � 3.

The following equation can be obtained by observing the inter-relationships
(refer Fig. 12):

11a0 C 13a1 D 9a2 C 14a3

As before in case of faults modeled by DM1, we can express a0; a1; a2; a3 in
terms of the fault free ciphertext (CT), faulty ciphertext (CT 0) and the tenth round
key (K10). One equation reduces 4 bytes of the key to 224 values. We can have
similar equations for each of the remaining three columns of the state matrix after
the ninth round MixColumns, and thus the AES key space reduces to an expected
value of .224/4 D 296. However, using four faults and taking the intersection of the
key space, it is expected that the key space reduces to a unique value.

It may be noted that when the faults occur according to the model DM3, that is
all the four diagonals are affected, the DFA fails.

8 Extension of the DFA to Other Variants of AES

In the previous sections we described DFAs using different fault models on AES
with 128-bit key. However, AES has two more variants: AES-192 and AES-256
with key length 192 and 256 bits. These to variants of AES follows different key
scheduling. If we observe the key scheduling algorithm, we see that for AES-192
and AES-256, last round is not sufficient to retrieve the master key. It requires to
retrieve the last two round keys rather any two consecutive round keys. For the sake
of simplicity we consider the last two round keys. In case of AES-192, the last
round key and the last two columns of penultimate round key is sufficient. Because
the first two columns of penultimate round key can be directly derived from the final
round key.

Fault Attacks on AES and Their Countermeasures 193

The first complete DFA on AES-192 and AES-256 was proposed in [33].
The proposed attacks were based on two different fault models which requires 6
and 3000 pairs of fault free and faulty ciphertexts. A new attack was proposed
in [52] which first time exploited the relations between the round keys of the key
scheduling algorithm. The attack on AES-192 required three pairs of correct and
faulty ciphertexts and the attack on AES-256 required two pairs of correct and
faulty ciphertexts and two pairs of correct and faulty plaintexts. The attack was
further improved in [29] where the DFA on AES-192 required two pairs of fault free
and faulty ciphertexts, and on AES-256 required three pairs of fault free and faulty
ciphertexts. Recently a DFA on AES-256 was proposed in [4], which required two
pairs of fault-free and faulty ciphertexts and a brute-force search of 16 bits with
attack time complexity of 232. This is the best known attack on AES-256 till date.
More details of the attacks on the other versions of AES can be obtained from [14].

9 DFA of AES Targeting the Key-Schedule

In the previous sections we described how an induced difference at the state of a
particular round of AES can be exploited to reveal the secret key. In order to protect
AES from such attacks a designer has to use some countermeasures which will
not allow the attacker to induce faults in AES round operations. Even if fault is
induced, the attacker will not be able to get the faulty ciphertexts to apply a DFA.
Subsequently, the attackers have developed new attacking technique known as DFA
on AES key schedule which work even if the rounds of the AES are protected against
faults. In this kind of DFAs, faults are induced at the round keys. Therefore, even if
the rounds are protected against DFA, the attack will work as the protection will not
be able to distinguish between a fault-free round key and a faulty round key.

However, the DFA on AES key schedule are more challenging than DFA on
AES state. A difference induced in a round key will spread to more number of
bytes in the subsequent round keys during the key schedule operation, which in turn
creates more number of unknown variables in the differential equations. Therefore,
the differential equations are more complex than the differential equations in a DFA
on AES state.

The first complete DFA on AES key schedule was proposed in [13]. The attack
was targeted on AES-128 and required less than 30 pairs of fault-free and faulty
ciphertexts. An improved attack in [53] showed that a DFA on AES key schedule
is possible using two pairs of fault-free and faulty ciphertexts and a brute-force
search of 48-bit. Subsequently, there are two more attacks proposed in [32] and [31]
using two pairs of fault-free and faulty ciphertexts each. Most optimum attack on
AES key schedule was proposed in [3, 5], which required only one pair of fault-free
and faulty ciphertexts. The attack used a complex divide and conquer strategy to
solve the differential equations. The most recent attacks on AES, both state and key
schedule, can be found in [7].

194 S. Ali et al.

Table 2 Comparison of CED techniques

CED/original
CED �Fault coverage Throughput (%) Hardware (%)

Hardware redundancy [18] 91 % �100 �200

[42] 25 % �100 126

Time redundancy [35] 99.9 % �100 136

[46] 100 % 50–90.9 102.3

Information redundancy [55] 48–53 % �100 122.3

[9] 99.997 % 67.86 188.9

[41] 99.20 % – 137.35

[19] 1� 2�56 87 177

Hybrid redundancy [22] 100 % 73.45 197.6

[48] – 85.6 188.9

� Fault coverage are based on multiple bit random fault model, � Estimated values:
authors did not give precise figures

10 CED for AES

Faults that occur in VLSI chips are classified into two categories: transient faults
that eventually die away and permanent faults. The origin of these faults could
be internal phenomena in the system, such as threshold changes, shorts, opens,
etc., or external influences, such as electromagnetic radiation. These faults affect
the memory as well as the combinational parts of a circuit and are detected using
concurrent error detection (CED) [50]. Cryptographic chips are sensitive to faults in
the hardware. A small number of excited faults can cause a large number of output
bits of AES to be faulty [9]. As previously explained, attackers have injected faults
into cryptographic circuits to steal secret information. Previous work on CED can
be classified into four types of redundancy: hardware, time, information, and hybrid
redundancy. Table 2 shows a comparison of different CED techniques based on fault
coverage, throughput and hardware utilization. The fault coverage is obtained from
the multiple bit random fault model. The throughput and hardware are the ratio
between the CED implementation and the original.

10.1 Hardware Redundancy

Hardware redundancy duplicates the function and detects faults by comparing the
outputs of two copies.

In [18], the authors propose a novel hardware redundancy technique for AES to
detect faults. Because an attacker can potentially inject the same faults to both of
the AES circuits, the straightforward hardware redundancy can be bypassed by the
attacker. As shown in Fig. 14, the idea is to mix byte states between the operations in

Fault Attacks on AES and Their Countermeasures 195

00 01 02 03

04 05 06 07

08 09 0A 0B

0C 0D 0E 0F

00 01 02 03

05 06 07 04

0A 0B 08 09

0F 0C 0D 0E

Shi�Rows

00 01 02 03

04 05 06 07

08 09 0A 0B

0C 0D 0E 0F

00 01 02 03

05 06 07 04

0A 0B 08 09

0F 0C 0D 0E

01 02 03

05 06 07

09 0A 0B

0D 0E 0F

00 01 02 03

05 06 07 04

0A 0B 08 09

0F 0C 0D 0E

00 01 02 03

04 05 06 07

08 09 0A 0B

0C 0D 0E 0F

00 01 02 03

05 06 07 04

0A 0B 08 09

0F 0C 0D 0E

Shi�Rows

00

04

08

0C

Shi�Rows
& Mixing

Datapath A Datapath B

Fig. 14 Datapath mixing (byte level)

C F F F C F F C A B B B A B B A

Shi�Rows

F F F C F F CB BA B B AC A B

Fig. 15 Datapath mixing (bit level)

two pieces of hardware, in different ways and at different locations. The mixing can
be done at byte level or bit level as shown in Figs. 14 and 15. Because the attacker
does not know how the circuits are mixed, the attacker needs to reverse engineer
the circuit layout to figure out where to inject the faults. Although this technique
adds an extra layer of obscurity on top of the straightforward hardware redundancy,
its effectiveness is yet to be proven. It also requires significant changes to the AES
datapath. Because the entire hardware is duplicated, hardware redundancy has high
fault coverage, low fault detection latency, and low performance overhead. However,
because one extra piece of hardware and comparison circuitries are needed, the
hardware overhead is approximately 200 % as shown in Table 2. It provides 91 %
fault coverage and the performance is close to the original implementation.

To reduce the hardware overhead, [42] proposes a partial hardware redundancy
technique as shown in Fig. 16. This technique focuses on parallel AES architecture
and S-box protection. The idea is to add an additional S-box to every set of four
S-boxes, and perform two tests of every S-box per encryption cycle (10 rounds).
Although the hardware overhead is reduced to 26 %, this process has a fault
coverage of 25 % at a certain clock cycle, because it can only check one S-box
among every four in one clock cycle.

196 S. Ali et al.

=? =? =? =?

Fig. 16 Partial hardware redundancy

Opera�on

Opera�on

Fig. 17 Candidate operation for DDR application, and operation computing after DDR
application

10.2 Time Redundancy

Time redundancy computes the same input twice using the same function and
compares the results.

In [35], the authors propose time redundancy with a Double-Data-Rate (DDR)
mechanism as shown in Figs. 17 and 18. The pipelined AES data path logic is
partitioned into two classes, where nonadjacent stages in the pipeline are driven
by two opposite clock signals. The DDR architecture allows us to halve the number
of clock cycles per round, though maybe with a light impact on clock frequency as
compared to a design without protection. This takes advantage of the free cycles
for recomputing the round on the same hardware. Two successive round operation
outputs obtained from two copies of the same input data are checked for possible
mismatches. It shows an almost maximal fault coverage on the datapath at the
cost of 36 % hardware overhead. Under some conditions, this technique allows the
encryption to be computed twice without affecting the global throughput. However,
this technique becomes difficult to implement as technology scales.

A technique that is suited for any pipeline-based block cipher design is proposed
in [46]. The key idea is to use different pipeline stages to check against each other
by shifting the computation from one stage to another. Let us assume the pipeline
has n stages as shown in Fig.19. In the normal computation, the plaintext will be
computed by the first stage and the then the second stage and so on. The nth stage
will produce the ciphertext. In the CED computation, the plaintext will be computed
by the nth stage, and then the output of the nth stage will be computed by the first
stage. Therefore, the output of the .n � 1/th stage is the ciphertext and it will be
compared with the previous ciphertext. Compared to the original design, this CED
provides a throughput of 50–90.0 %, depending on the frequency of the redundant
check from every one to ten rounds. Hardware overhead is only 2.3 %.

Fault Attacks on AES and Their Countermeasures 197

D1 D2

D1

D3

D2

D4

D3 D4

Regular
pipeline

Pipeline
redundancy

DDR
redundancy

D1 D1

D1

D2

D1

D2

D2 D2

D1 D2 D3 D4

D1 D2

D5 D6

D3 D4

D7 D8

D5 D6

D9 D10

D7 D8

Fig. 18 Scheduling of a regular pipeline, pipeline redundancy and the DDR redundancy (Dx is
data token X)

Fig. 19 Sliced architecture

Reg

In

=?

Error

Round 1

Reg

Round 2

Reg

Round N-1

K1

K2

K2

K3

K(N-1)

KN

Reg

Round N
KN

K1

198 S. Ali et al.

SB0,0

X0,0 X1,0

Shi�Rows (S)

MixColumns (M)

AddRoundKey (A)

y0,0

X3,3

SB0,1 SB3,3

P(x0,1) P(y0,1)

P(x0,0) P(y0,0)y0,1

P(x3,3) P(y3,3)

P(x) P(y)

P(k)

P(v)

P(x)

SubBytes

Fig. 20 Parity-1 CED

10.3 Information Redundancy

Information redundancy techniques are based on error detecting codes (EDC).
A few check bits are generated from the input message; then they propagate
along with the input message and are finally validated when the output message
is generated. Parity code and robust code are proposed for CED in various research
[9, 24, 25, 27, 37–39].

10.3.1 Parity-1

A technique in which a parity bit is used for the entire 128-bit state matrix is
developed in [55]. The parity bit is checked once for the entire round as shown
in Fig. 20. This approach targets low-cost CED. Parity-1 is based on a general
CED design for Substitution Permutation Networks (SPN) [23], in which the input
parity of SPN is modified according to its processing steps into the output parity
and compared with the output parity of every round. The authors adapt this general
approach to develop a low-cost CED. First, they determine the parity of the 128-bit
input using a tree of XOR gates. Then for the nonlinear S-box, inversion in GF.28/

and a linear affine transformation. They add one additional binary output to each
of the 16 S-boxes. This additional S-box output computes the parity of every 8-bit
input and the parity of the corresponding 8-bit output.

Each of the modified S-boxes is 8-bit by 9-bit. The additional single-bit
outputs of the 16 S-boxes are used to modify the input parity for SubBytes.
Because ShiftRows implements a permutation, it does not change the parity of the
entire state matrix from its input to output. MixColumns does not change the parity
of the state matrix from inputs to outputs either. Moreover, MixColumns does not

Fault Attacks on AES and Their Countermeasures 199

SB0,0

X0,0 X1,0

P(y0,0)

P(y0,0)
predict

P(y0,0)

P(y1,0)
predict

SB1,0
P(y1,0)

P(y1,0)

P(y2,0)
predict

P(y2,0)

P(y2,0)

SB2,0

P(y3,0)
predict

P(y3,0)

P(y3,0)

SB3,0

P(k0,0)

P(u0,0)

P(k1,0)

P(y3,3)
predict

P(y3,3)

P(y3,3)

SB3,3

P(k2,0) P(k3,0) P(k3,3)

X2,0 X3,0 X3,3

SubBytes

Shi�Rows

MixColumns

AddRoundKey

Fig. 21 Parity-16 CED

change the parity of each column. Finally, the bit-wise XOR of the 128-bit round
key needs a parity modification by a single precomputed parity bit of the round key.
Because the output of a round is the input to the next round, the output parity of a
round can be computed with the same hardware for computing the input parity of
the previous round.

Although this technique has only 22.3 % hardware overhead, it has 48–53 % fault
coverage for multiple bit random fault model.

10.3.2 Parity-16

Parity-16 is first proposed in [9]. In this technique, each predicted parity bit is
generated from an input byte. Then, the predicted parity bits and actual parity bits
of output are compared to detect the faults.

In [9], the authors propose the use of a parity bit that is associated with each byte
of the state matrix of a 128-bit iterated hardware implementation with LUT-based
S-Boxes as shown in Fig. 21. Predicted parity bits on S-Box outputs are stored as
additional bits in the ROMs (nine bits instead of eight in the original S-Boxes). In
order to detect errors in the memory, the authors propose increasing each S-box to
9-bit by 9-bit in such a way that all the ROM words addressed with a wrong input
address (i.e. S-Boxes input with a wrong associated parity), deliberately store values
with a wrong output parity so that the CED will detect the fault. As before, the parity
bit associated with each byte is not affected by ShiftRows. In Parity-1, the global
parity bit on the 128 bits remains unchanged after MixColumns. Conversely, at the
byte level, the parity after MixColumns is affected. Therefore, parity-16 requires the
implementation of prediction functions in MixColumns. Finally, the parity bits after
AddRoundKey are computed as before, by adding the current parity bits to those
of the corresponding round key. This technique incurs 88.9 % hardware overhead
because of the LUT size is doubled. The throughput is 67.86 % of the original.

200 S. Ali et al.

Fig. 22 Parity-32 CED

SB

Output
Predict

Input
Predict

=?

=?

10.3.3 Parity-32

As shown in Fig. 22, a technique that strengthen fault detection on S-Boxes is
proposed in [41]. With respect to parity-16, this technique still uses one parity bit
for each byte in all the operations except SubBytes. It adds one extra parity bit for
each S-box in SubBytes; one parity bit for the input byte and one for the output byte.
The actual output parity is compared with the predicted output parity, and the actual
input parity bit is compared with the predicted input parity. It has 37.35 % hardware
overhead and 99.20 % fault coverage.

10.3.4 Parity Code vs Residue Code

In [12], the authors try to apply EDCs in a systematic way by investigating 11 differ-
ent symmetric key encryption algorithms. They study the feasibility of two EDCs
for different cryptographic operations mainly from a hardware overhead point of
view. For EDCs, parity and residue code are considered. Cryptographic algorithms
are divided into XOR, AND/OR, finite field addition/subtraction (mod n), finite field
multiplication [mod n and mod G.x/], expansion, S-Box, word rotation, word shift,
and permutation. The conclusion is that parity code is superior to residue code in
logic operations, while residue code is more feasible for arithmetic operations. The
authors recommend one parity bit per byte for the AES error detection from a low-
cost and high fault coverage point of view.

10.3.5 Robust Code

Robust codes is first proposed in [19]. The idea is to use non-linear EDC instead of
linear. Robust codes can be used to extend the error coverage of any linear prediction
technique for AES. The advantage of non-linear EDC is because it has uniform
fault coverage. If all the data vectors and error patterns are equiprobable, then the
probability of injecting an undetectable fault is the same for all of them.

Fault Attacks on AES and Their Countermeasures 201

Fig. 23 Robust code

Error

Key
Expansion

Shi�Rows

MixColumns

Shi�Rows Linear
Predictor

Linear
Compressor

Cubic
Func�on

RK(i,j)

ED(i,j)

Out(i,j)

Compressor

Linear
Compressor

Cubic
Func�on

=?

L1(i,j)

L2(i,j)

The architecture of AES with robust protection is presented in Fig. 23. In this
architecture, two extra unit are needed. One is the prediction unit at the round
input, and it includes a linear predictor, a linear compressor, and a cubic function.
The other one is the comparison unit at the output of the round, and it includes a
compressor, a linear compressor, and a cubic function This architecture protects the
encryption and decryption as well as key expansion.

Let us first introduce the prediction unit. A linear predictor and linear compressor
is designed to generate an 32-bit output, and we call them the linear portion in
the rest of the chapter. The output of the linear portion is linearly related to the
output of the round of AES as shown in Fig. 23. They offer a relatively compact
design compared to the original round of AES. They simplify the round function
by XORing the bytes in the same column. The effect of MixColumns is removed
by the linear portion. As a result, the linear portion is greatly simplified as it
no longer needs to perform multiplication associated with the MixColumns or
InvMixColumns. For the cubic function, the input of is cubed in GF.2r/ to produce
the r-bit output, and thus it is non-linear with respect to the output of the round.

In the comparison unit, the compressor and the linear compressor are designed
to generate a 32-bit output from the 128-bit round output. The bytes in the same
column of the output is XORed. Again, the 32-bit output is cubed in the cubic
function to generate r-bit output. This output is then compared with the output from
the prediction unit.

This technique provides 1 � 2�56 fault coverage, and it has a 77 % hardware
overhead.

202 S. Ali et al.

Although these countermeasures can thwart DFA, the designer needs to be
cautious when implementing information redundancy-based techniques. Because
they increase the correlation of the circuit power consumption with the processed
data, the side channel leakage is also increased [34].

10.4 Hybrid Redundancy

In [20–22], the authors consider CED at the operation, round, and algorithm levels
for AES. In these schemes, an operation, a round, or the encryption and decryption
are followed by their inverses. To detect faults, the results are compared with the
original input.

The underlying assumption is that a complete encryption device operating in
ECB mode consists of encryption and decryption modules, Thus, a low-cost and
low-latency systematic CED is proposed for encryption and decryption datapaths.
They describe algorithm-, round-, and operation-levels CEDs that exploit the inverse
relationship properties of AES. Because AES uses the same set of round keys for
both encryption and decryption, they can be generated a priori, stored in the key
RAM, and retrieved in any order depending upon whether encryption or decryption
is in progress. They then extend the proposed techniques to full duplex mode by
trading off throughput and CED capability.

As shown in Fig. 24a, the algorithm-level CED approach exploits the inverse rela-
tionship between the entire encryption and decryption. Plaintext is first processed

Round 0

Round 1

Round n

En
cr

yp
�o

n
M

od
ul

e Round 0

Round 1

Round n

Decryp�on M
odule

Comparator

Plaintext

Plaintext

Round 0

Round 1

Round n

En
cr

yp
�o

n
M

od
ul

e Round n

Round (n-1)

Round 0

Decryp�on M
odule

Plaintext

Comparator

Comparator

Comparator

ba

Fig. 24 Hybrid redundancy. (a) Algorithm level. (b) Round level

Fault Attacks on AES and Their Countermeasures 203

by the encryption module. After the ciphertext is available, the decryption module
is enabled to decrypt the ciphertext. While the decryption module is decrypting
ciphertext, the encryption module can process the next block of data or be idle.
A copy of plaintext is also temporarily stored in a register. The output of decryption
is compared with this copy of the input plaintext. If there is a mismatch, an error
signal will be raised, and the faulty ciphertext will be suppressed.

For AES, the inverse relationship between encryption and decryption exists at
the round level as well. Any input data passed successively through one encryption
round are recovered by the corresponding decryption round.

For almost all the symmetric block cipher algorithms, the first round of encryp-
tion corresponds to the last round of decryption; the second round of encryption
corresponds to the next-to-the-last round of decryption, and so on. Based on this
observation, CED computations can also be performed at the round level. At the
beginning of each encryption round, the input data is stored in a register before
being fed to the round module. After one round of encryption is finished, output is
fed to the corresponding round of decryption. Then, the output of the decryption
round is compared with the input data saved previously. If they are not the same,
encryption is halted and an error signal is raised. Encryption with round-level CED
is shown in Fig. 24b.

Depending on the block ciphers and their hardware implementation, each round
may consume multiple clock cycles. Each round can be partitioned into operations
and subpipelined to improve performance. Each operation can consume one or more
clock cycles, such that the operations of encryption and corresponding operations
of decryption satisfy the inverse relationship. As shown in Fig. 25a, applying input
data to the encryption operation and the output data of the encryption operation
to the corresponding inverse operation in decryption yields the original input data.
The boundary on the left shows the rth encryption round while the boundary on
the right shows the .n � r C 1/th decryption round, where r is the total number
of rounds in encryption/decryption. Figure 25a also shows that the first operation
of the encryption round corresponds to the mth operation of the decryption round,
which is the last operation of the decryption round. Output from operation one of
encryption is fed into the corresponding inverse operation m of decryption.

Although these techniques has close to 100 % fault coverage, their throughput is
73.45 % of the original AES in half-duplex mode. It can suffer from more than
100 % throughput overhead if the design is in full-duplex mode. The hardware
overhead is minimal if both encryption and decryption are on the chip. However,
if only encryption or decryption is used in the chip, it will incur close to 100 %
hardware overhead.

To reduce the hardware overhead of the previous technique, [48] proposes a novel
hardware optimization, and thus, reduced the hardware utilization significantly.
Figure 25b shows the architecture. It divides a round function block into two
sub-blocks and uses them alternatively for encryption (or decryption) and error
detection. Therefore, no extra calculation block is needed, even though only a
pipeline register, a selector and a comparator are added. The number of operating
cycles is doubled, but the operating frequency is boosted because the round function

204 S. Ali et al.

Op. 1

Op. 2

Op. n

Op. n

Op. n-1

Op. 1

input

Comparator

Comparator

Comparator

q t
h R

ou
nd

 e
nc

ry
p�

on

n-q
th +1 Round decryp�on

b

SR

SB

ISR

ISB

MX

SR

SB IMX

SR

SB

ISR

ISB

IMX

Round0

Round1X

Round1Y

Round2X

Round10X

Round10Y

a

Fig. 25 Hybrid redundancy. (a) Operation level. (b) Optimized version

block in the critical path is halved. Therefore, the technique provides 85.6 %
throughput compared to 73.45 % in the previous one. The hardware overhead also
decrease from 97.6 to 88.9 %.

10.5 Other Techniques

In [24, 37, 39], parity is obtained for S-box implementation in finite field arithmetic
with polynomial basis. In [25, 27, 38], parity is obtained for S-box implementation
in finite field arithmetic with normal basis. In [26], an AES parity detection method
with mixed basis is proposed. All these parity schemes share the same limitation. If
an even number of faults occur in the same byte, none of these schemes can detect
them.

While traditional CED techniques have their strengths and limitations, techniques
based on algorithmic invariances can offer new tradeoff choices. An invariance-
based CED is proposed in [17]. It utilizes a round-level invariance of the AES and
checks for the invariance property. Because the invariance does not constrain the
input pattern of the round, it is very flexible and the fault coverage is very high.
Because the invariance property is a permutation property, the hardware overhead
only includes the comparator and muxes that are used to select the regular or the
permuted datapath.

Fault Attacks on AES and Their Countermeasures 205

11 Conclusion

The chapter first shows that faults can be threatening to the security of modern day
block ciphers. Taking the present day standard block cipher, AES, as an example the
chapter shows techniques for performing differential fault analysis of block ciphers.
The attacks have been described on the assumptions of various types of fault models:
namely bit, single byte, and multiple byte. The fault analysis of AES using only one
instance of a random single byte fault have been shown to reduce the key space
of AES to on an average 28 values through an attack with time complexity 230.
Likewise, the chapter also shows even when the faults spread to multiple bytes,
corrupting 12 out of 16 bytes of the AES state matrix, DFA of AES is feasible. All
these attacks unfurl that DFA of block ciphers is a very strong attack model, where
even random faults can completely collapse the security of even very strong block
cipher algorithms.

The practicality of such fault models and the requirement of such small number
of faulty computations, emphasizes the need for CED techniques. We present a
study on CED techniques deployed for detecting DFA of AES hardware imple-
mentation. We classify the CED techniques into hardware, time, information, and
hybrid redundancies. We also summarize the overheads and fault coverage of the
countermeasures. Hardware and hybrid redundancies provides high security and
reliability but the hardware overhead is also high. Time redundancy is low cost
but also decrease the performance. It also has limitations when there are permanent
faults and long transient faults. Information redundancy provides high reliability
with relatively low hardware and performance overhead. Although these counter-
measures can thwart DFA, the designer needs to be cautious in implementation.
Some techniques may enable backdoors for other types of attacks. For example,
information redundancy-based techniques tend to increase the correlation of the
circuit power consumption, with the processed data increasing the side channel
leakage. While traditional CED techniques have their strengths and limitations,
techniques based on algorithmic invariances can offer new tradeoff choices.

Acknowledgements The fourth author would like to acknowledge Indo-US S&T Forum for
providing fellowship to support the above collaboration. The chapter was partially written during
his visit as a researcher under the Indo-USSTF Fellowship to NYU-Poly, USA in 2012.

References

1. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.: How to flip
a bit? In: IEEE International On-Line Testing Symposium (IOLTS), pp. 235–239 (2010)

2. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: on critical
paths and clock faults. In: International Conference on Smart Card Research and Advanced
Application (CARDIS), pp. 182–193 (2010)

3. Ali, S.S., Mukhopadhyay, D.: A differential fault analysis on AES key schedule using single
fault. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 35–42
(2011)

206 S. Ali et al.

4. Ali, S.S., Mukhopadhyay, D.: An improved differential fault analysis on AES-256.
In: International Conference on Cryptology in Africa (AFRICACRYPT), pp. 332–347 (2011)

5. Ali, S.S., Mukhopadhyay, D.: Differential fault analysis of AES-128 key schedule using a
single multi-byte fault. In: International Conference on Smart Card Research and Advanced
Applications (CARDIS), pp. 50–64 (2011)

6. Ali, S.S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES using a single
multiple-byte fault. Cryptology ePrint Archive, Report 2010/636 (2010). http://eprint.iacr.org/

7. Ali, S.S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards reaching
its limits. J. Cryptogr. Eng. 3(2), 73–97 (2013). doi:10.1007/s13389-012-0046-y. http://dx.doi.
org/10.1007/s13389-012-0046-y

8. Barenghi, A., Hocquet, C., Bol, D., Standaert, F.X., Regazzoni, F., Koren, I.: Exploring the
feasibility of low cost fault injection attacks on sub-threshold devices through an example of
a 65nm AES implementation. In: Proceedings of Workshop RFID Security Privacy, pp. 48–60
(2011)

9. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and detection
procedures for a hardware implementation of the advanced encryption standard. IEEE Trans.
Comput. 52(4), 492–505 (2003)

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Proceedings
of Eurocrypt. Lecture Notes in Computer Science, vol. 1233, pp. 37–51 (1997)

11. Blömer, J., Seifert, J.P.: Fault based cryptanalysis of the Advanced Encryption Standard (AES).
In: Financial Cryptography, pp. 162–181 (2003)

12. Breveglieri, L., Koren, I., Maistri, P.: An operation-centered approach to fault detection in
symmetric cryptography ciphers. IEEE Trans. Comput. 56, 635–649 (2007)

13. Chen, C.N., Yen, S.M.: Differential fault analysis on AES key schedule and some coutnermea-
sures. In: Australasian Conference on Information Security and Privacy (ACISP), pp. 118–129
(2003)

14. Debdeep, M., Rajat Subhra, C.: Hardware Security: Designs, Threats, and Safeguards, CRC
Press (2014)

15. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on AES. In: Cryptology ePrint
Archive, pp. 293–306 (2003)

16. Giraud, C.: DFA on AES. In: IACR e-print archive 2003/008, p. 008 (2003). http://eprint.iacr.
org/2003/008

17. Guo, X., Karri, R.: Invariance-based concurrent error detection for advanced encryption
standard. In: ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 573–578 (2012)

18. Joye, M., Manet, P., Rigaud, J.: Strengthening hardware AES implementations against fault
attack. IET Inf. Secur. 1, 106–110 (2007)

19. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack resistant
architectures for the advanced encryption standard. In: World Computer Congress on Smart
Card Research and Advanced Applications VI (CARDIS), pp. 177–192 (2004)

20. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection of fault-based side-channel
cryptanalysis of 128-bit symmetric block ciphers. In: Design Automation Conference (DAC),
pp. 579–585 (2001)

21. Karri, R., Wu, K., Mishra, P., Kim, Y.: Fault-based side-channel cryptanalysis tolerant rijndael
symmetric block cipher architecture. In: IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT) pp. 427–435 (2001)

22. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes of fault based side-
channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput. Aided Des. 21(12),
1509–1517 (2002)

23. Karri, R., Kuznetsov, G., Goessel, M.: Parity-based concurrent error detection of substitution-
permutation network block ciphers. In: International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), pp. 113–124 (2003)

24. Kermani, M.M., Reyhani-Masoleh, A.: Parity prediction of S-box for AES. In: Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 2357–2360 (2006)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/s13389-012-0046-y
http://dx.doi.org/10.1007/s13389-012-0046-y
http://dx.doi.org/10.1007/s13389-012-0046-y
http://eprint.iacr.org/2003/008
http://eprint.iacr.org/2003/008

Fault Attacks on AES and Their Countermeasures 207

25. Kermani, M.M., Reyhani-Masoleh, A.: A Low-cost S-box for the advanced encryption standard
using normal basis. In: IEEE International Conference on Electro/Information Technology
(EIT), pp. 52–55 (2009)

26. Kermani, M.M., Reyhani-Masoleh, A.: A high-performance fault diagnosis approach for the
AES subbytes utilizing mixed bases. In: Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 80–87 (2011)

27. Kermani, M.M., Reyhani-Masoleh, A.: A low-power high-performance concurrent fault
detection approach for the composite field S-Box and inverse S-Box. IEEE Trans. Comput.
60(9), 1327–1340 (2011)

28. Khelil, F., Hamdi, M., Guilley, S., Danger, J.L., Selmane, N.: Fault analysis attack on an AES
FPGA implementation. In: ESRGroups, pp. 1–5 (2008)

29. Kim, C.H.: Differential fault analysis against AES-192 and AES-256 with minimal faults.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 3–9 (2010)

30. Kim, C.H.: Differential fault analysis of AES: toward reducing number of faults. Cryptology
ePrint Archive, Report 2011/178 (2011). http://eprint.iacr.org/

31. Kim, C.H.: Improved differential fault analysis on AES key schedule. IEEE Trans. Inf.
Forensics Secur. 7(1), 41–50 (2012)

32. Kim, C.H., Quisquater, J.J.: New differential fault analysis on AES key schedule: two faults
are enough. In: International Conference on Smart Card Research and Advanced Applications
(CARDIS), pp. 48–60 (2008)

33. Li, W., Gu, D., Wang, Y., Li, J., Liu, Z.: An extension of differential fault analysis on AES.
In: International Conference on Network and System Security (NSS), pp. 443–446 (2009)

34. Maingot, V., Leveugle, R.: Influence of error detecting or correcting codes on the sensitivity to
DPA of an AES S-Box. In: International Conference on Signals, Circuits and Systems (ICSES),
pp. 1–5 (2009)

35. Maistri, P., Leveugle, R.: Double-data-rate computation as a countermeasure against fault
analysis. IEEE Trans. Comput. 57(11), 1528–1539 (2008)

36. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differential fault
attack against AES cryptosystem. In: International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pp. 91–100 (2006)

37. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: Parity-based fault detection architecture of s-
box for advanced encryption standard. In: IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT), pp. 572–580 (2006)

38. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: A lightweight concurrent error detection
scheme for the AES S-boxes using normal basis. In Proceedings of Cryptographic Hardware
and Embedded Systems (CHES), pp. 113–129 (2008)

39. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: A lightweight high-performance fault detection
scheme for the advanced encryption standard using composite field. IEEE Trans. VLSI Syst.
19(1), 85–91 (2011)

40. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption standard.
In: Cryptology in Africa, AFRICACRYPT, pp. 421–434 (2009)

41. Natale, G.D., Flottes, M.L., Rouzeyre, B.: A novel parity bit scheme for SBox in AES circuits.
In: IEEE Design and Diagnostics of Electronic Circuits and Systems (DDECS ’07), pp. 1–5
(2007)

42. Natale, G.D., Flottes, M.L., Rouzeyre, B.: On-line self-test of AES hardware implementation.
In: Workshop on DSN (2007)

43. National Institute of Stardards and Technology (NIST).: Advanced Encryption Standard
(AES). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (2001)

44. Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology -
EUROCRYPT’93, pp. 55–64 (1993)

45. Piret, G., Quisquater, J.: A differential fault attack technique against SPN structures, with
application to the AES and khazad. In: Proceedings of Cryptographic Hardware and Embedded
Systems (CHES), pp. 77–88 (2003)

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

208 S. Ali et al.

46. Rajendran, J., Borad, H., Mantravadi, S., Karri, R.: Sliced: slide-based concurrent error
detection technique for symmetric block cipher. In: International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 70–75 (2010)

47. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A diagonal fault attack on the advanced
encryption standard. Cryptology ePrint Archive, Report 2009/581 (2009). http://eprint.iacr.org/

48. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance concurrent error detection
scheme for AES hardware. In: Cryptographic Hardware and Embedded Systems (CHES),
pp. 100–112 (2008)

49. Selmane, N., Guilley, S., Danger, J.L.: Practical setup time violation attacks on AES.
In: European Dependable Computing Conference, pp. 91–96 (2008)

50. Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems: Design and Evaluation, 3rd edn. A
K Peters/CRC Press, A. K. Peters, Ltd. (1998)

51. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Proceedings of Crypto-
graphic Hardware and Embedded Systems (CHES), pp. 2–12 (2002)

52. Takahashi, J., Fukunaga, T.: Differential fault analysis on AES with 192 and 256-bit keys.
Cryptology ePrint Archive, Report 2010/023 (2010). http://eprint.iacr.org/

53. Takahashi, J., Fukunaga, T., Yamakoshi, K.: DFA mechanism on the AES key schedule.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 62–74 (2007)

54. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption
standard using a single fault. In: Proceedings of the 5th IFIP WG 11.2 International Conference
on Information Security Theory and Practice: Security and Privacy of Mobile Devices in
Wireless Communication (WISTP), pp. 224–233 (2011)

55. Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low cost concurrent error detection for the
advanced encryption standard. In: International Test Conference (ITC), pp. 1242–1248 (2004)

56. Guo, X., Mukhopadhyay, D., Jin, C., Karri, R.: Security analysis of concurrent error detection
against differential fault analysis. J. Cryptogr. Eng. (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

Part II
Hardware Counterfeiting and Integrity

Protection

Circuit Timing Signature (CTS) for Detection
of Counterfeit Integrated Circuits

Kan Xiao, Domenic Forte, and Mohammad (Mark) Tehranipoor

Abstract Counterfeit integrated circuits (ICs) have been on the rise over the
past decade and represent a major concern. Counterfeits impact the security and
reliability of electronic systems particularly those deployed in critical applications.
While there are several different types of counterfeit ICs in the supply chain (cloned,
recycled, remarked, overproduced, etc.), reports indicate that recycled ICs constitute
the majority of all counterfeit ICs in the market today. Such ICs are recovered from
the scrapped boards of used devices. Since these ICs are identical to their unused
counterparts in appearance, functionality, and packaging, detecting them can be
challenging. It has been observed that path delays in recycled ICs will be larger than
those in unused ICs due to the effects of silicon aging, such as negative/positive bias
temperature instability (NBTI/PBTI) and hot carrier injection (HCI). In this chapter,
a circuit timing signature (CTS) technique is presented to distinguish recycled ICs
from unused ones. Specifically, a clock sweeping technique is employed both to
measure the amount of path delay and to generate a timing signature for chips under
testing. Due to the degradation in the field, the path delay distribution of recycled
ICs becomes different from that of new/unused ICs, resulting in a different CTS.
An authentication flow for accurately identifying recycled ICs is presented. Results
show that statistical analysis can effectively separate the impact of process variations
from aging effects on path delay. In addition, the CTS is extended to the detection of
cloned ICs, overproduced ICs, and remarked ICs. A unique binary ID is generated
based on the CTS of each IC. By checking the intrinsic IDs, cloned, overproduced,
and remarked ICs can be effectively identified.

K. Xiao (�)
ECE Department at University of Connecticut, Fairfield Way, Unit 4157,
Storrs, CT 06269-4157, USA
e-mail: kax10001@engr.uconn.edu

D. Forte • M. (Mark) Tehranipoor
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
e-mail: tehrani@engr.uconn.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_6

211

mailto:kax10001@engr.uconn.edu
mailto:tehrani@engr.uconn.edu

212 K. Xiao et al.

1 Introduction

The counterfeiting of semiconductor components has been on the rise for many
years as a result of several vulnerabilities in the electronics component supply
chain [1]. The most recent data provided by Information Handing Service Inc.
(IHS) shows that reports of counterfeit ICs have quadrupled since 2009 [2]. The
Senate Armed Services public hearing on this issue and the subsequent report
clearly identified counterfeit detection as a major issue to address [3, 4]. Counterfeit
components are of great concern to government and industry because of their
reliability issues and potential system failures or malfunctions that cause mission
failures [5, 6].

According to the definition of counterfeit electronics [7], a counterfeit component
(1) is an unauthorized copy; (2) does not conform to original component manufac-
turer (OCM) design, model, and/or performance standards; (3) is not produced by
the OCM or is produced by unauthorized contractors; (4) is an off-specification,
defective, or used OCM product sold as “new” or working; or (5) has incorrect or
false markings and/or documentation. Based on the definitions above and analysis
of supply chain vulnerabilities, Guin et al. [6, 8] classified the counterfeit types into
seven distinct categories as shown in Fig. 1.

• Recycled: It refers to an electronic component that is reclaimed/recovered from a
system and then modified to be misrepresented as a new component of an OCM.
Recycled parts may exhibit lower performance and shorter lifetime due to aging
phenomena from their usage. Further, the reclaiming process (removal under
a very high temperature, aggressive physical removal from boards, washing,
sanding, repackaging, etc.) could damage the part(s), introduce latent defects,
or make them completely non-functional due to exposure to extreme conditions
in an uncontrolled environment. Such parts will be unreliable and render the
systems that incorporate them also unreliable.

• Remarked: Most legitimate components contain markings on their packages
that indicate manufacturer, trademark, part number, grade, lot code, etc. The
remarking is accomplished by either chemically or physically removing the
original marking, blacktopping (resurfacing) the surface to hide any scratches
or imperfections that have been created, and then remarking the new surface.

Fig. 1 A taxonomy of counterfeit component types

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 213

The primary incentive for remarking is to drive up a component’s price on the
open market or to make a dissimilar lot fraudulently appear homogeneous. For
example, industrial or defense grade components are more valuable than com-
mercial grade because of their superior durability and performance. However,
remarked commercial grade components sold as military grade will not be able
to withstand the harsh conditions of their more durable counterparts.

• Overproduced: Due to globalization, design houses outsource their designs
for fabrication and packaging to companies all around the world, mainly to
reduce the manufacturing cost. Overproduction occurs when foundries and
packaging companies sell components outside of contract with the design house
(component’s intellectual property (IP) owner). Aside from the loss in profits for
the IP owner, overproduced ICs may pose serious reliability threats since they
are often not subjected to the same rigorous testing as authentic parts and may
not meet the manufacturer’s standard flow requirements.

• Out-of-Spec/Defective: A part is considered defective if it produces an incorrect
response to post-manufacturing tests. These parts should be destroyed, down-
graded, or otherwise properly disposed of. However, if they instead are sold on
the open markets, either knowingly by an untrusted entity or by a third party who
has stolen them, there will be an unknown increase in risk of failure.

• Cloned: Cloning is widely used by a range of adversaries/counterfeiters (from
small entities to large organizations) to copy a design in order to eliminate the
large development cost of a part. Cloning can be done in two ways by reverse
engineering, and, by obtaining intellectual property (IP) illegally (also called
IP theft). Cloning can also occur with unauthorized knowledge transfer from a
person with access to the part design.

• Forged Documentation: The documentation shipped with a component con-
tains information regarding specification, testing, Certificates of Conformance,
Statement of Work, etc. By modifying or forging these documents, a component
can be misrepresented and sold even if it is nonconforming or defective. It is
often difficult to verify the authenticity of such documents because the archived
information for older designs and older parts may not be available at the OCM.
Legitimate documentation can also be copied and associated with parts from a
lot not corresponding with the legitimate documentation.

• Tampered: Components that are tampered can have dangerous consequences
for the systems that incorporate them. For example, tampered chips can act
as silicon time bombs where their functionality is unexpectedly “killed” at a
critical moment. Tampered chips may also contain backdoors that give access to
critical system functionality or leak secret information to an adversary. A detailed
taxonomy for tampering with a device at the die level (i.e., hardware Trojan) can
be found in [9].

The category that has contributed the most to the rise of counterfeits is the
recycled ICs. It is estimated that these recycled ICs account for 80 % of all
counterfeits being sold worldwide. In addition, electronics consumer and e-waste
trends suggest that this recycling is only going to increase over time as more gadgets

214 K. Xiao et al.

are used for shorter periods of time [10, 11]. For example, US consumers threw
away 90 million cell phones in 2007 and 135 millions cell phones in 2010 and only
about 20 % were recycled properly [10]. The growth of this type of counterfeit is
worrisome for two reasons: the reliability and security concerns that these recycled
ICs present, and the difficulties involved in detecting them. In addition, recycled
ICs may also have been further tampered with during the recycling process, and
thus represent additional reliability and security risks [12].

Most existing techniques for counterfeit detection are limited and cannot cover
all counterfeit types. Some recycled ICs may be detected through careful visual
inspection since the markings or parts of the package may have been dam-
aged during the refining process. However, most recycled ICs are refined by
professional remarking, packaging, and cleanup processes, making it difficult to
identify, since they have similar appearance and basic functionality as their fresh
counterparts. Several approaches have been proposed to identify recycled ICs
[13–16]. Zhang et al. [13] and Guin et al. [14] use a light-weight on-chip sensor
that avoids the data collection altogether and applies a “self-referencing” concept to
the measurement of use time. However, this approach cannot address detection of
existing and legacy ICs that have no such sensors embedded in them. In addition,
Silicon physical unclonable functions (PUFs) have been developed to generate
unique identifiers for each IC based on process variations [17–19], which can be
used to detect cloned, overproduced, and remarked ICs. Hardware metering is a
set of security protocols that enables the design house to achieve post-fabrication
control of the overproduced ICs [20, 21]. Secure Split Test (SST) secures the
manufacturing test process to prevent counterfeits, such as cloned, overproduced,
and defective/out-of-spec ICs [22]. However, these approaches do not address the
issue of recycled ICs.

In this chapter, a circuit timing signature (CTS) technique for detection of
recycled, remarked, overproduced, and cloned ICs is presented. A circuit timing
signature (CTS) is generated for each IC by performing a clock sweeping technique.
For fresh ICs, the delay distribution of paths will be within a certain range. The
circuit timing signature of the fresh ICs can be generated during manufacturing test
of these ICs and can then be stored in a database for future use when identifying
recycled ICs. Due to aging effects, such as negative/positive bias temperature
instability (NBTI/PBTI) and hot carrier injection (HCI), the path delays in recycled
ICs will be larger than those in fresh ICs. For a chip under authentication (CUA),
the larger the path delays are, the higher the probability is that the CUA has been
used and is a recycled IC. In this chapter, a circuit timing signature (CTS) generation
procedure using a clock sweeping technique is introduced. Statistical data analysis
is used to distinguish the path delay changes caused by process variation from those
path delay changes caused by aging.

This chapter also discusses how variants of the CTS technique is used to detect
other counterfeit types, such as remarked, overproduced, and cloned ICs, so it
can cover the majority of counterfeit types [23]. These counterfeits introduce
new ICs which will have different characteristics due to different process tech-
nologies and/or variations. Since CTS can effectively reveal differences in timing

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 215

characteristics, CTS is unique for each IC and can be employed to identify new
ICs. The authentication flow for uniquely identifying ICs under measurement and
environmental noise is also presented in this chapter. The circuit timing signature
(CTS) created by the clock sweeping technique represents a novel improvement in
existing ideas for several reasons. First, our technique can be applied to ICs already
in production, including legacy designs. Second, it uses data that can be obtained
through the use of existing pattern sets and testing hardware capabilities. Third, no
additional hardware is necessary—there is no area, power, or timing overhead to the
circuit. Finally, because the circuit is not added to or modified in any way, no attacks
on the circuit are possible. Further, it is difficult if not impossible to reverse aging
or alter process variations to modify the CTS signatures.

The rest of the chapter is organized as follows: Sect. 2 presents background
on the impact of aging and process variations on different gates and paths.
Section 3 discusses the clock sweeping technique and CTS generation procedure.
The approaches for identifying recycled, remarked, overproduced and cloned ICs
with statistical data analysis are presented in Sects. 4 and 5. Experimental results
from simulation and FPGA implementation are presented in Sect. 6. Finally, a
summary is given in Sect. 7.

2 Path Delay Analysis on Process Variation and Degradation

2.1 Path-Delay Degradation Analysis

When a chip is used in the field, aging effects cause some of its parameters to shift
over time. This section will briefly discuss the mechanics of the two most common
wearout mechanisms for a CMOS device: Negative Bias Temperature Instability
(NBTI) and Hot Carrier Injection (HCI). Both mechanisms deteriorate transistor
performance.

• NBTI occurs when traps are accumulated on the boundary of the Si-SiO2 inter-
face, which usually happens when PMOS is reversely biased. NBTI increases
the absolute value of the PMOS threshold voltage and results in decreasing drain
current, decreasing transconductance of a MOSFET and consequently increasing
gate propagation delay [24, 25].

• HCI is another major wearout mechanism. Drain-source electrical field accel-
erates the charge carriers to reach a high kinetic energy, which enables the
avalanche of secondary carriers through impact ionization. The process conse-
quently creates traps at the gate dielectric/silicon substrate interface, as well
as dielectric bulk traps, and therefore degrades device characteristics including
voltage threshold [26, 27]. While HCI was considered less dominant than the
NBTI in the past, continued semiconductor scaling has increased its impact
significantly.

216 K. Xiao et al.

Fig. 2 (a) An illustrative circuit with NAND-gate, NOR-gate, XOR-gate, and inverter chains and
(b) Delay degradation of the chains

Since recycled ICs have been impacted by all of these aging effects, the path
delay of recycled ICs will be different from those of fresh ICs. In order to
demonstrate the impact of aging on path delay in ICs, in a simple manner, different
gate chains were simulated using 45 nm technology (http://www.nangate.com/) as
shown in Fig. 2a. The simulation was conducted by HSPICE MOSRA [28] with
the built-in aging model [28] and combined NBTI and HCI aging effects at a
temperature of 25 ıC. Standard threshold voltage (SVT) INVX1, INVX32, NAND,
NOR, and XOR gate chains of different lengths were simulated for up to 2 years
of usage. Figure 2a shows that all chains are experiencing stress from a 500 MHz
clock. Any other stress (e.g., DC stress which is a constant “0” or “1”, or AC stress
with different duty ratios) and usage time could be used in this simulation. Figure 2b
presents the delay degradation caused by 2 years (24 months) of aging. It is clearly
evident that different gate chains age at slightly different rates, which depends on the
structure of the gates. The XOR gate chain has the fastest aging rate amongst these
chains. Comparing the delay degradation rates of the INVX1 and INVX32 chains,
it can be concluded that larger gates will age at a lower rate than smaller gates under
the same stress. In addition, the workload (input value and the switching frequency
of each gate) also has a significant impact on the aging rate. ICs may be recycled
from different used boards from different users who may have applied different
workloads to the IC at different times. Therefore, it is practically impossible to know
the exact input vectors applied by the user. The impact of workload on a chip’s path
delay degradation will be discussed in detail in Sect. 4.1.

Figure 3a shows the delay of a randomly selected critical path Pi (this path
includes 22 gates) from the ISCAS’89 benchmark s38417 with stress from a random
workload (functional patterns) applied to the primary inputs. The path was aged
for 4 years with NBTI and HCI effects at room temperature 25 ıC. The simulation
results indicate that the degradation of path Pi after 1 year is around 10 % while
if the circuit is used for 4 years, the degradation is about 17 %, indicating that
most aging occurs at the early usage phase of the design. Therefore, if there are

http://www.nangate.com/

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 217

Fig. 3 (a) Delay degradation of path Pi and (b) Pi delay increases with increased temperature

no environmental or process variations, such degradation should provide great a
opportunity to identify recycled ICs by measuring one path delay from the circuit.
However, these variations have a significant impact on the path delay. On the other
hand, different paths age at different rates as demonstrated earlier in this section.
Figure 3b shows the delay of path Pi under different temperatures at different aging
times. In the figure, AT denotes aging time where M and Y denotes months and years
respectively. This plot shows that the delay of path Pi increases as the temperature
goes up and paths age with a faster speed at a higher temperature.

2.2 Path Delay and Process Variation

In theory, the specifications and functionality of different ICs of the same design
should be identical. In practice, this is not the case due to uncontrollable manufac-
turing variations that limit our ability to accurately create IC structures at smaller
technology nodes. Thus, values such as the threshold voltage of a transistor (Vth),
the gate length of the transistor (L), and the oxide thickness of the transistor (Tox)
can only be guaranteed to be within some ranges. Variation on these and other
parameters is important to take into consideration because these parameters directly
affect device performance. For example, the delay of a traditional CMOS inverter
can be expressed in two Eqs. (1) and (2) [29], where the high-to-low and low-to-high
propagation delays tPHL and tPLH are affected by variation in the three previously
mentioned parameters, as shown in (3) and (4).

tpHL D ln.2/ReqnCL (1)

tpLH D ln.2/ReqpCL (2)

218 K. Xiao et al.

Fig. 4 (a) Delay degradation of path Pi and (b) Pi delay increases with increased temperature

with

Req D 1

VDD=2

VDDZ

VDD=2

V

IDSAT.1C �V/
dV � 3

4

VDD

IDSAT
.1 � 7

9
�VDD/ (3)

and

IDSAT D k0
W

L
..VDD � Vth/VDSAT � V2

DSAT/ (4)

To analyze the impact of process variations on a path Pi’s delay, Monte Carlo
simulation were performed using HSPICE on s38417. 300 Monte Carlo simulation
results of Pi at 25 ıC are shown in Fig. 4a, with 3-sigma 2 % Tox, 5 %Vth, and 5 %
L inter-die and 1 % Tox, 5 %Vth, and 5 % L intra-die process variations. It shows
that Pi’s delay varies around 12 % due to process variations. In addition, process
variations also have a significant impact on the aging rate of the path delay, as shown
in Fig. 4b. Pi’s delay degradation in the 300 ICs varied around 8 % (4�12 %) for
1 year of aging. These variations evidently make the detection difficult since the
path delay shifts caused by aging effects in recycled ICs must be separated from
those caused by process variations in fresh ICs.

3 Clock Sweeping Technique for Circuit Timing
Signature Generation

For a manufactured chip, it is very difficult to measure the delay of a particular path.
Conventional VLSI delay tests have been developed to identify timing violations
introduced by manufacturing defects that result in slow-to-fall or slow-to-rise
signals. Basically, delay tests (using path delay fault (PDF) patterns and transition

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 219

delay fault (TDF) patterns) just check whether critical paths meet timing constraints
but do not measure the actual path delay [30]. In addition, conventional delay tests
focus on critical paths that are long and have a higher probability of resulting in
timing violations, but other shorter paths are not covered in conventional VLSI
delay tests. Therefore, several techniques have been proposed to measure path
delay in manufactured chips. Datta et al. [31] measure path delay using a Modified
Vernier Delay Line (MVDL), which converts path delay into a digital “0” and “1”
series in flip-flops forming MVDL and improves the measurement resolution below
100 ps. Ghosh et al. [32, 33] utilize built-in delay sensors, which use of saw-tooth
voltage generators and comparators to convert path delays from the analog domain
to the digital domain. Su et al. use phase detectors to detect phase differences
between input and output, and then translate it to bus delays [34]. Wang et al.
[35] further improved on-chip delay measurement architectures and developed an
oscillator from a targeted path for which it is used to measure path delay on-chip
under the impact of process variations. To alleviate accuracy degradation caused
by the architecture itself, a high-accuracy calibration process is presented as well.
However, these techniques introduce large overheads or high costs. Each approach
requires additional circuitry on the target paths for delay measurements. As the
number of paths increases, the silicon overhead and yields are heavily impacted.
Moreover, the test time is increased if each path is tested separately.

Our approach relies on “clock sweeping” which does not suffer from the above-
listed issues. Clock sweeping is a common practice in industry and is used for the
speed binning of parts where test patterns are applied at different clock frequencies,
from a lower speed to higher speeds. Some paths that are sensitized by the delay test
pattern which are longer than the current clock period, start to fail when the clock
speed increases. The obtained start-to-fail clock frequency can indicate the delays
of the paths sensitized by these patterns. The clock sweeping technique can target
multiple paths without any design or silicon overhead.

The clock sweeping is illustrated in the following example. Assume that the six
paths in Fig. 5a can be sensitized by test patterns. The clock period is swept from
f0 to f5 (suppose f0 is circuit functional frequency and f5 is the maximum allowable

A

B

E

D

C

A-C

A-D

A-E

B-C

B-D

B-E

f1 f0f3 f2f4f5

b

a

Fig. 5 (a) An example circuit and (b) Clock sweeping on paths in the circuit

220 K. Xiao et al.

frequency) and the sweep step size is �t (�f D fi � fiC1, iD 0, 1, 2, 3, 4), as shown
in Figure 5b. The length of each arrow denotes the path delay of each path. As an
example, path B-D is able to propagate correct values at frequency f0 to f3 (pass), and
will produce incorrect logic values at frequency f4 (fail). Thus, its start-to-fail clock
frequency is f4, which denotes the length of path B-D is between the frequency f3
and f4. When the clock is swept from low frequencies to high frequencies, paths will
fail sequentially, with longer paths failing before shorter paths. If the sweep range
is large enough, many paths will fail during clock sweeping, allowing their delay
information to be obtained, even for hazardous patterns if the size of the hazard is
larger than the sweep step size.

The ability to perform clock sweeping on a path is limited by the availability
of sweeping clock frequencies, the degree to which we can excite paths in the
circuit, and the lengths of the paths in the IC. The range and step size of sweeping
frequencies are two critical parameters involved in the clock sweeping technique.
A smaller step size could be more sensitive to small delay changes caused by
the wearout mechanism and process variation. The range determines the range of
testable paths (long paths). Higher maximum frequency could fail more long paths
during clock sweeping. However, the maximum frequency applied to the circuit
cannot go very high, because it is also restricted by the design characteristics, path-
delay distribution in the design, the maximum power consumption, and the on-chip
or off-chip frequency generator’s limit. For example, with the Ocelot ZFP tester
[36], the main frequency is 400 MHz and the frequency step size is 1 MHz.

Figure 6 shows the flow of the clock sweeping technique. The delay test patterns
are applied to ICs at different clock frequencies. By analyzing the pass and fail
values with clock sweeping, the start-to-fail frequency at each flip-flop for each
pattern can be obtained. As an example, Table 1 presents the start-to-fail frequency
for each pattern/flip-flop combination in ICs. Patterns are able to sensitize different
kinds of paths at different flip-flops: long, short or no path at all. For these flip-flops

Fig. 6 Clock sweeping flow

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 221

Table 1 Pattern/flip-flop (Pi/FFj) combinations with start-to-fail
frequencies.

P1/FF1 P1/FF2 : : : P2/FF1 P2/FF3 : : : PP1/FFm

IC 1 f6 f14 : : : f3 f20 : : : f10

IC 2 f7 f12 : : : f4 f21 : : : f9
IC 3 f5 f11 : : : f3 f19 : : : f10

: :

IC n f8 f14 : : : f4 f23 : : : f12

A-C

A-D

A-E

B-C

B-D

B-E

f1 f0f3 f2f4f5

Change caused by PV

A-C

A-D

A-E

B-C

B-D

B-E

f1 f0f3 f2f4f5

Change caused by aging
ba

Fig. 7 Clock sweeping on paths in the example circuit if there is (a) process variations or
(b) degradation due to aging

at which short or no paths are sensitized (like the path B-C in Figure 5b), they always
capture “passing” values during the clock sweeping. These invalid pattern/flip-flop
combinations need to be discarded. For example, assuming the pattern 2/flip-flop
2 (P2/FF2) is an invalid combination, the column P2/FF2 has been removed from
Table 1. The remaining valid elements form circuit timing signature (CTS), as is
shown in Table 1. Each row of the table is a CTS for an IC and each column is an
element of the CTS.

Figure 7a shows examples of paths in two fresh chips. Although they have the
same design, the path delay varies because of process variations. Assuming all
these six paths in the figure can be tested by test patterns, so the CTS using the
combination of these six paths from top to bottom in two chips, are “f5 f1 f3X f4 f5”
and “X f2 f2 f5 f4 f4”, respectively (X represents no start-to-fail frequency is found
during clock sweeping). If these two chips have been used in the field and experience
various stresses, the aged paths are shown in Figure 7b. The degradation due to aging
effects will result in a small extra delay on an aged path, which may push the arrow
to the right, so the CTS change to “f4 f1 f2 f5 f2 f4” from “f5 f1 f3X f4 f5”. Therefore,
process variation and aging degradation could be revealed in the CTS using the
clock sweeping technique. The next two sections will exploit the aging to identify
recycled ICs and the process variations to identify the cloned, overproduced, and
remarked ICs.

222 K. Xiao et al.

4 CTS for Detecting Recycled ICs

As described in Sect. 3, the clock sweeping technique can generate a CTS for each
chip. Figure 8 shows the flow for identifying recycled ICs using circuit timing
signature (CTS) and statistical analysis. The flow is divided into three major steps.
First, paths are simulated and selected according to their aging rate. Next, the delay
information of these paths is measured by a clock sweeping technique in fresh ICs
(either during manufacturing test on all ICs or during authentication on a sample of
fresh ICs) and in any chip under authentication (CUA). Finally, statistical analysis
is used to decide whether the CUAs are recycled ICs or not.

Fig. 8 Recycled IC identification flow

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 223

4.1 Circuit Timing Signature Generation Considering Aging

4.1.1 Step 1: Path Selection

Due to the large number of critical and long paths in a circuit, the first step is to
select paths which age at faster rates by analyzing the gate types in different paths
and simulating the circuit with different workloads [37, 38]. Paths with higher rates
of aging are preferred for CTS generation, since the differences in the delay of those
paths between recycled ICs and fresh ICs will be much larger than the differences
in paths, which degrade more slowly. CTS generated by fast-aging paths could help
identify recycled ICs used for a shorter time. However, there are several parameters
impacting the aging rate of a path, including the type of gates composing the path
and the workload (as discussed previously in Sect. 2.1). Based on these parameters
and the observations made from the simulation shown in Fig. 3, the following rules
are developed to select the paths that age at the fastest rates: (1) paths with more
fast-aging gates, such as NOR or XOR gates, will be selected, and (2) paths that
experience more zeroes and more switching activity will be selected. More zeroes
in the path will increase the effect of NBTI on the PMOS transistors, and a high
switching frequency will increase the HCI effects on gates, increasing the path delay
degradation more significantly.

Paths with more fast-aging gates would be identified by analyzing the type
of gates composing the paths. However, it is very difficult to identify paths that
experience more zeroes and more switching activity without knowing the specific
workload. Therefore, in this work, different random workloads (input combinations)
are applied to ICs’ primary inputs during logic simulation. For each gate on a critical
path, the average switching activity and the zeroes it has experienced are calculated.
Paths with more switching activity and zeroes are then selected using our flow.
These paths, along with those composed of the more fast-aging gates, are used to
generate CTS signatures to identify recycled ICs. The number of selected paths
could be adjusted according to the design, its testing procedure, and the desired
detection confidence. In our simulations (see Sect. 6.1.1), the top 50 paths with fast-
aging gates are selected and the top 50 paths experiencing more switching activity
and zeroes in the benchmark circuit.

4.1.2 Silicon Measurement

The second step in Figure 8 is to collect the selected paths’ delay from the ICs.
Note that the signature generation can be done during a manufacturing test of a
large sample of ICs before shipping them to the market or on a number of fresh ICs
from each production kept by the design house for the purpose of authentication or
recycled ICs identification. The larger the size of the sample is, the wider the range
of process variations that will be included in the signature, reducing the probability
of wrongly identifying fresh ICs with large process variations as recycled ICs. Path

224 K. Xiao et al.

delay information from the fresh ICs is measured by performing test procedures
on the ICs. Traditionally, test patterns are generated by ATPG before fabrication to
detect path and transition delay faults. These patterns will be applied to all fresh ICs
using clock sweeping techniques, as described in Sect. 3. A CTS will be generated
for each IC as shown in Table 1.

4.1.3 Identification

Once the path delay in all sample chips is measured, statistical data analysis will
be used to generate a signature for fresh ICs. The more the sample chips are, the
more process variations will be covered, reducing the probability that fresh ICs
with large process variations will be identified as recycled ICs. For a circuit under
authentication (CUA) taken from the market, the same test patterns will be applied
in a controlled environment (near-identical to that used for the fresh chips). The path
delay information of the CUA will be processed by the same statistical data analysis
methods. In a simple analysis, if the signature of the CUA is outside of the range of
the fresh ICs’ signature, there is a high probability that the CUA is a recycled IC.
Otherwise, the CUA is likely a fresh IC. The longer the CUA has been used, the
more aging effects it will have experienced, making it easier to identify.

Without extra hardware circuitry embedded into the ICs, our recycled IC
identification technique imposes no area or power overheads. It provides a negligible
test time overhead during manufacturing test on a sample of ICs, since only a few
patterns must be applied several times at different frequencies. Also, there is no
change in the current IC design and test flow since there is no additional circuitry in
the IC used for detection. In addition, this method is resilient to tampering attacks.
It is inherently difficult for recyclers to mask the impact of aging on the recycled
ICs’ path-delay signatures during the recycling process. The only limitations of this
technique are that the design must be known to get the path delay information and
signatures from fresh chips are required to compare with the CUAs for classification.

4.2 Statistical Data Analysis

Two statistical data analysis methods are used in this paper: simple outlier analysis
(SOA) and principal component analysis (PCA) [39]. When performing SOA, the
flow randomly selects a single path from the selected path set, and uses its delay
range in fresh ICs to generate a signature. The process variations of the CUA may
or may not be the same as those within the sample ICs. The selected path delay
of the CUA and sample ICs will follow the same distribution, which makes SOA
effective in certain conditions. However, a single-path based analysis will not be
very effective, due to the limited aging information collected. In general, this method
is expected to be effective in distinguishing recycled ICs used for a long time from
fresh ICs with small process variations, as demonstrated by our results in Sect. 6.

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 225

This basic approach is limited by the path that has been selected. One way we could
improve this would be to use SOA independently on multiple paths and then make
a final decision (recycled or fresh) according to a majority vote.

PCA is a dimensionality reduction technique that transforms the data into a
reduced number of dimensions that captures most of the variations in the data and
the PCA has been effective for detection of hardware Trojans in prior work [40, 41].
The PCA is applied to this problem as follows: The path delay information of all
selected paths, which have been measured by clock sweeping, will be processed by
PCA. In the simulations, the top 100 paths with faster aging rates were selected to
generate signatures. The delay of each path is one of the variables for PCA to use.
Therefore, with N ICs, the dimension of the data set for PCA to generate signature
is N � 100. We apply PCA and then plot the first three principal components (the
three that capture the most variance). A convex hull is created around this data to
represent the signature for fresh chips. The path delay information of the CUA was
also analyzed by the same process and plotted in the same figure. If the CUA is
outside of the convex created by the fresh ICs, there is a high probability that the
CUA is a recycled IC.

5 CTS for Detecting Cloned, Overproduced,
and Remarked ICs

A methodology to create a unique binary identity (ID) for each IC using CTS will
be introduced in this section. The unique IDs are generated from intrinsic timing
characteristics and are difficult to pirate and clone, so they can be used to address
other counterfeit types that introduce new ICs, such as cloned, overproduced, and
remarked. The procedure for uniquely identifying ICs with IDs can be broken down
into two mains parts: (a) IC enrollment and (b) IC identification.

5.1 IC Enrollment

When the clock sweeping tests presented in Sect. 3 have been applied in the
manufacturing test stage, CTS is obtained and can be utilized to generate a binary
ID for each IC. Three steps are performed to enroll every manufactured IC:

1. Stability checking: a path selection procedure that selects the most stable
measured paths from each IC

2. ID generation: a path delay comparison procedure which generates an unopti-
mized ID for each IC

226 K. Xiao et al.

3. ID optimization: an analysis and optimization procedure which increases the
randomness and decreases the size of the IDs. The optimized ID will be stored
in database for later access and authentication.

More details concerning the above steps are discussed in the forthcoming
subsections.

5.1.1 Stability Checking

CTS is used to generate IDs, but path delay measurements using clock sweeping
for CTS generation may be adversely affected by measurement and environmental
noise. To improve the reliability of CTS, preprocessing is necessary to identify and
discard unstable paths early on. Measuring an IC multiple times gives us multiple
measurements of each path in that IC. Analysis of multiple measurements of a
path can uncover whether that path is stable-it reported the same delay during each
measurement—or unstable—it reported different delays on different occasions. To
select stable paths, some subset of the IC set are measured multiple times and the m
most stable paths in CTS are selected to be used to for further analysis on all n ICs.

5.1.2 ID Generation

Once the m most stable paths have been selected, the flow begins to generate IDs
for each IC by performing comparisons between the delays of different paths from
the ICs. Because of manufacturing variations, the path delay is somewhat uncertain
from IC to IC, so that the result the comparison generated is random and unique.
First, by sorting a list of m paths from an IC in ascending or descending order, a
list of similar paths can be obtained. This sorting is called the “golden ranking”, and
this ordering is applied to the m paths of all n ICs. Once the golden ranking has been
obtained, the path delay data for every IC is sorted by this ordering. For each IC, the
process will traverse this ordered list of delays one element at a time. Whenever a
delay in the list is greater than the next delay in the list, it will append a ‘1’ onto the
ID for that IC. Whenever a delay in the list is less than the next delay, it will append
a ‘0’ onto the ID for that IC. If m paths have been analyzed for each of the n chips,
it will end up with n IDs of m � 1 bits each. The first/golden IC, which is used to
determine the ordering, will have an ID of all ones or zeros, depending on whether
the sort was ascending or descending.

5.1.3 ID Optimization

In order to improve the uniqueness of each ID, several optimization techniques
have been developed. Some paths that are compared in the ID Generation step
may produce the same value for all ICs because the path delays are very different.

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 227

This will reduce the average Hamming distance between IDs as this bit will be the
same in all ICs. If enough paths have been measured, it may be possible for an IC
designer to pick and choose which comparisons they are going to perform to create
their IDs. The comparisons can be chosen by analyzing each bit of the m � 1 bit
“unoptimized IDs”, and deciding which bits have the least bias across all IDs. A bit
should be included in the “optimized” ID if the number of zeros in that bit position
is close to 50 % of the number of IDs-if the number of zeros in that bit position is
in the range of n

2
˙ ", where " is some small constant. This process selects the most

unpredictable comparisons across the IC data set. By performing this optimization
technique, IDs become shorter and more random, at the cost of discarding some of
the data obtained during the measurement process.

5.2 IC Identification

This IC enrollment process will be run on every IC during manufacturing tests. The
IDs for every manufactured IC will be stored in a database for later access. Parts of
enrollment process will be run again later when engineers wish to identify an IC,
and this is called IC the identification process. Figure 9 shows these two scenarios.

Clock Sweeping Test

Apply to AllI Cs Apply to ICs Under
Authentication

Stability Checking

ID Generation

ID Optimization

Circuit Timing
Signatures (CTS)

Circuit Timing
Signatures (CTS)

ID Optimization

Hamming Distance
Analysis

Authentic?Yes No

IC Enrollment IC Identification

Fig. 9 Test generation and authentication flow

228 K. Xiao et al.

In order to identify an IC from the market, referred to as an IC under authentication
(IUA) in Figure 9, test engineers will need: (1) the ID generated from reapplying
the enrollment steps, and (2) the ID generated by the device during the original
enrollment. Once they have the ID for the IUA, they can check to see if it is in the
database using Hamming distance analysis. Hamming distance analysis is done by
comparing the ID from the IUA to every ID in the database. If the ID from the IUA
is an exact match to one of the IDs in the database, then they have identified the
IUA.

Noise in the measurement process might make it so that there are a small number
of bits in the ID which are different between the IC’s ID in the database and its ID
in the field. This issue has been addressed through the stability checking technique
described in Sect. 5.1.1, but differences may still be present. Therefore, we define
a Hamming distance threshold, based on analysis of the IDs during manufacturing
tests. This threshold could be based off the minimum Hamming distance between
two different ICs in the manufactured set. The threshold could also be based off
of the maximum Hamming distance between IDs from the same IC, which would
be created during the stability checking process. Exact thresholds would be derived
from analysis of the ID set and measurement noise rates.

5.3 Overhead Analysis

This procedure incurs no area, power, or timing overhead. However, there are tests
and computational overheads required to perform the enrollment steps. Each IC
must undergo an additional k rounds of TDF testing at k different frequencies. If
there are n ICs with Pf1 TDF patterns and Nsff flip-flops that will be tested at k
frequencies, the worst case increase in testing time would be n �.k�1/ �Pf1 �NsffCNsff

clock cycles. This is a worst-case scenario as not all Pf1 TDF patterns will need to be
tested at all k frequencies, as shown in Figure 3a. The stability checking procedure
requires test engineers to measure a subset of nr � n ICs j times each, so there
is a testing overhead of nr � j � .k � 1/ � Pf 1 � Nsff C Nsff clock cycles in the worst-
case scenario. Judging the relative stabilities of each path in the ICs requires test
engineers to individually analyze each of the m paths that were measured j times
each in nr ICs, resulting in a complexity of O.nrmj/ time; however, nr is much less
than n, and j is going to be on the order of dozens to hundreds. The ID generation
procedure requires test engineers to individually analyze each of the m paths in each
of the n ICs, resulting in an O.nm/ runtime. The ID optimization technique analyzes
each of the m� 1 bits across all of the n IDs for a general runtime of O.nm/ as well.
In general, m will be much smaller than n or nr.

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 229

6 Experiment Results and Analysis

6.1 Analysis for Detection of Recycled ICs

The recycled IC identification flow and data analysis methods were implemented
on several benchmarks in 45 nm technology. HSPICE MOSRA [28] was used to
simulate the effects of aging on the path delay of different benchmarks. The supply
voltage of the 45 nm technology is 1.1 V. Random workloads (random functional
input patterns) were applied to several ISCAS’89 benchmarks. The circuit timing
signature (CTS) was generated using clock sweeping at different aging times.
Different process and temperature variations were also simulated to analyze their
impact on the effectiveness of our recycled IC identification methods.

6.1.1 Process and Temperature Variations Analysis

Table 2 shows the three process variations rates that were used in simulations.
Moving from PV0 to PV2, both inter-die and intra-die variations become larger.
PV1 represents a realistic rate of process variations that a foundry might have. Four
sets of Monte Carlo simulation (MCS) were run using different levels of variations,
as shown in Table 3. For each set of MCS, 300 Monte Carlo simulations were run to
generate 300 chips. During the simulations, the aging effects of NBTI and HCI were
simulated with random stress for the benchmark s38417. From the top 500 paths,
the paths P1; P2; : : : ; P50 with fast-aging gates and the paths P51; P52; : : : ; P100

with more zeros and higher switching activities were selected to generate CTS as
described in Sect. 3.

Analysis Using Simple Outlier Analysis (SOA) First, 300 Monte Carlo simula-
tions were run in MCS1. The maximum aging time is 2 years. Here, SOA was used
to process the CTS. Three paths (P1, P2, and P51) were selected to show the results
of SOA. Figure 10a–c show the path delay distribution of the three paths from 300

Table 2 Process variation
rates

Inter-die (3�) Inter-die (3�)

Vth L Tox Vth L Tox

PV0 3 % 3 % 2 % 2 % 2 % 1 %

PV1 5 % 5 % 2 % 5 % 5 % 1 %

PV2 8 % 8 % 2 % 7 % 7 % 2 %

Table 3 Simulation setup Experiments Process variations Temperature

MCS1 PV0 25 ıC

MCS2 PV1 25 ıC

MCS3 PV2 25 ıC

MCS4 PV1 25 ıC˙ 10 ıC

230 K. Xiao et al.

Fig. 10 Path delay distribution in ICs with PV0 in MCS1 at different aging times (a) Path P1,
(b) Path P2, and (c) Path P51

ICs used for different aging times. Similar results were obtained for the other 97
paths as well. For each path, the range of the path delay at AT=‘0’ is the signature of
the fresh ICs. Note that “M” and “Y” denote months and years of aging respectively.
If the path delay of the CUA is out of the range specified at AT=‘0’, there is a high
probability that IC is a recycled one. Note the 300 different Monte Carlo simulations
are used for recycled ICs from those used as sample fresh ICs. Figure 10 shows that
the delay distribution of each path in recycled ICs shifts to the right, relative to the
distribution of delays in fresh ICs. This is because the path delay in recycled ICs
increases due to aging. The longer the ICs have been used, the more path delay
degradation they will have experienced. In addition, Figure 10 also demonstrates
that the path delay variation increases as the aging time increases. The reason for
this is that ICs with different process variations age at different speeds, and the path
delay variations become larger as the aging time increases.

Figure 10a shows the distribution of path P1’s delay. In the figure, the smallest
delay of P1 in recycled ICs used for 1 month is smaller than the largest delay in
fresh ICs. Therefore, the detection rate of recycled ICs used for 1 month is less
than 100 % (98.3 %) when the signature generated by SOA from path P1 is used.
However, the detection rate of recycled ICs used for 3 months or longer is 100 %,
which demonstrates that it is easier to detect recycled ICs that have been used for

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 231

Fig. 11 Path P51 delay distribution in ICs at different aging times (a) in MCS2, (b) in MCS3, and
(c) in MCS4

longer amounts of time. If the path P2 is chosen to detect recycled ICs, the detection
rate of ICs used for 1 month (95.7 %) is slightly less than when using path P1.
However, if path P51 is used, which has the fastest aging rate among the 100 paths,
the detection rate is 100 % even if the ICs are only used for 1 month. P51 is the
most effective path for identifying recycled ICs in this benchmark. From the above
analysis, a conclusion is that different paths generate different signatures due to their
different aging speeds, which makes SOA slightly less effective.

Figure 11a and b show the delay distribution of path P51 across 300 Monte Carlo
simulations in MCS2 and MCS3. Overall, Figures 10c, 11a, and 11b present the
delay distribution of the same path (P51) in ICs with different process variations.
By comparing these figures, it clearly shows that the larger the process variations
are, the larger the path delay variations in fresh ICs will be, which makes it more
difficult to detect recycled ICs. Even when using the most effective path P51, the
detection rates of ICs used for 1 month with PV1 and PV2 drop from 100 % with
PV0 to 78.0 % and 50.7 %, respectively. A 100 % detection rate could be achieved
if the ICs were used for 1 year or longer with PV1, or longer than 2 years with PV2.

300 Monte Carlo simulations were also run with ˙10 ıC temperature variation
during the aging process in MCS4 as shown in Fig. 11c. The measurement tempera-
ture is 25 ıC. It shows the delay distribution of path P51 and the detection rate of ICs
used for 1 month using it is 67.7 %. Comparing Fig. 11a and c, the result presents

232 K. Xiao et al.

Fig. 12 PCA results of ICs under 25 ıC (a) used for 1 month with PV0 in MCS1, (b) used for
1 month with PV1 in MCS2, and (c) used for 3 months with PV1 in MCS2

that the larger the temperature variation is, the larger the path delay variation is,
which makes it even more difficult to detect recycled ICs.

Analysis Using Principal Component Analysis (PCA) A similar analysis is done
using PCA for different MCSs. Figure 12a shows the PCA results of the 100 paths
in s38417 with 300 chips in MCS1. “FC” denotes the first component from PCA,
“SC” represents the second component, “TC” is the third component, and “DR”
denotes the detection rate. The convex hull boundary is built up from fresh IC data,
and represents the signature for fresh ICs. The red asterisks represent chips used
for 1 month. In the figure, the 300 used ICs were completely separated from the
signature of the fresh ICs. Thus, the detection rate using timing signatures generated
by PCA is 100 % for recycled ICs used for 1 month. For recycled ICs used for a
longer time, the detection rate will obviously be 100 % as well.

The path delay information from the remaining three sets of MCSs was also
analyzed by PCA. Figure 12b shows the analysis results of fresh chips and recycled
ICs used for 1 month in MCS2. The three-dimensional figure shows that some of
the recycled ICs are close to the fresh ICs’ signature. The detection rate is 96.3 %,
which is much higher than using SOA. Comparing Figure 12b and a, it shows that
(1) the convex hull built up from fresh ICs in MCS2 is much larger than that in
MCS1 (note that the convex hull in MCS1 looks larger than MCS2 due to its small
scale of axes), and (2) the recycled ICs in MCS2 are closer to fresh ICs than those
in MCS1, which makes the detection rate in MCS2 less than that in MCS1. The
path delay information of 300 ICs used for 3 months in MCS2 were also processed,
and the results are shown in Figure 12c. Comparing Figure 12b and c, it shows that
the longer the chips have been used, the farther they will be from the fresh ICs’

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 233

Fig. 13 PCA results of ICs with PV2 under 25 ıC in MCS3 used for (a) 6 months and (b) 1 year

signature. The detection rate of recycled ICs used for 3 months or longer with PV1
at 25 ıC is 100 %.

Figure 13 are the PCA results of ICs in MCS3. The detection rate of recycled
ICs used for 1 month, 3 months, 6 months, and 1 year are 72.7 %, 89.3 %, 99.3 %,
and 100 %, respectively. The figures of PCA results of recycled ICs used for
1 month and 3 months are not shown here since the detection rates are so far from
100 %. Figure 13a and b show the fresh ICs’ signatures and the recycled ICs used
for 6 months and 1 year, respectively. The recycled ICs used for longer times are
easier to detect, as seen by comparing Fig. 13a and b. The detection rates in these
simulations, prove that it is more difficult to detect recycled ICs that have higher
levels of process variations. The 99.3 % detection rate of ICs used for 6 months and
the 100 % detection rate of ICs used for 1 year in MCS3 shows the effectiveness of
the detection technique. In addition, PV2 is an extremely high variation compared
to what is expected in practice (e.g., PV1).

With the same measurement temperature 25 ıC,˙10 ıC temperature variation is
used in MCS4 during the aging process. The detection rate of ICs used for 1 month,
3 months, and 6 months in MCS4 are 90.6 %, 100 %, and 100 %, respectively. The
fresh ICs’ signature and the detected recycled ICs used for 3 months and 6 months
are shown in Figure 14. Comparing Figure 14a with Figure 12c, it clear shows that
the recycled ICs used for 3 months in MCS4 are closer to the signature than recycled
ICs used for 3 months in MCS2. This phenomenon demonstrates that temperature
variations could increase the path delay variations in fresh ICs and make it more
difficult to detect recycled ICs. However, the 100 % detection rates of ICs used for
6 months in MCS4 demonstrates the effectiveness of our method with process and
temperature variations.

Comparison Between SOA and PCA Figures 10 through 14 present some
detailed results relating to using this technique on s38417 with SOA and PCA.
Table 4, however, tabulates these results in addition to some other results obtained

234 K. Xiao et al.

Fig. 14 PCA results of ICs with PV1 and ˙10 ıC temperature variations in MCS4 used for
(a) 3 months and (b) 6 months

Table 4 Recycled IC detection rates for s38417

SOA PCA

1M 3M 6M 1Y 1M 3M 6M 1Y

MCS1 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

MCS2 78 % 96.7 % 99.7 % 100 % 96.3 % 100 % 100 % 100 %

MCS3 50.7 % 76.3 % 85.3 % 95.6 % 72.7 % 89.3 % 99.3 % 100 %

MCS4 67.7 % 93.3 % 98 % 100 % 90.6 % 100 % 100 % 100 %

using both statistical analysis approaches. These results clearly show that PCA is
more effective than SOA when it comes to identifying ICs used for shorter periods
of time.

Benchmark Analysis In addition to s38417, the ISCAS’89 benchmarks s9234
and s13027 were also simulated to demonstrate the efficiency of this technique
on different designs. The process variation and temperature variation rates used in
MCS4 were applied to these two benchmarks. The aging stress causing NBTI and
HCI degradation in these benchmarks comes from random workloads. 300 MCS
were run for each benchmark for a maximum 2 years of aging. The path selection
method was also applied to these benchmarks, and 100 paths from each benchmark
were used to run statistical data analysis using PCA.

Table 5 shows the recycled IC detection rate for all three benchmarks under
MCS4 for up to a year of aging. The detection rate for ICs used for 3 months in
the benchmarks s9234 and s13207 is 100 %, which matches the results obtained
from s38417.

The results shown in this section clearly demonstrate that the recycled IC
detection method using CTS with PCA is very effective, even in designs with large
process and temperature variations.

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 235

Table 5 Recycled IC
detection rates—benchmark
comparison under MCS4
using PCA

Benckmark 1M 3M 6M 1Y

s9234 88 % 100 % 100 % 100 %

s13207 89.6 % 100 % 100 % 100 %

s38417 90.6 % 100 % 100 % 100 %

Fig. 15 Hamming distance analysis on 128 simulated s38417 circuits. (a) Unoptimized IDs
(b) Optimized IDs with noise

6.2 Analysis of ID Generation for Detection of Remarked,
Overproduced, and Cloned ICs

6.2.1 Simulation

To evaluate this methodology, a series of simulations in HSPICE were performed on
an implementation of the ISCAS’89 benchmark s38417. This circuit was simulated
at the 90 nm technology node. The CTS of the 256 top critical paths from the circuit
were obtained and 128 Monte Carlo simulations were performed to add process
variations. This provides 128 simulated ICs worth of data, with 256 data points for
each IC. The PV1 in Table 2 is employed in the Monte Carlo simulations. All paths
for all ICs were simulated over a range of temperatures from 23 ıC to 27 ıC to
represent small deviations from room temperature.

Using the ID generation methodology described in Figure 9, 128 255-bit IDs
were created from the simulation data. Figure 15a shows the results of Hamming
distance analysis on these unoptimized IDs. The 255-bit IDs have, on average, a 99-
bit or 39 % inter-Hamming difference. The fact that this average is less than 50 %
means that some bit-positions in the IDs have a bias towards zero or one. If the
optimization procedure described in Sect. 5.1.3 is applied, the average Hamming
distance of the ID set improves and the size of the IDs is reduced, as shown in
Figure 15b. The optimization process reduced the size of the IDs from 255 bits to
114 bits, and increased the average inter-Hamming distance from 39 to 50 %.

Figure 15b also shows the noise rates of the simulated IDs. Each IC was
simulated at temperatures from 23 ıC to 27 ıC at 1 ıC increments to represent small
variations around room temperature. Hamming distance analysis was performed on

236 K. Xiao et al.

each set of IDs coming from the same IC to see how many bits of the ID would
change over the ID range. The average number of bits changing as a result of
temperature was 13 bits, or about 11 %.

The Hamming distance distribution and noise rate distribution are both roughly
normal distributions. By treating them both as normal distributions with their own
averages and standard deviations, each set can be presented with a probability
density function (PDF). These two PDFs can be used to find the Hamming distance
at which it is equally likely that the two IDs are from different ICs or from the same
IC. In the sets shown in Figure 15b, this Hamming distance is 27 bits. If two IDs are
compared and have less than 27 different bits between them, they are most likely
from the same IC. If two IDs are compared and have more than 27 different bits
between them, they are most likely from different ICs.

6.2.2 FPGA Implementation

This methodology was also evaluated on 4490 nm Xilinx Spartan-3E FPGAs. The
ISCAS’89 benchmark s9234 was implemented on our FPGAs, along with RAM
for TDF pattern storage and structures for clock control. The IDs were sent from
the FPGA boards to a computer for analysis by using an additional microcontroller.
The paths in the FPGA were swept at the frequencies f1�16, with f1 D 1

6:4ns and
f16 D 1

3:4ns . The frequency step size was 200 ps. To obtain noise information, four of
the implementations were measured eight times each. After selecting stable paths,
the unoptimized IDs were 145-bit strings, with a Hamming distance distribution as
shown in Figure 16a. The average inter-Hamming distance was 30 bits, or about
21 %. This is lower than in the simulation example. The optimization process
reduces the size of the ID from 145 to 33 bits long, and the distribution of the
inter-Hamming distances between these 33-bit IDs are shown in Figure 16b. By
optimizing the IDs, the average inter-Hamming distance is changed from 30 out
of 145 bits to 15 out of 33 bits, or about 45 %. In practice, a 33-bit ID would be
short, but creating IDs of a greater size only requires measuring more paths.

Fig. 16 Hamming distance analysis on 44 FPGA Implementations of s9234 circuit. (a) Unopti-
mized IDs (b) Optimized IDs with noise

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 237

Figure 16b also shows the noise rates for these IDs. Four different implementa-
tions of s9234 were measured 8 times each and the IDs from each implementation
were compared to each other. On average, there was a 2 out of 33 bit difference
between IDs from the same implementation, or about a 6 % difference.

Again, further analysis compares the noise and inter-Hamming rates. At a
difference of 5.75 bits, it is equally likely that any two IDs being compared are
from the same IC or from different ICs. IDs with a difference of less than 5.75 bits
are probably from the same IC and IDs with a difference of more than 5.75 bits are
probably from different ICs.

7 Summary

The counterfeiting of integrated circuits has become a major issue for the electronics
industry. Currently, many researchers are endeavoring to develop effective and
efficient methods to detect or prevent counterfeit ICs. In this chapter, two effective
counterfeit detection methods using path-delay information are presented. In the
first methods, a circuit timing signature (CTS) is generated for each IC by using
the clock sweeping technique with conventional delay test patterns. The CTS from
recycled ICs will be different from those from fresh ICs due to aging effects. The
simulation results of different benchmarks with different process and temperature
variations demonstrated the effectiveness of the detection method. In the second
method, the CTS of each IC is converted to a unique ID (avoiding collisions)
for a set of different implementations of the same circuit. The simulation and
implementation results demonstrate that the average Hamming distance between
the IDs is nearly 50 %, and the levels of noise are sufficiently low so that test
engineers can distinguish between IDs from the same IC and IDs from different
ICs. The generated IDs can be used to detect other counterfeit types, such as cloned,
overproduced, and remarked ICs. With no additional hardware circuitry required,
the clock sweeping technique introduces no additional overhead on area and power
consumption.

References

1. Trust-HUB.: (2010). http://trust-hub.org/home
2. Cassell, J.: Reports of counterfeit parts quadruple since 2009. Challenging US Defence

Industry and National Security
3. U.S. Senate Committee on Armed Services.: Inquiry into counterfeit electronic parts in the

department of defence supply chain (2012)
4. U.S. Senate Committee on Armed Services.: Suspect counterfeit electronic parts can be found

on internet purchasing platforms (2012)
5. US Congress.: National Defense Authorization Act for Fiscal Year (2012)

http://trust-hub.org/home

238 K. Xiao et al.

6. Guin, U., DiMase, D., Tehranipoor, M.: A comprehensive framework for counterfeit defect
coverage analysis and detection assessment. J. Electron. Test. Theory Appl. (JETTA) 30(1),
25–40 (2014)

7. US, Department of Commerce.: Defense industrial base assessment: counterfeit electronics
(2010)

8. Guin, U., Forte, D., Tehranipoor, M.: Anti-counterfeit techniques: from design to resign. In:
IEEE Microprocessor Test Verification (MTV) (2013)

9. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test 27(1), 10–25 (2010)

10. Brown, S.: Lifecycle of consumer digital products (2007)
11. Bureau of Industry and Security, U.S. Department of Commerce.: Defense industrial base

assessment: counterfeit electronics (Jan 2010)
12. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust. Springer,

Berlin/Heidelberg (2011)
13. Zhang, X., Tuzzio, N., Tehranipoor, M.: Identification of recovered ICs using fingerprints

from a light-weight on-chip sensor. In: Proceedings of Design Automation Conference (DAC)
(2012)

14. Guin, U., Forte, D., Tehranipoor, M.: Low-cost on-chip structures for combating die and IC
recycling. In: Design Automation Conference (DAC) (2014)

15. Huang, K., Carulli, J., Makris, Y.: Parametric counterfeit IC detection via support vector
machines. In: Proceedings of International Symposium on Fault and Defect Tolerance in VLSI
Systems (DFT), pp. 7–12 (2012)

16. Zhang, X., Xiao, K., Tehranipoor, M.: Path-delay fingerprinting for identification of recovered
ICs. In: Proceedings of International Symposium on Fault and Defect Tolerance in VLSI
Systems (DFT) (Oct 2012)

17. Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit using device mismatch. In:
Proceedings ISSCC 2000 (Feb 2000)

18. Pappu, R.: Physical one-way functions. Ph.D. Thesis, Massachusets Instutute of Tecnhology
(2001)

19. Ozturk, E., Hammouri, G., Sunar, B.: Physical unclonable function with tristate buffers. In:
Proceedings of ISCAS08, pp. 3194–3197 (2008)

20. Koushanfar, F., Qu, G., Potkonjak, M.: Intellectual property metering. In: Proceedings of 4th
International Workshop Information Hiding, pp. 81–95 (2001)

21. Alkabani, Y., Koushanfar, F.: Active hardware metering for intellectual property protection
and security. In: Proceedings of 16th USENIX Security Symposium, Usenix Association,
pp. 291–306 (2007)

22. Contreras, G., Rahman, T., Tehranipoor, M.: Secure split-test for preventing IC piracy by
untrusted foundry and assembly. In: Proceedings of International Symposium on Fault and
Defect Tolerance in VLSI Systems (DFT) (2013)

23. Tuzzio, N., Xiao, K., Zhang, X., Tehranipoor, M.: A zero-overhead IC identification technique
using clock sweeping and path delay analysis. In: IEEE GLSVLSI (2012)

24. Kimizuka, N., Yamamoto, T., Mogami, T., Yamaguchi, K., Imai, K., Horiuchi, T.: The impact
of bias temperature instability for direct-tunneling ultra-thin gate oxide on mosfet scaling. In:
VLSI Technology (1999)

25. Vattikonda, R., Wang, W., Cao, Y.: Modeling and minimization of pmos nbti effect for robust
nanometer design. In: Proceedings of the 43rd Annual Conference on Design Automation
(DAC’06), pp. 1047–1052 (2006)

26. Jiang, W., Le, H., Chung, J., Kopley, T., Marcoux, P., Dai, C.: Assessing circuit-level hot-carrier
reliability. In: IEEE International Reliability Physics Symposium Proceedings, pp. 173–179
(1998)

27. Wu, L., et al.: Glacier: a hot carrier gate level circuit characterization and simulation system for
vlsi design. In: Proceedings of IEEE International Symposium on Quality Electronic Design
(ISQED), pp. 73–79 (2000)

28. Synopsys.: HSPICE user guide (2010)

Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits 239

29. Rabaey, J., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design Perspective,
2nd edn. Prentice Hall, Upper Saddle River (2003)

30. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory & Mixed-
Signal VLSI Circuits. Springer, Berlin/Heidelberg (2000)

31. Datta, R., Sebastine, A., Raghunathan, A., Abraham, J.: On-chip delay measurement for silicon
debug. In: Proceedings of GLSVLSI’ 04, pp. 145–148 (Apr 2004)

32. Ghosh, S., Bhunia, S., Raychowdhury, A., Roy, K.: A novel delay fault testing methodology
using low-overhead built-in delay sensor. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 25(12), 2934–2943 (2006)

33. Ghosh, A., Rao, R., Chuang, C., Brown, R.: On-chip process variation detection and compensa-
tion using delay and slew-rate monitoring circuits. In: Proceedings of ISQED’08, pp. 815–820
(Mar 2008)

34. Su, C., Chen, Y., Huang, M., Chen, G., Lee, C.: All digital built-in delay and crosstalk
measurement for on-chip buses. In: Proceedings of DATE’00, pp. 527–531 (Mar 2004)

35. Wang, X., Tehranipoor, M., Datta, R.: Path-RO: A novel on-chip critical path delay mea-
surement under process variations. In: Proceedings of International Conference on Computer-
Aided Design (ICCAD) (Nov 2008)

36. INOVYS.: Test System for Complex SOCs. http://www.etesters.com/listing/40e8f648-a2d6-
23b8-949b-4b3c005c86fb/OcelotZFP

37. Wang, S., Chen, J., Tehranipoor, M.: Representative critical reliability paths for low-cost and
accurate on-chip aging evaluation. In: International Conference on Computer-Aided Design
(ICCAD) (2012)

38. Chen, J., Wang, S., Tehranipoor, M.: Critical-reliability path identification and delay analysis.
ACM J. Emerg. Technol. Comput. Syst. (JETC) 10(2) (2014)

39. Jolliffe, I.T.: Principal Component Analysis, 2nd edn, pp. 150–165. Springer, Berlin/
Heidelberg (2002)

40. Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: Proceedings of
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (2008)

41. Xiao, K., Zhang, X., Tehranipoor, M.: A clock sweeping technique for detecting hardware
Trojans impacting circuits delay. IEEE Des. Test 30(2), 26–34 (2013)

42. Datta, R., Carpenter, G., Nowka, K., Abraham, J.: A scheme for on-chip timing characteriza-
tion. In: Proceedings of VTS’06, pp. 24–29 (Apr 2004)

http://www.etesters.com/listing/40e8f648-a2d6-23b8-949b-4b3c005c86fb/Ocelot ZFP
http://www.etesters.com/listing/40e8f648-a2d6-23b8-949b-4b3c005c86fb/Ocelot ZFP

Hardware Trojan Detection in Analog/RF
Integrated Circuits

Yier Jin, Dzmitry Maliuk, and Yiorgos Makris

Abstract Globalization of semiconductor manufacturing has brought about
increasing concerns regarding possible infiltration of the Integrated Circuit (IC)
supply chain by skilled and resourceful adversaries, with the intention of introducing
malicious modifications (a.k.a hardware Trojans) which can be exploited to cause
incorrect results, steal sensitive data, or even incapacitate a chip. While numerous
prevention and detection solutions have been introduced in the recent, past, the
vast majority of these efforts target digital circuits. Analog/RF ICs, however,
are equally vulnerable and potentially even more attractive as attack targets, due
to their wireless communication capabilities. Accordingly, in this chapter, we
review existing research efforts in hardware Trojan detection in Analog/RF ICs.
Specifically, using a wireless cryptographic IC as an experimentation platform, we
demonstrate the effectiveness of side-channel fingerprinting along with advanced
statistical analysis and machine learning methods in detecting hardware Trojans
both after its manufacturing and after its deployment in its field of operation.

1 Introduction

The problem of maliciously intended modifications (a.k.a. hardware Trojans) in
manufactured integrated circuits (ICs) has recently become of interest not only to
academic researchers but also to governmental agencies and industrial entities [4].
Partly because of design outsourcing and migration of fabrication foundries to low-
cost areas across the globe, and partly because of increased reliance on external
hardware intellectual property (IP) and Electronic Design Automation (EDA)

Y. Jin
University of Central Florida, Orlando, FL 32816, USA
e-mail: yier.jin@eecs.ucf.edu

D. Maliuk
Yale University, New Haven, CT 06520, USA
e-mail: dzmitry.maliuk@gmail.com

Y. Makris (�)
University of Texas at Dallas, Richardson, TX 75080, USA
e-mail: yiorgos.makris@utdallas.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_7

241

mailto:yier.jin@eecs.ucf.edu
mailto:dzmitry.maliuk@gmail.com
mailto:yiorgos.makris@utdallas.edu

242 Y. Jin et al.

software from various vendors, the integrated circuit supply chain is now considered
far more vulnerable to such malicious modifications than ever before. Fears that
skillful and resourceful adversaries may be able to compromise some stage of IC
design and/or fabrication and insert Trojan hardware are becoming increasingly
intense, as rumors about actual occurrence of such cases surface [4]. In essence,
the fundamental concern is that hardware Trojan-infested chips may be capable
of additional functionality which is unknown to the designer/vendor/customer
and which can be exploited by the perpetrator after chip deployment. Evidently,
depending on the field of application, the consequences of such attacks may
range from minor inconvenience to major catastrophic events, especially since the
intended target of such dubious ICs will most likely be a sensitive domain, such as
financial, military, or other vital infrastructure.

While the severity of the potential implications of such a threat has fueled
several research efforts towards better understanding and dealing with hardware
Trojans both at the pre-silicon [14–16, 18, 22, 24, 27, 39] and at the post-silicon
[6–10, 12, 20, 25, 26, 31–36, 40] stage, the vast majority of these efforts target
traditional digital circuits. In contrast, this chapter will focus on the problem
of hardware Trojans in the analog/RF domain and will also introduce hardware
Trojan detection methods for wireless ICs. Similar to digital circuits, analog/RF
ICs are now prevalent in electronic systems, facilitating industrial control and
wireless communication and becoming an inseparable part of modern everyday
activities. At the same time, analog/RF ICs (and, by extension, the integrated
systems containing analog/RF modules) are particularly vulnerable and constitute a
very appealing target for hardware Trojan attacks; indeed, since such circuits receive
and transmit information over public wireless channels, the attacker does not need
to obtain physical access to their input/output space, making such attacks far more
realistic. Moreover, most modern communication systems employ some form of
encryption in order to protect the privacy of the information that is communicated
over the public channel. Interestingly, while this provides the user with an—often
misleading—sense of security, it also entices attackers, who know that valuable
secret information (e.g. the encryption key) is stored on these devices. Therefore,
development of pertinent Trojan hardware mitigation methods for analog/RF ICs is
equally (if not more) critical as with their digital counterparts.

Toward this end, this chapter studies the threat of hardware Trojans specifically
within the context of analog/RF ICs and examines remedies to ensure their trustwor-
thiness both during the manufacturing testing process and after their deployment in
their field of operation. Through the material introduced in this chapter we seek to
achieve the following objectives:

• Delineate the threat and potential impact of hardware Trojans in analog/RF
ICs. Specifically, we will focus on vulnerability introduced by the margins
that are typically allowed in the transmission parameters in order to deal with
process variations and we will show that these margins can be exploited in
order to gain control of a chip and/or leak sensitive information. The trade-off

Hardware Trojan Detection in Analog/RF Integrated Circuits 243

between the level of harm that these hardware Trojans may incur and the
impact on area/power/performance,which is strongly correlated to their detection
susceptibility, will also be investigated.

• Elucidate the shortcomings of existing test methods in exposing hardware
Trojans in the analog/RF IC domains. Since analog/RF Trojans do not change
the functionality of the chip, they are very difficult to be detected by traditional
manufacturing testing methods. The effectiveness of existing hardware Trojan
detection methods introduced in the digital domain will also be investigated.

• Devise efficient hardware Trojan detection methods based on statistical analysis
and machine learning, specifically for analog/RF ICs. The effect of a carefully
designed hardware Trojan is expected to be hidden within the parametric design
margins, making side channel information of a Trojan-infested chip appear
perfectly legitimate if examined in isolation. However, for the hardware Trojan
to be of utility to the attacker, it needs to impose some form of structure in the
transmission signals and/or other side-channel signals, through which remote
commands will be issued or secret information will be leaked. Statistical analysis
methods can therefore be used to detect the existence of this added structure
and machine learning (i.e. trained classifiers) can be used to distinguish between
Trojan-free and Trojan-infested chip populations.

2 Hardware Trojans in Wireless ICs

Using as an experimentation vehicle a simple wireless cryptographic circuit and two
example hardware Trojans which were specifically designed to attack wireless ICs
[21], we will demonstrate the following three key findings:

• Attack Complexity: Minor modifications to a wireless cryptographic chip
suffice to leak secret information. The vulnerability of such chips stems partly
from the fact that they transmit over a public wireless channel. Their true Achilles
heel, however, is the fundamentally analog nature of a wireless transmission,
which entails several continuous parameters (e.g. amplitude, frequency, phase,
etc.). In order to tolerate variations due to fabrication process and/or oper-
ating conditions, specifications for these parameters are defined as windows
of acceptable performances rather than exact values. As a result, a hardware
Trojan can hide additional information within the tolerance margins of such
continuous entities and secretly transmit it. While such transmissions abide by
all specifications and appear to be perfectly legitimate, an adversary who knows
the structure of the additional information will be able to extract it.

• Detection Difficulty: Evading detection by traditional manufacturing test meth-
ods is trivial. The functionality of the digital part of the chip in normal operation
mode and in test mode can be preserved despite the addition of the hardware
Trojan; hence, no structural (i.e. scan-based) or functional tests (or even enhanced
functional tests for hardware Trojan-detection) will fail in a fault-free but Trojan-
infested chip. Similarly, since the analog functionality of the chip is left intact,

244 Y. Jin et al.

all analog/RF specification tests will pass. Furthermore, since the leaked infor-
mation is hidden within the allowed transmission specification margins, system-
level functional tests will also pass. Existing side-channel fingerprint generation
and checking methods, at least in their original form, also fall short in detecting
hardware Trojans in wireless cryptographic ICs.

• Possible Solution: Despite the fact that hardware Trojans can be hidden within
the process variation margins of a wireless cryptographic chip and may not be
exposed through any of the above methods, it may still be possible to detect them.
Effective hardware Trojans must impose a specific structure on the transmission
parameters, which the attacker leverages to snoop the secret key. While this
structure is not known to the defender, advanced statistical analysis of these
parameters may be sufficient to reveal its existence and, thereby, expose the
hardware Trojan. Since the attacker does not know what data will be collected
or how it will be analyzed, this method is difficult to evade. In other words, the
element of surprise by the attacker, who picks the structure of the hidden data,
is counteracted by a similar element of surprise by the defender, who picks the
measurements and the statistical analysis method.

3 Pre-Deployment Hardware Trojan Detection

The most common threat model adopted in hardware Trojan research assumes that
the culprit is either at the foundry or at design houses where third party intellectual
property (IP) is acquired from. In either case, once silicon is obtained and before
it is shipped to customers, it is essential to test not only for manufacturing defects
(which is the objective of VLSI testing) but also for hardware Trojans. Therefore, we
first discuss the problem of pre-deployment hardware Trojan detection in analog/RF
ICs, wherein we can exercise the device under test in a controlled environment with
pre-specified stimuli.

3.1 Experimentation Vehicle

The experimentation vehicle used to elucidate the problem of hardware Trojans in
analog/RF ICs is shown in Fig. 1. This is a mixed-signal wireless cryptographic
IC, capable of encrypting and broadcasting data, which can be used in secure
data transmission over open channels. The digital part includes a pipelined Digital
Encryption Standard (DES) core [2], an output buffer and a serializer, which serves
as the interface between the digital and the analog part. The analog part is an Ultra-
Wide-Band (UWB) transmitter.

The DES core in the chip is a performance-optimized design with 16 encryption
blocks in a pipeline structure. Each block can independently run the Feistel
function f , which is the central part of the DES algorithm. A fully pipelined key

Hardware Trojan Detection in Analog/RF Integrated Circuits 245

Fig. 1 Block diagram of example wireless cryptographic integrated circuit

generation module is designed to operate in parallel with these encryption blocks.
In order to achieve high operating frequency, the initial permutation and inverse
initial permutation of the plaintext are handled through hard-wiring, with no logic
circuitry involved. The widths of the input and output data are both 64 bits, which
is the length of a plaintext/ciphertext block. The output buffer is a First-In First-
Out (FIFO) structure of 64-bit words, which supports reading and writing speeds
commensurate with the performance of the pipelined DES core. The digital/analog
interface converts the 64-bit data block from the buffer into a serial bit stream and
passes it on to the UWB transmitter. The interface also adjusts the data-sending
frequency to ensure signal integrity in this mixed-signal design. A pulse on the
send primary input passes the contents of the output buffer to the interface and
finally to the UWB transmitter for broadcasting. The UWB transmitter [41] consists
of a pulse signal generator, a gating signal generator and two driver amplifiers
(DAs) and can transmit data over a wide spectrum of frequency bands with very
low power consumption and high data rate. The UWB transmitter is in active mode
and transmits a high frequency signal when the information bit to be transmitted is
‘1’, otherwise it is in idle mode.

The chip is designed in TSMC CL013G .13�m CMOS technology process [1].
The digital part runs at a frequency of 75MHz and the UWB transmitter has a
data rate that exceeds 50 Mbps. Tests for the digital part cover both stuck-at and
delay faults using a full-scan chain of Enhanced Scan Flip-Flops [17]. For the
analog part, besides the traditional specification tests, the spectrum of the output
pulse sequence of the DA chain at a data transmission rate of 50 Mbps is also
measured [41]. System-level functional tests involve randomly generated patterns
which are encrypted and broadcasted by the UWB transmitter. A receiver decrypts
the ciphertext and compares to the expected plaintext, in order to detect any
discrepancies.

Figure 2 shows a simulation example of a typical transmission of a 64-bit
block of ciphertext and a magnified view of the transmission signal when a ‘1’ bit
is broadcasted. UWB specification calls for a transmission frequency between
3.1 GHz and 10.6 GHz. The specifications for this particular implementation define
its frequency between 4 GHz and 6 GHz. Transmitting a ‘1’ bit involves between 5
and 7 peaks of amplitude over 300uW with at least one of them over 900uW. The
actual performances of each individual chip will vary, depending on the fabrication
process variations. For example, the response of the circuit instance shown in

246 Y. Jin et al.

Fig. 2 Example of 64-bit ciphertext block transmission

the figure, which was randomly picked from a population of 200 chips generated
through a Monte Carlo Spice simulation with 5 % process variation on all transistor
parameters, operates at a frequency of 4.8 GHz and involves 5 peaks of amplitude
over 300uW with the largest measuring at 1114uW.

3.2 Hardware Trojans

Two hardware Trojans are designed which, through minute modifications, are
capable of leaking the encryption key by hiding it in the wireless transmission
parameter (i.e. amplitude or frequency) margins allowed in the design specifications
in order to deal with process variations. Thus, they ensure that the circuit continues
to comply to all of its functional specifications. The working principle of these
Trojans is simple: extract one bit at a time from the 56-bit encryption key, which
is stored in the DES core, and leak it by hiding it in one 64-bit block of transmitted
data. After 56 ciphertext blocks are transmitted, the entire key will have been
broadcasted.

Implementation Details Each hardware Trojan involves two modifications. The
first modification, which is shown in Fig. 3a, is common to both hardware Trojans
and aims to extract the encryption key from the DES core. The second modification,
which is shown in Fig. 3b, is different for each of the two hardware Trojan and
aims to manipulate the transmission amplitude or frequency in order to leak the key
through the wireless channel.

The key extraction modification exploits the ability of Enhanced Scan Flip-
Flops to store two bits, one in the D flip-flop and one in the follow-up latch, so
that back-to-back vectors can be applied for the purpose of detecting delay faults
when the circuit is in test mode [17]. During normal operation, however, the latches
are transparent, essentially holding the same information as the D flip-flops. In the
example circuit, the 56-bit encryption key is stored in a sequence of 56 Enhanced

Hardware Trojan Detection in Analog/RF Integrated Circuits 247

Fig. 3 (a) Extracting the key bitwise, through a rotator made out of the 56 enhanced scan flip-
flops where it is stored. (b) Broadcasting the stolen key bit by manipulating the amplitude or the
frequency of the UWB transmission

Scan Flip Flops which are serially connected in a scan chain, as shown in the top
part of Fig. 3a. The basic idea for extracting the secret key is to store it only in
the latches of the Enhanced Scan Flip Flops and reuse the D flip-flops to create a
56-bit rotator. Initially, when the key is loaded by the user, both the flip-flops and
the latches hold the correct bits. Then, every time a data block is transmitted, the
last bit of this rotator is extracted and hidden in the transmission, while the rotator
shifts its contents by one position. Only the D flip-flops of the Enhanced Scan Flip
Flops hold a rotated version of the key, while the follow-up latches continue to hold
the correct version, so that the ciphertext is correctly produced. Simple control logic
consisting of a few gates, shown in red color in the bottom part of Fig. 3a, suffices
for this purpose.

The key transmission modification receives the stolen bit and based on its value
modifies the transmission signal in one of two ways. The first option (Type-I), shown
on the left side of Fig. 3b, manipulates the transmission amplitude; when the stolen
key bit is ‘1’, an additional driver strengthens the legitimate transmission signal
before it reaches the gating generator, thereby slightly increasing the transmission
amplitude. Figure 4a shows the corresponding impact on the signal transmitted by
the example circuit instance used in Fig. 2. In this case, the amplitude increases
from 1114uW to 1235uW, but the frequency remains at 4.8 GHz. The second
option (Type-II), shown on the right side of Fig˙ 3b, manipulates the transmission
frequency; when the stolen key bit is ‘1’, the original buffer is bypassed and an
alternative buffer is used to delay the output of the pulse generator, thereby slightly
increasing the transmission frequency. Figure 4b shows the corresponding impact on

248 Y. Jin et al.

Fig. 4 (a) Difference in Type-I Trojan-infested circuit transmission depending on value of stolen
key bit. (b) Difference in Type-II Trojan-infested circuit transmission depending on value of stolen
key bit

Hardware Trojan Detection in Analog/RF Integrated Circuits 249

the signal transmitted by the example circuit instance used in Fig. 2. In this case, the
frequency increases from 4.8 GHz to 5.2 GHz but the amplitude remains at 1105uW.
In both cases, when the stolen key bit is ‘0’, no change occurs in the transmitted
signal.

The overall area overhead incurred by each of the above Trojans is around 0.02 %
of the digital part of the chip. This figure assumes that the storage elements holding
the secret key are Enhanced Scan Flip Flops which are connected in sequence. If
this is not the case and a separate 56-bit rotator needs to be added, the area overhead
still remains well below 0.4 % of the digital part of the chip.

Secret Information Extraction Figures 4a,b show the transmission power wave-
form of a Type-I and a Type-II Trojan-infested chip, respectively, when the stolen
key bit transmitted along with the legitimate signal is ‘1’, as well as when it is ‘0’.
Evidently, in the Type-I Trojan-infested chip, the difference in the stolen key bit
value is reflected as a difference of 120uW in the maximum amplitude. Similarly, in
the Type-II Trojan-infested chip, the difference in the stolen key bit value is reflected
as a 0.4 GHz difference in the frequency. Both of these differences are well within
the margins allowed for process variations and operating condition fluctuations and
would not raise any suspicion. While the attacker does not know a priori the exact
amplitude or frequency levels in each of the two cases, the fact that this difference
is always present suffices for extracting the secret key. All the attacker needs to
do is listen to the wireless channel to observe these two different amplitude or
frequency levels, which correspond to a stolen key bit of ‘1’ and a stolen key bit
of ‘0’, respectively. Once these two levels are known, listening to 56 consecutive
transmission blocks reveals a rotated version of the 56 bits of the encryption key.
Using this information, the attacker needs at most 56 attempts (i.e. all rotations of
the extracted 56 bits) to decrypt the transmitted ciphertext.

3.3 Evaluation of Existing Test and Trojan Detection Methods

The mechanism through which the two hardware Trojan examples leak the secret
information over the wireless channel allows them to evade detection not only by
traditional manufacturing testing but also from previously proposed Trojan detection
methods.

Functional, Structural, and Enhanced Testing The hardware Trojan examples
do not alter the functionality of the digital part of the circuit. In normal operation, the
enhanced scan flip-flops that hold the key bits are loaded appropriately. Numerous
randomly generated functional test vectors are simulated to verify the correctness of
the produced ciphertext. In test mode, the scan chain also operates as expected. To
demonstrate that structural tests do not detect these hardware Trojans, a standard
industrial ATPG tool is used to generate test vectors for all stuck-at and delay
faults in the Trojan-free circuit. These tests are simulated on the two Trojan-infested
circuits. As expected, all tests passed. Enhancing the test set with further vectors that

250 Y. Jin et al.

exercise rare events [35, 40] is also ineffective, since the hardware Trojans do not
affect the digital functionality. The analog portion is not modified and, therefore, it
also passes the traditional specification-based analog/RF test.

System-Level Testing System-level tests examining the parameters of the wireless
transmission also fail to expose the hardware Trojans, since the structure added by
the leaked information is hidden within the margins allowed for process variations.
To demonstrate this, we measured the transmission power of 200 genuine (i.e.
Trojan-free) chips, 100 chips infested with a Type-I hardware Trojan and 100 chips
infested with a Type-II hardware Trojan, which we generated using Monte Carlo
Spice-level simulation assuming 5 % process variations on all circuit parameters.
Figure 5a plots the transmission power when a ‘1’ is transmitted by half of these
chips, as well as the � ˙ 3� envelope of the transmission power when a ‘1’ is
transmitted by the other half of these chips. Figures 12b,c plot the transmission
power when a ‘1’ is transmitted by the Type-I and Type-II Trojan infested chips,
respectively. Evidently, given any one of these transmission power plots, it is not
possible to distinguish whether it comes from a Trojan-free or a Trojan-infested
chip.

Local Current Traces An interesting hardware Trojan detection method based on
local current traces is presented in [33, 34]. This test strategy detects anomalies
introduced by the Trojan in the currents measured at the power ports and takes into
account process and operating conditions variations. The authors demonstrate that
their method can detect Trojans of size as small as 2 % of the power grid. In order
to implement this method in the design, the chip needs to be divided into at least
20 power grids with at least 30 uniformly located power ports. The availability of
these power ports is a serious obstacle to implementing this method. Furthermore, a
capable attacker would probably observe the existence of these power ports and
could possibly invent countermeasures to prevent the injected hardware Trojans
from becoming visible through these ports.

Global Power Traces In [5], the authors use global power consumption traces to
distinguish between Trojan-free and Trojan-infested chips. The method employs
statistical analysis of the Eigenvalue spectrum and can effectively detect hardware
Trojans occupying 0.12 % of the total circuit area, assuming process variation in the
order of 5 %. But when the hardware Trojan area is reduced to only 0.01 % and the
process variation is increased to 7.5 %, false alarms start to appear. Considering
the very low area overhead of the hardware Trojans (i.e. 0.02 %) and based on
the limitations outlined in [5], it is unlikely that statistical analysis of the total
power consumption will expose them. Indeed, even when this method is applied
to the power traces of the digital part only,1 wherein the hardware Trojans are
hidden, it was not possible to effectively distinguish between Trojan-free and

1Mixed-signal SoCs typically have separate power ports for the analog and the digital parts.

Hardware Trojan Detection in Analog/RF Integrated Circuits 251

Fig. 5 (a) �˙ 3� transmission power envelope of 100 Trojan-free chips and transmission power
of another 100 Trojan-free chips. (b) Transmission power of 100 Type-I Trojan-infested chips.
(c) Transmission power of 100 Type-II Trojan-infested chips

252 Y. Jin et al.

Trojan-infested chips in any Eigenvalue sub-space. Nevertheless, as mentioned
in [5], other parameters may still prove effective. In fact, the solution used in the
following section employs a similar statistical analysis of the wireless transmission
power.

Path Delay Traces A similar statistical method proposed in [20] utilizes path
delay fingerprints to differentiate Trojan-free from Trojan-infested chips. While
the hardware Trojan examples add some delay to a small number of paths in the
digital part of the circuit, the impact is too small to be observed. Even if those paths
related to the encryption key are checked, the complexity of the pipelined encryption
circuitry provides enough margin to hide the added delay. To verify this, the path
delay based Trojan detection method was applied assuming process variations in the
range of 5 % but it was unable to identify the existence of hardware Trojans.

3.4 Statistical Analysis to the Rescue

While the structure added to the transmitted signal for the attacker to extract
the stolen key leaves individual transmissions within the acceptable specification
boundaries, it enables the possibility that such hardware Trojans can be exposed
through statistical analysis of the transmission parameters.

To demonstrate this principle, a measurement the total transmission power is used
for broadcasting one block of data (i.e. 64-bits). For 100 Type-I Trojan-infected,
100 Type-II Trojan-infected, and half of the 200 Trojan-free circuit instances which
are generated via Monte Carlo simulation with 5 % process variations, the total
transmission power is measured when transmitting each of six randomly selected
blocks (the same for all circuits). Of course, the Trojan-infested chips also leak
one key bit during each of the six transmissions, half of which are set to ‘1’. All six
measurements for all genuine and all Trojan-infested chips are within the acceptable
specification range. Even when the three chip populations are projected on the six-
dimensional space of these measurements, it is impossible to distinguish them since
they fall upon each other. Figure 6a shows a projection of the three populations
on three of these dimensions. Evidently, separating the genuine from the Trojan-
infested populations in this space is not possible. The situation is similar for any
other subset of three measurements.

However, running a Principal Component Analysis (PCA) on these measure-
ments reveals that the structure of the genuine chip data is different than the
structure of the Trojan-infested chip data. Figure 6b shows a projection of the three
populations on the three principal components of the data, clearly revealing that they
are separable in this space. Therefore, the trusted boundary is defined as a simple
minimum volume enclosing ellipsoid (MVEE [30]) which encompasses the genuine
population. Then, any chip whose footprint on the space of the selected three
principal components does not fall within the trusted boundary will be discarded
as suspicious. In the example, this method detects all Type-I and Type-II Trojan-
infested chips without inadvertently discarding any genuine chips.

Hardware Trojan Detection in Analog/RF Integrated Circuits 253

Fig. 6 (a) Projection of genuine and Trojan-infested chip populations on three out of six
transmission power measurement. (b) Projection of genuine and Trojan-infested chip populations
on three principal components of six transmission power measurements

254 Y. Jin et al.

Given the small number of transmission parameters (or combinations thereof)
wherein the attacker can hide the added structure, as well as the large number of
measurements that the defender can utilize to identify statistical discrepancies, the
defender can easily detect the inserted hardware Trojan. Finally, similar statistical
analysis and machine learning-based methods involving parametric measurements
have been previously employed successfully for the purpose of manufacturing
testing [38] and radiometric fingerprinting [11] of analog/RF circuits. However, this
is the first attempt to apply such methods towards hardware Trojan detection in
wireless cryptographic ICs or aanalog/RF ICs in general.

4 Post-Deployment Hardware Trojan Detection

While the aforementioned side-channel fingerprinting method can be very effective
in detecting hardware Trojans prior to IC deployment, it relies on the assumption
that the Trojan is active at test time. Hence, it fails to detect dormant hardware
Trojans which are activated only after an IC is deployed in its field of operation,
through a lapsed-time counter or an external trigger [19]. Therefore, continuing to
evaluate trustworthiness after deployment through on-chip support for hardware
Trojan detection is equally important. To this end, in this section we introduce
a general post-deployment hardware Trojan detection architecture [23], which is
based on-chip measurement acquisition and classification, and we demonstrate its
effectiveness on the wireless cryptographic IC experimentation vehicle.

4.1 Proposed Trust Evaluation Architecture

The proposed architecture for post-deployment trust evaluation is shown in Fig. 7.
The overall idea is fairly straightforward: after the circuit is deployed, the end-
user can trigger the trust evaluation procedure at any time; during trust evaluation,

Fig. 7 Proposed
post-deployment trust
evaluation architecture

Hardware Trojan Detection in Analog/RF Integrated Circuits 255

on-chip resources are used to apply a known stimulus to the circuit and to obtain
parametric measurements, which are subsequently assessed on-chip to decide
whether the circuit is operating within a trusted region. To this end, several
components are added to the chip, along with the original circuit:

• A programmable on-chip non-volatile stimulus storage component (i.e., Flash,
EEPROM, or OTPROM) and a multiplexer through which the known necessary
excitation stimulus is provided to the circuit.

• Measurement acquisition sensors, to obtain the parametric signature of the circuit
in response to the known stimulus.

• An on-chip classifier, to assess the parametric signature obtained via the sensors
and to decide whether the circuit operation is trusted or not.

• Programmable on-chip non-volatile storage for programming the topology and
the weights that define the region accepted as trusted by the classifier.

The programmability and non-volatility are required, so that the actual stimulus,
the topology of the classifier, and the region accepted as trusted are stored on the
chip only after it is fabricated. Thereby, a potential attacker is not privy to this
information. While the attacker may be able to understand what parameters are
being measured, without knowledge of the stimulus, the actual structure of the
classifier and the definition of the trusted region, it will be very difficult to design
a hardware Trojan that evades detection. In essence, the proposed architecture
counteracts the element of surprise possessed by the attacker (i.e., the ability to
choose the location, functionality, and time of activation of the hardware Trojan)
by a similar element of surprise possessed by the defender (i.e., the ability to
choose the type of parametric signature, the method and bounds for assessing its
trustworthiness, and the time of trust evaluation).

4.2 Experimentation Vehicle

4.2.1 Target Circuit

The experimental platform which is used to demonstrate the effectiveness of the
proposed post-deployment Trojan detection method is an extension of the mixed-
signal wireless cryptographic IC [21] which was used in the previous section.
We remind that this chip takes plain-text at its input, encrypts it using an on-
chip stored key, and then transmits the cipher-text on a public wireless channel.
Figure 8 shows the basic architecture of the entire platform, which is divided
into three parts: (i) the digital part, which includes a pipelined Digital Encryption
Standard (DES) core, an output buffer, and a serializer serving as the interface
between the digital and analog parts, (ii) the analog part, which is an ultrawide-
band (UWB) transmitter, and (iii) the on-chip resources, which are added for the
purpose of post-deployment hardware Trojan detection. These include an on-chip
non-volatile serial-in parallel-out 64-bit register to hold the trust evaluation stimulus,

256 Y. Jin et al.

Fig. 8 Architecture of wireless cryptographic IC experimental platform

two current sensors along with envelop detectors and DC-DC converters to obtain
the side-channel fingerprint of the chip, and a neural network to classify it as
trusted or untrusted. The current experimentation platform consists of SPICE-level
simulation models for all components, except for the neural classifier. The latter is
emulated through a programmable analog neural network experimentation chip to
demonstrate, in silicon, the ability to detect hardware Trojans.

4.2.2 On-Chip Trust Evaluation Resources

The on-chip trust evaluation part performs two tasks, namely parametric measure-
ment acquisition and data classification. Parametric measurements are obtained via
on-chip sensors in response to a known stimulus, which is also stored on-chip
using a non-volatile serial-in parallel-out shift (SIPO) register, as shown in Fig. 8.
The BIST_in signal is used to fill in the 64-bit wide register with a value after
fabrication and prior to deployment. Another BIST_en signal controls the data
flow to the digital/analog interface. When BIST_en is ‘0’, the input of the interface
is the ciphertext to be sent by the UWB transmitter while when it is ‘1’, the pattern
stored in the SIPO register is sent to the UWB transmitter, in order to perform trust
evaluation.

In this platform, two current measurements obtained from the UWB transmit-
ter are used for trust evaluation. In order to lower area overhead and increase
accuracy/stability of the measured currents, a robust CMOS built-in current sensor
(BICS) is implemented [13]. The transistor-level structure of this current sensor
can be seen in the blow-out part of Fig. 8. The output of the BICS is a high
frequency signal which is then converted to a DC voltage through a CMOS envelope
detector [3]. Both the current sensor and the envelope detector are CMOS designs so
that they are compatible with other parts of the circuit. A DC-DC converter is then
used to match the measurement to the input range of the circuit that will perform
data classification (i.e. the on-chip neural network).

Hardware Trojan Detection in Analog/RF Integrated Circuits 257

Fig. 9 Micrograph of analog
neural network chip

4.2.3 On-Chip Classifier

To demonstrate in silicon that an on-chip classifier can, indeed, detect a hardware
Trojan upon its activation in the operation field, an analog neural network exper-
imentation chip is employed [28]. Using this programmable chip, artificial neural
networks are implemented, which are then trained to learn (through a training
set of chips) the mapping between the current measurements obtained from the
two BICS integrated inside the UWB transmitter, and the trusted operation region.
The trained neural networks can then be evaluated with respect to their capability
to detect Trojan-infested chips using a validation set. Note that an analog VLSI
implementation of the neural classifier is necessary in order to contain the area and
power overhead of the proposed trust evaluation.

Figure 9 shows the stand-alone version of the programmable analog neural
network chip which is used in the platform. This chip serves as a flexible platform
for the experiments by virtue of two properties: trainability, which allows it to learn
complex boundaries from the training set, and reconfigurability, which is used to
adjust the number of hidden neurons to match the complexity of the target task.
The possible topologies include all 2-layer networks within the available number
of on-chip synapses and neurons. As will be shown later, network topologies with
very small number of hidden neurons are sufficient to meet both the accuracy
requirements to differentiate Trojan-infested chips from genuine chips and the low
overhead requirements. Figure 10 illustrates the block-level schematic of the circuit
implementation in the neural network chip. The circuit consists of a matrix of
synaptic blocks (S) and neurons (N). The synapses represent mixed-signal devices,
in the sense that they conduct all computations in analog form while their weights
are implemented as digital words stored in a local memory. The results of synapse
multiplication are summed and fed to the corresponding neuron, which performs a
squashing function and produces an output either to the next layer or the primary
output. The architecture is very modular and can easily be expanded to any number
of neurons and inputs within the available silicon area [29].

258 Y. Jin et al.

Fig. 10 Reconfigurable neural network architecture

4.2.4 Hardware Trojans

In addition to the Trojan-free circuit, two alternative hardware Trojan-infested
variants of the wireless cryptographic IC are also designed. These are of similar
structure and working principle to the Trojans introduced in the previous section,
with the exception that both Trojans are dormant during the testing stage and are
only activated after deployment.2 As before, through simple modifications, when
activated these hardware Trojans leak the encryption key by hiding it in the wireless
transmission amplitude or frequency margins allowed due to process variations;
thus, they ensure that the circuit continues to comply to all of its functional
specifications and, thereby, evade testing both on the digital and on the analog side.

Figures 11a, b show the transmission power waveform of a Type-I and a Type-II
Trojan-infested chip, respectively, when the Trojan is activated and the stolen bit
is ‘1’, as well as when the Trojan is dormant (in which case, the stolen bit value is
irrelevant). Evidently, in the Type-I Trojan-infested chip, the activation of the Trojan
will alter the maximum amplitude by as much as 380uW from which attackers can
differentiate a logic ‘1’ or logic ‘0’ value for the stolen key bit. Similarly, in the
Type-II Trojan-infested chip, the difference in the stolen key bit value is reflected
as a 0.4 GHz difference in the frequency when the Trojan is activated. Both of these
differences are well within the margins allowed for process variations and operating
condition fluctuations and would not raise any suspicion. While the attacker does
not know a priori the exact amplitude or frequency levels in each of the two cases,
the fact that this difference is always present suffices for extracting the secret key.

2Interested readers are referred to [19] for a relevant discussion on Trojan triggering.

Hardware Trojan Detection in Analog/RF Integrated Circuits 259

Fig. 11 (a) Difference in Type-I Trojan-infested circuit transmission when Trojan is dormant and
activated. (b) Difference in Type-II Trojan-infested circuit transmission when Trojan is dormant
and activated

260 Y. Jin et al.

All the attacker needs to do is listen to the wireless channel to observe these two
different amplitude or frequency levels, which correspond to a stolen key bit of ‘1’
and a stolen key bit of ‘0’, respectively, after the Trojan is activated. Once these two
levels are known, listening to 56 consecutive transmission blocks reveals a rotated
version of the 56 bits of the encryption key. Using this information, the attacker
needs at most 56 attempts (i.e. all possible rotations of the extracted 56 bits) to
decrypt the transmitted ciphertext.

4.3 Experimental Results

In order to assess the effectiveness of the proposed post-deployment trust evalua-
tion method, measurements are collected from multiple instances of the wireless
cryptographic IC described. These measurements are then processed in silicon
through an on-chip classifier implemented on the reconfigurable neural network
experimentation platform.

4.3.1 Dataset Generation

Using Spice-level Monte-Carlo simulation with ˙7.5 % process variations on all
circuit parameters, 1K chip instances of the Trojan-free circuit are generated.
Similarly, 1K chip instances of the Type-I Trojan-infested circuit and 1K chip
instances of the Type-II Trojan-infested circuit are also generated. For each of the
Trojan-free chip instances, the transmission power when a logic ‘1’ is transmitted
is measured. In addition, the measurements of the two current sensors are collected
when a pre-selected 64-bit block (i.e. alternating 0s and 1s) is transmitted. The same
measurements are also collected for the 1K Type-I Trojan-infested chips and 1K
Type-II Trojan-infested chips, with the Trojan first dormant and then activated.

4.3.2 Observations

The following observations are made before further analysis of the collected dataset
is performed:

• The transmission power profile of the Trojan-free chip-instances is indistin-
guishable from the transmission power profile of the Type-I Trojan-infested
and Type-II Trojan infested chip instances with the Trojan dormant. This is
demonstrated in Figs. 12a–c, where the transmission power is depicted for the
chip instances of each of these three populations, enclosed within the ˙3�

boundary of the Trojan-free chip population. As may be observed, given any one
of these transmission waveforms, it is impossible to definitively place it to one
of the three populations. Even more interestingly, the transmission power profile

Hardware Trojan Detection in Analog/RF Integrated Circuits 261

Fig. 12 3� transmission power envelope of Trojan-free chip instances enclosing the various chip
populations in the dataset. (a) Trojan-free chip instances. (b) Type-I Trojan-infested chip instances
(Trojan Dormant). (c) Type-II Trojan-infested chip instances (Trojan Dormant) (d) Type-I
Trojan-infested chip instances (Trojan Activated). (e) Type-I Trojan-infested chip instances (Trojan
Activated)

of the Type-I Trojan-infested and Type-II Trojan infested chip instances with
the Trojan active is also indistinguishable from the aforementioned populations,
as shown in Figs. 12d–e. This is consistent with the results reported in [21]
and affirms that the hardware Trojans do not violate the circuit specifications.
In other words, a transmission of a Trojan-infested circuit with the Trojan
activated appears to be perfectly legitimate and within the margins allowed
for process variations and operational conditions fluctuation, hence the Trojans
evade detection.

• The current sensor measurements of the Trojan-free chip instances are indistin-
guishable from the current sensor measurements of the Type-I Trojan-infested
and Type-II Trojan infested chip instances with the Trojan dormant. This
is demonstrated in Fig. 13 which depicts the three chip populations on the

262 Y. Jin et al.

0.21

0.0205

0.02

0.0195

0.019

0.0185

0.018

Genuine chips

Type I Trojan infested (dormant)

Type II Trojan infested (dormant)

0.017 0.0175 0.018

Measurement of 1st current sensor

0.0185 0.019 0.0195

M
ea

su
re

m
en

t o
f 2

nd
 c

ur
re

nt
 s

en
so

r

Fig. 13 Current sensor measurements with Trojans dormant

two-dimensional space of the current measurements. Evidently, the three popula-
tions fall upon each other, attesting to the inadequacy of pre-deployment methods
in detecting dormant Trojans.

• The current sensor measurements of the Trojan-infested chip instances with the
Trojan activated are distinguishable from the current sensor measurements of the
Trojan-infested chip instances with the Trojan dormant. This is demonstrated in
Figs. 14 and 15 for each of the two Trojan types. As may be observed, while
each current sensor measurement by itself is insufficient to separate the Trojan-
active and Trojan-dormant populations, their combination provides adequate
information to do so. Therefore, it is possible that a trained on-chip classifier
will be able to pick up the difference in the current sensor measurements when
the Trojan is activated post-deployment and, thereby, alert of untrusted circuit
operation, as aimed by the proposed methodology.

4.3.3 On-Chip Classifier Construction and Training

The reconfigurable neural network experimentation platform chip [28] described
in Sect. 4.2 provides classifiers involving a range of neurons and various different
topologies. In order to train an on-chip classifier to distinguish trusted from
untrusted functionality, the testers should only rely on information from Trojan-
free chips (or Trojan infested chips with the Trojan dormant, if Trojan-free chips
are unavailable). This is important because, in a realistic scenario, the testers do
not have advance knowledge of the various different types of Trojans and their
potential impact, which will only appear after deployment of the chip. Therefore,

Hardware Trojan Detection in Analog/RF Integrated Circuits 263

0.21

0.0205

0.02

0.0195

0.019

0.0185

0.018

0.0175

0.017

0.0165

Genuine chips

Type I Trojan chips (dormant)

Type I Trojan chips (activated)

0.0170.01650.0160.0155 0.0175 0.018

Measurement of 1st current sensor

0.0185 0.019 0.0195

M
ea

su
re

m
en

t o
f 2

nd
 c

ur
re

nt
 s

en
so

r

Fig. 14 Current sensor measurements for Type-I Trojan-infested chips

0.21

0.0205

0.02

0.0195

0.019

0.0185

0.018

0.0175

0.017

0.0165

Genuine chips

Type I Trojan chips (dormant)

Type II Trojan chips (activated)

0.0170.01650.0160.015 0.01550.0145 0.0175 0.018

Measurement of 1st current sensor

0.0185 0.019 0.0195

M
ea

su
re

m
en

t o
f 2

nd
 c

ur
re

nt
 s

en
so

r

Fig. 15 Current sensor measurements for Type-II Trojan-infested chips

in the experiments only the data (i.e. the two current sensor measurements) from the
1K Trojan-free chip instances to train the classifier is used. In other words, it is a
1-class classification problem, where the objective is to train a classifier to enclose
the region of acceptable (trusted) functionality without any data of unacceptable
(untrusted) functionality. To this end, the 1-class classification training algorithm
described in [37] is employed. As can be observed in Fig. 16, the boundary enclosing
the trusted behavior is an ellipsoid, which can be approximated through a fairly

264 Y. Jin et al.

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

Genuine chips

Ideal NN-boundary

Software-NN-boundary

Hardware-NN-Boundary

Fig. 16 The trained boundary learned through software NN and hardware NN for Trojan-free
chips

simple two-layer neural network topology involving 4 neurons. The boundary
shown in Fig. 16 is the actual boundary learned by the trained on-chip neural
network. As a point of reference, the boundary learned by the software version of the
selected neural network is also showed. Evidently, the boundary learned in hardware
is essentially identical to the one learned in software.

4.3.4 On-Chip Trust Evaluating Effectiveness

After training, the on-chip classifier with the data from Trojan-free chip instances
is assessed for its effectiveness in correctly classifying the two types of Trojan-
infested chip populations. In order to obtain a global picture, the trained classifier
is presented with the data from both when the Trojan is dormant and when
the Trojan is activated. The former will allow the testers to evaluate the false
positive rate (i.e. incorrectly rejecting a chip when the Trojan is dormant) and the
false negative rate (i.e. incorrectly accepting a chip when the Trojan is active).
Figure 17 depicts the learned boundary, along with the footprints of the Type-I
Trojan-infested chip instances with the Trojan dormant and active. Similarly, Fig. 18
depicts the learned boundary, along with the footprints of the Type-II Trojan-
infested chip instances with the Trojan dormant and active. As may be observed,
the trained classifier performs extremely well and almost perfectly encapsulates the
chip populations when the Trojan is dormant, while almost perfectly excluding the
chip populations when the Trojan is activated. Tables 1 and 2 report the confusion
matrices for the Type-I and Type-II Trojan-infested chip populations, respectively.
For comparison, the effectiveness of the software version of the classifier is also
reported, demonstrating that the error due to the hardware implementation is
minimal.

Hardware Trojan Detection in Analog/RF Integrated Circuits 265

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

Type I Trojan (Dormant)

Type I Trojan (Activated)

Software-NN-boundary

Hardware-NN-Boundary

Fig. 17 Ability of boundary learned through software and hardware NN to correctly classify
dormant and activated Type-I Trojan-infested chips

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

Type I Trojan (Dormant)

Type II Trojan (Activated)

Software-NN-boundary

Hardware-NN-Boundary

Fig. 18 Ability of boundary learned through software and hardware NN to correctly classify
dormant and activated Type-II Trojan-infested chips

While not zero, the false positive and false negative rates are very low, indicating
that the proposed on-chip classifier-based methodology has the potential of provid-
ing an effective post-deployment trust evaluation capability. Further research is still
required towards achieving zero misclassification rate to ensure trustworthiness of
deployed circuits.

266 Y. Jin et al.

Table 1 Type I Trojan classification

Classified by hardware Classified by software
Dormant Activated Dormant Activated

Actual Dormant 99.9 % 0.1 % 100 % 0 %
Activated 2.8 % 97.2 % 1.3 % 98.7 %

Table 2 Type II Trojan classification

Classified by hardware Classified by software
Dormant Activated Dormant Activated

Actual Dormant 99.8 % 0.2 % 100 % 0 %
Activated 0 % 100 % 0 % 100 %

5 Conclusion

The threat of hardware Trojans has fueled recent research in evaluating trustwor-
thiness of fabricated ICs, both in the digital and in the analog/RF domains. In
this chapter, current hardware Trojan detection methods in the analog/RF domain
and, more specifically, in wireless cryptographic ICs was introduced. Using a
Trojan-free and two Trojan-infested versions of a DES encryption core and a UWB
transmitter, we demonstrated (i) the simplicity of a hardware Trojan attack and the
ease with which it can leak sensitive information such as the encryption key, (ii)
the inability of existing manufacturing test and hardware Trojan detection methods
developed for digital circuit to detect such hardware Trojans in the analog/RF
domain, and (iii) the power of side-channel fingerprinting in detecting such Trojans
using statistical analysis of the transmission power waveforms and trained classifiers
to distinguish between hardware Trojan-free an hardware Trojan-infested ICs.
Furthermore, the problem of dormant hardware Trojans which are inactive during
pre-deployment test and are only activated after deployment was discussed, along
with the new challenges that it presents. Accordingly, a post-deployment trust
evaluation architecture was introduced, wherein on-chip resources including sensors
and a classifier are added to the IC, in order to support hardware Trojan detection in
the field of operation. While these solutions provide an excellent initial step towards
thwarting hardware Trojans in wireless cryptographic circuits, there remain plenty
of challenges and opportunities for further research towards developing an arsenal
of hardware Trojan prevention and detection methods for analog/RF ICs.

References

1. http://www.mosis.com/products/fab/vendors/tsmc/tsmc013-cl
2. http://www.opencores.org/projects.cgi/web/des/overview
3. Abdallah, L., Stratigopoulos, H.G., Kelma, C., Mir, S.: Sensors for built-in alternate rf test.

In: IEEE 15th European Test Symposium (ETS) 2010, pp. 49–54 (2010)

http://www.mosis.com/products/fab/vendors/tsmc/tsmc013-cl
http://www.opencores.org/projects.cgi/web/des/overview

Hardware Trojan Detection in Analog/RF Integrated Circuits 267

4. Adee, S.: The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)
5. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC

fingerprinting. In: IEEE Symposium on Security and Privacy, pp. 296–310 (2007)
6. Banga, M., Chandrasekar, M., Fang, L., Hsiao, M.S.: Guided test generation for isolation

and detection of embedded Trojans in ICs. In: Proceedings of the 18th ACM Great Lakes
symposium on VLSI, pp. 363–366 (2008)

7. Banga, M., Hsiao, M.: A novel sustained vector technique for the detection of hardware
Trojans. In: Proceedings of the 22nd International Conference on VLSI Design, pp. 327–332
(2009)

8. Banga, M., Hsiao, M.: VITAMIN: Voltage inversion technique to asertain malicious insertion
in ICs. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 104–
107 (2009)

9. Bloom, G., Narahari, B., Simha, R., Zambreno, J.: Providing secure execution environments
with a last line of defense against Trojan circuit attacks. Comput. Secur. 28(7), 660–669 (2009)

10. Bloom, G., Simha, R., Narahari, B.: OS support for detecting Trojan circuit attacks. In: IEEE
International Workshop on Hardware-Oriented Security and Trust, pp. 100–103 (2009)

11. Candore, A., Kocabas, O., Koushanfar, F.: Robust stable radiometric fingerprinting for
frequency reconfigurable devices. In: IEEE International Workshop on Hardware-Oriented
Security and Trust, pp. 43–49 (2009)

12. Chakraborty, R., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: a statistical approach
for hardware Trojan detection. In: Cryptographic hardware and embedded systems. Lecture
Notes in Computer Science, vol. 5747, pp. 396–410 (2009)

13. Cimino, M., Lapuyade, H., De Matos, M., Taris, T., Deval, Y., Begueret, J.: A robust 130nm-
cmos built-in current sensor dedicated to rf applications. In: Eleventh IEEE European Test
Symposium 2006, ETS ’06, pp. 151–158 (2006)

14. Drzevitzky, S., Kastens, U., Platzner, M.: Proof-carrying hardware: Towards runtime verifi-
cation of reconfigurable modules. In: International Conference on Reconfigurable Computing
and FPGAs, pp. 189–194 (2009)

15. Drzevitzky, S., Platzner, M.: Achieving hardware security for reconfigurable systems on chip
by a proof-carrying code approach. In: Proceedings of the 6th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip, pp. 1–8 (2011)

16. Hicks, M., Finnicum, M., King, S.T., Martin, M.M.K., Smith, J.M.: Overcoming an untrusted
computing base: Detecting and removing malicious hardware automatically. In: Proceedings
of IEEE Symposium on Security and Privacy, pp. 159–172 (2010)

17. Jha, N., Gupta, S.: Testing of Digital Systems. Cambridge University Press, Cambridge (2003)
18. Jin, Y., Kupp, N., Makris, M.: DFTT: Design for Trojan test. In: IEEE International Conference

on Electronics Circuits and Systems, pp. 1175–1178 (2010)
19. Jin, Y., Kupp, N., Makris, Y.: Experiences in hardware Trojan design and implementation. In:

IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 50–57 (2009)
20. Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: IEEE Interna-

tional Workshop on Hardware-Oriented Security and Trust, pp. 51–57 (2008)
21. Jin, Y., Makris, Y.: Hardware Trojans in wireless cryptographic ICs. IEEE Des. Test Comput.

27, 26–35 (2010)
22. Jin, Y., Makris, Y.: Proof carrying-based information flow tracking for data secrecy protection

and hardware trust. In: IEEE 30th VLSI Test Symposium (VTS), pp. 252–257 (2012)
23. Jin, Y., Maliuk, D., Makris, Y.: Post-deployment trust evaluation in wireless cryptographic ICs.

In: Design, Automation Test in Europe Conference (DATE), pp. 965–970 (2012)
24. Jin, Y., Yang, B., Makris, Y.: Cycle-accurate information assurance by proof-carrying based

signal sensitivity tracing. In: IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 99–106 (2013)

25. Lin, L., Burleson, W., Paar, C.: MOLES: Malicious off-chip leakage enabled by side-channels.
In: Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD ’09,
pp. 117–122. ACM, New York (2009)

268 Y. Jin et al.

26. Lin, L., Kasper, M., Guneysu, T., Paar, C., Burleson, W.: Trojan side-channels: lightweight
hardware Trojans through side-channel engineering. In: Cryptographic Hardware and Embed-
ded Systems, LNCS, vol. 5747, pp. 382–395. Springer, Berlin (2009)

27. Love, E., Jin, Y., Makris, Y.: Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25–40 (2012)

28. Maliuk, D., Makris, Y.: A dual-mode weight storage analog neural network platform for
on-chip applications. In: IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 2889–2892 (2012)

29. Maliuk, D., Stratigopoulos, H., Huang, H., Makris, Y.: Analog neural network design for RF
built-in self-test. In: Proceedings of the IEEE International Test Conference (ITC), pp. 23.2.1–
23.2.10 (2010)

30. Moshtagh, N.: Minimum volume enclosing ellipsoid. In: GRASP Laboratory, University of
Pennsylvania. http://www.seas.upenn.edu/~nima/papers/Mim_vol_ellipse.pdf(2005)

31. Nelson, M., Nahapetian, A., Koushanfar, F., Potkonjak, M.: SVD-based ghost circuitry
detection. In: Information hiding. Lecture Notes in Computer Science, vol. 5806, pp. 221–234
(2009)

32. Potkonjak, M., Nahapetian, A., Nelson, M., Massey, T.: Hardware Trojan horse detection
using gate-level characterization. In: Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pp. 688–693 (2009)

33. Rad, R., Plusquellic, J., Tehranipoor, M.: Sensitivity analysis to hardware Trojans using power
supply transient signals. In: IEEE International Workshop on Hardware-Oriented Security and
Trust, pp. 3–7 (2008)

34. Rad, R.M., Wang, X., Tehranipoor, M., Plusquellic, J.: Power supply signal calibration tech-
niques for improving detection resolution to hardware Trojans. In: IEEE/ACM International
Conference on Computer-Aided Design, pp. 632–639 (2008)

35. Salmani, H., Tehranipoor, M., Plusquellic, J.: New design strategy for improving hardware
Trojan detection and reducing Trojan activation time. In: IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 66–73 (2009)

36. Sinanoglu, O., Karimi, N., Rajendran, J., Karri, R., Jin, Y., Huang, K., Makris, Y.: Reconciling
the IC test and security dichotomy. In: Proceedings of the 18th IEEE European Test Symposium
(ETS), pp. 1–6 (2013)

37. Skabar, A.: Single-class classifier learning using neural networks: an application to the
prediction of mineral deposits. In: The 2nd International Conference on Machine Learning
and Cybernetics, pp. 2127–2132 (2003)

38. Stratigopoulos, H.G., Makris, Y.: Error moderation in low-cost machine-learning-based ana-
log/RF testing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(2), 339–351 (2008)

39. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: Identification of stealthy malicious
logic using boolean functional analysis. In: Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pp. 697–708 (2013)

40. Wolff, F., Papachristou, C., Bhunia, S., Chakraborty, R.S.: Towards Trojan-free trusted ICs:
Problem analysis and detection scheme. In: IEEE Design Automation and Test in Europe,
pp. 1362–1365 (2008)

41. Yuan, T., Zheng, Y., Ang, C., Li, L.: A fully integrated CMOS transmitter for ultra-wideband
applications. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 39–42 (2007)

http://www.seas.upenn.edu/~nima/papers/Mim_vol_ellipse.pdf (2005)

Obfuscation-Based Secure SoC Design
for Protection Against Piracy
and Trojan Attacks

Rajat Subhra Chakraborty, Yu Zheng, and Swarup Bhunia

Abstract System-on-Chip (SoC) designs rely heavily on reusable and pre-verified
hardware intellectual property (IP) cores. Recent trends of IP piracy and reverse-
engineering, and malicious circuit modifications (“hardware Trojans”) in remote
fabrication facilities, are major concerns. In this chapter, we propose a comprehen-
sive secure SoC design flow based on the principle of design obfuscation that can
provide effective protection against IP piracy as well as hardware Trojan attacks.
We present the overall approach and illustrate the obfuscation process with an
example. We provide a brief survey of related work on hardware obfuscation and
then present two variations of obfuscation, which differ in the level of protection
and the complexity of implementation. The first approach is based on extraction
and modification of the state transition from the gate-level synthesized design, such
that normal operation is possible only on the successful application of a correct
initialization sequence. Optionally, an obfuscated register transfer level (RTL)
design can be generated by de-compilation of the obfuscated netlist. In the second
approach, a register transfer level IP is obfuscated by manipulating its control and
data flow graphs. The proposed approaches are scalable, and can be integrated in the
SoC design and manufacturing flow to benefit all parties associated with the design
flow, while minimally affecting the end-user experience.

1 Introduction

Reuse-based SoC design using hardware IP cores has become a pervasive practice in
the industry. These IP cores usually come in the following three forms: synthesizable
Register Transfer Level (RTL) descriptions in Hardware Description Languages

R.S. Chakraborty (�)
Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, West Bengal 721302, India
e-mail: rschakraborty@cse.iitkgp.ernet.in

Y. Zheng • S. Bhunia
Department of Electrical Engineering and Computer Science, Case Western Reserve University,
Cleveland, OH 44106, USA
e-mail: yxz402@case.edu; skb21@case.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_8

269

mailto:rschakraborty@cse.iitkgp.ernet.in
mailto:yxz402@case.edu
mailto:skb21@case.edu

270 R.S. Chakraborty et al.

(HDLs) (“Soft IP”); gate-level designs directly implementable in hardware (“Firm
IP”); and GDS-II design database (“Hard IP”). The approach of designing complex
systems by integrating tested, verified and reusable modules reduces the SoC design
time and cost dramatically [8].

Unfortunately, recent trends in IP-piracy and reverse-engineering efforts to
produce counterfeit ICs have raised serious concerns in the IC design community
[8, 15, 28, 29, 33]. IP piracy can take diverse forms, as illustrated by the following
scenarios:

• A chip design house buys the IP core from the IP vendor, and makes an illegal
copy or “clone” of the IP. The IC design house then uses the IP without paying the
required royalty, or sells it to another IC design house (after minor modifications)
claiming the IP to be its own design [28].

• An untrusted fabrication house makes an illegal copy of the GDS-II database
supplied by a chip design house, and then manufactures and sells counterfeit
copies of the IC under a different brand name [9].

• A company performs post-silicon reverse-engineering on an IC to manufacture
its illegal clone [38].

These scenarios demonstrate that all parties involved in the IC design flow are
vulnerable to different forms of IP infringement which can result in loss of revenue
and market share. Obfuscation is a technique that transforms an application or a
design into one that is functionally equivalent to the original but is significantly more
difficult to reverse engineer. Software obfuscation to prevent reverse-engineering
has been studied widely in recent years [17, 18, 22, 23, 32, 42]; however, the
techniques of software obfuscation are not directly applicable to HDL because
the obfuscated HDL can result in potentially unacceptable design overhead when
synthesized.

Although design modifications to prevent the illegal manufacturing of ICs by
fabrication houses have been proposed [38] before, such techniques are not useful
in preventing the theft of soft IPs. Furthermore, they do not provide protection
against possible IP piracy from the SoC design house. In this chapter, we present
two low-overhead techniques each of which can serve as the basis for a secure
SoC design methodology through design obfuscation and authentication performed
on the RTL design description. We follow a key-based obfuscation approach,
where normal functionality is enabled only upon application of a specific input
initialization key sequence. Majority of the commercial hardware IPs come in the
RTL (“soft”) format which offers better portability by allowing design houses to
map the circuit to a preferred platform in a particular manufacturing process [16].
Recently, some authors have re-phrased the concept of functional obfuscation as
logic encryption [35]. The motivation behind this is the possibility of confusing the
concepts of hardware obfuscation with the way the term “obfuscation” is used in
the software context. In software obfuscation, the functionality of the obfuscated
program is preserved, although its form is modified. However, this is not the case
in the hardware obfuscation case. However, in this chapter, we retain the “hardware
obfuscation” terminology, to retain continuity with our previous work.

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 271

We have previously proposed design obfuscation for gate-level IPs [9]. The main
contributions of the work presented in that paper are: (a) finding the optimal mod-
ification locations in a gate-level netlist by structural analysis, and, (b) designing a
gate-level modification circuit to optimally modify the netlist. However, the work
did not perform analysis of the actual functionality of the circuit in terms of its
data and control flow patterns. While direct structural analysis and the structural
modification proposed in [9] is suitable for gate-level IPs, the proposed obfuscation
approach for gate-level IPs cannot be used for RTL IPs for the following reasons:
(a) RTL IPs does not directly provide high-level structural information; and (b) any
obfuscation performed on RTL IP should maintain its portability. Since a majority
of the hardware IPs are actually delivered in RTL format, there is a need to develop
low-overhead protection measures for them against piracy. In this chapter, we
propose a anti-piracy approach for RTL IPs based on effective key-based hardware
obfuscation. The basic idea is to judiciously obfuscate the control and data flow of
an RTL IP in a way that prevents its normal mode operation without application of
an enabling key at its primary input. To the best of our knowledge, this is the first
work that provides RTL hardware IP protection through key-based obfuscation. In
particular, we make the following contributions in this work:

• We provide two RTL IP obfuscation solutions, which differ in level of protection
and computation complexity: 1) the first technique, referred to as the “STG mod-
ification approach”, converts a RTL description to gate level; obfuscates the gate
level netlist; and then de-compiles back to RTL; 2) the second technique, referred
to as the “CDFG modification approach”, avoids the forward compilation step
and applies obfuscation in the register transfer level by modifying its control and
data flow constructs, which is facilitated through generation of a CDFG of the
RTL design. The first approach can provide higher level of obfuscation but is
computationally more expensive than the second one.

• We derive appropriate metrics to quantify the obfuscation level for both the
approaches. We compare the two approaches both qualitatively and quanti-
tatively. We show that an important advantage of the proposed obfuscation
approach is that the level of protection can be improved with minimal additional
hardware overhead by increasing the length of the initialization key sequence. We
show that this is unlike conventional encryption algorithms e.g. the Advanced
Encryption Standard (AES) whose hardware implementations usually incur
much larger overhead for increasing key length.

• Finally, along with obfuscation, we show that the proposed approaches can be
extended to embed a hard-to-remove “digital watermark” in the IP that can help
to authenticate the IP in case it is illegally stolen. The authentication capability
provides enhanced security while incurring little additional hardware overhead.
Also, we show that by utilizing the automatic propagation of the security features
to lower levels of design abstraction, we can provide protection against hardware
Trojan insertion in fabrication facilities [13], following the principles outlined in
our previous research [10].

272 R.S. Chakraborty et al.

The rest of the chapter is organized as follows. In Sect. 2, we present related work
and the motivation behind this work. In Sect. 3, we describe the two IP obfuscation
schemes, and their relative merits and demerits. In Sect. 4, we present theoretical
analysis of the proposed obfuscation schemes to derive metrics for the level of
obfuscation. In Sect. 5 we present automated design flows, and simulation results
for several open-source IP cores. In Sect. 6, we describe a technique to decrease
the overhead by utilizing the normally unused states of the circuit. We conclude in
Sect. 7.

2 Related Work

Hardware IP protection has been investigated earlier in diverse contexts. Previous
work on this topic can be broadly classified into two main categories: (1) Obfusca-
tion based protection, and (2) Authentication based protection.

Hardware Obfuscation In obfuscation based IP protection, the IP vendor usually
affects the human readability of the HDL code [40], or relies on cryptographic
techniques to encrypt the source code [31]. In [40], the code is re-formatted by
changing the internal net names and removing the comments, so that the circuit
description is no longer intelligible to the human reader. RTL obfuscation for
VHDL descriptions has been explored in [7], where the authors use rudimentary
transformations of the code such as variable name changes, inlining of code, loop
unrolling, statement order changing, etc. to make the code difficult to understand.
However, usually the IP interface and port names cannot be modified or obfuscated
to comply with the specifications. As the above two techniques do not modify the
functionality of the IP core, they cannot prevent an IP from being stolen by an
adversary and used as a “black-box” circuit module. In [31], the HDL source code
is encrypted and the IP vendor provides the key to de-crypt the source code only
to its customers using a particular secure design platform. A similar approach has
been proposed in [41], where an infrastructure for IP evaluation and delivery for
FPGA applications has been proposed based on Java applets. However, the above
techniques force the use of a particular design platform, a situation that might be
unacceptable to many SoC designers who seek the flexibility of multiple tools from
diverse vendors in the design flow. Also, none of the above techniques prevent
possible reverse-engineering effort at later stages of the design and manufacturing
flow (to produce IC clones or insert hardware Trojan), and thus does not benefit
the other associated parties (e.g. the SoC designers and the system designers). One
important point to note is that a given hardware obfuscation technique should not
affect any change in the standard interface of a hardware IP module. In other words,
obfuscation of a hardware IP module should have minimum impact on the workflow
of an IC designer.

Hardware Watermarking To protect the rights of the IP vendor through authentica-
tion, the approaches proposed are directed towards embedding a well-hidden Digital

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 273

Watermark in the design [8, 15, 28, 29, 33] to authenticate the design at a later
stage. Since this digital watermark (or signature) is extremely difficult to discover
and remove from the IP, it is easy to prove an illegal use of such a component
in litigation. The signature is typically in the form of an input–output response
pair hosted in the memory or combinational parts of the circuit [8, 33], but secure
hashing to insert multiple small watermarks in the design has also been proposed
[29]. Another noted approach is constraint-based watermarking [28], where the
watermarks are design features which result from constraints applied to optimization
and constraint-satisfaction problems during design. The authentication-based IP
protection schemes are efficient and sophisticated techniques to prove the ownership
of an IP which has a digital signature embedded in it. However, their main
shortcoming is they are passive, in the sense that they cannot prevent the stolen
IP from being used in the first place. They can only help to prove the ownership in
case of litigation.

Software Obfuscation It has been shown that it is possible to recover software
source-code by “de-compilation” of binary or byte-code. One of the most popular
approaches of preventing such reverse-engineering is to obfuscate the control-flow
of a program to produce “spaghetti code” that is difficult to de-compile from
the binary form to a higher level program [22, 23, 30, 42]. Another technique
is the so-called “code morphing” [32], where a section of the compiled code is
substituted with an entirely new block that expects the same machine state when it
begins execution of the previous section, and leaves with the same machine state
after execution as the original. Other software obfuscation approaches include self-
modifying code [26] (code that generates other code at run-time), self-decryption
of partially encrypted code at run-time [3, 39], and code redundancy and voting to
produce “tamper-tolerant software” (conceptually similar to hardware redundancy
for fault tolerance) [25]. A general shortcoming of these approaches is that they
do not scale well in terms of memory footprint and performance as the size of the
program (or the part of the program to be protected) increases [14]. Hence, RTL
obfuscation approaches motivated along similar lines are also likely to result in
inefficient circuit implementations of the obfuscated RTL with unacceptable design
overhead. Also, the value of such techniques is the matter of debate because it
has been theoretically proven that software obfuscation in terms of obfuscating
the “black-box functionality” does not exist [4]. In contrast, we modify both the
structure and the functionality of the circuit description under question; hence the
above result of impossibility of obfuscation is not applicable in our case.

3 Obfuscation Methodology

In this section, we describe the two proposed obfuscation-based RTL IP protection
schemes. Figure 1 compares the major steps of the proposed schemes. We also
describe the enhanced design flow that we have developed by integrating them with
the traditional SoC design and manufacturing flow [9]. First, we describe the STG

274 R.S. Chakraborty et al.

Fig. 1 Comparison of the two proposed schemes

modification and de-compilation based IP protection technique [11], followed by the
technique based on CDFG modification [12]. We end the section with a comparison
of the relative advantages and disadvantages of the two approaches.

3.1 STG Modification Approach

3.1.1 Methodology

This technique has three main steps:

• Logic synthesis of the RTL to an unmapped, unoptimized gate-level netlist,
composed of generic Boolean gates.

• Functional obfuscation of the netlist by structural modifications following the
principle outlined in [9], and,

• Subsequent de-compilation of the obfuscated netlist back to an obfuscated
version of the original RTL.

The advantage of modifying the functionality at the gate-level is the relative in-
comprehensibility of such a circuit description compared to a RTL description. The
goal is to modify the STG of the circuit, such that on power-up, the circuit operates
in an obfuscated mode when its functionality is incorrect. Figure 2a shows the
modification of the STG of a circuit, and Fig. 2b shows the structural modifications
that achieve this. Only on the correct application of an initialization key sequence
(P0! P1! P2 in Fig. 2a), the circuit goes to the normal mode when the original
functionality is restored; otherwise, the circuit retains its incorrect functionality.
The obfuscation is achieved following a scheme described in [9], whereby selected
internal nodes in the circuit are modified using special modification cells. A mode
control Finite State Machine (FSM) is integrated in the circuit which generates
certain control signals to enable or disable the modification cells. The modification
cells change the Boolean functionality of a node from f to fmod in the following way:

fmod D f �enC f �g�en (1)

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 275

Fig. 2 The functional obfuscation scheme by state transition graph (STG) modification [9, 11]:
(a) modified state transition function; and (b) change in internal node structure using modification
cells. Here, on power-on, the circuit is in the obfuscated mode, and on application of a correct
initialization key sequence of P0! P1! P2, the circuit goes to the normal mode

where the signal en is a mode-control signal derived from the inserted mode control
FSM and g is another Boolean logic function called the “Modification Kernel
Function” (MKF) that helps to increase the dissimilarity between f and fmod [9].

The selection of the nodes and the design of the modification cell ensures
maximum perturbation of a design for a given total number of modifications, as
determined by the hardware overhead constraint. After the netlist modifications have
been performed, the entire circuit is re-synthesized to “flatten” the modifications
to a single netlist. This process allows logic sharing between the original circuit,
the inserted FSM and the modification cells, thus helping to make the circuit
modifications unidentifiable. This is indicated in Fig. 2b by the intermingled original
state elements and the state elements of the inserted FSM. The modified gate-
level design is then de-compiled to regenerate the RTL of the code, without
maintaining high level HDL constructs. Instead, the modified netlist is traversed
recursively to reconstruct the Boolean equations for the primary output nodes and
the state element inputs, expressed in terms of the primary inputs, the state-element
outputs and a few selected high fanout internal nodes. The redundant internal nodes
are then removed. This “partial flattening” effect hides all information about the
modifications performed in the netlist. Optionally, the obfuscation tool maintains
a list of expected instances of library datapath elements, and whenever these are
encountered in the netlist, their outputs are related through proper RTL constructs
to their inputs. This ensures regeneration of the same datapath cells on resynthesis
of the RTL.

As an example, consider the simple Verilog module “simple” which performs
addition or subtraction of two bits depending on the value of a free running one-bit
counter, as shown in Fig. 3a. Figure 3b–d shows the transformation of the design
through the proposed obfuscation process. The de-compiled RTL in Fig. 3d shows
that the modification cell and the extra state transition logic are effectively hidden
and isolation of the correct initialization sequence can be difficult even for such a
small design. Major semantic effect of obfuscation is the change and replacement of
high level RTL constructs (such as if: : :else, for, while, case, assign etc.)
in the original RTL, and replacement of internal nodes and registers. Furthermore,
internal register, net and instance names are changed to arbitrary identifiers to make
the code less comprehensible.

276 R.S. Chakraborty et al.

Fig. 3 Example of a Verilog RTL description and its obfuscated version [11]: (a) original RTL;
(b) technology independent, unoptimized gate-level netlist obtained through RTL compilation;
(c) obfuscated gate-level netlist; (d) de-compiled obfuscated RTL

After the gate-level modification, the modified netlist is de-compiled to produce
a description of the circuit, which although being technically a RTL and functionally
equivalent to the modified gate-level netlist, is extremely difficult to comprehend to
a human reader. In addition, the modifications made to the original circuit remain
well-hidden. A forward annotation file indicates relevant high-level HDL constructs
and macros to be preserved through this transformation. These are maintained

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 277

Fig. 4 Design transformation
steps in course of the
proposed RTL obfuscation
process

during the RTL compilation and de-compilation steps. From the unmapped gate-
level netlist, we look for specific generic gates, that can be de-compiled to
an equivalent RTL construct, e.g. multiplexor can be mapped to an equivalent
if: : :then: : :else construct or a case construct. The datapath modules or
macros are transformed into appropriate operands.

For example, an equation n1 D s1�d1C s2�d2C s3�d3 can be mapped to a case
construct. Figure 4 shows the design transformation steps during the obfuscation
process. We present an analysis of the security of this scheme in Sect. 4.

3.1.2 Embedding Authentication Features

To prevent against attacks from parties with knowledge of the initialization sequence
in the design flow, the designer can optionally embed a signature within the
design which acts as a digital watermark. In [8], the authors classify hardware
watermarking schemes for authentication into four classes (in order of increasing
security level): (a) physical-level watermarks; (b) synthesis-level watermarks; (c)
high-level watermarks, and (d) multiple abstraction level watermarks. Although
multiple level watermarks are the most robust, their implementation is complex and
very costly [8]. Hence, in this work we go for the next option which is embedding
of authentication features at high-level (HDL-level) design description.

This can be done by another modification of the state transition function, as
shown in Fig. 5 [9]. Here, starting from the state SO

0 on power-on, on the application
of an input sequence PA

1 ! PA
2 ! PA

3 , the design goes through a state transition
sequence SA

0 ! SA
1 ! SA

2 . Corresponding to each of these states, a particular bit
pattern is made to appear at the primary output. The state encoding for the states SA

0

278 R.S. Chakraborty et al.

Fig. 5 Embedding authentication features in the circuit [9]

through SA
2 corresponds to unused states in the normal mode of operation, thereby

guaranteeing that the above state transitions are not part of the original design, and
is known only to the IP vendor. Hence, these states and the corresponding output act
as the embedded digital watermark. Even if the adversary arranges to by-pass the
initialization stage by structural modifications, because of the prevalent widespread
use of full-scan designs, the inserted FSM flip-flops can always be controlled to
have the desired bit-patterns corresponding to the states in the authentication FSM,
thus revealing the watermark. As shown by the analysis in [9], this watermarking
scheme is highly secure, with the probability of discovering the watermark in a
circuit with 30 existing flip-flops and 3 flip-flops being used to encode the states in
the authenticating mode is about � 10�47. If all the reachable states can be derived
by analyzing the RTL, then encoding the authentication FSM is easy; otherwise,
unused states are to be derived from the gate-level netlist. Finding unreachable states
for a large circuit with many state elements is computationally challenging; however
it has been shown in [9] that by considering small groups of state elements in a given
circuit and performing sequential justification using commercially available EDA
tools, it is feasible to derive unreachable states for large circuits in reasonable time.

3.2 CDFG Modification Approach

3.2.1 Methodology

Similar to the STG modification based scheme, the main idea of this approach
is to efficiently integrate a mode control FSM into the design through judicious
modification of control and data flow structures derived from the RTL, such that

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 279

Fig. 6 Transformation of a block of RTL code into CDFG [12]

the design works in two different modes obfuscated and normal. The operations
of the mode control FSM is the same as that depicted in Fig. 2, with the circuit
starting in the obfuscated mode and then moving to the normal mode only after
the successful application of a pre-defined input sequence. The mode control FSM
is integrated inside the CDFG derived from the RTL in a way that makes it
extremely hard to isolate from the original IP. The FSM is realized in the RTL by
expanding a judiciously selected set of registers, which we refer to as host registers
and modifying their assignment conditions and values. Once the FSM has been
integrated, both control and data flow statements are conditioned based on the mode
control signals derived from this FSM. The proposed obfuscation scheme comprises
of four major steps described below.

Parsing the RTL and Building CDFG In this step, the given RTL is parsed and
each concurrent block of RTL code is transformed into a CDFG data structure.
Figure 6 shows the transformation of an “always @()” block of a Verilog code
to its corresponding CDFG. Next, small CDFGs are merged (whenever possible)
to build larger combined CDFGs. For example, all CDFGs corresponding to non-
blocking assignments to clocked registers can be combined together without any
change of the functionality. This procedure creates larger CDFGs with substantially
more number of nodes than the constituent CDFGs, which helps to obfuscate the
hosted mode-control FSM better.

“Hosting” the Mode Control FSM Instead of having a stand-alone mode control
FSM as in [9], the state elements of the mode-control FSM can be hosted in
existing registers in the design to increase the level of obfuscation. This way, the
FSM becomes an integral part of the design, instead of controlling the circuit as
a structurally isolated element. An example is shown in Fig. 7, where the 8-bit
register reg1, referred as the “host register”, has been expanded to 12-bits to host
the mode-control FSM in its left 4-bits. When these 4-bits are set at values 40h1 or
40h2, the circuit is in its normal mode, while the circuit is in its obfuscated mode

280 R.S. Chakraborty et al.

Fig. 7 Example of hosting the registers of the mode-control FSM [12]

when they are at 40ha or 40hb. Note that extra RTL statements have been added to
make the circuit functionally equivalent in the normal mode. The obfuscation level is
improved by distributing the mode-control FSM state elements in a non-contiguous
manner inside one or more registers, if possible.

Modifying CDFG Branches After the FSM has been hosted in a set of selected
host registers, several CDFG nodes are modified using the control signals generated
from this FSM. The nodes with large fanout cones are preferentially selected
for modification, since this ensures maximum change in functional behavior at
minimal design overhead. Three example modifications of the CDFGs and the
corresponding RTL statements are shown in Fig. 8. The registers reg1, reg2 and reg3
are the host registers. Three “case()”, “if()” and “assign” statements in Fig. 8a are
modified by the mode-control signals cond1, cond2 and cond3, respectively. These
signals evaluate to logic-1 only in the obfuscation mode because the conditions
reg1D 200habcde, reg2=120haaa and reg3D 160hb1ac correspond to states which
are only reachable in the obfuscation mode. Figure 8b shows the modified CDFGs
and the corresponding CDFG statements.

Besides changing the control-flow of the circuit, functionality is also modified
by introducing additional datapath components. However, such changes are done
in a manner that ensures sharing of the additional resources during synthesis.
This is important since datapath components usually incur large hardware over-
head. An example is shown in Fig. 9, where the signal out originally computes
.aC b/ � .a � b/. However, after modification of the RTL, it computes .a C b/

in the obfuscated mode, allowing the adder to be shared in the two modes, and the
outputs of the multiplier and the adder to be multiplexed.

Generating Obfuscated RTL After the modifications have been preformed on the
CDFG, the obfuscated RTL is generated from the modified CDFGs, by traversing
each of them in a depth-first manner. Figure 10a shows an example RTL code

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 281

Fig. 8 Examples of control-flow obfuscation: (a) original RTL, CDFG; (b) obfuscated RTL,
CDFG [12]

Fig. 9 Example of datapath
obfuscation allowing resource
sharing [12]

and Fig. 10b shows its corresponding obfuscated versions. A 4-bit FSM has been
hosted in registers int_reg1 and int_reg2. The conditions int_reg1[13:12]D 20b00,
int_reg1[13:12]D 20b01, int_reg2[13:12]D 20b00 and int_reg1[13:12]D 20b10

occur only in the obfuscated mode. The initialization sequence is in1D 120h654

! in2D 120h222 ! in1D 120h333 ! in2D 120hacc ! in1D 120h9ab. Note
the presence of dummy state transitions and out-of-order state transition RTL
statements. The outputs res1 and res2 have been modified by two different modi-
fication signals. Instead of allowing the inputs to appear directly in the sensitivity
list of the “if()” statements, it is possible to derive internal signals (similar to
the ones shown in Fig. 8b) with complex Boolean expressions which are used to
perform the modifications. The output res1 has been modified following the datapath
modification approach using resource sharing.

282 R.S. Chakraborty et al.

Fig. 10 Example of RTL obfuscation by CDFG modification: (a) original RTL; (b) obfuscated
RTL [12]

3.2.2 Embedding Authentication Features

Authentication features might be embedded in the RTL by the same principle
as described in Sect. 3.1.2. RTL statements describing the state transitions of the
authentication FSM can be integrated with the existing RTL in the same way the
statements corresponding to the obfuscation FSM is hidden. In case the unused
states are difficult to derive from the original RTL, it can be synthesized to a gate-
level netlist and the same technique based on sequential justification as described in
Sect. 3.1.2 might be applied.

3.3 Comparison Between the Two Approaches

Table 1 compares the relative advantages and disadvantages of the two proposed
techniques. Although the de-compilation based approach potentially can hide the
modifications better than the direct RTL modification based approach (as shown by
our theoretical analysis of their obfuscation levels in Sect. 4 and by our simulation
results), it also loses major RTL constructs and creates a description of the circuit
which might result in an unoptimized implementation on re-synthesis. Hence, we
provide the IP designer with a choice where either of the techniques might be chosen
based on the designer’s priority. For example, if the IP is going to released to a
untrustworthy SoC design houses with a prior record of practicing IP piracy, the

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 283

Table 1 Comparison of de-compilation based and CDFG based obfuscation approaches

Approach Advantages Disadvantages

STG modification (a) Higher level of obfuscation (a) Loses major RTL constructs

(b) Greater hardware and
computational overheads

CDFG modification (a) Works directly on RTL
descriptions

(a) Hiding modifications is more
challenging

(b) Preserves RTL constructs

STG modification system might be used. On the other hand if the IP is to released
to a comparatively more trustable SoC design house where the design specifications
are very aggressive, the CDFG modification based approach might be used.

3.4 Obfuscation-Based Secure SoC Design Flow

The proposed obfuscation based techniques can be utilized to develop a piracy-proof
SoC design and manufacturing flow, as described in [9]. The SoC designer receives
different obfuscated IPs from the same or different vendors, and then integrates
them on the SoC. A special integrated controller module receives patterns from
the primary inputs and controls the systematic initialization of the IP modules in
the SoC. The system designer integrates several such SoCs on a board, and uses
initialization sequences from a secure, tamper-proof microcontroller [20] enhanced
with a secure EEPROM [19] to enable all the SoCs. This prevents unauthorized
reading/observations of the initialization sequence keys during the initialization
phase. Typically, the latency incurred in the initialization can be easily masked in
the latency inherent in a ”bootup” or a similar process. Thus, the end user remains
oblivious to the embedded security measures in the SoCs. By supporting obfuscated
IP cores in the design flow, all the parties (the IP vendor, the SoC designer and the
system designer) are benefitted by being protected from piracy.

4 Measure of Obfuscation Level

In general, it is a difficult problem to detect through analysis the complete
functionality of a given circuit, irrespective of the form (RTL/gate-level) it has been
described in. A related problem of detecting whether a given circuit has a hardware
Trojan inserted in it has been shown capable of evading most traditional testing and
verification techniques, since such analysis is equivalent to the Halting Problem,
according to Rice’s Theorem [24, 37]. Next, we present a quantitative analysis on
the level of difficulty for breaking the proposed obfuscation-based protection.

284 R.S. Chakraborty et al.

We try to analyze the security of the proposed schemes against three different
attacks: (a) attacks based on manual effort of visually trying to identify the
modifications in the RTL; (b) attacks through simulation-based functional analysis,
and (c) attacks through structural analysis and reverse-engineering. In all the cases,
we assume a challenging situation for the IP owner where the adversary has access
to an unobfuscated version of the original RTL.

4.1 Manual Attacks by Visual Inspection

To estimate the obfuscation level against a manual mode of attack, we propose a
new metric called semantic obfuscation metric (Msem), which depicts how many of
the original high level RTL constructs have been replaced by new ones. We define
Msem by:

Msem D abs.Nc;orig C Nw;orig C Ne;obfus � Nraw;obfus/

max.fNc;orig C Nw;orig C Ne;obfusg; Nraw;obfus/
(2)

where Nc;orig is the total number of high-level RTL constructs in the original RTL;
Ne;obfus is the number of extra state elements included in the obfuscated design;
Nw;orig is the total number of internal wire declarations in the original RTL and
Nraw;obfus is the number of reg, assign and wire declarations in the obfuscated
RTL. Note that 0�Msem�1, with a higher value implying better obfuscation.
Msem represents a measure of semantic difference between the obfuscated and
the unobfuscated versions of the RTL, by taking into consideration the constructs
introduced in the obfuscated code and the constructs removed from the original
code. This is the weakest attack, with the adversary having very little chance
of figuring out the obfuscation scheme for large RTLs which have undergone a
complete change of the “look-and-feel”.

4.2 Simulation-Based Attacks

For a logic simulation based approach where random input vectors are sequentially
applied to take the circuit to the normal mode, the probability of discovering the

initialization key sequence is 1
2M�N for a circuit with M primary input ports and a

length-N initialization key sequence. For example, in a circuit with M D 64 primary
inputs and a length N D 4 initialization key sequence, this probability is � 10�77.
In practice, most IPs will have larger number of primary inputs and the length N
can be made larger, resulting in smaller detection probability. Thus, we can claim
that it is extremely challenging to break the scheme using simulation based reverse-
engineering.

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 285

4.3 Structural Analysis Based Attack

For the structural analysis based attack, the two proposed obfuscation schemes
present different challenges to an adversary. For the STG modification scheme, the
adversary has to analyze the circuit in terms of the Boolean logic structure of the
internal nodes, while in the CDFG modification based scheme, the adversary has
to analyze the high-level RTL structure of the code. This is the strongest attack,
and to be acceptable, the proposed obfuscation approaches must provide adequate
protection against this attack. We describe the complexity of the two analyses below.

4.3.1 Structural Analysis Against STG Modification

Analysis based on structure of the internal nodes is most conveniently done by
the construction and manipulation of Reduced Ordered Binary Decision Diagrams
(ROBDD) [6] corresponding to the internal circuit nodes. To detect the node
modification scheme, the adversary’s algorithm must be able to solve several sub-
problems in succession. We estimate the computational complexity of each of these
sub-problems below to derive an estimate of the computational complexity of the
entire problem.

Let the total number of primary outputs of the circuit be P, the total number of
state elements in the original circuit be S and the total number of state elements
inserted in the modified circuit be T. Then, it is sufficient to analyze the structures
of these .P C S C T/ nodes between the original and the modified designs, out of
which .PC S/ are also present in the original design. Suppose, the adversary finds
F nodes out of these .P C S C T/ nodes to have contrasting logic structures by a
ROBDD-based analysis. This dissimilarity is due to two reasons: (a) direct effect of
the node modification scheme described in Sect. 3 on some of these nodes, and (b)
indirect effect of these modified nodes on other nodes. Either way, from Eq. (1), the
affected nodes would have their values inverted only if simultaneously en D 1 and
g D 1. To isolate the inserted FSM, the adversary must detect this node modification
scheme for each dissimilar node.

Finding the Correct ROBDD Representation of the Modified Nodes To detect
the effect of a particular en signal originating from the inserted state machine on a
modified node, the adversary’s algorithm should be able to represent the ROBDD
of the modified node with the en signal as the root node, as shown in Fig. 11.
Improving the variable ordering to minimize the size of a BDD is an NP-complete
problem [5]. Hence, it follows that the computational complexity to find a particular
representation of the ROBDD of the modified function which has en as the root
node is also NP-complete with respect to the number of variables in the Boolean
logic expression for the node. Hence, deciphering the modification scheme for a
modified node with fanin cone size fi has a computational complexity O.2fi/.

286 R.S. Chakraborty et al.

Fig. 11 Binary decision
diagram (BDD) of a modified
node

Graph Isomorphism Comparison After the ROBDD of the modified node has
been expressed in the form shown in Fig. 11, each sub-graph below the node en
should be compared with the ROBDD graph for f for isomorphism. Proving graph
isomorphism is a problem with computational complexity between P and NP, with
the best-known heuristic having complexity 2O.

p
n log n/ for a graph with n vertices

[27]. Hence, establishing the equivalence for f through graph isomorphism has a
computational complexity 2O.

p
fi log fi/ for a node with fanin cone size fi. Let fi be

the average fanin cone size of the failing verification nodes. Hence, overall this sub-

problem has a computational complexity O.2fi � 2O.
p

fi log fi//, which must be solved
for each of the F dissimilar nodes.

Compare Point Matching So far we have assumed that the adversary would
be able to associate the dissimilar nodes in the obfuscated design with the
corresponding nodes in the original design and would then try to decipher the
obfuscation scheme. This is expected to be relatively easy for the primary output
ports of the IP because the IP vendor must maintain a standard interface even for
the obfuscated version of the IP, and hence the adversary can take advantage of
this name matching. However, the names of the state elements can be changed
arbitrarily by the IP vendor and hence, finding the corresponding state elements
to compare is a functional compare point matching problem [2], which is extremely
computationally challenging because of the requirement to search through .SN/Š

combinations, where SN is the number of dissimilar state elements. Hence, we
propose the following metric to quantify the level of protection of the proposed STG
modification based obfuscation scheme in providing protection against structural
analysis:

Mstr D F � 2fi � 2
p

fi log fi C .SN/Š (3)

Observations from the Metric From the above metric, the following can be
observed which act as a guide to the IP designer to design a well-obfuscated
hardware IP following the STG modification based scheme:

1. Those nodes which have larger fanin cones should be preferably modified
because this would increase fi in Eq. (3), thus increasing Mstr.

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 287

2. An inserted FSM with larger number of flip-flops increases its obfuscation level
because SN increases. Also, as shown previously in this section, there is an
exponential dependance of the probability of breaking the scheme by simulation
based reverse-engineering on the length of the initialization key sequence. Hence,
it is evident that FSM design and insertion to attain high levels of obfuscation
incur greater design overhead. Thus the IP designer must trade-off between
design overhead and the level of security achievable through obfuscation.

3. Modification of a larger number of nodes increases F, which in turn increases the
level of obfuscation.

4.3.2 Structural Analysis Against CDFG Modification Based Approach

The structural analysis of the CDFG modification based obfuscation scheme is
estimated by the degree of difficulty faced by an adversary in discovering the
hosted mode-control FSM and the modification signals. Consider a case where
n mode-control FSM state-transition statements have been hosted in a RTL with
N blocking/non-blocking assignment statements. However, the adversary does not
know a-priori how many registers host the mode-control FSM. Then, the adversary
must correctly figure out the hosted FSM state transition statements from one

out of
nX

kD1

N

k

!
possibilities. Again, each of these choices for a given value of

k has kŠ associated ways to arrange the state transitions (so that the initialization
key sequence is applied in the correct order). Hence, the adversary must correctly

identify one out of
nX

kD1

N

k

!
� kŠ

!
possibilities. The other feature that needs to be

deciphered to break the scheme are the mode control signals. Let M be the total
number of blocking, non-blocking and dataflow assignments in the RTL, and let
m be the size of the modification signal pool. Then, the adversary must correctly

choose m signals out of M, which is one out of

M

m

!
choices. Combining these two

security features, we propose the following metric to estimate the complexity of the
structural analysis problem for the CDFG modification based design:

Mstr D
nX

kD1

N

k

!
� kŠ

!
�

M

m

!
(4)

A higher value of Mstr indicates a greater obfuscation efficiency. As an example,
consider a RTL with values N D 30, M D 100, in which a FSM with parameter
n D 3 is hosted, and let m D 20. Then, Mobf � 1:35�1025. In other words, the
probability of the hacker reverse-engineering the complete scheme is about 1 in
1025. In practice, the values of n and M would be much higher in most cases, making
Mstr larger and thus tougher for the hacker to reverse-engineer the obfuscation
scheme.

288 R.S. Chakraborty et al.

4.4 Quantitative Comparison

The value of Mstr is expected to be better in the STG modification based approach,
because of the exponential dependance of this metric on the average fanin cone size
of the modified nodes [Eq. (3)], compared to the combinatorial dependance on the
number of RTL statements for the CDFG modification based approach [Eq. (4)].
The value of Msem is again expected to be superior in the STG modification based
approach because the changes in the appearance of the RTL is more drastic in this
case, whereas the CDFG modification based approach makes comparatively lesser
changes to the high-level RTL constructs, as it is based on intelligent utilization of
mostly existing RTL constructs. However, the run-time of the obfuscation algorithm
is expected to be higher in the STG modification based approach, because it
performs recursive backtracking to construct the logic equations of the internal
nodes. All these predicted trends were supported by our simulation results presented
in Sect. 5.

5 Results

In this section we first describe the automated design flows for the two proposed
obfuscation techniques, followed by the simulation results of application of the
techniques to open-source IPs and benchmark circuits.

5.1 Design Flow Automation

Figure 12 shows the entire STG modification based RTL obfuscation design flow.
The design flow starts with the compilation of RTL description of the IP core
to a unmapped, unoptimized gate-level Verilog netlist. The maximum allowable
area overhead is entered as a design constraint, from which the maximum number
of modifiable nodes (Nmax) is estimated. Additionally, the tool has a list of user-
mentioned constructs and macros in a forward annotation file. These elements are
preserved during the RTL compilation and de-compilation processes by treating
them as don’t touch modules. The Nmax nodes to be modified are chosen based on
the algorithm described in [9], which ensures maximum perturbation of the design.
The modified netlist is re-synthesized and the resultant netlist is then de-compiled to
a RTL code. The names of the internal nodes and instances are changed by a simple
string substitution scheme.

Figure 13 shows the steps of the proposed CDFG modification based design
obfuscation methodology. The input to the flow is the original RTL, the desired
obfuscation level represented by the obfuscation metrics (Msem and Mstr), and the
maximum allowable area overhead. It starts with the design of the mode-control

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 289

Fig. 12 Flow diagram for the proposed STG modification based RTL obfuscation
methodology [11]

FSM based on the target Msem and Mstr. The output of this step are the specifications
of the FSM which include its state transition graph, the state encoding, the pool
of modification signals, and the initialization key sequence. Random state encoding
and a random initialization key sequence are generated to increase the security. Note
that in the STG modification based approach, we do not start with explicit target
values of the metrics, because these two parameters cannot be predicted a-priori in
this technique. However, the target area overhead is an indirect estimate of these
parameters, and the de-compilation process automatically ensures a high value of
Msem, while an optimal node modification algorithm ensures a high value of Mstr.

5.2 Simulation Results

5.2.1 Simulation Setup

The above design flows were developed using C and the TCL scripting language and
was directly integrated in the Synopsys Design Compiler environment. Synthesis

290 R.S. Chakraborty et al.

Fig. 13 Flow diagram for the proposed CDFG modification based RTL obfuscation
methodology [12]

was performed using Synopsys Design Compiler, using a LEDA 250 nm standard-
cell library. All formal equivalence checking was performed using Synopsys For-
mality. All work was performed on a Linux workstation with 2 GB of main memory
and a dual-core 1.5 GHz processor.

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 291

A FSM with a length-4 initialization key sequence was designed for mode-
control in both the schemes. In the STG modification based scheme, we chose high
fan-in internal nodes as MKFs, as described in [9]. The STG modification scheme
was applied on three open-source Verilog IP cores, viz. “Data Encryption Standard”
(DES), “Advanced Encryption Standard” (AES) and “Discrete Cosine Transform”
(FDCT) collected from [34]. The CDFG modification based obfuscation technique
was applied for two Verilog IP cores—a single precision IEEE-754 compliant
floating-point unit (“FPU”), and a 12-bit RISC CPU (“TCPU”), both obtained from
[34]. For the STG modification based approach, each gate-level modified design
was verified using Formality with the corresponding de-compiled RTL to verify the
correctness of the procedure.

5.2.2 Obfuscation Efficiency and Overheads

Table 2 shows the structural and semantic obfuscation metrics and design overheads
for 10 % target area overhead constraint for each module. Note that the value of
the Mstr metric is in a logarithmic scale. The effectiveness of the schemes was very
high; most of the modified designs considered reported close to 100 % equivalence
checking failure (for the primary outputs and outputs of state elements) when
compared with their unmodified counterparts, thus having a very high value of
the computational complexity metric Mstr. However, the value of Mstr is orders of
magnitude higher for the STG modification based approach, as predicted in Sect. 4.
The value of Msem was very close to the ideal value of 1.0 for the STG modification
based approach; however, it is closer to 0.75 on average for the CDFG modification
based approach. Again, this is an expected trend as predicted in Sect. 4.

For all the individual circuit modules, the observed area overhead was less than
10 %, the power and delay overheads were within acceptable limits (target delay
overhead was set at 0 % for the CDFG modification based scheme). The maximum
run-times of the obfuscation programs for the individual modules was 29 s for
the CDFG modification based approach, and 37 s for the STG modification based
approach. Table 3 shows the overall design overheads after re-synthesis of the multi-
module IP cores from the obfuscated RTL, which are again all within acceptable
limits.

5.3 Effect of Key Length

The security offered by the two proposed approaches increases with the increase in
the key length. We investigate the following aspects of the proposed techniques (a)
design and performance overheads to support multiple-length keys, and (b) effect of
increasing key lengths on design and performance overheads. We compare the pro-
posed techniques with hardware implementations of the AES encryption/decryption
algorithm.

292 R.S. Chakraborty et al.

T
ab

le
2

Fu
nc

ti
on

al
an

d
se

m
an

ti
c

ob
fu

sc
at

io
n

ef
fic

ie
nc

y
an

d
ov

er
he

ad
s

fo
r

IP
co

re
s

fo
r

10
%

ar
ea

ov
er

he
ad

ta
rg

et
(C

D
FG

m
od

ifi
ca

ti
on

ba
se

d
re

su
lt

s
at

is
o-

de
la

y)

ST
G

m
od

ifi
ca

ti
on

ba
se

d
ap

pr
oa

ch

O
bf

us
ca

ti
on

ef
fic

ie
nc

y
D

es
ig

n
ov

er
he

ad
IP

co
re

s
Su

b-
m

od
ul

es
N

od
es

m
od

ifi
ed

(%
)

Fa
il

in
g

ve
ri

f.
no

de
s

(%
)

M
se

m
lo

g 1
0

M
st

r
A

re
a

(%
)

D
el

ay
(%

)
Po

w
er

(%
)

R
un

ti
m

e
(s

)

D
E

S
ke

y_
se

l
0.

93
1
0
0
:0

0
0.

98
51

.5
6

6.
65

1.
39

4.
85

32
cr

p
0.

83
1
0
0
:0

0
0.

91
55

.8
7

5.
54

0.
66

5.
43

37

A
E

S
K

ey
ex

pa
nd

0.
95

9
0
:3

0
0.

92
43

.1
7

5.
29

0.
00

4.
56

28
Sb

ox
0.

95
1
0
0
:0

0
0.

96
45

.7
8

4.
95

2.
42

5.
31

29
In

ve
rs

e
Sb

ox
0.

97
8
5
:2

5
0.

94
46

.2
2

5.
51

2.
60

5.
62

35

FD
C

T
D

C
T

0.
90

8
8
:9

5
0.

96
60

.1
9

4.
64

1.
00

5.
06

27
Z

IG
Z

A
G

0.
95

1
0
0
:0

0
0.

92
52

.1
2

5.
74

0.
88

5.
67

30

C
D

FG
m

od
ifi

ca
ti

on
ba

se
d

ap
pr

oa
ch

O
bf

us
ca

ti
on

ef
fic

ie
nc

y
D

es
ig

n
ov

er
he

ad
IP

co
re

s
Su

b-
m

od
ul

es
#

of
m

od
ifi

ca
ti

on
s

Fa
il

in
g

ve
ri

f.
no

de
s

(%
)

M
se

m
lo

g 1
0

M
st

r
A

re
a

(%
)

D
el

ay
(%

)
Po

w
er

(%
)

R
un

ti
m

e
(s

)

FP
U

po
st

_n
or

m
20

9
8
:1

6
0.

69
36

.8
1

8.
22

0.
00

9.
14

27
pr

e_
no

rm
20

9
4
:1

6
0.

70
32

.9
1

9.
39

0.
00

9.
79

25
pr

e_
no

rm
_f

m
ul

20
9
0
:0

0
0.

77
23

.1
3

8.
30

0.
00

9.
69

20
ex

ce
pt

10
1
0
0
:0

0
0.

73
23

.1
6

7.
56

0.
00

8.
73

14

T
C

PU
co

nt
ro

l_
w

op
c

20
9
2
:7

9
0.

75
42

.1
2

8.
74

0.
00

8.
97

29
m

em
10

9
7
:6

2
0.

71
19

.6
9

8.
29

0.
00

9.
76

15
al

u
10

9
7
:6

2
0.

81
15

.0
1

9.
59

0.
00

9.
88

15

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 293

Fig. 14 Scheme with initialization key sequences of varying length (3, 4 or 5)

Table 3 Overall design
overheads for obfuscated IP
cores (STG modification
based results at iso-delay)

IP core Area (%) Delay (%) Power (%)

STG modification based approach

DES 6.09 1.10 5.05

AES 5.25 2.00 5.45

FDCT 5.22 0.95 5.55

Average 5.52 1.35 5.35

CDFG modification based approach

FPU 8.48 9.36 0.00

TCPU 8.54 9.73 0.00

Average 8.51 9.55 0.00

Table 4 Area overhead for
multi-length key support

Scheme Area overhead (%)

STG modification 2.26 (av.)

CDFG modification 3.16 (av.)

Ref. [21] (AES 48-cycle core) 17.88

Ref. [21] (AES 96-cycle core) 24.59

5.3.1 Support for Multiple-Length Keys

Most commercially available IP cores for AES can be operated in three different
modes with three different input key lengths—128 bit, 192 bit and 256 bit [1, 21].
This flexibility allows the SoC designers to trade-off between the available security
(which increases with increase of key length) and performance (which decreases
with increase of key length). Usually, a “key_length” input control signal determines
the input key length. The same feature can be implemented in our proposed
techniques, where the length of the initialization key sequence can be varied.
Figure 14 shows such a system which supports initialization key sequences of length
3, 4 or 5. However, in case of commercially available AES cores, this flexibility
comes at a price—the multi-key IP core versions usually have greater area than the
baseline designs supporting only a single key length [21].

Table 4 shows the area overhead effect of supporting multiple keys lengths
on the proposed schemes for the IP modules presented in Table 3, compared to

294 R.S. Chakraborty et al.

Table 5 Comparison of throughput with increasing key length

Decrease in throughput (%)
Scheme 1.5X key length 2X key length

STG modification 2.70 (av.) 3.96 (av.)

CDFG modification 3.07 (av.) 4.72 (av.)

Ref. [21] (AES 48-cycle core) 14.10 24.83

Ref. [21] (AES 96-cycle core) 14.04 24.56

two versions of a commercially available AES core [21]. The key lengths for our
proposed schemes were 4 (baseline), 6 (1.5X) and 8 (2X), while those for the AES
implementations were 128 (baseline), 192 (1.5X) and 256 (2X). From this table,
it is clearly evident that the proposed approaches are more scalable than the AES
hardware implementations with respect to the increase in key length.

5.3.2 Effect of Increasing Key Length

For symmetric key cryptographic algorithms such as AES, in general the security
increases with the length of the key, as the complexity of breaking the encryption
is an exponential function of the key length. However, an increasing key length
usually results in lower throughput. Similar trends are expected for the two proposed
obfuscation schemes with respect to the length of the initialization key sequence.
We investigated the scalability of the two proposed techniques with respect to
the increase in the length of the initialization key sequence for the proposed
approaches vis-a-vis that for commercially available hardware implementations of
AES with respect to the key length. Again, for the proposed obfuscation schemes
we considered a key length of 4 to the baseline case, while a 128 bit key for AES
was considered baseline. Table 5 shows the decrease in throughput with the increase
of key length. Once again, the simulation results showed that the proposed schemes
had superior scalability of throughput than the hardware implementations of AES
when the key length is increased.

6 Discussions

In this section, we describe a technique to decrease the hardware overhead by
while utilizing the normally “unused states” (states which never arise during normal
operations). We also show how the proposed obfuscation techniques can provide
protection against hardware Trojans.

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 295

Table 6 Area and power overhead for ISCAS-89 benchmarks utilizing unused
states (at iso-delay)

Circuit # of gates % Ar. Ov.1 % Ar. Ov.2 %Pow. Ov.1 %Pow. Ov.2

s1196 370 18:44 24:84 2:45 6:00

s1238 373 16:31 27:15 4:63 10:71

s1423 505 6:11 6:08 2:015 3:07

s1488 431 12:81 16:93 7:24 12:76

s5378 1102 14:45 18:69 8:76 25:78

s9234 5807 6:53 9:04 9:28 13:15

s13207 2488 7:93 8:17 7:54 16:28

s15850 2983 7:67 8:99 5:63 6:15

s35932 7966 1:34 1:955 6:93 9:49

s38417 8822 0:09 0:56 1:81 5:27

s38584 9019 0:85 3:03 5:10 10:77

6.1 Using Unreachable States During Initialization

Referring to Fig. 5, the states in the initialization FSM and the obfuscation FSM are
encoded by using states which are unreachable during normal operations. By doing
this, one can ensure that the circuit would not operate in the correct mode prior to
its initialization. This can help to eliminate the need to introduce a separate FSM
to control the mode of operation, potentially decreasing the hardware overhead. We
present simulation results for a method of obfuscation based on finding unused states
for a suite of gate-level sequential circuits, and two open-source RTL IP cores.

Table 6 shows the area and power overhead (at iso-delay) in ISCAS-89 circuits
following the de-compilation based methodology where normally unused states
of the circuit are used to encode the states in the obfuscated mode. The unused
states were found using sequential justification by Synopsys Tetramax. The results
were taken without integrating any mode-control FSM, considering 5–6 randomly
chosen state-elements in the original circuit, having an initialization state space
with 4 states, and (for result set “1”) an authentication state space consisting
of 4 states. State encoding with 6 state elements were required in cases where
sufficient unused states are not available from 5 state elements. Table 7 shows the
corresponding figures for two open-source IP cores.

6.2 Obfuscation for Protection Against Hardware

Hardware Trojans are malicious modifications in integrated circuits that are difficult
to detect by traditional post-manufacturing testing, but can cause devastating
malfunctions when the IC is deployed in-field [13]. The ICs are most vulnerable
to Trojan insertion by an adversary in potentially untrusted off-shore fabrica-
tion facilities, by the reverse-engineering and modification of the GDS-II layout

296 R.S. Chakraborty et al.

Table 7 Area and power overhead for IP cores utilizing unused states
(at iso-delay)

IP Module % Ar. Ov.1 % Ar. Ov.2 %Pow. Ov.1 %Pow. Ov.2

AES sbox 5:95 7:46 15:19 17:67

inv_sbox 6:99 8:25 8:98 15:27

key_expand 3:93 5:47 13:80 15:93

Overall 4:57 6:07 13:03 16:14

DES key_sel 4:81 8:91 2:66 5:35

crp 4:75 6:77 1:75 4:79

Overall 4:77 7:69 2:03 4:97

database. To evade post-manufacturing testing, the adversary usually ensures that
the inserted Trojan circuit is activated and exhibits its malicious effect under rare
logic conditions at the internal circuit nodes. However, if the circuit functionality
is obfuscated by an initialization key based scheme, then identification of rare
conditions becomes tough, and there is a large probability of an inserted Trojan
either becoming functionally benign or more detectable [10]. Because the security
features based on obfuscation both the proposed approaches propagate to the
GDS-II levels of design abstraction, hence, they can provide protection against
hardware Trojans. Note that the obfuscation methodology works in exactly the
reverse way compared to hardware Trojans—obfuscated circuits provide incorrect
functionality initially, and after the application of a correct key sequence, the actual
functionality. In contrast, a circuit containing a hardware Trojan initially exhibits
normal functionality, but malfunctions when a sequence (or a single) of inputs
causes the hidden hardware Trojan to wake up. A notable work that uses logic
obfuscation at a circuit-architecture-level to secure a processor has been described
in [36].

7 Conclusions

We have presented two variations of RTL hardware IP protection through key-based
obfuscation. The two approaches differ in level of protection, design complexity and
overhead. The scheme includes additional hard-to-detect authentication features at
low design overhead to increase the level of security. The proposed obfuscation
approaches provide active defence against IP infringement at different stages of
SoC design and fabrication flow, thus protecting the interests of multiple associated
parties. The obfuscation steps can be easily automated and integrated in the IP
design flow and it does not affect the test/verification of a SoC design for legal
users. We have shown that they incur low design and computational overhead and
cause minimal impact on end-user experience. The proposed approaches are easily
scalable to large IPs (e.g. processor) and in terms of level of security. Further

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 297

improvement in hardware overhead can be obtained by utilizing normally unused
states of the circuit. The obfuscation based design methodology can also be used to
provide protection against hardware Trojan attacks in untrusted fabrication facilities.
Future work would include extension of the approach to soft IPs at higher level of
abstraction and to achieve protection against hardware Trojan attacks.

References

1. AES (Rijndael) IP Cores. http://www.erst.ch/download/aes_standard_cores.pdf (2011)
2. Anastasakis, D., Damiano, R., Ma, H.K.T., Stanion, T.: A practical and efficient method for

compare-point matching. In: Proceedings of the 39th Annual Design Automation Conference,
DAC’02, pp. 305–310. ACM, New York (2002)

3. Aucsmith, D.: Tamper resistant software: an implementation. In: Proceedings of the First
International Workshop on Information Hiding, pp. 317–333. Springer, London (1996)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On
the (im)possibility of obfuscating programs. In: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’01, pp. 1–18. Springer, London
(2001)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDS is NP-complete. IEEE
Trans. Comput. 45, 993–1002 (1996)

6. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35, 677–691 (1986)

7. Brzozowski, M., Yarmolik, V.N.: Obfuscation as intellectual rights protection in VHDL
language. In: Proceedings of the International Conference on Computer Information Systems
and Industrial Management Applications, pp. 337–340. IEEE Computer Society, Washington
(2007)

8. Castillo, E., Meyer-Baese, U., García, A., Parrilla, L., Lloris, A.: IPP@HDL: efficient
intellectual property protection scheme for IP cores. IEEE Trans. Very Large Scale Integr.
Syst. 15, 578–591 (2007)

9. Chakraborty, R.S., Bhunia, S.: HARPOON: an obfuscation-based SoC design methodology for
hardware protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28, 1493–1502
(2009)

10. Chakraborty, R.S., Bhunia, S.: Security against hardware Trojan through a novel application of
design obfuscation. In: Proceedings of the 2009 International Conference on Computer-Aided
Design, ICCAD ’09, pp. 113–116. ACM, New York (2009)

11. Chakraborty, R.S., Bhunia, S.: Security through obscurity: an approach for protecting register
transfer level hardware IP. In: Proceedings of the 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, HOST ’09, pp. 96–99. IEEE Computer Society,
Washington (2009)

12. Chakraborty, R.S., Bhunia, S.: RTL hardware ip protection using key-based control and data
flow obfuscation. In: Proceedings of the 2010 23rd International Conference on VLSI Design,
VLSID ’10, pp. 405–410. IEEE Computer Society, Washington (2010)

13. Chakraborty, R., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions.
In: Proceedings of the IEEE International High Level Design Validation and Test Workshop,
HLDVT ’09, pp. 166–171 (2009)

14. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Revised Papers from the
ACM CCS-8 Workshop on Security and Privacy in Digital Rights Management, DRM ’01,
pp. 160–175. Springer, London (2002)

http://www.erst.ch/download/aes_standard_cores.pdf

298 R.S. Chakraborty et al.

15. Charbon, E., Torunoglu, I.: Watermarking techniques for electronic circuit design. In: Proceed-
ings of the 1st International Conference on Digital Watermarking, IWDW’02, pp. 147–169.
Springer, Berlin/Heidelberg (2003)

16. Chinese firms favoring soft IP over hard cores. http://www.eetasia.com/ART_8800440032_
480100_NT_ac94df1c.HTM (2011)

17. Collberg, C.S., Thomborson, C.: Watermarking, tamper-proffing, and obfuscation: tools for
software protection. IEEE Trans. Softw. Eng. 28, 735–746 (2002)

18. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy opaque
constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’98, pp. 184–196. ACM, New York (1998)

19. DS2432 1kb protected 1-wire EEPROM with SHA-1 engine. http://www.maxim-ic.com/
datasheet/index.mvp/id/2914 (2012)

20. DS5002FP secure microprocessor chip. http://www.maxim-ic.com/datasheet/index.mvp/id/
2949 (2012)

21. Full datasheet AES-CCM core family for Actel FPGA. http://www.actel.com/ipdocs/
HelionCore_AES-CCM_8bit_Actel_DS.pdf (2011)

22. Hou, T., Chen, H., Tsai, M.: Three control flow obfuscation methods for Java software. IEE
Proc. Softw. 153(2), 80–86 (2006)

23. Huang, Y.L., Ho, F.S., Tsai, H.Y., Kao, H.M.: A control flow obfuscation method to discourage
malicious tampering of software codes. In: Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’06, pp. 362–362. ACM,
New York (2006)

24. Huffmire, T., Irvine, C., Nguyen, T.D., Levin, T., Kastner, R., Sherwood, T.: Handbook of
FPGA Design Security. Springer, Dordrecht (2010)

25. Jakubowski, M.H., Saw, C.W., Venkatesan, R.: Tamper-tolerant software: modeling and
implementation. In: Proceedings of the 4th International Workshop on Security: Advances in
Information and Computer Security, IWSEC ’09, pp. 125–139. Springer, Berlin/Heidelberg
(2009)

26. Joepgen, H., Krauss, S.: Software by means of the protprog method. Elecktronik 42, 52–56
(1993)

27. Johnson, D.S.: The NP-completeness column. ACM Trans. Algoritm. 1, 160–176 (2005)
28. Kahng, A., Lach, J., Mangione-Smith, W., Mantik, S., Markov, I., Potkonjak, M., Tucker, P.,

Wang, H., Wolfe, G.: Constraint-based watermarking techniques for design IP protection. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 20(10), 1236–1252 (2001)

29. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: Robust FPGA intellectual property protection
through multiple small watermarks. In: Proceedings of the 36th Annual ACM/IEEE Design
Automation Conference, DAC ’99, pp. 831–836. ACM, New York (1999)

30. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disassem-
bly. In: Proceedings of the 10th ACM Conference on Computer and Communications Security,
CCS ’03, pp. 290–299. ACM, New York (2003)

31. Methodology for protection and licensing of HDL IP. http://www.us.design-reuse.com/news/?
id=12745&print=yes (2011)

32. Obfuscation by code morphing. http://en.wikipedia.org/wiki/Obfuscated_code#Obfuscation_
by_code_morphing (2011)

33. Oliveira, A.: Techniques for the creation of digital watermarks in sequential circuit designs.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(9), 1101–1117 (2001)

34. OpenCores.: http://www.opencores.org (2011)
35. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Logic encryption: a fault analysis perspective.

In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE’12,
pp. 953–958. ACM, New York (2012)

36. Rajendran, J., Kanuparthi, A., Zahran, M., Addepalli, S., Ormazabal, G., Karri, R.: Securing
processors against insider attacks: a circuit-microarchitecture co-design approach. IEEE Des.
Test Comput. 30(2), 35–44 (2013)

http://www.eetasia.com/ART_8800440032_480100_NT_ac94df1c.HTM
http://www.eetasia.com/ART_8800440032_480100_NT_ac94df1c.HTM
http://www.maxim-ic.com/datasheet/index.mvp/id/2914
http://www.maxim-ic.com/datasheet/index.mvp/id/2914
http://www.maxim-ic.com/datasheet/index.mvp/id/2949
http://www.maxim-ic.com/datasheet/index.mvp/id/2949
http://www.actel.com/ipdocs/HelionCore_AES-CCM_8bit_Actel_DS.pdf
http://www.actel.com/ipdocs/HelionCore_AES-CCM_8bit_Actel_DS.pdf
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://en.wikipedia.org/wiki/Obfuscated_code#Obfuscation_by_code_morphing
http://en.wikipedia.org/wiki/Obfuscated_code#Obfuscation_by_code_morphing
http://www.opencores.org

Obfuscation-Based Secure SoC Design for Protection Against Piracy. . . 299

37. Rice, H.: Classes of recursively enumerable sets and their decision problems. Trans. Am. Math.
Soc. 74, 358–366 (1953)

38. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, DATE’08, pp. 1069–1074.
ACM, New York (2008)

39. Schulman, A.: Examining the Windows AARD detection code. Dr. Dobb’s J. 18(9) (1993)
http://fringe.davesource.com/Fringe/NonZen_Companies/Microsoft/Tactics/1993.09.01.
Locks_Out_DrDOS.html

40. ThicketTM family of source code obfuscators. http://www.semdesigns.com (2011)
41. Wirthlin, M.J., McMurtrey, B.: IP delivery for FPGAs using applets and JHDL. In: Proceedings

of the 39th Annual Design Automation Conference, DAC ’02, pp. 2–7. ACM, New York (2002)
42. Zhuang, X., Zhang, T., Lee, H.H.S., Pande, S.: Hardware assisted control flow obfuscation for

embedded processors. In: Proceedings of the International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems, CASES ’04, pp. 292–302. ACM, New York
(2004)

http://fringe.davesource.com/Fringe/NonZen_Companies/Microsoft/Tactics/1993.09.01.Locks_Out_DrDOS.html
http://fringe.davesource.com/Fringe/NonZen_Companies/Microsoft/Tactics/1993.09.01.Locks_Out_DrDOS.html
http://www.semdesigns.com

Towards Building Trusted Systems:
Vulnerabilities, Threats, and Mitigation
Techniques

Carson Dunbar and Gang Qu

Abstract Current industry design tools and design flow are developed to improve
system performance in terms of speed, size, and power consumption. With security
and trust becoming more important for system design, how much can we trust the
systems built by these tools? In this chapter, we first give motivational examples
to show the potential trust vulnerabilities. Then we focus our investigation on
sequential system design from the perspective of finite state machine (FSM). We
define the notion of trusted FSM both in the most general sense and specifically
when state reachability is used as the trust metric. We give a set of necessary and
sufficient conditions to build trusted systems in both cases. More specifically, we
find that the traditional FSM synthesis procedure will introduce trust vulnerabilities
and cannot guarantee any the logic implementation of the FSM to be trusted.
Indeed, we show that not only there exist simple and effective ways to attack a
sequential system, it is also possible to insert hardware Trojan into the design
without introducing any significant design overhead. We then propose a novel
practical approach to designing trusted circuits from the FSM specification. We
demonstrate both our findings on the security threats and the effectiveness of our
proposed method on the MCNC sequential circuit benchmarks.

1 Introduction

As electronic design automation (EDA) and semiconductors continue to evolve
rapidly, a company will not have all the expertise and capability to do in-house
design and fabricate the system it wants to build. If the system is designed and
fabricated by others, how can the company be convinced that the system is trusted,
that is, the delivered system does exactly what the company wants, no more and no
less. This is known as the trusted integrated circuits (IC) design challenge, particular
for military and civilian systems that require security and access control [1–8].

C. Dunbar • G. Qu (�)
University of Maryland, College Park, MD, USA
e-mail: cdunbar@umd.edu; gangqu@umd.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_9

301

mailto:cdunbar@umd.edu
mailto:gangqu@umd.edu

302 C. Dunbar and G. Qu

Table 1 Truth table of a
3-bit encoder

x y z a b

0 0 1 0 1
0 1 0 1 0
1 0 0 1 1

When the company gives the system’s specification to a design house for
layout and then gives the layout information to a foundry for manufacture, the
company will lose full control of the system’s functionality and specification. An
adversary can simply add additional circuitry, known as a hardware Trojan horse, to
maliciously modify the system. For example, a Trojan horse can: disable or destroy
system components, perform incorrect computation, or leak sensitive information.
Most of the existing work on trusted IC design focuses on hardware Trojan detection
and prevention [9–13].

We explore the vulnerabilities of both combinational and sequential systems
produced by today’s design methodology. More specifically, we consider the
following questions:

1. When a combinational or sequential system is designed and implemented by a
trusted party strictly following the design specification, can we trust it?

2. When an adversary inserts hardware Trojan into the system, can we detect it?
3. What is the design cost to build an ideal trusted IC, if it exists?

We now elaborate on these questions by the following two illustrative examples.
First we consider a 3-input encoder which assigns a 2-bit code to each of the three
different objects. There will be three inputs x, y, and z and outputs a and b. The
behavior is defined in the following truth table (Table 1).

Using conventional logic minimization techniques, the most efficient circuit that
implements this functionality can be expressed as the following logical equations:

a D z0

b D y0

Table 2 shows the full functionality defined by the above logical circuit. From
the top half of the table, we see that the original desired behavior as specified
in Table 1 are met. However, from the bottom half of the table, we see that this
logic implementation does more than what is required. For example, code 11 is
designed to identify input 100, but input 000 will also generate output code 11;
moreover, input 011 or 111 will create an unexpected output code 00. This could
be the vulnerability of the design, which an adversary can take advantage to get any
output pattern that they want by utilizing the additional input patterns.

One quick solution to this problem is to fully specify the behavior of the desired
system. In this example of 3-bit encoder, we can define output 00 as an invalid code
and use it for all the five input combinations that are not specified in Table 1. This

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 303

Table 2 Truth table defined
by the circuita D z0; b D y0

x y z a b

Original desired behavior 0 0 1 0 1

0 1 0 1 0
1 0 0 1 1

Extended unexpected behavior 0 0 0 1 1

– 1 1 0 0
1 0 1 0 1
1 1 0 1 0

leads us to the following circuit implementation:

a D x0yz0 C xy0z0

b D x0y0zC xy0z0

We have now gone from 2 literals to 12, which, even with logic reuse, will result
in a significant increase in hardware overhead and a decrease in the performance of
the circuit. This is the cost to make the system trusted.

Next we consider the 3-state finite state machine (FSM) shown in Fig. 1a; we
follow the standard procedure to implement this sequential system with two flip
flops (FFs) and some logic gates (Fig. 1b). First, from Fig. 1a, we see that when the
system is at state B and input is 0, no next state and output are specified, which are
known as don’t care transitions.

However, in the circuit level implementation when FF1 is 0 and FF2 is 1, which
reflects the current state B, if input x D 0, we can easily verify that FF1 remains
unchanged, but FF2 changes to 0. This means that the system switches to state A. At
the same time, we can see that the output will be 1. This corresponds to the dashed
line from state 01 to state 00 in Fig. 1c. Similarly, state 10 will move to state 00 and
output 0 on input x D 1.

Second, when both flip flops have value 1, the system will be in a state that is not
specified in the original FSM. With input x D 0 and x D 1, the system will output 1
and move to state C and state A, respectively. In other words, the full functionality
of the circuit in Fig. 1b can be described as is shown in Fig. 1c.

The FSM in Fig. 1a is what we want to design, the FSM in Fig. 1c is the system
that the circuit we are given (Fig. 1b) actually implements. Clearly we can see the
difference between these two FSMs. The one in Fig. 1c has one more state and four
more transitions. It is this added state and transitions that creates security and trust
concerns for sequential system design.

In the original FSM (Fig. 1a), when the system leaves state A, it cannot come
back. In other words, we say that there is no access to state A from state B and
state C. However, in the implemented FSM in Fig. 1c, each state has at least one path
to come back to state 00. For instance, from state 01 (which is state B in the original
FSM), when we inject 0 as the input, the system moves back to 00 (or state A).
If state A is a critical state of the system and we want to control its access, FSM in

304 C. Dunbar and G. Qu

a

B

C

A0/1

1/01/1

0/0

b

IN
OUTQ

QSET

CLR

D

Latch 1

Q

QSET

CLR

D

Latch 2
Clock

c

01

10

000/1

0/0

1/1

110/1

0/1

1/0
1/0

1/1

Fig. 1 (a) The original 3-state FSM as the system specification. The label on each edge (such as
0/1 from state A to state B) indicates that the transition occurs on input ‘0’ and the transition results
in an output ‘1’. (b) The logic/circuit implementation of the 3-state FSM shown in a. (c) The 4-
state FSM generated from the circuit shown in b The illustrative example. States A, B, and C in
a correspond to the states 00, 01, and 10, respectively in c. The dashed edges are the transitions
implemented by the circuit in b but not required by the FSM in a

Fig. 1a specifies this requirement, but its logic implementation in Fig. 1b violates
this access control to state A (or state 00) and the design cannot be trusted.

These examples show that there are security and trust vulnerabilities in the
current combinational and sequential system design flow. These vulnerabilities exist
in the high level incomplete system specification and become real threats during
system implementation. In this chapter we will focus on sequential design and
show how an attacker can take advantage of these holes to attack the system. More
specifically, we will consider the following two different attacking scenarios.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 305

• Attacking scenario I: The attacker attempts to attack a system that is already
implemented by exploiting potential trapdoors. The trapdoors in an IC are
additional functionalities that are inadvertently implemented during the design,
implementation, and fabrication process. They are conceptually different from
the hardware Trojans or watermarks which are added intentionally.

• Attacking scenario II: The attacker has access to the system during its design
and implementation process and can maliciously alter the system specification
and/or implementation. This can be considered as adding hardware Trojans as
a watermark. However, because the Trojans are introduced early in the system
specification and will be integrated into the design, the currently available Trojan
detection techniques based on IC abnormality will fail to identify such attacks.

Therefore, it is important to study both attacking scenarios and develop new
countermeasures. In this chapter, we will analyze the cost to detect and prevent
these attacks. Then we will propose a novel practical method that can be seamlessly
integrated into the current sequential system design flow to establish trust in the
design and implementation.

The rest of this chapter is organized as follows: in Sect. 2, we give the necessary
background of finite state machines. In Sect. 3, we discuss the concept of trust in a
finite state machine and its logic implementation. We give necessary and sufficient
conditions to build ideal trusted system and system with more relaxed trust metric.
Section 4 goes over the vulnerabilities of untrusted designs as well as the benchmark
circuits we use in the experimentation. In Sect. 5 we describe two simple attacks
that adversaries can utilize to compromise a design and show how powerful such
simple attacks can be. Section 6 discusses a naïve countermeasure and the overhead
associated with it. Section 7 details our proposed practical approach using flip-
flop modifications and the resulting overhead. In Sect. 8, we give the conclusion
and Sect. 9 consists of a selection of readings of the related work on trusted IC
design, hardware Trojan, and FSM watermarking, which can expand on what we
have discussed here.

2 Background of Finite State Machine

A finite state machine (FSM) is defined as a 6-tuple <I, S, ı, S0, O, �> where:

I is the input alphabet;
S is the set of states;
ı: S� I! S is the next-state function;
S0� S is the set of initial states;
O is the output alphabet;
�: S� I!O is the output function.

An FSM can be conveniently represented as a directed weighted (or labeled)
graph G D .V; E/, where each vertex v 2 V represents a state s 2 S; an edge

306 C. Dunbar and G. Qu

.u; v/ 2E represents the transition from current state u to its next state v, the weight
(or label) on the edge indicates the input–output pair determined by the output
function �. That is, if the edge (u, v) is labeled x/y, then we have ı .u; x/ D v and
� .u; x/ D y (see Fig. 1a, c for an example). Such graph is often referred to as state
transition graph.

An FSM is completely specified if both the next-state function ı and the output
function � are defined on all possible current state and input pairs (u, x). Otherwise,
either ı, � or both will be undefined on some current state and input pairs (u, x).
When ı is undefined, we call this a don’t care transition; when � is undefined, its
output function has a don’t care. The FSM is called incompletely specified if this
happens.

We say that a state v is reachable from state u if and only if there is a directed
path from u to v, that is, there is an input sequence following which the state will
move from u to v. We define the reachable set of state u as

R.u/ D
n
v 2 V

ˇ̌
ˇ v is reachable from u

o

which is the set of all states that the system can reach from u and the starting set of
state u as

S.u/ D
n
v 2 V

ˇ̌
ˇ u is reachable from v

o

which is the set of states from which the system can reach u.
For example, in Fig. 1a, R.A/ D fB; Cg, R.B/ D fCg, R.C/ D fCg, S.A/ D �,

S.B/ D fAg, and S.C/ D fA; Bg, where S.A/ D � because there is no state transition
going to state A.

Two the other major concepts utilized in this chapter are state minimization and
state encoding, both used in the process of FSM synthesis. Both of these terms are
critical in our proposed method to establish trust in FSM implementation.

Two FSMs are equivalent if from the initial state, on any input sequence, they
both create the same output sequence. Finding an equivalent FSM with minimal
number of states is generally referred as state minimization or state reduction
problem. Figure 2 illustrates this concept, where the two FSMs are equivalent.
Intuitively we can see this equivalence from the fact that state B and state D in the
6-state FSM go to the same next state and generate the same output value when they
receive the same input. That means that they are a duplicate of each other and we
can merge them into one state to reduce the number of states in the FSM. Similarly,
once we merge states B and D to one state, we can see that states A and C can also
be merged. This results in the reduced 4-state FSM on the right of Fig. 2.

State minimization is an effective approach in logic synthesis to optimize
sequential circuit design in terms of area and power. It can be solved optimally
in completely specified FSMs and the solution is unique [14]. For incompletely
specified machines, although the problem is NP-hard, there are standard approaches
to solve the state reduction problem [15].

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 307

A

D B

E C

F

0/0

0/0

1/1

1/1

1/1

0/0

0/0

0/0
1/0

1/0

1/0
0/0

A

D

E

F

1/1

1/1 1/0

0/0

0/0

1/0

0/0

0/0

=

Fig. 2 Two equivalent FSMs. In the 6-state FSM, states B and D (A and C) are equivalent and
they are merged to state B (A) as shown in the 4-state FSM

The next phase of FSM synthesis is state assignment or state encoding where
the goal is to assign distinct binary codes to each state of the FSM. Each bit of
the binary code will be implemented by one flip flop and the combinational part
of the circuitry can be designed to generate input signals for each flip flop and
produce the desired output. This will give us a logic implementation of the FSM and
concludes the sequential system design. There have been many techniques to solve
the state encoding problem based on different optimization objectives (such as area,
performance and/or power consumption) and implementation technologies [16].

3 Trusted FSM and Trusted Logic Implementation

Defining metrics for trust is still an open problem. In this section, we will first
define the notion of trust for FSM in the most generic way and then use state
reachability as an example trust metric to further elaborate the definition of trust.
The vulnerabilities, threats, and mitigation methods within the context of FSM
design and synthesis will be discussed in the following sections.

When a sequential system is specified as an FSM, from the definition of FSM,
we can define trust as follows: an FSM is trusted if and only if it makes correct
transition from the current state to the next state and produces correct outputs when
it received input values.

From this definition, it is clear that if an FSM is trusted, all of its equivalent
FSMs will be trusted, which implies that whether an FSM is trusted or not will not
change during the state minimization phase. However, this may change during the
state encoding and combinational logic design phase of the FSM synthesis due to
the nature of the digital circuit design.

308 C. Dunbar and G. Qu

First, digital circuits need to produce deterministic output values based on the
logic of the circuitry. This could introduce additional state transitions to the FSM as
we have seen from the illustrative example in Fig. 1. In the state transition graph, we
can have don’t care conditions where the next state or the output of the transition
or both are not specified. Logic design tools will take advantage of these don’t care
conditions to optimize the design for performance improvement, area reduction, or
power efficiency. But when the system (or the FSM) is implemented in the circuit
level, these don’t cares will disappear. The circuit will generate deterministic next
states and output for each of these don’t care conditions. These deterministic values
are assigned by CAD tools for optimization purpose and they may make the design
untrusted. For example, the next state of a don’t care transition may be assigned to
a state for which access control is required and thus produce an illegal entry to that
state (i.e., creating a trapdoor to access that state).

Another reason that an FSM may become untrusted comes from the state
encoding phase of the design. When the original FSM has n states after state
minimization, it will need a minimum of k D dlog2.n/e bits to encode these states
and some encoding schemes that target other design objectives (such as testability
and power) may use even longer codes. As we have seen in the illustrative example,
when n is not a power of 2, which happens most of the time, those unused codes
will introduce additional states into the system, and all transitions from those extra
states will be treated as don’t care transitions during logic synthesis, introducing
uncertainty about the trust of the design and implementation of the FSM.

By analyzing the logic implementation of a given FSM M, we can build an FSM
M 0 that captures the behavior of the circuit. We define that a logic implementation
is trusted if and only FSM M 0 is trusted, that is, FSMs M and M 0 are equivalent.

Theorem 1 A sequential system will have a trusted logic implementation from the
traditional synthesis flow if and only if

a) the system is completely specified
b) the number of states at the state encoding stage is a power of 2
c) the code used for state encoding is a minimal length code

Proof We first show these three conditions are sufficient. Condition a) indicates
that there are no don’t care transitions; conditions b) and c) guarantee that in the
implementation of the system there will not be any additional states or transitions
other than those specified in condition a). Therefore, the FSM generated from the
logic circuit will be identical (and hence equivalent) to the FSM that specifies
the sequential system at the state encoding stage. From the definition, the logic
implementation will be trusted.

Now we show all the three conditions are necessary. When condition a) fails,
an unspecified don’t care condition may introduce additional functionality in the
logic implementation, making it untrusted. When condition b) or c) fails, the FSM
generated from the logic implementation will have more states then required by the
system and the behavior on these extra states will make the logic implementation
untrusted. �

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 309

An ideal trusted FSM or sequential system can be built if the system satisfies
the three conditions in Theorem 1. However, it is unrealistic to assume that these
conditions, particularly a) and b), will be satisfied. First, given the complexity
of today’s system with hundreds of input pins and thousands of flip flops, it is
impossible to completely specify the system’s behavior of all possible input values.
Second, there are no effective methods to ensure that the number of state, after state
minimization, will be a power of 2. Finally, without any don’t cares (condition a))
and no flexibility in choosing the code length (condition c)), the design will be
tightly constrained and hard to optimize. This implies that the approach of building
trust by eliminating all the don’t cares and limiting state encoding will hurt the
design quality. We will demonstrate this in later sections.

When we restrict our pursuit of trusted FSM from the ideal one to a certain
relaxed trust metric, it is possible to find a practical method to build trusted systems
according to such relaxed trust metric. In the rest of this chapter, we will study the
trust of FSMs using state reachability as the trust metric.

Considering a given FSM, M D .V; E/ (e.g. Fig. 1a), and its logic implemen-
tation (e.g. Fig. 1b), let M0 D .V 0; E0/ be the completely specified FSM generated
from the logic implementation of M (e.g. Fig. 1c). Clearly, as graphs, M will be a
subgraph of M 0. We say that the logic implementation of M is trusted if and only
if for each state v 2 V and its corresponding state v0 2 V 0, v and v 0 have the same
reachable sets R.v/ D R .v0/ and the same starting sets S.v/ D S .v0/.

Intuitively, this means that in M 0, we cannot reach any new states from
v .R.v/ D R .v0// and no new state can reach v either .S.v/ D S .v0//. Apparently,
the logic implementation in Fig. 1b and the corresponding FSM in Fig. 1c cannot
be trusted.

Theorem 2 The following are equivalent definitions for trusted logic implementa-
tion: for any state v 2 V in an FSM M and its corresponding state v0 2 V 0 in the
logic implementation of M,

(1) R.v/ D R .v0/ and S.v/ D S .v0/
(2) R.v/ D R .v0/
(3) S.v/ D S .v0/

Proof We need to show that (1) () (2) () (3). Since (1) is the conjunction
of (2) and (3), it suffices to show that (2) () (3). We prove (2)) (3) by
contradiction as follows. (3)) (2) can be proved similarly.

If (2) holds, but (3) does not, then there must exist a pair of states v 2 V and its
corresponding state v0 2 V 0 such that R.v/ D R .v0/ but S.v/ ¤ S .v0/. That is,
we can find a state u 2 S.v/ but its corresponding state u0 … S .v0/ or vice versa.
From the definition, we know that u 2 S.v/ is equivalent to v 2 R.u/. Hence, if we
have u 2 S.v/ but u0 … S .v0/ as we just found, we should also have v 2 R.u/ but
v0 … R .u0/, which implies that R.u/ ¤ R .u0/, contradicting the assumption that (2)
holds. �

310 C. Dunbar and G. Qu

We introduce several definitions before we study the vulnerability, threats, and
mitigation methods using state reachability as the trust metric. Considering an
FSM M, based on whether we want to control the access to a state in M, the states
in M can be partitioned into two groups:

• A state v is protected if we want to control the access to v in M such that only
those states from the starting states S(v) can reach v in M.

• A state v is normal or unprotected if we do not want to control the access to v
in M

For the FSM M 0 generated from a circuit implementation of the given FSM M,
based on the reachability of the state in M 0, the protected states in M can be either
safe or unsafe:

• A state v is safe if v is a protected state in M and v can only be accessed/reached
in M 0 from its starting states S(v). That is, state v is successfully protected in the
circuit implementation.

• A state v is unsafe if v is a protected state in M but can be accessed in M’ by states
that do not belong to S(v). That is, the circuit implementation fails to protect the
access to state v.

From these definitions, we see that to protect a state v, it is necessary to protect
all the states that can reach v. Therefore, in the rest of the discussion, we assume
that we will protect both state v and the states in S(v).

An adversary may attempt to gain access to a protected state v from states that
are not in S(v). If the adversary succeeds, the state becomes unsafe. Otherwise, all
of the states that we want to protect are safe and the implementation of the FSM
will be trusted. The goal of trusted sequential system design is to guarantee that the
circuit implementation will be trusted.

In the following sections, we will demonstrate that the current design flow fails
to protect the protected states (in Sect. 4); it is easy to define attacks to explore
this vulnerability and gain access to protected states (in Sect. 5); and we can find
mitigation methods to defeat such attacks (in Sects. 6 and 7).

4 Vulnerabilities in Current Design Flow

One of the most important objectives of this work is to demonstrate the vulnerability
of traditional FSM synthesis and design flow. Convincing evidence of the existence
of such vulnerabilities is needed to motivate and justify our work. We first describe
the benchmark circuits and the simulation setups we have developed to validate the
findings on the security risks and the effectiveness of our proposed approach.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 311

Table 3 MCNC benchmark circuit information

MCNC
circuit
index

Circuit
name States Input bits Transitions Edges

Don’t cares
edges

Don’t care
states

1 bbara 10 4 56 155 5 6

2 bbsse 16 7 53 1800 248 0

3 bbtas 6 2 20 20 4 2

4 beecount 7 3 27 50 6 1

5 dk14 7 3 47 47 9 1

6 dk15 4 3 27 27 5 0

7 dk16 27 2 105 105 3 5

8 dk27 7 1 12 12 2 1

9 dk512 15 1 27 27 3 1

10 ex3 10 2 33 33 7 6

11 ex4 14 6 20 416 480 2

12 ex5 9 2 30 30 6 7

13 ex6 8 5 32 216 40 0

14 ex7 10 2 35 35 5 6

15 keyb 19 7 167 2408 24 13

16 planet 48 7 114 6016 128 16

17 S1488 48 8 250 12; 160 128 16

18 S1494 48 8 249 12; 160 128 16

19 s208 18 11 150 36; 352 512 14

20 sand 32 11 183 63; 552 1984 0

21 sse 16 7 55 1824 224 0

22 styr 30 9 164 15; 296 64 2

23 train11 11 2 24 24 20 5

24 train4 4 2 12 12 4 0

A selection of Microelectronics Center of North Carolina (MCNC) sequential
benchmark circuits, shown in Table 3, in their kiss2 finite state machine format,
were used. The first column gives the index for each benchmark circuit. The next
four columns show, for each circuit, the name, the number of states, the number
of input bits, and the number of transitions specified in the blif file [17]. Note that
in the blif format, one transition may include multiple input values that move the
current state to the next state. For example, if there is a transition from state u to
state v on any of the following input values: 1000, 1001, 1010, and 1011, this will
be represented in blif format by only one transition with input 10xx.

The last three columns in the table provide information for a more accurate
description of each circuit. We first split each transition into edges, where each edge
corresponds to only one input value. For example, the above transition on input 10xx
will be split into 4 edges. The column “Number of Edges” gives the total number
of edges in each circuit. From this, we can easily calculate the “Number of don’t
care edges” shown in the next column. For example, in the circuit 1 (bbara), there

312 C. Dunbar and G. Qu

are four input bits, which means a total of 24D 16 different input values. For each
of the 10 states, there will be 16 edges, giving a total of 160 edges. The benchmark
has 155 edges. So the number of don’t care edges is 160� 155D 5. The last column
gives the number of don’t care states which can be computed as follows on the same
example. We need 4 bits to encode 10 states, but 4 bits will implement 16 states, so
the number of don’t care states is 16� 10D 6.

In most of these FSM benchmarks, each state is reachable from every other state
in the FSM. There is no need to protect such states. To produce FSMs with states
that we want to be safe, we modify these benchmarks slightly by removing a small
amount of transitions from the blif file so that not all of the states are reachable
by all other states. In order to edit the FSMs, a program was written to read in
a single FSM, remove the transitions one at a time, and record how many states
have become unreachable from other states. This process is repeatable and strictly
controlled to prevent an excessive number of transitions from being removed so the
modified circuit can still reflect the original benchmark. The number of transitions
being removed from each circuit is shown in the second column of Table 4. In most

Table 4 FSM modification information

MCNC circuit index Transitions removed Edges removed Unsafe states

1 4 5 2

2 3 56 7

3 4 4 1

4 3 3 0

5 9 9 2

6 5 5 2

7 3 3 0

8 2 2 4

9 3 3 5

10 3 3 7

11 1 32 11

12 2 2 5

13 2 32 2

14 1 1 5

15 3 24 0

16 1 128 19

17 1 128 23

18 1 128 13

19 3 512 0

20 1 1024 31

21 1 32 5

22 2 48 9

23 1 1 3

24 2 2 2

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 313

cases, we only remove a couple of transitions. Similar to Table 3, we expand these
removed transitions by reporting the number of edges being removed in the next
column.

We treat states that are not reachable by some states in the FSM as safe states
and consider all other states as normal states. We then use ABC [18] (a public logic
synthesis and formal verification tool) to synthesize each of the FSMs to obtain their
circuit implementation. Next we analyze these circuit implementations to generate
the completely specified FSM. If the safe states now become reachable from any
normal states, these states will be considered unsafe. The number of such unsafe
states are shown in the last column of Table 4. Note that for circuits 4, 7, 15, and
19, there are no unsafe states, which means that the circuit implementation of these
FSMs are trusted. However, the circuit implementations of the rest of the 20 FSMs
are all untrusted.

5 Attacks on Untrusted Logic Implementations

With knowledge of the abundant trust vulnerabilities in the systems designed from
the current design tools and flow, it leads to the question of how difficult is it to
attack a system’s logic implementation? Determining this is the second goal of our
work. To answer this question, we consider the following two attacking scenarios
based on what the adversary can access:

Case I: The adversary can only access the logic implementation of the system or
FSM M’. The attacking objective is to gain access to the states that are not
accessible as specified in the original specification M. That is, finding paths, in
FSM M’, to access certain states that are unreachable in M.

Case II: The adversary gets hold of the original system specification, M, in the
format of FSM and wants to establish a path to reach certain unreachable state.
In this case, the attacker can potentially implement such a path into the design.
Our challenge, as a result, is to determine how to disguise the secret path.

We describe two naive attacks, one for each case. As we will show in the
experimental results section, these two simple attacks turn out to be quite powerful
and challenging to defend. Therefore, we do not consider any sophisticated attacks,
although they can be developed.

Attack I: The adversary is aware of the vulnerability of the logic implementation
of the FSM following the traditional design flow. Therefore, he can launch the
“random walk attack” (see pseudo code in Fig. 3) and hope to gain access
to states that he is not supposed to reach. In this attack, the adversary will
try random input sequences. If they lead to the discovery of a protected state
(i.e., states that cannot be reached by the adversary according to the design
specification), the attack will be successful. This is possible because the FSM
synthesis tools will assign values to the don’t care transitions with the goal

314 C. Dunbar and G. Qu

Fig. 3 Pseudo code of the random walk attack

of optimizing design objectives such as delay, area, or power. These added
transitions may cause some of the safe states to become reachable from states that
do not belong to their starting state sets and therefore, causing them to become
unsafe.

Attack II: In this attack, the adversary has the original FSM specification of the
system before it is synthesized. If he wants to access state v from a state u … S.v/,
the adversary can simply do the following:

• Check whether there is any don’t care transition from u, if so, he simply makes
v as the next state for that transition. This will give him an unauthorized access
to state v in the logic implementation of the system.

• If the state transitions from state u are all specified, he can check whether there
are any don’t care transitions from a vertex/state that belongs to R(u), and try
to connect that state to v to create a path from u to v.

• If this also fails, then state v in the system is safe with respect to state u in
the sense that one can never reach state v from state u. In this case, the attack
fails.

Finally, we mention that in case II, the adversary can take advantage of the new
states that logic synthesis tools will introduce (that is, when the number of states is
not a power of 2 or non-minimal length encoding is used). He can simply launch
attack by connecting any of the new states to state v to gain unauthorized access to
state v.

Our next goal is to show that, given the vulnerability of the FSM synthesis, how
attackers can gain unauthorized access to those unsafe states. For this purpose, we
consider the aforementioned “random walk attack”, where the attacker randomly
starts with a normal state that could not reach the unsafe state in the original FSM.
Then random inputs are generated so that the attacker could move around in the
completely specified circuit implementation of the FSM. When the attacker reaches
the unsafe state, we mark the state as breached. For this experiment, we attempt
to breach an unsafe state 10,000 times from a random starting state, and allow the
attacker to generate up to 100 random inputs. For each circuit, we choose five unsafe
states to attack. If a circuit has less than five unsafe states, we test all of them. Table 5
shows the results of our testing. For all of the rows with “n/a”, those circuits do not
have any unsafe states. The last column shows a very high breaching rate, 63.28 %

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 315

Table 5 Breaching the unsafe states

MCNC
circuit
index

Average
number of
breaches (out
of 10,000)

Average
number of
inputs

Average
maximal
number of
inputs

Average
minimal
number of
inputs

Average
breach rate

1 913 9.68 58.50 1.50 9.13 %
2 1252.6 10.29 22.80 1.60 12.53 %
3 7457 2.51 17.00 1.00 74.57 %
4 n/a n/a n/a n/a n/a
5 9779.5 21.15 99.00 1.00 97.80 %
6 10,000 3.18 24.00 1.00 100.00 %
7 n/a n/a n/a n/a n/a
8 10,000 4.63 31.25 2.00 100.00 %
9 10,000 4.18 33.60 1.60 100.00 %
10 8701 17.21 70.80 1.80 87.01 %
11 9953.2 18.26 98.40 4.60 99.53 %
12 9989.8 8.64 60.20 1.20 99.90 %
13 9998 12.11 94.00 1.00 99.98 %
14 9927 13.10 71.80 1.80 99.27 %
15 n/a n/a n/a n/a n/a
16 9633.4 22.23 83.60 4.60 96.33 %
17 5.2 6.10 23.20 3.00 0.05 %
18 0 0.00 0.00 0.00 0.00 %
19 n/a n/a n/a n/a n/a
20 7165.4 42.24 100.00 3.40 71.65 %
21 379.2 1.49 4.80 1.20 3.79 %
22 1224.8 51.72 99.20 4.60 12.25 %
23 2707.67 2.29 11.67 1.33 27.08 %
24 7479.5 2.02 13.50 1.00 74.80 %
Average 6328.31 12.65 50.87 1.96 63.28 %

on average and close to 100 % for almost half of the circuits. The three columns in
the middle indicate that among the 10,000 attempts, in the worst case the attacker
can succeed with only one or two input values. In all but four benchmarks, the
average input length to gain unauthorized access is less than 20.

A malicious designer of a sequential system has access to the original system
specification and can add transitions to the blif file before FSM synthesis. (Note
that we do not consider the case that the attacker removes or changes transitions
from the blif file. In that case, the required functionality of the FSM will not be
implemented and such an attack can be detected relatively easily by verification
tools.) For an attacker to gain unauthorized access to a safe state while hiding this
malicious behavior, the attacker only needs to add one transition. For example, by
specifying a previously don’t care transition from a normal state to a safe state,

316 C. Dunbar and G. Qu

Table 6 Area overhead after attacking unsafe states

MCNC circuit
index Baseline area

Overhead of the best
malicious design (%)

Average overhead of all
malicious designs (%)

1 63; 568 0:0 12:9

2 170; 288 �19:1 �3:7

3 40; 368 �10:3 0:6

4 63; 568 1:5 7:3

5 163; 328 �28:4 �5:5

6 79; 344 �6:4 �0:4

7 263; 552 �2:3 14:4

8 28; 304 0:0 15:9

9 76; 096 �13:4 3:7

10 79; 808 �11:0 �3:1

11 91; 872 �7:1 13:5

12 69; 600 �5:3 13:6

13 167; 040 �9:2 2:9

14 86; 304 �13:4 �0:3

15 284; 432 �17:3 �6:5

16 841; 696 �1:5 14:2

17 880; 208 �8:1 9:8

18 889; 488 �2:2 8:2

19 115; 536 �6:4 3:7

20 779; 056 �10:9 6:3

21 162; 400 �5:4 7:3

22 934; 960 �31:7 �18:9

23 36; 656 �6:3 25:0

24 19; 952 11:6 31:8

Averages �10:0 5:7

an adversary can change a state’s status from safe to unsafe. As we have discussed
earlier, a naïve way to prevent such attack is to make the FSM completely specified
by specifying all the don’t care states and the don’t care transitions.

Tables 6, 7, 8, and 9 report the impact on design quality by this simple attack.
We use area, power, maximal negative slack (the difference between the circuit’s
timing requirement and the longest delay from input to output, which measures how
good the design meets its timing requirement), and the sum of negative slack as the
metrics for design quality. In all of the tables, the original FSM is synthesized once
to give us the baseline for comparison. We assume that the malicious attacker will
add only one transition to breach the system. We allow the malicious attacker to add
different transitions and design the system ten times. The overhead of best malicious
design and the average overhead over all the malicious designs compared with the
baseline are reported in the next two columns.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 317

Table 7 Power overhead after attacking unsafe states

MCNC circuit
index

Baseline power
usage

Overhead of the best
malicious design (%)

Average overhead of all
malicious designs (%)

1 387 �2:3 25:0

2 1250:2 �21:3 �5:7

3 236:7 �7:6 8:7

4 441:1 �3:9 6:3

5 1211:8 �25:3 �3:6

6 578:5 �3:7 0:2

7 1999:8 0:9 16:2

8 163:1 0:0 27:5

9 557:6 �17:2 2:6

10 592:6 �16:3 �4:8

11 657:3 �6:0 16:2

12 501:4 �9:5 14:9

13 1293:7 �11:3 2:1

14 677 �20:1 �3:9

15 2066:2 �20:5 �7:6

16 6520:6 �1:6 14:1

17 6941:4 �11:1 7:4

18 6969:3 �4:6 6:5

19 790 �6:7 8:3

20 5939:7 �12:2 6:4

21 1177:7 �9:2 7:4

22 7252:3 �32:7 �20:9

23 243:7 �9:7 27:9

24 134:6 �0:2 26:0

Averages �11:4 6:8

As we can see from these tables, for most of the circuits, the best malicious
designs have negative overhead in area, power, and slack, which means that the
untrusted circuit implementations have a better design quality when compared to
the initial implementation. This is not surprising because this is the best result from
many different FSM modifications that the adversary implemented. The impact on
design quality by adding one transition may not be dramatic, but if the attacker
designs the system multiple times, each time with a slightly different FSM, the
synthesis tools may find a design with better quality. For example, in Table 6, there
are only two circuits with area increase in the attacker’s best design.

However, when we look at the data on the attacker’s average design, we see
an overhead of about 6 % along each of the quality metrics. This result is very
important in several ways. First, it shows that on average, adding even one more
transition will incur design overhead; however, the design overhead is so small that

318 C. Dunbar and G. Qu

Table 8 Max negative slack overhead after attacking unsafe states

MCNC circuit
index

Baseline max
slack

Overhead of the best
malicious design (%)

Average overhead of all
malicious designs (%)

1 6:88 �9:4 8:9

2 12:63 �15:4 5:4

3 4:64 4:1 14:1

4 7:67 �12:4 �0:1

5 13:5 �23:9 �4:6

6 8:92 0:0 6:8

7 19:24 �3:9 6:6

8 3:75 0:0 18:8

9 8:7 �17:8 4:6

10 8:37 �13:1 0:8

11 9:2 �9:3 12:0

12 8:27 �5:2 9:8

13 14:63 �8:3 �0:8

14 8:56 �11:1 5:5

15 17:22 �21:1 �9:6

16 41:57 �2:5 11:7

17 40:25 �9:1 13:2

18 43:04 �9:5 5:1

19 10:44 �1:0 14:4

20 32:04 �12:0 4:2

21 12:66 �6:8 9:2

22 39:02 �24:6 �14:6

23 4:43 �10:4 22:8

24 3:61 22:4 33:7

Averages �8:8 8:1

such attack cannot be detected by simply evaluating the design quality. Consider the
power consumption data in Table 7; only 8 out of the 24 benchmarks have more than
10 % power overhead. The power overhead on other circuits might not be noticeable,
and indeed there are power savings on six circuits.

In summary, in 15 of the 24 circuits, the average change to the malicious circuits’
statistics (area, slack, and power usage) is within ˙10 %. The average design
overhead (see the last row of each table) is less than 8 %. Furthermore, such
overhead is on the sequential component of the circuit only. If we consider the entire
circuit with the combinational circuitry, the overhead will become even smaller.
Therefore, it will not be effective to detect malicious design by evaluating the design
quality metrics.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 319

Table 9 Sum of max negative slack overhead after attacking unsafe states

MCNC circuit
index

Baseline sum of
max negative
slack

Overhead of the best
malicious design (%)

Average overhead of all
malicious designs (%)

1 32:05 �3:8 11:7

2 113:19 �15:8 �1:0

3 20:53 �8:5 1:7

4 40:77 �3:1 5:4

5 99:34 �26:0 �8:4

6 53:19 �5:5 0:8

7 124:25 5:9 14:2

8 14:1 0:0 29:2

9 49:34 �20:5 1:5

10 44:25 �22:7 �6:1

11 95:73 �11:0 10:2

12 39:38 �6:1 11:0

13 137:15 �9:7 0:5

14 42:84 �12:0 8:0

15 98:12 �17:3 �7:3

16 966:4 �5:1 9:1

17 919:81 �8:8 13:7

18 970:58 �6:4 6:2

19 56:7 1:9 18:0

20 411:65 �11:4 2:3

21 107:24 �4:3 9:9

22 514:78 �26:5 �15:0

23 15:53 �14:0 31:6

24 10:42 6:8 18:6

Averages �9:6 6:7

6 A Naïve Countermeasure

The sufficient and necessary conditions in Sect. 3 for a sequential system to be
considered trustworthy actually gives the following constructive method to build
trusted FSM (illustrated in Fig. 4):

i. perform state reduction to reduce the number of states
ii. add new states fs1, s2, : : : , skg to the FSM such that the total number of states

becomes a power of 2
iii. add state transitions fs1! s2; s2! s3; : : : ; sk! s1g with don’t care as the

input/output value.
iv. for the other don’t care transitions, make s1 as their next state
v. use minimal length codes for state encoding

320 C. Dunbar and G. Qu

a

C

A B

DE

0/1

1/0
0/0

1/1

0/1

1/1

1/0

b

S1

S3

S2-/-

-/-

-/-

C

A B

DE

0/1

1/0
0/0

1/1

0/1

1/1
1/0

1/-

0/-

0/-

Fig. 4 Implementation of naïve approach. (a) Original FSM with unspecified states. (b) FSM after
applying naïve approach

Apparently, the logic implementation of the FSM following the above procedure
satisfies conditions a)–c) in Theorem 1 of Sect. 3: step iv ensures that the FSM is
completely specified; step ii ensures that the number of states is a power of 2; and
step v requires the minimal length encoding.

The only non-trivial part of this procedure is the cycle created in step iii. By
doing this, we make these new states not equivalent to each other, and thus prevent
the FSM synthesis tools from merging these states. This will ensure that the total
number of states is a power of 2.

From the analysis in early part of this section, we know that the FSM built by
the above procedure will guarantee a trusted logic implementation of the sequential
system. However, such implementation will have very high design overhead in terms
of area, power and clock speed. This result can be observed in Table 10.

These results completely reinforce our previous statement that this approach
will make the FSM completely specified and over-constrain the design, resulting
in designs with potentially very poor quality. For instance, column 4 of Table 10
shows that the average maximal slack has increased by 44 %, which means that
the price we pay to ensure trustworthiness in FSM synthesis, by this approach, is
probably too high. Such a large slack overhead may not be acceptable for many
mission-critical real time embedded systems.

7 A Practical Mitigation Method

To reduce the high design overhead for building trusted FSMs, we propose a novel
method that combines modification of gate level circuit and the concept of FSM
re-engineering introduced in [19]. Before describing our approach, we mention that
to limit the access to a safe state v, we need to protect all the states in v’s starting
set of states. Therefore, in the following discussion, when we consider protecting a
state, we consider protecting all of the states in its starting set of states as well.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 321

Table 10 Overhead of naïve countermeasure

MCNC circuit
index

Area
overhead (%)

Power
overhead (%)

Maximum negative
slack overhead (%)

Sum of negative
slack overhead (%)

1 157:7 202:5 90:4 123:4

2 155:6 147:3 77:7 99:3

3 �6:9 �2:5 6:7 �9:2

4 19:0 21:8 22:3 26:3

5 �20:7 �17:0 �7:3 �13:3

6 85:4 86:8 48:9 82:2

7 33:8 34:2 12:1 30:4

8 52:5 77:1 45:3 85:2

9 26:8 26:0 3:6 16:0

10 79:1 83:7 42:9 63:8

11 116:7 124:5 59:6 60:5

12 76:7 74:3 22:0 62:2

13 130:6 121:2 62:5 69:6

14 67:2 55:3 38:7 59:7

15 34:3 36:8 5:7 28:4

16 68:7 67:2 35:7 39:2

17 50:9 43:4 29:3 20:2

18 46:3 41:9 16:9 24:2

19 214:5 200:4 69:5 94:1

20 84:8 71:8 20:8 32:2

21 221:1 224:9 129:7 170:8

22 11:5 9:5 �2:0 4:5

23 215:2 249:8 168:4 276:8

24 209:3 210:8 73:4 173:0

Averages 89:6 92:8 44:2 66:4

Fig. 5 A simple 2-state FSM

0 1
1/0

1/1 0/1

To illustrate the key idea of our approach, we consider a simple 2-state FSM
shown in Fig. 5. We assume that state 1 is the safe state and it cannot be reached
from state 0. We can add a transition to enforce that the system remains in state 0
on input 0. However, for large design, adding many such transitions will incur high
overhead. Instead, we consider how to make state 1 safe at the circuit level. Without
loss of generality, we assume that one T flip-flop is used to implement this system.
We will use the flip flop content as a feedback signal to control the flip flop input
signal (shown as the line with arrowhead in Fig. 6). With the help of this new T flip
flop, we see that when the system is at state 1, the feedback signal will not impact
the functionality of the flip flop input signal. However, when the system is at the
normal state 0, the controlled input signal will disable the T flip flop, preventing the
system to go to the safe state 1.

322 C. Dunbar and G. Qu

Fig. 6 A normal T flip flop
(on the left) and a T flip flop
with controlled input (on the
right) >

T
>

T

Fig. 7 Example of re-encoded STG through state duplication [19]. (a) Original STG. (b) Re-
constructed STG after duplicating state

Based on this observation, we propose to protect safe states by grouping them and
allocating them codes with the same prefix (that is, the leading bits of the codes). For
example, when the minimal code length is 5 and there are 4 states to be protected,
we can reserve the 4 code words 111XX for these 4 states. Then we use flip flops
with controlled signals to implement these prefix (like Fig. 6 shows). The normal
states (i.e., states that we do not want to control their access) will have different
prefix and thus any attempt of going to a safe state from the normal states will be
disabled.

However, when the number of states to be protected is not a power of 2, there
will be unused codes with the prefix reserved for safe states. If the synthesis tools
assign any of these unused code to other states, these states may gain unauthorized
access to the safe states and make them unsafe. To prevent this, we apply the state
duplication method proposed in [19] to introduce new states that are functionally
equivalent to the safe states (see Fig. 7) and mark them also as states to be protected.
We repeat this until the total number of safe state becomes a power of 2.

Figure 7 depicts the concept of state duplication. For state S5 which has two
previous states, S1 and S2, and 2 next states S3 and S4 (as shown on the left), we can
create a new state S6 and then connecting S6 to all the next states of S5, but partition
the previous states of S5 such that some of them go to the new state S6 and others
still go to state S5. Clearly, these two FSMs are functionally equivalent. However, by
doing this, S5 has a duplicate. If S5 is a state we want to protect, we need to protect
its duplicate S6 too. As a result, the number of states to be protected will increase.
Consider an FSM with n states, 2r � 1 < n � 2r, we apply the state duplication

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 323

method to extend the total number of states that need to be protected to the nearest
power of 2, 2k. The new FSM will have no more than 2rC 1 states. So this technique
will introduce no more than one additional FF to the design. Accordingly to Yuan
et al. [19], the process of state duplication gives us an opportunity to minimize power
and/or area. We will report the design quality information (in terms of area, power,
and delay) in the next section.

As explained in the previous section, if we do not care about the next state as
long as it is not a safe state, we can use flip flops with controlled input to establish
trust in the logic implementation of an FSM. To reduce the overhead caused by
these controlled input signals, the FSM must be edited. If the number of safe states
is less than a power of two, some of the safe states need to be duplicated using a
modified version of the process in [19] to duplicate the states that will cause the
least, or reduce, the overhead. The next step requires that we partially encode our
FSM using a slightly modified version of the encoding algorithm. For example, if
we have an FSM with 30 states and 8 states to be protected, all safe states will be
given the same partial encoding in the format 11XXX. The rest of the states will
have the encodings of 10XXX, 01XXX, or 00XXX. The state encoding algorithm
or tool will then fill in the Xs with 0s or 1s in the most efficient manner.

Once this process is complete, the original FSM’s states are encoded using the
same process but all of the states start with the partial encoding comprised of all
Xs. The two FSMs are then compared and the overhead is calculated for the FSM
that has been modified for protection of the safe states in comparison to the original
FSM. These results are reported in Table 11. The ‘encoding bit size’ column shows
that in most circuits, we will not increase the code length, which means no need
of additional flip flops. The ‘safe states’ column is the percentage of the safe
states, which include both the state we want to control the access and their starting
set of states. The rest of the five columns report the design overhead in terms of
circuit area, gate count, maximum negative slack, sum of negative slack, and power
consumption.

The most important result is that in all the design quality metrics, our approach
has very limited overhead, from 2.82 % in the maximum negative slack to 7.49 %
in the gate count. More specifically, the naïve countermeasure’s average overhead
on circuit area, most negative slack, sum of negative slack, and power over all the
benchmarks are 89.6 %, 44.2 %, 66.4 %, and 92.8 %, respectively (as reported in
Table 10). Our new approach can reduce these overhead to 7.01 %, 2.82 %, 5.70 %,
and 6.33 %, respectively. Such overhead is about the same or even smaller than
the average overhead that a malicious designer will have to suffer (5.7 %, 6.8 %,
8.1 %%, and 6.7 %% as indicated in Tables 6, 7, 8, and 9).

8 Conclusion

Sequential systems are very important components in modern system design.
Designing a trusted sequential circuit is crucial to ensure the trust of the overall
system. We considered the finite state machine model of sequential circuits and

324 C. Dunbar and G. Qu

Table 11 Overhead for manual encoding and state duplication with controlled input to protect
safe states

MCNC
circuit
index

Encoding
bit size (%)

Safe
states (%)

Gate
count (%) Area (%)

Most
negative
slack (%)

Sum of
negative
slack (%) Power (%)

1 0:00 33:33 6:67 9:49 9:35 15:20 16:15

2 25:00 33:33 6:58 7:71 �2:01 0:08 6:52

3 0:00 0:00 0:00 �1:20 2:30 �5:66 �2:82

4 0:00 33:33 �12:20 �5:17 3:71 �1:39 2:54

5 0:00 33:33 7:14 8:30 2:35 0:37 5:58

6 50:00 33:33 57:50 52:13 32:18 42:11 38:43

7 0:00 0:00 �10:76 �11:17 �9:25 �10:68 �11:27

8 0:00 33:33 0:00 0:00 0:00 0:00 0:00

9 0:00 33:33 �2:63 �2:66 �13:72 �8:57 �5:08

10 0:00 0:00 57:14 53:21 12:69 60:93 49:04

11 0:00 33:33 0:00 0:00 0:00 0:00 0:00

12 0:00 14:29 �19:23 �18:80 �13:02 �23:46 �25:11

13 0:00 33:33 5:68 7:84 7:42 9:55 9:51

14 0:00 0:00 22:86 21:67 21:68 26:20 28:76

15 0:00 33:33 15:13 13:95 14:20 19:40 14:01

16 0:00 39:13 �6:73 �6:01 2:54 2:99 �7:23

17 0:00 60:00 8:21 10:11 16:13 14:13 13:90

18 0:00 60:00 3:12 3:77 4:15 1:97 4:00

19 0:00 0:00 8:70 3:54 �1:77 �3:12 �2:28

20 20:00 6:67 3:91 5:21 �3:66 6:21 4:43

21 25:00 33:33 6:17 7:92 0:56 9:35 5:19

22 20:00 45:45 �22:12 �21:23 �24:38 �22:27 �22:53

23 0:00 33:33 7:14 10:95 7:29 5:97 14:15

24 50:00 33:33 37:50 18:60 �1:11 �2:50 16:05

Average 7:92 27:45 7:49 7:01 2:82 5:70 6:33

defined the notions of trusted sequential system and trusted logic implementation.
Then we studied several related trust issues. First, we showed that the current
sequential design flow generates systems that can be easily attacked. Then we
show a couple of simple and effective methods to attack these designs. Finally, we
provided two constructive methods to build trusted logic implementations. The first
one is a straightforward method, based on the sufficient and necessary condition
for a trusted FSM, but it also introduces a high design overhead. The second
approach is based on a simple circuit level modification of the flip flops and can
significantly cut the overhead while also guaranteeing the trust of the FSM. We have
conducted comprehensive experiments on MCNC benchmarks to validate both our
findings about the vulnerability in the current FSM synthesis flow and our proposed
approaches to build trust.

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 325

We define the notion of trusted FSM both in the most general sense and
specifically when state reachability is used as the trust metric. We give a set of
necessary and sufficient conditions to build trusted systems in both cases. As the
first work of its kind, to the best of our knowledge, we hope that this work can shed
lights on how to introduce quantitative metrics for trust in system design.

9 Further Reading

As an extension to our work here, we encourage readers to look into the works
presented below. They go further into the topics of trusted design, hardware Trojans,
and various security primitives used for improving the trust of a design.

The challenge of building trust in IC is highlighted in a Defense Science Board
study on High Performance Microchip Supply, “Trust cannot be added to integrated
circuits after fabrication; electrical testing and reverse engineering cannot be relied
on to detect undesired alternations in military integrated circuits” [1]. The Trusted
Foundry Program and the complementary Trusted IC Supplier Accreditation were
specifically designed for domestic fabrication, where trust and accreditation are built
on reputation and partnership [2]. The notions of trusted and trustworthiness are
presented in [3], where the authors discuss the challenges, opportunities, call for
new initiatives and programs to establish principles, tools, and standards for building
trusted hardware. Trimberger in [4] argues that trusted IC can be built on a field
programmable gate array (FPGA) platform because it separates the manufacturing
process from the design process. However, the base array still needs to be verified
through manufacture and trust still needs to be built during the design process.
Suh and Devadas [5] propose physical unclonable functions (PUFs) based on
transistor and wire delay to uniquely identify a chip. Logic obfuscation techniques
have been proposed recently to solve the IC piracy problem and build trusted IC
[6, 7]. However, none of these efforts can be used to verify whether the chip
contains unwanted functionalities. Gu et al. [8] develop information hiding method
for trusted system design where they impose additional design constraints in the
hope that design with unwanted functionalities will incur noticeable performance
degradation and thus can be caught. This novelty concept is hard to be implemented
due to the complexity of design process.

Hardware Trojan refers to any kind of malicious modification of the IC. It is
one of the more serious threats to trusted IC design. Banga and Hsiao [9] propose
a circuit partition based approach to detect and locate the embedded Trojan. Rad
et al. [10] develop a power supply transient signal analysis method for detecting
Trojans based on the analysis of multiple power port signals to determine the
smallest detectable Trojan. Wang et al. [11] explore the wide range of malicious
alternations of ICs that are possible and propose a general framework for their
classification as well as several Trojan detection strategies. Gong and Makkes [12]
present a Trojan side-channel based on PUF that can successfully attack block
ciphers. Wei et al. [13] develop a set of hardware Trojan benchmarks that are the
most challenging representative test cases for side-channel based hardware Trojan

326 C. Dunbar and G. Qu

detection techniques. The existing hardware Trojan detection approaches rely on
catching the misbehavior of the IC caused by the hardware Trojan embedded into
a known design. When a hardware Trojan is added during the design process and
integrated with the required functionalities of the IC, these approaches will not be
effective as pointed out in [8].

There is a rich body of research work on FSM watermarking, for the protection
of FSM design intellectual property [20–25]. These techniques usually rely on the
modification of the state transition graph at the behavioral synthesis level to embed
watermark related to user-specific information for identification purpose. In [20],
Oliveira proposes to create watermarks based on a set of redundant states which
can only be traversed when a user-specific input sequence is loaded. Lewandowski
et al. [21] and Zhang and Chang [22] propose watermarking schemes based on
state encoding. Torunoglu and Charbon [23] introduce extra state transitions in the
FSM to produce output that carries watermark. Abdel-Hamid et al. [24] improve
this method by utilizing the existing transitions for watermarking and successfully
reduce the high-overhead caused by extra state transitions. Cui et al. [25] propose an
improved scheme that increases the ratio of the number of existing transitions used
during the watermarking process to further reduce overhead. The concept behind
these FSM watermarking techniques is to embed additional information into the
FSM, which is similar to hardware Trojan insertion. However, the added information
is for authorship proof and normally does not carry any malicious functionality (like
a hardware Trojan does). Another interesting finding about FSM by Yuan and Qu
[26] is that during the state minimization stage, many state transitions are redundant
in the sense of removing them (i.e., treating them as don’t care conditions) will not
affect the result of state minimization. They further proposed how to find a maximal
set of redundant transitions and manipulate these transitions to hide information.
More general information about design intellectual property watermarking can be
found in [27].

Acknowledgment The authors were supported by the National Natural Science Foundation of
China under Grant No. 61228204, Army Research Office under grant W911NF1210416, Air
Force Research Laboratory under agreement number FA8750-13-2-0115, and AFOSR MURI
under award number FA9550-14-1-0351. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory or the U.S. Government. The authors were supported by the National
Natural Science Foundation of China under Grant No. 61228204, Army Research Office under
grant W911NF1210416, Air Force Research Laboratory under agreement number FA8750-13-
2-0115, and AFOSR MURI under award number FA9550-14-1-0351. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory or the U.S. Government

Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques 327

References

1. High Performance Microchip Supply: Report of the Defense Science Board Task Force
(February 2005). http://www.acq.osd.mil/dsb/reports/ADA435563.pdf

2. Qu, G., Yuan, L.: Design THINGS for the Internet of things: an EDA perspective. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14), pp. 411–416
(November 2014)

3. Irvine, C.E., Levitt, K.: Trusted hardware: can it be trustworthy? In: ACM/IEEE Design
Automation Conference, pp. 1–4, June 2007

4. Trimberger, S.: Trusted design in FPGAs. In: ACM/IEEE Design Automation Conference,
pp. 5–8, June 2007

5. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: ACM/IEEE Design Automation Conference, pp. 9–12, June 2007

6. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. In:
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1069–1074,
10–14 March 2008

7. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfuscation. In:
ACM/IEEE Design Automation Conference, pp. 83–89, June 2012

8. Gu, J., Qu, G., Zhou, Q.: Information hiding for trusted system design. In: 46th ACM/IEEE
Design Automation Conference (DAC’09), pp. 698–701, July 2009

9. Banga, M., Hsiao, M.S.: A region based approach for the identification of hardware Trojans. In:
1st IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 40–47, June
2008

10. Rad, R., Tehranipoor, M., Plusquellic, J.: Sensitivity analysis to hardware Trojans using power
supply transient signals. In: 1st IEEE International Workshop on Hardware-Oriented Security
and Trust, pp. 3–7, June 2008

11. Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure hardware,
challenges and solutions. In: 1st IEEE International Workshop on Hardware-Oriented Security
and Trust, pp. 15–19 (2008)

12. Gong, Z., Makkes, M.X.: Hardware Trojan side-channels based on physical unclonable
functions. WISTP, pp. 294–303 (2011)

13. Wei, S., Li, K., Koushanfar, F., Potkonjak, M.: Hardware Trojan horse benchmark via optimal
creation and placement of malicious circuitry. In: ACM/IEEE Design Automation Conference,
pp. 90–95, June 2012

14. Hachtel, G., Somenzi, F.: Logic Synthesis and Verification Algorithms. Dordrecht, The
Netherlands (1996)

15. Kam, T., et al.: Synthesis of FSMs: Functional Optimization. Dordrecht, The Netherlands
(1997)

16. Umans, C., et al.: Complexity of two-level logic minimization. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 25(7), 1230–1246 (2006)

17. Berkeley Logic Interchange Format (BLIF): http://www.ece.cmu.edu/~ee760/760docs/blif.pdf
18. ABC: A System for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/~

alanmi/abc/
19. Yuan, L., Qu, G., Villa, T., Sangiovanni-Vincentelli, A.: An FSM reengineering approach to

sequential circuit synthesis by state splitting. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(6), 1159–1164 (2008)

20. Oliveira, A.L.: Techniques for the creation of digital watermarks in sequential circuit designs.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(9), 1101–1117 (2001)

21. Lewandowski, M., Meana, R., Morrison, M., Katkoori, S.: A novel method for watermarking
sequential circuits. In: Proceedings of IEEE International Symposium on Hardware-Oriented
Security and Trust, California, pp. 21–24, June 2012

22. Zhang, L., Chang, C.H.: State encoding watermarking for field authentication of sequential
circuit intellectual property. In: Proceedings of IEEE International Symposium on Circuits and
System, Seoul, pp. 3013–3016, May 2012

http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.ece.cmu.edu/~ee760/760docs/blif.pdf
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

328 C. Dunbar and G. Qu

23. Torunoglu, I., Charbon, E.: Watermarking-based copyright protection of sequential functions.
IEEE J. Solid State Circuits 35(3), 434–440 (2000)

24. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A public-key watermarking technique for
IP designs. In: Proceedings of Design, Automation and Test in Europe, vol. 1, Munich,
pp. 330–335, March 2005

25. Cui, A., Chang, C.H., Tahar, S., Abdel-Hamid, A.T.: A robust FSM watermarking scheme for
IP protection of sequential circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 30(5), 678–690 (2011)

26. Yuan, L., Qu, G.: Information hiding in finite state machine. In: 6th Information Hiding
Workshop (IHW’04), vol. 3200, pp. 340–354, LNCS, Springer, New York, May 2004

27. Qu, G., Potkonjak, M.: Intellectual Property Protection in VLSI Designs: Theory and Practice.
Dordrecht, The Netherlands (2003). ISBN:1-4020-7320-8

Hardware IP Watermarking and Fingerprinting

Chip-Hong Chang, Miodrag Potkonjak, and Li Zhang

Abstract The continuously increasing gap between silicon and designer
productivity has created a need for common design reuse. The initial response
to this need emphasized the enforcement of designers’ rights through the creation
of design such that ownership can be proved with ultra high probability. Our primary
objective is to provide sound treatment of the foundations of hardware watermarking
and fingerprinting, as well as key research contributions to the field. At the same
time, we aim not just to survey and explain key ideas, concepts, and tools but also
to identify dominating trends and briefly outline emerging hardware IP protection
and, in particular, hardware watermarking and fingerprinting issues including the
creation and validation of trusted hardware IP and semantic IP rights protection.
Finally, we also elaborate on changing focus from techniques for embedding
watermarks and fingerprints to approaches for watermark and fingerprint extraction
and on remote digital rights enforcement of hardware IP rights.

1 Introduction

Watermarking of hardware designs is a procedure in which a signature of the
designer is embedded into a design in such a way that the design’s correct
functionality is not impacted and all design metrics are minimally or not impacted
at all. Watermarking should be conducted in such a way that watermark extraction
is easy while its removal is very difficult in terms of the required design effort and
the induced manufacturing and testing cost. In addition, several other requirements
may be included such that proving the existence of the embedded signature can be
accomplished without revealing it, that a watermarked design can be recognized

C.-H. Chang (�) • L. Zhang
School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore
e-mail: echchang@ntu.edu.sg; lzhang2@e.ntu.edu.sg

M. Potkonjak
Computer Science Department, UCLA, Los Angeles, CA 90095-1596, USA
e-mail: miodrag@cs.ucla.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_10

329

mailto:echchang@ntu.edu.sg
mailto:lzhang2@e.ntu.edu.sg
mailto:miodrag@cs.ucla.edu

330 C.-H. Chang et al.

when it is used within a larger design and that even when a subpart of the
watermarked design is used the original author can prove his/her authorship.

The first hardware watermarking efforts were developed in 1997 and reported in
early 1998 [1–3]. There were three main sources of inspiration for their develop-
ment. The first was the emergence of watermarking approaches for audio and video
artifacts due to the rapid growth of this market caused by the explosive growth of the
Internet. The main idea behind media watermarking is to leverage imperfections in
human audio and vision systems so that recorded signals preserve their subjective
fidelity while the signatures that indicate the ownership are embedded into them.
A great variety of audio, image, video, and text watermarking has been proposed,
implemented, and evaluated. Media watermarking has been established as a research
area by itself. In particular, a large number of patents have been issued.

The second starting point was the growing gap between silicon and design
productivity. The reuse of hardware intellectual property was the best synthesis
alternative. It was widely expected that hardware IP blocks will form a viable mar-
ket. Thus, the Virtual Socket Interface Alliance (VSIA) was formed to coordinate
the creation of viable and fast growing hardware IP markers and standards. One
of the six main thrusts of VSIA was intellectual property protection (IPP), which
resulted in the establishment of the first two hardware watermarking standards.

While the first two impetus sources were market driven, the last one was com-
pletely technical. Many synthesis tasks correspond to combinatorial optimization
tasks. For example, register assignment in behavioral synthesis and embedded
compilation correspond to graph coloring. It has been observed experimentally
that for each of these tasks there exist numerous, sometimes even exponentially
many, solutions of identical or very similar quality [4–10]. Numerous solutions
with optimal and near optimal quality directly enable hardware IP watermarking
because the designer can select as his watermarked design a solution with the special
property that it serves as proof of legal ownership.

A closely related and extended problem is hardware IP fingerprinting, which is a
procedure where a unique tag is created for each chip or a set of ICs. For instance,
a design house can create for each of its customers an IP instance with a unique
fingerprint for tracing which IP instance is resold by which customer. The main
challenge is to avoid very expensive redesign steps for all consequent tasks and to
eliminate or at least reduce the number of required unique masks.

The essential difference between watermarking media artifacts and hardware IP
is that the latter is a functional entity and its functionality must be fully preserved.
In addition, it is important to consider negative impacts on design metrics such as
speed and energy. Hence, media watermarking techniques are not applicable. Two
main directions have been proposed for hardware watermarking. The first is that
additional constraints and/or modification of optimization objectives are imposed
in such a way that the quality of the solution is minimally impacted while long
and convincing proof of the ownership is guaranteed [11–13]. The second direction
is that additional functionality is added as the watermark. For example, a state

Hardware IP Watermarking and Fingerprinting 331

transition graph is augmented by a specific set of transitions [14, 15], or the unit
impulse response of a filter is over-specified in such a way that the author’s signature
can be observed [16].

The latter approach is interesting because it intrinsically provides for nonde-
structive and easy extraction of the watermark. That is, in general, a very important
issue with hardware watermarking: it is important that remote and easy extraction
of watermarking is provided. While hardware reverse engineering techniques are
very advanced [17–21], in some applications, nondestructive and remote watermark
extraction is essential.

Surprisingly, a common conceptual misconception is that watermarking solutions
of synthesis steps is considered to be equivalent to watermarking of corresponding
generic graph theoretic problems [22]. It is indeed a standard and widely used
technique to map register assignment in behavioral synthesis to graph coloring
theoretic frameworks and to use one of many available algorithms [23]. However,
once the solution for a corresponding graph coloring problem is incrementally
altered with intention of eliminating embedded watermarks, the overall design is
also altered. For example, different control logic is required for deciding when
which register is accessed as a read or a write. Furthermore, the new control logic
requires new interconnects and new control signals from the finite state machine
of the overall design. Hence, we need new global and local routing that may impact
the overall timing that now has to be validated. In modern designs this may be a
very expensive task due to factors such as process variation and crosstalk. Finally,
the creation of new masks may be a very expensive proposition. So, for the effective
watermarking removal step of graph coloring-based register assignment it is not
sufficient to just change registers where variable placement corresponds to assigning
corresponding nodes in the corresponding instance of graph coloring. In addition,
one has to make sure that consequent synthesis and implementation steps do not
have to be altered, which is very often a much more demanding and often impossible
requirement to satisfy for designs of any realistic complexity.

Another common related misconception along a similar line of reasoning is that
there is not much difference between hardware and software watermarking and
that the same techniques can be used interchangeably in the two domains. While
this observation is sometimes indeed true and the same concepts are applicable
in both domains, there is an essential difference between software and hardware
watermarking. However, as we just explained, hardware watermarking is greatly
protected due to high synthesis and validation costs of the consequent tasks as
well as with the time and economic expense of creating new masks for silicon
manufacturing. On another hand additional compilation costs are rather low and
often even negligible. Thus, for software watermarking one cannot count on implicit
and intrinsic synthesis, validation, and manufacturing costs as effective attack
deterrents.

332 C.-H. Chang et al.

2 Problem Formulation

2.1 SoC Design Process and IP Core Types

The SoC design process, as shown in Fig. 1, starts from constructing a system-
level model based on the functional specifications of the system. The system-level
model consists of interconnected functional blocks, each of which is assigned a
specific software or hardware resource. The assignment creates behavioral models
of the software and hardware parts of the system. The two parts are then developed
separately before they are integrated together in the final stage to form a complete
system.

Our discussion focuses on the hardware development. IP cores in different forms
are developed and/or adopted in different abstraction levels of the IC design flow.

Behavioral Model (H/W Spec.)

RTL Description (HDL)

Gate-level Netlist

Optimized Net list and
Corresponding Layout

Algorithmic Design

Architectural Design

System Level

Behavioral Model (S/W Spec.)

Software Module
Development

Behavioral Level

Structural Level

Physical Level

Behavioral Synthesis

Logic Synthesis

Physical Synthesis

Fabricated Chip

System Integration

System on Chip

Soft IP

Firm IP

Hard IP

Fig. 1 SoC design flow and three main types of hardware IP cores

Hardware IP Watermarking and Fingerprinting 333

According to the Virtual Socket Interface (VSI) Alliance architecture document
[24], there are three major types of IP cores, i.e., the soft, firm and hard IP cores.

The soft IP core is used in the behavioral level. These IP cores are usually
delivered in the form of synthesizable hardware description language (HDL). This
type of IPs provides excellent flexibility to match the requirements of a specific
system. The drawback of these IP cores is that their performance is highly dependent
on the optimization effort of the system integrator, which is less predictable than the
other two types of IP cores.

The hard IP core is used in the physical level. These IP cores target a
specific technology and are delivered in the form of fully optimized netlist or the
corresponding physical layout. This type of IP cores offers the best performance
for the chosen technology library; but due to process dependencies, they have much
less flexibility and portability than the soft IP cores. Without requiring any further
optimization, the hard IP core is generally released as a drop-in replacement in the
physical level design of the system.

The firm IP, or semi-hard IP, refers to IP cores that are in an intermediate form
between the soft IP and hard IP. They are usually delivered in the form of gate-level
netlist in the structural level. This type of IP cores has more predictable performance
than the soft IP and better flexibility and portability than the hard IP. They may also
be optimized using a generic technology library, including even physical synthesis
steps like floor planning and placement. Nonetheless, no routing is performed and
the firm IP remains relatively technology independent. After integrating the firm IP
into the system, the system integrator still needs to perform physical synthesis for
optimization in a specific technology.

As the soft IP is provided to the system integrator in the form of synthesizable
high-level source code, security risk of this IP type is the highest. The high flexibility
for reuse also makes infringement of the soft IP very difficult to be detected and
traced. In contrast, the limited flexibility of hard IP makes it the easiest to be
protected among the three IP types.

The firm IP is sometimes delivered with the synthesizable register-transfer-level
(RTL) code for the ease of reuse by the system integrator. In this case, the risk of the
firm IP is as high as that of the soft IP. However, if it is transferred alone, i.e., only
the gate-level netlist is provided, the firm IP faces the medium risk among the three
types of IP cores. The characteristics of the three types of IP cores are summarized
in Table 1.

Table 1 Characteristics of the three types of IP cores

Soft IP Firm IP Hard IP

Abstraction level Behavioral Structural Physical
Optimization Low Medium High
Technology dependency Independent Generic Dependent
Flexibility High Medium Low
Distribution risk High High (with RTL); Medium (no RTL) Low

334 C.-H. Chang et al.

EncryptorWatermark Insertion

Watermark Insertion

Watermark
Extractor

Watermark Extraction

Watermarked Design

Key

Watermark

Target Design (IP)

Watermark Key

Authorship
Information

Fig. 2 Generic model for IP watermarking

2.2 Generic Model and Desiderate for IP Watermarking

Similar to watermarking techniques for multimedia applications (e.g., pictures,
audio, video or 3D models), hardware IP watermarking is realized by inserting
covert and indelible ownership information into the target design for ownership
proof. Derived from the generic model for digital watermarking [25], a generic
model for hardware IP watermarking is depicted in Fig. 2. The watermark insertion
process inserts the watermark into an IP core at some chosen design abstraction
level, while the watermark extraction process defines how the watermark is extracted
from the watermarked IP core.

The general requirements for IP watermarking are very similar to those of multi-
media watermarking. Nonetheless, multimedia watermarking has more freedom to
alter the cover media and insert the watermark; it exploits human auditory or visual
imperfections to achieve watermark imperceptibility and robustness. Such alteration
is restricted in IP watermarking, since the watermarked IP must remain functionally
correct. Based on the requirements for an IP watermarking scheme proposed in
[26–28], the following desiderata are outlined:

Maintenance of Functional Correctness The functionality of the IP core should
not be altered after the insertion of the watermark.

Independence of the Secrecy of Algorithm According to one of the oldest
security tenets defined by Kerckhoffs [29], the security of any encryption or
security technique lies not in the secrecy of the algorithm, but on the mathematical
complexity of such algorithm. Thus, security of the watermark should not depend on
the secrecy of the watermark insertion or extraction algorithm but on some system
properties.

Hardware IP Watermarking and Fingerprinting 335

Strong Authorship Proof The watermarking scheme should be capable of insert-
ing enough data for identification of the IP owner. The data should be of sufficient
creditability to be considered as evidence in front of court for proving the authorship.

Low Embedding Cost The embedding of the watermark should be made trans-
parent to existing design processes. The embedding cost, including both the
computational cost and time needed for embedding the watermark, should be
kept low.

High Reliability The reliability of a watermarking scheme can be evaluated with
the robustness and probability of coincidence (Pc) of the watermark. The robustness
measures the strength of the hidden signature against various attacks, while the
probability of coincidence, sometimes called the false positive rate, is the possibility
that the watermark is detected in a non-watermarked design. For non-repudiation,
the probability of coincidence should be at least as low as the odd of finding a match
fingerprint from two persons in forensic science.

Low Implementation Overhead It is usually inevitable to introduce additional
overhead to the IP core after watermarking. The performance overhead, usually
measured in terms of area, power and delay, should be kept low for the IP core
to remain useful.

Ease of Detection and Tracking Tracking and detection is as important as
watermark insertion. It is advantageous to ease the detection of watermark and
enable the origin of fraudulence to be traced after possible attacks.

There may be further considerations in designing and evaluating a watermarking
scheme. For example, the fairness of the scheme proposed in [7, 30]. A watermark-
ing scheme is fair if it is able to generate watermarked designs at almost the same
embedding cost and the same implementation overhead under different authorship
signatures. Nonetheless, such a requirement is implicitly implied in the above seven
attributes. If a watermarking scheme is not fair, the scheme will have difficulty to
find a watermarked solution of high quality with an acceptable cost and effort for an
arbitrary signature.

Among the seven attributes, the first six are requirements for the watermark
embedding process. This does not mean that watermark extraction is an easy
problem. A watermarking scheme is incomplete without a properly designed
watermark extraction process. A convenient watermark detection and verification
can make a watermarking scheme more practical and receptive. An unmindful
watermark detection method could also weaken the robustness of the watermarking
scheme.

336 C.-H. Chang et al.

2.3 Attack Analysis for IP Watermarking

Generally, there are three main types of attacks, i.e., removal, masking and forging
attacks. The shared prerequisite of these attacks is that they should not degrade the
design quality. That is, an obviously deteriorated design is not what an attacker
wants to steal. For removal attacks, the adversary tries to eliminate the watermark
completely. This task is usually very hard to succeed with the prerequisite mentioned
above. Hence, the attacker may turn to tampering with the watermarked design so
that the existence of the watermark cannot be detected, i.e., the masking attack.
Depending on the detection mechanism, the minimum percentage of the watermark
bits to be altered to result in a successful masking attack varies. A probability of
masking (Pm) is defined as the probability that an attack would change or delete
enough information to render the watermark undetectable without unacceptably
deteriorating the performance of the target design [26].

In the forging attack, the adversary embeds his own watermark in the water-
marked IP to claim his ownership to the design. To insert the watermark, the attacker
may repeat the watermark insertion using his own signature or simply perform a
ghost search. A ghost search is an attempt to make up an apparently genuine but
different watermark based on the detection method of the targeted watermarked
design and use it as the adversary’s signature. The probability of a successful ghost
search is equal to the probability of coincidence mentioned in Sect. 2.2.

Security analysis and countermeasures of an IP watermarking scheme against the
removal and masking attacks depend on the employed mechanism for watermark
insertion and detection and varies case by case. Nonetheless, there are some
common analyses and countermeasures to deal with the forging attack. First, if
the watermarked design is forged by merely the addition of watermark, the IP
owner is able to provide an IP core with only his watermark while the attacker
have only the IP core with both watermarks. It becomes obvious that the IP core
belongs to the IP owner. Second, if the attacker has successfully removed or masked
the IP owner’s watermark and inserted his own, the time of watermark insertion
becomes an evidence to distinguish which party is the legal owner. As proposed
by Abdel-Hamid et al. [26], a time-stamped authenticated signature can be used.
A trusted third party is engaged to act as a watermark certification authority. It
is responsible for generating and distributing time-stamped signatures, as well as
keeping a record for vouching the authenticity of such signatures for watermark
verification in authorship proof. The dispute can be easily resolved by the time
stamps of the recovered signatures.

Hardware IP Watermarking and Fingerprinting 337

3 Watermark Insertion

In this section, the main methods for watermark insertion in existing hardware IP
watermarking schemes are presented. The detection of watermark will be discussed
in Sect. 4.

3.1 Additional Functionality

An intuitive way to insert the watermark is by adding circuitry to generate the
watermark. Fan et al. [31–33] proposed to embed a watermark generating circuit
(WGC) into an IP core as a part of the test circuit at the behavioral design level.
As shown in Fig. 3, the WGC is composed of some inverters and parallel-input-
serial-output (PISO) registers. Based on the test mode signal and inverters, the
watermark bits are generated in parallel. These parallel bits are then converted to
a serial sequence by the PISO and stored in the shift register. Finally, the watermark
sequence is combined with the test patterns in some controllable way by an arbitrator
and made detectable in the test output sequence. Depending on the number of output
pins used for the output test patterns, several small WGC’s may be used to help
reducing the overhead of watermarking.

As the WGC and test circuit is inserted to the IP core at the behavioral level
and is synthesized with the functional logic, the scheme provides good protection to
the IP core at all the lower design levels such as the structural and physical levels.
Nonetheless, it is not a good candidate for protecting the soft IP core as the WGC
can be easily distinguished at the behavioral level. By simply modifying the number
of parallel bits in the WGC, i.e., the watermark length, the strength of authorship

Soft IP

IP Circuit

Test Circuit Shift Register

Arbitrator

PISO Shift
Register

M
U
X

Normal
function

input

VDD

Test
Mode

Test
Patterns

Output
Patterns

WGC

Fig. 3 Architecture of the IP core, watermark generating circuit and test circuit

338 C.-H. Chang et al.

Fig. 4 The tag circuit
proposed in [34] SHELL

Timing
Module

Tag Code
Generator

Heat
Source

proof can be readily controlled by this scheme. On the other hand, for a fixed WGC,
the larger the IP core to be protected, the smaller the overhead due to the WGC.

Kean et al. [34] proposed to insert a small tag circuit, as shown in Fig. 4, into the
target design to be protected. The heat source generates heat according to a unique
tag signature (i.e., watermark) produced by the code generator, with the timing
information from the timing module. The heat source is implemented with a number
of parallel ring oscillators. It operates at a high frequency and generates heat when
the watermark bit is ‘1’ and turns off at the watermark bit of ‘0’. As a result, the
tag circuit in the manufactured chip containing the IP core will generate a sequence
of chip temperature changes as the unique tag signature. By measuring the chip
temperature data with a thermocouple attached to the chip package and verifying
the correlation between the data and tag codes in a database, the tag signature of the
IP core can be identified. This is currently the only commercially available tagging
approach. To enhance the security, the Shell around the tag circuit is fortified by
some anti-tamper and reverse engineering countermeasures.

The drawback of measuring the changes in the chip package temperature is the
slow data rate due to the physical limitations on how fast a chip package can heat
up and how quickly a temperate measurement can be made. Instead of generating
temperature changes according to the watermark, Ziener and Teich [35] proposed
to convert the watermark to specific power patterns using a power pattern generator.
The power pattern generator can be implemented with a set of shift registers and is
controlled according to the encoding of the watermark to be transmitted. The power
pattern is detected in the reset state of the IP core to avoid interference from the
operational logic in the measured power. As some FPGA architectures allow the
use of lookup tables (LUTs) as shift register, for FPGA implementations the authors
propose to employ some functional LUTs for the shift registers of the power pattern
generator. The corresponding watermark embedding process consists of two steps.
First, the control logic that is responsible for emitting the authorship signature is
merged with the IP core at the HDL level. Second, after logic synthesis, suitable
LUTs in the functional logic are selected to implement the shift registers which are
attached to the control logic in step 1. Due to the sharing of LUTs, it becomes harder
for an attacker to remove or tamper with the shift registers without altering the IP
functionality.

Another power based watermarking scheme is proposed by Becker et al. [36].
The tag circuit is also implemented in a high-level description. Instead of trying to
detect the power signature directly, the watermark is detected based on correlation as
in [34]. The scheme is superior than [35] in that it allows the watermark signal to be
hidden below the noise floor of the power side-channel. This makes the watermark

Hardware IP Watermarking and Fingerprinting 339

detectable even when the IP core is in operation. An additional merit of hiding the
watermark below the noise floor is that the watermark is hidden from third parties,
making the watermark stealthier. This scheme has the same applicability as all the
schemes mentioned above that it is well suited to protect the netlist and designs
at lower levels than the HDL IP cores. In the high-level description, it is easy to
identify and remove the tag circuit.

3.2 Additional Constraints

In each phase of IC design flow (i.e., the behavioral synthesis, logic synthesis and
physical synthesis), there exist a number of NP-hard optimization problems. These
problems are too complex to be solved for the exact optimum solutions requiring
exhaustive enumeration. Quasi-optimal or near-optimal solutions are sought by
heuristic algorithms with some design constraints. This is where constraint-based IP
watermarking techniques come into play. The heuristic algorithm takes the design
specifications and its performance constraints as inputs for design space exploration
to select a good solution as the original IP core from a large solution space. To create
a watermarked IP, the encrypted authorship message is first converted into a set of
stego constraints. These constraints are then used as either additional inputs to the
optimizer (i.e., pre-processing) or imposed on the output of the optimizer (i.e., post-
processing). The final result will be a watermarked IP core which satisfies both the
original and the stego constraints.

A generic representation of the pre-processing based watermarking procedure is
shown in Fig. 5. The watermark is derived from the authorship information based
on some encryption processes as depicted in Fig. 2. It is then converted into stego
constraints by the constraint generator that directs the mapping from the watermark
to the constraints. With the stego constrains added to the inputs of the heuristic
solver, the solution space of the original problem is reduced to a much smaller
solution space of the stego problem.

As the synthesis problem for generating the watermarked IP is non-linear and
complex, the watermark inserted using the pre-processing approach is usually very
robust. This is true especially when it is compared with the watermark inserted in
the post-processing approach where the original IP core is first obtained from the
synthesis problem and then altered based on the stego constraints. Such alteration
may also be exploited by an attacker to mask or remove the watermark. On the
other hand, synthesizing the original problem with the stego constraints is more
likely to result in unpredictable design overhead. The quality of the watermarked IP
cannot be guaranteed even for the optimization intensive watermarking techniques
[10]. Hence, the stego constraints in the pre-processing approach must be prudently
selected. This problem is not so severe in the post-processing approach. As the stego
constraints are imposed on the already optimized solution to the original problem,
the overhead due to the inserted watermark can be better controlled.

340 C.-H. Chang et al.

To limit the overhead and achieve high robustness simultaneously, a three-phase
watermarking approach is proposed by Yuan et al. [37]. In the first phase, an
optimized solution is obtained from the original synthesis problem. The optimized
design is used as a reference in the second phase where some stego constraints
are selected by considering the overall tradeoff of solution quality, watermark
robustness, etc. In the third phase, the watermarked design is re-synthesized to
increase the difficulty for an adversary to tamper with the watermark. As suggested
by the authors, the watermark should be inserted close to the end of the synthesis to
reduce the complexity of the re-synthesis process in the third phase and to increase
the predictability of the change in solution quality due to watermarking.

For all the approaches described above, the strength of the authorship proof
depends on the ratio of the stego problem solution space to that of the original
problem. The smaller the ratio, the lower the probability of coincidence (because
a solution generated under only the original constraints will be less likely to also
satisfy the stego constraints), and the stronger the proof of the watermark existence.

The three generic watermark embedding procedures can be applied to various
optimization problems in the SoC design process. Among them, the pre-processing
approach has the widest appearance. Since its first introduction in [1, 12, 38, 39],
an extensive number of constraint-based IP watermarking techniques have been
proposed at different abstraction levels, which range from the system synthesis level
[1, 6, 12, 13, 40, 41] to the behavioral synthesis level [42–44], logic synthesis level
[44–48] and physical synthesis level [12, 44, 49, 50]. In what follows, some of the
influential proposals at each level are reviewed.

3.2.1 Constraint-Based IP Watermarking at System Synthesis Level

The system to be designed by the system integrator can be treated as a large
monolithic IP core to be protected by inserting a watermark during system synthesis
tasks such as multiprocessor DSP code partitioning and cache line coloring.

Original problem
solution space

WatermarkOriginal
ConstraintsDesign

Constraint
Generator

Stego
Constraints

Watermarked Solution (IP)

Heuristic Algorithm Stego problem
solution space

Fig. 5 A generic pre-processing constraint-based IP watermarking procedure

Hardware IP Watermarking and Fingerprinting 341

3

913

6

14
1

12 15

10

11

7 8

2

16

4
5

3

913

6

14
1

12 15

10

11

7 8

2

16

4
5

1

0 0
0

0

1

0

a b

Fig. 6 An example of watermark embedding in the graph partitioning task [1]. (a) The graph to
be partitioned with nodes indexed by integer numbers. (b) The partitioned graph with watermark

Watermarking based on the former task is demonstrated by the example in [1], where
the watermark insertion task is formulated as a graph partitioning problem.

In the graph to be partitioned, the nodes are randomly numbered with integers,
as shown in Fig. 6a. The stego constraints corresponding to the watermark mandate
particular pairs of nodes to remain in the same partition. The following watermark
embedding process can be used. For each watermark bit, one origin node and one
terminal node are selected for pairing. The original node is selected from those
nodes that have not been set as the origin node. The node with the smallest index
will be chosen. The determination of the terminal node depends on the value of the
watermark bit. When the watermark bit is ‘1’, the node with the smallest odd index
that has not been used in the previous pairs will be selected as the terminal node;
when the watermark bit is ‘0’, the terminal node will be the node with the smallest
even index that has not been paired. Assume the letter ‘A’ with the ASCII code of
“1000001” is a watermark (or a part of the watermark) to be embedded. Based on
the embedding criteria described above, the selected pairs of nodes that need to be
in the same partition are (1, 3), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12) and (7, 13), each
of which is connected with a dotted red line in Fig. 6b. If a balanced partitioning
requires the difference in the number of nodes between two partitions to be less
than 20 %, the partitioning depicted in Fig. 6b can be obtained, which represents
one watermarked solution.

The watermarking scheme described above can be extended to the graph coloring
problem. Graph coloring assigns labels, namely “colors”, to elements of a graph
subject to certain constraints. As a typical form of graph coloring, the aim is to
find a way to color the vertices of a graph such that no two adjacent vertices
(i.e., connected by an edge) share the same color. Many optimization problems
in the VLSI design flow have been modeled as graph coloring problems. For
instance, the cache-line code optimization can be solved by finding a solution to

342 C.-H. Chang et al.

the graph coloring problem using a given fixed number of colors, where each
color corresponds to one cache line. To insert a watermark into the solution,
additional edges corresponding to the watermark can be added into the graph.
The watermarked solution will be generated by coloring the new graph using the
minimum number of colors.

3.2.2 Constraint-Based IP Watermarking at Behavioral Synthesis Level

In behavioral synthesis, the behavioral model of the design is transformed to a
RTL description to implement the behavior. The optimization tasks in behavioral
synthesis, such as scheduling, assignment, allocation, transformations and template
mapping, are all excellent NP-hard problems for embedding the watermark. The
watermarking scheme in [43], which inserts the watermark during register alloca-
tion, is used as the example here.

After scheduling the operations with for example, a scheduled control data
flow graph (CDFG), the variable values that are generated in one control step and
consumed in the later steps must be stored in registers. The interval between the
first time a variable is generated and the last time it is used is referred to as its
lifetime. Variables whose lifetimes are not overlapped can share the same register,
based on which an interval graph can be constructed. In the interval graph, each
vertex denotes a variable and the edge between two vertices indicates that there
is an overlap in the lifetimes of the two variables. Register allocation can then be
performed by solving the graph coloring problem for the interval graph. To insert the
watermark, the same approach mentioned in Sect. 3.2.1 can be used. That is, extra
edges which represent the stego constraints induced by the watermark (or watermark
constraints for short) are inserted into the interval graph. Due to the added edges, the
resultant watermarked solution satisfies the watermark constraints by storing some
specific variables in different registers.

Similar watermark insertion method can also be applied to other behavioral
synthesis tasks. The generic watermarking approach is depicted in Fig. 7.

3.2.3 Constraint-Based IP Watermarking at Logic Synthesis Level

Logic synthesis transforms an abstract form of the design behavior (typically in
the RTL HDL) to a specific design implementation constituted by logic gates.
Combinational logic synthesis consists of two main optimization tasks, i.e., multi-
level logic minimization and technology mapping. Both tasks can be watermarked
using the scheme proposed in [45, 46]. We use the example in [46] to illustrate the
watermark embedding process for a technology mapping solutions.

Given a cell library, technology mapping (also known as cell-library binding)
aims to map the logic network of the design to as few library cells as possible.
The complexity of finding an area-optimal solution to the problem is NP-hard
[51]. Assume that a cell library consists of two cells as shown in Fig. 8a and the

Hardware IP Watermarking and Fingerprinting 343

logic network to be mapped is constituted by 11 gates. By performing exhaustive
enumeration, we can obtain 49 optimal solutions, each of which uses six cells. The
watermark can be embedded by the following procedure.

Firstly, each node (the output of a gate) which is not a primary output is uniquely
identified. The set of node identifiers is denoted as NDf1, : : : , 10g, as shown
in Fig. 8b. The watermark to be embedded is a set of distinct numbers, denoted
as W. The cardinality of jWj is required to be smaller than that of jNj. Then,
the watermarking constraints are imposed by specifying the nodes with identifiers
equivalent to numbers in W as pseudo-primary outputs. Due to the watermarking
constraints, a specific set of internal nodes will be visible in the resultant solution.
If WDf3, 4g, then node 3 and 4 will be specified as pseudo-primary outputs, as
depicted in Fig. 8c. The constrained network can still be solved using only six library
cells. However, the number of possible solutions is reduced to 4. This means that
the probability of coincidence is Pc D 4=49, which represents the strength of the
authorship proof. For a real-life design with tens of thousands and more internal
nodes, the scheme can achieve very strong proof of authorship with little or no
sacrifice on the solution quality.

An alternative scheme that exploits technology mapping for watermark insertion
is proposed in [52]. The watermark is inserted by breaking each selected signal
node into a pair of primary output and input signals. After technology mapping and
a post-processing step where the pairs of added primary output and input signals are
shorted, a watermarked technology mapping solution will be generated. By applying
the watermarking constraints only to those signal nodes that are not on the critical
path, all the critical paths timings are preserved. Again, from the experimental
results, the area overhead due to the watermark insertion is very small.

The watermarking scheme depicted in Fig. 8 can be extended to the task of multi-
level logic minimization. As proposed in [45, 46], after selected nodes of the logic
network are specified as pseudo-primary according to the watermarking constraints,

If the watermark is to be embedded
Do {

Determine the signature
Determine the encoding scheme
Evaluate the scheme

} Until (satisfactory)
Add the corresponding constraints

Perform the synthesis task

For the selected synthesis task
Initial Design

Scheduling

Assignment

Allocation

Transformation

Template Matching

Logic Synthesis

Physical Design

Synthesized Design

Behavioral Synthesis

Watermarking

Fig. 7 A generic approach for watermark insertion in behavioral synthesis tasks [43]

344 C.-H. Chang et al.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Primary
output

Primary
output

Pseduo-primary
output

Pseduo-primary
output

a b c

Fig. 8 An example of watermarking technology mapping solutions [45]. (a) Cell library. (b) A
logic network. (c) The constrained logic network

an additional logic network will be augmented. The additional logic network takes
the pseudo-primary output variables as its input variables and is created according
to the copyright-specific pseudo-random bit-stream. The watermarked solution is
conceived under the influence of the additional logic network which is to be removed
in the synthesis step. The additional logic network has a very significant effect on
the sub-function selection. It is almost impossible to produce the same set of sub-
functions by an off-the-shelf synthesis tool without knowledge of the augmented
copyright-specific logic network, which forms the basis for the authorship proof.

As an additional example, rewiring is an important synthesis technique in logic
minimization. It is used for tasks such as logic optimization, delay optimization,
elimination of wires with high capacitive loads or switching, etc. A redundancy
addition/removal (RAR) based rewiring scheme is proposed in [47]. The basic
idea is that a redundant connection may be added to some nodes in the netlist
determined by the author’s signature without changing the design functionality.
A set of redundant connections may be generated and can be removed. The removal
of the set of redundant connections makes the added connection irredundant. As a
result, the added connections act as the watermark.

3.2.4 Constraint-Based IP Watermarking at Physical Synthesis Level

Physical synthesis begins with a mapped gate-level netlist generated by logic
synthesis and outputs a new optimized netlist and the corresponding circuit layout.
Common steps for physical synthesis include floorplanning, placement, clock tree
synthesis, scan chain generation, routing, etc. Several watermarking schemes based
on these tasks are proposed in [12], which are described below.

Watermarking on Path-Timing Constraints
According to the authorship signature, a set of path timing constraints are selected.
To insert the watermark, these constraints are replaced with “sub-path” timing
constraints. For example, the timing constraint t .C1 ! C2 � � � ! C10/ � 50 ns of
a path can be replaced with the constraints t .C1 ! C2 � � � ! C5/ � 20 ns and
t .C5 ! C7 � � � ! C10/ � 30 ns of two sub-paths, where Ci denotes the ith gate

Hardware IP Watermarking and Fingerprinting 345

in the path. The synthesis solution under the original timing constraint does not
necessarily satisfy the two sub-path constraints. According to [12], the chance that
satisfying the original constraint happens to satisfy both sub-path constraints is at
most one-half. By constraining tens or even hundreds of timing paths in a similar
way, a strong proof of authorship will be achieved.

Watermarking on Row-Based Placement
The watermark can also be inserted by constraining the placement of selected logic
cells in rows with the specified row parity. That is, some cells are constrained
to be placed in an even-index row while some other cells are constrained to be
placed in an odd-index row. As a typical placement instance has tens of thousands
of standard cells, this approach is capable of inserting a long watermark into the
design and providing a high authorship proof. Nonetheless, due to the watermarking
constraints, the routing cost between some cells may be increased. Hence, the logic
cells that are watermarked needs to be carefully selected.

Watermarking on Standard-Cell Routing
In this approach, the watermarking constraints are the (per-net) costing of the
underlying routing resource. That is, if the watermark bit is ‘1’, unusual costs are
imposed on “wrong-way” and/or via resources for the selected net, and vice versa.
As a result, the watermark can be verified by checking whether a specific set of nets
are unusual in their utilization of resources.

3.3 Localized and Hierarchical Watermarking

3.3.1 Localized Watermarking

All the constraint-based watermarking techniques described in Sect. 3.2 are typi-
cally realized by encoding the authorship information as a set of stego constraints,
augmenting the stego constraints to the original constraints and then optimizing the
design from a higher level using an off-the-shelf design tool that finally generates the
watermarked IP core. These watermarking techniques employ the pre-processing
approach and rely on the generation of a global solution to a design optimization
problem according to a specific authorship signature. In these pre-processing based
watermarking schemes, the main consideration is usually the watermark robustness
and they often gloss over the process of watermark verification. As global optimiza-
tion is performed for the watermark insertion, the embedded information must be
recovered from the entire watermarked IP core indivisibly. A small design alteration
by an attacker may cause a substantial distortion in the recovered watermark and
result in the failure of watermark detection. The detection difficulty is exacerbated
after the protected IP core is integrated into the SoC. In this case, to detect the
watermark, the whole IP core needs to be accurately extracted from the system,
which is usually very difficult and expensive even with the trapdoor of the IP
placement in the SoC.

346 C.-H. Chang et al.

In view of these problems, Kirovski and Potkonjak [42] proposed to insert
multiple local watermarks in the IP core to be protected. Instead of creating
a large watermark, the authorship signature is converted into a set of smaller
watermarks, each of which is randomly augmented into a part of the design and
can be verified in its locality independently from the remainder of the design.
Two behavioral synthesis tasks are exploited for inserting such watermarks, i.e.,
operation scheduling and template matching. Basically, both tasks consist of
domains with different localities. The small watermarks are then converted into
sets of additional constraints and assigned to pseudo-randomly selected domains
according to the authorship signature. The scheme enables parts of the IP core to be
independently protected because only a segment of the design is needed to decode
the stego constraints due to the local watermark in that design segment. Moreover,
the local watermarks that are independent from each other force an attacker to alter
a substantial part of the IP core in order to obliterate the copyright protection.

Cui et al. [48] proposed a scheme that possesses a similar feature as localized
watermarking. They insert the watermark in the technology mapping task of logic
synthesis. Unlike the schemes described in Sect. 3.2.3 which require technology
mapping to be performed for the whole design to generate the watermarked solution,
incremental technology mapping technique is employed to synthesize part of the
design for watermark insertion. In particular, a globally optimized technology
mapped solution is used as a master design. From the master design, the slack
sustainability (which determines how well a disjoint closed cone sustains its slack
by replacing some of its cells in technology mapping) of disjoint closed cones are
estimated. Closed clones with the product of slack and slack sustainability greater
than a threshold value are qualified for hosting the watermark bits. Qualified disjoint
closed cones are randomly selected and ordered by the authorship signature. The
watermark is inserted into these selected closed cones by remapping them according
to the constraints imposed by the signature. If the watermark bit to be inserted is
‘1’, the selected closed cone is remapped by coercing the change of one template
of the cone; otherwise, the selected template used in the cone is preserved. The
watermarked solution is generated by remapping only the selected closed cones
according to the stego constraints with incremental synthesis. In fact, the scheme
employs the generic three phase watermarking approach described in Sect. 3.2. As
the closed cones are qualified based on both slack and slack sustainability over
the already optimized master design, it maximizes the embedding capacity and is
stealthier than hosting the watermark bits in non-critical paths determined merely
by the absolute timing slack. The timing overhead of the watermarked solution can
also be kept minimal or even improved.

3.3.2 Hierarchical Watermark

Localized watermarking can be viewed as inserting multiple watermarks in the
design at one abstraction level. Instead, Charbon and Torunglu [53, 54] proposed to
insert multiple watermarks in different levels, laying the foundation for hierarchical

Hardware IP Watermarking and Fingerprinting 347

watermarking. With multiple watermarks independently embedded in different
abstraction levels, a more robust protection to the IP core is provided. Only when an
attacker is able to delete all the watermarks in different design level can he remove
the authorship proof. One concern of the hierarchical scheme is the proportionally
increase in the watermarking overhead with the number of watermarked levels.
This issue can be addressed by a similar idea as localized watermarking in
Sect. 3.3.1. The authorship information can be divided into small parts, and indepen-
dently inserted into every abstraction level to be marked. Besides, as watermarking
approaches at different levels have their own strengths and limitations, hierarchical
watermarking provides a platform for these techniques to complement each other
so that each technique enjoys a greater flexibility and trade-off to achieve a more
robust overall IP protection scheme.

The advantage of hierarchical watermarking is exemplified by the watermarking
scheme in [55], where the watermark is inserted in both the finite state machine
(FSM) and the test scan chain. The FSM watermarking and test architecture
watermarking are to be discussed in Sect. 4. The former has good robustness
against attacks but the watermark cannot be directly detected after the IP core is
integrated into the system. The latter one is vulnerable to attacks but watermark
detection is very easy. Thus, the authenticity of the encapsulated FSM IP core can
be conveniently detected in the field through the watermark embedded in the scan
architecture while the vulnerability of the latter is fortified by the robustness of the
FSM watermark. The watermark in the test structure acts like a fragile watermark.
Its removal alerts the IP owner to verify the existence of the watermark in the FSM
and helps to trace the pirated chips that contain the misappropriated IP core.

4 Watermark Extraction

As discussed in Sect. 2.2, a watermarking scheme is incomplete and turns out
to be impractical if it is difficult to detect and track. Except the side-channel
watermarking approaches, e.g., the three schemes described in Sect. 3.1, a majority
of the watermarking schemes require processing the watermarked solution in order
to extract the watermark.

4.1 By Physical Processing

From the watermark extraction point of view, these watermarking schemes can be
classified into two types. The first type is the static watermarking scheme, whereby
the presence of watermark is verified indirectly by checking if the watermarked
constraints generated by the author signature are satisfied. The second type is the
dynamic watermarking. For this type of schemes, the watermark can be detected
from the output response by injecting a specific input sequence.

348 C.-H. Chang et al.

4.1.1 Static Detection of Watermark

All the constraint-based watermarking schemes described in Sect. 3.2 are static.
To verify the existence of the watermark, the circuit under test (CUT) usually
needs to be reverse engineered to the level where the watermarked solution is
generated. Then existence of the watermark is proved by checking if the stego
constraints due to the authorship signature are satisfied. There are some concerns
about such a detection process. First, reverse engineering a CUT to the level where
the watermarked solution was originally generated is often a costly task. Second,
the verification process usually needs to expose the grammar used for generating the
stego constraints from the authorship information. This can potentially weaken the
security of other designs that are similarly watermarked.

Some attempts have been made to mitigate the above problems. For example, the
localized watermarking described in Sect. 3.3.1 does not require the complete IP
core for watermark extraction. Thus the effort and cost of retrieving the watermark
will be reduced. Besides, due to the existence of multiple small watermarks in
one IP core, even though a subset of the watermarks are exposed in the process
of ownership proof, the remaining watermarks are still kept secret. In fact, the
watermark verification process in [48] does not even leak the grammar. The process
is analogous to the watermark retrieval of non-oblivious image watermarking. Since
incremental technology mapping preserves the functionality of the interface ports of
remapped cones, the logic functions of these nets can be retrieved from the fan-in
and fan-out nodes of closed cones in the master design. To recover a watermarked
cone from a marked design, corresponding nodes with the same logic functions
are identified. A watermark bit of “0” or “1” can then be determined according to
whether the designated template are absent or present in the cone. This watermark
retrieval method possesses some degree of fragility that enables the detection of
maliciously corrupted watermark bits. When equivalent fan-in and fan-out nodes of
a watermarked cone cannot be found, it implies that either cells within the cone or
cells surrounding the cone have been modified. Hence, the authorship can be proved
by either a perfect or high match between the recovered bit stream and the embedded
watermark. Throughout the verification process, the grammar used to generate the
watermarking constraints is not exposed.

As an effort to avoid leaking the grammar used to generate the watermarking con-
straints, Qu [56] proposed a public watermarking approach, where the watermark
is divided into a public part and a private part. The private part of the watermark is
embedded in a secret way as in the traditional constraint-based watermarking while
the public part is embedded in designated locations by methods made known to the
public to allow public detectability. This way, detection of the watermark is made
easier than that of the conventional schemes but the secret watermark is much well
protected. Only when the public part of the watermark is suspected to be attacked
will its private portion be recovered for authorship proof. Essentially, this scheme
can be deemed as a variant of localized watermarking.

Hardware IP Watermarking and Fingerprinting 349

4.1.2 Dynamic Detection of Watermark

Unlike static watermarking schemes, dynamic watermarking does not require the
watermarked design to be reverse engineered to the level where the watermark
is inserted to perform the watermark detection. Instead, dynamic schemes are
characterized by the watermark stimuli-response pair whereby the watermark bits
can be detected from the output response by running the watermarked design with a
specific input sequence. Such an idea appeared first in [1], where it was proposed to
embed a covert channel into a design in such a way that only the authors of a design
can observe and interpret information obtained through the channel. The authors
illustrate the idea with an example of a digital bandpass filter. The stego constraints
which encode a designer signature are added in the filter structure and by observing
the outputs for the specific input segments, the embedded message can be identified.

For dynamic watermarking schemes, state transition graphs (STG) of finite state
machine (FSM) at behavioral level and test structure such as scan chains at design-
for-testability (DfT) level are the two common vehicles. Typical schemes based on
these two vehicles are discussed below.

FSM Watermarking
The first FSM watermarking scheme was proposed by Torunoglu and Charbon [57].
This scheme starts with building the FSM representation of the sequential design.
Then, unused transitions in the STG are extracted and the watermark is inserted
by adding correspondingly defined input/output sequences. In case of completely
specified finite state machine (CSFSM), an auxiliary input variable is added to
expand the FSM. To satisfy the required strength of authorship proof, the minimum
number of transitions needed is calculated and compared with the maximum number
of free transitions. If the probability that a non-watermarked design carrying the
watermark by coincidence is not low enough, more auxiliary inputs are added.
The input sequence is randomized with the set of unused transition inputs to produce
an output response that contains the encrypted authorship information. To read
the watermark, one should have both the input sequence and the secret key. This
scheme works at a high level of the design flow, which provides extra strength.
It enables the embedded watermark to be detected dynamically at almost all lower
levels, even after design manufacturing. At the same time, the watermark is immune
to FSM reduction techniques and is very hard to remove, as the variables used are
usually part of other transitions. Nonetheless, this scheme has two deficiencies.
Firstly, finding an input sequence that satisfies the required low probability of
coincidence and does not incur a high overhead on the STG is an NP-hard problem
[15]. Although the authors proposed to use exhaustive search or Monte-Carlo search
[58] as the solution, the overhead incurred in the design phase is still high. Secondly,
the scheme just makes monotonous use of the unspecified transitions of the STG for
watermark insertion. The embedding capacity is limited by the number of free input
combinations. If the watermark length is increased beyond the available number
of unspecified transitions to boost the authorship proof, the overhead aggravates
rapidly.

350 C.-H. Chang et al.

S1S0

S2S3

01/11

01/11

11/10 11/00

10/11

1-/01

11/00 0-/10

S1S0

S2S3

01/11

01/11

11/10

10/11

1-/01

11/00 0-/1011/00

S1S0

S2S3

01/11

01/11

11/00

10/11

1-/01

11/00 0-/1000/1111/10

S1S0

S2S3

010/11

010/11

110/00

100/11

110/00
0-0/10001/11

001/01

110/10

1-0/01

a

c d

b

Fig. 9 An example for the watermarking scheme proposed in [59]. (a) The original STG. (b) The
output “00” of S0 coincides with the first watermark segment. (c) One transition added for S3 using
its non-specified input to coincide with the second watermark segment. (d) One transition added
for S2 by adding one input bit to coincide with the second watermark segment

To overcome the weaknesses of the previous scheme, Abdel-Hamid et al. [59]
proposed to utilize existing transitions as well as unspecified ones in an output
mapping algorithm to watermark the FSM, which helps to increase the watermark
embedding capacity and lower the overhead. For example, assume a watermark
of “001101” is to be inserted into the STG in Fig. 9a. As each transition output
consists of two bits, the watermark is partitioned into three segments, i.e., “00”–
“11”–“01”. Starting from the stage S0, a coinciding output “00” is found with the
next stage being S3 (see Fig. 9b). The state S3 has no output being “11” but it has
unspecified inputs. A transition (00/11) from S3 to S2 is added into the STG, which
yields the STG shown in Fig. 9c. In S2, there is no output coinciding with the third
segment, i.e., “01”, of the watermark, and all inputs are specified. In this case, an
extra input bit has to be added to expand the STG. The extra bit is assigned ‘0’
for all existing transitions in the original STG, and ‘1’ for the added transitions.
Therefore, a transition (001/01) from S2 to S0 is added as the third watermarked
transition, as shown in Fig. 9d. When the input sequence “110001001” is injected
into the watermarked FSM at state S0, the watermark can be retrieved from its output
sequence.

Hardware IP Watermarking and Fingerprinting 351

The embedding process is fast as the watermark bits are inserted at large by a
random walk of the STG. When all output bits of an existing transition of a visited
node coincide with a substring of the watermark, that transition is employed as
part of the watermarking sequence. Otherwise, one of the unspecified transitions
is selected to insert some watermark bits. One drawback of this scheme is that
coincidence of existing transition’s output with the watermark bits becomes rare
when the FSM has a high number of output bits. When only unspecified transitions
are used for watermarking, this scheme becomes similar to the previous scheme. If
there is not enough unspecified transition, pseudo input variables have to be added.
Another drawback is the fixed assignment made to the pseudo input variables. This
conspicuous discrimination between existing transitions and added transitions may
unveil the pseudo-input to an attacker, and the removal of any pseudo input can
easily eliminate or corrupt the watermark without affecting the FSM functionality.
In addition, the addition of new input variables with fixed assignments on all
transitions increases the decoder logics and hence the overhead of watermarked
FSM significantly.

A more robust and lower overhead version of STG transition-based watermarking
scheme was presented in [60]. To overcome the problem of low probability of
coincidence between the watermark substring and existing transition outputs, a
longer verification sequence is suggested which results in a response sequence with
more bits. In the previous two schemes, the number of watermarked transitions is
equal to m/k, where m is the watermark length and k is the number of output bits for
each transition. In contrast, the number of possibly watermarked transitions is made
larger than m/k in this scheme. The localities of the watermark bits are randomly
generated and dispersed into the bits of the output sequence. The probability that
the designated output bit has the same value as its hosted watermark bit is ½.
This tremendously increases the opportunity of employing existing transitions for
watermark insertion, reduces the need to add new transitions and consequently
reduces the overhead of watermarking. In addition, instead of making the fixed
assignment of auxiliary input variables, this scheme keeps their states as don’t
cares in all transitions except only for the watermarked transitions where their input
combinations need to be fixed to host the watermark bits. There are two advantages
for this deferred assignment. Firstly, it minimizes the output and next state decoders
of the watermarked design. Secondly, the added transitions become indiscernible
from the existing ones and removal of the pseudo input variables can affect the
FSM functionality. The drawback is that a longer verification sequence and output
sequence will be required for watermark retrieval.

The states of the STG can also be utilized for watermark insertion. For example,
in [15], the FSM is watermarked by introducing redundancy in the STG so that
some exclusively generated circuit properties are exhibited to uniquely identify the
IP author. According to the watermark, a specific sequence of states is generated
and will only be traversed with the excitation of a specific sequence of inputs. The
watermark verification relies on the presence of such extraneous states in the STG.
However, the watermark will not survive the removal of all redundant states by state
minimization attack. The author provides two possible ways to verify the presence

352 C.-H. Chang et al.

of the watermark, which are the implicit Binary Decision Diagram (BDD)-based
enumeration method and the Automatic Test Pattern Generation (ATPG)-based
method. The former is too slow for large circuits, whereas the latter requires the
solution of an NP-complete problem. It is also not evident that the verification can
be carried out efficiently on large circuits.

Test Structure Watermarking
The main limitation of FSM watermarking is that once the watermarked IP is
integrated into the chip, the watermarks hidden in the SOC after the chip has been
packaged cannot be extracted in the field without dismantling the encapsulation. The
only signal that can be traced after chip packaging is the test signal. Thus, numerous
post-fabrication verifiable schemes based on the test sequence have been proposed.

In [61], Kirovski and Potkonjak developed a technique for watermarking the
design at the logic network level during the selection of the chain of scan registers
for sequential logic test generation. The watermark is converted into additional user
specific constraints for the selection algorithm. The insertion is realized by using a
set of protocols for standardized ordering of the directed graph representation of the
circuit. Due to the specific nature of the design of partial scan chains, watermark
detection becomes a trivial procedure which is performed by inserting a standard
set of test vectors and receiving a set of outputs from the scan chain that is uniquely
related to the embedded signature. Similarly, Cui and Chang [62] proposed to add
the constraints generated by the owner’s digital signature onto the NP-hard problem
of ordering the scan cells to achieve a watermarked solution that minimizes the
test power. As only the order of scan cells changes, this scheme has no impact
on the fault coverage and test application time. The first scheme [33] described in
Sect. 3.1 also combines a watermark generating circuit with the test circuit of the IP
core at the behavior design level. The watermark sequence is observable from the
response patterns in the test mode. All these schemes enable field authentication of
the authorship by the IP buyer after the chip has been packaged. However, as the
watermarked test core of these schemes is independent of the functional logic, it is
not a difficult task for an attacker to redesign the test circuit in order to completely
remove or partially corrupt the watermark.

To cope with the limitations, Chang and Cui [63] introduced a synthesis-for-
testability (SfT) watermarking scheme. The watermark is embedded as implicit
constraints to the scan chain ordering problem as in [62]. Unlike the DfT water-
marking methods [33, 61, 62], which are performed after logic synthesis, the
SfT watermarking scheme inserts the watermark into the scan chain before logic
synthesis. This helps to merge the test functions with the core functions, making the
attempts to remove or alter the embedded watermark more costly as such attempts
are now quite likely to impact the design specification and optimality. In addition, by
using the SfT technique instead of the DfT technique, standard flip-flops can be used
as scan register. Without the need to use specialized scan flip-flop (SFF) cells, this
scheme is applicable to the protection of IP cores in programmable logic devices.
The possible concern of this scheme is that SfT technique is not the mainstream
testing technique in industry.

Hardware IP Watermarking and Fingerprinting 353

4.2 Side Channel Watermark Extraction

Until recently, efficient watermark detection becomes a rising focus, which results
in the emergence of many FSM and test structure based watermarking schemes.
As another attempt to simplify the watermark detection, side-channel based water-
marking is proposed, where the watermark is detected from side channels such as
temperature, power, electromagnetic radiation, etc. Three representatives of such
schemes [34–36] have been described in Sect. 3.1. Among them, the scheme by
Kean et al. [34] provides the most convenient way to detect the watermark. A
thermocouple is attached to the chip package for measuring the temperature changes
and the watermark is detected by verifying the correlation between th emeasured
data and a database of watermarks. The slow data rate for this temperature based
scheme may be a drawback. However, as pointed out by the authors, the time
consumed by the measurement is acceptable compared with the alternative of
extracting the chip from a system and sending it to a lab for analysis. The
measurement process is also much faster than those methods that require electrical
contact, considering the time it takes to locate suitable probe-points on the circuit
board and connect probes [34].

When multiple watermarked IP cores are integrated together in the system,
the emitted side channel signals representing the watermarks of different IP cores
will be superposed, leading to interferences among the signals and an increase in
complexity to decode the watermarks. This observation holds especially for the
power based watermarking scheme in [35] where the power signature is measured
directly. To enable the decoding of all the power signatures, the authors proposed
a multiplexing method in [64], where the communication channel is divided into
multiple logical information channels and one information channel is used for a
power signature. The authors explored four different multiplexing methods, i.e.,
space division multiplexing (e.g., different power pins), time division multiplexing
(e.g., different time slots), frequency division multiplexing (e.g., different carrier
frequencies), and code division multiplexing (e.g., different decoding codes). The
multiplexing methods work best if there is a system-level plan on how the different
power signatures in different IP cores are to be multiplexed and decoded. As the IP
cores are usually developed by different IP owners, such a requirement may not be
easy to satisfy.

The power based side-channel watermarking scheme in [36] is immune to
the interferences among multiple power signals of the watermarks. This is because
the power signature is detected based on the correlation of the power data and the
tag codes stored in a database. The long tag code is pseudo-randomly generated
according to the authorship signature. Each tag code is unique if it is sufficiently
long. The detection mechanism enables the watermark to be hidden below the noise
floor of the power profile. While ensuring that the watermark is easy to be detected in
the power side channel, the scheme prevents an arbitrary third party from detecting
the watermark.

354 C.-H. Chang et al.

5 Fingerprinting

The watermarking techniques described above, though capable of identifying the IP
ownership, is unable to trace the guilty IP buyer from the unauthorized resold copies.
This is because the distributed IP instances to different buyers are identical and carry
the same watermark. The problem can be resolved by fingerprinting which embeds a
unique and distinguishable mark (i.e., fingerprint) into each distributed IP instance.
The malicious buyer who illegally redistributes his IP instance to another entity or
misuses his IP instance in an unauthorized application can be easily identified based
on the embedded fingerprint.

IP fingerprinting shares very similar desiderata with IP watermarking, such as
functionality preservation, high credibility of the proof, low embedding cost and
design overhead, high robustness against attacks, transparency to existing design
flows, and ease of verification. These desired attributes have been explained in
Sect. 2.2. However, the requirements of low embedding cost and high robustness
against attacks are more stringent for fingerprinting. The differences are highlighted
by examining these attributes in the context of fingerprinting.

Low Embedding Cost A large quantity of distinct high-quality fingerprinted IP
instances, instead of the same instance, need to be generated for different buyers.
Hence, the incremental embedding cost (mainly the time and effort) for each
instance must be kept reasonably low. Caldwell et al. [65, 66] suggest that the
run-time for creating every additional fingerprinted instance should be much less
than that for solving the synthesis task from scratch. Qu and Potkonjak [8] even
advocate that an effective fingerprinting scheme should be able to create K >> 1

fingerprinted IP instances at the expense close to that for finding one single solution.

High Robustness Against Attacks The fingerprint needs to be robust against all
attacks that can remove or mask a watermark. In addition, the fingerprint must
also be collusion-secure. In a fingerprinting scheme, different IP buyers receive
different fingerprinted instances. If the inserted fingerprints are the only disparities
in different instances, it will be relatively easy for a group of malicious buyers
to collude and remove the fingerprint (or more commonly, forge an IP instance
from which no buyer in the colluding group can be traced). The collusion attack
is especially straightforward if the fingerprint is independent of the functional logic.
Hence, Qu and Potkonjak [8] postulate that the IP instance of an innocent buyer
cannot be created from any combination of distributed fingerprinted IP instances of
a robust fingerprinting scheme and at least one of the guilty buyer can be traced from
the forged instance created by a collusion attack. As a rule of thumb, the fingerprint
should be closely coupled with the functional logic, making any attempt to remove
the fingerprint without affecting the IP functionality or rendering the IP instance
useless impossible; the distributed fingerprinted instances should be structurally
diverse to disguise the differences incurred by different fingerprints.

It is obvious that the intuitive way to create each fingerprinted instance by
repeating the entire process of a typical constraint-based watermarking technique
is impractical. While the required engineering time and effort for creating a single

Hardware IP Watermarking and Fingerprinting 355

A

B

C

D

Y

A

B

C

D

Y

A

B

C

D

Y

A

B

C

D

Y

a b

c d

Unused
CLB

Unused
CLB

Unused
CLB

Unused
CLB

Fig. 10 Four instances (a)–(d) of the same function in a tile with fixed interface [67]

high-quality watermarked IP instance may be acceptably low, due to the multiplying
factor for a large number of IP buyers, the cumulative fingerprinting cost is huge and
unrealistic. In fact, only a few proposals [3, 8, 65–68] have managed to reduce the
total cost to a reasonable level, which are to be illustrated below.

Lach et al. [3, 67] proposed the first IP fingerprinting scheme for FPGA designs.
The FPGA design can be partitioned into small tiles and each tile has several
structurally different but functionally equivalent instances. For example, consider a
segment of the design for a Boolean function Y D .A _ B/_ .C ^ D/. This Boolean
function can be implemented in a tile containing four configurable logic blocks
(CLB’s) and there are four different implementations that are interchangeable as
shown in Fig. 10a–d. For all the four implementations, there is one unutilized
CLB which can be used to hold a part of the IP buyer’s fingerprint (and also
the IP owner’s watermark). If the same implementation in Fig. 10a is used for
all fingerprinted instances distributed to different IP buyers, the difference in the
tile among fingerprinted instances will be ascribed only to the inserted fingerprint,
and simple comparison collusion will reveal the fingerprint bits. In contrast, by
randomly using one of the four implementations for the Boolean function, the
difference of various IP buyers’ fingerprints will be disguised by the variation
in functional structures. Attempts to tamper with the differences revealed by
comparing fingerprinted IP instances may alter the functionality of the design and
render the design useless.

356 C.-H. Chang et al.

Due to the employed tiling and partitioning technique, the required effort for
generating each fingerprinted instance is greatly reduced. Using the same example
depicted in Fig. 10, where the FPGA design is partitioned into four tiles and each tile
can be implemented with four different instances, 44 D 256 instances with different
functional logic structures can be obtained. Assume that the required effort to place
and route an entire design is E, then the effort required for the implementation
of each tile instance is around E/4. The effort to implement each tile instance,
amortized over its use in 43 D 64 different design instances is E= .4 � 64/. Hence
the effective effort to generate each tiled design is only E/64.

As the scheme employs only the unused CLB’s in an FPGA design, which always
exist, the area overhead is low. However, creating the tiled design and generating
functionally equivalent but structurally different instances for each tile may intro-
duce non-negligible timing overhead for the resultant design. The vulnerability of
this scheme is that the fingerprint is independent of the functional logic after all.
The fingerprint can be removed by reverse engineering the fingerprinted IP instance
to an abstraction level before the fingerprint was inserted.

As opposed to the previous scheme which is only applicable to designs with
specific regular and highly granular structure, the scheme proposed by Caldwell
et al. [65, 66] can be applied to almost all synthesis problems. The basic idea is to
obtain an initial seed design by performing the synthesis task from scratch. For each
IP buyer, a new fingerprinted instance can be generated with the buyer’s fingerprint
and the seed design, where only incremental iterative optimization is required. As
the effort for creating the seed design is leveraged for generating each fingerprinted
design, the scheme manages to reduce the cost of fingerprinting tremendously. Take
the standard-cell placement problem for example. The target of this problem is to
place each cell of a gate-level netlist onto a legal site with no overlap between two
cells and minimized interconnection wire lengths. To create a fingerprinted solution,
an initial placement solution S0 is obtained from scratch. Then, a subset of signal
nets N0 in the design is selected according to the fingerprint. The weight of each
net in N0 is set to 10 with the remaining nets set to 1. Based on the solution S0

and the new net weights, the fingerprinted placement solution can be generated by
incrementally replacing the design. The pseudo-code of the fingerprinting process
is depicted in Fig. 11. It should be noted that the seed solution for generating
the fingerprinted solution Si may not necessarily be S0. Instead, the solution Si�1,
i.e., the fingerprinted solution for the (i–1)-th user, can be used. As Si�1 is a local
optimal solution, re-weighting selected signal nets will break the local optimality
and facilitate the generation of a new fingerprinted solution Si that is far away from
Si�1. Hence, the new seed design will help to generate fingerprinted instances that
are more resilient against collusion attacks. However, as mentioned by the authors,
the new solution will inherit the constraints from the previous fingerprinted solution
and affect its quality.

It is worth noting that the iterative fingerprinting approach can also be applied to
optimization problems that cannot be solved by iterative improvement. For example,
given an SAT problem, new solutions cannot be generated from a seed solution by
applying iterative improvement techniques. However, a fingerprinted solution can

Hardware IP Watermarking and Fingerprinting 357

Fig. 11 Pseudo-code of the iterative fingerprinting approach on standard-cell placement

Fig. 12 Duplicating vertex A
to generate a solution from
which two solutions can be
derived for the original graph.
(a) Original graph (b) New
graph

A

B

C D

E

F

A’A

C D

E

F

B

a b

be generated by solving a new SAT problem with smaller size which is built by
preserving the assignments of variables selected according to the fingerprint and
removing them (along with their complements) from the initial SAT problem.

In the iterative fingerprinting approach, the incremental optimization effort
required to generate each fingerprinted IP instance is still non-trivial. As a large
number of fingerprinting instances are usually required, the total amount of effort
may still be huge. Qu and Potkonjak [8] proposed a scheme with almost zero
incremental effort to generate various fingerprinted solutions after a seed solution
is found. The key idea is to introduce a set of independently relaxable constraints
before solving the original design problem. From the obtained solution for the
modified problem (namely the seed solution), a number of distinct solutions for
the original design problem can be derived by independently relaxing each con-
straint. The authors proved this idea on the NP-complete graph coloring problem.
Additional constraints can be introduced by duplicating a selected set of vertices,
modifying small cliques or adding edges between unconnected vertices. Take for
example the technique of duplicating a selected set of vertices. Assume we have
an original graph shown in Fig. 12a. We duplicate vertex A by adding vertex A0
and connecting A0 with all the neighbors of A. An edge is also added between
vertices A and A0, resulting in the new graph shown in Fig. 12b. After solving the
graph coloring problem for the new graph, a coloring solution can be obtained, with
vertices A and A0 colored differently. From this solution, two coloring solutions for
the original graph can be easily derived with vertex A taking one of the two different
colors. Similarly, if k vertices are duplicated and one solution is found for the new
graph, a total of 2k different solutions can be derived for the original graph.

358 C.-H. Chang et al.

The three techniques mentioned above modify the graph to introduce additional
constraints before the graph coloring problem is solved, and hence can be classified
as the pre-processing approach. The quality of the derived solutions heavily depends
on the added constraints. If the original graph is overly constrained, more colors
may be used for the modified graph than the necessary number of colors for the
original graph. To cope with this problem, the authors also present a post processing
approach. A solution to the graph G (V, E) with k colors is first obtained. Then the
vertices of the graph is partitioned into m subsets by their colors with the number of
colors in each subset being C1, C2, : : : , Cm, respectively. The sub-graph formed
by the i-th subset of vertices is Ci colorable. As the size of each sub-graph is
in general relatively small, all the Ci-color solutions can be found by exhaustive
enumeration, denoted as ni. In this manner, all the solutions for each sub-graph can
be exhaustively found and a total number of n1�n2 � � ��nm solutions can be derived
for the graph.

The scheme, although very effective in generating a lot of different solutions
with low overhead, lacks a clear mechanism to insert the fingerprint of high
credibility. Although each derived solution is guaranteed to be distinct, how distinct
the fingerprinted instances are remains a question. If many similarities exist among
fingerprinted solutions, the solutions will be vulnerable to collusion attacks.

All the three fingerprinting schemes described above focus on how to create a
large number of different quality fingerprinted instances with a low cost and how
to make the inserted fingerprint robust against removal, masking and collusion
attacks. As in the early-stage watermarking schemes, the ease of fingerprint
verification has been neglected. The fingerprint is verified by checking whether
the corresponding constraints are satisfied, which is very similar to that of the
static watermarking scheme introduced in Sect. 4.1.1. This static type of fingerprint
verification process is cumbersome and costly. The verification complexity escalates
after the fingerprinted IP is integrated and packaged into a system.

More recently, Chang and Zhang [68] proposed a dynamic fingerprinting scheme
that allows the embedded fingerprint to be conveniently detected off-chip. The
fingerprint is inserted by constraining the state encoding of a test machine to be
embedded into and synthesized with a sequential circuit IP. A test machine [69] is
a special FSM that has the following property: An n-FF test machine can be set
to any of its state with a corresponding n-bit synchronizing sequence; each state
of the test machine can be distinguished by applying any n-bit input sequence and
observing its output sequence (termed distinguishing response). The test machine
can be used as an alternative to the scan chain for improving the controllability
and observability of sequential circuit IP. As the test machine is synthesized with
the design, the fingerprint encoded into the state variables is well integrated with
the functional logic and has a global influence on the circuit structure, making the
fingerprinted instances inherently collusion-resistant.

The detection of the fingerprint is straightforward. By injecting a specific
fingerprint verification sequence, a corresponding distinguishing response can be
obtained. The fingerprint bits can then be extracted from the response sequence.

Hardware IP Watermarking and Fingerprinting 359

As the fingerprint is detected from the test output, the verification process can
be performed conveniently in the field after the fingerprinted IP is integrated in a
system.

Typically, the IP owner’s watermark and buyer’s fingerprint is inserted by
concatenation. This naive way doubles the signature length and increases the stego
constraints. This issue is first addressed in [68] by using a single fused signature
that carries both the watermark and the fingerprint information. As this secure fused
signature can be applied to any fingerprinting scheme, its method of generation is
described in details below.

The signature is generated through a blind signature protocol [70]. For simplicity,
Chaum’s blind signature protocol based on RSA is considered. Let (nA, eA) and dA

be the certified RSA public and private keys of Buyer A, where nA D pA � qA is
the product of two large random primes. The fingerprint F to be embedded into the
IP instance for Buyer A can be generated through the following message exchange
between the IP provider and Buyer A.

1. Watermark generation: The IP provider selects a message to convey its ownership
information. The ASCII encoded message is first converted into a binary string
and then processed by a hash function such as SHA-2 [71] to generate an integer
W, where 0�W < nA.

2. Blinding phase: When Buyer A makes a purchase request, the IP provider
randomly selects a secret integer kA satisfying 0� kA < nA and gcd(nA, kA)D 1
to compute WA D W � .kA/eA mod nA. This concealed watermark WA is then sent
to Buyer A.

3. Signing phase: To endorse the purchase, Buyer A signs WA with his secret key dA

and returns his blinded signature FA D .WA/dA mod nA to the IP provider.
4. Un-blinding phase: By computing F D FA�kA

�1 mod nA, the IP provider obtains
the signature of Buyer A on his watermark W, which is the fingerprint to be
inserted into the IP instance sold to Buyer A.

The IP provider can verify if the fingerprint F is genuine by decrypting it with
Buyer A’s public key. Since F is the digital signature of Buyer A on the IP provider’s
watermark W, it provides an undeniable proof for tracing the redistribution of the
copies of IP bought by him. Meantime, as W is concealed in WA, Buyer A has no
knowledge of the IP provider’s watermark W and his own signature on W. The
blindness of F increases the deterrent effect of uncertainty.

6 Related IP Management and Protection Techniques

There are a large number of IP management and protection techniques that are, to
a large or a small extent, related to hardware IP watermarking and fingerprinting.
We briefly survey some of them and emphasize their relationship to hardware IP
watermarking and fingerprinting.

360 C.-H. Chang et al.

ID Extraction
The cost of modern transistors is very low, but the cost of modern silicon foundries
is very high, even above $1 billion. The manufacturing and testing processes are
very complicated and require careful and accurate tracking of each wafer and each
integrated circuit. Due to intrinsic process variation each integrated circuit is unique.
It has been observed even before the first hardware watermarking and fingerprinting
techniques were introduced that it is rather easy to extract a reasonably stable ID
for each integrated circuit that can be used for its tracking during the manufacturing
and testing processes [72]. There are three key differences between ID extraction
and hardware watermarking. The first is that ID extraction is conducted in a secure
environment: there is no need to consider attacks. The second is that each chip must
have a unique identifier and there is no need for recognizing watermarks. Finally,
the extraction of the ID is easy since the chips are still not packaged and are anyhow
subject to testing and characterization.

Remote Hardware Enabling and Disabling
There are three essential steps in watermarking-based hardware IPP. By far the
best addressed is watermark embedding. Also, it was recognized that watermark
extraction is an important hardware IPP task. While initially it was assumed
that complete reverse engineering of integrated circuits is a relatively easy task,
several techniques later recognized that in many scenarios remote detection of
hardware IP is beneficial [73–75]. Also, several hardware watermarking techniques
automatically enable easy remote watermark extraction or even make that each
output produced by the watermarked circuitry contains information about the
watermark [15, 16]. The importance of the third step, watermark enforcement, was
recognized more recently. The idea is that only the designer can issue commands
for IC activation or deactivation. There are several variants of the basic schemes
but all of them share the same IPP mechanisms. Essentially each chip has a
physical unclonable function that produces outputs (key) that are required for correct
operation of the chip. Only the designer can produce the key after the manufacturer
or the owner of the chip provides certain IC measurements [74, 76–81]. While, of
course, remote circuit enabling and disabling is more powerful than just watermark
embedding as it regularly results in significantly higher hardware and sometimes
even timing overheads. The final remark is that recently several techniques have
emerged that enable remote software enabling and disabling using hardware-based
primitives such as PUFs [82, 83].

Intentional Hardware Trojans
Hardware Trojans are widely studied malicious circuitries that are embedded by
attackers in order to enable certain actions that are detrimental to legal owners
of the circuits. Typical objectives include extraction of privileged information and
targeted denial of service. It has been widely acknowledged that due to process
variation and the ultra large scale of integration it is often very difficult to discover
hardware Trojans that are embedded either during design or manufacturing of
integrated circuits [84, 85]. Interestingly, one can intentionally embedded hardware
Trojans in its own designs and chips in such a way that they facilitate hardware

Hardware IP Watermarking and Fingerprinting 361

and software IPP [85]. For example, process variation can make only a subset of
potential Trojans active. The same results can be achieved if some parts of each chip
are intentionally damaged or disconnected. Now, only the manufacturer of the chip
knows all non-operating components on a particular chip. So, the relevant compile
company may use this information in such a way that each piece of software is
compiled in a unique way for each integrated circuit. Hence, software piracy is
prevented. Interestingly, intentional hardware Trojans can be realized in such a way
that the average and maximal timing degradation is nominal [82, 83].

Hardware Obfuscation
Hardware obfuscation is a technique that implements a piece of digital logic in
such a way that it is very difficult and preferably impossible to reverse engineer
its functionality. An excellent example of potentially very effective hardware
obfuscation approach has been recently proposed and analyzed by researchers at
NYU Polytechnic [86]. The key idea is to implement pairs of similar gates in such
a way that there is a very small difference in their realization that is difficult for
reliable characterization even using destructive reverse engineering techniques. In
some sense it employs exactly the same argument that has been used for securing
Actel/Microsemi FPGA devices that if one uses a large number of very small fuses,
the device is difficult to reliably reverse engineer. The question about resiliency
against side channel attacks is currently open. Some recent reverse engineering
techniques employ PUFs to implement the logic. Therefore, each chip of the same
design has unique structure and unless a small percentage of configurable logic is
properly configured, the chip is not functional. Hence the direct manufacturing of
copied designs is not possible and the attacker is forced to completely logically
reverse engineer the pertinent design. This technique can be easily retargeted in
such a way to ensure protection of software intellectual property as well as privacy
of data against side channel attacks [82, 83, 87]. The key idea here is to make unique
software for each chip of a particular design and/or to encrypt data by encrypting
and decrypting it via PUFs.

Hardware Metering
An interesting and important question is how many integrated circuits are produced
without permission. For example, this information can be used to figure out what
is the size of the monetary damage. Another interesting and somewhat related
hardware metering question is how often a particular IP core on a specific chip
is used. The first question can be addressed in several ways. For example, one
hardware metering technique uses the fish paradox [88] to estimate the number of
chip copies [89, 90]. This basic idea can be further augmented to take properties of
process variation for more accurate estimation.

Software Metering
Another interesting and economically important question is how many times a
particular software program is executed on a specific integrated circuit. This
question can be addressed by observing the level of device aging at a set or a system
of transistors [90–92]. If there are initial measurements of threshold voltage at these

362 C.-H. Chang et al.

transistors one can use a simple formula to figure out the aging, i.e. how often the
channel of each transistor was under pressure because it was in open switch mode.
If there is no such initial measurements, one has to conduct two threshold voltage
measurements, one before and one after small intentional aging mechanisms, in
order to find the initial position on the aging curve [90]. Note that the same approach
can be used for hardware usage metering as defined in the previous short summary.

Foundry Identification
Accurate tracing of the origin of an integrated circuit is an interesting problem with
many applications. For example, identifying the source of counterfeited circuits
or chips that are produced without proper authorization are economically and
strategically important problems. The problem is algorithmically and statistically
interesting because now one has to identify a set of statistical properties that
are strongly correlated with known chips that are fabricated by a specific silicon
foundry. Wendt et al. recently proposed use of Kolmogorov-Smirnov procedure for
this task [87].

We finish our brief outline of hardware watermarking and fingerprinting tech-
niques by observing that there is an interesting relationship between them and
several other security tasks such as secure remote sensing, secure remote compu-
tation, and hardware and software attestation. We indicate in the next section that
we believe that the basic concepts of hardware IP watermarking may be used for the
creation of qualitatively new security approaches for semantic protection of design
intellectual property.

7 Challenges and Opportunities

There are numerous directions that researchers of hardware IP watermarking and
fingerprinting are currently pursuing. Maybe the most interesting and important
observation is the rapidly growing trend of shifting the initial emphasis from
embedding watermarks into design toward their extraction and IP active protection
using enabling and disabling. Another interesting trend is towards quantitative
evaluation of how many non-authorized ICs are produced and how much they are
used.

In this section we focus our attention on three directions that have as their
primary starting points on hardware watermarking and fingerprinting techniques
that may impact not just hardware security and protection but also software rights
enforcement and emerging areas such as big data and the Internet of Things.

Trusted IP Modules
The exponentially growing discrepancy between silicon and designer productivity
implies a need for hardware and software reuse. The essential requirement for
hardware and software IP is that these functional artifacts are trusted, i.e. they
implement their declared functionality and nothing more. In more demanding

Hardware IP Watermarking and Fingerprinting 363

scenarios they also should not contain any security vulnerabilities. The creation
of trusted hardware and software has attracted surprisingly little attention [93].
The basic idea of this effort is that each IP resource is used in each cycle by the
declared functionality such that there exists very little resources and time in which
an attacker can launch his attack. The additional focus is placed on the minimization
of energy and on low time overhead. Obviously, there is large room and potential in
this domain that requires new and fresh ideas and concepts.

Support for Trusted Software Execution
There are only a few actual reported and documented hardware IP attacks. At the
same time new software attacks are reported on a daily basis. Only software piracy
is estimated on well over $100 billion [94]. Therefore, the importance of software
IP protection is of paramount importance. Numerous watermarking and other
techniques have been proposed for these tasks [95–97]. Until now, techniques for
trusted software protection are implemented after the design and implementation of
the architecture is already completed. However, it is clear that some architectures are
more vulnerable than others to specific types of attacks. Also, different programs are
subject to different attacks that exploit different vulnerabilities. All these constraints
can be simultaneously analyzed using techniques from hardware IP watermarking
to ensure the creation of secure reusable hardware and software IP.

Semantic Hardware and Software IP Protection
All existing hardware IP protection techniques currently employ only syntax
information for defining its objectives and accomplishing its tasks. At the same
time, companies are spending hundreds of millions of dollars and sometimes
even billions for their patent portfolios and their enforcement. There are also a
number of very powerful reverse engineering techniques [20, 21]. There are even
a number of techniques that are able to characterize chips using nondestructive
techniques and by only employing remotely applied measurements. We believe that
the use and processing of semantics can fundamentally alter and greatly improve
the effectiveness of IP protection. These goals would also require conceptually
new ideas and techniques. Most likely the first semantic IP protection techniques
will have narrow objectives and target very specific pieces of semantic knowledge.
Semantic hardware and software IP protection as well semantic protection in other
domains are very difficult tasks. However, at the same time they are crucial for
effective IP protection.

8 Conclusion

Hardware watermarking is a process of creating hardware IP in such a way that
created artifacts contain undisputable proofs of authorship. The main flow of
hardware IP watermarking consists of watermarking embedding, extraction, and
steps for enforcement of digital rights. There are a number of augmenting and
optional steps such as watermark enforcement and calculation of properties of the

364 C.-H. Chang et al.

watermarks such as the probability of coincidence, i.e. the likelihood of detection
of non-intentional watermarks. We stress that the most critical aspects of hardware
watermarking is to establish its global role as a hardware security technique and
its relationship with other hardware security tasks. Finally, we proposed several
very challenging and potentially practical and economically rewarding research
and development directions including the creation of trusted hardware IP and the
enforcement of semantic hardware IP rights.

References

1. Hong, I., Potkonjak, M.: Techniques for intellectual property protection of DSP designs. In:
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3133–3136
(1998)

2. Lach, J., Mangione-Smith, W.H., Potkonjak, M: Fingerprinting digital circuits on pro-
grammable hardware. In: Information Hiding, pp. 16–31 (1998)

3. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: FPGA fingerprinting techniques for protect-
ing intellectual property. In: IEEE Custom Integrated Circuits Conference, pp. 299–302 (1998)

4. Qu, G., Potkonjak, M.: Analysis of watermarking techniques for graph coloring problem. In:
IEEE/ACM International Conference on Computer-Aided Design, pp. 190–193 (1998)

5. Qu, G., Wong, J.L., Potkonjak, M.: Optimization-intensive watermarking techniques for
decision problems. In: ACM/IEEE Design Automation Conference, New Orleans, LA, pp.
33–36 (1999)

6. Qu, G., Potkonjak, M.: Hiding signatures in graph coloring solutions. In: Information Hiding,
pp. 348–367 (2000)

7. Qu, G., Wong, J.L., Potkonjak, M.: Fair watermarking techniques. In: Asia and South Pacific
Design Automation Conference, Yokohama, Japan, pp. 55–60 (2000)

8. Qu, G., Potkonjak, M.: Fingerprinting intellectual property using constraint-addition. In:
Design Automation Conference, pp. 587–592 (2000)

9. Qu, G., Potkonjak, M. Intellectual Property Protection in VLSI Design Theory and Practice.
Kluwer. ISBN: 1-4020-7320-8 (2003)

10. Wong, J.L., Qu, G., Potkonjak, M.: Optimization-intensive watermarking techniques for
decision problems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(1), 119–127
(2004)

11. Wolfe, G., Wong, J.L., Potkonjak, M.: Watermarking graph partitioning solutions. In: Design
Automation Conference, pp. 486–489 (2001)

12. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak, M.,
Tucker, P., Wang, H.J., Wolfe, G.: Constraint-based watermarking techniques for design IP
protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(10), 1236–1252 (2001)

13. Wolfe, G., Wong, J.L., Potkonjak, M.: Watermarking graph partitioning solutions. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 21(10), 1196–1204 (2002)

14. Oliveira, A.L.: Robust techniques for watermarking sequential circuit designs. In: Design
Automation Conference, pp. 837–842 (1999)

15. Oliveira, A.L.: Techniques for the creation of digital watermarks in sequential circuit designs.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(9), 1101–1117 (2001)

16. Rashid, A., Asher, J., Mangione-Smith, W.H., Potkonjak, M.: Hierarchical watermarking for
protection of DSP filter cores. In: IEEE Custom Integrated Circuits Conference, pp. 39–42
(1999)

17. Blythe, S., Fraboni, B., Lall, S., Ahmed, H., Deriu, U.: Layout reconstruction of complex
silicon chips. IEEE J. Solid State Circuits 28(2), 138–145 (1993)

Hardware IP Watermarking and Fingerprinting 365

18. Anderson, R., Kuhn, M.: Tamper resistance – a cautionary note. In: The Second Usenix
Workshop on Electronic Commerce, pp. 1–11 (1996)

19. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Security Protocols,
Springer, Heidelberg, pp. 125–136 (1998)

20. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Cryptographic
Hardware and Embedded Systems, pp. 363–381 (2009)

21. Torrance, R., James, D.: The state-of-the-art in semiconductor reverse engineering. In:
ACM/EDAC/IEEE Design Automation Conference, pp. 333–338 (2011)

22. Van Le, T., Desmedt, Y.: Cryptanalysis of UCLA watermarking schemes for intellectual
property protection. In: Information Hiding, pp. 213–225 (2003)

23. Kirovski, D., Potkonjak, M.: Efficient coloring of a large spectrum of graphs. In: Design
Automation Conference, pp. 427–432 (1998)

24. VSI Alliance (1997) VSI Alliance Architecture Document: Version 1.0, Santa Clara, CA
25. Cox, I.J., Miller, M.L., Bloom, J.A.: In: Digital watermarking. Morgan Kaufmann Publishers.

ISBN: 1-55860-714-5 (2001)
26. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A survey on IP watermarking techniques.

Des. Autom. Embed. Syst. 9(3), 211–227 (2004)
27. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: IP watermarking techniques: survey and

comparison. In: IEEE International Workshop on System-on-Chip for Real-Time Applications,
pp. 60–65 (2003)

28. VSI Alliance (1997) Fall worldwide member meeting: a year of achievement. Santa Clara, CA
29. Kerckhoffs, A.: La Cryptographie Militaire. Journal des sciences militaires. IX, 5–38 (1883)
30. Wong, J.L., Majumdar, R., Potkonjak, M.: Fair watermarking using combinatorial isolation

lemmas. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(11), 1566–1574 (2004)
31. Fan, Y.C., Yang, H.Y., Tsao, H.W.: Direct access test scheme for IP core protection. In: IEEE

Asia-Pacific Conference on Advanced System Integrated Circuits, pp. 262–265 (2004)
32. Fan, Y.C., Tsao, H.W.: Boundary scan test scheme for IP core identification via watermarking.

IEICE Trans. Inf. Syst. E88d(7), 1397–1400 (2005)
33. Fan, Y.C.: Testing-based watermarking techniques for intellectual-property identification in

SOC design. IEEE Trans. Instrum. Meas. 57(3), 467–479 (2008)
34. Kean, T., McLaren, D., Marsh, C.: Verifying the authenticity of chip designs with the

DesignTag system. In: IEEE International Workshop on Hardware-Oriented Security and Trust,
pp. 59–64 (2008)

35. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. J. Signal Process
Syst. Signal Image Video Technol. 51(1), 123–136 (2008)

36. Becker, G.T., Kasper, M., Moradi, A., Paar, C.: Side-channel based watermarks for integrated
circuits. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 13–14
(2010)

37. Yuan, L., Qu, G., Ghouti, L., Bouridane, A.: VLSI design IP protection: solutions, new
challenges, and opportunities. In: First NASA/ESA Conference on Adaptive Hardware and
Systems, pp. 469–476 (2006)

38. Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Huijuan, W., Wolfe,
G.: Robust IP watermarking methodologies for physical design. In: Design Automation
Conference, pp. 782–787 (1998)

39. Kahng, A.B., Kirovski, D., Mantik, S., Potkonjak, M., Wong, J.L.: Copy detection for
intellectual property protection of VLSI designs. In: IEEE/ACM International Conference on
Computer-Aided Design, pp. 600–604 (1999)

40. Chapman, R., Durrani, T.S.: IP protection of DSP algorithms for system on chip implementa-
tion. IEEE Trans. Signal Processing 48(3), 854–861 (2000)

41. Megerian, S., Drinic, M., Potkonjak, M.: Watermarking integer linear programming solutions.
In: Design Automation Conference (DAC), pp. 8–13 (2002)

42. Kirovski, D., Potkonjak, M.: Local watermarks: methodology and application to behavioral
synthesis. IEEE Trans. CAD 22(9), 1277–1284 (2003)

366 C.-H. Chang et al.

43. Koushanfar, F., Hong, I.K., Potkonjak, M.: Behavioral synthesis techniques for intellectual
property protection. ACM Trans. Des. Automat. Electr. Syst. 10(3), 523–545 (2005)

44. Charbon, E., Torunoglu, I.: Watermarking techniques for electronic circuit design. In: Lecture
Notes on Computer Science 2613, pp. 147–169 (2000)

45. Kirovski, D., Hwang, Y.Y., Potkonjak, M., Cong, J.: Intellectual property protection by water-
marking combinational logic synthesis solutions. In: IEEE/ACM International Conference on
Computer-Aided Design, pp. 194–198 (1998)

46. Kirovski, D., Hwang, Y.Y., Potkonjak, M., Cong, J.: Protecting combinational logic synthesis
solutions. IEEE Trans. CAD 25(12), 2687–2696 (2006)

47. Khan, M.M., Tragoudas, S.: Rewiring for watermarking digital circuit netlists. IEEE Trans.
CAD 24(7), 1132–1137 (2005)

48. Cui, A.J., Chang, C.H., Tahar, S.: IP watermarking using incremental technology mapping at
logic synthesis level. IEEE Trans. CAD 27(9), 1565–1570 (2008)

49. Charbon, E., Torunoglu, I.: Watermarking layout topologies. In: ASP-DAC, pp. 213–216
(1999)

50. Narayan, N., Newbould, R.D., Carothers, J.D., Rodriguez, J.J., Holman, W.T.: IP protection
for VLSI designs via watermarking of routes. In: IEEE International Asic/SoC Conference,
pp. 406–410 (2001)

51. De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York
(1994). ISBN 0070163332

52. Meguerdichian, S., Potkonjak, M.: Watermarking while preserving the critical path. In: Design
Automation Conference (DAC), pp. 108–111 (2000)

53. Charbon, E.: Hierarchical watermarking in IC design. In: IEEE Custom Integrated Circuits
Conference, pp. 295–298 (1998)

54. Charbon, E., Torunoglu, I.: Intellectual property protection via hierarchical watermarking. In:
International Workshop on IP Based Synthesis and System Design (1998)

55. Cui, A.J., Chang, C.H., Zhang, L.: A hybrid watermarking scheme for sequential functions. In:
IEEE International Symposium on Circuits and Systems, pp. 2333–2336 (2011)

56. Qu, G.: Publicly detectable watermarking for intellectual property authentication in VLSI
design. IEEE Trans. CAD 21(11), 1363–1368 (2002)

57. Torunoglu, I., Charbon, E.: Watermarking-based copyright protection of sequential functions.
IEEE J. Solid State Circuits 35(3), 434–440 (2000)

58. Cashwell, E.D., Everett, C.J.: A Practical Manual on the Monte Carlo Method for Random
Walk Problems. Pergamon Press, New York (1959)

59. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A public-key watermarking technique for
IP designs. In: Design, Automation and Test in Europe, pp. 330–335 (2005)

60. Cui, A.J., Chang, C.H., Tahar, S., Abdel-Hamid, A.T.: A robust FSM watermarking scheme for
IP protection of sequential circuit design. IEEE Trans. CAD 30(5), 678–690 (2011)

61. Kirovski, D., Potkonjak, M.: Intellectual property protection using watermarking partial scan
chains for sequential logic test generation. In: High Level Design, Test Verification (1998)

62. Cui, A.J., Chang, C.H.: Intellectual property authentication by watermarking scan chain in
design-for-testability flow. In: IEEE International Symposium on Circuits and Systems, pp.
2645–2648 (2008)

63. Chang, C.H., Cui, A.J.: Synthesis-for-testability watermarking for field authentication of VLSI
intellectual property. IEEE Trans. Circuits I 57(7), 1618–1630 (2010)

64. Ziener, D., Baueregger, F., Teich, J.: Multiplexing methods for power watermarking. In:
Hardware-Oriented Security and Trust (HOST), pp. 36–41 (2010)

65. Caldwell, A.E., Hyun-Jin, C., Kahng, A.B., Mantik, S., Potkonjak, M., Gang, Q., Wong, J.L.:
Effective iterative techniques for fingerprinting design IP. In: Design Automation Conference,
pp. 843–848 (1999)

66. Caldwell, A.E., Choi, H.J., Kahng, A.B., Mantik, S., Potkonjak, M., Qu, G., Wong, J.L.:
Effective iterative techniques for fingerprinting design IP. IEEE Trans. CAD 23(2), 208–215
(2004)

Hardware IP Watermarking and Fingerprinting 367

67. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: Fingerprinting techniques for field-
programmable gate array intellectual property protection. IEEE Trans. CAD 20(10),
1253–1261 (2001)

68. Chang, C.H., Zhang, L.: A blind dynamic fingerprinting technique for sequential circuit
intellectual property protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(1),
76–89 (2014)

69. Agrawal, V., Cheng, K.-T.: Finite state machine synthesis with embedded test function.
J. Electron. Test. 1(3), 221–228 (1990)

70. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptography, pp.
199–203 (1982)

71. NIST Secure Hash Standard (SHS) (2012) http://csrc.nist.gov/publications/fips/fips180-4/fips-
180-4.pdf

72. Lofstrom, K.: System for providing an integrated circuit with a unique identification. US Patent
No. 6,161,213. 12 (2000)

73. Koushanfar, F., Potkonjak, M.: CAD-based security, cryptography, and digital rights manage-
ment. In: ACM/IEEE Design Automation Conference, pp. 268–269 (2007)

74. Alkabani, Y.M., Koushanfar, F.: Active hardware metering for intellectual property protection
and security. In: The 16th Usenix Security Symposium, pp. 291–306 (2007)

75. Alkabani, Y., Koushanfar, F., Potkonjak, M.: Remote activation of ICs for piracy prevention
and digital right management. In: IEEE/ACM International Conference on Computer-Aided
Design, pp. 674–677 (2007)

76. Potkonjak, M., Nahapetian, A., Nelson, M., Massey, T.: Hardware Trojan horse detection
using gate-level characterization. In: ACM/IEEE Design Automation Conference, pp. 688–693
(2009)

77. Sheng, W., Meguerdichian, S., Potkonjak, M.: Gate-level characterization: foundations and
hardware security applications. In: Design Automation Conference, pp. 222–227 (2010)

78. Wei, S., Potkonjak, M.: Integrated circuit security techniques using variable supply voltage. In:
Design Automation Conference, pp. 248–253 (2011)

79. Wei, S., Koushanfar, F., Potkonjak, M.: Integrated circuit digital rights management techniques
using physical level characterization. In: ACM Workshop on Digital Rights Management,
Chicago, IL, USA, pp. 3–14 (2011)

80. Wei, S., Nahapetian, A., Nelson, M., Koushanfar, F., Potkonjak, M.: Gate characterization
using singular value decomposition: foundations and applications. IEEE Trans. Inf. Forensics
Secur. 7(2), 765–773 (2012)

81. Wei, S., Wendt, J.B., Nahapetian, A., Potkonjak, M.: Reverse engineering and prevention
techniques for physical unclonable functions using side channels. In: Design Automation
Conference, pp. 1–6 (2014)

82. Zheng, J.X., Li, D., Potkonjak, M.: A secure and unclonable embedded system using
instruction-level PUF authentication. In: International Conference on Field Programmable
Logic and Applications, pp. 1–4 (2014)

83. Zheng, J.X., Potkonjak, M.: A digital PUF-based IP protection architecture for network
embedded systems. In: ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems, Los Angeles, CA, USA, pp. 1–2 (2014)

84. Zheng, J.X., Potkonjak, M.: Securing netlist-level FPGA design through exploiting process
variation and degradation. In: ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Monterey, CA, USA, pp. 129–139 (2012)

85. Zheng, J.X., Chen, E., Potkonjak, M.: A benign hardware Trojan on FPGA-based embedded
systems. In: International Conference on Field Programmable Logic and Applications, pp.
464–470 (2012)

86. Rajendran, J., Sam, M., Sinanoglu, O., Karri, R.: Security analysis of integrated circuit
camouflaging. In: ACM SIGSAC Conference on Computer & Communications Security,
Berlin, Germany, pp. 709–720 (2013)

87. Wendt, J.B., Koushanfar, F., Potkonjak, M.: Techniques for foundry identification. In: Design
Automation Conference, pp. 1–6 (2014)

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

368 C.-H. Chang et al.

88. Mosteller, F.: Fifty Challenging Problems in Probability with Solutions. Courier Dover
Publications (1987)

89. Wei, S., Nahapetian, A., Potkonjak, M.: Robust passive hardware metering. In: IEEE/ACM
International Conference on Computer-Aided Design, pp. 802–809 (2011)

90. Sheng, W., Nahapetian, A., Potkonjak, M.: Quantitative intellectual property protection using
physical-level characterization. IEEE Trans. Inf. Forensics Secur. 8(11), 1722–1730 (2013)

91. Dabiri, F., Potkonjak, M.: Hardware aging-based software metering. In: Design, Automation
& Test in Europe Conference & Exhibition, pp. 460–465 (2009)

92. Potkonjak, M.: Usage metering based upon hardware aging. US Patent 8,260,708 (2012)
93. Potkonjak, M.: Synthesis of trustable ICs using untrusted CAD tools. In: Design Automation

Conference, pp. 633–634 (2010)
94. Koushanfar, F., Fazzari, S., McCants, C., Bryson, W., Sale, M., Song, P.L., Potkonjak, M.:

Can EDA combat the rise of electronic counterfeiting? In: Design Automation Conference, pp.
133–138 (2012)

95. Collberg, C., Thomborson, C.: Software watermarking: models and dynamic embeddings.
In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, pp. 311–324 (1999)

96. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experience with
software watermarking. In: Annual Computer Security Applications Conference, pp. 308–316
(2000)

97. Kirovski, D., Drini, M., Potkonjak, M.: Enabling trusted software integrity. In: Architectural
Support for Programming Languages and Operating Systems, pp. 108–120 (2002)

IP Protection of FPGA Cores Through a Novel
Public/Secret-Key Encryption Mechanism

Bassel Soudan, Wael Adi, and Abdulrahman Hanoun

Abstract Protecting the rights of Intellectual Property (IP) owners is extremely
important to the expansion of the core-based design market. Currently, IP providers
have no mechanism to guarantee the protection of their IP against over-deployment.
We propose a system to guarantee that IP cores can only be deployed into devices
agreed upon between the IP provider and the customer. The system is based on
secured handshaking with encrypted device and design authentication information.
It consists of hardware-supported design encryption and secured authentication
protocols. It uses a combination of secret and public-key cryptographic functions
devised for an uncomplicated trustable design exchange scenario. The public-
key functions use modular squaring (Rabin Lock) on the FPGA chip instead of
exponentiation to reduce the hardware complexity. The system limits the parties
involved in the transaction to the IP provider and the customer only.

1 Introduction

In core-based design, a customer licenses readily designed Intellectual Property
(IP) cores from expert providers and integrates them into their overall system. This
allows the in-house design team to concentrate on the differentiating features of
the system instead of re-inventing standardized features such as bus interface logic,
DSP engines, etc. This is most applicable to FPGA-bound designs where the nature
of the FPGA device lends itself to the core-based design style.

While the FPGA market has grown rapidly, the IP core market has failed
to achieve its expected growth. The prospect of license violation and IP core

B. Soudan (�)
Electrical and Computer Engineering Department, University of Sharjah,
Sharjah, United Arab Emirates
e-mail: bsoudan@sharjah.ac.ae

W. Adi
Technical University of Braunschweig, Braunschweig, Germany
e-mail: w.adi@tu-bs.de

A. Hanoun
Alcon Laboratories, Inc., Erlangen, Germany

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_11

369

mailto:bsoudan@sharjah.ac.ae
mailto:w.adi@tu-bs.de

370 B. Soudan et al.

over-utilization has locked small design-only houses out of the IP providers’ market.
Currently, IP cores are provided mostly by major device manufacturers who see this
as a means for simplifying the development of designs for their devices and therefore
increasing demand for the devices themselves. Since most of their profit comes from
the sale of the devices rather than the IP cores, any loss due to over-deployment is
more than compensated through the increased device sales.

This chapter discusses a secure mechanism and licensing model for protecting
against IP over-deployment. The licensing model allows the IP to be licensed for
specific uniquely identifiable devices. It is impossible to deploy the IP into any
additional device without the explicit involvement of the IP provider (or provable
illegal collaboration of the device manufacturer). An IP provider will have absolute
control over the number of deployments of the licensed IP. Therefore, the IP
provider can charge reasonable per-instance fees and reliably collect all licensing
royalties.

In the remainder of this chapter we will first survey existing over-deployment
prevention mechanisms; then, the proposed system will be discussed in light of
the shortcomings of existing solutions; after that, we will go through certain
implementation details for the required hardware module before summarizing and
concluding with a brief security analysis of the proposed system.

2 Current Licensing Models

2.1 The Business Case for IP Licensing

Currently, when a customer licenses an IP core from a provider, the customer
receives an un-protected, editable, modifiable, and infinitely reproducible net-list to
be incorporated into the customer’s design. There is nothing to stop an unscrupulous
customer from either reverse engineering the net-list to create a locally modified
version of the IP; or generating many more instances of the licensed IP core than
agreed to in the license agreement. This has led to an expensive business model
where IP providers charge large upfront fees to account for run-on possibilities, in
addition to the per-instance fee. This fee structure might be agreeable to customers
with huge installation bases, but it is prohibitively costly for customers with limited
profit margins, the natural customer base for licensing ready-made IP. Since the IP
providers cannot limit the number of deployment instances, they cannot differentiate
in pricing between the two classes of customers [1]. The main issue is the lack
of a reliable mechanism for protecting the intellectual property rights (IPR) of IP
providers.

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 371

2.2 Models of IP Over-Deployment and Counter-Measures

Once an IP leaves the control of the provider, it becomes the target to one of three
possible forms of attack: interception during transfer to the customer (or device),
duplication by cloners after the IP has been deployed into the market, and possible
over-deployment by the customer or the customer’s out-sourced device programmer.

Several mechanisms for protecting the FPGA-bound IP have been implemented
by manufacturers or proposed by researchers. The following subsections provide an
appraisal of the most common IPR protection mechanisms proposed or currently in
use.

2.2.1 Non-SRAM Configuration Cells

In its ProASICPLUS and ProASIC3 lines of FPGAs, Actel replaced volatile SRAM
on-chip configuration cells with non-volatile floating gate Flash ROM elements
(FROM) [2]. Since FROM elements are non-volatile, the on-board bit stream to
allow autonomous re-configuration after power interruption is eliminated. There-
fore, there is no bit stream to intercept or clone in the deployed product. The
downside is the increased device manufacturing costs.

2.2.2 Encryption of Configuration Patterns

SRAM based FPGAs utilize a volatile configuration memory and therefore require
reconfiguration after every power interruption from an external non-volatile mem-
ory. The data link between the FPGA and the non-volatile memory represents a
significant security risk. To help protect against interception and possible cloning,
major FPGA device manufacturers have enabled the encryption of the design data to
ensure that it cannot be meaningfully intercepted between the non-volatile memory
and the device [3, 4].

Actel supported the use of encrypted design bit streams by integrating an AES
block cipher core into the device. The AES block is used to decrypt the design bit
stream as it is being loaded into the device. The decryption key is programmed into
the target device typically at the IP Provider’s own facility. The decryption key is
stored in secure on-chip FROM. After the key has been programmed into the device,
it only accepts a design bit stream that has been encrypted with the same key. Xilinx
on the other hand, integrated DES and Triple DES decryptors into their devices
[4,5]. In both solutions from Actel and Xilinx intercepting the design bit stream is
useless and cloning is impossible without knowing the exact decryption key.

The decryption keys need to be programmed into the devices. This presents three
scenarios:

• The IP provider and the device manufacturer are the same entity. The device
manufacturer initializes the devices with the keys (and possibly downloads the

372 B. Soudan et al.

licensed IP into the devices) before sending them to the customer. However, our
aim is to open the IP core market to allow small-scale IP providers to participate.
The licensing model should not be built on the premise that the IP provider and
device manufacturer are the same entity.

• The IP provider will program the keys into the devices. For this to work, the
provider must have physical possession of the devices. But, the licensing model
should not require shipping the devices to the IP provider for key programming
and then shipping them back to the customer for programming. It is easily
conceivable that the device manufacturer, IP provider and IP customer are in very
distant geographical locations. IP provider should not need to have any contact
with the devices; even for key programming.

• The decryption keys may be shared with the device manufacturer for initializa-
tion into the devices. However, these keys must then also be shared with the
customer because it is the customer who will eventually need to encrypt the
design bitstream before storing it in the configuration memory. The end result
is that the customer will have the undesired access to the raw description of the
licensed IP.

2.2.3 Detecting IPR Violation

There have been several proposed methods for detecting when an IPR violation
occurs. Most are based on fingerprinting the IP or embedding hidden watermarks
in the design description [6–12]. While these methods may be successful in
determining when an IPR violation has occurred, they are not useful in preventing
the violation in the first place, which is our aim in this work. One needs to suspect
that a violation has occurred and have a clue of where it has occurred before being
able to detect it. The sheer number of FPGA based designs continuously appearing
on the market makes it prohibitive to even contemplate checking every single design
for possible IPR violations.

IP providers have resorted to overt and covert customer audits in order to detect
IPR violations. Regular (covert) monitoring of the customer’s in-market products
ensures that the licensed IP has not made it surreptitiously into products not covered
by the license agreements. In addition, overt on-site audits let the customers know
that the IP provider is scrutinizing the adherence. These methods impose an extra
financial burden on the IP provider. In addition, both forms evoke a sense of lack of
confidence in the customer and are counter to the theories of business based on trust.
This is probably one of the main reasons why the IP market remains very small and
concentrated amongst device manufacturers who derive their revenue mainly from
the devices and not the IP royalties. To them providing IP for licensure is primarily
a means to boost device sales.

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 373

2.2.4 Pay-Per-Use Licensing

A pay-per-use methodology based on secret-key cryptography has been proposed
to prevent the over-deployment of licensed IP [1, 13]. The methodology utilizes an
e-commerce server at a Trusted-External-Party (TEP) to regulate all transactions
related to IP licensing. The TEP server builds a device database about all devices
from all device manufacturers. In addition, the TEP server maintains an IP core
database based on information supplied by the IP core providers for each licensable
IP core. Finally, the TEP server also needs to maintain a database of all IP customers
and the IPs they have licensed.

Upon purchasing an IP core, the customer uses trusted software that communi-
cates with the TEP server to download an encrypted copy of the licensed IP, decrypt
and then re-encrypt it for programming into each particular device. The TEP server
also handles charging the customer for the instances of the core being downloaded
to the devices [1]. When the encrypted bit stream is downloaded into the device,
the device’s secret identifier is used in conjunction with data pre-pended to the
design bit stream to obtain the decryption key needed to decrypt the rest of the
bit stream [1]. Figure 1 shows the business relationships required for this proposal
to work properly.

Fig. 1 Business relationships amongst parties involved in designing and using FPGAs [13]

374 B. Soudan et al.

While the methodology proposed above seems to address the issue of preventing
over-deployment, it suffers from several drawbacks:

• The whole methodology is centered on the TEP server which now presents a
single point of complete failure for the system. Should the TEP server fail or be
compromised, the whole system fails.

• The TEP server is entrusted with a lot of sensitive information about the chips,
the cores, the device manufacturers, the IP providers, and the customers. The
TEP is also expected to handle payments of customers to IP providers. The TEP
is expected to maintain data on every device from every device manufacturer and
every core from every IP provider. The device data needs to be kept permanently
to allow for later device re-configuration. There is a strong possibility of data
explosion at the TEP.

• The TEP server downloads an encrypted design bit stream to the customer. This
bit stream is decrypted at the customer’s site using the trusted programming
software and is then re-encrypted with a token received from the TEP. This means
that the raw decrypted design bit stream will exist for some instance of time on
the customer’s premises exposing it to possible compromise.

While the pay-per-use licensing model sounds reasonable theoretically,
widespread implementation of such a system poses many practical issues.

2.2.5 System Based on Secured-Handshaking

In this chapter we propose a thorough business model which gives the IP provider
exact control over the number of deployments for the licensed IP. The proposed
business model includes minor changes in the design of the FPGA itself, the design
flow, and the IP exchange protocol. It may seem that the proposal being set forth in
this work will complicate the IP core licensing mechanism. However, given that IP
core providers will have exact control over the number of deployments, the business
model can shift into the more economically sound supplier/client model instead of
the semi-partnership that it is today. IP providers will not need to charge the large
basic rates to protect against “what-if” scenarios. They can charge on a per instance
basis as they will have exact control over how many instances are being produced. It
is expected that the average per-instance cost for IP clients will be lower compared
to the current model. This should entice more clients into the market and should
greatly expand the market for licensed IP cores.

3 Proposed Scheme

As it was mentioned earlier, the main issue with the current IP licensing model is the
lack of a reliable mechanism for the IP providers to reliably extract revenue from
the deployment of their licensed IP. The issue is in the nature of the IP description

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 375

provided to the customer. IP providers currently communicate a raw description of
the IP to allow the IP customer to integrate it into the finished product. With the
customer having access to the raw description, it becomes essentially impossible
to protect the licensed IP against over-deployment, reverse engineering, or partial
paraphrasing. Therefore, the solution seems to be in denying the customer access
to the raw description of the licensed IP under any condition. This is analogous to
preventing the licensee of a software product from accessing the source code of
the product. Except that, we also need to prevent the customer from being able to
duplicate the compiled product as well.

While software IP providers cannot prevent the customer having duplication
access to the compiled product, most have been able to protect their interest by
requiring a license every time the product is invoked. This license can be in one of
several forms: a license file, an access key based on some user-specific identifier,
or hardware specific identifiers. The wide availability of counterfeit or cracked
software products are a strong evidence of the failure of such mechanisms in
preventing software over deployment. The one exception is the hardware specific
identifier which has met with reasonable success compared to the other systems.

3.1 Hardware Specific IP Licensing

A licensing model based on hardware specific identifiers typically depends on
uniquely-identifying hardware features such as a processor ID, a permanent serial
number, or some other customer inaccessible identifier. Should the customer want
to license the IP for multiple devices, that many device-specific licenses would be
generated and used individually on the matching devices. From the IP provider’s
perspective, this methodology provides reasonable protection against unlicensed use
of the IP. Most software IP providers employing this licensing technique automate
the process through an automatic response system on their website. The customer
supplies a purchase order number—which indicates the number of approved license
instances—and a machine’s uniquely-identifying feature. The automated server
ensures that the maximum number of instances has not been exceeded and generates
the appropriate license and provides it to the customer in one of many physical
means.

Provided that a uniquely-identifying device feature can be established, the “per-
device” licensing concept can be extended to the licensing of hardware IP for use
in FGPA devices. The main difference is the lack of license files in hardware IP
licensing. The exchange must be based on multiple device-specific IP descriptions.
In addition, the IP descriptions must be in a user-unreadable form to prevent reverse
engineering or illegal paraphrasing of the licensed IP into a customer’s own design.

376 B. Soudan et al.

3.2 The Proposed Business Model

Our proposed licensing model is built around the premise that the provider
will communicate to the customer device-specific versions of the IP description
encrypted using device-specific keys inaccessible by the customer. The model
requires the creation of two identical copies of the encryption/decryption secret key
at the IP provider’s site and securely on the device at the IP customer’s site. To avoid
issues related to key management, the identical pairs of secret keys will be created
through the exchange of open public values coupled with a challenge-response
system. Using the encryption key, the IP provider creates a distinct encrypted copy
of the IP description per device. The encrypted IP descriptions are communicated
to the IP customer. The customer downloads each encrypted copy of the IP into the
appropriately matching device. The encrypted description will be decrypted on the
device itself using the key that was created earlier.

The most favorable features of this licensing model are the very limited
involvement of the IP provider and hardware manufacturer and the exact limits on
the number of licensed IP instances. When the “per-device” model is combined
with IPR Protection mechanisms through encryption, the resulting licensing model
affords the IP providers and IP customers with all the necessary features needed for
a trustful financially-sound business transaction.

The exact details of the exchange will be put forward in the next subsections.

3.3 Business Model Enablers

The system is designed to satisfy the following requirements:

• The IP provider must be able to exactly limit the number of IP instances and the
manner of their usage. Therefore, the raw IP description must not exist outside
the IP provider’s control at any point in time. The one exception is on the device
itself under the condition that the design bit stream must not be extractable from
the device after programming.

• The licensing model should be based on the generic situation of an IP customer
licensing an IP from an IP provider and a surrogate programming facility
handling the actual programming of the devices. Therefore, the IP provider
should not need to have direct interaction with the devices.

• The IP should be securely distributable over an open channel like the Internet
without the need for sharing of secrets such as encryption/decryption keys
between IP provider and customer or surrogate programmer. The system security
should be based on known unbroken ciphering technology.

• The system response time and hardware complexity must be kept as low as
possible.

• Collaboration between device manufacturer and IP customer should not lead to
breaking the system.

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 377

A hardware mechanism for generating the secret keys on the device and a specific
exchange protocol are needed to fulfill these requirements.

3.3.1 The Hardware Module

To enable the creation of the unique device-specific key pair, a Device Identity
Module (DIM) like the one shown in Fig. 2 needs to be built into each device. The
DIM should reside in a tamper-proof area where no attack would be possible under
any operating mode.

For each device, the manufacturer establishes a unique public device identity
(DI), which can be branded on the device itself and/or stored in a readable area in
the device.

The DIM needs to include the following elements:

• A non-volatile unreadable storage location to hold a secret device identity (SDI).
The SDI is mapped from DI such that no key collision is possible:

SDI D F.DI; SMK/ (1)

Fig. 2 Architecture of a possible FPGA Device Identity Module (DIM)

378 B. Soudan et al.

where SMK is the manufacturer’s Secret Master Key for that particular FPGA
type and F is a strong block cipher. The manufacturer should embed the SDI
value before delivering any device and be responsible for the uniqueness of all
SDI’s and DI’s. The manufacturer is also responsible to keep SMK secret.

• A write-once register file S whose contents should be fully random and not
readable by the IP customer. The register file is indexed through a profile index
which will be provided from outside the chip.

• A modular squaring block ()2 modulo m, where m is a 500–1000 bit input which
will be obtained from the IP provider [14]. The input m does not need to be stored
locally in the DIM.

• A register file K to hold the decryption keys. It must be inaccessible from outside
the device under any condition. The register file K is indexed through the same
profile index as the register file S.

• A hardware decipher block F�1.

The function F (and its inverse F�1) should be a strong cipher such as AES [15].
The size of all registers, secret keys and other vectors should be 128 bits, the same
as the cipher block size. Whenever the mapping YDF (X, K) is used, it means that
X corresponds to the clear text, K to the key and Y to the resulting encrypted text.

3.3.2 The Exchange Protocol

After the IP customer has selected the IP to license from the IP provider, a secured
design transfer protocol has to be followed to enable the licensing model. The
protocol can be expressed as follows (refer to the 4-step protocol in Fig. 3):

1. The IP provider publishes a random challenge CHi, which should change
frequently with a time stamp defining its lifetime. The IP provider also selects
two secret prime numbers p and q, and publishes their product m. The primes p
and q should be between 500 and 1000 bits to ensure a high security level. CHi

and m can be publicly advertised on the IP provider’s website without loss of
security.

2. The IP customer obtains the challenge CHi and m from the IP provider’s web
page, applies the IP provider’s profile ID, the challenge CHi and the value m into
each of the target devices. This operation freezes the value of the ith entry in the
S register file (Si) in each device and causes the device to produce the ciphered
concatenation CRi as shown in expression (2) below.

CRi D
�

Si

ˇ̌
ˇR
�2

mod m (2)

where R is calculated inside the DIM based on CHi and SDI as shown in
expression (3) below.

R D F.CHi; SDI/ (3)

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 379

Fig. 3 Secured design transfer protocol

In addition, the operation causes a secret key Ki unique for each IP provider
and target device to be generated inside each device according to expression (4)
below.

Ki D F Œ.CHi C R/ ; Si� (4)

The customer collects the device identity DI and CRi for each device and
sends them to the IP provider along with the purchase order.

3. The IP provider uses a public challenge-response verification engine (VE) on the
device manufacturer’s web page to generate a response R0 in a manner similar
to expression (3) above. The verification engine generates R0 based on the IP
provider’s CHi and the device identity DI received from the IP customer as shown
in Fig. 4. R0 will be exactly identical to R.

R0 D F .CHi; F .DI; SMK// (5)

The IP provider uses p and q to compute the square roots of CRi. The number
of square roots over the ring Zm is 4. The correct root is the one that corresponds

380 B. Soudan et al.

Fig. 4 “Verification Engine”
published by the
manufacturer to verify
device identities

to the concatenation (SijR), it is the root with R0 in the least significant bits.
The IP provider can extract Si from the concatenation and generate a matching
Ki for each device following the operation in expression (4). The IP provider is
the only participant in the entire exchange that knows the exact value of Si and
therefore Ki.

4. The IP provider uses the device-unique Ki to encrypt the Binary Design Stream
(D) and produce a unique CDi for each device as shown in expression (6).

CDi D F .D; Ki/ (6)

The resulting ciphered binary design streams CDi are sent to the customer.
5. The customer applies the IP provider’s profile ID and downloads each CDi to the

device with the matching DI. CDi will be automatically decrypted as the right Ki

has already been generated in the device in step 2 earlier.

D D F�1 .CDi; Ki/ (7)

The above protocol can run in parallel for all required devices. All of the steps of
the protocol can be quite easily automated to simplify and speed up the operation.

3.4 Integrating Multiple IPs

For the proposed protocol to be practically applicable it must not overly restrict
the IP licensing business model. Handling a design based on a single licensed
IP is trivial. Through the protocol described above, the IP provider supplies
encrypted bitstreams for each of the target devices; the IP customer (or the contract
programming facility) downloads the bitstreams into the devices and the transaction
is concluded. Of more interest is the scenario where the IP customer intends to
integrate multiple IPs licensed from multiple IP providers along with in-house
developed logic [16].

One of the main requirements stated earlier was that the IP customer must never
have possession of the IP’s raw description to guarantee absolute IPR protection.
Therefore, the integration of the licensed IP within the design flow must be
performed in a black-box manner.

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 381

3.4.1 Black Box Simulation and Analysis

Of paramount interest during the design phase is the ability to simulate and analyze
the design before committing to hardware. To enable overall design simulation
at the IP customer’s site, The IP provider shares compiled simulation and timing
models for the licensed IPs [17–21]. These compiled models protect the details of
the licensed IP but still allow the customer to integrate the IP into the functional
simulation and timing analysis of the overall design. Compiled models are supported
by most currently available design environments and typically are accurate enough
to mimic the inclusion of the actual IP in the overall design. In addition, the
compiled models can also be fully portable across a variety of design and simulation
environments.

3.4.2 The Physical Integration of the IPs

The physical integration of the licensed IPs has to occur on the device itself.
The bitstreams of the different licensed IPs need to be downloaded to the device
separately because they are encrypted with different keys. To enable the final
physical integration of the licensed IPs with the overall design, the technique of
partial reconfiguration will be utilized [22–29]. Partial reconfiguration allows a
portion of the chip to be reconfigured whilst the remaining parts of the chip retain
their current configurations [30].

The design of older devices (like the Virtex 2 from Xilinx) constrained partial
reconfiguration to blocks that consist of integer multiples of Configurable Logic
Block (CLB) columns spanning the entire height of the chip [31–34]. The design
of modern devices has eliminated some of these limitations. The Virtex 4 and
Virtex 5 devices are based on a tiled design [35]. The CLB array is arranged into
configuration rows that span only 16 CLBs vertically [36]. Each frame spans the
vertical height of a tile rather than the full height of the device. This new tiled design
will allow blocks to be of any shape with the single condition that vertically they
must span multiples of 16 CLBs.

This restriction is reasonably fair. Actually, the heterogeneous nature of modern
FPGAs, in itself, places similar floorplanning restrictions on most designs [37].
Newer FPGA chips consist of columns of CLBs, with column pairs of RAMs
and multipliers interleaved between them. The heterogeneous logic and routing
resources on a modern FPGA force strict requirements on the floorplanning of
blocks based on the utilization of resources.

3.4.3 High Level Design Flow for the Integration of Multiple Licensed IPs

The following is a description of the overall design flow for integrating multiple
licensed IPs from licensing the IP’s all the way through device programming [38]:

1. The IP providers advertise their IPs including resource requirements (number of
CLBs and IOBs) for different device types.

382 B. Soudan et al.

Fig. 5 Interaction between IP providers, customer and devices to create profiles and decryption
keys on the devices

2. The IP customer selects the IPs to be licensed and creates a floorplan where
each licensed IP conforms to the reconfiguration limits imposed by the chosen
device type. The area allocated for each IP must contain at least as many CLBs
as required by the IP provider.

3. Upon establishing the purchase agreement with the IP providers, the customer
creates profiles on each device, one per IP provider. The profiles are created based
on the challenges CHi from the IP providers as discussed earlier. This process
also creates the secret keys for the individual IP providers inside the devices (as
shown in Fig. 5).

4. As part of the purchase agreement, the IP customer also communicates to the IP
provider the floorplan requirements for the licensed IP for the given device types.
The IP customer communicates the challenge response (R from expression (3)
shown earlier) to the IP provider. The IP provider uses R to generate a duplicate
copy of the encryption key using expression (4).

5. The IP provider supplies compiled simulation and timing analysis models of the
licensed IP to the customer. The IP provider generates a design bitstream for the
IP that meets the floorplan requirements, encrypts it and dispatches it to the IP
customer. The involvement of the IP provider is complete at this point. The IP
customer collects the encrypted design bitstreams for all licensed IPs from the
different IP providers as shown in Fig. 6.

6. Using “device management” software, the customer builds an association
between each device and the specific design bitstream(s) from each IP provider.
Using this association and the floorplan generated earlier, the software prepends

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 383

Fig. 6 The customer collects encrypted IP design bit streams from each IP provider for each
device

to each encrypted design bitstream an unencrypted header that specifies the
location on the device where the IP macro is supposed to be programmed. The
software also creates a device programming script for each device as shown
in Fig. 7. This script issues appropriate JTAG commands understandable by
the DIM to switch to the appropriate profile before the bitstream of each IP is
downloaded. Switching to the profile matching the specific IP allows the proper
secret key (Ki) to decrypt the incoming encrypted bitstream.

7. As the script is executed, the bitstreams are downloaded into the device. The
DIM recognizes the unencrypted location information in the header and passes
it along to the rest of the chip. As the encrypted IP description passes through, it
gets decrypted and programmed in the appropriate location on the chip.

3.5 Automating the Process

A few simple software segments can automate the process and remove a great deal
of the interaction complexity.

3.5.1 Device Management Software

A design consisting of several licensed IPs and several in-house designed macros to
be programmed into a large number of devices can result into a very large number
of individual files to be managed and organized. Device management software can

384 B. Soudan et al.

Fig. 7 The device management software produces device programming scripts for the different
devices

be easily developed to handle the following tasks and simplify the administration of
the process:

1. Identify which IP goes where on the device through a floorplan that it receives
from the design software including the profile ID for each IP.

2. Manage the encrypted bitstream files for each IP for each device. The software
identifies the device of each IP file, possibly from a simple header enclosed by
the IP provider.

3. Creates a programming script for each device. The script contains the names of
the IP files for the specific device and the JTAG commands to be issued before
downloading each IP file as well as location data for each IP taken from the
floorplan.

4. The device owner’s designs are to be treated like any other IP. If the device owner
elects not to encrypt the description for in-house developed macros, the software
will indicate that a special “owner” profile should be used during the download
process.

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 385

3.5.2 Device Programming Software

The device programming software needs to be modified slightly to handle additional
tasks. The required modifications depend on the method for downloading the IP
bitstreams to the devices. Two possible methods exist: individual bitstreams and a
combined bitstream (Fig. 8).

One possibility is for the bitstreams for the IPs to be maintained separately and
downloaded into the device individually under the control of the programming script
generated by the Device Management Software. In this case, the device management
software should prepend the bitstream of each licensed IP with its proper location
information. This information does not need to be encrypted. The DIM recognizes
the un-encrypted header section and passes it along to the rest of the circuitry. The
device programming software needs to send the appropriate profile index to the
DIM before the bitstream of each IP is downloaded. The DIM will use the proper
key to decrypt the IP’s bitstream and send it to the appropriate section of the chip.
Before downloading the next IP’s bitstream, the profile index is switched to the
appropriate profile. A special “owner” profile can be created to allow downloading
the unencrypted bitstreams of the owner’s in-house developed modules.

The other possibility is to combine all bit streams for the device into a
conglomeration. The independently encrypted bitstreams of the licensed IPs as
well as the unencrypted bitstreams of the owner’s macros are merged into a single
bitstream. The different bitstreams will be separated within the merged bitstream
by profile identifiers. As the merged bitstream is downloaded into the device, the
DIM recognizes the profile identifiers and switches decryption keys as the different
bitstream sections pass through it. In this case, partial reconfiguration capabilities
may not be required, but block floorplan requirements must still be maintained.

Fig. 8 Device programming software uses the programming scripts to download the proper
bitstreams to proper devices

386 B. Soudan et al.

4 Analysis

This section discusses the possible security threats and attack points as well as
advantages and disadvantages of the proposed system.

4.1 Security Threats

The proposed system is breakable in only two possible scenarios:

1. The system depends on a unique DI/DIM pair and a randomly generated set
of Si’s for each device. The only way the system can be broken is if the
manufacturer generates devices with duplicate DI/DIM pairs and makes the Si

generator act in a deterministic manner. The only party in the whole exchange
that gets to know the exact value of Si for a specific device is the IP provider.
Therefore, the IP provider can easily determine and prove such collusion.

2. The device manufacturer may build a backdoor into the device where the
customer can access the decrypted BDS directly. This is a highly unlikely
scenario as it would be easily provable and would destroy the manufacturer’s
credibility.

The system security is as good as Rabin Lock which is based on factoring known
to be still unbreakable. The fact that Si is unpredictable to all parties gives the system
a special strong security level. Combining secret and public-key systems in a joint
security function is an additional argument in favor of its security.

4.2 Advantages

The proposed system has several advantages. The main advantages are:

• IP core providers can exactly control the number of copies being produced of
their cores. Given that the CD is encrypted based on a particular device’s SDI,
the IP provider can be sure that the resulting CD cannot be used to program any
other device. Short of cloning the actual devices (including the unique SDI and
random Si’s), the customer (or any other party) cannot over-deploy a licensed IP.

• The proposed mechanism allows the customer to pay for the exact number of
instances the IP is instantiated. It is expected that the average per-instance cost
for IP clients will be lower compared to the current model. This should entice
more clients (especially low volume clients) into the market and should greatly
expand the market for licensed IP cores.

• Only the IP provider and customer are involved in the exchange. The device
manufacturer’s involvement is not required beyond the manufacturing of devices.
IP providers are not required to have firsthand possession—even temporarily—of

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 387

the devices for key programming. The communication of the secured IP is carried
out electronically and dealing with the physical devices is left to the IP customer
or contract programmer. The involvement of each party is required only within
the party’s sphere of expertise and interest.

• The proposed system does not preclude advanced functionality such as dynamic
reconfiguration. If the block to be loaded into the FPGA during the reconfigu-
ration is a licensed IP, the FPGA must be configured during initialization with
an appropriate decryption key from the IP’s provider like any other licensed IP.
The proper profile index can be specified during the reconfiguration to switch the
DIM to use the appropriate decryption key.

• The hardware needed to enable the system is negligible compared to available
resources in a modern device. The entire DIM would consume less than 0.1 % of
the resources in a modern device like the Xilinx Virtex 4.

4.3 Disadvantages

The main disadvantage of the system is that it reduces flexibility from a contract
programmer’s point of view. Once devices have been initialized for a specific
customer design, they cannot be used for any other design or any other customer.
Also, only these specific devices can be used for the particular design.

While the proposed system may seem to complicate the interaction, most of the
complexity can be very easily hidden through software automation as described in
Sect. 3.5.

5 Conclusion

This chapter discussed a mechanism for the authenticated transfer of design
information that prevents IPR violations in an FPGA design environment. The
novel security technology uses combined public and secret-key cryptographic
mechanisms. The resulting system offers a high level of security while still being
reasonably easy to handle. The proposed mechanism allows design distribution over
public networks without loss of security. The mechanisms employed are based
on trustable cryptographic primitives well known in secret-key and public-key
cryptography, but utilizes low complexity functions to simplify the implementation
and save resources. In particular, the selected public-key technology employs
squaring in a ring resulting in the simplest public key system known to date.

The system appears to be unbreakable even if the device manufacturer collabo-
rates with the IP customer. The design transfer does not involve the manufacturer
on-line and does not need the IP provider to have any contact with the FPGA
devices. All transactions can run over any open communication network without

388 B. Soudan et al.

prior secret sharing. The FPGA manufacturer must however be trustworthy to
manufacture according to the specified hardware security architecture and not to
have built backdoors in the FPGA architecture.

The hardware resources needed to implement the system are in the range of 0.1 %
of total available resources in a modern device similar to a Virtex 4 from Xilinx. An
insignificant overhead compared to the level of IPR protection afforded.

References

1. Kean, T.: Cryptographically enforced pay-per-use licensing of FPGA design intellectual
property. In: Proceedings International Workshop on IP Based Design (2002)

2. Actel: Implementation of Security in Actel’s ProASIC and ProASICPLUS Flash-Based FPGAs.
Application Note AC185, September 2003

3. Actel: ProASIC3/E Security. Application Note. XCell J., 40, p. 29, 10 January 2005
4. Peattie, M.: Use triple DES for ultimate Virtex-II design protection. XCell J., 29 (2001)
5. Tseng, C.W.: Lock your designs with the Virtex-4 security solution. XCell J. (2005)
6. Castillo, E., Meyer-Baese, U., Garcia, A., Parrilla, L., Lloris, A.: IPP@HDL: efficient

intellectual property protection scheme for IP cores. IEEE Trans. VLSI Syst. 15(5), 578–591
(2007)

7. Kirovski, D., Hwang, Y.Y., Potkonjak, M., Cong, J.: Protecting combinational logic synthesis
solutions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(12), 2687–2696 (2006)

8. Lach, J., Mangione-Smith, W., Potkonjak, M.: Fingerprinting techniques for field-
programmable gate array intellectual property protection. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 20(10), 1253–1261 (2001)

9. Torunoglu, I., Charbon, E.: Watermarking-based copyright protection of sequential functions.
IEEE J. Solid State Circuits 35(3), 434–440 (2000)

10. Yuan, L., Pari, P.R., Qu, G.: Soft IP protection: watermarking HDL Codes. In: 6th Information
Hiding Workshop, May 2004. Lecture Notes on Computer Science, vol. 3200, pp. 224–238.
Springer, Heidelberg (2004)

11. Newbould, R.D., Carothers, J.D., Rodriguez, J.J., Holman, W.T.: A hierarchy of physical
design watermarking schemes for intellectual property protection of IC designs. Proc. Int.
Symp. Circuits Syst. IV, 862–865 (2002)

12. Koushanfar, F., Potkonjak, M.: CAD-based security, cryptography, and digital rights man-
agement. In: Proceedings of the IEEE/ACM Design Automation Conference, June 2007,
pp. 268–269 (2007)

13. Kean, T.: Method of protecting intellectual property cores on field programmable gate array.
US Patent US20020199110 A1, 26 December 2002

14. Adi, W.: Fuzzy modular arithmetic for cryptographic schemes with applications to mobile
security. In: Proceedings of the IEEE International Conference European Conference,
pp. 263–265 (2000)

15. Federal Information Processing Standards Publication: FIPS 197, AES, Advanced Encryption
Standard (2001)

16. Wagner, F., Cesario, W., Carro, L., Jerraya, A.: Strategies for the integration of hardware and
software IP components in embedded systems-on-chip. Integr. VLSI J. 37(4), 223–252 (2004)

17. Bergamaschi, R., Bhattacharya, S., Wagner, R., Fellenz, C., Muhlada, M., Lee, W., White, F.,
Daveau, J.M.: Automating the design of SOCs using cores. IEEE Des. Test Comput. 18(5),
32–45 (2001)

18. Biggs, J., Gibbons, A.: Reference methodology for enabling core based design. In: European
Synopsys Users Group (2002)

IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption. . . 389

19. Coussy, P., Baganne, A., Martin, E.: A design methodology for IP integration. Proc. IEEE Int.
Symp. Circuits Syst. IV, IV-711–IV-714 (2002)

20. Gajski, D., Wu, A., Chaiyakul, V., Mori, S., Nukiyama, T., Bricaud, P.: Essential issues for IP
reuse. In: Proceedings of the IEEE Design Automation Conference, San Francisco, pp. 37–42,
June 2000

21. Wala, M., Bouldin, D.: Integrating and verifying intellectual property blocks using platform
express and modelsim. In: Proceedings of the 48th Midwest Symposium on Circuits and
Systems, vol. 1, pp. 758–761, 7–10 August 2005

22. Ababei, C., Bazargan, K.: Non-contiguous linear placement for reconfigurable fabrics. In:
Proceedings of the 18th International Parallel and Distributed Processing Symposium (2004)

23. Banerjee, S., Bozorgzadeh, E., Dutt, N.D.: Integrating physical constraints in HW-SW
partitioning for architectures with partial dynamic reconfiguration. IEEE Trans. Very Large
Scale Integr. Syst. 14(11), 1189–1202 (2006)

24. Blodget, B., McMillan, S., Lysaght, P.: A lightweight approach for embedded reconfiguration
of FPGAs. In: Proceedings of the Design, Automation and Test in Europe Conference,
pp. 399–400 (2003)

25. Rana, V., Santambrogio, M., Sciuto, D.: Dynamic reconfigurability in embedded sys-
tem design. In: Proceedings of the International Symposium on Circuits and Systems,
pp. 2734–2737 (2007)

26. Chu, A., Miller, S., Sima, M.: Reconfigurable solutions for very-long arithmetic with appli-
cations in cryptography. In: Proceedings of the Great Lakes Symposium on Very Large Scale
Integration, Orlando, pp. 59–64, 4–6 May 2008

27. Brebner, G.J., Neely, C.E.: Method and system for preparing modularized circuit designs for
dynamic partial reconfiguration of programmable logic. US Patent No. 8,560,996, 15 October
2013

28. Xilinx Inc.: Partial Reconfiguration. Development System Reference Guide. Chapter 5,
pp. 113–140 (2005)

29. Xilinx Inc.: Partial Reconfiguration User Guide. UG 702, v. 12.3, 5 October 2010
30. Zeineddini, A.S., Gaj, K.: Secure partial reconfiguration of FPGAs. In: Proceedings of the

2005 IEEE International Conference on Field-Programmable Technology, pp. 155–162, 11–14
December 2005

31. Gericota, M., Alves, G., Silva, M., Ferreira, J.: Run-time management of logic resources on
reconfigurable systems. In: Proceedings of Conference on Design and Test in Europe (2003)

32. Mesquita, D., Moraes, F., Palma, J., Möller, L., Calazans, N.: Remote and partial reconfigura-
tion of FPGAs: tools and trends. In: Proceedings of the International Parallel and Distributed
Processing Symposium (2003)

33. Xilinx: Difference-Based Partial Reconfiguration. Application Note Number 290, v. 2.0, 3
December 2007

34. Xilinx Inc.: Virtex Series Configuration Architecture User Guide. Application Note Number
151, v. 1.7, 20 October 2004

35. Xilinx Inc.: Virtex-4 FPGA Configuration User Guide. UG 071, v1.11, 9 June 2009
36. Sedcole, P., Blodget, B., Becker, T., Anderson, J., Lysaght, P.: Modular dynamic reconfigura-

tion in Virtex FPGAs. IET Proc. Comput. Digital Tech. 153(3), 157–164 (2006)
37. Cheng, L., Wong, M.D.F.: Floorplan design for multi-million gate FPGAs. In: Proceedings

IEEE International Conference on Computer-Aided Design, pp. 292–299 (2004)
38. Garcia, D., Amory, A., Moraes, F., Lubaszewski, M.: A CAD tool for the integration on

hardware IP blocks. In: Proceedings of South Symposium on Microelectronics, pp. 55–58
(2004)

Secure Licensing of IP Cores on SRAM-Based
FPGAs

Li Zhang and Chip-Hong Chang

Abstract The rapid increase in FPGA devices’ capacity has enabled the
implementation of complete sophisticated systems. The widening design
productivity gap and shrinking time-to-market window have made licensing of
external IP cores for system development pervade. The upfront IP licensing model
currently used in the market is not a good fit to the FPGA IP market as the
blanket IP license fee is too expensive for the majority of FPGA-based system
developers who target low-to-medium volume applications. This chapter presents
a detailed discussion on secure licensing of the IP cores that is more suitable for
FPGA IP market. After the background information such as the stakeholders in the
market, common attacks to the IP cores and desiderata for an effective licensing
scheme have been presented, two categories of IP licensing schemes, i.e., those that
employ only the conventional crypto primitives and those that exploit the emerging
PUF primitive, are detailed and illustrated. The shared target of these schemes
is to realize a secure pay-per-use licensing model where the system developer is
proportionally charged for the use of the IP core. Along with the discussion of the
schemes, some noteworthy features are also highlighted such as the authenticity
of the IP core as well as the fault tolerance, tamper and side-channel resistance
of the employed hardware primitives. The aim of this chapter is to provide a
comprehensive overview of existing developments in FPGA IP licensing protocols
and facilitate the development of new schemes that are more efficient and cost-
effective.

L. Zhang • C.-H. Chang (�)
School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore 639798, Singapore
e-mail: lzhang2@e.ntu.edu.sg; echchang@ntu.edu.sg

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_12

391

mailto:lzhang2@e.ntu.edu.sg
mailto:echchang@ntu.edu.sg

392 L. Zhang and C.-H. Chang

1 Motivation of Secure Licensing Schemes for Core-Level
FPGA IP Protection

1.1 Upfront Versus Pay-Per-Use IP Licensing Models
for FPGAs

First introduced in the 1980s, Field Programmable Gate Array (FPGA) devices
offer a ground-breaking alternative to static Application Specific Integrated Circuit
(ASIC) solutions. Comparing to the mask programmable ASIC, the FPGA has
significant competitive advantages in the flexibility to change or update the imple-
mented functionality and the much lower non-recurring engineering (NRE) cost. At
the early stage, FPGA devices are merely used for simple glue logic implementation.
With the steady improvements in process technology and device architecture,
the capacity of FPGA has skyrocketed to make highly sophisticated complete
system implementable. For example, the Vertex-7 2000T FPGA announced by
Xilinx in 2011 contains 6.8 billion transistors and provides 2 million logic cells,
which is equivalent to 20 million ASIC gates, for user configuration [1]. Such
capacity is more than satisfying the requirement for most system integration,
ASIC prototyping and even replacement. Indeed, FPGAs have been widely used in
telecommunications, networking, consumer, automotive and industrial applications,
etc [2].

The widening of design productivity gap as a result of the rapid increase in the
capacity of FPGA devices follows the same trend as the ASIC development. Under
the even more demanding time-to-market window, it is no longer viable to design
advanced FPGA systems from scratch. To shorten the design turnaround time, reuse-
based design methodology has been prevailing, wherein reusable design blocks,
also known as intellectual property (IP) cores, are purchased from external entities
and incorporated into the system to be designed. This design method also allows
the system designer to focus on the critical blocks of the system to differentiate
their system from the competitive counterparts. Such modular design approach has
been well supported by mainstream FPGA design tools. Adoption of standardized
IP interface such as AXI4 interconnect [3] has paved the way for easy usage of third
party IP cores. It facilitates the transaction of IP cores which in turn proliferates the
FPGA IP development. In this market, the IP vendors provide reusable IP cores that
are well optimized, rigorously tested and verified, and simple to be customized and
implemented, while the system developers purchase the needed IP modules for use
in their system designs.

Despite the general consensus and interest on reusing IP cores for the FPGA
system development, the trading of FPGA IP cores is still far from getting up to
speed with the transactions taken place in the ASIC IP market [4]. Two major
concerns, if left unattended, will continue to hinder the growth of FPGA IP market.
The first concern is the security of IP cores. It usually requires a large investment
of money, time and effort to develop an IP core. The return of this investment
is recovered from granting the usage of the IP core to the system developers

Secure Licensing of IP Cores on SRAM-Based FPGAs 393

through IP licensing. However, this return can be easily extorted as the bitstreams
of unguarded or inadequately protected IP cores are vulnerable to misappropriation,
reverse engineering and piracy by malicious licensees and adversaries. The second
concern is the compatibility of licensing model for FPGA based IP cores. Due to
the difficulty for the core vendor to monitor how many times a system developer
uses the IP core to configure the FPGA chips, most core vendors adopt the upfront
licensing model, in which the developer pays a vendor a lump sum of money for an
unlimited use of the IP core. An expensive blanket license of unrestricted IP usage
makes sense for ASIC products as the costly license fee can be amortized over the
mass production of ASIC chips. However, FPGAs are preferred to ASICs mainly for
low to medium volume applications. Such exorbitant licensing expenses eat directly
into the profits or reduce the product pricing competitiveness of most FPGA-based
system developers. It turns out that the upfront licensing model is a poor match to
the FPGA IP market.

Secure licensing of FPGA based IP cores suitable for the low to medium volume
applications is imperative to sustain the development of FPGA market. The desired
licensing model should enable a core vendor to control or even monitor the number
of times an IP core is used by the licensee. The transaction environment must assure
the IP vendors that their IP cores cannot be abused and no design information will
be divulged. Meanwhile, the system developers must also have the assurance that
the received IP cores are authentic and uncompromised.

We will discuss how to realize such a secure licensing scheme for FPGA based IP
cores in this chapter. Our discussion will be limited to IP cores targeting the SRAM-
based FPGA. This FPGA type has the widest range of applications due to its denser
construction, lower cost and better performance than other types such as the anti-
fuse based and flash-based devices. In 2012, the SRAM-based FPGA accounted for
76.1 % of the global sales revenue and its market dominance is expected to continue
for years to come [5]. On the other hand, the configuration bitstream of the SRAM-
based FPGA is also the most vulnerable target of attacks due to the fact that the
SRAM memory is volatile and the bitstream need to be stored in an external non-
volatile memory (NVM). In the remainder of this chapter, the term FPGA refers to
the SRAM-based FPGA unless explicitly stated otherwise.

1.2 Detective and Preventive Core-Level Protection Methods

Legal means such as the patent protection act and copyright law are feeble in
fostering the desired secure licensing environment. They must be fortified by
additional measures. In fact, there exist a large number of proposals for protecting
the FPGA based designs. For example, one can simply move the external NVM
into the package of the FPGA chip or even integrate the NVM onto the die
of the FPGA [6]. In [7, 8], an extra secure device is incorporated into each
FPGA chip. The design bitstream contains the same secret key and keyed hash

394 L. Zhang and C.-H. Chang

function as the secure device, and its functionality will only be enabled after
a successful authentication with the secure device through a challenge-response
mechanism. In a similar method, the design reads the identity of the FPGA device
(e.g. device DNA [9]) and processes it with the keyed hash function and secret
key to generate a code to be compared with a secret code stored in an external
secure NVM. Another popular protection method is to add a hardwired decryption
engine and a non-volatile key storage component onto the chip. This approach
ensures that the bitstream stored in the external NVM is in the encrypted form
and can only be decrypted and used by the FPGA chip with the correct key. It
is later enhanced with the authentication feature [10] to cope with the possible
malicious tampering. Besides the specific demerits for each of the abovemen-
tioned methods, such as ease of being compromised, extra manufacturing cost
and/or requirement of additional hardware device, the methods face the same
limitation that the FPGA system can only be protected as a monolithic IP. As
the system developer has full access to the content of the system, the upfront
licensing model is assumed for the embedded IP cores. In other words, these
methods are incapable of allowing the core vendor to control the number of
times their IP cores are used. Such a limitation is also shared by the protection
schemes in [11–13].

Secure licensing of the FPGA IP cores requires the core-level protection for the
IP cores to be provided in the first place. Current core-level protection methods
for FPGA IP cores can be divided into detective and preventive types. FPGA IP
watermarking [14–16] and fingerprinting [17–19] techniques fall in the category
of detective methods. These techniques embed a specific tag into the IP core by
making use of its intrinsic feature or architecture. The tag may be the same for
all IP instances and carry only the ownership information (i.e., watermarking), or
it may also contain different user information in the IP instances distributed to
different users (i.e., fingerprinting). The deficiency of these techniques is that they
just passively confirm the occurrence of IP infringement. In contrast, the preventive
methods effectively impede the IP infringement by making it more difficult and
costly to succeed. According to the characteristics of existing preventive methods,
they can be further divided into two subcategories based on their reliance on either
the conventional crypto primitives or the physical unclonable function (PUF). PUF
is an emerging security primitive that exploits the native and unique variations
in the physical properties of the devices induced by the manufacturing process.
Several interesting and effective FPGA IP licensing protocols have been developed
based on PUF. A brief discussion of the PUF characteristics will be provided in
Sect. 3.

This chapter will also discuss in details the preventive proposals for establishing
the desired IP licensing environment.

Secure Licensing of IP Cores on SRAM-Based FPGAs 395

2 The FPGA IP Market

2.1 Principals in the Market

The IP core vendor (CV) and the system developer (SD) are the seller and buyer of
the market respectively. Besides these two principals who are directly involved in
each IP transaction, another entity who participates indirectly in this process is the
FPGA vendor (FV). The FV is the party who designs and sells FPGA chips. The
bulk of FPGA fabrics are left uncommitted for the use by the SD. Nonetheless, it
is also in the interest of the FV to include in some of their product families hard-
wired functional primitives desired by most SDs to boost the chip sales. In general,
the device architecture is different for the FPGAs purchased from different FV’s,
and even for the FPGAs from different device families of the same FV. The CV
usually targets his design solutions to specific device families of the chosen FV’s
for optimized circuit performance and sells them as IP cores. When a transaction
between the CV and the SD is committed, the IP core is usually customized
according to the implementation requirements of the SD before the SD uses it in his
system design. Using externally purchased IP cores and those designed in-house, the
SD will then build a complete application, implement it on FPGA chips purchased
from the FV, and sell the chips as producer goods or end products.

With the continuous scaling of the process nodes used for producing the FPGA
devices, e.g., Xilinx 20 nm UltraScale devices [20], building and maintaining the
corresponding state-of-the-art fabrication facility requires a humongous running
expense. In fact, these fabrication facilities have been described as the most costly
factories ever built by mankind [21]. The capital investment cost drives most
FPGA vendors, e.g., Xilinx and Altera, to adopt a fabless manufacturing model
and outsource the chip fabrication to external contracted fabs, called the hardware
manufacturer (HM) here. In this business model, the FV pays the HM an upfront
cost for the creation of the mask and for the required number of chips to be produced.
However, a new problem emerges: although it is expensive and complicated to build
a mask for the FPGA chip, the cost of producing extra chips is marginal for the HM
after the mask has been created; the HM may produce excess chips and sell them
in the grey market at a much lower price than the chips sold by the FV. This will
greatly undermine the market revenue and deteriorate the brand name of the FV.

The activities of the four parties mentioned above and the interactions among
them are depicted in Fig. 1. Besides these four parties, there exists an additional
party in the market, known as the malicious attacker (MA), who steals the valuable
IP cores or the design information. An MA is not necessarily a stand-alone party. It
can also be acted by some SDs. The possible attacks that may be carried out by the
MA will be discussed in details in Sect. 2.2.

396 L. Zhang and C.-H. Chang

Excess production Produce FPGA chips

Outsource chip fabrication to HM

Deliver produced chips to FV

HM (Hardware Manufacturer)

Design FPGA chipsFV (FPGA Vendor)

Purchase chips from FV for
system implementation

Select targeted chips of FV and
optimize IP cores

License the IP cores
from CV

SD (System Developer) CV (Core Vendor)

Design IP coresDesign multi-IP core system

Misuse external IP cores

Fig. 1 Interactions and interests of the four main parties in the FPGA IP market

2.2 Common Attacks to FPGA Based IPs

As mentioned earlier, with the SRAM memory being volatile, designs for the
SRAM-based FPGA are vulnerable to attacks. The bitstream is easy to be poached
by eavesdropping on the bus connecting the FPGA chip and the external NVM. If in
plaintext, the bitstream can be readily duplicated and implemented on uncommitted
FPGA chips bought off-the-shelf. Such an attack is called cloning. Cloning of
unprotected bitstream is straightforward and incurs almost zero cost.

In addition to directly cloning the design, an attacker may also reverse engineer
[22, 23] the poached bitstream to extract the proprietary design information, and
work out a competitive design at a much lower cost. The effort required for reverse
engineering a design is not as trivial as that for cloning. Nonetheless, tempted by
the market value of the design information, the price of which is significant and
inestimable sometimes, the attacker will have enough incentive to conceive such an
attack.

The bitstream may also be tampered by the MA. For example, an attacker may
tamper the bitstream in the set-top box, which controls the channels that the viewer
can see, to bypass or even remove the security features to enjoy the services for free
[24]. By tampering the bitstream, an attacker may also implant his own malicious
logic, widely known as the hardware Trojan (HT) [25], into the design. The goal
can be to access data stored in the FPGA, obtain more knowledge of the overall
system, or even to hijack the system [10]. Due to the disastrous consequences of
malicious tampering, rigorous integrity check is necessary for the third-party IP
cores, especially when they are used in sectors like military, finance, energy and
politics.

Secure Licensing of IP Cores on SRAM-Based FPGAs 397

In addition, physical attacks are also commonly used by the MA. This kind
of attack is capable of nabbing secret information by analyzing hardware charac-
teristics of the FPGA that implements the target system. Physical attacks can be
invasive or non-invasive. Invasive attacks are exemplified by the fault attacks [26,
27], which invade the device, tamper it for a desired fault and then analyze the
difference between the correct and faulty outputs to extract sensitive information
like the secret key. Powerful invasive attacks may involve sophisticated tools such
as mechanical probes, focused ion beam (FIB) and scanning electron microscope
(SEM) for studying the inner circuit structure of the chip. On the other hand,
typical forms of non-invasive attacks are side-channel attacks, which infer the secret
information from the side-channel information generated while the data is being
processed. The side-channel information commonly exploited are computation time
[28], consumed power [29] and emitted electromagnetic radiation [30].

2.3 Desiderata of FPGA IP Licensing Scheme

Acknowledging the risks of the activities and interactions of the principals in the
FPGA IP market and the common attacks to the IP core, it is high time to consider
what makes a good IP licensing scheme. The first two aspects that can be thought of
are usually the security level that the licensing scheme can provide to IP cores and
the cost to implement the scheme. Then, what is the desired security level for the IP
cores? What is the reasonable cost? To answer these two questions, the analysis of
security threats to electronic transaction systems performed by IBM may shed some
valuable light. The security levels for modern electronic systems are classified as
follows [31]:

• Zero: No special security features are added to the system.
• Low: Some security features are in place. They are relatively easy to be defeated

with common laboratory or shop tools.
• MODL: More expensive tools are required, as well as some specialized knowl-

edge. Tool cost may be ranging from $500 to $5000. The attack may become
time-consuming but will eventually be successful.

• MOD: Special tools and equipment are required, as well as some special skills
and knowledge. The tools and equipment may cost from $5000 to $50,000. The
attack may be time-consuming but will eventually be successful.

• MODH: Equipment is available but is expensive to buy and operate. The cost
involved may range from $50,000 to $200,000 or more. Special skills and
knowledge are required to utilize the equipment for an attack. Multiple operations
may be required and several adversaries with complementary skills may have to
work on the attack sequence. The attack could be unsuccessful.

• HIGH: All known attacks have been unsuccessful. Some research by a team
of specialists is necessary. Highly specialized equipment is necessary, some of
which might have to be designed and built. Total cost of the attack could be 1
million dollars or more. The success of the attack is uncertain.

398 L. Zhang and C.-H. Chang

Instead of the security level HIGH, a transaction security system is suggested to
be designed to the level of MODH in [31]. Indeed, a system protected at security
level HIGH is usually too expensive to be receptive in the market. There should
be a good balance between the high security level and the system cost. Similar
considerations apply to the FPGA IP licensing scheme. A licensing scheme that
makes the IP cores immune to any attacks is not a judicious target. A practical
licensing scheme should be the one that makes a successful attack too expensive
to be compensated by the benefits obtained from the stolen IP cores; at the same
time, the implementation cost for the scheme should be market viable. Hence, we
do not think it is necessary for a practical IP licensing scheme to be immune to the
expensive physical attacks that use sophisticated tools to study the inner structure
of the chip to learn the design information. These attacks exploit the weakness of
the silicon technology; when they are possible, it is very difficult to secure the
implemented design against them [12]. Nonetheless, it is usually too expensive
to perform such an attack. Besides requiring advanced tools, it also needs special
skills and tacit knowledge with a large amount of time and effort due to the size
and complexity of the valuable IP cores and the FPGA chip today. Based on these
considerations, we derive the following quality attributes that are essential for a
good IP licensing scheme:

• Broad Protection: The IP cores should be well protected against all the
perceivable low to medium cost attacks such as cloning, reverse engineering,
malicious tampering and common physical and side channel attacks.

• Low Implementation Cost: The cost of enforcing the licensing scheme should
be relatively low. The scheme should not complicate the already-complex
manufacturing process. The use of new ancillary hardware, if any, should be well
justified.

• Transparency: The scheme should not pose any change to current CAD tools.
Neither does it impose any difficulty in reconfiguring or updating the designs in
the chip, nor does it impact the chip reliability.

• Cryptographically Secure: The secret information should be well protected.
The cryptographic algorithms used in the scheme, if any, must be widely accepted
as secure.

3 Common FPGA Features and Notations

Before discussing the existing IP licensing schemes, it is helpful to give a brief
explanation of the commonly employed device features. As the notations used for
the same operation in different schemes may differ, the notations we are going to
use in this chapter will also be provided along with the exposition.

As discussed in Sect. 2.3, low implementation cost is one of the most important
desiderata for an FPGA IP licensing scheme. An intuitive approach is to exploit
existing features in FPGA devices as much as possible and to reduce the demand

Secure Licensing of IP Cores on SRAM-Based FPGAs 399

for additional hardware primitives. The existing features that are commonly used by
the licensing schemes are listed and explained as follows:

Device identifier The device identifier uniquely identifies each FPGA device. It
can be a printed serial number or a bit string that is stored on chip. For example,
on some Xilinx chips, a 57-bit device DNA is hardwired and can be read from the
DNA port [9]. The device identifier for an FPGA device i is denoted as #IDi.

On-chip NVM and decryption engine In SRAM-based FPGA devices that
support bitstream decryption, the secure NVM used for secret key storage is
usually designed to be only accessible by the hardwired symmetric key decryption
engine due to security concerns. The decryption engine is also not allowed to
use an alternative key and can only be accessed by the configuration controller.
A commonly used standard for the decryption engine is Advanced Encryption
Standard (AES) [32]. An IP core in plaintext is simply denoted as IPj and its identity
as #IPj. When it is encrypted with a secret key KENC, the encrypted IP core is
denoted as E (KENC: IPj).

Keyed-hash message authentication code (HMAC) As mentioned in Sect. 2.2,
the bitstream may also be maliciously tampered, which may cause disastrous
consequences. Although cyclic redundancy check (CRC) codes have been used in
all bitstream formats to prevent faulty bitstream from being configured, they are not
adequate to detect intentional malicious changes [33]. Some contemporary FPGA
types have offered additional integrity check mechanisms that are more secure
than the CRC code. For example, on Xilinx Vertex 6 and 7 devices the bitstream
encryption/decryption feature is used in tandem with the SHA-256 HMAC [34]
based authentication feature [35]. The encrypted and authenticated bitstream is
generated by encrypting the plaintext bitstream, an HMAC key and the HMAC
digest of the bitstream with the secret device key. The decrypted bitstream will only
be configured on chip after its successful verification with the HMAC digest. The
HMAC digest of IPj under the key KMAC will be denoted by HMAC (KMAC: IPj). If
no key is used, the generated hash digest is simply denoted as h(IPj).

Self-reconfiguration In recent FPGA devices, the configuration controller can be
accessed from the fabric through an internal configuration access port (ICAP). This
enables the FPGA logic to control the reconfiguration of part of itself. As will be
seen in the discussion of some licensing schemes, the feature of self-reconfiguration
may be used to remove the burden of using auxiliary modules to direct the IP
decryption and installation. Upon completion of their missions, these modules will
be erased from the fabric to release the reconfigurable logic it occupied.

In recent years, a number of IP licensing schemes based on the PUF primitive
have also been devised. As mentioned in Sect. 1, PUF is an emerging device-level
primitive. Essentially, all PUFs can be considered as a mapping function between
the input stimulus (i.e., challenge) and the output response. As the variations due
to random process-related factors are unique for each PUF (e.g., the transistor
gate thickness and the doping concentration of the channel region for the CMOS

400 L. Zhang and C.-H. Chang

based PUF), the challenge-response pairs (CRPs) of the PUF on each device
vary significantly and such behaviors cannot be duplicated in another device nor
physically re-fabricated. A secondary side effect is the behavior of the PUF will
change substantially upon modification, which means that the attackers cannot
tamper the PUF to gain access to the protected information. This property ensures
that the response R of the CRP is inherently secured within the hardware device by
means of its construction as opposed to its secure storage. For detailed discussion on
the PUF, we refer the interested readers to [36] and the related chapters in this book.
Common PUF primitives used on FPGA devices can be divided into the weak PUF
and strong PUF types. The weak PUF is characterized by its possession of very
few CRPs (or even just one CRP). Its typical application is to establish a unique
device secret key. Being physically unclonable and tamper-resilient, the weak PUF
replaces the less secure digital secret key stored in on-chip NVM to provide unique
identification of the device. One good example of the weak PUF is the SRAM-type
PUF on SmartFusion2 SoC FPGA [37]. At the power up of an SRAM cell with
no write operation, the small transistor threshold mismatches will trigger the cell’s
positive feedback loop and make the cell assume one of the two possible states (0
or 1). For each cell, this start-up state value can be repeated with a high probability.
However, the start-up behaviors of different cells are random and uncorrelated at
large. By employing the random start-up behavior of a 16-Kbit SRAM block, the
PUF primitive can establish unique secret keys for each FPGA device.

In contrast to the weak PUF, a strong PUF is characterized by its possession
of a large number of CRPs. Exhausting all its possible challenge-response pairs
within a limited time span (days or weeks) is impossible. From this perspective,
the native response to a specific challenge needs not be encapsulated internally,
by hash function for example, to prevent its exposure to the outside world. Strong
PUF can be used to establish advanced protocols such as key exchange, zero-
knowledge proof, oblivious transfer and bit commitment. This characteristic enables
the creation of some very interesting and effective licensing schemes.

As analyzed in [38], the PUF response R cannot be straightforwardly used as a
cryptographic key due to the noise in R and its non-uniform distribution. A fuzzy
extractor is usually associated with the PUF primitive to generate the helper data
W to correct the error, extract the randomness and finally establish a stable key K.
To simplify our presentation of the licensing schemes using strong PUF, we assume
that the helper data W is always provided with the corresponding challenge C and
that the response R actually represents the established key K. That is to say, the
response R, which is essentially the key K, is ready for use in message encryption
and decryption.

Secure Licensing of IP Cores on SRAM-Based FPGAs 401

4 Conventional Crypto Primitives Based Licensing Schemes

4.1 Pay-Per-Use Based FPGA IP Licensing Scheme

The first proposal to resolve the mismatch between the upfront FPGA IP licensing
model and the IP core budget for low-to-medium-volume applications appeared in
2002. A creative model [39], wherein the FPGA IP cores are licensed on a pay-
per-use basis, was devised and enabled in the method. The two prominent benefits
of this new business model are: (1) the system developer with an application of
low to medium volume no longer needs to pay the same expensive license fee as a
developer with a high-volume application. (2) Charging for the use of the IP core is
proportional to the sale of the system developed, reducing the stake of the system
developer in the relentless market competition. With these advantages, the pay-per-
use model becomes the common target of almost all the latter methods [38, 40–44].
The details of the scheme are described below.

Besides the FV, CV and SD described in Sect. 2.1, a trusted third party (TTP) is
also involved in the digital rights management protocol. The TTP is an organization
that all parties in the FPGA IP market trust for managing the secret information
related to the IP transactions. In this scheme, the FV is assumed to design and
manufacture the FPGA chips, i.e., taking the roles of both the FV and the HM.
The protocol requires that each FPGA contains a permanent secret device key, a
symmetric cipher for both bitstream encryption and decryption, and a unique device
identity that is available on request through the programming interface. The protocol
consists of three phases, which is depicted in Fig. 2.

In the first phase, which is the enrollment of FPGA devices, security tokens are
created by encrypting user keys with each FPGA’s secret device key. Any entity
that has the possession of the chip can create the user key and security token pairs.
Although the author suggests that the security tokens of all FPGAs can be created
at the time of manufacture, e.g., during final testing of the FPGAs, to minimize the
cost, better security will be achieved if the security tokens are created at the site of
the TTP. The TTP will then store the pairs of user key and token in his database
indexed by the chip identifier, which will later be used for billing of the IP usage
and creation of device specific encrypted bitstreams.

In the phase of IP usage by the SD, the SD obtains the needed IP cores from the
CVs. The IP cores are in encrypted form so as to prevent misuse or tampering by
the SD; but they can be decrypted by the FV’s CAD tool to allow processing. This
can be realized with the public key cryptographic algorithm like RSA and ECC:
the IP cores are encrypted with the public key PKCAD. The encrypted IP cores can
be decrypted by the private key SKCAD embedded in the CAD tool. After the SD
has completed the system design, the CAD tool will issue a design key to encrypt
the bitstream of the system. The bitstream is different from the conventional one
in that it contains the copyright information of all the licensed IP cores. It can be
decrypted by the programming tool in the next phase, which has access to the secret

402 L. Zhang and C.-H. Chang

FV TTP

i 2. For each chip, create and store {#IDi,
user key and security token pairs}

CV SD

2. Provide encrypted IP cores:

E (PKCAD : IPj)3. Process the IP cores in CAD tool

SD

1. Input to programming tool with
encrypted bitstream, #IDi of each
FPGA, and SD's bil ling account

2. Charge the SD for usage of IPs

4. The programming tool creates
encrypted bitstream with the user
key for each FPGA

TTP

1. Request for needed IP cores

4. Finish system design, generate
encrypted bitstream

3. Provide a pair of user key and

token for each FPGA

1. Produce FPGAs with #IDi, KFPGA

a

b

c

Fig. 2 The first pay-per-use based FPGA IP licensing scheme proposed in [39]. (a) Enrollment of
FPGA devices. (b) IP usage by the SD. (c) Creation of device specific encrypted bitstreams

information stored in the server of the TTP. Again, the bitstream encryption in the
CAD tool and its decryption in the programming tool can be realized with the public
key cryptography.

In the last phase, device specific encrypted bitstreams for the FPGAs are created
based on the encrypted bitstream generated from the CAD tool. The programming
tool takes as input the encrypted bitstream from the CAD tool, the IDs of the
FPGAs to be programmed and the billing information of the customer, decrypts
the bitstream with the stored secret information, and then charges the customer
and creates the device specific encrypted bitstream. To perform the billing and
encryption process, the programming tool is connected with the server provided by
the TTP over the internet. Then the TTP’s computer bills the customers and looks
up in its database the chip ID to find the corresponding user key and token pairs.
Next, the TTP sends one pair of the user key and security token to the programming
tool, which will then encrypt the bitstream with the secret user key. Appended
with the security token, the encrypted bitstream that can only be configured on a
particular FPGA is created. As security critical information is transmitted between

Secure Licensing of IP Cores on SRAM-Based FPGAs 403

the programming tool and the TTP’s server, the communication between them must
be secure and is suggested by the authors to be protected by standard internet
security protocols.

The chip configuration using the device specific encrypted bitstream is kept
relatively simple. When the FPGA loads the bitstream, it first recovers the user key
from the security token with its secret device key. With the user key, the bitstream is
then decrypted before it is used for chip configuration. There are two main concerns
for the proposed scheme. One is the requirement of hardwired circuitry for both the
encryption and decryption, but only the on-chip decryption engine is available on the
commercial devices. The other is that both the CAD tool and the programming tool
contain secret information. These secret information need to be carefully protected.
Otherwise, a successful crack to any of these tools will cause the leakage of the IP
content. Recognizing this risk, the author suggests some variants of the scheme in
[45], where the tools run on the TTP’s server. With no secret information contained
in the tools at the site of the SD, these alternatives provide better security. But the
price to be paid is that the TTP needs to be equipped with much more computational
power and higher internet connection bandwidth.

In most cases, the higher level the protected IP cores reside, the more parties and
design tools are involved, and the more complicated is the task of protecting the IP
cores. As a result, the authors of [40] suggest that the most suitable target for core-
level FPGA IP protection is the bitstream, which is generated at the last stage of the
FPGA design and implementation flow. Indeed, if the IP cores are communicated at
the level of bitstream, it is possible to set the security boundary at the FPGA chip,
i.e., the IP cores can be kept in encrypted form after it leaves the site of the CV and
before it is configured on the chip.

4.2 Public-Key Crypto Based Key Derivation Function

The pay-per-use FPGA IP licensing scheme proposed in [40] is actually an
extension of the scheme in [13], which is only capable of providing solution to
licensing a single monolithic FPGA design. Compared with the setup of the scheme
in [39], a key derivation function (KDF) module based on public-key cryptography
is added, which helps to securely transport and install the needed key for bitstream
decryption. One novelty of the scheme is that it avoids the burden of the public-key
functionality, which is usually resource-consuming, by moving the KDF module
to a temporary configuration bitstream. After establishing the bitstream decryption
key, the resources occupied by the KDF module can be released for use by the IP
cores or other system blocks. Out of the four stages of licensing protocol described
in [40], the first two are for generating the device specific bitstreams. These two
stages are depicted in Fig. 3.

In the security information setup stage, the FV generates a secret device key
Ki

FPGA and an asymmetric key pair (SKi
FPGA, PKi

FPGA) for FPGA batch i. The size
of the FPGA batch needs to be kept relatively small so as to limit the damage if

404 L. Zhang and C.-H. Chang

FV SD

1. Produce FPGAs with #IDi, KFPGA
i

2. Derive (SKFPGA, PKFPGA) ii

i

i
6. Decide FPGAs to be used

8. FPGAs with E (KFPGA : KDF) i

CV SD

7. Purchase chips

3. Create KDF with SKFPGA
4. Encrypt KDF with KFPGA

5. Offer FPGAs for sale

1. Decide IP cores to be
used for system design

2. License request: #IDi, PKFPGA
ii

iKCV = KDF (SKCV, PKFPGA, #IDi)
5. Encrypt IPj with KCV:

6. E (KCV : IPj), PKCV E (KCV : IPj)

3. Verify certificate of PKFPGA
4. Derive IP key:

a

b

Fig. 3 FPGA IP licensing using public-key crypto based key derivation function [40]. (a) Security
information setup stage. (b) IP licensing stage

the secret key Ki
FPGA or SKi

FPGA is compromised. For brevity, we assume one chip
per batch in our description. At the same time, the FV creates a specific bitstream
of the KDF which will be used to derive the IP core decryption keys. The KDF
bitstream, which contains the private key SKi

FPGA of the key pair, is the vital part of
the proposed scheme and is encrypted with the secret device key Ki

FPGA. Hence,
in the scheme, each FPGA chip bought by the SD will be associated with one
encrypted KDF bitstream.

When the SD wants to license the usage of one IP core from the CV on his
purchased FPGA chips, he will send his licensing request to the CV together with
the device ID #IDi and the public key PKi

FPGA of each chip i. After receiving
the request, the CV will verify the certificate of PKi

FPGA to confirm that it is
originated from the FV. Upon a successful verification, the CV will create the key
for IP encryption and decryption KCV : He first generates an asymmetric key pair
(SKCV , PKCV) for the specific SD and then derives KCV as in Eq. (1).

KCV D KDF
�
SKCV ; PKi

FPGA; #IDi
�

(1)

The IP core may be first tailored to the SD’s implementation requirements before
it is encrypted with KCV . After charging the SD for the license fee, the specifically
encrypted bitstream for FPGA chip i together with the CV’s public key PKCV is
transferred to the SD.

Secure Licensing of IP Cores on SRAM-Based FPGAs 405

At his site, the SD will stitch the external IP blocks and his own functional blocks
based on the pre-defined bitstream-level partitioning. The authors propose that the
bitstream of the IP core contain an additional command to locate the decryption
key that has been derived and stored in specific key storage. Derivation of the IP
decryption key KCV is performed by the KDF bitstream, which is configured on chip
after being decrypted by the device key Ki

FPGA. The key derivation is performed with
SKi

FPGA stored in the KDF bitstream, device ID #ID and the CV’s public key PKCV ,
as shown in Eq. (2).

KCV D KDF
�
PKCV ; SKi

FPGA; #IDi
�

(2)

The secret device key Ki
FPGA and the asymmetric key pair (SKi

FPGA, PKi
FPGA),

which are both decided by the FV, are the vital information for the security of
protected IP core. Hence, the FV is assumed to be a trustworthy and unbiased TTP.
The authors propose two versions of the specific key storage for the IP decryption
keys KCV ’s. The first version uses secure non-volatile key storage memory. This way
the key establishment process occurs just once and the KDF bitstream will no longer
be needed for the future configuration of the system. The drawback of this method
is that it requires additional such non-volatile key storage, which is not available in
current commercial devices. The second version uses volatile key storage memory
and KCV ’s are established every time after powering up the device. This version
eliminates the need for the additional non-volatile key storage and generates KCV ’s
only when needed. Nonetheless, the whole system configuration time may be longer
and the KDF bitstream as well as the key establishing information (e.g., PKCV) need
to be stored in the external configuration memory. In addition, decrypting the IP
core using KCV by hardwired decryption engine is not allowed in currently available
commercial FPGAs. The solution to this problem is by either adding a symmetric
decryption engine in the KDF bitstream or modifying the on-chip decryption engine.

4.3 Trusted Third Party with Symmetric-Key Crypto Based Key
Derivation Function

Later, a scheme [41] that is applicable to commercially available FPGA devices is
created without incurring any hardware modification. Instead of assuming that the
FV is fully trusted by other parties in the market, the scheme separates the role of the
FV and the TTP. With an external TTP appointed in the licensing scheme, the asym-
metric cryptography based KDF, which is used for secure key transportation and
installation, becomes dispensable and is replaced by the symmetric cryptography.

After the blank FPGA chips are produced by the FV, they are sent to the site
of the TTP for embedding the secret device key Ki

FPGA. The TTP also associates
each FPGA chip with a core installation module (CIM) before sending the chips
back to the FV. The CIM bitstream serves a similar purpose as the KDF bitstream

406 L. Zhang and C.-H. Chang

5. Enroll each device: {#IDi, KFV, KM} ii

1. Produce blank devices

TTP

2. FPGAs
3. Program device key KFPGA to device i i

CV TTP
1. Request to enroll IPj 3. {#IPj, KIPj}

4. Store {#IPj, KIPj}2. Generate KIPj for IPj and
store {#IPj, KIPj, and IPj}

SD CV

1. Decide IP cores to be used

FV

4. Create CIM with KM for device i i

6. FPGAs with E(KFPGA: CIM) i
7. Offer FPGAs for sale

2. #IPj 3. Modify IPj according to
SD's requirements.

4. Encrypt IPj: E(KIPj : IPj)

SD TTP

2. #IDi, #IPj 3. Look up {#IDi, KFV, KM},ii

{#IPj, KIPj} in database

4. License token: E (KM: KIPj)i

5. E(KM : KIPj)
i

5. E(KIPj : IPj)

1. Use E(KIPj : IPj) on device i

a

b

c

Fig. 4 The IP licensing scheme using symmetric crypto and TTP for recent FPGAs [41].
(a) Enrollment of FPGA devices. (b) Enrollment of IP cores. (c) IP core licensing

described above, i.e., to establish the IP decryption key on FPGA. The difference
between them lies in: instead of the public-key crypto, the CIM of chip i contains
one symmetric cipher and one dedicated secret metering key Ki

M . The metering key
will be used for recovering the IP decryption key. The licensing protocol is depicted
in Fig. 4.

The IP decryption process in this scheme uses the partial reconfiguration feature
of the FPGA. The CIM bitstream is first decrypted with the secret device key Ki

FPGA
by the on-chip decryption engine and configured in the user logic. The design
in the CIM contains a symmetric cipher for decryption, an internal configuration
access port (ICAP) interface and two key registers, as shown in Fig. 5. One key
register holds the metering key Ki

M; the other one is empty initially and will be
used to store the IP decryption key. The ICAP port will be used to access the
configuration controller for configuring the decrypted IP cores. When the encrypted

Secure Licensing of IP Cores on SRAM-Based FPGAs 407

Secret IP key: KIPj

Symmetric key
decryption

Metering key: KM
i

ICAP

1. E(KM : KIPj)
i

3. E(KIPj : IPj)

1

23

4Configuration
Controller

Fig. 5 The symmetric cryptography based core installation module

IP key E(Ki
M : KIP1) for the first IP core is loaded, it will be decrypted by the metering

key and saved in the empty key register of the CIM. Next, the first encrypted IP core
E (KIP1: IP1) will be loaded onto the CIM, decrypted with KIP1, and transferred to
the configuration controller through the ICAP port for configuration on pre-defined
reconfigurable logic area. The above configuration process will continue for all the
remaining licensed IP cores, where the license of an IP core is issued as an IP
decryption key KIPj encrypted by the specific device metering key Ki

M of FPGA i.

4.4 Partially Trusted Third Party with Establishment Module

Concerning the expensive logistic required for the FV to transfer all his FPGA
devices to and fro the TTP’s secure site and the lack of an independent entity that
is fully trusted by all the parties in the IP market, the scheme in [42] let the FV
take the role of the TTP again. Nonetheless, the setup of the scheme does not rely
fully on the FV to act honestly in discharging this duty. Instead, the scheme prevents
the FV from having an easy access to the secret information related to the IP core.
This is accomplished by transferring the ownership of the CIM provision from the
FV to the CV of the respective IP cores. A similar setup is used in the protection
scheme for multi-FPGA systems proposed in [46], which implements one IP core
per chip though. In this way, the CV is capable of deciding the secret key KCVj and
the cryptographic components in the CIM all by himself. Besides, the CV can also
refresh the CIM of his volition with an updated version using a different KCVj and
state-of-the-art cryptographic components. The secret key KCVj is used to generate
a secret device specific key Ki

CVj, which is used to protect the IP encryption key
KIPj and create a device specific license token Ti

CVj. Ki
CVj and Ti

CVj is generated by
Eqs. (3) and (4), respectively. The SD’s fingerprint, denoted by F(#SD), can also be
inserted when the CV tailors the IP core to the SD’s implementation requirement.
The inserted fingerprint helps to further deter the SD from misusing the licensed IP
cores. The licensing steps are depicted in Fig. 6.

Ki
CVj D h

�
KCVj; #IDi

�
(3)

408 L. Zhang and C.-H. Chang

8. Create license token: TCVj
i

HM

3. Store {#IP, CIMj}

1. Produce blank FPGAs

FV
2. FPGAs

4. Enroll each device: {#IDi, KFV} i

3. Program a key KFV to devices ii

CV FV

2. Store {# IPj, CIMj with KCVj, IPj}

2. {#IPj, CIMj}1. Create CIMj with KCVj for IPj

1. Choose IP cores

2. {#SD, #IDi, #IPj}

3. Verify device ID

4. {#SD, #IDi, #IPj}, E(KFV: CIMj)
i

7. Derive device key: KCVj
i

FV

SD CV
9. #IDi, #IPj, Cj, TCVj, E(KFV: CIMj)

i i
6. Encrypt IPj: E(KIPj : IPj)
5. Tailor IPj; insert F(#SD)

a

b

c

Fig. 6 The pragmatic per-device IP licensing scheme proposed in [42]. (a) Enrollment of FPGA
devices. (b) Enrollment of IP cores. (c) IP core licensing

Ti
CVj D E

�
Ki

CVj W KIPj
�

(4)

During the IP enrollment stage, the plaintext CIM is transferred from the CV to
the FV. Although the communication channel between the CV and FV is assumed
to be secure and authentic, the secure communication of the CIM may still be a
concern. To circumvent this problem, the delivery of plaintext CIM is avoided in a
strengthen version of this scheme. This is achieved by associating with each FPGA
an establishment module (EM). The EM, which is encrypted by the device secret key
Ki

FV , is provided by the FV. It consists of a public-key crypto based key derivation
core, a symmetric decryption core and a unique private key SKi

EM for device i. The
public–private key pair (PKi

EM, SKi
EM) for each FPGA i is stored in the database of

the FV and the public key PKi
EM is delivered with the IP licensing request from the

FV to the CV in message 4 of Fig. 6c. From the EM module, the CV can derive
a shared secret key in the similar manner as in Eqs. (1) and (2). The shared key,
denoted by KCIMi

CVj , is used to encrypt the CIM module before the module is sent to the
FV. The advantage of this enhancement is that all the important data related to the IP
core, including the CIM module, are now in encryption form upon leaving the site of
the CV and before they are configured on chip. As the same symmetric decryption

Secure Licensing of IP Cores on SRAM-Based FPGAs 409

core may be shared by the EM module and the CIM module, the additional cost of
this enhanced version is mainly the public-crypto based key derivation core.

We would like to emphasize that authentication is equally important as encryp-
tion in an IP licensing scheme. Without verifying the authenticity of the received
IP core, the FPGA may be configured with a design of any form and from anyone
with the consequence of, at best, the denial of service, or in the worst case, the
execution of unauthorized code [47]. In our description of the above schemes, only
encryption of the secret information is mentioned for the ease of understanding. In
actual fact, each decryption process is to be preceded by an integrity check step.
For example, the SHA-256 HMAC based authentication is activated in tandem
with the bitstream decryption on Xilinx Vertex 6 and 7 devices, as described in
Sect. 3. In [42], the possibility of employing Keccak [48], the winner of the NIST
secure hash algorithm (SHA-3) competition in 2012, is also conceived for bitstream
authentication. Without the security hole of SHA-256, Keccak does not require
the current nested approach to generate the HMAC digest, which will simplify the
HMAC generation process and hence the cost of implementing the authentication
feature. Besides, Keccak also provides the mode of authenticated encryption (based
on duplex construction). Once standardized, Keccak can be a good candidate for
realizing a compact authenticated encryption core.

Before moving to the next section, we would also like to highlight that all
cryptographic components used in the licensing schemes need also be fault-tolerant
and resilient against side-channel attacks. The various physical attacks have been
described in Sect. 2.2. Interested readers are referred to [42, 49, 50] for a good
evaluation of the cost for adopting various countermeasures against these physical
attacks for the AES and HMAC core.

5 Physical Unclonable Function Based Licensing Schemes

The usage of the weak PUF is transparent to the non-PUF based licensing protocols
described above, where the secret key stored in the on-chip secure NVM can be
directly replaced by the weak NVM. The focus of this section is to discuss the
licensing schemes which employ the strong PUF. In particular, these licensing
schemes take advantage of the large number of CRPs possessed by the strong PUF
and are very different from those discussed in the above section.

The first strong PUF based licensing scheme that is applicable to FPGA IP cores
is proposed in [43]. In this scheme, each FPGA is assumed to contain a security
module which consists of a PUF block and a decryption and authentication block
(denoted as D&A block). After building the FPGAs, the FV enrolls a specific set
of CRP’s for each FPGA device. The CRP’s, together with the chip identity #IDi

for each FPGA, is sent to an external TTP. At the same time, the CV also needs
to enroll his IP cores into the TTP’s database by sending the IP identity #IPj

and the IP authentication information, i.e., Hash (#IPj, IPj), to the TTP. Both the

410 L. Zhang and C.-H. Chang

CV

3. #IDi, #IPj, h, RIPj

SD

TTP

1. #IDi, #IPj, h

E (RTTP : #IPj, h (#IPj, IPj), CIPj, h)
2. #IDi, #IPj, CTTP,

4. #IDi, #IPj, E (RIPj: length, IPj, h)

FV TTP

CV

1. Produce FPGAs and record a
set of CRP's for each device

2. #IDi, CRP's
3. Store {#IDi, CRP's} in database

TTP

1. Create a hash for IPj:

h (#IPj, IPj)

2. #IPj, h (#IPj, IPj)
3. Store {#IPj, h (#IPj, IPj)}

a

b

Fig. 7 The licensing scheme proposed in offline HW/SW authentication for reconfigurable
platforms [43]. (a) FPGA device and IP core enrollments. (b) IP core licensing

communication channel between the FV and the TTP and the channel between the
CV and the TTP are assumed to be secure and authenticated. The IP licensing steps
are depicted in Fig. 7.

After deciding the external IP cores to be used in his system, the SD sends the
identity #IDi of the FPGA, which is to be used for system implementation, the
identity #IPj of the IP core and a nonce � to the TTP. For each IP core request,
the TTP replies the SD with message 2, which contains the information needed to
decrypt and authenticate the requested IP core. The IP decryption and authentication
information, i.e., f#IPj, Hash (#IPj, IPj), CIPj, �g, is encrypted by the response RTTP

of a CRP, fCTTP, RTTPg, selected by the TTP. CIPj is the challenge of another CRP
fCIPj, RIPjg, which is to be used for the protection of the IP core. Message 3 is the
relayed IP request from the TTP to the CV, which includes the response RIPj of the
CRP, fCIP, RIPjg, for encrypting the IP core. After receiving Message 4 from the CV,
the SD will have the following two messages for the FPGA with identity #IDj:

CTTP; #IPj; E
�
RTTP W #IPj; h

�
#IPj; IPj

�
; CIPj; �

�
(5)

Secure Licensing of IP Cores on SRAM-Based FPGAs 411

#IPj; E
�
RIPj W length; IPj; �

�
(6)

Only the PUF primitive on the specific FPGA device is able to generate the correct
RTTP under the challenge CTTP. After the successful recovery of CIPj and the IP
authentication information using the correct RTTP, CIPj is used to generate the correct
RIPj which is then used to recover the IP core. Thus, the IP core will only be
configured on chip after its successful authentication.

In the above scheme, the CRP of the PUF is used for the authentication of
FPGA device and for protecting the secret information related to the IP core. As
a strong PUF possesses a large amount of CRPs, different CRPs can be used for
protecting different IP cores. This facilitates the simplification of communication
between the TTP and the CV: the unique response of a specific FPGA’s PUF upon
a challenge can be directly provided to the CV for IP encryption. As long as the
same CRP is not used for protecting the IP core of another CV, the security of the IP
core is ensured. Due to this reason, communications involved in strong PUF-based
licensing schemes are usually simpler than those schemes that employ conventional
on-chip secret keys.

As the above protocol also aims for protecting the software IPs that run on the
microprocessors configured on FPGA, the length information of the IP core is also
provided in Message 4 of Fig. 7b. However, when dealing with the hardware IP
designs in bitstream, separate length information is not necessary, as it is already
embedded in the bitstream files for current FPGAs. Besides, the above protocol
requires two decryptions and one hash computation to be performed in the on-chip
D&A module before the IP configuration. The possibility to further simplify the
protocol is pointed out in [38]. As the channel between the SD and the CV is
unsecure, the TTP has access to the IP content with his knowledge of the CRPs.
In this case, if the TTP is assumed to be fully trusted in the licensing scheme, the IP
core can be directly provided by the CV to the TTP who will then encrypt the IP core
IPj with the response R1

TTP of a selected CRP, fC1
TTP, R1

TTPg, and create the keyed
authentication information with the response R2

TTP of another CRP, fC2
TTP, R2

TTPg.
This modified scheme (as depicted in Fig. 8a) will reduce the required operations
that are performed on chip to one decryption and one MAC (hash). As this modified
scheme requires the participation of TTP in each communication of the IP licensing
process and each SD has to obtain the IP core from the TTP, it may create a system
bottleneck. A variation of the scheme is also proposed. This variant is depicted in
Fig. 8b, where the TTP provides the CRPs, fC1

TTP, R1
TTPg and fC2

TTP, R2
TTPg, to the

CV so that the CV can create the protected IP core on his own. Subsequently, the
CV sends the protected IP core and the authentication information to the SD. The
required on-chip operations are still maintained at one decryption and one MAC
before the IP core can be configured, but the number of needed communications is
reduced from four to three.

As mentioned in Sect. 4, an entity that is completely trusted by all the parties in
the FPGA IP market is not available. Although the FV has some incentives to take
the role of the TTP to facilitate the IP licensing and transaction, it is hard for the FV,
as a business entity, to be fully trusted by all the CVs, especially those with IP cores

412 L. Zhang and C.-H. Chang

SD

TTP

CV

1. #IDi, #IPj

4. Dj E (RTTP : #IPj, IPj)
1

2. #IPj

3. #IPj, IPj5. CTTP,CTTP, Dj,
21

2. #IPj, {CTTP, RTTP}, {CTTP, RTTP} 2211

1. #IDi, #IPj

3. Dj E (RTTP: #IPj, IPj)
1

4. CTTP, CTTP, Dj, HMAC (RTTP : CTTP, CTTP, Dj)
21221

212HMAC (RTTP: CTTP, CTTP, Dj)

TTP

SD CV

a

b

Fig. 8 Two IP licensing stages of strong PUF-based protocol with fully trusted TTP [38].
(a) A simplified IP licensing stage with the TTP providing IP cores. (b) A simplified IP licensing
stage with the CV providing IP cores

of significant values. Hence, a licensing scheme with the TTP that is assumed to be
fully trusted and has access to the IP content may not be receptive. In view of this,
the authors of [38] also proposes another variant, which is depicted in Fig. 9. Instead
of assuming that the TTP is fully trusted by the participants, a so-called honest-but-
curious model is used. The same assumption is also used in the licensing scheme
[42] described in Sect. 4. To prevent the TTP from having access to the IP content,
a random nonce � generated by the SD and a public–private key pair of the CV,
(PKCV , SKCV) is used. In the request for IP license, the SD uses the public key PKCV

of the CV to encrypt the nonce that can only be recovered by the CV. Together with
R1

TTP and R2
TTP provided by the FV, the nonce � will be used by the CV to devise the

secret keys for the IP encryption and MAC generation.
Due to the public-key crypto used for transferring the secret information from the

SD to the TTP and from the TTP to the CV, confidentiality of the secret information
is guaranteed and only the communication channels between the SD and the TTP
and between the TTP and the CV are required to be authenticated. Under the
assumption of a honest-but-curious TTP, the TTP will not tamper with the encrypted
nonce, i.e., E(PKCV : �). Comparing with the protocols in Fig. 8, where the on-chip
operations needed before the IP configuration are merely one decryption and one
MAC, two additional hash computations are required to generate the secret keys.

Secure Licensing of IP Cores on SRAM-Based FPGAs 413

SD

TTP

CV

1. #IDi, #IPj, E (PKCV : h)

2. #IDi, #IPj, CTTP, CTTP,21

3. Ki ¨ h (RTTP, h}1

4. Kj ¨ h (RTTP, h}2

6. CTTP, CTTP, Dj, HMAC (Kj : CTTP, CTTP, Dj)
2121

5. Dj ¨ E (Ki : #IPj, IPj)

21E(PKCV : h, RTTP, RTTP)

Fig. 9 IP licensing with confidentiality of the IP content from the TTP [38]

Moving one step further, the same group of authors also proposed an even more
secure licensing scheme which does not require the CRPs to be recorded in the
enrollment stage. In other words, the response of the PUF is kept in the device and is
not known to any party. The scheme is based on the public-key cryptography. Unlike
the previous variant which employs the public-key crypto for nonce encryption and
decryption, the scheme in [44] assumes an elliptic curve (EC) crypto based module
to be hardwired on-chip. The EC module will generate asymmetric key pairs and
perform IP decryption and authentication.

During the enrollment stage, the SD requires a certificate for the public key of
the key pair generated by his FPGA device i. The key pair is generated as follows:
the SD first obtains the domain parameters of the EC, such as the finite field F2k and
EC point P 2 E .F2k /, published by the TTP. Then he injects a selected challenge
C1 to the PUF primitive of device i which will generate a response R1. Based on
R1, the private key SK1

i is derived inside chip i; By computing PK1
i D SK1

i � P,
the public key PK1

i is generated and exported to the SD. Then the SD sends the
information f# IDi, C1, PK1

i g to the TTP and executes a zero-knowledge proof (ZKP)
[51] that he is in possession of the specific device i which generates the private key
SK1

i corresponding to the public key PK1
i . After the successful verification, the TTP

issues a certificate for PK1
i . The certificate is generated by signing PK1

i using the
TTP’s private key SKTTP, denoted by Sig(SKTTP : # IDi, C1, PK1

i). At the same time,
the public key PKCV of the CV undergoes a similar certification procedure to obtain
Sig(SKTTP : # IPj, PKCV). With the above information established, the authentication
and licensing of the IP core is analogous to a public-key crypto message transfer, as
shown in Fig. 10.

The feasibility of this scheme relies on a convincing and robust zero-knowledge
proof for certifying the public key of the FPGA devices and the CV. In particular,
it must be assured that the public key PKi

j provided by an SD is truly obtained
from a certified device, rather than a proxy devised by a malicious SD. Besides,
the speed of decrypting the IP core using EC-based crypto will be a bottleneck of
IP configuration. As an alternative, a symmetric decryption module is added for IP

414 L. Zhang and C.-H. Chang

SD CV

SD TTP

CV

1. Inject C1 to device i

and obtain PKi
1

2. {#IDi, C1, PKi}
1

4. Generate certificate:
1Sig (SKTTP : #IDi, C1, PKi)

TTP
2. {#IPj, PKCV}

4. Generate certificate:
Sig (SKTTP : #IPj, PKCV)

3. ZKP of SKi
1

5. Sig (SKTTP : #IDi, C1, PKi)
1

3. ZKP of SKCV

5. Sig (SKTTP : #IPj, PKCV)

1. Generate {PKCV, SKCV}

1. Decide IP cores to be used

2. {#IPj, Sig (SKTTP : #IDi, C1, PKi)} 1

3. Verify certificate of PKi
1

4. Dj E (PKi : IPj)
1

5. Sig (SKCV : Dj)

6. Dj, Sig (SKCV : Dj), Sig (SKTTP : #IPj, PKCV)

a

b

Fig. 10 Public-key crypto and strong PUF based FPGA IP licensing protocol [44]. (a) Public key
enrollment. (b) IP core licensing

decryption so that the EC-based crypto core is used only for the establishment of
the secret IP decryption key. This proposal results in a protocol similar to the one
shown in Fig. 9 for IP decryption.

Of particular importance is a common assumption of the PUF based licensing
protocols described above: during the IP licensing stage and thereafter, the PUF
response R is only available internally to the on-chip decryption and authentication
circuit. As explicitly stated in [38, 44], after the enrollment stage, the circuit used
to obtain the CRPs is assumed to be destroyed, e.g., by blowing fuses. For security
reason, a CRP is usually used only once in the IP licensing scheme. The recorded
CRP list must be long enough to last for the lifetime of the device. This imposes
an exorbitant storage requirement on the TTP [36]. Recent developments in strong
PUF with a secret model [52] may help to alleviate the storage requirement. With
the secret model, which is essentially the characterization information of a PUF,
the TTP can simulate and obtain the response of an arbitrary challenge to the
PUF. By saving the characterization information and associated parameters of the
PUF instead of its many CRPs, the storage space can be cut down tremendously.

Secure Licensing of IP Cores on SRAM-Based FPGAs 415

Recent research results on PUFs may subvert the FPGA IP licensing schemes
described above. For example, numerous strong PUFs with a public model, denoted
as PPUF, have been proposed [53–57]. A typical form of PPUF exploits the time gap
of generating the response to a challenge between the direct execution with PUF and
the simulation with public model. A radically different communication protocol for
secure IP transaction may emerge as any party can now obtain the CRP response
using the publicly published simulation model. The secret key exchange protocol
[53] and public-key communication protocol [57] have already been revamped
based on the PPUF. If the licensing scheme of FPGA IP cores can leverage on
such PPUF based protocols, there will be no need to have authenticated and
secure communication channels and the secure key establishment can be achieved
without the high implementation cost of conventional public-key crypto such as
ECC and RSA.

6 Conclusion

A suitable licensing model for FPGA based IP cores, where the licensed IP cores
are securely protected, is vital for the FPGA IP market to thrive. Compared to the
upfront IP licensing model currently used in the market, pay-per-use IP licensing
has two attractive advantages. A major group of consumers of the FPGAs and the
IP buyers will benefit from the competitive pricing when the cost of IP usage is
commensurate with the number of end products sold. By proportionally charging
the use of the IP core to the sale of the system developed, the risk for the system
developers will be considerably reduced and the core developers will also gain
from a more vibrant FPGA market with greater demand for more sophisticated
and versatile IP cores. A comprehensive overview of the methods realizing such
a new licensing model is provided in this chapter. These methods are dichotomized
into conventional crypto primitives based schemes and the PUF based schemes.
The former requires typically a secret key to be stored in the on-chip secret NVM,
while the latter uses the PUF response as the device secret key. Both types of
methods require the use of either a combination of TTP and symmetric-key crypto
or an asymmetric-key crypto to establish the device specific key for secure core
installation, which is a critical element for realizing usage based licensing model.

The various attacks to FPGA IP cores and the desiderata for a good IP licensing
scheme are also discussed. In particular, the IP core should be protected against
low-to-medium cost attacks such as IP cloning, reverse engineering, malicious tam-
pering, and common physical and side-channel attacks. Also, the implementation
cost of the licensing scheme needs to be kept low to be receptive. By virtue of
its unclonability and tamper-resistance, PUF offers greater assurance in unique
device identification and secrecy in the exchanges of confidential information. The
application of two types of PUF primitives, i.e., the weak PUF and the strong PUF,
in the licensing protocol are discussed. The weak PUF is essentially used to generate
a device specific on-chip secret key and the strong PUF provides a large CRP space

416 L. Zhang and C.-H. Chang

to facilitate the protection of different IP cores with simplified communications.
With the emergence of new PUF primitives with exquisite features, such as
PPUF that exploits the execution and simulation time gaps to realize the public-
key equivalent cryptography, fundamentally different secure and cost-effective IP
licensing schemes from the schemes discussed in this chapter may be constructed.
It is hoped that the discussions will shed some light on the promising solutions to
advocate the impending pay-per-use licensing model for FPGA IPs.

References

1. Maxfield, C.: Xilinx announces world’s highest capacity FPGA. EE Times (2011). http://www.
eetimes.com/document.asp?doc_id=1260468

2. Maxfield, C.: The Design Warrior’s Guide to FPGAs: Devices, Tools and Flows. Elsevier, MA
(2004). ISBN: 978-0-7506-7604-5

3. Xilinx: AXI4 Interconnect Paves the Way to Plug-and-Play IP (v1.0). White paper 379 (2010)
4. Xylon: Xylon Low-Volume IP Program (v1.00). Application Note 0022 (2010)
5. Transparency Market Research: Field-Programmable Gate Array (FPGA) Market – Global

Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019 (2013)
6. Lattice Semiconductor: Third Generation Non-volatile FPGAs Enable System on Chip Func-

tionality. White paper (2007)
7. Altera: An FPGA Design Security Solution Using a Secure Memory Device (v1.0). White

Paper 01033 (2007)
8. Xilinx: FPGA IFF Copy Protection Using Dallas Semiconductor/Maxim DS2432 Secure

EEPROMS (v1.1). Application Note 780 (2010)
9. Xilinx: Security Solutions Using Spartan-3 Generation FPGAs (v1.1). White Paper 266 (2008)

10. McNeil, S.: Solving Today’s Design Security Concerns (v1.2). Xilinx White Paper 365 (2012)
11. Kean, T.: Secure configuration of a Field Programmable Gate Array. In: IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 259–260 (2001)
12. Bossuet, L., Gogniat, G., Burleson, W.: Dynamically configurable security for SRAM FPGA

bitstreams. Int. J. Eng. Sci. 2(1/2), 73–85 (2006)
13. Guneysu, T., Moller, B., Paar, C.: Dynamic intellectual property protection for reconfigurable

devices. In: International Conference on Field-Programmable Technology, pp. 169–176 (2007)
14. Jain, A.K., Yuan, L., Pari, P.R., Qu, G.: Zero overhead watermarking technique for FPGA

designs. In: ACM Great Lakes symposium on VLSI, Washington, DC, pp. 147–152 (2003)
15. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. J. Signal Process.

Syst. Signal Image Video Technol. 51(1), 123–136 (2008)
16. Liang, W., Sun, X.M., Xia, Z.H., Sun, D.C., Long, J.: A chaotic IP watermarking in physical

layout level based on FPGA. Radioengineering 20(1), 118–125 (2011)
17. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: Fingerprinting techniques for field-

programmable gate array intellectual property protection. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. (TCAD) 20(10), 1253–1261 (2001)

18. Caldwell, A.E., Choi, H.J., Kahng, A.B., Mantik, S., Potkonjak, M., Qu, G., Wong, J.L.:
Effective iterative techniques for fingerprinting design IP. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 23(2), 208–215 (2004)

19. Chang, C.H., Zhang, L.: A blind dynamic fingerprinting technique for sequential circuit
intellectual property protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(1),
76–89 (2014)

20. Santarini, M.: Xilinx ships industry’s first 20-nm all programmable devices (2014). http://
www.xilinx.com/support/documentation/xcell_articles/xcell86-xilinx-ships-industry-first-
20nm.pdf

http://www.eetimes.com/document.asp?doc_id=1260468
http://www.eetimes.com/document.asp?doc_id=1260468
http://www.xilinx.com/support/documentation/xcell_articles/xcell86-xilinx-ships-industry-first-20nm.pdf
http://www.xilinx.com/support/documentation/xcell_articles/xcell86-xilinx-ships-industry-first-20nm.pdf
http://www.xilinx.com/support/documentation/xcell_articles/xcell86-xilinx-ships-industry-first-20nm.pdf

Secure Licensing of IP Cores on SRAM-Based FPGAs 417

21. Mouli, C., Carriker, W.: Future fab: how software is helping Intel go nano-and beyond. IEEE
Spectr. 44(3), 38–43 (2007)

22. Note, J.-B., Rannaud, E.: From the bitstream to the netlist. In: International ACM/SIGDA
Symposium on Field Programmable Gate Arrays, Monterey, pp. 264–264 (2008)

23. Benz, F., Seffrin, A., Huss, S.A.: Bil: a tool-chain for bitstream reverse-engineering. In:
International Conference on Field Programmable Logic and Applications (FPL), Oslo, pp.
735–738 (2012)

24. Lattice Semiconductor: FPGA Design Security Issues: Using the ispXPGA Family of FPGAs
to Achieve High Design Security, White paper (2003)

25. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10–25 (2010)

26. Khelil, F., Hamdi, M., Guilley, S., Danger, J.L., Selmane, N.: Fault analysis attack on an FPGA
AES implementation. In: New Technologies, Mobility and Security (NTMS), pp. 1–5 (2008)

27. Saha, D., Mukhopadhyay, D., Roy Chowdhury, D.: A diagonal fault attack on the advanced
encryption standard. ICAR Cryptology ePrint Archive, 581 (2009)

28. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RAS, DSS, and other
systems. In: Advances in Cryptology-CRYPTO, pp. 104–113. Springer, Berlin (1996)

29. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology,
pp. 388–397. Springer, Berlin (1999)

30. De Mulder, E., Buysschaert, P., Ors, S.B., Delmotte, P., Preneel, B., Vandenbosch, G.,
Verbauwhede, I.: Electromagnetic analysis attack on an FPGA implementation of an elliptic
curve cryptosystem. In: International Conference on Computer as a Tool, pp. 1879–1882
(2005)

31. Abraham, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction security system. IBM
Syst. J. 30(2), 206–229 (1991)

32. NIST: FIPS 197: Advanced Encryption Standard (AES) (2001)
33. Stigge, M., Plötz, H., Müller, W., Redlich, J.-P.: Reversing CRC – Theory and Practice.

Technical Report SAR-PR-2006-05, Humboldt University Berlin (2006)
34. NIST: FIPS 180-3: Secure Hash Standard (SHS) (2008)
35. Peterson, E.: Developing Tamper Resistant Designs with Xilinx Vertex-6 and 7 Series FPGAs.

Xilinx Application Note 1084 (2012)
36. Ruhrmair, U., Devadas, S., Koushanfar, F.: Security based on physical unclonability and

disorder. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust.
Springer, Berlin (2011)

37. MicroSemi: SmartFusion2 Soc FPGA Reliability and Security User Guide (Rev. 3) (2013)
38. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP

protection. In: Cryptographic Hardware and Embedded Systems (CHES), pp. 63–80 (2007)
39. Kean, T.: Cryptographic rights management of FPGA intellectual property cores. In:

ACM/SIGDA Symposium on Field Programmable Gate Arrays (FPGA), pp. 113–118 (2002)
40. Drimer, S., Guneysu, T., Kuhn, M.G., Paar, C.: Protecting Multiple Cores in a Single FPGA

design (2008). http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf
41. Maes, R., Schellekens, D., Verbauwhede, I.: A pay-per-use licensing scheme for hardware IP

cores in recent SRAM-based FPGAs. IEEE Trans. Inf. Forensics Secur. 7(1), 98–108 (2012)
42. Zhang, L., Chang, C.H.: A pragmatic per-device licensing scheme for hardware IP cores on

SRAM based FPGAs. IEEE Trans. Inf. Forensics Secur. 9(11), 1893–1905 (2014)
43. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable

platforms. In: Cryptographic Hardware and Embedded Systems (CHES), pp. 311–323 (2006)
44. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions and public-

Key crypto for FPGA IP protection. In: International Conference on Field Programmable Logic
and Applications, pp. 189–195 (2007)

45. Kean, T.: Method of protecting intellectual property cores on field programmable gate array.
US Patent Application 10/172,802; Publication number: US20020199110 A1 (2002)

46. Gaspar, L., Fischer, V., Guneysu, T., Cherif Jouini, Z.: Two IP protection schemes for multi-
FPGA systems. In: International Conference on Reconfigurable Computing and FPGAs,
Cancun, pp. 1–6 (2012)

http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf

418 L. Zhang and C.-H. Chang

47. Drimer, S.: Authentication of FPGA bitstreams: why and how. In: International Conference on
Reconfigurable Computing: Architectures, Tools and Applications, pp. 73–84 (2007)

48. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak Implementation
Overview (version 3.2) (2012). http://keccak.noekeon.org/Keccak-implementation-3.2.pdf

49. Regazzoni, F., Wang, Y., Standaert, F.-X.: FPGA implementations of the AES masked against
power analysis attacks. In: International Workshop on Constructive Side-Channel Analysis and
Secure Design, Darmstadt, pp. 56–66 (2011)

50. McEvoy, R., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power analysis of HMAC
based on SHA-2, and countermeasures. In: International Conference on Information Security
Applications, Jeju Island, pp. 317–332 (2007)

51. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

52. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for design and implementation of
secure reconfigurable PUFs. ACM Trans. Reconfigurable Technol. Syst. 2(1), 1–33 (2009).
Article 5

53. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public physi-
cally unclonable functions. In: International Workshop on Information Hiding (IH), Darmstadt,
pp. 206–220 (2009)

54. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Differential public, physically
unclonable functions: architecture and applications. In: ACM/EDAC/IEEE Design Automation
Conference (DAC), New York, pp. 242–247 (2011)

55. Meguerdichian, S., Potkonjak, M.: Matched public PUF: ultra low energy security platform. In:
International Symposium on Low Power Electronics and Design (ISLPED), pp. 45–50 (2011)

56. Meguerdichian, S., Potkonjak, M.: Using standardized quantization for multi-party PPUF
matching: foundations and applications. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 577–584 (2012)

57. Teng, X., Wendt, J.B., Potkonjak, M.: Digital bimodal function: an ultra-low energy security
primitive. In: IEEE International Symposium on Low Power Electronics and Design (ISLPED),
pp. 292–296 (2013)

http://keccak.noekeon.org/Keccak-implementation-3.2.pdf

Part III
Trust in Softwares, Networks and Services

Heterogeneous Architectures: Malware
and Countermeasures

Flavio Lombardi and Roberto Di Pietro

Abstract Malware is becoming smarter and stealthier and it is increasingly
widespread over a large number of heterogeneous platforms. Most often, malicious
software is especially built for a given target environment as it leverages its
peculiarities. However, many similarities exist among malicious approaches. Such
common features can be used to prevent, detect and react to such threat. This
chapter discusses the above introduced threat and shows how advanced virtual-
ization technology (quite common on most multicore CPU architectures) can be
of help in monitoring, analyzing and protecting heterogeneous software/hardware
architectures from malware.

1 Introduction

New malware spreads daily over the Internet, affecting services and users every-
where. Malicious software is increasingly widespread on a large number of hetero-
geneous platforms (Server/Cloud/PC/Mobile) and operating systems (Windows, OS
X, Linux, Android, . . .) [67]. In addition, malware is becoming more complex and
stealthy by making use of obfuscation and condition-based triggering [6, 31, 35].
Such malware can affect the reliability of the systems, gather sensitive data and
gain access or attack larger computing systems [36]. Due to the pervasiveness of
computing devices, viruses, rootkits, worms, botnets, keyloggers and other types
of malware have recently broadened their focus from desktop PCs and servers to
smartphones and also implantable medical devices (IMD), where they can reach a
large number of different targets (see also BYOD security issues [71]).

F. Lombardi (�)
IAC-CNR, Rome, Italy
e-mail: flavio.lombardi@cnr.it

R.D. Pietro
Mathematics and Physics Department, Roma Tre University, Rome, Italy
e-mail: dpietro@mat.uniroma3.it

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_13

421

mailto:flavio.lombardi@cnr.it
mailto:dpietro@mat.uniroma3.it

422 F. Lombardi and R.D. Pietro

As a matter of fact, malicious software implementations differ among platforms.
However, similarities exist among them as regards malware behavior and attack
strategies. To defend against recent complex threats, more sophisticated analysis,
detection and prevention techniques are needed.

In fact, as malware becomes stealthier, its detection becomes a difficult and
time-consuming process comprising in-depth monitoring of code, identification and
analysis of suspicious components. Two main popular anti-malware approaches
exist: Static Analysis and Dynamic Analysis [17]: the former approach analyzes
malicious code by decompiling the application in order to access its binary or even
reconstruct source code; in dynamic analysis, possibly malicious code is deployed
into a contained environment where behavior and interactions with the external
world is monitored, recorded, and analyzed.

Both these two approaches have advantages and pitfalls, as we will see in the
following sections. It is however important to stress that static and dynamic analysis
may require large computing and storage resources as the amount of code to be
analyzed can be large and the analysis of its behavior can be quite complex. In
particular, dynamic analysis is oftentimes particularly time consuming as malware
actions can be triggered by rare events that activate malicious behavior only when
certain conditions are met [31]. Furthermore, the amount of collected data can be
quite large. It is clear that an evolution of the detection tools is needed in order to
cope with the ever increasing number of mobile applications and toolkits that are
introduced or updated every day.

The aim of this chapter is to help creating state-of-the-art research references
supporting both practitioners and researchers in building malware-resilient systems.
One of the main technologies that will be adopted to achieve this goal is hardware
virtualization. Further, the malware obfuscation problem is introduced as well as
effective static and dynamic code analysis approaches and tools. In particular,
novel algorithms for code execution path tracing, effective storage and analysis are
surveyed and best practices are suggested.

In particular, this chapter is organized as follows: in the Introduction we have
introduced the malicious software threat and has motivated the rest of the chapter.
In the Technology Background section we will discuss existing malware over a
range of platforms such as Windows, Mac OS X, iOS, Desktop/Server Linux and
Android. This section will also highlight the similarities and differences among
them. It will then discuss malware detection and reaction approaches and tools over
different platforms (Server, Desktop, Mobile) and Operating System (Proprietary
and Open Source). Further, it will show virtualization technology benefits and
limitations on both x86 and ARM CPUs. The Additional Considerations section
will introduce the reader to some fundamental examples of static and dynamic
approaches. The Static Analysis section will introduce the main results of Static
Analysis approaches. The Dynamic Analysis section will introduce the main results
of Dynamic Analysis approaches. The section titled Practical Hints for Practitioners
will show the practitioner how to leverage latest technology and approaches making
use of manycore and virtualization technology for introspection and malware
detection and analysis. The section on Future Research Directions will highlight the
future trend of Secure Computing and of malware resilience and BYOD security in

Heterogeneous Architectures: Malware and Countermeasures 423

complex distributed scenarios such as (mobile) Cloud Computing. The Conclusion
section will summarize the information discussed in the previous sections and
introduces the reader to new perspectives for transparently and securely detecting
and removing malware from heterogeneous platforms. Finally, the bibliography is
reported, containing the most relevant works cited in this chapter, in order for the
reader to be able to further delve into this exciting and relevant domain.

2 Technology Background

Present and future technological landscapes are particularly interesting, both for an
attacker and for the administrator of the systems that have to be protected. Virtual-
ization technology has a long history of successes, ranging from the initial idea IBM
devised for mainframe task isolation [12] to the latest hypervisor-based technology
that is the enabling factor for present cloud services. In particular hardware-based
virtualization has introduced effective isolation and monitoring benefits in Virtual
Machines deployed all over the cloud [38]. This is especially true on x86 CPUs [51]
(see Fig. 1) where the additional super-privileged execution layer is protected by
hardware mechanisms. Similarly, recent ARM CPUs added support for additional
super-privileged execution rings. As such, hardware-supported virtualization is
starting to be commonplace also for the ARM platforms [13].

Virtualization has engaged a never-ending battle both on the attacker side and
on the OS side. As an example of the former, the BluePill [57] malware uses
virtualization to trick the user into a controlled fake environment where his activity
and data can be eavesdropped. As examples of the latter, virtual machines run both
enterprise desktop and server OSes, leveraging isolation benefits. Virtualization
also introduces technological challenges that deserve special attention. Among
them, an increased complexity of digital forensics [52] and issues regarding novel
vulnerabilities of the host system [57].

Fig. 1 Virtual machines and
execution rings [54]

Apps Apps

VMVM

Hypervisor

Hardware

CPU Memory NIC Disk

Control
Operating
System

424 F. Lombardi and R.D. Pietro

Fig. 2 Example of an advanced virtualization-supported monitoring architecture

However, container-based virtualization [18] has recently emerged as a more
lightweight virtualization alternative with respect to the hardware-supported one.
The benefits of reduced code size due to sharing the OS kernel among different
containers (i.e. self-managed application boundaries) comes at the expense of a
greater complexity of the deployed instances. Further, containers feature a thinner
isolation layer, as the OS kernel is the very same across different instances. As such,
the reduced protection from sibling-tasks attacks of container-based virtualization
approaches has to be taken into account by system administrators.

In fact, the adoption of advanced hardware virtualization technology (nowadays
available on most CPU architectures) is a necessary ingredient to achieve detection,
analysis and protection from malware on a large number of software/hardware
architectures. Hardware virtualization enables transparent execution monitoring and
anomaly detection of OS and applications [16] (see Fig. 2). These characteristics are
essential for protecting against security threats. In addition, effective transparency
of the monitoring architecture is needed since malware could behave differently and
hide its malicious behavior when aware that a monitoring service is active [41].

In the following, we survey malware status and main approaches on the most
widespread platforms, starting from Microsoft Windows.

2.1 Windows Malware

The vast majority of PCs in the world run Microsoft Windows and MS Office.
Vulnerabilities in Windows operating systems and their applications have been
targeted by a large number of attacks in the past [46]. Protection mechanisms
such as intrusion detection systems, antiviruses and rootkit scanners have constantly
been improving over the years but the number of different threats is overwhelming
[48]. Security updates are spread quite often by Microsoft but there is always
a delay between vulnerability discovery and distribution of patches that can be

Heterogeneous Architectures: Malware and Countermeasures 425

Table 1 Some example of Windows malware and possible remedies/ counter-
measures

Attack type Activity type Possible remedy

AFX [1] Hooks native Win API Monitor API integrity

Conficker [62] Alters registry keys Sanity check on registry

HackerDefender [22] SSDT replacement lock SSDT from changes

Mebroot [4] Alters disk MBR Check MBR integrity

Rustock [70] Alters Sysenter handler Integrity checks

Vanquish [1] DLL injection library checksums

exploited by zero-day attacks. Furthermore, a very large number of PCs, (implanted)
medical devices and Point of Sale (POS) still runs Windows XP, for which
security update support ended on April 2014 [45]. It is worth noting that some
vulnerabilities in presently available Windows OSes are backward-compatible with
Windows XP and previous ones. Unfortunately, patches are only sent by Microsoft
to protect supported Windows versions. POSes and implantable medical devices are
particularly exposed [24]. As an example the Dexter malware [60, 63] was designed
specifically to attack POS systems and steal valuable data. Similarly to other OSes,
Windows is also victim of ransomware such as Cryptolocker. Such malware can
show fake messages telling the user that he has been caught accessing illicit content
or they completely block device functionality. The payment of the fine would then
unblock the functionality and allow the user to get rid of the fake messages (Table 1).

As regards virtualized Windows OSes, they are subject to the same attacks as
their bare metal counterparts, plus additional vulnerabilities that are proper of the
hypervisor. Many attempts to protect the Windows kernel and its services have
been presented [17, 42]. However, given the complexity of the OS and the lack
of knowledge over the inner parts of the kernel and of implemented services, as
well as the well-known existence of NSA-backed backdoors [78], it is quite hard to
evaluate the actual security/reliability of Windows OS and applications.

2.2 Linux Malware

Linux is usually considered much less affected by malware than other OSes. The
truth is that Linux rootkits and web-based malwares are quite widespread but
few people are aware of them. In particular, during 2014, a couple of serious
bugs/security issues were discovered on the Linux platform, including the Shell-
shock Bash shell vulnerability [11] and the SSL protocol Heartbleed bug [30]. In
fact, even though Linux is present only on a minority of desktop PCs out there, it
is by far the most widespread server platform [26] (not to mention mobile phones).
This is the reason why Linux-based servers have become the most common targets
for web server attacks [23]. In particular, PHP code running on Linux servers often

426 F. Lombardi and R.D. Pietro

hides malicious code that can be used by a botnet [56, 63] to perform a DDoS attack
on heterogeneous platforms over the Internet. In addition, an attacker can manage
to install Linux-targeted rootkits on target machines, be them on real HW or virtual
(this latter case being more and more common). In the former case, the infection can
be made more resilient to reboots and software reconfigurations. In the latter case, as
discussed in [16], once exploited a vulnerability on a VM, malware can easily spread
out to sibling ones. This is the reason why malware on a Virtual Machine can also
try and attack the host through hypervisor (mostly Linux-based) vulnerabilities. As
a matter of fact, VM’s effective containment and smart monitoring are a strongly
needed by Linux-based virtualization hosting.

2.3 Mac Malware

Also Macs had a reputation of being immune to malware. In fact, this is no
longer true [50]. In the past, various specific malicious software targeted Apple
most common applications (MS Office) and platforms. As an example, Mac
Defender [61] was a bogus security software that already induced many Mac users
to unwanted purchases. The trojan horse spread over a large number of Macs using
links with malicious content. After a large number of alert messages the user was
forced to pay for a remote solution to the issue. This malware does not need admin
privileges to spread into the system. Further, it can also prevent the user from
downloading a corrective patch from Apple.

Mac OS X malware continues to evolve, leveraging vulnerabilities in MS Office
and Java and evading Apple’s Gatekeeper protection mechanisms. Gatekeeper is
a tool for checking authenticity and integrity of OS X software as signed with
Apple Developer ID. Unfortunately, even Apple itself was internally compromised
by using a zero-day Java vulnerability [63].

Mac platform are rarely virtualized as Mac as a server platform has never been
particularly successful. As such vulnerabilities for virtualized Macs are not a real
problem.

2.4 Web Malware and Kits

Web-hosted Malware is getting more sophisticated and hidden and can attack
vulnerable web browsers using malicious client-side scripts (mostly JavaScript
and Python). Cross-site scripting (XSS) uses known vulnerabilities in web-based
applications and hides malware into apparently legitimate content that appears at
the client web browser as if coming from a trusted site. Given that any HTML
documents can mix control statements, content and formatting, markup injection
can be done using user-supplied data in the resulting page. However, persistent XSS
malware is even more dangerous as it is triggered when the data provided by the

Heterogeneous Architectures: Malware and Countermeasures 427

attacker is saved by the server. This way the malicious part is delivered in all regular
pages returned to all web browser users. In addition, Flash code can also redirect
the web surfer to malicious content. This way Flash users can be infected without
even being redirected. In addition, malware can hide in specific video codecs.

As an example, Darkleech [23, 63] attacks are particularly dangerous since they
hide and get active with irregular patterns. Darkleech is smart as it maintains IP
blacklists to avoid repeating a malicious activity twice on the same machine.

As regards software kits for customizing malware to target specific organizations
and users, Zeus [55] is one of the most notable representatives. Another relevant
example is Blackhole [5] exploiting Java, Flash and PDF.

Some attacks are targeted at specific companies, victims of advanced persistent
threat (APT) attacks [10, 47]. In this case, malware behaves as a legitimate
application and is often signed with the software producer’s key. Unfortunately, at
given times such malware executes malicious activity. APTs can go undetected for
months. As an example, Blame [63] accesses malicious content from a modified
version of an open source multimedia library. As such, in theory, it should be easier
to check code integrity. Another example is Simbot [69], which distributes a clean
but vulnerable application that contains a very long command line that hides a
shellcode. Such shellcode then loads the main payload.

Redkit [63]is another very smart malware targeting websites and redirecting
users from a legitimate site to another legitimate site that has been compromised
before.

2.5 Mobile Malware

Even though relevant improvements on malware detection for desktop and server
PCs have been made, leveraging such techniques to mobile devices is quite
challenging. Attacks targeting mobile devices are increasing in quantity and quality.
Existing mobile malware detection techniques are similar to traditional desktop
solutions. However, they are not effective due to the limited computing resources
and battery constraints of mobile devices [66]. It is worth noting that mobile devices
are often equipped with powerful sensing capabilities that can collect a very large
variety of data from the surrounding environment [15]. Voice, images, temperature,
humidity, pressure, location, wireless networks and many other data can be collected
by those devices. Mobile devices can also interact with the environment via infrared,
bluetooth, light, NFC and WiFi channels. They have also the ability to incorporate
third-party apps from different markets. These powerful capabilities pose strong
security and privacy issues to users, particularly through malicious software that can
get access to the data collected by the device and can interact with the external world
in an almost unlimited number of ways. Mobile platforms provide mechanisms
to help prevent malicious apps to be installed on devices. The most successful
approach is that of vetting applications before they can be available for installation.
However, such a priori static analysis is not fully effective as malicious content can

428 F. Lombardi and R.D. Pietro

get to the device in a number of ways even when the app appears non-malicious
(similarly to the web-based attacks shown above).

As suggested in the following sections, a comprehensive protection approach
has to be devised leveraging recent technological advances of these platforms. In
particular. as ARM virtualization support increases, monitoring and containment
techniques borrowed from PCs and servers can be deployed [38].

3 Practical Hints for Practitioners

Even though a complete solution for the security and privacy issues on heteroge-
neous platforms has not yet been devised, some rules can be effective in reducing
the risks associated with present malware threats.

OS and application software have to be continuously patched with up-to-date
security fixes. Old attacks are sometimes still effective due to the lack of updates.
Further, if the OS supports limiting the installable apps to certified apps from the
official Store, this option further reduces risks.

It is better to disable or remove Java from the client system if this choice is
available [20]. A large number of malicious software is particularly focused on
Java. Java is especially vulnerable inside web browsers. That is where they see the
greatest vulnerabilities are at the moment. Further, in general, it is better to remove
unnecessary browser plugins.

3.1 Web Remedies

Web server attacks are quite difficult to detect. However, some effective approaches
for protecting servers and clients can be based on layered protection [74]. Web
filtering and dynamic analysis with runtime detection and IDSes can be jointly used
[41].

3.2 Mobile Remedies

Felt [53] surveyed mobile malware and gave a taxonomy that is based on actual
specimens. Also Tangil and Sadeghi [58, 66] actively report on mobile malware
on the Android platform. Most results are based on specific malware specimens
that have been isolated and are now available to registered experts in the field.
In particular, a rich set of mobile malware is hosted by [79]. Chandramohan [9]
proposed a tool for effective identification of android malware.

VirusMeter, a general malware detection method proposed by Liu [37] detects
anomalous behavior on mobile devices. The rationale underlying VirusMeter is the

Heterogeneous Architectures: Malware and Countermeasures 429

fact that mobile devices are usually battery powered and any malicious activity
would inevitably consume some battery power. By monitoring power consumption
on a mobile device, VirusMeter catches misbehaviors that lead to abnormal power
consumption. For this purpose, VirusMeter relies on a concise user-centric power
model that characterizes power consumption of common user behaviors. In a real-
time mode, VirusMeter can perform fast malware detection with trivial runtime
overhead, in battery-charging mode, malware detection can be devoted more
resources and thus it can be speeded-up.

4 Malware Detection and Analysis

The problem of detecting and analyzing malware has received considerable attention
over the past few years. More in general, finding software errors could be in a way
similar to discovering vulnerabilities. Several approaches in the literature use both
White Box and Black Box analysis approaches, aiming at spotting software errors
and malicious behavior [65, 73]. It is true that decompilers are strong enablers for
white box analysis. However, obfuscation techniques are increasingly sophisticated
and render White Box testing unfeasible. As a consequence, Black Box testing is
generally used when source code is not available. However, both approaches study
applications using as input a simulation of users’ behavior.

We now discuss the most relevant research contributions on the two main
approaches to software analysis that are related to White Box and Black Box,
namely Static and Dynamic analysis.

4.1 Static Analysis

The malware analysis process is split into static analysis and dynamic analysis.
Both static and dynamic analysis have their own strengths and weaknesses. As
an example of pure static analysis, Kang [31] uses binary content comparison to
classify malware. Slicingdroids [25] uses a static Android analysis framework to
analyze smali code and to create program slices in order to perform data-flow
analyses to backtrack parameters used by a given method. This helps to identify
suspicious code regions in an automated way. Some tools are aimed at extracting
static features of malware, such as Pingali [77], that focuses on ripping malicious
features from Microsoft Windows binaries.

Calvet et al. [8] look for easily identifiable static features of cryptographic
functions in obfuscated code. They present a tool that leverages this fact to identify
cryptographic functions in obfuscated programs, by retrieving their I/O parameters
in an implementation-independent fashion, and comparing them with those of
known cryptographic functions. However, Schrittwieser et al.[59] demonstrate the
incompleteness of these models leveraging on the gap between model and machine

430 F. Lombardi and R.D. Pietro

to stay undetectable. They introduce “covert computation”, which implements
functionality in side effects of microprocessors where the flags register can be used
to compute basic arithmetical and logical operations. Lee [34] uses static analysis
to calculate the similarity between two files to be executed through by comparing
character strings to identify and classify malware.

4.2 Code Obfuscation

One of the most relevant issues with static analysis is obfuscated code. As a matter
of fact, applying static analysis techniques in such scenarios does not produce
meaningful results. However, other approaches are viable such as those proposed by
Ker et al. [32] describing most relevant steganography and steganalisys techniques
including active [21] and passive wardens. While cryptographic techniques for
malware obfuscation are well described by Apriville [2], a possible solution lies
with software tainting approaches that induce and observe behavioral changes in
the software [65]. This is one of the cases where dynamic analysis has advantages
over static analysis, as detailed in the following.

4.3 Dynamic Analysis

Malware has been classified in various ways using dynamic analysis. As an example,
CAMAS [44] is a tool for the analysis and classification of malicious Android
applications, through pattern recognition on execution graphs. The framework
analyzes behaviors at system-call level and exploits the concept of Action Node
to store relationships between actions. The framework finds common subgraphs in
malware executions and classifies other apps by searching for common patterns of
the previously mined subgraphs. Execution Path Analisis (EPA) [16, 19, 27] is one
of the most promising approaches that leverage past execution traces to learn about
and possibly prevent malicious actions to take place. In particular, virtual execution
environments are used for malware analysis [76] this can be of help in collecting
traces and data. Virtualization is often used in combination with EPA. However,
virtualization can be detected and it can interfere with malware behavior.

Further, in order to better evaluate software behaviour, model checking can be
used [14, 72]. A notable example is Crowdroid [7], i.e. a machine learning-based
malware detection solution that builds a vector of n features (the Android system
calls) and it works by analyzing the number of times each system call has been
issued by an application during execution. The rationale behind is that a genuine
application differs from its malicious version, since it issues different types and a
different number of system calls.

Analysis of Causal Execution Differences is also relevant in dynamic analysis.
Johnson [29] proposes a differential slicing approach that automates the analysis

Heterogeneous Architectures: Malware and Countermeasures 431

of execution differences. Differential slicing outputs a causal difference graph that
captures the input differences that triggered the observed difference and the causal
path of differences that led from those input differences to the observed difference.
The analyst can then use the graph to understand the observed difference. Johnson
can successfully identify the input differences that caused the observed difference.
Such causal difference graph significantly reduces the amount of time and effort
required for an analyst to understand the observed difference.

Differential Fault Analisis [65] is a dynamic analysis technique that aims to
bridge the semantic gap and better classify code behavior by establishing cause-
effect relationships between changes induced by the analyst and the visible effects
they produce. This approaches offer advantages when the code to analyze is
obfuscated, albeit it can have higher complexity and computing costs.

5 Future Research Directions

Businesses increasingly rely on cloud-hosted services for managing internal and
external data. This exposes both personal and corporate data.

BYOD issues are becoming of primary importance, as such devices can help
rendering corporate protection mechanisms useless. The BYOD security risk can
be mitigated by enforcing stricter security policies on such devices when inside
corporate borders. This includes preventing side-loading of mobile apps from
unknown sources and advanced anti-malware protection. However, the key enabling
factor for effective security of BYOD devices is the enforcement of trusted platform
architectures via lightweight trusted hypervisors [40]. Such virtual machine man-
ager would be able to switch userspace in use based on a policy that could take
into consideration location/position and kind of data being managed. This will also
be effective against data exfiltration attempts. Some other interesting approaches
will involve secure reputation-base ranking of services, cloud node security ranking
based on past behavior.

Further, NSA-supposedly-supported backdoors and vulnerabilities such as those
in the OpenSSL and Windows OSes are probably there to stay. However, improve-
ments in the software verification tools may render it possible to analyze and
improve (at least open-source) current and future implementations of relevant
cryptographic protocols.

In addition, stronger authentication mechanisms and cloud data access policies
are becoming increasingly important. Password-based mechanisms will eventually
disappear in the face of increasingly powerful brute force attacks.

Further, latest technology and novel approaches can make use of advanced
manycore CPUs and GPUs together with virtualization technology to allow a more
effective execution monitoring and malware detection.

In particular, visualizing and classifying malware using image processing tech-
niques can be a successful trend in malware analysis. As an example, in malware
visualization, binaries are visualized as images. Indeed, for many malware families,

432 F. Lombardi and R.D. Pietro

the images belonging to the same family appear very similar in layout and texture.
A classification can then be performed such as in [48].

Further, advanced anomaly monitoring systems will be able to verify on-the-fly
whether running programs comply to their expected normal behavior or not [46],
based on a rich set of discriminators, and relative entropy between distributions of
system calls. A sound approach today, anomaly-based detection has a bright future
ahead, especially when combined with powerful parallel manycore capabilities [64]
such as those found on recent GPUs [43].

5.1 Virtualization and Introspection

As discussed above, the additional privileged layer protected by hardware virtu-
alization features, allows guest applications and OSes to be constantly monitored
and analyzed. This is the main idea behind approaches that aim at transparently
collecting as much information as possible from the guest in order to be able to
reconstruct a faithful and realistic model where policies are evaluated [16, 41].
The main difficulty of these approaches is that the gap between collecting guest
information and being able to build a model is quite large. Semantic introspection
[68] is the set of technologies that allow bridging such gap and reconstructing a
faithful model.

5.2 Cloud-Based Analysis

As traditional server workloads, also malware analysis tasks can be offloaded to the
cloud. For example, when power consumption is one major constraint (e.g. battery-
powered devices) that makes unaffordable to run traditional detection engines,
cloud-based approaches can be effective albeit rising some privacy concern.

It is also possible [49] to spend bandwidth resources to significantly reduce
on-device CPU, memory, and power resources. As an example, mobile antivirus
functionality can be moved to an off-device network service employing mul-
tiple virtualized malware detection engines. A cloud-based engine can reduce
on-device software complexity, while allowing for platform-specific behavioral
analysis engines.

Cloud-based approaches have been proposed to deal with malware complexity
and the variety of malware over the Internet. They generate malware signatures for
anti-virus (AV) scan engines. An automatic malware signature discovery system for
AV cloud (AMSDS) [75] was created to generate malware signatures from both
static and dynamic aspects. The limitation here is that signature-based analyses can
be easily circumvented by obfuscated malwares. As such, anti-malware services
that use pre-existing web-based file scanning services for malware detection, such
as ThinAV [28] can provide some form of real-time anti-malware remote scanning.

Heterogeneous Architectures: Malware and Countermeasures 433

The first results of this approaches are interesting. However, we believe the real
novelty/quantum leap of cloud-based anti-malware research lies with cloud-based
clones or real mobile phones. In fact, as shown by Costa [33] with Clone2Clone
(C2C), a distributed peer-to-peer platform for cloud clones of smartphones is
possible. C2C offloads communication between smartphones on the cloud. Device-
clones hosted in virtualization environments on clouds. C2C makes it possible to
implement distributed execution of advanced peer-to-peer services in a network
of mobile smartphones reducing the cellular data traffic and saving the battery for
respectively security checks.

Further, virtual copies of real smartphones (the clones) that run on the cloud,
synchronized with the corresponding devices, can help alleviate the computational
burden on the real smartphones. CloudShield [3] a suite of protocols running on P2P
networks of clones, organizes clones in a P2P network in order to facilitate content
sharing among smartphones. CloudShield is used to compute the best strategy to
patch the smartphones in such a way that the number of devices to patch is low and
that the worm is stopped quickly.

5.3 Manycore-Based Analysis

Recent CPU and GPU technology has managed to overcome Moore’s law present
limitations by multiplying the number of computing cores. In particular, Graphics
Processing Units can be used to quickly validate and check host (i.e. CPU) code
and data. This is the main idea behind CUDACS [39] and various other approaches
that aim at concurrently executing code and monitoring/protecting its execution (see
Fig. 3). This promising area is just in its infancy, given that only recent APUs with
unified memory addressing allow a stricter integration between the two computing
approaches. Thus heterogeneous redundancy allows bidirectional checking that can
also speed-up static and dynamic analysis by parallelizing the workload.

6 Conclusion

In this chapter, we surveyed malicious software issues on a large number of
wide-spread platforms, including Microsoft Windows, Linux, Mac and mobile
platforms. The main characteristics and attack strategies of most recent malware
have been described, showing similarities and peculiarities among them. Advice
and guidelines on how to reduce the attack surface and limit the amount of damage
such malware can do have been given.

However, as malware becomes smarter and stealthier, its detection becomes
a complex process comprising monitoring, data collection and analysis. The two
main popular detection approaches, Static Analysis and Dynamic Analysis, inspect
malicious code or deploy such code into a contained environment. However, both

434 F. Lombardi and R.D. Pietro

Fig. 3 Manycore-based
analysis on a GPU [39].
Monitoring Data (MD) is sent
to the GPU by a Monitoring
Data Collection System
(MDCS) on the host device

static and dynamic analysis require large computing and storage resources. An
evolution of the analysis tools is needed in order to cope with the ever increasing
number of malicious applications and toolkits. Novel technologies and approaches,
such as General Purpose GPU computing, recently introduced, have not fully been
leveraged to their full potential. As such, the future as room for evolution of
both malware and anti-malware techniques and approaches, as surveyed in present
chapter.

References

1. Alexander, J.S., Dean, T., Knight, S.: Spy vs. spy: Counter-intelligence methods for
backtracking malicious intrusions. In: Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’11, pp. 1–14. IBM Corp, Riverton,
(2011)

2. Apvrille, A.: Cryptography for mobile malware obfuscation. http://www.fortiguard.com/files/
FNMS-305-Apvrille-Revised.pdf (2011)

http://www.fortiguard.com/files/FNMS-305-Apvrille-Revised.pdf
http://www.fortiguard.com/files/FNMS-305-Apvrille-Revised.pdf

Heterogeneous Architectures: Malware and Countermeasures 435

3. Barbera, M., Kosta, S., Stefa, J., Hui, P., Mei, A.: Cloudshield: Efficient anti-malware
smartphone patching with a p2p network on the cloud. In: 012 IEEE 12th International
Conference on Peer-to-Peer Computing (P2P), 2, pp. 50–56 (2012)

4. Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: Detecting compromised
hosts in homogeneous crowds. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pp. 341–352. ACM, New York (2012)

5. BlackHat: Black hole. http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_
Jones_State_Web_Exploits_Slides.pdf, 2013

6. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically identifying
trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D. (eds.) Botnet Detection,
volume 36 of Advances in Information Security, pp. 65–88. Springer, New York (2008)

7. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection
system for Android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’11, pp. 15–26. ACM, New York (2011)

8. Calvet, J., Fernandez, J.M., Marion, J.-Y.: Aligot: cryptographic function identification in
obfuscated binary programs. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pp. 169–182. ACM, New York (2012)

9. Chandramohan, M., Tan, H.B.K.: Detection of mobile malware in the wild. IEEE Comput.
45(9), 65–71 (2012)

10. Command Five Pty Ltd. Advanced persistent threats: A decade in review. www.commandfive.
com/papers/C5-APT-ADecadeInReview.pdf (2011)

11. Common Vulnerabilities and Exposures: Cve-2014-6271. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6271 (2014)

12. Creasy, R.J.: The origin of the vm/370 time-sharing system. IBM J. Res. Dev. 25(5), 483–490
(1981)

13. Dall, C., Nieh, J.: KVM/ARM: The design and implementation of the Linux ARM
Hypervisor. In: Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’14, pp. 333–348. ACM,
New York (2014)

14. Dam, M., Le Guernic, G., Lundblad, A.: Treedroid: a tree automaton based approach to
enforcing data processing policies. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pp. 894–905. ACM, New York (2012)

15. De Cristofaro, E., Di Pietro, R.: Adversaries and countermeasures in privacy-enhanced urban
sensing systems. Syst. J. IEEE 7(2), 311–322 (2013)

16. Di Pietro, R., Lombardi, F., Signorini, M.: CloRExPa: cloud resilience via execution path
analysis. Futur. Gener. Comput. Syst. 32, 168–179 (2014)

17. Di Pietro, R., Mancini, L.V.: Intrusion Detection Systems, vol. 38 of Advances in Information
Security. Springer, New York (2008)

18. Docker Inc.: Build, ship and run any app, anywhere. http://www.docker.com/ (2013)
19. Fan, W., Zhou, B., Liang, H., Yang, Y.: A novel program analysis method based on

execution path correlation. In: Second International Symposium on Knowledge Acquisition
and Modeling, 2009. KAM ’09, vol. 2, pp. 178–181 (2009)

20. Finkle, J.: U.S. warns on Java software as security concerns escalate. Reuters, http://www.
reuters.com/article/2013/01/11/us-java-security-idUSBRE90A0S320130111 (2013)

21. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in internet traffic
with active wardens. In: Revised Papers from the 5th International Workshop on Information
Hiding, IH ’02, pp. 18–35. Springer, New York (2003)

22. Gates, C.: Hackerdefender: Rootkit for the masses. http://www.carnal0wnage.com/papers/
rootkit_for_the_masses.pdf (2012)

23. Giron, J.: Reversing the DarkLeech exploit kit. http://www.gironsec.com/blog/2013/09/
reversing-the-darkleech-exploit-kit/ (2013)

24. Gollakota, S., Hassanieh, H., Ransford, B., Katabi, D., Fu, K.: They can hear your heartbeats:
Non-invasive security for implantable medical devices. SIGCOMM Comput. Commun. Rev.
41(4), 2–13 (2011)

http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_Jones_State_Web_Exploits_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_Jones_State_Web_Exploits_Slides.pdf
www.commandfive.com/papers/C5-APT-ADecadeInReview.pdf
www.commandfive.com/papers/C5-APT-ADecadeInReview.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://www.docker.com/
http://www.reuters.com/article/2013/01/11/us-java-security-idUSBRE90A0S320130111
http://www.reuters.com/article/2013/01/11/us-java-security-idUSBRE90A0S320130111
http://www.carnal0wnage.com/papers/rootkit_for_the_masses.pdf
http://www.carnal0wnage.com/papers/rootkit_for_the_masses.pdf
http://www.gironsec.com/blog/2013/09/reversing-the-darkleech-exploit-kit/
http://www.gironsec.com/blog/2013/09/reversing-the-darkleech-exploit-kit/

436 F. Lombardi and R.D. Pietro

25. Hoffmann, J., Ussath, M., Holz, T., Spreitzenbarth, M.: Slicing Droids: program slicing for
Smali code. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pp. 1844–1851. ACM, New York (2013)

26. Hua, J., Sakurai, K.: Barrier: A lightweight hypervisor for protecting kernel integrity
via memory isolation. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, pp. 1470–1477. ACM, New York (2012)

27. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable
triage and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pp. 309–320. ACM, New York (2011)

28. Jarabek, C., Barrera, D., Aycock, J.: Thinav: Truly lightweight mobile cloud-based anti-
malware. In: Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC ’12, pp. 209–218. ACM, New York (2012)

29. Johnson, N.M., Caballero, J., Chen, K.Z., McCamant, S., Poosankam, P., Reynaud, D., Song,
D.: Differential slicing: Identifying causal execution differences for security applications. In:
Proceedings of the 2011 IEEE Symposium on Security and Privacy, SP ’11, pp. 347–362. IEEE
Computer Society, Washington (2011)

30. Kamp, P.-H.: Please put openssl out of its misery. Queue 12(3), 20:20–20:23 (2014)
31. Kang, B., Kim, T., Kwon, H., Choi, Y., Im, E.G.: Malware classification method via binary

content comparison. In: Proceedings of the 2012 ACM Research in Applied Computation
Symposium, RACS ’12, pp. 316–321. ACM, New York (2012)

32. Ker, A.D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., Pevný,
T.: Moving steganography and steganalysis from the laboratory into the real world. In:
Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security,
IH&MMSec ’13, pp. 45–58. ACM, New York (2013)

33. Kosta, S., Perta, V.C., Stefa, J., Hui, P., Mei, A.: Clone2clone (c2c): Peer-to-peer networking of
smartphones on the cloud. In: Presented as Part of the 5th USENIX Workshop on Hot Topics
in Cloud Computing, USENIX, Berkeley (2013)

34. Lee, J., Im, C., Jeong, H.: A study of malware detection and classification by comparing
extracted strings. In: Proceedings of the 5th International Conference on Ubiquitous Informa-
tion Management and Communication, ICUIMC ’11, pp. 75:1–75:4. ACM, New York (2011)

35. Liang, B., You, W., Shi, W., Liang, Z.: Detecting stealthy malware with inter-structure and
imported signatures. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’11, pp. 217–227. ACM, New York (2011)

36. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines of malicious
code: Insights into the malicious software industry. In: Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC ’12, pp. 349–358. ACM, New York
(2012)

37. Liu, L., Yan, G., Zhang, X., Chen, S.: Virusmeter: Preventing your cellphone from spies. In:
Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection,
RAID ’09, pp. 244–264. Springer, Berlin/Heidelberg (2009)

38. Lombardi, F., Di Pietro, R.: Kvmsec: a security extension for linux kernel virtual machines. In:
SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing, pp. 2029–2034.
ACM, New York (2009)

39. Lombardi, F., Di Pietro, R.: CUDACS: securing the cloud with CUDA-enabled secure
virtualization. In: Proceedings of the 12th International Conference on Information and
Communications Security, ICICS’10, pp. 92–106. Springer, Berlin/Heidelberg (2010)

40. Lombardi, F., Di Pietro, R.: A security management architecture for the protection of kernel
virtual machines. In: 2010 IEEE 10th International Conference on Computer and Information
Technology (CIT), pp. 948–953 (2010)

41. Lombardi, F., Di Pietro, R: Secure virtualization for cloud computing. J. Netw. Comput. Appl.
34(4), 1113–1122 (2011)

42. Lombardi, F., Di Pietro, R., Soriente, C.: CReW: Cloud resilience for Windows guests through
monitored virtualization. In: Proceedings of the 2010 29th IEEE Symposium on Reliable
Distributed Systems, SRDS ’10, pp. 338–342. IEEE Computer Society, Washington (2010)

Heterogeneous Architectures: Malware and Countermeasures 437

43. Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley, C., Lefohn,
A.: Gpgpu: general purpose computation on graphics hardware. In: SIGGRAPH ’04: ACM
SIGGRAPH 2004 Course Notes, p. 33. ACM, New York (2004)

44. Martinelli, F., Saracino, A., Sgandurra, D: Classifying android malware through subgraph
mining. In: Proceedings of the SETOP Workshop, SETOP’13. springer LNCS (2013)

45. Microsoft: Enterprise customers support for Windows XP has ended. http://www.microsoft.
com/en-us/windows/enterprise/end-of-support.aspx.

46. Milea, N.A., Khoo, S.C., Lo, D., Pop, C.: Nort: Runtime anomaly-based monitoring of
malicious behavior for windows. In: Proceedings of the Second International Conference on
Runtime Verification, RV’11, pp. 115–130. Springer, Berlin/Heidelberg (2012)

47. Mustafa, T.: Malicious data leak prevention and purposeful evasion attacks: An approach to
advanced persistent threat (apt) management. In: Electronics, Communications and Photonics
Conference (SIECPC), 2013 Saudi International, pp. 1–5 (2013)

48. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: Visualization and
automatic classification. In: Proceedings of the 8th International Symposium on Visualization
for Cyber Security, VizSec ’11, pp. 4:1–4:7. ACM, New York (2011)

49. Oberheide, J., Veeraraghavan, K., Cooke, E., Flinn, J., Jahanian, F.: Virtualized in-cloud
security services for mobile devices. In: Proceedings of the First Workshop on Virtualization
in Mobile Computing, MobiVirt ’08, pp. 31–35. ACM, New York (2008)

50. O’Donnell, A.: When malware attacks (anything but windows). IEEE Secur. Priv. 6(3), 68–70
(2008)

51. Perez, R., van Doorn, L., Sailer, R.: Virtualization and hardware-based security. IEEE Secur.
Priv. 6(5), 24–31 (2008)

52. Pollitt, M., Nance, K., Hay, B., Dodge, R.C., Craiger, P., Burke, P., Marberry, C., Brubaker, B.:
Virtualization and digital forensics: A research and education agenda. J. Digit. Forensic Pract.
2(2), 62–73 (2008)

53. Porter Felt, A., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile malware in
the wild. In: Proceedings of the 1st ACM Workshop on Security and privacy in smartphones
and mobile devices, SPSM ’11, pp. 3–14. ACM, New York (2011)

54. Ribeiro, M.S.: Thoughts on information technology. http://itechthoughts.wordpress.com/2009/
11/10/virtualization-basics.

55. Riccardi, M., Di Pietro, R., Palanques, M., Vila, J.A.: Titans’ revenge: Detecting zeus via its
own flaws. Comput. Netw. 57(2), 422–435 (2013)

56. Rodríguez-Gómez, R.A., Maciá-Fernández, G., García-Teodoro, P.: Survey and taxonomy of
botnet research through life-cycle. ACM Comput. Surv. 45(4), 45:1–45:33 (2013)

57. Rutkowska, J.: Introducing the blue pill. http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html, (2006)

58. Sadeghi, A.-R.: Mobile security and privacy: The quest for the mighty access control. In:
Proceedings of the 18th ACM Symposium on Access Control Models and Technologies,
SACMAT ’13, pp. 1–2. ACM, New York (2013)

59. Schrittwieser, S., Katzenbeisser, S., Kieseberg, P., Huber, M., Leithner, M., Mulazzani, M.,
Weippl, E.: Covert computation: hiding code in code for obfuscation purposes. In: Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, pp. 529–534. ACM, New York (2013)

60. Seculert: Dexter. http://www.seculert.com/blog/2012/12/dexter-draining-blood-out-of-point-
of-sales.html, (2012)

61. SecureMac: Mac defender. http://www.securemac.com/pdf/macdefender.pdf (2013)
62. Shin, S., Gu, G.: Conficker and beyond: A large-scale empirical study. In: Proceedings of the

26th Annual Computer Security Applications Conference, ACSAC ’10, pp. 151–160. ACM,
New York (2010)

63. Sophos: Sophos security threat report. http://www.sophos.com/en-us/medialibrary/PDFs/
other/sophos-security-threat-report-2014.pdf (2014)

http://www.microsoft.com/en-us/windows/enterprise/end-of-support.aspx
http://www.microsoft.com/en-us/windows/enterprise/end-of-support.aspx
http://itechthoughts.wordpress.com/2009/11/10/virtualization-basics
http://itechthoughts.wordpress.com/2009/11/10/virtualization-basics
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://www.seculert.com/blog/2012/12/dexter-draining-blood-out-of-point-of-sales.html
http://www.seculert.com/blog/2012/12/dexter-draining-blood-out-of-point-of-sales.html
http://www.securemac.com/pdf/macdefender.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf

438 F. Lombardi and R.D. Pietro

64. Sridharan, S., Gupta, G., Sohi, G.S.: Adaptive, efficient, parallel execution of parallel
programs. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pp. 169–180. ACM, New York, (2014)

65. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.: Thwarting obfuscated malware
via differential fault analysis. Computer 47(6), 24–31 (2014)

66. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection and analysis of
malware for smart devices. IEEE Commun. Surv. Tutorials 16(2), 961–987 (2014)

67. Symantec: Internet security threat report 2014. http://www.symantec.com/content/en/us/
enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf.

68. Tamberi, F., Maggiari, D., Sgandurra, D., Baiardi, F.: Semantics-driven introspection in a
virtual environment. In: Proceedings of the 2008 The Fourth International Conference on
Information Assurance and Security, pp. 299–302. IEEE Computer Society, Washington (2008)

69. Telus Security Labs.: Simbot. http://telussecuritylabs.com/threats/show/TSL20110921-05
(2013)

70. Thonnard, O., Dacier, M.: A strategic analysis of spam botnets operations. In: Proceedings
of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference,
CEAS ’11, pp. 162–171. ACM, New York (2011)

71. Van Bruggen, D., Liu, S., Kajzer, M., Striegel, A., Crowell, C.R., D’Arcy, J.: Modifying
smartphone user locking behavior. In: Proceedings of the Ninth Symposium on Usable Privacy
and Security, SOUPS ’13, pp. 10:1–10:14. ACM, New York (2013)

72. van der Merwe, H., van der Merwe, B., Visser, W.: Verifying android applications using Java
PathFinder. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

73. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the 2001
IEEE Symposium on Security and Privacy, SP ’01, pp. 156–161. IEEE Computer Society,
Washington (2001)

74. Wailly, A., Lacoste, M., Debar, H.: Vespa: Multi-layered self-protection for cloud resources.
In: Proceedings of the 9th International Conference on Autonomic Computing, ICAC ’12,
pp. 155–160. ACM, New York (2012)

75. Wu, L., Zhang, Y.: Automatic detection model of malware signature for anti-virus cloud
computing. In: 011 IEEE/ACIS 10th International Conference on Computer and Information
Science (ICIS), 2, pp. 73–75 (2011)

76. Yan, L.-K., Jayachandra, M., Zhang, M., Yin, H.: V2E: combining hardware virtualization and
software emulation for transparent and extensible malware analysis. SIGPLAN Not. 47(7),
227–238 (2012)

77. Zabidi, M., Maarof, M., Zainal, A.: Malware analysis with multiple features. In: 2012 UKSim
14th International Conference on Computer Modelling and Simulation (UKSim), pp. 231–235
(2012, March)

78. Zetter, K.: How a crypto backdoor pitted the tech world against the NSA. http://www.wired.
com/2013/09/nsa-backdoor/ (2013)

79. Zhou, Y., Jiang, X.: Dissecting Android malware: Characterization and evolution. In:
Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pp. 95–109. IEEE
Computer Society, Washington (2012)

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://telussecuritylabs.com/threats/show/TSL20110921-05
http://www.wired.com/2013/09/nsa-backdoor/
http://www.wired.com/2013/09/nsa-backdoor/

Trusted, Heterogeneous, and Autonomic
Mobile Cloud

Flavio Lombardi and Roberto Di Pietro

Abstract Offloading computing to distributed and possibly mobile nodes is
increasingly popular thanks to the convenience and availability of cloud resources.
However, trusted mobile computing is not presently viable due to a number of issues
in both the mobile platform architectures and in the cloud service implementations.
The complexity of such systems potentially exposes them to malicious and/or
selfish behavior. This chapter describes the state-of-the-art research on theoretical
advancements and practical implementations of trusted computing on a mobile
cloud. Further, mobile distributed cloud computing security and reliability issues
are introduced. Discussed solutions feature different levels of resiliency against
malicious and misbehaving nodes.

1 Introduction

The cloud paradigm enables effective and convenient offloading of computing tasks
to distributed, possibly mobile nodes. However, trusted offloading of tasks to mobile
nodes has a number of issues in both in the mobile platform architectures and in
the cloud service implementations [2]. The complexity of such systems potentially
exposes to malicious and selfish behavior. In the real world computing nodes are
prone to failures and/or misbehaving. However, the redundancy of such nodes can
be leveraged to help guarantee correctness and availability of results.

Computationally expensive tasks that can be parallelized are more rapidly
completed by distributing the computation among a large number of processors.
The growth of the Internet has made it possible to include every possible kind
of networked node into distributed computing. As such, especially in scenarios
where participants get paid for their contribution, there is incentive for cheating
participants to claim compensation for work not actually performed. Security

F. Lombardi (�)
IAC-CNR, Rome, Italy
e-mail: flavio.lombardi@cnr.it

R. Di Pietro
Mathematics and Physics Department, Roma Tre University, Rome, Italy
e-mail: dipietro@mat.uniroma3.it

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_14

439

mailto:flavio.lombardi@cnr.it
mailto:dipietro@mat.uniroma3.it

440 F. Lombardi and R. Di Pietro

schemes have been proposed to protect against such threat as well as to limit the
computational overhead introduced by such systems. Weaker schemes discourage
cheating by reducing its convenience, while stronger schemes let participants prove
that they have performed the assigned task [38].

The aim of this chapter is to create state-of-the-art background reference and
to provide research support information for theoretical advancements and practical
implementations of trusted computing on a mobile cloud. Mobile distributed cloud
computing security and reliability issues are discussed. In particular, threat models
are discussed as well as data/computation assignment approaches to a cloud
composed of heterogeneous nodes. Presented solutions feature different levels of
resiliency against malicious and misbehaving nodes. Further, benefits and pitfalls of
different approaches are discussed over a set of different scenarios.

This chapter is organized as follows: the Introduction section has just described
reliable distributed computing and it has motivated the remainder of this chapter.
The Technology Background section discusses existing distributed computing
approaches ranging from volunteer computing to clouds and mobile clouds. The
State of the Art section reviews trusted computing approaches and tools over
different platforms. It also highlights similarities and differences among them.
The Trusted Distributed Mobile Computing section introduces the most relevant
mobile trusted computing solutions, together with the hardware and software
limitations of mobile platforms. It also discusses the main results of cheating-
resilient computing approaches based on smart redundant computing. Further,
it depicts differences among heterogeneous resource-constrained scenarios. The
Practical hints and Future research directions section is aimed to help practitioners
leverage latest technology and approaches to monitor and control remote execu-
tion. Further, this section highlights the most promising future trends for trusted
distributed mobile computing. The Conclusion section summarizes the information
contained in the previous sections and leads the reader to new perspectives of trusted
autonomic computing approaches over a mobile cloud. Finally, the bibliography is
reported, containing the most relevant works cited in this chapter, in order for the
reader to be able to further delve into this exciting and relevant domain.

2 Technology Background

New smart devices are appearing every day, including wearable devices (glasses
[43], watches [91]), automotive devices [89] or simply TV sets [45] and tablets
[93]. Most if not all such devices have computing power that can be leveraged by a
large set of novel applications (pay-per-distributed computing, healthcare, . . .).

Users are increasingly taking advantage of such novel hardware [77]. Such
devices have not yet been used for reliable trustworthy computing, due to the lack
of a generic reliability-guaranteeing approach and due to the lack of a mature
implemented management framework. As a matter of fact, reliable distributed
computing is known to be a challenging problem that continues to receive a special

Trusted, Heterogeneous, and Autonomic Mobile Cloud 441

attention [28]. In fact, the pervasiveness of presently available networks and the
availability of increasingly powerful computing devices offer new perspectives over
the general problem depicted above.

As we already know, cloud computing offers unprecedented ways to perva-
sively access scalable and economically viable computing and storage resources.
The encouraging results of volunteer computing projects in this context and the
flexibility of the cloud, induces to spend research efforts towards new computing
paradigms (one of the first examples was Cloud@Home [21]). In particular, the
mobile cloud, defined as the possibility of offering services by also leveraging
mobile nodes, has raised much interest in the research community [10, 60, 81].
A mobile cloud is the combination of cloud computing and mobile networks to
enable new apps and services for mobile users, network operators, as well as cloud
computing providers [1]. Mobile cloud computing aims at hosting complex appli-
cations on possibly a large number of mobile devices, leveraging heterogeneous
computing resources and network technologies based on the pay-per-use principle.
Mobile applications have a large number of open issues, concerned mainly with
connectivity, computational capacities, memory and battery constraints.

Mobile multiplayer online games [34] are an example of fully distributed
mobile approach. In mobile environments, several features might be exploited to
enable resource sharing among multiple devices/game consoles owned by different
mobile users. Trading computing/networking facilities among mobile players can
be effective. This operation mode opens a wide number of interesting sharing
scenarios. In particular, once mobile nodes make their resource available to the
community, it becomes possible to distribute the workload for the management of
the game itself [34].

Many successful attempts to efficiently distribute computation allow us to further
discuss over the reliability and security of such approaches, with the aim to
devise better solutions to the above problems. In particular, malicious software
can alter affected cloud nodes’ behavior and affect the reliability and security of
the distributed effort. In the following subsection we analyze more in depth some
characteristics of the attacks and the most relevant protection mechanisms.

2.1 Malware and Smart Devices

Thwarting malware attacks in smart devices is a challenging problem area with
a substantial amount of open issues (summarized in Tables 1 and 2). Therefore,
it is interesting to study and evaluate how such mobile distributed systems can
autonomically [83] self-configure and adjust to attacks and to changes in the
configuration [69]. In particular, as regards security, attacks targeting mobile devices
are increasing in quantity and quality [6].

It is also worth noting that such devices often feature powerful sensing capa-
bilities. In fact, they are capable of grabbing and monitoring sound, movement,
position, heat, humidity, and presence via very sophisticated cameras. Further, one

442 F. Lombardi and R. Di Pietro

Table 1 Smart devices opportunities and caveats

Devices Opportunities Caevats

Smartphones Crowdsourcing [17] Battery endurance, networking costs

Tablets Crowdsourcing Battery endurance, network availability

Wearables Pervasive overall health monitoring Malware and greyware

IMDs [25] Pervasive health monitoring [37] Targeted malware

Table 2 Smart devices and security issues

Devices Security issues Specific issues

Smartphones Bloatware, malware and work-stealing-ware Code and computation integrity

Tablets Bloatware, malware and greyware Code and computation integrity

IMDs [25] Safety (e.g. pacemakers) and security Alteration of vital parameters

Wearables Mostly privacy issues Personal data leakage

Fig. 1 High-level view of the Android permission system [40]

relevant feature of such devices is their ability to execute third-party apps from a
large variety of markets [82]. This poses a number of security and privacy issues.
In particular, software of malicious nature can access the services provided by the
device and collect personal information and other private data. Further, it can also
affect the behavior of other applications installed on the same device [77].

Present mobile malware detection techniques are similar to traditional desktop
solutions. Unfortunately, they are not equally effective due to the limited computing
resources and battery constraints of mobile devices. In practice, even though
relevant improvements on malware detection for desktop and server PCs have been
made, leveraging such techniques to mobile devices is still challenging.

The security architecture of present smartphones usually features a permission
system restricting apps privileges [33, 44] (see also Fig. 1). However, this approach
is not effective as apps request all permissions at install time, and the regular user
is only left with the choice between accepting all of them altogether or denying

Trusted, Heterogeneous, and Autonomic Mobile Cloud 443

access and not installing the app. In addition, apps can interact with each other and
share information. Further, malware detection is quite difficult as signature-based
antimalware techniques can only detect malware for which a signature is available,
and are useless against polymorphic and metamorphic malware [76, 77].

Dynamic analysis based on behavior monitoring can be an effective approach for
mobile nodes. One example is VirusMeter [55], a behavior-based malware detection
approach based on the fact that mobile devices are usually battery powered and
any malicious activity consumes precious battery power. VirusMeter relies on a
power model characterizing power consumption of regular behavior and sending
an alert when the power consumption pattern is anomalous. VirusMeter catches
(mis)behaviors that lead to abnormal power consumption by monitoring power
consumption of the mobile device.

3 State of the Art

The problem of secure reliable distributed computing has been modeled in a number
of ways [47] that mostly focus on consistency of the global computation. This
section in particular focuses on trustworthy outsourced computing, with some
specific reference to mobile-hosted workloads. Relevant contributions come from
a large number of heterogeneous areas as well as novel ideas and approaches that
are discussed in the following taxonomy.

3.1 Verifiable Outsourced Computations

Two main objectives are relevant to verifiable outsourced computing: result cor-
rectness and timeliness of results. Gennaro et al. [36] are concerned with the
former objective, whereas Moser et al. [61] with the latter. As discussed in [85],
where proof-based verifiable computation is surveyed, the possibility of verifying
computation while limiting or avoiding re-execution is quite a hot topic.

As a matter of fact, the efficient verification problem in distributed networks was
investigated by Das Sarma [23] who proposed an effective distributed algorithm.
Das Sarma introduced tight time lower bounds on distributed verification algo-
rithms for many fundamental problems such as connectivity, spanning connected
subgraph, and s � t cut verification. The lower bound proofs he provided show
interconnections between communication complexity and distributed computing.
Sasson [13] gave another relevant contribution to the solution of the problem by
discussing the efficiency of some Probabilistically-checkable Proofs. However, his
results once again show that only a restricted set of problems can effectively use
such approaches. Similarly, the work by Backes [9] addresses the reliable distributed
computing problem for the class of computations of quadratic polynomials over
a large number of variables. The downside of these approaches is that they are

444 F. Lombardi and R. Di Pietro

hardly general enough to be used for general-purpose computations. Some other
more practical verification technique for outsourced computation was given in [71],
leveraging Interactive Proofs [20].

An interesting approach is Blacksheep [14], a distributed system leveraging simi-
larity amongst the machines for detecting the presence of malware among groups of
similarly-configured machines. Golle [38] undoubtedly gave a relevant contribution
towards addressing the reliable distributed computing problem by analyzing the
motivations of cheating by untrusted computing resources. He proposed security
schemes that protect against this threat by rendering cheating less convenient
than well-behavior. In a way similar to Golle’s, Belenkiy et al. [12] introduced a
distributed checking mechanism where a reward is given to a contractor when he
manages to detect and signal a cheating node. This is an interesting approach with
a relevant issue. In fact, the contractors can themselves be malicious. As such, there
is a chance of accusing/demoting noncheating nodes.

Wei et al. [88] proposed a privacy cheating discouragement and secure com-
putation auditing protocol (SecCloud) which is a simple protocol bridging secure
storage and secure computation auditing in cloud and achieving privacy cheating
discouragement by designated verifier signature, batch verification and probabilistic
sampling techniques. In particular, Wei et al. give an optimal sampling size to
minimize the cost and suggest a practical secure-aware cloud computing testbed
(SecHDFS).

A totally different solution was proposed by Di Martino [35], introducing an
approach that can be used to perform complex event correlation analysis to identify
intrusions that involve Service Level Agreement violations. Levitin et al. [52]
present an algorithm for evaluating the reliability and distribution of complex non-
repairable series-parallel multi-state systems with common cause failures caused
by propagation of failures in system elements. Further, Levitin et al. [51] propose
a general model for linear consecutive k-out-of-r-from-n system to the case of m
consecutive runs of r elements. In this model, the system consists of n linearly
ordered statistically independent elements, and fails iff in each of at least m
consecutive overlapping groups of r consecutive elements at least k elements fail.
This model can be useful in modeling failing or cheating computing nodes. Their
approach can actually be useful to represent a malicious behavior of nodes that is
caused by malware spreading among them.

It is worth noting that the main problem is usually due to node rational selfish
behavior and not to malware. However, the above-described models can be useful in
investigating/analyzing the effect of erroneous partial results on the final computed
outcome.

As further examples of improved task distribution strategies, Su et al. [75]
introduce an approach that optimizes the scheduling of tasks to nodes using a game-
theoretic approach. ScaleStar [92] approaches many-task scheduling on clouds
discussing a solution that especially takes into consideration resource cost. ScaleStar
assigns the selected task to a virtual machine with higher comparative advantage
which effectively balances the execution time-and-monetary cost goals. ScaleStar

Trusted, Heterogeneous, and Autonomic Mobile Cloud 445

does not address the problem related to cheating nodes but it introduces novel
interesting price-performance considerations on scheduling [19].

Further, Parno et al. introduce Pinocchio [65], i.e. a crypto-based system for
efficient verification of remote computation. Pinocchio is an interesting specific
approach using quadratic programs [41] for encoding computations and producing
small-sized proof independently from the size of the computation. An interesting
work similar to Pinocchio is [84] that considers interactive, proof-based verifiable
computation and extends non-cryptographic protocols to a much broader class of
computations. This work is relevant, as it the first one that takes into consideration
Graphics Processing Units (GPU) as a useful computing resource for rapidly
computing proofs.

A different but effective approach is taken by Cassadin et al. [18], considering
preventive maintenance planning and production scheduling problems and propos-
ing an integrated model that coordinates preventive maintenance planning decisions
with single-machine scheduling decisions so that the total expected weighted
completion time of jobs is minimized. Finally, Lopez et al. [58] discuss multiparty
computation on the cloud and leverage a kind of homomorphic encryption to
guarantee reliable execution.

3.2 Reputation Systems and Distributed Computing

A large number of reputation systems have been introduced in different fields
to better rank and select items/people/restaurants/nodes. As for cloud nodes,
Muralidharan [62] introduced a reputation system for volunteer cloud nodes based
on performance [19], number of crashes and result correctness. Even though the
basic idea is interesting, more advanced approaches can be found in terms of
job replication strategy (just two-fold replication for them) and node selection.
Furthermore, a more effective multi-ranking approach is needed to allow adjusting
node selection to the user needs. As an example, Cloud@Home [21] is a simple but
effective collaborative cloud node system.

Goodrich [39] studies pipelined algorithms for protecting distributed grid com-
putations from cheating participants, who wish to be rewarded for tasks they receive
but don’t perform. Its cheater detection algorithms utilizes natural delays that exist
in long-term grid computations. In particular, they partition the sequence of grid
tasks into two interleaved sequences of task rounds, and use those rounds to devise
a general-purpose scheme to detect cheaters. Goodrich and Eppstein [32] formalize
the call combinatorial pair testing (CPT) problem, which has applications to the
identification of uncooperative or unproductive participants in pair programming,
massively distributed computing.

Yang investigates the problem of mapping computations to distributed remote
nodes while guaranteeing the required SLA levels on Grids [67]. A similar approach
can be adopted to efficiently use virtual machine resources [86] to guarantee
adequate service levels. Du et al. [30] propose a commitment-based sampling

446 F. Lombardi and R. Di Pietro

scheme based on Merkle trees that proves more efficient than Golle’s Ringer
[38] when the function f .x/ to be computed is computationally costly, when it is
nondeterministic or when the cardinality of the codomain of f .x/ is very small.

Finally, Differential Fault Analisis [76] is a dynamic analysis technique that
aims to bridge the semantic gap and better classify code behavior by establishing
cause-effect relationships between changes induced by the analyst and the visible
effects they produce. This approaches offer advantages when the code to analyze is
obfuscated, albeit it can have higher complexity and computing costs.

3.3 Autonomic Computing and Cloud

Autonomic Computing techniques can provide improved quality of service (QoS)
management, power consumption management and overall better reliability and
robustness of systems. As an example, a NAM Capacity Planner can be used [5]
to obtain optimal energy consumption under different workloads, minimizing cost
while maintaining functionality. The autonomic management of clouds has received
a lot of attention by both academia and industry, with a special focus on IaaS
platforms, while the self-management at the PaaS level becomes a major concern
platforms as PaaS can be more difficult to manage and more rarely addressed.

Run-time monitoring and detection of critical situations is a fundamental require-
ment to achieve autonomic behavior in service-based cloud platforms. BioRAC [42]
is a resilient autonomic cloud using multi-level tunable redundancy techniques to
increase attack and exploitation resilience in cloud computing. This approach can
also be useful against cheating nodes. A model for validating the convenience
of cooperative cloud node strategies over selfish ones, where nodes do not help
each other, is introduced in [4], describing the architecture of autonomous cloud
platforms in a discrete-event simulator. Dautov et al. [24] present a vision of
cloud application platforms as sensor networks, based on the similarities between
the problem domain of cloud application platform monitoring and sensor-enabled
domains as traffic surveillance, environmental monitoring or home automation.

A relevant autonomic system for cloud nodes that aims at creating a trusted cloud
is AntiCheetah [27]. In AntiCheetah outsourcing costs are minimized and input
elements are assigned to cloud nodes in an adaptive way according to evaluated
past behavior of nodes. The approach is proven effective and resilient against
simple misbehaving nodes (see a mobile use case in Fig. 2 [27]). The assignment
of input elements to cloud nodes is performed in AntiCheetah as an autonomic,
self-configuring system effective against various kinds of smart cheaters in the
cloud. AntiCheetah leverages a multi-round approach to dynamically change the
assignment matrix. AntiCheetah also detects and neutralizes smart cheaters that
have complex cheating strategies. Its approach is effective and convenient under
heterogeneous conditions. AntiCheetah is based on a previous approach, CheR
[28] that was effectively used to model the assignment of work chunks to nodes
as a Linear Programming problem. The two approaches above can effectively be
combined in order to guarantee optimal distribution of workload at every iteration.

Trusted, Heterogeneous, and Autonomic Mobile Cloud 447

Fig. 2 A use case for a mobile cloud where computing tasks are distributed among possibly
cheating mobile nodes

4 (Trusted) Distributed Mobile Computing

A large number of systems based on trusted computing techniques have been
introduced so far for the cloud [72] and in mobile contexts [53, 90]. However,
the trusted hardware platform on mobile devices has often been circumvented so
far [63, 78]. The reason why is that efforts on mobile devices have mostly been
focused on functionality and performance. However, only recently more powerful
smart mobile devices have rendered the distributed mobile computing approach
more feasible in practice.

Mobile distributed computing models have been proposed in the past [49],
however interesting effective algorithms have only recently been introduced. As an
example, Kim [48] investigated topology construction methods for heterogeneous
distributed mobile computing with the aim to complete as many tasks as possible by
their deadline using a distributed mobile computing system. As such, tasks have to
be intelligently distributed among the devices to efficiently use the system resources.
Kim proposed two topology algorithms to enhance the performance in comparison
with the all-connected approach.

Mobile distributed computing has to take into consideration mobile node capa-
bilities and topology [68]. In fact, autonomic wireless network configuration
capabilities can help reducing transmission costs and improving reliability of com-
munication and as such computation. Recently, this possibility of reconfiguration
has been further enhanced with the introduction of Software Defined Networking
(SDN) [3] and Network Function Virtualization (NFV) [70]. These approaches
potentially allow improving effectiveness and efficiency of mobile clouds. However,

448 F. Lombardi and R. Di Pietro

capacity and latency issues can arise that can affect the convenience of the approach
[11]. In addition, user-driven SDN can be vulnerable to misconfiguration and DoS
[73]. As such these approaches have to be carefully investigated before deployment.

An example of an algorithm for efficient distributed mobile pattern matching has
been introduced by Liu et al. [56], showing that effective distributed computing on
a mobile cloud is possible. In this case data are not centrally stored. As such one
person’s pattern could be separately stored in a number of different nodes. This
can potentially be vulnerable to fake computing attacks unless nodes are trusted.
A trivial approach to pattern matching over a mobile environment would be to
collect all the data distributed in base stations to a data center and conduct pattern
matching at the data center afterwards. However, this approach can have a big
impact on network traffic. Another smart distributed mobile algorithm has been
proposed by Liu and Kang [56], showing an approach based on a weighted bloom
filter (WBF [15]) that finds target patterns over a distributed mobile environment.
In particular, Liu’s approach offers successful pattern matching in distributed
incomplete patterns, and it is provably resilient to cheating and misbehavior. In fact,
only qualified IDs and corresponding weights in each base station are sent to the
data center for aggregation and verification [56].

As with most distributed mobile computing approaches [54] the aim is towards
reducing communication costs while replicating services over multiple coherent
domains. A significant reduction in communication and computing power consump-
tion is also targeted by Arnau [8]. Arnau leverages mobile GPUs in a power-efficient
way by using Parallel Frame Rendering (PFR) techniques to effectively split
the workload among battery-constrained devices. This novel approach is tailored
towards a specific graphics-oriented application but can be effectively reused in a
number of different GPGPU computing [59] scenarios [31, 50].

5 Practical Hints and Future Research Directions

Effective secure distributed computing on mobile nodes is still in its infancy.
However, interesting solutions and approaches have already been contributed in the
Literature [27, 42, 46]. At present, the most sensible approach consists in adopting
and adapting state-of-the-art solutions for both mobile node security and integrity
[76] as well as novel algorithms aimed at guaranteeing the computation is not
affected by malware or misbehavior [27]. The practitioner willing to leverage such
opportunity can migrate and deploy some of the existing approaches on a Java-
supporting mobile device cloud [66], with an eye to power efficiency and fair
balancing of workloads.

As mobile devices get more powerful and efficient [29] it becomes of vital
importance to expose such resources in the most effective, efficient and secure
way. In particular, mobile GPU computing [8, 87] (see Fig. 3) is a rising trend
that will contribute much to the future of mobile cloud computing. A number
of competing approaches have been introduced: Apple’s Mobile OpenCL [16],

Trusted, Heterogeneous, and Autonomic Mobile Cloud 449

Fig. 3 An overview of mobile GPU evolution related to OpenCL language support [74]

Fig. 4 Architecture of an hardware virtualization supporting mobile CPU [7]

450 F. Lombardi and R. Di Pietro

Google’s Renderscript [26] and NVIDIA’s CUDA [64]. The final winner of this
contest will shape the future mobile-GPU-as-a-service offerings. This is closely tied
to the support GPU vendors and mobile OS implementors will be able to give to
mobile distributed GPGPU computing. Naturally, GPUs will also be increasingly
useful in checking the integrity of CPU code and data [57], in order to better protect
the mobile node itself. This way, code and data integrity can be offered in a power-
efficient way, leveraging parallel processing power of manycores [79].

In addition, following Personal Computing evolution, virtualization and sand-
boxing/monitoring for security will be increasingly popular on the new 64-bit
hardware-virtualization-supporting ARM CPUs [7, 22], as depicted in Fig. 4 where
the components of new Cortex A15 platform are visible. Mobile virtualization [80]
will be increasingly common and it will help better isolating both local and remote
distributed workloads. In conjunction with GPGPU parallel processing power, this
will further foster the development of novel advanced applications in the mobile
application markets.

6 Conclusion

Even though reliable distributed computing has long been a hot research topic, effec-
tive and efficient mobile distributed computing has not been achieved yet. However,
the increased processing power and networking/storage capacity of mobile com-
puting devices has motivated their inclusion in cloud computing systems. A very
fast spreading of novel applications can be foreseen, enabling secure multiparty
computations over heterogeneous mobile nodes. Further enhanced mechanism for
distributing the workload in such an environment show that mobile cloud computing
is a worthwhile approach but it has much room for improvement. In particular, the
autonomic reliable execution of parallel workload over a large number of mobile
heterogeneous cheating nodes is a real challenge, especially when malicious and/or
cheating nodes and smart cheating strategies are in place.

Novel approaches that integrate and improve over previous reliable distributed
computing solutions are needed. They will have to leverage novel technologies such
as mobile GPU computing. Future research will need to devise smarter approaches
to address the above-defined problems. This will allow to make effective use of
the large pervasively available, cheap and powerful computing resources without
affecting mobile device functionality and resource consumption.

References

1. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-based augmentation for
mobile devices: Motivation, taxonomies, and open challenges. IEEE Commun. Surv. Tutorials
16(1), 337–368 (2014)

Trusted, Heterogeneous, and Autonomic Mobile Cloud 451

2. Agarwal, A., Govindaraj, J., Juneja, N., Naik, V.: Feasibility study of on-device and in-the-
cloud virtualization of mobiles. In: Proceedings of the 5th IBM Collaborative Academia
Research Exchange Workshop, I-CARE ’13, pp. 5:1–5:4. ACM, New York (2013)

3. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in
sdn-openflow networks. Comput. Netw. 71, 1–30 (2014)

4. Amoretti, M., Lafuente, A.L., Sebastio, S.: A cooperative approach for distributed task
execution in autonomic clouds. In: 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2008), pp. 0:274–281 (2013)

5. Amoretti, M., Zanichelli, F., Conte, G.: Efficient autonomic cloud computing using online
discrete event simulation. J. Parallel Distrib. Comput. 73(6), 767–776 (2013)

6. Arabo, A., Pranggono, B.: Mobile malware and smart device security: Trends, challenges and
solutions. In: Proceedings of the 2013 19th International Conference on Control Systems and
Computer Science, CSCS ’13, pp. 526–531. IEEE Computer Society, Washington (2013)

7. ARM: Cortex-a15 processor (2014). http://www.arm.com/products/processors/cortex-a/
cortex-a15.php

8. Arnau, J.-M., Parcerisa, J.-M., Xekalakis, P.: Parallel frame rendering: Trading responsiveness
for energy on a mobile gpu. In: Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, PACT ’13, pp. 83–92. Piscataway (2013)

9. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced
data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, CCS ’13, pp. 863–874. ACM, New York (2013)

10. Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M.: Advancing the state of mobile cloud
computing. In: Proceedings of the Third ACM Workshop on Mobile Cloud Computing and
Services, MCS ’12, pp. 21–28. ACM, New York (2012)

11. Basta, A., Kellerer, W., Hoffmann, M., Morper, H.J., Hoffmann, K.: Applying nfv and sdn to lte
mobile core gateways, the functions placement problem. In: Proceedings of the 4th Workshop
on All Things Cellular: Operations, Applications, & Challenges, AllThingsCellular ’14,
pp. 33–38. ACM, New York (2014)

12. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.: Incentivizing
outsourced computation. In: Proceedings of the 3rd International Workshop on Economics of
Networked Systems, NetEcon ’08, pp. 85–90. ACM, New York (2008)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pp. 585–594. ACM, New York (2013)

14. Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: Detecting compromised
hosts in homogeneous crowds. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pp. 341–352. ACM, New York (2012)

15. Bruck, J., Gao, J., Jiang, A.: Weighted bloom filter. In: 2006 IEEE International Symposium
on Information Theory pp. 2304–2308 (2006)

16. Bucur, A.: Opencl - opengl es interop: Processing live video streams on a mobile device - case
study. In: ACM SIGGRAPH 2013 Mobile, SIGGRAPH ’13, pp. 15:1–15:1. ACM, New York
(2013)

17. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection
system for Android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’11, pp. 15–26. ACM, New York (2011)

18. Cassady, C., Kutanoglu, E.: Integrating preventive maintenance planning and production
scheduling for a single machine. IEEE Trans. Reliab. 54(2), 304–309 (2005)

19. Chidambaram Nachiappan, N., Yedlapalli, P., Soundararajan, N., Kandemir, M.T., Sivasubra-
maniam, A., Das, C.R.: Gemdroid: A framework to evaluate mobile platforms. SIGMETRICS
Perform. Eval. Rev. 42(1), 355–366, (2014

20. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming
interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, pp. 90–112. ACM, New York (2012)

http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php

452 F. Lombardi and R. Di Pietro

21. Cunsolo, V., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and desktop
cloud: The cloud@home paradigm. In: Eighth IEEE International Symposium on Network
Computing and Applications, 2009. NCA 2009, pp. 134–139 (2009)

22. Dall, C., Nieh, J.: Kvm/arm: The design and implementation of the linux arm hypervisor. In:
Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pp. 333–348. ACM, New York (2014)

23. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg,
D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In:
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11,
pp. 363–372. ACM, New York (2011)

24. Dautov, R., Paraskakis,I.: A vision for monitoring cloud application platforms as sensor
networks. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference,
CAC ’13, pp. 25:1–25:8. ACM, New York (2013)

25. Denning, T., Borning, A., Friedman, B., Gill, B.T., Kohno, T., Maisel, W.H.: Patients, pace-
makers, and implantable defibrillators: Human values and security for wireless implantable
medical devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pp. 917–926, ACM, New York (2010)

26. Developers, A.: Renderscript. http://developer.android.com/guide/topics/renderscript/
compute.html.

27. Di Pietro, R., Lombardi, F., Martinelli, F., Sgandurra, D.: Anticheetah: An autonomic multi-
round approach for reliable computing. In: Ubiquitous Intelligence and Computing, 2013 IEEE
10th International Conference on and 10th International Conference on Autonomic and Trusted
Computing (UIC/ATC), pp. 371–379 (2013). (Best Paper Award)

28. Di Pietro, R., Lombardi, F., Martinelli, F., Sgandurra, D.: CheR: Cheating Resilience in the
Cloud via Smart Resource Allocation. In: Danger, J.L., Debbabi, M., Marion, J.-Y., Garcia-
Alfaro, J., Zincir Heywood, N. (eds.), Foundations and Practice of Security, Lecture Notes in
Computer Science, pp. 339–352. Springer International Publishing, Switzerland (2014)

29. Djatmiko, M., Cunche, M., Boreli, R., Seneviratne, A.: Heterogeneous secure multi-party
computation. In: Proceedings of the 11th International IFIP TC 6 Conference on Networking -
Volume Part II, IFIP’12, pp. 198–210. Springer, Berlin/Heidelberg (2012)

30. Du, W., Murugesan, M., Jia, J.: Algorithms and Theory of Computation Handbook, Chapter
Uncheatable Grid Computing, pp. 30–30. Chapman and Hall/CRC, London (2010)

31. Duarte, S., Navalho, D., Ferreira, H., Preguiça, N.: Scalable data processing for community
sensing applications. Mob. Netw. Appl. 18(3), 357–372 (2013)

32. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Combinatorial pair testing: distinguishing
workers from slackers. In: Proceedings of the 13th International Conference on Algorithms
and Data Structures, WADS’13, pp. 316–327, Springer, Berlin/Heidelberg (2013)

33. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation: Attacks
and defenses. In: Proceedings of the 20th USENIX Conference on Security, SEC’11, pp. 22–
22. USENIX Association, Berkeley (2011)

34. Ferretti, S., D’Angelo, G.: Mobile online gaming via resource sharing. In: Proceedings of the
5th International ICST Conference on Simulation Tools and Techniques, SIMUTOOLS ’12,
pp. 262–269, ICST, Brussels, Belgium (2012) (ICST Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

35. Ficco, M., Rak, M., Di Martino, B.: An intrusion detection framework for supporting sla
assessment in cloud computing. In: 2012 Fourth International Conference on Computational
Aspects of Social Networks (CASoN), pp. 244–249 (2012)

36. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In: Proceedings of the 30th Annual Conference on Advances
in Cryptology, CRYPTO’10, pp. 465–482. Springer, New York Berlin/Heidelberg (2010)

37. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: Sppear: Security & privacy-preserving
architecture for participatory-sensing applications. In: Proceedings of the 2014 ACM
Conference on Security and Privacy in Wireless & Mobile Networks, WiSec ’14,
pp. 39–50. ACM, New York (2014)

http://developer.android.com/guide/topics/renderscript/compute.html
http://developer.android.com/guide/topics/renderscript/compute.html

Trusted, Heterogeneous, and Autonomic Mobile Cloud 453

38. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Proceedings of the 2001
Conference on Topics in Cryptology: The Cryptographer’s Track at RSA, CT-RSA 2001,
pp. 425–440. Springer, New York (2001)

39. Goodrich, M.T.: Pipelined algorithms to detect cheating in long-term grid computations. Theor.
Comput. Sci. 408(2-3), 199–207 (2008)

40. Google: Android security overview (2014). http://source.android.com/devices/tech/security
41. Groenwold, A.A.: Positive definite separable quadratic programs for non-convex problems.

Struct. Multidiscip. Optim. 46(6), 795–802 (2012)
42. Hariri, S., Eltoweissy, M., Al-Nashif, Y.: Biorac: biologically inspired resilient autonomic

cloud. In: Proceedings of the Seventh Annual Workshop on Cyber Security and Information
Intelligence Research, CSIIRW ’11, pp. 80:1–80:1. ACM, New York (2011)

43. Hong, J.: Considering privacy issues in the context of google glass. Commun. ACM 56(11),
10–11 (2013)

44. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Millstein, T.: Dr.
android and mr. hide: Fine-grained permissions in android applications. In: Proceedings of the
Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
’12, pp. 3–14. ACM, New York (2012)

45. Joo, Y., Lee, D., Kim, J., Eom, Y.I.: Cgroups-based scheduling scheme for heterogeneous
workloads in smart tv systems. In: Proceedings of the 7th International Conference on
Ubiquitous Information Management and Communication, ICUIMC ’13, pp. 96:1–96:5. ACM,
New York (2013)

46. Kakadia, D., Saripalli, P., Varma, V.: Mecca: Mobile, efficient cloud computing workload
adoption framework using scheduler customization and workload migration decisions. In: Pro-
ceedings of the First International Workshop on Mobile Cloud Computing & Networking,
MobileCloud ’13, pp. 41–46. ACM, New York (2013)

47. Kalyon, G., Le Gall, T., Marchand, H., Massart, T.: Symbolic supervisory control of distributed
systems with communications. IEEE Trans. Autom. Control 59(2), 396–408 (2014)

48. Kim, I.-Y., Kim, J.-K.: Enhancing the performance of a distributed mobile computing
environment by topology construction. In: Proceedings of the 12th International Conference on
Algorithms and Architectures for Parallel Processing - Volume Part II, ICA3PP’12, pp. 21–30.
Springer, Heidelberg/Berlin (2012)

49. Kurkovsky, S., Bhagyavati, M.S., Ray, A.: A collaborative problem-solving framework for
mobile devices. In: Proceedings of the 42Nd Annual Southeast Regional Conference, ACM-
SE 42, pp. 5–10. ACM, New York (2004)

50. Lee, K., Lee, J., Yi, Y., Rhee, I., Chong, S.: Mobile data offloading: How much can wifi deliver?
IEEE/ACM Trans. Netw. 21(2), 536–550 (2013)

51. Levitin, G., Dai, Y.: Linear m -consecutive k -out-of- r -from- n:f systems. IEEE Trans. Reliab.
60(3), 640–646 (2011)

52. Levitin, G., Xing, L., Ben-Haim, H., Dai, Y.: Reliability of series-parallel systems with random
failure propagation time. IEEE Trans. Reliab. 62(3), 637–647 (2013)

53. Liang, W.-Y., Hsieh, Y.-M., Lyu, Z.-Y.: Design of a dynamic distributed mobile computing
environment. In: 2007 International Conference on Parallel and Distributed Systems, vol. 2,
pp. 1–8 (2007)

54. Lin, F.X., Wang, Z., Zhong, L.: K2: A mobile operating system for heterogeneous coherence
domains. SIGARCH Comput. Archit. News 42(1), 285–300 (2014)

55. Liu, L., Yan, G., Zhang, X., Chen, S.: Virusmeter: Preventing your cellphone from spies. In:
Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection,
RAID ’09, pp. 244–264. Springer, New York, Berlin/Heidelberg (2009)

56. Liu, S., Kang, L., Chen, L., Ni, L.: How to conduct distributed incomplete pattern matching.
IEEE Trans. Parallel Distrib. Syst. 25(4), 982–992 (2014)

57. Lombardi, F., Di Pietro, R.: CUDACS: securing the cloud with CUDA-enabled secure
virtualization. In: Proceedings of the 12th international conference on Information and
communications security, ICICS’10, pp. 92–106. Springer, Berlin/Heidelberg (2010)

http://source.android.com/devices/tech/security

454 F. Lombardi and R. Di Pietro

58. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory
of Computing, STOC ’12, pp. 1219–1234. ACM, New York (2012)

59. Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley, C., Lefohn,
A.: Gpgpu: general purpose computation on graphics hardware. In: SIGGRAPH ’04: ACM
SIGGRAPH 2004 Course Notes, pp. 33. ACM, New York (2004)

60. Luo, L., Wu, W., Di, D., Zhang, F., Yan, Y., Mao, Y.: A resource scheduling algorithm of
cloud computing based on energy efficient optimization methods. In: Proceedings of the
2012 International Green Computing Conference (IGCC), IGCC ’12, pp. 1–6. IEEE Computer
Society, Washington (2012)

61. Moser, H.: Towards a real-time distributed computing model. Theor. Comput. Sci. 410(6-7),
629–659 (2009)

62. Muralidharan, S., Kumar, V.: A novel reputation management system for volunteer clouds. In:
2012 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5
(2012)

63. Nadkarni, A., Tendulkar, V., Enck, W.: Nativewrap: Ad hoc smartphone application creation for
end users. In: Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless
& Mobile Networks, WiSec ’14, pp. 13–24. ACM, New York (2014)

64. NVIDIA: Cuda for arm platforms is now available. http://devblogs.nvidia.com/parallelforall/
cuda-arm-platforms-now-available.

65. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifiable
computation. In: Procedings of the 34th IEEE Symposium on Security and Privacy (2013)

66. Picco, G.P., Julien, C., Murphy, A.L., Musolesi, M., Roman, G.-C.: Software engineering for
mobility: Reflecting on the past, peering into the future. In: Proceedings of the on Future of
Software Engineering, FOSE 2014, pp. 13–28. ACM, New York (2014)

67. Quan, D.M., Yang, L.T.: Parallel mapping with time optimization for sla-aware compositional
services in the business grid. IEEE Trans. Serv. Comput. 4(3), 196–206 (2011)

68. Ryoo, J., Kim, H.: Multi-sector multi-range control for self-organizing wireless networks. J.
Netw. Comput. Appl. 34(6), 1848–1860 (2011)

69. Samimi, F.A., McKinley, P.K., Sadjadi, S.M.: Mobile service clouds: A self-managing
infrastructure for autonomic mobile computing services. In: Proceedings of the Second IEEE
International Conference on Self-Managed Networks, Systems, and Services, SelfMan’06,
pp. 130–141. Springer, Berlin, Heidelberg (2006)

70. Sapio, A., Liao, Y., Baldi, M., Ranjan, G., Risso, F., Tongaonkar, A., Torres, R., Nucci, A.:
Per-user policy enforcement on mobile apps through network functions virtualization. In:
Proceedings of the 9th ACM Workshop on Mobility in the Evolving Internet Architecture,
MobiArch ’14, pp. 37–42. ACM, New York (2014)

71. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verification of
remote computations. In: Proceedings of HotOS XIII. Usenix (2011)

72. Shen, Z., Li, L., Yan, F., Wu, X.: Cloud computing system based on trusted computing
platform. In: 2010 International Conference on Intelligent Computation Technology and
Automation (ICICTA), vol. 1, pp. 942–945 (2010)

73. Shin, S., Yegneswaran, V., Porras, P., Gu, G.: Avant-guard: Scalable and vigilant switch
flow management in software-defined networks. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pp. 413–424. ACM,
New York (2013)

74. SoC: Qualcomm chipsets vs performance. http://www.insidehardware.it/mobile/smart-phone/
2911-htc-one-alternativa-convincente?start=4#.U8zgl3V53UY (2011)

75. Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J.: Cost-efficient task scheduling for
executing large programs in the cloud. Parallel Comput. 39(4–5), 177–188 (2013)

76. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.: Thwarting obfuscated malware
via differential fault analysis. Computer 47(6) 24–31 (2014)

77. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection and analysis of
malware for smart devices. IEEE Commun. Surv. Tutorials 99, 1–27 (2013)

http://devblogs.nvidia.com/parallelforall/cuda-arm-platforms-now-available
http://devblogs.nvidia.com/parallelforall/cuda-arm-platforms-now-available
http://www.insidehardware.it/mobile/smart-phone/2911-htc-one-alternativa-convincente?start=4#.U8zgl3V53UY
http://www.insidehardware.it/mobile/smart-phone/2911-htc-one-alternativa-convincente?start=4#.U8zgl3V53UY

Trusted, Heterogeneous, and Autonomic Mobile Cloud 455

78. Sun, M., Tan, G.: Nativeguard: Protecting android applications from third-party native libraries.
In: Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless &
Mobile Networks, WiSec ’14, pp. 165–176. ACM, New York (2014)

79. Tilli, A., Bartolini, A., Cacciari, M., Benini, L.: Don’t burn your mobile!: Safe computational
re-sprinting via model predictive control. In: Proceedings of the Eighth IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’12, pp. 373–382. ACM, New York (2012)

80. Varanasi, P., Heiser, G.: Hardware-supported virtualization on arm. In: Proceedings of the
Second Asia-Pacific Workshop on Systems, APSys ’11, pp. 11:1–11:5. ACM, New York (2011)

81. Vemulapalli, C., Madria, S.K., Linderman, M.: Pre-distribution scheme for data sharing in
mobile cloud computing. In: Proceedings of the First International Workshop on Mobile Cloud
Computing & Networking, MobileCloud ’13, pp. 11–18. ACM, New York (2013)

82. Vidas, T., Christin, N.: Sweetening android lemon markets: Measuring and combating malware
in application marketplaces. In: Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, CODASPY ’13, pp. 197–208. ACM, New York (2013)

83. Viswanathan, H., Lee, E.K., Rodero, I., Pompili, D.: An autonomic resource provisioning
framework for mobile computing grids. In: Proceedings of the 9th International Conference
on Autonomic Computing, ICAC ’12, pp. 79–84. ACM, New York (2012)

84. Vu, V., Setty, S., Blumberg, A., Walfish, M.: A hybrid architecture for interactive verifiable
computation. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 223–237 (2013)

85. Walfish, M.: Verifying the correctness of remote executions: From wild implausibility to near
practicality. In: Proceedings of the 9th Workshop on Hot Topics in Dependable Systems,
HotDep ’13, pp. 7:1–7:1. ACM, New York (2013)

86. Wan, J., Yang, L.T., Li, Y., Xu, X., Xiong, N.: An adaptive management mechanism for
resource scheduling in multiple virtual machine system. In: Calero, J., Yang, L., Màrmol,
F., Garcìa Villalba, L., Li, A., Wang, Y. (eds.) Autonomic and Trusted Computing, vol. 6906
of Lecture Notes in Computer Science, pp. 60–74. Springer, Berlin/Heidelberg (2011)

87. Wang, Y.-C., Donyanavard, B., Cheng, K.-T.T.: Energy-aware real-time face recognition
system on mobile cpu-gpu platform. In: Proceedings of the 11th European Conference on
Trends and Topics in Computer Vision - Volume Part II, ECCV’10, pp. 411–422. Springer,
Berlin/Heidelberg (2012)

88. Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., Vasilakos, A.V.: Security and privacy
for storage and computation in cloud computing. Inform. Sci. 258, 371–386 (2014)

89. Wilfinger, D., Murer, M., Baumgartner, A., Döttlinger, C., Meschtscherjakov, A., Tscheligi,
M.: The car data toolkit: Smartphone supported automotive hci research. In: Proceedings
of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, AutomotiveUI ’13, pp. 168–175. ACM, New York (2013)

90. Wu, X., Zhang, H., Shen, Z.: Integrity measurement enhanced security for mobile agent based
on trusted computing platform. In: WiCOM ’08. 4th International Conference on Wireless
Communications, Networking and Mobile Computing, 2008, pp. 1–4 (2008)

91. Xu, Y., Stojanovic, N., Stojanovic, L., Kostic, D.: An approach for dynamic personal
monitoring based on mobile complex event processing. In: Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, MoMM ’13, pp. 464:464–
464:473. ACM, New York (2013)

92. Zeng, L., Veeravalli, B., Li, X.: Scalestar: Budget conscious scheduling precedence-
constrained many-task workflow applications in cloud. In: Proceedings of the 2012 IEEE
26th International Conference on Advanced Information Networking and Applications, AINA
’12, pp. 534–541. IEEE Computer Society, Washington (2012)

93. Zhao, Z., Hwang, K., Villeta, J.: Game cloud design with virtualized cpu/gpu servers and initial
performance results. In: Proceedings of the 3rd Workshop on Scientific Cloud Computing Date,
ScienceCloud ’12, pp. 23–30. ACM, New York (2012)

Infiltrating Social Network Accounts: Attacks
and Defenses

Rahul Potharaju, Bogdan Carbunar, Mozhgan Azimpourkivi,
Venugopal Vasudevan, and S.S. Iyengar

Abstract Social networks collect and make public an unprecedented amount of
user location information. This raises significant user privacy concerns. In this chap-
ter, we describe social networking infiltration attacks, where adversaries befriend
random victims of their choice and acquire access to their private information.
To address this problem, we propose verification mechanisms that use location
information certified by geosocial networks to quantify the context shared by a user
and an inviter. We develop novel visual notifications that leverage the outcome of
the proposed verifications to inform users about the context they share with inviters.
The impact of location information makes it however vulnerable to attacks: users
can rely on existing tools to report fraudulent locations. We describe venue centric
location verification solutions that are resilient to powerful adversaries.

1 Introduction

Online Social Networks (OSNs) such as Facebook have become ubiquitous in
the past few years, counting hundreds of millions of people as members. OSNs
allow users to form friendship relationships, join groups, communicate and share
information with friends. Most social network users are likely to be well behaved.
However, the amount and ease of accessibility of personal information (e.g., date
of birth, location, status updates) available on such sites is likely to draw a wide
range of users with a malicious intent. Information collected from unsuspecting
users can be used to subsequently launch targeted attacks such as spear phishing [1]
and spamming [2] attacks.

R. Potharaju
Purdue University, West Lafayette, IN 47907, USA

Microsoft, Redmond, WA 98074, USA

B. Carbunar (�) • M. Azimpourkivi • S.S. Iyengar
Florida International University, Miami, FL 33199, USA
e-mail: carbunar@cs.fiu.edu; mozhganaz@gmail.com; iyengar@cs.fiu.edu

V. Vasudevan
Arris, Palatine, IL 60038, USA

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_15

457

mailto:carbunar@cs.fiu.edu
mailto:mozhganaz@gmail.com
mailto:iyengar@cs.fiu.edu

458 R. Potharaju et al.

In this chapter we focus on infiltration attacks, launched by malicious users who
send friend invitations to specific targets. When a target accepts the invitation, her
personal account information is implicitly shared with the inviter. Befriending users
further provides a permanent channel into their existence. The attackers can monitor
the activities of their friends, influence their behavior, learn detailed preferences
(e.g., through polls, group join invitations, etc) and even send them information
(e.g., ads, fake reviews, news and spam).

Most of these attempts have financial gain as their ultimate goal. Spammers
send out mass advertisements to a large number of users in hopes of selling their
products. Phishers, on the other hand, attempt to fraudulently acquire sensitive
information from a victim by impersonating a trusted third party (e.g. a banking
corporation). In a study by Gartner [3], about 19 % of all those surveyed reported
having clicked on a link in a phishing email, and 3 % admitted to giving up financial
or personal information. This reasonable yield, despite having little information
about the target victim, suggests that the effect can be more serious when additional
victim information is available.

In this chapter, we show that attackers can obtain social networking information
by infiltrating OSNs using Sybils, fake accounts they control. We identify several
attacks and formalize a novel 3-Clique Attack, to establish and leverage common
context with victims in order to infiltrate even tightly knit communities.

We propose an attack system called iFriendU, a back-end driver written in Java
to control Mozilla Firefox through Javascript code injection. We use iFriendU to
demonstrate the seriousness of the 3-Clique attack on more than 10,000 Facebook
users over a period of 6 months. Our experiments show that the 3-Clique attack
can be easily automated, easy to perform and efficient—up to 78 % of targets fall
victims, exceeding by 75 % the effectiveness of existing attacks. Moreover, we show
that persistence pays off—repeating the same attack may turn rejects into accepts
and that sharing more friends with the victim increases the attacker’s success rate.

Efficient infiltration detection techniques cannot rely on the appearance of user
accounts. Attacker accounts can be fake, filled with seemingly meaningful informa-
tion. Pictures, opinions and friends are easy to fabricate and social botnets [4] can
be used to make them seem active.

Instead, we propose an infiltration detection solution based on location informa-
tion certified by geosocial networks. We use past location information to validate
location claims made by users in their profiles, and evaluate the number of past
co-location events between two users. Real-time verifications rely on instantaneous
location information, i.e., signaling current co-location events. These verifications
are intended to gauge the correctness of location claims made by an inviter in her
public profile, determine location affinity levels between an inviter and an invitee
(the invited user) and to elicit user feedback based on detected co-location events
with the inviter. Furthermore, we develop novel visual notifications that leverage
the outcome of the verifications to inform users about the context they share with
inviters.

The solution proposed relies on the correctness of location information claimed
by users. This is a concern, as malicious social network users have been shown to

Infiltrating Social Network Accounts: Attacks and Defenses 459

falsify their location trajectory, by claiming locations where they have not been
present.1 Rewards provided by participating franchises (e.g., Ann Taylor, GAP,
Lufthansa, Starbucks, Pizza Hut) to users that frequently check-in at their locations,
provide financial incentives for committing location fraud. The recent emergence
of specialized GPS cheating applications for the most popular mobile eco-systems
(e.g., LocationSpoofer [6] for iPhone and GPSCheat [7] for Android) simplifies
location fraud: He et al. [8] proved the simplicity of performing fake check-ins in
Foursquare.

To prevent location fraud, we propose to require users to present proofs of
locations where they checked-in. To build such proofs, we introduce a suite of
venue-oriented, secure location verification mechanisms. Our verifications require
participating venues to deploy small, portable devices. To promote its adoptability,
we design the verifications to be not only secure and correct, but also user
friendly, low-cost and easy to deploy. We propose mechanisms that display QR
codes encoding venue certified information, and that implement challenge/response
protocols.

The remaining of the chapter is organized as follows.

2 Background and Model

2.1 Overview of Social Networks

We model a social network as an undirected graph G D .V; E/, where the nodes
V represent the registered users and the edges E represent friend relations. We use
e D .u; v/ to denote the existence of a friendship relation e 2 E between two users
u; v 2 V . Without loss of generality, we take the particular case of Facebook but it
should be noted that our discussion applies to other OSNs as well. We emphasize
the following properties of the social network:

Ease of Registration Social networks store an account for each registered user. We
assume that it is easy for anyone to register a user account. Registering in today’s
OSNs requires the user to solve a challenge-response CAPTCHA [9] (Completely
Automated Public Turing test to tell Computers and Humans Apart). Even though
protection schemes like (re)CAPTCHAs and confirmation e-mails may be included,
the human costs (money and time) for registering are insignificant. Note however
that such protection schemes may make it more difficult but not impossible to
massively register accounts.

Friendship and Messaging Users can establish friendship relations by extending
an invitation. Once an invitation is sent from a user v to a user u, u may accept
(“Confirm” in Facebook), reject (“Ignore” in Facebook) or leave the invitation

1Foursquare CEO admits 2–3 % of check-ins are fake [5].

460 R. Potharaju et al.

pending by not giving a response. If and only if u decides to accept the invitation, is
u’s profile shared with v. Users also have the ability to send messages to other users,
even to non-friends. However, similar to invitations, when a user u sends a message
to a user v, u’s profile is revealed to v.

Account Data As mentioned above, each user has an account, that includes
personal profile information, such as name, date of birth, picture, e-mail and snail
mail address but also other items such as wall postings, tagged pictures and videos.

Default Access Control Settings When a user registers an account it can choose
the access permissions to each of its profile’s components—who can access which
fields of the user’s account. While users have the option of changing the default
settings, we have noticed in our experiments that many users have not used it.

2.2 Overview of Geosocial Networks

Most GSNs provide similar functionality: Users check-in at venues where they are
present, effectively reporting their location to the geosocial network provider. As a
reward, users receive badges and mastership’s (or virtual items in Gowalla) as well
as financial rewards. Franchises like Ann Taylor, GAP, Lufthansa, Starbucks and
Pizza Hut have modified their business model to offer substantial discounts to users
performing frequent check-ins. The functionality of geosocial networks centers on
the following functionality.

Venues and Check-Ins The provider supports a given set of locations, defined in
terms of discrete points-of-interests (POIs) or sites: restaurants, dentist offices, etc.
During a check-in, the user’s application (client) captures the GPS location and
displays a list of close-by venues—the user can choose one. In the following, we
use the term check-in venue to refer to a venue where a check-in is claimed to be
performed. We call a fake check-in to be a check-in performed when the user is not
physically located at the check-in venue.

Location Verifications An excellent example of security by obscurity, location
verification mechanisms are kept secret by GSN providers. However, once attackers
discover the nature and parameters of these verifications, they can easily circumvent
them (e.g., see He et al. [8]).

2.3 System Model

We consider a system that consists of a social network provider, S. S hosts the system
and serves a number of subscribers. We also consider S to be a geosocial network,
e.g., Foursquare [10], Yelp [11], that extends the social network with location based
experiences.

Infiltrating Social Network Accounts: Attacks and Defenses 461

We assume users have mobile devices equipped with a GPS receiver and a Wi-Fi
interface (present on most smartphones). To use several provider services, a client
application needs to be downloaded and installed. Registered users receive initial
service credentials, including a unique user id; let IdA denote the id of user A.

The users rely on this app to report their location, through check-ins at venues of
interest, share it with friends and be awarded “points” and “badges” (e.g., “Adven-
turer”, “Explorer”, or “Superstar”). A user earns a badge when it accumulates a
certain number of check-ins, at the same or different venues.

In the following, the user that sends an invitation is said to be the inviter and the
user receiving the invitation is the invitee. A check-in venue is a venue where a user
has performed a CheckIn operation. We use the notation F.A.paramA/, B.paramB//

to denote a procedure F executed between two participants A and B, each with its
own input parameters.

2.4 Attacker Model

We assume that the social network provider is semi-honest (honest but curious): it
will run its part of the protocols correctly, but it will try to learn private information
from its users. We assume that users can be malicious. In the following, we describe
several malicious behaviors that can be exhibited by attackers.

Sybil Account Creation Malicious users are assumed to be able to register and
control an arbitrary number of fake, Sybil user accounts.

Information Seekers Such malicious users seek to invade the privacy of other
users. We broadly classify such malicious users into impersonators, stalkers,
spammers and phishers. The attacker’s goal is to collect private user account
information from a social networking site. We assume an attacker may build or
use tools to automate many phases of its attacks. In our model, we also consider
the attacker’s need for anonymity. For this, we assume an attacker can create and
use multiple fake accounts (that do not provide truthful profile information) and
may optionally use hijacked or public machines. Thus, in this case, a fake profile
is defined to be a profile in which the personal information is vastly missing or
different from that of the person owning the profile. This would allow the attacker
to maintain its anonymity even in the event that Facebook, upon detecting such
stalking activities, would attempt to correlate the fake account’s identity to the IP
address of the machine used to open the account.

Fake Locations Attackers may try to run CheckIn for venues where they are not
present, try to feed fake location information to other clients, and in general attempt
to fraudulously obtain private information from other clients.

462 R. Potharaju et al.

3 Related Work

3.1 Infiltration Attacks

Bilge et al. [12], study solutions for collecting personal user profiles from various
OSNs, including Facebook. They conjecture and prove that people are more
willing to accept friend requests from people they already know. They devise an
impersonation attack which they test on 700 users.

Caverlee and Webb [13] conducted a large scale study on MySpace, where
they discovered interesting patterns, such as high account abandonment rates,
language/location correlations and interestingly, that privacy is becoming a concern
factor even and mostly for younger users. Nazir et al. [14] conducted a similar
study on Facebook, through the development and deployment of three applications
that gained significant popularity. The focus of their study is on behavior within a
community—in their case, the communities adopting their applications.

Another MySpace study was conducted by Webb et al. [15], to study social
spamming. The concept of social honeypots is introduced, which are MySpace
accounts created specifically for attracting spam. The results show that social spam-
mers exhibit temporal and geographic patterns, which may be used to automatically
detect and even eliminate them. Caverlee et al. [16] continue this work with the
proposal of a trust establishment solution for social networks. Trust between two
users is defined to be a factor of the quality of the interaction between the two users.

Boshmaf et al. [17] have shown that OSNs are highly vulnerable to infiltration
attacks. Recent studies [18] also suggest that the currently deployed Facebook
immune system is not sufficient for preventing this class of vulnerabilities.

Our Differences Previous work has identified various infiltration problems and
proposed solutions that preserve the privacy of users from curious providers and
other users. Our work differs in the magnitude of the study and in the novel, location
based defenses we devise.

3.2 Securing Social Networking Accounts

Our work builds on recent work on preserving the privacy of users from social
network providers. Tootoonchian et al. [19] devised Lockr, a system for improving
the privacy of users through the concept of social attestations—credentials proving
a social relationship. Luo et al. [20] proposed FaceCloak, that provides fake
information to the social network and stores the account information encrypted on
a different server. Baden et al. [21] introduced Persona, a distributed social network
with distributed account data storage. Sun et al. [22] proposed a similar solution,
extended with revocation capabilities through the use of broadcast encryption.

Infiltrating Social Network Accounts: Attacks and Defenses 463

Puttaswamy and Zhao [23] argue that untrusted providers should be allowed to
store only encrypted data, and move the application functionality to client devices.
Users store “friendship” and “transaction” proofs on the provider site, crypto-
graphically encrypted tokens encoding friend relations, location-centric reviews,
etc. This approach supports a wide range of location-based applications, including
collaborative content downloading, social recommendations, or co-location events.
Our goal is to protect user privacy both from providers and from other users.
Account privacy does not prevent users from accepting invitations from fake, Sybil
accounts.

3.3 Location Verification

Most of initial work on location verification focuses on fine grained localization.
In ad hoc networks capable of both RF and ultrasound communications, Sastry
et al. [24] introduced the ECHO protocol. In ECHO, location claims are verified
by selecting multiple nodes within the transmission range of the prover. Each
verifier sends a packet to the prover over RF which the prover must echo over
ultrasound. Howard et al. [25] study the use of indoor Wi-Fi to localize moving
robots. Chiang et al. [26] propose a distance bounding approach for solving the
location verification problem in an ad hoc network that contains multiple verifiers.
The solution relies on a multilateration technique, where the prover must respond
simultaneously to challenges issued by multiple verifiers situated in its vicinity. We
note that while these solution could be applied in the context of GSNs, our work
imposes significantly lower costs on venues and does not rely on the existence of
widely distributed, non-colluding, altruistic verifiers.

Zhu and Cao [27], through their APPLAUS system, took the next step, by
proposing an approach where co-located devices cooperate to build location proofs
over Bluetooth. This approach is however not ideally suited for geosocial networks.
The ease of creating Sybil accounts can allow attackers to thwart this defense:
multiple accounts controlled by the attacker can claim to be co-located. If the Sybil
accounts form more than .n � 1/=3 of all the n devices claiming to be at a location
L, consensus cannot be achieved by the honest users at L [28]. Furthermore, when
the number of Sybil accounts exceeds 2hC1, where h is the number of honest users
located at L, the Sybil accounts can reach consensus, (fraudulently) establish their
presence at L and frame the honest users as Sybils.

Saroiu and Wolman [29] explored the location proof concept—a piece of data
that certifies a receiver to a geographical location. The solution relies on enhanced
access points (APs), able to issue such signed proofs. Such APs add their location
to their beacons. Upon client request, the APs issue signed location certificates,
containing the client’s identity, the AP’s identity, location and timestamp. Note that
multiple certificates can be combined to triangulate clients and obtain more accurate
positions. Luo and Hengartner [30] extend this concept with client privacy, achieved
with the price of requiring three independent trusted entities. Access points seem

464 R. Potharaju et al.

an ideal candidate for solving the secure location verification problem: they are
widely accepted and the solution implies relatively small changes to their code base.
They do however also have disadvantages: Most APs are owned by regular users
who lack the incentives to install new code. Moreover, AP owners may find it
profitable to provide (even proactively) fake location certificates.

3.4 Visual Security Indicators

Previous work has studied the problem of introducing visual indicators to warn users
about possible cyber security risks. Egelman et al. [31] examined the ability of active
and passive warnings included in web browsers to convey the risks of phishing
attacks to users. They performed a user study and compared the effectiveness of
warnings based on an information processing model [32]. The conclusions of the
study are that the effectiveness of a warning message depends on two factors,
(i) hazard matching, which depends on how accurate the warning message is in
conveying the risk and (ii) arousal strength, that defines how the users perceive the
warning and if they are motivated to prevent the risk.

Shin and Lopes [33] proposed a set of visual indicators, inspired by traffic lights,
in order to secure users against the SSLstripping attack. They assign traffic colors to
the text fields in a webpage based on the output of an attack detection mechanism.
The green color represents a secure webpage, red represents an insecure one, and
yellow denotes the inability of the detection mechanism to make a decision. These
visual indicators raise the awareness of users to the security of visited pages. Care
needs to be taken to avoid annoying users with hard to parse web pages.

4 Social Network Infiltrations

In this section we show that an attacker can obtain private information of targeted
victims by infiltrating OSNs, using Sybils—fake accounts controlled by the attacker.

4.1 Attacks

We identify several attacks that can be launched against social networking users and
formally derive a new infiltration attack called the 3-Clique attack. Let M be the
attacker, using a fake account to hide its identity. The goal of the attacks is for M to
get access to a victim A’s account data (mainly its profile information). That is, M
wants to change its relationship with A, such that it has access to A’s profile data. We
assume that initially M has no access permissions to A’s profile data. As we show

Infiltrating Social Network Accounts: Attacks and Defenses 465

Fig. 1 Attack Map: While the complexity of the attack increases with the attacks in the lower half,
the payoff is much higher too

in Sect. 4.2, if an attack fails, M can generate a new fake account and perform other
refined attacks (Fig. 1).

Candid Attack M issues a friend invitation to A. If A issues an accept, A and M
become friends, that is, A gives explicit rights to M to its profile data. Therefore, M
learns A’s profile.

Impersonation Attack Deciding the authenticity of profile information is a hard
problem. This attacks leverages this observation: M chooses a friend F of A and
copies its profile, making it its own. M sends an invite to A with a message of
the format “I have lost my old account and made a new one. Please accept this
request.”. Since this behavior can be legitimate, A accepts the invite and reveals its
profile. A similar attack was first described in [12].

Chameleon Attack Trust is often based on familiarity. This attack builds upon
the hypothesis that users tend to accept invitations more easily when they are sent
by people with whom they share mutual friends. Then, M initially collects the
set of friends of A and issues invitations to everyone or a selected subset (see
the 3-Clique attack discussed next). M then waits for the first of two events: (i) a
desired percentage of invitees issue an accept or (ii) a pre-determined time interval
lapses (two days in our experiments proved to be sufficient, as shown in Fig. 6b).
M continues with the candid attack (against its original target, A). At this point M
will have a higher chance of succeeding in becoming A’s friend: M and A will likely
share mutual friends.

The 3-Clique Attack Community infiltration in the context of social networks is
a type of attack where an attacker targets individuals who are connected together
in the form of a community. They could be leveraged for stealing information that
belongs to a group to launching an association fallacy [34] against the entire group.
An association fallacy is an inductive informal fallacy which asserts that qualities
of one thing are inherently qualities of another, merely by an irrelevant association.
For instance, with enough attackers infiltrating a community, the collective qualities
that represent it can be altered. In the following, we formally define the 3-Clique
attack which can be used to launch such association fallacies.

466 R. Potharaju et al.

a b

Fig. 2 (a) Infiltrating a network: Node v has the highest ı.v/ in G0, i.e., the attacker’s payoff is
higher if it establishes a link with v. (b) The 3-Clique Attack: Infiltration is done in the decreasing
order of ı. To establish a link with v (highest ı value)—recursively link with the nth hop network
of v in the increasing order of Social Closeness to the level above

Let a friendship 3-clique � D .V�; E�/ of a graph G = (V,E) denote a subgraph
such that V� D fu; v; wg V and E� D f.u; v/; .v; w/; .w; u/g E. Then, let
ı.v/ denote the number of friendship 3-cliques of user v. Let the social closeness
metric, SC.u; v/ D jFu\Fv j

jFuj denote the ratio of friends of u. We define then the

friendship weight of the link between users u and v to be w.A; B/ D SC.A;B/CSC.B;A/

2
.

Intuitively, this is taking into account two factors: what proportion of A’s friends are
also B’s friends and what proportion of B’s friends are also A’s friends.

The 3-Clique attack is executed using Algorithm 1 and is shown in Fig. 2b. Let
G0 2 G denote a subset of the OSN, a tightly knit community that the attacker
targets (line 1). For each member v 2 G0, the attacker computes ı.v/ (line 2), the
3-cliques of user v using the method given in (lines 15–27). Let v be the member of
G0 with the highest ı value (line 4). The attacker computes the first hop network of
v, excluding all the users in G0(line 5). Then, the users in this network are ordered
decreasingly on the value of their friendship weight to v (line 6). An invitation
is sent to the second hop network of v (friend-of-friend network) who are again
ordered based on their social closeness to each friend of v (lines 7–11). Then, after
a delay period T, the attacker sends invitations to the first hop network of v (line 12).
The delay is used to allow the invited second hop network members to accept the
invitations. Finally, after another delay period T, the attacker invites the target v

(line 13). The above process is repeated for all members of G0, in decreasing order
of their ı values. This is based on the observation that users with high ı values
are socially tied to a higher number of groups. Such users may not only be more
willing to accept random invitations but more importantly, establishing a friend link
with them may further influence other members of G0 into accepting the attacker’s
invitation. An extension of the attack is what we call the Relaxed 3-Clique attack
where the attacker can start from the nth hop network of a victim instead of the 2nd

Infiltrating Social Network Accounts: Attacks and Defenses 467

Algorithm 1 Enhanced Infiltration using 3-Cliques

1. G0 D Sample.G/

2. 3CSet D get3Cliques.G0/

3. DO
4. v D popUserWithMax3Cliques.3CSet/

5. firstHopNet.v/ D v:friends./ � fx W x 2 G0g
6. Sort.user 2 firstHopNet.v/;w.v;user/;DESC//

7. FOREACH friend IN firstHopNet.v/ W
8. secondHopNet.v/ D friend:friends./

9. Sort.user 2 SecondHopNet.v/;w.friend;user/;DESC/

10. inviteAll.SecondHopNet.v//

11. END FOR
12. Schedule.inviteAll.FirstHopNet.v//;T/

13. Schedule.invite.v/;2T/

14. WHILE.len.3CSet/ > 0/

15. PROCEDURE get3Cliques.G0 D .V;E// W
16. Setcliques D newSet./ W
17. Construct Friends.user/ 8 user 2 V
18. FOREACH relationship IN E W
19. ==relationship consists of .user1 ; user2/

20. usermin D min.juser1 :friends./j; juser2 :friends./j/
21. FOREACH user IN usermin:friends./ W
22. IF.user 2 .relationship � fuserming/:friends.//

23. store fuser;user1 ;user2g
24. END IF
25. END FOR
26. END FOR
27. END PROCEDURE

hop network as we demonstrated. However, due to space constraints, we will not be
discussing this attack further but the attack plan itself is shown in Fig. 1.

4.2 Infiltration Evaluation

Here we provide a brief overview on the architecture of iFriendU, our attack system,
and then describe the results of our infiltration attempts using this system.

iFriendU Architectural Overview Our prototype attack system2 relies on an
attack plan prepared for each of the attacks discussed in Sect. 4.1 and is illustrated
in Fig. 3. The crawler component is responsible for crawling the target social
networking site and collecting information on users as a seed for the attacks. As

2Please note that our attack system does not collect any personal information of users nor does it
send any malicious data to users.

468 R. Potharaju et al.

Fig. 3 An architectural
overview of iFriendU. The
crawler module extracts
initial, publicly available
information about social
network users, including
intended targets. The attack
planner and executor modules
rely on existing mail servers
and CAPTCHA solving tools
to defeat the defenses used by
social networks and send
invitations to intended targets

Facebook allows anyone to view an arbitrary user’s friends list in most cases, we
provided our crawler with a seed Facebook account using which it recursively
crawls the entire network limited by a depth parameter customizable through code.
We used a 2.4 GHz Intel Pentium 4 with 2 GB RAM to complete crawling of about
50,000 users in less than 5 h.

The attack planner relies on the attack plan (see Fig. 1), which is a concise-
representation of an attack. For instance, for a 3-Clique attack, we can specify the
order in which the attack execution takes place using “COM.CLIQUES ASC/ �
L1.SC DESC/�L2.SC DESC/” which means, first arrange the the nodes (belonging
to the target community) based on their 3-Clique value. For each node in this order,
arrange its 1st hop network in the descending order of the social closeness of each
node and so on. The attack planner also prepares a list of fake accounts (needed
to preserve sender anonymity) and a set of targets listed along with their friends
and proceeds to computing the 3-Cliques by interfacing with a backend MySQL
database using Algorithm 1.

The plan generated by the attack planner is used as input by the attack executor.
We have implemented the attack executor as a backend driver using Java for
Firefox. The attack executor launches the browser with itself as the proxy server
and then injects Javascript to execute the attack plan. The attack executor uses
fake accounts to send friend invitations to the target accounts included in the plan.
If during its operation the attack executor encounters a CAPTCHA, it hands it
off to the CAPTCHA Handler which uses automated CAPTCHA solvers (e.g.,
CaptchaBuster [35]) to solve the them. If all attempts fail, the component sends
us an email requesting a manual inspection of the CAPTCHA.

At this point, it is important to mention that the attack executor waits for a
specific time interval between sending friend requests. The reason for waiting
between sending successive invites is that Facebook suspends the account if it sends
too many invites. Figure 6a shows the results of our experiment when changing the
inter-invitation delay time from a few hundred ms to 100s. The y-axis shows the
number of invites successfully sent before being banned by Facebook. Note that
this number grows quickly but saturates. Our conjecture is that Facebook forbids an
account to send more invites when its number of pending invites (sent but not yet

Infiltrating Social Network Accounts: Attacks and Defenses 469

answered) exceeds a given value (between 400–500). Because our experiments were
designed around sending 1000 s of invitations, we extended the attack executor to
adapt its sending rate depending on its current state. For the first 500 invites, we
chose the inter-invite delay randomly between 1 and 15 s. For the next 500 invites,
we increased the upper limit of the delay to 60 s. For the remaining invites, the upper
delay limit was further increased to 100 s. We were then able to consistently send
more than 1500 invites from an account in only a few hours. Note that a fake account
can only be used to send a limited number of invites, since the number of pending
invites will at some point exceeds Facebook’s limit.

On a related note, since the fake accounts used by the attack executor need to be
validated, we setup our own mail server. Both the attack planner and attack executor
interface with the mail server for creating accounts as required or for confirming
friend requests from other users.

We have launched the following attacks using a collected relationship graph with
178,000 Facebook users and 339,000 friendship relations.

Chameleon Attack We illustrate the Chameleon attack we implemented, using
Fig. 4. In the first stage, we selected a random set of 1577 Facebook accounts from
our crawled data and launched a candid attack using a fake account. Figure 5a shows
the result of this experiment two weeks after sending the invites: 742 users accepted
the invitations, 309 rejected it and 526 were still undecided (pending). From the 309
users who rejected us, we selected a random set of 72 users and sent invitations to
all their friends. In order to avoid detection by Facebook, we refrained from sending
mass invitations to the friends of these 72 users. Instead, we attached them to nine
different fake accounts, each dealing with 8 out of the 72 users: each fake account

Fig. 4 Chameleon Attack: Attempt to obtain as many profiles as possible from a set of select
targets. The attack attempts to first befriend the friends of the targets, before befriending the targets.
The common friends achieved by this process improve the acceptance rates of the invitations by
the targets

470 R. Potharaju et al.

0
100
200
300
400
500
600
700
800
900

0 2 4 6 8

T
ot

al
 n

um
be

r
of

 p
eo

pl
e

Profile Number

Accepted
Pending
Ignored

a

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8

T
ot

al
 n

um
be

r
of

 p
eo

pl
e

Profile Number

Accepted
Pending
Ignored

b

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8

T
ot

al
 n

um
be

r
of

 p
eo

pl
e

Profile Number

Accepted
Pending
Ignored

c

Fig. 5 (a) Chameleon Attack Evaluation: Results from the first stage of invitations to the 1577
users (b) Chameleon Attack Evaluation: Results from the second stage of invitations to the 72
users (c) 3-Clique Attack Evaluation: Last stage of the 3-Clique attack against the 150, 3-clique
members of the 72 target users

is responsible for sending invitations to the friends of 8 of the 72 targeted users
(� 1600 invites per fake account).

Finally, we use these nine accounts to complete the chameleon attack, by
launching a subsequent candid attack against the eight users attached to each of
the nine fake accounts. Figure 5b shows the result of the chameleon attack, again
grouped by associated fake account. In total, about 41.7 % of the users fell for the
attack while 32.8 % sustained it. The rest of the 25 % were still undecided. Ironically,
when we re-sent invitations to the people who rejected us one week later, several
have accepted us which indicates that persistence pays off. This is due to a Facebook
security glitch that we discovered: flagging a user as unknown has no effect. That
is, even after being rejected, an attacker can re-send the invite any number of times
and it will always be shown as a fresh invite to the victim.

3-Cliques Attack We have run Algorithm 1 on the relationship graph collected
from Facebook (178,000 users and 339,000 friendship relations) and discovered
679,000 3-cliques in less than five minutes (had a similar performance on a different

Infiltrating Social Network Accounts: Attacks and Defenses 471

dataset as well [36]). Note that the large number of 3-cliques follows from the small
world property of OSNs [37]. To test our 3-Cliques attack, we targeted the same
72 users used in the chameleon attack but after a period of 60 days. Each of the
72 users has the value ı smaller than 500. This is typical for Facebook users, who
usually have fewer than 130 friends. In fact, the total number of 3-clique friends for
these 72 users was 150 (note that some users participated in multiple 3-Cliques). We
executed the steps specified in the 3-Cliques attack description (see Sect. 4.1 against
these 150 users (which form the target community G‘). Figure 5c shows the result
of the Chameleon attack, again grouped by associated fake account. The acceptance
rate was 79 %. This shows that the 3-Clique attack is 75 % more efficient than the
Chameleon attack.

Additional Statistics Following our Chameleon and 3-Clique attacks, we have
monitored several variables. First, we have measured the number of invites accepted
per day, following the beginning of each invite. Figure 6b shows our results for four
out of the nine fake accounts used to send invites. Most invites are being accepted
in the first three days after the beginning of the experiment.

Another metric of interest is the distribution of the number of friends per
Facebook account. Figure 6c shows the average over the 10,000 different accounts
targeted in our experiments, split over three categories: the accounts that accepted,
rejected or decided to keep it pending. In the active and rejected groups, most
accounts have between 50 and 450 friends. The pending group is more interesting,
since most users have fewer than 200 friends. In particular, there are almost 600
users with less than ten friends. One explanation for this distribution is that some of
the accounts that have neither accepted nor rejected our invitations may be inactive.
These users have tested Facebook briefly but are not active.

5 Infiltration Attack Defenses

We propose to use location information certified by geosocial networks, to validate
invitations received from other users. Location information, in the form of check-
ins, enables users to prove co-location with prospective friends.

One important question is whether geosocial networks register sufficient num-
bers of check-ins for them to be a relevant defense tool. To answer this question
we have collected publicly available data from 781,239 active Foursquare users.
To obtain this data, we have relied on the Foursquare API for querying the profile
of users and leverage Amazon EC2 for issuing parallel queries. An essential step
in crawling was to maintain a queue of user IDs that need to be crawled. To
efficiently parallelize our task, we leveraged Amazon’s queueing service called
SQS to distribute tasks to various computing instances. The cost of using SQS is
dependent on the number of messages that transfer through the system and the data
traffic that is involved. In total, we utilized 70 Amazon micro instances for a period
of 2 weeks, to rate limit our requests made to the Foursquare servers.

472 R. Potharaju et al.

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

In

vi
te

s

Inter request time (sec)

inter-invitation delay

a

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9

T
ot

al
 A

cc
ep

te
d

U
se

rs

Days Since Invite

Profile 1
Profile 2
Profile 3
Profile 4

b

0

100

200

300

400

500

600

0 200 400 600 800 1000

N
um

be
r

of
 U

se
rs

Total Number of Friends

accepted
ignored
pending

c

Fig. 6 Attack Statistics: (a) Capping invitations as a function of inter-invitation delay times.
(b) Accept rate timeline. Note that the first two days following the invitation are instrumental on
the acceptance rate. (c) Friend count distributions of accepted, rejected and pending user accounts.
The accepting users tend to have more friends than those who ignore random invitations

Fig. 7 Geographical
distribution of Foursquare
users: Foursquare is most
popular in the eastern half of
the United States with New
York being the most popular
city

For each user, the collected data consists of the user profile, the total number
of friends, check-ins and “days out” (days the user was actively performing check-
ins). Figure 7 shows the geographical distribution of the user “home cities” in the US
subset of the Foursquare dataset. It proves that not only the coasts but also the entire

Infiltrating Social Network Accounts: Attacks and Defenses 473

eastern half of the US is actively using Foursquare. These results are in agreement
with results from Cheng et al. [38] and Cha et al. [39].

We propose to build the solution on a distributed, peer-to-peer online social
network: Each client locally stores and maintains its check-in history—the trace
of (location,time) pairs certified by the social network. This approach builds on
existing work, and enables social network users to preserve their privacy from
curious providers.

Let HA denote the check-in history of client A. For each supported venue V and
during each epoch e, the provider S generates a random presence token, TkV;e. TkV;e

is only provided to clients that successfully check-in at V during epoch e. S also
maintains for venue V a vicinity set �V;e, containing the presence tokens for a pre-
defined set of neighboring venues. TkV;e and �V;e change once per epoch for each
venue.

For each venue V , we define the set NV D fV1; ::; Vag, where V1 denotes the geo-
coordinates of V and Vi 2 ViC1, 8i D 1::a � 1 are areas containing the location
of V , sorted in decreasing order of accuracy. For instance, the areas in NV can be
defined as concentric squares of predetermined dimensions, centered at V or can
range from V’s exact street address to only providing V’s city (or zipcode, country,
etc). Similarly, for a time T, we define the set NT , of t intervals T1; ::; Tt , all containing
T and ordered with decreasing levels of accuracy (e.g., hour, epoch, day, month,
year).

We define the infiltration attack detection solution to be a set of protocols Infil-
trationCheck D fSetup, VenueMaintenance, CheckIn, TopoProof, TopoMatch g.
Setup is run initially to generate system-wide parameters. The VenueMaintenance
procedure is executed periodically by the provider S for each registered site. A client
invokes the CheckIn procedure when (i) the user explicitly wishes to perform a
check-in, or (ii) seamlessly, when it detects to be located around a venue of interest.
A successful CheckIn enables the client to collect a token that uniquely identifies
the place and time of the operation.

During the invitation protocol, inviters reveal a function of their check-in
tokens, allowing invitees to perform the following private location based operations:
(i) verify the location claims made by the inviter in its profile (e.g., past locations,
schools attended, jobs, etc) and (ii) determine the location affinity between the user
and the inviter, that is, how many common places have they visited simultaneously.

TopoProof allows the inviter to prove his past location claims—(location, time)
pairs—with a desired accuracy level. Besides allowing inviters to prove claims of
the type “we met last year at a conference”, it also enables a curriculum verification
protocol: claimed studies, employment, vacations can be corroborated by existing
check-ins. TopoMatch allows the invitee to privately infer her location affinity
with the inviter. We define the location affinity of two users to be the size of the
intersection of the sets of locations (and times) frequented by both users.

The user is notified if the results of TopoProof and TopoMatch are not conclusive
or are negative. The user then needs to decide whether it will trust a user with no
common location context as a friend.

474 R. Potharaju et al.

In the following, we describe each of the above procedures.

Setup(): S generates a public/private key pair and distributes the public key to all
clients.
VenueMaintenance(S()): At the beginning of each epoch e, for each registered
venue V , S generates a fresh random presence token, TkV;e, then updates the
vicinity set �V;e to contain the presence tokens of all of V’s neighboring venues.
CheckIn.C.Id; V; T; HC; pubS/; S.privS; V//: Executed between a client C with
check-in history HC , located at venue V at time T and the provider S. C runs one
of the location verification protocols from Sect. 6, to prove its presence at V . If it
fails, S aborts. Otherwise, C generates a fresh random key k, generates Ek.Id.C//

and sends it, along with V and T to S. S performs the following four actions.

• Generate a fresh key ka and associated hash chain wi D Hi.ka/, i D 1::a and
a fresh key kt and associated hash chain �j D Hj.kt/, j D 1::t.

• Given the set NV of areas containing V , with decreasing accuracy levels,
generate the set EV D fEwi.Vi/ji D 1::ag, containing the symmetric
encryption of all the Vi’s with key wi. Given the set NT of time intervals
containing T, with decreasing levels of precision, similarly generate the set
ET D fE�j.Tj/jj D 1::tg.

• Generate signature �V;T D fSS.Ek.Id.C//;EV ;ET/g.
• Send �V;T , the keys ka and kt, along with the presence token TkV;e and vicinity

set �V;e of venue V during the current epoch e (T 2 e) to C. C records in her
history set HC the following tuple: .V; T; TkV;e; �V;e; NV ; NT;EV ;ET ; k; ka; kt; �V;T/.

TopoProof.B.HB/; A.//: The inviter B sends to the invitee A a list of locations
claimed in his profile (e.g., locations where studies were done, current work
place, current city of residence). If insufficient such information is provided,
TopoProof returns 0 (“reject”). Otherwise, A and B negotiate the level of accuracy
desired when revealing B’s past locations. Let ˛ 2 f1::ag and � 2 f1::tg
be the chosen spatial and temporal accuracy levels. To prove presence within
an area Vp within a time interval Tp, B retrieves from HB all the matching
entries. The search is performed on the sets NV and NT of each entry in HB.
Let .V; T; TkV;e; �V;e; NV; NT;EV ;ET ; k; ka; kt; �V;T / be a matching entry. That is,
V˛ 2 NV and V˛ � Vp while T� 2 NT and T� � Tp. B computes w˛ D H˛.ka/

and �� D H� .kt/. B sends Vp; Tp;EV ;ET ; k; w˛; �� ; �V;T to A. A performs the
following verifications:

• Use �V;T D fSS.Ek.Id.B//;EV ;ET/g and the key k, to verify that S’s signature
binds B to the sets EV and ET .

• Use the key w˛ to decrypt the entry ˛ from EV and verify that the resulting
V˛ � Vp. Use the key �� to decrypt the entry � from EV and verify that the
resulting T� � Tp.

• If either verification fails, return 0.

Infiltrating Social Network Accounts: Attacks and Defenses 475

TopoMatch(B.HB; maxr/; A.HA; k; maxr/): TopoMatch is initiated by B to allow
A to privately derive the number of check-ins performed in the vicinity (both
space and time) of check-ins of B. maxr is a system parameter, used for hiding
the length of check-in history sets. The following steps are executed:

• A and B agree on a random blinding factor u (using a pre-commitment step).
B initializes an empty set P.

• For each entry in the check-in history HB corresponding to a venue V , B
retrieves the vicinity set �V;e, for the epoch e when the check-in took place.
For each token TkV0;e 2 �V;e corresponding to a venue V 0 in the vicinity of V ,
B computes the hash H.uITkV0;e/ and inserts it in the set P.

• B generates a value r uniformly at random from Œ1::maxr�. If P has less then r
elements, B generates r�jPj random values (of the same bit size as the output
of the hash function H) and adds them to P. B computes a random permutation
 and sends the permuted set .P/ to A.

A then initializes a counter ctr D 0. For each entry in the check-in history HA,
for a venue V during epoch e, A retrieves the presence token TkV;e. A computes
H.uITkV;e/. If H.uITkV;e/ 2 .P/, A increments ctr. TopoMatch returns ctr. The
value r and the padding in the last step are used to hide the number of check-ins of
B from A.

5.1 Taking Action: Infiltration Warnings

The experiments in Sect. 4 show that users are often unaware of the security
risks associated with their actions. While TopoProof and TopoMatch can detect
invitations received from people with no common context, an important challenge
remains to communicate this information to users in an effective manner. This is
important, as empirical studies have shown the inefficiency of security mechanisms
when usability is relinquished [40].

We propose the use of visual indicators as proposed in [33], to convey the
output of TopoProof and TopoMatch to users. First, we propose to extend the friend
request notification in social networks with information provided by TopoProof and
TopoMatch. For instance, Fig. 8 depicts an extended friend request list in Facebook.
The output of TopoProof and TopoMatch is presented to the user, on a background
corresponding to the inferred safety of the inviter. The color, ranging from green
(safe) to red (unsafe), is decided based on the output of TopoProof and TopoMatch.
If the user shares more than a threshold number of TopoProof certified locations
with the inviter, the color is green. Otherwise, the difference between yellow and
red is made based on a second threshold of the number of certified locations shared
with the inviter.

476 R. Potharaju et al.

Fig. 8 Visual indicator for pending invitations. Background color denotes the safety of befriending
an inviter, as inferred by TopoProof and TopoMatch

If the user decides to accept a “green” inviter, the process takes place as usual
in Facebook. If the user decides to accept a “yellow” or “red” inviter, we extend
the Facebook interface with a second visual notification. Figure 9 illustrates the
notification displayed, consisting of a sample of locations from the user’s past
history, that would be shared by default with the inviter. If the user is comfortable
with this choice, the invitation is accepted.

Infiltrating Social Network Accounts: Attacks and Defenses 477

Fig. 9 Visual indicator displayed when the user decides to accept a suspicious inviter. The
illustration extends the example shown in Fig. 8. The user needs to decide whether she is
comfortable sharing her past history of preferred locations with this inviter

6 Preventing Location Fraud

TopoProof and TopoMatch rely on certified user location information. Geosocial
networks use various incentives, including financial, to encourage users to perform
check-ins, thus report their location information. The use of incentives introduces
reasons for cheating, motivating users to commit location fraud: falsely claim to be
at a location, to receive undeserved rewards or social status. Even with GPS verifica-
tion mechanisms in place, committing location fraud has been largely simplified by
the recent emergence of specialized applications for the most popular mobile eco-
systems (LocationSpoofer [6] for iPhone and GPSCheat [7] for Android).3 Such
behavior places undue burden on participating venues, as proved by the recent surge
in the numbers of fake check-ins and “instant” mayors [41].

3In fact, He et al. [8] proved the feasibility of fake check-ins in Foursquare.

478 R. Potharaju et al.

To address this problem, we exploit the insight that venues have the most to gain
from properly rewarding users—their main goal is to retain customers and attract
new users. We introduce then a suite of venue-oriented, secure location verification
mechanisms, that require participating venues to deploy minimalist equipment. To
promote their adoptability, we design the solutions to be not only secure and correct,
but also user friendly, economical and easy to deploy. They consists of mechanisms
that (i) broadcast unpredictable Wi-Fi SSIDs, (ii) display QR codes encoding venue
certified information, and (iii) implement challenge/response protocols.

6.1 Requirements

A location verification solution needs to satisfy several requirements. First, cor-
rectness, ensuring that a check-in at a venue V succeeds with high probability if
the client is located at V . Second, it should provide check-in security, preventing
clients from performing check-in fraud. Furthermore, the solution should be user
friendly, imposing a small overhead on its users. The solution should also minimize
the investment cost for the social network provider, participating venues and users.

6.2 The Solutions

We propose here a novel approach, relying on two components of the geosocial
network ecosystem: the venues and their owners. One insight is that venues know the
ground truth, being at the center of locations claimed during check-ins. Moreover,
venue owners have incentives to stop location fraud, being motivated to reward the
proper frequent customers. We require then participating owners to install additional
equipment within their venues.

The equipment should be inexpensive, portable and should not require Internet
connectivity. While we have evaluated our solutions on simple smartphones, we
note that recent technologies, such as Apple’s iBeacon [42] and TI’s SensorTag [43]
are not only significantly cheaper (e.g., a SensorTag costs $25) but are expected to
have a major impact on the indoor localization market, including shopping malls
and restaurants [44].

We propose two location verification mechanisms: a (i) Feedback-enabled
Embedded System (FES) equipped with an LCD screen and a proximity sensor or
a (ii) Network Embedded System (NES) capable of communicating with nearby
devices. Most smartphones have all these three capabilities and can be used as an
implementation platform. In the following we use SPOTRV to refer to the device
that a venue V deploys within its site to “exact” this mechanism. We also consider
time epochs to be further divided into frames. The length of time frames is a system
parameter and should be on the order of seconds. Algorithm 2 shows the pseudocode
of our solutions.

Infiltrating Social Network Accounts: Attacks and Defenses 479

Algorithm 2 Pseudocode of FES and NES that runs on SpotrV , the device
installed at a venue V

1.Object implementation SPOTRVI
2. int TI #timestamp in ms
3. int �TI #expiration interval
4. int pkV;prVI #signature key pair of deviceat V

5. Operation main./

6. T WD getCurrentTime./I
7. if .algoType D FES/ then
8. ff WD sign.prV ;T; �T/I
9. string qrCode WD TC�TC ffI
10. displayCode.qrCode/I
11. if .algoType D NES/ then
12. Connection con WD waitForConnection./I
13. con:send.T; �T;R/I
14. int T1 WD getCurrentTime./I
15. string msg WD con:recv./I
16. int T2 WD getCurrentTime./I
17. if .T2 � T1 < threshold/ then
18. ff WD sign.prV ;msg/I
19. con:send.ff/I
20. fi fi
21. end

We consider first a communication restricted equipment, where a local commu-
nication interface (e.g., Wi-Fi) is not available. The equipment at venue V , which we
denote by SPOTRV , verifies the presence of a user by making use only of its display,
cryptographic signatures and Quick Response Codes (QR codes). QR codes are
two dimensional matrix barcodes consisting of black modules arranged in a square
pattern on a white background. QR codes encode information—they can store up to
2,953 bytes and are designed for fast readability.

The solution, which we call FES, Feedback Embedded System, requires users
to scan QR codes displayed inside the claimed check-in venues. The QR codes
change periodically and embed unique and hard to guess information that can be
verified by the GSN provider to be associated with the venue. This is achieved by
programming the SPOTRV equipment of venue V to generate and store a private,
signing key. SPOTRV samples the time and signs it, along with an expiration interval,
T; �T; SV.T; �T/, embeds this string into a QR code and displays it onto its screen.

A user checking-in at V , is required to approach SPOTRV , scan the displayed QR
code, decode the embedded value and send it to the GSN provider. The provider
verifies first that the value has not expired, the current time being within the interval
ŒT; TC�T�. It verifies the signature on the last field, using the public key associated
with venue V . If either verification fails, the provider denies the check-in. Otherwise,
it validates the check-in. SPOTRV changes the QR code when the expiration time
T C�T is reached.

480 R. Potharaju et al.

FES assumes the provider knows the public verification key corresponding to
SPOTRV ’s private signing key. SPOTRV however lacks networking interfaces and the
user cannot be assumed to be able to copy by hand a long and random public key.
Instead, when the owner installs the SPOTRV device, she instructs it to generate a
signature key pair, consisting of a public and a private key. SPOTRV stores the private
key, embeds the public key into a QR code and displays it on the screen. The owner
scans the QR code, decodes the public key and sends it to the GSN provider. The
GSN provider associates the public key with the venue V .

The required user interaction is a drawback for FES. To check-in, users need
to find the device deployed in a participating venue and scan the displayed QR
code. We address this problem by taking advantage of the networking capabilities
of modern devices. Many smartphones are equipped with an array of local commu-
nication media, including Wi-Fi, Bluetooth and Near Field Communication (NFC).
We devise a Network Embedded System (NES) solution, where part of the check-in
verification takes place at the venue: The communication between the user device
and SPOTRV can take place over any local RF communication technology.

NES also assumes that SPOTRV is able to sign messages, and the GSN provider
stores the public, signature verification key. In addition, NES requires each user to
be able to authenticate messages. For this, during the subscription process, the user
is assigned by the provider a unique, random key K. K is stored on the user’s device.

The location verification protocol has two parts. In the first part, SPOTRV engages
the user in a challenge/response protocol, whose small latency ensures the presence
of a user at V . In the second part, the authenticity of the response is verified by the
social network provider, ensuring that the present user is who it claims to be (and
not a proxy).

Specifically, when a user checks-in at V , it sets up a connection with SPOTRV ,
over any local RF media. SPOTRV initiates a challenge/response protocol, by
sending the user the currently sampled time T, an expiration interval �T and a fresh
random value R. The user’s device generates a hashed message authentication code
HMAC [45] of these values, with the key K assigned by the provider, and sends
the result back to SPOTRV . SPOTRV ensures that the response is received within a
desired interval from the challenge. This prevents wormhole attacks, by ensuring
the user has insufficient time to forward the challenge to a remote attacker. If this
condition is satisfied, SPOTRV signs the received HMAC with the private key and
sends the result, T; �T; R; SV.HK.T; �T; R/, back to the user. We use HK.M/ to
denote the HMAC of a message M with the key K. The last field of the message
denotes SPOTRV ’s signature of the first fields of the message.

The user forwards the message to the provider, along with the name of the venue.
The provider verifies the receipt of this packet within the validity interval ŒT; T C
�T�. It retrieves the key K associated with the user and the public key associated
with the venue V . It then recomputes the HMAC on the first three fields of the packet
with the key K and verifies SPOTRV ’s signature on the HMAC. If either verification
fails, the provider denies the check-in. Otherwise, the check-in is validated.

FES and NES prevent a single attacker from performing fake check-ins: a single
attacker not present at a venue V is unable to scan the QR codes at V or respond to

Infiltrating Social Network Accounts: Attacks and Defenses 481

the challenge presented by SPOTRV . Of particular concern however are wormhole
attacks. In a wormhole attack, one perpetrator located at venue V , acts as a proxy
and forwards all traffic between SPOTRV and a remote attacker. This enables the
remote attacker to check-in at V .

6.3 Evaluation

We have implemented our solutions in Android and Java and have tested them on (i)
a Motorola Milestone smartphone featuring an ARM Cortex A8 CPU @ 600 MHz
and 256 MB RAM a (ii) Dell laptop with an Intel (R) Core(TM) i7-2620M CPU @
2.70GHz and 6,GB RAM and a (iii) 16 quadcore server with an Intel(R) Xeon(R)
CPU X7350 @ 2.93 GHz and 128 GB RAM. We have used RSA to implement
signatures, AES for symmetric encryption and SHA-512 for cryptographic hashes.

Wormhole Attack Resilience Wormhole attacks are best detected through timing
analysis. Figure 10 shows the overhead imposed by FES and NES in the presence
and absence of wormhole attacks. The overhead of FES is dominated by the cost
of scanning a QR code (190 ms at 20 cm) thus hiding the additional latency of
wormholes. In contrast, in NES, the low latency over local Wi-Fi communications
and the small computation cost of hash based message authentication codes, make
wormhole attacks stand out: the two-way wired communication between attackers
imposes an overhead that is 12 times higher than the overhead of honest users. Thus,
in the following, we use NES to provide location verification for the infiltration
attack defenses.

Solution Overhead We have run the server side CheckIn on the three platforms
mentioned above using a stream of 10,000 check-in. Figure 11 shows our results
using logscale for the y axis. We have used both 1024 bit and the currently

Fig. 10 Defending against
wormhole attacks: FES and
NES times for honest users
and wormhole attackers

Defense

Ti
m

e

0

50

100

150

200

FES NES

Local Remote

482 R. Potharaju et al.

RSA Bit Size

C
he

ck
−I

ns

100

101

102

103

104

1024 2048

Milestone Laptop Server

Fig. 11 Server side CheckIn performance for 1024 and 2048 RSA key bit sizes for three platforms

recommended [46] 2048 bit long RSA keys (modulus). The AES key bit size is
set to 128 bits. CheckIn is efficient: The 16 quadcore server can support almost
2000 CheckIns per second, or more than 170 million CheckIns per day. Since
Foursquare currently registers a few million check-ins per day [47], our results show
that a server can easily support much higher loads. Even a first generation Android
smartphone can support 64 CheckIns/s for 1024 bit RSA keys and 12 for 2048 bit
keys.

We further study the overhead for TopoProof and TopoMatch to process check-
in records during an invitation, on a smartphone. We expect the performance of
TopoProof and TopoMatch to be linear with the number of processed check-in
records. We tested their performance over 1000 records. The first two bars in each
group shown in Fig. 12 illustrate our results. The y axis shows in logscale the time in
ms taken to process these records on the Milestone. While we expected TopoProof
to be slower then TopoMatch, we observe that during TopoProof, the smartphone
can process almost 150 records in a second for a 2048 bit RSA modulus (200 for
1024 bit). TopoMatch requires only hash generations and can process almost 900
records per second. As our data shows, few users have more than 500 check-in
records. Thus, the overhead imposed by TopoProof and TopoMatch is small, even
when the verifications take place on resource constrained devices.

7 Conclusions

In this chapter we have shown that infiltration attacks are a serious social net-
working threat, that is not addressed by standard constructions providing data
confidentiality. We have shown that location information extracted from geosocial

Infiltrating Social Network Accounts: Attacks and Defenses 483

RSA Bit Size

Ti
m

e
(m

s)

100

101

102

103

104

105

1024 2048

LProof
(ms for 1000)

LMatch
(ms for 10000)

SigCLProb
(ms for 1000)

SigCLPend
(ms for 1000)

Fig. 12 Smartphone performance for TopoProof, TopoMatch and SignalCoLocation for 1024 and
2048 RSA key bit sizes

networks can play an instrumental role in detecting infiltrations, as being friend
invitations received from users with whom no common context can be established.
Furthermore, since location information can be easily faked in geosocial networks,
we have proposed venue centric location verification solutions. The solutions are
resilient to wormhole attacks.

Location information pervades most social networks today. Thus, this work
applies not only to the original geosocial networks (Foursquare, Yelp) but also
standard sites like Facebook or Twitter.

One obstacle to the adoption of location information as a universal verification
tool, rests in the non-ubiquity of check-in information: not all users take advantage
of the check-in options of their social networking sites. While this may change in
time, we note that smartphones can be instrumented to periodically capture validated
user locations. At a later, posting time, information may be retrieved enabling
users to privately validate their earlier presence at the associated location—without
revealing the precise time.

References

1. Caldwell, T.: Spear-phishing: how to spot and mitigate the menace. Comput. Fraud Secur.
2013(1), 11–16 (2013)

2. Zinman, A., Donath, J.S.: Is britney spears spam? In: Proceedings of the Fourth Conference on
Email and Anti-Spam (CEAS 2007) (2007)

3. Gartner study finds significant increase in e-mail phishing attacks: http://www.gartner.com/
press_releases/asset_71087_11.html (2004, April)

http://www.gartner.com/press_releases/asset_71087_11.html
http://www.gartner.com/press_releases/asset_71087_11.html

484 R. Potharaju et al.

4. LorneFade: Facebook Tools: A dive into facebook bots. http://www.lornefade.com/affiliate-
marketing/facebook-tools-a-look-into-one-of-the-first-facebook-bots (2007, December)

5. Foursquare Hacked by TechCrunch Editor Michael Arrington (UPDATED): The New York
Observer http://observer.com/2010/10/foursquare-hacked-by-techcrunch-editor-michael-
arrington-updated/. (2013, Last accessed on August 10)

6. Big Boss: Location spoofer. http://goo.gl/59HMk (2011)
7. Gpscheat!: http://www.gpscheat.com/ (2015, Last accessed on June)
8. He, W., Liu, X., Ren, M.: Location cheating: A security challenge to location-based social

network services. In: Proceedings of IEEE ICDCS (2011)
9. Von Ahn, L., Blum, M., Nicholas, J.H., Langford, J.: CAPTCHA: Using hard AI problems

for security. In Advances in Cryptology–EUROCRYPT 2003, pp. 294–311. Springer, Berlin,
Heidelberg (2003)

10. Foursquare: https://foursquare.com/ (2015, Last accessed on June)
11. Yelp: http://www.yelp.com (2015, Last accessed on June)
12. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All your contacts are belong to us: automated

identity theft attacks on social networks. In: Proceedings of the 18th International Conference
on World Wide Web (WWW) (2009)

13. Caverlee, J., Webb, S.: A large-scale study of MySpace: Observations and implications for
online social networks. In: Proceedings of the AAAI (2008)

14. Nazir, A., Raza, S., Chuah, C.-N.: Unveiling facebook: a measurement study of social network
based applications. In: Proceedings of IMC (2008)

15. Social Honeypots: Making Friends with a Spammer Near You. In: Proceedings of the 5th CEAS
(2008)

16. Caverlee, J., Liu, L., Webb, S.: Socialtrust: tamper-resilient trust establishment in online
communities. In: Proceedings of JCDL, pp. 104–114 (2008)

17. Boshmaf, Y., Muslukhov, I., Beznosov, K., Ripeanu, M.: The socialbot network: when
bots socialize for fame and money. In: Proceedings of the 27th Annual Computer Security
Applications Conference, pp. 93–102. ACM, New York (2011)

18. Stein, T., Chen, E., Mangla, K.: Facebook immune system. In: Proceedings of the 4th
Workshop on Social Network Systems, p. 8. ACM, New York (2011)

19. Tootoonchian, A., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: Better Privacy for Social
Networks. In: Proceedings of ACM CoNEXT (2009)

20. Luo, W., Xie, Q., Urs Hengartner. Facecloak: An architecture for user privacy on social
networking sites. In: Proceedings of the 12th IEEE International Conference on Computational
Science and Engineering (CSE), pp. 26–33 (2009)

21. Bhattacharjee, B., Baden, R., Spring, N.: Identifying close friends on the internet. In: Hotnets
(2009)

22. Sun, J., Zhu, X., Fang, Y.: A privacy-preserving scheme for online social networks with
efficient revocation. In: Proceedings of the 29th Conference on Information Communications,
INFOCOM’10 (2010)

23. Puttaswamy, K.P.N., Zhao, B.Y.: Preserving privacy in location-based mobile social appli-
cations. In: Proceedings of the Eleventh Workshop on Mobile Computing Systems and
Applications, HotMobile ’10, pp. 1–6. ACM, New York (2010)

24. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings of
the 2nd ACM Workshop on Wireless Security, WiSe ’03 (2003)

25. Howard, A., Siddiqi, S., Sukhatme, G.S.: An experimental study of localization using wireless
ethernet. In: In 4th International Conference on Field and Service Robotics (2003)

26. Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and precise location verification using distance
bounding and simultaneous multilateration. In: Proceedings of the Second ACM WiSec (2009)

27. Zhu, Z., Cao, G.: APPLAUS: A Privacy-Preserving Location Proof Updating System for
Location-based Services. In: Proceedings of IEEE INFOCOM (2011)

28. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agree-
ment. SIAM J. Comput. 26(4), 873–933 (1997)

http://www.lornefade.com/affiliate-marketing/facebook-tools-a-look-into-one-of-the-first-facebook-bots
http://www.lornefade.com/affiliate-marketing/facebook-tools-a-look-into-one-of-the-first-facebook-bots
http://observer.com/2010/10/foursquare-hacked-by-techcrunch-editor-michael-arrington-updated/
http://observer.com/2010/10/foursquare-hacked-by-techcrunch-editor-michael-arrington-updated/
http://goo.gl/59HMk
http://www.gpscheat.com/
https://foursquare.com/
http://www.yelp.com

Infiltrating Social Network Accounts: Attacks and Defenses 485

29. Saroiu, S., Wolman, A.: Enabling New Mobile Applications with Location Proofs. In:
Proceedings of HotMobile (2009)

30. Luo, W., Hengartner, U.: VeriPlace: A Privacy-Aware Location Proof Architecture. In:
Proceedings of ACM SIGSPATIAL GIS (2010)

31. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of the effective-
ness of web browser phishing warnings. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1065–1074. ACM, New York (2008)

32. Wogalter, M.S., DeJoy, D., Laughery, K.R.: Warnings and Risk Communication. CRC Press,
Boca Raton (2005)

33. Shin, D., Lopes, R.: An empirical study of visual security cues to prevent the sslstripping attack.
In: Proceedings of the 27th Annual Computer Security Applications Conference, pp. 287–296.
ACM, New York (2011)

34. Walton, D.N.: Ad Hominem Arguments. University Alabama Press, Tuscaloosa (1998)
35. Captcha buster: http://captchabuster.com (2010)
36. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in

Facebook. In: Proceedings of WSON (2009)
37. Watts, D.J., Strogatz, S.H.: Small world. Nature 393, 440–442 (1998)
38. Cheng, Z., Caverlee, J., Lee, J., Sui, D.Z.: Exploring millions of footprints in location sharing

services. ICWSM 2011, pp. 81–88 (2011)
39. Cha, M., Hamed H., Fabricio F., Gummadi, P.K.: Measuring user influence in twitter: The

million follower fallacy. ICWSM 10 30, 10–17 (2010)
40. Adams, A., Angela Sasse, M.: Users are not the enemy. Commun. ACM 42(12), 40–46 (1999)
41. Foursquare Official Blog: On foursquare, cheating, and claiming mayorships from your couch.

http://goo.gl/F1Yn5 (2011)
42. iBeacon: http://en.wikipedia.org/wiki/IBeacon, (2015, Last accessed on June)
43. SensorTag: http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?DCMP=

lprf-stdroid&HQS=lprf-stdroid-pr (2015, Last accessed on June)
44. Hari Gottipati: With iBeacon, Apple is going to dump NFC and embrace the internet

of things. http://gigaom.com/2013/09/10/with-ibeacon-apple-is-going-to-dump-on-nfc-and-
embrace-the-internet-of-things/. (2013, september)

45. Mihir, B., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication,
CRYPTO, pp. 1–15 (1996)

46. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key Management
Part 1: General (Revised). NIST Special Publication 800-57 (2007, March)

47. Lauren Indvik: Foursquare Surpasses 3 Million User Registrations. http://mashable.com/2010/
08/29/foursquare-3-million-users/, (2010, August)

http://captchabuster.com
http://goo.gl/F1Yn5
http://en.wikipedia.org/wiki/IBeacon
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?DCMP=lprf-stdroid&HQS=lprf-stdroid-pr
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?DCMP=lprf-stdroid&HQS=lprf-stdroid-pr
http://gigaom.com/2013/09/10/with-ibeacon-apple-is-going-to-dump-on-nfc-and- embrace-the-internet-of-things/
http://gigaom.com/2013/09/10/with-ibeacon-apple-is-going-to-dump-on-nfc-and- embrace-the-internet-of-things/
http://mashable.com/2010/08/29/foursquare-3-million-users/
http://mashable.com/2010/08/29/foursquare-3-million-users/

An Economical, Deployable and Secure
Architecture for the Initial Deployment Stage
of Vehicular Ad-Hoc Network

Baber Aslam, Ping Wang, and Cliff C. Zou

Abstract With the fast development of vehicular ad-hoc network (VANET) and
related technologies in both academia and industry, many VANET systems have
been presented in recent years. However, the majority of them have the assumption
that all or most vehicles have installed with wireless communication devices and
an elaborate roadside infrastructure exists. This assumption is not realistic for the
critical and long transition period of VANET, when only a small portion of vehicles
will be equipped with wireless devices (we refer to them as smart vehicles) and
limited roadside infrastructure will exist. In this chapter, we present an economical,
deployable and secure VANET system design that could facilitate the gradual
deployment of wireless communication among vehicles. The system design is
intended to stimulate VANET adoption without the need of elaborate infrastructure,
large number of smart vehicles, huge investments by service providers or expensive
end user devices. Economical Roadside Units (RSUs) that do not need expensive
Internet access (especially in rural areas) can be incrementally deployed along
critical road sections. They behave as temporary (traffic) information storage
and relay points to serve any passing-by smart vehicles, while smart vehicles
report/receive information to/from RSUs and relay information between RSUs.
In addition, we present a public-key infrastructure based security architectures
centered on these RSUs. We show that we can achieve connectivity with a high
degree of confidence using only a small number of smart vehicles and RSUs.
We present workable models for multi-confidence level data verification and time-
location based secure positioning systems, along with possible threats and their
defenses within the scope of our proposed designs.

B. Aslam
National University of Sciences & Technology, Islamabad, Pakistan
e-mail: baber-mcs@nust.edu.pk

P. Wang
Symantec Corporation, 1001 Heathrow Park Lane, Heathrow, FL 32746, USA
e-mail: jenpwang@gmail.com

C.C. Zou (�)
Department of Electrical Engineering and Computer Science, University of Central Florida,
Orlando, FL 32816, USA
e-mail: czou@cs.ucf.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_16

487

mailto:baber-mcs@nust.edu.pk
mailto:jenpwang@gmail.com
mailto:czou@cs.ucf.edu

488 B. Aslam et al.

1 Introduction

In vehicular ad hoc network (VANET), the networking architecture could be
infrastructure-based, or ad hoc based, or most likely, combined together. Vehicle
to Vehicle (V2V) communication is ad hoc and Vehicle to Infrastructure (V2I)
communication is infrastructure-based through access points (i.e., roadside units).
The roadside units (base stations) are then connected to the Internet and provide
necessary services to vehicles. The provision of services largely depends on
connectivity of the roadside units to each other and to the Internet. The success
of VANET depends on the existence of mature roadside infrastructure and sufficient
number of vehicles equipped with wireless communication devices (we refer them
as “smart vehicles”). Most VANET researches are based on either or both of these
requirements.

However, both of these requirements will not be realistic during the initial years
of VANET deployment. It will not be economically feasible to initially install a
large number of fully networked roadside units to cover a region. Further, during
the long transition period, in most cases, there will not be sufficient number of
smart vehicles to enable comprehensive V2V communication, which is an essential
element in many VANET applications [1]. The roadside infrastructure will remain
uneconomical in rural areas even after the initial deployment since, in many rural
areas, there will not be sufficient number of smart vehicles for years to come. V2V
communication between vehicles traveling in opposite direction is very important
for effective routing of messages [2]. This communication may not be possible
in some locations due to road layout (such as when two directions of a road are
far away from each other) or because of uneven distribution of traffic on opposite
driving directions (such as high outbound/low inbound traffic from/to residential
areas during morning hours).

Although there is plenty of research on VANET, the solutions to the challenges
existing during the long transition period in VANET deployment, as discussed
above, are largely ignored. There are some research solutions that offset the
absence of roadside architecture by either not relying on it (i.e., using only V2V
communication), or using cellular architecture, or using existing available Wi-Fi
hotspots, or using static/mobile relay units (Delay tolerant networks) [3–8]. Most
of these approaches target specific applications and may not be easily upgradable
(during later stages) to VANET architecture (such as those defined by IEEE P1609
working group). There is also lack of research on how to provide incentive for
vehicle owners to install wireless devices when support from roadside infrastructure
is insufficient and very limited number of smart vehicles are on the road.

In this chapter, we present an economical, deployable and secure VANET system
design to solve these challenges. Our focus is to provide a transitional/interim
solution that can be used to start up (or give impetus) to VANET activities during
the long initial transition period by making VANET easy to deploy, secure and
economical. At the same time the design should be incremental/progressive and
should be easily transformed into architectures that are already specified in VANET

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 489

standards/protocols without requiring any major revamp/modifications. From now
on we will mostly refer “smart vehicles” as “vehicles” without considering any
vehicle that has no communication device, unless there is a need to explicitly
mention smart vehicles.

The contributions of this chapter are manifold. First, we present a VANET
system design that is economical, realistic, incremental and deployable during the
initial long transition period when smart vehicles have a low penetration rate.
The proposed design also ensures V2V communication in the above mentioned
situations which are necessary for the success of VANET. Core component in our
design, the Roadside Units (RSUs), can be standalone with minimum intelligence in
their basic form. Our proposed design does not require RSUs to be interconnected or
connected to the Internet. We present a basic protocol that makes the communication
between roadside units possible via mobile vehicles. The simulation results indicate
considerable performance gains by just using standalone RSUs.

Second, the simplified security architecture proposed, where only RSUs have
certificates, enables an economical and strong information assurance in VANET
in the similar way as the public-key infrastructure used in Internet web service—
RSUs behave like web servers with certificates and vehicles behave like client web
browsers. In this way, the mature Internet public-key infrastructure can be directly
deployed in VANET without the complicated and expensive requirement of digital
certificate in every dynamically-located vehicle.

Last, although the proposed design is simple and inexpensive, it can be effec-
tively used to provide advance security features such as data verification and secure
positioning. We present multi-confidence level data verification and time-location
based secure positioning systems based on the proposed system design. We also
analyze possible threats and the protection offered by our design against these
threats.

The chapter is organized as follows. In Sect. 2 we present related work. Section 3
describes the challenges. Section 4 gives detailed description of our proposed
design. Section 5 highlights the security features of our design. Section 6 analyzes
possible threats and their defenses. Section 7 presents the simulation details.
Section 8 presents discussion and Sect. 9 gives the conclusion.

2 Related Works

Most of the existing research in VANET presents routing algorithms for V2V com-
munication [9–11]; these protocols rely on the assumption that sufficient number
of vehicles will be available for relaying messages. Some of the research work
also addresses the routing in disconnected or intermittently connected networks
[12–15]. A hybrid approach has also been presented to address limited connection
time between vehicles [16]. However, during the initial deployment there will not
be sufficient number of smart vehicles on the road to even form small clusters for
these protocols to work. Further, lack of roadside infrastructure will also make use
of hybrid protocols difficult.

490 B. Aslam et al.

The technique for transmission of data between nodes of a disconnected or
partitioned network using temporary storage at intermediate nodes is a delay tolerant
network (DTN) [3]. Besides satellite networks, the concept of DTN has been widely
applied to VANET (which may be considered as DTN especially during initial
deployment stages) [3–5, 12, 17, 18]. It is pertinent to highlight here that most of
the existing research in this context is on V2V communication protocols [4, 12, 17]
where mobile nodes temporarily store the message if no route is available and
later opportunistically forward the message. These protocols may be used to solve
the disconnected network problem due to uneven distribution of traffic, but may
not be an effective solution to low penetration rate issues. Throwboxes in UMass’
DieselNet [5] are similar to our standalone RSUs. The throwboxes act as stationary
routers to improve connectivity among mobile nodes (buses) that are equipped
with multiple radios (including a long-range radio), GPS recording devices etc. In
our research the RSUs are not just the routers, but in addition they also receive,
process and disseminate information (such as safety or warning). Mobile nodes in
MIT’s CarTel [18] are equipped with multiple sensors; the data collected from these
sensors is processed and transferred to a central portal by these nodes. The transfer
is accomplished opportunistically via Wi-Fi (hotspots, roadside units), Bluetooth
or by nodes themselves (data mules). A specially designed delay-tolerant network
stack (CafNet) is used for communication. Our emphasis, in this chapter, is not on
making major modification to existing VANET standards/protocols, but to enable
their gradual/incremental deployment during initial phases.

Infostations architecture allows use of high speed and generally dispersed access
points. The access points/stations afford transfer of high volume of data at cost of
connectivity. They can be especially useful in VANET environment where vehicles
are moving at fast speeds and connection time to access points is very limited
[19, 20]. This architecture cannot solve the low penetration problem since the
infostations will generally be widely dispersed. Further, these must also be fully
networked with Internet, which will be expensive to install and maintain.

A number of researches have incorporated cellular networks in VANET
[6, 7, 21, 22]. Cellular networks are mostly used as a backbone—a replacement
to roadside infrastructure. Cellular networks, though pervasive, offer lower data
rates as compared to Wi-Fi (roadside infrastructure). Although with the advent
of 3G/4G technologies data rates close to broadband can be achieved, these
technologies are not uniformly available throughout cellular coverage areas and
many users are still dependent on other heterogeneous technologies (WAP, GPRS,
EDGE, HSDPA, etc—[23]). Further, cellular data plans subscriptions are expensive;
an unconstrained plan with a 5GB/month limit costs approximately $700/year.
5GB/month means per day a user on average can send/receive 50 emails (20
with attachments), download a song and a game/app, view 40 web pages, posts
10 social media posts with photos, and watch a streaming video of 40 min [24].
Although unlimited data plans and those that cost few ten of dollars are also
available, but these have several fine print conditions; such as ‘usage patterns’
(no file sharing, excessive usage, etc), ‘can only be used on smart phones’ (no
tethering), ‘can only access certain service’ (email, predefined websites, etc),

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 491

and ‘must have a qualifying voice plan’. Some service providers are charging
approximately $2/MB or 1¢/KB for web browsing. All major cellular service
providers are now offering and encouraging users (such as offering ‘unlimited
Wi-Fi usage with data plan’) to access data through hotspots (which use Wi-Fi
just like VANET roadside infrastructure instead of 3G/4G). This also highlights
cost/benefit of Wi-Fi over 3G/4G. In addition cellular networks also have few other
disadvantages such as expensive to built/maintain, billing/licensing issues among
different service providers, higher roaming rates, large and variable latency, central
switching/resource management, difficult to scale and occasional blackouts [8, 23,
25–29].

A class of protocols uses the store-and-forward approach for V2V communi-
cations [9, 30]. MDDV [9] is a multi-hop V2V protocol. It uses predictability of
vehicle movement to route the messages. It assumes the vehicles to be equipped
with GPS and digital maps. It uses trajectory and geographical based forwarding.
If end-to-end path does not exist then messages are stored and later forwarded
when a connection is established. VADD [30] is also a multi-hop protocol using
the carry-and-forward paradigm. In this protocol a vehicle carries a message until
it finds another vehicle in communication range, then it forwards the message.
It assumes that the vehicles are equipped with GPS, digital maps and also have
detailed traffic statistics such as vehicle density, vehicle speeds. It bases its decision
of message-forwarding on these statistics. Both the protocols [9, 30] are used to
transfer messages between vehicles in multi hops.

Lochert et al. [31] compare the performance of standalone and networked
stationary supporting units (SSU) in context of low penetration rate. The work
focuses on dissemination of information from a central point in a city scenario. They
show that the networked SSUs (connected via a backbone) improve the performance
dramatically as opposed to the standalone SSUs. V2V communication also plays
an important part in their scenario. Whereas in our case we used very limited
penetration rate so that V2V communication is not possible and our results show
that standalone RSUs do increase the performance.

Our work comes closer to protocols that use vehicles to transfer messages
between roadside units [32–34]. Chuah and Fu [35] present a protocol using
multi-hop V2V communication between roadside units. They present a detailed
mechanism for forwarding of messages at each hop. It makes use of query and
response messages at each hop. Petit et al. [32] present a set of protocols for
data relaying between roadside units using vehicles. The protocols give different
options for transfer of data between a source/sink and a vehicle. It uses solicit and
beacons for selection of appropriate vehicle to carry the data. The work has been
further extended by Mansey et al. [34] giving vehicle-roadside unit data transfer
mechanisms and reliable multi-packet data transfer schemes. The protocol does not
provide details on routing between different roadside units. Ding et al. [33] present
a static node assisted adaptive routing protocol. It is basically a multi hop protocol
that makes use of static nodes at the intersection to store and forward the messages,
thus improving performance over other multi hop V2V communication protocols.

492 B. Aslam et al.

The majority of security solutions for VANET are based on public key infras-
tructures, where in addition to roadside units, every vehicle is also assumed to
have a certificate [36–42]. Many temporary certificates (pseudonyms), instead of
one permanent certificate, are usually employed to ensure privacy [36, 37]. These
pseudonyms are either stored in bulk (in a tamper proof device—TPD—[36]), or
issued by an online authority [37, 38], or generated by the user himself [39, 40].
The centralized certification authority (CA) based solutions present a number of
challenges which may be difficult to address during the initial deployment stages of
VANET. The CAs must be organized in a hierarchical manner for effective manage-
ment and a trust relationship must exist among regional CAs. This means certificate
verification may take longer especially if the trust relationship goes through a long
chain. Further, it also makes revocation difficult since revocation list (RL) must be
distributed to all regions as vehicles are not restricted to remain within their regions.
The RL may grow over time, making its distribution more difficult. Papadimitratos
et al suggested restricting the scope of RL within a region, requiring visiting nodes
from other regions to obtain temporary certificates [43]. In current designs, too
much trust is placed on TPD, which stores all cryptographic materials (permanent
certificate and pseudonyms), performs cryptographic operations (signing/verifying
messages) and processes revocation messages/commands (erase keys/pseudonyms
when revoked) [36]. Since the vehicle (and TPD) cannot be physically guarded as
other electronic security devices (smart cards etc), those requirements will make
the device quite expensive [44]. Further, the pseudonyms, when exhausted, must be
reloaded thus requiring a periodic maintenance.

Our research work differs from above mentioned protocols in many ways.
We do not assume vehicles to be equipped with GPS and digital map, or have
road statistical data, which makes our design more realistic especially in the
initial transition period. Our design does not involve V2V communication, thus
it works well when smart vehicles are sparsely distributed on roads. We do not
assume roadside units to be always connected to infrastructure (i.e., fully networked
or connected to the Internet), which makes the RSU deployment in our design
economical and practical during the transition stage. We present an integrated design
involving vehicles and roadside units with varying degree of capabilities. Besides
being economical, the design is also scalable and can easily be upgraded without any
major modifications in protocol. In addition our design offers security without much
complexity; we do not require smart vehicle to have certificates which simplifies
certificates issuance and revocation.

3 Challenges in VANET Initial Transition Stage

The success of VANET depends on efficient functioning of two major communica-
tion components: V2V and V2I communications. The challenges that will be faced
during the initial deployment phase and, in some cases, later phases as well, are
listed below:

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 493

• Insufficient number of smart vehicles to enable V2V communication or to pro-
vide any useful information (such as accidents reports) [14]. Reduced connection
time among vehicles due to low smart vehicle density [16].

• Disconnected V2V networks during low traffic hours even with high network
penetration [13, 14].

• Lack of elaborate roadside infrastructure—from economical considerations the
installation of roadside units will take a long time and will be incremental. This
will still be the reality in rural areas even after the end of initial deployment
phase.

• Lack of V2V communication between vehicles traveling in opposite direction
either due to large distances between opposing lanes or because of vehicles
reaching the point of contact at different times.

• Very small V2V communication window between vehicles traveling in opposite
direction.

• Difficult and expensive vehicle-based certificate management and operations
(such as initiation, maintenance and revocation of certificates to all vehicles)
during the initial deployment due to non-availability of pervasive connectivity
to certification authorities and the dynamic locations of each vehicle. Further, it
may be economically unattractive for a vehicle owner to pay for issuance and
renewal of his vehicle’s certificates.

• Difficult to obtain secure positioning information due to limited roadside infras-
tructure and smart vehicles.

• Difficult data verification due to the sparse density of smart vehicles for the
process of data correlation. Further, it is not practicable for each vehicle to
conduct its own data verification.

Our proposed design addresses all of the above challenges in a simple, efficient
and economical way. We propose use of roadside units that are very simple and
economical to facilitate VANET communication. We also propose two different
security architectures that require minimal investment from both service providers
and users.

4 Proposed Design

The common characteristic of all VANET applications is either collection or
dissemination of information from/to vehicles in a timely and efficient manner.
V2V and V2I communications complement each other in achieving this flow of
information. For example, we can overcome the issue of low market penetration
of smart vehicles by having more elaborate roadside infrastructure (i.e., passing
information through fully networked roadside units or using infrastructure to
infrastructure—I2I communication), or conversely, high penetration can overcome
lack of roadside infrastructure or I2I communication (i.e., passing information using
V2V communication). As discussed earlier, during the initial stage of VANET, both

494 B. Aslam et al.

V2I (also I2I) and V2V communications will not be very effective. So we need
to address the issues of V2V and V2I connectivity in an efficient and economical
way. Since we cannot influence the market penetration of smart vehicles, the other
solution is to improve V2I and I2I communications; which will, in turn, complement
the lack of V2V communication. One option is to have pervasive fully networked
roadside infrastructure (to improve V2I and I2I communications). Though it may
be possible to have such a network in urban-areas but in rural-areas/along-highways
(where there is not much manmade infrastructure) this option will be quite expensive
and impractical. Another option is to use cellular network as a replacement to
roadside infrastructure. Though cellular networks are pervasive, but in addition to
the technical and economical disadvantages mentioned earlier in Sect. 2, this option
will also introduce heterogeneous technologies (i.e., typical VANET architecture in
urban-areas and cellular based architecture in rural-areas/along-highways); making
the transition to final VANET architecture difficult.

We suggest improving connectivity/communication by using roadside units
(RSUs). In its basic form our proposed RSU is standalone with only store-
and-forward capability, which makes it economical and easy to install/maintain,
especially in rural-areas or along highways. Other types of RSUs include those
that are locally connected to each other or connected to the Internet (those located
close to manmade infrastructure or in urban-areas). Details of RSU design are
given in Sect. 4.1. An overview of RSU’s role in achieving different connectivity
requirements is given below:

• V2V Communication Direct multi-hop V2V communication will not be pos-
sible during initial deployment phases due to low market penetration. V2V
communication among vehicles with spatial displacement will be improved using
store-and-forward capability of RSUs and those with temporal displacement will
be improved if RSUs are networked. Besides broadcast communication, one-to-
one communication among temporally displaced vehicles may also be achieved
with the support from RSUs if vehicles have fixed routes and travel schedules
(as in the case of daily commute).

• V2I Communication Economical and easy installation/maintenance features
of RSUs help in achieving high RSU densities even in rural areas and along
highways; this will help in improving V2I communication.

• I2I Communication V2I communication is of little use if there is no I2I
communication. RSUs that are connected to each other or to the Internet can
easily communicate with each other. Standalone RSUs can use passing-by
vehicles as relays to communicate with each other.

Our design integrates RSUs of varying capabilities thus making architecture
economical, easy to install/maintain, incremental/progressive (basic RSUs can
easily be upgraded to higher capability ones), homogenous (same technology in
urban and rural areas) and upgradable to final VANET architecture.

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 495

4.1 Roadside Unit: RSU

The motivation of our design is to make roadside units light weight, simple/easy to
install and economical. Our proposed design does not require all RSUs to have the
same capabilities. Multiple versions of RSUs enable engineers to have necessary
flexibility in designing a VANET architecture that is suitable to their requirements
and budget.

4.1.1 Multiple Versions

We define several different versions of RSUs with varying capabilities/functions
and network connectivity. In its basic version, an RSU is a standalone unit with
temporary store-and-forward capability. In terms of connectivity, RSUs can be
standalone, locally networked (via wire or wireless such as WiMax—[45–48]),
connected to the Internet via wire or wireless, or just have backend receiver-only
capability in order to receive data from satellite, cellular, commercial radio, etc.
RSUs may have sensors for monitoring local weather, road condition, traffic, etc.
All RSUs are tamper proof, capable of receiving and sending data from/to vehicles
and have some information processing capabilities. Possible versions of RSUs are
listed in Table 1. A possible architecture with standalone, locally connected and
globally connected RSUs is shown in Fig. 1.

Store-and-forward is the basic capability and enables an RSU to transfer mes-
sages between spatially and temporally displaced vehicles. Intelligent information
processing gives RSUs the capability of encryption/decryption, data verification,
provision of time/location stamp, certificate revocation, etc. Sensors are used to
collect local traffic and weather data. This collected data can be used for verification
of data provided by vehicles. Limited local connectivity means an RSU is connected

Table 1 Different version of RSUs with increasing functionality. An RSU with a larger version
number will be more expensive but provide more functionality

Version

Store and
forward-
repeater

Intelligent
with
information
processing

Sensors to
collect local
data–traffic,
met etc

Limited local
connectivity

Backend
receive
only–radio,
satellite

Backend
duplex
connectivity

1.0 Yes No No No No No
1.1 Yes No No Yes No No
1.2 Yes No No Yes Yes No
2.0 Yes Yes No No No No
2.1 Yes Yes No Yes No No
2.2 Yes Yes Yes Yes Yes No
3.0 Yes Yes Yes Yes Yes No
3.1 Yes Yes Yes Yes – Yes

496 B. Aslam et al.

Fig. 1 The proposed architecture consists of RSUs deployed along the roads. RSUs can be
standalone (the three RSUs on top right), locally connected to adjacent RSU (two on the up-left
corner), or connected to Internet infrastructure (three on the bottom). What versions of RSUs to
install depends on overall budget and services we want to provide [49]

to at least one adjacent RSU. “Backend receive only” enables reception of critical
safety information, certification revocation lists, etc. It is an economical way to
receive important non-local messages for dissemination to vehicles in an area,
such as fire, flood, and earthquake emergency warnings. It can also be used for
distribution of certificate revocation lists to RSUs similar to [36]. “Backend duplex
connectivity” means connection to the Internet; such RSU can send and receive data
to/from the Internet. Other RSUs can connect to the Internet through the backend
duplex connected RSUs.

4.1.2 Deployment

Different versions of RSUs help in achieving economical deployment across diverse
areas. In urban areas where Internet connectivity is pervasive, it is economical and
easy to deploy Internet connected RSUs, whereas in rural areas or along highways
where it is difficult/expensive to extend Internet connectivity (though a limited
number of RSUs may be connected to Internet through cellular network), it is

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 497

more economical to deploy standalone or locally networked RSUs. These basic
standalone RSUs will help in getting VANET started and later they may be replaced
with more advanced ones without any system overhaul.

Each RSU will have a distinct identification and an associated digital signa-
ture certificate. The certificate issuing authorities for RSU’s certificates may be
organized on area/region basis. All vehicles in VANET will have certificate-issuing-
authority’s certificate and will be capable of verifying RSUs’ certificates and
messages signed by these certificates. At startup, a VANET can even have Version
1.0 RSUs without any certificates. These RSUs can be used for only store-and-
forward functions and be deployed at non-critical locations.

Each RSU will be aware of local map, its own location and locations of other
RSUs in the area. Additionally, each RSU will also maintain a routing table with
known path to each of the other RSUs in the area. Initially, this information will be
added at the time of installation and later it will be updated periodically via RSU
update messages. For this purpose, each RSU will periodically exchange signed
Hello messages (containing routing table etc) with its neighbors. Routing-table-
update procedures from any existing table-driven routing protocol may be employed
for routing table updates and the details are hence omitted here. Routing between
standalone RSUs relies on the relay by passing-by vehicles and is directly related
to traffic density. If traffic density varies considerably during different times of day
then the routing table may contain multiple entries accordingly (e.g., one each for
morning commutes, one for evening commutes, and one for rest of the day).

4.2 V2V Communication

V2V communication is an important part of VANET; many VANET applications
(such as cooperative driving, and safety warnings) depend on V2V communications.
However, there will be a very small number of smart vehicles during the initial
deployment phase of VANET and V2V communication will hardly exist. In such
case standalone RSUs (with store-and-forward capability) can play an important
role in achieving limited V2V communication. A sending vehicle sends a message
to a nearby RSU, which stores and later forwards it to another passing-by recipient
vehicle. Though this type of communication cannot be used for time-critical
messages but it can still serve as a means to broadcast non-time-critical messages.
If a vehicle has its certificate then it may also sign the message to ensure its
authenticity to a receiver. In this way, a malicious vehicle transferring fake messages
will be held accountable.

If an RSU is networked (locally or with Internet), then the RSU can support V2V
communication between spatially displaced vehicles. This could be useful in quick
dissemination of information within the network or across networks (if the RSU is
connected to the Internet).

498 B. Aslam et al.

4.3 V2I (Vehicle to RSU) Communication

Our proposed design enables service providers to deploy a relatively large number
of RSUs with less investment thus enabling more V2I communications. Each RSU
will advertise its existence and offered services by broadcasting periodical beacons.
The services offered by a particular RSU will depend on its version/capabilities,
e.g., an Internet connected RSU may offer email service whereas a standalone RSU
may only offer store-and-forward service. If an RSU is capable of sensing nearby
vehicles, it can broadcast its beacon only when a vehicle enters its broadcast range—
this conserves power in low traffic conditions. The beacon broadcasting interval
(BI) can be defined by the maximum allowed driving speed (s) and broadcast zone
diameter (Zd), i.e., BIDZd/s.

The beacon will include an RSU’s ID, certificate, location, current time, location
of adjacent RSUs, services offered and critical safety information. Critical safety
information is included in beacon to reduce the information relaying time. The
beacon message will be signed by its issuing RSU. Critical safety information
messages may also be broadcasted independent of the beacons. In this case, critical
safety messages will be given priority over other messages. They will be signed by
sending RSUs and will include location of sending RSUs and current time. Vehicles
may relay these messages to other passing-by vehicles.

4.4 I2I (RSU to RSU) Communication

I2I communication plays a vital role in both V2V and V2I communications. I2I
communication may be considered a part of V2I communication especially when
roadside infrastructure is fully networked. We consider I2I communication sepa-
rately because in the initial deployment stage of VANET RSUs are not necessarily
connected to each other or to the Internet. Data transmission will normally be limited
to adjacent RSUs only. However, there may be situations when a message is needed
to be sent to another RSU that is many hops away, such as sending information
about a malicious vehicle to an RSU that is known to be connected to the Internet,
or relaying an accident report to emergency vehicle that is known to be located near
a particular RSU.

I2I communication, depending on the connectivity of RSUs, can be divided into
two types, i.e., I2I Direct communication and I2I Indirect communication, which
will be introduced next.

4.4.1 I2I (RSU to RSU) Direct Communication

Some RSUs may be locally connected to adjacent ones. This connectivity can
be wired or wireless. Local connectivity is economical as compared to global
connectivity (to the Internet). If two RSUs are connected to each other then direct I2I
communication will be used. For this, existing protocols (such as those defined by

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 499

IEEE P1609 working group) may be used, and the details are hence omitted. There
may be a case where part of networking route is connected and part is disconnected;
the connected part will use direct communication whereas the disconnected part will
use indirect communication introduced in the following.

4.4.2 RSU to RSU Indirect Communication (via Vehicles)

If RSUs are not locally connected, then the RSUs communicate with each other
using passing-by vehicles. A reputation system may be used to solicit vehicles’
cooperation in relaying these messages. The exact details of such a reputation
system are out of the scope and are not discussed in this chapter. The addressing
information will include the destination RSU’s ID and its location. If the message
is not for adjacent RSUs but several hops away, routing information will also be
included. Routing information will include locations and IDs of all intermediate
RSUs along the path to the destination RSU. The message will be signed by its
originator and any confidential information will be encrypted. The certificate of the
originator will also be appended with the message.

The basic idea of opportunistic routing is used in our design. In opportunistic
routing as opposed to deterministic routing, the node that forwards a message is
not predetermined. It is determined on the fly, normally by a subset of nodes that
receive the broadcast [50, 51]. An RSU broadcasts a message to every vehicle in
range. There are two possible options for the selection of relaying vehicle. In the
first option, after receiving the message, each vehicle waits for a random amount of
time and then acknowledges the message. On hearing the acknowledgement sent by
one vehicle all other vehicles will discard the message. Therefore, only one vehicle
that acknowledges first is selected as the message-relay-vehicle.

One possible problem can occur for this option when the relaying vehicle diverts
from the route before delivering the message. In this case the probability of success
can be increased by letting more than one vehicle to relay the message. Another
possible issue is the hidden-node problem (note that the small number of smart
vehicles during the initial stage of VANET deployment will reduce the chances
of having a hidden-node); in this case more than one vehicle will acknowledge
and carry the message. This operation will provide redundancy to the protocol,
but at the same time, it will require duplicate suppression at the destination.
(Mathematical analysis of the number of nodes required to deliver a message with
certain probability of confidence is discussed later).

Acknowledgement messages will be restricted to only one hop. End-to-end
acknowledgement may be included as an optional service. The calculation of
acknowledgement timeout is discussed later.

4.4.2.1 Operation

When an RSU broadcasts a message, each receiving vehicle compares the destina-
tion location with its direction of travel and discards the message if it is for an RSU

500 B. Aslam et al.

on the opposite direction. For a vehicle not equipped with GPS, we have two options
to determine its direction of travel relative to the location of destination RSU. First,
the vehicle can use the location of RSU it has just passed and the location of current
RSU to determine its direction of travel. Second, in the message the sending-RSU
can include the previous-RSU’s ID that a vehicle must have passed, if it is along the
desired direction.

A relaying vehicle passes the message to each intermediate RSU that is listed
in the routing path of the message. When an RSU receives a message, it checks
message integrity and then sends an acknowledgement to its immediate upstream
RSU according to the routing information contained in the message. If the message
has been received before, it is discarded and only the acknowledgement is sent. This
ensures duplicate elimination on a per hop basis.

If the message receiving RSU is not the destination RSU, it rebroadcasts the
message to the next RSU in the routing path. It then waits for an acknowledg-
ment from the next RSU; waiting time is defined by acknowledgement-wait-time
(details in next section). If no acknowledgement is received till the expiration
of acknowledgement-wait-time, it rebroadcasts the message. The process is then
repeated for a fixed number of times. This guards against network overloading since
there may be the cases when a message has been received but acknowledgement
cannot be sent due to lack of upstream vehicular traffic. The acknowledgement
generated by the destination RSU may be sent back to the source RSU as an optional
service. An example flow of message and its acknowledgements is shown in Figs. 2
and 3.

A vehicle may deliver the same message to more than one consecutive RSUs,
for example, in Figs. 2 and 3, vehicle V2 delivers message M1 to RSU2 and

R1 R2 R3 R4

V1, V2

V2

V3

V4

V5

V6

M1

M1

M1

M1

AckR2

AckR3 AckR4

t1

t2

t3

t4

t5

t6

V3

Fig. 2 Flow of a message and its acknowledgement between RSU1 and RSU4 (illustrated also in
Fig. 3). Message M1 is sent from RSU1 to RSU4 via RSU2 and RSU3. ti represents time in order.
Ri represents RSUi. Vi represents vehicle i that carries a message. AckRi is the acknowledgement
message from RSUi to RSUi-1

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 501

Fig. 3 Snapshots of the road conditions when a message is sent from RSU1 to RSU4 via RSU2

and RSU3 (illustrated also in Fig. 2). (a) V1 and V2 receive the message from RSU1. (b) V1 and
V2 deliver the message to RSU2, V1 diverts to its right at road junction, V3 and V4 approach
RSU2. (c) V2 delivers the message to RSU3, V3 receives the message from RSU2, V4 carries
the acknowledgement message from RSU2 for RSU1. (d) V3 delivers the message to RSU4,
V5 approaches RSU3. (e) V6 receives the acknowledgement message from RSU4 for RSU3; V5

carries the acknowledgement message from RSU3 for RSU2. (f) The acknowledgement messages
delivered by V6 and V5 to RSU3 and RSU2 respectively [49]

RSU3. In order to take advantage of this situation, each receiving RSU waits for
acknowledgement from its next RSU on the routing path before re-broadcasting
the message, since the vehicle that has delivered the message may also deliver the
message to the next RSU. But if the traffic density is low, the receiving RSU may
rebroadcast the message before the end of the wait timer (to simplify the logic the
RSU may rebroadcast the message before starting the wait timer).

502 B. Aslam et al.

Acknowledgement Wait Time

Each RSU waits for its acknowledgement before retransmitting. The wait time (Wt)
depends on the distance to the next RSU, the average speed of vehicles and traffic
conditions. It is directly related to distance (L) and inversely related to vehicle speed
(s) and traffic density (d) (upstream),

Wt D 2
L

s
C 1

ds
C " (1)

where " is a constant which caters for processing done at a node before sending the
acknowledgement.

The final wait time will be estimated using Eq. (3). Here ˛ is the smoothing
factor, M is the acknowledgement arrival time and D is the smoothed deviation
(similar to TCP round-trip-time estimation model—[52])

D D ˛DC .1 � ˛/ jWt �Mj (2)

TimeOut D Wt C 4 � D (3)

Number of Relay Vehicles

We cannot be sure that a vehicle which has passed the source RSU and is carrying
the message will always pass the destination RSU without diverting on the way.
Therefore, we want to estimate the number of times a source should relay the
message to have some degree of confidence that the message will reach the
destination.

Suppose between two RSUs, there are one or several road diversions. Among
the traffic flow entering from the source RSU, only p fraction of flow goes to the
destination RSU. N represents the number of vehicles passing the source RSU; the
random variable X represents the number of vehicles that have passed by the source
also pass the destination RSU (Fig. 4). Let’s find out how many vehicles (N) should

Fig. 4 Number of relay
vehicles depends on the
probability of vehicles
passing the destination. N is
the total number of vehicles
passing the source, X is the
random variable representing
the number of vehicles that
have passed source will also
pass the destination

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 503

the source RSU ask to carry the message, in order to let the destination RSU have
at least k vehicles passing through it, with a confidence of probability Pc (such
as 95 %).

Because each vehicle has an independent probability p to go to the destination
RSU, the random variable X follows Binomial distribution. If we denote f (n; N, p) as
the probability of exactly n vehicles going through the destination, then according
to Binomial distribution, we can derive:

f .nIN; p/ D

N
n

�
pn.1 � p/N�n (4)

The question we asked above means that the probability of having less than k
vehicles passing through the destination RSU must be no more than 1�Pc. Thus
the following inequality formula must be satisfied:

f .0IN; p/C f .1IN; p/C � � � C f .k � 1IN; p/ � 1 � Pc (5)

For k > 1 (which will be the case if we want more than one vehicle to deliver
the message for redundancy or security purposes) formula (5) does not have a
closed-form solution. To derive the value of N, we can test ND 1, ND 2, ND 3, : : : ,
until we find the smallest value of N satisfying the formula.When kD 1, the above
formula means that the value of N must satisfy:

.1� p/N � 1 � Pc (6)

or

N � log .1 � Pc/

log .1 � p/
(7)

Formula (7) gives the minimum number of vehicles that required to carry a
message in order for at least one vehicle passing the destination with certain
confidence level. Figure 5 shows the number of vehicles required for different values
of p.

Protocol Simplification Based on GPS Data

The large scale use of GPS technology has made GPS devices economical; it is
likely that in the near future all modern vehicles will be equipped GPS devices,
which provide valuable data such as up-to-date location, direction and speed. In
addition, when a GPS device is used for navigation, it can provide destination and
trajectory information. The additional data can be used to make the communication
protocol simpler and more efficient.

An RSU can query a passing-by vehicle for destination and trajectory infor-
mation. Based on this information, the RSU can decide whether or not to choose
the vehicle for forwarding messages to other RSUs. This will reduce the number

504 B. Aslam et al.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability (p)

N
um

be
r o

f V
eh

ic
le

 (N
) .

Fig. 5 Number of relay vehicles (N) required to deliver a message to the destination (by at least
one vehicle) with a 95 % probability of confidence (Pc) for different probabilities (p) that a vehicle
passing the source will also pass the destination. For example, if pD 0.5 and PcD 0.95, we get
ND 5 which means that in order to have 95 % confidence that a message sent by the source reaches
the destination, we need to relay the message through at least five vehicles

of vehicles used to relay any given message. One possible implication of this is
privacy; the owner of a vehicle may not want to disclose the vehicle’s destination
or trajectory information to RSUs. This can be easily resolved as follows: When an
RSU offers a message to a vehicle, it also includes the destination information of
the message. The vehicle can then reply either “YES” if it can carry the message or
“NO” if it cannot carry the message based on its driving trajectory. The vehicle may
also choose to reply “Do not Know” if it does not want to disclose any information
about its destination; in this case, the original protocol can be used.

In this modified protocol, an RSU will relay a message to the minimum number
of required vehicles; sometimes just one vehicle will be enough. However, this
makes the protocol more prone to message dropping attacks (a malicious vehicle
accepts a message for relaying but does not deliver it to the destination). Possible
solutions include the use of end-to-end acknowledgement or an increasing of
redundancy by using more than the minimum required vehicles for message relay.

5 Security Support by the Proposed Design

Security is one of the most important requirements of any VANET architecture.
Security must be integrated in design from the start. In this section we discuss
the security support in our proposed design. We present two different security
architectures and other advanced security features such as data verification and

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 505

secure positioning. The proposed security architectures are specially suited to
VANET initial deployment stage.

5.1 Security Architecture

Most currently proposed security architectures assume that all participants of
VANET (vehicles as well as roadside units) have certificates [36–42]. The certifi-
cates are usually issued by certification authorities that are organized hierarchically
on regional basis. Since vehicles are not restricted to any one area and it is not
unusual for vehicles to move across regional boundaries, we need elaborated trust
relationships among these certification authorities. Further, to ensure privacy, a
large number of temporary certificates (or called pseudonyms) are usually used.
Protection of these large numbers of valid certificates requires expensive tamper-
proof devices (TPDs). Issuance, renewal and revocation of these certificates rely
on pervasive roadside infrastructure that will not be available during the initial
deployment stages of VANET. In addition, it may be unattractive for an ordinary
user to maintain/pay for these certificates (and tamper-proof device) during initial
stages when not many services will be available.

Facing these challenges, we propose a security architecture that is suitable for
VANET during its initial deployment stages and will be easily transformed to final
security architecture when VANET matures.

5.1.1 Internet-Like Public-Key Infrastructure

Current Internet web service relies on a well-established client-server security
model and public-key infrastructure, where only servers have certificates and use the
Transport Layer Security (TLS) Protocol [53]. The first architecture we propose will
directly use the similar infrastructure. In this design, only RSUs have certificates
while smart vehicles do not.

Such security design has tremendous advantages. First, we can directly use the
mature and secure Internet public-key based protocols in VANET. Second, because
RSUs are stationary and used mainly for local areas, certificates for RSUs can
be issued very flexibly at local town, or city/county, or state level. Certificates
for vehicles, on the other hand, have to be at the national level since vehicles
can appear in any place in a country. This feature makes certificate management
in our design scalable and economical. For example, certificates can be managed
by the department of transportation of a town or city. The renewal of certificates
may be accomplished via a security vehicle driving along the road and issuing
renewal certificates to each RSU passing by (similar to automated meters used
by electricity company such as Progress Energy—Progress, [54]). In later stages
of VANET deployment, vehicles may also be issued with certificates, thereby
improving security and services.

506 B. Aslam et al.

5.2 Multi-Confidence Level Data Verification

The information given by a vehicle to another vehicle or to an RSU can be false.
Lack of V2V and V2I communication will make data verification by vehicles
themselves very difficult and time consuming. To solve this security issue, we
propose a multi-confidence level data verification scheme by moving the burden
of data verification from vehicles to RSUs.

An RSU will collect the information from various sources, analyze the infor-
mation, assign a certain degree of confidence to the information and then relay the
information to vehicles and adjacent RSUs. The degree of confidence can improve
if the same information is reported from different initiators (like majority voting).
Care is necessary to avoid counting the same message more than once. For example,
if a vehicle reports an event to two adjacent RSUs, and later the first RSU also relays
the same message indirectly (through another vehicle) to the second RSU, then the
second RSU has two messages but it should not increase the level of confidence on
the information.

By using the confidence levels, the inherent delay in traditional data correlation
approaches can be resolved. An RSU will not wait to receive the same information
from a minimum number of vehicles in order to trust it and then broadcast it. Instead,
it will relay the urgent information on the first possible opportunity with its current
level of confidence. Later, if the confidence level improves, it can always relay the
information again with an updated confidence level.

Depending on the source, each piece of information can be assigned with a
certain degree of confidence. The sources in decreasing levels of confidence are
introduced next.

5.2.1 Level 1

Sensors installed in RSUs will generate the information that has the highest
degree of confidence. The collected information can be weather conditions, road
conditions, average vehicle speed, traffic congestion, traffic density, etc. There
should be some mechanisms to guard against tampering of sensors.

RSUs will report important data to adjacent or affected RSUs. This data can
either be sent directly if a direct link exists, or be sent indirectly through vehicles.
The sending RSU will add its degree of confidence to the data before signing the
message. Since RSUs are tamper proof and a transporting vehicle cannot modify
the message signed by RSUs, the message has a high degree of confidence. The
only possible attack in this case is message dropping by vehicles, or RSUs being
compromised.

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 507

5.2.2 Level 2

Information reported by a vehicle equipped with a certificate has the next level of
confidence (we do not require each vehicle to have a certificate). The messages will
contain original source of information, i.e., whether the information is received from
another vehicle or has been observed directly by the vehicle. In case the information
is received from another vehicle with a certificate, the original received signed
message will be relayed. If the message was received from another vehicle without
a signature, the information (including the ID of the initiator vehicle) will be signed
by the sending one. In this case, the confidence level of information will be the same
as that of the initiator.

5.2.3 Level 3

Information reported by vehicles without certificates will have the lowest degree of
confidence. This information can easily be spoofed by an attacker. However, we can
use other ways to ensure the trustworthiness of such data, such as correlation of the
information with that received from other sources, or correlation of the information
with the reported time-location stamp (discussed in next subsection).

5.3 Time-Location Based Secure Positioning

Secure positioning or position verification can be defined as finding/verifying the
position of a vehicle with a high degree of confidence. A malicious vehicle may lie
about its position for several reasons, e.g., the vehicle might wish to inject false
information, avoid detection or avoid liability of its malicious behavior. Secure
positioning is also an important aid in data verification, since the relation between
information and location of a vehicle can be used to establish the confidence of the
information. It also helps in guarding against Sybil and Spoofing attacks [55].

We present a light weight mechanism to tie the position of a vehicle to a particular
location at a given time based on RSUs. This theme requires that a vehicle has its
certificate. When a vehicle passes by an RSU, it can send a signed time-location
stamp request message to the RSU. The RSU, after verifying the signature, issues
the time-location stamp. The stamp includes the vehicle’s ID, RSU’s ID, RSU’s
location and current time. RSUs can maintain accurate time by GPS or by the NIST
time signal broadcasts [56]. The vehicle can carry this signed time-location stamp
and later presents it as a proof of its presence at a particular time and location.

If a vehicle does not have its certificate, the above theme can still work by
letting an RSU provide the time-location stamp to a passing-by vehicle. In this way,
vehicles can still use their obtained stamps as a proof for their past trajectories or
locations, but it is not guaranteed to be secure since a stamp is not tied to a particular
vehicle anymore without vehicle’s digital certificate. Nevertheless, in this case the

508 B. Aslam et al.

theme can still provide a certain level of secure positioning service for those non-
critical VANET applications.

6 Threats and Their Defenses

A secure design should be capable of thwarting different kinds of attacks launched
by malicious nodes. A number of such threats and the safeguards against these
threats that are offered by our proposed design are discussed next.

False Information A malicious vehicle may try to pass false information to other
vehicles or RSUs. A vehicle with a certificate will sign the message and thus will
be liable to the information it generates. If a vehicle does not have a certificate, then
it can easily generate false messages without worrying about the liability. However,
in this case the damage will be limited since the confidence level attached to such
messages will be the lowest.

Further, in our system design, RSUs always have certificates and will sign
every message they send out. Thus messages sent from RSUs will not have false
information (RSUs are tamper proof). Further, the data verification system defined
in the design (discussed in Sect. 5.2) may be used to identify false information
initiated from vehicles. The multi-confidence level design enables us to pass time-
critical information without compromising on data verification.

Message Dropping A malicious vehicle relaying a message may choose to drop
the message. It is very difficult to tell whether message dropping is due to malicious
attacks, or due to message delivery failure (e.g., when a message delivery vehicle
diverts before passing the destination vehicle or RSU). There are two options to
address this problem. One is to enable end-to-end message acknowledgement and
the other is to relay the message using more vehicles.

We can extend the analysis in Sect. 4.4.2.3 to determine how many vehicles an
RSU should use to deliver a message. Suppose psd is the probability that a vehicle
passing the source will also pass the destination; pm is the probability that a vehicle
passing the destination is malicious and hence drops the message. The effective
probability p that a vehicle passing the source will pass the destination and deliver
the message will be given by

p D psd .1� pm/ (8)

Putting the value of p in Eq. (7), we can compute the minimum number of
vehicles to relay a message with a certain confidence. Figure 6 shows the effect
on the minimum number of vehicles required to transmit a message when vehicles
passing the destination have a probability of pmD 0.2 to be malicious.

Message Modification In such attacks, a malicious vehicle modifies a relaying
message. Since all RSUs have certificates and will sign each message, any modi-
fication by a relaying vehicle will be detected by the receiving RSU based on the

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 509

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f v
eh

ic
le

s
(N

) .

Probablity (p)

Pc = 95%

Pm = 0.0
Pm = 0.2

Fig. 6 Number of Relay Vehicles (N) required to deliver the message at the destination with
a 95 % probability of confidence (Pc) for different probabilities (p) that a vehicle passing the
source will also pass the destination and probability pmD 0.2 that a vehicle passing destination is
malicious and drops the message

signed digital signature. Therefore, in our proposed system design, we do not need
to worry about message modification attacks.

Spoofing/Impersonation The design does not require each smart vehicle to have
certificates, so it is easy for a malicious vehicle to spoof a message. However, as
the spoofed message will not have any signature, it will therefore have a very low
associated confidence level thus minimizing its potential damage. Spoofing may also
be detected if the malicious vehicle has a certificate and the message is not signed.

Privacy Violation/Movement Tracking During normal operation, an informa-
tion reporting vehicle is not required to reveal its identity, destination or trajectory.
Further, our design does not require vehicles to use permanent certificates, thus
supporting privacy. A vehicle decides by itself whether to report its time-location
stamp to an RSU. In order to track a vehicle, an attacker needs to travel along
the vehicle to eavesdrop on the vehicle’s time-location request or report messages,
which makes such attacks difficult and unattractive to conduct.

Message Replay The major portion of data traffic will be messaging between
RSUs and vehicles. Messages sent from RSUs include time-location stamps. Thus,
it will not be possible to replay the same message later in time or at a different
location. Therefore, our proposed design is secure against message replay attack.

Routing Attacks The protocol mainly relies on the source to decide the routing
of a message. Messages transmitted by an RSU include all the routing information
and is signed by the RSU to preserve its integrity. Hence, the protocol is secure
against different routing attacks. Further, when a new RSU joins the network, it
broadcasts its location and identity by signed messages, which are difficult to spoof.
The updating of routing tables can even be done manually through special messages
from central authority (e.g., sent from passing-by authority vehicles, like—Progress,

510 B. Aslam et al.

[54]), which is manageable since RSUs are not added very frequently. Therefore, our
proposed system design is secure against routing attacks.

False Position Reporting A malicious vehicle may falsify its location to avoid
liability or to launch an attack. The use of a time-location based secure positioning
system introduced earlier can thwart this attack. The position reported by a vehicle
without a time-location stamp has a very low degree of confidence. A vehicle not
located close to any RSU can report its current position by using its latest time-
location stamp, which limits the false position reporting bounds.

Sybil Attacks A vehicle may try to present itself at two or more different
locations at any one time, which is called “Sybil attack” [55]. For example, a vehicle
can generate a fake congestion message by reporting a large number of vehicles at
a location. The time-location based secure positioning guards against this type of
attacks. Each time-location stamp has a vehicle’s identification; a vehicle, therefore,
cannot acquire different time-location stamps from RSUs to launch a successful
Sybil attack. Although this type of attack may be possible if vehicles do not have
their own certificates, such attack messages will have a low confidence level, and
hence, the damage from such attacks is minimal.

Compromised RSUs RSUs are the core and backbone for our design. Thus we
specify that RSUs should use temper-proof hardware, which makes them hard to be
physically tempered and compromised by attackers. Because RSUs are stationary
and always sign with their certificates any messages sent from them, if one RSU
is logically compromised by an attacker, it is easily accountable and traceable for
all abnormal messages it generates or forwards out. For this reason, a compromised
RSU can be quickly detected, located, and removed.

7 Simulations

Simulations were carried out to check the effectiveness of our proposed system.
The simulator does not incorporate the details of lower level protocol layers without
the implementation of physical and MAC layers. All simulated vehicles and RSUs
have the same transmission and reception ranges. A message transfer between a
source and a destination is assumed to be successful if both entities are within the
communication range of each other.

7.1 Simulation Scenario I

This set of simulations were carried out to find the minimum number of vehicles
required to successfully transfer a message from a source RSU to a destination
RSU with a given probability of confidence. A region of 25,000� 6250 m with
road network as shown in Fig. 4 was simulated. When a vehicle traveling towards
the destination RSU passes the source RSU, the source RSU transmits the message
to the vehicle. The message is then carried by the vehicle for possible delivery to

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 511

the destination RSU. At each road junction, the vehicle decides to either maintain
its direction of travel or divert according to a predefined probability. If the vehicle
diverts and hence fails to deliver the message to the destination RSU, the source
RSU retransmits the message. This procedure is repeated until the message is
successfully received by the destination RSU. In each simulation run, the source
RSU sends 1000 messages and the number of retransmissions for each message
is recorded. The simulation is repeated 100,000 times and the average number
of messages received successfully after a particular number of retransmissions is
recorded.

Figure 7a shows the number of messages successfully received (Y-axis) using
a particular number of retransmissions (X-axis) for pD 0.2 and pD 0.6 (p is the
probability that a vehicle passing the source will also pass the destination). It shows
that, for pD 0.6 case, more than 90 % of messages can be successfully received by
receiver within four retransmissions. From a different perspective, Fig. 7b shows the
number of received messages at the destination after less than or equal to each given
number of retransmissions. Figure 7b can be used to find the minimum number
of vehicles required to successfully transmit a message with a certain probability
of confidence. Figure 7c shows the number of vehicles required for confidence
PcD 95 % for each probability p. The simulation results shown in Fig. 7c are
identical to the analytical results presented in Fig. 5.

7.2 Simulation Scenario II

During the initial stages of VANET deployment, V2V communication will not
be very effective. In addition, due to limited road infrastructure, the V2I commu-
nication will also be very limited. This will be a major setback to all VANET
applications, such as transfer of a safety message from a point of incident to vehicles
entering the area, or information about road blockage for possible diversion.

We have considered two cases and compared the number of vehicles and time
required to transfer a message from a source of information (which can be a
vehicle passing the scene of incident, or an RSU) to a destination (which can be
an emergency response vehicle or an RSU). In the first case, we have a limited
roadside infrastructure and messages are transferred between the source and the
destination via vehicles only. In the second case, we have intermediate standalone
RSUs between the source and the destination, which help in relaying the message.
In this case the source is also a standalone RSU. Simulations will help us ascertain
the effectiveness of our proposed system in relaying messages using vehicles with
or without the intermediate standalone RSUs.

We simulate a region of 25,000� 6250 m with a road network as shown in
Fig. 3. The number of smart vehicles on the simulation field (a total road length
of 35,000 m), at any one time, is kept to five. This small number of vehicles is
used to check the effectiveness of our proposed system during the initial deployment
stages of VANET. V2V communication is ignored due to this small number of smart

512 B. Aslam et al.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Retransmissions (Vehicles) by Source RSSU

 to Transmit a Message

N
um

be
r o

f M
es

sa
ge

s

p = 0.6
p = 0.2

a

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Maximum Number of Retransmissions (Vehicles) by Source RSSU
to Transmit A Message

N
um

be
r o

f R
ec

ei
ve

d
M

es
sa

ge
s

at
 D

es
tin

at
io

n
R

S
S

U

p = 0.9
p = 0.7
p = 0.5
p = 0.3
p = 0.1

b

Fig. 7 (a) For the probability pD 0.2 and pD 0.6 (that a vehicle passing the source will also
pass the destination), the number of messages successfully received at the destination RSU after a
given number of retransmissions by the source RSU. (b) For different values of probability p, the
number of received messages at the destination after less than or equal to each given number
of retransmissions. (c) Number of Relay Vehicles (N) required to deliver the message to the
destination with a 95 % confidence probability (Pc) and different values of probability (p) [49]

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 513

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability (p)

N
um

be
r o

f V
eh

ic
le

 (N
) .

c

Fig. 7 (continued)

vehicles. At each junction, a vehicle can divert from its current direction of travel
with a probability of diversion Pd.

In both cases, the source RSU retransmits the message until it is received by
the destination. In the second case, a vehicle carrying a message relays it to any
intermediate RSU that it encounters. The number of retries (vehicles used to carry
the information from the source) and the total time taken for the information to
reach the destination is recorded for each message. A total of 1000 messages are
transmitted in each simulation. The number of messages received at the destination
after less than or equal to each given number of retries for PdD 0.5 are shown in
Fig. 8a. The results indicate that the use of multiple (standalone intermediate) RSUs
decreases the number of retries considerably.

Figure 8b shows the number of relay vehicles used to transmit the message to the
destination with a 95 % of confidence probability. The probability of diversion is
varied from 0.1 to 0.9. The results show that for the first case (without intermediate
RSUs) the number of vehicles reaches its minimum value when PdD 0.5. This is
due to the road layout: at the first road junction a small value of Pd is helpful, but at
the second road junction a large value of Pd is more advantageous. The number of
vehicles required for the scenario with multiple RSUs almost remains constant. This
happens because the vehicles traveling on other roads also help in the successful
delivery of messages. The same pattern of results is obtained in the transmission
delay of messages as shown in Fig. 8c. The results indicate a high performance gain
when multiple (standalone intermediate) RSUs are used, and the transmission delay
will be much more stable than the case when only two RSUs are used. This is true

514 B. Aslam et al.

0

100

200

300

400

500

600

700

800

900

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

N
um

be
r o

f r
ec

ei
ve

d
m

es
sa

ge
s

at
 d

es
tin

at
io

n
R

S
U

Maximum number of retransmissions (vehicles) by source RSU
to transmit a message

Pd = 0.5

Two-RSU

Multi-RSU

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r o

f v
eh

ic
le

s

Probability Pd

Pc = 0.95

Two RSU

Multi-RSU

a

b

Fig. 8 (a) For probability of diversion PdD 0.5 (that a vehicle passing road junction will divert
from its direction of travel), the number of received messages at the destination after less than
or equal to each given number of retransmissions by the source RSU. (b) Number of Relay
Vehicles used by the source RSU to deliver the message at the destination with a 95 % probability
of confidence (Pc) for different probabilities (Pd). (c) Message transmission delay for different
probabilities (Pd) [49]

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 515

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

 tr
an

sm
is

si
on

 d
el

ay
 .

Probability Pd

Two RSU

Multi-RSU

c

Fig. 8 (continued)

for both the message transmission delays and the number of relay vehicles required
for successful message transmission.

8 Discussions

The proposed system effectively meets the challenges highlighted in Sect. 3. Details
are given below:

• The proposed system provides an immediate solution to the problem existing
during VANET initial deployment stage before a critical mass is achieved.

• The proposed system maintains VANET function in scenarios where V2V
communication is not possible due to road layout or traffic conditions.

• The proposed system is progressive. RSUs of varying degrees of functionality
can be integrated and later upgraded without the need to an overhaul of existing
systems.

• The proposed system is an economical solution.
• The proposed system exhibits good scalability. More areas can easily be included

in an existing VANET network by simply adding more RSUs. In addition,
initially isolated regions can be later interconnected by RSU to RSU links.

• The minimum number of RSUs required for the proposed system to work is very
small as compared to conventional solutions.

516 B. Aslam et al.

• The proposed system does not require an elaborate certification system to ensure
security. The presented security architecture provide the necessary security with
minimal requirements of infrastructure.

• The proposed system provides data verification and secure positioning services
with the help of RSUs.

There are some limitations in the proposed design. First, because communication
relies on RSUs to relay, it may be slow for vehicles to receive time-critical
messages compared with V2V (or V2I with I2I) communication. However, in the
VANET initial transition period, V2V and also I2I communication might not be
possible due to the low density of smart vehicles on the roads and a lack of fully
networked roadside units. Second, the VANET communication relies on the RSU
infrastructure. It is possible that in some rural areas there are no RSU devices
installed. Third, RSU to RSU indirect communication relies on passing-by vehicles.
Thus the communication may be slow and can be interrupted frequently when there
are few smart vehicles around.

9 Conclusions

There are numerous proposed applications of VANET but most of them are not
practical until a critical mass of fully networked roadside units and smart vehicles is
achieved. It will be very difficult to achieve this critical mass in the initial years of
VANET deployment. This difficulty will further slow down the market penetration.
In this chapter, we have presented an economical and practicable solution to address
this issue, which incorporates and relies on a very limited numbers of roadside
units with very basic functionalities. Our solution is economical, scalable and
upgradeable. We show that the solution is practical with the help from a small
number of smart vehicles. The future work includes use of real traffic data for
simulations and experiments. We plan to carry out real traffic monitoring to obtain
traffic statistics and data on high-end vehicles (these vehicles possibly will be the
first in installing wireless devices) to study possible market penetration. We will
obtain such data either from the department of transportation, or through our manual
observation of real road traffic.

References

1. Lee, C.-H., Huang, C.-M., Yang, C.-C., Wang, T.-H.: Co-SVC-MDC-based cooperative video
streaming over vehicular networks. Comput. J. 55(6), 756–768 (2012)

2. Agarwal, A., Starobinski, D., Little, T.D.C.: Exploiting downstream mobility to achieve fast
upstream message propagation in vehicular ad hoc networks. INFOCOM/MOVE (2007)

3. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. SIGCOMM’04 (2004)
4. Fall, K.: A delay-tolerant network architecture for challenged internets. SIGCOMM’03 (2003)

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 517

5. UMass DiselNet. [online] Available at http://prisms.cs.umass.edu/dome/umassdieselnet
(2011). Accessed 25 Oct 2011

6. Bechler, M., Franz, W.J., Wolf, L.: Mobile internet access in FleetNet. 13th Fachtagung
Kommunikation in verteilten Systemen (2003)

7. Santa, J., Moreo, R.T., Skarmeta, A.F.G.: A novel vehicle communication paradigm based on
cellular networks for improving the safety in roads. Int. J. Intell. Inf. Database Syst. 2(2),
240–257 (2008)

8. Ko, Y.F., Sim, M.L., Nekovee, M.: Wi-Fi based broadband wireless access for users on the
road. BT Technol. J. 24, 122–129 (2006)

9. Wu, H., Fujimoto, R.M., Guensler, R., Hunter, M.: MDDV: mobility centric data dissemination
algorithm for vehicular networks. VANET’04 (2004)

10. Xu, Q., Mak, T., Sengupta, R.: Vehicle-to-vehicle safety messaging in DSRC. VANET’04
(2004)

11. Korkmaz, G., Ekici, E., Ozguner, F., Ozguner, U.: Urban multi-hop broadcast protocol for
inter-vehicle communication systems. VANET’04 (2004)

12. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad-hoc networks. Technical
Report CS-2000-06. Duke University (2000)

13. Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V., Tonguz, O.: Routing in sparse vehicular
ad hoc wireless networks. IEEE J. Sel. Areas Commun. 25(8), 1538–1556 (2007)

14. Wisitpongphan, N., Tonguz, O., Bai, F., Mudalige, P., Sadekar, V.: On the routing problem in
disconnected vehicular networks. INFOCOM’07 (2007b)

15. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Efficient routing in intermittently connected
mobile networks: the multi-copy case. IEEE Trans. Netw. 16(1), 77–90 (2007)

16. Mabiala, M., Busson, A., Vèque, V.: Inside VANET: hybrid network dimensioning and routing
protocol comparison. VTC’07-Spring (2007)

17. Little, T., Agarwal, A.: An information propagation scheme for VANETs. ITSS’05 (2005)
18. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan,

H., Madden, S.: CarTel: a distributed mobile sensor computing system. SenSys’06 (2006)
19. Goodman, D., Borras, J., Mandayam, N., Yates, R.: INFOSTATIONS: a new system model for

data and messaging services. VTC’97 (1997)
20. Small, T., Hass, Z.J.: The shared wireless infostation model – a new ad hoc networking

paradigm. MobiHoc’03 (2003)
21. Wyatt-Millington, R.A., Sheriff, R., Hu, Y.F., Conforto, P., Losquadro, G.: The SUITED

project: a multi-segment system for broadband access to Internet services. IEEE Broadband
Satellite Conference (2000)

22. iCartel: MIT CarTel. [online] Available at http://icartel.net/icartel-docs/. Accessed 24 Oct
2011

23. Gutiérrez, J.: Selected readings on telecommunications and networking. Idea Group Inc (IGI)
(2008)

24. Data Calculator. [online] Available at http://www.att.com/standalone/data-calculator. Acces-
sed 24 Oct 2011

25. Luo, J., Hubaux, J.-P.: A survey of research in inter-vehicle communications. In: Securing
Current and Future Automotive IT Applications, pp. 111–122, Springer (2005)

26. Levacher, K., McGee, F., Murphy, F.: A comparison between 3G and 802.11 wireless technolo-
gies for Inter-Vehicular Communications purposes, [online] Available at http://killian.levacher.
googlepages.com/Acomparisonbetween3Gand802.11wireles.pdf (2007). Accessed 24 Oct
2011

27. Qureshi, A., Guttag, J.: Horde: separating network striping policy from mechanism. In: 3rd
International Conference on Mobile Systems, Applications, and Services (2005)

28. Chakravorty, R., Clark, A., Pratt, I.: GPRSWeb: optimizing the web for GPRS Links. In:
ACM/USENIX MobiSys, San Francisco (2003)

29. Chan, M.C., Ramjee, R.: TCP/IP performance over 3G wireless links with rate and delay
variation. In: ACM Mobicom (2002)

http://prisms.cs.umass.edu/dome/umassdieselnet
http://icartel.net/icartel-docs/
http://www.att.com/standalone/data-calculator
http://killian.levacher.googlepages.com/Acomparisonbetween3Gand802.11wireles.pdf
http://killian.levacher.googlepages.com/Acomparisonbetween3Gand802.11wireles.pdf

518 B. Aslam et al.

30. Zhao, J., Cao, G.: VADD: vehicle-assisted data delivery in vehicular ad hoc networks.
INFOCOM’06 (2006)

31. Lochert, C.S, Caliskan, B.M., Mauve, M.: The feasibility of information dissemination in
vehicular ad-hoc networks. WONS’07 (2007)

32. Petit, B., Ammar, M., Fujimoto, R.: Protocols for roadside-to-roadside data relaying over
vehicular networks. WCNC’06 (2006)

33. Ding, Y., Wang, C., Xiao, L.: A static-node assisted adaptive routing protocol in vehicular
networks. VANET’07 (2007)

34. Mansy, A., Ammar, M., Zengura, E.: Reliable roadside-to-roadside data transfer using
vehicular traffic. MASS’07 (2007)

35. Chuah, M.C., Fu, F.: Performance study of robust data transfer protocol for VANETs’. LNCS,
vol. 4325, pp. 377–339. Springer, Berlin (2006)

36. Raya, M., Papadimitratos, P., Hubaux, J.-P.: Securing vehicular communications. IEEE Wirel.
Commun. Mag. 13, 8–15 (2006)

37. Papadimitratos, P., Buttyan, L., Hubaux, J-P., Kargl, F., Kung, A., Raya, M.: Architecture for
secure and private vehicular communications. International Conference on ITS Telecommuni-
cations (2007)

38. IEEE Std 1609.2: IEEE trial-use standard for wireless access in vehicular environments –
security services for applications and management messages, pp. 0_1–105 (2006)

39. Armknecht, F., Festag, A., Westhoff, D., Zang, K.: Cross-layer privacy enhancement and non-
repudiation in vehicular communication, WMAN’07 (2007)

40. Fan, C.I., Hsu, R.H., Tseng, C.H.: Pairing-based message authentication scheme with privacy
protection in vehicular ad hoc network. International Conference on Mobile Technology,
Applications and Systems (2008)

41. Crescenzo, G.D., Zhang, T., Pietrowicz, S.: Anonymity notions for public-key infrastructures
in mobile vehicular networks. MASS’07 (2007)

42. Choi, J., Jung, S.: A security framework with strong non-repudiation and privacy in VANETs’.
CCNC’09 (2009)

43. Papadimitratos, P., Mezzour, G., Hubaux, J.P.: Certificate revocation list distribution in
vehicular communication systems. VANET’08 (2008)

44. Stampoulis, A., Chai, Z.: Survey of security in vehicular networks, [online] project CPSC 534,
Available from http://zoo.cs.yale.edu/~ams257/projects/wireless-survey.pdf (2007). Accessed
25 Oct 2011

45. IEEE Std 802.16: IEEE Standard for Local and metropolitan area networks Part 16: Air
Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2009 (Revision of IEEE
Std 802.16-2004), pp. C1–2004 (2009a), 29 May 2009

46. IEEE Std 802.16j: IEEE Standard for Local and metropolitan area networks Part 16: Air
Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification.
IEEE Std 802.16j-2009 (Amendment to IEEE Std 802.16-2009), pp.c1–290 (2009b), 12 June
2009

47. IEEE Std 802.16h: IEEE Standard for Local and metropolitan area networks Part 16: Air
Interface for Broadband Wireless Access Systems Amendment 2: Improved Coexistence
Mechanisms for License-Exempt Operation. IEEE Std 802.16h-2010 (Amendment to IEEE
Std 802.16-2009), pp. 1–223 (2010), 30 July 2010

48. IEEE Std 802.16m: IEEE Standard for Local and metropolitan area networks Part 16: Air
Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface.
IEEE Std 802.16m-2011(Amendment to IEEE Std 802.16-2009), pp. 1–1112 (2011), 5 May
2011

49. Aslam, B., Wang, P., Zou, C.C.: An economical, deployable and secure vehicular ad hoc
network. In: Proceedings of IEEE Military Communications Conference (MILCOM’08), San
Diego, 17–19 November 2008

50. Biswas S., Morris, R.: ExOR: opportunistic multi-hop routing for wireless networks. SIG-
COMM’05 (2009), August 2005

http://zoo.cs.yale.edu/~ams257/projects/wireless-survey.pdf

An Economical, Deployable and Secure Architecture for the Initial Deployment. . . 519

51. Kim, J., Bohacek, S.: A comparison of opportunistic and deterministic forwarding in mobile
multihop wireless networks. MobiOpp’07 (2007)

52. Jacobson, V.: Congestion avoidance and control. In: Proceedings of the ACM SIGCOM’88
Conference, pp. 314–329, August 1988

53. Dierks, T., Rescorla, E.: RFC 4346: The transport layer security (TLS) protocol version 1.1
(2006)

54. Progress Energy to install new automated meters for residential customers, [Online]
Press Release, Available at https://www.progress-energy.com/company/media-room/news-
archive/press-release.page?title=Progress+Energy+to+install+new+automated+meters+for+
residential+customers+&pubdate=03-30-2005 (2005). Accessed 25 Oct 2011

55. Douceur, J.: The Sybil attack. In: First International Workshop on PeertoPeer Systems (2002)
56. Lombardi, M.A.: National institute of standards and technology (NIST) Special Publication

432’. NIST Time and Frequency Services, Edition 2002 (revised April 2003)

https://www.progress-energy.com/company/media-room/news-archive/press-release.page?title=Progress+Energy+to+install+new+automated+meters+for+residential+customers+&pubdate=03-30-2005
https://www.progress-energy.com/company/media-room/news-archive/press-release.page?title=Progress+Energy+to+install+new+automated+meters+for+residential+customers+&pubdate=03-30-2005
https://www.progress-energy.com/company/media-room/news-archive/press-release.page?title=Progress+Energy+to+install+new+automated+meters+for+residential+customers+&pubdate=03-30-2005

Deception-Based Survivability

Ruchika Mehresh and Shambhu J. Upadhyaya

Abstract Critical systems in current threat landscape demand more than just
fault-tolerance and security; they demand survivability. Survivability is the ability of
a system to continue delivering essential services during attacks, faults or accidents.
This is usually accomplished via a four-layered defense setting that consists of
prevention, detection, recovery and adaption. As evident by the recent incline in
advanced persistent threats, the existing defense systems are in a dire need of
evolution. This new generation of defense systems should be smart, adaptive and
unlike traditional systems, stay ahead of the malicious actors. Many researchers
have started to consider deception as a means to this end. Deception involves
misrepresenting or hiding information in order to manipulate a user’s actions. When
engrafted in the prevention and detection layers, deception can help trace attacker
intent, objective and strategies (AIOS) which aids in the development of targeted
recovery and adaptation procedures. Such procedures, in turn, help a system survive
in hostile environments. Though the adoption of deception-based defense has been
hindered by legal and moral issues in the past but the recent increase in interest in
this field holds great promise. This chapter discusses deception-based survivability,
its benefits and shortcomings. It presents a high-level deployment architecture that
uses deception to ensure system survivability. Other aspects of deception-based
survivability such as performance overhead, continued effectiveness and precision
have also been discussed.

1 Introduction

Cyber-warfare is no longer limited to military domain. Knapp and Boulton reviewed
information warfare literature from 1990 to mid-2005 and described how cyber
warfare has extended to other domains outside military [16]. Mission-critical
systems run crucial applications and hence, become the most likely targets of
security attacks. Therefore, critical systems in both military and industrial domains

R. Mehresh • S.J. Upadhyaya (�)
University at Buffalo, State University of New York, Buffalo, NY 14260, USA
e-mail: ruchika.mehresh@gmail.com; shambhu@buffalo.edu

© Springer International Publishing Switzerland 2016
C.-H. Chang, M. Potkonjak (eds.), Secure System Design and Trustable
Computing, DOI 10.1007/978-3-319-14971-4_17

521

mailto:ruchika.mehresh@gmail.com
mailto:shambhu@buffalo.edu

522 R. Mehresh and S.J. Upadhyaya

need mission assurance. Mission Assurance is an umbrella term that includes
principles to be followed through a mission’s life-cycle to ensure its success. It is
all about proactively identifying and mitigating deficiencies in mission design, its
deployment and its operation to prevent failures.

Baskerville [3] discussed asymmetric warfare and how it applies to information
warfare. Asymmetric warfare theory states that attackers have the advantage of time
and stealth over defenders. In order to counter this imbalance, defense needs to
be “agile and adaptive.” The emergence of advanced persistent threat (APT) has
further added to the challenge of satisfying today’s mission assurance needs. APTs
are usually characterized by extreme stealth, advanced skill-set, vast resources and
hence, a markedly high success rate.

Mission assurance usually stresses on providing fault-tolerance and security—
two contradictory notions. While security requires limited trusted computing base,
fault-tolerance demands replication and redundancy. A three phased-approach,
consisting of prevention, detection and recovery, is usually employed to satisfy these
conflicting requirements. The idea of survivability goes beyond mission assurance.
Ellison et al. [10] describe survivability as “the capability of a system to fulfill
its mission in a timely manner in the presence of attacks, failures and accidents.”
Survivability focuses on the continuity of a mission without relying on the guarantee
that precautionary measures will always succeed. It concentrates on the impact of an
event rather than its cause. Survivability requires four basic layers of protection:

• Prevention or resistance against faults/attacks.
• Detection of faults/attacks.
• Full recovery of the essential services (mission) after the fault/attack.
• Adaptation or evolution to reduce the possibility or effectiveness of future

faults/attacks.

While the first two layers, prevention and detection, already provide strong
defense, recovery is the fallback plan should these layers fail to protect the system.
However, Mehresh et al. discuss how the recovery layer can be attacked and present
a brief survey of many possible attacks on the various recovery schemes [26].
Therefore, recovery being the last phase, needs protection (or a fallback) as well.
Because adaptation/evolution mechanisms are generally activated during or after the
recovery, they are rarely effective if recovery fails. Despite the advances in mission
survivability, the existing solutions by far remain ineffective against APTs.

One of the major challenges of designing a mission survivable system is to ensure
that all the precedented or unprecedented threats can be detected, while conserving
the timeliness property of the mission. Because dealing with unprecedented attacks
(zero-day attacks) requires monitoring the entire traffic, it becomes difficult to
ensure the timeliness property. Hence, surviving unprecedented threats and con-
serving the timeliness property are two conflicting requirements. We believe that
deception is an effective tool in handling this conflict and evening out the asymmetry
in cyber warfare.

Defensive deception is an act of intentional misrepresentation of facts to make an
attacker take actions in defender’s favor [9]. The framework presented in this chapter

Deception-Based Survivability 523

leverages concepts of deception in a hardware-based security setup [6, 25, 44].
It adapts its behavior based on the observations on the system. If suspicious activity
is detected but imminent danger is not perceived, it does not raise alerts or activate
recovery procedures. Instead, it continues to behave normally and observe to better
understand attacker intent, objective and strategies (AIOS). This approach has two
advantages. First, it assists in the designing of targeted recovery procedures which
are lightweight and highly effective. Second, providing incomplete information to
an attacker (by not raising alerts or recovering immediately) prevents any harmful
repercussions. Instead of recovering right away, the system relies on replication
to account for the resulting component unreliability. Replication provides reliable
alternatives to suspected (but unrecovered) system components. Although costly,
redundancy and replication are requirements for the fault-tolerance aspect of
mission survivability. We are merely extending its use to address security.

Deception-based survivability solution is in a way, a game changer. Instead of
relying on a generic mix of traditional solutions, it assists in the design of a more
effective (targeted) recovery in response to an advanced attack. In case of stealth
attacks, it buys the system time to figure out AIOS while the attacker remains
oblivious of any detections. Note that no current or prior survivability solutions
work in this manner. The general rule is to detect anomalies/attacks and raise alerts
that initiate recovery. However, if imminent danger is not perceived, the recovery
can be delayed and unreliability can be covered using replication to buy time to
completely profile an attack and earn all the aforementioned advantages.

The main contribution of this chapter is the design and development of a
deception framework to address the scourge of advanced persistent threats that
are prevalent in today’s high value systems and mission-critical applications. This
framework is developed by studying the various deception schemes in the literature
and then deriving a set of axioms to help with the formal development of this frame-
work. We present a detailed background on deception and APT in Sect. 2. Section 3
models an attack flow based on APT. From this model, formal requirements for
next-generation survivability solutions are derived in Sect. 4. These requirements
serve as a basis for the deception-based survivability solution presented in Sect. 5.
Finally, the chapter ends with a detailed discussion and conclusion in Sect. 6.

2 Background

2.1 Deception

Deception itself in warfare is not new [6, 42]. However, deception has associated
legal and moral issues with its usage in today’s society. Cohen, the author of
deception toolkit [5] discusses moral issues associated with the use of deception
throughout his work [6]. Lakhani discusses the possible legal issues involved in the
use of deception-based honeypots [17].

524 R. Mehresh and S.J. Upadhyaya

Deception aims to influence an adversary’s observables by concealing or tamper-
ing information. Murphy discusses the techniques of deception such as fingerprint
scrubbing, obfuscation, etc. [28]. Her work is based on the principle of holding
back important information from the attacker to render the attack weak. There is
vast literature and taxonomies on the use of deception to secure computer systems
and information in general [6, 36, 37].

The static nature of today’s networks presents a sitting and vulnerable target.
Moreover, patch development time for most exploits is much higher than the
exploit development time, further putting critical systems at a disadvantage. Repik
documents a summary of internal discussions held by Air Force Cyber Command
staff in 2008 [36]. His work makes a strong argument in favor of using deception as
a tool of defense. He discusses why planned actions taken to mislead hackers have
merit as a strategy and should be pursued further.

2.2 Advanced Persistent Threats

Daly describes APTs as sophisticated cyber-attacks by hostile organizations that
aim to gain access, maintain a foothold and modify data at their target systems [8].
The term ‘advanced’ refers to the high-quality skill set involved in designing these
attacks. The term ‘persistent’ is used to indicate the long presence of an attacker
inside the system (for purposes such as spying or stealthy privilege escalations).
APTs are “a new breed of insidious threats that use multiple attack techniques and
vectors and that are conducted by stealth to avoid detection so that hackers can retain
control over target systems unnoticed for long periods of time” [41].

Existing market forces and easy access to high-end technology have considerably
altered the cyber attack landscape. As reported by Washington Post, malicious
sleeper code is known to be left behind in the U.S. critical infrastructure by state-
sponsored attackers [29]. This sleeper code can be activated anytime to alter or
destroy information. Similar stealth methodologies are also employed during multi-
stage delivery of malware discussed in [35] and the botnet’s stealthy command and
control execution model in [15].

We already see a rising trend of stealthy and advanced malware all around [14].
Let us review some major recent incidents of APTs that had a widespread impact:

• Stuxnet: Stuxnet sniffs for a specific configuration and remains inactive if it is
not found [11]. “Stuxnet is the new face of twenty-first century warfare: invisible,
anonymous, and devastating” [13]. Since it came to light in 2010 when it targeted
Iran’s nuclear facilities, many variants of this malware have been discovered.
They are the most serious threats to SCADA systems such as power plants and
gas pipelines [20]. They have the capability to reprogram programmable logic
controllers (PLCs) to work to an attacker’s advantage and maintain stealth.

Deception-Based Survivability 525

• Flame: Flame outperformed Stuxnet in sophistication and capabilities. It installs
itself at endpoints and sniffs information. This information is then transmitted
back to the command and control (C&C) center. Based on the information
received, C&C decides its attack strategies. Flame spreads slowly and stealthily
and hides its traces to ensure that it can get valuable information without raising
red flags. It has the capability to monitor nearly every activity at an endpoint
including conversations utilizing Bluetooth technology. Flame’s operators are
highly skilled, stealthy, focused and adapt their attacks to each target [27].

• Operation Aurora: Aurora targeted more than 35 large-scale organizations
including Yahoo, Symantec, Morgan Stanley, etc. and stole intellectual property.
Aurora’s multi-phased attack started with advanced social engineering and
targeted emails that hosted malicious Javascript code. It mostly exploited zero-
day vulnerabilities in Internet Explorer and established backdoor communication
with its C&C centers via TCP port 443. It used encryption for stealth in order to
avoid traditional detection measures. Since then, many similar advanced attacks
have been reported by organizations such as Sony, Barracuda Networks, RSA
security, etc. [41]. The most important features of Aurora is its complexity,
sophistication and stealth [21]. The installation and working of this malware is
completely hidden from the system user.

• Gh0stNet: Gh0stNet is an intelligence gathering operation that uses a Trojan
horse named Gh0st Rat. Some of its features are key logging, remote terminal
shell, tracking videos remotely, voice monitoring, session management, hiding
traces by clearing up the systems logs, etc. It has been known to compromise at
least 1,295 computers [8].

A report published in 2011 by McAfee surveyed 200 IT executives from critical
infrastructure enterprises in 14 countries [2]. The report documents cyber-security
experts expressing concerns about the surveillance of U.S. critical infrastructure by
other nation-states. The increasing penetration of critical infrastructure by APTs has
been a reason to worry for many nation-states [2, 29].

Stealth is usually the underlying feature in APT. It is essential to the lengthy
process involved in compromising a highly secured system. In essence, stealth
buys attackers time to slowly progress towards their goals by reducing the risk
of detection. For instance, some malware delay their activation so a pattern
recognition-based anti-virus cannot associate them with their source. Another exam-
ple is a compromised system contacting its C&C by embedding information (e.g.,
keystrokes) in the DNS (domain name system) packets [8]. Stealth in malware dis-
tribution is generally achieved via junk insertion, code recording and packing [12].

More often than not, APTs are characterized by resourceful, adaptive and stealthy
initiators. Note that aggressive attackers are easier to spot and hence, routine security
measures are able to take care of them. Their aggressive nature renders their attacks
one-shot which means that they usually get detected and blocked during the initial
attempts. However, stealth attacks are multi-phased. They use deception to hide
from detection while gradually gaining more privileges and information about the
system. Such attacks are extremely dangerous and need innovative defense [35].

526 R. Mehresh and S.J. Upadhyaya

Advanced attackers usually adapt and alter their strategies based on observations.
These changing strategies are executed via C&C architectures. The attacks are
targeted and multi-phased. Generally, the first step is to gather intelligence such as
the anti-viruses running on the system. This information helps exploit weaknesses in
the defense while avoiding detection. Attackers usually establish multiple malware
installations and footholds inside the system. Even if a system recovers from some
malware installations, there is no guarantee that the system is fully-recovered
or attacker-free. Therefore, system administrators need a complete picture of the
situation if they intend to recover a system and avoid a generic solution like secure
reboot. Rebooting can easily disrupt a mission’s continuity and timeline. Frequent
rebooting can even lead to a denial of service (DoS) attack. Additionally, if system
is restored to the same state that was earlier compromised, there are no guarantees
that it will not be compromised again.

An advanced attacker can compromise the deployed security solutions on a host
if he acquires the necessary privileges [24]. Thus, strong security is not achievable
without strong tamper-resistance. As discussed above, detecting and recovering
from a subset of attacker’s footholds in the system is not effective. It can even
lead the adversaries to become aggressive and advance their attack timeline (based
on the game-theoretic principles of risk and reward). They may also try to erase
the attack traces by either deleting important files or corrupting the system state,
thereby foiling the mission. Such behavior works against the mission survivability
requirements. Therefore, any solution designed for mission survivability must be
tamper-resistant and must not divulge any information to an attacker prior to
considering and analyzing all the repercussions.

Stealthy attackers that hide in the system for long usually possess high privileges
and sensitive system information. Therefore, it is best to identify all infiltration
efforts during their early stages. The challenge is to correlate isolated events of
low-severity suspicious activity to understand the AIOS. This is especially true if
these events occur on different systems in a distributed environment. Moreover,
once an infiltration attempt is identified, it is hard to determine the extent of system
compromise. Thus, as inferred above, any action must be taken after considering its
repercussions.

Traditional detection and recovery measures have proven ineffective against
APTs. Thus, researchers recommend a combination of diverse security measures
to counter it [7]. For instance, Tankard recommends monitoring the outgoing
traffic in combination with other traditional security measures (e.g., keeping the
system up-to-date, using firewall, data encryption, security audits, etc.) [41]. Good
security practices and awareness are always recommended [39]. However, multiple
security measures when combined can become heavyweight and harm system’s
performance, delay a mission or simply fail to scale. They are not even guaranteed
to stay effective.

Deception-Based Survivability 527

3 Modeling Advanced Persistent Threats

Based on the discussion in Sect. 2, we present a generic APT-based attack flow
that can be used in the designing of next-generation survivability solutions. It is
an extension of the basic attack flow presented by Repik [36]. The attack flow is
described in Algo 1. Let � be the set of exploitable vulnerabilities for a system with
state s(t), where t is time. For each vulnerability � in �, the amount of resources
required to exploit it is represented by r[�]. Total resources available to an attacker
is Or. Risk associated with exploiting each vulnerability � is �[�]. Maximum risk that
the attacker can afford is O�.

Algorithm 1 Attack pattern for sophisticated attacks
1: while TRUE do
2: while � = NULL AND 8�,�[�]� O� do
3: Gather intelligence
4: Develop exploits
5: Perform network reconnaissance
6: Update vulnerability set �

7: end while
8: if 9�, (r[�]� Or AND �[�]� O�) then
9: Install backdoors; Update Or

10: while s(t)¤ ATTACKDISCOVERED do
11: if s(t)¤ CRUCIALSTAGE then
12: WAIT
13: else if 9�, (r[�]� Or AND �[�]� O�) then
14: Attack and exploit �; Update Or; Assess damage
15: if s(t)=COMPROMISED then
16: Operation successful and Exit
17: end if
18: else
19: Terminate operation
20: end if
21: end while
22: if Contingency plan exists then
23: Execute contingency plan
24: else
25: Terminate operation
26: end if
27: else
28: Terminate operation
29: end if
30: end while

A sophisticated attack usually starts with intelligence gathering and initial
planning. Based on the available resources, an attacker decides whether to exploit a
currently known vulnerability or search for more. Attack occurs in multiple stages
such as reconnaissance, installing backdoors or rootkits, developing exploits, etc.,

528 R. Mehresh and S.J. Upadhyaya

until a crucial stage is reached. An attack during crucial stage of the mission has
the maximum pay-off for the attacker. If discovered, most advanced attacks have
a contingency plan that may involve deleting or destroying system information to
hide traces. Note that most APTs are considered to be state-sponsored attacks due
to the huge resource and skill investment that they require. Therefore, maintaining
stealth becomes an even higher priority for them.

4 Formal Requirements

In light of the threat assessment presented in the previous section, we now list
down requirements for a state-of-the-art deception-based survivability framework
for mission-critical systems.

• Prevention: Prevention is generally the first step towards developing an effective
survivability solution. It not only attempts to prevent the attacks but also
dissuades attackers with limited resources.

• Detection: We identify two main challenges in the detection of APTs. First, the
survivability solution should force or manipulate a stealthy attacker into leaving
a discernible and traceable pattern. Second, detection of such a pattern should
be hidden lest the attacker could get spooked and execute a contingency plan for
which the defender may not be prepared.

For a given system with state s1(t), there is a set �1 of suspicious actions
(for instance, a possible exploit attempt). A user that chooses an action from
this set is malicious with a probability p. This means that he could be benign
with a probability 1-p. Let system states s1(t), s2(t),. . . .,sn(t) (where, n is the
total number of system configurations) have �1, �2,. . . .,�n as their respective sets
of suspicious actions. Some actions are malicious with a higher probability pi

where, 1�i�n. Frequently choosing actions with higher probability pi indicates
the malicious nature of the actor. In a deception-based survivability solution, the
defender can choose states with actions that have higher pi’s, which means that
if a user keeps choosing the actions from the set �, his probability of being
malicious (p1.p2.p3. . . .pn) will cross the threshold quickly. It is like offering
vulnerabilities to unsuspecting users and observing if they exploit them. Thus,
choosing and controlling these states is crucial in determining if a user is
malicious with a higher probability in a shorter time. Note that this sort of
detection is not applied to all users because it is resource-intensive and time-
consuming. Instead, it is used to quickly refine the AIOS of users that are already
the suspects.

• Effective recovery with adaptation: If the attacker has penetrated a system by
exploiting vulnerabilities, recovering the system to the same old state does not get
rid of the vulnerabilities or make the system any more secure. Therefore, the need
is to ensure that during each recovery, vulnerabilities that are being exploited are
patched. It is usually considered a good practice to employ proactive recoveries

Deception-Based Survivability 529

(periodically scheduled) for critical systems. It is much easier to predict the
timing impact of proactive recoveries and hence conserve the timeliness property
of a survivable system. Reactive recoveries, if evoked excessively, can harm
system’s performance and mission’s survivability. If reactive recoveries are
employed, they should have a ceiling for how frequently they can be invoked
and for how long each recovery can run.

Note that no prevention, detection or recovery measures should violate the
timeliness property of a survivable mission.

• Zero-day attacks: Considering that most APTs exploit zero-day attacks, a good
survivability solution must be effective in dealing with them. Several anomaly-
based detection systems have been proposed in order to detect such attacks [4].
However, Liu et al. describe the big challenge “how to make correct proactive
(especially predictive) real-time defense decisions during an earlier stage of the
attack in such a way that much less harm will be caused without consuming a
lot of resources?” [19]. Schemes that attempt to detect zero-day attacks usually
take one of the two approaches: predictive or reactive. Under the predictive
approach, all the suspected policy violations are taken as a sign of intrusion.
This results in a higher rate of false alarms and hence service degradation. Under
the reactive approach, defender takes an action only when he is somewhat sure
of the foul play. Generally, it is difficult to know when to react. If the system
waits until a complete attack profile emerges, it may be too late to react. A
good trade-off is offered using honeypots (a form of deception). The defender
redirects all the suspicious traffic through honeypots which are responsible
for blacklisting/whitelisting the traffic flows [31, 32]. Researchers have already
proposed ways to employ honeynet in a production-based environment [17, 18].

• Conserving timeliness property: Timeliness property describes the capability
of a mission to stick to its originally planned schedule. This being said, a
schedule can account for periodic recoveries and some unexpected delays due
to miscellaneous factors. In order to conserve this property, it is essential that all
indeterministic time-consuming operations be moved out of the mission’s critical
path.

• Non-verifiable deception: A good deception should be non-verifiable [30].
Deception is difficult to create but easier to verify. For instance, when an attacker
attempts to delete a file, even though a deceptive interface can give a positive
confirmation of the deletion, the attacker can always verify if the file still exits.

For a state s(t), an action � is expected to have an effect !. Generally,
deception (like in honeypots) involves confirming that � has been performed but
the effect ! is never reflected in the system. If the attacker has a feedback loop to
verify !, a deception can be easily identified. Therefore, either the feedback loop
needs to be controlled so as to give the impression that ! exists, or the feedback
loop should be blocked for all regular users. An open and honest feedback loop
can help attacker to figure out ways around deception by trial-and-error.

530 R. Mehresh and S.J. Upadhyaya

5 Deception-Based Survivability Framework

5.1 Basics

Preventive deception is the first step in mission survivability. Some traditional
preventive measures are firewalls, encryption techniques, access controls, etc. These
measures have proved to be very successful in deterring weak adversaries. However,
strong and determined adversaries are always known to find their way around
these. McGill suggests that the appearance of a system being an easy or a hard
target determines the probability of attacks on it [22]. Based on similar literature,
we categorize deception-based prevention methodologies under following four
headings:

• Hiding: Hiding is the most basic form of deception. One could use schemes such
as fingerprint scrubbing, protocol scrubbing, etc. to hide information from an
attacker [38, 43]. Such schemes can also be used to feed false information to the
adversaries. Yuill et al. have developed a model for understanding, comparing,
and developing methods of deceptive hiding [44].

• Distraction: McGill demonstrates that given two targets of equal value, an
attacker is more likely to attack the target with lesser protection [22]. However,
Sandler and Harvey analytically prove that this tendency continues only until
a threshold. If more vulnerabilities are introduced to a system, an attacker’s
preference for attacking that system does not increase beyond a certain threshold.
System observables that attackers rely on can be manipulated to feed misinfor-
mation or hide information from attackers. Thus, strategies can be devised to
affect an attacker’s perception of the system. There are studies that model threat
scenarios based on target’s susceptibility and attacker’s tendencies [23]. Such
models can be used to assess the attractiveness of a target to an attacker if its
apparent susceptibility is manipulated via its observables.

Axiom 1: Adding more vulnerabilities to one of the two equal-value systems
increases the likeliness (until a threshold) of attack on the one with more vulner-
abilities.

• Dissuasion: Dissuasion describes the steps taken by a defender to influence
an attacker’s behavior in mission’s favor. It involves manipulating system
observables to make it look like it has stronger security than it actually does.
This is to discourage attackers from attacking it. As shown in Algo. 1, if
the estimated resources for exploiting the system go over Or or the estimated
risk goes over O�, the attacker will be dissuaded from attacking the system.
Dissuasion is generally implemented as deterrence or devaluation. Deterrence
involves a false display of greater strength. Devaluation, on the other hand,
involves manipulating observables to lessen the perceived value that comes out
of compromising a system. McGill develops a probabilistic framework around

Deception-Based Survivability 531

the use of defensive dissuasion as a defensive measure [22]. Deception-based
techniques are supplementary to conventional prevention techniques rather than
a replacement.

Axiom 2: False display of strength dissuades an attacker from attacking the system.

Axiom 3: Increasing or decreasing the perceived value of a system affects the
attacker’s preference of attacking it favorably or adversely.

Honeypot is a tool of deception. It generally comes across as a system capable of a
low-resource compromise with high perceived gains. Honeypot not only distracts an
attacker from attacking the main system, but also heavily logs the attacker activities.
Studying these logs can help the defender to gauge an attacker’s capability and come
up with a good strategy to ward off any future attacks. Spitzner describes honeypot
as “a security deception resource whose value lies in being probed, attacked,
or compromised” [40]. Honeypots are generally classified under two categories:
Physical and Virtual honeypots. Physical honeypots are when real computer systems
are used to create each honeypot. Virtual honeypots use software to emulate the
workings of a real honeypot and the connecting network. They are cheaper to create
and maintain and hence, are used in the production environments more often. Virtual
honeypots are further divided into high-interaction and low-interaction honeypots.
Qasswawi et al. provide a good overview of the deception-based techniques used in
virtual honeypots [34].

High-interaction honeypots provide an emulation for a real operating system.
Thus, the attacker can interact with the operating system and completely com-
promise the system. Some examples are User Mode Linux (UML), VMware,
Argos, etc. Low-interaction honeypots simulate limited network services and vul-
nerabilities. They cannot be completely exploited. Examples are LaBrea, Honeyd,
Nepenthes, etc. [33, 34].

Cohen’s Deception Toolkit (DTK) laid the groundwork for low-interaction
honeypots [5]. It led to the development of advanced products such as Honeyd [40].
Honeyd simulates services at TCP/IP level in order to deceive tools like Nmap and
Xprobe. Though it does not emulate the entire operating system, its observables are
modified to give the impression that it does.

Honeypot Farm is a cluster comprised of honeypots of the same or different kinds.
Hybrid honeypot farms usually consist of a mixture of low and high-interaction
honeypots.

5.2 Design

Building up from the concepts discussed above, we extend the model presented by
Lakhani [17] to design our deception-based survivability framework.

532 R. Mehresh and S.J. Upadhyaya

Intrusion Detec�on System Smart-box Script Repository

Fig. 1 Smart-box

Proxy servers

A�acker

Legi�mate user Devalued main server

Distrac�on Servers

Honeypot farmSmart-box

Logging system + AnalyzerTraffic redirec�on
module

Intrusion detec�on system System running the
mission cri�cal applica�on

Firewall

Fig. 2 Deception framework for mission survivability

Smart-Box is a component that we use in the presented survivability framework
to help figure out the best deception for suspected traffic flows. Conceptually, a
smart-box works as shown in Fig. 1. It takes information from the intrusion detection
system about the suspected traffic flow and figures out the AIOS based on it [19].
It, then, maps the AIOS to deception scripts that are stored in a script repository.
These scripts are nothing but configuration files to choose and setup an appropriate
honeypot in the honeyport farm.

Figure 2 shows the framework of a mission survivable (production) system that
runs behind several layers of protection including firewalls, deception, etc. The first
layer consists of proxy servers that use Axioms 1, 2, and 3 to attract attackers
to choose vulnerable servers. Based on their choice of proxy servers, the traffic
flows are marked suspicious or otherwise. The suspicious traffic is re-routed to
the honeypot farm via a smart-box. Other traffic streams continue to go through
the default proxy server, the firewall and the intrusion detection system. Intrusion
detection system is another layer of defense which re-routes any suspicious traffic
to the honeypot farm for further analysis.

Intrusion detection systems usually sieve out suspicious traffic based on two
criteria: either the intrusion detection system identifies an attack pattern in the traffic
flow or the traffic originates to/from dark address space. Dark address space is the

Deception-Based Survivability 533

set of Internet’s routable addresses reserved for future network expansion. These
two criteria worked just fine until cloud computing came along. Now attackers
can launch their attacks from behind the cloud using valid IP addresses and evade
detection. Therefore, in addition to the existing traffic-filtering methodologies, we
introduce a layer of distraction proxy servers. This layer contains a main server
which is widely publicized to legitimate clients. This main server is extremely
secure and its observed security is further enhanced (deception/deterrence). Thus,
amateur attackers are dissuaded from attacking it. Other proxy servers expose a
specific set of non-essential, vulnerable services. For instance, one server can keep
the ssh port open to accept the traffic, while the other can mislead the attacker into
thinking that it is running a vulnerable version of Windows operating system. These
servers not only distract the malicious traffic away from the main server but, also
inform the smart-box about attackers’ intentions (based on their preference of proxy
servers and vulnerabilities that they try to exploit). Note that similar deception layers
can be deployed throughout the system to capture and redirect malicious traffic.

Smart-box helps to identify the AIOS of a traffic flow. Additionally, it helps
optimize resource allocation in hybrid honeypot farms. Honeypots should be
assigned to each traffic flow based on its AIOS assessment. This is because low-
interaction honeypots are lightweight but can be easily verified by an advanced
attacker. Use of high-interaction honeypots is more fool-proof but consumes more
computing and memory resources. Thus, smart-box helps in optimal assignment of
the honeypots so more resources can be assigned to tackle advanced attacks.

Logging tools and analyzer in the honeypot farm work together to create a
complete attack profile. Based on this attack profile, the traffic flow is either
whitelisted and forwarded to the production server or blacklisted. If blacklisted,
either automated patches, if available, are executed in the next recovery cycle, or
a system administrator is alerted. This is the step where the attack profile helps
the defender to develop an effective patch for the next recovery cycle, while the
unsuspected malicious actor stays busy playing with the honeypot. Thus, deception
buys defender the time to design an effective recovery. If imminent danger is not
perceived, the defender can choose to wait through multiple recovery cycles until he
is confident that the patch will be effective.

Since a system is “as secure as its weakest point”, it is important to ensure that
this survivability framework not only provides good security but is tamper-resistant
at all times. Since all components in this design such as proxy servers, traffic
redirection module, intrusion detection systems, etc. are connected to the same
network, they are susceptible to intrusions. Therefore, these components need to be
made tamper-resistant. Techniques, such as lightweight cyclic monitoring [24], can
be employed to ensure that security-monitoring modules on all these components
stay tamper-resistant. Integrity status of each component should be surreptitiously
detected and reported to the production system for verification. This can be
achieved by using the scheme described by Mehresh et al. in [26]. The detection
is surreptitious so the attacker is not spooked and the production system is aware of
which component to trust. This arrangement results in a cyclic integrity-check. All
components make sure that production system works tamper-free at all times, while
the production server takes care of the integrity-check of all components.

534 R. Mehresh and S.J. Upadhyaya

Anagnostakis et al. proposed shadow honeypots as an effective solution to deploy
honeypots in a production environment [1]. Shadow honeypots use a combination
of anomaly-based intrusion detection systems and shadow honeypots. A variety
of anomaly detectors monitor traffic in the network and the suspicious traffic is
forwarded to a shadow honeypot. Shadow honeypot is an identical copy of the
production server but instrumented to detect potential attacks. Suspicious traffic is
verified by the shadow and handled accordingly. We see many challenges in this
approach. First, predictive anomaly detectors (higher sensitivity) will have more
false positives and will direct more misclassified traffic to the shadow honeypot,
creating unnecessary delays and overhead. Reactive anomaly detectors (lower
sensitivity) will take more time to create a complete profile and may miss a lot
of malicious traffic before identifying a problem in the flow. Moreover, identifying
zero-day attacks ask for a higher sensitivity intrusion detection. Additionally, each
suspicious traffic flow may need separate copies of shadow honeypot (else an
attacker can verify deception by initiating two parallel malicious flows). This further
increases the overhead.

6 Discussion and Conclusion

The most important factor to consider while designing a deception-based sur-
vivability framework is the fact that nothing can remain a secret if it is widely
deployed. Hence, an effective deception must assume that an attacker knows about
its existence with some probability. That’s why all deceptions should be non-
verifiable. For instance, in this case, when an attacker sees several proxy servers
with vulnerabilities, he can send traffic flows to all the servers. The flow with the
best response time is the one that does not go through the honeypot farm. That’s
why, any feedback loop for the users must also be controlled with deception. In
this case, adding small random delays to the unsuspected traffic flows to ensure a
uniform response time throughout. Discussing deception in feedback loop is beyond
the scope of this chapter.

Another major challenge is the smart-box design. A smart-box performs two
major functions: assess the nature of the traffic flow and, map the AIOS to a
honeypot. Implementing both these functions is a major challenge and will benefit
excessively from the use of machine learning algorithms. Deceptions in honeypots
can also be made customizable based on the parameters provided by the smart-box.
Other challenges such as designing proxy servers, re-routing, choosing the intrusion
detection system, etc. are system and deception-specific.

This chapter identifies deception as the tool of defense against APT but also
recognizes the moral, legal and other challenges that come along with it. The
deception-based survivability framework presented is based on an underlying attack
model that characterizes most APTs. Stealth and multi-phased approach are the
two distinguishing features of APT. The presented framework deals with zero-
day attacks while still conserving the timeliness property of a mission. It uses

Deception-Based Survivability 535

concepts of deception to introduce a layer of proxy servers that helps system to
identify the suspicious traffic flows. Similar other deception-based layers can be
deployed throughout the system to capture suspicious traffic flows. This traffic is
then rerouted to a smart-box that identifies the AIOS associated with it. AIOS helps
in the selection of an appropriate honeypot to which this traffic is further forwarded.
Honeypots provide an important functionality of uncovering the stealthy patterns
in these traffic flows with a higher probability in a shorter time. This way, the
framework helps in identifying stealth attacks at an early stage.

A major advantage of this framework is the strong recovery that it provides. It
buys defender more time to analyze the suspicious traffic flow without spooking
the adversary. The analyzer and log modules help system administrators to design
effective and targeted recovery procedures based on the good-quality attack profiles.
This information can also help system administrators decide if they can wait through
some recovery cycles to collect more information and improve the patches or deploy
something right away (if system is in immediate danger). Hence, this framework
ensures system survivability equipped with a strong recovery phase.

References

1. Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E., Keromytis, A.D.:
Detecting targeted attacks using shadow honeypots. In: Proceedings of the 14th Conference on
USENIX Security Symposium, p. 9 (2005)

2. Bake, S., Filipiak, N., Timli, K.: In the dark: crucial industries confront cyberattacks. McAfee
second annual critical infrastructure protection report (2011)

3. Baskerville, R.: Information warfare action plans for e-business. In: The 3rd European
Conference on Information Warfare and Security, pp. 15–20 (2004)

4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.
(CSUR) 41, 15:1–15:58 (2009)

5. Cohen, F.: Deception Toolkit (2001)
6. Cohen, F., Lambert, D., Preston, C., Berry, N., Stewart, C., Thomas, E.: A framework for

deception. IFIP-TC11, Computers and Security (2001)
7. Cole, E.: Advanced Persistent Threat: Understanding the Danger and How to Protect your

Organization. Syngress, Waltham (2012)
8. Daly, M.K.: The advanced persistent threat. In: Large Installation System Administration

Conference (LISA) (2009)
9. Daniel, D.C., Herbig, K.L.: Strategic Military Deception. Pergamon Press, New York (1982)

10. Ellison, R.J., Fisher, D.A., Linger, R.C., Lipson, H.F., Longstaff, T.A., Mead, N.R.: Survivabil-
ity: protecting your critical systems. IEEE Internet Comput. 3, 55–63 (1999)

11. Falliere, N., Murchu, L.O., Chien, E.: W32. stuxnet dossier - White paper. Symantec
Corporation, Security Response (2011)

12. Goyal, R., Sharma, S., Bevinakoppa, S., Watters, P.: Obfuscation of stuxnet and flame malware.
Latest Trends in Applied Informatics and Computing (2012)

13. Gross, M.J.: A Declaration of Cyber-War (2011)
14. Kapoor, A., Mathur, R.: Predicting the future of stealth attacks. Virus Bulletin Conference

(2011)
15. Kartaltepe, E.J., Morales, J.A., Xu, S., Sandhu, R.: Social network-based botnet command-

and-control: emerging threats and countermeasures. Proceedings of the 8th International
Conference on Applied Cryptography and Network Security (ACNS), pp. 511–528 (2010)

536 R. Mehresh and S.J. Upadhyaya

16. Knappa, K.J., Boulton., W.R.: Cyber-Warfare Threatens Corporations: Expansion into
Commercial Environments. Inf. Syst. Manag. 23, 76–87 (2006)

17. Lakhani, A.D.: Deception techniques using Honeypots. MSc Thesis, University of London,
ISG, Royal Holloway. (2003)

18. Levine, J.G., Grizzard, J.B., Owen, H.L.: Using honeynets to protect large enterprise networks.
IEEE Secur. Priv. 2, 73–75 (2004)

19. Liu, P., Zang, W., Yu, M.: Incentive-based modeling and inference of attacker intent, objectives,
and strategies. ACM Transactions on Information and System Security (TISSEC), vol. 8 (2005)

20. Masood, R., Um-e-Ghazia, U., Anwar, Z.: SWAM: stuxnet worm analysis in metasploit.
Frontiers of Information Technology (FIT), pp. 142–147 (2011)

21. McAfee Labs and McAfee Foundstone Professional Services: Protecting your critical assets,
lessons learned from Operation Aurora. Technical Report (2010)

22. McGill, W.L.: Defensive dissuasion in security risk management. In: IEEE International
Conference on Systems, Man and Cybernetics (SMC) (2009)

23. McGill, W.L., Ayyub, B.M., Kaminskiy, M.: Risk analysis for critical asset protection. Risk
Anal. 27(5), 1265–1281 (2007)

24. Mehresh, R., Rao, J.J., Upadhyaya, S.J., Natarajan, S., Kwiat, K.: Tamper-resistant monitoring
for securing multi-core environments. In: International Conference on Security and Manage-
ment (SAM) (2011)

25. Mehresh, R., Upadhyaya, S.J.: A deception framework for survivability against next generation
cyber attacks. In: International Conference on Security and Management (SAM) (2012)

26. Mehresh, R., Upadhyaya, S.J., Kwiat, K.: Secure proactive recovery - a hardware based mission
assurance scheme. J. Netw. Forensics 3, 32–48 (2011)

27. Munro, K.: Deconstructing flame: the limitations of traditional defences. Computer Fraud and
Security, pp. 8–11 (2012)

28. Murphy, B.S.: Deceiving adversary network scanning efforts using host-based deception.
Technical Report, Air Force Institute of Technology, Wright-Patterson Air Force Base (2009)

29. Nakashima, E., Pomfret, J.: China proves to be an aggressive foe in cyberspace (2009)
30. Neagoe, V., Bishop, M.: Inconsistency in deception for defense. In: Proceedings of the 2006

workshop on New security paradigms (2007)
31. Patel, R.R., Thaker, C.S.: Zero-day attack signatures detection using honeypot. International

Conference on Computer Communication and Networks (CSI- COMNET) (2011)
32. Portokalidis, G., Bos, H.: SweetBait: zero-hour worm detection and containment using low-

and high-interaction honeypots. Sci. Direct 51, 1256–1274 (2007)
33. Provos, N., Holz, T.: Virtual Honeypots: From Botnet Tracking to Intrusion Detection.

Addison-Wesley, Boston (2008)
34. Qassrawi, M.T., Zhang, H.: Deception methodology in virtual honeypots. In: Second Interna-

tional Conference on Networks Security Wireless Communications and Trusted Computing
(NSWCTC), vol. 2, pp. 462–467, 24–25 (2010)

35. Ramilli, M., Bishop, M.: Multi-stage delivery of malware. In: Proceedings of the 5th
International Conference on Malicious and Unwanted Software (MALWARE) (2010)

36. Repik, K.A.: Defeating adversary network intelligence efforts with active cyber defense
techniques. Master’s Thesis, Graduate School of Engineering and Management, Air Force
Institute of Technology (2008)

37. Rowe, N.C., Rothstein, H.S.: Two taxononmies of deception for attacks on information
systems. J. Inf. Warfare 3, 27–39 (2004)

38. Smart, M., Malan, G.R., Jahanian, F.: Defeating TCP/IP stack fingerprinting. In: Proceedings
of the 9th Conference on USENIX Security Symposium, vol. 9, pp. 17–17 (2000)

39. Smith, A., Toppel, N.: Case study: using security awareness to combat the advanced persistent
threat. In: Thirteenth Colloquium for Information Systems Security Education (2009)

40. Spitzner, L.: Honeynet Project, Know Your Enemy: Defining Virtual Honey-nets (2008)

Deception-Based Survivability 537

41. Tankard, C.: Advanced persistent threats and how to monitor and deter them. Netw. Secur.
2011, 16–19 (2011)

42. Tzu, S.: The Art of War (Translated by James Clavell). Dell Publishing, New York (1983)
43. Watson, D., Smart, M., Malan, G.R., Jahanian, F.: Protocol scrubbing: network security through

transparent flow modification. IEEE/ACM Trans. Networking 12, 261–273 (2004)
44. Yuill, J., Denning, D., Feer, F.: Using deception to hide things from hackers: processes,

principles, and techniques. J. Inf. Warfare 5, 26–40 (2006)

	Preface
	Contents
	Part I Hardware Security Primitives
	Disorder-Based Security Hardware: An Overview
	1 General Context and Chapter Overview
	2 Why Investigate Alternative Approaches?
	2.1 Vulnerabilities of Classical Secret Keys
	2.2 Practicality and Cost Aspects

	3 Physical Disorder and Its Useful Features
	Omnipresence
	Hard to Clone
	Hard to Fully Characterize
	Hard to Simulate on a Turing Machine
	How to Utilize Physical Disorder?

	4 Examples of Disorder-Based Security Methods
	4.1 Certificates of Authenticity from Paper Irregularities
	4.1.1 Security Discussion
	4.1.2 Potential Advantages and Drawbacks
	4.1.3 Variants

	4.2 Secret Cryptographic Keys from SRAM Power-Up States
	4.2.1 Security Discussion
	4.2.2 Potential Advantages and Drawbacks
	4.2.3 Variants

	4.3 Remote Identification by Light Scattering in Random Media
	4.3.1 Security Discussion
	4.3.2 Potential Advantages and Drawbacks
	4.3.3 Variants

	5 Advantages of Disorder-Based Security Hardware
	Better Protection or Even Avoidance of Keys
	Replacing Standard Mathematical Assumptions by Other Hypotheses
	Security Hardware Without NVM or Even Without ICs

	6 General Overview and Historic Perspective
	Origins of the Field
	First Presence at Scientific Conferences
	DNA-Based Steganography
	Physical Unclonable Functions (PUFs)
	Certificates of Authenticity (COAs)
	Status Quo
	Future Research

	7 Summary and Outlook
	References

	Design and Implementation of High-Quality Physical Unclonable Functions for Hardware-Oriented Cryptography
	1 Introduction
	2 Physical Unclonable Function (PUF) Fundamentals
	2.1 Definitions
	2.2 Metrics of Evaluation: Randomness, Stability and Uniqueness
	2.2.1 Correct IDs
	2.2.2 Randomness
	2.2.3 Stability
	2.2.4 Uniqueness

	2.3 PUF for Identification and Authentication
	2.3.1 Hardware Identification
	2.3.2 Device Authentication
	2.3.3 Area of Applications

	3 Quality Enhancement of PUF
	3.1 PUF Response Analysis and Fuzzy Identification
	3.2 Application of ECC
	3.3 Temperature-Aware PUF
	3.4 Reliability Enhancement of Memory-Based PUFs
	3.5 Hybrid PUF Architectures

	4 Practical Examples of PUF Implementation
	4.1 PUF-Based Crypto-Processor for the RFID Systems
	4.2 FPGA IP-Protection with PUF
	4.3 PUF-Based True Random Number Generator (TRNG)
	4.3.1 RO-PUF Based TRNG
	4.3.2 SRAM-PUF Based TRNG
	4.3.3 Arbiter PUF Based TRNG

	5 Emerging Types of PUFs
	5.1 Reconfigurable PUF
	5.2 SIMPL/Public PUFs

	6 Conclusion
	References

	Digital Bimodal Functions and Digital Physical Unclonable Functions: Architecture and Applications
	1 Introduction
	2 Related Work
	2.1 Physical Unclonable Functions
	2.2 Public PUFs
	2.2.1 XOR Network Delay PUF
	2.2.2 Differential PUF
	2.2.3 Device Aging and Matched PUFs

	3 Digital Bimodal Functions
	3.1 A Motivational Example
	3.2 FPGA-Based Implementation
	3.3 fcompact and fcomplex Comparisons

	4 Digital PUF
	4.1 Stable Challenges and Outputs
	4.2 Architecture
	4.3 Operations
	4.3.1 FPGA Configuration
	4.3.2 DBF Generation

	5 Security Properties
	5.1 Output Randomness
	5.2 Avalanche Effect
	5.3 Input-Based Correlation
	5.4 Output-Based Correlation
	5.5 Comparisons

	6 Protocols
	6.1 Public Key Communication
	6.1.1 Time Gap
	6.1.2 Performance Comparisons

	6.2 Remote Trust

	7 Conclusion
	References

	Residue Number Systems in Cryptography: Design, Challenges, Robustness
	1 History
	2 Cryptographic Algorithms of Interest
	2.1 The RSA Cryptosystem
	2.1.1 RSA-CRT Algorithm

	2.2 Elliptic Curve Cryptography
	2.2.1 Elliptic Curves Over GF(p)
	2.2.2 Point Multiplication

	3 Residue Arithmetic
	3.1 Division, Magnitude Comparison, Sign Detection
	3.2 Residue-to-Decimal Conversion
	3.2.1 The Chinese Remainder Theorem
	3.2.2 Mixed-Radix Conversion

	3.3 Base Extension
	3.3.1 Szabo-Tanaka Method
	3.3.2 Redundant Modulus Method
	3.3.3 Kawamura et al. Base Extension

	3.4 Polynomial Residue Number System

	4 RNS Modular Multiplication
	4.1 RNS Montgomery Multiplication by Bajard et al.
	4.2 RNS Montgomery Multiplication by Gandino et al.
	4.3 Modular Reduction by the RNS Moduli
	4.4 Conversions to/from RNS

	5 Dual-Field Residue Arithmetic Architectures
	5.1 Embedding PRNS in GF(2n) Montgomery Multiplication
	5.2 Versatile Architectures
	5.2.1 Residue-to-Binary Conversion

	5.3 Dual-Field Addition/Subtraction
	5.4 Dual-Field Modular Reduction
	5.5 Multiply-Accumulate Unit
	5.5.1 Binary-to-Residue Conversion
	5.5.2 Montgomery Multiplication
	5.5.3 Residue-to-Binary Conversion
	5.5.4 Delay

	6 Application to Elliptic Curve Cryptography
	6.1 Modular Adders and Multipliers
	6.2 Conversion from Base M' to Base M
	6.3 Conversion from Base M to Base M'
	6.4 Hardware Architecture for RNS Montgomery Multiplication

	7 Robustness Issues
	7.1 Hardware-Fault Tolerance in MRC-Based RNS Montgomery Multipliers
	7.2 Hardware-Fault Tolerance in CRT-Based RNS Montgomery Multipliers
	7.3 Performance

	8 Summary and Research Outlook
	References

	Fault Attacks on AES and Their Countermeasures
	1 Introduction: Faults and Cryptosystems
	1.1 Fault Analysis of the RSA Cipher

	2 Preliminaries
	2.1 AES Algorithm
	2.2 Round Transformations of AES
	2.3 Key Scheduling Algorithm

	3 Introduction to Differential Fault Analysis
	3.1 General Principle of DFA of Block Ciphers
	3.1.1 Fault Models
	3.1.2 The Effect of Faults on a Block Cipher

	4 DFA and Associated Fault Models
	4.1 Fault Models for DFA of AES
	4.1.1 Faults are Injected in AddRoundKey in Round 0
	4.1.2 Faults are Injected Between the Output of Seventh and the Input of Eighth MixColumns
	4.1.3 Faults are Injected Between the Output of Eighth and the Input of Ninth MixColumns

	4.2 Relationships Between the Discussed Fault Models
	4.2.1 Faults are Injected in AddRoundKey in Round 0
	4.2.2 Faults are Injected Between the Output of Seventh and the Input of Eighth MixColumns
	4.2.3 Faults are Injected Between the Output of Eighth and the Input of Ninth MixColumns

	5 Differential Fault Attacks on AES: Early Efforts
	5.1 Differential Properties of AES S-Box
	5.2 DFA of AES Using Bit Faults
	5.3 Bit Level DFA of Last Round of AES
	5.4 Bit Level DFA of First Round of AES

	6 State-of-the-Art DFAs on AES
	6.1 Byte Level DFA of Penultimate Round of AES
	6.1.1 DFA Using Two Faults
	6.1.2 DFA Using Only One Fault
	6.1.3 DFA with Reduced Time Complexity

	7 Multiple Byte DFA of AES-128
	7.1 DFA According to Fault Model DM0
	7.1.1 Equivalence of Faults in the Same Diagonal

	7.2 DFA According to Fault Model DM1
	7.3 DFA According to Fault Model DM2

	8 Extension of the DFA to Other Variants of AES
	9 DFA of AES Targeting the Key-Schedule
	10 CED for AES
	10.1 Hardware Redundancy
	10.2 Time Redundancy
	10.3 Information Redundancy
	10.3.1 Parity-1
	10.3.2 Parity-16
	10.3.3 Parity-32
	10.3.4 Parity Code vs Residue Code
	10.3.5 Robust Code

	10.4 Hybrid Redundancy
	10.5 Other Techniques

	11 Conclusion
	References

	Part II Hardware Counterfeiting and Integrity Protection
	Circuit Timing Signature (CTS) for Detection of Counterfeit Integrated Circuits
	1 Introduction
	2 Path Delay Analysis on Process Variation and Degradation
	2.1 Path-Delay Degradation Analysis
	2.2 Path Delay and Process Variation

	3 Clock Sweeping Technique for Circuit Timing Signature Generation
	4 CTS for Detecting Recycled ICs
	4.1 Circuit Timing Signature Generation Considering Aging
	4.1.1 Step 1: Path Selection
	4.1.2 Silicon Measurement
	4.1.3 Identification

	4.2 Statistical Data Analysis

	5 CTS for Detecting Cloned, Overproduced, and Remarked ICs
	5.1 IC Enrollment
	5.1.1 Stability Checking
	5.1.2 ID Generation
	5.1.3 ID Optimization

	5.2 IC Identification
	5.3 Overhead Analysis

	6 Experiment Results and Analysis
	6.1 Analysis for Detection of Recycled ICs
	6.1.1 Process and Temperature Variations Analysis

	6.2 Analysis of ID Generation for Detection of Remarked, Overproduced, and Cloned ICs
	6.2.1 Simulation
	6.2.2 FPGA Implementation

	7 Summary
	References

	Hardware Trojan Detection in Analog/RF Integrated Circuits
	1 Introduction
	2 Hardware Trojans in Wireless ICs
	3 Pre-Deployment Hardware Trojan Detection
	3.1 Experimentation Vehicle
	3.2 Hardware Trojans
	3.3 Evaluation of Existing Test and Trojan Detection Methods
	3.4 Statistical Analysis to the Rescue

	4 Post-Deployment Hardware Trojan Detection
	4.1 Proposed Trust Evaluation Architecture
	4.2 Experimentation Vehicle
	4.2.1 Target Circuit
	4.2.2 On-Chip Trust Evaluation Resources
	4.2.3 On-Chip Classifier
	4.2.4 Hardware Trojans

	4.3 Experimental Results
	4.3.1 Dataset Generation
	4.3.2 Observations
	4.3.3 On-Chip Classifier Construction and Training
	4.3.4 On-Chip Trust Evaluating Effectiveness

	5 Conclusion
	References

	Obfuscation-Based Secure SoC Design for Protection Against Piracy and Trojan Attacks
	1 Introduction
	2 Related Work
	3 Obfuscation Methodology
	3.1 STG Modification Approach
	3.1.1 Methodology
	3.1.2 Embedding Authentication Features

	3.2 CDFG Modification Approach
	3.2.1 Methodology
	3.2.2 Embedding Authentication Features

	3.3 Comparison Between the Two Approaches
	3.4 Obfuscation-Based Secure SoC Design Flow

	4 Measure of Obfuscation Level
	4.1 Manual Attacks by Visual Inspection
	4.2 Simulation-Based Attacks
	4.3 Structural Analysis Based Attack
	4.3.1 Structural Analysis Against STG Modification
	4.3.2 Structural Analysis Against CDFG Modification Based Approach

	4.4 Quantitative Comparison

	5 Results
	5.1 Design Flow Automation
	5.2 Simulation Results
	5.2.1 Simulation Setup
	5.2.2 Obfuscation Efficiency and Overheads

	5.3 Effect of Key Length
	5.3.1 Support for Multiple-Length Keys
	5.3.2 Effect of Increasing Key Length

	6 Discussions
	6.1 Using Unreachable States During Initialization
	6.2 Obfuscation for Protection Against Hardware

	7 Conclusions
	References

	Towards Building Trusted Systems: Vulnerabilities, Threats, and Mitigation Techniques
	1 Introduction
	2 Background of Finite State Machine
	3 Trusted FSM and Trusted Logic Implementation
	4 Vulnerabilities in Current Design Flow
	5 Attacks on Untrusted Logic Implementations
	6 A Naïve Countermeasure
	7 A Practical Mitigation Method
	8 Conclusion
	9 Further Reading
	References

	Hardware IP Watermarking and Fingerprinting
	1 Introduction
	2 Problem Formulation
	2.1 SoC Design Process and IP Core Types
	2.2 Generic Model and Desiderate for IP Watermarking
	2.3 Attack Analysis for IP Watermarking

	3 Watermark Insertion
	3.1 Additional Functionality
	3.2 Additional Constraints
	3.2.1 Constraint-Based IP Watermarking at System Synthesis Level
	3.2.2 Constraint-Based IP Watermarking at Behavioral Synthesis Level
	3.2.3 Constraint-Based IP Watermarking at Logic Synthesis Level
	3.2.4 Constraint-Based IP Watermarking at Physical Synthesis Level

	3.3 Localized and Hierarchical Watermarking
	3.3.1 Localized Watermarking
	3.3.2 Hierarchical Watermark

	4 Watermark Extraction
	4.1 By Physical Processing
	4.1.1 Static Detection of Watermark
	4.1.2 Dynamic Detection of Watermark

	4.2 Side Channel Watermark Extraction

	5 Fingerprinting
	6 Related IP Management and Protection Techniques
	7 Challenges and Opportunities
	8 Conclusion
	References

	IP Protection of FPGA Cores Through a Novel Public/Secret-Key Encryption Mechanism
	1 Introduction
	2 Current Licensing Models
	2.1 The Business Case for IP Licensing
	2.2 Models of IP Over-Deployment and Counter-Measures
	2.2.1 Non-SRAM Configuration Cells
	2.2.2 Encryption of Configuration Patterns
	2.2.3 Detecting IPR Violation
	2.2.4 Pay-Per-Use Licensing
	2.2.5 System Based on Secured-Handshaking

	3 Proposed Scheme
	3.1 Hardware Specific IP Licensing
	3.2 The Proposed Business Model
	3.3 Business Model Enablers
	3.3.1 The Hardware Module
	3.3.2 The Exchange Protocol

	3.4 Integrating Multiple IPs
	3.4.1 Black Box Simulation and Analysis
	3.4.2 The Physical Integration of the IPs
	3.4.3 High Level Design Flow for the Integration of Multiple Licensed IPs

	3.5 Automating the Process
	3.5.1 Device Management Software
	3.5.2 Device Programming Software

	4 Analysis
	4.1 Security Threats
	4.2 Advantages
	4.3 Disadvantages

	5 Conclusion
	References

	Secure Licensing of IP Cores on SRAM-Based FPGAs
	1 Motivation of Secure Licensing Schemes for Core-Level FPGA IP Protection
	1.1 Upfront Versus Pay-Per-Use IP Licensing Models for FPGAs
	1.2 Detective and Preventive Core-Level Protection Methods

	2 The FPGA IP Market
	2.1 Principals in the Market
	2.2 Common Attacks to FPGA Based IPs
	2.3 Desiderata of FPGA IP Licensing Scheme

	3 Common FPGA Features and Notations
	4 Conventional Crypto Primitives Based Licensing Schemes
	4.1 Pay-Per-Use Based FPGA IP Licensing Scheme
	4.2 Public-Key Crypto Based Key Derivation Function
	4.3 Trusted Third Party with Symmetric-Key Crypto Based Key Derivation Function
	4.4 Partially Trusted Third Party with Establishment Module

	5 Physical Unclonable Function Based Licensing Schemes
	6 Conclusion
	References

	Part III Trust in Softwares, Networks and Services
	Heterogeneous Architectures: Malware and Countermeasures
	1 Introduction
	2 Technology Background
	2.1 Windows Malware
	2.2 Linux Malware
	2.3 Mac Malware
	2.4 Web Malware and Kits
	2.5 Mobile Malware

	3 Practical Hints for Practitioners
	3.1 Web Remedies
	3.2 Mobile Remedies

	4 Malware Detection and Analysis
	4.1 Static Analysis
	4.2 Code Obfuscation
	4.3 Dynamic Analysis

	5 Future Research Directions
	5.1 Virtualization and Introspection
	5.2 Cloud-Based Analysis
	5.3 Manycore-Based Analysis

	6 Conclusion
	References

	Trusted, Heterogeneous, and Autonomic Mobile Cloud
	1 Introduction
	2 Technology Background
	2.1 Malware and Smart Devices

	3 State of the Art
	3.1 Verifiable Outsourced Computations
	3.2 Reputation Systems and Distributed Computing
	3.3 Autonomic Computing and Cloud

	4 (Trusted) Distributed Mobile Computing
	5 Practical Hints and Future Research Directions
	6 Conclusion
	References

	Infiltrating Social Network Accounts: Attacks and Defenses
	1 Introduction
	2 Background and Model
	2.1 Overview of Social Networks
	2.2 Overview of Geosocial Networks
	2.3 System Model
	2.4 Attacker Model

	3 Related Work
	3.1 Infiltration Attacks
	3.2 Securing Social Networking Accounts
	3.3 Location Verification
	3.4 Visual Security Indicators

	4 Social Network Infiltrations
	4.1 Attacks
	4.2 Infiltration Evaluation

	5 Infiltration Attack Defenses
	5.1 Taking Action: Infiltration Warnings

	6 Preventing Location Fraud
	6.1 Requirements
	6.2 The Solutions
	6.3 Evaluation

	7 Conclusions
	References

	An Economical, Deployable and Secure Architecture for the Initial Deployment Stage of Vehicular Ad-Hoc Network
	1 Introduction
	2 Related Works
	3 Challenges in VANET Initial Transition Stage
	4 Proposed Design
	4.1 Roadside Unit: RSU
	4.1.1 Multiple Versions
	4.1.2 Deployment

	4.2 V2V Communication
	4.3 V2I (Vehicle to RSU) Communication
	4.4 I2I (RSU to RSU) Communication
	4.4.1 I2I (RSU to RSU) Direct Communication
	4.4.2 RSU to RSU Indirect Communication (via Vehicles)

	5 Security Support by the Proposed Design
	5.1 Security Architecture
	5.1.1 Internet-Like Public-Key Infrastructure

	5.2 Multi-Confidence Level Data Verification
	5.2.1 Level 1
	5.2.2 Level 2
	5.2.3 Level 3

	5.3 Time-Location Based Secure Positioning

	6 Threats and Their Defenses
	7 Simulations
	7.1 Simulation Scenario I
	7.2 Simulation Scenario II

	8 Discussions
	9 Conclusions
	References

	Deception-Based Survivability
	1 Introduction
	2 Background
	2.1 Deception
	2.2 Advanced Persistent Threats

	3 Modeling Advanced Persistent Threats
	4 Formal Requirements
	5 Deception-Based Survivability Framework
	5.1 Basics
	5.2 Design

	6 Discussion and Conclusion
	References

