
123

Tristan Cazenave
Mark H.M. Winands
Yngvi Björnsson (Eds.)

Third Workshop on Computer Games, CGW 2014
Held in Conjunction with the 21st European Conference
on Artificial Intelligence, ECAI 2014
Prague, Czech Republic, August 18, 2014
Revised Selected Papers

Computer Games

Communications in Computer and Information Science 504

Communications
in Computer and Information Science 504

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Tristan Cazenave Mark H.M. Winands
Yngvi Björnsson (Eds.)

Computer Games
Third Workshop on Computer Games, CGW 2014
Held in Conjunction with the 21st European Conference
on Artificial Intelligence, ECAI 2014
Prague, Czech Republic, August 18, 2014
Revised Selected Papers

13

Volume Editors

Tristan Cazenave
Université Paris-Dauphine, France
E-mail: cazenave@lamsade.dauphine.fr

Mark H.M. Winands
Maastricht University, The Netherlands
E-mail: m.winands@maastrichtuniversity.nl

Yngvi Björnsson
Reykjavik University, Iceland
E-mail: yngvi@ru.is

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-319-14922-6 e-ISBN 978-3-319-14923-3
DOI 10.1007/978-3-319-14923-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014959041

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers of the Computer Games Workshop (CGW
2014) held in Prague, Czech Republic. The workshop took place August 18,
2014, in conjunction with the 21st European Conference on Artificial Intelli-
gence (ECAI 2014). The workshop received 20 submissions. Each paper was
sent to two reviewers. In the end, 12 papers were accepted for presentation at
the workshop, of which 11 made it into these proceedings. The Computer and
Games Workshop series is an international forum for researchers interested in all
aspects of artificial intelligence and computer game playing. Earlier workshops
took place in Montpellier, France (2012), and Beijing, China (2013).

The published papers cover a wide range of topics related to computer games.
They collectively discuss 11 abstract games: 7 Wonders, Amazons, AtariGo,
Ataxx, Breakthrough, Chinese Dark Chess, Connect6, NoGo, Pentalath, Othello,
and Catch the Lion. Moreover, two papers are on General Game Playing, and
four on video game playing. Below we provide a brief outline of the contributions,
in the order in which they appear in the proceedings.

“Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search,” a
joint collaboration by Tom Pepels, Tristan Cazenave, Mark Winands, and Marc
Lanctot. In the paper a new MCTS variant, called Hybrid MCTS (H-MCTS),
is introduced that minimizes cumulative and simple regret in different parts of
the tree. H-MCTS uses SHOT, a recursive version of Sequential Halving, to
minimize simple regret near the root, and UCT to minimize cumulative regret
when descending further down the tree. The results show genuine performance
increase in Amazons, AtariGo, and Breakthrough.

“On Robustness of CMAB Algorithms: Experimental Approach,” authored
by Antońın Komenda, Alexander Shleyfman, and Carmel Domshlak experimen-
tally analyzes the robustness of two state-of-the-art algorithms, Naive Monte
Carlo (NMC) and Linear Side-Information (LSI), for online planning with com-
binatorial actions of the turn-based variant of the strategy game μRTS. The
results show that LSI is stronger with smaller budgets and shorter look-ahead.

“Job-Level Algorithms for Connect6 Opening Position Analysis,” by Ting-
Han Wei, I-Chen Wu, Chao-Chin Liang, Bing-Tsung Chiang, Wen-Jie Tseng,
Shi-Jim Yen, and Chang-Shing Lee, investigates job-level (JL) algorithms to
analyze opening positions for Connect6. The paper first proposes four heuristic
metrics when using JL-PNS to estimate move quality. Next, it introduces a JL
Upper Confidence Tree (JL-UCT) algorithm and heuristic metrics, one of which
is the number of nodes in each candidate move’s subtree. In order to compare
these metrics objectively, the paper proposes two kinds of measurement methods
to analyze the suitability of these metrics when choosing best moves for a set
of benchmark positions. The results show that for both metrics this node count

VI Preface

heuristic metric for JL-UCT outperforms all the others, including the four for
JL-PNS.

“Monte-Carlo Tree Search and Minimax Hybrids with Heuristic Evaluation
Functions,” written by Hendrik Baier and Mark Winands, discusses three dif-
ferent approaches to employ minimax search with static evaluation functions in
MCTS: (1) to choose moves in the play-out phase of MCTS, (2) as a replace-
ment for the play-out phase, and (3) as a node prior to bias move selection. The
MCTS-minimax hybrids are tested and compared with their counterparts using
evaluation functions without minimax in the domains of Othello, Breakthrough,
and Catch the Lion. Results show that introducing minimax search is effective
for heuristic node priors in Othello and Catch the Lion. The MCTS-minimax
hybrids are also found to work well in combination with each other.

“Monte-Carlo Tree Search for the Game of ‘7 Wonders’,” written by Denis
Robilliard, Cyril Fonlupt, and Fabien Teytaud studies MCTS in the game of 7
Wonders. This card game combines several known challenging properties, such as
imperfect information, multi-player, and chance. It also includes an inter-player
trading system that induces a combinatorial search to decide which decisions are
legal. Moreover, it is difficult to build an efficient evaluation function because
the card values are heavily dependent upon the stage of the game and upon the
other player decisions. The paper discusses how to effectively apply MCTS to 7
Wonders.

“Small and Large MCTS Playouts Applied to Chinese Dark Chess Stochastic
Game,” by Nicolas Jouandeau and Tristan Cazenave, presents MCTS modifica-
tions to deal with the stochastic game of Chinese Dark Chess. Experiments are
conducted with group nodes and chance nodes using various configurations: with
different play-out policies, with different play-out lengths, with true or estimated
wins. Results show that extending the play-out length is useful for creating more
informed play-outs, and the usage of an evaluation function can increase or de-
crease player’s effectiveness through modifying the number of draw possibilities.

“On the Complexity of General Game Playing,” authored by Édouard Bonnet
and Abdallah Saffidine, discusses the computational complexity of reasoning in
General Game Playing (GGP) using various combinations of multiple features
of the Game Description Language (GDL). Their analysis offers a complexity
landscape for GGP with fragments ranging from NP to EXPSPACE in the single-
agent case, and from PSPACE to 2-EXPTIME in the multi-agent case.

“Efficient Grounding of Game Descriptions with Tabling,” by Jean-Noël Vit-
taut and Jean Méhat, presents a method to instantiate game descriptions used
in GGP with the tabling engine of a Prolog interpreter. Instantiation is a crucial
step for speeding up the interpretation of the game descriptions and increasing
the playing strength of general game players. The method allows one to ground
almost all of the game descriptions present on the GGP servers in a time that is
compatible with the common time settings of the GGP competition. It instan-
tiates descriptions more rapidly than previous published methods.

“SHPE: HTN Planning for Video Games,” written by Alexandre Menif, Éric
Jacopin, and Tristan Cazenave, describes SHPE (Simple Hierarchical Planning

Preface VII

Engine). It is a hierarchical task network planning system designed to generate
dynamic behaviors for real-time video games. SHPE is based on a combination of
domain compilation and procedural task application/decomposition techniques
in order to compute plans in a very short time-frame. The planner is able to
return relevant plans in less than three milliseconds for several problem instances
of the SimpleFPS planning domain.

“Predicting Player Disengagement in Online Games,” by Hanting Xie, Daniel
Kudenko, Sam Devlin, and Peter Cowling, introduces a pure data-driven method
to foresee whether players will quit the game given their previous activity within
the game, by constructing decision trees from historical gameplay data of previ-
ous players. The method is assessed on two popular commercial online games: I
Am Playr and Lyroke. The former is a football game while the latter is a music
game. The results indicate that the decision tree built by their method is valu-
able for predicting the players’ disengagement and that its human-readable form
allow us to search out further reasons about which in-game events made them
quit.

“Coordinating Dialogue Systems and Stories Through Behavior Composi-
tion,” a joint effort by Stefano Cianciulli, Daniele Riccardelli, and Stavros Vassos,
exploits behavior composition in AI as a formal tool for facilitating interactive
storytelling in video games. This is motivated by (1) the familiarity of transition
systems in video game development, and (2) the fact that behavior composition
extends the spectrum of approaches for non-linear storylines by introducing a
new paradigm based on planning for a target desired process instead of a goal
state. Moreover, the approach provides support for the debugging of deadlocks
in stories at design level. The paper describes the behavior composition frame-
work, and shows the details for an interactive dialogue system scenario in order
to illustrate how interactive storytelling can be phrased in terms of the frame-
work. A simple architecture for implementing a demo game over the scenario
using existing behavior composition tools is also reported.

These proceedings would not have been produced without the help of many
persons. In particular, we would like to mention the authors and reviewers for
their help. Moreover, the organizers of ECAI 2014 contributed substantially by
bringing the researchers together.

November 2014 Tristan Cazenave
Mark Winands

Yngvi Björnsson

Organization

Program Chairs

Tristan Cazenave Université Paris-Dauphine, France
Mark Winands Maastricht University, The Netherlands
Yngvi Björnsson Reykjavik University, Iceland

Program Committee

Yngvi Björnsson Reykjavik University, Iceland
Bruno Bouzy Université Paris-Descartes, France
Tristan Cazenave Université Paris-Dauphine, France
Rémi Coulom Université Lille 3, France
Stefan Edelkamp University of Bremen, Germany
Nicolas Jouandeau Université Paris 8, France
Peter Kissmann University Bremen, Germany
Sylvain Lagrue Université d’Artois, France
Marc Lanctot Maastricht University, The Netherlands
Viliam Lisý Czech Technical University in Prague,

Czech Republic
Jean Méhat Université Paris 8, France
Jochen Renz The Australian National University, Australia
Abdallah Saffidine University of New South Wales, Australia
Fabien Teytaud Université du Littoral Côte d’Opale, France
Olivier Teytaud Université Paris-Sud, France
Mark Winands Maastricht University, The Netherlands

Additional Reviewers

Tom Pepels Maastricht University, The Netherlands
Stephan Schiffel Reykjavik University, Iceland
Tsan-sheng Hsu Institute of Information Science,

Academia Sinica, Taiwan

Table of Contents

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree
Search . 1

Tom Pepels, Tristan Cazenave, Mark H.M. Winands,
and Marc Lanctot

On Robustness of CMAB Algorithms: Experimental Approach 16
Antońın Komenda, Alexander Shleyfman, and Carmel Domshlak

Job-Level Algorithms for Connect6 Opening Position Analysis 29
Ting-Han Wei, I-Chen Wu, Chao-Chin Liang, Bing-Tsung Chiang,
Wen-Jie Tseng, Shi-Jim Yen, and Chang-Shing Lee

Monte-Carlo Tree Search and Minimax Hybrids with Heuristic
Evaluation Functions . 45

Hendrik Baier and Mark H.M. Winands

Monte-Carlo Tree Search for the Game of “7 Wonders” 64
Denis Robilliard, Cyril Fonlupt, and Fabien Teytaud

Small and Large MCTS Playouts Applied to Chinese Dark Chess
Stochastic Game . 78

Nicolas Jouandeau and Tristan Cazenave

On the Complexity of General Game Playing . 90
Édouard Bonnet and Abdallah Saffidine

Efficient Grounding of Game Descriptions with Tabling 105
Jean-Noël Vittaut and Jean Méhat

SHPE: HTN Planning for Video Games . 119
Alexandre Menif, Éric Jacopin, and Tristan Cazenave

Predicting Player Disengagement in Online Games 133
Hanting Xie, Daniel Kudenko, Sam Devlin, and Peter Cowling

Coordinating Dialogue Systems and Stories through Behavior
Composition . 150

Stefano Cianciulli, Daniele Riccardelli, and Stavros Vassos

Author Index . 165

Minimizing Simple and Cumulative Regret
in Monte-Carlo Tree Search

Tom Pepels1, Tristan Cazenave2, Mark H.M. Winands1, and Marc Lanctot1

1 Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences, Maastricht University

{tom.pepels,m.winands,marc.lanctot}@maastrichtuniversity.nl
2 LAMSADE - Université Paris-Dauphine

cazenave@lamsade.dauphine.fr

Abstract. Regret minimization is important in both the Multi-Armed
Bandit problem and Monte-Carlo Tree Search (MCTS). Recently, sim-
ple regret, i.e., the regret of not recommending the best action, has been
proposed as an alternative to cumulative regret in MCTS, i.e., regret
accumulated over time. Each type of regret is appropriate in different
contexts. Although the majority of MCTS research applies the UCT se-
lection policy for minimizing cumulative regret in the tree, this paper
introduces a new MCTS variant, Hybrid MCTS (H-MCTS), which min-
imizes both types of regret in different parts of the tree. H-MCTS uses
SHOT, a recursive version of Sequential Halving, to minimize simple
regret near the root, and UCT to minimize cumulative regret when de-
scending further down the tree. We discuss the motivation for this new
search technique, and show the performance of H-MCTS in six distinct
two-player games: Amazons, AtariGo, Ataxx, Breakthrough, NoGo, and
Pentalath.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a decision making problem [3] where
an agent is faced with several options. On each time step, an agent selects one of
the options and observes a reward drawn from some distribution. This process is
then repeated for a number of time steps. Generally the problem is described as
choosing between the most rewarding arm of a multi-armed slot machine found
in casinos. The agent can explore by pulling an arm and observing the resulting
reward. The reward can be drawn from either a fixed or changing probability dis-
tribution. Each pull and the returned reward constitutes a sample. Algorithms
used in MAB research have been developed to minimize cumulative regret. Cu-
mulative regret is the expected regret of not having sampled the single best
option in hindsight. This type of regret is accumulated during execution of the
algorithm, each time a non-optimal arm is sampled the cumulative regret in-
creases. UCB1 [3] is a selection policy for the MAB problem, which minimizes
cumulative regret, converging to the empirically best arm. Once the best arm is

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

2 T. Pepels et al.

found by exploring the available options, UCB1 exploits it by repeatedly sam-
pling it, minimizing overall cumulative regret. This policy was adapted to be
used in Monte-Carlo Tree Search (MCTS) in the form of UCT [11].

Recently, simple regret has been proposed as a new criterion for assessing the
performance of both MAB [2,6] and MCTS [7,9,18] algorithms. Simple regret
is defined as the expected error between an algorithm’s recommendation, and
the optimal decision. It is a naturally fitting quantity to optimize in the MCTS
setting, because all simulations executed by MCTS are for the mere purpose
of learning good moves. Moreover, the final move chosen after all simulations
are performed, i.e., the recommendation, is the one that has real consequence.
Nonetheless, since the introduction of Monte-Carlo Tree Search (MCTS) [11]
and its subsequent adoption by games researchers UCT [11], or some variant
thereof, has become the “default” selection policy (cf. [5]).

In this paper we present a new, MCTS technique, named Hybrid MCTS
(H-MCTS) that utilizes both UCT and Sequential Halving [10]. As such, the
new technique uses both simple and cumulative regret minimizing policies to
their best effect. We test H-MCTS in six distinct two-player games: Amazons,
AtariGo, Ataxx, Breakthrough, NoGo, and Pentalath.

The paper is structured as follows, first MCTS and UCT are introduced in
Section 2. Section 3 explains the difference between cumulative and simple regret,
and how this applies to MCTS. Next, in Section 4 a recently introduced, simple
regret minimizing technique for the MAB problem, Sequential Halving [10], is
discussed. Sequential Halving is used recursively in SHOT [7], which is described
in detail in Section 5. Together, SHOT and UCT form the basis for the new, hy-
brid MCTS technique discussed in Section 6. This is followed by the experiments,
in Section 7 and finally by the conclusion and an outline of future research, in
Section 8.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method based on random
sampling by Monte-Carlo simulations of the state space of a domain [8,11]. In
game play, this means that decisions are made based on the results of randomly
simulated play-outs. MCTS has been successfully applied to various turn-based
games such as Go [16], Lines of Action [20], and Hex [1]. Moreover, MCTS has
been used for agents playing real-time games such as the Physical Traveling
Salesman [14], real-time strategy games [4], and Ms Pac-Man [13], but also in
real-life domains such as optimization, scheduling, and security [5].

In MCTS, a tree is built incrementally over time, which maintains statistics
at each node corresponding to the rewards collected at those nodes and number
of times they have been visited. The root of this tree corresponds to the current
position. The basic version of MCTS consists of four steps, which are performed
iteratively until a computational threshold is reached, i.e., a set number of sim-
ulations, an upper limit on memory usage, or a time constraint.

Each MCTS simulation consist of two main steps, 1) the selection step, where
moves are selected and played inside the tree according to the selection policy

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 3

until a leaf is expanded, and 2) the play-out, in which moves are played according
to a simulation policy, outside the tree. At the end of each play-out a terminal
state is reached and the result is back-propagated along the selected path in the
tree from the expanded leaf to the root.

2.1 UCT

During the selection step, a policy is required to explore the tree to decide on
promising options. For this reason, the widely used Upper Confidence Bound
applied to Trees (UCT) [11] was derived from the UCB1 [3] policy. In UCT,
each node is treated as a bandit problem whose arms are the moves that lead to
different child nodes. UCT balances the exploitation of rewarding nodes whilst
allowing exploration of lesser visited nodes. Consider a node p with children I(p),
then the policy determining which child i to select is defined as:

i∗ = argmaxi∈I(p)

{
vi + C

√
lnnp

ni

}
, (1)

where vi is the score of the child i based on the average result of simulations
that visited it, np and ni are the visit counts of the current node and its child,
respectively. C is the exploration constant to tune. UCT is applied when the
visit count of p is above a threshold T , otherwise a child is selected at random.

Note that UCB1 and consequently UCT incorporate both exploitation and
exploration. After a number of trials, a node that is identified as the empirical
best is selected more often. In tree search, this has three consequences:

1. Whenever a promising move is found, less time is spent on suboptimal ones.
Since UCT is generally time-bounded, it is important to spend as much time
as possible exploiting the best moves. Due to the MinMax principle, which
states that an agent aims to maximize its minimum gain, on each ply we
expect a player to perform the best reply to its opponent’s move.

2. The valuation of any node in the tree is dependent on the values back-
propagated. Given that UCT spends less time on suboptimal moves, any
values back-propagated are based on increasingly improved simulations, be-
cause they are performed deeper in the tree. In fact, given infinite time, UCT
converges to almost exclusively selecting nodes with the highest estimates.

3. The current value of the node can be falsified by searching deeper. In UCT,
each simulation increases the depth of the search, and as such may reveal
moves as becoming worse over time due to an unpredicted turn of events.
If an expected good move is not reselected often, such “traps” [15] are not
revealed. More generally, when sampling a game-tree rewards are not neces-
sarily drawn from a fixed distribution.

3 Regret

In this section we discuss regret in both the MAB, and MCTS context. The
differences between cumulative and simple regret are explained in Subsection
3.1. Next, we discuss regret in the context of MCTS in Subsection 3.2.

4 T. Pepels et al.

3.1 Cumulative and Simple Regret

Suppose a trial is set-up such that a forecaster (a player, or agent) has K actions,
which can be repeatedly sampled over n ∈ {1, 2, · · · , T } trials. Each arm has a
mean reward µi, and there exists a maximum mean reward µ∗. Suppose further
that the forecaster employs a selection policy I(n) that outputs some a to be
sampled at time n, and a recommendation policy J(n) that recommends the
best arm at time T .

Cumulative regret is defined as the regret of having not sampled the best
single action in hindsight,

Rn =

n∑
t=1

µ∗ − µI(t). (2)

In other words, the regret is accumulated over time, for each sample the fore-
caster takes.

Now suppose that we change the experimental set-up, such that the actions
chosen on trials 1, 2, . . . , T − 1 are taken under some realistic “simulated envi-
ronment” that represents the true on-line decision problem but without com-
mitting to the actions. The only real decision is made after having played all
T simulations. In contrast, simple regret [6] quantifies only the regret for the
recommendation policy J at time T ,

rn = µ∗ − µJ(n), (3)

i.e., the regret of not having recommended the best action.
Given these definitions, a performance metric for a selection technique can be

described as the expected cumulative ERn or simple regret Ern over different
experiments. In their analysis of the links between simple and cumulative regret
in MABs, Bubeck et al. [6] found that upper bounds on ERn lead to lower
bounds on Ern, and that the smaller the upper bound on ERn, the higher the
lower bound on Ern, regardless of the recommendation policy, i.e., the smaller
the cumulative regret, the larger the simple regret. As such, no policy can give
an optimal guarantee on both simple and cumulative regret at the same time. In
the case of an MAB the strategy used depends on the context of the problem.

3.2 Regret in MCTS

Based on the analysis in Subsection 2.1, the minimization of cumulative regret
is naturally suitable to tree search, and the UCB1 selection policy can be used
nearly unaltered in this setting as UCT. However, there exist two contexts for
the MAB problem, also to be considered in MCTS. These are:

1. Each trial results in a direct reward for the agent. As such we want to
minimize the number of suboptimal arms pulled in order to achieve a rewards
as high as possible. This relates, for example, to slot machines in a casino.
Every choice made at each point in the algorithm has a direct effect on the
agent’s reward. In this case, the reward of the agent is related to the inverse
of its cumulative regret.

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 5

2. The agent can perform a number of trials, without consequence, in a simu-
lated environment. The agent is allowed T trials in this fashion, after which
it must make a recommendation. Based on its recommendation, the agent
is rewarded. In this case, the performance of the agent is measured by the
simple regret of its recommendation. A low simple regret implies that the
recommendation is close to the actual best option.

In most MCTS literature, UCT is used as selection policy (cf. [5]), suggesting
that only the first context applies. However, the second context is a more natu-
ral fit when MCTS is used to play games, because the behavior of the agent in
the domain is based solely on its recommendations. Nevertheless, simple regret
minimization cannot replace UCT in this case without consideration. Unlike in
an MAB, sampling does have an immediate impact on performance in MCTS
because reward distributions are non-stationary. Spending more time on subop-
timal moves when descending the tree decreases the amount of time available
to explore nodes expected to have high rewards. Moreover, since all values are
back-propagated, we risk underestimating ancestors based on sampling descen-
dants that are known to be bad. This trade-off was also shown in [18] where the
authors use a measure based on the Value of Information (VOI) to determine
whether to exploit an expected good move, or continue exploring others. This
trade-off is also described as a “separation of exploratory concerns” in BRUE [9].

4 Regret Minimization

Non-exploiting selection policies have been proposed to decrease simple regret
at high rates. Given that UCB1 [3] has an optimal rate of cumulative regret
convergence, and the conflicting limits on the bounds on the regret types shown
in [6], policies that have a higher rate of exploration than UCB1 are expected
to have better bounds on simple regret. Sequential Halving (SH) [10] is a novel,
pure exploration technique developed for minimizing simple regret in the MAB
problem. In this section, both SH and its recursive definition SHOT [7] are
discussed.

4.1 Sequential Halving

In many problems there are only one or two good decisions to be identified, this
means that when using a pure exploration technique, a potentially large portion
of the allocated budget is spent sampling suboptimal arms. Therefore, an efficient
policy is required to ensure that inferior arms are not selected as often as arms
with a high reward. Successive Rejects [2] was the first algorithm to show a high
rate of decrease in simple regret. It works by dividing the total computational
budget into distinct rounds. After each round, the single worst arm is removed
from selection, and the algorithm is continued on the reduced subset of arms.
Sequential Halving (SH) [10], was later introduced as an alternative to Successive
Rejects, offering better performance in large-scale MAB problems.

6 T. Pepels et al.

Algorithm 1. Sequential Halving [10]
Input: total budget T , K arms
Output: recommendation JT

1 S0 ← {1, . . . ,K}, B ← �log2 K� − 1

2 for k=0 to B do

3 sample each arm i ∈ Sk, nk =

⌊
T

|Sk|�log2 |S|�

⌋
times

4 update the average reward of each arm based on the rewards
5 Sk+1 ← the �|Sk|/2� arms from Sk with the best average
6 return the single element of SB

SH divides search time into distinct rounds, and during each round arms
are sampled uniformly. After each such round, the empirically worst half of the
remaining arms are removed until a single arm remains. The rounds are equally
distributed such that each round is allocated approximately the same number of
trials (budget), but with smaller subset of available arms to sample. Sequential
Halving is detailed in Algorithm 1.

In the next section a recently introduced MCTS technique called SHOT, is
discussed which uses SH recursively. This technique is the basis for H-MCTS
discussed in Section 6.

5 Sequential Halving Applied to Trees

Sequential Halving applied to Trees (SHOT) [7] is a search technique that utilizes
Sequential Halving at every node of the search tree. A difference with regular
SHOT and Sequential Halving is that SHOT comes back to already visited nodes
with an increased budget. When the search returns to an already visited node,
instead of distributing the new budget as if it was a new node, SHOT takes into
account the budget already spent at the node and how it was spent. In order
to apply Sequential Halving, SHOT considers the overall budget as the already
spent budget plus the new budget to spend. It then calculates for each move
the budget per move using Sequential Halving with this overall budget. The
other difference with simple Sequential Halving is that each move already has
an associated number of play-outs coming from the previous visits to the node.
In order to take into account this already spent budget, SHOT only gives to
each move the difference between the new budget for the move and the budget
already spent for the move during previous visits. If the new budget is less or
equal to the already spent budget the move is not given any budget for the
current round.

SHOT has four beneficial properties: 1) it uses less memory than standard
UCT, whereas standard UCT creates a new node for each play-out SHOT only
creates a new entry in the transposition table when a node has more than one
play-out. In practice, for 19×19 NoGo for example, it means that SHOT uses fifty

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 7

times less memory than standard UCT. 2) SHOT uses less time descending the
tree than UCT. Instead of descending the tree for each play-out, SHOT descends
in a child for a possibly large number of play-outs. In practice this means that for
the same number of play-outs SHOT was shown to be approximately twice as fast
as UCT in the game NoGo [7]. 3) SHOT allocates a possibly large number of play-
outs to the possible moves. This makes it easy to parallelize the search without
loss of information and without changing the behavior of the algorithm. 4) SHOT
is parameter free, contrary to UCT, which requires tuning its C constant. On
the negative side, in order to run SHOT the total number of play-outs has to
be known in advance. This is less convenient than UCT, which is an any-time
algorithm.

6 A Hybrid MCTS

Recall that in the MAB context, in which simple regret minimization is appro-
priate, only the final recommendation made by an algorithm has effect on the
agent’s reward. In game play, this holds for the nodes of the search tree at the
first ply. Only after running all the allocated simulations a recommendation is
made, which affects the state of the game being played. Nodes deeper in the tree
have an implicit effect on this decision. Because the shape of an MCTS tree is
directly related to the potential reward of internal nodes, promising nodes are
selected more often to grow the tree in their direction. This both enforces the
confidence of the reward of promising nodes, but also ensures that their reward
can be falsified based on results deeper in the tree.

Treating a game tree as a recursive MAB thus reveals different objectives for
the distinct plies of the tree. At the root, simple regret should be as low as
possible, since the recommendation of the algorithm is based on the first ply
of the tree. On deeper plies, we want to both sample efficiently, avoiding time
wasted on bad options, and back-propagate correct values from leafs to their
ancestors. Where the former can be achieved by using selection policies such as
Successive Rejects or Sequential Halving, the latter, as discussed in Section 2 is
inherently performed by UCT. Intuitively, this leads to the belief that we should
only minimize simple regret at the root, and use UCT throughout of the tree, as
suggested by [18]. However, considering that at any node, based on the MinMax
principle, we want to find the best reply to the action of the parent. It may also
be beneficial to ensure a lower simple regret on that particular move because
this could intrinsically lead to an improved evaluation of the parent.

Using a selection policy based on both SHOT and UCT, Hybrid MCTS (H-
MCTS) combines simple and cumulative regret minimization in a tunable al-
gorithm. The rationale is based on the results in [6], which show that given a
low sampling budget, UCB empirically realizes lower simple regret. The proposed
technique switches from Sequential Halving to UCT whenever the computational
budget is below the budget limit B. Consequently, the search tree is composed
of a simple regret tree at the root, and UCT trees rooted at the leafs of the sim-
ple regret tree. As shown in Figure 1, initially the simple regret tree is shallow

8 T. Pepels et al.

Fig. 1. Example progression of H-MCTS. In the top part of the tree (SR), simple regret
is minimized using SHOT. Deeper in the tree, UCT minimizes cumulative regret. The
round-numbers represent the Sequential Halving round at the root.

because the computational budget per node is small. Later, when the budget
per node increases due to nodes being removed from selection as per Sequential
Halving, the simple regret tree grows deeper. Note that since the root’s children
are sorted in descending order, the left part of the simple regret and UCT tree
is always the deepest, since it its root is selected the most.

H-MCTS is outlined in Algorithm 2. Similar to UCT and SHOT, on line 3
terminal conditions are handled, followed by the main feature of the algorithm
on line 6 where the initial simulation budget b for each child of the current
node is computed. Based on b, a decision is made whether to progress into the
UCT tree if b < B or, if b ≥ B to continue with SHOT. Note that the b < B
check is overridden at the root, since only one cycle is initiated there. Assuming
the allocated budget is sufficiently large, at the root simple regret minimization
is preferred over cumulative regret minimization. From line 15 the algorithm
is similar to the Sequential Halving portion of SHOT. As in SHOT, because
multiple play-outs are back-propagated in a single descent from root to leaf,
the algorithm returns a tuple tp, which contains: 1) the number of visits v, and
2) the number of wins per player w1 and w2. On line 22, the budget used bu
is incremented by v from the results returned by the recursion. Moreover, the
current node’s statistics are updated, alongside the cumulative tuple tp, which
are returned to the node’s parent. UCT also maintains a tuple of statistics such
that it can return the same tp to the simple regret tree. For the UCT tree, any
implementation can be used, as long as it is adapted to return tp and update
the budgetSpent value alongside the usual node’s visit count because any UCT
node in the tree can be “converted” to a simple regret node at any time, when
b > B on line 6.

Whenever a UCT node is included in the simple regret tree, all its values are
maintained. As such, Sequential Halving has an initial estimate of the values of

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 9

Algorithm 2. Hybrid Monte-Carlo Tree Search (H-MCTS).
Input: node p, allocated budget budget

Output: tp: number of play-outs, p1 and p2 wins

1 h-mcts(node p, budget):
2 if isLeaf(p) then S ← expand(p) tp ← 〈0, 0, 0〉
3 if isTerminal(p) then
4 update tp, with budget wins for the appropriate player, and

budget visits
5 return tp

6 b ← max

(
1,

⌊
p.budgetSpent+budget

s×�log2|S|�

⌋)
7 if not isRoot(p) and b < B then
8 for i=0 to budget do
9 〈v, w1, w2〉i ← uct(p)

10 update p, tp with 〈v, w1, w2〉i
11 return tp

12 bu, k ← 0

13 S0 ← S

14 s ← |S|
15 repeat
16 for i=1 to s do
17 ni ← node n at rank i of Sk

18 if b > ni.visits then
19 bi ← b− ni.visits

20 if i = 0 and s = 2 then
bi ← max (bi, budget− bu − (b− n1.visits))

bi ← min (bi, budget− bu)

21 〈v, w1, w2〉i ← h-mcts(ni, bi)
22 update p, bu, and tp with 〈v, w1, w2〉i
23 break if bu ≥ budget

24 k ← k + 1

25 Sk ← Sk−1, with the first s elements sorted in descending order
26 s ← �s/2�
27 b ← b+max

(
1,

⌊
p.budgetSpent+budget

s×�log2|S|�

⌋)
28 until bu ≥ budget or s < 2

29 update p.budgetSpent with bu
30 return tp

10 T. Pepels et al.

the nodes. Based on the budgeting method of SHOT [7], budget is reallocated
such that it adheres to Sequential Halving’s allocation.

In the scheme presented, a limit on the available budget determines whether
to continue in the simple regret tree. However, other methods such as a fixed
depth limit for the simple regret tree, or a time-partitioned method, can be
viable. Based on the simple regret theory in MABs, pure exploration methods
only provide empirically better simple regret than UCB, given a sufficiently
large budget. To minimize simple regret given a small budget, UCB with a
properly tuned constant should be preferred [6]. Directly applying this result to
MCTS means that whenever the available budget is low, UCT with a properly
tuned constant should be preferred as selection policy. Therefore, whenever a
Sequential Halving round can be initiated with a budget per child higher than
B, we continue in the simple regret tree. Otherwise the budget is assigned to
UCT, which runs b simulations, and returns the result of their play-outs. Play-
outs are only ever initiated in the UCT tree, because UCT immediately takes
advantage of the values stored at nodes, whereas Sequential Halving selects all
children b times in the first round regardless of their prospects.

As with MCTS, H-MCTS can be separated in four discrete steps:

1. Budgeting: A budget is determined for each child. Based on the budget,
we enter the UCT tree, or remain in the simple regret tree. If we enter the
UCT tree, the four basic MCTS steps apply.

2. Selection: In the simple regret tree, nodes are sampled based on Sequential
Halving. Nodes in the simple regret tree are assigned a budget, to be spent
in their rooted UCT tree, in which play-outs are initiated.

3. Removal: Based on the results obtained, children are removed from selec-
tion. A new Sequential Halving round starts with half of the best children
from the previous round. If the budget is spent, the currently accumulated
results are back-propagated.

4. Back-Propagation: Since H-MCTS is performed depth-first, the final re-
sult is only available after all budget is spent. This results in simultaneous
back-propagation of numerous results in the simple regret tree.

In this case Sequential Halving is presented as the simple regret algorithm. How-
ever, it is certainly possible to replace it with any other algorithm such as Suc-
cessive Rejects, or any other form of sequential reduction.

H-MCTS shares its disadvantage of not being able to return a recommen-
dation at any-time with SHOT. It must know its exact computational budget
beforehand. However, it does make use of the fact that UCT is any-time. Sup-
pose a node was selected and expanded by H-MCTS, then at each time in the
simple regret tree, nodes have an appropriate value based on the results back-
propagated by UCT. Thus, when SHOT finishes a round by sorting the nodes
by their accumulated values on line 25, UCT’s any-time property ensures nodes
have a representative value.

To a lesser extent, H-MCTS also shares the speed benefit of SHOT. However,
because a part of the search is spent in the UCT tree, H-MCTS still spends more

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 11

time in the tree than SHOT overall. Given a lower budget limit B, H-MCTS can
be tuned to run faster by decreasing time spend in the UCT tree.

In the form presented in Algorithm 2, H-MCTS cannot solve proven wins
or losses in the simple regret tree. Although we can employ the MCTS-Solver
proposed by Winands et al. [19] in the UCT tree, this solver is to be adapted
to SHOT to be able to solve nodes in the simple regret tree. Such a mechanism
has been developed and details are given in [12].

7 Experiments and Results

In this section we show the results of the experiments performed on six two-
player games. H-MCTS and the games were implemented in two different engines.
Amazons, Breakthrough, NoGo and Pentalath are implemented in a Java based
engine. Ataxx and AtariGo are implemented in a C++ based engine.

– Amazons is played on an 8×8 board. Players each have four Amazons that
move as queens in chess. Moves consist of two parts: movement, and blocking
a square on the board. The last player to move wins the game.

– AtariGo, or first-capture Go, is a variant of Go where the first player to
capture any stones wins. Experiments are performed on a 9×9 board.

– Ataxx is a game similar to Reversi. Played on a square board, players start
with two stones each placed in an opposite corner. Captures are performed
by moving a stone alongside an opponent’s on the board. In the variant used
in this paper, jumps are not allowed. The game ends when all squares are
filled, or when a player has no remaining stones. The player with the most
stones wins. Experiments are performed on a 7×7 board.

– Breakthrough is played on an 8×8 board. Players start with 16 pawns. The
goal is to move one of them to the opponent’s side.

– NoGo is a combinatorial game based on Go. Captures are forbidden and the
first player unable to play due to this rule, loses. Experiments are performed
on a 9×9 board.

– Pentalath is a connection game played on a hexagonal board. The goal is
to place 5 pieces in a row. Pieces can be captured by fully surrounding an
opponent’s group.

A uniform random selection policy is used during the play-outs, unless oth-
erwise stated. The C constant, used by UCT (Equation 1) was tuned in each
game and was not re-optimized for H-MCTS, both UCT and H-MCTS use the
same C constant in the experiments. The budget limit B which determines the
switching point between the simple regret and UCT tree, was optimized for each
game independently using a range between 10 and 110, with an interval of 20.

7.1 Results

For each table, the results are shown with respect to the first algorithm men-
tioned in the captions, along with a 95% confidence interval. For each experiment,

12 T. Pepels et al.

the players’ seats were swapped such that 50% of the games are played as the
first player, and 50% as the second, to ensure no first-player or second-player
bias. Because H-MCTS cannot be terminated any-time we present only results
for a fixed number of simulations. In each experiment, both players are allocated
a budget of both 10,000 and 25,000 play-outs.

Table 1 shows results of the matches played by H-MCTS against a standard
UCT player. H-MCTS performs best in Amazons, AtariGo, Ataxx, and Penta-
lath. For Amazons this is in part due to the high branching factor of approxi-
mately 1, 200 moves at the start of the match. Since UCT cannot explore and
exploit all options in time, Sequential Halving ensures that only a limited subset
of the large action-space is under consideration. For NoGo and Breakthrough we
see no significant improvement over UCT. This may be due to the fact that these
games are more tactical and have narrow winning-lines, and a more exploiting
algorithm applies better by identifying good moves and exploiting them fast.

To determine the effect of UCT in H-MCTS, the results of matches played
against SHOT are shown in Table 2. H-MCTS shows significant improvement
in 10 of the 12 cases. No use is made of the speed benefits of either technique
in these experiments. These results give evidence for the claim that H-MCTS
makes use of UCT’s any-time property to provide better reward estimates in the
simple regret tree. Values back-propagated and averaged by using UCT may be
more effective than those back-propagated by SHOT. As a benchmark, SHOT
played 1,000 matches against UCT per game in Table 3. The results for NoGo
differ from those presented in [7], because our experiment is performed using a
fixed budget of play-outs for both players, whereas in [7], results are based on
time-based experiments. SHOT performs best against H-MCTS and UCT in the
games with the highest branching factors, Amazons and AtariGo. This reinforces
the evidence that Sequential Halving is best applied in games with high branch-
ing factors. In the games with narrow winning-lines such as Breakthrough and
Pentalath, SHOT’s performance declines against UCT. However, given SHOT’s
speed improvement over UCT, it is possible that the technique performs better
in a time-based experiment.

Table 1. H-MCTS vs. UCT with random play-outs, 1,000 games

10,000 25,000
Game B play-outs play-outs

Amazons 8×8 50 65.2 ± 3.0 62.0 ± 3.0
AtariGo 9×9 30 60.6 ± 3.1 60.6 ± 3.1

Ataxx 7×7 30 52.4 ± 3.1 47.2 ± 3.0
Breakthrough 8×8 70 53.2 ± 3.1 50.4 ± 3.1

NoGo 9×9 30 52.4 ± 3.1 48.8 ± 3.1
Pentalath 30 46.7 ± 3.1 54.7 ± 3.1

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 13

Table 2. H-MCTS vs. SHOT with random play-outs, 1,000 games

10,000 25,000
Game B play-outs play-outs

Amazons 8×8 50 51.2 ± 3.1 55.4 ± 3.1
AtariGo 9×9 30 50.0 ± 3.1 57.5 ± 3.1

Ataxx 7×7 30 54.5 ± 3.1 56.0 ± 3.1
Breakthrough 8×8 70 68.4 ± 2.9 84.0 ± 2.3

NoGo 9×9 30 56.3 ± 3.1 55.5 ± 3.1
Pentalath 30 62.1 ± 3.0 78.3 ± 2.6

Table 3. SHOT vs. UCT with random play-outs, 1,000 games

10,000 25,000
Game play-outs play-outs

Amazons 8×8 60.2 ± 3.0 55.2 ± 3.1
AtariGo 9×9 53.8 ± 3.1 55.7 ± 3.1

Ataxx 7×7 46.7 ± 3.1 40.8 ± 3.1
Breakthrough 8×8 31.2 ± 3.1 16.4 ± 2.3

NoGo 9×9 44.7 ± 3.1 41.4 ± 3.1
Pentalath 33.7 ± 3.0 22.8 ± 2.6

In Table 4, an informed play-out policy is used to select moves for Break-
through. A capture move is four times more likely to be selected than a non-
capture one, and a defensive capture (near the winning line) is five times more
likely to be selected and (anti-)decisive [17] moves are always played when avail-
able. UCT with this play-out policy enabled wins approximately 78% of the
games played against UCT with random play-outs. H-MCTS benefits more from
the informed play-outs than UCT in Breakthrough, winning up to 56.6% of the
games against UCT.

The second part of Table 4 shows results for matches played between the H-
MCTS Solver presented in [12] and the MCTS-Solver. Breakthrough employs the
heuristic play-out policy, for which we see a significant boost in performance pro-
portional to the allocated budget. Overall, the results show some improvement
over Table 1 in Pentalath and NoGo with 25,000 play-outs, although the differ-
ence is not sufficient to conclude that the Solver performs better in H-MCTS
than in UCT in these games with the same C constant.

8 Conclusion and Future Research

In this paper an MCTS technique is presented based on the results of research in
regret theory. The conclusions of the research performed in [6] were interpreted
into the form of a Hybrid MCTS technique (H-MCTS). Based on minimizing
simple regret near the root, where the overall budget is high, and cumulative

14 T. Pepels et al.

Table 4. H-MCTS vs. UCT with heuristic play-outs, with/without solver, 1,000 games

10,000 25,000
Game B play-outs play-outs

Heuristic play-outs (no solver)
Breakthrough 8×8 70 50.4 ± 3.1 56.6 ± 3.1

H-MCTS Solver
Amazons 8×8 50 65.2 ± 3.0 64.0 ± 3.0

Breakthrough 8×8 70 56.7 ± 3.1 61.3 ± 3.0
NoGo 9×9 30 50.5 ± 3.1 50.6 ± 3.1
Pentalath 70 53.6 ± 3.1 55.6 ± 3.1

regret deeper in the tree [18]. Depending on the available budget during search
H-MCTS’ simple regret tree can expand deeper to provide better bounds on
simple regret on the best replies of its rooted subtrees. The simple regret tree
is traversed using SHOT [7]. H-MCTS requires beforehand knowledge of the
available play-out budget and therefore cannot be terminated at any time to
provide a recommendation. In tournament-play, when search time is strictly
limited, an approximation of the number of simulations per second can be used
to determine the available play-out budget.

H-MCTS performed better against SHOT given the same allocation of play-
outs in 10 out of 12 experiments. Moreover, results show that in different games,
H-MCTS performs either better, or on par with UCT. In Amazons, AtariGo,
and Pentalath H-MCTS outperforms UCT by up to 65.2%. In Breakthrough
using an informed play-out policy H-MCTS outperformed UCT by up to 61.3%
using the solver technique.

Although the hybrid technique is founded on theoretical work in both the
MAB context and MCTS, we have not shown that it provides better bounds on
simple regret compared to other techniques. This is work for future research. In
order to show that H-MCTS exhibits lower simple regret in practice, it should
be validated in smaller, proven games for which the game-theoretic value of each
action is known. Moreover, investigation is required regarding the effects of the
budget limit B in relation to the total allocated number of play-outs, and the
interrelation between H-MCTS’ B, and UCT’s C constant. In the experiments
presented in this paper, both were fixed per game, rather than per experiment.
Finally, the speed benefits of H-MCTS, combined with parallelization is open to
investigation. H-MCTS can be parallelized efficiently by dividing budgets in the
simple regret tree over multiple threads [7].

Acknowledgments. This work is partially funded by the Netherlands Organi-
sation for Scientific Research (NWO) in the framework of the project Go4Nature,
grant number 612.000.938.

Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search 15

References

1. Arneson, B., Hayward, R., Henderson, P.: Monte-Carlo tree search in Hex. IEEE
Trans. Comput. Intell. AI in Games 2(4), 251–258 (2010)

2. Audibert, J., Bubeck, S., Munos, R.: Best arm identification in multi-armed ban-
dits. In: Proc. 23rd Conf. on Learn. Theory, pp. 41–53 (2010)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

4. Balla, R.K., Fern, A.: UCT for tactical assault planning in real-time strategy games.
In: Boutilier, C. (ed.) Proc. of the 21st Int. Joint Conf. on Artif. Intel. (IJCAI),
pp. 40–45 (2009)

5. Browne, C., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte-Carlo tree
search methods. IEEE Trans. on Comput. Intell. AI in Games 4(1), 1–43 (2012)

6. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Comput. Sci. 412(19), 1832–1852 (2010)

7. Cazenave, T.: Sequential halving applied to trees. IEEE Computer Society Press,
Los Alamitos (2014)

8. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

9. Feldman, Z., Domshlak, C.: Simple regret optimization in online planning for
markov decision processes. CoRR abs/1206.3382 (2012)

10. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: Proc. of the Int. Conf. on Mach. Learn., pp. 1238–1246 (2013)

11. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

12. Pepels, T.: Novel Selection Methods for Monte-Carlo Tree Search. Master’s thesis,
Department of Knowledge Engineering, Maastricht University, Maastricht, The
Netherlands (2014)

13. Pepels, T., Winands, M.H.M., Lanctot, M.: Real-time Monte Carlo Tree Search in
Ms Pac-Man. IEEE Trans. Comp. Intell. AI Games 6(3), 245–257 (2014)

14. Powley, E.J., Whitehouse, D., Cowling, P.I.: Monte Carlo tree search with macro-
actions and heuristic route planning for the physical travelling salesman problem.
In: IEEE Conf. Comput. Intell. Games, pp. 234–241. IEEE (2012)

15. Ramanujan, R., Sabharwal, A., Selman, B.: Understanding Sampling Style Ad-
versarial Search Methods. In: Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pp. 474–483 (2010)

16. Rimmel, A., Teytaud, O., Lee, C., Yen, S., Wang, M., Tsai, S.: Current frontiers
in computer Go. IEEE Trans. Comput. Intell. AI in Games 2(4), 229–238 (2010)

17. Teytaud, F., Teytaud, O.: On the huge benefit of decisive moves in Monte-Carlo
Tree Search algorithms. In: IEEE Conference on Computational Intelligence and
Games, pp. 359–364. IEEE (2010)

18. Tolpin, D., Shimony, S.: MCTS based on simple regret. In: Proc. Assoc. Adv. Artif.
Intell., pp. 570–576 (2012)

19. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte-Carlo Tree Search Solver.
In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 25–36. Springer, Heidelberg (2008)

20. Winands, M.H.M., Björnsson, Y., Saito, J.T.: Monte Carlo Tree Search in Lines of
Action. IEEE Trans. Comp. Intell. AI Games 2(4), 239–250 (2010)

On Robustness of CMAB Algorithms:

Experimental Approach

Antońın Komenda, Alexander Shleyfman, and Carmel Domshlak

Faculty of Industrial Engineering and Management,
Technion – Israel Institute of Technology, Haifa

{akomenda@tx,alesh@tx,dcarmel@ie}.technion.ac.il

Abstract. In online planning with a team of cooperative agents, a
straightforward model for decision making which actions the agents should
execute can be represented as the problem of Combinatorial Multi-Armed
Bandit. Similarly to the most prominent approaches for online planning
with polynomial number of possible actions, state-of-the-art algorithms
for online planning with exponential number of actions are based on
Monte-Carlo sampling. However, without a proper selection of the ap-
propriate subset of actions these techniques cannot be used. The most
recent algorithms tackling this problem utilize an assumption of linearity
with respect to the combinations of the actions.

In this paper, we experimentally analyze robustness of two state-of-
the-art algorithms NMC and LSI for online planning with combinatorial
actions in various setups of Real-Time and Turn-Taking Strategy games.

1 Introduction

In wide range of large-scale sequential decision making problems, analysis of the
problem is often reduced to a state-space area that is considered most relevant
to the specific decision currently faced by the agent. Thus the agent is required
to find the best estimated action for the current state, instead of producing the
entire plan as off-line algorithms do. In contrast, on-line planning algorithms
focus on the current state of the agent, examine the set of possible courses of
action onwards, and use the outcome of that examination to select an action to
execute. After the action is executed in the real world, the agent repeats the
planning process from the acquired state.

Each sequential problem can be described as a transition system of states and
actions. When the number of applicable actions at each state is polynomial in the
size of the problem description, the computational complexity of planning grows
entirely from the size of the state-space. This “curse of state dimensionality”
seems to receive most of the attention in the automated planning research.

Whatever the atomic actions of the agents are, as long as the agent can per-
form only one (or a small fixed number of) atomic actions simultaneously, the
action choices at any state can be efficiently enumerated. However, if we are plan-
ning for a team of cooperating agents that each has a number of possible atomic

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 16–28, 2014.
© Springer International Publishing Switzerland 2014

On Robustness of CMAB Algorithms: Experimental Approach 17

actions to execute, then the problem exhibits a “curse of action dimensionality”
via the combinatorial structure of the action space.

Real-time strategy games (RTS) are a great example of sequential simultane-
ous decision problems with combinatorial action spaces, as the players are asked
to move sets of units that each by itself forms the force of each player [2,6,7,15,17].
Thus, the set of actions available to a player at each state corresponds to a (some-
times proper, due to some game-specific constraints) subset of the cross-product
of explicitly given sets of atomic actions of her units1.

The problem of combinatorial actions was tackled in work of Ontañón [16], it
was suggested considering combinatorial actions in on-line planning through the
lens of combinatorial multi-armed bandit (CMAB) problems [11,5,16].

In particular, Ontañón suggested a specific Monte-Carlo algorithm for online
planning in CMABs, called Naive Monte Carlo (NMC), that is driven by an
assumption that the expected value of a combinatorial action can be faithfully
approximated by a linear function of its components. Evaluated on the μRTS
game, NMC was shown to favorably compete with popular search algorithms
such as UCT [14] and alpha-beta considering durations ABCD [7], which avoid
dealing with combinatorial actions directly [16].

In our recent paper [18], we presented a family of algorithms (LSI) that sub-
stantially outperformed NMC. In this work we continue the study of on-line
planning algorithms for CMABs, concentrating on the robust empirical evalu-
ations of both LSI and NMC algorithms, while drawing new conclusions about
both quality and responsiveness of those algorithms.

2 Background

The multi-armed bandit (MAB) problem is a sequential decision problem defined
over a single state. At each stage, the agent has to execute one out of some k ≥ 2
stochastic actions {a1, . . . , ak}, with ai being parameterized with an unknown
distribution νi, with expectation μi. If ai is executed, the agent gets a reward
drawn at random from νi.

Most research on MABs has been devoted to the setup of reinforcement
learning-while-acting, where the performance of the agent is assessed in terms of
its cumulative regret, the sum of differences between the expected reward of the
best arm and the obtained rewards. Good algorithms for learning-while-acting
in MAB, like UCB1 [1], trade off between exploration and exploitation. These
MAB algorithms also gave rise to popular Monte-Carlo tree search algorithms
for online planning in multi-state sequential decision problems (e.g., Markov De-
cision Processes and sequential games), such as ε-MCTS [19], UCT [14], and
MaxUCT [13].

However, as it was first studied in depth by Bubeck et al. [4], learning-while-
acting and online planning are rather different problems that should favor dif-
ferent techniques. Unlike in learning-while-acting, the agent in online planning

1 From an agent-centric point of view, the player requires acting of her units, therefore
we use the game-theoretic terminology of agents instead of units.

18 A. Komenda, A. Shleyfman, and C. Domshlak

may try the actions “free of charge” a given number of times N (not necessarily
known in advance) and is then asked to output a recommended arm. The agent
in online planning is evaluated by his simple regret, i.e., the difference μ∗ − μi

between the expected payoff of the best action and the average payoff obtained
by his recommendation ai.

In other words, in online planning for MAB, the agent is judged solely for
his final recommendation, and he is provided with a simulator that can be used
“free of charge” to evaluate the alternative actions by drawing samples from
their reward distributions. Therefore, good algorithms for online planning in
MABs, like uniform-EBA [4], Successive Rejects [3], and Sequential Halving [12],
are focused solely on exploration, and they already gave rise to efficient Monte-
Carlo tree search algorithms for online planning in multi-state sequential decision
problems such as BRUE [9] and MaxBRUE [10].

In contrast to regular MAB problems, in which rewards are associated with
individual actions and a single action is executed at each stage, in combinatorial
multi-armed bandit (CMAB) problems, the rewards are associated with certain
subsets of actions, and the agents are allowed to simultaneously execute such
subsets of actions at each stage [11,5,16,18]. In terms closest to problems that
motivated our work in the first place, i.e., sequential decision problems for teams
of cooperative agents, a CMAB problem is given by a finite set of n ≥ 1 classes
of actions {A1, . . . , An}, with Ai = {ai;1, . . . , ai;ki}, and a constraint C ⊆ A =
[A1 ∪ {ε}] × · · · × [An ∪ {ε}], where ε denotes “do nothing”, and thus A is the
set of all possible subsets of actions, with at most one representative from each
action class. We refer to every set of actions a ∈ A as a combinatorial action, or c-
action, for short. Each c-action a is parameterized with an unknown distribution
ν(a), with expectation μ(a). At each stage, the agents have to execute one out
of some 2 ≤ K = |C| ≤ ∏n

i=1 ki c-actions, and if c-action a is executed, then the
agents get a reward drawn at random from ν(a).

Whether our setup is online planning in CMABs or learning-while-planning
in CMABs, it is easy to see that CMAB problems with K = O(poly(n)) can be
efficiently approached with regular MAB algorithms. However, if the problem is
only loosely constrained and thus the c-action space grows exponentially with n
(as it is typically the case in RTS-like planning problems), then the algorithms
for regular MAB problems are no-go because they all rely on assumption that
each c-action can be sampled at least once. This led to devising algorithms
for CMAB learning-while-planning [11,5] and online planning [16], all making
certain assumptions of “side information”, usefulness of which depends (either
formally or informally) on the properties of μ over the polytope induced by
A1 × · · · × An. Such a “side information” basically captures the structure of μ
targeted by the algorithm, but the algorithm can still be sound for arbitrary
expected reward functions. This is, for instance, the case with the Naive Monte
Carlo algorithm of Ontañón [16] and Linear Side-Information algorithm [18],
which we describe in detail and compare, later on. As a setting we chose the
μRTS game that was introduced by Ontañón in [16].

On Robustness of CMAB Algorithms: Experimental Approach 19

As changing various parameters of the game, we test both algorithms for
producing the actions with the highest evaluated reward in the moment. The
efficiency of the produced strategies is measured by whether the algorithm won
or lost the game.

3 CMAB Algorithms with Linear Side-Information

In contrast to the problems of classic MABs, the area of combinatorial MABs
was not so heavily studied so far and the algorithms tackling the problem are
sparse. Since we are aiming at RTS games and Monte-Carlo techniques, there
are only two candidate algorithms: Ontañón’s Naive Monte Carlo (NMC) [16]
and our recent Linear Side-Information (LSI) [18].

Both NMC and LSI comprise two distinct sub-processes: (a) generation of the
candidate c-actions and (b) evaluation of the generated c-actions. To our knowl-
edge, these are the only approaches to solve CMAB by sampling in general, as
for the classic MAB approaches it is unfeasible to work with the whole (exponen-
tially large) set of c-actions C, in other words to tackle the “curse of action space
dimensionality”. However, the interconnection of these two phases is not fixed.
On the one hand, NMC is interleaving both these phases reusing the evaluation
of each particular c-action for each particular atomic action. LSI, on the other
hand, uses separate phases, i.e., it evaluates atomic actions and based on these
evaluations, it generates a set of c-actions C∗.

In the following subsections we describe both algorithms prior to the ex-
perimental analysis of their sensitivity to the sampling budget, length of the
look-ahead and variants of a RTS game with various action durations.

3.1 NMC

The Naive Monte Carlo algorithm was proposed by Ontañón [16]. The generate
and evaluate sub-processes are interleaved in form of ε-greedy strategies and op-
erate under an assumption that μ is linear over the atomic actions of the CMAB,
i.e., μ(a) =

∑n
i=1

∑ki

j=1 1{ai;j∈a}wi;j , where 1{·} is the indicator function, and
wi;j ∈ R. The particular sub-processes are used with probability ε0 and (1− ε0)
respectively:

1. With probability ε0: The generation sub-process forms and samples a candi-
date c-action a by selecting atomic actions from each set Ai. The selection
is made independently and ε1-greedily

2. With probability (1 − ε1), the i-th
atomic action of a will be selected from Ai uniformly at random.

2. With probability (1−ε0): The evaluation sub-process samples the empirically
best action in (the current) set C∗.

2 The selection goes with probability ε1 for a which will contain the best atomic action
so far from Ai. An action ai;j is the best of Ai if the average reward of the c-action
samples involving ai;j is the highest among the atomic actions of Ai

20 A. Komenda, A. Shleyfman, and C. Domshlak

The last best action after spending the whole sampling budget N is used and
executed by the agents.

One of the benefits of the algorithm is that it converges to the best c-action
from C in the infinity, even if the assumption of μ’s linearity does not hold.
The other benefit is that NMC considerably outperforms algorithms such as
UCT and ABCD in the μRTS game. However, since the algorithm is interleaving
the generation and evaluation sub-processes, a substantial amount of the eval-
uated samples is used on c-actions based on only small number of samples of
the side-information in the generate phase. In addition, the algorithm does not
meaningfully guarantee any quality of the recommended action from the gener-
ated set of c-actions C∗, as the finally selected (best) c-action can be sampled
only once during the whole process. Our more detailed analysis of this effect can
be found in [18].

To overcome the weaknesses of NMC, we have recently proposed another
Monte-Carlo algorithm [18] to tackle CMABs exploiting linearity of μ with
smaller variance of the evaluation of the selected c-action.

3.2 LSI

In contrast to NMC, our recently proposed algorithm [18] Linear Side-Information
(LSI) does not interleave the generate and evaluate sub-processes, but uses them
in a serial manner, i.e., working in two phases, the generate phase and the eval-
uate phase. Each phase has a dedicated sampling budget, partitioned from N
into Ng for generation and Ne for evaluation respectively.

In the generate phase, the algorithm evaluates systematically all atomic ac-
tions of all agents supplemented by other agents’ actions selected with uniform
random distribution. The algorithm utilizes all the Ng samples and the particular
evaluations are reused for all the atomic actions of all agents (incl. those ran-
domly supplementing the systematically selected one). Based on the evaluations

a weight function R̂ is generated from the evaluated atomic actions (adopting
the linear side information assumption). Further, a probability distribution D

̂R

over c-action space C biased “towards” R̂ is formed. Precisely, the atomic action
classes are ordered in the increasing order of entropy that is exhibited by the
corresponding probability distributions D[{R̂(ai;1), . . . , R̂(ai;ki)}], as measured
by an entropy measure H (such as the Shannon entropy, or some other Renyi
entropy [8]). These measures quantify the diversity of probability distributions,
and minimize on the least diverse distributions, which are uniform distributions.
Hence, if c-actions are generated by sampling the atomic action classes sequen-
tially, yet these sequential choices are inter-constrained, sampling the action
classes in the increasing order of H(D[{R̂(ai;1), . . . , R̂(ai;ki)}]) prioritizes classes
in which the different atomic actions actually differ in their purported value, and
thus the choice really matters. The generate phase ends with generation of the
c-actions based on the probability distribution D

̂R. The resulting set of c-actions
enters the following phase as an input.

In the evaluate phase, the generated c-actions are systematically evaluated
using the recent Sequential Halving algorithm of Karnin et al. [12] for action

On Robustness of CMAB Algorithms: Experimental Approach 21

recommendation (aka online planning) in regular MABs. The algorithm was
chosen especially because of its best formal guarantees to date. Sequential Halv-
ing is an iterative approach spreading the sampling budget such that the finally
selected MAB arm (or c-action in our case) is sampled Ne

�log2(Ne)� -times, as the

algorithm samples uniformly sets of arms in each iteration and keeps only the
better half of them to the next iteration. Let us recall that NMC does not guar-
antee such sampling amount of the best estimated arm and therefore the quality
of the final c-action estimation can be in NMC as low as quality of estimation
by one sample.

The particular algorithm summarized in this section is one of four algorithms
of the LSI family we have proposed in [18]. Precisely, it is LSIeF, using random-
ized supplement of the atomic actions in the first phase, thus in the notion of
underlying simplex object representing sampling of Faces and based on entropy
measure when forming the probability distribution for the second phase.

Fig. 1. An example of a mid-game state in μRTS

4 Problem Statement

As a platform for our experiments we chose an instantiation of a Real-time
Strategy (RTS) game—μRTS3. This two-player zero-sum game simulates the
production and maneuvering of various military units with the goal of destroy-
ing the opponent forces. In this paper we address both the real-time (RT) and
turn-taking (TT) version of μRTS, where real-time implies actions of different
durations and almost simultaneous actions for both players, and turn taking is
a standard setting (like Chess or Go), where the actions are issued turn by turn
by both players. For the experiments we used an 8 × 8 grid environment. Each
state is fully observable for both players, and each cell on the grid can be occu-
pied either by unit, building, or a resource storage. Each storage has a limited
supply of the resource, can be used by both players, and destroyed only when

3 We would like to thank to Santiago Ontañón for making μRTS publicly available.

22 A. Komenda, A. Shleyfman, and C. Domshlak

the resource is exhausted. A player can build working and combat units which
can both move and attack enemy units and buildings.

The working units are all identical (Worker), they can also transport re-
sources and build buildings. As attackers, however, they are weak. The combat
units come in three types—light melee (LMelee), heavy melee (HMelee), and
ranged unit (Ranged)—all better attackers than working units, each with its
own strengths and weaknesses. In general, movements and attacks are possible
only within the 4-connected cells adjacent to the unit location. Additionally,
working units and combat units can be built only in Base and Barracks build-
ings, respectively. The only difference between real-time and turn-taking version
of the game is that the real-time setting all actions may have a different dura-
tions and in the TT setting the outcomes of all taken actions will be presented
in the next turn, effectively setting all durations to 1. In both cases, actions are
not interruptible. Table 1 shows the parameters of units and buildings.

Table 1. Parameters of different buildings and units in μRTS used in [16,18]. HP
stands for health points, Cost is in the resource units, T(No-op), T(Move), T(Attack),
and T(Prod) represent the durations of an no action (No-op), a single move (in simu-
lated time units), duration of the attack, and duration of producing the unit/building
respectively. Damage and Range represent decrease of HP of the target unit and the
range of the attack, respectively.

HP Cost T(No-op) T(Move) T(Attack) Damage Range T(Prod)

Base 10 10 10 — — — — 250

Barracks 4 5 10 — — — — 200

Worker 1 1 10 10 5 1 1 50

LMelee 4 2 8 8 5 2 1 80

HMelee 4 2 12 12 5 4 1 120

Ranged 1 2 12 12 5 2 3 100

For each player, the initial state of the game contains one Base, one Worker
near the base, and one nearby resource storage. The initial state is the same for
both game settings. Even if the resources are gathered optimally, they suffice for
1/3 of the maximal game duration at most, for both the RT and TT games. In
Figure 1, one of mid-game states is depicted.

5 Robustness Analysis of NMC and LSI

Although we have experimentally evaluated the LSI algorithm in [18] and showed
that it outperforms NMC in the μRTS setup of Ontañón’s paper [16], a deeper
experimental comparison for different setups of the μRTS game, various sampling
budgets and lengths of look-ahead was out of the scope of the paper. In this
section, we are filling this gap and adding finer conclusions.

On Robustness of CMAB Algorithms: Experimental Approach 23

5.1 Turn-Taking Variant of µRTS

The μRTS game was designed by Ontañón as a simplified model of real-time
strategy games, therefore the actions of the units/agents differ in duration. Such
games require handling not only of what actions are played, but also when they
are played, since an appropriate timing of the actions is crucial especially during
attacks and retreats.

To evaluate efficiency of LSI and NMC in environment without such timing
requirements, we have prepared a variant of μRTS denoted as 1-step, where the
duration of all actions is exactly one simulation step. The parameters of the
game are summarized in Table 2.

Table 2. Parameters of μRTS variant forcing the players to do a decision for combi-
natorial action in each step (1-step variant, for p = 1) and gradually weakening this
requirement with p > 1. The explanation of the parameters follows Table 1.

HP Cost T(No-op) T(Move) T(Attack) Damage Range T(Prod)

Base 10 10 1 — — — — p

Barracks 4 5 1 — — — — p

Worker 1 1 1 p p 1 1 p

LMelee 4 2 1 p p 2 1 p

HMelee 4 2 1 p p 4 1 p

Ranged 1 2 1 p p 2 3 p

At each simulated time point of the 1-step game, the decision of what c-
action to select has to be done for all the agents, since no agent can be occupied
by execution of another action from previous time steps. In contrast to the
original μRTS setup, in the 1-step variant, every decision is combinatorial with
the exponential dependence on the current number of agents in the game. A
simple experiment showed us that in the original variant of the game, the average
number of agents per one decision was 1.55±0.18. While in the 1-step variant, it
is 7.4±0.42. With this observation in mind, we prepared a head-on experiment
comparing LSI and NMC in the 1-step game and we compared the algorithms also
with a base-line denoted as noSI describing an approach oblivious to the side-
information. noSI is based on the two phase scheme used by LSI, but generates the
candidate c-actions randomly. The evaluation phase uses Sequential Halving and
the evaluation budget of Ne. All experiments used a fixed budget of N = 2000
samples and fixed look-ahead of l = 200 steps. The results are summarized in
Table 3.

The results reveal two notable findings. First, the game is strongly biased
towards the first player. In [18], we have reported on a suspicion of such bias in
the μRTS simulator, but the effect was negligible in the original variant of the
game. The bias is caused by a fixed order of the players and the fact that the
second player cannot play actions which are in conflict with the decision already
made by the first player, i.e., the game becomes a TT strategy. To compensate
for this bias, we measured both player orderings of the match-ups.

24 A. Komenda, A. Shleyfman, and C. Domshlak

Table 3. Comparison of noSI, NMC, LSI in the 1-step variant of μRTS. The results in
brackets are summed up for both orderings of the players of one match-up. The results
are in percents of wins/ties/losses of the row algorithm against the column one. Each
match-up was measured over 150 games, i.e., each algorithm combination (results in
brackets) was measured over 300 games.

w/t/l ↓ noSI LSI NMC

noSI 54/22/24 (30/14/56) 71/14/15 (40/17/43)

LSI 87/7/6 (56/14/30) 86/8/6 (61/15/24)

NMC 71/20/9 (43/17/40) 42/21/37 (24/15/61)

Second, the efficiency results of LSI in the original game holds even stronger
for the 1-step variant. The ratios of the match-up between LSI and NMC is in
the 1-step variant approx. 2.6/0.6/1 (wins/ties/losses) and in the original game
it was 1.7/0.5/1. LSI outperforms noSI by ratio 1.9/0.5/1 and it was only by
1.1/0.4/1 in the original game. The comparison of NMC and noSI shows that in
the 1-step game they get on par 1/0.4/1, which is worse result for noSI than in the
original variant where it was 1.4/0.3/1 against NMC. Since NMC, similarly to LSI,
assumes linearity of the action combination with respect to μ, we conclude that
the positive effect of the linear side-information used for candidate selection is
getting stronger as the count of c-actions grows, this happens due to increasing
number of agents. Additionally, the results strengthen our conclusions on LSI
outperforming NMC stated in [18].

With decreasing number of the agents participating in one decision, the num-
ber of c-action requiring evaluation decreases exponentially. And therefore the
ratio of LSI outperforming NMC should decrease as well. To support this hy-
potheses, we have prepared an experiment with increasing duration of all ac-
tions, precisely for games defined by Table 2 with p > 1. The results presented
in Figure 2 supports the hypothesis, therefore we conclude that LSI exploits
the side-information better than NMC, because with growing durations of the
actions the sampling budget per one c-action increases4.

5.2 Variance of Evaluations

As mentioned before, our hypothesis is that the strength of LSI over NMC is
caused by smaller variance in the estimated value of the selected c-action. If it
is so, with increasing uncertainty of the c-action evaluations LSI should improve
the lead over NMC. Such uncertainty can be caused by two factors in μRTS: (a)
by smaller sampling budget and (b) by shorter look-ahead of each sample, i.e.,
lower number of game steps when the sampling simulates acting of the agents,
followed by heuristic evaluation of the last state.

4 The confidence of the results (and therefore strength of the conclusions) is limited
by the amounts of the games simulated for the experiments. 300 games for the 1-step
setup and 200 for the rest. The amounts reflects high computational demands on
simulation of one game which is in orders of hours

On Robustness of CMAB Algorithms: Experimental Approach 25

●

●

●
●

●

●

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

duration of actions, p

w
in

 r
at

io
 o

f L
S

I a
ga

in
st

 N
M

C

Fig. 2. The win ratio of LSI against NMC with prolonging duration of actions in the
game. The ratio is counted as (wins + 0.5 · ties)/plays, i.e., 0.5 means that both
algorithms are on par. Each point was measured over 200 games.

All the experiment to this point were using a fixed budget of N = 2000
samples and fixed look-ahead of l = 200 steps in variants of the game with equal
duration of No-ops and move actions. For the last batch of experiments, we used
a realistic variant of the game with duration of the No-ops set to one step (see
Table 4) and variable N and l. The results for match-ups of LSI and NMC are
summarized in Figure 3.

Table 4. Parameters of a realistic variant of μRTS using unit duration of No-ops. The
explanation of the parameters follows Table 1.

HP Cost T(No-op) T(Move) T(Attack) Damage Range T(Prod)

Base 10 10 1 — — — — 250

Barracks 4 5 1 — — — — 200

Worker 1 1 1 10 5 1 1 50

LMelee 4 2 1 8 5 2 1 80

HMelee 4 2 1 12 5 4 1 120

Ranged 1 2 1 12 5 2 3 100

For both decreasing budget and shortened look-ahead, we can observe im-
proving tendency of LSI against NMC, which is in line with the hypothesis we
proposed.

To rule out the bias caused by comparison of two different algorithm, the final
batch of experiments targets sensitivity of the algorithms to decreasing sampling
budget and length of the look-ahead when competing against themselves. The
results are summarized in Tables 5 and 6.

26 A. Komenda, A. Shleyfman, and C. Domshlak

●

●

● ●

●

500 1000 1500 2000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sampling budget, N

w
in

 r
at

io
 o

f L
S

I a
ga

in
st

 N
M

C

●

●

●

●

●

50 100 150 200

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

look−ahead length, l

w
in

 r
at

io
 o

f L
S

I a
ga

in
st

 N
M

C

Fig. 3. The win ratio of LSI against NMC with growing sampling budget N (on left)
and increasing look-ahead l (on right). The ratio is counted as (wins+0.5·ties)/plays,
0.5 means that both algorithms are on par. Each point was measured over 200 games.

The difference between plays of algorithms with larger and smaller sampling
budgets is most significant for LSI, which indicates that it is the most robust
algorithm in respect to the size of the budget and with its highest utilization
from the compared algorithms. Similar but weaker effect can be observed in
the case of shorter look-ahead. Using the same logic, it means that LSI is more
robust with smaller number of losses and higher number of ties against the same
algorithm with longer look-ahead.

In summary, all presented experimental results support our hypothesis that
LSI outperformsNMC because of the improved utilization of the side-information,
as of the guaranteed number of samples dedicated to the evaluation of the c-
actions. Additionally, we have shown that LSI has better win-ratio than NMC
if the used evaluation is of higher variance in general (caused either by lower
budget per c-action or shorter look-ahead).

6 Conclusion

We have shown that LSI is stronger with smaller budgets and shorter look-
ahead and therefore we conclude that LSI is more robust against inaccurate
evaluations of the candidate actions, because of the exploitation of the linear
side-information, than NMC in the μRTS game (with confidence of experiments
based on 300–200 games per measurement). We have demonstrated this result in
various game setups and evaluation parameterizations. These results supplement
our recent findings and extend the understanding of the benefits of utilization
of side-information in CMAB problems in RTS games.

In the future work, we plan to focus on different games as Arimaa5, to ana-
lyze the findings from RTS games to different turn-taking games designed with
combinatorial actions.

5 http://arimaa.com/

http://arimaa.com/

On Robustness of CMAB Algorithms: Experimental Approach 27

Table 5. Comparison of noSI, NMC and
LSI with different sampling budgets. The
results are in percents of wins/ties/losses
of the row setup against the column setup.
Each match-up was measured over 200
games.

noSI ↓ 1525 1050 100

2000 48/13/39 53/11/36 100/0/0

1525 50/11/39 100/0/0

1050 99/0/1

NMC ↓ 1525 1050 100

2000 50/9/41 57/8/35 100/0/0

1525 55/11/34 98/0/2

1050 99/0/1

LSI ↓ 1525 1050 100

2000 36/22/42 55/13/32 100/0/0

1525 57/11/32 100/0/0

1050 99/0/1

Table 6. Comparison of noSI, NMC and
LSI with different length of the look-
ahead. The form of the results follows Ta-
ble 5

noSI ↓ 153 105 10

200 56/11/33 69/1/30 100/0/0

153 58/4/38 100/0/0

105 100/0/0

NMC ↓ 153 105 10

200 53/11/36 68/2/30 100/0/0

153 58/1/41 100/0/0

105 100/0/0

LSI ↓ 153 105 10

200 56/15/29 70/4/26 100/0/0

153 60/4/36 100/0/0

105 100/0/0

Acknowledgments. This work was partly supported by USAF EOARD (grant
no. FA8655-12-1-2096), the Technion-Microsoft Electronic-Commerce Research
Center, and a Technion fellowship.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

2. Balla, R., Fern, A.: UCT for tactical assault planning in real-time strategy games.
In: IJCAI, pp. 40–45 (2009)

3. Bubeck, S., Munos, R.: Open loop optimistic planning. In: COLT, pp. 477–489
(2010)

4. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in finitely-armed and
continuous-armed bandits. Theor. Comput. Sci. 412(19), 1832–1852 (2011)

5. Chen, W., Wang, Y., Yuan, Y.: Combinatorial multi-armed bandit: General frame-
work and applications. In: ICML, pp. 151–159 (2013)

6. Chung, M., Buro, M., Schaeffer, J.: Monte Carlo planning in RTS games. In: IEEE-
CIG (2005)

7. Churchill, D., Saffidine, A., Buro, M.: Fast heuristic search for RTS game combat
scenarios. In: AIIDE (2012)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, 2 edn. (2006)
9. Feldman, Z., Domshlak, C.: Monte-Carlo planning: Theoretically fast convergence

meets practical efficiency. In: UAI (2013)
10. Feldman, Z., Domshlak, C.: On MABs and separation of concerns in Monte-Carlo

planning for MDPs. In: ICAPS (2014)

28 A. Komenda, A. Shleyfman, and C. Domshlak

11. Gai, Y., Krishnamachari, B., Jain, R.: Learning multiuser channel allocations in
cognitive radio networks: A combinatorial multi-armed bandit formulation. In:
IEEE Symposium on New Frontiers in Dynamic Spectrum, pp. 1–9 (2010)

12. Karnin, Z.S., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: ICML, pp. 1238–1246 (2013)

13. Keller, T., Helmert, M.: Trial-based heuristic tree search for finite horizon MDPs.
In: ICAPS, pp. 135–143 (2013)

14. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

15. Kovarsky, A., Buro, M.: Heuristic search applied to abstract combat games. In:
Kégl, B., Lee, H.-H. (eds.) Canadian AI 2005. LNCS (LNAI), vol. 3501, pp. 66–78.
Springer, Heidelberg (2005)

16. Ontañón, S.: The combinatorial multi-armed bandit problem and its application
to real-time strategy games. In: AIIDE (2013)

17. Saffidine, A., Finnsson, H., Buro, M.: Alpha-beta pruning for games with simulta-
neous moves. In: Hoffmann, J., Selman, B. (eds.) AAAI 2012 (2012)

18. Shleyfman, A., Komenda, A., Domshlak, C.: On Combinatorial Actions and
CMABs with Linear Side Information. In: Schaub, T., Friedrich, G., O’Sullivan,
B. (eds.) ECAI 2014. Frontiers in Artificial Intelligence and Applications, vol. 204,
pp. 825–830 (2014)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 29–44, 2014.
© Springer International Publishing Switzerland 2014

Job-Level Algorithms for Connect6
Opening Position Analysis

Ting-Han Wei1, I-Chen Wu1, Chao-Chin Liang1, Bing-Tsung Chiang1,
Wen-Jie Tseng1, Shi-Jim Yen2, and Chang-Shing Lee3

1 Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
2 Department of Computer Science and Information Science, National Dong Hwa University,

Hualien, Taiwan
3 Department of Computer Science and Information Science, National University of Tainan,

Tainan, Taiwan

Abstract. This paper investigates job-level (JL) algorithms to analyze opening
positions for Connect6. The opening position analysis is intended for opening
book construction, which is not covered by this paper. In the past, JL proof-
number search (JL-PNS) was successfully used to solve Connect6 positions.
Using JL-PNS, many opening plays that lead to losses can be eliminated from
consideration during the opening game. However, it is unclear how the informa-
tion of unsolved positions can be exploited for opening book construction. For
this issue, this paper first proposes four heuristic metrics when using JL-PNS to
estimate move quality. This paper then proposes a JL upper confidence tree (JL-
UCT) algorithm and some heuristic metrics, one of which is the number of
nodes in each candidate move’s subtree. In order to compare these metrics
objectively, we proposed two kinds of measurement methods to analyze the sui-
tability of these metrics when choosing best moves for a set of benchmark posi-
tions. The results show that for both metrics this node count heuristic metric for
JL-UCT outperforms all the others, including the four for JL-PNS.

Keywords: Job-level computing, opening book generation, Connect6, proof-
number search, Monte-Carlo tree search, upper confidence bound.

1 Introduction

The construction of opening books is critical in designing a strong game-playing pro-
gram [1,2,3]. While manual construction of opening books have shown success in the
early days, recent efforts have mostly been focused on the automatic generation of
opening books [1,2,3,4,5,6]. The automatic generation of opening books is especially
important to the game of Connect6, a relatively young game that was introduced in
2005 [7], since few expert game records are available for opening book generation.

In the past, many search algorithms such as alpha-beta search [8] and Monte-
Carlo tree search (MCTS) were applied to explore new opening moves automatically,
as done in Awari [3], Othello [1,3], Amazons [9,10], and Go [4,11]. In [12,13], job-
level (JL) computing was proposed by Wu et al. to help solve positions by multiple

30 T.-H. Wei et al.

simultaneous execution of game-playing programs as jobs. Based on JL computing,
they also proposed the JL proof-number search (JL-PNS) algorithm to solve various
Connect6 positions successfully, many of which were openings, with significant
speedups. Saffidine, Jouandeau, and Cazenave [14] also used JL-PNS to solve posi-
tions of Breakthrough. Chen et al. [15] proposed a JL alpha-beta search (JL-ABS)
algorithm to help construct a Chinese chess opening book. Other opening book gener-
ation methods similar to JL methods include the Meta-MCTS method proposed by
Chaslot et al. [5], and the job queue by Schaeffer et al. [16].

Using JL-PNS [12,13], many opening plays that lead to losses can be eliminated
from consideration. However, a major drawback to opening book generation using
JL-PNS is that it does not yield a good estimate value of positions if the search is
terminated before a solution can be obtained. Since many opening positions tend to be
difficult to solve, a large amount of computation spent on expanding opening posi-
tions may be wasted, if the results from the computation are not used for other pur-
poses. To make most of these computations useful, we attempt to use these results to
help construct an opening book.

To utilize these results, four heuristic metrics are proposed to distinguish the best
move from all possible candidate moves during JL-PNS analysis. However, none of
these heuristic metrics can indicate move quality universally. The main reason is that
PNS is designed to prove/solve positions, not to estimate the strengths of positions.

To solve these issues, we also propose a JL upper confidence tree (JL-UCT) algo-
rithm. Opening positions are viewed as multi-armed bandit problems [17], where each
possible move from a given position is treated as a choice. UCT has been successful
in balancing between exploiting good moves and exploring new possibilities like the
common MCTS [18]. One of the heuristic metrics for JL-UCT simply chooses the
move with the maximum number of nodes as most MCTS methods do.

In order to compare these metrics objectively, we propose two kinds of measure-
ment methods to analyze the suitability of these metrics for a set of benchmark posi-
tions. The results show that the heuristic metric of node count using JL-UCT outper-
forms all the others, including the four for JL-PNS in most cases.

The organization of this paper is as follows. Section 2 presents related work. This
includes a brief introduction to Connect6 and the game program NCTU6, JL-PNS,
and other JL algorithms for opening position analysis. Section 3 outlines the JL-PNS
heuristic metrics that are devised to pick out the best candidate move during opening
position analysis by JL-PNS, while Section 4 describes the JL-UCT algorithm. Sec-
tion 5 describes the experiments performed and gives a discussion of the experimental
results. Section 6 makes concluding remarks.

2 Previous Work

2.1 Connect6 and NCTU6

Connect6 is a k-in-a-row game proposed by Wu in 2006 [7]. In this game, the first of
two players, Black, starts the game by placing a single black stone on an empty square
of a typical 19x19 Go board. Each subsequent move is then played by Black or White

 Job-Level Algorithms for Connect6 Opening Position Analysis 31

alternately using two stones of his color on empty squares, starting with White’s re-
sponse to Black’s first move. The first player that is able to get six consecutive stones
in a line (horizontally, vertically or diagonally) wins. For simplicity of discussion,1
we call consecutive stones live if they are not blocked at either end or dead if they are
blocked at exactly one end. A common strategy in Connect6 involves playing live-
fours (L4), creating a so-called double threat where the opponent must block both
ends of the pattern with two stones or lose immediately. Another example of a double
threat involves playing two dead-fours (D4), where each D4 is a single threat.
Winning by continuously forcing the opponent to block double threats is a common
strategy.

NCTU6 is a Connect6 program, developed by the team including some of the au-
thors, which has won multiple Connect6 tournaments and man-machine champion-
ships [19,20,21,22,23]. It consists of a solver component, which uses threat space
search [24], and an alpha-beta search component [25]. Two features of NCTU6 are
particularly important in the scope of this paper.

First, NCTU6 is able to verify victories involving continuous threats, or when such
methods fail to find a solution, give an estimate of a position’s strength based on the
program’s evaluation function. The resulting estimate is categorized into 13 distinct
game statuses. A winning position for Black is categorized as “B:W”; “B4” indicates
the game is extremely favorable for Black, while “B3”, “B2”, and “B1” indicate Black's
advantage in decreasing order. The five game statuses from White’s perspective are
“W:W”, “W4”, “W3”, “W2”, and “W1”, also in decreasing order from White winning
to the position being slightly favorable for White. For positions where neither player has
an advantage, there are three game statuses. “Stable” indicates that the evaluation values
for subsequent moves are unlikely to fluctuate significantly. There are two unstable
statuses, “unstable1” and “unstable2”, where the evaluation fluctuations are greater for
the latter. It is worth noting, however, that this fluctuation can also exist for one-sided
advantage positions such as B1/W1 through B4/W4 as well.

The second important feature of NCTU6 is that a set of prohibited moves can be
given in addition to the position we wish NCTU6 to evaluate. NCTU6 will then calcu-
late and suggest the best move to play that does not exist in the set of prohibited
moves, given the input position. If NCTU6 cannot come up with a suggestion that
does not exist in the prohibited set without losing, it will consider the position to be a
loss with respect to the prohibited set. This feature is critical in applying NCTU6 to
the job-level computation model, which we will describe in the next section.

2.2 Job-Level Proof-Number Search (JL-PNS)

This section reviews the JL-PNS algorithm. The overall JL computation model is
briefly explained, followed by the generic job-level search. Proof-number search
(PNS) and the process of applying it to the generic JL search are then summarized.

1 Since the playing strategy of Connect6 is not the focus of this paper, we only give a simple

intuition for the definitions. Rigorous definitions for live and dead patterns are covered in
detail in [7].

32 T.-H. Wei et al.

JL Computation Model. The job-level computation model starts by defining two
parties: the client, whose role is to dynamically create tasks, and workers, the role of
which is to complete these dynamically created tasks. When used in a search algo-
rithm, for example, the client maintains a game tree and may choose a position (which
corresponds to a node in the game tree) to encapsulate the move generation and eval-
uation of this position into a job. The system notifies the client when there are idle
workers, at which time the client, who plays a passive role, submits jobs that are
pending execution. The worker then evaluates this position and returns the result to
the client.

Generic JL Search. To apply the JL computation model to a generic search algo-
rithm, we must identify the common phases associated with a search problem. In the
scope of computer games, a typical search operation consists of a game tree, for
which each node represents a position, while the edges of the tree represent a move
from one position to another. There are three common phases to search algorithms
such as PNS or MCTS. These three phases are selection, execution, and update.

JL-PNS Algorithm. PNS is an algorithm that outperforms many variants of alpha-
beta search when solving game trees [26]. This is made possible by utilizing the
proof-number (PN) and disproof-number (DN) of each explored game tree node. For
an arbitrary node n, its PN/DN counts the minimum number of child nodes that must
be expanded before n can be solved as a winning/losing position. During the selection
phase of PNS, the node that contributes the most to solving the root node of the game
tree is chosen. This node is called the most proving node (MPN).

To apply PNS to the generic job-level search for Connect6, we use the PNS algo-
rithm for the selection and update phases, while the execution phase is encapsulated
as jobs by the client. Workers in this case execute multiple simultaneous instances of
NCTU6, each ready to evaluate jobs. As mentioned earlier in the NCTU6 review, the
game tree is gradually expanded by supplying each worker with two pieces of infor-
mation for every job: the position that needs to be examined, and a set of prohibited
moves that cannot be returned. When a result is returned to the client, it adds the new
node to the game tree and to the set of prohibited moves in the current level so that
existing nodes will not be repeatedly added.

In order to apply the domain knowledge, we also initialize the PN/DN of each node
based on game statuses given by NCTU6. For example, the PN/DN of a position with
B4 are set to 1/18, those for B3 are 2/12, etc. The details of the settings are in [26].

Another detail that is critical to the success of JL-PNS is avoiding selecting the
same MPN multiple times before its result is returned. To solve this problem, another
phase is added to the generic JL search algorithm called the pre-update phase. The
pre-update phase is placed after the selection phase but before the execution phase,
such that the selected node can be flagged to avoid being chosen multiple times.

 Job-Level Algorithms for Connect6 Opening Position Analysis 33

2.3 Other JL or JL-Like Methods for Opening Book Generation

In [15], a JL-ABS method was used to help construct a Chinese chess opening book
to avoid weak spots when dropping out of opening books. Namely, out-of-book posi-
tions should still be evaluated as good to the game-playing program.

Chaslot et al. [5] proposed the Meta Monte-Carlo tree search (Meta-MCTS) me-
thod in which a two-tiered MCTS is performed to automatically generate an opening
book for the game Go. The typical MCTS simulation phase uses a fast routine that
follows simple policies, putting little emphasis on playing strength. The Meta-MCTS
method replaces this simulation policy with a full game-playing program, which also
uses MCTS but in the typical fashion. The upper level is the first tier of the overall
algorithm that selects nodes that are worthy of expansion, while MOGO was used for
the lower level. This method has been applied to7x7 Go position analysis with suc-
cess [27].

3 Heuristic Metrics for JL-PNS

In this section, we describe what a heuristic metric is, and then list the four heuristic
metrics that were used during the construction of the opening book. To apply JL-PNS
to opening book generation, we must first attempt to devise a method of distinguish-
ing good candidate moves from bad ones. A heuristic metric quantifies move quality.
This allows us to choose a move to play for any positions that were searched but not
solved. Four heuristic metrics that are closely related to the principles of PNS were
used to generate the NCTU6 opening book.

3.1 Node Count

PNS is designed to favor exploring moves that allow it to solve a position using the
least number of explorations, instead of the strongest moves to play. However, we
observe that an MPN as well as its ancestors, which all lie on the most proving path
(MPP), still tend to be strong moves. Thus, it is likely that the node that is more often
included in the MPP tends to be stronger than its less included siblings. Nodes that are
more often included in the MPP will have a larger number of nodes in their subtrees,
so we may say that nodes with a higher node count are more likely to be stronger
moves.

However, there is no guarantee that the node with the largest node count is the best
move to play, so the node count metric alone should not be used as a definite sign of a
good move. However, it is an important metric to consider when other metrics are
used together.

3.2 Proof-Number/Disproof-Number Ratio

The PN and DN are critical to PNS in that they allow the algorithm to locate nodes
which contribute most to solving a position. As explained in the PNS review earlier,

34 T.-H. Wei et al.

the PN/DN for a specific node n is the minimum number of child nodes that need to
be evaluated in order to prove that n is a winning/losing position. Therefore, we may
deduce that a lower PN means that n is likely to be favorable, since it is closer to win-
ning than another node which has a high PN. Similarly, a lower DN is likely to be
unfavorable, since n is closer to losing.

To use this as a heuristic metric, we must keep in mind that both PN and DN for a
node need to be considered. To do this, we consider the ratio between the PN and DN
of a node as a valid heuristic metric. In practice, the PN is divided by the DN, and
nodes with the lowest ratio are chosen as the best move when constructing the open-
ing book.

Domain knowledge from NCTU6 is used in the form of PN/DN initialization dur-
ing JL-PNS. With this in mind, the PN/DN ratio is a mostly adequate metric. Howev-
er, there are two drawbacks with this metric. First, the actual move quality is highly
dependent on the node count metric. In many cases, PN/DN values while the number
of child nodes is still relatively small do not indicate move quality definitively. In
other words, the PN/DN ratio cannot be used as an indication of move quality with
confidence if the node count is not sufficiently large for the node. Second, minimax
evaluations are not considered when using the PN/DN ratio metric. Situations may
also arise where nodes with similar PN/DN ratios but distinctly different evaluation
values are treated similarly when they should not be.

3.3 Minimax Evaluation Value

The minimax value of each internal node, which is computed by NCTU6, can be used
to give a rough estimate of the strength of each position. This metric, however, is
more of an intermediate one that can be used by another metric rather than a practical
one on its own. It is often worse than the other metrics since Connect6 can be a highly
unstable game. As described above in Section 2.1, game statuses may vary rapidly, so
the minimax evaluation plays a largely variable role in the game’s outcome.

3.4 Hybrid Metric

The hybrid method combines the PN/DN ratio with NCTU6’s game status estimation
to form a heuristic metric. When several moves have the same game status (eg. B1,
B2, etc.), the one with the minimum PN/DN ratio is chosen.

While this metric is more accurate than the PN/DN metric, it also depends highly
on the node count. The hybrid metric score may still be untrustworthy if the number
of nodes in the subtree is insufficient.

4 Job-Level Upper Confidence Tree

In this section, we describe the JL-UCT algorithm. We then list the three heuristic
metrics that are used with JL-UCT book generation. Next, the upper confidence

 Job-Level Algorithms for Connect6 Opening Position Analysis 35

bound (UCB) function that is used to balance exploration and exploitation is provided
for discussion. Lastly, we discuss the pre-update policy that is used for JL-UCT.

4.1 Algorithm Description

There are two tiers of the JL-UCT search. The lower tier consists of the expansion
phase of the generic job-level algorithm. An existing game-playing program, in this
case NCTU6, is used to evaluate and suggest the best possible move after excluding
the prohibited moves. The upper level is similar to MCTS, where the selection phase
chooses the node that has the highest score according to the UCB function, maintain-
ing a UCT as the algorithm continues the search.

4.2 Upper Confidence Bound Function

For the selection phase of the UCT, we chose the commonly used UCB1 function
[18].

ܹܴ ൅ ሺ ݃݋ඨ݈ܥ ௣ܰሻܰ

where ܹܴ is the win rate for the Black player of the node, ܥ is a pre-defined con-
stant, ௣ܰ is the parent visit count, and ܰ is the visit count of the node itself. Similar
to JL-PNS, the parameters that are used in the UCB function need to be initialized
using domain knowledge from NCTU6. The game statuses returned by NCTU6 are
converted into the following win rate initializations.

Table 1. JL-UCT win rate initialization

Status B:W B4 B3 B2 B1 Stable Unstable 2

Win Rate (%) 100 90 80 70 60 50 50

Status W:W W4 W3 W2 W1 Unstable 1

Win Rate (%) 0 10 20 30 40 50

4.3 Pre-update Phase

To ensure that the JL algorithm does not choose the same node multiple times during
the selection phase, we used the virtual loss policy [12]. That is, once a node is se-
lected for expansion, its win rate value is temporarily set to 0% if the move associated
with the node is one played by Black, or 100% if it is played by White. By setting the
virtual value of the node to a loss, JL-UCT is guaranteed to avoid choosing the same
node in subsequent selection phases. Once the job results have been received, the

36 T.-H. Wei et al.

node win rate value is then updated according to the results, removing the virtual loss
and allowing the node to be chosen again.

4.4 Heuristic Metrics

Three heuristic metrics are proposed and discussed in this subsection.

Node Count. Similar to the reasoning given in the description for JL-PNS, the num-
ber of nodes that belong to a subtree is an intuitive indicator of the move strength that
is associated with the root of the subtree. While JL-UCT prefers to devote resources
to nodes that have a higher win rate, this is subtly different from JL-PNS where the
node that contributes the most to proving the game is given higher priority.

Win Rate. Different from typical MCTS, JL-UCT does not contain a simulation
phase where a simple program plays according to a preset policy until game resolu-
tion. Therefore the win rates that are used here depend mostly on the initialization
values as described in the section above. From this perspective, this metric suffers
from the same drawback as the metrics in JL-PNS, where values may not be trustwor-
thy if the node count is insufficient.

Upper Confidence Bound Value. This metric is the one that the JL-UCT algorithm
uses during the selection phase to choose the node that is most worthy of expansion.
Since the UCB1 function tries to balance exploration with exploitation, this metric
will tend to try different options even when they may be weak choices. Therefore this
metric exists more as a conceptual point of observation rather than a practical indica-
tor during opening book generation.

5 Experiments and Discussion

5.1 JL-PNS vs. JL-UCT

In our experiments, a set of 22 benchmark game positions was used for analysis and
discussion. Each of these positions can be solved as a win for the first player to move.
The experiments were designed this way because we were interested in comparing
how efficiently an algorithm is able to converge on a single winning move. With a
win position for the first player, only one winning move needs to be found for the
proof. If we were to choose losing positions for the first player to play instead, all
child moves will need to be solved as losses for the first player to play. This is advan-
tageous to JL-PNS since there is no urgency to locate the winning moves, as all
moves will eventually be proven as losses, and PNS is inherently superior when it
comes to solving game positions. We did not choose unsolved positions for the

 Job-Level Algorithms for Connect6 Opening Position Analysis 37

benchmark because it is difficult to devise an objective metric that can always pick
the best choice.2

The benchmarks were solved by both JL-PNS and JL-UCT. Each algorithm had
access to an 8-core grid consisting of Intel Pentium E2180s. For clarity of discussion,
we now define ݎ as the root position of a benchmark, ܿଵ, ܿଶ, ܿଷ, … , ܿ௞ as child
moves of ݎ, where ݇ is the total number of possible candidate moves from ݎ. As
described above, for each benchmark, ݎ is solved as a win for the first player. This
implies that some child move, denoted by ܿ௪, can be proven as a win. It is worth
mentioning that for some benchmarks there exists more than one ܿ௪. Let ݊஺ denote
the total number of nodes required to solve ݎ, using algorithm ܣ.

Fig. 1. Number of nodes required to solve each benchmark

The experimental results for ݊௉ேௌ and ݊௎஼் are shown in Fig. 1. The bench-
marks were numbered according to the increasing order of ݊௉ேௌ. While PNS is intui-
tively more suitable for solving positions, we can see that JL-UCT does not perform
much worse than JL-PNS. In some cases, JL-UCT can even find solutions significant-
ly faster than JL-PNS. This is a somewhat surprising result; while JL-UCT typically
needs to expand more nodes to solve AND trees (losing positions) than JL-PNS, it
tends to narrow its search towards ܿ௪ much earlier and spends less resources verify-
ing the non-winning child moves than JL-PNS in OR trees (winning positions), there-
by saving precious computational resources.

5.2 Measuring the Quality of Various Heuristic Metrics

Definitions.
Our second experiment focuses on measuring the quality of various heuristic metrics
that are used by JL-PNS and JL-UCT. We introduce two ways of measuring heuristic
metric quality, which we will refer to as ߝ and ߠ. Namely, heuristic metrics are used
to pick the best move to play when a solution cannot be found, while ߝ and ߠ are
used to measure the quality of heuristic metrics.

2 It is hard to identify the best moves among several unsolved positions, since the game Con-

nect6 is still new and no experts have given convincing identification of best moves yet.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
um

be
r o

f N
od

es

Benchmark

JL-PNS JL-UCT

38 T.-H. Wei et al.

We define ݉௜గ as the best move that is chosen by the metric π when the ݅th job
result has been received and its corresponding node has been added in the update
phase. That is, ݉௜గ is the best chosen move by ߨ, after only ݅ jobs have been com-pleted in the JL system. For example, when we are using JL-PNS, ݉ଵ௉ே஽ே is the best move to play from ݎ according to the PN/DN metric after exactly 1 job has been completed. Using our notation, we can see that ݉ே௉ே஽ே ൌ ܿ௪ , where ܰ ൌ ݊௉ேௌ. The ࢿ Measuring Method.

To evaluate the quality of each heuristic metric, we then recorded ൛݉௜௉ேௌିே, ݉௜௉ே஽ே, ݉௜ெ௜௡௜௠௔௫, ݉௜ு௬௕௥௜ௗൟ௜ୀଵ,ଶ,…,௡ುಿೄ and ൛݉௜௎஼்ିே, ݉௜ௐ௜௡௥௔௧௘, ݉௜௎஼஻ൟ௜ୀଵ,ଶ,…,௡ೆ಴೅

for all benchmarks. Since all benchmarks are solvable, the winning child move ܿ௪
for each benchmark is also known. For any value of ݅ such that 1 ൑ ݅ ൑ ݊஺ , we
say that the metric ߨ will pick the correct move if ݉௜గ ൌ ܿ௪ . We can then express
the last job for which a metric ߨ is unable to pick the correct move as: ߝగ ൌ arg max௜ ሺ݉௜గ ് ܿ௪ሻ

In other words, the specified heuristic metric converged on the correct move ܿ௪
after ߝగ jobs. Therefore, the smaller ߝగ is, the better the metric is for the following
reason. Assume that a position can be solved eventually with ݊஺ nodes, where ݊஺ is
unknown (and quite possibly very large). Then, it is likely that the JL search may stop
before ݎ is solved. Between two algorithms, the algorithm with a smaller ߝగ is
more likely to pick the correct move ܿ௪, even if we do not know what ܿ௪ or ݊஺
are, since it converges earlier.

For example, in an extreme case, if for a certain benchmark, ߝ௎஼்ିே has a value
of 0 using the JL-UCT node count heuristic metric, we know that at any given time
the subtree of ܿ௪ is always the biggest among all other candidate move subtrees.
Consequently, if we stop the JL-UCT algorithm at any time, we will be able to pick
the correct move to play if we decide to use the node count heuristic metric. Of
course, we will not know for certain the move to play is the correct one unless the
benchmark is completely solved, but we may conjecture that an algorithm with small-
er values of ߝగ can find the correct move more often than an algorithm with a larger
value.

The results for JL-PNS, JL-UCT, and the best performing metrics for both algo-
rithms are shown in Fig. 2, Fig. 3 and Fig. 4. Since we are interested in examining the
ratio between two heuristic metrics, for example ߝ௉ேௌିே and ߝ௉ே஽ே, and also since ߝగ values may vary from less than 10 to well over 1000, we use the base 10 loga-
rithmic scale for all figures in this paper. All values of ߝగ are added by 1 so that
we may analyze the experiment data with division and the logarithm function.

First of all, we examine the node count and hybrid metrics in Fig. 2. The node
count metric was expected to be a moderately adequate metric, while the hybrid
metric was expected to perform the best. Surprisingly, the node count metric outper-
formed the hybrid method in nearly all benchmarks. This contradicts with the practic-
al experiences and observations on the actual games played on the website Little Go-
lem [28], where our NCTU6 JL-PNS player is now currently rated number 1 at an
ELO rating of 2421. In the games on Little Golem, for each move, we ran up to 30000
nodes, unless a solution was found. In our observation, the games using the hybrid

 Job-Level Algorithms for Connect6 Opening Position Analysis 39

metric outperformed those for the node count metric. Our conjecture for the pheno-
menon is that when playing on Little Golem, very few positions are solvable until late
in the game.

Next, from the JL-PNS results in Fig. 2, we can see that the minimax evaluation is
indeed a very poor metric. While the PN/DN ratio is much better than the minimax
evaluation metric, it does not perform as well as the hybrid metric.

Fig. 2. JL-PNS metric comparison using last incorrect job ߝగ. All values of ߝగ are added by 1
so that the data may be plotted on a logarithmic scale.

Fig. 3. JL-UCT metric comparison using last incorrect job ߝగ. All values of ߝగ are added by
1 so that the data may be plotted on a logarithmic scale.

From the JL-UCT results in Fig. 3, we can see that the upper confidence bound
value is the worst metric. This is reasonable, since the upper confidence bound value
is designed so that it balances between exploration and exploitation, so even poor
choices may be indicated as the most suitable move every once in a while. The win
rate metric performs reasonably well, but is overall inferior to the node count metric.
For many benchmarks, the node count metric is able to stay fixed on the correct move
from the very beginning.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߝ + 1

Benchmark

PNS-N PNDN

Minimax Hybrid

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߝ + 1

Benchmark

UCT-N Winrate

UCB

40 T.-H. Wei et al.

Fig. 4. Best performing metrics PNS-N and UCT-N comparison using last incorrect job ߝగ. All
values of ߝగ are added by 1 so that the data may be plotted on a logarithmic scale.

The best metric from JL-PNS is compared with JL-UCT in Fig. 4. While JL-UCT
performs much better for many benchmarks, it sometimes appears to perform worse
than JL-PNS, such as in benchmark 2, 8, 9, 10, and 17. Further investigation indicated
that while the node count metric seemed to focus on the moves other than the correct
move for most of the game in these benchmarks, these seemingly incorrect moves can
in fact be solved as well. This fits our intuition that JL-UCT seems to put more em-
phasis on locating strong moves, which then often lead to solving the position. This is
in strong contrast to JL-PNS, which puts solving positions first and foremost for all
occasions.

The total sum of ߝ௉ேௌିே for all benchmarks is 5394, while the total sum of ߝ௎஼்ିே is 3855. The base-10 logarithm of the ratio between these two metrics, ܵܰܲߝെܰ൅1ܶܥܷߝെܰ൅1 , is summed for all benchmarks, yielding a result of 4.103. For two identical

metrics, this logarithmic sum should have a value of 0. Therefore we can see that ߝ௎஼்ିே is the superior metric.

The ࣂ Measuring Method.
We now define a second way of measuring the quality of heuristic metrics. While ߝగ
is concerned with the last job for which a metric ߨ makes an incorrect choice, we are
also interested in the total number of times the metric will lead to an incorrect choice.
We define the number of times a metric ߨ chooses incorrect moves for a solved posi-
tion as follows: ߠగ ൌ |ሼ݉௜గ|݉௜గ ് ܿ௪ሽ|

As a different way of measuring heuristic metric performance, ߠగ is interpreted
differently from ߝగ in the following aspect. Consider an extreme case where ߝగ ൌ ݊஺ െ 1 and ߠగ ൌ 1. From ߝగ, the metric ߨ is poor since we will surely pick ܿ௪ after ݊஺ jobs are completed. In contrast, from ߠగ, the metric is good since we
fail to pick ܿ௪ only once, at the time when ݊஺ െ 1 jobs are completed. However,
in general, if ߝగ is small like 1, it implies that ߠగ is small too and that the heuristic
metric is superior; and if ߠగ is high like ݊஺ െ 1, it implies that ߝగ is high too and
that the heuristic metric is inferior.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߝ + 1

Benchmark

PNS-N UCT-N

 Job-Level Algorithms for Connect6 Opening Position Analysis 41

Fig. 5. JL-PNS metric comparison using number of incorrect jobs ߠగ. All values of ߠగ are
added by 1 so that the data may be plotted on a logarithmic scale.

Fig. 6. JL-UCT metric comparison using number of incorrect jobs ߠగ. All values of ߠగ are
added by 1 so that the data may be plotted on a logarithmic scale.

Fig. 7. Best performing metrics PNS-N and UCT-N comparison using number of incorrect jobs ߠగ. All values of ߠగ are added by 1 so that the data may be plotted on a logarithmic scale.

Fig. 5, Fig. 6 and Fig. 7 show the comparison between the algorithms and metrics
using ߠగ. The gap between the hybrid metric and the PNS-N metric is not as large as
when comparing by ߝగ. In fact, the ߠு௬௕௥௜ௗ is slightly smaller than ߠ௉ேௌିே when

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߠ + 1

Benchmark

PNS-N PNDN

Minimax Hybrid

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߠ + 1

Benchmark

UCT-N Winrate

UCB

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ߨߠ + 1

Benchmark

PNS-N UCT-N

42 T.-H. Wei et al.

their values are close, but the PNS-N metric makes up for this disadvantage for
benchmarks 2, 7, 12 and 20, where the ratio between ߠு௬௕௥௜ௗ and ߠ௉ேௌିே is more
than 100-fold. Meanwhile, the gap between ߠ௎஼்ିே and ߠௐ௜௡௥௔௧௘ are also smaller
than when comparing by ߝగ, but it is clear that UCT-N is still the superior metric. For
benchmarks 2, 8, 9, 17, UCT-N performs worse than PNS-N, similar to Fig. 4.

Again, we calculate the sum of ߠ௉ேௌିே and ߠ௎஼்ିே for all benchmarks, with
values of 4938 and 3461, respectively. We then calculate the sum of logଵ଴ ቀఏುಿೄషಿାଵࣂೆ಴೅షࡺାଵቁ for all benchmarks for a value of 5.010. We can again see that the

JL-UCT algorithm and the UCT-N metric is superior. In addition, since the positions
chosen as our benchmarks are all solved, JL-PNS tends to be advantageous in solved
positions. For unsolved positions, our conjecture is that JL-UCT would perform even
better.

6 Conclusion

In this paper, we applied the previously proposed JL-PNS algorithm to active Con-
nect6 opening book construction. Since PNS is not designed to provide estimates of
position strength, we proposed a set of four heuristic metrics that enable us to indicate
the best move to play after a game-tree has been generated. These four metrics are the
node count, proof/disproof-number ratio, minimax evaluation value, and a hybrid
method that uses both proof/disproof-numbers and the minimax evaluation value.
These combinations of JL-PNS with the heuristic methods are functional and have
shown good utility, but are prone to several drawbacks. The heuristic metrics interact
and sometimes the best move to play is not certain. Also, when treated poorly, the
opening book may even be detrimental to game program playing strength.

To seek a solution for these problems, this paper proposes the JL-UCT algorithm.
JL-UCT treats opening positions as multi-armed bandit problems, and uses the com-
mon UCB1 function as its selection criterion in conjunction with the game playing
program acting as the expansion mechanism. For performance analysis, we did some
experiments and verified that JL-UCT is capable of providing good interim estimates
of position strength, and can locate the best move to play more accurately, even from
very early stages of the job-level search algorithm. Additionally, JL-UCT simplifies
opening book construction in that the node count metric alone can perform well with-
out interaction with other heuristic metrics, eliminating the need for manual adjust-
ment and uncertainty when choosing moves to play. Therefore, it makes it possible to
store the entire game tree into the opening book without the need for subtree thre-
sholds.

There is much room for improvement. Future research topics include the actual
generation of the opening book using JL-UCT, the tuning of JL-UCT win rate value
initializations, additional features in the UCB1 function that deals with variance and
instability, verification by actual games such as those on Little Golem, applying JL-
UCT to different games (such as 9x9 Go, NoGo, and Hex), and the possibility of ap-
plying other multi-armed bandit models.

 Job-Level Algorithms for Connect6 Opening Position Analysis 43

Acknowledgment. The authors would like to thank National Science Council of the
Republic of China (Taiwan) for financial support of this research under the contract
numbers NSC 102-2221-E-009-069-MY2, 102-2221-E-009-080-MY2 and 99-2221-
E-009-102-MY3.

References

1. Buro, M.: Toward Opening Book Learning. ICCA Journal 22(2), 98–102 (1999)
2. Hyatt, R.M.: Book Learning-a Methodology to Tune an Opening Book Automatically.

ICCA Journal 22(1), 3–12 (1999)
3. Lincke, T.R.: Strategies for the Automatic Construction of Opening Books. Computers and

Games, 74–86 (2001)
4. Audouard, P., Chaslot, G., Hoock, J.-B., Perez, J., Rimmel, A., Teytaud, O.: Grid Coevolu-

tion for Adaptive Simulations: Application to the Building of Opening Books in the Game
of Go. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 323–332.
Springer, Heidelberg (2009)

5. Chaslot, G.M.J.-B., Hoock, J.-B., Perez, J., Rimmel, A., Teytaud, O., Winands, M.H.M.:
Meta Monte-Carlo Tree Search for Automatic Opening Book Generation. In: Proceedings
of the IJCAI 2009 Workshop on General Intelligence in Game Playing Agents, Pasadena,
California, pp. 7–12 (2009)

6. Gaudel, R., Hoock, J.-B., Pérez, J., Sokolovska, N., Teytaud, O.: A Principled Method for
Exploiting Opening Books. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010.
LNCS, vol. 6515, pp. 136–144. Springer, Heidelberg (2011)

7. Wu, I., Huang, D., Chang, H.: Connect6. ICGA Journal 28(4), 234–242 (2005)
8. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-

gence 6(4), 293–326 (1975)
9. Karapetyan, A., Lorentz, R.J.: Generating an opening book for amazons. In: van den

Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp.
161–174. Springer, Heidelberg (2006)

10. Kloetzer, J.: Monte-carlo opening books for amazons. In: van den Herik, H.J., Iida, H.,
Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 124–135. Springer, Heidelberg (2011)

11. Baier, H., Winands, M.H.M.: Active Opening Book Application for Monte-Carlo Tree
Search in 19×19 Go. In: 23rd Benelux Conference on Artificial Intelligence (BNAIC
2011), pp. 3–10 (2011)

12. Wu, I.-C., Lin, H.-H., Lin, P.-H., Sun, D.-J., Chan, Y.-C., Chen, B.-T.: Job-level proof-
number search for connect6. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010.
LNCS, vol. 6515, pp. 11–22. Springer, Heidelberg (2011)

13. Wu, I.-C., Lin, H.-H., Sun, D.-J., Kao, K.-Y., Lin, P.-H., Chan, Y.-C., Chen, P.-T.: Job-
Level Proof Number Search. IEEE Transactions on Computational Intelligence and AI in
Games 5(1), 44–56 (2013)

14. Saffidine, A., Jouandeau, N., Cazenave, T.: Solving BREAKTHROUGH with race patterns and
job-level proof number search. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS,
vol. 7168, pp. 196–207. Springer, Heidelberg (2012)

15. Chen, J.-C., Wu, I.-C., Tseng, W.-J., Lin, B.-H., Chang, C.-H.: Job-Level Alpha Beta
Search. In: IEEE Transactions on Computational Intelligence and AI in Games (in Press,
2014)

16. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P.,
Sutphen, S.: Checkers is Solved. Science 317(5844), 1518–1522 (2007)

44 T.-H. Wei et al.

17. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed Bandit
Problem. Machine Learning 47(2-3), 235–256 (2002)

18. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–43
(2012)

19. Lin, P.-H., Wu, I.: NCTU6 Wins Man-Machine Connect6 Championship 2009. ICGA
Journal 32(4), 230–232 (2009)

20. Wei, T.-H., Tseng, W.-J., Wu, I., Yen, S.-J.: Mobile6 Wins Connect6 Tournament. ICGA
Journal 36(3), 178–179 (2013)

21. Wu, I., Lin, Y.-S., Tsai, H.-T., Lin, P.-H.: The Man-Machine Connect6 Championship
2011. ICGA Journal 34(2), 103–105 (2011)

22. Wu, I.-C., Lin, P.: NCTU6-Lite Wins Connect6 Tournament. ICGA Journal 31(4),
240–243 (2008)

23. Wu, I.-C., Yen, S.-J.: NCTU6 Wins Connect6 Tournament. ICGA Journal 29(3), 157–158
(2006)

24. Wu, I.-C., Lin, P.-H.: Relevance-Zone-Oriented Proof Search for Connect6. IEEE Trans-
actions on Computational Intelligence and AI in Games 2(3), 191–207 (2010)

25. Wu, I.-C., Tsai, H.-T., Lin, H.-H., Lin, Y.-S., Chang, C.-M., Lin, P.-H.: Temporal Differ-
ence Learning for Connect6. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS,
vol. 7168, pp. 121–133. Springer, Heidelberg (2012)

26. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial In-
telligence 66(1), 91–124 (1994)

27. Chou, C.-W., Chou, P.-C., Doghmen, H., Lee, C.-S., Su, T.-C., Teytaud, F., Teytaud, O.,
Wang, H.-M., Wang, M.-H., Wu, L.-W., Yen, S.-J.: Towards a solution of 7x7 go with
meta-MCTS. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp.
84–95. Springer, Heidelberg (2012)

28. Little Golem, http://www.littlegolem.net

Monte-Carlo Tree Search and Minimax Hybrids

with Heuristic Evaluation Functions

Hendrik Baier and Mark H.M. Winands

Games and AI Group, Department of Knowledge Engineering
Faculty of Humanities and Sciences, Maastricht University

Maastricht, The Netherlands
{hendrik.baier,m.winands}@maastrichtuniversity.nl

Abstract. Monte-Carlo Tree Search (MCTS) has been found to play
suboptimally in some tactical domains due to its highly selective search,
focusing only on the most promising moves. In order to combine the
strategic strength of MCTS and the tactical strength of minimax,MCTS-
minimax hybrids have been introduced, embedding shallow minimax
searches into the MCTS framework. Their results have been promising
even without making use of domain knowledge such as heuristic evalu-
ation functions. This paper continues this line of research for the case
where evaluation functions are available. Three different approaches are
considered, employing minimax with an evaluation function in the roll-
out phase of MCTS, as a replacement for the rollout phase, and as a
node prior to bias move selection. The latter two approaches are newly
proposed. The MCTS-minimax hybrids are tested and compared to their
counterparts using evaluation functions without minimax in the domains
of Othello, Breakthrough, and Catch the Lion. Results showed that in-
troducing minimax search is effective for heuristic node priors in Othello
and Catch the Lion. The MCTS-minimax hybrids are also found to work
well in combination with each other. For their basic implementation in
this investigative study, the effective branching factor of a domain is
identified as a limiting factor of the hybrid’s performance.

1 Introduction

Monte-Carlo Tree Search (MCTS) [7, 13] is a sampling-based tree search algo-
rithm using the average result of Monte-Carlo simulations as state evaluations. It
selectively samples promising moves instead of taking all legal moves into account
like traditional minimax search. This leads to better performance in many large
search spaces with high branching factors. MCTS also uses Monte-Carlo simu-
lations of entire games, which often allows it to take long-term effects of moves
better into account than minimax. If exploration and exploitation are traded off
appropriately, MCTS asymptotically converges to the optimal policy [13], while
providing approximations at any time.

While MCTS has shown considerable success in a variety of domains [4],
it is still inferior to minimax search with alpha-beta pruning [12] in certain

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 45–63, 2014.
c© Springer International Publishing Switzerland 2014

46 H. Baier and M.H.M. Winands

games such as Chess and (International) Checkers. Part of the reason could be
the selectivity of MCTS, its focusing on only the most promising lines of play.
In tactical games such as Chess, a large number of traps exist in the search
space [19]. These require precise play to avoid immediate loss, and the selective
sampling of MCTS based on average simulation outcomes can easily miss or
underestimate an important move.

In previous work [2], the tactical strength of minimax has been combined
with the strategic and positional understanding of MCTS in MCTS-minimax
hybrids, integrating shallow-depth minimax searches into the MCTS framework.
These hybrids have shown promising results in tactical domains, despite being
independent of a heuristic evaluation function for non-terminal states as typically
needed by minimax. In this follow-up paper, we focus on the common case where
evaluation functions are available. State evaluations can either result from simple
evaluation function calls, or be backpropagated from shallow embedded minimax
searches using the same evaluation function. This integration of minimax into
MCTS accepts longer computation times in favor of typically more accurate
state evaluations.

Three different approaches for integrating domain knowledge into MCTS are
considered in this paper. The first approach uses state evaluations to choose
rollout moves. The second approach uses state evaluations to terminate rollouts
early. The third approach uses state evaluations to bias the selection of moves in
the MCTS tree. Only in the first case, minimax has been applied before. The use
of minimax for the other two approaches is newly proposed in the form described
here.

This paper is structured as follows. Section 2 gives some background on MCTS
as the baseline algorithm of this paper. Section 3 provides a brief overview of
related work on the relative strengths of minimax and MCTS, on algorithms
combining features of MCTS and minimax, and on using MCTS with heuristics.
Section 4 outlines three different methods for incorporating heuristic evaluations
into the MCTS framework, and presents variants using shallow-depth minimax
searches for each of these. Two of these MCTS-minimax hybrids are newly pro-
posed in this work. Section 5 shows experimental results of the MCTS-minimax
hybrids in the test domains of Othello, Breakthrough, and Catch the Lion. Sec-
tion 6 concludes and suggests future research.

2 Background

Monte-Carlo Tree Search (MCTS) is the underlying framework of the algorithms
in this paper. MCTS works by repeating the following four-phase loop until
computation time runs out [5]. The root of the tree represents the current state
of the game. Each iteration of the loop represents one simulated game.

Phase one: selection. The tree is traversed starting from the root, choosing
the move to sample from each state with the help of a selection policy. This
policy should balance the exploitation of states with high value estimates and
the exploration of states with uncertain value estimates. In this paper UCB1-
TUNED [1] is used as a selection policy.

Monte-Carlo Tree Search and Minimax Hybrids 47

Phase two: expansion. When the selection policy leaves the tree by sampling
an unseen move, one or more of its successors are added to the tree. In this
paper, we always add the one successor chosen in the current iteration.

Phase three: rollout. A rollout (also called playout) policy plays the simulated
game to its end, starting from the state represented by the newly added node.
MCTS converges to the optimal move in the limit even when rollout moves are
chosen randomly.

Phase four: backpropagation. The value estimates of all states traversed during
the simulation are updated with the result of the finished game.

Many variants and extensions of this framework have been proposed in the
literature [4]. In this paper, we are using MCTS with the MCTS-Solver extension
[28] as the baseline algorithm. MCTS-Solver is able to backpropagate not only
regular simulation results such as losses and wins, but also game-theoretic values
such as proven losses and proven wins whenever the search tree encounters a
terminal state. The basic idea is marking a move as a proven loss if the opponent
has a winning move from the resulting position, and marking a move as a proven
win if the opponent has only losing moves from the resulting position. This avoids
wasting time on the re-sampling of game states whose values are already known.

3 Related Work

Several papers by Ramanujan et al. [19,21,22] have studied search space proper-
ties that influence the performance of MCTS relative to minimax search. In [19],
shallow traps were identified as a feature of search spaces in which MCTS per-
forms poorly, in particular Chess. A level-k search trap was informally defined
as the possibility of a player to choose an unfortunate move which leads to a
winning strategy for the opponent with a depth of at most k plies. Such traps
turned out to be frequent in Chess compared to for example Go. A synthetic tree
model allowed the study of MCTS performance at different densities of traps in
the search space in [21].

Finnsson and Björnsson [8] found a similar problem to traps, named optimistic
moves. These are weak moves with relatively easy refutations by the opponent
which take MCTS a surprisingly long time to find. In the same paper, the pro-
gression property was found to be advantageous for MCTS, i.e. the property of a
game to progress naturally towards its end with every move made, as compared
to games whose ends can be easily delayed or dragged out.

Clune [6] compared the performance of minimax with alpha-beta pruning
and MCTS in General Game Playing. He found a stable and accurate evaluation
function as well as a relatively low branching factor to give minimax an advantage
over MCTS. In this paper, branching factor, evaluation accuracy and trap density
help us to understand some of the observed effects.

Previous work on developing algorithms influenced by both MCTS and min-
imax has taken two principal approaches. On the one hand, one can extract
individual features of minimax such as minimax-style backups and integrate
them into MCTS. This approach was chosen e.g. in [22], where the algorithm

48 H. Baier and M.H.M. Winands

UCTMAXH replaces MCTS rollouts with heuristic evaluations and classic av-
eraging MCTS backups with minimaxing backups. In implicit minimax back-
ups [14], both minimaxing backups of heuristic evaluations and averaging back-
ups of rollout returns are managed simultaneously. On the other hand, one can
nest minimax searches into MCTS searches. This is the approach taken in [2]
and this paper.

Various different techniques for integrating domain knowledge into the Monte-
Carlo rollouts have been proposed in the literature. The idea of improving roll-
outs with the help of heuristic knowledge has first been applied to games in [3].
It is now used by state-of-the-art programs in virtually all domains. Shallow
minimax in every step of the rollout phase has been proposed as well, e.g. a
1-ply search in [17] for the game of Havannah, or a 2-ply search for Lines of
Action [27], Chess [20], and multi-player games [18]. Similar techniques are con-
sidered in Subsection 4.1.

The idea of stopping rollouts before the end of the game and backpropagating
results on the basis of heuristic knowledge has been explored in Amazons [15],
Lines of Action [26], and Breakthrough [16]. A similar method is considered
in Subsection 4.2, where we also introduce a hybrid algorithm replacing the
evaluation function with a minimax call. Our methods are different from [15]
and [26] as we backpropagate the actual heuristic values instead of rounding
them to losses or wins. They are also different from [26] as we backpropagate
heuristic values after a fixed number of rollout moves, regardless of whether they
reach a threshold of certainty.

The idea of biasing the selection policy with heuristic knowledge has been
introduced in [9] and [5] for the game of Go. Our implementation is similar
to [9] as we initialize tree nodes with knowledge in the form of virtual wins
and losses. We also propose a hybrid using minimax returns instead of simple
evaluation returns in Subsection 4.3.

This paper represents the continuation of earlier work on MCTS-minimax
hybrids [2]. These hybrids MCTS-MR, MCTS-MS, and MCTS-MB have the
advantage of being independent of domain knowledge. However, their inability
to evaluate non-terminal states makes them ineffective in games with very few
or no terminal states throughout the search space, such as the game of Othello.
Furthermore, some form of domain knowledge is often available in practice, and
it is an interesting question how to use it to maximal effect.

4 Hybrid Algorithms

This section describes the three different approaches for employing heuristic
knowledge within MCTS that we explore in this work. For each approach, a
variant using simple evaluation function calls and a hybrid variant using shallow
minimax searches is considered. Two of the three hybrids are newly proposed in
the form described here.

Monte-Carlo Tree Search and Minimax Hybrids 49

4.1 MCTS with Informed Rollouts (MCTS-IR)

The convergence of MCTS to the optimal policy is guaranteed even with uni-
formly random move choices in the rollouts. However, more informed rollout
policies can greatly improve performance [10]. When a heuristic evaluation func-
tion is available, it can be used in every rollout step to compare the states each
legal move would lead to, and choose the most promising one. Instead of choosing
this greedy move, it is effective in some domains to choose a uniformly random
move with a low probability ε, so as to avoid determinism and preserve diver-
sity in the rollouts. Our implementation additionally ensures non-deterministic
behavior even for ε = 0 by picking moves with equal values at random both in
the selection and in the rollout phase of MCTS. The resulting rollout policy is
typically called ε-greedy [25]. In the context of this work, we call this approach
MCTS-IR-E (MCTS with informed rollouts using an evaluation function).

The depth-one lookahead of an ε-greedy policy can be extended in a natural
way to a depth-d minimax search for every rollout move [18,27]. We use a random
move ordering in minimax as well in order to preserve non-determinism. In con-
trast to [27] and [18] where several enhancements such as move ordering, k-best
pruning (not searching all legal moves), and killer moves were added to alpha-
beta, we only use basic alpha-beta search. We are interested in its performance
before introducing additional improvements, especially since our test domains
have smaller branching factors than e.g. the games Lines of Action (around 30)
or Chinese Checkers (around 25-30) used in [27] and [18], respectively. Using a
depth-d minimax search for every rollout move aims at stronger move choices in
the rollouts, which make rollout returns more accurate and can therefore help to
guide the growth of the MCTS tree. We call this approach MCTS-IR-M (MCTS
with informed rollouts using minimax).

4.2 MCTS with Informed Cutoffs (MCTS-IC)

The idea of rollout cutoffs is an early termination of the rollout in case the rollout
winner, or the player who is at an advantage, can be reasonably well predicted
with the help of an evaluation function. The statistical noise introduced by
further rollout moves can then be avoided by stopping the rollout, evaluating
the current state of the simulation, and backpropagating the evaluation result
instead of the result of a full rollout to the end of the game [15, 26]. If on
average, the evaluation function is computationally cheaper than playing out
the rest of the rollout, this method can also result in an increased sampling
speed as measured in rollouts per second. A fixed number m of rollout moves
can be played before evaluating in order to introduce more non-determinism and
get more diverse simulation returns. If m = 0, the evaluation function is called
directly at the newly expanded node of the tree. As in MCTS-IR, our MCTS-
IC implementation avoids deterministic gameplay through randomly choosing
among equally valued moves in the selection policy. We scale all evaluation values
to [0, 1]. We do not round the evaluation function values to wins or losses as
proposed in [15], nor do we consider the variant with dynamic m and evaluation

50 H. Baier and M.H.M. Winands

function thresholds proposed in [26]. In the following, we call this approach
MCTS-IC-E (MCTS with informed cutoffs using an evaluation function).

We propose an extension of this method using a depth-d minimax search at
cutoff time in order to determine the value to be backpropagated. In contrast to
the integrated approach taken in [27], we do not assume MCTS-IR-M as rollout
policy and backpropagate a win or a loss whenever the searches of this policy
return a value above or below two given thresholds. Instead, we play rollout
moves with an arbitrary policy (uniformly random unless specified otherwise),
call minimax when a fixed number of rollout moves has been reached, and back-
propagate the heuristic value returned by this search. Like MCTS-IR-M, this
strategy tries to backpropagate more accurate simulation returns, but by com-
puting them directly instead of playing out the simulation. We call this approach
MCTS-IC-M (MCTS with informed cutoffs using minimax).

4.3 MCTS with Informed Priors (MCTS-IP)

Node priors [9] represent one method for supporting the selection policy of MCTS
with heuristic information. When a new node is added to the tree, or after it
has been visited n times, the heuristic evaluation of the corresponding state is
stored in this node. This is done in the form of virtual wins and virtual losses,
weighted by a prior weight parameter w. For example, if the evaluation value is
0.6 and the weight is 100, 60 wins and 40 losses are stored in the node at hand.
We assume evaluation values in [0, 1]. Since heuristic evaluations are typically
more reliable than the MCTS value estimates resulting from only a few samples,
this prior helps to guide tree growth into a promising direction. If the node is
visited frequently however, the influence of the prior progressively decreases over
time, as the virtual rollout returns represent a smaller and smaller percentage of
the total rollout returns stored in the node. Thus, MCTS rollouts progressively
override the heuristic evaluation. We call this approach MCTS-IP-E (MCTS
with informed priors using an evaluation function) in this paper.

We propose to extend this technique with a depth-d minimax search in or-
der to compute the prior value to be stored. It aims at guiding the selection
policy through more accurate prior information in the MCTS tree. We call this
approach MCTS-IP-M (MCTS with informed priors using minimax).

5 Experimental Results

We tested the MCTS-minimax hybrids with heuristic evaluation functions in
three different two-player zero-sum games: Othello, Breakthrough, and Catch the
Lion. In all experimental conditions, we compared the hybrids as well as their
counterparts using heuristics without minimax against regular MCTS-Solver as
the baseline. Rollouts were uniformly random unless specified otherwise. Opti-
mal MCTS parameters such as the exploration factor C were determined once
for MCTS-Solver in each game and then kept constant for both MCTS-Solver
and the MCTS-minimax hybrids during testing. C was 0.7 in Othello and Catch

Monte-Carlo Tree Search and Minimax Hybrids 51

the Lion, and 0.8 in Breakthrough. Draws, which are possible in Othello, were
counted as half a win for both players. We used minimax with alpha-beta prun-
ing, but no other search enhancements. Computation time was 1 second per
move.

5.1 Games

This section outlines the rules of the three test domains, and the heuristic board
evaluation functions used for each of them. The evaluation function from the
point of view of the current player is always her total score minus her opponent’s
total score, normalized to [0, 1] as a final step.

Othello. The game of Othello is played on an 8 × 8 board. It starts with four
discs on the board, two white discs on d5 and e4 and two black discs on d4 and e5.
Each disc has a black side and a white side, with the side facing up indicating the
player the disc currently belongs to. The two players alternatingly place a disc
on the board, in such a way that between the newly placed disc and another disc
of the moving player there is an uninterrupted horizontal, vertical or diagonal
line of one or more discs of the opponent. All these discs are then turned over,
changing their color to the moving player’s side, and the turn goes to the other
player. If there is no legal move for a player, she has to pass. If both players have
to pass or if the board is filled, the game ends. The game is won by the player
who owns the most discs at the end.

The evaluation score we use for Othello first determines the number of stable
discs for the player, i.e. discs that cannot change color anymore. For each stable
disc of her color, the player receives 10 points. Afterwards, the number of legal
moves for the player is added to her score.

Breakthrough. The variant of Breakthrough used in this work is played on a
6×6 board. The game was originally described as being played on a 7×7 board,
but other sizes such as 8× 8 are popular as well, and the 6× 6 board preserves
an interesting search space.

At the beginning of the game, White occupies the first two rows of the board,
and Black occupies the last two rows of the board. The two players alternatingly
move one of their pieces straight or diagonally forward. Two pieces cannot occupy
the same square. However, players can capture the opponent’s pieces by moving
diagonally onto their square. The game is won by the player who succeeds first
at advancing one piece to the home row of her opponent, i.e. reaching the first
row as Black or reaching the last row as White.

The evaluation score we use for Breakthrough gives the player 3 points for each
piece of her color. Additionally, each piece receives a location value depending
on its row on the board. From the player’s home row to the opponent’s home
row, these values are 10, 3, 6, 10, 15, and 21 points, respectively.

52 H. Baier and M.H.M. Winands

Catch the Lion. The game Catch the Lion is a simplified form of Shogi (see [23]
for an MCTS approach to Shogi). It is included in this work as an example of
chess-like games, which tend to be particularly difficult for MCTS [19].

The game is played on a 3 × 4 board. At the beginning of the game, each
player has four pieces: a Lion in the center of her home row, a Giraffe to the
right of the Lion, an Elephant to the left of the Lion, and a Chick in front of
the Lion. The Chick can move one square forward, the Giraffe can move one
square in the vertical and horizontal directions, the Elephant can move one
square in the diagonal directions, and the Lion can move one square in any
direction. During the game, the players alternatingly move one of their pieces.
Pieces of the opponent can be captured. As in Shogi, they are removed from the
board, but not from the game. Instead, they switch sides, and the player who
captured them can later on drop them on any square of the board instead of
moving one of her pieces. If the Chick reaches the home row of the opponent, it
is promoted to a Chicken, now being able to move one square in any direction
except for diagonally backwards. A captured Chicken, however, is demoted to a
Chick again when dropped. The game is won by either capturing the opponent’s
Lion, or moving your own Lion to the home row of the opponent.

The evaluation score we use for Catch the Lion represents a weighted material
sum for each player, where a Chick counts as 3 points, a Giraffe or Elephant as
5 points, and a Chicken as 6 points, regardless of whether they are on the board
or captured by the player.

5.2 Game Properties

Two properties of the test domains can help with understanding the results
presented in the following subsections. These properties are the branching factor
and the tacticality of the games.

Branching Factor. There are on average 15.5 legal moves available in Break-
through, but only about 10 in Catch the Lion and 8 in Othello, measured in
self-play games of the MCTS-Solver baseline. A higher branching factor makes
the application of minimax searches potentially more difficult, especially when
basic alpha-beta without enhancements is used as this paper.

Tacticality. The tacticality of a game can be formalized in different ways. [19]
proposed the concept of search traps to explain the difficulties of MCTS in some
domains such as Chess. This concept was taken up again in [2] to motivate the
integration of minimax into MCTS. A tactical game is here understood as a
game with a high density of terminal states throughout the search space, which
can result in a higher risk of falling into traps especially for selective searches.

As a simple test for this property, MCTS-Solver played 1000 self-play games
in all domains. After each move, we measured the number of traps at depth (up
to) 3 for the player to move. The result was an average number of 3.7 level-3
traps in Catch the Lion (37% of all legal moves), 2.8 traps in Breakthrough

Monte-Carlo Tree Search and Minimax Hybrids 53

(18% of all legal moves), and only 0.1 traps in Othello (1.2% of all legal moves).
Results were comparable for other trap depths. This indicates that Catch the
Lion is the most tactical of the tested games, making the application of minimax
searches potentially more useful.

5.3 Experiments with MCTS-IR

MCTS-IR-E was tested for ε ∈ {0, 0.05, 0.1, 0.2, 0.5}. Each parameter setting
played 1000 games in each domain against the baseline MCTS-Solver with uni-
formly random rollouts. Figures 1(a) to 1(c) show the results. The best-performing
conditions used ε = 0.05 in Othello and Catch the Lion, and ε = 0 in Break-
through. They were each tested in 2000 additional games against the baseline.
The results were win rates of 79.9% in Othello, 75.4% in Breakthrough, and
96.8% in Catch the Lion. All of these are significantly stronger than the baseline
(p<0.001).

MCTS-IR-M was tested for d ∈ {1, . . . , 4} with the optimal value of ε found for
each domain in the MCTS-IR-E experiments. Each condition played 1000 games
per domain against the baseline player. The results are presented in Figures 1(d)
to 1(f). The most promising setting in all domains was d = 1. In an additional
2000 games against the baseline per domain, this setting achieved win rates of
73.9% in Othello, 65.7% in Breakthrough, and 96.5% in Catch the Lion. The
difference to the baseline is significant in all domains (p<0.001).

In each domain, the best settings for MCTS-IR-E and MCTS-IR-M were then
tested against each other in 2000 further games. The results for MCTS-IR-M
were win rates of 37.1% in Othello, 35.3% in Breakthrough, and 47.9% in Catch
the Lion. MCTS-IR-M is weaker than MCTS-IR-E in Othello and Breakthrough
(p<0.001), while no significant difference could be shown in Catch the Lion.
This shows that the incorporation of shallow alpha-beta searches into rollouts
did not improve MCTS-IR in any of the domains at hand. Depth-1 minimax
searches in MCTS-IR-M are functionally equivalent to MCTS-IR-E, but have
some overhead in our implementation due to the recursive calls to a separate
alpha-beta search algorithm. This results in the inferior performance.

Higher settings of d were not successful because deeper minimax searches in
every rollout step require too much computational effort. In an additional set
of 1000 games per domain, we compared MCTS-IR-E to MCTS-IR-M at 1000
rollouts per move, ignoring the time overhead of minimax. Here, MCTS-IR-M
won 78.6% of games with d = 2 in Othello, 63.4% of games with d = 2 in
Breakthrough, and 89.3% of games with d = 3 in Catch the Lion. All of these
conditions are significantly stronger than MCTS-IR-E (p<0.001). This confirms
MCTS-IR-M is suffering from its time overhead.

Interestingly, deeper minimax searches do not always guarantee better perfor-
mance in MCTS-IR-M, even when ignoring time. While MCTS-IR-M with d = 1
won 50.4% (±3.1%) of 1000 games against MCTS-IR-E in Catch the Lion, d = 2
won only 38.0%—both at 1000 rollouts per move. In direct play against each
other, MCTS-IR-M with d = 2 won 38.8% of 1000 games against MCTS-IR-M
with d = 1. As standalone players however, a depth-2 minimax beat a depth-1

54 H. Baier and M.H.M. Winands

minimax in 95.8% of 1000 games. Such cases where policies that are stronger
as standalone players do not result in stronger play when integrated in MCTS
rollouts have been observed before [2, 9, 24].

5.4 Experiments with MCTS-IC

MCTS-IC-E was tested for m ∈ {0, . . . , 5}. 1000 games were played against the
baseline MCTS-Solver per parameter setting in each domain. Figures 2(a) to
2(c) present the results. The most promising condition was m = 0 in all three
domains. It was tested in 2000 additional games against the baseline. The results
were win rates of 61.1% in Othello, 41.9% in Breakthrough, and 98.1% in Catch
the Lion. This is significantly stronger than the baseline in Othello and Catch the
Lion (p<0.001), but weaker in Breakthrough (p<0.001). The evaluation function
in Breakthroughmay not be accurate enough for MCTS to fully rely on it instead
of rollouts. Testing higher values of m showed that as fewer and fewer rollouts
are long enough to be cut off, MCTS-IC-E effectively turns into the baseline
MCTS-Solver and also shows identical performance. Note that the parameter m
can sometimes be sensitive to the opponents it is tuned against. In this paper, we
tuned against regular MCTS-Solver only, and both MCTS-Solver and MCTS-IC
used uniformly random rollouts.

MCTS-IC-M was tested for all combinations of m ∈ {0, . . . , 5} and d ∈
{1, 2, 3}, with 1000 games each per domain. The results are shown in Figures
2(d) to 2(f). The best performance was achieved with m = 0 and d = 2 in Oth-
ello, m = 4 and d = 1 in Breakthrough, and m = 1 and d = 2 in Catch the Lion.
Of an additional 2000 games against the baseline per domain, these settings won
62.4% in Othello, 32.4% in Breakthrough, and 99.6% in Catch the Lion. This
is again significantly stronger than the baseline in Othello and Catch the Lion
(p<0.001), but weaker in Breakthrough (p<0.001).

The best settings for MCTS-IC-E and MCTS-IC-M were also tested against
each other in 2000 games per domain. Despite MCTS-IC-E and MCTS-IC-M
not showing significantly different performance against the regular MCTS-Solver
baseline in Othello and Catch the Lion, MCTS-IC-E won 73.1% of these games
in Othello, 58.3% in Breakthrough, and 66.1% in Catch the Lion. All conditions
are significantly superior to MCTS-IC-M (p<0.001). Thus, the integration of
shallow alpha-beta searches into rollout cutoffs did not improve MCTS-IC in
any of the tested domains either.

Just as for MCTS-IR, this is a problem of computational cost for the alpha-
beta searches. We compared MCTS-IC-E with optimal parameter settings to
MCTS-IC-M at equal rollouts per move instead of equal time in an additional
set of experiments. Here, MCTS-IC-M won 65.7% of games in Othello at 10000
rollouts per move, 69.8% of games in Breakthrough at 6000 rollouts per move,
and 86.8% of games in Catch the Lion at 2000 rollouts per move (the rollout
numbers were chosen so as to achieve comparable times per move). The parame-
ter settings were m = 0 and d = 1 in Othello, m = 0 and d = 2 in Breakthrough,
and m = 0 and d = 4 in Catch the Lion. All conditions here are stronger than

Monte-Carlo Tree Search and Minimax Hybrids 55

0 0.1 0.2 0.5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

value of ε

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(a) Performance of MCTS-IR-E in Oth-
ello.

0 0.1 0.2 0.5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

value of ε

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(b) Performance of MCTS-IR-E in
Breakthrough.

0 0.1 0.2 0.5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

value of ε

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(c) Performance of MCTS-IR-E in
Catch the Lion.

1 2 3 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alpha-beta depth d

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(d) Performance of MCTS-IR-M in Oth-
ello. For all conditions, ε = 0.05.

1 2 3 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alpha-beta depth d

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(e) Performance of MCTS-IR-M in
Breakthrough. For all conditions, ε = 0.

1 2 3 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alpha-beta depth d

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(f) Performance of MCTS-IR-M in
Catch the Lion. For all conditions, ε =
0.05.

Fig. 1. Performance of MCTS-IR in Othello, Breakthrough and Catch the Lion

56 H. Baier and M.H.M. Winands

MCTS-IC-E (p<0.001). This confirms that MCTS-IC-M is weaker than MCTS-
IC-E due to its time overhead.

A seemingly paradoxical observation was made with MCTS-IC as well. In
Breakthrough and Catch the Lion, the values returned by minimax searches are
not always more effective for MCTS-IC than the values of simple static heuristics,
even when time is ignored. In Catch the Lion for example, MCTS-IC-M with
m = 0 and d = 1 won only 2.9% of 1000 test games against MCTS-IC-E with
m = 0 (at 50000 rollouts per move). With d = 2, it won 34.3% (at 25000 rollouts
per move). Even with d = 3, it won only 34.8% (at 6000 rollouts per move).
Once more these results demonstrate that a stronger policy can lead to a weaker
search when embedded in MCTS.

5.5 Experiments with MCTS-IP

MCTS-IP-E was tested for all combinations of n ∈ {0, 1, 2} and w ∈ {50, 100, 250,
500, 1000, 2500, 5000}. Each condition played 1000 games per domain against
the baseline player. The results are shown in Figures 3(a) to 3(c). The best-
performing conditions were n = 1 and w = 1000 in Othello, n = 1 and w = 2500
in Breakthrough, and n = 0 and w = 100 in Catch the Lion. In 2000 addi-
tional games against the baseline, these conditions achieved win rates of 56.8%
in Othello, 86.6% in Breakthrough, and 71.6% in Catch the Lion (all significantly
stronger than the baseline with p<0.001).

MCTS-IP-M was tested for all combinations of n ∈ {0, 1, 2, 5, 10, 25}, w ∈
{50, 100, 250, 500, 1000, 2500, 5000}, and d ∈ {1, . . . , 5} with 1000 games per
condition in each domain. Figures 3(d) to 3(f) present the results, using the
optimal setting of d for all domains. The most promising parameter values found
in Othello were n = 2, w = 5000, and d = 3. In Breakthrough they were n = 1,
w = 1000, and d = 1, and in Catch the Lion they were n = 1, w = 2500, and
d = 5. Each of them played 2000 additional games against the baseline, winning
81.7% in Othello, 87.8% in Breakthrough, and 98.0% in Catch the Lion (all
significantly stronger than the baseline with p<0.001).

The best settings for MCTS-IP-E and MCTS-IP-M subsequently played 2000
games against each other in all domains. MCTS-IP-M won 76.2% of these games
in Othello, 97.6% in Catch the Lion, but only 36.4% in Breakthrough (all of
the differences are significant with p<0.001). We can conclude that using shal-
low alpha-beta searches to compute node priors strongly improves MCTS-IP
in Othello and Catch the Lion, but not in Breakthrough. This is once more a
problem of time overhead due to the larger branching factor of Breakthrough.
At 1000 rollouts per move, MCTS-IP-M with n = 1, w = 1000, and d = 1 won
91.1% of 1000 games against the best MCTS-IP-E setting in this domain.

An interesting observation are the high weights assigned to the node priors in
all domains. It seems that at least for uniformly random rollouts, best perfor-
mance is achieved when rollout returns never override priors for the vast majority
of nodes. They only differentiate between states that look equally promising for
the evaluation functions used. The exception is MCTS-IP-E in Catch the Lion,
where the static evaluations might be too unreliable to give them large weights

Monte-Carlo Tree Search and Minimax Hybrids 57

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

moves before cutoff m

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(a) Performance of MCTS-IC-E in Oth-
ello.

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

moves before cutoff m

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(b) Performance of MCTS-IC-E in
Breakthrough.

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

moves before cutoff m

w
in

ra
te

a
g
a
in
st

th
e
b
a
se
li
n
e

(c) Performance of MCTS-IC-E in
Catch the Lion.

1

2

3 0
2

4

0

50

100

αβ depth d

moves before cutoff m

w
in

ra
te

(d) Performance of MCTS-IC-M in Oth-
ello.

1

2

3 0
2

4

0

50

100

αβ depth d

moves before cutoff m

w
in

ra
te

(e) Performance of MCTS-IC-M in
Breakthrough.

1

2

3 0
2

4

0

50

100

αβ depth d

moves before cutoff m

w
in

ra
te

(f) Performance of MCTS-IC-M in
Catch the Lion.

Fig. 2. Performance of MCTS-IC in Othello, Breakthrough and Catch the Lion

58 H. Baier and M.H.M. Winands

due to the tactical nature of the game. Exchanges of pieces can often lead to
quick and drastic changes of the evaluation values. The quality of the priors in
Catch the Lion improves drastically when minimax searches are introduced, jus-
tifying deeper searches (d = 5) than in the other tested domains despite the high
computational cost. However, MCTS-IC still works better in this case, possibly
because inaccurate evaluation results are only backpropagated once and are not
stored to influence the selection policy for a longer time as in MCTS-IP. In Oth-
ello, minimax searches in combination with a seemingly less volatile evaluation
function lead to MCTS-IP-M being the strongest hybrid tested in this paper.

The effect of stronger policies resulting in weaker performance when integrated
into MCTS can be found in MCTS-IP just as in MCTS-IR and MCTS-IC. In
Breakthrough for example, MCTS-IP-M with n = 1, w = 1000, and d = 2 won
only 83.4% of 1000 games against the strongest MCTS-IP-E setting, compared
to 91.1% with n = 1, w = 1000, and d = 1—both at 1000 rollouts per move.
The difference is significant (p<0.001). As standalone players however, depth-2
minimax won 80.2% of 1000 games against depth-1 minimax in the Breakthrough
experiments.

5.6 Comparison of Algorithms

Sections 5.3 to 5.5 showed the performance of MCTS-IR, MCTS-IC and MCTS-
IP against the baseline MCTS-Solver player. We also tested the best-performing
variants of these algorithms against each other. In each condition, 2000 games
were played. Figures 4(a) to 4(c) present the results. MCTS-IP-M is strongest in
Othello, MCTS-IP-E is strongest in Breakthrough, and MCTS-IC-E is strongest
in Catch the Lion.

5.7 Combination of Algorithms

Subsections 5.3 to 5.6 showed the performance of MCTS-IR, MCTS-IC and
MCTS-IP in isolation. In order to get an indication whether the different meth-
ods of applying heuristic knowledge can successfully be combined, we conducted
the following experiments. In Othello, the best-performing algorithm MCTS-IP-
M was combined with MCTS-IR-E. In Breakthrough, the best-performing algo-
rithm MCTS-IP-E was combined with MCTS-IR-E. In Catch the Lion, it is not
possible to combine the best-performing algorithm MCTS-IC-E with MCTS-IR-
E, because with the optimal setting m = 0 MCTS-IC-E leaves no rollout moves
to be chosen by an informed rollout policy. Therefore, MCTS-IP-M was com-
bined with MCTS-IR-E instead. 2000 games were played in each condition. The
results are shown in Figures 4(d) to 4(f). Applying the same knowledge both in
the form of node priors and in the form of ε-greedy rollouts leads to stronger
play in all three domains than using priors alone. In fact, such combinations are
the overall strongest players tested in this paper even without being systemat-
ically optimized. In Othello, the combination MCTS-IP-M-IR-E won 55.2% of
2000 games against the strongest individual algorithm MCTS-IP-M (stronger
with p=0.001). In Breakthrough, the combination MCTS-IP-E-IR-E won 53.9%

Monte-Carlo Tree Search and Minimax Hybrids 59

0

1

2 1000
2500

5000

40

50

visits n

prior weight w

w
in

ra
te

(a) Performance of MCTS-IP-E in Oth-
ello.

0

1

2 1000
2500

5000

60

80

visits n

prior weight w

w
in

ra
te

(b) Performance of MCTS-IP-E in
Breakthrough.

0

1

2 1000
2500

5000

60

visits n

prior weight w

w
in

ra
te

(c) Performance of MCTS-IP-E in Catch
the Lion.

0

5

10

25
1000

2500

5000

50

visits n

prior weight w

w
in

ra
te

(d) Performance of MCTS-IP-M in Oth-
ello. For all conditions, d = 3.

0

5

10

25
1000

2500

5000

60

80

visits n

prior weight w

w
in

ra
te

(e) Performance of MCTS-IP-M in
Breakthrough. For all conditions, d = 1.

0

5

10

25
1000

2500

5000

90

95

visits n

prior weight w

w
in

ra
te

(f) Performance of MCTS-IP-M in Catch
the Lion. For all conditions, d = 5.

Fig. 3. Performance of MCTS-IP in Othello, Breakthrough and Catch the Lion

60 H. Baier and M.H.M. Winands

against the best-performing algorithm MCTS-IP-E (stronger with p<0.05). In
Catch the Lion, the combination MCTS-IP-M-IR-E with n = 1, w = 2500, and
d = 4 won 61.1% of 2000 games against the strongest algorithm MCTS-IC-E
(stronger with p<0.001, not shown in Figure 4(f)).

0% 20% 40% 60% 80% 100%

MCTS-IP-E

MCTS-IC-M

MCTS-IC-E

MCTS-IR-M

MCTS-IR-E

win rate of MCTS-IP-M

o
p
p
o
n
e
n
t

(a) Performance of MCTS-IP-M against
the other hybrids in Othello.

0% 20% 40% 60% 80% 100%

MCTS-IP-M

MCTS-IC-M

MCTS-IC-E

MCTS-IR-M

MCTS-IR-E

win rate of MCTS-IP-E

o
p
p
o
n
e
n
t

(b) Performance of MCTS-IP-E against
the other hybrids in Breakthrough.

0% 20% 40% 60% 80% 100%

MCTS-IP-M

MCTS-IP-E

MCTS-IC-M

MCTS-IR-M

MCTS-IR-E

win rate of MCTS-IC-E

o
p
p
o
n
e
n
t

(c) Performance of MCTS-IC-E against
the other hybrids in Catch the Lion.

0% 20% 40% 60% 80% 100%

MCTS

MCTS-IP-M

win rate of MCTS-IP-M-IR-E

o
p
p
o
n
e
n
t

(d) Performance of MCTS-IP-M com-
bined with MCTS-IR-E in Othello.

0% 20% 40% 60% 80% 100%

MCTS

MCTS-IP-E

win rate of MCTS-IP-E-IR-E

o
p
p
o
n
e
n
t

(e) Performance of MCTS-IP-E com-
bined with MCTS-IR-E in Break-
through.

0% 20% 40% 60% 80% 100%

MCTS

MCTS-IP-M

win rate of MCTS-IP-M-IR-E

o
p
p
o
n
e
n
t

(f) Performance of MCTS-IP-M com-
bined with MCTS-IR-E in Catch the
Lion.

Fig. 4. Comparisons and combinations of the MCTS-minimax hybrids

6 Conclusion and Future Research

In this paper, we considered three approaches for integrating heuristic state eval-
uation functions into MCTS. MCTS-IR uses heuristic knowledge to improve the

Monte-Carlo Tree Search and Minimax Hybrids 61

rollout policy. MCTS-IC uses heuristic knowledge to terminate rollouts early.
MCTS-IP uses heuristic knowledge as prior for tree nodes. In all three ap-
proaches, we also examined the computation of state evaluations with shallow-
depth minimax searches using the same heuristic knowledge. This has only been
done for MCTS-IR before.

Experimental results in the domains of Othello, Breakthrough and Catch the
Lion showed that the best individual players tested in Othello and Breakthrough
make use of priors in order to combine heuristic information with rollout returns.
Because of the different branching factors, computing these priors works best by
embedding shallow minimax searches in Othello, and by a simple evaluation
function call in Breakthrough. In Catch the Lion, random rollouts may too of-
ten return inaccurate results due to the tacticality and possibly also due to the
non-converging nature of the domain. Replacing these rollouts with the evalu-
ation function turned out to be the most successful of the individually tested
approaches. Preliminary experiments with combining the different approaches
showed that in both Othello and Catch the Lion, using minimax to compute
node priors and applying simple ε-greedy rollouts resulted in the overall most
successful players tested in this paper.

The fact that some combinations of algorithms play at a higher level than
the algorithms in isolation may mean we have not yet found a way to fully and
optimally exploit our heuristic knowledge. This is a first direction for future
research.

Second, differences between test domains such as their density of terminal
states, their density of hard and soft traps [20], or their progression property [8]
could be studied in order to understand the behavior of MCTS-minimax hybrids.
Artificial game trees could be a valuable tool to separate the effects of individual
properties.

Third, all three approaches for using heuristic knowledge have shown cases
where embedded minimax searches did not lead to stronger MCTS play than
shallower minimax searches or even simple evaluation function calls. This phe-
nomenon has only been observed in MCTS-IR before and deserves further study.

Finally, the main problem of MCTS-minimax hybrids seems to be their sen-
sitivity to the branching factor of the domain. This explains their weak per-
formance in Breakthrough. However, the minimax implementation used in this
paper was a simple, unenhanced alpha-beta search. An improved implementa-
tion with e.g. static move ordering, k-best pruning, and killer moves has been
shown to allow for successful MCTS-IR-M even in Lines of Action, a domain
with an average branching factor twice as high as 6×6 Breakthrough [26]. These
techniques could drastically increase the branching factor for which all MCTS-
minimax hybrids are viable.

Acknowledgment. This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project Go4Nature, grant
number 612.000.938.

62 H. Baier and M.H.M. Winands

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47(2-3), 235–256 (2002)

2. Baier, H., Winands, M.H.M.: Monte-Carlo Tree Search and Minimax Hybrids. In:
2013 IEEE Conference on Computational Intelligence and Games, CIG 2013, pp.
129–136 (2013)

3. Bouzy, B.: Associating Domain-Dependent Knowledge and Monte Carlo Ap-
proaches within a Go Program. Information Sciences 175(4), 247–257 (2005)

4. Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games 4(1), 1–43 (2012)

5. Chaslot, G.M.J.B., Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M.,
Bouzy, B.: Progressive Strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation 4(3), 343–357 (2008)

6. Clune, J.E.: Heuristic Evaluation Functions for General Game Playing. Ph.D. the-
sis, University of California, Los Angeles, USA (2008)

7. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG
2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

8. Finnsson, H., Björnsson, Y.: Game-Tree Properties and MCTS Performance. In:
IJCAI 2011 Workshop on General Intelligence in Game Playing Agents (GIGA
2011), pp. 23–30 (2011)

9. Gelly, S., Silver, D.: Combining Online and Offline Knowledge in UCT. In:
Ghahramani, Z. (ed.) 24th International Conference on Machine Learning, ICML
2007. ACM International Conference Proceeding Series, vol. 227, pp. 273–280
(2007)

10. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns
in Monte-Carlo Go. Tech. rep., HAL - CCSd - CNRS, France (2006)

11. van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.): CG 2008. LNCS,
vol. 5131. Springer, Heidelberg (2008)

12. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

13. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

14. Lanctot, M., Winands, M.H.M., Pepels, T., Sturtevant, N.R.: Monte Carlo Tree
Search with Heuristic Evaluations using Implicit Minimax Backups. In: 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014, pp. 341–348
(2014)

15. Lorentz, R.J.: Amazons Discover Monte-Carlo. In: van den Herik (ed.) [11], pp.
13–24

16. Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H.J., Iida,
H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg
(2014)

17. Lorentz, R.J.: Experiments with Monte-Carlo Tree Search in the Game of Havan-
nah. ICGA Journal 34(3), 140–149 (2011)

18. Nijssen, J(P.) A.M., Winands, M.H.M.: Playout Search for Monte-Carlo Tree
Search in Multi-player Games. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011.
LNCS, vol. 7168, pp. 72–83. Springer, Heidelberg (2012)

Monte-Carlo Tree Search and Minimax Hybrids 63

19. Ramanujan, R., Sabharwal, A., Selman, B.: On Adversarial Search Spaces and
Sampling-Based Planning. In: Brafman, R.I., Geffner, H., Hoffmann, J., Kautz,
H.A. (eds.) 20th International Conference on Automated Planning and Scheduling,
ICAPS 2010, pp. 242–245. AAAI (2010)

20. Ramanujan, R., Sabharwal, A., Selman, B.: Understanding Sampling Style Ad-
versarial Search Methods. In: Grünwald, P., Spirtes, P. (eds.) 26th Conference on
Uncertainty in Artificial Intelligence, UAI 2010, pp. 474–483 (2010)

21. Ramanujan, R., Sabharwal, A., Selman, B.: On the Behavior of UCT in Synthetic
Search Spaces. In: ICAPS 2011 Workshop on Monte-Carlo Tree Search: Theory
and Applications (2011)

22. Ramanujan, R., Selman, B.: Trade-Offs in Sampling-Based Adversarial Planning.
In: Bacchus, F., Domshlak, C., Edelkamp, S., Helmert, M. (eds.) 21st International
Conference on Automated Planning and Scheduling, ICAPS 2011. AAAI (2011)

23. Sato, Y., Takahashi, D., Grimbergen, R.: A Shogi Program Based on Monte-Carlo
Tree Search. ICGA Journal 33(2), 80–92 (2010)

24. Silver, D., Tesauro, G.: Monte-Carlo Simulation Balancing. In: Danyluk, A.P.,
Bottou, L., Littman, M.L. (eds.) 26th Annual International Conference on Machine
Learning, ICML 2009. ACM International Conference Proceeding Series, vol. 382,
pp. 945–952. ACM (2009)

25. Sturtevant, N.R.: An Analysis of UCT in Multi-Player Games. ICGA Journal 31(4),
195–208 (2008)

26. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte Carlo Tree Search in Lines of
Action. IEEE Transactions on Computational Intelligence and AI in Games 2(4),
239–250 (2010)

27. Winands, M.H.M., Björnsson, Y.: Alpha-Beta-based Play-outs in Monte-Carlo Tree
Search. In: Cho, S.-B., Lucas, S.M., Hingston, P. (eds.) 2011 IEEE Conference on
Computational Intelligence and Games, CIG 2011, pp. 110–117. IEEE (2011)

28. Winands, M.H.M., Björnsson, Y., Saito, J.T.: Monte-Carlo Tree Search Solver. In:
van den Herik, et al. (eds.) [11], pp. 25–36

Monte-Carlo Tree Search for the Game of “7 Wonders”

Denis Robilliard, Cyril Fonlupt, and Fabien Teytaud

LISIC, ULCO, Univ Lille–Nord de France, France

Abstract. Monte-Carlo Tree Search, and in particular with the Upper Confi-
dence Bounds formula, has provided large improvements for AI in numerous
games, particularly in Go, Hex, Havannah, Amazons and Breakthrough. In this
work we study this algorithm on a more complex game, the game of “7 Wonders”.
This card game gathers together several known challenging properties, such as
hidden information, multi-player and stochasticity. It also includes an inter-player
trading system that induces a combinatorial search to decide which decisions are
legal. Moreover, it is difficult to hand-craft an efficient evaluation function since
the card values are heavily dependent upon the stage of the game and upon the
other player decisions. We show that, in spite of the fact that “7 Wonders” is
apparently not so related to classic abstract games, many known results still hold.

1 Introduction

Games are a typical AI research subject, with well-known successful results on games
like chess, checkers, or backgammon. However, complex board games (sometimes
nicknamed Euro-games) still constitute a challenge, which has been initiated by such
works as [16] or [17] on the game “Settlers of Catan”, or [22] on the game “Dominion”.
Most often these games combine several characteristics among multi-player, hidden in-
formation and chance, together with little formalized expert knowledge on the subject.
Monte-Carlo Tree Search (MCTS), which gained much fame from the game of Go,
seems a method of interest in this context.

In order to simplify the obtaining of an AI, many published works use only a limited
subset of the game rules: e.g. no trade interactions between players [17], or only a subset
of the possible cards in [22]. In this paper we focus on the creation of a MCTS-based
AI player for the recent game of “7 Wonders” (see also [10]). One of our goals is to
tackle the complete rule set of the game, including the trading mechanism. The way we
deal with the trading mechanism is quite a novelty as in the usual case more than one
hundred new branches can be created just for the different ways of buying/selling goods.
The simulation cannot cope with such a fact and we use a smart stochastic approach to
deal with this problem introduced in Section 5.

In the first section we introduce the “7 Wonders” game and its rules, before present-
ing MCTS. Then we focus on specific issues that arose during implementation, before
presenting a set of experiments and their results.

2 “7 Wonders” Game Description

Board games are increasingly numerous, with more than 500 games presented each
year at the international Essen game fair. Among these, the game “7 Wonders” (7W)

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 64–77, 2014.
c© Springer International Publishing Switzerland 2014

Monte-Carlo Tree Search for the Game of “7 Wonders” 65

issued in 2011 by Antoine Bauza, obtains a fair amount of success, with about 100,000
copies sold per year. It is basically a card game, whose theme is similar to the many
existing “civilization” games, where players develop a virtual country using production
of resources, trade, military and cultural improvements.

Before heading onto the game mechanisms, let introduce a game classification based
on their characteristics. A game can be:

– Fully or partially observable, depending on whether there is hidden information or
not.

– Solitaire, two-player or multi-player (standing for N-player with N > 2).
– Competitive or cooperative: in competitive games, players have their own goal,

while they share the same objective in cooperative games.
– Deterministic or stochastic.

For instance, chess would belong to the family of fully observable, 2-player, compet-
itive, deterministic games. The game of 7W is almost in opposite categories, being in
the family of partially observable, multi-player, stochastic, and also competitive games.
While this game is competitive under this classification, note that in an N -player game
with N > 2, several players may share cooperative sub-goals, such as hindering the
progress of the current leading player. All these characteristics suggest that 7W is a
difficult challenge for AI.

In a 7W game, from 3 to 7 players1 are first given a random personal board among the
7 available, before playing the so-called 3 ages (phases) of the game. At the beginning
of each game age, each player gets a hidden hand of 7 cards. Then there are 6 playing
card rounds, where every player simultaneously selects a card from his hand and either:

– puts it on the table in his personal space;
– or puts it under his personal board to unlock some specific power;
– or can discard it for 3 units of the game money.

The last decision (or move) is always possible, while the first two possible moves
depend on the player ability to gather enough resources from his board or from the
production cards he already played in his personal space. He can also buy, with game
money, resources from cards previously played by his left and right neighbors. This
trading decision cannot be opposed by the opponent player(s) and the price is deter-
mined by the cards already played.

After playing their card, there is a so-called drafting phase, where all players give
their hand of remaining cards to their left (age 1 and 3) or to their right (age 2) neighbor.
Thus the cards circulate from player to player, reducing the hidden information. When
there are less than 6 players, some cards from his original hand will eventually come
back to every player. On the 6th turn, when the players receive only two cards in hand,
they play one of the two and discard the other.

The goal of the game is to score the maximum victory points (VP), which are
awarded to the players at the end of the game, depending on the cards played on the
table, under the boards and the respective amounts of game money. The cards are al-
most all different, but come in families distinguished by color: resources (brown and

1 While the rule allows 2 player games, these are played by simulating a 3rd “dumb” player.

66 D. Robilliard, C. Fonlupt, and F. Teytaud

Fig. 1. Illustration of a player board and personal space in the middle of a game. Cards in hand
are shown vertically on the right, cards played in the personal space are above the board with
only the top of resources cards shown, cards put under the board are shown below the board with
hidden face.

grey), military (red), administrative (blue), trade (yellow), sciences (green) and guilds
(purple). The green family is itself sub-divided between three symbols used for VP
count. See Figure 1 for an illustration of a player situation.

This game presents several interesting traits for AI research, that also probably ex-
plain its success among gamers:

– it has a complex scoring scheme combining linear and non-linear features: blue
cards provide directly VPs to their owner, red cards offer points only to the owner of
the majority of red cards symbols, yellow ones allow to save or earn game money,
green ones give their owner the number of identical symbols to the square, with
extra points for each pack of three different symbols.

– resource cards have delayed effect: they mainly allow a player to put VPs awarding
cards on later turns; this is also the case of green cards that, apart from the scoring
of symbols, allow some other cards to be played for free later on.

– there is hidden information when the players receive their hand of cards at the
beginning of each age of the game.

– there is a great interactivity between players as they can buy resources from each
other to achieve the playing of their own cards. Some cards also give benefits or

Monte-Carlo Tree Search for the Game of “7 Wonders” 67

VPs depending on which cards have been played by the neighbors. Moreover the
drafting phase confronts players with the difficult choice of either playing a card
that gives them an advantage, or another card that would give a possibly greater
advantage to one of the neighbors that would receive it after the drafting phase.

– the game is strongly asymmetric relatively to the players, since all player boards
are different and provide specific powers (such as resources, or military symbols).
Most of these benefits are available when playing a card under the personal board at
a given cost in resources. Thus some boards are oriented towards specific strategies,
such as maximizing the number of military symbols, or increasing the bonuses of
collecting green cards symbols, for example.

The number of different cards (68 for 3 players, from those 5 are removed randomly)
and the 7 specific boards, together with the delayed effect of many cards and the non-
linear scoring, make it difficult to handcraft an evaluation function. Notably, the number
of VPs gained in the first game age is a bad predictor of the final score, since scoring
points at this stage of the game usually precludes playing resource cards that will be
needed later on.

We can give an approximation of the state space size for 3 players, by considering
that there are 68 possible different cards, from those each player will usually play 18
cards. We thus obtain

(
68
18

)×(
50
18

)×(
32
18

)
= 1E38 possible combinations, neglecting the

different boards and the partition between on-table and behind-the-board cards (which
would increase that number).

3 Monte-Carlo Tree Search

The Monte-Carlo Tree Search algorithm (MCTS) has been recently proposed for
decision-making problems [14,8]. Applications are numerous and varied, and encom-
pass notable games [12,15,4,1,18]. In games MCTS outperforms alpha-beta techniques
when evaluation functions are hard to design. The most known implementation of
MCTS is Upper Confidence Bound (UCT), that is presented below. Enhancements have
also been proposed, such as progressive widening [7,6,19], that is described at the end
of this section.

3.1 UCT Description

Let us first define two functions:mc(s)which plays a uniform random decision (move)
from the situation s and returns the new position, and result(s) which returns the
score of the final situation s. The idea is to build an imbalanced partial subtree by
performing many random simulations from the current state, and simulation after sim-
ulation biasing these simulations toward those that give good results. The construction
is then done incrementally and consists in three different parts: descent, evaluation and
growth, illustrated in Fig. 2.

The descent is done by using a bandit formula, i.e. by choosing the node j among all
possible nodes Cs which gives the best reward according to the formula:

s′ ← argmax
j∈Cs

[
x̄j +KUCT

√
ln(ns)

nj

]

68 D. Robilliard, C. Fonlupt, and F. Teytaud

with x̄j the average reward for the node j (it is the ratio of the number of victories
over the number of simulations, thus belonging to interval [0, 1]), nj the number of
simulations for the node j, ns is the number of simulation in s, and ns =

∑
j nj . KUCT

is the exploration parameter and is used to tune the trade-off between exploitation and
exploration. At the end of the descent part, a node which is outside the subtree has
been reached. In order to evaluate this new node, a so-called playout is done: random
decisions are taken until the end of the game, when the winner is known. The last part
is the Growth step which consists in simply adding the new node to the subtree, and
updating all the nodes which have been crossed by the simulation. The algorithm is
presented in Alg.1.

Algorithm 1. MCTS

argument node s, MCTS subtree T̂
while there is some time left do

s′ ← s
Initialization: game ← ∅
// DESCENT
while s′ in T̂ and s′ not terminal do

s′ ← argmax
j∈Cs′

[x̄j +KUCT

√
ln(ns′)

nj
]

game ← game+ s′

S ← s′

// EVALUATION
while s′ is not terminal do

s′ ← mc(s′)
r = result(s′)
// GROWTH
T̂ ← T̂ + S
for each s in game do

ns ← ns + 1
x̄s ← (x̄s∗(ns−1)+r)

ns

In our implementation, a single N -player game turn (corresponding to the N player
simultaneous decisions), is represented in the MCTS subtree by N successive levels,
thus for a typical 3-player game with 3 ages and 6 cards to play per age, we get 3× 6 =
18 decisions per player and the depth of the subtree is 18 × 3 = 54. Of course we
keep the “simultaneous decisions” property, that is the state of the game is updated
only when reaching a subtree level whose depth is a multiple of N , thus successive
players (either real or simulated) make their decision without knowing their opponent
choices. The average branching factor of a node can be estimated: a player has 4 cards
in hand on average that can possibly be played in 3 different ways: discard, on the table,
and behind the board. These two last options can usually be accomplished by different
trading options, 2 trading options being common. This leads to an estimated average
branching factor of 4 ∗ (1 + 2× 2) = 20 children per node.

Monte-Carlo Tree Search for the Game of “7 Wonders” 69

Fig. 2. Illustration of the MCTS algorithm from [3]. Circles represent nodes and the square rep-
resents the final node. On the left subtree, the descent part (guided by the bandit formula in the
UCT implementation) is illustrated in bold. The evaluation part is illustrated with the dotted line.
The subtree after the growth stage is illustrated on the right: the new node has been added.

3.2 Progressive Widening

UCT is an efficient method for balancing exploration and exploitation, however, only
few information are provided for decisions loosely explored. Several enhancements
have been provided to tackle this problem. The most famous are Progressive Widen-
ing [7,6,19] and Rapid Action Value Estimate [12].

The principle of progressive widening is to rank possible decisions according to some
heuristics and to discard certain decisions while the number of simulations is not large
enough. More precisely, let us rename decisions y1 . . . yn, with i < j when decision
yi is better than yj according to the heuristic. At the mth simulation, all decisions with
an index larger than f(m) are discarded. The following formula: f(m) = �QmP �
performs well in the literature [7]. We let the parameter Q = 1.0 and tune only P , as
reported in the experiment section.

We have chosen a simple ordering heuristic based on human play. This ranking con-
sists in having first alternative resource type cards, then single resource type cards, then
military cards, followed by science cards. Other cards are left unordered since for trade
cards it is difficult to assess an a priori order, and for civil cards we can expect that they
are easier to evaluate by MCTS, since their reward is mostly independent of other cards.

4 MCTS and 7 Wonders

In this section we present how we dealt with partial information and weak moves in
playouts.

4.1 Handling Partial Information

In order to handle partial information, we used the determinization paradigm, see [13,2].
This consists in choosing decisions via several simulations of perfect information games

70 D. Robilliard, C. Fonlupt, and F. Teytaud

that are consistent with what is known of the real, imperfect information, game state.
We keep a single MCTS subtree, and the MCTS AI records the whole set of possible
cards in its opponents’ hands. Any card revealed during play implies a reduction of
the opponents’ possible cards in hand. When a simulation is done, we perform a de-
terminization by an equiprobable random draw of a real size hand for each opponent,
from their set of possible cards. The MCTS subtree is then descended, ignoring children
nodes that are not playable with the current determinization, and adding newly avail-
able children nodes if required. This way of doing seems similar in principle to what is
called information set UCT in [20].

Coping with Weak Decisions. A 7W player has always the choice of putting a card on
the discard pile to earn 3 coins of game money. This is the sole option available when the
resources needed to play any card are not available, but it can also be a tactical choice,
e.g. in order to have enough money to buy resources from neighbors on a later turn.
However, most of the time discarding is a worse than average move: notably 3 coins
amount to 1 VP, while played cards should bring an average reward of about 3 VPs per
card. As any one card can be discarded for money, while not all cards can usually be
played, depending on available resources, thus discards are the most common moves
and would be the dominant moves explored by a fully random playout procedure. This
results in non-informative playouts and a weak MCTS player. The presence of such
a class of weak moves is not uncommon in other games too, for instance in Go, all
programs discard the “empty triangle” move from their playouts. We act similarly in
the playouts, allowing discards only when no other move is possible. On the contrary
we keep all moves in the MCTS subtree construction, in order to allow for tactical
discards.

5 Managing Trading Decisions

In order to play a card in 7W, a player may choose to buy resources either from the
right, left or from both of his two neighbors, at possibly different costs, depending on
the resource type. Moreover some of the resource producing cards provide alternate
choices: e.g. the “Caravanserai” card provides one unit of either ore, wood, brick or
stone. These two game rules induce a combinatorial tree of possible resource trade
choices, and it is not uncommon that this tree has several hundred branches, especially
during the 3rd game age. Some of the branches are dead end, that is after setting some
trade choices, it appears that some required resources cannot be gathered or are now
unaffordable to the player. Other branches may offer valid and affordable trade choices,
which constitute as many possible game decisions. Note that there is such a tree of
possible trade decisions for every card in hand.

While the exploration of the whole tree for every card is recommended for building
the MCTS subtree, since one does not want to forget a possible card playing decision,
this would greatly impact the speed of play when it is done in playouts. Nonetheless
it is not possible to ignore the trade decision tree, since truly random decisions would
make nonsense in most cases (such as trying to buy resources from a player that do not

Monte-Carlo Tree Search for the Game of “7 Wonders” 71

own them, or that own them in insufficient number). Thus some sort of exploration of
the trade tree has to be done.

We dealt with that issue in playouts by imposing a random order on the branches of
the tree of possible trade choices, and fixing a hard limit L on the number of branches
explored, depending on the game age: 3rd age cards generally award more VPs and
require more resources, so it is sensible to spend more exploration time before deciding
if they are playable or not in playouts. If we cannot find a suitable branch in the first L
branches explored, then we consider that the card cannot be played (either on the table
or under the board), thus it must be discarded.

In Table 1 we show the number of discards in playouts. This number of discards is
listed per each game age and for 4 different values of the hard limit L on branch explo-
ration (this is done for 3 players and 15000 simulations per game turn and there is some
variance due to the game randomness). Some hands of cards really do not contain any
playable card, thus a discard is compulsory by the game rules, but in other cases there
are playable cards that are not seen if L is too low: the exploration of trading choices is
ended too early. Indeed we see in Table 1 that the number of discards increases when
putting too strict limits on trade exploration, meaning that we drop cards that could have
been played by allowing a longer search.

In the Table 1 we see that discards are more common in the first age and are not
affected by our limit thresholds. This is explained by the fact that not many resources
have usually been played by random playouts in the first age, thus discards are often
the sole possible decisions. On the contrary, the L threshold impacts the successful
discovery of playable moves in age 2 and 3. Discards remain more common in age 3
than in age 2, since age 3 cards require more resources.

Table 1. Number of discards in playouts depending on game age and on the hard limit on the
number of trading branches explored

Game Limit L on branches explored
age 16 br. 24 br. 32 br. 48 br.

1 35908 40304 38080 36340
2 14540 6727 6009 6191
3 67171 15578 11370 11314

By setting a limit of 8, 24 and 32 branches on respectively age 1, 2 and 3, we gained
a more than 5 times speedup against the exploration of the whole trading tree. This
allows for about 1000 simulations per second in age 1. The loss of precision in playouts
(discards that could have been avoided with a longer search) is more than compensated
for by the greater number of simulations allowed in the same time. Note that humans
are also confronted to the same problem, and it is not uncommon that a player thinks a
card is not playable, while it really is.

72 D. Robilliard, C. Fonlupt, and F. Teytaud

6 Experiments and Results

The objective of the experiments is to study the level of efficiency of MCTS to play
successfully at 7W. This is done in comparison with a simple handcrafted rule-based
AI presented below, and also by studying several values of MCTS parameters and en-
hancements, such as progressive widening.

Note that our MCTS AI was also successfully matched against experienced human
players, even if the number of plays (and players) cannot yet be considered significant
and reported here.

6.1 Rule-Based AI Implementation

The rule-based AI (rbAI) is deterministic and is managed, in age 1 and 2, along the
principles listed below by priority order (when a card is “always played”, it means of
course if it is affordable):

– a card providing 2 or more resource types is always played;
– a card providing a single resource type that is lacking to the rbAI is always played;
– a military card is always played if rbAI is not the only leader in military, and the

card allows rbAI to become the (or one of the) leading military player(s);
– the civil card with the greatest VP award is always played;
– a science card is always played;
– a random remaining card is played if possible, else a random card is discarded.

In the third game age, the set of rules is superseded by choosing the decision with
best immediate VP reward.

6.2 Experimental Setting

All experiments are composed of 1000 runs, and the number of MCTS simulations per
game turn is given for the 1st of the 3 ages of the game. This number is multiplied
respectively by 1.5 and 2 in the 2nd and 3rd ages, since the shorter playouts allow more
simulations in the same time (so a “1000 simulations” means respectively 1000, 1500
and 2000 simulations per turn in ages respectively 1, 2 and 3).

In the MCTS vs rbAI test, we use one instance of MCTS versus 2 instances of the
rbAI. Iteratively, 20 sets of personal boards are drawn, and 50 independent random
cards distributions are played on every board set.

In the MCTS parameter tuning experiments, we use one instance of the rbAI ver-
sus 2 instances of MCTS with different parameters/enhancements, called MCTS-1 and
MCTS-2. We draw iteratively 5 board sets where the same board is duplicated for the
two MCTS (this duplication of boards is not allowed in the original game rules but is
handy to ensure that the MCTS comparison is not biased by the strength of the dif-
ferent boards). For each board setting, 100 independent random card distributions are
played, then the two different MCTS instances swap position and the same 100 card
distributions are played again. This is to remove any bias that could be generated by the
position of each MCTS relatively to the rbAI player.

Monte-Carlo Tree Search for the Game of “7 Wonders” 73

6.3 MCTS against Simple AI

In this section we compare the success rate of one MCTS player against two instances
of the simple rule-based AI. Table 2 shows that MCTS is clearly superior. Adding more
simulations improves the MCTS success rate, although with diminishing returns as the
number of simulations increases, as expected by the theory.

Table 2. Comparisons of MCTS success rate (SR) versus rule-based AI (rbAI) for several number
of simulations per game turn (mean value ± 95% confidence interval)

sim. SR SR
MCTS rbAI

125 67.63% ± 2.89 32.37% ± 2.89
250 81.87% ± 2.38 18.13% ± 2.38
500 87.25% ± 2.06 12.75% ± 2.06

1000 92.63% ± 1.62 7.37% ± 1.62

6.4 Comparison of MCTS with Different Parameters

Tuning of the Bandit Formula. First Table 3 shows a comparison of success rate for
several values of the exploration constantKUCT , on 1000 games, with 1000 simulations
per game turn for each MCTS player. The success rates of the rbAI player are very low
when using this number of simulations for MCTS and are not reported here (thus the
success rates displayed do not sum up to 100%). The experiment show that good KUCT

values can be obtained in the range [0.3, 1.0], although values strictly greater than 0.3
do not yield no much significant improvement. This good 0.3 value is slightly superior
to the standard 0.2 found in the literature. This might be explained by the fact that some
moves may appear very attractive in a few simulations (e.g. playing a military card)
while some other good moves need more simulations to show their robustness (e.g.
playing a science card that also allows some good later cards for free).

Scaling of UCT. A second set of experiments, in Table 4 explores the impact of the
number of MCTS simulations per game turn. The KUCT value is set to 0.3 for all ex-
periments in this table. For each experiment we compare a given number of simulations
against twice as many simulations. The expected gain decreases when the number of
simulations rises, which is consistent with the literature (see [11]).

Progressive Widening. We experiment the progressive widening enhancement with
1000 simulations per move and KUCT = 0.3. Several values for the P parameter are
experimented and results against a standard MCTS are presented in Table 5. Except
when P is too small and reduces too much the MCTS exploration, we obtain an im-
provement for several values of P . While the improvement is small, it appears quite
robust in front of P . One point is that we have the same sorting for all moves for all
ages. Maybe we should have an independent progressive widening for each age, as the
importance of a family of moves could be different in different stages of the game.

74 D. Robilliard, C. Fonlupt, and F. Teytaud

Table 3. Comparisons of MCTS success rates (SR) for different values of KUCT and 1000 sim-
ulations per game turn (mean value ± 95% confidence interval, rule-based AI is not reported)

KUCT KUCT SR SR
MCTS-1 MCTS-2 MCTS-1 MCTS-2

0.1 0.2 34.20% ± 2.94 64.2% ± 2.97
0.2 0.3 42.60% ± 3.06 55.90% ± 3.08
0.3 0.4 48.00% ± 3.10 51.30% ± 3.10
0.3 0.5 48.70% ± 3.10 51.20% ± 3.10
0.3 0.7 49.10% ± 2.68 50.52% ± 2.68
0.3 1.0 48.30% ± 3.10 51.20% ± 3.10

Table 4. Comparisons of MCTS success rates (SR) for different number of simulations per game
turn (mean value ± 95% confidence interval, rule-based AI is not reported)

sim. # sim. SR SR
MCTS-1 MCTS-2 MCTS-1 MCTS-2

125 250 34.50% ± 2.95 62.00% ± 3.01
250 500 39.00% ± 3.02 59.40% ± 3.04
500 1000 43.90% ±3.08 55.50% ±3.08

1000 2000 44.80% ± 3.08 54.60% ± 3.09
2000 4000 46.20% ± 3.09 53.50% ± 3.09
4000 8000 44% ± 3.08 % 55.90± 3.08

Table 5. Comparisons of MCTS success rates (SR) without or with progressive opening of sub-
trees for different values of the P parameter (mean value ± 95% confidence interval, rule-based
AI is not reported)

P SR without SR with
progressive MCTS-1 progressive MCTS-2

0.15 58.60% ± 3.05 40.70% ± 3.04
0.25 46.40% ± 3.09 53.20% ± 3.09
0.35 46.40% ± 3.09 53.30% ± 3.09
0.45 46.90% ± 3.09 52.70% ± 3.09

Monte-Carlo Tree Search for the Game of “7 Wonders” 75

Using the Real Score of the Game. It has been shown that using an evaluation func-
tion instead of a Monte-Carlo policy can improve the global strength of the MCTS
algorithm [15,21]. However, building such a function is not always possible and some-
times Monte-Carlo evaluations is the only choice. Sometimes, an intermediate solution
consists in taking the real score of the game in order to bias the bandit formula. This
is only possible when such a score exists and results are moderate. For instance, in the
game of Go, there is only a very small (but significant) improvement [9]. One emphasis
reason is that it becomes too greedy to win by more points and takes risks. We try to
use the real score to bias the bandit formula as this score exists in the original game.
Following [5], the bandit formula becomes then

scorej ← x̄j +KUCT ∗
√

ln(ns)

nj
+

Kscore

log(nj)
∗RealScore

With this formula, the impact of the real score decreases with the number of simula-
tions.

Results with numerous Kscore are presented in Table 6. We can note two things: first
using only the real score, which is approximated by using a large Kscore does not work.
The problem with this tuning is that the MCTS algorithm tries to win as many points
as possible, even if it is a risky strategy. This is not reasonable, since it is better to be
sure to win by only one point than to take risks to win by more points. Second, with
only a small help of the real score (Kscore = 0.1) it seems possible to obtain a small
improvement, although not very significant. Both these results are consistent with the
previous literature; in [9] the help of the real score gives a gain of only 0.02 for the
game of Go.

Table 6. Comparisons of MCTS success rates (SR) without or with of the use of the real score
game for biasing the tree policy (mean value ± 95% confidence interval, rule-based AI is not
reported)

Kscore SR without SR with
the real score MCTS-1 the real score MCTS-2

0.01 50.00% ± 3.10 49.70% ± 3.10
0.05 50.30% ± 3.10 49.20% ± 3.10
0.10 47.40% ± 3.10 52.00% ± 3.10
0.15 51.30% ± 3.10 48.00% ± 3.10
0.20 48.50% ± 3.10 50.60% ± 3.10
0.50 60.00% ± 3.04 39.60% ± 3.03
1.00 69.40% ± 2.86 29.60% ± 2.83

10.00 76.50% ± 2.63 22.20% ± 2.58

76 D. Robilliard, C. Fonlupt, and F. Teytaud

7 Conclusion and Future Research

In this paper we investigated Monte-Carlo Tree Search for the complex 7W board game,
using all rules. The game of 7W has several challenging properties: multi-player, hid-
den information, chance and a complex scoring mechanism, that makes it difficult to
handcraft an evaluation function. In this context, the MCTS method obtains convincing
results, both against a human designed rule-based AI and against experienced human
players.

However, the implementation is not straightforward: we use determinization to han-
dle the hidden information element, and we refine the playouts by suppressing a class
of weak moves. Moreover, the computing cost of exploiting all possible trading deci-
sions in the playouts is too large to allow enough simulations for real-time play against
humans. We solve this problem by approximating the set of allowed trading decisions.
Thus the gap between MCTS theory and practice is not negligible.

We notice that the various parameter effects (KUCT , scalability, progressive widen-
ing, and adding a score information) are quite similar to what is observed in classic
abstract games, despite the fact that this game seems substantially different.

Future works consist in implementing the use of the Rapid Action Value Estimate
(RAVE) enhancement [12], which is one the most powerful improvement for several
games [12,18]. Another interesting work should be to analyze and improve the en-
hancements tried in this paper. In particular, having one progressive widening per age
seems to be a good idea. The real score could also be incorporated in a similar way, as
the relevance of its impact is probably bigger in the last stages of the game. Paralleliza-
tion of the playouts could have both advantages of increasing the level of play by using
more simulations, and allowing enough time to explore all trading moves in playouts.
Last but not least, we plan to interface our AI with a gaming website in order to obtain a
better assessment of its game level through the confrontation with more human players.

References

1. Arneson, B., Hayward, R.B., Henderson, P.: Monte-Carlo tree search in Hex. IEEE Transac-
tions on Computational Intelligence and AI in Games 2(4), 251–258 (2010)

2. Bjarnason, R., Fern, A., Tadepalli, P.: Lower bounding Klondike Solitaire with Monte-Carlo
planning. In: ICAPS (2009)

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte-Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–43
(2012)

4. Cazenave, T.: Monte-carlo kakuro. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009.
LNCS, vol. 6048, pp. 45–54. Springer, Heidelberg (2010)

5. Chaslot, G., Fiter, C., Hoock, J.-B., Rimmel, A., Teytaud, O.: Adding expert knowledge and
exploration in monte-carlo tree search. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009.
LNCS, vol. 6048, pp. 1–13. Springer, Heidelberg (2010)

6. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M., Bouzy, B.:
Progressive strategies for Monte-Carlo tree search. New Mathematics and Natural Computa-
tion 4(3), 343–357 (2008)

Monte-Carlo Tree Search for the Game of “7 Wonders” 77

7. Coulom, R.: Computing “ELO ratings” of move patterns in the game of Go. ICGA Jour-
nal 30(4), 198–208 (2007)

8. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: van
den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp.
72–83. Springer, Heidelberg (2007)

9. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego–An open-source framework
for board games and Go engine based on Monte Carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games 2(4), 259–270 (2010)

10. Gardiner, A.: proposal for an agent that plays 7 Wonders. Tech. rep., Willamette Univer-
sity (2012), http://www.willamette.edu/˜bgardine/Thesis Files/ben
gardiner proposal final.pdf

11. Gelly, S., Hoock, J.B., Rimmel, A., Teytaud, O., Kalemkarian, Y., et al.: On the paralleliza-
tion of Monte-Carlo planning. In: ICINCO (2008)

12. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceedings of the
24th International Conference on Machine Learning, pp. 273–280. ACM (2007)

13. Ginsberg, M.L.: Gib: Imperfect information in a computationally challenging game. J. Artif.
Intell. Res. (JAIR) 14, 303–358 (2001)

14. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

15. Lorentz, R.J.: Amazons discover monte-carlo. In: van den Herik, H.J., Xu, X., Ma, Z.,
Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer, Heidelberg (2008)

16. Pfeiffer, M.: Reinforcement learning of strategies for Settlers of Catan. In: 5th International
Conference on Computer Games: Artificial Intelligence, Design and Education, pp. 384–388
(2004)

17. Szita, I., Chaslot, G., Spronck, P.: Monte-Carlo tree search in Settlers of Catan. In: van den
Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 21–32. Springer, Heidelberg
(2010)

18. Teytaud, F., Teytaud, O.: Creating an upper-confidence-tree program for havannah. In: van
den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 65–74. Springer,
Heidelberg (2010)

19. Wang, Y., Audibert, J.Y., Munos, R., et al.: Infinitely many-armed bandits. Advances in Neu-
ral Information Processing Systems (2008)

20. Whitehouse, D., Powley, E.J., Cowling, P.I.: Determinization and information set Monte-
Carlo tree search for the card game Dou Di Zhu. In: 2011 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 87–94. IEEE (2011)

21. Winands, M.H.M., Björnsson, Y.: Evaluation function based Monte-Carlo LOA. In: van den
Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44. Springer, Heidelberg
(2010)

22. Winder, R.K.: Methods for approximating value functions for the Dominion card game. Evo-
lutionary Intelligence (2013)

http://www.willamette.edu/~bgardine/Thesis_Files/ben_gardiner_proposal_final.pdf
http://www.willamette.edu/~bgardine/Thesis_Files/ben_gardiner_proposal_final.pdf

Small and Large MCTS Playouts Applied

to Chinese Dark Chess Stochastic Game

Nicolas Jouandeau1 and Tristan Cazenave2

1 LIASD, Université de Paris 8, France
n@ai.univ-paris8.fr

2 LAMSADE, Université Paris-Dauphine, France
cazenave@lamsade.dauphine.fr

Abstract. Monte-Carlo Tree Search is a powerful paradigm for deter-
ministic perfect-information games. We present various changes applied
to this algorithm to deal with the stochastic game Chinese Dark Chess.
We experimented with group nodes and chance nodes using various con-
figurations: with different playout policies, with different playout lengths,
with true or estimated wins. Results show that extending playout length
over the real draw condition is beneficial to group nodes and to chance
nodes. It also shows that using an evaluation function can reduce the
number of draw games with group nodes and can be increased with
chance nodes.

1 Introduction

Chinese Dark Chess (CDC) is a popular stochastic two-player game in Asia
that is often played on a 4×8 rectangular board where players do not know flip-
ping moves’ payoff. The two player (called black and red) start with the same
set of pieces: one king, two guards, two bishops, two knights, two rooks, two
cannons and five pawns (pieces that are similar to Chinese Chess). Before the
first move, players do not know their color. The first player move defines the first
player color. In classic games, pieces evolve on squares and can move vertically
and horizontally from one square to an adjacent free square (i.e. up, down, left
and right). A piece can capture another piece according to pieces value. Cap-
tures are done on vertical and horizontal adjacent squares except for cannons
that capture pieces by jumping over another piece. Such jump is performed over
a piece (called the jumping piece) and to the target piece. Free spaces can stand
between its initial position and the jumping piece and between the jumping piece
and the target position. Even if flipping moves imply multiple board possibili-
ties, classic moves can lead to similar positions during the game and capturing
rules are different for each piece. Monte-Carlo Tree Search (MCTS) programs
have recently improved the most. We show in this paper two different MCTS
implementations that can be further improved by using longer playouts, playout
policies and an evaluation function.

The paper is organized as follows. Section 2 describes related work. Section
3 presents two MCTS implementations. Section 4 shows experimental results

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 78–89, 2014.
c© Springer International Publishing Switzerland 2014

Small and Large MCTS Playouts 79

achieved with different playout lengths, playout policies and an playout evalua-
tion function. Finally, Section 5 gives the conclusions.

2 Related Work

In this section we discuss related work on CDC. Even though the game has not
been researched extensively, previous research concern methods such as alpha-
beta, move policies, endgame databases and MCTS.

Chen et al. [1] used the alpha-beta algorithm with different revealing policies
combined with an initial-depth flipping method to reduce the branching factor.
They distinguished opening, middle and endgame to apply different policies.

Chen et al. [2] built an endgame databases with retrograde analysis. Created
databases are done for each first move color, up to 8 revealed pieces. They used
2TB of memory to represent 1012 positions. Positions status are stored as win,
loss or draw.

Yen et al. [3] presented a non-deterministic Monte-Carlo Tree Search model
by combining chance nodes [4] and MCTS. They create shorter simulations by
moderating the three policies named Capture First, Capture Stronger Piece First
and Capture and Escape Stronger Piece First. As draw rate decreases, win rate
increases and simulations are more meaningful for MCTS.

Chang and Hsu [5] solved the 2 × 4 variant. They created an Oracle variant
where every piece is known. Comparing the Oracle variant and the classic variant
shows that the first move is crucial on the 2× 4 board.

Chen and Hsu [6] presented a policy-oriented search method to build opening
books in case of a very large state space as it is in CDC. Attack, defend, claim
or discover territory are compared according to player’s turn. Results show that
player’s level is a little stronger with an opening book. As flipping moves can
completely change the game issue, they showed that enhancements provided are
probabilistically acquired.

Safidine et al. [7] exploit pieces combinations to reduce endgame databases.
By combining material symmetry identified by relations between pieces and
endgame construction with retrograde analysis, winning positions are recorded
in databases. This general method has been applied to Skat, Dominoes and
CDC. Even if the relationship between pieces in CDC creates intricate symme-
tries, they reduced the size of 4-element endgame tables by 9.92 and the size of
8-element endgame tables by 3.68.

Chen et al. [8] present equivalence classes computation for endgames with
unrevealed pieces. Boards are identified by threats and pieces’ positions that
are compared in a multiple steps algorithm. Compression rates of material have
been studied from 3 to 32 pieces. Endgame databases have been computed of 3
to 8 pieces and its number of elements is reduced by 17.20.

Move groups have been proposed in [10] to address the problem of MCTS in
games with a high branching factor. When there are too many moves, it can be
a good heuristic to regroup the statistics of moves that share some properties.
For example, in the game of Amazons where the branching factor can be of

80 N. Jouandeau and T. Cazenave

the order of a thousand moves, a natural way to reduce the branching factor
is to separate the queen move from the stone placement [9]. In the imperfect
information game Dou Di Zhu, Information Set [11] has been combined with
move groups: the player first chooses the base move and then the kicker, as two
separate consecutive decision nodes in the tree. Move groups have also been
analyzed for an artificial game [12].

3 Stochastic MCTS

In this section, we present the use of chance nodes and of group nodes with
MCTS. Group nodes are used to reduce the branching factor created by flipping
moves. In a similar manner to move groups that regroup moves, we define group
nodes to consider all revealing moves at the same position in a single node. Apart
from that, chance nodes are the classic way to manage stochastic information in
trees. We present the main loop and the selection function of MCTS with group
nodes and with chance nodes. Both algorithms are presented as an anytime
interruptible process, that tends to produce a better solution over computing
time and that is instantaneously interrupted when time is up or when a winning
move is found.

3.1 With Group Nodes

During the game, applying a flipping move can relate to different boards. At the
beginning of the game, the first player has 32 possible moves that correspond to
4× 1036 possibilities. During the game, the number of possible boards linked to
flipping moves decreases with the number of unrevealed pieces. For the penul-
timate flipping move, 2 boards are possible and for the last flipping move, only
one board. But as the number of possible boards stays over 120 for more than
5 different pieces, the number of possible boards remains important at most of
the time before endgame. To reduce the number of children nodes produced by
flipping moves, all possible boards that arise from a flipping move are gathered
in a single group node. Therefore, at the beginning of the game, the root node
is followed by 32 children that are group nodes. Then the other actions (moves,
jumps and captures) are represented in the tree with classic nodes. The main
loop of MCTS with group nodes is presented in Alg 1. The selection phase
(line 2) returns a node q to expand, its corresponding board and L the list of
moves to apply for expansion. By default, all nodes inserted in the tree have
UNSET winning color. If this node is known as winning position, the process
is interrupted (line 3). Otherwise each element of L creates a new child to q and
store it in N . For each element of N , the board is modified, a new simulation is
applied from the modified board and a new result is backpropagated from the
new node up to the root node. At the end, the bestNext function selects the
best next node qbest of the root node that defines the best next move.

The selection function of MCTS with group nodes is presented in Alg 2. The
process iterates to find the best node q, its corresponding board and its moves
M. There are four different cases:

Small and Large MCTS Playouts 81

Algorithm 1. MCTS with group nodes

1. while not-interrupted do
2. (q, board, L) ← select ()
3. if q.winning color ! = UNSET then break
4. N ← expandAll (q, L)
5. for each e ∈ N do
6. board′ ←applyMove (e, board)
7. simulate (e, board′)
8. backpropagate (e)
9. end for
10. end while
11. q ← bestNext (root node)
12. return q

– q is known as winning position. Then the process is interrupted (line 5).
– q is leading a player to a new winning position. Then it returns q with the

corresponding board and an empty set (line 7).
– q is a new node that has not been extended previously. Then it returns q

with the corresponding board and new moves that corresponds to the board
(lines 9 to 11).

– q is a group node previously evaluated with a different flipping outlet that
produces new moves that are not yet considered in q children. Then it returns
q with the corresponding board and new moves that corresponds to only
previously unconsidered moves in q group node (line 13 to 15).

The next function (Alg 2 line 6) returns all current next nodes of q. The move
function (line 8) returns all next moves of the current board. If M is empty (line
9), the corresponding node is noted as winning node for the opponent player of
the current board turn. The test applied line 13, checks if the current situation
fits with the current group node. If it fits, then the best next function is applied
to select the best nodes inside M (line 17). If it does not fit, then the selection
process is stopped and M becomes a set of previously unconsidered moves (line
14).

3.2 With Chance Nodes

During the game, moves can lead to the creation of chance nodes. As different
pieces are unknown, each flipping move is represented with a chance node. Other
board modifications, like moves, jumps and captures, are represented with classic
nodes. Chance nodes are composed of classic nodes. At a chance node, each
flipping possibility corresponds to a new child. The main loop of MCTS with
chance nodes is presented in Alg 3.

According to the MCTS phases, this process applies iteratively selection,
simulation and backpropagation. From a selected node q, the simulation leads
to a new node qnew from which the result of the last simulation is backpropagated
toward the root node. At the end, the bestNext function selects the best next

82 N. Jouandeau and T. Cazenave

Algorithm 2. select () with group nodes

1. q ← root
2. board ← root board
3. M ← ∅
4. while not-interrupted do
5. if q.winning color ! = UNSET then break
6. N ← next (q)
7. if size (N) = 0 then break
8. M ← moves (board)
9. if size (M) = 0 then
10. q.winning color ← opponent (board.turn)
11. break
12. end if
13. if ∃ e ∈ M with e /∈ N then
14. M ← M− (M∩N)
15. break
16. end if
17. (q, board) ← best next (q, M)
18. end while
19. return (q, board, M)

Algorithm 3. MCTS with chance nodes

1. while not-interrupted do
2. (q, board) ← select ()
3. if qnew .winning color ! = UNSET then break
4. qnew ← simulate (q, board)
5. backpropagate (qnew)
6. end while
7. qbest ← bestNext (root node)
8. return qbest

node qbest of the root node that defines the best next move. The selection of a
chance node can lead to different boards and the selection of a classic node leads
to an expected situation. At the beginning, all nodes are inserted in the tree
without winning color information. If the selected node is a winning node, the
process can be immediately interrupted (line 3 Alg 3 and line 4 Alg 4).

The selection function of MCTS with chance nodes is presented inAlg 4. The
process iterates to find the best node q and its corresponding board. From the
root node and the root board, the current board is updated according to the best
move. At each iteration, a set of moves M is defined according to the selected
board position and its turn. If this set is empty (line 6), the corresponding node
is noted as winning node for the opponent player of the current board turn. If
the best move is a new flipping move (line 11), a new chance node and a new
node are added in the tree. If initial and final positions differ, a simple classic
node is added.

Small and Large MCTS Playouts 83

Algorithm 4. select () with chance nodes

1. q ← root
2. board ← root board
3. while not-interrupted do
4. if q.winning color ! = UNSET then break
5. M ← moves (board)
6. if size (M) = 0 then
7. q.winning color ← opponent (board.turn)
8. return (q, board)
9. end if
10. if (posi, posf) ← newMove (q, board, M) then
11. if (posi = posf) then
12. q′ ← addChanceNode (q)
13. qnew ← addNode (q′)
14. else
15. qnew ← addNode (q)
16. end if
17. board ← play (posi, posf)
18. return (qnew , board)
19. end if
20. (q, board) ← best (q, board, M)
21. end while

4 Experiments

In this section, we present various experiments to select the fastest policies, to
reduce the number of drawn endgames, varying the playout length, and using
with or without and evaluation function.

4.1 Fast Policies

In this subsection, we present various policies used to enhance playouts. We
present basic and advanced ones and evaluate them to be useful in MCTS
with as fast simulations as possible. The fastest policies are considered as most
promising and are selected to continue our study.

We have used four basic playout policies, which are natural to use in CDC:

– Random, where players play randomly.
– Capture, where players try to capture opponent pieces.
– Avoid, where players try to avoid opponent’s capture.
– Trap, where players try to minimize opponents moves.

According to these basics policies, we settled for the following advanced poli-
cies derived from the basic ones:

– Capture and avoid, where players try first to capture one opponent, try
second to avoid opponents and otherwise play randomly.

84 N. Jouandeau and T. Cazenave

– Avoid and capture, where players try first to avoid opponents, try second to
capture one opponent and otherwise play randomly.

– Capture and trap, where players try first to capture one opponent and oth-
erwise to trap opponents.

– Capture avoid and trap, where players try first to capture an opponent, try
second to avoid opponents and otherwise to trap opponents.

All these policies have been tested for 2000 playouts at the beginning, the
middle and the end of the game. Results are shown in Fig. 1-3 and in Tab. 1.

Fig. 1 show the board at the beginning of the game, when player colors are
unknown. Best moves are colored in gray on the board and are bold in Tab. 1.

8 ❍ ❍ ❍ ❍

7 ❍ ❍ ❍ ❍

6 ❍ ❍ ❍ ❍

5 ❍ ❍ ❍ ❍

4 ❍ ❍ ❍ ❍

3 ❍ ❍ ❍ ❍

2 ❍ ❍ ❍ ❍

1 ❍ ❍ ❍ ❍

a b c d

Fig. 1. Beginning

8 ❍ ❍ ❍ ❍

7 ❍ ⑥ ② ❍

6 ❍ ➏ ❍

5 ❍ ❍ ⑤

4 ❍ ➐ ➊ ❍

3 ❍ ⑥ ❍

2 ❍ ❍ ③

1 ❍ ❍ ❍ ①

a b c d

Fig. 2. Middle game

8 ➏

7 ③ ⑥

6 ⑤

5

4 ①

3 ① ⑦

2 ⑥ ➎

1 ⑤ ④

a b c d

Fig. 3. Endgame

Fig. 2 shows the resulting board situation after the following 10 turns. Unknown
pieces are represented with white circles. The 10 moves played are (columns are
annotated with letters and rows are annotated with numbers. Flipping moves in-
dicate a revealed piece under parenthesis. Moving and capturing moves indicate
two coordinates.):
c4(k) d1(P) ; d2(N) d5(p) ; c2(G) c3(c) ; c5(C) c5-c3 ;

c4(p) c6(M) ; b3(r) c6-c5 ; b3-c3 c2-c3 ; c7(C) c5-d5 ;

b6(g) d5-c5 ; b6-c6 b7(G) ;

It is now first player’s turn to play. 19 reveal moves remain. First player is black
and its non-flipping possible moves are:
b4-b3 ; c6-b6 ; c6-c7 ; c6-c5 ;

Second player is white (i.e. red) and its non-flipping possible moves are:

Small and Large MCTS Playouts 85

Table 1. Playing 2000 playouts at beginning, middle game and endgame

Policy Time Rem. pieces Playout length
Without eval. fun. With eval. fun.
Best W L D Best W L D

At beginning
Random 0.660 12.16 (2.31) 106.37 (9.25) d7 - - 100 b7 69 30 01
Capture 0.375 5.67 (2.20) 100.01 (17.69) c2 25 22 53 b3 52 48 -
Avoid 5.973 16.78 (2.88) 207.41 (74.49) b2 - - 100 c8 57 43 -
Capture and avoid 0.598 7.24 (2.25) 107.27 (18.05) b1 34 13 53 c8 55 45 -
Avoid and capture 1.049 7.69 (2.20) 123.02 (20.15) c4 18 06 76 c6 38 60 02
Trap 140.457 8.95 (2.15) 579.69 (115.79) d7 - - 100 d6 86 14 -
Capture and trap 99.753 15.07 (3.07) 610.96 (111.26) c3 02 - 98 c5 52 48 -
Capture avoid and trap 39.799 7.12 (2.52) 435.53 (177.59) d3 31 25 44 d1 64 36 -
At middle game
Random 0.606 12.18 (2.24) 91.89 (9.20) d8 - - 100 c6-c7 43 57 -
Capture 0.348 6.91 (2.17) 75.60 (19.26) c6-c7 48 02 50 c6-c7 90 10 -
Avoid 5.072 16.60 (2.72) 194.68 (87.18) d4 - - 100 d4 55 44 01
Capture and avoid 0.585 7.53 (1.96) 89.06 (17.93) c6-c7 34 02 64 c6-c7 84 16 -
Avoid and capture 0.885 7.55 (2.02) 103.68 (15.79) c6-c7 04 14 82 c6-c7 30 69 01
Trap 157.911 9.68 (1.86) 704.73 (62.78) d7 - - 100 d8 97 03 -
Capture and trap 123.055 14.49 (2.89) 711.58 (45.01) b8 01 - 99 d4 76 24 -
Capture avoid and trap 34.201 9.92 (1.59) 370.29 (177.85) c6-c7 54 00 46 c6-c7 100 - -
At endgame
Random 0.504 8.23 (1.14) 42.72 (1.46) a8-a7 - - 100 a8-a7 - 100 -
Capture 0.469 6.26 (0.94) 41.93 (6.02) a8-a7 00 22 78 a8-a7 - 100 -
Avoid 0.781 10.12 (0.54) 40.66 (1.55) d2-c2 - 02 98 d2-c2 - 100 -
Capture and avoid 0.733 8.00 (0.00) 43.00 (0.00) a8-a7 - - 100 a8-a7 - 100 -
Avoid and capture 0.817 9.80 (0.53) 40.34 (4.36) d2-c2 - 04 96 d2-c2 - 100 -
Trap 11.138 7.00 (0.00) 44.00 (0.00) d2-c2 - - 100 d2-c2 - 100 -
Capture and trap 7.389 11.00 (0.00) 40.00 (0.00) d2-c2 - - 100 d2-c2 - 100 -
Capture avoid and trap 6.030 8.0 (0.00) 43.00 (0.00) a8-a7 - - 100 a8-a7 - 100 -

b7-b6 ; c5-c4 ; c5-d5 ; c3-b3 ; c3-c2 ; c3-c4 ; d2-c2 ;

First player has captured only one C piece and second player has captured 3 pieces
that are p c r. Good move for black is c6-c5, or reveal c8 and d7.

Fig. 3 shows an endgame board, where everything is known. Black has clearly
lost the game.

As CDC games can end in a draw, we constructed an evaluation function that
can evaluate a drawn position. This evaluation function is based on material bal-
ance. It allows to assign a numerical value to drawn endgame boards. As we do
not know if playing first is an advantage, we allow this evaluation function to re-
ply draw if the material is equal. In some specific cases, the draw depends on piece
position and then this function gives a false win detection. In order, pieces {K G M

R N C P} are associated to the weights {0.15, 0.1, 0.07, 0.05, 0.03, 0.05, 0.05}.
Tab. 1 compares the time required by basic and advanced policies to achieve

2000 playouts. This table also gives the average of remaining pieces and its
standard deviation, the average playout length and its standard deviation, the
best moves with and without evaluation function.

It shows that some policies are too slow (i.e. Avoid, Avoid and capture, Trap,
Capture and trap, Capture avoid and trap) to play a significant number of
playouts to be simply used in MCTS. Remaining pieces and playout length
showed us that longer playout could be interesting.

86 N. Jouandeau and T. Cazenave

4.2 Reducing the Number of Drawn Games

In this subsection, we select the best policies by checking their ability to create
as few as drawn games as possible. Results are presented according to various
draw conditions.

As some policies are considered as too slow, we only kept Random (i.e. RND),
Capture (i.e. CAP RND), Capture and avoid (i.e. CAP AVD RND) and Avoid and
Capture (i.e. AVD CAP RND) (where these last three also call random if nothing
else can be done).

Table 2. Applying 2000 playouts from begin board

Policy time[sec] draw Rem. pieces Playout length Draw condition
RND 0.630 1.00 12.62 106.07 40

1.067 0.99 6.03 232.11 160
1.801 0.67 3.24 622.37 640

CAP RND 0.376 0.70 5.66 103.71 40
0.522 0.46 4.59 171.77 160
0.802 0.31 4.29 335.92 640

CAP AVD RND 0.598 0.73 7.15 110.45 40
0.953 0.53 6.07 185.41 160
2.139 0.43 5.87 403.44 640

AVD CAP RND 1.012 0.87 7.77 124.29 40
1.707 0.69 6.19 223.51 160
4.353 0.59 5.85 550.41 640

Tab. 2 shows the time used to generate 2000 playouts from the begin board.
Next columns show the draw ratio, the average number of pieces at the end,
the playout length according to different draw conditions. In a normal game,
the draw condition is equal to 40 moves without capture or reveal. It shows
that the number of draws can be reduced significantly by increasing the draw
condition. In the same time, the number of remaining pieces is reduced. It shows
that CAP RND is really efficient for every value of the draw condition. We decided
to eliminate the AVD CAP RND policy that increases the time with only a slightly
better draw reduction than the simple RND policy.

4.3 Group Nodes vs. Chance Nodes

In this subsection, we challenge MCTS players by facing group nodes against
chance nodes, with different playout length, with the most promising policies.
For each combination, we also checked the influence of the evaluation function.
All the players are tested against a reference player, that simply plays randomly
when pieces are unrevealed and otherwise applies minimax to find the best move.
Results are shown in Tab. 3 for 500 games with half as the first player and
half as the second player. Each player has 1 sec to generate a new move. The
corresponding number of drawn games is shown in Fig. 4 for MCTS with group
nodes and in Fig. 5 for MCTS with chance nodes.

The RND policy is now abbreviated with R, the CAP RND policy is abbreviated
CR and the CAP AVD RND) policy is abbreviated CAR. C1 stands for group nodes

Small and Large MCTS Playouts 87

Table 3. Playing 500 games against the reference player

playout length 40 160 640 2560
win lost win lost win lost win lost

chance nodes C2-R 0 255 4 298 213 109 164 72
C2-R-h 9 137 104 64 116 43 135 42
C2-CR 244 16 242 21 245 15 149 21
C2-CR-h 131 15 143 14 138 23 129 23
C2-CAR 199 33 245 27 239 46 159 47
C2-CAR-h 129 16 125 25 122 9 104 30
playout length 40 160 640 2560

win lost win lost win lost win lost
group nodes C1-R 10 249 51 185 78 187 64 233

C1-R-h 60 269 103 231 80 219 85 263
C1-CR 35 46 101 52 146 61 137 66
C1-CR-h 120 87 167 98 182 88 147 127
C1-CAR 41 35 103 52 128 93 72 170
C1-CAR-h 109 100 167 86 175 97 130 143

and C2 stands for chance nodes. h mentions evaluation function usage and no h

means that only true victories are considered inside the playouts.
Results shows that chance nodes are less effective with evaluation function

where group nodes are more effective with evaluation function. It further shows
that chance nodes are more dependent on playout length than group nodes.
The best group-nodes players achieved 182 and 175 victories when chance nodes
achieved 244 and 245 victories.

Fig. 4. Group-node draw of Tab 3 Fig. 5. Chance-node draw of Tab 3

For each policy, Fig. 4 shows that evaluation function reduces the number of
draw games with group nodes. Nonetheless the number of draw games is equal
or higher with chance nodes (see Fig. 5).

Table 4. Tournament between MCTS players

C1-CAR-h-640 C2-CR-40 C2-CR-640 C2-CAR-160
C1-CR-h-640 268 / 169 282 / 97 176 / 252 287 / 131
C1-CAR-h-640 228 / 137 156 / 285 236 / 175
C2-CR-40 149 / 220 176 / 204

88 N. Jouandeau and T. Cazenave

Tab. 4 presents a tournament of best chance-nodes and group-nodes players.
It shows that:

– Between group nodes, CR-h-640 (i.e. Capture with evaluation function and
playout length of 640) is the best policy.

– Chance-nodes players even simply with Capture policy are better than group
nodes.

– Between all players, the best is chance nodes with Capture, without evalua-
tion function and with a playout length of 640.

It shows that sophisticated policies are better with group nodes where the basic
Capture policy is the best with chance nodes. Extending playout length over the
real draw condition is beneficial to group nodes and to chance nodes.

5 Conclusion

We have presented different Monte-Carlo Tree Search enhancements that deal
with the stochastic game Chinese Dark Chess. We have shown relations with
playout length, basic or advanced policies and evaluation function usage. While
extending the playout length is useful to create more informed playouts, an
evaluation function usage can either increase or decrease player’s effectiveness
through modifying the number of draw possibilities.

References

1. Chen, B.-N., Shen, B.-J., Hsu, T.-S.: Chinese Dark Chess. ICGA Journal 33(2),
93–106 (2010)

2. Chen, J.-C., Lin, T.-Y., Hsu, S.-C., Hsu, T.-S.: Design and Implementation of
Computer Chinese Dark Chess Endgame Database. In: TCGA Computer Game
Workshop, TCGA 2012 (2012)

3. Yen, S.-J., Chou, C.-W., Chen, J.-C., Wu, I.-C., Kao, K.-Y.: The Art of the Chinese
Dark Chess Program DIABLE. In: Proc. of the Int. Computer Symposium (ICS-
2012), pp. 231–242 (2013)

4. Lanctot, M., Saffidine, A., Veness, J., Archibald, C., Winands, M.H.M.: Monte
Carlo *-Minimax Search. In: 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI-
2013), pp. 580–586 (2013)

5. Chang, H.-J., Hsu, T.-S.: A Quantitative Study of 2 × 4 chinese dark chess. In: van
den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 151–162.
Springer, Heidelberg (2014)

6. Chen, B.-N., Hsu, T.-S.: Automatic Generation of Opening Books for Dark Chess.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp.
221–232. Springer, Heidelberg (2014)

7. Saffidine, A., Jouandeau, N., Buron, C., Cazenave, T.: Material symmetry to par-
tition endgame tables. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013.
LNCS, vol. 8427, pp. 187–198. Springer, Heidelberg (2014)

8. Chen, J.-C., Lin, T.-Y., Chen, B.-N., Hsu, T.-S.: Equivalence Classes in Chinese
Dark Chess Endgames. IEEE Trans. on Computational Intelligence and AI in
Games (in press, 2014)

Small and Large MCTS Playouts 89

9. Childs, B.E., Brodeur, J.H., Kocsis, L.: Transpositions and move groups in Monte
Carlo tree search. In: IEEE Symp. on Computational Intelligence and Games (CIG-
2008), pp. 389–395 (2008)

10. Saito, J.-T., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Group-
ing Nodes for Monte-Carlo Go. In: Computer Games Workshop 2007 (CGW 2007),
pp. 125–132 (2007)

11. Cowling, P.I., Powley, E.J., Whitehouse, D.: Information Set Monte Carlo Tree
Search. IEEE Trans. on Computational Intelligence and AI in Games 4(2),
120–143 (2012)

12. Van Eyck, G., Müller, M.: Revisiting Move Groups in Monte-Carlo Tree Search.
In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 13–23.
Springer, Heidelberg (2012)

On the Complexity of General Game Playing

Édouard Bonnet1 and Abdallah Saffidine2

1 Lamsade
Universit Paris-Dauphine

edouard.bonnet@dauphine.fr
2 School of Computer Science and Engineering

The University of New South Wales
abdallahs@cse.unsw.edu.au

Abstract. The Game Description Language (GDL) used in General
Game Playing (GGP) competitions provides a compact way to express
multi-agents systems. Multiple features of GDL contribute to making it
a convenient tool to describe multi-agent systems. We study the compu-
tational complexity of reasoning in GGP using various combinations of
these features. Our analysis offers a complexity landscape for GGP with
fragments ranging from np to expspace in the single-agent case, and
from pspace to 2exptime in the multi-agent case.

1 Introduction

General Game Playing (GGP) research aims at developing systems capable of
reasoning on a variety of multi-agent situations encoded in the Game Description
Language (GDL) [4]. GDL can be seen as a domain specific logic programming
language that provides a compact representation for transition systems. As such,
GDL can be related both the Planning Domain Description Language (PDDL)
and to Datalog.

The similarity between GDL and PDDL stems from the fact that both lan-
guages were created to describe dynamic situations. PDDL revolves around the
agent’s actions and allows modeling the preconditions and effects of actions cho-
sen by a planning system. On the other hand, GDL focusses on predicates that
characterize a current state and possible actions and their effects can be inferred
via logical reasoning on the state.

While GDL is based on Datalog and incorporates many aspects of it such
as negation-as-failure, it features multiple elements absent in Datalog such as
nested function constants and more importantly multi-agent system semantics
as opposed to a (set of) model(s).

Many language features of GDL make it a convenient tool to describe games
and other multi-agent systems. However, this very expressiveness makes reason-
ing about described systems challenging.

In this paper, we tackle the computational complexity of reasoning about
systems described in GDL. We study the impact, or lack thereof, of the most

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 90–104, 2014.
c© Springer International Publishing Switzerland 2014

edouard.bonnet@dauphine.fr
abdallahs@cse.unsw.edu.au

On the Complexity of General Game Playing 91

notable language features on the problems of finding a winning strategy for a
given agent, and on the reachability problem.

Some standard results on the complexity of logic programming can be lifted
to GDL [3]. While these results apply to the static part of GDL: state queries
such as computing the legal moves for each agent, they do not tell much about
the dynamical aspects of the game. Indeed, few complexity results for GGP have
been established before. In particular, the multi-agent propositional fragment
was known to be exptime-complete [10]. In this paper, we provide the first
comprehensive analysis of the complexity of GDL and its dependency on the
language features used. Our results are summarized in Table 1.

Table 1. Complexity of the reachability problem with rational agents. This can also be
seen as the complexity of determining whether a given player has a winning strategy.
The multi-agent results hold with as few as one rational agent in a stochastic environ-
ment, i.e., with Nature as a player, as well as with two rational agents with conflicting
goals. Markov chain features a single agent which is Nature.

Fragment Single-agent Markov chain Multi-agent

Prop. and Monot. np-c pp-c pspace-c
Propositional pspace-c pspace-c exptime-c
Monotonic nexptime-c pexptime-c expspace-c
Bounded expspace-c expspace-c 2exptime-c
Full undec undec undec

Several researchers have investigated the complexity of planning in other de-
scription languages such as strips [1] or PDDL [9].

After defining the syntax, semantics, and fragments of GDL, we introduce the
complexity theoretic framework in which we carry our analysis. We then proceed
to the core of the paper, establishing upper complexity bounds for the fragments
of GDL and a reduction from the word problem for Turing Machines (TMs) with
space or time restrictions to GDL providing matching lower bounds.

2 The Game Description Language

The Game Description Language (GDL) has been developed to formalize the
rules of any finite game with complete information in such a way that the de-
scription can be automatically processed by a general game player.

GDL game descriptions are sets of normal logic program clauses [3] written in
prefix notation using s-expressions, where variables are indicated by a leading ?.
A language especially designed for game descriptions, GDL uses a few pre-defined
predicate symbols shown in Table 2.

In GDL it is assumed that gameplay happens synchronously, that is, all players
move simultaneously and the world changes only in response to moves.

92 É. Bonnet and A. Saffidine

Table 2. Predefined GDL predicates and their interpretation

Predicate instance Meaning

(role r) r is a player
(init f) f holds in the initial position

(true f) f holds in the current position
(legal r m) player r has legal move m
(does r m) player r does move m
(next f) f holds in the next position

terminal the current position is terminal
(goal r n) player r gets goal value n

GDL imposes some syntactic restrictions on a set of clauses with the intention
to ensure uniqueness and finiteness of the set of derivable predicate instances [6].
Specifically, the program must be stratified and satisfy the recursion restriction.
Stratified logic programs are known to admit a unique stable model [3].

Definition 1. A GDL program satisfies the recursion restriction if the following
holds for every rule R. If the body of R contains a predicate q depending on the
head of R, p, then at least one of the following must hold for every argument vj
of q in R. Either vj is ground, or vj appears as an argument of p in R, or vj
appears as an argument of another predicate r of R such that r does not depend
on p.

The semantics of a set of game rules has been informally described by a state
transition system [4] and later formalized as follows [12]. Let G |= A denote that
atom A is true in the unique answer set of a stratified set of rules G. The players
in game G are R = {r : G |= (role r)}. The initial state is {f : G |= (init f)}.
A move m of player r ∈ R is legal in state S if G ∪ Strue |= (legal r m).
Here, Strue is the collection of facts {(true f1), . . . , (true fk)} that compose
the current state S = {f1, . . . , fk}. A joint move assigns each role r ∈ R a
legal move. The state transition from state S by joint move M results in the
state {f : G ∪ Strue ∪ M does |= (next f)}. Here, Strue is as above and M does

denotes the collection of facts {(does r1 m1), . . . , (does r|R| m|R|)} such that
joint move M assigns mi to player ri. Finally, a terminal state is any S such
that G ∪ Strue |= terminal; and a goal value for player r ∈ R in state S is any
v for which G ∪ Strue |= (goal r v) holds.

We adopt the convention that random is a special role constrained to select
its action uniformly at random among its legal moves [13]. This is necessary to
model games involving chance events such as throwing a die or tossing a coin.

The recursion restriction ensures that only a finite number of predicate in-
stances are derivable from a fixed set of clauses. However, the set of clauses
G ∪ Strue in the semantics of GDL is a dynamic. As a result, the recursion re-
striction is not enough to guarantee a bounded number of predicate instances

On the Complexity of General Game Playing 93

over the course of a game. We therefore propose the following stronger restriction
on GDL programs.

Definition 2. Let Δ be a GDL program. Let Δ′ be the program Δ ex-
tended with the set of rules {(←(true ?f) (next ?f)), (←(true ?f) (init ?f)),
(←(does ?r ?m) (legal ?r ?m))}. We say that Δ satisfies the General Recursion
Restriction (GRR) exactly when Δ′ satisfies the recursion restriction.

The GRR makes the dependency between the true, init, and next as well
as the does and legal predicates explicit. Intuitively, the recursion restriction
bounds the size of terms for a fixed set of clauses, and the GRR bounds the size
of terms across a sequence of sets of clauses related by the GDL dynamics.

Consider the game of Tic-tac-toe. We can distinguish two sets of features: the
control fluent determines which player is going to mark a cell, and the cell

fluent determines which player, if any, has marked a given location of the board.
control instances alternate as the game is played, but cell instances are more
static. If a predicate instance of the form (true (cell m n x)) appears in a state,
then it must appear in all subsequent states. Conversely, if a predicate instance
of the form (true (cell m n b)) does not appear in a state, then it cannot appear
in any subsequent states. Thus, the instances of the fluent cell are monotonic
while the instances of control are not.

Definition 3. A fluent f is persistent if for every state s where f holds, f holds
in every successor of s. f is anti-persistent if for every state s where f does not
hold, f does not hold in any successor of f . A fluent is monotonic if it is either
persistent or anti-persistent. 1

Variables, non-monotonic fluent instances, and sets of clauses not satisfying
the GRR are source of computational complexity in GDL reasoning. To study
their influence formally, we define the following fragments of the Game Descrip-
tion Language.

Definition 4. A game description is in bounded domain if it satisfies the GRR.
A game description is propositional if it satisfies the GRR and has a bounded
number of variables. A description is monotonic if the number of non-monotonic
fluents is bounded by a constant.2

Table 3 summarizes the dependency between the game features and the GDL

fragment considered.
Game features such as the maximum number of fluents holding in any one

state, or the number of legal moves depend mainly on whether variables are

1 We can actually have a more general definition where we just bound for each fact
the number of alternations between being true and false.

2 As usual in complexity theory, we implicitly consider sets of descriptions. For exam-
ple, a set of descriptions corresponds to generalized chess, and each board size maps
to one GDL description. When the number of variables is bounded, increasing the
size of the chess instance can polynomially increase the size of the GDL code but not
the number of variables.

94 É. Bonnet and A. Saffidine

Table 3. Game features

Class Query # fluents # different Longest
different moves states acyclic path

Prop. and Monot. ∈ p poly expo poly
Propositional ∈ p poly expo expo
Monotonic exptime-c expo 2-exp expo
Bounded exptime-c expo 2-exp 2-exp
Full exptime-c unbounded unbounded unbounded

allowed. Variables also impact static state queries: the complexity jumps from
p-complete to exptime-complete when variables are allowed in the representa-
tion [3]. Conversely, as long as the GRR is satisfied, the nesting depth of function
symbols remains polynomial. The game description can therefore be rewritten
so that nested symbols are only allowed to depth 2 (to accommodate the fixed
arity of the predefined keywords).

The number of facts is at most linear if there are no variables, and singly-
exponential if there are variables. As the number of facts nf and the number of
possible states ns are linked by the relation ns = 2nf , the number of different
states is singly-exponential or doubly-exponential depending on whether there
are variables. The number of legal moves, in a given state, is at most linear if
there are no variables, and singly-exponential if there are variables.

The following proposition justifies our definition of propositional.

Proposition 1. One can transform a GDL encoding with a constant number of
variables into a polynomial size GDL encoding without variables (in polynomial
time).

Proof. For each rule featuring a variable, write down all the possible instantiated
rules. This has constant blow-up dc where d is the size of the domain and c is
the constant number of variables.

3 Turing Machines and Complexity Classes

The reader can find the following standard definitions in [8].

Definition 5. A Turing Machine (TM) is a tuple 〈Q, q1, Δ, g〉 where Q is a
finite set of states; q1 ∈ Q is a distinguished initial state; Δ ⊆ Q × {0, 1} ×
Q × {0, 1} × {←,→} is a set of transition rules; and g : Q → {∃, ∀, ?,�,⊥}
is a labeling of the states. The labels denote respectively existential, universal,
stochastic, (final) accepting, and (final) rejecting states.

Definition 6. A configuration is a triple 〈w1, q, w2〉 where q is the current state,
w1w2 is the content of the tape, and the head is upon the first letter of w2.

On the Complexity of General Game Playing 95

Definition 7. The probability p that a configuration 〈w1, q, w2〉 is accepting can
be defined inductively as follows. If q is accepting then we set p = 1 and if q is
rejecting then p = 0. Else let n be the number of possible transitions and for each
transition i, let pi be the probability that the resulting configuration is accepting.
If q is existential then we set p = maxi pi, if q is universal then p = min pi, and

if q is stochastic then p =
∑

i pi

n .
A word w is recognized if the probability that configuration 〈ε, q1, w〉 is accept-

ing is greater than 1/2.

Equivalently, the acceptance condition can be seen as a game between Ex-
istential player who chooses the transition applied from existential states and
Universal player who does so from universal ones.

Definition 8. A TM is deterministic if in each non-final configuration there
is exactly one applicable transition. A TM is non-deterministic if all non-final
states are existential, alternating if they are existential or universal, probabilis-
tic if they are stochastic, and stochastic-alternating if they are existential or
stochastic.

dtime(f(n)) is the class of deterministic machines working in time O(f(n)).
dspace(f(n)) is the class of deterministic machines working in space O(f(n)).
ntime(f(n)) and nspace(f(n)) are their non-deterministic counterpart and
atime(f(n)) and aspace(f(n)) are their alternating counterpart.

Theorem 1 (Savitch [11]). npspace = pspace and nexpspace = expspace.

Theorem 2 (Chandra et al. [2]). aptime = pspace, apspace = exptime,
aexptime = expspace, and aexpspace = 2exptime.

satime(f(n)) is the class of stochastic-alternating machines working in time
O(f(n)). saatime(f(n)) is the class of machines working in time O(f(n)) with
existential, universal and stochastic states. saspace(f(n)) and saaspace(f(n))
are defined similarly for space.

Proposition 2. For any function f ∈ Ω(n) growing no slower than lin-
early, saatime(f(n)) = satime(f(n)) = atime(f(n)), and saaspace(f(n)) =
saspace(f(n)) = aspace(f(n)).

Proof. We recall an idea first used to show that np ⊆ pp [5], and to show
that aptime ⊆ saptime [7]. This idea, more generally, allows to show that
atime(f(n)) ⊆ satime(f(n)) and that aspace(f(n)) ⊆ saspace(f(n)).

To simulate an alternating machine with a stochastic-alternating machine, one
can start on a stochastic state. In the first branch all the runs are rejecting but
one, and in the second branch the alternating machine is mimicked by switching
the universal states to stochastic states. To win the Existential player needs to
win all his games “against nature” in the second branch, which is equivalent to
defeating Universal player.

96 É. Bonnet and A. Saffidine

Now, we show that saatime(f(n)) ⊆ nspace(f(n)) = atime(f(n)). Let A be
a general machine (existential, universal and stochastic states) working in time
O(f(n)).

Without loss of generality, we can assume that in every non-final configu-
ration there are exactly two applicable transitions; that all the runs have the
same length 3f(n); and, besides the transition towards final state, that there are
only three possible kinds of transition: from existential state to universal state,
from universal state to stochastic state, and from stochastic state to existential
state [7].

We traverse the computing tree of A as follows. We maintain on the tape of
our nspace(f(n)) machine A′ two counters cW and cL up to 2f(n) and a pointer
which represents our position in the computing tree. We maintain one additional
counter c which indicates how many stochastic states have been encountered
along the branch. This can be done using space O(f(n)). Basically, cW will
count the number of accepting runs, and cL the number of rejecting runs. If the
state is existential, we guess which transition to apply. If the state is universal,
we check all the transitions one after the other. If the state is stochastic, we
increment c, and we check the left transition, then the right one. When we reach
a leaf, we add 2f(n)−c to cW if the final state is accepting, or we add 2f(n)−c

to cL if the final state is rejecting. When the entire computation tree has been
explored, we accept if cW contains a bigger number than cL.

saaspace(f(n)) ⊆ dtime(2f(n)) = aspace(f(n)). Indeed, the configuration
graph of the general machine has O(2f(n)) vertices, and we can decide the value
of the stochastic reachability game in polynomial time in the number of vertices,
i.e., O(2f(n)).

4 Upper Bounds

A GDL state is defined by a set of (true) facts. An extensive representation
of a state is an exhaustive list of grounded facts. An implicit representation
of a state is a list of terms, such that all the possible instantiations of the
terms should exactly match the set of true facts. In the former case, we say
that the state is implicitly represented, and in the latter, extensively represented.
An extensive representation can be exponentially (in the arity of the function
constant) larger than an implicit representation. For instance, if the set of con-
stants is D = {0, 1}, {g ?x1 ?x2, h 1 ?y} is the implicit representation and
{g 0 0, g 0 1, g 1 0, g 1 1, h 1 0, h 1 1} is the extensive representation of the same
state. In the multi-agent case, the problem is to decide whether the first agent
can win even if the other agents cooperate against him. Thus, we can merge all
the opponents into one unique opponent, and we can consider that there are
only two agents. In the following propositions, we show the corresponding result
for the single-agent case, and Theorem 2 on alternation transfers the result from
the single-agent to the multi-agent case.

Proposition 3. Single-agent propositional monotonic GDL is in np. Multi-agent
propositional monotonic GDL is in pspace.

On the Complexity of General Game Playing 97

Proof. The length of a shortest win is polynomial. Indeed, from a winning se-
quence of joint moves, you can remove all those joint moves which have no effect
on the list of facts. It is still a winning sequence. Now, the list of facts is different
from one state to the next. As it is propositional, the total number nf of facts
is linear in the GDL encoding. As it is monotonic, one can fully characterize the
winning sequence by a set of nf intervals representing the period of validity of
each fact. At each state, one interval starts or ends, so the winning sequence is
of size at most 2nf .

A strategy for the single agent consists of finding the one move to apply, at
each move. The number of (propositional) moves is linear in the description of the
game. Thus, you can guess a polynomial word encoding all the moves to apply
from the beginning to the end of the game. Check if that word corresponds to
a winning strategy can be done in polynomial time. At each step, you maintain
the list of facts by applying a linear number of “next” rules, and you check if
the moves are legal by considering a linear number of “legal” rules. If you reach
the desired goal value at the end then you accept.

Proposition 4. Single-agent propositional GDL is in pspace. Multi-agent
propositional GDL is in exptime.

Proof. A state can be extensively represented in polynomial space. The number
of legal moves in a given state is linearly bounded. Non-deterministic polynomial
space allows to guess which move to play and maintain the current list of facts.
Thus, it belongs to npspace, which is equal to pspace by Savitch’s theorem
(Theorem 1).

Proposition 5. Single-agent monotonic GDL is in nexptime. Multi-agent
monotonic GDL is in expspace.

Proof. The number of facts is singly-exponential, but the depth of a game is also
only singly-exponential 2n

c

since it is monotonic. The number of legal moves in

a given state is exponentially bounded by 2n
c′
. Deriving in GDL the next state

from the current state, and that a state is terminal, is of singly-exponential

depth bounded by, say, 2n
c′′

. Thus, a certificate for a winning strategy of the

single-agent is of size at most nc′2n
c

2n
c′′
. Hence, it belongs to nexptime.

Proposition 6. Single-agent bounded GDL is in expspace. Multi-agent bounded
GDL is in 2exptime.

Proof. A state can be represented extensively in exponential space. The number
of legal moves in a state is exponentially bounded. Non-deterministic exponential
space allows to guess which move to play and maintain the current list of facts.
Thus, it belongs to nexpspace, which is equal to expspace by Savitch’s theorem
(Theorem 1).

98 É. Bonnet and A. Saffidine

Listing 1. GDL simulation of a TM: generic termination and acceptance.
1 (← (role ? r) (l a b e l ? r ?q))
2 (← terminal (true (s t a t e ? t ?q)) (accept ?q))
3 (← terminal (true (s t a t e ? t ?q)) (r e j e c t ?q))
4
5 (← (goal e x i s t s 100) (role e x i s t s) (true (s t a t e ? t ?q)) (accept ?q))
6 (← (goal e x i s t s 0) (role e x i s t s) (true (s t a t e ? t ?q)) (r e j e c t ?q))
7 (← (goal un iver 0) (role un iver) (true (s t a t e ? t ?q)) (accept ?q))
8 (← (goal un ive r 100) (role un iver) (true (s t a t e ? t ?q)) (r e j e c t ?q))

5 Lower Bounds

In this section, we obtain the lower bounds for the complexity results described
in Table 1. We describe how we can encode TMs with various restrictions in
different fragments of GDL in a three-step reduction.

The first part is a set of generic axioms of constant size. The second part is
a set of machine specific axioms encoding the transition rules and the labeling
of the states. The third part encodes the restriction set on the running time or
the tape space used by the machine. There, we provide a different encoding for
each specific restriction.

The choice of the third part alone determines to which fragment of GDL the
program belongs. Indeed, the number of variables appearing in the first and
second part is constant and the fluents introduced in the first part can be made
monotonic in the third part.

Generic Axioms. In our description, variables starting with ?p are GDL variables
ranging over tape position indices. The variables starting with ?t, ?q, ?a, ?d,
and ?r range respectively over the time domain, the states of the machine, the
letters of the alphabet, the direction of transitions, and the players (or roles).

We use the following auxiliary predicates. accept and reject take a state
index as argument and characterize final states. Similarly, label characterizes
non-final state labels and indicates their type. delta takes 5 arguments a, i, b, j, d
such that a and b denote alphabet symbols, i and j represent states, and d
represents a direction. This rigid predicate records the transition rules of the
machine: there are as many instances of delta as there are elements in Δ.

The zerop and succp predicates encode the relation between the possible
positions of the machine cursor on the tape. (zerop p) holds for the unique
leftmost position p of the cursor on the tape. (succp p1 p2) holds exactly when
p2 represents a cursor position immediately to the right of p1. zerot, succt en-
code the relation between the different times represented. input takes a possible
cursor position i and a tape symbol a and denotes that the ith letter of the input
word is a. now characterizes the current time.

We also use three main sets of fluents. The tape fluent encodes the content of
the machine tape. state encodes the current state of the machine. head encodes
the position of the cursor on the tape.

We have one agent per non-final state label and the game ends when the
machine reaches a final configuration (line 1–3, Listing 1).

On the Complexity of General Game Playing 99

Listing 2. GDL simulation of a TM: generic initial configuration.
9 (← (in i t (head ? t ?p)) (z e r o t ? t) (zerop ?p))

10 (← (in i t (s t a t e ? t 1)) (z e r o t ? t))
11 (← (in i t (tape ? t ?p ?a)) (z e r o t ? t) (input ?p ?a))
12 (← (in i t (tape ? t ?p2 0)) (z e r o t ? t) (l e s s ?p1 ?p2) (endinput ?p1))
13
14 (← (l e s s ?p1 ?p2) (succp ?p1 ?p2))
15 (← (l e s s ?p1 ?p3) (succp ?p1 ?p2) (l e s s ?p2 ?p3))

Listing 3. GDL simulation of a TM: generic applicable transitions.
16 (← (lega l ? r (apply ?a2 ?q2 ?d)) (d e l t a ?a1 ?q1 ?a2 ?q2 ?d)
17 (true (head ? t ?p)) (true (tape ? t ?p ?a1))
18 (l a b e l ?q1 ? r) (now ? t) (true (s t a t e ? t ?q1)))
19 (← (lega l ? r2 pass) (role ? r2) (distinct ? r1 ? r2)
20 (l a b e l ?q ? r1) (now ? t) (true (s t a t e ? t ?q)))

The goal of an existential player, if such a player exists for the game, is to
bring the game into an accepting configuration (lines 5 to 6). Conversely, the
goal of a universal player, if such a player exists for the game, is to bring the
game into a rejection configuration (lines 7 to 8). When we simulate TMs without
existential (resp. universal) states, the predicate role does not hold for exist

(resp. univer) and the utility of the existential (resp. universal) player does not
need to be defined. A player random may also be introduced if the machine has
stochastic states but we do not need to specify goal values for that player. Note
that the random role is a distinguished player in GDL which is assumed to select
a move uniformly at random among its legal moves.

At the beginning, the head is on the first cell of the tape, the machine is in
the initial state, and the tape contains the input word and then blank symbols
(line 9 to 12 in Listing 2). We have introduced the less predicate such that
(less p1 p2) holds when p2 if situated further right than p1. It can be based
on the more elementary successor predicate succp.

The semantics of GDL assume simultaneous actions by all agents. However in
our reduction from TMs, only the agent corresponding to the label of the current
state makes a meaningful decision at a time. To comply with the semantics of
the language, we use two kinds of actions: an apply action taking a letter, a
state, and a direction as arguments and recording the transition effects, and a
pass action. The mapping from possible transitions into legal agent moves is
given in Listing 3. For instance, if the current state has label ∃ then the player
exists chooses among the instances of apply to select a transition for the TM,
and the other agents, if any, perform a pass action.

The evolution of the configuration of the machine as the transitions are se-
lected is described in Listing 4. The cell under the head changes according to the
transition effects, but the rest of the tape remains unaffected (line 21 to 25). The
next state is determined by the transition effects recorded in the apply action.
After a transition, the head moves one cell to the left or one cell to the right
depending on the kind of transition performed (line 30 to 33).

100 É. Bonnet and A. Saffidine

Listing 4. GDL simulation of a TM: generic evolution of the configuration.
21 (← (next (tape ? t2 ?p ?a)) (now ? t1) (succ t ? t1 ? t2)
22 (does ? r (apply ?a ?q ?d)) (true (head ? t1 ?p)))
23 (← (next (tape ? t2 ?p2 ?a)) (now ? t1) (succ t ? t1 ? t2)
24 (true (tape ? t1 ?p2 ?a)) (true (head ? t1 ?p1))
25 (distinct ?p1 ?p2))
26
27 (← (next (s t a t e ? t2 ?q)) (now ? t1) (succ t ? t1 ? t2)
28 (does ? r (apply ?a ?q ?d)))
29
30 (← (next (head ? t2 ?p2)) (now ? t1) (succ t ? t1 ? t2) (succp ?p2 ?p1)
31 (true (head ? t1 ?p1)) (does ? r (apply ?a ?q l e f t)))
32 (← (next (head ? t2 ?p2)) (now ? t1) (succ t ? t1 ? t2) (succp ?p1 ?p2)
33 (true (head ? t1 ?p1)) (does ? r (apply ?a ?q r i g h t)))

Listing 5. GDL simulation of a TM: machine specific axioms.
34 For all states qi ∈ Q, add
35 (accept i) when g(qi) = �
36 (r e j e c t i) when g(qi) = ⊥
37 (l a b e l e x i s t s i) when g(qi) = ∃
38 (l a b e l un iver i) when g(qi) = ∀
39 (l a b e l random i) when g(qi) =?
40
41 For all transition rules (a, qi) → (b, qj , d) ∈ Δ, add
42 (de l t a a i b j l e f t) when d =←
43 (d e l t a a i b j r i g h t) when d =→

Machine-dependent Axioms. Assuming numbered states, Q = {q1, . . . , q|Q|},
Listing 5 collects the machine-dependent GDL axioms: state labels and tran-
sitions.

The number of variables appearing in the fragments described so far is bounded
by a constant that does not depend on the size of the input. Indeed, variables
only appear in the generic part of the translation that does not depend on the
specific machine to be simulated. The size of Listing 5 naturally depends on the
specific machine but it only contains ground terms and it does not introduce any
new fluent.

Time and Tape Axioms. Let us detail how we can ensure that a fragment satisfies
the monotonicity assumption. Listing 6 provides axioms to be included when
monotonicity is needed. We first add inertia rules that guarantee the persistence
of the state, head, and tape fluents (Line 1 to 3 in Listing 6).

This importance of the time argument for these fluents now becomes clearer.
We can have monotonicity without the head of the machine always pointing at
the same cell at every stage of the game. The monotonic fact that is remembered
throughout the rest of the game is that at some fixed time t, the head pointed
at a given cell.

Since past configurations are remembered when monotonicity is enforced, we
need to distinguish which is the current one. Recall that fluents need to be
monotonic but not arbitrary predicates. We can therefore define a non-monotonic
now predicate. To do so, we introduce a persistent past fluent such that (true

On the Complexity of General Game Playing 101

Listing 6. Ensuring monotonicity: inertia axioms and linear time axioms.
1 (← (next (s t a t e ? t ?q)) (true (s t a t e ? t ?q)))
2 (← (next (head ? t ?p)) (true (head ? t ?p)))
3 (← (next (tape ? t ?p ?a)) (true (tape ? t ?p ?a)))
4
5 (← (next (past ? t)) (true (s t a t e ? t ?q)))
6 (← (now ? t) (true (s t a t e ? t ?q)) (not (true (past ? t))))
7
8 (← (z e r o t ?x) (zerop ?x))
9 (← (succ t ?x ?y) (succp ?x ?y))

Listing 7. Dummy time axioms.
1 (now dummy) (z e ro t dummy) (succ t dummy dummy)

(past ?t)) only holds for past time points ?t (Line 5 to 6 in Listing 6). past
is persistent since it only depends on state which is persistent.

Finally, we give time a linear structure mapped from the linear structure of
the tape. Thus, the simulation length inherits any bound on the size of the tape
(Line 8 to 9 in Listing 6). When monotonicity is not required, history is not kept
in the state and time points need not be distinguished. In that case, simpler
axioms are used (Listing 7).

We now provide the axioms defining the tape structure, zerop and succp, as
well as the axioms defining the input word, input and endinput. If w is an input
word of size n, then for each i ∈ {0, . . . , n−1}, wi denotes the i+1-th letter of w.
Listing 8 gives a linear encoding such that a polynomial number of consecutive
tape positions can be represented. This encoding uses a polynomial number of
axioms and does not use any variable. Listing 9 gives a binary encoding such
that an exponential number of consecutive tape positions can be represented.
The additional bit predicate provides the domain of bit variables, namely 0 and
1. This encoding uses a polynomial number of axioms and a polynomial number
of variables. Listing 10 gives a unary encoding such that an unbounded number of
consecutive tape positions can be represented. The additional monotonic access
fluent denotes the tape positions potentially reachable. This encoding uses a
polynomial number of axioms and a constant number of variables.

Combining the Listings. We have now described all the elements needed for the
reduction of a TM to a GDL program.

Listing 8. Tape of size nc and input w of size n: linear encoding.
1 (zerop 0)

2 (succp h h′) for all h ∈ {0, . . . , nc − 1} and h′ = h + 1
3 (input i wi) for all i ∈ {0, . . . , n − 1}
4 (endinput n)

102 É. Bonnet and A. Saffidine

Listing 9. Tape of size 2n
c

and input w of size n: binary encoding.
1 (b i t 0) (b i t 1) (zerop (bin 0 . . . 0))
2 (← (succp (bin ?bnc . . . ?bh+1 0 1 . . . 1) (bin ?bnc . . . ?bh+1 1 0 . . . 0))
3 (b i t ?bh+1) . . . (b i t ?bnc)) for all h ∈ {1, . . . , nc}
4

5 For i ∈ {0, . . . , n − 1} with the binary writing blog n . . . b1, add
6 (input (bin 0 . . . 0 blog n . . . b1) wi)

7 If the binary writing of n − 1 is blog n . . . b1, then add
8 (endinput (bin 0 . . . 0 blog n . . . b1))

Listing 10. Tape of unbounded size and input w of size n: unary encoding.
1 (in i t (a c c e s s ze ro))
2 (← (next (a c c e s s ?x)) (true (a c c e s s ?x)))
3 (← (next (a c c e s s (i n c r ?x))) (true (a c c e s s ?x)))
4 (zerop ze ro)
5 (← (succp ?x (i n c r ?x)) (true (a c c e s s ?x)))
6
7 For i ∈ {0, . . . , n − 1}, add
8 (input (i n c r . . . (i n c r ze ro)) wi) with i nested incr.
9 (endinput (i n c r . . . (i n c r ze ro))) with n nested incr.

Theorem 3. Let c be a fixed constant. Propositional monotonic GDL can simu-
late a TM working in time(nc). Propositional GDL can simulate a TM working in
space(nc). Monotonic GDL can simulate a TM working in time(2n

c

). Bounded
GDL can simulate a TM working in space(2n

c

). GDL can simulate an unre-
stricted TM, using a bounded number of variables and only monotonic fluents.

Proof. By combining Listings 1–5 with one time listing (6 or 7) and one tape
listing (8, 9, or 10), we obtain a GDL description simulating a given TM M . The
chosen listings determine the constraints on M and the properties satisfied by
the description as indicated in Table 4.

Listings 9 and 10 are the only ones not using a constant number of variables
or not satisfying the GRR, so we obtain a propositional GDL program as long
as none of these two fragment is used. Similarly, the GRR is satisfied as long as
Listing 10 is not used.

Positions of the game correspond to configurations of the machine and joint
moves correspond to transitions. If we assume the players exists and univer

to be rational and the player random to be making each decision uniformly at
random, then we can conclude that the likelihood of reaching a position such
that accept holds is more than 1/2 if and only if M accepts w.

The potential time/space constraint on the TM result in potential properties
satisfied by the GDL program, and the type of the machine (non-deterministic,
alternating, . . .) induces the number and type of agents in the corresponding
game. Using Theorem 1, 2, 3 and Proposition 2, we derive the lower bounds for
the results in Table 1.

On the Complexity of General Game Playing 103

Table 4. Effect of the time and tape listings added to Listings 1–5 on the TM restric-
tions and the GDL properties satisfied by the encoding

Listing Restriction on the TM GDL properties

Time Tape Monot. GRR Prop.

6 8 time(nc) ✓ ✓ ✓

6 9 time(2n
c

) ✓ ✓ ✗

6 10 — ✓ ✗ ✗

7 8 space(nc) ✗ ✓ ✓

7 9 space(2n
c

) ✗ ✓ ✗

7 10 — ✗ ✗ ✗

6 Conclusion

We have established the complexity of the adversarial reachability problem in
the most natural fragments of GGP. That is, can a specified agent ensure a
win assuming the other agents are adversaries or are playing a fixed mixed
strategy. Using backward induction, our results directly generalize to finding
Nash equilibria in GGP when the number of agents is polynomial in the size of
the GDL description. However, it is possible to create contrived GDL descriptions
involving exponentially many agents. Whether our results carry over to finding
Nash equilibria in arbitrary GDL games remains open at this stage.

GDL has recently been extended to allow defining imperfect information (II)
games [13]. The only extensions to the language are that of the official specifica-
tion of the random role and the introduction of sees, a new keyword indicating
the knowledge of each player on the state of the game. We have investigated
how a random role affected the complexity. A natural avenue for future work is
to extend the complexity landscape when the predicate sees is allowed.

A recent paper shows that the General Game Playing problem is universal
in the sense that there is a tight relation between extensive-form games and
models of GDL programs [14]. We have focused here on another dimension of
universality: computability and complexity. Besides the Turing-completeness of
GDL, we have shown that a wide range of standard complexity classes could be
captured as finding a winning strategy in GGP via natural syntactic assumptions.

Acknowledgement. The second author was supported by the Australian Re-
search Councils (ARC) Discovery Projects funding scheme (project DP
120102023).

References

1. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1), 165–204 (1994)

2. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

104 É. Bonnet and A. Saffidine

3. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)

4. Genesereth, M., Love, N.: General Game Playing: Overview of the AAAI compe-
tition. AI Magazine 26, 62–72 (2005)

5. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

6. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General Game Playing: Game De-
scription Language specification. Tech. rep., LG-2006-01, Stanford Logic Group
(2006)

7. Papadimitriou, C.H.: Games against nature. Journal of Computer and System
Sciences 31(2), 288–301 (1985)

8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1994)
9. Rintanen, J.: Complexity of planning with partial observability. In: 14th Interna-

tional Conference on Automated Planning and Scheduling (ICAPS), pp. 345–354.
AAAI Press (2004)

10. Ruan, J., Van der Hoek, W., Wooldridge, M.: Verification of games in the Game
Description Language. Journal of Logic and Computation 19(6), 1127–1156 (2009)

11. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

12. Schiffel, S., Thielscher, M.: A multiagent semantics for the Game Description Lan-
guage. In: Filipe, J., Fred, A., Sharp, B. (eds.) Agents and Artificial Intelligence
(ICAART). CCIS, vol. 67, pp. 44–55. Springer, Heidelberg (2010)

13. Thielscher, M.: A general Game Description Language for incomplete information
games. In: 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 994–999.
AAAI Press, Atlanta (2010)

14. Thielscher, M.: The general Game playing Description Language is universal. In:
22nd International Joint Conference on Artificial Intelligence, pp. 1107–1112. IJCAI
(2011)

Efficient Grounding of Game Descriptions with Tabling

Jean-Noël Vittaut and Jean Méhat

LIASD - University of Paris 8, France
{jnv,jm}@ai.univ-paris8.fr

Abstract. We present a method to instantiate game descriptions used in General
Game Playing with the tabling engine of a Prolog interpreter. Instantiation is
a crucial step for speeding up the interpretation of the game descriptions and
increasing the playing strength of general game players.

Our method allows us to ground almost all of the game descriptions present
on the GGP servers in a time that is compatible with the common time settings
of the GGP competition. It instantiates descriptions more rapidly than previous
published methods.

1 Introduction

General Game Playing (GGP) aims at conceiving programs capable of playing a large
variety of games without knowing the rules in advance. The Game Description Lan-
guage (GDL) [8] has been used to communicate the rules of the game to be played at
the beginning of a match in the General Game Playing competition since 2005.

Fast interpretation of GDL is important because it can significantly improve the
strength of a player. Björnsson and Schiffel [1] [13] have compared the speed of several
GDL reasoners1 and they show that the reasoners are at least two to three orders of
magnitude slower than hard coded versions of games. The two fastest reasoners they
tested use a Prolog interpreter.

An approach to speed up a reasoner is to ground the rules, binding all variables
with atoms. This instantiation of the rules can lead to better performance because it
saves the time used to bind variables during unification and it eases the building of
Propositional Nets [4]. Kissmann and Edelkamp [6] have shown that instantiation can
allow from about 4 to 250 times more node expansions in a Monte-Carlo search on the
tested games. Instantiation is also useful in the domain of action planning [7].

We use the tabling engine built in a Prolog interpreter. Tabling consists in storing an-
swers for subgoals and reusing them whenever the same subgoal is called again. It was
first implemented in the XSB programming language [9]. At the cost of a modification
of the unification process, it avoids redundant sub-computations and deals with infinite
loops. We use here the tabling as implemented in the YAP Prolog interpreter because of
its performance, its availability and our familiarity with this interpreter [10], [11], [12].

This paper is structured as follows. First, we describe the Game Description Lan-
guage. Next, we describe our method of instantiation of GDL programs which makes
use of the Prolog tabling engine and we compare the performance of our method against
other approaches.

1 Flux Player, Cadia Player, Java Eclipse, Java Prover, GGPBase Prover, C++ Reasoner.

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 105–118, 2014.
c© Springer International Publishing Switzerland 2014

106 J.-N. Vittaut and J. Méhat

2 The Game Description Language

The Game Description Language (GDL) allows to describe combinatorial perfect in-
formation games. It has also been extended to handle incomplete and imperfect infor-
mation games (GDL-II). It uses first order logic and is similar to Datalog with negation
as failure. Its syntax consists of Lisp S-expressions. A game is described with a set of
facts and rules; a few keywords are reserved for logic and game-specific features (see
Table 1); variables begin with a question mark.

Table 1. GDL Keywords

Logical operators
<= clause declaration
or disjunction
and implicit in the premises of a rule
not negation
distinct evaluates to true only if the two terms differ

Static predicates
role defines the names of the players
init defines initial state of the game
input defines a superset of possible moves
base defines a superset of the game state components

Dynamic predicates
terminal true if the game state is terminal
goal player’s rewards
legal legal moves in the current game state
next transition to the next game state
does player’s moves
true defines the game state components

Numerical atoms
integers from 0 to 100 defined for goal

We distinguish the dynamic predicates depending on the state of the game from the
remaining static ones, the instantiated values of which are independent from the state
of the game and can be computed once and for all upon receiving the game description.
GDL missing arithmetic, game descriptions usually contain the description of arith-
metic operations on the numbers they need: it usually leads to a large number of static
rules.

The predicates true and does are always dynamic because they trivially depend
on the state of the game. The dynamic property is recursively extended to all predicates
using at least one dynamic predicate even if it appears within a negation or a disjunction.

Efficient Grounding of Game Descriptions with Tabling 107

The other predicates mentioned as dynamic in Table 1 are marked as such to keep
them in the grounded rules even in the rare cases where they are static e.g. when the
goal of a player is independent from the final position of the game.

By extension, a term is dynamic or static, depending on the predicate it is formed on.
Note that terms of the form (or T1 T2 . . . Tn) or (not T1) are: dynamic if they
contain at least one dynamic term Ti; static if all of the Ti are static terms. Likewise a
rule is dynamic if its conclusion is dynamic.

3 Instantiation of GDL Rules

The instantiation of GDL rules is done in successive steps. We firstly present an overview
of the whole process and then give some details on these steps and justify their useful-
ness.

3.1 Overview

The instantiation starts with a cleaning step where or is removed from any rule. Then
we compute base and input facts if they are not provided in the description.

Next we rewrite each rule, removing negated terms, renaming true and does as
base and input and adding a side effect. This side effect stores, in the instantiated
game description, a grounded version of the initial rule with static terms removed.

In the Prolog engine we use, tabling is enabled at the predicate level. Then, to force
the tabling engine to process each and every rule, we change the predicate name of every
rule conclusion so we can use tabling at the rule level. To keep our program correct, we
add a new rule the role of which is allowing to call the new predicate with its old name.

Then we add a series of rules the conclusion of which is always the ground atom
and premises are queries asking for all the answers related to the new predicate intro-
duced previously.

Finally, we call the Prolog interpreter with the ground goal. The grounded descrip-
tion is stored into a data structure shared between Prolog and the driver program by the
Prolog interpreter solving the ground goal. This instantiated description is only made
of grounded terms, called fluents, and logic connectors.

3.2 Eliminating (or T1 T2 . . . Tn) Terms

The or operator has been deprecated in GDL since 2007 [3]. However, it is used in
old game descriptions and players need to support it to play these games. As it is easy
to rewrite a game description into a game description without or or use the built in
Prolog or operator, most players support this feature. Even in the 2013 official GGP
competition, the game description of Eight Puzzle used it.

Removing any instance of the or operator ensures that we obtain at the end a
grounded program in a disjunctive form. It also simplifies the next steps in case there is
a disjunction between static and dynamic terms.

If a rule contains a term T of the form (or T1 T2 . . . Tn), we simply duplicate
the rule replacing T with Ti. We proceed recursively on the new rules which could still
contain some term using or. Table 2 shows an example of this transformation from the
Connect Five game description.

108 J.-N. Vittaut and J. Méhat

Table 2. A rule containing an or with 4 sub-terms is rewritten as 4 different rules

Rule with or Rules without or

(<= (conn5 ?r)
(or (col ?r) (row ?r)

(diag1 ?r) (diag2 ?r)))

(<= (conn5 ?r) (col ?r))
(<= (conn5 ?r) (row ?r))
(<= (conn5 ?r) (diag1 ?r))
(<= (conn5 ?r) (diag2 ?r))

3.3 Adding Input and Base Predicates

The base predicate is used to enumerate all the terms that can be used in any reachable
game state. Similarly, input allows one to pre-compute all the moves that can become
legal in the course of any match of the described game. These predicates are a recent
addition to GDL and we suppose they were introduced to facilitate the instantiation of
game descriptions.

However, older GDL game descriptions do not provide input and base but are
still in use on the servers running permanent tournaments that we use as a test bed for
GGP competitions. The set of game descriptions including these predicates is small
and does not contain many games that are commonly used for testing and performance
comparison purposes.

Moreover, different descriptions of these predicates can lead to dramatic differences
between grounded game descriptions, for instance the input predicate of the Break-
through game description is defined more lazily on the Tiltyard server than on the Stan-
ford server. It leads to a grounded description that contains 20 times more rules.

For these reasons, we do compute them when the game description does not provide
them. Separating their computation from the strictly speaking grounding phase allows
us to distinguish their respective computation times. It also allows us to discard unde-
sirable rational tree terms which are infinite terms that this method can generate.

This step is detailed in section 4 in which we propose a method sharing many steps
with the instantiation method we are currently describing.

Once computed, the input and base fluents are added to the description so there
will be no difference with the case where the predicates are provided with the GDL
description.

3.4 Eliminating Not, Renaming True and Does

From each rule R, we construct a new rule g(R) by removing every (not T) term
where T is a dynamic term; renaming every (true T) and (does T1 T2) term
respectively with (base T) and (input T1 T2).

Removing the not operator in dynamic predicates allows us to compute any possible
instantiation without risking an elimination by the negated term. It is a safe operation
since GDL guarantees that any negated term always has to be fully instantiated. Con-
sequently, the elimination cannot lead to a situation where one of the variables remains
not instantiated. It is also necessary since the tabling engine we use cannot handle recur-
sion through a negation. A drawback is that the process will produce useless grounded

Efficient Grounding of Game Descriptions with Tabling 109

rules, since the not operator is never checked: these useless rules would never prove
anything when used by a reasoner working with the instantiated description.

Replacing (true T) and (does T1 T2) by (base T) and (input T1 T2)
allows us to ground all the rules in one pass, without computing base and input if
they are already provided by the description.

Table 3 contains an example of this step on some rules of the Connect Five game
description.

Table 3. Computation of g(R): the negations are eliminated and does are replaced by input

R g(R)

(<= (goal x 50)
(not line of 5))

(<= (goal x 50))

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal ?r noop)
(role ?r))

(<= (next (cell ?x ?y ?r))
(does ?r (mark ?x ?y)))

(<= (next (cell ?x ?y ?r))
(input ?r mark ?x ?y)))

3.5 Removing Static Terms

Terms formed on static predicates do not need to appear in the instantiated rules since
their truth is known regardless of the state of the game: if true they can be removed; if
false the entire rule can be discarded; conversely if they appear within a not, they can
be removed if false and the rule can be discarded if true.

Consequently, we compute a rule s(R) from the initial rule R by removing any static
term or its negation from R.

This step could be skipped with no effect on the correctness of the method but with-
out it, we would have to either post-process the instantiated rules to eliminate any true
static term or include all of the static terms from the game description.

3.6 Adding the Side Effect and Introducing a New Symbol

The rules g(R) and s(R) are combined to produce the two new rules that will be part
of our final grounded description. Given a rule g(R) of the form:

(<= (p U1 . . . Up) T1 . . . Tn)

we derive the two new rules:

(<= (p# U1 . . . Up) T1 . . . Tn (store s(R)))
(<= (p U1 . . . Up) (p# U1 . . . Up))

110 J.-N. Vittaut and J. Méhat

where p is the original predicate symbol of the conclusion of g(R). The store pred-
icate has the side effect of storing the s(R) instantiated rule in a data structure shared
between the Prolog interpreter and the driver program; it always evaluates as true. p#
is a new unique symbol, different for each processed rule. It is necessary to prevent
the tabling engine from tabling rules with side effects because it would lead to missed
instantiations: the rule including the side effect is not tabled while the second is.

These two rules are logically equivalent to the rule g(R) since the side effect always
evaluates as true.

An example of this step on rules from the Connect Five game description is shown
in Table 4

Table 4. Each original rule is transformed into two new rules: one with a new conclusion symbol
and a side effect; the other with the original conclusion

Initial rule Derived rules

(<= (goal x 50)
(not line of 5))

(<= (goal# x 50)
(store (<= (goal x 50)

(not line of 5))))
(<= (goal x 50)

(goal# x 50))

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal# ?r noop)
(role ?r)
(store (<= (legal ?r noop)

(not (true (ctrl ?r))))
(<= (legal ?r noop)

(legal# ?r noop))

(<= (next (cell ?x ?y ?r))
(does ?r (mark ?x ?y)))

(<= (next# (cell ?x ?y ?r))
(input ?r (mark ?x ?y))
(store (<= (next (cell ?x ?y ?r))

(does ?r (mark ?x ?y)))))
(<= (next (cell ?x ?y ?r))

(next# (cell ?x ?y ?r)))

3.7 Tabling Predicates and Creating the Instantiation Query

Finally, to generate all instantiations in one Prolog query, we add a new predicate
ground, the goal of which is to query all the rules with side effects. Therefore, a
rule like

(<= ground (p# U1 U2 ...Un))

is added for each new symbol p# introduced in the previous step.
We set up the Prolog interpreter to table all predicates with the only exception of the

new predicate symbols introduced in the previous subsection and the ground predicate
which does not need to be tabled. By querying all the solutions to the ground goal,
the store predicate inserts instantiated rules into the data structure shared between
the Prolog interpreter and the driver program. In Table 5 we show the result of the
instantiation of one rule of Connect Five.

Efficient Grounding of Game Descriptions with Tabling 111

Table 5. One of the rules of Connect Five is instantiated in two rules

Initial rule Grounded rules

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal x noop)
(not (true (ctrl x))))

(<= (legal o noop)
(not (true (ctrl o))))

4 Computing Input and Base

Our instantiating method requires we generate the input and base predicates when
not provided in the GDL description. We describe two ways of computing them: an
iterative method which is equivalent to the one used by Kissmann and Edelkamp [6];
and our method using tabling which can be performed in one step.

4.1 Iterative Method

We compute two sets B and I that contain all the fluents that can occur in a game
state or as a legal move. We initialize B with the facts defined via init in the game
description; I is initially empty:

I = ∅
B = {(true T) s.t. (init T) is true}

We temporarily redefine the not operator as always true. We then iterate, generating
legal move fluents, adding the new ones to I and the new game state fluents to B until
reaching a fixed point:

I = I ∪ {(does T1 T2) s.t. (legal T1 T2) is true}
B = B ∪ {(true T) s.t. (next T) is true}

We use tabling for all the predicates at each iteration and flush the tables at every update
of I and B.

The performance of this method strongly depends on the number of iterations re-
quired to reach the fixed point. It often happens that only a few elements are added to
B at each iteration. It is, for instance, the case in many games where the state of the
game contains a step term which simply counts how many moves have been played
to prevent infinite matches (see Figure 1).

When this kind of counter is present in the game description, the method must be
iterated the number of times that the counter needs to be incremented before reaching
its final value.

To alleviate this specific problem, we first use the original GDL description to sim-
ulate a fake match from the initial position; we repeatedly compute the next state of
the game that can be reached without playing a move. We halt this process when the
reached state is empty or when a game state has already been seen. All the fluents that
appeared in any game state are used to seed the B set along with the init predicates.

112 J.-N. Vittaut and J. Méhat

(<= (next (step 1)) (true (step 0)))
(<= (next (step 2)) (true (step 1)))
...
(<= (next (step 100)) (true (step 99)))

Fig. 1. A step counter is commonly used in many descriptions to prevent infinite matches. This
fragment of a game description allows it to increment until a maximum figure of 100.

More generally, the aforementioned procedure processes any next rule not depend-
ing on the does predicate to compute fluents in order to initialize the B set. It provides
an amelioration for many game descriptions however, it would not be difficult to con-
ceive game rules capable of defeating this procedure.

4.2 One Step Method

We process the original GDL description with the same transformations we detailed in
section 3, the only difference being that we do not add the side effect to the rules.

We also enable tabling for the same predicates that we mentioned in section 3.7 and
add the three following rules to seed the B set with the initial state and add new fluents
to B and new legal moves to I:

(<= (base ?x) (init ?x))
(<= (base ?x) (next ?x))
(<= (input ?r ?m) (legal ?r ?m))

Then by querying the Prolog interpreter with goals (base ?x) and (input ?r
?m), we obtain all the fluents of these predicates enabling the instantiation of the whole
game description more efficiently.

5 Experimental Results

We collected the 246 different game descriptions that were active in February 2014 on
the Dresden server2.

We firstly measured the time necessary to generate input and base on the vast
majority of game descriptions that do not include them using the iterative and one step
methods.

Then we measured the time necessary to instantiate the game description enriched
with the input and base fluents computed in the previous step except for the six game
descriptions that already include them: for these, we used the predicates of the original
game description. The time measured takes into account the translation of GDL terms
from the Prolog interpreter into the driver program representation.

The experiments were run on one core of an Intel Xeon E5-4610 2.40GHz with
520Gb RAM. This amount of memory was more than enough to compute the instan-
tiations. We measured that our method needs about 500Mb to compute one million

2 The Dresden server is available at http://ggpserver.general-game-playing.de

http://ggpserver.general-game-playing.de

Efficient Grounding of Game Descriptions with Tabling 113

instantiated rules. We used YAP 6.2.2 Prolog interpreter [2] as a library for our driver
program written in C++.

5.1 Computing Input and Base

The input and base were successfully computed for the vast majority of the 240
game descriptions that did not already contain them, with the exception of two games
for the one step method (othello comp2007 and othellosuicide) and 13
games for the iterative one. The two failures of the one step method were caused by
a crash in the Prolog interpreter, whereas the iterative one was halted after 30 minutes
as it had not yet converged. However, at least one method succeeded for each game
description.

Figure 2 compares the two methods for the 225 games of the Dresden collection
successfully processed by both. The x-axis represents the time used by the one step
method and the y-axis the time used by the iterative one. The diagonal represents the
location where the two methods take the same amount of time. A game plotted above the
diagonal means that the one step method takes less time than the iterative one. Except
for the 10 games plotted below the diagonal, the one step method is always faster than
the iterative one. We also observed that the iterative method is only competitive when
the number of iterations remains low.

Fig. 2. Comparison of the computation of the input and base predicates between the one step
and the iterative method

114 J.-N. Vittaut and J. Méhat

Fig. 3. Percentage of game descriptions of which input and base can be computed within the
time budget on x-axis

In Figure 3 we plotted the percentage of games of which input and base fluents
have been computed in less than the time budget represented in the x-axis with a loga-
rithmic scale. It shows that a large majority of computations take less than one second.

With the one step method, 45% of the games had the fluents computed in less than
100ms, 84% in less than one second and 98% in less than one minute. With the iterative
method, none of the games had the fluents computed in less than 100ms, 75% in less
than one second and 90% in less than one minute.

5.2 Instantiation of the Rules

We tested the instantiation of the rules on all of the 246 games of the Dresden collection.
Six of them already contained the input and base predicates. For the remaining 240,
we added the fluents computed either by the one step or the iterative method. The
processing of three games (racer, ruledepthquadratic and laikLee hex)
was halted after 30 minutes of computation.

In Figure 4 we plotted the time performance of our grounding method where the time
of the step computing input and base is not taken into account. We represented the
percentage of games that can be instantiated within the time budget represented in the
x-axis. 24% of the games were instantiated in less than 100ms, 72% in less than one
second and 94% in less than one minute.

The remaining 6% that were grounded in more than one minute arebattlebrushes,
merrills, amazons, racer4, farmers, the two instances of battlesnakes,
and 8 of the 13 instances of vacuumcleaner. All of these game instantiated descrip-
tions contained more than 107 rules and facts.

Figure 5 demonstrates that the time to ground increases almost linearly with the size
of the grounded game description when it is greater than 104. We also observed that

Efficient Grounding of Game Descriptions with Tabling 115

Fig. 4. Percentage of instantiated game descriptions that were grounded within the time budget in
the x-axis

Fig. 5. The number of generated rules as a function of instantiation time for the 243 successfully
instantiated games

116 J.-N. Vittaut and J. Méhat

a significant part of the time is used to translate the fluents from the Prolog internal
representation into the GDL representation in the shared data structure.

6 Comparison with Other Works

It is somewhat difficult to compare our method with existing grounders, given that their
measure of performance is usually mixed with the time used for building the Proposi-
tional Net. We examine here the results available from [6] and the time we measured
with the GGPBase flattener.

6.1 The GGPBase Flattener

The GGPBase flattener is a freely distributed GDL grounder3. We compared the time to
instantiate a few game descriptions that were of increasing difficulty for our grounder.
We used a different machine that was more convenient to run the GGPBase flattener.
The results are presented in Table 6. The time needed by the flattener seems to increase
at least quadratically with the size of the grounded program whereas the time needed
by our method has been established to increasing linearly.

The GGPBase flattener has primarily an educational purpose and its performance is
not its main goal.

Table 6. Comparison of our method with GGPBase-flattener on an Intel Core 2 Duo 1.86GHz
with 2Gb RAM

Time to instantiate (seconds)
Game GGPBase Our method
connectfour 0.844 0.560
CephalopodMicro 19.8 1.14
breakthrough 115 5.46
chinesecheckers4 Out of memory 14.9

6.2 The Kissmann and Edelkamp Approach

Kissmann and Edelkamp presented two approaches of grounding in [6]. They were able
to instantiate 96 of 171 game descriptions in less than one minute with their Prolog-
based approach, and 90 of 171 with their method using dependency graphs which are
proportions that we attain in less than one second.

Their article lacks precise figures but similar results are presented in Kissmann PhD
thesis for the 124 game descriptions their method was able to successfully process [5].
Their experiments were carried out on an Intel i7-920 2.67GHz with 24Gb RAM with

3 The set of GGPBase Java libraries is distributed at
http://www.ggp.org/developers/players.html

http://www.ggp.org/developers/players.html

Efficient Grounding of Game Descriptions with Tabling 117

a different Prolog interpreter (SWI-Prolog). Their method also includes a computation
of mutually exclusive fluents.

The comparison of the percentage of game descriptions instantiated within a compu-
tational budget is given in Figure 6 for the best result of their two approaches and our
method applied to the same 124 game descriptions. We observe that our implementa-
tion needs a setup time of approximately 0.2s. Our method appears to be of two orders
of magnitude faster when the instantiation time becomes significant.

Fig. 6. Comparison of the percentages of instantiated game descriptions that were grounded
within the time budget in the x-axis for the 124 game descriptions successfully processed in [5,
pp. 129–130]

7 Conclusion

We have demonstrated that it is possible to ground almost all the game descriptions
found on the GGP servers in a time span compatible with the current GGP competition
time settings. This relies on the use of tabling in a Prolog interpreter.

This result should be considered in relation to the study of [1] and [13] in which
Prolog-based GDL reasoners greatly outperform other approaches: the Prolog inter-
preters benefit from decades of optimization from their maintainers.

We have also established that the new predicates input and base introduced in
the 2013 competition, probably with the aim of helping programs to ground game de-
scriptions and generate Propositional Nets, can be considered as superfluous. The few
game descriptions in which they can be useful have a grounded size that is so large that
building alternative representations such as Propositional Nets is problematic. Tweak-
ing the Game Description Language for specific tasks is somewhat dubious since the
description language should be as agnostic as possible in relation to methods that could
be used by players.

118 J.-N. Vittaut and J. Méhat

As a future work, we are interested in finding mutually exclusive terms and rules in
the game description that could lead to more concise instantiations and facilitate the
generation of Propositional Nets.

References

1. Björnsson, Y., Schiffel, S.: Comparison of GDL reasoners. In: Björnsson, Y., Thielscher, M.
(eds.) Proceedings of the IJCAI-13 Workshop on General Game Playing (GIGA 2013), pp.
55–62 (2013)

2. Costa, V.S., Rocha, R., Damas, L.: The YAP prolog system. Theory and Practice of Logic
Programming 12(1-2), 5–34 (2012)

3. Finnsson, H.: CADIA-Player: A General Game Playing Agent. Master’s thesis, School of
Computer Science, Reykjavı́k University (2007)

4. Genesereth, M., Thielscher, M.: General Game Playing. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Publishers (2014)

5. Kissmann, P.: Symbolic search in planning and general game playing. Ph.D. thesis,
Universität Bremen (2012)

6. Kissmann, P., Edelkamp, S.: Instantiating general games using prolog or dependency graphs.
In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359,
pp. 255–262. Springer, Heidelberg (2010)

7. Koehler, J., Hoffmann, J.: Handling of inertia in a planning system. Tech. Rep. 122, Institute
for Computer Science. Albert Ludwigs University, Freiburg, Germany (1999)

8. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing: Game
description language specification. Tech. Rep. LG-2006-01, Stanford Logic Group, Com-
puter Science Department, Stanford University, Stanford, CA (2008)

9. Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient access mechanisms
for tabled logic programs. The Journal of Logic Programming 38(1), 31–54 (1999)

10. Rocha, R., Silva, F., Costa, V.S.: A tabling engine for the YAP prolog system. In: Proceedings
of the 2000 APPIA-GULP-PRODE Joint Conference on Declarative Programming (AGP
2000), La Habana, Cuba (2000)

11. Rocha, R., Silva, F., Santos Costa, V.: Dynamic mixed-strategy evaluation of tabled logic
programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 250–264.
Springer, Heidelberg (2005)

12. Rocha, R., Silva, F., Santos Costa, V.: Yaptab: A tabling engine designed to support paral-
lelism. In: Conference on Tabulation in Parsing and Deduction, pp. 77–87 (2000)

13. Schiffel, S., Björnsson, Y.: Efficiency of GDL reasoners. IEEE Transactions on Computa-
tional Intelligence and AI in Games 6(4) (2014)

SHPE: HTN Planning for Video Games

Alexandre Menif1, Éric Jacopin2, and Tristan Cazenave3

1 Sagem Défense et Sécurité, 100 Avenue de Paris, 91300 Massy Cedex, France
2 MACCLIA, CREC Saint Cyr, Écoles de Coëtquidan, F-56381 GUER Cedex, France

3 LAMSADE, Université Paris-Dauphine, 75016, Paris, France

Abstract. This article describes SHPE (Simple Hierarchical Planning
Engine), a hierarchical task network planning system designed to gen-
erate dynamic behaviours for real-time video games. SHPE is based
on a combination of domain compilation and procedural task applica-
tion/decomposition techniques in order to compute plans in a very short
time-frame. The planner has been able to return relevant plans in less
than three milliseconds for several problem instances of the SimpleFPS
planning domain.

1 Introduction

Automated planning is now being used in popular games to satisfy the need of
more realistic behaviours for Artificial Intelligence (AI) agents. The advantage
of automated planning is twofold for the game industry. First, planners dynam-
ically generate sequences of actions by reasoning according to goals, and thus
go beyond simple reactive behaviours. Secondly, the use of a planner improves
software maintenance, as an AI designer would only have to define sets of goals
and actions, without worrying too much about the interactions between them.
Planning has also drawbacks: it is known to require significant CPU time, while
modern game engines are already consuming most resources of common gaming
hardware. Early games implemented the STRIPS-like GOAP (Goal-Oriented
Action Planning) system developed for the AI of F.E.A.R. [9], but nowadays
several games have switched to Hierarchical Task Network (HTN) [2] planners.
The latter requires to model and maintain an additional amount of planning
knowledge, but also achieves better performance. However, the use of planning
in games is still limited.

A recent study conducted in some popular video games [4], brings an inter-
esting insight into two games implementing HTN based planning: Killzone 3
(2011) and Transformers 3: Fall of Cybertron (2012). The study reveals the cur-
rent performance of both games: (i) plan lengths hardly exceed 4 actions (longest
plans, up to 12 actions, may appear, but they are rare), (ii) the number of Non-
Playable Characters (NPCs) simultaneously handled by the planning system is
below the size of a squad (less than 12 AI entities), and (iii) approximately one
plan per second and per NPC is generated in average. As a comparison, our goal
is to simulate the tactical behaviour of an entire platoon of soldiers (nearly 30

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 119–132, 2014.
c© Springer International Publishing Switzerland 2014

120 A. Menif, É. Jacopin, and T. Cazenave

to 40 NPCs), with plans potentially more complex than sequences of 4 actions.
To preserve playability and immersion, the planner must be able to return plans
for any agent in less than one second of real time. AI usually benefits from 10%
of the overall computation time in a game (about 100 ms), thus only 2 to 3 ms
per NPC are available in order to plan for a platoon.

This paper introduces the Simple Hierarchical Planning Engine (SHPE). This
planning system is based on the same HTN planning techniques currently im-
plemented in games, but achieves better performance thanks to an alternative
encoding of planning data. Section 2 describes the main features of the system,
some algorithmic details and how to operate the planner. Section 3 focuses on
some additional features currently under study. Finally, Section 4 evaluates the
performance of the planner using the SimpleFPS domain [11], a planning domain
designed to emulate a game-world environment and test planners according to
game mechanics.

2 SHPE: Simple Hierarchical Planning Engine

2.1 Planning Data Representation

Planning data are classically represented by a first-order logical language. A state
of the world is described by a set of predicates, which represent properties holding
for some objects of the world. Possible changes are described with operators.
An operator is defined with a precondition, some effects, and may also have
a numerical cost. Preconditions and effects are logical formulas on predicates,
and they respectively represent the condition to apply the operator and the
changes occurring on a state after the application of this operator. The set of
definitions for predicates and operators is called a planning domain. Plans can be
sequences or partially ordered sets of operators, and an optimisation criterion
can be defined on the costs of these operators. A classical planner expects as
input a goal condition on the predicates as well as an initial state, and returns
a plan transforming the initial state into one satisfying the goal. A standard
planning domain language conforming to these principles is PDDL [8]. Figure 1
shows some samples of planning data expressed in this language.

HTN planning introduces tasks into the planning domain. There are two types
of tasks. Primitive tasks are associated with operators, while compound ones are
designed to be decomposed into a partial plan made of subtasks, called a task net-
work. For each compound task, alternative decompositions are defined through
several HTN methods. This paper adopts the formalism for methods of the Sim-
ple Hierarchical Ordered Planner (SHOP [5]) and its successor SHOP2 [6]. Thus,
our methods are defined as successive pairs of preconditions and task networks
(each pair is called a branch, and the planner only decomposes the method for
the first satisfied branch). Figure 2 presents some examples of such methods. The
purpose of an HTN planner is different from a classical one: instead of building
a plan fulfilling a goal from the initial state, an HTN planner decomposes an
initial task network down to a plan only made of primitive tasks, and applicable
to the initial state.

SHPE: HTN Planning for Video Games 121

; a definition of an action in PDDL, here this action

; applies to a NPC that uses a gun to shoot at the player

(:action shoot-player

:parameters (?npc ?gun ?wpt1 ?wpt2)

; to perform the action, the NPC needs a loaded gun and

; a clear line of sight to the player

:precondition (and (at ?npc ?wpt1) (player-at ?wpt2)

(holding ?npc ?gun) (loaded ?gun)

(visible ?wpt1 ?wpt2))

; the player is wounded and the gun is no longer loaded

:effect (and (not (loaded ?gun)) (player-wounded)))

[...]

; a description of the initial situation

(:init (at npc0 wpt0) (player-at wpt1) (visible wpt0 wpt1)

(visible wpt1 wpt0) (gun gun0) (loaded gun0)

(holding npc0 gun0) [...])

; the goal we want to achieve

(:goal (player-wounded))

Fig. 1. An operator (action) described in the PDDL planning representation language,
along with an initial state and a goal formula. Here, (shoot-player npc0 gun0) is a valid
plan according to the initial situation and the goal.

; method for attacking the player at range

(:method (attack-player ?npc)

; a first branch, when the NPC already has

; visibility with the player

(and (at ?npc ?wpt1) (player-at ?wpt2) (visible ?wpt1 ?wpt2)

(gun ?gun) (holding ?npc ?gun))

((!shoot-player ?npc ?gun))

; a second branch that moves the NPC to a waypoint where it

; will have visibility to the player location

(and (waypoint ?wpt1) (player-at ?wpt2) (visible ?wpt1 ?wpt2)

(gun ?gun) (holding ?npc ?gun))

((move ?npc ?wpt1) (!shoot-player ?npc ?gun)))

; method for attacking the player in melee combat

(:method (attack-player ?npc)

(and (at ?npc ?wpt) (player-at ?wpt) (knife ?knife)

(holding ?npc ?knife))

((!stab-player ?npc ?knife)))

Fig. 2. Two methods that define alternative decompositions for the compound task
(attack-player ?npc). The first method provides the behaviour to attack the player with
a ranged weapon, while the second one makes the NPC use a close combat weapon. The
LISP-like syntax is the one used by SHOP for its input data, where the exclamation
mark ”!” denotes a primitive task.

122 A. Menif, É. Jacopin, and T. Cazenave

From a programming viewpoint, logical formulas (preconditions, effects) in
operators and methods are generally encoded as lists of atomic propositions
evaluated by an inference engine. Pyhop [7], a SHOP-like HTN planner coded
in Python, follows another approach supposed to be more suited to games.
First, world states are represented as Python data structures containing state-
variables, an alternative representation for facts in planning, instead of sets of
predicates. Secondly, operators and methods are Python functions taking a state
as input, and respectively returning a new state and a sequence of subtasks. Fig-
ure 3 provides an insight on what such functions look like. The entire domain
is therefore written in Python, and not with a logical language as usual. For
SHPE, we decided to follow the same rules for reason of both system simplicity
and expectation of a runtime improvement. Indeed, there is no need to code an
inference engine and state-variables can be instantly accessed in a structure to
read or modify their values, while we have to find a predicate to add or delete
it from a state. But unlike Pyhop, we did not choose Python but C++ in order
to implement our planning system. First, this is a commonly used language for
video games and we expect our choice to ease the integration of the planner in
most game engines. Secondly, being a low-level compiled language, C++ seemed
to be an appropriate option to achieve the best runtime.

def shoot_player(state, npc, gun):

if state.visible[state.at[npc]][state.player_at] and \

state.holding[npc][gun] and state.loaded[gun]:

state.loaded[gun] = False

state.player_wounded = True

return state

else: return False

Fig. 3. The same operator as defined in Figure 1, but encoded in Python this time

2.2 Algorithm

SHOP, Pyhop and SHPE use the same algorithmic principle. They conduct
a depth-first, backtracking search in the space of partially decomposed task
networks, combined with a forward state-space search. When the planner selects
the next task to process, it always picks one that has no predecessor in the task
network. Doing so results in constructing the plan in the same order as it will be
executed. The planner always has a full description of the current state of the
world at its disposal, thus logical expressions in operators and methods can be
written with very expressive logical formulas. For instance, the domain modeling
language of SHOP2 allows for existential and universal quantifiers, disjunction,
implication and even more specific expressions [6]. Not only does this type of
search provide the domain modeler with a powerful way to encode good strategies
for decomposing task networks, but it also justifies why operators and methods
can be encoded as functions in Pyhop.

SHPE: HTN Planning for Video Games 123

However, the implementation of SHPE differs from Pyhop in several ways. We
do not actually define operators and methods, and associate them with tasks. As
primitive tasks are in one-to-one correspondence with operators, we simply blend
both of them together into a single primitive task definition. We do not define
each method separately either. Instead, they are all gathered in the body of a
single function named decompose. This function is defined for all compound task
types, and it returns a list of all the decompositions for each method. Besides,
an operator/primitive task is not considered as being a single function, but is
split into three parts:

1. The function applicable returns the evaluation of the precondition (a boolean
value).

2. The function apply returns the new value of the state after the application
of all effects.

3. The function cost returns the cost of the operator/task.

Another difference is the iterative structure of the algorithm implementation. It
provides the ability to interrupt and resume the planner, which is a nice feature
to have with some game engines in order to time-slice planning through multiple
frames. The last addition is the ”branch-and-bound” optimization technique
implemented for SHOP2 [6] in order to search for a least-cost plan, along with
the standard procedure returning the first plan found. The optimal version,
combined with the ability to interrupt the planner, can work more or less as
an ”anytime-like” algorithm [1]: when a first solution is found, possibly not
optimal, it keeps running in order to find a better plan as long as it has not been
interrupted. The procedure executed at each iteration of the planner is described
in Algorithm 1. Algorithms 2 and 3 are respectively the standard and optimal
procedures to run the planner (without interrupting it).

2.3 Operating the Planner

SHPE is implemented as a C++ template library. The planner is provided in
a template Planner<MyState> class, and the template parameter must be spe-
cialized with the C++ structure type defined for the state. The implementation
of the planner provides the necessary member functions to be run in different
ways: run, and run best are used to operate the planner directly in the standard
and optimize mode, while the function next is publicly visible to enable the in-
tegration of the planner according to one’s requirements. For example, it can be
used to run the planner for a limited amount of iterations or time.

All primitive and compound tasks must be implemented by inheriting the
provided Task<MyState> virtual class and overloading its virtual member func-
tions: either applicable, apply and cost if this is a primitive task, or decompose
if it is a compound one. Also, a task is supposed to be implemented with all
its parameters as class member attributes. Due to the use of polymorphism,
an instance of the Planner<MyState> class only deals with references to tasks,
therefore the actual task objects need to be stored in a global memory space.

124 A. Menif, É. Jacopin, and T. Cazenave

Algorithm 1. next(stack, best plan, best cost)

(plan, cost, state, task network) ← top(stack)
pop stack
if cost ≥ best cost then

return
end if
if task network is empty then

best plan ← plan
best cost ← cost
return

end if
tasks ← all tasks in task network without predecessor
for all t ∈ tasks do

if t is a primitive task then
if t.applicable(state) then

plan ← append t to plan
cost ← cost+ t.cost(state)
remove t from task network
push (plan, cost, t.apply(state), task network) on stack

end if
end if
if t is a compound task then

for all tn ∈ t.decompose(state) do
replace t in task network with tn
push (plan, cost, state, task network) on stack

end for
end if

end for

Algorithm 2. find first plan(state, task network)

stack ← []
best plan ← []
best cost ← ∞
push ([], 0, state, task network) on stack
while best cost = ∞ and stack is not empty do

next(stack, best plan, best cost)
end while

Algorithm 3. find best plan(state, task network)

stack ← []
best plan ← []
best cost ← ∞
push ([], 0, state, task network) on stack
while stack is not empty do

next(stack, best plan, best cost)
end while

SHPE: HTN Planning for Video Games 125

For this purpose, and also to limit dynamic heap allocation, a caching system
registers all allocated instances of a type of task. But if a task class only has
few different instances, they can also be stored in static attributes of this class.
Figure 4 provides a practical example of how a task can be implemented for
SHPE.

So, in order to get plans from SHPE, one needs to execute the following steps:

1. Define a C++ structure for the state (MyState). Some variables of the do-
main are never modified and can be easily identified as they do not appear in
any effects; thus a good practice is to define a constant state structure, and
make all constant variables from a state pointing to the constant structure.
This technique significantly reduces memory usage and runtime as states are
copied many times in the planner’s stack.

2. Define all primitive and compound tasks of the domain as C++ classes
inheriting from Task<MyState>.

3. Include the C++ files for your domain and the ones from SHPE within a
project, and write some code to instantiate and use the specialized instance
of the Planner<MyState> class.

4. Compile and run this domain-specific planning program.

3 Planning Domain Design and Pre-compilation

3.1 High Level Modeling Language

When it comes to modeling a planning domain, C++ is anything but an ap-
propriate language. Being a low-level programming language, it is already quite
verbose. Besides, our way to implement tasks does not help either. On several
occasions, a domain written with a few hundred lines of LISP code was expanded
into a few thousand of C++ lines. Thus, a much more convenient high-level plan-
ning domain modeling language is needed. Neither PDDL nor the LISP syntax
of SHOP were appropriate as this language should support state-variable rep-
resentation and HTN decompositions. By contrast, the ANML language [10],
currently under development at NASA, provides these elements. Therefore, we
have started to design a language based on ANML as a tool for domain modeling.

However, ANML is quite a comprehensive language for planning and already
supports many features. As some of these features are out of scope for SHPE,
they were simply discarded. The removal of temporal qualifications on precon-
ditions is probably the most noticeable change (indeed SHPE does not support
temporal networks, but this may be a further improvement). Some minor changes
on the syntax were also included in order to conform the language to the task-
based HTN formalism of SHOP. Figure 5 provides an insight on some elements
of a planning domain expressed with this language.

The language was also expanded with sort-by and first preconditions, two
features available in SHOP and SHOP2. sort-by preconditions allow to sort the
variable bindings satisfying the precondition according to the value of a numer-
ical expression and first preconditions allow to consider only the first binding

126 A. Menif, É. Jacopin, and T. Cazenave

class ShootPlayer : public Task<MyState> {

public:

// the class constructor

ShootPlayer(const Npc& npc, const Gun& gun) : primitive(true),

npc(npc),

gun(gun)

{

}

// evaluate the precondition according to the current state

bool applicable(const MyState& state) const

{

return state.visible[state.at[npc]][state.player_at] and

state.holding[npc][gun] and state.loaded[gun];

}

// apply the effects of this task on the current state

void apply(MyState& state) const

{

state.loaded[gun] = false;

state.player_wounded = true;

}

protected:

// print this task for debugging purpose

std::ostream& print(std::ostream& out) const

{

return out << "ShootPlayer(" << npc << ", " << gun << ")";

}

private:

Npc npc;

Gun gun;

};

Fig. 4. An example of a C++ definition for the primitive task ShootPlayer(npc, gun).
The cost function is not overloaded here. In this case, the default implementation of
this function, inherited from Task<MyState>, returns 1. It is a primitive task, so the
virtual function decompose is not overloaded either and a call to this function will
return an empty set of decompositions.

SHPE: HTN Planning for Video Games 127

task ShootPlayer(Npc npc, Gun gun) {

cost := 1;

{

visible(at(npc), player_at);

holding(npc, gun);

loaded(gun) == true :-> false;

player_wounded := true;

}

}

task AttackPlayer(Npc npc) {

// method for attacking the player at range

method {

// a first branch, when the NPC already has

// visibility with the player

branch {

exists (Gun gun) {

visible(at(npc), player_at);

holding(npc, gun);

ordered(ShootPlayer(npc, gun));

}

}

// a second branch that moves the NPC to a waypoint

// where it will have visibility to the player location

branch {

exists (Waypoint wpt, Gun gun) {

visible(wpt, player_at);

holding(npc, gun);

ordered(Move(npc, wpt), ShootPlayer(npc, gun));

}

}

}

// method for attacking the player in melee combat

method {

exists (Knife knife) {

at(npc) == player_at;

holding(npc, knife);

ordered(StabPlayer(npc, knife));

}

}

}

Fig. 5. Primitive and compound tasks defined with a high-level modeling language, in
a state-variable based representation

128 A. Menif, É. Jacopin, and T. Cazenave

task RestoreHealth(Npc npc) {

method {

// a first branch, when the NPC already has a medikit

branch {

first (Medikit medikit) {

holding(npc, medikit);

ordered(UseMedikit(npc, medikit));

}

}

// a second branch when the NPC needs to

// find a medikit

branch {

sort-by (Medikit medikit; distance(at(npc),

at(medikit)); <) {

ordered(Move(npc, at(medikit)),

UseMedikit(npc, medikit));

}

}

}

}

Fig. 6. A method using both sort-by and first expressions. In the first branch, it would
be pointless to generate a decomposition for each medikit the NPC holds as the choice
of the medikit would not alter the quality of the plan, so it makes sense to consider
the first satisfier only. In the second one, a medikit in the neighborhood is more likely
to be the best option in order to find one in fewer steps, so exploring this option first
is a good heuristic.

(Figure 6). The ability to insert calls to external user-defined functions is also
under study.

3.2 Domain Pre-compilation

Having a convenient language for domain modeling is one thing, but currently
the domain still requires to be translated by hand into C++ code. Depending on
the size of the domain, this task quickly becomes tedious and error-prone, and
completely goes against the requirement for a system simple enough to be used
by a non-programmer (for example by a game designer). Therefore, an additional
piece of software is required to parse the domain from the high-level modeling
language and generate a C++ domain definition automatically. At the end of the
process, the generated C++ classes containing the domain elements as well as
the specialized planner would be integrated in a game project or even compiled
as an independent dynamic link library to achieve modularity. Nevertheless, this
tool has not been implemented yet.

SHPE: HTN Planning for Video Games 129

4 Performance Evaluations

4.1 The SimpleFPS Planning Domain

The SimpleFPS domain [11] has been designed specially to produce planning
problems that could serve as benchmarks to evaluate planners according to FPS
(First-Person Shooter) game mechanics. SimpleFPS problems stage a NPC and
a player in a game level made of several areas connected to each other, and each
area includes various types of points of interest (items such as weapons, medikits
or keys, doors between areas, cover-points...). A comprehensive description of the
domain can be found in the original paper.

As this domain is provided in a PDDL format, it was necessary to convert the
predicate based representation into a state-variable one. It was also necessary to
add tasks and methods in order to operate the domain with an HTN planner, as
SimpleFPS has only been designed to evaluate goal-oriented classical planning
techniques. The hierarchical structure of the domain makes use of the tools pro-
vided by SHOP2 to encode heuristics in methods (sort-by expressions...) in order
to make the planner more likely to find near-optimal solutions. To achieve this,
we added a distance predicate/state-variable to encode the distances between
all areas (this distance is used as the criterion to sort the areas and the point of
interest in the methods). In an actual game environment, this information could
be computed with the Euclidean distance between points of interest.

4.2 Experiments

For the first set of experiments, we wanted to compare the performance of
SHPE with a similar planner. We selected JSHOP2 [3], a java implementation
of SHOP2 [6]. JSHOP2 is a problem specific planner: a specialized instance of
the planner is compiled for each domain and problem. This feature provides
JSHOP2 with an advantage over SHPE, which can only be optimized for the
planning domain. Besides, JSHOP2 already compared favorably to other more
academic implementations (it has been shown to run by a polynomial order of
magnitude faster than SHOP2). So it revealed itself to be an appropriate can-
didate to compete with SHPE in our benchmark. Several problems with various
numbers of points of interest were randomly generated (the number of areas is
set to 10).

The computer used for all experiments is equipped with an Intel core i5 CPU
(2.66 GHz), 4 GB of RAM, and it runs a 64 bits version of Debian 7.0. This
configuration is equivalent to an average Steam Box, a new PC-based gaming
concept currently developed by Valve. The running-time results for SHPE and
JSHOP2 are presented in Figure 7: each measure is the average running time
for a collection of one hundred samples of the same size. The results indicate a
clear advantage on the side of SHPE, which solves each set of problems 10 to 15
times faster than JSHOP2. Moreover, the running times are short enough (less
than 3 ms for each instance) to assume that SHPE should be able to plan for
several squads of NPCs in a game or a simulator.

130 A. Menif, É. Jacopin, and T. Cazenave

Fig. 7. SHPE and JSHOP2 performance comparison on different instances of problems
from the SimpleFPS domain. The instances were generated with ten areas and a varying
amount of points of interest. For these scenarios, SHPE outperforms JSHOP2 by at
least a factor of 10.

The results show that SHPE runs quite fast, but what about the quality of
the plans? There is actually no reason to evaluate SHPE on this aspect against
JSHOP2. Indeed plan quality is related to the designed decomposition hierar-
chy, and both planners share the same. Our hierarchy generally performs well: it
provides a satisfactory near-optimal plan in most cases, and sometimes it even
returns an optimal one. However there are situations when it does not: for in-
stance, a sequence of 70 actions is returned when the optimal plan only contains
30 of them. In this case, will the ”branch-and-bound” optimization technique
be of any help? In order to get an idea about it, we ran the planner until it
had returned an optimal solution for two scenarios. In the first one, the planner
first returned a plan far from being optimal; thus it was interesting to measure
how long the game would have to wait for a satisfactory solution. In the second
scenario, the returned plan was already satisfactory, but could still be improved.
The answer is shown in Figure 8. In both cases, the optimal solution is out of
reach: it requires several seconds in the already near optimal case, and several
minutes in the other case. When the initial solution is far from being optimal,
it also requires several minutes to get an acceptable one. So this optimization
option does not seem very useful and the ability to obtain a good solution from
the planner mainly relies on the designed decomposition methods.

SHPE: HTN Planning for Video Games 131

Fig. 8. SHPE using the ”branch-and-bound” optimization techniques to search for the
best solution in two scenarios. One when the first plan found is far from being optimal
(the uppermost graph, starting with 70 actions), and another case with a first plan
almost optimal, but still improvable (the lower graph, starting with 31 actions).

5 Conclusion

The ideas introduced with Pyhop [7] were put into application in SHPE in order
to provide fast planning capabilities to video games. The system has reached
the targeted performance: it has been evaluated against various problems with
properties similar to FPS games, and was able to solve them in a few milliseconds.
In addition, a high-level modeling language can be used to design the planning
knowledge required to operate the planner efficiently. To bridge the gap between
this high-level language and the C++ encoding expected by the planner, a pre-
compiler should be implemented. This component would enable AI designers to
modify the behaviour of game characters, without any skills in low-level C++
programming.

But even if this system achieves its initial goal in terms of performance and
maintenance, it does not address issues like real-time re-planning in dynamic
environments such as games. Besides, even if plans containing more than twenty
actions can be computed in a few milliseconds, this time is still partially a
waste, as it is likely that most of the plan will no longer be relevant to the
evolution of the situation. Thus, our future plan for this system is to study and
incorporate partial and delayed decomposition. A hierarchical planner including
these features could decompose a plan into primitive tasks for imminent acting
only, keep the more distant tasks at a more abstract level and eventually expand
them at the appropriate time.

132 A. Menif, É. Jacopin, and T. Cazenave

References

1. Dean, T.L., Boddy, M.S.: An Analysis of Time-Dependent Planning. In: AAAI 1988,
pp. 49–54 (1988)

2. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann (2004)

3. Ilghami, O., Nau, D.S.: A General Approach to Synthesize Problem-Specific Plan-
ners. Tech. rep., CS-TR-4597 and UMIACS-TR-2004-40, University of Maryland
(2003)

4. Jacopin, É.: Game AI Planning Analytics: Evaluation and Comparison of the AI
Planning in three First-Person Shooters. In: AIIDE (2014)

5. Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: Simple Hierarchical Ordered
Planner. In: IJCAI 1999, pp. 968–975 (1999)

6. Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman,
F.: SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research
(JAIR) 20, 379–404 (2003)

7. Nau, D.: Game Applications of HTN Planning with State Variables. In: ICAPS
Workshop on Planning in Games (2013) Invited talk

8. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL – The Planning Domain Definition Language. Tech. Rep.
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control
(1998)

9. Orkin, J.: Three States and a Plan: The AI of F.E.A.R. In: Game Developer’s
Conference (GDC) (2006)

10. Smith, D.E., Frank, J., Cushing, W.: The ANML Language. In: ICAPS 2008 (2008)
11. Vassos, S., Papakonstantinou, M.: The SimpleFPS Planning Domain: A PDDL

Benchmark for Proactive NPCs. In: AIIDE Workshop: Intelligent Narrative Tech-
nologies, pp. 92–97 (2011)

Predicting Player Disengagement

in Online Games

Hanting Xie �, Daniel Kudenko ��, Sam Devlin � � �, and Peter Cowling †

Department of Computer Science
University of York

YO10 5GH, York, UK

Abstract. Game engagement, as one of the most fundamental objec-
tives for game designers to achieve, has become an attractive industrial
and academic topic. An important direction in this area is to construct
a model to predict how long a player could be engaged with a game.
This paper introduces a pure data driven method to foresee whether a
player will quit the game given their previous activity within the game,
by constructing decision trees from historical gameplay data of previous
players. The method will be assessed on two popular commercial online
games: I Am Playr and Lyroke. The former is a football game while the
latter is a music game. The results indicate that the decision tree built by
our method is valuable to predict the players’ disengagement and that
its human-readable form allow us to search out further reasons about
what in-game events made them quit.

Keywords: Game Data Mining, Player Modelling, Decision Trees.

1 Introduction

In the global game industry, over 1500 commercial games are published annually
[8]. Nevertheless, only a few of them gain popularity and become memorised by
the history of games. For the continual growth of the games industry, more
companies could succeed if they could fully understand their players. Therefore,
how to shape an in-depth understanding of players has become a big issue in
the area of games. Recently, game data mining has become popular in this area
to help developers to understand more about their customers. Some research
focuses on how players behave in the game [14] especially whether they play in a
legal way [6]. Others concentrate on classifying players by their play styles [10],
which would be advantageous for the developer to better satisfy their customers.

For many players, except for external factors, a predominant reason which
may lead to their disengagement is design flaws in the game. Therefore, it would

� hx597@york.ac.uk
�� daniel.kudenko@york.ac.uk

� � � sam.devlin@york.ac.uk
† peter.cowling@york.ac.uk

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 133–149, 2014.
c© Springer International Publishing Switzerland 2014

134 H. Xie et al.

be helpful if we could discover some rule-sets based on the game that could
predict whether a player will quit (or disengage). To be more precise, if one’s
actions match all the rules in a set, he/she would be highly likely to leave the
game without hesitation.

In this work, we promote a pure data driven method to investigate the causes
of disengagement in games. The data are collected from two commercial online
games in different genres; ‘I Am Playr’ [1], a first-person football game, and
‘Lyroke’ [2], a music game, both developed by ‘We R Interactive’ [3].

2 Background

In this section we cover the relevant background material and terms necessary
for the comprehension of this work.

2.1 Game Telemetry

To understand players, collecting data from users is always the first step. A
widely utilized technology in the game industry is called game telemetry. Teleme-
try refers to obtaining data through remote access, in the sense of games, that is
to transmit data collected from a game sever to a collection server and format-
ted there to support further analysis [11]. The data collected usually includes
different types which are related to the genre of the game. For example, in sport
games, valuable game metrics could be match type, team selection and country
chosen etc. In the game industry, game telemetry data could be used both ex-
ternally and internally. As an example of external use, the World of WarCraft
Armory [5] provides its players with statistics about its characters and guilds.
As an internal tool, developers could take advantage of game telemetry data to
detect bugs and adjust the settings of the game [15].

2.2 Game Data Mining and Player Modelling

Game data mining or game analytics is the application of data mining in the area
of games [11]. Its intention is to train models from game telemetry data using
machine learning algorithms. Player Modelling is one example of this where the
models trained are intended to represent a behaviour of the player. For example,
how they play or experience the game.

The method introduced in this paper is based on supervised learning. The
problem of supervised learning can be considered as classification (or regression).
In this case, a set of attributes or features to be analysed is selected. A single
instance in a dataset refers to a specific vector of corresponding values of those
selected features. Each instance of the dataset used to train the model is given
a label corresponding to its classification or the group it belongs to. The model
generated by supervised learning intends to uncover the correlation between a
group of selected features and the labels. So that after training, the model should
be able to assign labels to new incoming instances automatically.

Predicting Player Disengagement in Online Games 135

2.3 Decision Tree

The model learnt in this paper is a decision tree; a tree data structure which
is generated by a divide-and-conquer strategy [7]. Decision trees are one of the
most easily interpretable data structures in data mining and have been chosen,
therefore, as this will be helpful to demystify what events are likely to result in
players’ disengage. Given the human readable output of this model the resultant
decision tree can be used by game designers to inform future development of the
game without the designer requiring in-depth knowledge of data mining.

A decision tree includes a root with several nodes connected by paths. The
root and each non-terminal (or leaf) node are features of the dataset whilst the
leaf nodes are the labels that would be assigned to a new data instance provided
they had all the features given by the nodes from the root to that leaf. An
example of decision tree is shown later in Figure 1. While building, every node
could also be taken as root to be linked to more nodes until it has reached a leaf
node. The decision tree is in fact another form of rule sets. Because the process
of heading to leaves is just the same with matching rules.

There are various algorithms for building up decision trees, the specific algo-
rithm used in this paper is called C4.5 [9] but any decision tree learner could
be used with our methodology. This paper will follow the original algorithm
without any specific modification. Our contribution is the methodology of ap-
plying decision trees to predict player disengagement not a refinement of the
learning algorithm. We have chosen C4.5 because the algorithm is widely used
in data mining and so that the method we introduce in this paper can be easily
implemented by interested game developers.

2.4 Feature Selection

In data mining, features are those factors related to outcomes. In terms of deci-
sion trees, they are the things that utilised to branch the tree. However, having
too many redundant features can affect both the accuracy of the model built,
the time to train the model and the memory needed. It is not rare that there
are thousands of possible features to be analysed in a game. For example, one
of the games to be analysed in this paper, I Am Playr, has 6408 key assorted
events that could be useful features. Considering this, it is important to apply
feature selection to prune those irrelevant ones.

There are many algorithms to perform feature selection. In this paper, we
conduct feature selection (and model learning) using of WEKA [4]. The algo-
rithm used by WEKA is called Correlation based Feature Selection (CFS). It is
an algorithm based on an evaluation formula including both correlation measure
and heuristic search strategy [12]. As with our motivation to use decision tree,
the reason to apply CFS is that it is widely used, well developed and would be
convenient for further investigations.

136 H. Xie et al.

3 Games

To test our method, we applied it to two existing commercial games of distinct
genres, both developed by We R Interactive. An introduction to both is included
in this section and is intended to emphasise the significant differences in the
games.

3.1 I Am Playr

I Am Playr is a free to play, first person, football game on the social network
Facebook. Like other free to play games, I Am Playr offers different items such
as boots, cars and other luxury items that players can purchase in the game.

Our method focussed on data regarding the occurrence of events in the game.
In I Am Playr there are currently a total of 6048 events possibly experienced
by players. Worldwide, most of those events happened nearly hundreds of times
in only one minute. Those events in game originate from gameplay events and
system events. The former is about the actions performed by players, for in-
stance, ‘Wining Matches’, ‘Playing Videos’ and ‘Training’. Whilst the latter,
system events, the game decides when the player will experiences, for example
promotions such as a ‘Daily Bonus’ or ‘Free Coins’.

3.2 Lyroke

Lyroke is a commercial music game available on multiple platforms including
Facebook, iOS and Android. The main mechanism of this game is that a song
is played with most of the lyrics displayed, the players need to respond with the
missing lyrics before the singer reaches them. The most common purchases in
game are to unlock new songs.

Similar to I Am Playr, the events are from gameplay and system. However,
the event types are very different due to the different genres or the games. In
Lyroke, gameplay events include ‘Using Power Up Items’ and ‘Answering Lyric’
whereas system events include ‘System Gifts’ and ‘Achievements’.

4 Methodology

The objective of our method is trying to predict the disengagement of users as a
result of the events they experienced. Specifically, we predict whether there will
be a decrease in a players’ activity from one month to the next on the basis of
their behaviour in the first month. In this section, we will show how our method
is assessed in both games.

4.1 Data Collection

The data from these two games is all gathered by game telemetry and stored in
a web data server. All the raw data we used for analysis are downloaded from

Predicting Player Disengagement in Online Games 137

this sever. As mentioned before, the event data will be the only dataset covered
in this paper, Table 1 shows a general description of its compiled format on the
server.

As can be seen in Table 1, a complete event type includes ’st1’, ’st2’, ’st3’
and the corresponding action of the event type, attribute ’n’. So, the format of
events we use as features for training is ’st1-st2-st3-n’. Thus, as an example, the
event (feature) appeared in Table 1 would be ’Item-Equip-Boots-IAmHelios’.

Another attribute should be noticed is the ’game week’ (’i’ in Table 1) which
represents the in game week that the player has currently reached. Game week
(or any similar measure of a player’s progression through the game) could also
be a relevant feature because the same event in game could generate contrasting
meanings in different game weeks. Since it is not an event, and is partially game
specific, we built models both with and without this attribute with the latter
being for the purpose of generalisation. However, most games will have a similar
metric that could be used in place of game week with similar results expected
to the models generated using this feature.

With permission and help from We R Interactive, we are able to access up-to-
date data. For I Am Playr, we analysed datasets from January to March 2014.
Whereas in Lyroke, we had datasets from March to April 2014.

Table 1. Event data format with Example Instance from I Am Playr

Attribute Name Descriptions Examples Instance

Timestamp The Unix Time ‘1388534450669’

Type The type of this dataset ‘event’

s Anonymous User ID ‘00008’

n The specific action related to event ‘IAmHelios’

v Values related to action ‘1’

i The week in game that player is currently in ‘3’

st1 Level 1 description of event ‘Item’

st2 Level 2 description of event ‘Equip’

st3 Level 3 description of event ‘Boots’

4.2 Data Labelling

Before training, we must label players’ change in engagement between months.
This is necessary for training and evaluating the decision tree only. Afterwards,
when deploying the model, players can be classified as one of the following types
simply by observing the events they experienced in the previous month. For the
purpose of future research on players’ full retention trends, we decide to not only
assign Decreasing labels but also consider labels of Increasing and Stable. Those
three labels are distributed by the following steps described in Algorithm 1.

Firstly, in step 1, we take only users that exist both in January and February
into consideration. Next, in steps 2 to 6, each user’s (usr) event counts in both
January (EventCJan(usr)) and February (EventCFeb(usr)) will be calculated

138 H. Xie et al.

and recorded in the event count lists (EventCListJan and EventCListFeb). And
then, in step 7 and 8, the two lists are sorted. After that, in step 9 to 12, for each
user, if his/her event counts belongs to the first quarter of sorted January event
count list, then we say the rank of this user is 1 in January. Likewise, his/her
rank would be 2, 3 or 4 if they were in second, third or fourth quarter in January.
Repeating the same thing for February. Finally, for each user, if his/her rank in
January (CJan(usr)) minus his/her rank in February (CFeb(usr)) surpasses 2,
then he/she would be allocated to the Decreasing Group. Similarly, if a user’s
rank in February minus his/her rank in January is bigger than 2, it means he
belongs to the Increasing Group. In comparison, players with ranks lower than
2 will be categorised into the Stable Group.

Algorithm 1. Label Distribution Algorithm

1: U ← UJan ∩ UFeb

2: for user in U do
3: EventCJan(usr), EventCFeb(usr)
4: EventCListJan ← EventCListJan ∪EventCJan(usr)
5: EventCListFeb ← EventCListFeb ∪ EventCFeb(usr)
6: end for
7: Sort EventCListJan

8: Sort EventCListFeb

9: for user in U do
10: CJan(usr) ← 1, 2, 3 or 4 if user in 1st, 2nd, 3rd or 4th quarter of EventCListJan

11: CFeb(usr) ← 1, 2, 3 or 4 if user in 1st, 2nd, 3rd or 4th quarter of EventCListJan

12: end for
13: for user in U do
14: if CJan(usr) - CFeb(usr) ≥ 2 then
15: Label(usr) ← Decreasing
16: else if |CJan(usr) - CFeb(usr)| < 2 then
17: Label(usr) ← Stable
18: else if CJan(usr) - CFeb(usr) ≤ -2 then
19: Label(usr) ← Increasing
20: end if
21: end for

4.3 Model

As discussed in the preceding section, to train a supervised model, we need a set
of instances with labels. In our case, an instance is a complete event history of
a player with his/her label; decreasing, increasing or stable.

I Am Playr. In I Am Playr, since we use players’ actions in January to pre-
dict the trend of their retention between January and February, the feature set
contains all events the player experienced in January. Subsequently, for each in-
stance, we use the number of occurrences of an event (feature) as the value of
this feature. At the same time, the labels are decided by use of the Algorithm 1.

Predicting Player Disengagement in Online Games 139

After the data is prepared, we make use of the C4.5 (called J48 in WEKA) de-
cision tree learning algorithm in WEKA to build the models. Modelling with and
without feature selection are both tried and their performances are compared.
At the same time, as discussed in Section 4.1, we will also consider models both
with and without the attribute ‘game week’. Finally, for completeness, we will
consider models with both feature selection and ‘game week’.

In this paper, we conduct two experiments to assess the performance of our
method. In the first we split players from the January-February dataset into 10
training and testing sets, and then perform 10-fold cross validations on them
to observe the average performance. In this experiment, we randomly pick 3000
instances from each group (decreasing, increasing and stable), thus there are
9000 instances in total in this test. Those 9000 instances would be separated
into training set and testing set automatically. The reason to use 3000 instances
is that the smallest group merely contain around 3000 instances, so the use of
this number to limit instances from other groups could ensure that the training
data has a same size for each group.

The other one is to validate the decision tree trained by the trend between
January and February to predict the trend between February and March. In
this experiment, we use exactly the same model trained from the preceding
experiment to test on 3000 (1000 instances for each group) randomly picked
instances from February-March data.

Lyroke. The method of training decision tree of Lyroke remains the same with
I Am Playr. However, the dissimilarity is that since we only hold the data about
March and April, only the 10-fold cross validation test could be examined. In
this experiment, we pick 900 instances randomly from each group(decreasing,
increasing and stable), thus there are totally 2700 instances in this test. In 10-
fold cross, those 2700 instance would be divided into training set and testing set
automatically. We choose 900 instances since this is the size of our smallest set.

4.4 Evaluation Metrics

In order to evaluate our method, ’Recall’, ’Precision’, ’F-Measure’ and ’Accu-
racy’ will be used as metrics of performance. Among them, ’Recall’ refers to the
true positive rate or sensitivity in the context of classification while ’Precision’
represents the positive predictive value. ’F-Measure’ is a harmonic mean of those
two. As a commonly used metric, ’Accuracy’ cares both true positives and true
negatives. In formulas below, ’true positives’, ’true negatives’, ’false positive’ and
’false negative’ are represented by ’tp’, ’tn’, ’fp’ and ’fn’ respectively.

Recall =
tp

tp+ fn
(1)

Precision =
tp

tp+ fp
(2)

140 H. Xie et al.

FMeasure = 2 · precision · recall
precision+ recall

(3)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

5 Result and Discussion

In this section we will discuss the relative performance of the models in predicting
player engagement in both games. For comparison, we compare our method to
a naive method of randomly guessing player engagement based on the known
distribution of example instances.

5.1 I Am Playr

There are in total four different models constructed for I Am Playr. The size
of the original model is 1705 nodes with 853 leaves and was learnt from 6408
features. After applying feature selection, the number of features is reduced to
79, which results in 1451 nodes with 725 leaves in the tree. Another tree built
with the ‘game week’ feature contains 117 nodes with 59 leaves and was learnt
from 6409 feature. Compared with the original model, it is clear including the
‘game week’ prunes the tree. Finally, the last model with both feature selection
and the ‘game week’ feature included is 69 nodes 35 leaves and was learnt from
only 35 features. The first four layers of this model are illustrated in Figure 1.

Fig. 1. Top of Decision Tree Learnt for I Am Playr with Feature Selection and the
‘Game Week’ Feature Included

As demonstrated by Figure 1, the decision tree is clear and easy to be in-
terpreted. To classify the expected engagement of a new player, start from the
root feature, ‘game week’, if its value is 0, the instance will be labelled as stable.
Otherwise, we then consider the feature ‘Unity-Play’ (right child), this process
continues until one of the 3 labels (decreasing, increasing or stable) is reached.
One thing should be noticed is that many instances are classified as stable by
only considering ’game week’. This could be a sign of overfitting and may mislead
the prediction, perhaps explaining the performance in Figure 7.

Predicting Player Disengagement in Online Games 141

Fig. 2. 10 Fold CV Performance on Decreasing label in I Am Playr

10-Fold Cross Validation. Figure 2 indicates the performance of predicting
decreasing engagement. As shown in the chart, the accuracy, precision, recall and
F-Measure are high for all models. This shows our method can reliably predict
player disengagement. At the same time, we could see that the feature selection
process and ‘game week’ attribute further improve the accuracy. Nevertheless,
if we use both of them, the accuracy is not as high as when we use ’game week’
without feature selection. This might be because when we use ‘game week’, some
other important features are filtered by the feature selection.

Since the four methods (except for random guess) are showing close perfor-
mance, it is needed to check the RMSE (Root mean squared error) on them to
identify which one is the best. The accuracies with RMSE are 94.70%± 0.4362,
95.40%±0.4197, 98.90%±0.1063 and 98.40%±0.1207 respectively. This further
supports that ‘Decreasing With Game Week’ is the best model, but it also shows
that all models perform statistically significantly better than random guessing.

Fig. 3. 10 Fold CV Performance on Increasing label in I Am Playr

142 H. Xie et al.

Figure 3 illustrates the 10-fold cross validation performance of predicting the
increasing labelled group. Apart from predicting disengagement, we also try to
find out whether we could predict which players would get more addicted to this
game. The graph here shows that we achieve a significantly higher accuracy than
random guess.

In this example, feature selection does not improve these metrics, but it does
speed up the process of training. Adding feature selection reduces the time cost
from 539.9s to 3.3s which is because it shrinks the number of features from 6048
to only 79. Therefore, it also helps to save memory for storage. An important
thing to be noticed is that when we apply ‘game week’ attribute on this, the
performance is improved dramatically, as ‘game week’ is an important feature
to show whether a player is experienced or not. Thus it helped to improve the
accuracy of model by dividing and conquering. However, since the two meth-
ods with ‘game week’ are showing close accuracies, an RMSE check of them is
necessary. The accuracies with RMSE are 98.10%± 0.1063 and 97.50%± 0.1207
respectively. Therefore, the method with only ‘game week’ is the best again,
but the significant reduction in training time that occurs when adding feature
selection may be favoured over the small improvement in these metrics.

Fig. 4. 10 Fold CV Performance on Stable label in I Am Playr

Figure 4 shows the 10-fold cross validation performance of predicting the sta-
ble labelled group. To predict the stable group is the most demanding task in the
research as players could keep stable in entirely different situations. For example,
those players who only play once a week belong to stable group whereas some
frequent players are also in the Stable Group as a result of certain play patterns
shaped by their timetable. This result shows that the original model performs
significantly better on all metrics than random guessing. The application of fea-
ture selection is shown to be of no substantial use once again on performance,
however as discussed above, feature selection is essential to reduce the time cost.
Similar to what happened to increasing group, including the ‘game week’ feature

Predicting Player Disengagement in Online Games 143

significantly improves all metrics. Likewise, the RMSE check is needed to distin-
guish the two accuracy bars related to ‘game week’. The accuracies with RMSE
are 99.20% ± 0.1063 and 99.20% ± 0.1207. So there is no longer a significant
difference between using ‘game week’ with and without feature selection and,
therefore, if predicting stable players was a priority we would recommend using
feature selection for its benefits in reducing the memory and time requirements
when training the model.

Fig. 5. Verified on February - March Performance on Decreasing label in I Am Playr

Verified on February - March Data. Figure 5 reveals the result of testing on
the February-March data. It shows that the performance on the decreasing group
(disengagement) still remains great. So it proves that our model has a desirable
function to predict disengagement in the case of generalisation. In addition, the
performance could be further improved by applying feature selection or ‘game
week’ attribute. Similar to what we did in 10-fold cross validation, RMSE would
be performed for all accuracy bars (except random guess) to figure out which
method is the best. The accuracies with RMSE are 92.80%± 0.4535, 96.10%±
0.4175, 95.90%± 0.4827 and 95.00%± 0.4855 respectively, and it indicates that
the model with only feature selection performs the best.

Figure 6 shows less improvement in predictions using our model. However,
the performance of all decision trees is still higher quality than that of random
guess. So it means the patterns of increasing playtime players tend to change
considerably during different months. However, one thing should be noticed is
that with the help of ‘game week’ attribute, the recall of the increasing group
could be boosted noticeably. According to the formula of recall, it is to say that
the number of true positives has been increased. As the accuracies of original
model and the model optimised by feature selection performs similar with each
other, RMSE should be applied to show the details. The accuracies with RMSE
for those two methods are 70.50%± 0.4535 and 70.90%± 0.4175. According to
this, the best remains the model with just feature selection applied.

144 H. Xie et al.

Fig. 6. Verified on February - March Performance on Increasing label in I Am Playr

Fig. 7. Verified on February - March Performance on Stable label in I Am Playr

Figure 7 displays a similar result as the increasing group. Furthermore, for
this group, if the ‘game week’ is included, the precision, recall, and F-Measure
drop to 0. According to the formulas, this occurs because these models give no
true positives. Which is also to say that no instances are correctly assigned to
the stable group. This is possible as in the original model of January-February,
the ‘game week’ attribute is trained to be the only important feature to predict
whether a player is in the stable group or not. This fact could be clearly seen in
Figure 1. However according to the February-March data, the patterns of stable
users generate another type of tendency. Since the accuracies of all methods are
close to each other, the RMSE is used. The accuracies with RMSE for all methods
are 66.20% ± 0.4535, 68.50% ± 0.4175, 66.30% ± 0.4827 and 65.90% ± 0.4855
individually. So as can be seen, the conclusion remains again that the model
with only feature selection performs the best.

5.2 Lyroke

As with I Am Playr, there are also four models for Lyroke. The size of the
original model is 589 nodes with 295 leaves and was learnt from 7382 features.

Predicting Player Disengagement in Online Games 145

After applying feature selection, only 33 feature are left. This resulted in a tree
with 413 nodes and 207 leaves. The tree with the ‘game week’ feature included
contains 149 nodes with 75 leaves learnt from 7383 features. Including the ‘game
week’ has again reduced the tree size. Finally, the last model with both feature
selection and the ‘game week’ feature is 39 nodes with 20 leaves and was learnt
from only 23 features.

Fig. 8. 10 Fold CV Performance on Decreasing label in Lyroke

10-Fold Cross Validation. Figure 8 suggests that we attain a great perfor-
mance in the decreasing group once more, which could be further enhanced by
feature selection and the ‘game week’ attribute. The accuracies with RMSE are
95.40% ± 0.2120 and 94.60% ± 0.2166 for the last two bars with ‘game week’
respectively. Therefore, the model with only ‘game week’ performs best.

Fig. 9. 10 Fold CV Performance on Increasing label in Lyroke

146 H. Xie et al.

Figure 9 shows again that all our models acquire a significantly higher accu-
racy than random guess. The accuracy without the ‘game week’ feature exceeds
70% and could be used for problems at a reasonable error standard. At the same
time, feature selection also boosted both the performance and speed. Especially
the speed, as adding feature selection reduced the time cost of training the model
from 61.88s to 0.28s. Also the number of features to be analysed decrease from
7382 to only 23. Like I Am Playr, the accuracy could be improved to higher
than 90% by applying ’game week’ attribute too. Similar to decreasing group,
the accuracy bars related to ‘game week’ should be checked with RMSE. The
results are 93.60%± 0.2120 and 93.40%± 0.2166 correspondingly. In this case,
there is no significant difference in performance. Therefore, the speed and mem-
ory advantages of using feature selection may be favourable if predicting this
class of players is a priority.

Fig. 10. 10 Fold CV Performance on Stable label in Lyroke

Figure 10 shows a similar result as the increasing group. As discussed above,
the task of distinguishing stable players is a much more complicated process.
Despite this, we still observe a significant improvement compared with random
guess. With ’feature selection’ applied, the performance could be improved once
again. Also, as we discussed before, the time cost of it has been reduced a lot.
Similar to increasing group, the performance could be improved to higher than
90% by including the ‘game week’ attribute. Likewise, the accuracies of those
bars related to ’game week’ should be investigated by RMSE. The corresponding
accuracies with RMSE are 96.60%± 0.2120 and 96.30%± 0.2166. This indicates
again that there is no significant difference and, therefore, the model with both
feature selection and the ’game week’ feature may be favourable.

5.3 Summary

From the results above, we conclude our method is accurate and stable to predict
disengagement cases in varying conditions. The findings can be applied to other

Predicting Player Disengagement in Online Games 147

genres of games, which means it is possible to track players’ certain behavioural
patterns for detecting their disengagements.

For the increasing and stable groups, the original model could offer an accu-
racy around 60%-70% which is significantly higher than that of random guess.
Furthermore, including the ‘game week’ feature could significantly improve the
performance. Although it is not a general attribute in all games, most should
have similar attributes used to record the progress of players. However, when the
model is used to perform classifications in a later month slot (February-March),
the performance turned out to be of inferior quality. This means that the ac-
tion patterns of players who belong to increasing/stable group are changeable
between month slots.

Finally, using feature selection typically does not have a significant effect on
the accuracy of the model but does significantly reduce the time taken and
memory required when training the model.

6 Related Work

Relevant existing research in this domain tend to be based on two concepts:
player modelling and game design by data mining. The main directions of player
modelling are: player analysis, behaviour detection and character simulation

In the direction of player analysis, the purpose of work by Mahlmann et al.
[13] resembles that of this paper. In that paper, the authors introduced how to
utilize the system records (e.g. Playing time, Total number of deaths, Causes
of deaths etc.) of players to predict when players are going to leave the game
Tomb Raider: Underworld. This work differs from ours because we focus on the
events experienced by players within a period of time in different game genres.
By focusing on events the resultant model includes only features developers can
manipulate the occurrence of directly.

Another paper focusing on players’ interests also shows similar intention. Ex-
cept instead of investigating when players will leave, Bauckhage et al. [8] focus
was more about the abstract interest of player. The authors built a model which
could smoothly match the change of interests and predict the likelihood of play-
ers’ exit with distinct modelling methods. They focused more on fitting existed
random process models while we try to build new models based on actual activ-
ities from players.

In terms of the utilization of players’ behaviour, another related paper is writ-
ten by Ahmad et al. [6] aiming at detecting gold-farmer player in a massively-
multiplayer online role-playing game (MMORPG) game called EverQuest II. In
this paper, the authors used the pre-processed behavioural data of players to
perform a binary classification on whether players are gold farmers (who acquire
in-game currency and sell for real-world money) or not. So its purpose is dis-
similar with ours but the methods could be used interchangeably, with decision
trees on events used to predict gold farmers. The advantage of an interpretable
model could also be useful for understanding critical behaviours of gold farmers.

For tuning design, the work by Weber et al. [15] is an example. In this paper,
the authors put forward a method to build up a model consists of game features

148 H. Xie et al.

and player’s retention so that the most valuable game features could be found
according to the sorted features list. The purpose of this paper is also different as
it used games features rather than events to predict, which means it also covered
factors such as control settings. Weber gave priority to adjusting game features
(game settings) rather than the disengagement of players.

7 Conclusion

We introduced a method which could be used to predict the disengagement of
players as a result of their recent activities. To validate our method, we tested
it on two online games of different genres and achieved desirable outcomes.

Moreover, we endeavoured to use the same method in testing participants
in the increasing and stable groups. The performance was better than that of
random guess and could possibly be used under the condition of an accepted
error standard.

The method has potential practical significance for two reasons. First, data
analysts could better understand players and indicate what type of designs are
not welcomed or accepted by users. Second, it would potentially become a very
high-level tool for developers to adjust their design in games. The developers,
however, do not have to understand the complicated mechanism and relation-
ships in their event space to find out what will lead customers to quit as the
resultant model is human readable and easily interpreted. One thing to be men-
tioned is that, our method assumes that events in game are frequently generated
which could reflect the activities of players. Nevertheless, games which contain
only sparse events might still be analysed as login information of players is fre-
quent events that happened in every online game.

Future work will aim to improve the prediction of the increasing and stable
groups. The next attempt could be using more users’ information to classify
players’ behaviour. Also, as discussed earlier, the stable group contains too many
players facing different conditions. Therefore perhaps if the players in this group
could be clustered into more groups/labels, the performance of the model could
possibly be improved. Finally, experimenting with targeting the players predicted
to disengage with adverts and/or special offers could be useful to help maintain
their engagement and prevent or delay them quitting.

References

1. I am playr, http://www.iamplayr.com/ (accessed May 23, 2014)
2. Lyroke, https://game.lyroke.com/ (accessed May 23, 2014)
3. We r interactive, http://www.werinteractive.com/ (accessed May 23, 2014)
4. Weka, http://www.cs.waikato.ac.nz/ml/weka/ (accessed May 23, 2014)
5. World of warcraft armony, http://www.wowarmory.us/ (accessed May 23, 2014)
6. Ahmad, M.A., Keegan, B., Srivastava, J., Williams, D., Contractor, N.: Mining

for gold farmers: Automatic detection of deviant players in mmogs. In: Interna-
tional Conference on Computational Science and Engineering, CSE 2009, vol. 4, pp.
340–345. IEEE (2009)

http://www.iamplayr.com/
https://game.lyroke.com/
http://www.werinteractive.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.wowarmory.us/

Predicting Player Disengagement in Online Games 149

7. Alpaydin, E.: Introduction to machine learning. Adaptive computation and ma-
chine learning. MIT Press (2010)

8. Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A., Canossa, A.: How
players lose interest in playing a game: An empirical study based on distributions
of total playing times. In: 2012 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 139–146. IEEE (2012)

9. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A.,
Scuse, D.: WEKA Manual for Version 3-7-10. University of Waikato, Hamilton,
New Zealand (2013)

10. Drachen, A., Sifa, R., Bauckhage, C., Thurau, C.: Guns, swords and data: Cluster-
ing of player behavior in computer games in the wild. In: 2012 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 163–170. IEEE (2012)

11. El-Nasr, M., Drachen, A., Canossa, A.: Game Analytics: Maximizing the Value of
Player Data. Springer (2013)

12. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis,
University of Waikato, Hamilton, New Zealand (1999)

13. Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., Yannakakis, G.N.: Pre-
dicting player behavior in tomb raider: Underworld. In: 2010 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 178–185 (2010)

14. Thurau, C., Bauckhage, C.: Analyzing the evolution of social groups in world of
warcraft R©. In: 2010 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 170–177. IEEE (2010)

15. Weber, B.G., John, M., Mateas, M., Jhala, A.: Modeling Player Retention in Mad-
den NFL 11. In: IAAI (2011)

Coordinating Dialogue Systems and Stories

through Behavior Composition

Stefano Cianciulli, Daniele Riccardelli, and Stavros Vassos

Department of Computer, Control, and Management Engineering
Sapienza University of Rome, Italy

{stefano.cianciulli,dan.riccardelli}@gmail.com,
vassos@dis.uniroma1.it

Abstract. We exploit behavior composition in AI as a formal tool to
facilitate interactive storytelling in video games. This is motivated by
(i) the familiarity of transition systems, on which behavior composition
is based, in video game development, and (ii) the fact that behavior
composition extends the spectrum of approaches for non-linear storylines
by introducing a new paradigm based on planning for a target desired
process instead of a goal state. Moreover, this approach provides support
for the debugging of deadlocks in stories at design level. We describe the
behavior composition framework, and show the details for an interactive
dialogue system scenario in order to illustrate how interactive storytelling
can be phrased in terms of it. We also report on a simple architecture
for implementing a demo game over the scenario using existing behavior
composition tools.

1 Introduction

In this work we employ the AI method of behavior composition to facilitate
interactive storytelling through a dialogue system. Behavior composition is con-
cerned with orchestrating a set of available behaviors, expressed as transition
systems, in order to accommodate an intended virtual target behavior, also de-
scribed as a transition system [5]. The aim is to synthesize a controller that is
able to realize the desired target behavior by exploiting execution fragments of
the available behaviors.

The motivation for exploring behavior composition as a method for interactive
storytelling is twofold. First, transition systems are ubiquitous in game devel-
opment: finite-state machines (FSMs), which are variants of transition systems,
are a popular model for specifying the reactive behavior of non-player characters
(NPCs) in game-worlds. This familiarity makes behavior composition well-suited
for orchestrating the behavior of NPCs also at a higher-level that relates to an
underlying storyline.

Second, as the community explores ways for a non-linear, adaptive, and inter-
active storyline in video games by means of automated (reactive or proactive)
planning, e.g., [2,8,1,9,14], behavior composition can be used either as an alter-
native or a complementary tool to existing approaches. In particular, the main

T. Cazenave et al. (Eds.): CGW 2014, CCIS 504, pp. 150–163, 2014.
c© Springer International Publishing Switzerland 2014

Coordinating Dialogue Systems and Stories through Behavior Composition 151

difference is that unlike planning for a desired target state, behavior composition
is about offline synthesizing a strategy for allocating plot units to characters in
such a way that a desired target process can always be realized at runtime in an
online fashion.

In the setting we explore, the NPCs of the game may feature any preferred
method for specifying and realizing their actions and behavior in the game-world,
but we also assume that there is one additional interaction layer that specifies
the role of the NPCs with respect to the plot units or events of the storyline. For
each NPC, then, a FSM is assumed that specifies which events in the storyline
may be initiated and handled by the NPC and how they further affect their role
expressed using states. For example, a particular NPC may be used to initiate a
conversation with the player that reveals a clue or initiates a quest, but only if in
the course of the game the player has not previously engaged in combat with the
NPC. Different states of the FSM may be used to represent the internal state of
the NPC, and transitions may be used to encode available storyline interactions
at each state. The set of these FSMs constitute the so-called available behaviors
for behavior composition.

As far as the intended storyline is concerned, a desired target behavior de-
scribes how the events in the storyline may unfold. The target is not a fixed
sequence of events, but rather another FSM that provides a high-level view
of the process that the storyline should follow. Each state in the target FSM
corresponds to a decision point allowing a number of available plot events to
be invoked as transitions that lead to other states accordingly. These decision
points essentially provide flexibility for a drama manager to decide how the story
should continue, while keeping it structured under the specification of the FSM
of the target behavior.

The rest of the paper is organized as follows. First, we illustrate the use of
behavior composition for interactive storytelling using a scenario in which the
story unfolds through a dialogue system. Then we discuss on available tools for
implementing such a scenario and report on a demo game that we developed
based on the presented scenario and a simple architecture. Finally, we discuss
ways that other interactions can be encoded so as to facilitate wider cases in
interactive storytelling, and close with related work and conclusions.

2 The Uncommon Crime Scene (UCS) Scenario

In order to show how behavior composition can be employed to coordinate a dia-
logue system in video games, we report on a simple scenario, called “Uncommon
Crime Scene” (UCS), in which the player is a detective whose task is to solve a
crime. The scene is populated by 5 characters-suspects that the player-detective
is asked to interrogate in order to unmask the thief.

2.1 The Target Behavior as FSM

Figure 1 shows the target FSM representing the target process that the storyline
should comply with. Such an FSM simply states, at each point of the game,

152 S. Cianciulli, D. Riccardelli, and S. Vassos

Fig. 1. The UCS storyline as a target FSM

which events the player could experience and how past interactions influence the
unfolding of the narration. Inspired by the scenarios of dialogue-based adventure
video games, the only events that influence the narration are player-triggered
dialogues between the player and the witnesses of the crime.

For example consider state S1 which is the initial story state when the player
starts the game: the only interaction allowed is “q1,a1”, which serves as a “tuto-
rial interaction” that introduces the player to the game context. “q1,a1” stands
for “Question1, Answer1”, the identifier of an interaction listed in the game
script that we describe shortly, which means that the player can ask “Ques-
tion1” and in return the character he is asking this question will answer with
the corresponding line labeled as “Answer1”. Once the introductory interaction
is completed, the story moves to state “S2”, where the player can start interro-
gating the witnesses.

The target FSM features elements such as:

– Primary interactions that take the story further. E.g. “q2,a1”, which reveals
an important detail about the story, labels an outgoing transition from S2,
the state where the player just learned what the game is about, to S3 where
the player just discovered that one of the characters knows something about
the crime.

– Texture interactions that keep the story in the same state. Such interactions
are not relevant for progressing into the story, but make the scenario more
credible and appealing by giving the chance to the author to show interesting

Coordinating Dialogue Systems and Stories through Behavior Composition 153

Q1: Hey there, what’s going on?

A1: There is a terrible thing that just happened here! Go inside and investigate! Quick!
A2: Still here?!? Run inside! The one responsible might still be around!

Q2: You, little kid, do you know anything about this crime?

A1: I could tell you... if only you could give me something in return.

Q3: That kid is looking for something hes lost. You know what it is?

A1: Oh, I guess I do! I found this in the yard, this morning.
A2: Hmm, I have no idea. I barely see that kid around.

Q4: Here you are. Can you tell me now?

A1: If I were you, I would ask Mrs. White over there...

Q5: Confess! It’s you the one who committed the crime!

A1: I don’t know what you’re talking about! I dont even like cookies!
A2: Prove it, you disrespectful investigator!
A3: Ahah, nice try, my friend!

...

Fig. 2. Part from the UCS script

details, e.g., about the setting and the characters. This is what happens, for
instance, in state S2 with interactions “q8,a1”, “q8,a2”, that reveal different
thoughts from different characters about the setting, but do not add clues
toward solving the crime, which is the player’s main task.

– Story branching according to which different player interactions could drive
the story to different states, augmenting player control over the unfolding the
story. In state S5, for example, being suspicious about a particular character
instead of another character, progresses the story to state S6 rather than
S8, forming a different experience. While not necessary in the general case,
in this scenario the branches will eventually converge to state S8 leading
essentially to a single ending for this simple scenario. A different scenario
may feature multiple endings, maybe with different criminals to unmask,
having a Target FSM include multiple final states.

2.2 Game Script

The game script is a table where all the dialogue-based interactions of the game
are stored, as a list of questions with related answers. Figure 2 shows a part
of the script written for this scenario. This is an exhaustive list of all questions
and all possible answers to each question by any character participating in the
story. In particular, the same question may have different answers according to
when (i.e., in which story state) and who the player asks this question to. For
example, referring to Figure 1, if the player asks Q1 again when the story is in
state S2, the answer this time will be “q1,a2” which is different from what they

154 S. Cianciulli, D. Riccardelli, and S. Vassos

Fig. 3. The FSMs of the characters in the UCS scenario

received in S1, since the player has already been introduced to the scenario with
“q1,a1” and they are now ready to start investigating.

2.3 Character Behaviors as FSMs

The role of each of the five characters in the story is also expressed as an FSM
as shown in Figure 3. Each of these characters essentially function as resources
that can facilitate transitions in the target FSM. Each resource, called available
behavior, specifies what interactions they can facilitate and also how possible
interactions affect their internal state. They are responsible for accommodating
the target process described by the Target FSM as follows: an interaction labeling
a transition from a certain state in the Target FSM, in fact, indicates that there
must be at least one Character FSM designed in such a way that can facilitate
that same interaction at that point of the story, so to accommodate the desired
story unfolding. Referring to the Target FSM in Figure 1, let us assume that
the story has reached state S8. According to the Target FSM, then, in the game
world there must be characters (at least one) capable of facilitating interactions
labeled as “q7,a1” and “q10,a1”.

While behavior FSMs can model various things such as the mood or disposi-
tion of a character with respect to the player, in this scenario they model a type
of memory of past events: a character can use the FSM to remember the fact
that a dialogue interaction has already occurred between the player-detective
and the character, and thus avoid repeating it. For example, referring to the
Mrs. Pink character in Figure 3: once she confesses her crime (“q10,a1”), her
state changes so that she is not allowed to evade accusations (“q5,a2”) anymore,
but, instead, manifest concern for her future (“q11,a2”).

Note that the target behavior FSM and the available character behavior FSMs
are designed separately and provide a form of decomposition of the story and
the resources that can realize it. One can first focus on the target behavior and
the desired narration unfolding, designing the high-level overall experience, and
then look into appropriate single character behaviors. In fact, the target behavior
FSM does not specify which characters should facilitate certain interactions but
only the interactions themselves.

Coordinating Dialogue Systems and Stories through Behavior Composition 155

Fig. 4. Controller Generator

2.4 Controller Generator

So, how can one run this scenario while keeping consistency with the target be-
havior and character behavior specifications? Also, how can one make sure that,
for any given run, there will always be characters able to accommodate the tar-
get process so as to avoid deadlocks? We are interested in building a mechanism
that can tell us if the target process could, for each run, be accommodated and,
in case it can, which characters should facilitate what dialogue part for every
possible configuration of the target and character behaviors states.

The solution is to compute a Controller Generator (CG) [5], a strategy ex-
pressed as a look-up table that, in each state of the story, specifies which char-
acter should facilitate a certain interaction. Figure 4 shows what the CG table
looks like: for each possible combination of target and character behaviors states
the player could take the game to, the CG lists the corresponding set of dialogues
available, including, for each of them, the character that could facilitate it.

The CG is computed offline, receiving as input the target along with the
character behavior FSMs, and can be used at run-time to instruct the system
managing this scenario in order to offer to the player, at each point of the story
and for each possible run, a set of dialogues to choose from that always guarantee
the realization of the story until the end.

2.5 Design and Debugging of the Storyline

The fact that the target behavior is not directly linked to the available behavior,
i.e., the target takes into account which dialogue parts to facilitate but not who
actually facilitates them, makes it easy for the designer of the story to edit,
add, and remove characters modeled as available behaviors, as the story is being
designed.

For example, at some point the author may decide that a new character
should also able to facilitate “q1,a1”. Then he simply needs to add this behavior
to the scenario leaving the rest of the modeling of behaviors (the target included)
untouched. Similarly, if he decides that some behavior should be removed from
the scenario.

Relying on behavior composition for managing the scenario yields another
great benefit: when a CG is computed successfully, it is granted that no deadlock
might arise for any possible unfolding of the storyline expressed by the target

156 S. Cianciulli, D. Riccardelli, and S. Vassos

Fig. 5. The NPCs’ lower-level FSM

FSM. Even in the presence of loops in the target process specification, which is
the case of the UCS scenario, the output strategy, if existing, is guaranteed to
be valid for any possible way the target may be run. In a sense the CG is like
a “global conditional plan” that takes into account any possible combination
of target and available behavior states achievable at run-time and precomputes
what the appropriate course of action should be.

Let us consider now the case where the behavior composition problem has no
solution. While this is obviously a crucial fact to know, which tells us that the
experience may yield to narration deadlocks, it is not very helpful on its own un-
less enriched with some diagnostic information. Interestingly, a CG computation
can prove useful also in case the composition problem we design is not solvable.
The adopted approach is based on the fact that when no composition exists, this
is due to presence of some problematic history for the target behavior. Thus, it
would be of great help to obtain an indication about the problematic histories
that prevented the composition problem from being solvable.

We can, in fact, add temporarily a stateless “debug behavior” to the scenario,
which is able to facilitate any dialogue that appears in the Target FSM, and
request a CG computation again. This time the problem will obviously be solv-
able, and the CG returned will help us spot the problematic histories or traces
of our scenario: since the debug behavior is necessary to obtain a composition,
this CG must, in fact, contain some (CG) states where the only behavior able to
execute some action is the debug behavior itself. This turns out to be a powerful
tool for storyline design debugging, as one can spot quickly where the design
flaw in their scenario lies and can either adjust the other behaviors so to be able
to accommodate the target process, or remove the interactions that are causing
problems from the target FSM. The latter approach, though, while being for-
mally valid, may be less desirable in practice, as it narrows the set of possible
alternatives for the player.

The reader may have noticed, at this point, how an approach based on be-
havior composition is substantially different in relation to other search-based
mechanisms, e.g., planning. Compared to planning-based approaches for inter-
active storytelling, e.g., based on reactive planning such as ABL [8] or proactive
planning such as the PDDL-based approach of [10], our work is different in the
specified objective that the deliberation system achieves.

While the planning-based approaches are able to form joint goals for ensuring
appropriate interaction of characters, our work aims for stronger guarantees
over the intended storyline, prescribing all possible unfoldings in a concise way

Coordinating Dialogue Systems and Stories through Behavior Composition 157

and precomputing how to achieve them by means of coordinating the available
characters. The proposed method (i) decouples all storyline requirements from
the behavior of characters into a target behavior for the entire system; (ii)
guarantees at design time whether it can be always enforced (and how) by means
of the computed strategy; (iii) is able to deliberate and plan ahead also taking
into account loops in the story; and (iv) provides built-in debugging capabilities
for identifying deadlocks and storyline design flaws.

We now proceed to report on a demo game that we developed based on existing
behavior composition tools and a simple architecture inside a popular video game
engine.

3 Unity Mini-game

Over the UCS scenario introduced earlier in this paper, a short video game has
been developed using the Unity Game Engine1 and the Jaco web service [3]
as the composition engine for computing the CG. The video game is a first-
person investigation game where the five crime witnesses are non-player char-
acters (NPCs) wandering around the crime scene, and the player can interact
with them by approaching and interrogating them one by one until eventually
the guilty one is unmasked.

3.1 Non-player Characters

The NPCs are simple-behaving characters who, unlike the player-detective, have
no interest in starting a dialogue with the player on their own. Along with a high-
level behavior FSM, which captures the NPC role into the game and serves as
input for Jaco for computing the CG, each NPC features a lower-level behavior
FSM, which describes their physical interactions in the game world. As shown
in Figure 5, NPC physical interactions consist simply of walking around (WALK
state) when they are alone and focusing their attention on the detective (TALK
state) when he is around.

3.2 Jaco

The NPC and Target behaviors are encoded into separate XML files that serve
as input for Jaco in order to compute and, if the corresponding composition
problem is solvable, return a CG: a look-up table also encoded in XML. This
computation has to be done at design time, once each time the behavior set is
edited, i.e., when we modify, delete behaviors, or add new ones to the scenario.
Each time we request a computation, assuming such problem is solvable, the
new CG will replace the older one so that the game will always use the CG from
the most recent scenario. The stand-alone mini-game ships with a ready-to-use
CG, so no communication with the Jaco server or computation for updating

1 http://unity3d.com/

http://unity3d.com/

158 S. Cianciulli, D. Riccardelli, and S. Vassos

Fig. 6. Dialogue System components

the output strategy is necessary, as all the information we need to orchestrate
the behaviors is included in the pre-computed CG. If the user wants to change
the specification of the available behaviors and target behavior, Jaco server can
then be used to obtain a new GC.

The entity who takes care of running the CG, serving as a drama manager, is
the dialogue system whose components are shown in Figure 6, along with how
they interface with other components such as Jaco, the C# scripts that contain
the NPCs’ logic in the Unity game engine, the behavior files and the game script
repository, which is an XML file storing all the dialogue lines written for the game.

3.3 Dialogue Interactions

In order to show how the dialogue system works, we present the steps that build
up a dialogue interaction:

1. As soon as the player approaches the NPC they are willing to interrogate,
the NPC fires an event.

2. The system gets notified, so it collects the NPC and Target state and checks,
looking up the CG, if the NPC can facilitate any interaction at that point
of the storyline.

3. If it can, the dialogue system loads the corresponding lines from the game
script repository.

4. The dialogue window is shown, presenting to the player all the questions
they can possibly ask to such an NPC at that point of the storyline.

Coordinating Dialogue Systems and Stories through Behavior Composition 159

Fig. 7. Screenshot from the UCS scenario mini-game

5. Once the player selects one of these questions, the related NPC answer is
shown.

6. The system updates the NPC and Target states according to the player
selection.

7. The player closes the dialogue window and goes on interrogating witnesses.

Figure 7 shows how the dialogue window looks like once the player has selected
one dialogue option. In the top-right corner of the game viewport, the mini-game
features a debug head-up display which indicates the state of the story and the
state of each NPCs populating the scene.

All the details of the character and target behaviors can be found at the Jaco
website jaco.dis.uniroma1.it/#example3. A web player version of the
game can be found at jaco.dis.uniroma1.it/docs/ucs/web-camp-v2/
web-camp-v2.html.

4 Further Applications

While the UCS scenario introduced in this paper is simple, there are different
ways it could be expanded, modeling additional aspects of the gameplay and the
storyline into transition systems. An example direction is to model the target
process so as to take into account also the player inventory, which is a common
element of many commercial adventure games. Inventory items can, in fact, play
a fundamental role over the unfolding of the story (e.g., particular items that
are crucial such as keys, maps, etc.), and it would be very useful to expand the
same formalism, exploited here for managing dialogues, in order to keep track
of inventory state as well. This could support, for instance, different story states
for different inventory configurations.

Another example is to model the functionality of interactive game-world ob-
jects as available behaviors. It comes indeed natural to design a behavior transi-
tion system for almost every entity the player is allowed to interact with. For in-
stance, our scenario could feature a “door behavior” that facilitates the “unlock
door” interaction, hence moving from the “LOCKED” to the “UNLOCKED”

jaco.dis.uniroma1.it/#example3
jaco.dis.uniroma1.it/docs/ucs/web-camp-v2/web-camp-v2.html
jaco.dis.uniroma1.it/docs/ucs/web-camp-v2/web-camp-v2.html

160 S. Cianciulli, D. Riccardelli, and S. Vassos

Fig. 8. Behaviors modeling inventory and interactive objects functionalities

state, only if the story is in state S2, which indicates that the player has re-
ceived the door key, as shown in Figure 8.

Finally, there is a fundamental aspect of behavior composition that is not
exploited in the presented scenario, namely the fact that available behaviors can
be non-deterministic. This is a powerful feature that allows to express uncer-
tainty about the internal transition of a character when an event is triggered,
e.g., due to the low-level details of the actual execution of the event. Note that
a computed CG (if exists) is able to provide a strategy that always realizes the
target story also taking into account this uncertainty.

5 Related Work and Discussion

Interactive storytelling as behavior composition lies in the middle ground be-
tween manually authored and automatically generated stories with respect to
authorial intent, following the landscape of interactive narrative research as pre-
sented in [11]. Intuitively, the target behavior circumscribes a variety of possible
unfoldings for the story under a concise representation of a transition system.
This allows for a predefined set of plot points and multiple options for realizing
each one of them at run-time, while some basic structure is ensured by means of
following the execution of the transition system that models the target behavior.

Note that in the transition system of the target behavior, nodes are decision
points for the drama manager, and that recurring or repetitive tasks can be
modeled via regular loops. Moreover, a special type of joint behavior called
the environment can be used to also capture more detailed underlying causal
rules that involve all of the available behaviors and further refine the executable
narrative trajectories. We did not include this in our presentation for simplicity,
but an account for this component has already been studied in [5].

As far as character autonomy is concerned [7], our approach lies also in the
middle ground between strong story and strong autonomy, but closer to the
strong story end of the spectrum. This is because characters are allowed to
have flexibility to act as autonomous entities but only as long as they do not
change their internal state captured in the corresponding behavior. One of the
assumptions for this approach to work is that a change of state may only happen
after the drama manager invokes some action execution. Since the transition

Coordinating Dialogue Systems and Stories through Behavior Composition 161

systems for characters can be non-deterministic it is not sure what will be the
next state for the available behaviors, but no change is assumed to take place
unless it is invoked by the drama manager.

Note though that this can be a relatively mild restriction under conditions, as
the term action in our framework refers to a higher-level of abstraction essentially
wrapping the macro-actions, strategies or plot-related goals for the characters.
In this sense, the restriction to the autonomy of the characters depends on
the specification of the plot points and their relation to the high-level actions
for agents. Each of these actions could be further specified using the reactive
planning language ABL [8] or, in the terminology of IN-TALE [12], each of them
can assign a goal that needs to be realized by means of invoking a corresponding
Narrative Directed Behavior (NDB). Similarly, each action could be decomposed
in a Hierarchical Task Network (HTN) manner following approaches such as [2].

Our approach is similar in spirit to many other approaches in the literature
that are based on automated planning, including STRIPS and HTN planning,
for example the aforementioned system I-Storytelling, GADIN [1], and MIST [9]
as well as the work on the framework Mimesis [13] and Zócalo [14]. Nonetheless,
the methodology of behavior composition is different from planning both in
conceptual and technical terms as we explain next.

Firstly, the target behavior is not a specification of a goal situation to reach
but, rather, a description of a set of routines one would like to be able to carry
on at runtime. Moreover, such routines cannot be seen as (classical or non-
deterministic) plans, either, in that they do not prescribe the actions to execute,
but leave the choice to the executor. Further, they may contain loops, which are
typically ruled out in planning. From this perspective, target behaviors are more
similar to IndiGolog programs [4], i.e., high-level procedures definable on top of
planning domains, for which one is typically interested to find an executable
realization at runtime.

Secondly, in behavior composition, actions are not the subject of a planning
task. Indeed, the controller does not select the actions to execute; instead it
returns the index of the behavior that should execute the action selected by the
drama manager. In this sense, actions constitute the input, not the output, of
the reasoning task, but in a way that takes into account all possible narrative
trajectories. From a more formal perspective, we observe that both behavior
composition and conditional planning are EXPTIME-complete problems [5,6],
thus some way of reducing composition to (non-deterministic) planning must
exist. Nonetheless, how this can actually be done is not as straightforward as
one might expect, as shown by the above considerations.

Finally, our implementation that relies on using behavior composition as a
web-service is similar to the client-server based approach that is adopted in
Mimesis and Zócalo. In fact as the web service Jaco is built as a pure behav-
ior composition engine that can be accessed via a REST API, one interesting
direction for future work is to explore how it can be used as a service in such
frameworks in order to provide high-level orchestration of characters, either as
an alternative or in pair with the embedded narrative planner.

162 S. Cianciulli, D. Riccardelli, and S. Vassos

6 Conclusions

In this paper we propose the technique of behavior composition as an alternative
tool for facilitating interactive storytelling in video games. We illustrate some of
the most basic functionality of this approach using a scenario of an interactive
dialogue system and a demo game that is built over a simple architecture.

In the wider context of interactive storytelling, behavior composition repre-
sents a different view that is based on planning for a desired process, rather
than a goal state. In particular, the process is a specification of the possible
stories that the drama manager can decide to realize at runtime. In contrast to
other approaches, the generated stories are not bounded in length, as the target
process may contain loops that can be unfolded an unbounded number of times.

Behavior composition includes a framework based on the specification of be-
haviors as transition systems, and a solution technique that returns a finite-state
machine, called the composition generator (CG) , from which all solutions can
be generated. We believe that the framework itself is valuable, as it represents
a useful abstraction of both NPCs and storylines, that is general enough to ac-
commodate many relevant approaches in the literature, e.g., in the special case
of the target behavior being a sequence, the framework captures a basic scenario
where the storyline requires the execution of a classical plan, and the controller
generator contains all possible ways of executing such plan, by resorting to the
actions that the NPC behaviors make available.

Acknowledgements. The authors acknowledge support of Sapienza Award
2013 “Spiritlets” project.

References

1. Barber, H., Kudenko, D.: Generation of adaptive Dilemma-Based interactive nar-
ratives. IEEE Transactions on Computational Intelligence and AI in Games 1(4),
309–326 (2009)

2. Cavazza, M., Charles, F., Mead, S.J.: Character-Based interactive storytelling.
IEEE Intelligent Systems 17(4), 17–24 (2002)

3. Cianciulli, S., Vassos, S.: Planning for interactive storytelling processes. In: Pro-
ceedings of the 3rd International Planning in Games Workshop (2013)

4. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-
Level programming language for embedded reasoning agents. In: Multi-Agent Pro-
gramming: Languages, Tools and Applications, pp. 31–72. Springer (2009)

5. De Giacomo, G., Patrizi, F., Sardiña, S.: Automatic Behavior Composition Syn-
thesis. Artif. Intell. 196, 106–142 (2013)

6. Littman, M.L.: Probabilistic Propositional Planning: Representations and Com-
plexity. In: Proc. of AAAI 1997 and IAAI 1997, pp. 748–754 (1997)

7. Mateas, M., Stern, A.: Towards integrating plot and character for interactive
drama. Working Notes of the Social Intelligent Agents: The Human in the Loop
Symposium. AAAI Fall Symposium Series, Menlo Park, pp. 113–118 (2000)

8. Mateas, M., Stern, A.: A behavior language: Joint action and behavioral idioms.
In: Life-like Characters: Tools, Affective Functions and Applications (2004)

Coordinating Dialogue Systems and Stories through Behavior Composition 163

9. Paul, R., Charles, D., McNeill, M., McSherry, D.: MIST: An interactive storytelling
system with variable character behavior. In: Aylett, R., Lim, M.Y., Louchart,
S., Petta, P., Riedl, M. (eds.) ICIDS 2010. LNCS, vol. 6432, pp. 4–15. Springer,
Heidelberg (2010)

10. Porteous, J., Cavazza, M.: Controlling narrative generation with planning trajec-
tories: The role of constraints. In: Iurgel, I.A., Zagalo, N., Petta, P. (eds.) ICIDS
2009. LNCS, vol. 5915, pp. 234–245. Springer, Heidelberg (2009)

11. Riedl, M.O., Bulitko, V.: Interactive narrative: An intelligent systems approach.
AI Magazine 34(1), 67–77 (2013)

12. Riedl, M.O., Stern, A.: Believable agents and intelligent story adaptation for in-
teractive storytelling. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006.
LNCS, vol. 4326, pp. 1–12. Springer, Heidelberg (2006)

13. Young, R.M.: An overview of the mimesis architecture: Integrating intelligent nar-
rative control into an existing gaming environment. Working Notes of the AAAI
Spring Symposium on Artificial Intelligence and Interactive Entertainment (2001)

14. Young, R.M., Thomas, J., Bevan, C., Cassel, B.A.: Zócalo: A service-oriented ar-
chitecture facilitating sharing of computational resources in interactive narrative
research. Working Notes of the Workshop on Sharing Interactive Digital Story-
telling Technologies at the Fourth International Conference on Interactive Digital
Storytelling (2011)

Author Index

Baier, Hendrik 45
Bonnet, Édouard 90

Cazenave, Tristan 1, 78, 119
Chiang, Bing-Tsung 29
Cianciulli, Stefano 150
Cowling, Peter 133

Devlin, Sam 133
Domshlak, Carmel 16

Fonlupt, Cyril 64

Jacopin, Éric 119
Jouandeau, Nicolas 78

Komenda, Antońın 16
Kudenko, Daniel 133

Lanctot, Marc 1
Lee, Chang-Shing 29
Liang, Chao-Chin 29

Méhat, Jean 105
Menif, Alexandre 119

Pepels, Tom 1

Riccardelli, Daniele 150
Robilliard, Denis 64

Saffidine, Abdallah 90
Shleyfman, Alexander 16

Teytaud, Fabien 64
Tseng, Wen-Jie 29

Vassos, Stavros 150
Vittaut, Jean-Noël 105

Wei, Ting-Han 29
Winands, Mark H.M. 1, 45
Wu, I-Chen 29

Xie, Hanting 133

Yen, Shi-Jim 29

	Preface

	Organization

	Table of Contents

	Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search
	1
Introduction
	2
Monte-Carlo Tree Search
	2.1
UCT

	3
Regret
	3.1
Cumulative and Simple Regret
	3.2
Regret in MCTS

	4 Regret Minimization

	4.1
Sequential Halving

	5
Sequential Halving Applied to Trees
	6
A Hybrid MCTS
	7
Experiments and Results
	7.1
Results

	8
Conclusion and Future Research
	References

	On Robustness of CMAB Algorithms: Experimental Approach
	1
Introduction
	2
Background
	3
CMAB Algorithms with Linear Side-Information
	3.1
NMC
	3.2
LSI

	4
Problem Statement
	5
Robustness Analysis of NMC and LSI
	5.1
Turn-Taking Variant of RTS
	5.2
Variance of Evaluations

	6
Conclusion
	References

	Job-Level Algorithms for Connect6Opening Position Analysis
	1 Introduction
	2 Previous Work
	2.1 Connect6 and NCTU6
	2.2 Job-Level Proof-Number Search (JL-PNS)
	2.3 Other JL or JL-Like Methods for Opening Book Generation

	3 Heuristic Metrics for JL-PNS
	3.1 Node Count
	3.2 Proof-Number/Disproof-Number Ratio
	3.3 Minimax Evaluation Value
	3.4 Hybrid Metric

	4 Job-Level Upper Confidence Tree
	4.1 Algorithm Description
	4.2 Upper Confidence Bound Function
	4.3 Pre-update Phase
	4.4 Heuristic Metrics

	5 Experiments and Discussion
	5.1 JL-PNS vs. JL-UCT
	5.2 Measuring the Quality of Various Heuristic Metrics

	6 Conclusion
	References

	Monte-Carlo Tree Search and Minimax Hybrids with Heuristic Evaluation Functions
	1
Introduction
	2
Background
	3 Related Work

	4
Hybrid Algorithms
	4.1
MCTS with Informed Rollouts (MCTS-IR)
	4.2
MCTS with Informed Cutoffs (MCTS-IC)
	4.3
MCTS with Informed Priors (MCTS-IP)

	5
Experimental Results
	5.1
Games
	5.2
Game Properties
	5.3
Experiments with MCTS-IR
	5.4
Experiments with MCTS-IC
	5.5
Experiments with MCTS-IP
	5.6
Comparison of Algorithms
	5.7
Combination of Algorithms

	6
Conclusion and Future Research
	References

	Monte-Carlo Tree Search for the Game of ``7 Wonders"
	1
Introduction
	2
``7 Wonders'' Game Description
	3
Monte-Carlo Tree Search
	3.1
UCT Description
	3.2
Progressive Widening

	4
MCTS and 7 Wonders
	4.1
Handling Partial Information

	5
Managing Trading Decisions
	6
Experiments and Results
	6.1
Rule-Based AI Implementation
	6.2
Experimental Setting
	6.3
MCTS against Simple AI
	6.4
Comparison of MCTS with Different Parameters

	7
Conclusion and Future Research
	References

	Small and Large MCTS Playouts Applied
to Chinese Dark Chess Stochastic Game
	1
Introduction
	2
Related Work
	3
Stochastic MCTS
	3.1
With Group Nodes
	3.2
With Chance Nodes

	4
Experiments
	4.1
Fast Policies
	4.2
Reducing the Number of Drawn Games
	Group Nodes vs. Chance Nodes

	5
Conclusion
	References

	On the Complexity of General Game Playing
	1
Introduction
	2
The Game Description Language
	3
Turing Machines and Complexity Classes
	4
Upper Bounds
	5
Lower Bounds
	6
Conclusion
	References

	Efficient Grounding of Game Descriptions with Tabling
	1
Introduction
	2
The Game Description Language
	3
Instantiation of GDL Rules
	3.1
Overview
	3.2
Eliminating (or T1 T2 …Tn) Terms
	3.3
Adding Input and Base Predicates
	3.4
Eliminating Not, Renaming True and Does
	3.5
Removing Static Terms
	3.6
Adding the Side Effect and Introducing a New Symbol
	3.7
Tabling Predicates and Creating the Instantiation Query

	4
Computing Input and Base
	4.1
Iterative Method
	4.2
One Step Method

	5
Experimental Results
	5.1
Computing Input and Base
	5.2
Instantiation of the Rules

	6
Comparison with Other Works
	6.1
The GGPBase Flattener
	6.2
The Kissmann and Edelkamp Approach

	7
Conclusion
	References

	SHPE: HTN Planning for Video Games
	1
Introduction
	2
SHPE: Simple Hierarchical Planning Engine
	2.1
Planning Data Representation
	2.2
Algorithm
	Operating the Planner

	3
Planning Domain Design and Pre-compilation
	3.1
High Level Modeling Language
	3.2
Domain Pre-compilation

	4
Performance Evaluations
	4.1
The SimpleFPS Planning Domain
	4.2
Experiments

	5
Conclusion
	References

	Predicting Player Disengagement in Online Games.
	1
Introduction
	2
Background
	2.1
Game Telemetry
	2.2
Game Data Mining and Player Modelling
	2.3
Decision Tree
	2.4
Feature Selection

	3
Games
	3.1
I Am Playr
	3.2
Lyroke

	4
Methodology
	4.1
Data Collection
	4.2
Data Labelling
	4.3
Model
	4.4
Evaluation Metrics

	5
Result and Discussion
	6
Related Work
	7
Conclusion
	References

	Coordinating Dialogue Systems and Stories through Behavior Composition
	1
Introduction
	2
The Uncommon Crime Scene (UCS) Scenario
	2.1
The Target Behavior as FSM
	2.2
Game Script
	2.3
Character Behaviors as FSMs
	2.4
Controller Generator
	2.5
Design and Debugging of the Storyline

	3
Unity Mini-game
	3.1
Non-player Characters
	3.2
Jaco
	3.3
Dialogue Interactions

	4
Further Applications
	5
Related Work and Discussion
	6
Conclusions
	References

	Author Index

