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Abstract. An isolated word speech recognition system based on audio-
visual features is proposed in this paper. To enhance the recognition over
different noisy conditions, this system combines three classifiers based
on audio, visual and audio-visual information, respectively. The perfor-
mance of the proposed recognition system is evaluated over two isolated
word audio-visual databases, a public one and a database compiled by
the authors of this paper. Experimental results show that the structure of
the proposed system leads to significant improvements of the recognition
rates through a wide range of signal-to-noise ratios.

Keywords: Speech recognition · Audio-visual speech features · Audio-
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1 Introduction

The last decades have witnessed an increasing interest in the development of
more natural Human Computer Interfaces (HCI), that mimic the way humans
communicate among themselves. Communication among humans is inherently
a multimodal process, in the sense that, for the transmission of an idea, not
only is important the acoustic signal but also the facial expressions and body
gestures [6]. For instance, a significant role in spoken language communication
is played by lip reading. This is essential for the hearing-impaired people, and is
also important for normal listeners in noisy environments to improve the intel-
ligibility of the speech signal. Audio Visual Speech Recognition (AVSR) is a
fundamental task in HCIs, where the acoustic and visual information (mouth
movements, facial gestures, etc.) during speech are taken into account. Several
strategies have been proposed in the literature for AVSR [7–9], where improve-
ments of the recognition rates are achieved by fusing audio and visual features
related to speech. As expected, these improvements are more notorious when
the audio channel is corrupted by noise, which is a usual situation in speech
recognition applications. These approaches are usually classified according to
the method employed to combine (or fuse) the audio and visual information.
Three main approaches can be distinguished, viz., feature level fusion, classifier
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level fusion and decision level fusion [4]. In feature level fusion (early integra-
tion), audio and visual features are combined to form a unique audio-visual
feature vector, which is then employed for the classification task. This strategy
requires the audio and visual features to be exactly at the same rate and in
synchrony, and it is effective when the combined modalities are correlated, since
it can exploit the covariations between audio and visual features. In classifier
level fusion (intermediate integration), the information is combined within the
classifier using separated audio and visual streams, in order to generate a com-
posite classifier to process the individual data streams [9]. This strategy has the
advantage of being able to handle possible asynchrony between audio and visual
features. In decision level fusion (late integration), independent classifiers are
used for each modality and the final decision is computed by the combination of
the likelihood scores associated with each classifier [5]. Typically, these scores are
fused using a weighting scheme which takes into account the reliability of each
unimodal stream. This strategy does not require strictly synchronized streams.

In this paper an isolated word speech recognition system based on audio-
visual features is proposed. This system is based on the combination of early
and late fusion schemes. In particular, acoustic information is represented by
mel-frequency cepstral coefficients, and visual information is represented by coef-
ficients related to mouth shape. The efficiency of the system is evaluated consid-
ering noisy conditions in the acoustic channel. The proposed system combines
three classifiers based on audio, visual and audio-visual information, respectively,
in order to improve the recognition rates through a wide range of signal-to-noise
ratios (SNRs), taking advantage of each classifier’s efficiency at different SNRs
ranges. Two audio-visual databases are employed to test the proposed system.
The experimental results show that a significant improvement is achieved when
the visual information is considered.

The rest of this paper is organized as follows. The description of the pro-
posed system is given in Sect. 2, and the databases used for the experiments are
described in Sect. 3. In Sect. 4 experimental results are presented, where the per-
formance of the proposed strategy is analyzed. Finally, some concluding remarks
and perspectives for future work are included in Sect. 5.

2 Audio-Visual Speech Recognition System

The proposed system aims to improve speech recognition when the acoustic
channel is corrupted by noise, which is the usual situation in most applications,
by fusing audio and visual features. In this scenario, the efficiency of a classifier
based on audio-only information deteriorates as the SNR decreases, while the
efficiency of a visual-only information classifier remains constant, since it does
not depend on the SNR in the acoustic channel. However, the use of only visual
information is usually not enough to obtain relatively good recognition rates. It
has been shown in several works in the literature [6,8,9], that the use of audio-
visual feature vectors (early integration) improves the recognition rate in the
presence of noise in comparison to the audio-only case. An example of this typ-
ical behavior is illustrated in Fig. 1, where the recognition rates for audio-only
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Fig. 1. Typical recognition rates for the cases of audio-only, video-only and audio-visual
classifiers under acoustic noisy conditions.

(red), visual-only (magenta), and two different audio-visual (blue and green)
classifiers as a function of SNR are depicted. These recognition rates were com-
puted using an audio-visual database compiled by the authors. As expected, the
audio classifier performs better than the visual one for high SNRs and viceversa.
The combination of audio-visual features leads to an improvement of the recog-
nition rates in comparison to the audio-only case. However, for the case of low
SNRs, the audio-visual classifier performs worse than the visual one since fused
audio-visual features are degraded by the highly corrupted acoustic data. Using
different combinations of acoustic and visual features, different performances
can be obtained. For instance, if the audio-visual features contain more visual
than acoustic information, the performance at low SNRs is improved since visual
information is more reliable in this case. However, the efficiency at high SNRs is
deteriorated, where the acoustic information is more important. Even for cases
where a small portion of audio information is considered, a notorious improve-
ment could be obtained for low SNRs, but the efficiency at high SNRs could be
worse than for the audio-only case. Thus, there exists a trade-off between per-
formance at low and high SNRs. These situations are depicted in Fig. 1, where
AV 1 contains more visual information than AV 2.

Taking into account the previous analysis, the recognition system proposed in
this paper combines three different classifiers based on audio, visual and audio-
visual information, respectively, aiming at recognizing the input word and max-
imizing the efficiency over the different SNRs. In the training stage, a combined
classifier is trained for each particular word in the vocabulary. Then, given an
audio-visual observation sequence associated with the input word to be recog-
nized, denoted as Oav, which can be partitioned into acoustic and visual parts,
denoted as Oa and Ov, respectively, the probability (Pi) of the proposed com-
bined classifier corresponding to the i-class is given by

Pi = P (Oa|λa
i )α

P (Ov|λv
i )β

P (Oav|λav
i )γ

, (1)
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Fig. 2. Schematic representation of the computation of the probability associated with
a particular class i for the proposed combined classifier. Pav refers to P (Oav|λav

i ).

where P (Oa|λa
i ), P (Ov|λv

i ) and P (Oav|λav
i ) are the probabilities corresponding

to the audio (λa
i ), visual (λv

i ) and audio-visual (λav
i ) classifiers, respectively, and

α, β and γ are positive real coefficients that satisfy the following condition

α + β + γ = 1. (2)

The visual (λv
i ) classifier is more useful at low SNRs (β is predominant), where

the acoustic data is highly corrupted by noise, while at medium levels of SNRs,
the audio-visual classifier (λav

i ) retrieves better decisions (γ is predominant). For
high SNR conditions, an audio classifier (λa

i ) is employed (α is predominant).
A block diagram representing this computation is depicted in Fig. 2.

The audio (λa
i ), visual (λv

i ) and audio-visual (λav
i ) classifiers are implemented

using left-to-right Hidden Markov Models (HMM) with continuous observations.
Audio-visual features are extracted from videos where the acoustic and visual
streams are synchronized. The audio signal is partitioned in frames with the
same rate as the video frame rate. For a given frame t, the first eleven non-DC
Mel-Cepstral coefficients are computed and used to compose a vector denoted
as at. In order to take into account the audio-visual co-articulation, informa-
tion of ta preceding and ta subsequent frames is used to form the audio fea-
ture vector at frame t, oat = [at−ta , . . . ,at, . . . ,at+ta ], and the information of
tv preceding and tv subsequent frames is used to form the visual feature vec-
tor, ovt = [vt−tv , . . . ,vt, . . . ,vt+tv ], where vt contains the visual information at
frame t. Finally, the audio-visual feature vector is composed by the concatena-
tion of the associated acoustic and visual feature vectors, that is oavt = [oat,ovt],
considering tav

a and tav
v frames of co-articulation for the audio and visual fea-

tures, respectively. Hereafter, the audio, visual and audio-visual classifiers will
be denoted as λ

ata
(s,m), λ

vtv
(s,m) and λ

atavtv
(s,m) , respectively, where the subscripts s and

m denote the number of states and Gaussian mixtures of the HMM, respectively.

3 Audio-Visual Databases

The performance of the proposed audio-visual speech classification scheme is
evaluated over two isolated word audio-visual databases, viz., Carnegie Mellon
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Fig. 3. AV-UNR Database visual features. (a) Candide-3 face model. (b) Visual para-
meters.

University (AV-CMU) database (now at Cornell University) [2], and a database
compiled by the authors, hereafter referred to as AV-UNR database.

(I) AV-UNR database: The authors of this paper have compiled an audio-
visual database consisting of videos of 16 speakers facing the camera, pronounc-
ing a set of ten words 20 times, in random order. These words correspond to the
Spanish utterances of the following actions: up, down, right, left, forward, back,
stop, save, open and close, a total of 3200 utterances. The videos were recorded
at a rate of 60 frames per second with a resolution of 640 × 480 pixels, and the
audio was recorded at 8 kHz synchronized with the video. Individual words in the
database were automatically segmented based on the audio signal, by detecting
zero-crossings and energy level in a frame wise basis.

Visual features are represented in terms of a simple 3D face model, namely
Candide-3 [1]. This 3D face model, depicted in Fig. 3(a), has been widely used in
computer graphics, computer vision and model-based image-coding applications.
The advantage of using the Candide-3 model is that it is a simple generic 3D face
model, adaptable to different real faces, that allows to represent facial movements
with a small number of parameters. The method proposed by the present authors
in [10] is used to extract visual features related to mouth movements during
speech. As it is described in [10], this visual information is related to the generic
3D model and it does not depend on the particular face being tracked, i.e.,
this method retrieves normalized mouth movements. The mouth shape at each
frame t is then used to compute three visual parameters, viz., mouth height (vH),
mouth width (vW ) and area between lips (vA), as depicted in Fig. 3(b). These
three parameters are used to represent the visual information at frame t.

(II) AV-CMU database: The AV-CMU database [2] consists of ten speakers,
with each of them saying a series of 78 words and repeating the series ten times,
resulting in a total of 7800 utterances. The raw audio data is in the form of
pulse-code-modulation-coded signals sampled at 44.1 kHz. The visual data is
composed of the horizontal and vertical positions of the left (x1, y1) and right
(x2, y2) corners of the mouth, as well as of the heights of the openings of the
upper (h1) and lower lips (h2), as depicted in Fig. 4(a). The visual information
was captured with a sample rate of 30 frames per seconds.
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Fig. 4. CMU database. (a) Visual data included in the database. (b) Parabolic lip
contour model proposed in [3].

In this paper, the model-based method proposed in [3] is employed to rep-
resent the visual information associated to each uttered word. This method is
based on weighted least-squares parabolic fitting of the upper and lower lip con-
tours, and it does not require the assumption of symmetry across the horizontal
axis of the mouth, and it is therefore more realistic. As described in [3], this
model does not depend on the accurate estimation of specific facial points and it
is robust to missing or noisy data points. This parameterized lip contour model
is based on a pair of intersecting parabolas with opposite orientation, as it is
depicted in Fig. 4(b). This parabolic model includes separate parameters for the
motion of the upper and lower lips of the mouth during speech. The defining
parameters of the model include the focal parameters of the upper and lower
parabolas (au and al, respectively) and X and Y , the difference between the
offset parameters of the parabolas (bu and bl). As reported in [3], the best rep-
resentation of the visual information for the AV-CMU database is obtained with
a feature vector composed of 5 coefficients, [Y,X, au, al, Θ], where

Y = bu − bl

X = 2
√

bl − bu

au − al

Θ = arctan

{√
(al − au)(bu − bl)

2

}

Thus, in this paper, these five parameters are used to represent the visual infor-
mation at each frame of the sequence.

4 Experimental Results

The proposed audio-visual speech recognition system is tested separately on the
databases described in Sect. 3. To evaluate the recognition rates under noisy
acoustic conditions, experiments with additive Gaussian noise, with SNRs rang-
ing from -10 dB to 40 dB, were performed. To obtain statistically significant
results, a 5-fold cross-validation (5-fold CV) is performed over the whole data
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in each of the databases, to compute the recognition rates. For each instance
of the 5-fold CV, audio, visual and audio-visual HMM models are is trained for
each word in the database, using the corresponding training set of 5-fold CV. It
is important to note that, all the speakers are equally represented in both the
training and the testing sets. This evaluation setup corresponds to the so-called
“semi-speaker-dependent” approach [11], since both the training and testing sets
include the utterances from all speakers.

The three classifiers in the proposed system, based on audio, visual and audio-
visual information, respectively, are implemented using left-to-right Hidden Mar-
kov Models (HMM) with continuous observations. The tuning parameters of this
system are the ones associated with the structure of each HMM classifier, the
co-articulation times considered to compose the audio, visual and audio-visual
feature vectors, and the coefficients α, β and γ of the decision level integra-
tion stage. In order to select the optimum parameters for the classifiers, several
experiments were performed considering number of states in the range from 3
to 15, number of Gaussian mixtures from 4 to 20, full covariances matrices, and
co-articulation parameters in the range from 0 to 7. Regarding the coefficients
α, β and γ, which modify the contribution to the final decision of the audio,
visual and audio-visual classifiers, respectively (see Eq. (1)), several experiments
were performed using different possible combinations of them. In order to obtain
better recognition rates over the different SNRs, the values of these coefficients
should be modified for the different SNRs, so that the higher contribution at low
SNR comes from the visual classifier, at medium SNRs from the audio-visual
classifier, and at high SNRs from the audio classifier.

(I) AV-UNR database: Fig. 5(a) depicts the results, using a boxplot represen-
tation, of the evaluation of different configurations for the visual classifier. For
each tv, the results associated with the best HMM structure are presented. As it
is customary, the top and bottom of each box are the 75th and 25th percentiles
of the samples, respectively, and the line inside each box is the sample median.
It must be noted that there is no need to carry out this test considering differ-
ent SNRs, since the visual features are not affected by the acoustic noise. The
higher accuracy was obtained for an HMM with 8 states, 17 Gaussian mixtures,
and tv = 5, which corresponds to a visual feature vector ovt composed by 33
parameters, associated to a sliding window of 183 ms in the time domain.

In Fig. 5(b), the results of the experiments to select the proper values for
the audio classifier are depicted. These experiments were performed considering
several SNRs for the additive Gaussian noise. In this case, only the medians for
each noise level are depicted for visual clarity reasons. Although this figure shows
the results for a wide range of SNRs, it must be noted that the selection of ta
should be done taking into account that the contribution of the audio classifier
to the final decision stage is more important at high SNR conditions. For that
reason, an HMM with 3 states and 4 Gaussian mixtures, using ta = 5 is the best
option for this classifier.

For the case of the audio-visual classifier, two co-articulation parameters are
involved tav

a and tav
v . Figure 5(c) shows the recognition rates obtained for three



50 L.D. Terissi et al.

0 1 2 3 4 5 6 7
30

40

50

60

70

tcv

R
e
c
o
g
n
it
io
n
ra

te
[%

]

λ
v0
(6,10)

λ
v1
(6,17)

λ
v2
(6,14)

λ
v3
(6,15)

λ
v4
(6,14) λ

v5
(8,17)

λ
v6
(5,17)

λ
v7
(5,12)

(a)

10 15 20 25 30 35 40 clean
20

30

40

50

60

70

80

90

100

∫∫

R
e
c
o
g
n
it
io
n
ra

te
[%

]

SNR [dB]

λ
a1
(4,6)

λ
a2
(5,4)

λ
a3
(5,6)

λ
a4
(5,5)

λ
a5
(3,4)

λ
a6
(3,6)

(b)

−10 0 10 20 30 40 clean

20

40

60

80

100

∫∫

R
e
c
o
g
n
it
io
n
ra

te
[%

]

SNR [dB]

λ
a0v5
(6,4)

λ
a5v0
(4,6)

λ
a5v5
(6,6)

(c)

Fig. 5. Recognition rates for the (a) visual, (b) audio and (c) audio-visual classifiers
using different tuning parameters.

particular audio-visual features configurations, namely λa0v5
(6,4) , λa5v5

(6,6) and λa5v0
(4,6) ,

where the number of states and Gaussian mixtures have been optimized for each
case. It can be noted from Fig. 5(c) that the best performance at middle SNRs
is obtained for the case of configuration (tav

a = 0, tav
v = 5), while configurations

(tav
a = 5, tav

v = 5) and (tav
a = 5, tav

v = 0) present a better performances at high
SNRs. The performance of the remaining possible configurations lies between
upper and lower limiting curves, following the same properties. These results
support the comments in Sect. 2, regarding the fact that configurations that use
more visual information perform better at low SNRs and viceversa. Regarding
the selection of the optimal audio-visual classifier configuration to be used at the
final decision stage, it must be taken into account that the contribution of this
classifier is important at low and middle range SNR conditions, since at high
SNR the audio classifier provides more accurate decisions. Thus, an adequate
configuration for this purpose is (tav

a = 0 and tav
v = 5).
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Fig. 6. (a) Optimum values for coefficients α, β and γ over the SNRs. (b) Recognition
rates of the proposed fusing strategy (green) using the optimum values for the weighting
coefficients α, β and γ. Performances of audio (red), visual (magenta) and audio-visual
(blue) classifiers are also shown (Color figure online).

At this point, the parameters associated with the three classifiers have been
selected, and the optimal values for α, β and γ must be chosen. The results of
tests performed for this purpose are depicted in Fig. 6(a). As expected, it can be
seen that the optimum value of α is the lower one at low SNRs, and it increases
as the SNR increases, becoming the higher one at high SNRs. On the other hand,
the optimum values of coefficient β present an inverse evolution. While for the
case of coefficient γ the higher values are at medium SNRs.

Figure 6(b) shows the recognition rates obtained with the proposed fusion
strategy (green) over the SNRs, using the optimum values for the weighting
coefficients α, β and γ, presented in Fig. 6(a). In this figure, the recognition
rates corresponding to the audio (red), visual (magenta) and audio-visual (blue)
classifiers are also depicted. It is clear that the proposed objective of improv-
ing the recognition rates through the different SNRs has been accomplished. In
addition, the performance of the proposed system is comparable to that of other
methods presented in the literature [9]. In these experiments, the SNR of each
speech signal was a priori known since the noise was intentionally injected in
order to evaluate the proposed system at different SNRs. In practical applica-
tions, the SNR present in a speech signal can be estimated by comparing its
energy with the one corresponding to a previously recorded background noise.
A sample of the background noise could be automatically extracted from the
silence interval preceding the occurrence of the speech, or it could be recorded
on demand by the user. The weights could then be selected from the curves in
Fig. 6(a).

(II) AV-CMU database: The proposed recognition system was also evaluated
over the public AV-CMU database [2]. In particular, in order to compare the
performance of the proposed system with the one presented in [3], this evaluation
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Fig. 7. (a) Performance of the proposed recognition system over the AV-CMU data-
base. (b) Efficiency comparison with the method proposed in [3].

was carried out over a subset of ten words, the numbers from 1 to 10. To select
the values of the tuning parameters of the system, the same procedure used
with the AV-UNR database was employed. The details have not been included
due to space limitations. In Fig. 7(a), the performance of the proposed fusion
strategy (green) is depicted, where it can be noted that it enforces a significant
improvement of the recognition rates through a wide range of SNRs. Figure 7(b)
compares the performances obtained with the proposed method and with the one
described in [3], evaluated over the same database. It is clear that the proposed
method outperforms the one in [3] across all the considered SNRs.

5 Conclusions

An isolated word speech recognition system based on audio-visual information
was proposed in this paper. This system is based on the combination of early
and late fusion schemes. Three classifiers based on audio, visual and audio-visual
information, respectively, are combined in order to improve the recognition rates
through a wide range of signal-to-noise ratios. The performance of the proposed
recognition system was evaluated over two isolated word audio-visual databases.
Experimental results show that the structure of the proposed system leads to a
significant improvement of the recognition rates through a wide range of signal-
to-noise ratios. It is important to note that, the absolute recognition rates could
be further improved by considering well-known strategies usually employed in
speech recognition, for instance, by incorporating delta mel-cepstral coefficients
to the audio features, by including noisy features in the training stage, etc.
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