
Towards a Flexible Deployment of Multi-cloud
Applications Based on TOSCA and CAMP

Jose Carrasco(B), Javier Cubo, and Ernesto Pimentel

Departamento Lenguajes Y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain
{josec,cubo,ernesto}@lcc.uma.es

Abstract. Cloud Computing platforms offer diverse services and capa-
bilities with own features. Hence, the provider services could be used by
end users to compose a heterogeneous context of multiple cloud platforms
in order to deploy their cloud applications made up of a set of modules,
according to the best capabilities of the cloud providers. However, this
is an ideal scenario, since the cloud platforms are being conducted in an
isolated way by presenting many interoperability and portability restric-
tions, which complicate the integration of diverse provider services to
achieve an heterogeneous deployment of multi-cloud applications. In this
ongoing work, we present an approach based on model transformation to
deploy multi-cloud applications by reusing standardization efforts related
to the management and deployment of cloud applications. Specifically,
using mechanisms specified by both standards, TOSCA and CAMP, we
propose a methodology to describe the topology and distribution of mod-
ules of a cloud application and to deploy the interconnected modules over
heterogeneous clouds. We illustrate our idea using a running example.

Keywords: Heterogeneous cloud · Cloud application · Multi-
deployment · Model transformation · TOSCA · CAMP

1 Introduction

Cloud Computing is a new paradigm which has become increasingly popular in
the last years. It defines a model for enabling convenient and on-demand net-
work access to a shared pool of configurable computing resources that can be
rapidly provisioned [1]. In this model the providers expose these resources as
several services through a cloud platform classified in various levels (IaaS, PaaS,
SaaS). They can develop, deploy, and sell cloud applications globally without the
need of significant investments in IT infrastructure. The provided services are
used by the clients to deploy their applications and systems on concrete provides.
Hence, the users could select the services from several providers whose properties

Work partially supported by projects TIN2012-35669, funded by Spanish Ministry
MINECO, FEDER; P11-TIC-7659 funded by Andalusian Gov; FP7-610531 Sea-
Clouds funded by EU; and Univ. Málaga, Campus Excelencia Int. Andalućıa Tech.

c© Springer International Publishing Switzerland 2015
G. Ortiz and C. Tran (Eds.): ESOCC 2014, CCIS 508, pp. 278–286, 2015.
DOI: 10.1007/978-3-319-14886-1 26



Towards a Flexible Deployment of Multi-cloud Applications 279

and capabilities fit with the requirements of the multi-module cloud application,
achieving a flexible deployment context that fully adapts the deployment and
execution of the application. However, this is a complex task, since the cloud
platforms are being conducted in an isolated way by presenting many interop-
erability and portability restrictions and offering similar resources in a different
manner. Each provider defines its own API to the exposed services, its non-
functional requirements, QoS, add-ons and so on. As a result, cloud developers
are often locked in a specific set of services from a concrete cloud environment.
Thus, it is complicated to integrate heterogeneous provider services to achieve
a multi-deployment of a cloud application [2]. Currently, several organizations
propose different approaches to mitigate these issues through the homogeniza-
tion and normalization of the cloud application descriptions and management.
Specifically, there exist two OASIS standards which pretend to solve some of
the problems related with portability, automated deployment, interoperability
and management of cloud applications: TOSCA (Topology and Orchestration
Specification for Cloud Applications) [3] and CAMP (Cloud Application Man-
agement for Platforms) [4]. Both standards specify a particular methodology to
describe and wrap the cloud application structure (components and relation-
ships), and how they must be orchestrated (by means of a plan) in a portable
way to increase a vendor-neutral ecosystem. Moreover, they describe the mech-
anisms which must be implemented by the clouds to support standard-based
application deployment and management. Nevertheless, the standard efforts do
not focus on getting an heterogeneous multi-cloud solution, so distributing a
complex application over multiple cloud service providers is still a challenging
task [5]. TOSCA and CAMP are emergent standards and they do not have official
implementations yet. We can consider available approaches that support a large
set of characteristics defined by these standards, i.e., OpenTOSCA Environment
[6] (for TOSCA) and Brooklyn [7] (for CAMP).

However, these approaches have some disadvantages. On the one hand, altho-
ugh TOSCA is a good option to represent the application topology and the
orchestration, the management of a possible TOSCA-compliant deployment (for
example, using OpenTOSCA) would be a complex task, since the topology and
the orchestration plan should be modified when some module of the application is
migrated to a different target provider. On the other hand, although the CAMP-
compliant solutions are not mainly focused on obtaining a multi-deployment,
they present an appropriate set of properties to obtain this goal following a uni-
fied API which wraps the interface of the cloud providers (for example, Brooklyn
which uses jClouds [8]). Nevertheless, CAMP lacks of a topology specification,
which is crucial to maintain application model in case of monitoring and reconfig-
uration actions need to be performed over the distribution of the application. In
this ongoing work, we discuss our proposal for combining the advantages of both
TOSCA and CAMP specifications and their respective approaches. The main
contributions of our idea are: (i) to define a flexible methodology to perform
heterogeneous deployment of multi-cloud applications, (ii) to analyse the archi-
tectural and technical concepts needed to combine both TOSCA and CAMP



280 J. Carrasco et al.

specifications, (iii) to address vendor lock-in and portability issues, and (iv) to
comply with (and contribute to) major standards for cloud interoperability.

The rest of this paper is structured as follows. Section 2 exposes the motiva-
tion and challenges of our approach. In Sect. 3, we present our proposal based
on the combination of TOSCA- and CAMP-compliant solutions to provide a
flexible multi-cloud deployment. In Sect. 4, we briefly discuss the advantages of
our work with respect to current cloud initiatives, and we present some future
work.

2 Motivation and Challenges

In this section, we motivate our proposal presenting the challenges to be tackle
to deploy cloud applications over heterogenous cloud providers.

2.1 Motivating Example

To illustrate our work, we introduce an example related to an Online Retailing
Application, composed of four modules: a main Webpage to access the applica-
tion, two databases (one for the users and another one for the products’ stock),
and a payment module.

This application could be deployed as a whole on a provider in IaaS or
PaaS level, Google (https://cloud.google.com), Amazon (http://aws.amazon.
com), HP Cloud (http://www.hpcloud.com), etc. These Cloud providers offer
a range of different technologies each appropriate for particular types of appli-
cations. So, users can access computing resources in a dynamic, flexible and
scalable manner to deploy the mentioned cloud-based application, where each
computing resources has its own capabilities, constraints, life cycle and specifica-
tion (e.g. pricing policies, Service Level Agreement (SLAs)). Also, the modules
of the application possess own features and requirement. In this sense, it would
be interesting to develop a methodology capable of selecting the provider ser-
vices whose specification fit with the application’s requirements and features in
order to compose the best heterogeneous deployment context for the distribution
of the modules. A large number of companies are trying to simplify the speed
and adoption of their products and services to the cloud. The main issue is the
lack of interoperability among different vendor approaches, which complicate the
deployment over several providers simultaneously.

2.2 Challenges

To perform the multi-deployment, our approach addresses these main challenges:

– Topology specification. An application is composed by several modules and
relationships, which is essential to maintain the knowledge about the appli-
cation structure, dependencies among modules and how they are related. We
pretend to specify the topology and distribution using a TOSCA-compliant
methodology, which allows the maintenance of the application model if some
redistribution is required.

https://cloud.google.com
http://aws.amazon.com
http://aws.amazon.com
http://www.hpcloud.com


Towards a Flexible Deployment of Multi-cloud Applications 281

– Unified interface of cloud providers. Currently, the application devel-
opers need to know the interface of the final cloud providers where their
applications will be deployed. Our approach proposes to solve this necessity
by unifying the features of the heterogeneous platforms by means of a CAMP-
compliant approach.

– Interoperability and portability issues. In an heterogeneous distribution
context, interoperability and portability problems occur. Using our proposal
based on the unified interface, the deployment will be in charge of solving these
issues related to the heterogeneity of cloud providers, managing the services
needed by the application’s modules in an homogeneous manner.

– Scalability and elasticity resources. Our deployment process allows the
users to consider the scalability and elasticity advantages of cloud provider in
order to the best deployment scenario.

3 Proposal in a Nutshell

We present our proposal for the TOSCA- and CAMP-compliant multi-cloud
deployment.

3.1 Heterogeneous Deployment Using TOSCA and CAMP

As shown in Fig. 1, our methodology consists of two phases well-defined. Ini-
tially, in the first step, we propose to specify the full application topology using
TOSCA methodology through the OpenTOSCA environment, specifically the
Winery tool (TOSCA-compliant), which allows the description of the applica-
tions structure in an exhaustive and user-friendly graphic way. Moreover, we
also propose to enrich the TOSCA specification by including information about
the final providers where each component of the application will be deployed,
with the purpose of facilitating the orchestration according to the expected
multi-cloud distribution. In the second step, the application will be distributed
over the target clouds through the deployment mechanisms used by Brooklyn
(CAMP-compliant). In order to solve the connection between both specification,

Fig. 1. Overview of our TOSCA- and CAMP-compliant multi-deployment.



282 J. Carrasco et al.

we propose a transformation methodology to adapt the TOSCA-compliant specifi-
cation defined to the CAMP-compliant specification expected by Brooklyn.

3.2 Phase 1: Topology Description and Orchestration

TOSCA allows the specification of a detailed application topology using an XML-
based file. We use TOSCA to obtain a full description of the application mod-
eling its components (application’s modules) and dependencies. Then, TOSCA
description is composed by several components which present types, proper-
ties, requirements, capabilities, and relationships among them. Thus, modifying,
deleting or adding some components could provoke an error-prone task due to
the need of maintaining the consistency of the initial topology description. In
order to solve this problem, we propose to use the Winery tool [9], developed by
the OpenTOSCA Team. This tool allows the representation of the application’s
modules through forms and the composition of the topology in a graphical way
by means of the drag-and-drop technique. In Fig. 2 is presented the topology for
our running example using Winery.

Fig. 2. TOSCA topology for the Online Retailing Application using Winery.

Although we have mentioned the TOSCA expressiveness, this standard does
not define in the topology any property to specify the target provider to deploy
the application’s modules. Instead, it defines an orchestration plan and the imple-
mentation artifacts to specify the deployment operations. However, this infor-
mation does not appear into the topology description, so we need a methodology
which allows the clear specification of the final providers. Also, currently, the def-
inition and maintenance of an orchestration plan is a complex and error-prone
task.The plans have to fully define each necessary step to deploy and config-
ure the application taking into account all properties and requirements of the
providers. Morever, if the target cloud changes, the definition of the mentioned
steps must also change in order to reference to the services exposed by the new
selected cloud. Therefore, we propose an extension of the TOSCA topology to
allow the inclusion of the final providers which are needed to perform the multi-
deployment orchestration. In the following text we can see as the NodeTemplate



Towards a Flexible Deployment of Multi-cloud Applications 283

defines a new item to define the location where the node (representing the
application’s module) has to be deployed. To exemplify this extension, the next
text models the UserDBWebApp by specifying the cloud provider ‘AWS’ as
location.

1 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
2 ...
3 <Properties>
4 XML fragment
5 </Properties>
6 <location provider= "xs:string">
7 ...
8 </NodeTemplate>

1 <NodeTemplate id="UserDBWebApp" name="User�Web�App"
2 type="ns3:UserDBWebApplication">
3 <Properties>
4 <ns3:UserDBWebApplicationProperties
5 ...
6 </ns3:UserDBWebApplicationProperties>
7 </Properties>
8 <location>aws-ec2:us-west-2</location>
9 </NodeTemplate>

Note that the location denition could be modeled like a property in the
Node Templates. This could be very usefull to avoid a large negotation of the
consortium to approve the standard extension and the providers could feel free to
support this feature implementing the necessary mechanisms in their platforms.
However, although the mentioned approach has several advantages, our goal goes
beyond, by defining an extension of the standard to ensure the performance of
the multi-deployment and allow the correct denition of the used providers.

3.3 Phase 2: Transformation Model and Deployment

The second phase of our proposal is in charge of distributing the application’s
modules over the different target providers. To tackle these issues, we build this
process using a CAMP-compliant environment to take advantage of the homo-
geneity features aimed by the standard. Then, we use Brooklyn, which (in the lat-
est releases) allows the description of a YAML-based multi-deployment plan. We
have defined the topology using TOSCA in the first phase, since CAMP lacks of a
topology specification. Therefore, we need to unify the TOSCA-compliant topol-
ogy definition and the CAMP-compliant deployment mechanism. We propose a
model transformation to obtain a Brooklyn YAML plan from TOSCA topology
description, by means of two possible transformation processes. The first one is



284 J. Carrasco et al.

Table 1. Transformation pattern between TOSCA and Brooklyn (CAMP)

TOSCA YAML CAMP

JBoss brooklyn.entity.webapp.jboss.JBoss7Server

Apache Tomcat brooklyn.entity.webapp.tomcat.TomcatServer

Jetty Server brooklyn.entity.webapp.jetty.Jetty6Server

MongoDB Server brooklyn.entity.nosql.mongodb.MongoDB

Cassandra Data Base brooklyn.entity.nosql.cassandra.CassandraNode

MySQL Data Base brooklyn.entity.database.mysql.MySqlNode

Postgre brooklyn.entity.database.postgresql.PostgreSqlNode

Cluster brooklyn.entity.webapp.ControlledDynamicWebAppCluster

based on an agnostic graph, as depicted in Fig. 3. Taking advantage of TOSCA
topology definition (similar to a graph structure) we can generate an interme-
diate graph containing all the details of the application’s modules and their
relationships. From this agnostic graph we can generate the final (orchestration)
plan deployment expected by several technologies, e.g., the CAMP-compliant
used in this work, Brooklyn. This task is performed following a set of trans-
formation patterns from the TOSCA-compliant to CAMP-compliant elements
(see Table 1). The second proposal is based in meta-model transformations to
expose a formal methodology, as shown in Fig. 4. In this context, it is necessary
to define the meta-model of TOSCA-extended and the Brooklyn plan, together
with the ATL rules required to transform a concrete (topology) TOSCA model
into a Brooklyn YAML concrete plan.

4 Discussion and Conclusions

In this section, we mention some projects, initiatives and standards in the same
scope of our proposal, with the intention of briefly discussing about the contri-
butions of our approach, and finally, we present the future work.

There are several initiatives and standards that target services deployed on
the cloud using different approaches, with the consequence that software devel-
opers need to either use special APIs or programming models to code their appli-
cations, or to model them using project-specific domain languages. The Broker@
Cloud project (http://www.broker-cloud.eu/) aims at helping enterprises to
move to the cloud while enforcing quality control on the developed services.
The PaaSage project (http://www.paasage.eu/) also intends to match applica-
tion requirements against platform characteristics and make deployment recom-
mendations and dynamic mapping of components to the platform(s) selected.
The aim of the Cloud4SOA project (http://www.cloud4soa.eu/) is to solve
the semantic interoperability issues that exist in current cloud platforms and
infrastructures. The mOSAIC project (http://www.mosaic-cloud.eu/) allows
applications can be deployed on different IaaS using a sort of mOSAIC virtual

http://www.broker-cloud.eu/
http://www.paasage.eu/
http://www.cloud4soa.eu/
http://www.mosaic-cloud.eu/


Towards a Flexible Deployment of Multi-cloud Applications 285

Fig. 3. Abstraction of the TOSCA topology
using an agnostic graph.

Fig. 4. Meta-model transformation
between TOSCA and Brooklyn.

machine. The REMICS project (http://www.remics.eu/) focuses its work on
developing advanced model-driven methodology and tools for the reuse and
migration of legacy applications to interoperable Cloud services. Cloud standard-
isation is one of the most active lines in Cloud research. Relevant associations like
IEEE or OASIS are working on standards in order to tackle the interoperabil-
ity and portability between Cloud platforms. The Guide for Cloud Portability
and Interoperability Profiles is among the active IEEE projects. TOSCA and
CAMP are two OASIS standard concentrating efforts in reducing the deploy-
ment and management of cloud applications. These and other Cloud standards,
such as DMTF Cloud Infraestructure Management Interface, can be found in the
Cloud Standards Wiki (http://cloud-standards.org/). In the scope of commercial
solutions, we can find some new platforms and open source initiatives that are
working on providing flexibility to users allowing the IaaS selection, and in some
cases the migration over some specific PaaSes, such as the Cloud Foundry Core
(http://core.cloudfoundry.org/), which defines a baseline of common capabilities
to promote Cloud portability across instances of Cloud Foundry.

A distinguish aspect of our approach is that we propose a flexible multi-cloud
deployment and management via orchestration and therefore it does not require
code modifications to existing services. Thus, we base on the two OASIS stan-
dards TOSCA and CAMP to represent the application topology and orchestrate
the distribution, and to deploy the modules of the application in multiple and
heterogeneous platforms, respectively. Indeed, TOSCA provides a powerful mod-
elling language to describe the structure of an application as a typed topology
graph, in a portable and vendor-agnostic way. Also, the use of TOSCA topology
templates (and of TOSCA node types) to represent an application topology sim-
plifies its management and fosters the reusability of cloud services. Moreover,
CAMP offers a unification in the interfaces of the cloud platforms which allows
the management of heterogeneous providers’s features in an homogeneous way.

Currently, we are formalising the two proposed model transformation options
presented in Sect. 3: (i) Abstraction of the TOSCA topology using an agnostic

http://www.remics.eu/
http://cloud-standards.org/
http://core.cloudfoundry.org/


286 J. Carrasco et al.

graph, and (ii) Meta-model transformation schema between TOSCA-extended
and Brooklyn specifications. We also pretend to develop both processes, in order
to perform real deployment and management of several complex cloud applica-
tions. As regards future work, we plan to analyse the orchestration plan specified
in the TOSCA specification (currently there is some research efforts proposing
a TOSCA YAML), with the intention of extending our proposal by using this
methodology and performing the necessary transformation between the TOSCA
YAML and the CAMP YAML, which in principle is out of the objectives of
our initial attempt to solve the multi-cloud deployment. Also, some monitoring
and reconfiguration mechanisms will be studied in order to address the possible
migrations of some application’s module when it is needed.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST, Gaithersburg
(2011). http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

2. Petcu, D., Macariu, G., Panica, S., Craciun, C.: Portable cloud applications: from
theory to practice. Future Gener. Comput. Syst. 29, 1417–1430 (2013)

3. OASIS: TOSCA 1.0 (Topology and Orchestration Spec for Cloud Applications),
V1.0 (2012). http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

4. OASIS: CAMP 1.0 (Cloud Application Management for Platforms), V1.0 (2012).
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/

5. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications
to the cloud: an approach based on application model enrichment. Int. J. Coop. Inf.
Syst. 20, 307–356 (2011)

6. IAAS: OpenTOSCA (2012). http://www.opentosca.org
7. CloudSoft: Brooklyn project (2012). http://brooklyncentral.github.io/
8. Apache: jClouds Project page (2014). http://jclouds.apache.org/
9. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool

for TOSCA-Based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
http://www.opentosca.org
http://brooklyncentral.github.io/
http://jclouds.apache.org/

	Towards a Flexible Deployment of Multi-cloud Applications Based on TOSCA and CAMP
	1 Introduction
	2 Motivation and Challenges
	2.1 Motivating Example
	2.2 Challenges

	3 Proposal in a Nutshell
	3.1 Heterogeneous Deployment Using TOSCA and CAMP
	3.2 Phase 1: Topology Description and Orchestration
	3.3 Phase 2: Transformation Model and Deployment

	4 Discussion and Conclusions
	References


