
Chapter 6
Open Problems

In this chapter we present and discuss in some detail problems that we encountered
in the course of our work. Some of them have already been mentioned in previous
chapters, others have appeared under different disguises and a few are new. The
contents of the sections may freely overlap.

6.1 Characterizations of (Universally) Separably Injective
Spaces

Many questions remain unanswered regarding the characterization and basic prop-
erties of separably and universally separably injective spaces. Analogously to what
happens for injective spaces, it is reasonable to ask:

Problem 1 Is every universally separably injective space isomorphic to a univer-
sally 1-separably injective space? Must a �-separably injective space, � < 2, be
isomorphic to a 1-separably injective space?

The second question has an affirmative answer for C-spaces (Proposition 2.34).
Recall, however, that 2-separably injective spaces cannot, in general, be renormed
to become �-separably injective for � < 2 (Proposition 2.32 and the fact that c0 is
2-separably injective); let alone for � D 1 (Proposition 2.31).

Since the first examples of (non-injective) universally separably injective spaces
one encounters are `c1.� / and `1=c0, it makes sense to ask for a pattern to
construct explicit examples of operators into either `c1.� / or `1=c0 that cannot
be extended to some superspace. In the case of `c1.� /, the canonical embedding
c0.� / ! `c1.� / is a reasonable candidate to be a non-extendable operator. Indeed,
if some extension T W `1.� / ! `c1.� / would exist, by Rosenthal’s result quoted
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160 6 Open Problems

in Theorem 1.14, this T should be an isomorphism on some copy of `1.� /. Since

dens `c1.� / D j� j@0 and dens `1.� / D 2j� j;

the embedding of `1.� / into `c1.� / is impossible when j� j@0 < 2j� j. This
argument works for, say, j� j D c, while it fails—outside CH—for, say, j� j D @1

since it is consistent that @@0

1 D 2@1 . A similar argument could work to show that
no embedding c0.� / ! `1=c0 extends to an operator `1.� / ! `1=c0.

A different, although akin, topic is the topological characterization of separably
injective and universally separably injective C.K/-spaces. The basic problem is:

Problem 2 Characterize the compact spaces K such that C.K/ is separably injective
or universally separably injective.

Indeed, no known property of compacta seems to provide such characterizations.
It is also an open problem to characterize Grothendieck C-spaces in terms of topo-
logical properties of the underlying compacta (see Sect. 6.8 for more information
on Grothendieck spaces). We have already shown in Theorem 2.14 that K is an F-
space if and only if C.K/ is 1-separably injective; hence, it is a Grothendieck space
and, under CH (see Proposition 2.29), it is universally 1-separably injective. We do
not know, however if, in ZFC, the fact that K is an F-space still implies that C.K/

is universally separably injective or even must contain `1. When K is �-Stonian
every non-weakly compact operator C.K/ ! Y is an isomorphism on some copy of
`1 [223, Theorem 3.7] and thus C.K/ must necessarily contain `1 (Dashiell [79]
extends this result to different C.K/, including Baire classes—see last paragraph in
Sect. 6.4.2). It is reasonable to conjecture that C.K/ is universally separably injective
when K is �-Stonian (in ZFC). We have even shown in Theorem 2.39 that there
is a consistent example of 1-separably injective C.K/-space that is not universally
1-separably injective, but we do not know whether that example is universally
separably injective or even if it contains `1. Rosenthal asks in [223] whether there
exists an F-space K such that C.K/ is injective but K is not �-Stonian; and remarks
that the answer is affirmative assuming the existence of a measurable cardinal.

It would be interesting to characterize 1-separable injectivity for the most popular
classes of Lindenstrauss spaces, namely, M-spaces, G-spaces, and the like. In
particular we ask for a characterization of those compact convex sets K for which
A.K/, the space of continuous affine functions on K, is 1-separably injective. The
following condition is sufficient (see Theorem 2.14): Given countable subsets L and
U of A.K/ such that f � g for every f 2 L and g 2 U, there exists h 2 A.K/ such
that f � h � g for all f 2 L and g 2 U. Is the converse true? What if K is a simplex?
(See [97] for the basics on simplex spaces). Related to this we have mentioned that
if .Si/i2I is a family of simplices and U an ultrafilter on I, then A.Si/U D A.S/ for
some simplex S. Actually, S is unique by results of Rao [220]. It is also interesting
to know how S is obtained from .Si/i2I .
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The study of .1; @/-injectivity in terms of families of balls presented in Propo-
sitions 2.30 and 2.62 (for @ D @1) and Lemma 5.12 has no known analogue for
universal injectivity. Precisely:

Problem 3 Can universal .1; @/ injectivity be characterized in terms of intersection
of families of balls?

6.2 The 3-Space Problem for Universal Separable Injectivity

The main problem we have been unable to solve is the 3-space problem for universal
separable injectivity.

Problem 4 Is universal separable injectivity a 3-space property?

This problem has a surprising number of connections and ramifications, as
we shall see. An affirmative answer would provide nice characterizations of that
property and unexpected examples and counterexamples. As we already mentioned
in Sect. 2.1.3, in [20, Proposition 3.7 (3)] it was claimed that universal separable
injectivity is a 3-space property; but the proof contains a gap we have been unable
to fill and a few statements in [20] and in [21] were infected. Let us clarify the
situation about what is actually known:

Proposition 6.1 The following assertions are equivalent:

1. Universal separable injectivity is a 3-space property.
2. Upper `1-saturation is a 3-space property.
3. Ext.`1; U/ D 0 for every universally separably injective space U.
4. Ext.`1=S; U/ D 0 for every universally separably injective space U and every

separable space S.

Proof It is clear that (1) and (2) are equivalent; see Theorem 2.26.
We prove that (1) implies (3) by showing that “:.3/ ) :.1/”. The idea is to

prove that if a nontrivial exact sequence

(6.1)

with U universally separably injective exists, one arrives to another exact sequence
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in which X0 lacks Rosenthal’s property .V/ and thus it cannot be universally
separably injective by Proposition 2.8.

Partington’s distortion theorem for `1 [210] establishes that any Banach space
isomorphic to `1 contains, for every " > 0, an .1 C "/-isomorphic copy of `1 (see
also Dowling [90]). Let � be the set of all the 2-isomorphic copies of `1 inside `1.
For each E 2 � let {E W E ! `1 be the inclusion map, pE a projection of `1 onto
E of norm at most 2 and let uE W E ! `1 be a surjective 2-isomorphism.

Assume that (6.1) is a nontrivial exact sequence, with U universally separably
injective. There is no loss of generality in assuming that i W U ! X is the canonical
inclusion map. We consider, for each E 2 � , a copy of (6.1) and form the product
of all these copies

Let us consider the operator J W `1 ! `1.�; `1/ given by J. f /.E/ D uEpE. f /

and then form the pull-back sequence

Let us show that 0p1 cannot be an isomorphism on any copy of `1 inside PB.
Otherwise, it would have a right inverse on some E 2 � and thus the new pull-back
sequence

would split. Therefore, if �U
E W `1.�; U/ �! U denotes the canonical projection

onto the E-th copy of U, and similarly for �X
E and �

`1
E , the lower push-out sequence
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in the diagram

also splits. We want to show that this lower sequence is isomorphically equivalent to
the starting sequence (6.1); more precisely, there is an isomorphism � W PO �! X
rendering commutative the diagram

In particular, one sequence splits if and only if the other does.
To obtain � , observe the commutative square

It is commutative since the restriction of 0J ı0 {E to `1.�; U/ is just the inclusion
into `1.�; X/. Now, the universal property of the push-out construction yields an
operator � making commutative the following diagram:
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For the sake of clarity let us display all the data in the same drawing

Let us see that the “horizontal flat” portion of this diagram is commutative. The left
square is commutative by the very definition. As for the right square since PBE !
PO is onto it suffices to check that the composition

is the same as

which is obvious after realizing that uE D �
`1
E ı J ı {E. And this is trivial since

given f 2 E one has

�
`1
E .J. f // D J. f /.E/ D uE. pE. f // D uE. f /:

That (3) implies (4) is easy: Let S be separable and let U be universally separably
injective. The homology sequence (see Appendix A.4.8) obtained from

is the exact sequence
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If Ext.`1; U/ D 0, the map L.S; U/ �! Ext.`1=S; U/ must be surjective and thus
every exact sequence 0 �! U �! X �! `1=S �! 0 fits in a push-out diagram

Since U is universally separably injective the operator S ! U extends to an operator
`1 ! U and thus the lower sequence splits according to the splitting criterion for
push-out sequences (Lemma A.20).

That (4) implies (3) is obvious, so both assertions are equivalent.
We show now that (3) implies (1): Let

be an exact sequence in which both Y; Z are universally separably injective; let j W
S ! `1 be an into isomorphism with S separable, and let t W S ! X be an operator.
Since Z is universally separably injective, the operator qt admits an extension T W
`1 ! Z. We can therefore form the pull-back diagram:

Since Ext.`1; Y/ D 0, there is an operator � W `1 ! X so that q� D T. Since
q� j�qt D Tj�qt D 0 the operator t�� j takes actually values in Y. Let � W `1 ! X
be an extension of t � � j; namely, � j D t � � j. The operator � C � W `1 ! X is the
desired extension of t:

.� C �/j D t � � j C � j D t:

This completes the proof. ut
The preceding result provides a number of reformulations for Problem 4. A

mildly convincing argument to support the idea that universal separable injectivity
(i.e., `1-upper-saturation; see Definition 2.25) is a 3-space property is:

Proposition 6.2 c0-upper-saturation is a 3-space property.

Proof Let 0 �! Y �! X
q�! Z �! 0 be an exact sequence in which both

Y and Z are c0-upper-saturated and let S be a separable subspace of X. Pick Z0 a
subspace of Z isomorphic to c0 and containing qŒS	. It is a standard fact that there is
a separable subspace XS � X containing S and such that qŒXS	 D Z0. Thus we have
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a commutative diagram

with YS D XS \ Y. We want to see that there is a subspace of X isomorphic to c0

containing XS. Let Y0 be an isomorphic copy of c0 such that YS � Y0 � Y. Making
push-out with the inclusion YS ! Y0 and taking Sobczyk’s theorem into account
yields the commutative diagram

which shows that S � Y0 ˚ Z0 � X. Since Y0 ˚ Z0 � c0 we are done. ut
On the other hand, a serious argument against could be that, analogously to what

happens with Pełczyński’s property .V/, which is not a 3-space property (see [61];
see also [68]), one has:

Proposition 6.3 Rosenthal’s property (V) is not a 3-space property.

Proof We start with a nontrivial exact sequence

(see [54, Sect. 4.2]). Proceeding as in the proof that (1) implies (3) in Proposition 6.1
we construct an exact sequence

in which q cannot be an isomorphism on any copy of `1. Thus, X0 has not
Rosenthal’s property .V/. The space `1.�; `2/ has Rosenthal’s property .V/ as a
quotient of `1.�; `1/ D `1.N � � /, since Rosenthal’s property .V/ obviously
passes to quotients. ut

The following consequence of an affirmative answer to the 3-space problem for
universal separable injectivity was claimed in [20, Theorem 5.5]:

• A space U would be universally separably injective if and only if
Ext.`1=S; U/ D 0 for every separably space S.
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The “only if” part is contained in Proposition 6.1. The other part does not depend
on the solution to Problem 4:

Proposition 6.4 If Ext.`1=S; X/ D 0 for every separable space S then X is
universally separably injective.

Proof Let S be a separable Banach space, t W S ! X an operator and S ! `1 an
embedding. Form the push-out diagram

The lower sequence splits by the assumption Ext.`1=S; X/ D 0 and so t extends to
`1, according to the splitting criterion for push-out sequences (Lemma A.20). ut

In particular, as it was claimed in [20, Proposition 5.6], one would have that
Ext.C.N�/; C.N�// D 0 since C.N�/ D `1=c0. This would rank `1=c0 into the
exclusive list of spaces X for which Ext.X; X/ D 0, currently formed by

• c0, by Sobczyk’s theorem.
• Injective spaces, by the very definition.
• L1.
/-spaces, by Lindenstrauss’ lifting (Proposition A.18).

It is definitely not true however that Ext.U; V/ D 0 for all universally
separably injective spaces U and V . For instance, consider the exact sequence
0 ! `c1.� / ! `1.� / ! `1.� /=`c1.� / ! 0, where � is an uncountable set.
Since the subspace is universally 1-separably injective (Example 2.4), the quotient is
universally separably injective by Proposition 2.11(3). Actually it is even universally
1-separably injective, by Theorem 2.18. The sequence does not split because `c1.� /

is not injective (Proposition 1.28). Each universally separably injective non-injective
space produces a similar counterexample. Moreover, it is easy to see that there
exist universally separably injective spaces U such that Ext.U; U/ ¤ 0: if V is
a universally separably injective non-injective space then every exact sequence
0 ! V ! `1.� / ! `1.� /=V ! 0 is not trivial, by Proposition 2.11. The space
W D `1.� /=V is universally separably injective and, obviously, Ext.W; V/ ¤ 0.
The product space U D V˚W is universally separably injective and Ext.U; U/ ¤ 0.

The following problem seems quite interesting to us:

Problem 5 Characterize the C.K/ spaces so that Ext.C.K/; C.K// D 0.

Probably a step in this direction would be to know whether the following
generalization(s) of Problem 4 are possible:

Problem 6 Are there homological characterizations of @-injectivity and universal
@-injectivity? In particular: Is it true that

• A Banach space E is @C-injective if and only if Ext.c0.@/; E/ D 0?
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• A Banach space E is universally @C-injective if and only if Ext.`1.@/; E/ D 0?
• Ext.`1.� /; U/ D 0 for every universally separably injective space U?

Recall that the information we currently have is:

Theorem 6.5 A Banach space E is

• Separably injective if and only if Ext.Q; E/ D 0 whenever Q is a quotient of
CŒ0; 1	.

• Universally separably injective if Ext.Q; E/ D 0 whenever Q is a quotient of `1
by a separable subspace (Proposition 6.4).

• [CH] @2-injective if and only if Ext.Q; E/ D 0 whenever Q is a quotient of `1
(Corollary 5.6).

• [GCH] @C-injective if and only if Ext.Q; E/ D 0 whenever Q is a quotient of
`1.@/ (Corollary 5.6).

Proof Only the first point has not been explicitly done: if E is separably injective,
then Ext.Q; E/ D 0 for every quotient of CŒ0; 1	; and conversely, if � W S ! E is an
operator from any separable Banach space S, pick an embedding S ! CŒ0; 1	 and
form the push-out diagram:

Since Ext.Q; E/ D 0, the lower sequence splits and � can be extended to an operator
CŒ0; 1	 ! E, which shows that E is separably injective. ut

A different way of looking at these questions is the following: A result of
Johnson, Rosenthal and Zippin [148], see also [182], asserts that every separable
Banach space S fits into an exact sequence

in which both A and B have the BAP. Since a Banach space E is separably injective
when Ext.S; E/ D 0 for all separable Banach spaces S, a 3-space argument yields
that a Banach space E is separably injective when Ext.S; E/ D 0 for all separable
Banach spaces S with the BAP. And since there exist a separable space K with the
BAP complementably universal for all separable spaces with the BAP [150, 213], it
follows that E is separably injective if and only if Ext.K ; E/ D 0. Therefore, there
exist (separable) Banach spaces that “test” the separable injectivity. The question is
then whether

• c0, or its quotients, could be test spaces for separable injectivity.
• c0.@/, or its quotients, could be test spaces for @C-separable injectivity.
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• `1, or (some of) its quotients, could be test spaces for universal separable
injectivity.

• `1.@/, or (some of) its quotients, could be test spaces for @C-universal
injectivity.

And if quotients of c0 are a puzzle, quotients of `1 are a conundrum, as we
discuss next.

6.3 Subspaces and Quotients of `1

Many results and ideas in this monograph wheel around the question about to what
extent universally separably injective spaces are “like” `1. This suggests:

Problem 7 Do there exist universally separably injective subspaces of `1 different
from `1?

Nonseparable separably injective subspaces of `1 different from `1 exist:
indeed, Marciszewski and Pol show in [193] that there exist at least 2c non-
isomorphic C-spaces arising as twisted sums of c0 and c0.c/. These are associated
to different choices of almost disjoint families (see Sect. 2.2.4) which yields 2c non-
mutually isomorphic separably injective subspaces of `1. None of them can be
universally separably injective since the pull-back space in a diagram of the form

cannot be universally separably injective: otherwise the two sequences above are
one pull-back of the other and then the diagonal principles yield

PB ˚ .`1=c0/ � `1 ˚ c0.� /;

implying that c0.� / should also be universally separably injective, which is not.
The same question for quotients has an obvious answer: `1=c0. A further result

in this direction follows from Dow and Vermeer [88]: if CH is assumed, every
compact F-space of weight @2 (or less) embeds as a closed subset of an extremely
disconnected compact space. Which implies that, under CH, every 1-separably
injective C-space of density character @2 (or less) is an isometric quotient of a 1-
injective Banach space.

As we have already remarked, there are subspaces G of `1 that are not L1
spaces but such that `1=G � `1. No characterization is known of the subspaces
X of `1 for which `1=X is (universally) separably injective. Quotients of `1 must
be Grothendieck spaces and quotients `1=L1 of `1 by a unspecified L1-space
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must be of type L1 since `��1 � L ��1 ˚ .`1=L1/��. We are specially interested
in the following case:

Problem 8 Is `1=CŒ0; 1	 separably injective?

Recall that since `1 is separably automorphic the space `1=CŒ0; 1	 is well
defined. But we do not know if `1=CŒ0; 1	 is even isomorphic to a (complemented
subspace of a) C-space. Additional information is contained in the following
proposition.

Proposition 6.6 Let L1 denote an arbitrary separable L1 space and let U be a
free ultrafilter on N. Then the following statements are equivalent:

1. `1=L1 is separably injective.
2. .L1/U=L1 is separably injective.
3. Œ`n1	U=L1 is separably injective.

Proof We already know that both Œ`n1	U and .L1/U are separably automorphic
so there is no need to particularize which embeddings L1 ! Œ`n1	U or L1 !
.L1/U are used. Look at the lower exact sequence in the complete push-out
diagram

Since the middle horizontal sequence splits, the lower sequence also splits and

.L1/U=L1 � .`1=L1/ ˚ ..L1/U=`1/:

Thus, since .L1/U=`1 is separably injective, the space .L1/U=L1 is sep-
arably injective if and only if `1=L1 is. We draw now the complete pull-back
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diagram

and recall that cU0 .N; `n1/ is separably injective (Theorem 2.21 plus Lemma 4.17).
Thus, if Œ`n1	U=L1 is separably injective then `1=L1 is separably injective by a
3-space argument applied to the upper sequence. If, however, `1=L1 is separably
injective then its quotient Œ`n1	U=L1 is separably injective by Proposition 2.11.

ut
Quotients of `1 by separable subspaces are also intriguing. The following

question was posted in Mathoverflow (http://mathoverflow.net/questions/148956/
quo\discretionary-tients-of-ell-infty-by-separable-subspaces) by the authors:

Problem 9 Under which conditions on a separable subspace M of `1 is the
quotient `1=M isomorphic to a subspace of `1?

No complete answer to the question above is known, but the following partial
results that appeared in that page are due to Bill Johnson, with slightly different
proofs:

Proposition 6.7 Let X and Y be subspaces of `1.

1. If X and Y are isomorphic, then `1=X embeds into `1 if and only if `1=Y
embeds into `1.

2. Suppose that Y � X and that `1=X embeds into `1. Then `1=Y embeds into
`1 if and only if X=Y embeds into `1.

3. If X is isomorphic to V� for some separable space V, then `1=X embeds into
`1.

4. If X is isomorphic to a subspace of a separable dual, then `1=X embeds into
`1.

5. If X contains c0 and X=c0 embeds into `1 then `1=X does not embed into `1.
6. If X embeds into L1Œ0; 1	, then `1=X embeds into `1.

http://mathoverflow.net/questions/148956/quodiscretionary {-}{}{}tients-of-ell-infty-by-separable-subspaces
http://mathoverflow.net/questions/148956/quodiscretionary {-}{}{}tients-of-ell-infty-by-separable-subspaces
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Proof

1. Let ˛ W X ! Y be an isomorphism and consider the diagram

By the injectivity of `1, both ˛ and ˛�1 can be extended to operators `1 !
`1. Thus, each sequence is a push-out of the other and the diagonal principle
(Proposition A.22) yields an isomorphism .`1=X/ ˚ `1 � .`1=Y/ ˚ `1:

2. In this case one has an exact sequence

Since “to be a subspace of `1” is a 3-space property [61, Theorem 3.2.h], the
result is clear.

3. Let q W `1 ! V be a quotient map. Then V� � .ker q/?, so we can assume
X D .ker q/? by (1). Hence `1=X � .ker q/�, which is a subspace of `1.

Part (4) is a direct consequence of (3), (2), and the fact that separable
subspaces embed in `1.

Part (5) follows from (1), (2) and the fact that `1=c0 does not embed into `1
since it contains an isometric copy of c0.� / with j� j D 2@0 .

6. The case X D L1Œ0; 1	 follows from (2) and the fact that L1Œ0; 1	 embeds into
CŒ0; 1	� as a complemented subspace: Since `1=CŒ0; 1	� and the complement
of L1Œ0; 1	 in CŒ0; 1	� embed into `1, so does `1=L1Œ0; 1	. The general case can
be proved as (4).

ut
Assertion (3) in Proposition 6.7 can be completed with:

Proposition 6.8 Let X be a separable Banach space such that Ext.X; `2/ ¤ 0. Then
`1=jŒX�	 is not an L1-space for any embedding j W X� �! `1.

Proof Let q W `1 �! X be a quotient map. Since Ext.X; `2/ ¤ 0, there exists a
nontrivial exact sequence 0 �! `2 �! Y �! X �! 0, and thus an operator
ker q �! `2 that cannot be extended to `1. Since every operator from an L1 into
a Hilbert space is 2-summing, it follows that ker q cannot be an L1-space and thus
.ker q/� D `1=q�ŒX�	 cannot be an L1-space.
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Now, let j W X� �! `1 be any embedding. The two sequences in the diagram

are one pull-back of the other since both q� and j can be extended to operators
`1 ! `1, so the diagonal principle (Proposition A.22) yields that `1˚.`1=jŒX�	/

is isomorphic to `1 ˚ .ker q/�; and thus `1=jŒX�	 cannot be an L1-space. ut
In particular, it could be interesting to know if there exists an infinite dimensional

separable subspace S of `1 for which `1=S � `1.

6.4 Examples of Separably Injective Spaces

We have seen that there are many natural examples of (universally) separably
injective spaces. A few more or less classical spaces could also enjoy separable
injectivity properties:

6.4.1 Tensor Products

The fact that when E is separably injective so is c0.E/ D c0 L̋ "E suggests:

Problem 10 Must F L̋ "E be separably injective if both E and F are?

We do not know the answer even if F is a C.K/-space, in which case C.K/ L̋ "E D
C.K; E/. A particularly interesting test case is that of the space

`1 L̋ "`1 D C.ˇN; C.ˇN// D C.ˇN � ˇN/:

The compact space ˇN � ˇN is not an F-space and it does not contain convergent
sequences. However, the space C.ˇN � ˇN/ D C.ˇN; C.ˇN// cannot be even a
Grothendieck space as it can be inferred from the following result of Cembranos
[72]: If K is an infinite compact and X is an infinite dimensional Banach space, then
C.K; X/ contains a complemented subspace isomorphic to c0. The validity of similar
statements for c0.@1/ under different axioms has been studied by several authors:
Galego and Hagler [100] show that under CH there is a compact K so that c0.@1/

embeds into C.K � K/ but not in C.K/; Dow et al. [89, Example 2.16] show that in
ZFC there exists C.K/ spaces with density 2@0 containing a copy of c0.@1/ and such
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that C.K �K/ does not contain c0.@1/ complemented; Candido and Koszmider [59]
show that it is consistent that if C.K/ has density character @1 and contains c0.@1/

then C.K � K/ contains c0.@1/ complemented.

6.4.2 Baire Classes

The Baire classes of functions on Œ0; 1	 were studied by Bade in [23]. As we shall
see, they share some of the properties of the universally separably injective spaces,
and therefore can be considered natural candidates to provide new examples of
separably injective spaces. We set B0 D CŒ0; 1	, and denote by B1 the class of all
bounded functions which are pointwise limits of functions in B0.

Definition 6.9 For each ordinal ˛ with 1 � ˛ � !1, we define the class of Baire
functions of order ˛, denoted B˛, as the class of all bounded functions which are
pointwise limits of functions in

S
ˇ<˛ Bˇ .

Bade shows in [23] that, for 1 � ˛ � !1, the space B˛ is linearly isometric to
C.K˛/, where K˛ is a totally disconnected compact space. He also shows that B!1

is the space of all bounded Borel measurable functions on Œ0; 1	. Dashiell shows in
[78] (see also [80, Corollary 8]) the following results:

• For ˛ < ˇ � !1, B˛ is not complemented in Bˇ.
• The spaces B˛ are injective for no ˛.
• The dual spaces B�̨ are linearly isometric to `�1, for 1 � ˛ � !1.
• For ˛ < !1, B˛ is not isomorphic to B!1 .
• B1 is not isomorphic to B˛ if ˛ > 1.
• For 1 < ˛ < ˇ < !1, the spaces B˛ and Bˇ are not isometric. It is apparently

unknown whether they are isomorphic.

Passing to separable injectivity affairs, Dashiell also shows that B!1 D C.K!1 /,
with K!1 �-Stonean. Since each �-Stonean compact is a totally disconnected F-
space, B!1 is 1-separably injective. In Proposition 2.16 it was already shown that
the space of all bounded Borel (resp. Lebesgue) measurable functions on the line
is 1-separably injective (we do not know however if those spaces are universally
1-separably injective in ZFC). One however has:

Proposition 6.10 The space B1 is not 1-separably injective.

Proof Let Q D q1; q2; : : : and Q0 D q0
1; q0

2; : : : be two disjoint countable dense
subsets of Œ0; 1	. We consider the following sequences of functions of the first Baire
class:

fn D 1qn ; gn D 1Œ0;1	 � 1q0n :

Then fn � gm for every n; m; hence, if B1 were 1-separably injective, then there
would exist h 2 B1 such that fn � h � gm for every n; m. Consider A D
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h�1.�1; 0:4	 and B D h�1Œ0:6; C1/. Then, since h is of the first Baire class, A
and B must be Gı sets, and since Q � B and Q0 � A, they are dense sets. But
A \ B D ¿ while the intersection of two dense Gı sets is a dense Gı set. ut

Thus, while B1 is not 1-separably injective, B1 \`c1Œ0; 1	 is 2-separably injective:
see the discussion after Theorem 2.18. Moreover, for all ˛ � 1 the spaces B˛ enjoy
Rosenthal’s property .V/ and thus, in particular, they are Grothendieck spaces [79,
Theorem 3.5].

Problem 11 For which 1 � ˛ < !1 is the space B˛ (universally) separably
injective?

However, the question that motivated our interest in Baire classes is the possi-
bility of having the following type of “surrogate” separable injectivity: Does there
exist a function f W !1 ! !1 such that given a separable Banach space X and a
subspace Y � X every operator t W Y �! B˛ admits an extension T W X �! Bf .˛/?

6.4.3 C.N�/ and Its @-Injectivity

We know that C.N�/ fails to be cC-injective (Proposition 2.43) and that it fails to be
.1; @2/-injective (Proposition 5.18). The next question is however open:

Problem 12 Is it consistent that C.N�/ is (universally) @2-injective?

Still, the answer is no for c < 2@1 : since C.N�/ contains c0.@1/, it contains a
c0.@1/-supplemented copy; so, by Theorem 5.10, C.N�/ should contain `1.@1/,
which is impossible if c < 2@1 .

It is not difficult to see that a necessary condition for C.N�/ to be universally
@2-injective is that every operator c0.@1/ ! C.N�/ can be extended to C.N�/. One
thus has encountered the notion of space c0.@1/-extensible (cf. [199]):

Definition 6.11 Let M be a class of Banach spaces.

• A Banach space X is said to be M-extensible if every operator A ! X with A a
subspace of X in M can be extended to an operator X ! X.

• A Banach space X is said to be M-automorphic if every isomorphism between
two spaces A; B 2 M that are subspaces of X and for which X=A and X=B have
the same density character can be extended to an automorphism of X.

For instance, the choice of M as the class of all separable spaces leads to
separably automorphic spaces; the choice M D fYg leads to Y-automorphic spaces.
When M are “all spaces” then we get the notions of extensible and automorphic
space. For instance, `1 is extensible but not automorphic while `2 is automorphic
but not injective. It is proved in [199] that M-automorphic implies M-extensible.

We see in this way that the problem of injectivity-like properties of C.N�/

is connected at a deep level with its c0.@1/-automorphic character: If C.N�/ is
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not c0.@1/-extensible then it cannot be (universally) @2-injective. Moreover, if all
copies of c0.@1/ in C.N�/ are c0.@1/-supplemented then by Theorem 5.30 the space
C.N�/ is c0.@1/-automorphic, hence c0.@1/-extensible. Obviously, we do not know
if C.N�/ is c0.@1/-extensible:

Problem 13 Is C.N�/ a c0.@1/-automorphic space?

The study of partially automorphic spaces goes beyond the scope of this
monograph, and the interested reader is addressed to [17, 19, 63, 67, 199]. A
few additional results will help to complete the picture about C.N�/ and will
complement Sect. 2.6. We have already shown that C.N�/ is separably automorphic,
a property somehow inherited from `1. So, it would be nice to know “how much”
automorphic the space is. In any case, it will be partially automorphic in a different
sense from `1, since `1 is automorphic for subspaces X so that `1=X contains
`1, while C.N�/ is not since C.N�/ is not C.N�/-automorphic. In contrast with
Proposition 2.55 (1), we do not know if the quotient of a separably automorphic
space by a separably injective space is separably automorphic.

It is obvious that in a c0-automorphic space either all copies of c0 are com-
plemented or all of them are uncomplemented. It follows from Lemma 2.48
that C-spaces in which every copy of c0 is complemented are c0-automorphic.
These spaces include C-spaces over Eberlein compacta by Proposition 2.57 or
ordinal compacta. The C-spaces in which no copy of c0 is complemented are
Grothendieck, but their analysis is not so simple. In particular, some are c0-
automorphic (universally separably injective spaces, for instance) while others are
not: if H denotes Haydon’s Grothendieck C-space without copies of `1, the space
`1 ˚ H is not c0-automorphic. Indeed, if � W `1 ˚ H �! `1 ˚ H is an
automorphism sending c0 ˚ 0 to 0 ˚ c0 and �H W `1 ˚ H �! H denotes the
projection onto the second coordinate, then �H �j`1 W `1 ! H cannot be weakly
compact, hence must be an isomorphism on a copy of `1, which is also impossible.

Copies of c0 must also be complemented in any WCG Banach superspace,
as it can be proved using the classical Amir-Lindenstrauss Theorem [6]. The
natural question of whether the same happens for c0.� /—must copies of c0.� /

be complemented in every WCG superspace?—has a negative answer, as it was
already mentioned in Sect. 2.2.4. More precisely, [13, 192], there exists under GCH
an Eberlein compact E such that C.E / contains an uncomplemented copy of c0.@!/.
The C-space C.E / ˚ c0.@!/ is therefore WCG and it is not c0.@!/-automorphic.
This shows that the situation is very different from that for c0 and some restrictions
in size are necessary. Indeed, if E is an Eberlein compact of weight @ then, by
Theorem 4.2 in [35], C.E/ contains a copy of c0.@/. For @ D @n, n < !, all those
copies must be complemented in C.E/ due to the following result in [13]:

Theorem 6.12 Let K be a Valdivia compact and let � be a set with cardinal j� j D
@n for some n < !. Then every �-isomorphic copy of c0.� / inside C.K/ is 2nC1�-
complemented.

However, we do not know if C.E/ is c0.@n/-automorphic. A positive answer
to the following question would imply that C.E/ is in fact H-automorphic for all
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subspaces H � c0.@n/: Let E be an Eberlein compact and @ < @! . Does every
complement of c0.@/ in C.E/ (having density character at least @) contain a copy
of c0.@/? Recall that it is even unknown if a complement of c0.@n/ in C.E/ must be
isomorphic to a C-space.

6.5 Ultraproblems

Since ultrapowers of L1 have emerged as unexpected universally separably
injective spaces, questions involving ultraproducts are natural. The Henson-Moore
classification problem of L1-spaces by isomorphic ultrapowers ([134, p. 106],
[128, p. 315], [130]) is perhaps the deepest:

Problem 14 How many ultratypes of L1-spaces are there?

The results in Chap. 4 show only two different ultra-types of L1-spaces: that of
C-spaces and that of spaces of almost universal disposition. It would be interesting
to add some new classes here. If one is thinking about obtaining a third type,
probably the best candidates are “the” quotient CŒ0; 1	=G (more natural should
be thinking about the space `1=G , which is uniquely defined by the separably
automorphic character of `1) or the subspace ker � of a (rightly chosen) quotient
map � W CŒ0; 1	 ! G (see Sect. 6.6). Of course that we do not know whether
CŒ0; 1	=G or `1=G are C-spaces, whether they have the same ultratype of a C-
space, or even if both have the same ultratype.

Even if we would pay for a third ultratype, some of the authors believe that:

Conjecture 1 There is a continuum of different ultratypes of L1-spaces.

Reasonable candidates to get such a continuum could then be hereditarily
indecomposable L1-spaces [12, 240], exotic preduals of `1 as in [34, 104], some
Bourgain and Pisier [47] or Bourgain and Delbaen [14, 46] spaces, or some of the
L1-envelopes constructed in [69].

We pass now to problems involving ultraproducts and exact sequences. Recall
from [140, 207] that if 0 ! Y ! X ! Z ! 0 is an exact sequence and U is an
ultrafilter then 0 ! YU ! XU ! ZU ! 0 is also exact (see [61, Lemma 2.2.g]).
No criterion however is known to determine when the ultrapower sequence of a
nontrivial exact sequence is again nontrivial.

Definition 6.13 We will say that an exact sequence ultra-splits if some of its
ultrapower sequences split.

From the results in Sect. 3.3.4, and more specifically Corollary 4.14, one has:

Proposition 6.14 Any exact sequence 0 �! Y �! X �! Z �! 0 in which X
is a C-space and either Y or Z are spaces of almost universal disposition does not
ultra-split.
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Proposition 4.30 shows that the exact sequence

from Example 2.24 in Sect. 2.2.6 yields a nonseparable Lindenstrauss space which
is complemented in no C-space, although it does have an ultrapower isomorphic to
a C-space (cf. Proposition 4.27). We do not know, however, if the sequence above
ultra-splits.

Ultra-splitting problems are connected to the 3-space problem for universal
separable injectivity discussed in Sect. 6.2. Indeed, if universal separable injectivity
were a 3-space property then one would have Ext.C.N�/; C.N�// D 0, which
implies, under CH, that all exact sequences of the form (here � is the Cantor set)

(6.2)

ultra-split no matter whether they are trivial or not. This was claimed in [21,
Example 4.5(a)], but we do not know if it is true or not.

Indeed, assuming CH, one has C.�/U � C.N�/ for all free ultrafilters on the
integers U (Proposition 4.12). Hence the ultrapower sequence of (6.2) has the form

and would split if Ext.C.N�/; C.N�// D 0 were true. This could apply to the exact
sequence

constructed in [57, Corollary 2.4] which has the form (6.2) since CŒ0; 1	 � C.�/

by Milutin’s theorem. Thus, if the assertion Ext.C.N�/; C.N�// D 0 were true, and
under CH, the space ˝U � C.N�/ ˚ C.N�/ would be isomorphic to a C-space, in
spite of the fact [57, Corollary 2.4] that ˝ is not even isomorphic to a quotient of a
Lindenstrauss space.

Some of the authors believe that the following holds:

Conjecture 2 Every exact sequence 0 �! L1 �! X �! C �! 0 in which L1
denotes an arbitrary L1-space and C an arbitrary C-space ultra-splits.

We conclude this section with the explicit formulation of several open ends
already mentioned though the text:

• Since both G and C-spaces are Lindenstrauss spaces, it makes sense to ask: Does
every L1-space have an ultrapower isomorphic to a Lindenstrauss space?

• Does every (infinite-dimensional, separable) Banach space X have an ultrapower
isomorphic to its square? What if X is an L1-space?

• Are the classes of C0-spaces and M-spaces closed under “isometric ultra-roots”?
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• Does the Gurariy space have an ultrapower isometric (or isomorphic) to an
ultraproduct of finite dimensional spaces? Since spaces of universal disposition
cannot be complemented in C-spaces, if GU D .Gi/V then the spaces Gi cannot
be “uniformly injective”.

• Are Lindenstrauss ultraproducts via @-good ultrafilters universally @-injective
spaces in ZFC? In other words, can the conclusion of Theorem 5.15 be
strengthened to obtain universal injectivity? Notice that this is sensitive to
axioms. The answer is of course affirmative under GCH by Theorem 5.15 and
Proposition 5.13.

• Another question regarding a possible generalization of Theorem 5.15 is whether
the hypothesis “Lindenstrauss” can be weakened to just “L1-space”: Namely,
prove or disprove that every ultraproduct built over an @-good ultrafilter is @-
injective as long as it is an L1-space.

6.6 Spaces of Universal Disposition

In this section, if no further specification is made, universal disposition means “with
respect to finite dimensional spaces”. Up to now, under CH, we have encountered
two non-isomorphic spaces of universal disposition: The Grothendieck space S !1

and the non-Grothendieck (since it contains c0 complemented) space F!1 .
Problem 7 of Sect. 6.3 can be reformulated here for spaces of universal disposi-

tion:

Problem 15 Do there exist subspaces of `1 of universal disposition?

Observe that a space of universal disposition for separable spaces cannot be a
subspace of `1 since it must contain copies of all spaces of density character @1,
such as `2.@1/. It could help to decide whether F!1 is a subspace of `1 to know if
it contains a subspace isomorphic to `2.@1/.

The same question for quotients of `1 has an affirmative answer, at least under
CH: Johnson and Zippin proved in [147] that every separable Lindenstrauss space
is a quotient of C.�/, where � is the Cantor set. So one has an exact sequence

(6.3)

No ultrapower of this sequence splits by the results in Sect. 3.3.4; see also
Proposition 6.14. Under CH, the ultrapower sequence with respect to any free
ultrafilter U on N has the form

and thus GU is a quotient of `1. Observe that F!1 cannot be a quotient of `1 since
c0 is not.
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Regarding the nature of ker � , Pełczyński posed on the blackboard to us the
question of whether it is possible to identify the kernel(s) of the sequence(s) (6.3),
and in particular if some such kernel can be a C-space. It is not hard to check that
ker � is an L1-space when � is an “isometric” quotient in the sense that it maps the
open unit ball of C.�/ onto that of G . On the other hand, it is possible to get another
quotient map $ W C.�/ �! G whose kernel is not an L1-space: to this end,
recall that Bourgain has shown that `1 contains an uncomplemented copy of itself.
An obvious localization argument yields an exact sequence 0 �! B� �! c0 �!
c0 �! 0 in whichB� cannot be an L1-space. See [45, Appendix 1]. “Multiplying”
the sequence above by any exact sequence 0 �! Y �! C.�/ �! G �! 0 one
gets the exact sequence 0 �! Y ˚B� �! C.�/˚c0 �! G ˚c0 �! 0. Since both
C.�/ and G have complemented subspaces isomorphic to c0, this sequence can be
written as 0 �! Y ˚ B� �! C.�/ �! G �! 0 in which the kernel Y ˚ B� is
not even an L1-space.

Again, a positive measure subset of authors believes that the following problem
has an affirmative answer:

Problem 16 Is there a continuum of mutually non-isomorphic spaces of universal
disposition having density character c?

The connection between universal disposition and transitivity is not yet clearly
understood. In particular is not clear if every space of universal disposition for
finite dimensional spaces must be F-transitive or whether every space of universal
disposition for separable spaces must be separably transitive. Ultrapowers are also
involved into these affairs: Since it is well known that ultrapowers of almost
isotropic spaces are isotropic, one is tempted to believe that the proof for the
following question is at hand

Problem 17 Do ultrapowers of almost F-transitive spaces must be F-transitive?

More yet: Is every ultrapower of a space of almost universal disposition separably
transitive?

In a different direction it would be interesting to know if the class of almost
isotropic spaces is “axiomatizable”, equivalently if every Banach space whose
ultrapowers are isotropic is itself almost isotropic; see [28] for a related discussion.

6.7 Asplund Spaces

A Banach space is called an Asplund space if every separable subspace has
separable dual. One of the referees of this work formulated the problem of whether
a classification of Asplund separably injective spaces is possible. More precisely, he
asked:
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Problem 18 Is it true that every Asplund separably injective space is c0-upper-
saturated? Does there exist an Asplund separably injective space that contains an
infinite dimensional reflexive subspace?

Observe that Proposition 2.10 can be translated into:

Proposition 6.15 A separably injective space is Asplund if and only if it does not
contain CŒ0; 1	.

Bourgain [43] (see also [105]) proved that any operator T W CŒ0; 1	 �! X
that fixes a subspace of finite cotype also fixes a subspace isomorphic to CŒ0; 1	.
Thus, an Asplund and separably injective space X cannot contain finite cotype (in
particular, superreflexive) subspaces: the corresponding embedding would extend
to CŒ0; 1	 providing a copy of CŒ0; 1	 inside X. Gasparis [102] showed a similar
result for asymptotically `1 spaces, and therefore an Asplund separably injective
space cannot contain asymptotically `1 spaces. Rosenthal’s conjecture is that any
operator T W CŒ0; 1	 �! X that fixes an infinite dimensional subspace not
containing c0 would also fix a copy of CŒ0; 1	. If this were true, an Asplund
separably injective space would be c0-saturated. Gasparis [103] solves affirmatively
Rosenthal’s conjecture under the conditions that the operator is contractive and its
restriction to the subspace is an isometry. One therefore has:

Proposition 6.16 Every infinite dimensional Asplund 1-separably injective space
is c0-saturated.

It seems very likely that infinite dimensional Asplund 1-separably injective
spaces do not exist.

6.8 Grothendieck Spaces

As we have already mentioned, it is an open problem that seems to have been
first posed by Lindenstrauss—see [167, 226]—to characterize Grothendieck C.K/

spaces in terms of topological properties of K. An obvious necessary condition
is that every convergent sequence in K is eventually constant. The condition is
insufficient since C.ˇN�ˇN/ contains complemented copies of c0. There is another
example due to Schlumprecht [227, 5.4] of a C.K/-space with the Gelfand-Phillips
property (something that a Grothendieck space cannot have) without non-stationary
convergent sequences in K. Koszmider remarks in [167] that the class of compact
spaces where every convergent sequence is eventually constant does not admit a
characterization by means of isomorphic properties of the Banach space C.K/. To
show this, consider an example of Schachermayer in [226] of the Stone compact
associated to the Boolean algebra A of all subsets A of N such that 2n 2 A if and
only if 2n C 1 2 A for all but finitely many n 2 N. The compact space S.A/ does
not contain non-stationary convergent sequences for almost the same reason as ˇN

does not: in fact, S.A/ n N is homeomorphic to ˇN n N. The space C.S.A// is not
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Grothendieck since T. f / D . f .2nC1/�f .2n//n defines an operator C.S.A// �! c0

which is onto because all the norm one finitely supported sequences are in the image
of the closed unit ball. On the other hand C.S.A// � `1 ˚c0 � C.ˇNt˛N/, while
the compact ˇN t ˛N has non-stationary convergent sequences.

A Banach space characterization of Lindenstrauss spaces which are
Grothendieck spaces is simple: not containing complemented copies of c0. A
Banach space characterization of Grothendieck L1-spaces seems to be unknown.
We conjecture

Conjecture 3 Every L1 space that contains no complemented separable subspaces
is a Grothendieck space.

The next proposition is implicit in Lindenstrauss [177]:

Proposition 6.17 An L1-space X is Grothendieck if and only if every operator
T W X ! S with S separable can be extended everywhere.

Proof Let S be a separable space, let j W X ! E be an embedding and let t W X ! S
be an operator. Since X is Grothendieck, t must be weakly compact, hence t�� W
X�� ! S is well defined. Since X is an L1-space, X�� is injective and thus it is
complemented in E��. Therefore t�� admits an extension T W E�� ! S, whose
restriction to E is an extension of t. The converse is clear just embed X into some
`1.� /. ut

We have already mentioned that Grothendieck spaces of type L1 do not
necessarily contain `1: Talagrand [239] constructed, under CH, a Grothendieck
C-space that does not have `1 as a quotient; while Haydon [125] obtained an
independent construction, in ZFC, of a Grothendieck C-space that does not admit
`1 as a subspace. The density character of Grothendieck spaces was treated in
Brech [48] who constructed by forcing an example of a Grothendieck space C.Br/

of density @1 in a certain model in which c D @2. In particular, C.Br/ is a
subspace of ` W 1 and cannot contain `1. More examples of Grothendieck spaces
without copies of `1 and additional properties have appeared after Koszmider’s
construction of C-spaces with few operators in [166, 167]. The example of Brech
shows that the assumption of the existence of a nonreflexive Grothendieck space of
density @1 is weaker than CH: there are models of ZFC where no nonreflexive
Grothendieck space of density @1 exists. In particular, if s denotes the smallest
cardinal � such that Œ0; 1	� is not sequentially compact then one has:

Proposition 6.18 Every Grothendieck space with density character strictly smaller
than s must be reflexive.

Proof Assume that X is a Grothendieck space with density character smaller than
s. Its dual unit ball in the weak* topology will be a compact having weight smaller
than s, hence sequentially compact. By the Grothendieck character, it will also be
weakly sequentially compact and X� should be reflexive, as well as X. ut

As it is well-known, @0 < s � c and s D c under Martin’s axiom, and in
particular @1 < s is consistent. If p is defined as the least cardinality of a family F
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of infinite subsets of N which is closed under finite intersections and such that for
every infinite subset A of N there exists B 2 F such that A n B is infinite (in other
words, the smallest cardinal of a filter base in P.N/= fin whose filter is not contained
in a principal filter) then consistently p < s (see [86]).

The following point regarding the relation between separable injectivity and
Grothendieck character remains unsolved:

Problem 19 Is every �-separably injective space, with � < 2, a Grothendieck
space?

This has obvious connections with Problem 1. Another problem connecting
Grothendieck spaces and cardinals is the following: Let .Ei/i2I be a family of
Banach spaces containing no complemented copy of c0. Can `1.I; Ei/ contain a
complemented copy of c0? Leung and Räbiger show in [174] that if jIj is not
real-valued measurable and .Ei/i2I is a family of Grothendieck spaces that are
Lindenstrauss spaces then `1.I; Ei/ is a Grothendieck space and so it cannot contain
a complemented copy of c0. See Sect. 2.2.6.

Although the existence of real-valued measurable cardinals cannot be proved in
ZFC, such cardinals, if they exist, need not to be very large: Ulam proved in [243]
that if real-valued measurable cardinals do exist then the continuum is one (cf. [142,
Theorem 10.1]).
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