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Preface

The Plot

Injective Banach spaces are those spaces that allow the extension of any operator
with values in them to any superspace. Finite dimensional and `1 are the simplest
examples of injective spaces. When a Banach space is injective, there automatically
appears a constant that controls the norms of the extensions. At the other end of
the line, we encounter the Banach spaces allowing the “controlled” extension of
finite-rank operators, which form the well-known class of L1-spaces.

The main topic of this monograph lies between these two extremes: Banach
spaces that allow a controlled extension of operators under certain restrictions on the
size of their range or the size of the spaces to where they can be extended. The basic
case is that of Banach spaces allowing the extension of operators from subspaces of
separable spaces, called separably injective, for which c0 is the simplest example.
The second more important case is that of Banach spaces allowing the extension of
operators from separable spaces elsewhere, called universally separably injective,
for which the space `c1.� / is the perfect example.

This monograph contains most of what is currently known about (universally)
separably injective spaces; and certainly it contains all we know plus a good part of
all we don’t. Chapters 1–5, whose content we describe below, give a rather detailed
account of the current theory of separable injectivity, with its many connections
and applications. At the same time, the “Notes and remarks” sections at the end of
each chapter and the entire “Open problems” section in Chap. 6 provide a large-
scale map of the land beyond the sea. We have decided not to reproduce here
several items already covered in books. The best example of this would be Zippin’s
theorem asserting that c0 is the only separable separably injective Banach space, for
which an exceptionally limpid exposition can be found in [253]; see also [33]. Other
seemingly relevant pieces of information can be found in the literature, but as we
were unable to establish precise connections with our topic, we chose to omit them.

v



vi Preface

Injectivity vs. (Universal) Separable Injectivity

The reader is referred to either the Preliminaries or the Appendix for all unexplained
notation.

A Banach space E is said to be injective if for every Banach space X and every
subspace Y of X, each operator tWY ! E admits an extension TWX ! E. The space
is said to be �-injective if, besides, T can be chosen so that kTk � �ktk.

The space `1 is the perfect example of 1-injective space, and a key point is
to determine to what extent other injective spaces share the properties of `1.
On the positive side, one should score the results of Nachbin and Kelley who
characterized the 1-injective spaces as those Banach spaces linearly isometric to
a C.K/ space, with K an extremely disconnected compact space. On the other hand,
the research of Argyros, Haydon, Rosenthal, and other authors provided several
general structure theorems, good examples of exotic injective spaces, and the feeling
that the complete classification of injective Banach spaces is an unmanageable
problem.

Most of the research on injective spaces has revolved around the following
problems:

(1) Is every injective space isomorphic to a 1-injective space?
(2) Is every injective space isomorphic to some C.K/-space?
(3) What is the structure of an injective space?

Admittedly, (3) is rather vague and (2) is a particular case of the more general
problem of finding out whether or not a complemented subspace of a C.K/-space is
again isomorphic to a C.K/-space (the compact space may vary). These problems
have remained open for 50 years, (1) and (3) even in the case in which the injective
space is a C.K/-space. We refer the reader to Chap. 1 for a summary of what is
known about injective spaces.

In this monograph, we deal with several weak forms of injectivity, mainly
separable injectivity and universal separable injectivity. A Banach space E is said
to be separably injective if it satisfies the extension property in the definition
of injective spaces under the restriction that X is separable; it is said to be a
universally separably injective if it satisfies the extension property when Y is
separable. Obviously, injective spaces are universally separably injective, and these,
in turn, are separably injectives; the converse implications fail. The corresponding
definitions of �-separably injective and universally �-separably injective should be
clear.

The study of separably injective spaces was initiated by Phillips [216] and
Sobczyk [235], who showed that c (resp. c0) is 2-separably injective. Later Zippin
[252] proved that c0 is the only (infinite dimensional) separable space that is
separably injective. Moreover, Ostrovskii [208] proved that a �-separably injective
space with � < 2 cannot be separable, Baker [25] and Seever [228] studied
separably injective C.K/ spaces, and several results in the literature on the extension
of operators can also be formulated in terms of separably injective spaces. Separably
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injective spaces have been studied more recently by several authors such as
Rosenthal [225], Zippin [253], Johnson and Oikhberg [146], and also by the present
authors in [20], where the notion of universal separable injectivity was formally
introduced.

The theory of separably injective and universally separably injective spaces is
quite different from that of injective spaces, is much richer in examples, and contains
interesting structure results and homological characterizations. For instance, prob-
lems (1) and (2) above have a negative answer for separably injective spaces, and
quite interesting information about the structure of (universally) separably injective
spaces can be offered. Moreover this theory is far from being complete: many
open problems can be formulated (see Chap. 6) that we expect can be attractive for
Banach spacers and could foster the interest in studying injectivity-like properties
of Banach spaces.

A Brief Description of the Contents of This Monograph

After this Preface, “Preliminaries” section contains all due preliminaries about
notation and basic definitions. An Appendix at the end of the book describes
the basic facts about L1 and L1-spaces, homological techniques, and transfinite
chains that will appear and be used throughout the monograph. Other definitions,
properties, or required constructions will be given when needed.

In Chap. 1, we gather together properties of injective Banach spaces, basic
examples and counterexamples, and criteria that are useful to prove that certain
spaces are not injective. These facts will be used later and will allow the reader to
compare the stability properties and the variety of examples of injective spaces with
those of (universally) separably injective spaces.

In Chap. 2, we introduce the separably injective and the universally separably
injective Banach spaces, as well as their quantitative versions, and obtain their basic
properties and characterizations. We establish that infinite-dimensional separably
injective spaces are L1-spaces, contain c0, and have Pełczyński’s property .V/.
Universally separably injective spaces, moreover, are Grothendieck spaces, contain
`1, and enjoy Rosenthal’s property .V/. We also prove a number of stability results
that allow us to present many natural examples of separably injective spaces, such
as C.K/-space when K is either an F-space or has finite height, twisted sums and c0-
vector sums of separably injective spaces, etc., including an example of a separably
injective space that is not isomorphic to any complemented subspace of a C.K/-
space, which solves problem (2) above for separable injectivity. In passing, these
facts provide a major structural difference between �-separably injective spaces for
various values of �, something that currently does not exist for injective spaces:
1-separably injective spaces are Grothendieck and Lindenstrauss spaces; hence they
must be nonseparable when they are infinite dimensional. However, 2-separably
injective spaces can be even separable.
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The fundamental structure theorem for universally separably injective spaces is
that a Banach space E is universally separably injective if and only if every separable
subspace is contained in a copy of `1 inside E. This establishes a bridge toward
the study of the partially automorphic character of (universally) separably injective
spaces, namely, toward determining in which cases an isomorphism between two
subspaces extends to an automorphism of the whole space.

Homological characterizations are possible: recall that Ext.Z;Y/ D 0means that
whenever a Banach space isomorphic to Y is contained in a Banach space X in such
a way that X=Y is isomorphic to Z, it must be complemented. In this language, a
space E is separably injective if and only if Ext.S;E/ D 0 for every separable space
S. For universally separably injective spaces, we have less: if Ext.`1=S;U/ D 0

for every separable space S, then U is universally separably injective. A problem
that is crying out to be solved is whether also the converse holds: Does the identity
Ext.`1;U/ D 0 characterize universally separably injective spaces U? A rather
detailed discussion can be found in Sect. 6.2.

Section 2.4 is specifically devoted to 1-separably injective spaces. At this point,
set theory axioms enter the game. Indeed, Lindenstrauss obtained in the mid-1960s
what can be understood as a proof that, under the continuum hypothesis CH,
1-separably injective spaces are 1-universally separably injective; he left open the
question in general. We show how to construct (in a way consistent with ZFC)
an example of a Banach space of type C.K/ that is 1-separably injective but not
1-universally separably injective. The chapter closes with a detailed study of the
separable injectivity and related homological properties of C.N�/.

Chapter 3 focuses on the study of spaces of universal disposition because they
will provide new (and, in the case of p-Banach spaces, the only currently known)
examples of (universally) separably injective spaces. We present a basic device to
generate such spaces. The device is rather flexible and thus, when performed with
the appropriate input data, is able to produce a great variety of examples: the Gurariy
space G [118], the p-Gurariy spaces [58], the Kubiś space [169], new spaces such
as F!1 which is of universal disposition for all finite-dimensional spaces but not for
separable spaces, or the L1-envelopes obtained in [69]. Remarkable outputs are
the examples of a 1-separably injective spaces S !1 and a 1-universally separably
injective space U !1 that are not isomorphic to complemented subspaces of any C-
space (or an M-space), which solves problem (2) for the classes of (universally)
1-separably injective space in a somewhat surprising way. These spaces turn out to
be of universal disposition for separable spaces, which confirms a conjecture made
by Gurariy in the 1960s. Moreover, under CH, the space S !1 coincides with the
Fraïssé limit in the category of separable Banach spaces considered by Kubiś [169]
and with the countable ultrapowers of the Gurariy space.

In Chap. 4, we study injectivity properties of ultraproducts. We show that
ultraproducts built over countably incomplete ultrafilters are universally separably
injective as long as they are L1-spaces, in spite of the fact that they are never
injective. Then, we focus our attention on ultraproducts of Lindenstrauss spaces,
with special emphasis in ultrapowers of C.K/-spaces and the Gurariy space. With
the aid of M-ideal theory, the results can be applied to the lifting of operators and to
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the study of the behavior of the functor Ext regarding duality. One section is devoted
to the Henson-Moore classification problem of isomorphic types of ultrapowers of
L1-spaces. A particular concern of the authors has been to make clear which results
can be proved without invoking “model theory” and which ones still belong to that
domain.

In Chap. 5, we consider a natural generalization of separable injectivity to
higher cardinals. Namely, given an infinite cardinal @, we say that E is @-injective
(respectively, universally @-injective) if it satisfies the extension property stated
at the beginning for spaces X (respectively, for subspaces Y) having density
character strictly smaller than @. Stopping at the first uncountable cardinal @1,
one reencounters the classes of (universally) separably injective spaces. Some facts
generalize to the higher cardinal context (say, there exist .1;@/-injective spaces that
are complemented in no M-space), but some others offer difficulties. For example,
we need to restrict to what we call c0.@/-supplemented subspaces in order to extend
the results on universally separably injective spaces; or, concerning ultraproducts,
we have to deal with@-good ultrafilters. The chapter includes a study of spaces C.K/
which are .1;@/-injective and a study of the interplay with topological properties of
the compact space K in the form of a rather satisfactory duality between extension
properties of operators into C.K/ and lifting properties of continuous maps from K.

At the end of each chapter, we have included a “Notes and Remarks” section
containing additional information, mainly considered from the positive side. A final
Chap. 6 describes problems related to the topics of this monograph that remain open.
We have chosen to give the available information about them—including partial
solutions, connections with other results, etc.—in order that it could be helpful for
further research.
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Preliminaries

Banach Spaces and Operators

Throughout the book, the ground field is R and all Banach spaces are assumed to
be real unless explicitly stated otherwise. Most of the results presented here can be
adapted to the complex setting, but, in general, we will refrain from doing it. See,
however, Sect. 2.7.2.

In a typical situation, we will have an operator t W Y ! E acting between
Banach spaces, a further space X containing Y, and we deal with the possibility
(or impossibility) of extending t to an operator T W X ! E. Operators are always
assumed to be linear and continuous. The space of operators from A to B is denoted
by L.A;B/.

The Banach-Mazur distance between the Banach spaces X and Y is

d.X;Y/ D inffkuk � ku�1k W u is an isomorphism between X and Yg:

The spaces X and Y are said to be �-isomorphic if there is an isomorphism u W
X ! Y such that kukku�1k � �. By writing X � Y, we indicate that X and Y are
isomorphic. By writing X � Y, we mean that they are isometric.

The density character of a Banach space X is the least cardinal that a subset
spanning a dense subspace of X can have, and it is denoted by dens.X/. Note that
dens.X/ D dim.X/ for X finite dimensional, and for infinite-dimensional X, our
definition of dens.X/ coincides with the usual one in topology: the least cardinal of
a dense subset of X.

The twisting process is a rather natural method to obtain new spaces from old.
A twisted sum of two Banach spaces Y and Z is a Banach space X containing a
subspace Y 0 isomorphic to Y so that X=Y 0 is isomorphic to Z. In the homological
language, this can be represented with an exact sequence

xiii
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The twisted sum above is said to be trivial when jŒY� is complemented in X, which
implies that X � Y˚Z. Short exact sequences are often used in this book; the reader
is referred to Appendix A.4.4 for more information. Here we only recall that, given
Banach spaces Z and Y, we write Ext.Z;Y/ D 0 to mean that all twisted sums of Y
and Z are trivial.

A property P is said to be a three-space property if whenever one has an exact
sequence

in which both Y and Z have P, then also X has P. Thus, given a three-space property
P, a space X has P whenever a subspace Y and the corresponding quotient X=Y have
P. For instance, separability and reflexivity are three-space properties, while “to be
a subspace of c0.I/” and Pełczyński’s property .V/ are not. To determine whether
a given property is a three-space property is called a three-space problem. See [61]
for a general background on three-space problems.

Classes of Banach Spaces

Given a set � , we denote by `1.� / the space of bounded functions f W � ! R

endowed with the supremum norm, and c0.� / is the closed subspace spanned
by the characteristic functions of the singletons of � . Clearly, the isometric type
of `1.� / depends only on @ D j� j, and sometimes we write `1.@/ with the
obvious meaning. Similar conventions apply to c0.@/ and `p.@/, the usual space of
p-summable families. When � D N or @ D @0, we just write `p and c0.

Given a measure � and 1 � p < 1, we denote by Lp.�/ the space of functions
whose pth power is integrable with respect to �. As usual we identify functions
which agree almost �-everywhere. The space of essentially bounded functions is
denoted by L1.�/ and carries the essential supremum norm. The space of all
continuous functions on a compact space K is denoted by C.K/, and, given a locally
compact space L, we denote by C0.L/ the space of continuous functions f W L! R

“vanishing at infinity,” that is, such that for every " > 0, the set fx 2 L W jf .x/j � "g
is compact. These spaces are equipped with the sup norm.

When dealing with “vector-valued spaces,” we will take care of using the
following notation: If .Ei/i2I is a family of Banach spaces, then `1.I;Ei/ denotes
the space of families .xi/i2I such that xi 2 Ei for every i 2 I and supi2I kxik < 1,
with the obvious norm. The same convention applies to the spaces c0.I;Ei/ and
`p.I;Ei/. We omit the index set only if I is countable and all spaces Ei coincide with
a single space E, in which case we simply write `1.E/, c0.E/ and `p.E/.

By a C-space, we mean a Banach space isometrically isomorphic to C.K/
for some (often unspecified) compact Hausdorff space K. This unusual notation
is borrowed from lattice theory, where an M-space is a Banach lattice where
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kxC yk D max.kxk; kyk/ provided x and y are disjoint, that is, jxj ^ jyj D 0. Each
M-space is representable as a (concrete) sublattice in some C.K/.

A Banach space X is said to be an Lp;�-space (with 1 � p � 1 and � � 1)
if every finite-dimensional subspace of X is contained in another finite-dimensional
subspace of X whose Banach-Mazur distance to the corresponding `n

p is at most �.
A space X is said to be an Lp-space if it is an Lp;�-space for some � � 1; we
will say that it is an Lp;�C-space when it is an Lp;�0-space for all �0 > �. Similar
conventions apply to properties and classes of Banach spaces depending on a real
parameter. A Lindenstrauss space is one whose dual is linearly isometric to L1.�/
for some measure �. Lindenstrauss spaces and L1;1C-spaces are identical classes.

We are especially interested in L1-spaces and, to some extent, in L1-spaces
(see Appendix). These classes are dual one of the other (see [181]): a Banach space
is an L1-space (resp. an L1-space) if and only if its dual space is an L1-space
(resp. an L1-space).

Approximation Properties

A Banach space X is said to have the �-approximation property (�-AP) if for each
finite-dimensional subspace F � X and every �0 > �, there is a finite-rank operator
T W X ! X such that kTk � �0 and T. f / D f for each f 2 F. This is not the
standard definition, but it is equivalent (see [60, Theorem 3.3]). The space is said
to have the bounded approximation property (BAP) if it enjoys the �-AP for some
�. It is clear that if X has the �-AP and Y � X is complemented by a projection of
norm �, then Y has the ��-AP. Another useful fact is that the �-AP passes from X�
to X; see [60, Proposition 3.5]. When X is separable, the �-AP is equivalent to the
existence of a sequence Tn W X ! X of finite-rank operators with kTnk � � that is
pointwise convergent to the identity.

A Banach space X is said to have the uniform approximation property (UAP)
when every ultrapower of X has the BAP. It is clear that the UAP exactly means
that X has the �-AP and there exists a “control function” f W N ! N so that,
given F and �0 > �, one can choose T such that rank.T/ � f .dim F/ and Tf D f
for all f 2 F, with kTk � �0. Since X�� is complemented in some ultrapower of X
(Proposition A.8), when X has the UAP, then all even duals have the UAP. And since
approximation properties pass from the dual to the space, when X has the UAP, all
its duals have the UAP. See either [145, p. 60] or [60, Sect. 7] for details.

Topological Spaces

Any of the books [164, 172, 246] contains the material on general topology needed
here and much more. Topological spaces are assumed to be Hausdorff (every two
different points are separated by disjoint open sets). The weight of a topological
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space X, denoted by w.X/, is the least cardinality of a base of open sets. We are
particularly interested in compact spaces. Every compact space K is homeomorphic
to a closed subspace of a product Œ0; 1�X , where jXj D w.K/. For every compact
space K, we consider the Banach space C.K/ of all real-valued continuous functions
on K, endowed with the norm given by the maximum absolute value. This
correspondence is a contravariant functor, since each continuous ' W K �! L gives
rise to an operator 'ı W C.L/ �! C.K/, namely, 'ı. f / D f ı '. Some especial
types of subsets of compact spaces are often used:

1. A Gı-set is a countable intersection of open sets.
2. An F� -set is a countable union of closed sets.
3. A zero set of K is one of the form fx 2 K W f .x/ D 0g for some f 2 C.K/.

Equivalently, a closed Gı-set.
4. A cozero set is the complement of a zero set. Equivalently, an open F� -set.
5. A clopen set is a set which is open and closed.

The family of clopen subsets of K is denoted by CO.K/.
If L is a locally compact space, then ˛L denotes its one-point compactification.

The Stone-Čech compactification of a (completely regular) topological space X is
denoted by ˇX. The Stone-Čech compactification is characterized by two simple
properties: ˇX contains a dense subset homeomorphic to X and every bounded
continuous function f W X �! R extends to a continuous function ˇX �! R.

A point x 2 K is said to be a P-point if the intersection of a countable family of
neighborhoods of x is again a neighborhood of x.

Zero-Dimensional and Scattered Compacta

A compact space is said to be zero dimensional if its clopen subsets form a base of
the topology. Equivalently, if for every two different points x; y 2 K, there exists
a clopen set A such that x 2 A, y 62 A. The topological structure of compact
zero-dimensional spaces is completely described by the algebraic structure of its
family of clopen sets through Stone duality. Let us explain this. An algebra of
sets is a nonempty subfamily of the family P.X/ of all subsets of a set X which
contains the sets ¿ and X and is closed under finite unions, finite intersections,
and taking complements. A Boolean algebra is a set B endowed with two abstract
binary operations of “union” (or “join,” denoted by_) and “intersection” (or “meet,”
denoted by ^), an operator of “complementation” A 7! A0, and two distinguished
elements 0 and 1, which satisfy the same laws of the union, intersection, and
complements of algebras of sets, with 0 in place of the empty set ¿ and 1 in place
of the ambient set X. More precisely, it is required that union and intersection are
commutative and associative, and each distributive with respect to the other, the
absorption laws A _ .A ^ B/ D A and A ^ .A _ B/ D A and the complementation
laws A ^ A0 D 0 and A _ A0 D 1 for every A;B 2 B. The simplest Boolean
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algebras are algebras of sets and, actually, every Boolean algebra is isomorphic to
some algebra of sets.

A filter on a Boolean algebra B is a proper subset F � B that is closed under
finite intersections and does not contain the empty set and one has A 2 F provided
B^A D B (i.e., A “contains” B) and B 2 F. A filter F is an ultrafilter if it is maximal
among all filters on B or, equivalently, if for every A 2 B, either A or its complement
belongs to F. By Zorn’s lemma, every filter is contained in an ultrafilter. When one
talks about a filter or an ultrafilter on a set X, it means a filter on the algebra of all
subsets of X.

If K is a compact space, then CO.K/ is a Boolean algebra. An inverse procedure
allows to recover a compact space from a Boolean algebra B: The family of all
subsets of B is identified with 2B and can be viewed as a compact space endowed
with the product topology. Thus, the Stone space S.B/ is defined to be the closed
subset of 2B formed by the ultrafilters of B. When K is zero dimensional, the two
procedures are inverse of each other in the sense that we have natural identifications
B D CO.S.B// and K D S.CO.K//. These two correspondences are contravariant
functors in a natural way.

A topological space is called scattered if every nonempty subset has an isolated
point. The derived set of a topological space X is the subset X0 of all non-isolated
points of X. Given an ordinal ˛, the ˛th derived set of X is inductively defined as
X.0/ D X and

X.˛/ D
\

ˇ<˛

�
X.ˇ/

�0
:

When K is a scattered compact space, there is a smallest ˛ such that K.˛/ D ¿ and
this ordinal is the Cantor-Bendixson index of K or the height of K, which is always
a successor ordinal, that is, ˛ D ˇC1. Some authors define the height of a compact
space as this ordinal ˇ instead of ˛.

ˇN and N
�

The Stone space of the algebra P.N/ of all subsets of N is naturally homeomorphic
with the Stone-Čech compactification ˇN of the set N equipped with the discrete
topology. Indeed, for each natural number n, we have a so-called principal ultrafilter
Fn D fA � N W n 2 Ag, and by identifying n with Fn, we may consider N as
a subset of S.P.N//, which is easily seen to be dense. On the other hand, every
bounded f W N! R extends to a continuous function on the Stone space of P.N/ by
the formula U 7! limU f .n/: recall that the elements of S.P.N// are the ultrafilters
on N. Hence the obvious map ˇN ! S.P.N//, being continuous and one-to-one,
is a homeomorphism. Since every bounded function f W N �! R can be seen a
continuous function on ˇN, we have a natural isometry that identifies the Banach
space `1 with the space of continuous functions C.ˇN/.
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The clopen subsets of ˇN are the closures A of subsets A � N. In particular, the
points of N are the isolated points of ˇN. Removing the isolated points of ˇN, one
obtains the space N

� D ˇN n N. The clopen subsets of N� are the sets of the form
ŒA� D A n A with A � N. We have that ŒA� D ŒB� if and only if .A n B/ [ .B n A/
is finite, and in this way CO.N�/ is identified with the quotient Boolean algebra
P.N/= fin of subsets of N modulo the equivalence relation described above. Two
continuous functions on ˇN coincide on N

� if and only if their difference converges
to 0 on N, and thus we have a natural isometric identification of C.N�/ and `1=c0.

Other General Conventions and Notations

As a general convention, special spaces are denoted by symbols displayed in
“mathcal” fonts. Thus, for instance, the Gurariy space is denoted by G and Kunen
compact is K . Families of sets (topologies, filters, and the like) are displayed
in “mathscr” fonts: in this way a typical ultrafilter will be U. As a rule, classes
of Banach spaces are displayed in “mathfrak” fonts: for instance, the class of
all separable Banach spaces is denoted by S, while the set of finite-dimensional
subspaces of a given Banach space X is F.X/.

If S is a set, possibly a subset of a larger set, 1S denotes the identity on S, while
1S stands for the characteristic function of S. If S D fsg is a singleton, we write 1s

instead of 1fsg. We write jSj for the cardinality of S. The power set of S is denoted
by P.S/ or 2S, and if jSj D @, then j2Sj D 2@. The subclass of all finite subsets of S
will be denoted by fin.S/.

The axiomatic system in which we work is ZFC, the usual Zermelo-Fraenkel
axioms for set theory, including the axiom of choice. CH is the continuum
hypothesis (2@0 D @1) and GCH the generalized continuum hypothesis (2@ D @C
for all infinite cardinals @). As long as additional axioms are assumed, they appear
in square brackets before the corresponding statement.
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Chapter 1
A Primer on Injective Banach Spaces

To put in a proper context the results in this monograph it will be useful to keep in
mind the theory of injective spaces and the general theory of L1-spaces. In this way
one can compare the stability properties and the variety of examples of separably
injective spaces that will be presented later with those of injective spaces. For the
convenience of the reader, in this preparatory chapter we have summarized the basic
properties and examples of injective Banach spaces, as well as a few remarkable
examples of non-injective spaces, and some criteria that allow one to check whether
a space is or is not injective. The results in this chapter have been known for many
years and thus proofs will be sketched or omitted. For alternative expositions we
refer to [1, Sect. 4.3], [83, Appendix D], [194, Sects. 7–9] and [253, Sect. 2].

1.1 Injective and Locally Injective Spaces

Injective spaces are those enjoying the extension property for any operator; precisely

Definition 1.1 A Banach space E is called injective if for every Banach space X and
each subspace Y � X, every operator t W Y ! E extends to an operator T W X ! E.
If there is some constant � > 0 such that an extension with kTk � �ktk always
exists, the space E will be called �-injective.

The simplest examples of injective spaces are the finite-dimensional Banach
spaces for which one gets the required extension taking a basis and invoking the
Hahn-Banach theorem. The same idea works for `1.� /, as we see in the following
classical result of Phillips [216].

Proposition 1.2 The space `1.� / is 1-injective.

© Springer International Publishing Switzerland 2016
A. Avilés et al., Separably Injective Banach Spaces, Lecture Notes
in Mathematics 2132, DOI 10.1007/978-3-319-14741-3_1

1



2 1 A Primer on Injective Banach Spaces

Proof Each operator t W Y ! `1.� / is defined by a bounded family .t� /� of
elements of Y� in the form t.y/ D .t� .y//� , with ktk D supfkt�k W � 2 � g. Pick for
each � an extension T� 2 X� of t� with kT�k D kt�k and define T W X ! `1.� /
by T.x/ D �

T� .x/
�
�2� . Then T is an extension of t with the same norm. ut

At the other end of the line one encounters the spaces satisfying the �-extension
property for finite-rank operators; precisely:

Definition 1.3 A Banach space E is locally �-injective if for every finite dimen-
sional Banach space G and every subspace F of G, every operator t W F ! E has
an extension T W G! E with kTk � �ktk. We say that E is locally injective if it is
locally �-injective for some �.

Locally injective spaces were formally introduced in [58, Definition 5.1], where
it is observed that they coincide with the L1-spaces.

Proposition 1.4 A Banach space is locally injective if and only if it is an L1-
space.

Proof Since `n1 is 1-injective, an L1;�-space must be locally �-injective. Con-
versely, suppose that E is locally �-injective and embeds as a subspace of X. Pick
a finite dimensional subspace F � X and consider the inclusion map F \ E ! E.
There exists by hypothesis an extension T W F ! E having norm at most �. Thus E
is locally complemented (Definition A.9) in every superspace and, by Lemma A.12,
it must be an L1-space. ut

A useful fact connecting local injectivity to injectivity is the following. Recall
that “locally �C-injective” means “locally �0-injective for every �0 > �”.

Proposition 1.5 A Banach space is locally �C-injective if and only if its bidual is
�-injective.

Proof First suppose that E is locally �C-injective. Let X be a Banach space, Y a
subspace of X, and t W Y ! E�� an operator. Let F.X/ and F.E�/ denote the set of
all finite dimensional subspaces of X and E�, respectively. We order F.X/	F.E�/	
.0;1/ by declaring .F;G; "/ � .F0;G0; "0/ when F � F0;G � G0 and "0 � ". For
each .F;G; "/ 2 F.X/ 	 F.E�/ 	 .0;1/ choose an operator T.F;G;"/ W tŒF� ! E as
in the principle of local reflexivity (Theorem A.7), that is,

• kT.F;G;"/kkT�1
.F;G;"/k � 1C ",

• T.F;G;"/f D f for every f 2 tŒF� \ E, and
• f ��.g�/ D g�.T.F;G;"/ f ��/ for every g� 2 G and every f �� 2 tŒF�.

For each .F;G; "/ we consider the composition T.F;G;"/ ı t W F\Y ! E�� ! E, and
we extend it to an operator �.F;G;"/ W F ! E with

k�.F;G;"/k � .1C "/�kT.F;G;"/ ı Tk � .1C "/2�kTk:
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Now, let U be an ultrafilter refining the order filter on F.X/ 	 F.E�/ 	 .0;1/ and
define T W X ! E�� by letting

T.x/ D weak*- lim
U
�.F;G;"/.x/:

This definition makes sense because each x belongs to F “eventually”. Besides, it is
clear that T is a linear operator and kTk � �ktk. To see that T extends t just note
that for every y 2 Y one has �.F;G;"/.y/ D T.F;G;"/.t.y// and that, for each f �� 2 tŒY�

f �� D weak*- lim
U

T.F;G;"/. f ��/

since each g� 2 E� falls eventually in G and f ��.g�/ D g�.T.F;G;"/ f ��/ provided
g� 2 G. This shows that E�� is �-injective.

The converse is easier. Suppose E�� is merely locally �C-injective and let us
prove that so is E. Let G be a finite dimensional space, F a subspace of G and
t W F ! E a norm-one operator. Fix " > 0 and consider t as an E��-valued operator.
The hypothesis gives an extension � W G! E�� with k�k � �C ". As �ŒG� is finite
dimensional the principle of local reflexivity yields an operator T W �ŒG� ! E such
that T. f / D f for f 2 E \ �ŒG�, and kTk � 1C ". Clearly T ı � is an extension of
t, and kT ı �k � .1C "/.�C "/ and since " is arbitrary the proof is complete. ut

The parameter � is clearly necessary in Definition 1.3 since all spaces enjoy the
extension property for finite-rank operators. In fact, when the class of operators one
extends is “closed”, a uniform bound appears automatically (cf. Proposition 1.32 in
Sect. 1.6.3). In particular:

Proposition 1.6 Every injective Banach space is �-injective for some � � 1.

Proof Suppose that, for every n 2 N, the space E is not n-injective. Then we can
find Banach spaces Xn containing subspaces Yn and norm-one operators tn W Yn ! E
that do not admit extension to Xn with norm less than or equal to n. Since `1.N;Yn/

is a closed subspace of `1.N;Xn/, and clearly t
�
.yn/

� D P1
nD1 tn.yn/ defines an

operator t W `1.N;Yn/ ! E that does not admit extension to `1.N;Xn/, the space E
cannot be injective. ut

1.2 Basic Properties and Examples

Let us present now a few more examples of injective Banach spaces and describe
their basic properties. It is not difficult to show that the finite products and the
complemented subspaces of injective spaces are injective. As for infinite products,
one has the following generalization of Proposition 1.2. Recall that if .Ei/i2I is a
family of Banach spaces, `1.I;Ei/ denotes the space of bounded families .xi/, with
xi 2 Ei for every i 2 I, and k.xi/k D supfkxik W i 2 Ig.
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Proposition 1.7 If .Ei/i2I is a family of �-injective Banach spaces, then `1.I;Ei/

is �-injective.

Proof It is enough to observe that every operator T W X ! `1.I;Ei/ is given by
T.x/ D .Ti.x//i2I with Ti W X ! Ei and kTk D supi2I kTik. ut

Other simple examples of 1-injective spaces are presented in the following result
of Kantorovič [160]. To avoid any measure-theoretic pathology we consider �-finite
measures only.

Proposition 1.8 If � is a �-finite measure, then L1.�/ is 1-injective.

Proof Suppose that � is a measure on a �-algebra of subsets of ˝ . Let P.˝/

denote the family of all partitions of ˝ into countably many measurable subsets
of finite positive measure. Note that P.˝/ is a directed set for the order given by
Q � P: each element of P is contained in an element of Q. For every P 2 P.˝/

we consider the “conditional expectation” operator EP defined by

EP. f / D
X

A2P

�
1

�.A/

Z

A
fd�

�
1A:

Clearly, EP is a contractive projection on L1.�/ whose range consists of those
functions that are constant on every set of P.

Now, let Y be a subspace of X and let t W Y ! L1.�/ be a norm one operator.
Given P 2P.˝/ we consider the composition tP D EP ı t so that

tP.y/ D EP.t.y// D
X

A2P

�
1

�.A/

Z

A
t.y/d�

�
1A:

Note that y 7! �.A/�1
R

A t.y/d� is a linear functional on Y with norm at most 1.
We take extensions x�

A 2 X� (depending on t and A) with the same norm and define
TP W X ! L1.�/ by

TP.x/ D
X

A2P
x�

A.x/1A:

Clearly, kTPk � ktPk � 1.
For each r � 0we denote by Br the closed ball of L1.�/ with center 0 and radius

r, endowed with the weak* topology induced by L1.�/. By Tychonoff’s theorem,
˘ D Q

x2X Bkxk is compact in the product topology. Moreover, we can identify each
contractive operator T W X ! L1.�/ with a point of ˘ just considering the family
.T.x//x2X . Let T be any limit point of the net .TP/P2P.˝/ in ˘ . It is not difficult
to check that T is an operator from X to L1.�/ with kTk � 1. Moreover, since for
every f 2 L1.�/ the net .EP. f //P2P.˝/ is weak* convergent to f , the operator T
is an extension of t. ut
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More general conditions on � work: when L1.�/ is the dual of L1.�/ then it is
injective. In fact,

Proposition 1.9 An L1-space isomorphic to a dual space is injective.

Proof We shall prove a more precise result, namely that every dual L1;�C-space is
�-injective.

Let E� be an L1;�-space, let Y be a subspace of a Banach space X and let
t W Y ! E� be a norm one operator. Let F.Y/ be the set of all finite dimensional
subspaces of Y. We consider the order given in F.Y/ 	 .0;1/ by .F; "/ � .G; ı/ if
F � G and ı � ". Let U be a ultrafilter on F.Y/ 	 .0;1/ refining the order filter.
For each F 2 F.Y/ and each " > 0, let T.F;"/ W X ! E� be an extension of tjF with
norm at most � C ", which exists since tŒF� falls inside a subspace of E� which is
.�C "/-isomorphic to `n1 for some n 2 N. The operator

T.x/ D weak*� lim
U

T.F;"/.x/:

is an extension of t with kTk � �. ut
Every infinite dimensional Banach space X is isometric to a subspace of `1.� /,

with j� j D dens.X/. Indeed, let fxi W i 2 � g be a dense subset of X and choose,
for each i 2 � , a norm-one fi 2 X� such that fi.xi/ D kxik. Then the operator
f W X �! `1.� / defined by f .x/ D . fi.x//i2� is an isometric embedding. It
immediately follows that:

Proposition 1.10 The injective Banach spaces coincide with the complemented
subspaces of the spaces `1.� /.

This result should however be compared with Corollary 1.17, in which it is shown
that no injective subspace of `1 exists, apart from itself.

The next result gathers several equivalent formulations of �-injectivity for
Banach spaces.

Proposition 1.11 Let E be a Banach space and let � � 1. The following assertions
are equivalent:

1. E is �-injective.
2. For every space X containing E isometrically, there exists a projection from X

onto E of norm at most �.
3. For every space X containing E isometrically, each operator t W E ! Y admits

an extension T W X ! Y with kTk � �ktk.
Proof

.1/) .2/ and .3/) .2/: If E is contained in X isometrically, using .1/ or .3/
we can extend the identity on E to an operator P W X ! E with kPk � �, and P
is the required projection.

.2/) .1/: Suppose Y is a subspace of X and t W Y ! E is an operator. We saw
before that there exists an isometric operator u W E ! `1.� / for some set � ,



6 1 A Primer on Injective Banach Spaces

and .2/ implies the existence of a projection P on `1.� / onto E with kPk � �.
Since `1.� / is 1-injective, the operator u ı t W Y ! `1.� / admits an extension
� W X ! `1.� / with k�k D ktk, and it is clear that T D P ı � W X ! E is the
required extension of t.

.2/) .3/: If X contains E isometrically, .2/ implies the existence of a projection
P on X onto E with kPk � �, and given an operator t W E! Y, T D tıP W X ! Y
is an extension of t with kTk � �ktk. ut
Goodner [112] introduced the P�-spaces .� � 1/ as those Banach spaces

satisfying .2/ in Proposition 1.11. Thus, P� and �-injective spaces coincide.
Regarding universality issues, the density character is important. Observe that

dens.`1.@// D 2@ because if j� j D @ the characteristic functions f1A W A �
� g form a 1-separated set of cardinality 2@ whose linear span is dense in `1.@/.
Rosenthal [222, Theorem 5.1.f] showed that the space `1.@/ is “quotient universal”
for injective spaces of density character 2@ or less:

Proposition 1.12 Every injective Banach space having density character at most
2@ is isomorphic to a quotient of `1.@/.

It follows from the embedding X ! `1.dens X/ above that every injective
Banach space having density character at most @ is a subspace of `1.@/. But it
is not however true that an injective Banach space with density character at most 2@
must be a subspace of `1.@/: In Proposition 1.21 we will show an injective space
which is a quotient of `1 but it is not isomorphic to a dual space; in particular it is
not isomorphic to `1 and thus it cannot be a subspace of `1 by Corollary 1.17.

We need now a technical result of Rosenthal [223, Lemma 1.1], which we present
in a proof due to Kupka [171]. Recall that a finitely additive measure on the set
P.� / of all subsets of � is a map � W P.� / ! R which satisfies �.¿/ D 0 and
�

�
A[ B

� D �.A/C�.B/ if A and B are disjoint subsets of � . The variation j�j of
� is defined by j�j.A/ D sup

Pn
kD1 j�.Ak/j, where the supremum is taken over all

finite partitions A1; : : : ;An of A. It is easy to show that every x� 2 `1.� /� induces
a finitely additive measure �x� on P.� /, given by

�x�.A/ D x�.1A/ A 2 P.� /;

and one has j�x� j.� / D kx�k.
Lemma 1.13 Let � be an infinite set, let f�� W � 2 � g be a set of positive finitely
additive measures defined on P.� / with sup�2� ��.� / < 1, and let " > 0. Then
there exists a subset � 0 of � with j� 0j D j� j such that

��.�
0 n f�g/ < " for each � 2 � 0.

Proof Assume that for some " > 0 we cannot find such a set � 0. The axiom of
choice implies the existence of a partition fI� W � 2 � g of � with jI� j D j� j
for all � 2 � , and we can select ı 2 � such that �i.� n Iı/ � " for all i 2 Iı.
Otherwise, for all � 2 � we can find i� 2 I� such that �i� .� n I� / < ", and the set
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I D fi� W � 2 � g would contradict the assumption. Repeating this procedure with
Iı in place of � , and iterating the process a finite number of times, we contradict the
hypothesis sup�2� ��.� / <1. ut

With this result hand we get the following fundamental result due to Rosenthal
[223, Theorem 1.3]:

Theorem 1.14 Let E be a Banach space complemented in E�� and let � be an
infinite set. Let T W E �! Y be an operator for which there exists a subspace M of E
isomorphic to c0.� / such that TjM is an isomorphism. Then there exists a subspace
N of E isomorphic to `1.� / such that TjN is an isomorphism.

Proof of Theorem 1.14 First we consider the case in which E D `1.� / and M is
the natural copy of c0.� /.

The hypothesis implies that there exists a constant C > 0 such that kTxk � Ckxk
for each x 2 c0.� /. Let fe� W � 2 � g denote the unit vector basis in c0.� /. For
each � 2 � we select y�

� 2 Y� with ky�
�k D kTe�k�1 and y�

� .Te� / D 1, and denote
by �� the finitely additive measure associated to T�y�

� . Then

j�� j.� / D kT�y�
� k � kTkC�1 for all � .

Now we apply Lemma 1.13 with " D 1=2, and get a subset � 0 of � with j� 0j D
j� j so that, for each x 2 `1.� 0/ and � 2 � 0,

T�y�
� .x/ D

Z

� 0

xd�� D x.�/C
Z

� 0n�
xd��

because ��.�/ D T�y�
� .e� / D 1. Hence

C�1kTxk � ky�
� k � kTxk � jx.�/j � kxk=2;

and taking the supremum over � 2 � 0 we conclude kTxk � .C=2/kxk, hence T is
an isomorphism on `1.� 0/, and the proof is done in this case.

In the general case we denote by P a projection from E�� onto E, and consider an
isomorphism U from the natural copy of c0.� / in `1.� / onto the subspace M of E.
The second conjugate U�� W `1.� / ! E�� is an extension of the operator U, and
the restriction of the operator TPU�� W `1.� / ! E to c0.� / is an isomorphism.
Applying the result for E D `1.� / and M D c0.� / to this operator, we get a
subset � 0 of � with j� 0j D j� j so that the restriction of TPU�� to `1.� 0/ is
an isomorphism, and clearly the subspace N D PU��Œ`1.� 0/� is isomorphic to
`1.� 0/ and TjN is an isomorphism. ut

Let us see some consequences of Theorem 1.14. Part (3) is a useful tool to detect
that a space is not injective:

Proposition 1.15 Let E be an injective Banach space.
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1. Given a non-weakly compact operator T W E ! Y, there exists a subspace N of
E isomorphic to `1 such that the restriction TjN is an isomorphism.

2. If E is infinite dimensional then it contains a subspace isomorphic to `1.
3. If E contains a subspace isomorphic to c0.� / for some set � then it contains a

subspace isomorphic to `1.� /.

Proof

1. Since E is injective, it is a complemented subspace of some `1.� / via some
projection P. The projection P is not weakly compact (Proposition A.14) and
thus the operator TP cannot be weakly compact. Since `1.� / has property .V/
(Proposition A.4), the operator TP must be an isomorphism on some subspace M
isomorphic to c0. Thus PŒM� is isomorphic to c0 and TjPŒM� is an isomorphism,
and we can apply Theorem 1.14.

2. Apply (1) to the identity of E, which is a non-weakly compact operator.
3. It is enough to apply Theorem 1.14 to the identity of E. ut
Proposition 1.16 Every complemented subspace of `1.� / containing a subspace
isomorphic to c0.� / is itself isomorphic to `1.� /.

Proof If E is a complemented subspace of `1.� / containing a subspace isomorphic
to c0.� / then, by Proposition 1.15, it contains a (necessarily complemented)
subspace isomorphic to `1.� /. Since `1.� / is isomorphic to `1.`1.� // ap-
plying Pełczyński’s decomposition technique we conclude that X and `1.� / are
isomorphic. ut

Therefore, since every complemented subspace of `1 contains c0 (Proposi-
tion A.5):

Corollary 1.17 Every infinite dimensional complemented subspace of `1 is iso-
morphic to `1.

1.3 Isometric Theory: 1-Injective Spaces

In this section we give some examples and characterizations of 1-injective Banach
spaces.

Definition 1.18 A compact space K is said to be extremely disconnected (or
Stonian) if the closure of every open subset of K is open.

If K is extremely disconnected, then its clopen sets form a complete Boolean
algebra. Conversely, every extremely disconnected compact space is the Stone
compact of some complete Boolean algebra. Analogously to what is mentioned in
the Preliminaries for ˇN, the Stone-Čech compactification ˇ� of a discrete space �
is the unique compact Hausdorff space containing � as a dense subset so that every
bounded function on � extends to a continuous function on ˇ� . The compact ˇ�
is extremely disconnected, and the space of continuous functions C.ˇ� / is linearly
isometric in the natural way with `1.� /.
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Proposition 1.19 (Zippin [253, Theorem 2.1]) For a Banach space E, the follow-
ing assertions are equivalent:

1. E is 1-injective;
2. E is linearly isometric to a C.K/ space with K extremely disconnected.
3. Every family of mutually intersecting closed balls in E has a common point.

Thus, there is an exact correspondence between 1-injective Banach spaces and
complete Boolean algebras. Recall that from an arbitrary Boolean algebra B we can
always obtain a complete Boolean algebra by the procedure of completion, adding
all the suprema of families of subsets of B which did not possess one. It is worth to
mention some prominent examples of such complete Boolean algebras:

• First of all, we have P.� /, the family of all subsets of a set � , whose
corresponding Banach space is `1.� /. Note that each n dimensional 1-injective
Banach space is linearly isometric to `n1, which corresponds to `1.� / for
j� j D n.

• If .˝;˙;�/ is a finite measure space then the quotient of ˙ by the ideal of
�-null sets is a complete Boolean algebra, corresponding to L1.�/.

• If K is a compact space, then the family of all regular open sets of K (open sets
that equal the interior of their closures) constitute a complete Boolean algebra,
whose Stone space is called the Gleason space G.K/ of K. The space G.K/maps
continuously onto K in a natural way, providing a canonical embedding of the
space C.K/ into a 1-injective space C.G.K//. See [83, Theorem D.2.6] and [245]
for additional information.

To give an idea of how different the 1-injective Banach spaces associated to
complete Boolean algebras can be let us consider the following property: A Boolean
algebra is called ccc (a short-cut for “countable chain condition”) if every disjoint
family contained in it is countable. There are ccc complete Boolean algebras of
arbitrarily large size: measure algebras and the completion of ccc Boolean algebras
are ccc. On the other hand, it was proved by Rosenthal [222, Theorem 4.5] that a
Boolean algebra B is ccc if and only if every weakly compact subset in C.S.B//
is separable. Equivalently, C.S.B// contains no subspace isomorphic to c0.� / for
uncountable � . Thus, if we consider a ccc complete Boolean algebra B, then
C.S.B// is an injective Banach space for which all weakly compact subsets are
separable. This contrasts with the spaces `1.� / for � uncountable.

Several characterizations of 1-injective C.K/-spaces can be found in [233, 22.4]
and [197, Proposition 2.1.4]:

Proposition 1.20 Let K be a compact space. The following assertions are equiva-
lent:

1. K is extremely disconnected.
2. The clopen subsets of K form a complete Boolean algebra.
3. Every bounded family of C.K/ has a supremum in C.K/.
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1.4 Examples of Injective Spaces and Duality

We consider now the isomorphic relations between injective and dual spaces. We
will show that among injective spaces we can find non-dual spaces, dual but not
bidual spaces, and bidual spaces, which must be isomorphic to some `1.� /.

Proposition 1.21 (Rosenthal [222, Corollary 4.4]) There exists a 1-injective Ba-
nach space that is not isomorphic to any dual space.

The example is the space of continuous functions on certain extremely discon-
nected compact space G constructed by Gaifman [99]. Moreover the topological
weight of G is the continuum and, by Rosenthal [222, Theorem 5.1.e], the space
C.G/ is isometric to a quotient algebra of `1; equivalently, G is homeomorphic to
a closed subset of ˇN. However, since C.G/ is not isomorphic to `1 it cannot be
isomorphic to a subspace of `1 (cf. Corollary 1.17).

We have already shown that all dual L1 spaces are injective (Proposition 1.9).
And there are plenty of them since, in particular, all duals of L1-spaces are L1. We
present now a characterization due to Haydon [124, 2.6 Corollary] of the injective
spaces that are isomorphic to a bidual space:

Proposition 1.22 An injective Banach space is isomorphic to a second dual space
if and only if it is isomorphic to `1.� / for some set � .

Rosenthal [222, Theorem 4.8] provides the following equivalent conditions on
an injective dual space:

Lemma 1.23 Let E be an injective Banach space that is isomorphic to a dual space.
The following conditions are equivalent:

1. E is isomorphic to a subspace of L1.�/ for some finite measure �.
2. `1.@1/ is not isomorphic to a subspace of E.
3. Every weakly compact subset of E is separable.

A combination of Haydon and Rosenthal criteria yields:

Proposition 1.24 Let � be a finite measure. Then L1.�/ is isomorphic to a second
dual space if and only if L1.�/ is separable.

Proof If L1.�/ is separable then L1.�/ embeds into `1. By Proposition 1.9,
L1.�/ is injective hence a complemented subspace of `1 and the “if part” follows
from Corollary 1.17.

The converse is as follows. Every weakly compact subset of L1.�/ is sepa-
rable by Lemma 1.23 and therefore L1.�/ cannot be isomorphic to `1.� / for
uncountable � . On the other hand L1.�/ is not isomorphic to `1 by Rosenthal
[222, Theorem 3.5]. Thus, Proposition 1.22 implies that L1.�/ is not isomorphic
to a second dual space. ut
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We exhibit now examples of each kind:

• There are measures � for which the spaces L1.�/ is not injective (in particular,
not isomorphic to a dual space by Proposition 1.8): If � is be the counting mea-
sure on an uncountable set � restricted to the �-algebra of sets that are countable
or have countable complement. In this case, L1.�/ is the unitization of the space
` c1.� /, studied in the next Section, which is not injective (Proposition 1.28).

• Spaces L1.�/ isomorphic to a dual space (hence injective) but not to a bidual
space: let 2 be a two point space with the usual probability. Let � be any set
and let � be the product probability on 2� . Then dens L1.�/ D j� j. So, if �
is uncountable, then L1.�/ is a 1-injective dual space, but not isomorphic to a
second dual space.

• The space L1.0; 1/ is 1-injective and isomorphic to `1.

1.5 Examples of Non-Injective Spaces

Here we give several examples of Banach spaces that are not injective but are “close”
to be; indeed, they will appear later as examples of (universally) separably injective
spaces. In the following result we consider c0.� / as a subspace of `1.� / in the
obvious way.

Theorem 1.25 The spaces c0.� / and `1.� /=c0.� / are not injective unless � is
finite.

Proof First of all we observe that one can assume � countable in both cases.
Indeed, fixing a countable �0 � � and working with the elements supported in
�0 we see that c0 D c0.�0/ is a complemented subspace of c0.� / and `1=c0 is a
complemented subspace of `1.� /=c0.� /.

Now, let us consider the exact sequence

(1.1)

Let M be a family of infinite subsets of the integers with jMj D c, the cardinality
of the continuum, and such that N \ M is finite for N ¤ M. A classical way to
show the existence of this family: we identify N with the set of rational numbers
Q. Then we denote by I the irrational numbers, and for every i 2 I we take as
Ni (the set underlying) a sequence of rational numbers converging to i and we set
M D fNi W i 2 Ig. The characteristic function 1N of each N can be seen as an
element of `1, and it is easy to see that the corresponding images in `1=c0 generate
a subspace isometric to c0.M/. In fact f1N W N 2Mg corresponds to the unit vector
basis of c0.M/.

The sequence (1.1) cannot split since `1=c0 is not a subspace of `1 because
c0.� / is not a subspace of `1 for uncountable� : actually, no operator c0.� /! `1
can be injective since `1 can be separated by a countable set of functionals and
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c0.� / cannot. This already shows that c0 is not complemented in `1, hence it is not
injective.

The space `1=c0 is not injective either because it contains c0.M/ D c0.c/ but it
does not contain a copy of `1.c/ because

dens.`1=c0/ D c < 2c D dens
�
`1.M/

�
:

According to Proposition 1.15 (3), the space `1=c0 cannot be injective. ut
The part of Proposition 1.25 concerning c0 appeared in Phillips’ paper [216] and

about the same time in Sobczyk’s [235]; see also [56] for an account. The second
part of Theorem 1.25 is due to Amir [5], but the simple proof we give here is taken
from [223].

Further examples of non-injective Banach spaces are provided by Pełczyński and
Sudakov [214], as we describe next. Given an uncountable set � , we denote by
` <1.� / the set of all bounded functions x W � ! R such that, for every " > 0, one
has jf� 2 � W jx.�/j > "gj < j� j. Clearly ` <1.� / is a closed subspace of `1.� /,
and if j� j has uncountable cofinality one has

` <1.� / D
˚
x 2 `1.� / W jf� 2 � W x.�/ ¤ 0gj < j� j

�
:

The following result was proved in [214].

Theorem 1.26 If � is uncountable, then ` <1.� / is not injective.

Proof We prove that ` <1.� / is not complemented in `1.� /. Recall that no injective
operator c0.@/ ! `1.� / exists when @ > j� j since the evaluation functionals
fı�
� W � 2 � g form a total subset in the dual space of `1.� /. Therefore the canonical

exact sequence

cannot split if we prove that the quotient `1.� /=` <1.� / contains a copy of c0.@/
for some @ > j� j.

We argue as in the proof of Theorem 1.25, but this time we need a result of
Sierpiński (see [232, Sect. XVII.3, Theorem 1]) asserting that given any infinite set
� there exist a family M of subsets of � so that:

• jMj > j� j;
• for each N 2M one has jNj D j� j;
• jN \Mj < j� j for N;M 2M;N ¤ M.

It is clear that the images of the characteristic functions 1N in `1.� /=` <1.� /
generate an isometric copy of c0.M/ inside `1.� /=` <1.� /. ut

Let � be an uncountable set, and let @ be a cardinal with @0 < @ � j� j. We
denote by `<@1 .� / the set of all .x� /�2� 2 `1.� / such that jf� 2 � W jx� j > "gj <
@ for every " > 0.
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Corollary 1.27 If @0 < @ � j� j, then `<@1 .� / is not injective.

Proof Clearly `<@1 .� / is a closed subspace of `1.� /. Suppose that it is comple-
mented, and take a subset G of � with jGj D @. Then `<@1 .� / \ `1.G/ D ` <1.G/
is complemented in `1.G/, in contradiction with Theorem 1.26. ut

Given an uncountable set � , the space `<@11 .� / is usually denoted by ` c1.� /,
the space of all bounded scalar functions on � with countable support.

Proposition 1.28 Let � be an uncountable set.

1. The space ` c1.� / is not injective.
2. Every separable subspace of ` c1.� / is contained in a copy of `1 inside ` c1.� /.
3. Every operator T W Y ! ` c1.� / with separable range admits an extension to

any superspace.

Proof (1) follows from Corollary 1.27. To prove (2) observe that, given a separable
subspace S of ` c1.� /, there exist a countable subset �0 of � such that the support of
each f 2 S is contained in �0. (3) is an obvious consequence of (2) and the injectivity
of `1. ut

In the case j� j D c, part (1) of Proposition 1.28 is a consequence of
Proposition 1.15, since ` c1.� / has density character equal to c@0 D c and contains
c0.� / as a subspace, while `1.� / has density character equal to 2c.

The basic structure of the space ` c1.� / is described in Example 2.4. The spaces
` c1.� / were studied by Johnson et al. in [149]. They show that every infinite
dimensional complemented subspace of ` c1.� / is isomorphic to ` c1.	/ for some
cardinal 	 � j� j. They also sow that every copy of ` c1.� / inside ` c1.� / contains
a further complemented copy of ` c1.� /.

We close this section with a few remarks on spaces of measurable functions.
Answering a question posed by Rosenthal, Argyros [11] showed:

Proposition 1.29 The space of all bounded Borel (respectively, Lebesgue) measur-
able functions on the line is not injective.

Let us add that the traditional identification between functions which agree
almost everywhere does not apply here. The Borel case of the preceding Proposition
easily follows from part (3) of Proposition 1.15: the characteristic functions of the
singletons generate a copy of c0.R/ in the space of bounded Borel functions. The
density character of the latter space is the continuum, as there are c Borel subsets.
Therefore it cannot contain a copy of `1.R/, whose density character is 2c. The full
force of Argyros’ argument is necessary only for Lebesgue measurable functions,
where the preceding proof does not work: there are 2c Lebesgue measurable sets
in the line. We cannot resist to mention the key ingredient of the proof (cf. [11,
Lemma]):

Lemma 1.30 For every operator T W `1.R/ ! `1.R/ satisfying T1t D 1t for
each t 2 R, there exists f 2 `1.R/ such that Tf fails to be Lebesgue measurable.
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Proposition 1.29 was extended in [38] as follows. Recall that a topological space
M is completely metrizable if there exists a distance d on M such that .M; d/ is a
complete metric space and d induces the topology of M.

Proposition 1.31 (Blasco and Ivorra [38, Corollary 6]) Let M be a separable
completely metrizable space. Then the space of bounded Borel measurable functions
on M is injective if and only if M is countable.

1.6 Notes and Remarks

1.6.1 The Basic Problem for Injective Spaces

The characterization of 1-injective spaces as those Banach spaces linearly isometric
to a C.K/ space with K extremely disconnected is due to Nachbin [201] and Kelley
[163]. However, despite the deep investigations of Argyros [8–11], Haydon [124],
Rosenthal [222, 223] and other authors, the isomorphic theory of injective spaces
is far from being satisfactory. Probably the main open question in the theory of
injective Banach spaces is whether each injective space isomorphic to a 1-injective
space. The answer to this problem is not known even for C.K/ spaces. Some partial
answers are collected now:

1. Amir [4] If the space C.K/ is �-injective for some � < 2, then the compact K is
extremely disconnected.

2. Amir [5] and Isbell and Semadeni[138] There exists a 2-injective space C.K/
space with K non-extremely disconnected.

We refer to [250, Sect. 6] for plenty of questions about the structure of injective
spaces and C.K/ spaces. A few additional partial answers can be found in [39].

1.6.2 Injective Spaces that Are Not Dual Spaces

Proposition 1.21 asserts the existence of an example of a 1-injective Banach space
that is not isomorphic to a dual space. There are older examples of 1-injective spaces
that are not isometric to dual spaces, like the one given by Dixmier in [85]. A
detailed construction following the ideas of [85] can be found in [151, Theorem 3.5],
and a succinct description is given in [1, Problems 4.8 and 4.9]. We give below just
the first steps of a special case of the construction:

Consider the space B of all bounded Borel functions on the unit interval with the
sup norm. Let N denote the subspace of functions having nowhere dense support:

N D f f 2 B W ft W f .t/ ¤ 0g has empty interiorg
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The quotient space B=N (with the quotient norm) is 1-injective and not isometric to
a dual space.

1.6.3 The (Weakly) Compact Extension Property

A Banach space E has the compact extension property if for every Banach space
X and each subspace Y � X, every compact operator t W Y ! E has a compact
extension T W X ! E. The following result already appeared in Lindenstrauss’
memoir [175, Theorem 2.1].

Proposition 1.32 A Banach space is an L1-space if and only if it has the compact
extension property.

Proof It is an easy consequence of the definition that L1-spaces enjoy the
bounded approximation property. Thus, compact operators into L1-spaces can be
approximated by finite-rank operators, and consequently can also be extended.

To show that the compact extension property of implies local injectivity it is
enough to show that there exists some � so that the compact extension T can always
be obtained with kTk � �ktk. Which is simple because compact operators form a
closed subspace of the space of all operators, so the open mapping theorem applies.
Indeed, given any set of Banach spaces .Xi/i2I with subspaces Yi, we form the space
c0.I;Yi/ and consider it as a closed subspace of c0.I;Xi/. Each compact operator
Yi ! E yields a compact operator c0.I;Yi/! E by composition with the canonical
projection c0.I;Yi/ ! Yi onto the i th coordinate, and every (compact) operator
c0.I;Xi/! E induces a (compact) operator Xi ! E by “restriction”. Since there is
a uniform constant � so that every norm one compact operator c0.I;Yi/! E admits
a compact extension c0.I;Xi/ ! E with norm at most �, the same occurs to each
couple Yi � Xi. ut

Replacing “compact” by “weakly compact” everywhere in the definition of the
compact extension property one defines the weakly compact extension property. It
can be shown [45, Proposition 1.34] that a space has the weakly compact extension
property if and only if it is an L1-space in which weakly convergent sequences
are norm convergent. The existence of infinite dimensional spaces of this kind was
proved by Bourgain and Delbaen [46] (see also [45]).

1.6.4 The Quotient `1.� /=` <1.� /

Pełczyński and Sudakov identify in [214] the quotient space `1.� /=` <1.� / with
the space of continuous functions on a certain closed subset 
� of the Stone-Čech
compactification ˇ� that we now describe.
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Recall that ˇ� is a topological space whose points are the ultrafilters on � . The
family of all sets

FA D f p 2 ˇ� W A 2 pg .A � � /

is a base of the topology of ˇ� . If � 2 � , let then p� D fA � � W � 2 Ag is a
(trivial) ultrafilter, the map h W � ! ˇ� defined by h.�/ D p� is the embedding of
� in ˇ� , and the isometric isomorphism

x D .x� / 2 `1.� /! fx 2 C.ˇ� /

is determined by fp.�/ D x� . Let us denote 
� D f p 2 ˇ� W A 2 p) jAj D j� jg,
the set of the so-called uniform ultrafilters. Note that F D fA � � W j� nAj < j� jg
is a filter on � , and each ultrafilter refining F belongs to 
� . Moreover, given an
ultrafilter p 2 ˇ� n
� , there exists A 2 p with jAj < j� j, and FA is a neighborhood
of p which does not meet 
� . Therefore 
� is a non-empty closed subset of ˇ� .

Since 
� is closed in ˇ� , Tietze’s extension theorem implies that the restriction
operator r W C.ˇ� / ! C.
� / is surjective. Let x D .x� / 2 `1.� / and let fx 2
C.ˇ� / be the corresponding function. It is not difficult to check that x 2 ` <1.� /
if and only if fp/ D 0 for each p 2 
� ; i.e., rfx D 0. Thus C.
� / is isometrically
isomorphic to `1.� /=` <1.� /.

1.6.5 Finite Dimensional Injective Spaces

As Zippin says [253, p. 1716]: “The nature of a finite-dimensional P�-space is
a fascinating mystery”. Recall from Proposition 1.11 that P�-spaces .� � 1/

coincide with the �-injective spaces.
Probably the core problem is to know something about the function f .n;m; �/

that makes an n-dimensional �-complemented subspace of `m1 to be f .n;m; �/-
isomorphic to `n1. Asymptotically speaking, to know if a sequence En of �-
complemented subspaces of `n1 must be uniformly isomorphic to the corresponding
`k1. Or else, assume that for each n 2 N one picks an n-dimensional �-injective
space Fn. Is it true that

sup
n

d.Fn; `
n1/ < C1‹

We refer to [253, Problem 2.13 and 2.14] for a more detailed exposition of this
problem and some indications suggesting that it could have a positive solution. An
infinite dimensional reformulation could be this: Assume that .Fn/ is a sequence
of n-dimensional Banach spaces so that c0.N;Fn/ � c0. Must the spaces Fn be
uniformly isomorphic to `n1?

Of course, the problem for � D 1 is trivial: It follows from Proposition 1.19 that
a finite-dimensional space is 1-injective if and only if it is linearly isometric to `n1.



Chapter 2
Separably Injective Banach Spaces

It is no exaggeration to say that the theory of separably injective spaces is quite
different from that of injective spaces. In this chapter we will explain why. Indeed,
we will enter now in the main topic of the monograph, namely, separably injective
spaces and their “universal” version. After giving the main definitions and taking
a look at the first natural examples one encounters, we present the basic character-
izations and a number of structural properties of (universally) separable injective
Banach spaces. We will show, among other things, that 1-separably injective spaces
are not necessarily isometric to C-spaces, that (universally) separably injective
spaces are not necessarily complemented in any C-space—the separably injective
part of the assertion will be shown here while the “universal” part can be found
in the next chapter—and that there exist essential differences between 1-separably
injective and 2-separably injective spaces.

Moreover, in contrast with the scarcity of examples and general results con-
cerning the class of injective Banach spaces, there exist many different types of
separably injective spaces and a rich theory around them. In fact, most of the chapter
is devoted to examples: Some of them are rather natural, while others are Banach
spaces introduced elsewhere for different purposes and that, at the end of the day,
turn out to be separable injective.

Definition 2.1 A Banach space E is separably injective if for every separable
Banach space X and each subspace Y � X, every operator t W Y ! E extends
to an operator T W X ! E. If some extension T exists with kTk � �ktk we say that
E is �-separably injective.

We are especially interested in the following subclass of separably injective
spaces.

Definition 2.2 A Banach space E is said to be universally separably injective if for
every Banach space X and each separable subspace Y � X, every operator t W Y ! E
extends to an operator T W X ! E. If some extension T exists with kTk � �ktk we
say that E is universally �-separably injective.

© Springer International Publishing Switzerland 2016
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Before going any further we will present a couple of examples to give the flavor
of the chapter. Recall that c0.I/ denotes the space of all functions f W I ! R such
that, for every " > 0, the set fi 2 I W jx.i/j > "g is finite. We present first Sobczyk’s
theorem [236], with Veech’s proof [244]. See also [56] for an account of different
proofs for this result.

Theorem 2.3 (Sobczyk’s Theorem) The space c0.I/ is 2-separably injective in the
sup norm for every index set I.

Proof Since the elements of c0.I/ have countable support, every c0.I/-valued
operator from a separable space has its range contained in a copy of c0. So, it
suffices to prove the result when I is countable; i.e., when c0.I/ is c0, the space
of null sequences. So, let X be a separable Banach space and t W Y ! c0 a norm one
operator, where Y is a subspace of X. Write t as a sequence of functionals tn 2 Y�,
so that t.y/ D .tn.y// for every y 2 Y� and ktnk � 1 for every n 2 N. The sequence
.tn/ is weakly* null in Y� and one has to find a sequence of extensions .Tn/ which
is again weakly* null in X�, with kTnk � 2. For each n, let �n W X ! R be a Hahn-
Banach extension of tn W Y ! R. Recall that the weak* topology is metrizable on
every bounded subset of X� by a translation-invariant metric d.

If � is the set of weak* accumulation points of the sequence .�n/, then
d.�n; �/ ! 0 as n ! 1 (a sequence such that every subsequence contains a
further subsequence converging to zero is itself convergent to zero). Choose �n 2 �
such that d.�n; �n/ � d.�n; �/C 1=n. Then �n � �n is an extension of tn (since any
functional in � vanishes on Y) and k�n � �nk � k�nk C k�nk � 2. Clearly, the
sequence .�n � �n/n is weakly*-null in X�. The operator T W X ! c0 defined by
T.x/ D ..�n � �n/.x// is an extension of t and kTk � 2. ut

The space c0.I/ is not universally separably injective (unless I is finite) since c0
is not complemented in `1 (Example 1.25). By the same token, and Corollary 1.17,
no separable space can be universally separably injective. A deep result of Zippin
[252] puts an end to the story for separable spaces: every infinite dimensional
separable separably injective space is isomorphic to c0. Zippin’s theorem has a long
and delicate proof; we refer to [253] for what is perhaps the simplest proof due to
Benyamini [33].

Thus, the results in this monograph belong naturally to the theory of non-
separable Banach spaces. The “basic case” of Pełczyński-Sudakov spaces (see
Proposition 1.28) provides a typical universally separably injective space. Although
simple, this natural example shows that the theory of universally separably injective
spaces does not run parallel with that of injective spaces: contrary to what happens
in the injective case, 1-universally separably injective spaces need not be isometric
to any C.K/ space.

Example 2.4 Let � be an uncountable set and let `c1.� / denote the space of
countably supported bounded functions f W � ! R. Then `c1.� / is:

1. 1-universally separably injective,
2. not isometric to any C-space,



2.1 Basic Properties 19

3. isomorphic to a C-space,
4. not injective.

Proof

1. Every separable subspace of `c1.� / is contained in another subspace isometric
to `1.

2. The unit ball of every C.K/ has extreme points. In fact f is an extreme point if
and only if j f .x/j D 1 for every x 2 K. Quite clearly, the ball of `c1.� / has no
extreme points.

3. Consider the unitization of `c1.� / inside `1.� /, that is,

`c1.� /C D f f 2 `1.� / W f D �1� C g W � 2 R; g 2 `c1.� /g:

It is clear that `c1.� /C is 2-isomorphic to `c1.� /˚ R, endowed with the sup-
norm, and this is in turn isomorphic to `c1.� /; and, as every unital subalgebra of
`1.� /, it is isometrically isomorphic to the algebra of all continuous real-valued
functions on certain compact space K (much more general results are available,
see Sect. 2.2.1). In fact, if A is a unital subalgebra of `1.� / D C.ˇ� /, we can
identify A with C.K/, where K is the quotient space of ˇ� by the equivalence
x � y if f .x/ D f .y/ for every f 2 A.

4. The space `c1.� / contains a complemented subspace isometric to `c1.@1/ D
`<1.@1/, which is not injective by the result of Pełczyński and Sudakov quoted
in Theorem 1.26. ut

2.1 Basic Properties

2.1.1 Characterizations

Separably injective spaces can be characterized as follows.

Proposition 2.5 For a Banach space E the following properties are equivalent.

1. E is separably injective.
2. Every operator from a subspace of `1 into E extends to `1.
3. For every Banach space X and each subspace Y such that X=Y is separable,

every operator t W Y ! E extends to X.
4. If Z is a Banach space containing E and Z=E is separable, then E is comple-

mented in Z.
5. For every separable space S one has Ext.S;E/ D 0.

Proof It is clear that .3/ ) .1/) .2/ and .3/) .4/ , .5/. We prove now that
.2/) .1/ and .2/) .3/. Since every separable space X=Y can be set as a quotient
q W `1 ! X=Y of `1, the lifting property of `1 provides an operator Q W `1 ! X
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yielding a commutative diagram

(2.1)

Let t W Y ! E be an operator, for which there must be an extension � W `1 ! E
of t� provided by (2). When X is separable (case .2/) .1/) then Q can be chosen
surjective and then an extension T W X ! E of t can be defined as follows: if
x D Q./ then

T.x/ D �:

The map is well defined because if 0 D Q then q D 0 and thus also � D 0 from
where it follows � D t� D 0. The map T is continuous since the open mapping
theorem yields the existence of some � so that norm one elements x 2 X are images
of x D Q of some  with kk � �. Thus kTxk D kQk � kQk�. It extends t
because T.y/ D t.y/ choosing the representation y D �./.

But even if X is not separable (case .2/) .3/), diagram (2.1) implies that X is
a quotient of Y ˚1 `1 via the operator Q.y; / D yC Q. Thus, yields an extension
T W X ! E defined as

T.x/ D tyC �:

Indeed, the map is well defined because if 0 D y C Q then Q D �y and thus
q D pQ D p.�y/ D 0 from where  2 ker q and moreover � D Q D �y;
therefore tyC� D tyC t� D ty� ty D 0. The map T is continuous since the open
mapping theorem yields the existence of some � so that norm one elements x 2 X
admit a representation as x D y C Q with kyk C kk � �. Thus kTxk D kty C
Qk � max.ktk; kQk�/. It extends t because T.y/ D ty choosing the representation
yC Q.0/.

That .4/ ) .3/ follows from the existence of the push-out diagram: given an
operator t W Y ! E one gets

and thus the existence of a projection p0 through { 0 yields the existence of an
extension p0t0 W X ! E of t. ut
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Analogous characterizations can be given for universal separable injectivity.

Proposition 2.6 For a Banach space E the following properties are equivalent.

1. E is universally separably injective.
2. Every operator t W S ! E from a separable Banach space S can be extended to

an operator T W `1 ! E through any embedding S! `1.
3. For every Banach space X and each subspace Y, every operator t W Y ! E with

separable range extends to X.

Proof The equivalence of (1) and (2) is clear: since `1 is injective, once an operator
can be extended from S to `1 it can be extended anywhere. That (1) implies (3) only
requires to draw a push-out diagram:

where { denotes the canonical inclusion. Since { can be extended to an operator
I W PO! E, the composition It0 yields an extension of t. ut
Proposition 2.7 Every (universally) separably injective Banach space is (univer-
sally) �-separably injective for some � � 1.

Proof One only has to modify the proof of Proposition 1.6 assuming Xn separable.
For the part concerning universally separably injective spaces just shift the separa-
bility assumption from Xn to Yn. ut

2.1.2 First Structural Properties

Recall that a Banach space X has Pełczyński’s property .V/ if each operator defined
on X is either weakly compact or it is an isomorphism on a subspace isomorphic
to c0. The indulgent reader (and Rosenthal, we hope) will forgive us for saying
that X has Rosenthal’s property .V/ if it satisfies the preceding condition with `1
replacing c0.

All C-spaces as well as their complemented subspaces have Pełczyński’s prop-
erty .V/ [212]. Lindenstrauss spaces (i.e., L1;1C-spaces) also have this property
[147], although there are L1-spaces that do not have it. For example, the ones
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constructed by Bourgain and Delbaen [46] that contain no copies of c0, or the space
˝ constructed in [57] as a twisted sum

with strictly singular quotient map. Of course Argyros-Haydon’s hereditarily
indecomposable L1 space is also a counter-example, although this is a clear case
of using a sledgehammer to crack an almond.

We say that X is a Grothendieck space if every operator from X to a separable
Banach space (equivalently, to c0) is weakly compact; equivalently, weak* and weak
convergent sequences in X� coincide. Clearly, a Banach space with property .V/ is
a Grothendieck space if and only if it has no complemented subspace isomorphic
to c0. It is well-known that `1 is a Grothendieck space. In fact, it has Rosenthal’s
property .V/ (see Proposition 1.15), which is clearly stronger.

Proposition 2.8

1. A separably injective space is of type L1, has Pełczyński’s property (V) and,
when it is infinite dimensional, contains copies of c0.

2. A universally separably injective space is a Grothendieck space of type L1, it
has Rosenthal’s property .V/ and, when it is infinite dimensional, contains `1.

Proof

1. A separably injective space is obviously locally injective and thus (see Proposi-
tion 1.4) an L1-space.

To show that E contains c0 and has property .V/, let T W E ! X be a non-
weakly compact operator (E being an infinite dimensional L1 space cannot be
reflexive). Choose a bounded sequence .xn/ in E such that .Txn/ has no weakly
convergent subsequences and let Y be the subspace spanned by .xn/ in E. As Y
is separable we can regard it as a subspace of CŒ0; 1�. Let J W CŒ0; 1� ! E be
any operator extending the inclusion of Y into E. We already mentioned that C-
spaces have property .V/, so since TJ W CŒ0; 1�! E is not weakly compact, TJ is
an isomorphism on some subspace isomorphic to c0 ; and the same occurs to T.

2. To show that an universally separably injective space E has Rosenthal’s property
.V/ we may take T W E ! Z and Y � E as in the previous argument, but this
time we consider Y as a subspace of `1. If J W `1 ! E is any extension of the
inclusion of Y into E, then TJ W `1 ! Z is not weakly compact. Hence it is an
isomorphism on some subspace isomorphic to `1 and so is T. ut
The list of spaces with Pełczyński’s property .V/ includes Lindenstrauss spaces

(see [147]) and, by Proposition 2.8(1), separably injective spaces. Consequently:

Corollary 2.9 A separably injective space is a Grothendieck space if and only if it
does not contain complemented copies of c0.

Let us mention another similarity between separably injective spaces and
complemented subspaces of CŒ0; 1�.
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Proposition 2.10 If a separably injective space contains a subspace with nonsepa-
rable dual then it also contains CŒ0; 1�.

Proof Assume that a separably injective space X contains a subspace Z with
nonseparable dual through some embedding j. Consider an embedding i W Z !
CŒ0; 1� and get an extension J W CŒ0; 1� ! X of j through i, that is Ji D j. The
operator J� must have nonseparable range; hence, a result of Rosenthal [224] yields
that J fixes a copy of CŒ0; 1�. ut

2.1.3 Stability Properties

In this section we study the stability properties of (universally) separably injective
spaces under some natural “operations” such as taking subspaces and quotients,
forming direct products and twisted sums. This will allow us to present many natural
examples of (universally) separably injective spaces as soon as we have the basic
ingredients to start.

Proposition 2.11 Let 0 �! A
i�! B

q�! C �! 0 be an exact sequence of
Banach spaces.

1. If A and C are separably injective, then so is B.
2. If A and B are separably injective, then so is C.
3. If A is separably injective and B is universally separably injective then C is

universally separably injective.

In particular, products and complemented subspaces of (universally) separably in-
jective spaces are (universally) separably injective. Moreover, 1-complemented sub-
spaces of (universally) �-separably injective spaces are (universally) �-separably
injective.

Proof The simplest proof for (1) follows from characterization (2) in Proposi-
tion 2.5. Let j W K ! `1 be an isomorphic embedding and let � W K ! B be an
operator. Then q� can be extended to an operator ˚ W `1 ! C, which can in turn be
lifted to an operator � W `1 ! B. The difference � � � j takes values in A and can
thus be extended to an operator 
 W `1 ! A. The desired operator is � C i
.

To prove (2) and (3) suppose A is separably injective and B is (resp. universally)
separably injective. Let Y be a subspace of a separable (resp. arbitrary) space X and
let � W Y ! C be an operator. Consider the pull-back diagram
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Since C is separably injective, the lower exact sequence splits, so 0q admits a linear
continuous selection s W Y ! PB. By the assumption about B, the operator 0�s can
be extended to an operator T W X ! E. Thus, qT W X ! C is the desired extension
of �. ut

Thus, if 0 ! A ! B ! C ! 0 is an exact sequence of Banach spaces, we
know that B is separably injective if the other two relevant spaces are; and the
same happens with C. What about A? Bourgain showed in [44] that `1 contains
an uncomplemented subspace isomorphic to `1 which yields an exact sequence
0 ! `1 ! `1 ! B ! 0 that does not split (see Sect. 6.3). By Lindenstrauss’
lifting (Proposition A.18) B is not an L1 space. Its dual sequence 0 ! B� !
`1 ! `1 ! 0 shows that the kernel of a quotient mapping between two injective
spaces may fail to be even an L1-space.

In [20, Proposition 5.3] it was claimed that universal separable injectivity
is a 3-space property; but the proof contains a gap we have been unable to
fill. Consequently, other claims also remain without proper justification, namely
Propositions 5.4 and 5.6 and Theorem 5.5 in [20] and Example 4.5(a) and the second
part of Proposition 5.1 in [21]. See Sect. 6.2 for a more detailed account of the
situation.

Several variations of these results can be seen in [70]. Regarding infinite
products, it is obvious that if .Ei/i2I is a family of �-separably injective Banach
spaces, then `1.I;Ei/ is �-separably injective. The non-obvious fact that also
c0.I;Ei/ is separably injective can be considered as a vector valued version of
Sobczyk’s theorem. Proofs for this result were obtained by Johnson-Oikhberg [146],
Rosenthal [225], Cabello Sánchez [52] and Castillo-Moreno [65], each with its own
estimate for the constant: respectively, 2�2 (implicitly), �.1C�/C; .3�2/C and 6�C.
Here we present a proof like that of Castillo and Moreno [65] based on an idea of
Sánchez et al. [57] and giving the same bound as [225].

Proposition 2.12 If .Ei/i2I is a family of �-separably injective spaces, then c0.I;Ei/

is �.1C �/C-separably injective.

Proof Since the elements of c0.I;Ei/ have countable “supports” it suffices to prove
the result for countable families. So, let .En/ be a sequence of �-separably injective
spaces, X a separable Banach space, Y a subspace of X, and t W Y ! c0.N;En/ a
norm one operator that we can write as t D .tn/, where each tn W Y ! En has norm
at most 1.

Fix " 2 .0; 1/. Set Z D X=Y and let � W X ! Z denote the natural quotient
map. Let .Zk/ be an increasing sequence of finite dimensional subspaces of Z whose
union is dense in Z. For each k, let Xk be a finite dimensional subspace of X so that
�ŒXk� D Zk. We may assume that .Xk/ is an increasing sequence whose union is
dense in X. We require, moreover, that for every z 2 Zk there is x 2 Xk such that
�.x/ D z, with kxk � .1C "/kzk. This implies that Zk is .1C "/-isomorphic to the
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quotient of Xk by Yk D Y \ Xk through the obvious map. It is clear that, for every
k 2 N, the diagram

in which �k is the restriction of � to Xk and the vertical arrows are the canonical
embeddings is commutative.

For each n, let �n W X ! En be an extension of tn with k�nk � �ktnk, which exists
by hypothesis. Let tn;k denote the restriction of tn to Yk. Let �n;k W X ! En be an
extension of tn;k such that k�n;kk � �ktn;kk which, once again, exists by hypothesis.
Since �n��n;k vanishes on Yk there is an operator �n;k W Zk ! En such that �n��n;k D
�n;k ı �k. Besides, the norm of �n;k on Xk=Yk is k�n � �n;kk and we have

k�n;k W Zk �! Enk � .1C "/k�n � �n;kk:

Let ˚n;k W Z ! En be an extension of �n;k with k˚n;kk � �k�n;kk.
Since for every y 2 Y one has lim ktn.y/k D 0 and Yk is finite dimensional, for

fixed k, one has limn ktn;kk D 0. Put N.k/ D maxfn W ktn;kk > "kg. Then N.k/ is
increasing, and N.k/!1 as k!1.

We define a sequence of operators Tn W X ! En as follows:

Tn.x/ D
(
�n.x/ �˚n;k.�.x// for N.k/ < n � N.kC 1/;
�n.x/ if n � N.1/:

These Tn are uniformly bounded and thus define an operator T W X �! `1.N;En/

given by T.x/ D .Tn.x//. Let us see that T is the desired extension of t:

1. To check that T takes values in c0.N;En/ it is sufficient to work on
S

k Xk. So,
take x 2 Xk, with kxk D 1. Then for n > N.k/ one has

Tn.x/ D �n.x/ � ˚n;i.�.x// D �n.x/ � ˚n;k.�k.x// D �n.x/ � �n.x/C �n;k.x/ D �n;k.x/:

Thus, for n > N.k/, one has

kTn.x/k � k�n;kk � �ktn;kk � �"k:

2. The operator T is an extension of t. Indeed, if y 2 Y, then for every n one has
Tn.y/ D �n.y/ D tn.y/, by the very definitions.

3. To estimate kTk it is enough to bound each coordinate. If n � N.1/, then Tn D �n,
so kTnk � �ktnk � �. Otherwise N.k/ < n � N.k C 1/ for some k � 1 and we
have Tn D �n � ˚n;k ı � and so kTnk � k�nk C k˚n;kk. But k�nk � �ktnk � �;
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as for the other chunk, we have

k˚n;kk � �k�n;kk � �.1C "/k�n � �n;kk
� �.1C "/.k�nk C k�n;kk/ � �2.1C "/.ktnk C ktn;kk/
� �2.1C "/.ktnk C "k/ � �2.1C "/2;

from where it follows that c0.N;En/ is .�C �2/C-separably injective. ut

2.2 Examples of Separably Injective Spaces

In this section we will present a number of separably injective spaces appearing in
nature. The first obvious example, since `1 is injective and c0 is separably injective,
follows from Proposition 2.11: `1=c0 is universally separably injective. In fact, it
will be shown later that `1=c0 is 1-universally separably injective (Theorem 2.40
and Corollary 2.41) and non injective (Theorem 1.25 and also Proposition 2.43).

The non isomorphic [74] spaces c0.`1/ and `1.c0/ are also separably injective
and not universally separably injective; the quotients `1=c0.`1/ and `1=`1.c0/
are universally separably injective as well. It also follows from Proposition 2.11
that for � an uncountable set, `c1.� /=c0.� / is universally separably injective non-
injective. It is worth noticing that it is possible to identify such spaces with C.K/
spaces (perhaps after unitization, see Sect. 2.2.1 below).

C.K/-spaces (and their ideals) in which K is either of finite height or an F-space,
twisted sums of separably injective spaces and quotients of separably injective
spaces will be our next examples. We will also show the first examples of separably
injective spaces that are not isomorphic to a complemented subspace of any C-
space (which is clearly impossible for an injective space). Further examples will
be exhibited in Chaps. 4 and 5, when other important classes of separably injective
spaces will be presented.

2.2.1 C.K/-Spaces When K Is an F-Space

There are close connections between the 1-separable injectivity of C.K/, the
topological properties of K and the lattice structure of C.K/. Let us recall some
separation conditions that compacta may or may not have.

Definition 2.13 A compact Hausdorff space is said to be:

• An F-space if disjoint open F� sets (equivalently, cozeroes) have disjoint
closures.

• Basically disconnected (or �-Stonian) if the closure of every open F� set is open.
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• Extremely disconnected (or Stonian) if the closure of every open set is open.
• Zero-dimensional if the topology has a base of clopen sets.

Recall that a cozero set of K is one of the form fx 2 K W f .x/ ¤ 0g, for some
continuous function f . Cozeroes and open F� sets agree on a normal space. Indeed,
for any f 2 C.K/ one has

fx 2 K W f .x/ ¤ 0g D
1[

nD1
j f j�1�Œ1=n;1/�:

Thus each cozero is F� . Conversely, if V D S
n Vn is open with all Vn closed,

according to Tietze, we may take for each n a continuous 0 � fn � 2�n vanishing
off V and such that fn D 2�n on Vn. Clearly V is the cozero set of

P
n fn.

Of course Stonian implies �-Stonian and this implies F-space. ˇN is perhaps
the most natural example of extremely disconnected compactum. It is obvious that
closed sets of F-spaces are F-spaces, so N

� D ˇNnN is an F-space.

Theorem 2.14 Let K be a compact space. The following conditions are equiva-
lent:

1. C.K/ is 1-separably injective.
2. Given sequences . fi/ and .gj/ in C.K/ such that fi � gj for each i; j 2 N, there

exists h 2 C.K/ such that fi � h � gj for each i; j 2 N.
3. Every sequence of mutually intersecting balls in C.K/ has nonempty intersection.
4. K is a F-space.
5. For every f 2 C.K/ there is u 2 C.K/ such that f D uj f j.
6. Every operator from a two-dimensional space into C.K/ has a norm preserving

extension to any three-dimensional space.

Proof The equivalence of (1), (2), (3) and (4) is a special case of the equivalence
of the corresponding conditions in Theorem 5.16, where details and accurate
references are provided. The proof that (4) and (5) are equivalent is based on the
fact that open F� sets and cozeroes agree on a normal space:

That (5) holds when K is an F-space is clear: take f 2 C.K/ and consider the
sets P D f �1.0;1/ and N D f �1.�1; 0/. These are disjoint cozeroes and so
they have disjoint closures. Therefore there is u 2 C.K/ such that u D 1 on P
and u D �1 on N. Clearly, f D uj f j. The converse is also easy: let P and N be
disjoint cozero sets and take f ; g 2 C.K/ such that P D fx 2 K W f .x/ ¤ 0g and
N D fx 2 K W g.x/ ¤ 0g. Define h.x/ D j f .x/j � jg.x/j. Now, if h D ujhj for some
continuous u, then since u D 1 on P and u D �1 on N we see that P and N have
disjoint closures.

That (6) implies the separable injectivity of C.K/ is proved in [177], and the
converse implication is trivial. ut

The correspondence between “K is an F-space” and “C.K/ is 1-separably
injective” does not extend to C0.L/, the space of continuous functions vanishing
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at infinity on a locally compact space L: indeed, N is an F-space while c0 is not
1-separably injective. However, one has the following:

Proposition 2.15 Let L be a locally compact space. Then C0.L/ is 1-separably
injective if and only if every compact subset of L is an F-space and the infinity
point is a P-point in ˛L.

Proof Assume first that C0.L/ is 1-separably injective. If K is a compact subset of
L we have an exact sequence

(2.2)

where r is the restriction map and since ker r D f f 2 C0.L/ W f jK D 0g is an M-ideal
in C0.L/ we have that C.K/ is 1-separably injective (Theorem 2.21) and so K is an
F-space (Theorem 2.14).

To prove that the infinity point is a P-point in ˛L let us assume on the contrary
that there is a sequence .xn/ in L such that xn ! 1 in ˛L. We may and do assume
that xn ¤ xm for n ¤ m. Then the evaluation map � W C0.L/ ! c0 given by
�f D . f .xn//n is an “isometric quotient” whose kernel is an M-ideal in C0.L/ and
reasoning as before the space c0 would be 1-separably injective, a contradiction.

As for the other implication, let t W Y ! C0.L/ be an operator, where Y is a closed
subspace of a separable space X. As the infinity point is a P-point in ˛L and Y is
separable it is clear that there is a compact K � L such that supp t.y/ � K for every
y 2 Y. Let us define � W Y ! C.K/ by �.y/ D t.y/jK . Since K is an F-space � has an
extension O� W X ! C.K/ with kO�k D k�k D ktk. But O�ŒX� is a separable subspace
of C.K/ and Proposition 2.20 applied to the sequence (2.2) provides a “lifting” of O�
to C0.L/ which is the required extension of t. ut

It is not true that K is an F-space when C.K/ is only isomorphic to a 1-separably
injective space. To see this we proceed as follows: identify two points u; v 2 N

� that
we may consider as two free ultrafilters U and V on N and let us call ˇ.u; v/ to the
corresponding quotient space of ˇN. The space C.ˇ.u; v// D f f 2 C.ˇN/ W f .u/ D
f .v/g is a closed hyperplane of C.ˇN/ and thus it is 2-isomorphic to `1. However,
ˇ.u; v/ is not an F-space: pick U 2 UnV, so that V D NnU belongs to V. Set the
function f W N! R given by

f .n/ D 1U.n/� 1V.n/

n

and extend it to a continuous function on ˇN denoted again f . As f .u/ D f .v/ D 0

we have f 2 C.ˇ.u; v//. However there is no factorization f D gj f j with g 2
C.ˇ.u; v// since it this case we would have g.u/ D 1 and g.v/ D �1.
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It is important to realize that many Banach algebras are C.K/ spaces though
given in a disguised form. The most convenient characterization of the algebras of
all continuous functions on compact spaces in our real-valued setting is the one
due to Albiac and Kalton [1, 2]: if A is a (real, unital) Banach algebra whose norm
satisfies the inequality

2k fgk � k f 2 C g2k . f ; g 2 A/;

then, as a Banach algebra, A is isometrically isomorphic to C.K/, for some compact
space K. See [1, 2] for the remarkably simple proof. The next example is just one
application.

Proposition 2.16 The space of all bounded Borel (respectively, Lebesgue) measur-
able functions on the line is 1-separably injective in the sup norm.

Proof Clearly, the given spaces are in fact Banach algebras satisfying the inequality
required by Albiac-Kalton characterization. Thus they can be represented as C.K/
spaces. On the other hand, each measurable function can be decomposed as
f D uj f j, with u (and j f j, of course) measurable. This clearly implies that the
corresponding compacta satisfy the fifth condition in Theorem 2.14. ut

2.2.2 M-ideals of Separably Injective Spaces

Let M be a closed subset of the compact space K. By Tietze’s extension theorem
each continuous function on M is the restriction of some continuous function on K
having the same norm. The space L D K n M is locally compact and one has the
exact sequence

(2.3)

where the map r is plain restriction. Even if this sequence does not split (as a rule),
one has the following result, which can be regarded as a linear version of Tietze’s
extension theorem.

Proposition 2.17 (Borsuk-Dugundji Theorem) Let M be a closed set in the
compact space K. For every separable subspace S � C.M/ there is a norm-one
operator s W S �! C.K/ such that rs D 1S.

Borsuk proved this result in [42] for K a metrizable and separable space (not
necessarily compact), setting as C.K/ the space of continuous bounded functions
and S D C.M/. Separability was removed by Dugundji in [91, Theorem 5.1], see
[230, Sect. 21]. The version of the theorem as it is stated in Proposition 2.17 is
a corollary of the more general Proposition 2.20 that we shall discuss later. We
can rephrase Borsuk-Dugundji Theorem by saying that, with the same notations as
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before, if t W X ! C.M/ has separable range, then the lower sequence in the pull
back diagram

splits.

Theorem 2.18 Let K be a compact space, M a closed subset of K and L D KnM.

1. If C.K/ is (universally) �-separably injective, then so is C.M/.
2. If C.K/ is �-separably injective, then C0.L/ is 2�-separably injective.

Proof

1. Let Y be a separable subspace of X and t W Y �! C.M/ an operator. Let S �
C.M/ any separable subspace containing the image of t and s W S �! C.K/
the lifting provided by the Borsuk-Dugundji theorem. If T W X �! C.K/ is an
extension of st, then rT W X �! C.M/ is an extension of t, and krTk D kTk.

2. Let us remark that if S is a subspace of C.K/ containing C0.L/ and S=C0.L/ is
separable, then there is a projection p W S �! C0.L/ of norm at most 2. Indeed,
S=C0.L/ is a separable subspace of C.M/ and there is a lifting s W S=C0.L/ �!
C.K/, with ksk D 1, and p D 1S � sr is the required projection. Now, let t W
Y �! C0.L/ be an operator, where Y is a subspace of a separable Banach space
X. Considering t as taking values in C.K/, there is an extension T W X �! C.K/
with kTk � �ktk. Let S denote the least closed subspace of C.K/ containing
the range of T and C0.L/ and p W S �! C0.L/ a projection with kpk � 2. The
composition pT W X �! C0.L/ is an extension of t and thus kpTk � 2�ktk. ut
It is easy to see that every closed ideal of C.K/ has the form f f 2 C.K/ W f jS D 0g

for some closed subset S � K (see [249, III.D.1]). Thus, part (1) of the theorem
above can be reformulated as:

Corollary 2.19 Let K be a compact space and let J be an ideal of C.K/. If C.K/ is
(universally) �-separably injective, then so is C.K/=J.

Let us consider the following construction introduced by Dashiell and Linden-
strauss [80] with the declared purpose of exhibiting spaces admitting a strictly
convex renorming but no injective operator into any c0.� /. Take I D Œ0; 1� in its
natural topology. For every A � I and every countable ordinal ˛, let A.˛/ be the
˛th-derived set of A. Given " > 0 and f 2 `c1.I/, let �". f / D ft 2 I W j f .t/j � "g.
For each countable ordinal ˛ we set

X˛ D f f 2 `1.I/ W �". f /.˛/ D ¿ 8 " > 0g:



2.2 Examples of Separably Injective Spaces 31

If X D S
˛<!1

X˛ one has the chain

c0.I/ D X1 � X2 � � � � � X˛ � X˛C1 � � � � � X � `c1.I/ � `1.I/:

The function spaces in the preceding chain are all ideals in `1.I/. Let Y denote any
of them. After representing `1.I/ as a suitable C.K/ space (notice that K is just
the Stone-Čech compactification of I viewed as a discrete set) we have Y D C0.L/,
where L D fk 2 K W f .k/ ¤ 0 for some f 2 Yg. As `1.I/ is 1-injective, we get from
Theorem 2.18 that Y is 2-separably injective.

These spaces are all different—in fact, none is complemented in the next—since
[80, Theorem 2]: for ˛ < ˇ there is no linear continuous operator T W Xˇ ! X˛
whose restriction to c0.I/ is injective; the same is true for any operator `c1.I/! X.
Moreover, Dashiell and Lindenstrauss show that X is the space of Baire 1 class
functions having countable support, namely

X D B1 \ `c1.I/:

This should be compared with Proposition 6.10 where we show that B1 is not 1-
separably injective.

A remarkable generalization of Borsuk-Dugundji theorem for M-ideals was
provided by Ando [7] and, independently, Choi and Effros [76]. In order to state it let
us recall that a closed subspace J � X is called an M-ideal (see [121, Definition 1.1])
if its annihilator J? D fx� 2 X� W hx�; xi D 0 for every x 2 Jg is an L-summand in
X�. This just means that there is a linear projection P on X� whose range is J? and
such that kx�k D kP.x�/k C kx� � P.x�/k for all x� 2 X�. The easier examples of
M-ideals are just ideals in C.K/-spaces, which arise as in (2.3). The fact that such
a C0.L/ is an M-ideal in C.K/ is straightforward from the Riesz representation of
C.K/�.

Proposition 2.20 Let J be an M-ideal in the Banach space E and � W E! E=J the
natural quotient map. Let Y be a separable Banach space and t W Y ! E=J be an
operator. Assume further that one of the following conditions is satisfied:

1. Y has the �-AP.
2. J is a Lindenstrauss space.

Then t can be lifted to E, that is, there is an operator L W Y ! E such that �L D
t. Moreover one can get kLk � �ktk under the assumption (1) and kLk D ktk
under (2).

We refer the reader to [121, Theorem 2.1] for a proof. In a similar way as
Theorem 2.18 was deduced from the Borsuk-Dugundji Theorem (Proposition 2.17
above), one gets from Proposition 2.20:
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Theorem 2.21 Let J be an M-ideal in a Banach space E.

1. If E is (universally) �-separably injective, then E=J is (universally) �2-separably
injective.

2. If E is �-separably injective, then J is 2�2-separably injective.

Proof

1. By Proposition 1.5 E�� is �-injective and so it has the �-AP. As E�� D J�� ˚1
.E=J/�� we see that also J�� and .E=J/�� have the �-AP. Hence both J and
.E=J/ have the �-AP. Let Y be a separable subspace of X and t W Y �! E=J
an operator. Let S be a separable subspace of E=J containing the image of t.
By [60, Theorem 9.7] we may assume S has the �-AP. Let s W S �! E be the
lifting provided by Proposition 2.20, so that ksk � �. Now, if T W X �! E is
an extension of st, then �T W X �! E=J is an extension of t, and this can be
achieved with k�Tk D kTk � �2ktk.

2. The proof is similar to that of Theorem 2.18(2) and is left to the reader. ut
Observe that when E is a Lindenstrauss space then J is also a Lindenstrauss

space and then the exponent 2 can be eliminated everywhere in Theorem 2.21. This
result also provides a different proof for Proposition 2.12. Indeed, suppose Ei are
�-separably injective for every i 2 I. Then so is E D `1.I;Ei/ and therefore its
M-ideal J D c0.I;Ei/ is 2�2-separably injective. This argument, taken from [146],
gives the best constant when each Ei is 1-separably injective; otherwise the value
�.1C �/C we got in the proof of Proposition 2.12 is smaller than 2�2.

As we mentioned in Proposition 1.21, Rosenthal constructed in [222] the first
injective Banach space not isomorphic to a dual space. The example appears as a
space C.G/ where G is a closed part of ˇN. One therefore has an exact sequence

in which JG is an M-ideal, hence separably injective. In the remarks after the proof of
Proposition 2.11 it was already noticed that the kernel of a quotient map `1 ! `1
need not to be an L1 space.

2.2.3 Compact Spaces of Finite Height

Given a compact space K, recall that we write K0 for its derived set, that is, the set
of non-isolated points of K. This process can be iterated to define K.nC1/ as .K.n//0.
We say that K has finite height if K.n/ D ¿ for some n 2 N, the least of which is
called the (Cantor-Bendixson) height of K.

Proposition 2.22 Let K be an infinite compact space of finite height. Then C.K/ is
separably injective but not universally separably injective.
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Proof Let us show that C.K/ is separably injective if and only if C.K0/ is separably
injective; which yields the result since after finite number of derivations one
necessarily arrives to a finite compact set. Let I be the set of isolated points of
K. The restriction operator C.K/ �! C.K0/ induces a short exact sequence

Since separable injectivity is a 3-space property (Proposition 2.11(1)) and c0.I/
is separably injective, if C.K0/ is separably injective then also C.K/ is separably
injective. When K is scattered (in particular, of finite height) then the dual of every
separable subspace is separable [92], hence C.K/ does not contain `1 and thus it
follows from Proposition 2.8(2) that it cannot be universally separably injective. The
only if follows from Proposition 2.11(2). ut

Of course that spaces of continuous functions on countable height compacta,
such as C.!!/, need not be separably injective. An alternative proof for the result
above provides more information about the constants involved:

Proposition 2.23 If K is a compact space of height n, then C.K/ is .2n � 1/-
separably injective.

Proof Let Y � X with X separable and let t W Y ! C.K/ be a norm one operator.
The range of t is separable and every separable subspace of a C.K/ is contained
in an isometric copy of C.L/, where L is the quotient of K after identifying k and
k0 when y.k/ D y.k0/ for all y 2 Y. This L is metrizable because Y is separable.
Moreover, if K has height n, then L has height at most n and so it is homeomorphic
to Œ0; !r � k� with r < n, k < ! (see [36]; or else [120, Theorem 2.56]). Since
CŒ0; !r � k� is .2rC 1/-separably injective [25], our operator can be extended to an
operator T W X ! C.K/ with norm

kTk � .2rC 1/ktk � .2n � 1/ktk;

concluding the proof. ut
When K is a metrizable compact of finite height n, Baker [25] showed that 2n�1

is the best constant for separable injectivity, using arguments from Amir [5]. There
are some difficulties in generalizing those arguments for nonmetrizable compact
spaces, so we do not know if it could exist a nonmetrizable compact space K of
height n such that C.K/ is �-separably injective for some � < 2n� 1.

2.2.4 Twisted Sums of c0.I/

By Proposition 2.11, twisted sums of separably injective spaces are separably
injective, so making twisted sums is an effective method to obtain new separably
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injective spaces. The simplest examples will be provided by twisted sums of two
c0.@/. There exist in the literature several examples of nontrivial twisted sums of
the type

(2.4)

with different properties. The twisted sum space E is separably injective but not
universally separably injective, just because E cannot be a Grothendieck space
unless both I and J are finite [see Proposition 2.8(2)]. All the examples of such
twisted sums E that exist in the literature are of the form C.K/ with K a compact
space of finite height as in Sect. 2.2.3. It is an open problem whether a twisted sum
E of c0.I/ and c0.J/ exists that is not a C.K/-space. It is shown in [68] that every
twisted sum of c0.� / and a space with property .V/ has property .V/.

When J is countable the sequence splits since c0.I/ is separably injective. For I D
N and @0 < jJj � c a nontrivial extension can be obtained (see [144, Example 2];
and also [61]) from an almost-disjoint family M of size jJj of infinite subsets of N;
which means that M \ N is finite for different M;N 2 M. The existence of such a
family was first observed by Sierpiński; see the proof of Theorem 1.25. Let E.M/
be the closure of the linear span in `1 of the characteristic functions f1n W n 2 Ng
and f1M W M 2 Mg. Since the images of f1M W M 2 Mg in `1=c0 generate a copy
of c0.J/ we have the pull-back diagram

Recall that weakly compactly generated (in short, WCG) subspaces of `1 are
separable: if K is weakly compact in `1, then the coordinates of `1 provide
countably many real-valued continuous functions on the compact K that separate
the points, hence K is metrizable and separable. From this, we get that E.M/ is not
WCG. Hence the lower sequence in the preceding diagram does not split because c0
and c0.J/ are WCG and the product of two WCG spaces is WCG.

It is easily seen that E.M/ is a subring of `1 and so it can be represented as
(that is, it is isometric through a ring isomorphism to) certain C0.L/, where L is a
locally compact space. It is actually simpler to consider the unitization of E.M/ in
`1, that is,

E.M/C D f�1N C f W � 2 R; f 2 E.M/g:
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In this way E.M/C is a (closed, unital) subalgebra of `1 that can be identified
with a C.K/ for a compact space K D KM (the one-point compactification of
the just mentioned L). The description of KM is an amusing exercise. It has three
levels: isolated points, that correspond to natural numbers; points in the second
level correspond to elements of the family M, and a neighborhood of M contains
M together with almost all elements of M. The point in the third level is the infinity
point in the one-point compactification of the first two levels. One has a diagram

where, moreover, K0
M is the one-point compactification of J.

Other twisted sums of c0.I/ and c0.J/ spaces were obtained by Ciesielski and
Pol (see [81, Definition 8.8.2]). They are C-spaces C.CP/, where the Ciesielski-
Pol compacta CP have both the derived set CP0 and its complement CP n CP0
uncountable, and the second derived set CP00 is a singleton. Moreover, C.CP/
has a subspace Y isometric to c0.I/ with C.CP/=Y isomorphic to c0.J/, for some
uncountable sets I and J. They have the property that there is no injective operator
from C.CP/ into c0.� /, for any � , so they are not WCG.

Nontrival WCG twisted sums of c0.� / also exist. In [13] it is obtained an exact
sequence

in which K is an Eberlein compact. Under GCH one can choose @ D @! (and this
is the smallest cardinal allowing a WCG nontrivial twisted sum of c0.� /. Bell and
Marciszewski construct in [29] an Eberlein compact BM of weight c and height 3
that cannot be embedded into the space of all characteristic functions of subsets of
cardinality lesser than or equal to n of a given set; Marciszewski shows in [192] that
C.BM/ is actually a nontrivial twisted sum of two c0.� /. On the other hand, given
a compact space K of weight smaller than @! , the space C.K/ is isomorphic to c0.I/
if and only if K is an Eberlein compact of finite height [109, 192].

2.2.5 Twisted Sums of c0 and `1

The next simplest twisted sum of separably injective spaces are those of c0 and `1.
Nontrivial twisted sums 0 ! c0 ! X ! `1 ! 0 exist and explicit examples can
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be seen in [54], obtained as the lower sequence in a certain pull-back diagram

Here E.M/ is obtained using an almost disjoint family of size c D jJj, ~ is any
operator providing a non WCG pull-back space PB (such as the canonical inclusion,
in which case PB is the Johnson-Lindenstrauss space [144, Example 1]) and q is a
quotient map. The twisted sum space in the lower sequence was baptized CC in
[157].

The lower sequence cannot split since otherwise there would be a quotient map
Q W c0 ˚ `1 ! PB. The restriction of Q to `1 cannot be weakly compact, since
otherwise PB would be WCG; therefore, Q must be an isomorphism on a copy of
`1; but PB does not contain `1 because “not containing `1” is a 3-space property
[61, Theorem 3.2.f]. The space CC cannot be universally separably injective: since
{ admits the obvious extension through j, if j would also extend through { then the
diagonal principles (Proposition A.22) would yield an isomorphism `1 ˚ `1 D
CC˚ C.N�/, which makes C.N�/ complemented in `1 which is not.

2.2.6 A Separably Injective Space Not Isomorphic
to a Complemented Subspace of Any C.K/

This counterexample depends on Benyamini’s construction appearing in [32] of an
M-space not isomorphic to any complemented subspace of a C-space. The basic
element in that construction can be described as follows. Let QN denote a copy of the
set of the integers. Given x 2 ˇN, we denote by Qx the corresponding element in ˇ QN.
Set QN� D ˇ QNn QN and put B D ˇN˚ QN�. Now, for 0 < � < 1, consider

B� D f f 2 C.B/ W f .x/ D � f .Qx/ for all x 2 N
�g;

equipped with the restriction of the sup norm in C.B/. Quite clearly, B� is
a renorming of `1. However, and this is the crux, B� is far away from the
complemented subspaces of any C.K/ space in the following precise sense: if K is
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a compact space, u W B� ! C.K/ is an isomorphic embedding and p is a projection
of C.K/ onto the range of u, then kukku�1kkpk � 1=� .

Example 2.24 Suppose �.n/ ! 0. Then the spaces c0.N;B�.n// and `1.N;B�.n//

are separably injective yet they are isomorphic to no direct factor of a C-space. They
are not universally separably injective and `1.N;B�.n// is a Grothendieck space.

Proof It suffices to see that B� is 5-separably injective for 0 < � � 1. Notice that
the characteristic functions of the points of N generate an ideal in C.B/ which is
fact an isometric copy of c0 in B� that we will denote c0.N/. Clearly, c0.N/ is an
M-ideal in B� . After a moment’s reflection one realizes that the quotient B�=c0.N/
is isometric to `1=c0 D C.N�/. Thus, even if B� is badly isomorphic to `1 we
have an isometric exact sequence

whose kernel is an M-ideal.
Let now X be a separable Banach space and t W Y ! B� be a norm one operator,

where Y is a subspace of X. As C.N�/ is 1-separably injective one can find a norm
one T W X ! C.N�/ extending the composition �t. As T has separable range, by
Proposition 2.20, T can be lifted to an operator L W X ! B� , again with kLk D 1.
Clearly, t � LjY takes values in c0.N/ and it can be extended to an operator S W
X ! c0.N/, with kSk � 2kt � LjYk � 4. Hence S C L is an extension of t to X,
and has norm at most 5. Thus we see that `1.N;B�.n// is 5-separably injective and
c0.N;B�.n// is 10-separably injective.

As for the last statement, c0.N;B�.n// cannot be universally separably injective
since it contains a complemented copy of c0, which is not. To see that `1.N;B�.n//

is not universally separably injective, observe that B� is (isometric to) the pull-back
space in the diagram

(2.5)

where r is plain restriction and � denotes multiplication (by �). Indeed, by the very
definition we have

PB.r; �/ D f. f ; g/ 2 C.ˇN/˚1 C. QN�/ W rf D �gg
D f. f ; g/ 2 C.ˇN/˚1 C. QN�/ W f .x/ D �g.Qx/ for every x 2 N

�g
DB� :
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Therefore, for each n, we have a commutative diagram

(2.6)

All these can be amalgamated into a unique diagram

(2.7)

If `1.N;B�.n// were universally separably injective, then it should be �-universally
separably injective, for some �. This would imply that every B�.n/ is �-universally
separably injective and so the operator jn in (2.6) admits an extension Jn W `1 !
B�.n/, with kJnk � �. The “diagonal” operator J W `1.`1/ ! `1.N;B�.n//

given by J.. fn// D .Jn. fn// is then an extension of the operator j in diagram (2.7).
Applying Proposition A.22 we would obtain an isomorphism

`1.`1/˚ `1.C.N�// D E˚ `1.C.N�//:

This is impossible, since `1.N;B�.n// is not complemented in any C-space.
It follows from results of Leung and Räbiger in [174] that `1.N;B�.n// is a

Grothendieck space: A set I is said to have real-valued measurable cardinal if there
exists a countably additive measure � W P.I/ ! Œ0; 1� vanishing on the singletons
of I. The existence of real-valued measurable cardinals cannot be proved in ZFC
and the fact that @0 is not real-valued measurable is obvious. Leung and Räbiger
proved in [174, Theorem] that if .Ei/ is a family of Banach spaces indexed by a
set I whose cardinal is not real-valued measurable, then the Banach space product
`1.I;Ei/ contains a complemented copy of c0 (if and) only if some Ei does. As
each B�.n/ is a renorming of `1 we see that `1.N;B�.n// has no complemented
subspace isomorphic to c0. Since it is separably injective, has Pełczyński’s property
.V/ and, consequently, is a Grothendieck space. ut

2.3 Universally Separably Injective Spaces

It was proved in Proposition 2.8(2) that universally separably injective spaces
contain `1. In this section we will show that they are in fact `1-upper-saturated,
according to the next definition.
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Definition 2.25 Let X and Y be Banach spaces. We say that X is Y-upper-saturated
if every separable subspace of X is contained in some (isomorphic) copy of Y
inside X.

It is clear that c0-upper-saturated spaces are separably injective and `1-upper-
saturated spaces are universally separably injective. One moreover has:

Theorem 2.26 An infinite-dimensional Banach space is universally separably
injective if and only if it is `1-upper-saturated.

Proof The sufficiency is a clear consequence of the injectivity of `1. In order to
show the necessity, let Y be a separable subspace of a universally separably injective
space X. We consider a subspace Y0 of `1 isomorphic to Y and an isomorphism
t W Y0 ! Y. We can find projections p on X and q on `1 such that Y � ker p;Y0 �
ker q, and both p and q have range isomorphic to `1. Indeed, let � W X ! X=Y be
the quotient map. Since X contains `1 and Y is separable, � is not weakly compact
so, by Proposition 2.8(2), there exists a subspace M of X isomorphic to `1 where
� is an isomorphism. Now X=Y D �ŒM� ˚ N, with N a closed subspace. Hence
X D M ˚ ��1ŒN�, and it is enough to take p as the projection with range M and
kernel ��1ŒN�.

Since ker p and ker q are universally separably injective spaces, we can take
operators u W X ! ker q and v W `1 ! ker p such that v D t on Y0 and u D t�1 on
Y. Let w W `1 ! ran p be an operator satisfying kw.x/k � kxk for all x 2 `1. We
will show that the operator T D vCw.1`1

� uv/ is an into isomorphism `1 ! X.
This suffices to end the proof since ran T is isomorphic to `1 and both T and v
agree with t on Y0, so Y � ran T � X. Since ran v � ker p and ran w � ran p, there
exists C > 0 such that for all x 2 `1 one has

kTxk � C maxfkv.x/k; kw.1`1
� uv/xkg:

Now, if kvxk < .2kuk/�1kxk, then kuvxk < 1
2
kxk; hence

kw.1`1
� uv/xk � k.1`1

� uv/xk > 1
2
kxk:

Thus kTxk � C.2kuk/�1kxk for every x 2 X. ut
Another similarity between `1 and universally separably injective spaces is

given in the next Proposition 2.27, which extends [182, Proposition 2.f.12(iii)]. Re-
call that an operator is Fredholm if its kernel and its cokernel are finite dimensional.
Here, the cokernel of an operator T W X ! Y is defined as coker T D Y= ran T. The
index of a Fredholm operator T is defined by

ind.T/ D dim ker T � dim coker T:

Note that if Y= ran.T/ is finite dimensional, then T has closed range [242, Theorem
IV.5.10].
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Proposition 2.27 Let X be universally separably injective and let { W Y ! X and
j W Y ! X be two into isomorphisms. Suppose that X=jŒY� and X={ŒY� are separable.
Then every extension I W X ! X of { through j (i.e., Ij D i) is a Fredholm operator
and all these extensions have the same index.

Proof Since X is separably injective, we can find u W X ! X and v W X ! X
operators such that uj D { and v{ D j. Let us denote w D 1X � vu. Since
j.Y/ is contained in the kernel of w, the operator w factors through X=jŒY�. Recall
that L1 spaces have the Dunford-Pettis property (every weakly compact operator
defined on those spaces takes weakly convergent sequences into convergent ones;
see Proposition A.2). Thus, X has the Dunford-Pettis property and its separable
quotients must be reflexive by Proposition 2.8(2). Therefore, the operator w is
weakly compact and completely continuous; hence w2 is compact. From this fact
it follows that vu D 1X � w is a Fredholm operator with ind.vu/ D 0. Similarly
we can show that uv is a Fredholm operator with ind.uv/ D 0. Thus u and v are
Fredholm operators with ind.u/C ind.v/ D 0, and the proof is done. ut

Proposition 2.27 remains valid for X separably injective provided one asks the
quotients to be separable and reflexive (e.g., when X is Grothendieck). Recall that
two Banach spaces X and Y are said to be essentially incomparable (see [110]) if for
each pair of operators t W X ! Y and s W Y ! X, 1X�st is a Fredholm operator. Since
it follows from Proposition 2.8(2) that a quotient of a universally separably injective
space is either reflexive or it contains copies of `1, the proof of Proposition 2.27
shows that universally separable injective spaces and spaces containing no copies of
`1 are essentially incomparable.

2.4 1-Separably Injective Spaces

While regarding injectivity it is unknown whether the parameter � in “�-injective”
has real content (after all, it could still be true that every �-injective space can be
renormed to become 1-injective) in this section we shall see that the parameter
� in “�-separably injective” has some meaning (but we do not know which). For
instance, 1-separably injective spaces enjoy several properties that, say, 2-separably
injective spaces lack; and spaces such as c0.� / are 2-separably injective but not �-
separably injective for � < 2; at the same time, C.K/-spaces �-separably injective
for � < 2 are automatically 1-separably injective (Proposition 2.34).

Keeping in mind that separably injective spaces are Grothendieck if and only if
they do not contain c0 complemented, it is possible to establish a major difference
between 1-separably injective and general separably injective spaces: 1-separably
injective spaces are Grothendieck (hence they cannot be separable or WCG)—see
Proposition 2.31 below—while a 2-separably injective space, such as c0, can be even
separable.
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To prove that 1-separably injective spaces cannot contain c0 complemented, the
following lemma due to Lindenstrauss [177, p. 221, proof of (i)) (v)] provides a
useful technique.

Lemma 2.28 Let E be a 1-separably injective space, X a Banach space of density
@1, and Y a separable subspace of X. Then every operator t W Y ! E can be
extended to an operator T W X ! E with the same norm.

Proof We write X as the union of a continuous !1-sequence of separable spaces
.X˛/˛<!1 beginning with X0 D Y. This just means (see Appendix A.6)

• X˛ � Xˇ if ˛ � ˇ.
• X DS

˛<!1
X˛.

• For every limit ordinal ˇ < !1 one has Xˇ DS
˛<ˇ X˛:

Then we define inductively a coherent family of operators T˛ W X˛ �! E, all of them
with the same norm as T0 D t. We can do this using the 1-separable-injectivity of E
and, in the limit ordinals, using that given T˛n W X˛n �! E, a coherent sequence
of operators of norm ktk, they determine a unique operator

S
n X˛n �! E of

norm ktk. ut
Proposition 2.29 (CH) Every 1-separably injective Banach space is universally
1-separably injective and therefore a Grothendieck space.

Proof Let E be 1-separably injective, X an arbitrary Banach space and t W Y ! E
an operator, where Y is a separable subspace of X. Then tŒY�, the closure of the
image of t, is a separable subspace of E and so there is an isometric embedding
u W tŒY� ! `1. As `1 is 1-injective there is an operator T W X ! `1 whose
restriction to Y agrees with ut. Thus it suffices to extend the inclusion of tŒY� into E
to `1. But, under CH, the density character of `1 is @1 and Lemma 2.28 applies.
The “therefore” part is now a consequence of Proposition 2.8(2). ut

We will prove later (Theorem 2.39) that CH cannot be dropped in general from
Proposition 2.29. However the “therefore” part survives in ZFC. The following
characterization of 1-separable injectivity, apart from its intrinsic interest, will help
with the proof. Its general version will be stated and proved in Proposition 5.12.

Proposition 2.30 A Banach space E is 1-separably injective if and only if every
countable family of mutually intersecting balls has nonempty intersection.

Proof SUFFICIENCY. Take an operator t W Y ! E, where Y is a closed subspace of
a separable space X. We may and do assume ktk D 1. Let z 2 XnY and let Y0 be a
dense countable subset of Y and, for each y 2 Y0, consider the ball B.ty; ky � zk/ in
E. Any two of these balls intersect, since for y1; y2 2 Y0 we have

kty2 � ty1k � ktkky2 � y1k � ky2 � zk C ky1 � zk:
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The hypothesis is that there is

f 2
\

y2Y0

B.ty; ky � zk/ D
\

y2Y

B.ty; ky � zk/:

It is clear that the map T W Y C Œz� ! E defined by T.y C cz/ D ty C cf is an
extension of t with kTk D 1. The rest is clear: use induction.

NECESSITY. We begin with the observation that if two closed balls of any Banach
(or metric) space have a common point, then the distance between the centers is at
most the sum of the radii. In `1 that necessary condition suffices and every family
of mutually intersecting balls has nonempty intersection.

Let E be 1-separably injective and let B.en; rn/ be a sequence of mutually
intersecting balls in E. Let Y be the closed separable subspace of E spanned by
the centers. Let 	 W Y ! `1 be any isometric embedding. Notice that even if
BY.en; rn/ D B.en; rn/ \ Y need not be mutually intersecting in Y, any two balls of
the sequence B.	.en/; rn/meet in `1 because the distance between the centers does
not exceed the sum of the radii. Therefore the intersection

\

n

B.	.en/; rn/

contains some point, say x 2 `1. Let X be the subspace spanned by x and 	.Y/ in
`1 so that dim X=Y � 1. The hypothesis on E allows one to extend the inclusion of
Y into E to X through 	 W Y ! X without increasing the norms. The image of x in E
under any such extension belongs to the intersection of all the B.en; rn/. ut
Proposition 2.31 Every 1-separably injective space is a Grothendieck and a
Lindenstrauss space.

Proof To prove that a 1-separably injective space is Lindenstrauss we recall that a
Banach space is a Lindenstrauss space if and only if every finite set of mutually
intersecting balls has nonempty intersection [175]. Proposition 2.30 now concludes.
A different argument can be derived from Proposition 1.5 that yields the bidual of a
1-separably injective space X is 1-injective, hence X�� and so X is a Lindenstrauss
space.

It remains to prove that a 1-separably injective space X must be Grothendieck.
Since X has property .V/ by Proposition 2.8, it suffices to show that c0 is not
complemented in X, so let j W c0 �! X be an embedding. Consider an almost-
disjoint family M of size @1 formed by infinite subsets of N. Proceeding as in
Sect. 2.2.4 we get a nontrivial exact sequence
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where the space E.M/ has density character @1. The embedding j can be extended
to all of E.M/ by Lemma 2.28, which yields a commutative diagram

Thus, were c0 complemented in X it would be complemented in E.M/ as well,
which is not. ut

2.4.1 On �-Separably Injective Spaces When � < 2

As we have already mentioned, it is an open problem whether a �-injective space is
isomorphic to a 1-injective space. From Proposition 2.31 it is clear that 2-separably
injective spaces cannot be, in general, be renormed to become 1-separably injective.
We do not know whether a �-separably injective space, � < 2 must be (isomorphic
to a) 1-separably injective or, at least, a Grothendieck space. We have, however, the
following result, based on an idea of Ostrovskii [208]:

Proposition 2.32 A �-separably injective space with � < 2 is either finite dimen-
sional or has density character at least c.

Proof Let X be an infinite dimensional �-separably injective space for � < 2. In
Proposition 2.8 it is shown that X contains c0, and thus by a result of James [139]
it contains, for each " > 0, an .1 C "/-isomorphic copy of c0. With a standard
renorming [211, Proposition 1] we may assume X contains c0 isometrically and it
is �0-separably injective, still with �0 < 2. So, let u W c0 ! X be an isometric
embedding and let un D u.en/, where .en/ is the unit basis of c0. For each element
f 2 `1 with all coordinates ˙1, let Tf W c0 C Œ f � ! X be an extension of u with
norm at most �0. For two different f ; g pick n so that f .n/ D 1 and g.n/ D �1. One
has kun � Tf . f=2/k D kun C Tg.g=2/k � �0=2, and thus

kTf . f=2/� Tg.g=2/k D kTf . f=2/� un � un � Tg.g=2/C 2unk
� 2 � kTf . f=2/� un � un � Tg.g=2/k
� 2 � �0=2� �0=2

D 2 � �0:

So dens X � c. ut
In any case, it seems that some break occurs at � D 2. As a preparation for the

following result, let us record the following observation:
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Lemma 2.33 If E is �-separably injective, then given a countable family of
mutually intersecting balls B.en; rn/ one has

T
n B.en; �rn/ ¤ ¿.

Proof Just read the “necessity part” of the proof of Proposition 2.30. ut
According to Lindenstrausss (see [177, Remarks 3]) the following result “is

similar to a result due to Amir [4] and Isbell and Semadeni [138] that if a
C-space has projection constant � < 2 then it has projection constant 1” (i.e., it
is 1-injective).

Proposition 2.34 If a C-space is �-separably injective for some � < 2, then it is
1-separably injective.

Proof What one actually proves is that if a C.K/-space is �-separably injective for
some � < 2 then K actually is an F-space, in the formulation: for every f 2 C.K/
there is g 2 C.K/ and ı > 0 such that f .k/ > 0 implies g.k/ � ı and f .k/ < 0

implies g.k/ � �ı. Now, if C.K/ is �-separably injective then it has property .c�/,
and therefore any family B.x˛; r˛/ of mutually intersecting balls whose centers lie
on a separable subspace is such that

T
˛ B.x˛; �r˛/ ¤ ¿.

Pick now f 2 C.K/ and set rn.t/ D 1 for t � 1=n and rn.t/ D �1 for t � �1=n
and linear in Œ�1=n; 1=n�. The balls in the sequence B.rn ı f ; 1=2/ are mutually
intersecting. By the preceding Lemma there exists g 2 T

n B.rn ı f ; �=2/. Since
� < 2, set ı D 1 � �=2 > 0 and observe that g.k/ � ı when f .k/ > 0 and
g.k/ � �ı when f .k/ < 0. ut

2.4.2 A C-space 1-Separably Injective But Not Universally
1-Separably Injective

We show now that without CH, 1-separably injectivity does not longer imply
universal 1-separable injectivity. To this end we will produce, assuming that c D @2
and also Martin’s axiom, a 1-separably injective space C.K/ and an operator
c ! C.K/ that does not admit norm-preserving extensions to `1. In order to state
Martin’s axiom we need a few definitions. Suppose that we have a partially ordered
set P. Two elements p; q 2 P are compatible if there exists r 2 P such that r < p
and r < q. A filter is a subset F � P of pairwise compatible elements such that if
p 2 F and p < q, then q 2 F . A subset D � P is called dense if for every p 2 P
there exists q 2 D such that q < p. We say that P has the countable chain condition
(or ccc) if every uncountable subset of P contains a pair of compatible elements.

Martin’s Axiom [MA] If P is a ccc partially ordered set and fDi W i 2 Ig is a
family of dense subsets of P with jIj < c, then there exists a filter F � P such that
F \Di ¤ ¿ for every i 2 I.

This axiom has become a standard tool with a number of applications in analysis.
It is compatible with the ZFC system of axioms of set theory, and it is also
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compatible with different values of the continuum, in particular with c D @2; that is
what we shall use.

Definition 2.35 Let L be a zero-dimensional compact space. An @2-Lusin family
on L is a family F of pairwise disjoint nonempty clopen subsets of L with jFj D @2,
such that whenever G and H are subfamilies of F with jGj D jHj D @2, then

[
fG 2 Gg \

[
fG 2 Hg ¤ ¿:

Lemma 2.36 (MA, c D @2) There exists an @2-Lusin family on N
�.

Proof We are going to construct a family fA˛g˛<!2 of infinite subsets of N such
that

1. A˛ \ Aˇ is finite for ˛ < ˇ < !2,
2. for every B � N either f˛ W jA˛ n Bj is finiteg or f˛ W jA˛ \ Bj is finiteg has

cardinality strictly lesser than @2.
Once we obtain this family, we can consider the family the clopens C˛ D fU 2

N
� W A˛ 2 Ug of N�. The family C D fC˛ W ˛ < !2g is an @2-Lusin family on N

�,
because they are disjoint by (1), and if we have G and H subfamilies of C whose
unions have disjoint closures, then these unions can be separated by a clopen set of
N

�, which is of the form fU 2 N
� W B 2 Ug. Property (2) of our family prevents that

both G and H have cardinality @2.
So let us proceed now to the construction of the sets A˛. Let fB˛ W ˛ < !2g be

an enumeration of all infinite subsets of N. We construct the A˛’s inductively on
˛. Suppose A� has been constructed for � < ˛. We define a partially ordered set
P˛ whose elements are pairs p D . fp;Fp/ where fp is a f0; 1g-valued function on a
finite subset dom. fp/ of N and Fp is a finite subset of ˛. The order relation is that
p < q if

• dom. fp/ 
 dom. fq/ and fpjdom.q/ D fq,
• Fp 
 Fq,
• fp vanishes in A� \ dom. fp/ n dom. fq/ for � 2 Fq.

First, notice that this partially ordered set is ccc. This is simply because if Q � P˛

is an uncountable set, we can find p; q 2 Q with fp D fq, and any two such functions
are compatible, since r D . fp;Fp [ Fq/ D . fq;Fp [ Fq/ satisfies r < p and r < q.
Thus for any family of @1 many dense subsets we can find a filter F � P˛ that
intersects all of them. The family of dense subsets is the following:

• Dn D fp 2 P˛ W n 2 dom.p/g, for n 2 N,
• D0̌ D fp 2 P˛ W ˇ 2 Fpg, for ˇ < ˛,
• D00

�;m D fp 2 P˛ W there is n > m such that n 2 B� \ dom fp and fp.n/ D 1g,
where m 2 N and � < ˛ are such that B� n f0; : : : ;mg is not contained in
any finite union of Aˇ’s with ˇ < ˛.
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It is easily seen that all these sets are dense in P˛. Let F � P˛ be the filter provided
by MA and take A˛ D fn 2 N W there is p 2 F such that fp.n/ D 1g. We check:

1. A˛ \Aˇ is finite for every ˇ < ˛. To check this, pick q 2 F \D0̌ . We claim that
A˛\Aˇ � dom. fq/. Suppose on the contrary that we have n 2 A˛\Aˇndom. fq/.
Since n 2 A˛ we can find p 2 F such that fp.n/ D 1. Since F is a filter, p and q
must be compatible, so pick r 2 P˛ such that r < p and r < q. We can now apply
the third condition of the definition of the order relation, because ˇ 2 Fq, and
n 2 Aˇ \ dom. fr/ n dom. fq/. So we conclude that fr.n/ D 0. But we supposed
that fp.n/ D 1 and r < p, a contradiction.

2. For every � < ˛, if B� is not contained in any finite union of Aı’s and a finite set
then A˛\B� is infinite. To prove this, it is enough to check that A˛\B� contains
some n > m for every m 2 N. For this, just use p 2 F \D00̌

;m.

This finishes the inductive construction of the A˛’s. They form indeed an almost
disjoint family by property 1 above. It remains to check the second property that we
claimed about the family fA˛g˛<!2 at the beginning of the proof. So pick B � N. If
B is contained in a finite union of Aı’s and a finite set F, B � F [ �S

ı2� Aı
�
, then

just using the almost disjointness, we check that f˛ < !2 W jA˛ n Bj is finite g � �
so we are done. Similarly, if N n B is contained in a union F [S

ı2� Aı, then f˛ <
!2 W jA˛\Bj is finite g � �. So we assume that neither B nor NnB is contained in a
finite union of Aı’s and a finite set. Then pick ˛0 such that B D Bˇ and N n B D B�
with ˇ; � < ˛0. Then, using condition 2 above, we get that for every ˛ > ˛0, both
A˛ \ B D A˛ \ Bˇ and A˛ \ .N n B/ D A˛ \ B� are infinite, and we are done. ut

In the next theorem we provide the compact space A whose space of continuous
functions will provide the desired example. This compactum is constructed in ZFC,
though we will focus on the case when c D @2. This value of the continuum is taken
mainly for convenience. The construction is the same as the one performed in [16,
87], that we present in purely topological language. It is an inductive construction
of length c in which at each successor step we split a couple of disjoint F� open sets,
and we do this exhaustively. Those successive steps can be interpreted as pull-backs
with respect to metrizable quotients, cf. Sect. 3.4.5 for further information about this
compactum.

Theorem 2.37 (c D @2) There exists an infinite zero-dimensional compact F-space
A such that no closed Gı subset of A contains any @2-Lusin family.

Proof We construct this compact space as an inverse limit of length c. So, we shall
produce compact spaces fK˛ W ˛ < cg and continuous onto maps f�ˇ˛ W Kˇ �!
K˛ W ˛ � ˇg such that �˛˛ is the identity in K˛ and �ˇ˛ ı ��ˇ D ��˛ for all
˛ < ˇ < � , and then A will be the limit of the system in the sense that

A D
(
.x˛/˛<c 2

Y

˛<c

K˛ W �ˇ˛.xˇ/ D x˛ for all ˛ < ˇ < c

)
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We fix a partition c D S
˛<c Si into c many subsets such that jS˛j D c and ˛ �

min.S˛/ for all ˛. The inductive construction is as follows. Let K0 be the Cantor set.
Once the compact space K˛ is constructed, we produce an enumeration

f.Vˇ;Wˇ/ W ˇ 2 S˛g

of all pairs of disjoint open F� subsets of K˛ . This will be possible because the
weight of each K˛ will be less than c. If the system has been defined for all ordinals
below a given � , we distinguish two cases. If � is a limit ordinal, then we take K�
to be the inverse limit of the preceding system:

K� D
(
.x˛/˛<� 2

Y

˛<�

K˛ W �ˇ˛.xˇ/ D x˛ for all ˛ < ˇ < �

)
:

If � D ˇ C 1 is a successor, we pick the ˛ such that ˇ 2 S˛ , and then define

K� D .Kˇ n ��1
ˇ˛ .Vˇ// 	 f0g [ .Kˇ n ��1

ˇ˛ .Wˇ// 	 f1g

and then ��ı.x; i/ D �ˇı.x/ for ı < � . This finishes the inductive construction. We
will denote by �˛ W A �! K˛ the canonical projection.

We start now exploring the properties of A . First, it is clear that A is zero-
dimensional since each K˛ along the construction is such. Second, we check that A
is an F-space. If we take V and W two disjoint open F� -sets, then they must be of
the form V D ��1

˛ .V 0/ and W D �1
˛.W

0/ for some disjoint open F� sets in K˛ for
some ˛ < c. But then, .V;W 0/0 D .Vˇ;Wˇ/ for some ˇ > ˛ and

��1
ˇ

�
.Kˇ n ��1

ˇ˛ .Vˇ// 	 f0g
�

and ��1
ˇ

�
.Kˇ n ��1

ˇ˛ .Wˇ// 	 f1g
�

are disjoint clopens that separate W and V . Third, we prove that if c is a clopen
subset of A , then �˛.c/ is a closed Gı set for all ˛ < c. Indeed, the set c must be of
the form ��1

ˇ .b/ for some clopen subset b � Kˇ and some ˇ < c. So it is enough to
show that �ˇ˛.b/ is a Gı for every clopen b of Kˇ and every ˛ < ˇ < c. We prove it
by induction on ˇ. If ˇ D � C 1 is a successor, it is easily checked that the one-step
map �ˇ� takes clopen sets onto Gı-sets. If ˇ is a limit ordinal, there exists indeed
˛ < � < ˇ such that �ˇ� .b/ is a clopen set.

Finally, we fix a closed Gı set F and we prove that F does not contain any
@2-Lusin family of clopen subsets of F. So suppose that we have such a family
F , and we construct by induction subfamilies Fi � F and ordinals ˛.i/ < c for
i < !1 with the following properties:

1. Fi   Fj and ˛.i/ < ˛.j/ if i < j.
2. Each family Fi has cardinality @1.
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3. Each a 2 Fi is determined up to ˛.i C 1/, in the sense that a is of the form
a D ��1

˛.iC1/.a0/ for some clopen set a0 of K˛.iC1/.
4. If b is a clopen subset of K˛.i/ such that jfa 2 F W a � ��1

˛.i/.b/gj � @1, then

fa 2 F W a � ��1
˛.i/.b/g � FiC1

The construction is possible because each K˛ has weight less than c D @2 so
it has at most @1 many clopens. Now, consider ˛.1/ D supi<!1 ˛.i/. We pick
a1 2 F nS

i<!1
Fi. Write a1 D c1 \ F where c1 is a clopen subset of A . Now,

�˛.1/.c1/ is a closed Gı subset of K˛.1/ which is disjoint from �˛.1/.a/ for all
a 2 S

i<!1
Fi, because c1 is disjoint from every such a, which is determined up to

˛.i/ < ˛.1/. The complement of �˛.1/.c1/ is a countable union of clopen sets,
so we can conclude that there exists a clopen subset b of K which depends up to
˛.1/ such that

jfi < !1 W there is a 2 Fi such that a1 � b and a \ b D ¿gj D @1
The clopen b must in fact depend up to ˛k for some k < !1. On the one hand,

jfa 2 F W a � bgj D @2
because of property (4) of the families Fi since a1 62 FkC1. On the other hand,

jfa 2 F W a \ b D ¿gj D @2
again by property (4) of the families Fi because there exist a 2 Fi with a � A n b
for many i > kC 1. ut
Lemma 2.38 Let K;L;M be compact spaces and let f W K �! M be a continuous
map. We denote by j D f ı W C.M/ �! C.K/ the composition operator induced by
f . Let { W C.M/ �! C.L/ be a positive operator of norm one and suppose that
S W C.L/ �! C.K/ is an operator with kSk D 1 and S{ D j. Then S is a positive
operator.

Proof Obviously S � 0 if and only if S�ıx � 0 for all x 2 K, where ıx is the
unit mass at x and S� W C.K/� ! C.L/� is the adjoint operator. Fix x 2 K. By
Riesz theorem we have that S�ıx D � is a measure of total variation k�k � 1.
Let � D �C � �� be the Hahn-Jordan decomposition of � as the difference of
two disjointly supported positive measures, so that k�k D k�Ck C k��k, with
�C; �� � 0. We have that ıf .x/ D j�ıx D {�S�ıx D {��, thus

ıf .x/ D {��C � {��� and kıf .x/k D 1 � k{��Ck C k{���k:

Since { is a positive operator, {��C and {��� are positive measures, so all this
implies that the above is the Hahn-Jordan decomposition of ıf .x/, and in particular
{��� D 0, hence �� D 0. ut
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Theorem 2.39 (MA, c D @2) The Banach space C.A / is 1-separably injective but
not universally 1-separably injective.

Proof Since A is an F-space, C.A / is 1-separably injective by Theorem 2.14.
We suppose that C.A / is universally 1-separably injective, and we will derive a
contradiction. We pick fUn W n 2 Ng a sequence of pairwise disjoint clopen subsets
of A , and let U DS

n Un.
Let c � `1 be the Banach space of convergent sequences, and let t W c �! C.A /

be the operator given by t.z1; z2; : : :/.x/ D zn if x 2 Un and t.z1; z2; : : :/.x/ D
lim zn if x 62 U. If C.A / were universally 1-separably injective, we should have an
extension T W `1 �! C.A / of t with kTk D 1. We shall derive a contradiction
from the existence of such operator.

The first observation is that T must be a positive operator because we are in
a position to apply Lemma 2.38. It might not be obvious at first glance how we
apply the lemma. Let ˛N D N [ f1g be the one-point compactification of the
natural numbers. The space c of convergent sequences is naturally identified with
C.˛N/ and `1 with C.ˇN/. The operator t W c �! C.A / is thus identified with
f ı W C.˛N/ �! C.A / where f W A �! ˛N is given by f .x/ D n if x 2 Un and
f .x/ D 1 if x 62 U. After this translation, it is clear that we can apply Lemma 2.38,
and thus T is positive.

For every A � N we will denote ŒA� D A
ˇN n N. The clopen subsets of N

�
are exactly the sets of the form ŒA�, and we have that ŒA� D ŒB� if and only if
.A n B/[ .B n A/ is finite.

Let F be an @2-Lusin family in N
�, which exists by Lemma 2.36. For F 2 F and

0 < " < 1
2
, let

F" D fx 2 A n U W T.1A/.x/ > 1 � "g;

where F D ŒA�. This F" depends only on F and not on the choice of A because if
ŒA� D ŒB�, then 1A � 1B 2 c0, hence T.1A � 1B/ D t.1A � 1B/ vanishes out of U, so
T.1A/jA nU D T.1B/jA nU .

CLAIM 1 If ı < " and F 2 F then Fı � F".

CLAIM 2 F" \G" D ¿ for every F ¤ G.

Proof of Claim 2 Since F \ G D ¿ we can choose A;B � N such that F D ŒA�,
G D ŒB� and A \ B D ¿. If x 2 F" \ G", T.1A C 1B/.x/ > 2 � 2" > 1 which is a
contradiction because 1AC 1B D 1A[B and kT.1A[B/k � kTkk1A[Bk D 1. END OF

THE PROOF OF CLAIM 2.

For every F 2 F, let QF be a clopen subset of A n U such that F0:2 � QF � F0:3.
By the preceding claims, this is a disjoint family of clopen sets. As we mentioned
above, the key property of A is that A n U does not contain any @2-Lusin family.
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Therefore we can find G;H � F with jGj D jHj D @2 such that

[
f QG W G 2 Gg \

[
f QH W H 2 Hg D ¿:

Now, for every n 2 N choose a point pn 2 Un. Let g W ˇN �! A be a continuous
function such that g.n/ D pn.

CLAIM 3 For u 2 ˇN and A � N one has T.1A/.g.u// D
(
1; if u 2 A

ˇNI
0; if u 62 A

ˇN
:

Proof of Claim 3 It is enough to check it for u 2 N. This is a consequence of the fact
that T is positive, because if m 2 A, n 62 A, then 0 � t.1m/ � T.1A/ � t.1Nnfng/ � 1.
END OF THE PROOF OF CLAIM 3.

The function g is one-to-one because

fpn W n 2 Ag \ fpn W n 62 Ag D ¿

for every A � N, as the function T.1A/ separates these sets. On the other hand, as
a consequence of Claim 3 above, for every F 2 F and every ", g�1.F"/ \ N

� D F,
and also g�1. QF/\N� D F. But then, for the families H and G that we found before,
we have

[
G\

[
H � g�1

�[
f QG W G 2 Gg \

[
f QH W H 2 Hg

�
\ N

� D ¿:

And this contradicts that F is an @2-Lusin family in N
�. ut

We do not know whether the space C.A / is universally separably injective, or
whether it contains copies of `1.

2.5 Injectivity Properties of C.N�/

In this section we take a closer look at C.N�/. As usual, N� D ˇNnN is the growth
of the integers in its Stone-Čech compactification. Since `1 can be identified with
C.ˇN/ we also have C.N�/ D `1=c0 in the obvious way and therefore the exact
sequence

(2.8)

can be thought as

(2.9)
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where r is plain restriction. Most of the injectivity properties of C.N�/ can be de-
duced from these representations. Indeed, in view of (2.8) and Proposition 2.11(3),
the injectivity of `1 and Sobczyk theorem already imply that C.N�/ is universally
separably injective, hence `1-upper-saturated.

What about the constants? That C.N�/ is 1-separably injective follows from
the fact that being N

� a closed subset of the F-space ˇN, it is itself an F-space.
See Theorem 2.14, especially the equivalences between (1), (4) and (5). Also, it
is clear from (2.9) that C.N�/ is universally 1-separably injective, according to
Borsuk-Dugundji. All these properties of C.N�/ are implied by the conclusion of
the following result we shall prove from scratch.

Theorem 2.40 Every separable subspace of `1=c0 is contained in a subalgebra
of `1=c0 isometrically isomorphic to `1. That algebra can be lifted through
the quotient homomorphism � W `1 �! `1=c0 by means of an isometric
homomorphism.

Proof The assertion is a consequence of an analogue result in the category of
Boolean algebras: every countable Boolean subalgebra of P.N/= fin is contained in a
subalgebra isomorphic to P.N/. Those readers that are familiar with the relations of
a Boolean algebra with its Stone compact and the corresponding space of continuous
functions will have little difficulties in deriving the functional analytic result from
the Boolean algebraic one. Anyway, we present a detailed account of the proof.

Let P be a partition of N into infinite sets. Associated with P we define:

YP D fx 2 `1 W x is constant on every P 2 Pg
YP D �.YP/ � `1=c0

Notice that YP is a subspace of `1 (actually a subalgebra: it is closed under products
and contains constant functions) isometric to `1, and that � W YP �! YP is an
isometry and hence YP is a subalgebra of `1=c0 isometric to `1. We will show
that for every separable subspace S � `1=c0 there exists a partition P of N into
infinite sets such that S � YP.

Let P.N/ be the Boolean algebra of all subsets of N. Each A 2 P.N/ can be
identified with its characteristic function 1A 2 `1. Let P.N/= fin be the quotient
Boolean algebra obtained from P.N/ by the equivalence relation A � B if .A n
B/[ .B nA/ is finite. The operations of union, intersection and complement and the
inclusion relation are defined in P.N/= fin as inherited from P.N/modulo finite sets.
Let � 0 W P.N/ �! P.N/= fin be the canonical projection. Elements of P.N/= fin can
be viewed as elements of `1=c0 by identifying each a D � 0.A/ with xa D �.1A/.
For a subset A � P.N/= fin, we define XA to be the Banach subalgebra of `1=c0
generated by fxa W a 2 Ag.

CLAIM 1 For every separable subspace S � `1=c0 there exists a countable
Boolean subalgebra A � P.N/= fin such that S � XA � `1=c0.
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Proof of the claim It is clear that the algebra generated by f1A W A 2 P.N/g is the
whole space `1. Thus, each vector of `1 is in the algebra generated by a countable
subset of f1A W A 2 P.N/g. Hence, every separable subspace of `1 is contained
in the algebra generated by a countable subset of f1A W A 2 P.N/g. It follows
that every separable subspace of `1=c0 is contained in the subalgebra generated
by fxa W a 2 A g with A a countable set. But the Boolean algebra generated by a
countable set is countable, so we can assume that A D A is a Boolean subalgebra,
and the claim follows.

We will also make use of the following standard fact about the Boolean algebra
P.N/= fin:

CLAIM 2 Let U be a countable set of nonzero elements of P.N/= fin that is
closed under finite intersections. Then there exists a nonzero b in P.N/= fin such
that b � a for all a 2 U.

Proof of the claim Let us enumerate U D fu1; u2; : : :g and set vn D T
i�n ui. We

have v1 
 v2 
 � � � and all vn’s are nonzero. Choose sets Vn � N with vn D � 0.Vn/.
All Vn’s are infinite and Vn n Vm is finite whenever n < m. Inductively, construct
a sequence of natural numbers k1 < k2 < � � � such that kn 2 T

i�n Vi. Set A D
fk1; k2; : : :g and a D � 0.A/. This is the desired element a. It is nonzero since A is
infinite. And a � u for u 2 U because Vn nA is finite for all n. This proves the claim.

By Claim 1 it is enough to prove that for every countable subalgebra A �
P.N/= fin there exists a partition P such that XA � YP. So we fix such a subalgebra.
We take fUn W n 2 Ng a sequence of ultrafilters of the Boolean algebra A such that
for every nonzero a 2 A there exists n with a 2 Un. In other words, fUng is a dense
sequence in the Stone space of A. For every n, either

1. Un is principal, in which case we define an D minUn, or
2. Un is nonprincipal. In this case, by the previous Claim 2 we can pick a nonzero

an 2 P.N/= fin such that an � a for all a 2 Un.

The elements an defined above are pairwise disjoint in P.N/= fin: If n ¤ m, then
Un ¤ Um, there exists b 2 Un, with � 0.N/nb 2 Um, so an\am � b\� 0.N/nb D ¿.
The partition P D fPng we are looking for will be such that an D � 0.Pn/ for
all n. It remains to carefully choose each Pn in the equivalence class an, so that
they constitute a partition and XA � YP. Since in any case, YP will be a Banach
subalgebra, we just have to take care that xa 2 YP for all a 2 A. We will actually
show that

a D � 0
0

@
[

a2Un

Pn

1

A :

Since every finitely generated Boolean algebra is finite, we can write A as an
increasing union of finite subalgebras A D S1

mD1Am. For fixed m, it is easy to
choose a partition Pm D fPm

n gn2N of N with � 0.Pm
n / D an and a D � 0 �S

a2Un
Pm

n

�
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for all a 2 Am: one only has to take care of each of the finitely many atoms (minimal
nonzero elements) of Am. Moreover, if we choose the partitions Pm inductively one
after another, it is possible to do it in such a way that the following conditions
hold:

1. Pm
k D Pm�1

k for all k � m,
2. Pm

k \ f0; : : : ;mg D Pm�1
k \ f0; : : : ;mg for all k.

3.
SfPm

k W a 2 Ukg DSfPm�1
k W a 2 Ukg for all a 2 Am�1.

The sets fPn D Pn
n W n 2 Ng constitute the partition P that we are looking for. ut

Corollary 2.41 `1=c0 is universally 1-separably injective.

Proof It follows from Theorem 2.40, taking into account that `1 is 1-injective. ut
The subtleties in the proof of Theorem 2.40 are necessary only to construct

the “enveloping” subspace isometric to `1 in the right position since the lifting
of a separable subspace of `1=c0 to `1 is nearly trivial. The following result is,
formally, a Corollary of Theorem 2.40:

Proposition 2.42 If S is a separable subspace of `1 containing c0 then there is
a contractive projection p on S whose kernel is c0. When, additionally, S is a
subalgebra of `1 then p is a unital homomorphism. In any case, 1S�p is a projection
onto c0 of norm at most 2.

Proof Let us show that if S is a separable subalgebra of `1=c0 then there is a
continuous homomorphism ' W S ! `1 such that � ı ' D 1S, where � W `1 !
`1=c0 is the natural quotient map. From here, the proposition follows.

It is clear that for every f 2 `1 and " > 0 there is a partition N D A1 [ � � � [ Ak

and numbers ti such that

k f �
kX

iD1
ti1Aik � ":

It follows that S is contained in the closure of the union of a (increasing) sequence
of algebras of the form Sn D �.Rn/, where Rn is the algebra associated to a certain
(finite) partition ofN. From the viewpoint of `1=c0 we see that each Sn has a basis of
idempotents whose sum is 1. Adding some “intermediate” subalgebras if necessary
we may an do assume dim Sn D n. Let us construct the required homomorphism

' W
1[

nD1
Sn �! `1

by showing that every lifting ' W Sn ! `1 (in the category of unital algebras)
extends to a lifting of SnC1. Write Sn D spanfu1; : : : ; ung where uk are idempotents
such that u1 C � � � C un D 1. Clearly, '.uk/ D 1Ak , where N D A1 [ � � � [ An (this
is the “induction” hypothesis). We may assume SnC1 D spanfu1; : : : ; un�1; v;wg
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where v and w are idempotents such that vCw D un. Since v is idempotent there is
V � N such that v D �1V . We extend ' to SnC1 taking '.v/ D 1V\An (which forces
'.w/ D 1AnnV /. The definition is correct since VnAn is at most finite (otherwise the
decomposition �1An D �1V C w with w � 0 is impossible). ut

We have already shown (several times) that `1=c0 is not injective. The simplest
argument was to observe that the (images of the) characteristic functions of the
elements of an almost disjoint family M of infinite subsets of N having size c
generate a subspace isometric to c0.c/; that `1=c0 has density character c and that
therefore it cannot contain any copy of `1.c/, which has density character 2c. The
above argument is quite rough in a sense: it says that `1=c0 is uncomplemented in
its bidual, a huge superspace. Not being injective, `1=c0 cannot be complemented
in its bidual and therefore it cannot be complemented in any dual space (see
[196]). In any case, Amir had shown in [5] that C.N�/ is not complemented in
`1.P.N�// � `1.2c/, which provides another proof that `1=c0 is not injective.
Amir’s proof can be refined in order to get C.N�/ uncomplemented in a much
smaller space. We are indebted to Anatolij Plichko for calling our attention to Amir’s
paper.

Proposition 2.43 There exists a Banach space of density character c that contains
an uncomplemented copy of C.N�/.

Proof Following Amir’s paper [5], let ˙ be a family of subsets of N
� that

contains a basis of open sets of the topology of N
�, and which is closed under

complementation, finite union and the closure operation. We can consider the
Banach space B.˙/, sitting as C.N�/ � B.˙/ � `1.N�/ defined as the subspace
of `1.N�/ generated by the characteristic functions of the elements of ˙ . Let also
D˙ be the union of the boundaries of all open sets living in ˙ . By [5, Corollary 1],
if C.N�/ is complemented in B.˙/, then D˙ is nowhere dense in N

�. We indicate
now how to construct such a family ˙ of cardinality c and with D˙ dense in N

�,
so that the space X D B.˙/ is as stated in the Proposition. For every clopen subset
A of N�, choose UA � A to be an open not closed set. Consider then ˙ the least
family of subsets of N� that contains all clopens A and all open sets UA and that is
closed under complementation, finite union and the closure operation. ut

A different proof of Proposition 2.43 can be found in [18]. We do not
know whether the space X in the preceding result can be obtained so that
dens.X=C.N�// D @1. By Parovičenko’s theorem [40], [245, p. 81], N

� can
be mapped onto any compact space having weight at most @1. Consequently:

Lemma 2.44 Every Banach space of density character @1 or less is isometric to a
subspace of C.N�/.

Proof Let X denote a Banach space with dens X � @1. Its dual unit ball BX� in the
weak* topology has weight at most @1. Let ' W N� ! BX� be the surjective mapping
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given by Parovičenko theorem. The operator 'ı W C.BX�/ �! C.N�/ given by

.'ıf /.u/ D f .'.u//

is an into isometry. The space X is isometric to a subspace of C.BX�/ and this
concludes the proof. ut

The following immediate application can be found in [67, Proposition 5.3]:

Corollary 2.45 (CH) C.N�/ contains an uncomplemented subspace isometric to
C.N�/.

Proof By Lemma 2.44, the space in Proposition 2.43 is a subspace of C.N�/. ut
The argument of Lemma 2.44, together with some interesting applications to

the existence of nontrivial twisted sums, can be found in [251]. Lemma 2.44 is
actually related to the topic of universal disposition discussed in Chap. 3. Although
C.N�/ cannot be of almost universal disposition (since no C-space can be of
almost universal disposition—see the discussion before Theorem 3.34), the compact
space N

� is of “universal co-disposition in the category of compact spaces”—
see Definition 5.23 and Corollary 5.24; and the Boolean algebra P.N/= fin is
of “universal disposition in the category of Boolean algebras”. All this can be
understood as the real content of Parovičenko theorem.

2.6 Automorphisms of Separably Injective Spaces

Lindenstrauss and Rosenthal proved in [180] that every isomorphism between two
infinite codimensional subspaces of c0 can be extended to an automorphism of c0.

Definition 2.46 A Banach space is said to be automorphic if every isomorphism
between two subspaces whose corresponding quotients have the same density
character can be extended to an automorphism of the whole space.

Observe that the extension trivially exists when the subspaces are finite dimen-
sional or, in the hypothesis above, finite codimensional. It is clear that Hilbert
spaces are automorphic, and in [199] it was proved that also c0.� / is automorphic.
Lindenstrauss and Rosenthal formulated what has been called the automorphic
space problem: Does there exist an automorphic space different from c0.� / and
`2.� /? Different approaches and partial positive answers to the automorphic space
problem have been considered and obtained in [17, 19, 63, 67, 199]. There emerged
the notion of partially automorphic space, of which we isolate now the following:

Definition 2.47 Let X;Y be Banach spaces.

• We say that X is Y-automorphic if every isomorphism � W A ! B between two
subspaces of X isomorphic to Y with dens.X=A/ D dens.X=B/ can be extended
to an automorphism of X.
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• A Banach space X is said to be separably automorphic if it is Y-automorphic for
every separable Y.

Observe that X is Y-automorphic if and only if given two embeddings i; j W Y !
X with dens.X=iŒY�/ D dens.X=jŒY�/ there is an automorphism � of X such that
j D � ı i.

Lindenstrauss and Rosenthal also prove in [180] that `1 is separably automor-
phic (see also [182, Theorem 2.f.12]). The proof can be easily adapted to the general
case to obtain that, for every set � , the space `1.� / is separably automorphic.
We shall see that indeed every universally separably injective space is separably
automorphic.

Lemma 2.48 Let Y be a Banach space isomorphic to its square. Assume that every
copy of Y is complemented in X. Then X is Y-automorphic if and only if every
complement of Y with the same density character as X contains Y.

Proof As every copy of Y is complemented in X it is clear that X is Y-automorphic if
and only if the complements of copies of Y in X with the same density character are
all isomorphic. In fact, using that Y is isomorphic to its square, all the complements
with density character equal to dens X must be isomorphic to X. Now, the “if” part
is as follows. Let Y1 be a subspace of X isomorphic to Y. We have X D Y1 ˚ Z and
Z D Y2 ˚ A, with Y2 � Y. Hence X D Y1 ˚ Y2 ˚ A � Y2 ˚ A D Z. The converse
is also easy: if X � Y ˚ Z, with dens Z D dens X, then X � Y ˚ Y ˚ Z and if X is
Y-automorphic, then Z � Y ˚ Z. ut
Corollary 2.49 Universally separably injective spaces are `1-automorphic.

Proof We apply Lemma 2.48 for Y D `1. Observe that every copy of `1 is
complemented as `1 is an injective space, and that every complemented subspace
of a universally separably injective space is universally separably injective, so it
contains `1 by Theorem 2.26. ut

Now we want to jump from “X is Y-automorphic” to “X is H-automorphic for
every subspace H of Y”. The obvious result is:

Lemma 2.50 Let X be Y-automorphic and let H1 � Y1 � X and H2 � Y2 � X be
spaces where H1;H2 and Y1;Y2 are isomorphic to H and Y, respectively. If there is
an automorphism of Y transforming H1 into H2 then there is an automorphism of X
transforming H1 into H2 every time dens.X=Y1/ D dens.X=Y2/.

There is an alternative approach to obtain the partially automorphic character of
a space: to combine the Y-upper-saturaturation and the fact that every copy of Y is
complemented instead of relying on the Y-automorphic character of the space:

Lemma 2.51 Let E;Y and X be Banach spaces. Suppose that Y is E-automorphic,
and that every two copies E1;E2 of E inside X are contained in a single comple-
mented copy Y0 of Y inside X such that dens.Y0=E1/ D dens.Y0=E2/. Then X is
E-automorphic.
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Proof Let i; j W E! X be two embeddings of a space E into X, with dens.X=iŒE�/ D
dens.X=jŒE�/. Obviously, i and j factorize through the inclusion ! W iŒE�C jŒE� �!
X. By hypothesis, there is a complemented subspace Y0, which is isomorphic to Y
and contains both iŒE� and jŒE�. If �0 is an automorphism of Y0 such that j D �0 ı i
and A is a complement of Y0 in X, then the automorphism of X is � D �0 ˚ 1A. ut

Thus, using Theorem 2.26, and the result of Lindenstrauss and Rosenthal
asserting that `1 is separably automorphic, we can apply Lemma 2.51 for Y D `1
and E any separable space, to obtain:

Proposition 2.52 Universally separably injective spaces are separably automor-
phic.

Corollary 2.53 The space `1=c0 is separably automorphic.

The separably automorphic character of C.N�/ seems to be connected with the
fact that the underlying Boolean algebra has analogous properties; namely, it is
“countably automorphic” (every isomorphism between countable Boolean algebras
is extended to an automorphism of P.N/= fin) and every countable Boolean algebra
is contained in a copy of P.N/, cf. [77]. The proof of this fact is just the last
step (after Claim 2) of the proof of Theorem 2.40. If we are given A and A0 two
isomorphic countable subalgebras of P.N/= fin, that proof provides two copies of
P.N/ of the form YP and YP0 , and the isomorphism between A and A0 induces
naturally a bijection between the partitions P and P0, that gives an extended
isomorphism between YP and YP0 . It is not however so clear how to pass from
“Boolean-automorphic” to “Banach-automorphic”.

Other quotients of `1 also have a partially automorphic character. We require a
lemma.

Lemma 2.54 Assume that for k D 1; 2 one has pull-back diagrams

where ık are isomorphic embeddings. If there exists isomorphisms � W X ! X and
� W PB1 ! PB2 such that��1 D �2� and q2� D q1 then there is an automorphism
� W X=A! X=A such that �ı1 D ı2.
Proof Observe first that �.A/ � A since q2�.a/ D q1.a/ D 0; and then that �.A/ D
A since if p 2 PB1 is such that �.p/ 2 A then 0 D q2�.p/ D q1.p/, so p 2 A. Since
� is an automorphism of X that extends � , then also�.A/ D A. One can then define
an automorphism of X=A by �.xC A/ D �.x/C A. It verifies

�ı1q1.p/ D �.p/C A D q�2�.p/C A D ı2q2�.p/ D ı2q1.p/
and thus �ı1 D ı2. ut
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The lemma says, in particular, that if the pull-back sequences are isomorphically
equivalent and X is PBk-automorphic then X=A is Y-automorphic. So, it provides
relevant information about the automorphic character of quotient spaces. When
applied to quotients of `1 one gets:

Proposition 2.55

1. If E is a separably injective subspace of `1, then `1=E is separably automor-
phic.

2. Let A be any subspace of `1 complemented in its bidual and so that `1=A is not
reflexive. Then `1=A is automorphic for all L1-spaces.

3. For every subspace H of c0 the space `1=H is automorphic for all separable
L1-spaces.

Proof Part (1) follows from a general fact: `1=E is universally separably injective,
hence separably automorphic. An independent proof is however as follows: Let
ık W Y ! `1=E be two embeddings of a separable space Y into `1=E. Since
Ext.Y;E/ D 0 then PBk � E ˚ Y. Since `1= PBk is isomorphic to .`1=E/=ıkŒY�
one gets that `1= PBk contains `1 and this implies that `1 is PBk-automorphic,
because Lindenstrauss and Rosenthal [180] proved in fact that `1 is Z-automorphic
whenever `1=Z is not reflexive. So, Lemma 2.54 applies, which proves (1).
Assertions (2) and (3) follow the same schema: (2) using Lindenstrauss’ lifting
(i.e., Ext.L1;A/ D 0 for every Banach space A complemented in its bidual; see
Proposition A.18) and (3) using the identity Ext.L1;H/ D 0 obtained in [65] (see
also [62]). ut

Separably injective spaces are not necessarily separably automorphic as the
example of c0 ˚ `1 shows: no automorphism can send a complemented copy of
c0 such as c0 ˚ 0 onto an uncomplemented copy such as 0˚ c0. And automorphic
spaces, such as `2, are not necessarily separably injective. One however has:

Proposition 2.56

1. Every separably automorphic space containing `1 is separably injective.
2. Every separably automorphic space containing `1 is universally separably

injective.

Proof Let i W `1 ! X be an into isomorphism. By Proposition 2.5 it is enough to
prove that for every closed subspace K of `1, every operator K ! X extends to `1.
Assume otherwise; let ı W K ! `1 be an into isomorphism and let t W K ! X be an
operator that cannot be extended through ı, therefore neither it can be extended to
X through iı. Then, for some " > 0, the operator iı C "t is an into isomorphism. If
X is separably automorphic, we could find an isomorphism F W X �! X such that
Fiı D iı C "t. But then "�1.T � 1X/i would be an extension of t through ı, and
this contradicts our hypothesis. The proof of the second assertion is simpler: every
separable subspace of X must be contained in a copy of `1 and thus the space is
universally separably injective. ut
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Many other Banach spaces have been shown to have a partially automorphic
character; for instance, Lindenstrauss and Pełczyński prove in [178] that CŒ0; 1� is
H-automorphic for all subspaces H of c0 while Kalton shows in [155] that CŒ0; 1� is
also `1-automorphic and in [156] that it is not `2-automorphic. Another example of
separably injective spaces that are also separably automorphic are the C.K/ spaces
with K Eberlein compact of finite height.

Proposition 2.57

1. If K is an Eberlein compact, then C.K/ is c0-automorphic.
2. Every c0-upper-saturated WCG-space is separably automorphic.
3. A C.K/ space that is c0-automorphic is also H-automorphic for every subspace

H of c0.
4. Let E be an Eberlein compact. Then C.E/ is H-automorphic for every subspace

H of c0.

Proof Assertion (1) follows from Lemma 2.48 for Y D c0. On the one hand,
every infinite dimensional complemented subspace of a C-space contains a copy
of c0, cf. (Proposition A.5). On the other hand, if C.K/ is WCG, then it has
the separable complementation property (every separable subspace is contained in
a separable complemented subspace), hence by Sobczyk’s theorem, every copy
of c0 is complemented. For assertion (2), we have again that every copy of c0
is complemented, and since c0 is automorphic by the Lindenstrauss-Rosenthal
theorem, Lemma 2.51 applies. To get (3), assume first that neither C.K/ nor H
are isomorphic to c0, otherwise the result is trivial. Now, since c0 is automorphic,
we only need to prove that every subspace H of c0 contained in C.K/ is actually
contained in a copy of c0 contained in C.K/. But every separable subspace S of
C.K/ is contained in a separable subspace C.T/ of C.K/. This subspace C.T/
is H-automorphic [178], and the result follows. Assertion (4) is an immediate
consequence of (1) and (2). ut

Assertion (4) is actually a non-separable extension of the main result in [71]
asserting that separable Lindenstrauss-Pełczyński spaces are characterized as those
which are H-automorphic for all subspaces H of c0. Concerning the automorphic
character of C.K/-spaces we obtain from Lemma 6.2 and the proof of Lemma 2.22
that every C.K/-space with K a compact of finite height is c0-upper-saturated. As a
consequence, applying Lemma 2.57(2):

Corollary 2.58 Every C.K/-space with K an Eberlein compact of finite height is
separably automorphic.

A generalization of the preceding result was obtained in [17]:

Proposition 2.59 If K is an Eberlein compact of finite height, the (separably
injective) space C.K/ is automorphic for all possible subspaces of density character
less than @! .

These results are somewhat optimal: there exist separably injective C.K/-spaces
such as c0 ˚ `1 which are not c0-automorphic; there also exist non-Eberlein com-
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pacta of height 3 which are not c0-automorphic (since they contain complemented
and uncomplemented copies of c0); while Eberlein compacta of infinite height, such
as CŒ0; 1�, are not separably automorphic.

See Theorem 5.30 and Sect. 6.4.3 for further information and open problems on
partially automorphic spaces.

2.7 Notes and Remarks

2.7.1 Extensions vs. Projections

In this section we take a closer look at the constants implicit in the characterizations
given in Proposition 2.5 and we consider the corresponding “quantified” properties
and the relationships between the involved constants.

Proposition 2.60

1. If E is �-separably injective, for every Banach space X and each subspace Y such
that X=Y is separable, every operator t W Y ! E admits an extension T W X ! E
with kTk � 3�ktk.

2. A space E is �-complemented in every Z such that Z=E is separable if and only
if whenever Y is a subspace of X with X=Y separable every operator t W Y ! E
admits an extension T W X ! E with kTk � �ktk.

Proof

1. We have to follow the trace of � through the proof of .2/ ) .3/ in Proposi-
tion 2.5. With the same notation, consider thus the commutative diagram

Let us construct the true push-out of the couple .�; j/ and the corresponding
complete diagram

We can consider without loss of generality that k�k D 1. Let S W `1 ! E be
an extension of t� with kSk � �kt�k � �ktk. By the universal property of the
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push-out, there exists an operator L W PO! E such that L�0 D S and

kLk � maxfktk; kSkg � �ktk:

Again by the universal property of the push-out, there is a diagram of equivalent
exact sequences

where the isomorphism � is defined as �..y; u/C�/ D j.y/C Q.u/ is such that
k�k � maxfkjk; kQkg � 1: Remember that there exists a selection s W X=Y !
`1 for the quotient map q W `1 ! X=Y which is not necessarily linear but is
homogeneous and has ksk D 1 (that is, s.�u/ D �s.u/ and ks.u/k � kuk for all
u 2 X=Y and scalar �). The desired extension of t to X is T D L��1, where ��1
comes defined by

��1.x/ D .x � Qspx; spx/C�:

Notice that ��1 is well defined because x � Qspx 2 Y since p.x � Qspx/ D
px � pQspx D px� qspx D 0. Notice also that ��1 is linear because for x; z 2 X
we can write ��1.xC z/ � ��1.x/� ��1.z/ as

Q.spxC spz� sp.xC z//; sp.xC z/ � spx � spz/C�

and this is zero because spx C spz � sp.x C z/ 2 ker q as s is a selection for q.
Finally, one clearly has k��1k � 3, and therefore kTk � 3�.

2. The complementation of E is achieved simply considering t as the identity on
E. The other implication is contained in the proof of the implication .4/ ) .3/

in Proposition 2.5: if p0 W PO ! E is a projection with norm at most �, since
kt0k � 1, the composition p0t0 W X ! E yields an extension of t with norm at
most �. ut
We do not know if the bound 3 appearing in Proposition 2.60(1) is sharp. Observe

that if every operator t W Y ! E can be extended preserving the norm to any
superspace X such that dim X=Y D 1, then E is 1-injective, as can be seen by
transfinite induction. Thus one cannot replace 3 by 1. The following example shows
that at least 2 is required. See Example 2.4:

Example 2.61 The projection constant of `c1.@1/ in `c1.@1/C is 2.

Proof Each element of `c1.@1/C can be written as � C f , with f 2 `c1.@1/. The
map �C f 7! f is a projection of norm 2, so the projection constant is at most 2. To
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see the reversed inequality, let p W `c1.@1/C �! `c1.@1/ be any linear projection
and take � D p.1/, so that p.�C f / D �� C f . Take any i such that �.i/ D 0. Then
k1 � 21ik D 1 but kp.1 � 21i/k D 2 since p.1 � 21i/.i/ D �2. ut

Moreover, a �-separably injective space E is not necessarily �-complemented
in every superspace Z such that Z=E is separable. Let us therefore consider the
following “one dimensional” version of Proposition 2.5: A Banach space E is said
to enjoy property .c�/ when for every Banach space X and each subspace Y such
that dimX=Y D 1, every operator t W Y ! E extends to an operator X ! E with
norm at most �ktk. Lemma 2.33 says:

Proposition 2.62 A Banach space E has property .c�/ if and only if given a family
B.x˛; r˛/ of mutually intersecting balls whose centers lie on a separable subspace
there exists a point p such that kx˛ � pk � �r˛ .

Every �-separably injective space has property .c�/, although it is not clear if
there is a function f so that a space with property .c�/ is f .�/-separably injective.
Kalton is able to show in [155, Theorem 5.2] that such is the case of c0:

Lemma 2.63 Let Y be a closed subspace of a Banach space X such that X=Y is
separable. Let � W Y ! c0 be a norm one operator. If for every x 2 X there is
an extension �x W Y C Œx� ! c0 with norm at most � then there is an extension
T W X ! c0 with norm at most �.

Of course the result contains extra information only for � < 2. As it is clear from
Propositions 2.32 or 2.34, some break occurs at � D 2. Moreover, all C-spaces
have property .c2/ since they actually have the following property: for every family
B.x˛; r˛/ of mutually intersecting balls

T
˛ B.x˛; 2r˛/ ¤ ¿. Indeed, every Banach

space has the property that
T
˛ B.x˛; 2r˛ C "/ ¤ ¿ for every family B.x˛; r˛/ of

mutually intersecting balls [116, p.198]. To deduce from here that a 2 is enough in C-
spaces, Lindenstrauss [177] reasons as follows: in a C.K/ space

T
˛ B. f˛; t˛/ ¤ ¿

if and only if for every k0 2 K

lim sup
k!k0

sup
˛

. f˛.k/� t˛/ � lim inf
k!k0

inf
˛
. f˛.k/C t˛/:

From here it is clear that if the inequality holds for all t˛ C " then it also holds for
t˛ . Observe that Proposition 2.32 actually shows that a space with property .c�/ for
� < 2 and containing almost isometric copies of c0 has density character c.

2.7.2 Complex Separably Injective Spaces

Although these notes deal with real Banach spaces we will make a few remarks
on injective-like complex Banach spaces. First of all one can consider (universally)
separably injective complex spaces just assuming that the underlying field in the
definitions is C. Then Sects. 2.1, 2.3 and 2.4 apply verbatim to complex spaces, with
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the sole exception that the characterization of 1-separable injectivity by intersection
properties of balls has to be reformulated. The new property required here is the
weak intersection property, introduced by Hustad [137] as follows: a family of balls
fB.x˛; r˛/g˛ in a Banach space X said to be weakly intersecting if for every norm
one f 2 X� the balls fB. f .x˛/; r˛/g˛ in the scalar field have nonempty intersection.
All what remains is to replace “mutually intersecting balls” (real case) by “weakly
intersecting balls” (complex case); see Proposition 2.30.

In general, given a real vector space X one can “change” the scalar field just
taking X˝RC, which is a complex vector space by the very definition. Observe that
there is a natural embedding of X into X ˝R C given by x 7! x˝ 1 and that every
z 2 X˝R C has a unique decomposition z D xC iy, where x; y 2 X. If, besides, X is
a real Banach space, then X˝R C can be equipped with a variety of norms, making
it a complex Banach space, which is called a complexification of X when its norm is
reasonable in the sense that kx˝ �k D kxk � j�j for every x 2 X; � 2 C.

Examples of such can be found in [3, 41, 182, 241]. Unfortunately, those
complexifications that are suitable for some purposes may be not for others, and the
interested reader may peruse the paper [200] to get an idea of the situation. Those
readers familiar with tensor products of Banach spaces will guess that for what these
notes are concerned (namely, the extension of operators) the most convenient norm
on X˝RC is that arising from the injective tensor product X L̋ RC. Without entering
into any details, the injective norm in X ˝R Y is given by

kuk" D supfju.x� ˝ y�/j W kx�k; ky�k � 1g;

where x� and y� are real-linear functionals on X and Y, respectively (see [83]).
Needless to say, every real-linear functional on C has the form � D ˛Ciˇ 7! s˛Ctˇ
for some fixed s; t 2 R and the norm of such functionals is just k.s; t/k2 D

p
s2 C t2.

Thus, the injective norm of z D xC iy D x˝ 1C y˝ i in X ˝R C is

kzk" D sup fjsx�.x/C tx�.y/j W kx�k; s2 C t2 � 1g
D sup fjx�.sxC ty/j W kx�k � 1; s2 C t2 � 1g
D sup fksxC tykX W s2 C t2 � 1g: (2.10)

Let us denote by XC the complexification of X associated to the just defined norm.
Observe that this is not the same complexification as in, say, [181, p. 81]. The basic
property of this construction is the following: if u W Y ! X is a linear isometry
between two real Banach spaces, then u ˝ 1C W YC �! XC is again an isometry.
Another pleasant feature of this norm is that if X D C.K/, then XC D C.K;C/, with
the sup norm. It follows that if the real space X is a Lindenstrauss space, then XC is
a (complex) Lindentrauss space: if X� D L1.�;R/, then X�

C
D L1.�;C/. One has

Proposition 2.64 Let E be a real Banach space E and � � 1. Then E is
(universally) �-separably injective, as a real Banach space if and only if EC is
(universally) �-separably injective, as a complex Banach space.
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Proof Observe that the inclusion map E! EC given by x 7! x˝1 has a contractive
real-linear left-inverse < W EC �! E given by <.x C iy/ D x. Actually this map
is nothing different from the tensorization of the “real part” map C ! R with the
identity on E. Anyway is trivial to check that kxkE � kxC iykEC

in view of (2.10).
Suppose E is (universally) �-separably injective, as a real Banach space. Let X

be a complex Banach space and t W Y ! EC a complex-linear operator, where Y is
a closed subspace of X. Then <.t/ W Y ! E is a real-linear operator with k<.t/k �
ktk. If � W X ! E is a real-linear extension of <.t/, then the map T W X ! EC

defined by

T.x/ D �.x/ � i�.ix/

2

is a complex-linear extension of t. This establishes the “only if” part.
To prove the converse, let us assume that EC is (universally) �-separably

injective, as a complex Banach space. Let Y be a subspace of a real Banach space
X, and let t W Y ! E be a real-linear operator. Consider YC as a complex subspace
of XC and the complex operator tC W YC �! EC defined as

tC.xC iy/ D t.x/C it.y/

If this operator extends to a complex operator T W XC �! EC then the “restriction”
of <.T/ to X is a real-linear extension of t. ut

It follows, for instance, that a compact space K is an F-space if and only if the
complex space C.K;C/ is 1-separably injective.

In the opposite direction, every complex space is also a real space. One has:

Lemma 2.65 A complex Banach space is (universally) separably injective if and
only if its underlying real space is (universally) separably injective.

Proof First, we suppose that E is a complex (universally) separably injective Banach
space. Let Y be a subspace of a real Banach space X, and let t W Y ! E be a real-
linear operator.

Consider YC as a complex subspace of XC and the complex operator � W YC �! E
defined as

�.xC iy/ D t.x/C it.y/

If this operator extends to a complex operator T W XC �! E then the “restriction” of
T to X is a real-linear extension of t. For the converse implication, assume now that
the underlying real space of E is (universally) separably injective Let X be complex
Banach space, Y a complex subspace of X and t W Y �! E be a complex operator.
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If � W X �! E a real-linear extension of t, it is easy to check that the formula

T.x/ D �.x/ � i�.ix/

2

defines a complex operator T W X �! E that extends t. ut
The preceding proof shows that if E is (universally)�-separably injective as a real

space, then so is as a complex space. However, when E is a complex (universally)
�-separably injective, the proof gives only that E is (universally) �

p
2-separably

injective as a real Banach space. No more can be expected: C is 1-injective in the
complex domain, while, being isometric to `22, it is only

p
2-separably injective as a

real space.



Chapter 3
Spaces of Universal Disposition

In this chapter we deal with Banach spaces of universal disposition and almost
universal disposition. These notions were introduced in the sixties by Gurariy,
who constructed the (unique, up to isometries) separable Banach space of almost
universal disposition for finite dimensional spaces in [118]. Spaces of universal
disposition for separable Banach spaces are interesting for us because they are 1-
separably injective (Theorem 3.5). More yet, the only way we know of obtaining
separably injective p-Banach spaces is to construct p-Banach spaces of universal
disposition (see Sect. 3.4.3).

For this reason, we treat first Banach spaces of universal disposition. We provide,
for every separable Banach space X, natural isometric embeddings of X into new
Banach spaces S !1.X/ and U !1.X/ that are of universal disposition for separable
Banach spaces. The space S !1.X/ is 1-separably injective while the space U !1.X/
is universally 1-separably injective. The procedure we present for the construction
of the spaces S !1.X/ and U !1.X/ is rather flexible and, when performed with the
appropriate input data, it is able to produce a wide variety of examples; in particular,
the “genuine” Gurariy space G , the p-Gurariy spaces, the Kubiś space, the countable
ultrapowers of Gurariy space (to be treated in Chap. 4), and also new spaces such as
F!1.X/, which is of universal disposition for finite dimensional spaces but not for
separable spaces; after several ad-hoc fine tuning, the procedure could also produce
the so called L1-envelopes [69] of Banach spaces, although this topic will not
be presented here. Moreover, the embedding of X into S !1.X/ has the additional
property that every operator from X into any 1-separably injective space can be
extended to S !1.X/without increasing the norm. The embedding of X into U !1.X/
enjoys the analogous property when the target space is universally 1-separably
injective. A similar construction is worked out for finite dimensional spaces. Our
study of the main properties of those Banach spaces includes uniqueness, sizes
and universality. The corresponding results for p-Banach spaces are treated in
Sect. 3.4.3.
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We then study spaces of almost universal disposition, Sect. 3.3, which historically
came first and spurred great interest very soon. Their (often surprising) properties
and generalizations have been studied by many authors and are still object of intense
research. It is remarkable that spaces of almost universal disposition are never
complemented in M-spaces; in particular, they cannot be injective. Recall that in
Chap. 2 we presented Benyamini’s M-space which is a Grothendieck space and 5-
separably injective but is not complemented in any C-space (Example 2.24). Such
example is not universally separably injective and therefore it cannot be 1-separably
injective if we assume the continuum hypothesis. In this context, the spaces S !1 and
U !1 constructed in this chapter provide the first examples of 1-separably injective
spaces which are no complemented in any M-space, let alone in a C-space, in
striking contrast with what is known for injective spaces.

3.1 Spaces of (Almost) Universal Disposition

Before introducing the main definitions of the chapter, let us fix some notations
and conventions which apply specially here. By an isometry we mean a linear map
which preserves the norm. Also, given " 2 Œ0; 1/, we say that u W X ! Y is an
"-isometry if

.1 � "/kxk � ku.x/k � .1C "/kxk

for every x 2 X. In general we do not assume surjectivity unless explicitly stated.
However we say that two spaces are isometric (respectively, "-isometric) if there
exist a surjective isometry (respectively, "-isometry) between them.

In [118] Gurariy introduces the notions of spaces of universal and almost
universal disposition as follows:

Definition 3.1 Let J be a class of isometries between Banach spaces.

• A Banach space U is said to be of almost universal disposition for J if, given
isometries u W A ! U and { W A ! B such that { 2 J, and " > 0, there is an
"-isometry u0 W B! U such that u D u0{.

• A Banach space U is of universal disposition for J if, given isometries u W A! U
and { W A! B such that { 2 J, there is an isometry u0 W B! U such that u D u0{.

• If M is a class of Banach spaces, the space U is said to be of (almost) universal
disposition forM if it is of (almost) universal disposition for the isometries acting
between spaces in M.

We are particularly interested in spaces of universal disposition for the classes
of separable and finite dimensional Banach spaces that we denote by S and F,

respectively. We will not consider spaces of almost universal disposition for any
other class than F, and so we will, in this context, omit the words “for finite
dimensional spaces” during the chapter.
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The first thing one has to know about spaces of universal disposition is that they
are L1-spaces. Precisely:

Lemma 3.2 All Banach spaces of almost universal disposition are Lindenstrauss
spaces.

Proof Recall that Lindenstrauss spaces are exactly the L1;1C-spaces. Suppose U
is of almost universal disposition and let A be a finite dimensional subspace of U.
Fix any " > 0 and take n large enough so that there is an "-isometry { W A ! `n1.
Let B the Banach space whose underlying linear space is `n1 and the unit ball is the
closed convex hull of the set

fx 2 `n1 W kxk � 1 � "g
[
f{.a/ W a 2 A; kak � 1g:

Then the formal identity is an "-isometry from B onto `n1 and { is an isometry
from A to B. By the very definition there is an "-isometry v W B ! U such that
v.{.a// D a for every a 2 A. Clearly, vŒB� is a subspace of U that is .1 C "/2-
isomorphic to `n1 and contains A. ut

3.1.1 The Basic Construction

Let us consider an isometry u W A ! B and an operator t W A ! E. Our method is
based in the push-out construction, which we will use in order to get an extension
of t through u at the cost of embedding E in a larger space as it is showed in the
diagram

where t0u D u0t. It is important to realize that u0 is again an isometry and that t0
is a contraction or an isometry if t is; see Lemma A.19. Given specific families of
isometries and norm one operators, we will iterate the push-out scheme up to get
the desired space. More precisely, once set a starting Banach space E, the input data
for the construction are:

• A class M of Banach spaces.
• A family J of isometries acting between the elements of M.
• A family L of norm one E-valued operators defined on elements of M.

For any operator s W X ! Y, we establish dom.s/ D X and cod.s/ D Y. Notice
that the codomain of an operator is usually larger than its range, and that the unique
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codomain of the elements of L is E. To avoid complications we will assume that J
and L are sets.

Set � D f.u; t/ 2 J 	 L W dom u D dom tg and consider the Banach spaces of
summable families `1.�; dom u/ and `1.�; cod u/. We have an obvious isometry

˚J W `1.�; dom u/ �! `1.�; cod u/

defined by .x.u;t//.u;t/2� 7�! .u.x.u;t///.u;t/2� ; and a contractive operator

˙L W `1.�; dom u/ �! E;

given by .x.u;t//.u;t/2� 7�! P
.u;t/2� t.x.u;t//. Observe that the notation is slightly

imprecise since both˚J and˙L depend on � . We can form their push-out diagram

We obtain in this way an isometric enlargement of E such that for every t W A! E
in L, the operator {t can be extended to an operator t0 W B ! PO through any
embedding u W A! B in J provided dom u D dom t D A. In the next step we keep
the family J of isometries, replace the starting space E by PO and L by a family of
norm one operators dom u! PO, u 2 J, and proceed again.

This construction can be iterated until any countable or uncountable ordinal.
Depending on the choice of the families, essentially on M and J, we will produce
different spaces of universal disposition.

3.1.2 Some Specific Spaces of Universal Disposition

Let us proceed to present some specific constructions in detail. We set a starting
Banach space X. To fix the inconvenient that the class of “all separable Banach
spaces” is not a set, we may take M D QS as the set of all closed subspaces of C.�/,
J the set of all isometries with domain and codomain in QS, and L the set of all
isometries S! X, with S 2 QS.

We want to define, for every ordinal ˛, a Banach space S ˛.X/, depending on X,
in such a way that the family .S ˛.X//˛ forms a directed system of Banach spaces
(see Appendix A.6 in the Appendix). As before, one should take into account that
the class of “all ordinals” is not a set, and to be true one should first fix an ordinal
ˇ and then consider the set of all ordinals ˛ � ˇ. We use transfinite induction.
We start with S 0.X/ D X. The inductive step is as follows. Suppose we have
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constructed the directed system .S ˛.X//˛<ˇ, including the corresponding linking
maps {.˛;�/ W S ˛.X/ �! S � .X/ for ˛ < � < ˇ. To define S ˇ.X/ and the maps
{.˛;ˇ/ W S ˛.X/ �! S ˇ.X/ we consider separately two cases, as usual: if ˇ is a
limit ordinal, then we take S ˇ.X/ as the direct limit of the system .S ˛.X//˛<ˇ
and {.˛;ˇ/ W S ˛.X/ �! S ˇ.X/ the natural inclusion map. Otherwise ˇ D ˛ C 1
is a successor ordinal and we construct S ˇ.X/ applying the basic construction of
Sect. 3.1.1 with the following data: S ˛.X/ is the starting space, J keeps being the
set of all isometries acting between the elements of QS and L˛ is the family of all
isometries t W S! S ˛.X/, where S 2 QS.

We then set �˛ D f.u; t/ 2 J 	 L˛ W dom u D dom tg and make the push-out

(3.1)

thus obtaining S ˛C1.X/ D PO. The embedding {.˛;ˇ/ is the lower arrow in the
above diagram; by composition with {.˛;ˇ/ we get the embeddings {.�;ˇ/ D {.˛;ˇ/{.�;˛/,
for all � < ˛.

We will also consider the following two variations of this construction: Fix a
starting Banach space X and an ordinal ˛.

• The space F ˛.X/, obtained taking as input data: M D QF the family of all finite
dimensional subspaces of C.�/, J the set of all isometries between elements of
QF and L all X-valued isometries defined on elements of QF.

• The space U ˛.X/, obtained taking as initial data: M D QS all closed subspaces of
C.�/, J D J1 all isometries from the elements of QS into `1, so that cod u D `1
for every u 2 J1, and L all isometries from the elements of QS to X.

Continuing the process until the first uncountable ordinal !1, one obtains very
interesting creatures:

Proposition 3.3 Let X be a Banach space.

1. The spaces S !1.X/ and U !1.X/ are of universal disposition for separable
Banach spaces.

2. The space F!1.X/ is of universal disposition for finite dimensional Banach
spaces.

Proof

1. We write the proof for S !1 D S !1.X/. The case U !1.X/ is analogous and we
leave it to the reader. We must show that if v W A ! B and ` W A ! S !1 are
isometries and B is separable, then there is an isometry L W B ! S !1 such that
Lv D `. We may and do assume A;B 2 QS so that v 2 J. On the other hand
there is ˛ < !1 such that `ŒA� � S ˛ and we may consider that ` is one of the
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operators in L˛ . Therefore ` has an extension `0 making the following square
commutative:

Actually `0 is the composition of the inclusion j.v;`/ of B D cod v into the .v; `/-
th coordinate of `1.�˛; cod u/ with the right descending arrow in the diagram

(3.2)

We known that `0 is contractive, but we still have to prove that it is isometric. We
have

PO D .S ˛ ˚1 `1.�˛; cod u// =�

with

� D
8
<

:

0

@
X

.u;t/2�˛
tx.u;t/;�

X

.u;t/2�˛
ux.u;t/

1

A W .x.u;t// 2 `1.�˛; dom u/

9
=

; :

Thus, for b 2 B we have `0.b/ D .0; j.v;`/b/C� and

k`0.b/kPO D dist..0; j.v;`/b/;�/ D inf
a2A
fk`.a/kS ˛ C kb � v.a/kBg D kbkB

since both ` and v preserve the norm.
2. The proof is completely analogous to the previous one just considering B finite

dimensional. ut
The space S !1.X/ confirms the conjecture of Gurariy that spaces of universal

disposition exist. We will later show that it does not depend on the initial space X and
that, under CH, coincides with the Fraïssé limit in the category of separable Banach
spaces and isometries constructed by Kubiś [169]; and also with any “countable”
ultrapower of the Gurariy space, see Sect. 3.3.1 and Chap. 4.
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3.2 Properties of Spaces of Universal Disposition

3.2.1 Operator Extension Properties

The following Lemma gathers the main connections between “universal disposi-
tion” and “injectivity” properties. The basic idea is that if one can extend isometries,
then one can extend operators with the same bound.

Lemma 3.4 Let E be a Banach space and � � 1 a constant.

1. Suppose that for every pair of isometries u W A ! B and v W A! E there exists
an operator V W B! E such that Vu D v with kVk � �. Then E is �-injective.

2. If condition (1) holds whenever B is separable, then E is �-separably injective.
3. If condition (1) holds whenever A is separable and B D `1, then E is universally
�-separably injective.

4. If condition (1) holds when B is finite dimensional, then E is an L1-space.

Proof The proof is the same in all cases. Let t W A ! E have norm one and make
the push-out:

(3.3)

By Lemma A.19, u0 is an into isometry, and the hypothesis yields and operator
t00 W PO ! E such that t00u0 is the inclusion of tŒA� into E, with kt00k � �. Taking
T D t00t0 concludes the proof. ut

The second part of the preceding Lemma yields as immediate consequence:

Theorem 3.5 A space of universal disposition for separable Banach spaces is 1-
separably injective.

In particular, for every Banach space X, the spaces S !1.X/ and U !1.X/ are 1-
separably injective. And from the third part we obtain:

Proposition 3.6 The space U !1.X/ is universally 1-separably injective.

The following result establishes the partial automorphic character of the spaces
of universal disposition. In practice, the second part holds only under CH, since
the minimum size of a Banach space of universal disposition is the continuum (see
Proposition 3.10).
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Proposition 3.7 Let E be a space of universal disposition for separable spaces.

1. Given a separable Banach space B and a subspace A � B, every isomorphic
embedding t W A ! E extends to an isomorphic embedding T W B ! E with
kTk D ktk and kT�1k D kt�1k.

2. Consequently, if dens E � @1, then E is separably automorphic; namely, any
isomorphism between two subspaces of E can be extended to an automorphism
of E.

Proof

1. Let u denote the inclusion of A into B and assume, without loss of generality, that
ktk D 1. We follow the same notation as in Lemma 3.4. Looking at Diagram 3.3
we have kt0k D 1 and u0 is isometric, so there is an isometric embedding t00 W
PO ! E such that t00u0 is the inclusion of A0 D tŒA� into E. Now T D t00t0 is
the extension of t we wanted. Clearly, kTk D ktk D 1. On the other hand, by
Lemma A.19, one has k.t0/�1k � maxf1; kt�1kg hence kT�1k D kt�1k.

2. It suffices to show that if Y is a separable subspace of E, every isomorphic
embedding '0 W Y ! E extends to an automorphism of E. This is proved
through the obvious back-and-forth argument: write E D S

˛<!1
E˛ as an !1-

increasing sequence of separable subspaces starting with E0 D Y. Consider the
embedding '0 W E0 ! E. By Part 1, let  1 W '0ŒE0�C E1 ! E be an extension
of '�1

0 W '0ŒE0� ! E, with k 1k D k'�1
0 k and k �1

1 k D k'0k. Notice that
ran 1 D E0 C  1ŒE1�. Let '2 be the extension of  �1

1 to E0 C  1ŒE1� C E2
provided by Part (1) and so on. Proceeding by transfinite induction one gets a
couple of endomorphisms ' and  such that  ' D ' D 1E, with k'k D k'0k
and k k D k'�1

0 k and ' D '0 on Y. ut
The canonical inclusion of X into the spaces S !1.X/ and U !1.X/ constructed

above enjoys the following additional properties:

Proposition 3.8

1. Every operator from X into a 1-separably injective space can be extended to
S !1.X/ with the same norm.

2. Every operator from X into a 1-universally separably injective space extends to
U !1.X/ with the same norm.

Proof We write the proof of the first part, the other is almost the same. Clearly, it
suffices to see that for each ˛ < !1, every norm one operator � from S ˛ D S ˛.X/
to a 1-separably injective Banach space E extends to S ˛C1 D S ˛C1.X/ without
increasing the norm. Iterating the process until !1 one gets a norm one extension
�!1 W S !1.X/! E.

Let us first assume that � is an isometry and consider the composition � ı.˙L˛/ W
`1.�˛; dom u/ �! S ˛ �! E. For each .u; t/ 2 �˛, the “component” � ı t is an
operator (actually an isometry) from the separable Banach space dom u D dom t to
E and there is an extension T.u;t/ W cod u ! E through u with kT.u;t/k D 1. The
coproduct of all these operators yields a norm one operator T W `1.�˛; cod u/ �!
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E such that T ı .˚J/ D � ı .˙L˛/ and the universal property of the push-out
construction yields a norm one operator Q� W S ˛C1 �! E extending � .

If � is not an isometry, take any isometry �1 W S ˛ �! `1.I/, define �2 W S ˛ �!
E ˚1 `1.I/ by �2.x/ D .�.x/; �1.x// and apply the preceding reasoning to the
isometry �2 to obtain a norm one extension Q�2 W S ˛C1 �! E ˚1 `1.I/. Killing
the second coordinate of Q�2 gives the required extension. ut

3.2.2 Sizes

It is clear that, when the starting space X is separable, the Banach spaces appearing
in Proposition 3.3 have density character c since each of them is the union of an
!1-sequence formed by Banach spaces of density c. One may wonder if there are
smaller examples. A juxtaposition of Theorem 3.5 and Proposition 2.32 shows
that any Banach space of universal disposition for separable spaces must have
density character at least c. As for finite dimensional spaces, observe that “universal
disposition” for the single isometry { W t 2 R 7! .t; 0/ 2 `21 destroys the (Gâteaux)
differentiability of the norm at every point of the unit sphere. Since the norm of any
separable Banach space has to be Gâteaux differentiable on a dense Gı (a classical
result by Mazur [195]) we see that no Banach space of universal disposition for
finite dimensional spaces can be separable.

Actually it is impossible to reduce the size of spaces of universal disposition for
finite dimensional spaces. Let us see why.

Lemma 3.9 Let X be a Banach space containing a 2-dimensional Hilbert subspace
H. Assume that for every isometric embedding into a 3-dimensional space i W H !
F there exists an isometric embedding j W F ! X such that j ı i is the inclusion
H � X. Then, the density character of X is at least the continuum.

Proof Let S be the positive part of the sphere of H. Given u 2 S, we define a norm
on H ˚ R by the formula

k.x; �/ku D max
n
kxk2 ; j�j C j.xju/j

o
;

where .�j�/ denotes the usual scalar product on H. Note that k.0; 1/ku D 1 and k�ku
extends the Euclidean norm k�k2 of H, where x 2 H is identified with .x; 0/. By
hypothesis, for each u 2 S we can find eu 2 X such that the map iu W H 	 R ! X,
defined by iu.x; �/ D xC �eu, is an isometric embedding with respect to k�ku.

Fix u; v 2 S such that u ¤ v and let k�k denote the norm of X. Fix � > 0 and let
w D �u 2 H � X. Then

keu � evk � keu C wk � kev C wk D k.�u; 1/ku � k.�u; 1/kv :
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Finally, observe that k.�u; 1/ku D 1C � and

k.�u; 1/kv D max
n
�; 1C �j.ujv/j

o
D �;

whenever � is big enough, because j.ujv/j < 1 (recall that u, v are distinct, positive
vectors of the sphere of H). Thus, we conclude that keu � evk � 1 whenever u ¤ v,
which shows that the density of X is at least jSj D c. ut
It is immediate from that:

Proposition 3.10 The density character of any space of universal disposition for
finite dimensional spaces is at least the continuum.

This last result will get full sense in Sect. 3.2.4 where it will be shown that there
exist spaces which are of universal disposition for finite dimensional spaces that are
not of universal disposition for separable spaces.

3.2.3 Universality

Definition 3.11 A Banach space is universal for a given class M if it contains
isometric copies of all elements of M.

One has the following relation between universal disposition and universality:

Lemma 3.12 Let @ be a cardinal. A Banach space of universal disposition for
spaces of density character strictly lesser than @ is universal for spaces of density
character at most @.

Proof Assume that U is a space of universal disposition for Banach spaces of
density character strictly lesser than @ and let X have density @. Let us write
X D S

�<@ X� as an increasing family of subspaces X� of X of density (strictly)
lesser than @. There is no loss of generality assuming that X0 has dimension 1. Take
an isometric embedding f0 W X0 ! U and use the universal disposition of U to get
an isometric extension f1 W X1 ! U. A transfinite iteration of the extension process
produces an isometric embedding f W X ! U. ut

An immediate consequence is:

Proposition 3.13

1. A Banach space of universal disposition for finite dimensional spaces is universal
for separable spaces.

2. A Banach space of universal disposition for separable spaces is universal for the
class of Banach spaces having density character @1 or less.

Must a space of universal disposition for finite-dimensional spaces contain an
isometric copy of each Banach space of density @1 or less? Our guess is no.
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3.2.4 Uniqueness

In this section we face the problem of comparing the different spaces of universal
disposition we have encountered. Since being of (almost) universal disposition is a
demanding property, it can be very difficult to distinguish between those spaces that
fulfill it, unless they have different density characters. In fact, it can be impossible:
we shall prove later that all separable Banach spaces of almost universal disposition
are isometric (see Sect. 3.3.5; another result in this line is Theorem 4.29).

Let us begin by showing that there are (at least) two spaces of universal
disposition for finite dimensional spaces whose density character is the continuum.
We need the following elementary lemma which rests on the peculiarities of c0.

Lemma 3.14 A c0-valued operator defined on a finite dimensional Banach space
admits a (compact) extension with the same norm to any superspace.

Proof Let F � X be a finite dimensional subspace of a Banach space X, and let
� W F ! c0 be a norm one operator. Write � D .�n/ as a sequence of functionals.
Then .�n/ is pointwise null and since F is finite dimensional, the sequence .�n/ is
actually norm null. Thus, any sequence of Hahn-Banach extensions will also be
norm null, and the operator they define is a compact extension of � having the same
norm. ut

Now we can use the idea behind the proof of Proposition 3.8 to show that there
are spaces of universal disposition for finite dimensional Banach spaces which are
not of universal disposition for separable spaces.

Proposition 3.15 The space F!1.c0/, which is of universal disposition for finite
dimensional spaces, is not isomorphic to any space of universal disposition for
separable spaces.

Proof It follows from Lemma 3.14 that the embedding X ! F!1.X/ has the
property that every operator X ! c0 can be extended to F!1.X/. Therefore
F!1.c0/ contains c0 complemented, and thus it cannot be 1-separably injective in
any equivalent norm; see Proposition 2.31. ut

This suggests that quite plausibly there is a continuum of mutually non-
isomorphic spaces of universal disposition for finite dimensional spaces, even under
CH.

Regarding spaces of universal disposition for separable Banach spaces, the
situation is more subtle and depends on what axioms of set theory are assumed.
Our next result implies, among other things, that under CH there is no dependence
on the initial separable space X in the constructions appearing in Proposition 3.3(1).

Proposition 3.16 (CH) Up to isometries, there is a unique space of universal
disposition for separable spaces, having density character the continuum.

Proof Let U and V be spaces of universal disposition for separable spaces and
with density character @1. Let us write U D S

˛<!1
X˛ and V D S

ˇ<!1
Yˇ
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as increasing !1-sequences of separable subspaces. Pick ˇ1 such that there is an
isometric embedding '0 W X0 ! Yˇ1 . Let  1 W Yˇ1 ! X be an isometric extension
of '�1

0 . As  1 has separable range there is ˛2 < !1 such that ran 1 � X˛2 . Let
'2 W X˛2 ! Y be an isometric extension of �1

1 . A transfinite iteration of the process
produces an isometry from U onto V . ut
Corollary 3.17 (CH) If X is separable, the spaces S !1.X/ and U !1.X/ are
isometric to S !1.R/.

The continuum hypothesis cannot be omitted in Proposition 3.16, as witnessed
by the following result. Note that the hypothesis is consistent by a result of Brech
and Koszmider [49, Theorem 1.3].

Proposition 3.18 Assume that no Banach space of density character c is universal
for all Banach spaces with density character c. Then there exist cC many non-
isomorphic spaces having density character c that are of universal disposition for
separable spaces

Proof We proceed by transfinite induction. To make the induction start, form the
space S1 D S !1.R/. Take, by hypothesis, a Banach space X1 with density character
c not contained in S1 and form then S2 D S !1.X1 ˚ S1/. Take a new Banach space
X2 with density character c not contained in S2 and continue in this way.

Let ˇ < cC, and assume that we have already constructed nonisomorphic Banach
spaces fS˛ W ˛ < ˇg of density c and of universal disposition for S. Then, consider
Y to be the `1-sum of all spaces S˛ with ˛ < ˇ. Since this space cannot be universal,
find X a space which is not contained in Y, and then define Sˇ D S !1.X/. ut

Although spaces of universal disposition need not be all of them isometric, we
will show that those obtained by the procedure of iterated push-out as described in
Sect. 3.1.2 are all isometric in some cases. So, while the continuum hypothesis is
really necessary in Proposition 3.16, it is not in its Corollary 3.17, at least in the part
concerning S !1.X/.

Let M be a class of Banach spaces. We say that an isometry u W A ! B is an
M-cell if it fits in an isometric push-out square

where R; S 2M. Recall that, according to our conventions, the arrows in isometric
push-out squares are all isometries; see Appendix A.4.1.

The following definition isolates the relevant properties of the spaces constructed
in Sect. 3.1.2.
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Definition 3.19 Let M be a class of Banach spaces. We will say that a Banach space
Z is tightly M-filtered if there is an ordinal � and a family of subspaces fZi W i � �g
such that:

1. Zi � Zj if i < j,
2. Z� D Z,
3. Zi DS

j<i Zj for every limit ordinal i,
4. Each inclusion Zi �! ZiC1 is an M-cell.

We will say that Z is exhaustively tightly M-filtered if, in addition, the density of Z
is the continuum and

5. For every R � Z and any isometry � W R ! S with R; S 2 M, there exist
continuum many ordinals i < � for which Zi contains R and an isometry 'i W
S! ZiC1 depending on i so that the diagram

is an isometric push-out square, where the unlabelled arrows denote the corre-
sponding canonical inclusions.

Let us show that the “iterated push-out spaces” we constructed in Sect. 3.1.2 are
in most cases of the type just described.

Lemma 3.20 Let  � c be an ordinal having uncountable cofinality.

1. If dens.X/ � @1, then S .X/ is exhaustively tightly S-filtered.
2. If X is separable, the space F  .X/ is exhaustively tightly F-filtered.

Proof We prove only (1) because (2) is completely analogous. Just to simplify
notation in this proof, we will construct the family of subspaces fZi W i � �g as a well
ordered family Z of subspaces of S .X/ without writing an explicit enumeration on
an ordinal. Since dens.X/ � @1 it is clear that X is tightly S-filtered, with ordinal
� D 1 if X is separable; and with � D !1 if X is not separable. Let Z0 be the family
of all subspaces Zi of the filtration of X. The family Z0 will constitute the initial
segment of Z. The space S .X/ was defined as the inductive limit of a chain of
spaces fS ˛ W ˛ < g, that we view now as subspaces of the final limit space. We
had S 0 D X. For each ˛ < , we will define a well ordered chain of subspaces Z˛ ,
and finally we will declare

Z D Z0 [
[

˛<

Z˛ [ fS .X/g:
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Let us see how Z˛ is constructed. Recall the push-out Diagram 3.2:

(3.4)

The push-out space S ˛C1 can be explicitly described as

S ˛C1 D R.�˛/=N.�˛/;

where, for � � �˛, we denote

R.� / D S ˛ ˚1 `1.�; cod u/;

N.� / D span
˚
.t.x/;�Œu.x/�.u;t// W x 2 dom u; .u; t/ 2 � �

Here, Œ y�� means the element of `1.�˛; cod u/ whose only nonzero coordinate is y
at place � . Because all u and t are isometries, we easily check that R.� /\N.� 0/ D
N.� \ � 0/. Thus, one has the following subspaces of S ˛C1:

Z.� / D R.� /

N.� /
D R.� /

N.� \ �˛/ D
R.� /C N.�˛/

N.�˛/
D R.� /

N.�˛/
� S ˛C1:

In order to define the family Z˛ we enumerate �˛ D f.u� ; t� / W � < �˛g on an
ordinal �˛, and consider the initial segments

�˛;ˇ D f.u� ; t� / W � < ˇg; and Z˛ D fZ.�˛;ˇ/ W ˇ < �˛g:
We need to check all properties in Definition 3.19. It is clear that the family Z can
be enumerated on an ordinal � so that Properties (1), (2) and (3) hold: we just need
to take the sum of ordinals � D !1 CP

˛< �˛: As for (4), let us verify that the
inclusion Z.�˛;ˇ/ �! Z.�˛;ˇC1/ is an S-cell. Recalling that

Z.�˛;ˇC1/ D S ˛ ˚1 `1.�˛;ˇ; cod u/˚1 cod uˇ
N.�˛;ˇC1/

;

Z.�˛;ˇ/ D S ˛ ˚1 `1.�˛;ˇ; cod u/

N.�˛;ˇ/
D S ˛ ˚1 `1.�˛;ˇ; cod u/

N.�˛;ˇC1/

we have an obvious push-out square of isometries
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In order to verify Property (5), the preceding reasoning shows that each pair
.u; t/ 2 �˛ can be inserted into an isometric push-out diagram

where ZiC1 is the “immediate successor” of Zi along Z. Since  has uncountable
cofinality, we have S .X/ D S

˛< S
˛ (otherwise, we would need to take the

closure of the union). Thus, Property (5) would be immediate after another formal
make-up: make sure that each �˛ contains c many copies of each pair .u; t/,
replacing �˛ by �˛ 	 c. Or, if the reader prefers, relabel the push-outs “repeating
them” as needed: a formal trick could be to compose each u with inclusions inside
universal spaces CŒ0; 1�˚ `p, for a set of c many p’s which are disjoint for different
u’s. ut

The following definitions and notations will be helpful. Suppose that the class
M is stable under (surjective) isometries and that Z is tightly M-filtered so that for
each i < � one has an isometric push-out square

witnessing that the inclusion of Zi into ZiC1 is an M-cell. Then, letting Si D 'ŒS�
and then Ri D Zi \ Si we obtain and “equivalent” isometric push-out square

in which all arrows are inclusions that we consider fixed in the remainder of this
section.

With these conventions, a subset � � � is said to be saturated when for every
˛ 2 � one has

R˛ � spanfSˇ W ˇ 2 �; ˇ < ˛g
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Given a saturated � let us write

E.� / D spanfS� W � 2 � g:

Lemma 3.21 Let � � � and ı 2 �n� such that both � and � [fıg are saturated.
Then

is an isometric push-out diagram.

Proof As it is explained in Appendix A.4.2 (the “push-out made with inclusions”),
the “isomorphic part” of the assertion holds since E.� /\Sı D Rı and E.� /C Sı D
E.� [fıg/. We will need however the “isometric” assertion, for which it is necessary
to show that, given x 2 E.� / and s 2 Sı then

inffkxC rk C ks � rk W r 2 Rıg � kxC sk:

We prove that the statement of the Lemma holds for � WD � \  for all , and we
prove it by induction on . For  � ıC 1, what we have to do is to prove the lemma
assuming that � � ı. In that case we have a diagram of inclusions

The inclusion Rı � E.� / follows from saturation of E.� [ fıg/. The fact that the
lower square is an isometric push-out diagram follows from the fact the whole big
square is an isometric push-out diagram.

Assume now that  > ı and  is a limit ordinal. This case is a mere limit process:
Given x 2 E.�/, s 2 Sı and " > 0, we can find 
 <  and x0 2 E.�
/ such that
kx0 � xk < "=3 and, by inductive hypothesis, r 2 Rı such that kx0C rk C ks� rk <
kx C s0k C "=3. The remaining case is that  D � C 1 > ı C 1. In the nontrivial
case, � 2 � and � D �� [ f�g. We start again with x 2 E.�/, s 2 Sı and " > 0,
and we want to find r 2 Rı such that kx C rk C ks � rk < kx C sk C ". Since
E.�/ D E.��/C S�, by a limit argument as before, we can suppose that x is of the
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form x D s� C x� with s� 2 S� and x� 2 E.��/. Notice that now x� C sı 2 Z�, so
since we have a push-out diagram

for x� C s 2 Z� and s� 2 S�, we can find r� 2 R� such that

ks� C x� C sk > kx� C sC r�k C ks� � r�k � "=2:

Since � 2 � and � is saturated, we have that R� � E.��/, hence x�Cr� 2 E.��/
and s 2 Sı. So we can now use the inductive hypothesis to find r 2 Rı such that

kx� C r� C sk > ksC rk C kx� C r� � rk � "=2:

Combining, we get

ks� C x� C sk > ksC rk C kx� C r� � rk C ks� � r�k � ";

and applying the triangle inequality,

ks� C x� C sk > ksC rk C kx� C s� � rk � ";

which is exactly what we wanted. ut
All these efforts lead to:

Proposition 3.22 All exhaustively tightly M-filtered spaces are isometric.

Proof Let Z; QZ be two exhaustively tightly M-filtered spaces, and Let fZi W i < �g
and f QZi W i < Q�g be the corresponding towers of subspaces and E.� / and QE. Q� /
the subspaces of Z and QZ respectively defined for � � � or Q� � Q�. We define
inductively re-enumerations � D f�i W i < cg and Q� D f Q�i W i < cg such that, if we
call �i D f�j W j < ig and Q�i D f Q�j W j < ig, then all these sets will be saturated and
we will have a long commutative diagram with isometries �i as

which shows that Z and QZ are isometric as they are the respective unions of the two
long rows of the diagram. We define �i, Q�i and �i by induction. Formally, it is better
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to think that a step i we define �i, Q�i and �i. This way, the limit step of the inductive
procedure is obvious. At the successive step, we are given �i W E.�i/ �! QE. Q�i/ and
we need to define �i and Q�i and an isometry �iC1 W E.� i [ f�ig/ �! QE. Q� i [ f Q�ig/
extending �i. We distinguish the cases when i an even or an odd ordinal. If i is even,
we declare �i D min.� n �i/. Using property (5) of the definition of exhaustively
tightly M-filtered, we can find Q�i 2 Q� n Q�i such that QRQ�i D �iŒR�i � and there is
an isometry  W S�i �! QS Q�i that coincides with �i on R�i . By Lemma 3.21, both
diagrams below

are push-out diagrams. So the isometries can be extended to the desired isometry
�iC1 W E.� [ f�ig/ �! QE. Q� [ f Q�ig/. In the odd case we proceed similarly but the
other way around, we start choosing Q�i D min. Q n Q�i/ and then we choose �i. ut

A direct consequence of Lemma 3.20 and Proposition 3.22 is the fact that iterated
push-out spaces are isometric in many cases:

Theorem 3.23 Let  � c be an ordinal of uncountable cofinality.

1. S  .X/ � S !1.R/ for every Banach space X of density at most @1.
2. F  .X/ � F!1.R/ for every separable Banach space X.

From now on we write S !1 and F!1 to denote the isometric type of any of the
spaces appearing in the first and second parts of the preceding Theorem. Of course,
we know from Proposition 3.15 that S !1 is not isomorphic to F!1 : actually the
proof gives that the later space is a subspace but not a quotient of the former.

The following result formally upgrades the “universal disposition character” of
these spaces:

Theorem 3.24

1. The space S !1 is of universal disposition for all S-cells A ! B such that
dens.A/ < c.

2. The space F!1 is of universal disposition for all F-cells A ! B such that
dens.A/ < c.

Proof

1. Let 	 < c be an infinite cardinal below the continuum, and let 	C � c be its
successor cardinal. Just imitating the proof of Theorem 3.3 one gets that S 	C

.R/

is of universal disposition for all S-cells A ! B such that dens.A/ � 	. But by
Theorem 3.23, this space is actually isometric to S !1 .

2. Replace S by F and S by F in the proof of Part 1. ut
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Omitting the “exhaustiveness” condition (5) in Definition 3.19 one obtains the
following result, whose proof is very similar to that of Theorem 3.23, using the
auxiliary subspaces E.� / and back-and-forth. We shall not repeat it here (cf. [16,
Theorem 16]).

Theorem 3.25 Any tightly S-filtered Banach space of universal disposition for all
S-cells A! B such that dens.A/ < c is isometric to S !1 .

The proofs of Theorems 3.23 and 3.24 follow ideas from [16], where the main
result was a restricted version of Theorems 3.24 and 3.25. We notice that, although
it is assumed in [16, Theorem 16] that c is regular, this assumption was only used
in the existence part of the proof, where by the previously exposed arguments it is
anyway unnecessary.

3.3 Spaces of Almost Universal Disposition

In this section we adapt the main construction to obtain Gurariy’s separable space
of almost universal disposition. Recall that a Banach space U is of almost universal
disposition if given isometries { W A ! B; u W A ! U with B finite dimensional
and " > 0 there is an "-isometry u0 W B ! U such that u{ D u. Spaces of
almost universal disposition provide a general framework for the constructions
of the preceding sections (since “universal disposition” implies “almost universal
disposition”) and, moreover, several properties of spaces of universal disposition
rely in the end in the “almost” character. For instance, we shall prove later that
no space of almost universal disposition is complemented in a C-space; and we
will see in Chap. 4 that ultraproducts of spaces of almost universal disposition are
of universal disposition for separable Banach spaces (which leads to an alternative
construction for the spaces of this chapter). Finally, there is a wide variety of spaces
of almost universal disposition in the literature; some of them will be reviewed in
Sect. 3.4.1.

3.3.1 Construction of Separable Spaces of Almost Universal
Disposition

Let us show now how the basic method explained above can produce the Gurariy
space. To keep our spaces separable we fix a countable system of isometries J0
having the following density property: given an isometry w W A ! B between
finite dimensional spaces, and " > 0, there is u 2 J0, and surjective "-isometries
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˛ W A! dom u and ˇ W B! cod u making the square

(3.5)

commutative.
Although there is no need to be that specific let us indicate one possible choice

for J0. Let us say that a norm on R
n is “rational” if its unit ball is the convex

hull of finitely many points whose coordinates are rational numbers. A “rational”
(normed) space is just Rn furnished with a rational norm. Consider the family of
those isometries f whose codomain is a rational normed space .Rn; k � k/, its domain
is Rm for some m � n equipped with a not necessarily rational norm and have the
form

f .x1; : : : ; xm/ D .x1; : : : ; xm; 0; : : : ; 0/:

An obvious compactness argument shows that these into isometries are “dense”
amongst all finite dimensional isometries. Once J0 has been fixed, set F0 D domJ0.

Let now X be a separable Banach space. We define an increasing sequence of
Banach spaces

depending on X, as follows. We start with G0 D X. Assuming Gn has been defined
we get GnC1 from the basic construction explained in Sect. 3.1.1 just taking Ln as
a countable set of Gn-valued contractions with domains in F0 such that, for every
" > 0, and every "-isometry s W F ! Gn, with F 2 F0, there is t 2 Ln such that
ks � tk < ". We consider the index set �n D f.u; t/ 2 J0 	 Ln W dom u D dom tg
and the push-out diagram

(3.6)

Then we set GnC1 D PO. The linking map Gn ! GnC1 is given by the lower arrow
in the push-out diagram.

Proposition 3.26 Let X be a separable Banach space. The space G!.X/ D lim�!nGn

is a separable Banach space of almost universal disposition.



3.3 Spaces of Almost Universal Disposition 87

Proof Let w W A ! B and s W A ! G! be isometries, with B a finite dimensional
space and fix " > 0. Choose u 2 J0, as in (3.5). Clearly, for m large enough there
is a contractive "-isometry t W dom u ! Gm satisfying ks � t˛k < ". Let t0 W
cod u! GmC1 be the extension provided by Diagram 3.6, so that t is a contractive
"-isometry such that t0u D t. Therefore t0ˇ is a contractive 2"-isometry satisfying
ks � t0ˇwk � ". The following perturbation result ends the proof.

Lemma 3.27 A Banach space U is of almost universal disposition if and only if,
given isometries u W A ! U and { W A ! B with B finite dimensional, and " > 0,
there is an "-isometry u0 W B! U such that ku � u0{k � ".
Proof If fbi W 1 � i � ng is a basis for B, then for every " > 0 there is ı (depending
on " and the basis) such that if t W B ! U is linear map with kt.bi/k � ı for every
1 � i � n, then ktk � ". ut

We shall prove later that there is a unique separable Banach space of almost
universal disposition, up to isometries; see Sect. 3.3.5. A weaker (and easier) result
which suffices for most purposes is contained in Proposition 3.29. We now study a
number of structural properties which do not depend on this fact.

3.3.2 Operator Extension Properties

Let us observe that another way to say that a Banach space U is of almost universal
disposition is: given " > 0 and an isometry g W A ! B, with B finite dimensional
and A a subspace of U, there is an "-isometry g W B! U such that f .g.x// D x, for
all x 2 A.

This (trivially) equivalent formulation will make (surprisingly) easier to prove
in Sect. 3.3.5 the main isometric properties of the Gurariy space, in particular its
uniqueness. We will also need in Chap. 4 the next two results, which already appear
in Gurariy’s work [118], in order to prove that ultrapowers of the Gurariy space have
nice transitivity properties (see Proposition 4.16).

Lemma 3.28 Let U be a Banach space of almost universal disposition for finite
dimensional spaces and let g W A ! B be a linear embedding, where B is finite
dimensional and A is a subspace of U. Then for each " > 0 there is an embedding
f W B ! U such that f .g.a// D a for every a 2 A and k fk � .1 C "/kg�1k and
k f �1k � .1C "/kgk.
Proof Let us make push-out with the canonical embedding gŒA� ! B and h D
g�1=kg�1k as follows:
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According to Lemma A.19 in the Appendix, kh0k � 1 and, since khk D 1, the
embedding { is an isometry. Now, let � W PO ! U be an "-isometry such that
�{.a/ D a, for every a 2 A. Then, f D kg�1k�h is an embedding which obviously
verifies fg.a/ D a, for all a 2 A, and k fk � .1 C "/kg�1k. On the other hand,
again by Lemma A.19, we have kh0�1k � maxf1; kh�1kg then, kh0�1k � 1 since
kh�1k D kgkkg�1k � 1, and therefore

k f �1k D kh�1��1k=kg�1k � kgk=.1 � "/: ut

Proposition 3.29 Let U and V be separable Banach spaces of almost universal
disposition. Suppose that '0 W A ! B is a linear isomorphism, where A and B are
finite dimensional subspaces of U and V, respectively. Then, for each " > 0, there is
a surjective isomorphism ' W U ! V extending '0 and such that k'k � .1C"/k'0k
and k'�1k � .1C "/k'�1

0 k.
In particular U and V are almost isometric: for every " > 0 there is a surjective

"-isometry from U onto V.

Proof The result follows from a simple back-and-forth argument analogous to the
one used in the proof of Proposition 3.7(2): let ."n/ be a sequence of positive integers
such that

Q
n.1 C "n/ � 1 C " and write U D S

n Un where .Un/ is an increasing
sequence of finite dimensional subspaces of U starting with U0 D A. Also, let
.Vn/ be an increasing sequence of finite dimensional subspaces of V such that V DS

n Vn, with V0 D B.
Let '0 W A! B be an isomorphic embedding. By Lemma 3.28, let  1 W V1 ! U

be an extension of '�1
0 W '0ŒU0� ! U, with k 1k � .1C "1/k'�1

0 k and k �1
1 k �

.1C"1/k'0k. Let then '2 W  1ŒV1�CU2 ! V be an extension of  �1
1 W  1ŒV1�! V

such that such that k'2k � .1C "2/k �1
1 k and k'�1

2 k � .1C "2/k 1k provided by
Lemma 3.28. Proceeding by induction one gets a couple of endomorphisms ' and
 such that ' D 1U; ' D 1V , with k'k � .1C"/k'0k and k k � .1C"/k'�1

0 k
and 'jA D '0. ut

The canonical embedding of X into G!.X/ provided by the first step of the
construction enjoys the analogous “approximate” property to the universal property
of the embedding X ! S !1.X/ appearing in Proposition 3.8:

Proposition 3.30

1. Every norm one operator from X into a Lindenstrauss space admits, for every
" > 0, an extension to G!.X/ of norm at most 1C ".

2. If X is a separable Lindenstrauss space, then one can construct G!.X/ so that
there is a contractive projection from G!.X/ onto X.

Proof

1. Given " > 0 we fix a sequence ."n/ such that
Q
.1 C "n/ � 1 C ".

Now, let L be a Lindenstrauss space and � W X ! L be a norm one operator.
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Look at the diagram

and consider the composition �ı˙L0. SinceL is a Lindenstrauss space, for each
fixed .u; t/ 2 �0, the restriction of � ı ˙L0 to the corresponding “coordinate”
maps dom u D dom t into a finite dimensional subspace of L and so it is
contained in a .1 C "1/-isomorph of some finite dimensional `n1. Therefore, it
can be extended to cod u through u with norm at most .1 C "1/. The coproduct
of all these extensions yields thus an extension T W `1.�0; cod u/ ! L of
� ı ˙L0 with norm at most .1 C "1/. The push-out property of PO D G1

yields therefore an operator �1 W G1 ! L that extends � with norm at most
.1 C "1/. Iterating the process ! times, working with .1 C "n/ at step n, one
gets an extension �! W G! ! L of � with norm at most

Q
.1 C "n/ �

1C ".
2. We shall establish a slightly more general result, namely, that if L is a separable

Lindenstrauss space and � W X ! L is surjective, then one can construct G!.X/
so that � admits an extension �! W G!.X/ ! L with k�!k D k�k. Taking
� D 1X gives (2).

The proof is a re-examination of the preceding one, using induction. We shall
construct Gn.X/ as in Sect. 3.3.1 together with an operator �n W Gn.X/ ! L
extending � , with k�nk D k�k. These operators must be compatible in the sense
that the restriction of �nC1 to Gn.X/ agrees with �n. The initial step is obvious:
we take G0.X/ D X and �0 D � .

Now suppose we have constructed �n W Gn.X/ ! L extending � , with
k�nk D k�k. Let us observe that if � W Y ! Z is a surjective operator acting
between Banach spaces and

S
k Zk is dense in Z, then

S
k �

�1ŒZk� is dense in Y.
This is just the open mapping theorem. By a result of Michael and Pełczyński
one can write L D S

k Lk, where Lk is isometric to `k1 and so 1-injective; see
[198, Theorem 1.1] or [173, Theorem 3.2]. Set Uk D ��1

n ŒLk� so that
S

k Uk is
dense in Gn.X/ since �n is onto. Take care here to achieve that all the operators
in Ln have range in

S
k Uk, which can be done since every operator in Ln

has finite dimensional domain and
S

k Uk is dense in Gn.X/. After that, look
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at the diagram

and let us argue as before. For each .u; t/ 2 �n the restriction of˙Ln to dom u D
dom t into some Uk and composing with �n one falls in Lk � `k1. Therefore it can
be extended to cod.u/ without increasing the norm. The coproduct of all these
extensions gives the arrow on the left of the diagram, still with the same norm
as �n. Finally the universal property of the push-out construction yields �nC1 and
shows that it is an extension of �n with the same norm; see Appendix A.4.1. This
completes the inductive step and we are done. ut

Corollary 3.31 Let U be a separable Banach space of almost universal disposition.
Then for every separable Lindenstrauss space L and every " > 0 there is an "-
isometry u W L ! U and linear map � W U ! L such that � ı u D 1L , with
k�k � 1C ". In particular U is not isomorphic to a complemented subspace of any
M-space.

The first part is a juxtaposition of Propositions 3.29 and 3.30. The second part
follows from the fact, proved in [34], that there exist separable Lindenstrauss spaces
that are not complemented subspaces of any M-space. We shall prove later that the
Corollary is true even with " D 0 (see Corollary 3.39).

3.3.3 The Structure of a Space of Almost Universal Disposition

In this section and the next one we present some remarkable features of the spaces
of almost universal disposition. We begin with the following observation.

Lemma 3.32 Let X be a separable subspace of a space of almost universal
disposition U. Then there is another separable subspace X0 containing X having
the following property: given isometric embeddings u W A! X and { W A! B with
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B finite dimensional, and " > 0, there is an "-isometric embedding u0 W B ! X0.
such that ku � u0{k � ".
Proof Let J0 and F0 be as in Sect. 3.3.1, that is, J0 is a “dense” countable family of
isometries between finite dimensional spaces and F0 D domJ0. As X is separable
we may select a countable set of injective operators L from the spaces in F0 to X
with the following density property: for every injective operator f W E ! X and
every " > 0 there is f 0 W E! X in L such that k f � f 0k < ".

Suppose now that we are given f 2 L and v W E ! F in J0 with dom.f / D
dom.v/. Then we may use Lemma 3.28 to obtain, for each integer n, an injective
operator f 0

n W F ! U such that f D f 0
nv, with k f 0

nk � .1C 1
n /k f �1k and k.f 0

n/
�1k �

.1 C 1
n /k fk. Let X0 be the least closed subspace of U containing X and the range

of all these f 0
n. Clearly, X0 is separable. Let us check that X0 has the property we

claimed. Take isometries u W A ! U and { W A ! B with B finite dimensional and
fix " > 0. Take an “approximation” of { in J0, that is, an isometry v W E ! F in J0
fitting in a commutative square

in which the vertical arrows are bijective ı-isometries for small ı. Consider the
composition ut W E ! U and take f 2 L such that k f � utk � ı. Taking ı small
enough guarantees that any such a f has to be an almost-isometry which can be
extended to an almost-isometry f 0 W F ! X0. The composition u0 D f 0s�1 is an
"-isometry and ku � u0{k < "—for ı sufficiently small. ut

Which leads to:

Proposition 3.33 A Banach space is of almost universal disposition if and only if
every separable subspace is contained in a separable subspace of almost universal
disposition.

Proof The “if” part is obvious. As for the converse just note that the preceding
Lemma allows us to reproduce the construction explained in Sect. 3.3.1 inside any
space of almost universal disposition. Let X be a separable subspace of U. Applying
the Lemma recursively we obtain an increasing sequence of separable subspaces
.Xn/, starting X0 D X, having the following property: if u W A! Xm and { W A! B
are isometric embeddings, then for every " > 0 there is an "-isometry u0 W B! XmC1
such that ku � u0{k < ". By Lemma 3.27 the closure of

S
n Xn in U is a separable

space of almost universal disposition. ut
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3.3.4 Spaces of Almost Universal Disposition
Are Not Complemented in Any C-Space

One of the main open problems about injective spaces is to know if every injective
space must be isomorphic to a C-space. We already know that there exist separably
injective spaces which are not isomorphic to a complemented subspace of any
C-space. We now show that even (universally) 1-separably injective spaces can
have this pathological behavior, in contrast with the fact that every 1-injective
space is isometric to a C.K/-space for some extremely disconnected compact
space K.

We begin with the elementary observation that no C-space can be of almost
universal disposition. The idea is that the metric of C.K/ “knows” how large is
the support of a given function. Consider the pair of isometries

{ W K! `21; {.t/ D .t; 0/I u W K! C.K/; u.t/ D t1K :

Let u0 W `21 �! C.K/ be any operator extending u and look at u0.0; 1/ D f . One
has k fk1 D � f .k/ for some k 2 K and some � 2 K with j� j D 1. Clearly

ku0.0; 1/k1 D k fk1
ku0.�; 1/k1 D 1C k fk1

and these numbers cannot be simultaneously close to 1. In particular u0 cannot be
an "-isometry for " < 1

2
.

Of course this naive argument does not apply to the C0.L/-spaces, let alone to
M-spaces. However one has the following result, which is a formal consequence of
Corollary 3.31:

Theorem 3.34 Banach spaces of almost universal disposition are not isomorphic
to complemented subspaces of M-spaces. In particular they are not injective.

Proof Suppose U is a space of almost universal disposition and there is an into
isomorphism e W U ! M and an operator � W M! U such that �e D 1U, where M
is an M-space. We are going to reach a contradiction.

Let us first remark that every separable subspace of a Banach lattice is contained
in a separable sublattice: this follows from the continuity of the lattice operations.
We known that U contains almost isometric copies of all separable Banach spaces.
Take G0 a Gurariy subspace of U and let M0 be the least sublattice of M containing
eŒG0� and U0 the closure of �ŒM0� in U. Proposition 3.33 provides a Gurariy
subspace G1 � U containing U0. Now, replace G0 by G1 and go ahead. In this
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way we obtain a sequence of arrows organized as follows:

Unlabeled arrows are just inclusions. Look at the space

V D
[

n

Gn D
[

n

Un: (3.7)

It is pretty clear that the normed space
S

n Gn is of almost universal disposition and
Lemma 3.27 implies that so is its closure V .

On the other hand e embeds the Gurariy space V D S
n Un in L D S

n MnC1
while the restriction of � to L is left inverse to e and so V is (isomorphic to a
subspace) complemented in L. Finally, L is a (separable) sublattice of M hence it is
itself an M-space. A contradiction. ut
Corollary 3.35 None of the spaces S !1.X/, U !1.X/ or F!1.X/, for whichever
initial X, are complemented subspaces of an M-space, let alone of a C-space.

Gelfand’s representation theorem states that every complex commutative C�-
algebra is isometrically isomorphic to the algebra of all complex continuous
functions on some compact space, with the sup norm. Thus, Theorem 3.34 and the
arguments contained in Sect. 2.7.2 show that no complex space of almost universal
disposition is isomorphic to a complemented subspace of a commutative complex
C�-algebra. The commutativity is essential since a beautiful result of Lusky [191]
establishes that every separable complex Lindenstrauss space is a 1-complemented
subspace of the so-called CAR algebra—a certain separable, noncommutative, C�-
algebra.

3.3.5 Isometric Uniqueness of the Gurariy Space

This section is devoted to prove Lusky’s result [185] that any two separable Banach
spaces of almost universal disposition are isometric. Our exposition follows a more
recent approach due to Kubiś and Solecki [170] who found a new proof of the
isometric uniqueness of the Gurariy based in the next lemma, which can be regarded
as a way to turn almost isometries into isometries.

Lemma 3.36 Let X and Y be normed spaces and f W X ! Y an "-isometry, with
" 2 .0; 1/. Let i W X ! X ˚ Y and j W Y ! X ˚ Y be the canonical inclusions. Then
there is a norm on X ˚ Y such that k f ı j� ik � " and both i and j are isometries.
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Proof Set

k.x; y/kD inf fkx0kX C ky1kY C "kx2kX W .x; y/D .x0; 0/C .0; y1/C .x2;�f .x2//g:

It is easily seen that this formula defines a norm on X ˚ Y. Let us check that
k.x; 0/k D kxkX for all x 2 X. The inequality k.x; 0/k � kxkX is obvious. As
for the converse, suppose x D x0 C x2 and y1 D f .x2/. Then

kx0kX C ky1kY C "kx2kX D kx0kX C k f .x2/kY C "kx2kX

� kx0kX C .1 � "/kx2kX C "kx2kX

� kxkX ;

as required. Next we prove that k.0; y/k D kykY for every y 2 Y. That k.0; y/k �
kykY is again obvious. To prove the reversed inequality assume x0 C x2 D 0 and
y D y1 � f .x2/,

kx0kX C ky1kY C "kx2kX D kx2kX C ky1kY C "kx2kX

� ky1kY C .1C "/kx2kX

� ky1kY C k f .x2/kY

� kykY :

To end, let us estimate kj ı f � ik. We have

kj ı f � ik D sup
kxk�1

kj.f .x// � i.x/k D sup
kxk�1

k.�x; f .x//k � "

and we are done. ut
We are about seeing that the previous lemma, innocent as it seems, is the crucial
tool for proving all isometric properties of separable spaces of almost universal
disposition. We first need to introduce a new definition: an operator f W X ! Y,
which is not assumed to be surjective, is called a strict "-isometry, with " 2 Œ0; 1/, if

.1 � "/kxkX < k f .x/kY < .1C "/kxkX

for every nonzero x 2 X. Note that when X is finite dimensional, every strict "-
isometry is an "0-isometry for some "0 < ".

Lemma 3.37 Let U be a space of almost universal disposition for finite dimen-
sional spaces and let f W X ! Y be a strict "-isometry, where X and Y are finite
dimensional Banach spaces, with X � U and " 2 .0; 1/. Then for each ı > 0 there
exists a ı-isometry g W Y ! U such that kg.f .x// � xk < "kxk for all x 2 X.
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Proof Choose 0 < "0 < " such that f is an "0-isometry. Shrinking ı if necessary,
we may assume that .1 C ı/"0 < ". Let Z denote the direct sum X ˚ Y equipped
with the norm given by Lemma 3.36 and let i W X ! Z and j W Y ! Z denote the
canonical inclusions, so that kj ı f � ik < "0. Let h W Z ! U be a ı-isometry such
that h.i.x// D x for x 2 X. Then g D h ı j is a ı-isometry from Y into U and for
every nonzero x 2 X,

kx � g.f .x//k D kh.i.x// � h.j.f .x//k
� .1C ı/ki.x/ � j.f .x//kZ � .1C ı/"0kxk < "kxk;

as required. ut
We are now ready for the proof of the uniqueness.

Theorem 3.38 Let U and V be separable spaces of almost universal disposition
and " 2 .0; 1/. Let f W X ! V be a strict "-isometry, where X is a finite dimensional
subspace of U. Then there exists a bijective isometry h W U ! V such that kh.x/ �
f .x/k � "kxk for every x 2 X. In particular, U and V are isometrically isomorphic.

Proof Set X0 D X, Y0 D f ŒX�, f0 D f and "0 D ". Take "1 < "0, by Lemma 3.37
there exists a strict "1-isometry g0 W Y0 ! U (which is also "0-strict isometry) such
that kg0f0x� xk � "0kxk for all x 2 X0. Set now X1 D g0ŒY0�, again by Lemma 3.37
there is a strict "1-isometry f1 W X1 ! V such that k f1g0.y/ � yk � "1kyk, for all
y 2 Y0. The next step is clear: fix Y1 D f1ŒX1�, which obviously contains Y0, take
"2 < "1 and get a strict "2-isometry g1 W Y1 ! X2 such that kg1f1x� xk < "1kxk, for
all x 2 X1. In this way, we will construct inductively sequences of linear operators
fn W Xn ! Yn and gn W Yn ! XnC1 between finite dimensional spaces such that each
fn is a strict "n-isometry, each gn is a strict "nC1-isometry, Xn � XnC1, Yn � YnC1
and the spaces

S
n Xn and

S
n Yn are dense in U and V , respectively. Furthermore

the next conditions are verified for every n:

1. kgn fn.x/� xk < "nkxk, for x 2 Xn

2. k fnC1gn.y/ � yk < "nC1kyk, for y 2 Yn:

Let us see now that .fn.x//n is a Cauchy sequence. Fix n 2 N and x 2 Xn with
kxk D 1. Using (2), we get

kfnC1gn fn.x/ � fn.x/k < "nC1 � k fn.x/k � "nC1 � .1C "n/;

and using (1),

kfnC1gn fn.x/ � fnC1.x/k � k fnC1k � kgn fn.x/� xk < .1C "nC1/ � "n:

These inequalities give

kfn.x/ � fnC1.x/k < ."n C "nC1/2:
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Given now x 2 S
n Xn, define h.x/ D limn�m fn.x/, where m is such that x 2 Xm.

Then h is an "n-isometry for every n 2 N, hence it is an isometry. Consequently,
it extends to an isometry on U, which we denote also by h. Furthermore, assuming
that the sequence ."n/ has been properly chosen, we get

kf .x/ � h.x/k �
NX

nD0
."n C "nC1/2 C k fnC1.x/� h.x/k < ":

It remains to see that h is a bijection. To this end, we check as before that .gn.y//n�m

is a Cauchy sequence for every y 2 Ym. Once this is done, we obtain an isometry g
defined on V . Conditions (1) and (2) tell us that g ı h D 1U and h ı g D 1V . This
completes the proof. ut

Let us denote by G the isometric type of any separable Banach space of almost
universal disposition and call it the Gurariy space.

Corollary 3.39 The Gurariy space contains an isometric copy of every separable
Banach space. Moreover, it contains a copy of each separable Lindenstrauss which
is the range of a contractive projection. The Gurariy space is not complemented in
any M-space, let alone in a C-space.

Universality follows now from the fact that all the spaces G!.X/ are isometric
for every separable Banach space X. Yet, using Lemma 3.36, one can easily get a
direct proof of the fact that G contains an isometric copy of every separable Banach
space just proceeding analogously to the proof of Theorem 3.38. The second part
follows from the second part of Proposition 3.30 and Theorem 3.38.

3.4 Notes and Remarks

3.4.1 Other Spaces of Almost Universal Disposition
in the Literature

A number of authors constructed spaces of almost universal disposition with rather
special properties. Let us mention a few of them.

Motivated by the uniqueness of the Gurariy space, Lusky showed in [188] that for
every cardinal @ � c there exist two Banach spaces of almost universal disposition
with density character @ which are not isomorphic: one of them has weakly*
sequentially compact dual ball and the other not. Certainly, the spaces F!1 and
S !1 , which are even of universal disposition, provide similar counter-examples.
However, what it is proven in [188, Theorem 1.4] is that every infinite dimensional
Lindenstrauss space X is isometric to the range of a contractive projection defined
on a space of almost universal disposition GX such that dens.X/ D dens.GX/ and
dens.X�/ D dens.G�

X/. Besides, the unit ball of G�
X is weakly* sequentially compact
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if (and only if) so is that of X�. Thus for instance, taking first X D c0.c/ and then
X D `1 one gets the announced examples.

Under the so called “diamond axiom”} (which implies CH), Shelah constructed
in [231] a Banach space of almost universal disposition S˘ with density character
@1 and no uncountable biorthogonal sequences. The space S˘ is of almost universal
disposition, hence a Lindenstrauss space, since it admits a representation S˘ DS

i<!1
Gi in which each Gi is a Gurariy space and the chain is increasing and

continuous. Among the strange properties of S˘ one encounters

1. [143, Corollary 4.5] S˘ is a subspace of `1. Moreover, every subspace and
quotient of S is isometric to a subspace of `1 under any equivalent renorming.

2. Among any @1 elements of S˘, one of them belongs to the closure of the convex
hull of the others.

3. Every quotient of S˘ by a nonseparable subspace is separable.
4. Every operator T W S˘ ! S˘ has the form �1S˘

C S with S an operator having
separable range.

5. [143, Corollary 4.4] For every equivalent norm on S˘, its dual S˘� has a
separable boundary (i.e., a set B such that for every element x there is some
f 2 B such that jf .x/j D kxk).
We do not know if S˘ is of universal disposition. Property (1) implies that it

cannot be of universal disposition for separable spaces since in that case it would
contain isometric copies of all spaces having density character @1; and certainly,
say, `2.@1/ is not a subspace of `1.

Shelah space S˘ is related to an earlier counter-example of Kunen who
constructed, under CH, a compact space K , so that C.K / enjoys properties (1), (2)
and (5) above (see [143, Corollary 4.5], [202, Theorem 7.1] and [143, Corollary 4.4],
respectively). The papers [113, 114] contain additional information about the spaces
S˘ and C.K /.

López-Abad and Todorcevic [184] pushed these ideas into the set-theoretic
forcing setting to produce a variety of pairs of Banach spaces X and Y such that:

• X is of almost universal disposition.
• Y is a c0-saturated predual of `1.!1/.
• Y is isometric to the quotient of X by a (separable) subspace isometric to Gurariy

space G .

This last condition implies that X is, in some sense, close to Y and both
spaces must share many Banach space properties which are relevant in this setting.
Amongst the most shinning examples of [184] we find the following:

• The weak topologies of X and Y are hereditarily Lindelöf (in all finite powers)
but no equivalent norm on X and Y has weak* sequentially compact dual ball.

• Neither X nor Y have uncountable !-independent sequences.
• X and Y have no uncountable biorthogonal sequences, but they have uncountable
"-biorthogonal sequences for each " > 0.
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3.4.2 Transitivity and Universal Disposition

Recall that a Banach space X is said to be isotropic if given two points x; y in
the unit sphere there is a linear, surjective isometry of the space sending one to
the other. The classical, still open, problem of rotations of Mazur is to determine
whether a separable isotropic Banach space must be isometric to a Hilbert space.
Isotropic spaces have been called “transitive” by most authors. We will keep the
term “isotropic” for the previous classical notion and will use “transitive” for the
next generalization:

Definition 3.40 Let M be a class of Banach spaces. We will say that a Banach space
X is M-transitive, if given two subspaces A;B of X in M, any surjective isometry
between A and B can be extended to a surjective isometry of X.

It is a question proposed by Kubiś whether every space of universal disposition
with respect to a class M must be M-transitive. Garbulińska and Kubiś show in
[101]:

Proposition 3.41 Assume 	 is an infinite regular cardinal and let M	 be the class
of those Banach spaces having density character strictly smaller than 	. Let U be a
Banach space of universal disposition for M	 having density character 	. Then U
is M	-transitive.

Proof Let f W X ! Y be a surjective isometry between two subspaces of U with
density character less than 	. By the regularity of 	, we may assume that there exist
two continuous chains fU˛g˛<	 and fV˛g˛<	 of subspaces of U such that U0 D X
and V0 D Y and

S
˛<	 U˛ D U D S

˛<	 V˛ . Now, construct inductively isometric
embeddings f W U˛./ ! Vˇ./ and g W Vˇ./ ! U˛.C1/ so that

1. f0 D f , and for each  < 	:
2. g ı f is the canonical inclusion U˛./ � U˛.C1/,
3. fC1 ı g is the canonical inclusion Vˇ./ � Vˇ.C1/.

The limit steps are not a problem because of the continuity of the chain. The
limit operators f	 W U ! U and g	 W U ! U are bijective linear isometries because
f	 ı g	 D 1U and g	 ı f	 D 1U. Finally, it is clear that f	 extends f , which completes
the proof. ut
Corollary 3.42 A Banach space of density character @1 that is of universal
disposition for separable spaces is S-transitive.

Observe that CH is a consequence of the other hypotheses of the Corollary.
In particular, under CH, the space S !1.X/ � U !1.X/ constructed in Sect. 3.1.2
is S-transitive. We do not know however if a Banach space of density character
@1 that is of universal disposition for finite dimensional spaces is necessarily
F-transitive, so not even under CH we know if the spaces F!1.X/ are F-
transitive.
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There is an approximate variant of the notion of an isotropic space. Namely, one
says that X is almost isotropic if, given x; y 2 X with kxk D kyk D 1, and " > 0,
there is an isometric automorphism � of X such that ky � �.x/k < ". Observe that
this is stronger than the requirement that there is a surjective "-isometry sending
x to y. The corresponding generalization of almost F-transitive space can also be
considered: when given two finite dimensional isometric subspaces F;G of X via an
isometry ı W F ! G and " > 0, there is an isometric automorphism � of X such that
kı.x/ � �.x/k < " for all x 2 F. It is a direct consequence of Theorem 3.38 that
Gurariy space is almost F-transitive:

Corollary 3.43 Let � W A! B be a surjective isometry between finite dimensional
subspaces of G . Then, for each " > 0 there is a surjective �0 isometry of G such
that k�.a/� �0.a/k � "kak for every a 2 A. In particular G is almost isotropic.

No C-space can be almost isotropic (unless the underlying compact is a
singleton). Indeed, if f 2 C.K/ is normalized and vanishes at some point of K, then
k f � �.1K/k1 � 1 for every surjective isometry � of C.K/, by the Banach-Stone
Theorem.

On the other hand, there are isotropic M-spaces and almost isotropic separable
M-spaces, necessarily isomorphic to C.�/; see [51]. Even more surprising is the re-
sult, proved by Rambla and Kawamura (independently and almost simultaneously;
see [161, 219]), that if P� denotes the pseudo-arc with a point deleted, then the
complex space C0.P�/ is almost isotropic for the sup norm. We refer the reader to
[50, 117] for two complementary surveys on “Mazur rotations problem”. Two very
recent outstanding papers on this topic are [84, 94].

3.4.3 p-Banach Spaces of Almost Universal Disposition

In this section we review some results on “separably injective” p-Banach spaces.
The situation can be summarized by saying that, while in Banach spaces the notion
of a space of “universal disposition” leads to separably injective spaces whose
structure is “very different” to the “typical examples” (such as C-spaces), in p-
Banach spaces the only “separably injective” objects we know are those which
are constructed as spaces of universal disposition for the class of all separable p-
Banach spaces. To some extent, this bad behaviour arises from the fact that, while
the ground field is injective in the category of Banach spaces, it is not in the category
of p-Banach spaces for 0 < p < 1; see Proposition 3.54 below. To avoid repetitions
in this section we fix once and for all the number p 2 .0; 1� and we work in the
category of p-normed spaces and linear, bounded operators.

Let us begin by giving the definitions that one can expect.

Definition 3.44 A p-Banach space E is said to be:

• Injective if for every p-Banach space X and every subspace Y of X, every operator
t W Y ! E can be extended to an operator T W X ! E. If this can be achieved with
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kTk � �ktk for some fixed � � 1, then E is said to be a �-injective p-Banach
space.

• Universally separably injective or universally �-separably p-injective if the
preceding condition holds when Y is separable.

• Separably injective or �-separably injective if the preceding condition holds
when X is separable.

• Locally �-injective if for every finite dimensional p-Banach space X and every
subspace Y of X, every operator t W Y ! E has an extension T W X ! E with
kTk � �ktk. Finally, we say that E is locally injective if it is locally �-injective
for some �.

Contrarily to what happens in Banach spaces, there are very few separably
injective p-Banach spaces and no universally separably injective p-Banach spaces
at all:

Proposition 3.45 If 0 < p < 1, the category of p-Banach spaces has no
universally separably injective object, apart from zero.

Proof Let E be a nonzero p-Banach space. Let us see that E cannot be universally
separably injective. Let @ be the density character of E and let � denote Haar
measure on the product of a family of 2@ copies of T, the unit circle. Kalton (see
[153, p. 163, at the end of Sect. 3]) showed that for @ D @0, and Popov [217,
Theorem 1] in full generality, that there is no nonzero operator from Lp.�/ to E.
Thus, if we fix some nonzero e 2 E and we consider the subspace K of constant
functions in Lp.�/, then the operator � 2 K 7! �e 2 E cannot be extended and E is
not universally separably injective. ut

Now, even if a good portion of the results in Chap. 2 about separably injective
Banach spaces extend straightforwardly to the category of p-Banach spaces, we
have no example at hand to apply them. One can construct one as a p-Banach
space of universal disposition for separable p-Banach spaces. Before going
into this issue, let us made a detour into “universality” and “almost universal
disposition”.

In [152, Theorem 4.1(a)] was stated without proof that for 0 < p < 1 there
exists a separable p-Banach space which is “universal” for the class of all separable
p-Banach spaces. This result also appears mentioned in [221, Theorem 3.2.8] but
the proof only gives “universality with respect to "-isometries”. Such a space was
finally provided in [58]:

Proposition 3.46 For every p 2 .0; 1� there exists a unique separable p-Banach
space Gp of almost universal disposition for finite dimensional p-Banach spaces, up
to isometries. This space contains an isometric copy of every separable p-Banach
space.

The construction is roughly the same as in Sect. 3.3.1, working with `p-sums
instead of `1-sums. One starts with a separable p-Banach space X and arrives at
an “enveloping” p-Banach space Gp.X/, which is of almost universal disposition
for finite dimensional p-Banach spaces. Here, the key point is that push-outs of p-
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Banach spaces exist and have the expected properties. After that, one proves that any
two p-Banach spaces of almost universal disposition are isometric, from where it
follows that these spaces contain isometric copies of each separable p-Banach space.
The proof is similar to that presented in Sect. 3.3.5 and the key point is a version of
Lemma 3.36 for p-normed spaces. At the end it turns out that Theorem 3.38 is true
for p-Banach spaces for p 2 .0; 1�.

Starting with any separable p-Banach space X, considering the universal space Gp

instead of C.�/, and using the push-out of p-Banach spaces at every step ˛ < !1,
one can construct the spaces S !1

p .X/ and F!1
p .X/ which contain X, have density

character c, and are of universal disposition for separable and finite dimensional
p-Banach spaces, respectively. Actually, the following result was established in
[58]:

Proposition 3.47 There exists a p-Banach space of density character the contin-
uum which is of universal disposition for separable p-Banach spaces, contains
isometric copies of every p-Banach space of density character up to @1 and, under
the continuum hypothesis, is unique up to isometries.

The following result also appears in [58]:

Proposition 3.48 Every p-Banach space of universal disposition for finite dimen-
sional p-Banach spaces has density character at least the continuum.

It is interesting to remark that the general ideas leading to the proof of
Theorem 3.23 apply verbatim to p-Banach spaces, so we have the following
generalization.

Theorem 3.49 Let  � c be an ordinal of uncountable cofinality.

1. S 
p .X/ � S !1

p .R/ for every p-Banach space X of density at most @1.
2. F 

p .X/ � F!1
p .R/ for every separable p-Banach space X.

We do not know, however, if F!1
p .R/ is isometric or isomorphic to S !1

p .R/when
0 < p < 1 although we suspect that, just as in the case p D 1, these spaces are not
linearly isomorphic.

Returning to injectivity-like properties, we have the following.

Proposition 3.50

1. Every p-Banach space of almost universal disposition, in particular Gp and F!1
p ,

is locally �-injective for each � > 1.
2. Spaces of universal disposition for separable p-Banach spaces are 1-separably

injective.

Proof We prove (1). The proof of (2) is easier. Assume U is of almost universal
disposition for finite dimensional p-Banach spaces. Let X be a finite dimensional
p-Banach space, Y a subspace of X and t W Y ! U an operator with ktk D 1. We
will prove that, for each " > 0, there is an extension T W X ! U with kTk � 1C ".
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Consider the push-out diagram

where the unlabeled arrow is the inclusion and we consider tŒY� as a (closed)
subspace of U. As { is an isometry, for each " > 0, there is an "-isometry
u W PO! U such that {.t.y// D u.t.y// for all y 2 Y. Then u ı t0 is an extension of
t to X with quasinorm at most 1C ". ut

Besides this, the characterizations of Proposition 2.5 extend straightforwardly to
separably p-injective spaces:

Proposition 3.51 For a p-Banach space E the following properties are equiva-
lent.

1. E is separably injective.
2. Every operator from a subspace of `p into E extends to `p.
3. For every p-Banach space X and each subspace Y such that X=Y is separable,

every operator t W Y ! E extends to X.
4. If Z is a p-Banach space containing E and Z=E is separable, then E is

complemented in Z.

The last condition can be rephrased by saying that for every separable p-Banach
space S one has Ext.S;E/ D 0 in the category of p-Banach spaces.

The stability properties in Proposition 2.11 also extend straightforwardly:

Proposition 3.52 Let 0 ! Y ! X ! Z ! 0 be a short exact sequence of p-
Banach spaces.

1. If Y and Z are separably (respectively, locally) injective, then so is X.
2. If X and Y are separably (respectively, locally) injective, then so is Z.

In particular, direct products (and complemented subspaces) of separably injec-
tive p-Banach spaces are separably injective. Moreover, since the proof of the vector
valued version of Sobczyk’s theorem (Proposition 2.12) presented in Chap. 2 uses
the triangle inequality only in the last part of the proof, we can add the following:

Proposition 3.53 If E is a separably �-injective p-Banach space, then c0.E/ is
��.1C �/C-separably injective.

Here, � is the “modulus of concavity” of E, that is, the least constant C for which
the inequality kx C yk � C.kxk C kyk/ holds in E. One result however marks the
difference:

Proposition 3.54 If p < 1, then all locally injective p-Banach spaces have trivial
dual.
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Proof A quasi-Banach space has nontrivial dual if and only if it contains a
complemented subspace of dimension one. Since the local injectivity passes to
complemented subspaces, it suffices to check that the ground field K is not locally
injective in the category of p-Banach spaces when p < 1. Let us consider the
“diagonal” embedding ı W K ! `n

p given by ı.1/ D n�1=p
Pn

iD1 ei. An obvious
symmetrization argument shows that any extension to `n

p of the identity on K must
have norm greater that the obvious one ˙ W `n

p ! K given by ˙.x/ D n1=p�1 P
i xi.

But k˙k � n1=p�1 goes to infinity with n. ut

3.4.4 Fraïssé Limits

Let us briefly introduce the notion of a Fraïssé limit. Although the definition of
Fraïssé limits in “abstract” categories is harder (see, e. g., [136]), the following
adaptation to “concrete” categories of quasi-Banach spaces suffices for our present
purposes.

Fix p 2 .0; 1� and let C be a subcategory of the “isometric” category of p-Banach
spaces. This means that the objects of C are certain p-Banach spaces, while the
morphisms LC.A;B/ between two objects A;B of C consist of certain isometries
A ! B. We assume for the sake of simplicity that if a subspace of an object of C
is also an object of C, then the inclusion is a morphism in C. In particular we may
consider any reasonable “class” of p-Banach spaces as a category just taking the
isometries as morphisms.

Definition 3.55 A p-Banach space F is said to be a Fraïssé limit for C if the
following conditions hold.

1. If X is an object in C there exists a subspace H � F which is in C and a
morphism X ! H.

2. Given a subspace H � F , an object X in C and a morphism f W H ! X, there
exists a subspace G � F containing H and a morphism g W X ! G such that
g ı f is the inclusion of H into G.

In [169, Theorem 6.3] Kubiś establishes the existence, under CH, of Fraïssé
limits corresponding to the category S of separable Banach spaces and linear
isometric embeddings and shows that these spaces are isometric provided they
have density character @1. Fraïssé limits can be characterized—in ZFC!—as spaces
of universal disposition for most natural subcategories; amongst them, the most
interesting for us are Fp (finite dimensional p-Banach spaces) and Sp (separable
p-Banach spaces).

Proposition 3.56 Fix p 2 .0; 1�.
• A p-Banach space is of universal disposition for separable p-Banach spaces if

and only if it is a Fraïssé limit for Sp.
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• A p-Banach space is of universal disposition for finite-dimensional p-Banach
spaces if and only if it is a Fraïssé limit for Fp.

Proof Only one proof is necessary. We first prove that “Fraïssé” implies “universal
disposition”. Let F be a Fraïssé limit for any of the previous classes, denoted M.
Let u W A ! B and t W A ! F be isometries, with B in M. Form the push-out
diagram

By property (2), there is an isometry g W PO ! F such that g ı u0 is the canonical
embedding of tŒA� into F . Therefore gt0 W B! F is the desired into isometry since
gt0u D gu0t D t.

As for the converse, let U be a space of universal disposition for M. That U
satisfies (1) is obvious. To check (2), let X be an object in M, and let u W H ! X be
an isometry, where H is a subspace of U. Let I ! U be any isometric extension of
the inclusion of H into U. Then IŒX� is an object in M and I ı u W H ! X ! IŒX� is
the inclusion of H into IŒX�. ut

3.4.5 Similar Constructions in Other Categories

The procedure of constructing spaces by long transfinite exhaustive sequences of
push-outs that we used to produce the Banach spaces M !1.X/ can be repeated
for mathematical objects other than Banach spaces, whenever we have analogous
notions for isometric embeddings and push-outs that behave in the right way. We
shall briefly discuss the case of compact spaces, because of its connection to
Theorem 2.39.

When moving from Banach spaces to compact spaces, the arrows are usually
reversed. So we look at pull-backs of compact spaces, rather than push-outs. The
pull-back of two continuous functions f W K1 �! L and g W K2 �! L is
constructed as PB D f.x; y/ 2 K1 	 K2 W f .x/ D g.y/g, and the pull-back diagram
is obtained taking PB �! K1 and PB �! K2 the restrictions of the two coordinate
projections.

Let us denote this time by M the class of metrizable compacta. A continuous
surjection f W K �! L will be called an M-cell if there exists a push-out diagram of
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continuous surjection of the form

where R and S are metrizable.

Lemma 3.57 A continuous surjection f W K �! L between compact spaces is an
M-cell if and only if the following two conditions hold:

1. There exist countably many continuous functions fgng � C.K/ such that, for
all x; y 2 K, if f .x/ D f .y/ and gn.x/ D gn.y/ for all n, then x D y. (This is
equivalent to say that C.K/=C.L/ is a separable Banach space.)

2. For every closed Gı subset F of K, we have that f .F/ is a closed Gı subset
of L.

Proof Suppose first that f is an M-cell, so K is the push-out of the diagram, with
arrows � W K �! S, Q� W L �! R, f 0 W S �! R. So we can assume as above that
K D f.x; y/ 2 L 	 S W Q�.x/ D f 0.y/g. The continuous functions for condition (1)
can be obtained by considering countably many continuous functions Qgn W S �! R

that separate points and taking gn D Qgn ı � . Now, if F � K is a closed Gı set, then
f .F/ D Q��1.f�.F// and f�.F/ is a compact subset of the metrizable compact space
R, hence it is Gı closed. For the converse, for every n and every rational q 2 Q, since
we are assuming that Fnq D f .g�1

n .�1; q�/ is a closed Gı set, it is a zero set, so we
can find a continuous function gnq 2 C.L/ such that g�1

nq .0/ D Fnq. Then, the push-
out diagram is obtained by taking � W K �! R

N[N�Q as �.x/ D .gn.x/; gnq.x//,
S D �.K/, Q� W L �! R

N�Q as Q�.y/ D .�nq.y//, R D Q�.L/, and f 0 W S �! R in the
obvious way f 0.sn; snq/ D .snq/. ut

All the definitions that we used for Theorem 3.23 can be now transferred to
compact spaces, being careful of reversing the direction of arrows. Thus, a compact
space is tightly M-filtered if there exists an ordinal � and an inverse system of
continuous surjections �ˇ˛ W Kˇ �! K˛ for ˛ < ˇ � �, satisfying:

1. �ˇ˛ ı ��ˇ D ��ˇ if ˛ < ˇ < � � �.
2. K D K.
3. If � � � is a limit ordinal, then K� is the limit of the inverse system below � . That

is to say, for all x; y 2 K, if �˛.x/ D �˛.y/ for all ˛ < � , then ��.x/ D �� .y/.
4. If ˛ < �, then �˛C1;˛ W K˛C1 �! K˛ is an M-cell.

Moreover, if K has weight c, we say that K is exhaustively tightly M-filtered,
if the above have the additional property that for every couple of continuous
surjections h W K �! R and h0 W S �! R, with S;R metrizable, there exists c
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many ordinals ˛ < � for which there is a push-out diagram

such that h D v ı �˛C1;˛ ı ��;˛C1 and h0 D u ı ��;˛C1.
An exercise of translation of the proof of Theorem 3.23 to this language yields

that there exists a unique (up to homeomorphism) compact space K which is
exhaustively tightly M-filtered. We can observe that such K must be a zero-
dimensional F-space. This is because, if we take two disjoint closed Gı sets
F;G � K, then we can apply the exhaustiveness condition to a function h W K �!
Œ�1; 1� which is constant equal to �1 on F and constant equal to 1 on G, and
h0 W Œ0; 1� 	 f�1; 1g �! Œ�1; 1� given by h0.z; t/ D t � z, and in this way F and
G can be separated by clopen sets. This compactum is also the Stone compact of the
Boolean algebra that one obtains repeating the same analogous procedures in the
category of Boolean algebras, cf. [16].

If we revisit Theorem 2.39 in this light, we see that the compact space that is
constructed in that proof is tightly M-filtered, as it is produced as an inverse limit
in which each successor step is an M-cell. The construction is done by a kind
of exhaustive procedure but instead of making sure that all possible pull-backs
are represented along the construction as in condition (4), we dealt only with the
particular kind of pull-backs that separate pairs of disjoint closed Gı sets. This was
done to make the presentation simpler, but one can see that it does not make any
difference, and the compact space used in Theorem 2.39 is precisely the unique
exhaustively tightly M-filtered compact space.

Finally, we can observe that the Boolean algebra P.N/= fin is of universal
disposition for countable subalgebras, because it contains all countable subalgebras
and is countably automorphic (cf. paragraph after Corollary 2.53). This gives an
alternative way of getting objects of universal disposition in this category without
using iterated push-outs. It is unclear if we have, in the category of Banach spaces,
a similar space of universal disposition for separable subspaces with a natural
definition that does not involve a transfinite inductive construction. The first guess
would be `1=c0, but C-spaces cannot work (cf. Sect. 3.3.4).

3.4.6 Sources

As we mentioned before, the notion of a Banach space of (almost) universal
disposition was introduced by Gurariy in [118], where G appeared for the first time.
Lemma 3.28 and Proposition 3.29 as well as the observations opening Sects. 3.2.2
and 3.3.4 are taken from Gurariy’s paper. The “uniqueness” of Gurariy space was
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stablished by Lusky in [185] by methods which are completely different than those
of Sect. 3.3.5, where we have followed the approach of Kubiś and Solecki in [170].
Anyway, [185] is a fine paper and contains additional information on the structure
of the isometry group of G : for instance, that given two smooth points on the unit
sphere there is a surjective isometry of G sending one into the other. See [96] for
more precise results on the structure of the isometry group of G .

Lusky’s uniqueness result unified two lines of research: Pełczyński and Woj-
taszczyk had proved in 1971 that the family of separable Lindenstrauss spaces has
a maximal member, namely there is a separable Lindenstrauss space L such that
for every separable Lindenstrauss space X and each " > 0, there is an operator
u W X ! L such that kxk � ku.x/k � .1 C "/kxk and a contractive projection of
L onto the range of u; see [215, Theorem 4.2]. One year later Wojtaszczyk [248]
himself proved that such a space can be constructed as a space of almost universal
disposition. Lusky approached Gurariy space by means of triangular matrices, a
technique promoted by Lazar and Lindenstrauss (cf. [173]) in the study of separable
Lindenstrauss spaces.

Most of the material included in Sects. 3.1 and 3.2 appeared in [19]. We have used
isometries instead of contractions in Sect. 3.1.2 in order to simplify the proofs of the
last part of Sect. 3.2.4. Proposition 3.10, which solves a problem posed in [19], is due
to Ben Yaacov and Henson [30] and the relevant example in the proof of Lemma 3.9
was constructed by Haydon and taken from [58]. The ideas around Theorem 3.23
come from [16]; however Theorems 3.24 and 3.25 are formally stronger than the
main result of [16] for Banach spaces.

The results of Sect. 3.3.3 are from [101]. Theorem 3.34 can be atributed to
Henson and Moore [134, Theorem 6.8]. The proof is a simplification of the
argument in [19]. At the end of the day everything depends on the fact, due to
Benyamini and Lindenstrauss, that there are isometric `1-preduals which are not
complemented in any C-space; see [34, Corolaries 1 and 2].

Section 3.4.3 is based on [58] and complements it. A forerunner of Gp appeared
without further explanations in Kalton’s paper [153]. For related results in other
areas we refer the reader to [168, 205, 206].



Chapter 4
Ultraproducts of Type L1

The Banach space ultraproduct construction is perhaps the main bridge between
model theory and the theory of Banach spaces and its ramifications. Ultraproducts
of Banach spaces, even at a very elementary level, proved very useful in local
theory, the study of Banach lattices, and also in several nonlinear problems, such
as the uniform and Lipschitz classification of Banach spaces. We refer the reader
to Heinrich’s survey paper [126] and Sims’ notes [234] for two complementary
accounts. Traditionally, the main investigations about Banach space ultraproducts
have focused on the isometric theory, reaching a quite coherent set of results very
early, as can be seen in [132]. We will review some results on the isometric theory
of ultraproducts in Sect. 4.7.4, but most of the Chapter is placed in the isomorphic
context.

Indeed, in this Chapter we study ultraproducts of type L1, in particular
ultraproducts of L1 spaces. The leading idea is that, if one starts with a family
of Banach spaces that have a certain property at the “finite dimensional level”, then
its ultraproducts “must” have that property at the “separable level”. Thus, it will
be shown that ultraproducts of Banach spaces are universally separably injective as
soon as they are L1-spaces despite of the facts that the starting spaces do not need
to be of type L1 or that ultraproducts are never injective. We analyze ultraproducts
of C-spaces in some detail and provide alternative approaches to several results
and constructions in Chap. 3 by studying ultrapowers of the Gurariy space. We also
address the Henson-Moore problem of when two given L1-spaces have isomorphic
ultrapowers.

The exposition is basically self-contained, with the exception of Sect. 4.6, which
uses a few basic results from “model theory”.

© Springer International Publishing Switzerland 2016
A. Avilés et al., Separably Injective Banach Spaces, Lecture Notes
in Mathematics 2132, DOI 10.1007/978-3-319-14741-3_4
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4.1 Ultraproducts of Banach Spaces

In this Section we present the Banach space ultraproduct construction based on
the notion of convergence along a maximal filter. We also define the set-theoretic
ultraproduct, which historically came first, as we shall need it from time to time.
The topological ultracoproduct (a related construction which applies to families of
compact spaces) will appear in Sects. 4.3.1 and 4.7.2.

4.1.1 Ultrafilters

A family U of subsets of a given set I is said to be a filter if it is closed under finite
intersection, does not contain the empty set and, one has A 2 U provided B � A
and B 2 U. An ultrafilter on I is a filter which is maximal with respect to inclusion.
An ultrafilter U on I is said to be fixed if there is a 2 I such that fag 2 U. By
maximality one then has U D fA � I W a 2 Ag. Otherwise U is called free. If X is
a topological space, f W I ! X is a function, and x 2 X, one says that f .i/ converges
to x along U (written x D limU f .i/ in short) if whenever V is a neighborhood of x
in X the set f �1.V/ D fi 2 I W f .i/ 2 Vg belongs to U. The obvious compactness
argument shows that if X is compact and Hausdorff, and U is an ultrafilter on I, then
for every function f W I ! X there is a unique x 2 X such that x D limU f .i/. The
following Definition isolates the property of ultrafilters that makes ultraproducts
interesting.

Definition 4.1 An ultrafilter U on a set I is countably incomplete if there is a
sequence .In/ of subsets of I such that In 2 U for all n, and

T1
nD1 In D ¿.

Throughout this Chapter all ultrafilters will be assumed to be countably incom-
plete unless otherwise stated. Notice that U is countably incomplete if and only if
there is a function n W I ! N such that n.i/ ! 1 along U (equivalently, there is a
family ".i/ of strictly positive numbers converging to zero along U). Indeed, if .In/

is a sequence witnessing that U is countably incomplete, for which we may assume
I1 D I, then the required function can be defined as n.i/ D maxfn W i 2 Ing. And
conversely, if n W I ! N goes to1 along U, then the sets In D fi 2 I W n.i/ � ng
are in U, but

T
n In is empty. It is obvious that any countably incomplete ultrafilter

is free (it contains no singleton) and also that every free ultrafilter on N is countably
incomplete.

4.1.2 Ultraproducts of Banach Spaces

Let .Xi/i2I be a family of Banach spaces indexed by the set I and let U be
an ultrafilter on I. The space of bounded families `1.I;Xi/ endowed with the
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supremum norm is a Banach space, and cU0 .Xi/ D f.xi/ 2 `1.I;Xi/ W limU kxik D
0g is a closed subspace of `1.I;Xi/. The ultraproduct of the spaces .Xi/i2I following
U is defined as the quotient space

ŒXi�U D `1.I;Xi/=cU0 .Xi/;

with the quotient norm. We denote by Œ.xi/� the element of ŒXi�U which has the
family .xi/ as a representative. It is easy to see that kŒ.xi/�k D limU kxik: In the
case Xi D X for all i, we denote the ultraproduct by XU, and call it the ultrapower
of X following U. If Ti W Xi ! Yi is a uniformly bounded family of operators, the
ultraproduct operator ŒTi�U W ŒXi�U ! ŒYi�U is given by ŒTi�UŒ.xi/� D ŒTi.xi/�. Quite
clearly, kŒTi�Uk D limU kTik:

4.1.3 The Set-Theoretic Ultraproduct

In some places of this monograph, we will require also the set-theoretic ultraproduct.
Let us recall the definition and fix notations. Let .Si/i2I be a family of sets and U an
ultrafilter on I. The set-theoretic ultraproduct hSiiU is the product set

Q
i Si factored

by the equivalence relation

.si/ D .ti/”fi 2 I W si D tig 2 U:

The class of .si/ in hSiiU is denoted h.si/i. If we are given functions fi W Si ! K,
where K is some compact space, we can define another function f W hSiiU ! K by

f .h.si/i/ D lim
U.i/

fi.si/:

When Xi is a family of Banach spaces, there is an obvious connection between
ŒXi�U and hXiiU. Indeed, the former space can be obtained from the latter, first taking
the elements for which the function

h.xi/i 7�! lim
U.i/
kxik

is finite (we may consider the original norms on the spaces Xi as taking values on
the extended ray Œ0;1�), and then taking quotient by the kernel of the function.

4.2 Injectivity Properties of Ultraproducts of Type L1

The classes of Lp;�C spaces are stable under ultraproducts [45, Proposition 1.22].
In the opposite direction, a Banach space is an Lp;�C space if and only if some
(or every) ultrapower is. In particular, a Banach space is an L1 space or a
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Lindenstrauss space if and only if its ultrapowers are; see, e.g., [127]. However, one
can make a Lindenstrauss space out of not-even-L1-spaces: indeed, if p.i/ ! 1
along U, then the ultraproduct ŒLp.i/�U is a Lindenstrauss space (and, in fact, an
abstract M-space; see [51, Lemma 3.2]). The “local” situation had been considered
earlier in [135].

4.2.1 Separable Subspaces and Separable Injectivity

We present now the key result to study the structure of separable subspaces of
ultraproducts of type L1. To avoid repetitions, throughout this Chapter U will
denote a countably incomplete ultrafilter on a set I, we will consider families
of Banach spaces .Xi/ indexed by I, and we denote by ŒXi�U the corresponding
ultraproduct.

Lemma 4.2 Suppose ŒXi�U is an L1;�C-space. Then each separable subspace
of ŒXi�U is contained in a subspace of the form ŒFi�U, where Fi � Xi is finite
dimensional and limU.i/ d.Fi; `

d.i/1 / � � with d.i/ D dim.Fi/.

Proof Let us assume S is an infinite-dimensional separable subspace of ŒXi�U. Let
.sn/ be a linearly independent sequence spanning a dense subset in S and, for each
n, let .sn

i / be a fixed representative of sn in `1.I;Xi/. Let Sn D spanfs1; : : : ; sng.
Since ŒXi�U is an L1;�C-space there is, for each n, a finite dimensional Fn � ŒXi�U

containing Sn with d.Fn; `
d.n/1 / � �C 1=n, where d.n/ D dim.Fn/.

For fixed n, let . f m/ be a basis for Fn containing s1; : : : ; sn. Choose representa-
tives . f m

i / such that f m
i D s`i if f m D s`. Moreover, let Fn

i be the subspace of Xi

spanned by f m
i for 1 � m � dim Fn. Let .In/ a decreasing sequence of sets of U

whose intersection is empty and, for each integer n, put

J0
n D fi 2 I W d.Fn

i ; `
d.n/1 / � �C 2=ng \ In:

Finally set Jm D T
n�m J0

n. The sets Jm are all in U although
T

m Jm D ¿. Next
we define a function k W I ! N as k.i/ D supfn W i 2 Jng. For each i 2 I,
take Fi D Fk.i/

i . This is a finite-dimensional subspace of Xi whose Banach-Mazur
distance to the corresponding `k1 is at most �C2=k.i/. It is clear that ŒFi�U contains
S and also that k.i/!1 along U, which completes the proof. ut
Lemma 4.3 For every function k W I ! N, the space Œ`k.i/1 �U is universally 1-
separably injective.

Proof Let � be the disjoint union of the sets f1; 2; : : : ; k.i/g viewed as a discrete
set. We observe that cU0 .`

k.i/1 / is an ideal in `1.`k.i/1 / D `1.� / D C.ˇ� / and apply
Corollary 2.19. ut
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Theorem 4.4 If ŒXi�U is an L1;�C-space, then ŒXi�U is universally �-separably
injective.

Proof It is clear that a Banach space is �-universally separably injective if and only
if every separable subspace is contained in some larger �-universally separably
injective subspace. A Banach space is �-universally separably injective provided
it is linearly isomorphic to a 1-universally separably injective one through an
isomorphism u satisfying kukku�1k � �. Now take a look to the two preceding
Lemmata. Notice that, with the notations of Lemma 4.2, one can easily construct an
isomorphism u W ŒFi�U ! Œ`

k.i/1 �U such that kukku�1k � �. Indeed, d.Fi; `
k.i/1 / is

attained at some ui for which we can assume kuik D 1. Taking u D Œui�U suffices.
ut

Recalling that Lindenstrauss spaces are precisely the L1;1C spaces we obtain
the following result.

Corollary 4.5 If ŒXi�U is a Lindenstrauss space, then it is universally 1-separably
injective.

A closely related result will be proved in Chap. 5. The reader should compare
the proof of preceding result to that of Theorem 5.15 which is reminiscent from
the use of ultraproducts in the proof of the “compactness theorem” (see [98,
Theorem 2.10]): if Ai is a sequence of “axioms” and for each n we have a “model”
Sn which satisfies A1;A2; : : :An, then, for any free ultrafilter on the integers U, the
set-theoretic ultraproduct hSniU satisfies every Ai.

4.2.2 Ultraproducts Are Never Injective

Despite the preceding results, infinite dimensional ultraproducts via countably
incomplete ultrafilters are never injective. This was proved by Henson and Moore in
[133, Theorem 2.6] using the language of nonstandard analysis. Here we present a
generalization of Sims’s “translation” for ultraproducts appearing in [234, Sect. 8].

Theorem 4.6 Ultraproducts via countably incomplete ultrafilters are never injec-
tive, unless they are finite dimensional.

Proof Recalling that injective Banach spaces are L1-spaces, assume that ŒXi�U is
a L1-space. According to Lemma 4.2, if ŒXi�U is infinite dimensional, it contains
some infinite dimensional complemented subspace isomorphic to Œ`k.i/1 �U. Thus, it
suffices to see that the later is not an injective space.

Let hf1; : : : ; k.i/giU denote the set-theoretic ultraproduct of the sets f1; : : : ; k.i/g.
We have

c0.hf1; : : : ; k.i/giU/ � Œ`k.i/1 �U � `1.hf1; : : : ; k.i/giU/: (4.1)
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This should be understood as follows: each Œ . fi/� 2 Œ`k.i/1 �U defines a function on
hf1; : : : ; k.i/giU by the formula

f h.xi/iU D lim
U.i/

fi.xi/:

In this way, Œ`k.i/1 �U embeds isometrically as a subspace of `1.hf1; : : : ; k.i/giU/
containing c0.hf1; : : : ; k.i/giU/. Write � D hf1; : : : ; k.i/giU and U D Œ`

k.i/1 �U, so
that (4.1) becomes c0.� / � U � `1.� /. We will prove that the inclusion of c0.� /
into U cannot be extended to `c1.� /, the space of all countably supported bounded
families on � .

An internal subset of � is one of the form hAiiU, where Ai � f1; : : : ; k.i/g for
each i 2 I. The cardinality of any infinite internal sets is at least the continuum:
just use an almost disjoint family. This is the basis of the ensuing argument: as U is
spanned by the characteristic functions of the internal sets, if f 2 U is not in c0.� /,
then there is ı > 0 and an infinite internal A � � such that j f j � ı on A.

Suppose L W `c1.� / ! U is an operator extending the inclusion of c0.� /
into U. Given a countable S � � , let us consider `1.S/ as the subspace
of `c1.� / consisting of all functions vanishing outside S and let us write LS

for the endomorphism of `1.S/ given by LS. f / D 1SL. f /, where 1S is the
characteristic function of S. Notice that LS cannot map `1.S/ to c0.S/ since c0 is
not complemented in `1. Thus, given an infinite countable S � � , there is a norm
one f 2 `1.S/ (the characteristic function of a countable subset of S, if you prefer),
a number ı > 0 and an infinite internal A � � such that jL. f /j � ı on A, with
jA \ Sj D @0. Let ˇ.S/ denote the supremum of the numbers ı arising in this way.
Also, if T is any subset of � , put ˇŒT� D supfˇ.S/ W S � T; jSj D @0g.

Let S1 be a countable set such that ˇ.S1/ > 1
2
ˇŒ� � and let us take f1 2 `1.S1/

such that jL. f1/j > 1
2
ˇ.S1/ on an infinite internal set A1 with jA1 \ S1j D @0.

Let S2 be a countable subset of A1nS1 (notice jA1nS1j � c) such that ˇ.S2/ >
1
2
ˇŒA1nS1� and take a normalized f2 2 `1.S2/ such that jL. f2/j � 1

2
ˇ.S2/ on an

infinite internal set A2 � A1 with jA2 \ S2j D @0. Let S3 be an infinite countable
subset of A2n.S1 [ S2/ such that

ˇ.S3/ > 1
2
ˇŒA2n.S1 [ S2/�

and take a normalized f3 2 `1.S3/ such that jLf3j > 1
2
ˇ.S3/ on certain internal

A3 � A2 such that jA3 \ S3j D @0 and so on.
Continuing in this way we get sequences .Sn/; . fn/ and .An/, where

• Each An is an infinite internal subset of � .
• A0 D � and AnC1 � An for all n.
• SnC1 is a countable subset of AnnSn

mD1 Sm, and ˇ.SnC1/ > 1
2
ˇŒAnnSn

mD1 Sm�.
• fn is a normalized function in `1.Sn/.
• jL. fn/j > 1

2
ˇ.Sn/ on An.

• For each n one has jAn \ Snj D @0.
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Our immediate aim is to see that ˇ.Sn/ converges to zero. Fix n and consider any
a 2 AnC1 to define

hn D
nX

mD1
sign.Lfm.a//fm:

Clearly, khnk D 1 since the fm’s have disjoint supports. On the other hand,

kLk � kLhnk � Lhn.a/ D
nX

mD1
jLfm.a/j � 1

2

nX

mD1
ˇ.Sm/;

so .ˇ.Sn// is even summable.
For each n 2 N, choose a point an 2 Sn and consider the set S D fan W

n 2 Ng. We achieve the final contradiction by showing that LS maps `1.S/ to
c0.S/, thus completing the proof. Indeed, pick f 2 `1.S/ and let us compute
dist.1SL. f /; c0.S//. For each n 2 N, set Rn D fam W m � ng. We have f D
1Rn f C .1S � 1Rn/f and since SnRn is finite, Lf D L1Rn f C L..1S � 1Rn/f / D
L1Rn f C .1S � 1Rn/f . Moreover, the function 1Rn f has countable support contained
in AnnSn

mD1 Sm. So,

dist.1SLf ; c0.S// D dist.1SL.1Rn f /; c0.S//

� dist.1RnL1Rn f ; c0.Rn//C dist.1SnRn L.1Rn f /; c0.SnRn//

D dist.1RnL.1Rn f /; c0.Rn//

� k1Rn fkˇ.Rn/

� k fkˇ
"

Ann
n[

mD1
Sm

#

� 2k fkˇ.SnC1/:

And since ˇ.SnC1/! 0 we are done. ut
We can present a simple proof of Theorem 4.6 for “countable” ultraproducts

based on Rosenthal’s result quoted in Corollary 1.15—an injective Banach space
containing c0.� / contains an isomorphic copy of `1.� / as well. Suppose I
countable. Then Œ`k.i/1 �U is a quotient of `1 D `1.I; `k.i/1 /, and so its density
character is (at most) the continuum. On the other hand, if Œ`k.i/1 �U is infinite
dimensional, then limU.i/ k.i/ D 1, and using an almost disjoint family we see

that the cardinality of � D hf1; : : : ; k.i/giU equals the continuum. Thus, if Œ`k.i/1 �U
were injective, as it contains c0.� /, it should contain a copy of `1.� /, which is not
possible, because the later space has density character 2c.
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4.2.3 Copies of c0 in Ultraproducts

Recall that a Banach space X is said to be a Grothendieck space if every operator
from X into a separable space is weakly compact. It follows from Theorem 4.4 and
Proposition 2.8 that ultraproducts which are L1-spaces are always Grothendieck.
An alternative and simpler proof can be obtained from Lemma 4.2, taking into
account the following facts:

• `1.� / is a Grothendieck space for every � .
• Quotients of Grothendieck spaces are again Grothendieck spaces, in particular
Œ`

k.i/1 �U is a Grothendieck space for every ultrafilter U.
• A Banach space is Grothendieck if (and only if) every separable subspace is

contained in a Grothendieck subspace.

Therefore, ultraproducts which are L1-spaces cannot contain infinite dimen-
sional separable complemented subspaces, in particular, c0. We present a stronger
result, which moreover improves Corollary 3.14 of Henson and Moore in [134].

Proposition 4.7 No ultraproduct of Banach spaces over a countably incomplete
ultrafilter contains a complemented subspace isomorphic to c0.

Proof Let ŒXi�U denote the ultraproduct of a family of Banach spaces .Xi/i2I

with respect to a countably incomplete ultrafilter U. Assume ŒXi�U has a subspace
isomorphic to c0, complemented or not, and let { W c0 ! ŒXi�U be the corresponding
embedding.

Let f n D {.en/, where .en/ denotes the traditional basis of c0, and let . f n
i / be a

representative of f n in `1.I;Xi/, with k. f n
i /k1 D k f nk. Then we have

k{�1k�1k.tn/k1 � k
X

n

tn f nk � k{kk.tn/k1;

for all .tn/ in c0. Fix 0 < c < k{�1k�1 and k{k < C and, for k 2 N define

Jk D
(

i 2 I W ck.tn/k1 � k
kX

nD1
tn f n

i kXi � Ck.tn/k1 for all .tn/ 2 `k1

)
:

It is easily seen that Jk belongs to U for all k. Moreover, J1 D I and JkC1 � Jk for
all k 2 N. Now, for each i 2 I, define k W I ! N[f1g taking k.i/ D supfn W i 2 Jng.

Let us consider the ultraproduct Œck.i/
0 �U, where ck

0 D `k1 when k is finite and

ck
0 D c0 for k D 1. We define operators ji W ck.i/

0 ! Xi taking ji.en/ D f n
i for

1 � n � k.i/ for finite k.i/ and for all n if k.i/ D 1. These are uniformly bounded
and so they define an operator j W Œck.i/

0 �U ! ŒXi�U. Also, we define 	 W c0 ! Œck.i/
0 �U

taking 	.x/ D Œ.	i.x//�, where 	i is the obvious projection of c0 onto ck.i/
0 . We claim

that j	 D {. Indeed, for n 2 N, we have 	i.en/ D en (at least) for all i 2 Jn and since
Jn 2 U we have jı	.en/ D {.en/ for all n 2 N. Now, if p W ŒXi�U ! c0 is a projection
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for {, that is, p{ is the identity on c0, then pj is a projection for 	 W c0 ! Œck.i/
0 �U,

which cannot be since the latter is a Grothendieck space. ut

4.3 Basic Examples

4.3.1 Ultraproducts of Spaces of Continuous Functions

Due to their special character, we will review in this Section the basic properties of
ultrapowers of C-spaces. If .Xi/i2I is a family of Banach algebras, then `1.I;Xi/ is
also a Banach algebra, with the coordinatewise product. If U is an ultrafilter on I,
cU0 .Xi/ is an ideal in `1.I;Xi/ and ŒXi�U becomes a Banach algebra with product

Œ.xi/� � Œ.yi/� D Œ.xi � yi/�:

In view of Albiac-Kalton characterization quoted in Sect. 2.2.1, if .Ki/i2I is a
family of compact spaces, the ultraproduct ŒC.Ki/�U is canonically isomorphic to
a C.K/ space, for some compact space K. This compact is called the (topological)
ultracoproduct of .Ki/i2I , and it is denoted .Ki/

U. Actually, .Ki/
U is the maximal

ideal space of ŒC.Ki/�U equipped with the relative weak* topology. Let us take a
look at the topological spaces .Ki/

U and gather some elementary properties of these
spaces that will be later needed.

According to Corollary 4.5 the next result is a consequence of the implication
(1)) (4) in Theorem 2.14. We give here a direct “functional” proof based on the
fact that, in view of (4) in Theorem 2.14, normality can be seen as an “approximate
variant” of being an F-space: indeed, to be an F-space means that for every f 2 C.K/
there is u 2 C.K/ so that f D uj f j; while normality is equivalent (modulo Urysohn’s
lemma) to “given f 2 C.K/ and " > 0 there is u 2 C.K/ such that k f � uj f jk < "”.

Proposition 4.8 If U is countably incomplete, then .Ki/
U is an F-space.

Proof Put ŒC.Ki/�U D C.K/ and pick f 2 C.K/ which we write as f D Œ. fi/�. We
are looking for a decomposition f D uj f j, with u 2 C.K/.

Let In a decreasing family of members of U with empty intersection. We may
assume I1 D I. Define functions as follows: for i 2 InnInC1, set Ai D fx 2 Ki W
j fi.x/j � 1=ng and let ui.x/ D sign fi.x/ for x 2 Ai. By normality ui can be extended
to Ki keeping kuik � 1. If ui denotes now the extension we have k fi � uij fijkKi �
2=n. It is then clear that f D uj f j, where u D Œ.ui/�. ut

Regarding the spaces Ki as pure sets, we may form the set-theoretic ultraproduct
hKiiU. Each point h.xi/i in hKiiU defines a multiplicative functional on ŒC.Ki/�U by
the formula

Œ. fi/� 7�! lim
U.i/

fi.xi/:
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The limit depends only on h.xi/i and so we have a map hKiiU ! .Ki/
U which is

easily seen to be one-to-one. The following result shows that this map has a “very
dense” range.

Lemma 4.9 Every nonempty zero set in .Ki/
U meets hKiiU.

Proof A zero set is one of the form fx 2 .Ki/
U W f .x/ D 0g for some continuous

f that we may assume to be nonnegative. Take a representation f D Œ. fi/� and, for
each i 2 I, put mi D inff fi.x/ W x 2 Kig and choose xi 2 Ki such that mi D fi.xi/.
Now, if f vanishes at some point of .Ki/

U, then

0 D lim
U.i/

mi D lim
U.i/

fi.xi/ D f .h.xi/i/;

as we required. ut
Moreover,

Lemma 4.10 Every point of hKiiU is a P-point in .Ki/
U.

Proof We shall see that if f W .Ki/
U ! R vanishes at h.xi/i, then it vanishes on

some neighborhood of h.xi/i in .Ki/
U. Let . fi/ be a representation of f such that

limU.i/ fi.xi/ D 0, and let .In/ be as in Definition 4.1. For i 2 InnInC1, set

Ai D fy 2 Ki W j fi.y/ � fi.xi/j � 1=ng:

It is clear that the closure of hAiiU in .Ki/
U is a neighborhood of h.xi/i in .Ki/

U and
also that f vanishes on hAiiU. ut

Recall that f is said to be an idempotent if f 2 D f . Idempotents of C.K/ are
associated to clopen subsets of K in the sense that every idempotent has the form
f D 1A, where A is a clopen set.

Lemma 4.11 Each idempotent of ŒC.Ki/�U can be represented as Œ. fi/�, where fi is
an idempotent of C.Ki/.

Proof It is almost trivial to check that there is a function ı D ı."/ with ı."/! 0 as
"! 0 such that, if t is a real number satisfying jt2 � tj � ", then min.jtj; jt � 1j/ �
ı."/: just think about solving the equations t2� t˙" D 0. It follows that if f 2 C.K/
satisfies the inequality k f 2 � fk � ", then there is a clopen subset A � K such that
k f � 1Ak � ı."/.

Now, if Œ. fi/� is an idempotent of ŒC.Ki/�U, then Œ. fi/�2 D Œ. fi/� and "i D k f 2i �
fik ! 0 along U. For each i 2 I we may take a clopen Ai � K such that k fi�1Aik �
ı."i/ and since ı."i/! 0 along U we have Œ. fi/� D Œ.1Ai/� in ŒC.Ki/�U. ut

The following observation of Bankston relates topological ultracoproducts of the
Cantor set � to our old friend N

�.

Proposition 4.12 (CH) If U is a nontrivial ultrafilter on N then .�/U is homeo-
morphic to N

�. Equivalently, C.�/U is isometric to `1=c0.
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Proof Consider the following properties for a given compact Hausdorff space:

1. To be a totally disconnected F-space.
2. Not having isolated points.
3. Having topological weight c.
4. Every nonempty Gı subset has nonempty interior.

An important result of Parovičenko [209] states that, under CH, any compact
Hausdorff space having the preceding four properties has to be homeomorphic to
N

�; see [245, Chap. 3, pp. 80–83] for an exposition.
Let us check that .�/U fulfills those properties. That .�/U is an F-space was

proved in Proposition 4.8. To verify that .�/U is totally disconnected just note that a
compact space L is zero-dimensional if and only for every continuous f W L! Œ0; 1�

there is an idempotent g 2 C.L/ such that k f � gk1 � 1
2
. Clearly, this property

passes from C.L/ to its ultrapowers. Property (2) follows from the observation that
an isolated point of L corresponds to a minimal idempotent of C.L/. The topological
weight of L is the density character of C.L/. It is clear that the density character of
C.�/U is the continuum and this gives (3). To check (4) just observe that each
nonempty Gı contains a zero set which has to be a neighbourhood of any P-point it
contains. Now, see Lemma 4.9. ut

The preceding result cannot be proved in ZFC, since .�/U has P-points, a fact
that cannot be established for N� in ZFC due to a result of Shelah [247]. Concerning
Lemma 4.10 it is worth noticing that there are P-points in .Ki/

UnŒKi�U as proved in
[26, 2.3.16].

4.3.2 Other Classes of Lindenstrauss Spaces

Apart from the class of C-spaces, other interesting classes of Lindenstrauss spaces
are:

• C0-spaces: maximal ideals of C-spaces.
• G-spaces: Banach spaces of the form X D f f 2 C.K/ W f .xi/ D �i f .yi/ for all i 2

Ig for some compact space K and some family of triples .xi; yi; �i/, where xi; yi 2
K and �i 2 R.

• M-spaces: G-spaces where �i � 0 for every i 2 I; equivalently, the closed
sublattices of the C-spaces.

It is perhaps worth noticing that all these classes admit quite elegant characteri-
zations: C0-spaces (C-spaces) are exactly those real Banach algebras X (with unit)
satisfying the inequality kxk2 � kx2 C y2k for all x; y 2 X, a classical result by
Arens; see [1, Theorem 4.2.5]. Also, a Banach lattice X is representable as a concrete
M-space if and only if one has kx C yk D max.kxk; kyk/ whenever x and y are
disjoint, that is jxj ^ jyj D 0. Finally, G-spaces are exactly those Banach spaces that
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are contractively complemented in M-spaces. The preceding classes are therefore
closed under ultraproducts and so is the class of affine spaces, that is, spaces of
continuous affine functions on Choquet simplexes; see [127, Proposition 1].

4.3.3 Ultrapowers of the Gurariy Space

We focus now on spaces of almost universal disposition. Although some results in
this Section might fit better in Sect. 4.6 we present them right now to emphasize that
they can be proved without invoking any result from “model theory”.

Recall from Chap. 3 that a Banach space U is of almost universal disposition
(for finite-dimensional spaces) if, given an isometry g W X ! Y, where Y is
finite-dimensional and X is a subspace of U and " > 0, there is an "-isometry
f W Y ! U such that f .g.x// D x for every x 2 X. Replacing “finite-dimensional”
by “separable” and allowing " D 0 one obtains the notion of universal disposition
for separable Banach spaces.

Proposition 4.13 Ultraproducts of spaces of almost universal disposition (in par-
ticular, ultrapowers of the Gurariy space) with respect to countably incomplete
ultrafilters are of universal disposition for separable Banach spaces.

Proof Suppose Xi are of almost universal disposition and let U be a countably
incomplete ultrafilter on I. Let X be a separable subspace of ŒXi�U and g W X ! Y
an isometry, where Y is any separable Banach space. We will prove that there is an
isometry f W Y ! ŒXi�U such that f .g.x// D x for every x 2 X.

Let .xn/ and .yn/ be normalized sequences whose linear span is dense in X and
Y, respectively. We may assume .xn/ is linearly independent, for if not X has to be
finite-dimensional and the proof is even simpler. Let Xn be the subspace spanned
by .x1; : : : ; xn/ in Xn and Yn the subspace spanned by gŒXn� and .y1; : : : ; yn/ in Y.
Also, let us fix representatives .xn

i / so that xn D Œ.xn
i /� for every n. We may assume

kxn
i k D 1 for every n and every i and also that for each fixed i the sequence .xn

i / is
linearly independent in Xi. For i 2 I and n 2 N, let us denote by Xn

i the subspace
of Xi spanned by .x1i ; : : : ; x

n
i /. We define a linear map un

i W Xn
i ! Xn by letting

un
i .x

k
i / D xk for 1 � k � n and linearly on the rest. Also, we define gn

i W Xn
i ! Yn as

the composition g ı un
i , that is, gn

i .x
k
i / D yk for 1 � k � n. To proceed, we observe

that the sets

In
" D fi 2 I such that un

i W Xn
i ! Xn is a strict "-isometryg

are in U for every n and every " > 0. In particular In
1=n 2 U for all n 2 N. Take any

function m W I ! N such that m.i/!1 along U and define n W I ! N thus:

n.i/ D
(

m.i/ if i 2 In
1=n for all n

maxfn W i 2 In
1=ng otherwise
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Clearly, n.i/!1 along U. Indeed, for k 2 N one has

n�1Œk;1/ D fi 2 I W n.i/ � kg 

�

Ik
1=k

\
m�1Œk;1/

�

and so n�1Œk;1/ 2 U.
Let us form the ultraproducts of the operators gn.i/

i W Xn.i/
i ! Yn.i/ with respect to

U. We claim that:

• X � ŒXn.i/
i �U and Y � ŒYn.i/

i �U;

• Œgn.i/
i �U is an isometry extending g.

Let us begin with the containment of X. It suffices to check that xn 2 ŒXn.i/
i �U for all

n. But since the set J D fi 2 I W n.i/ � ng belongs to U we may form the family

zi D
(

xn
i if i 2 J

0 otherwise
(4.2)

in which zi 2 Xn.i/
i for all i 2 I and we have Œ.zi/� D Œ.xn

i /� D xn. Similarly, if
we regard Y as the diagonal subspace of YU and ŒYn.i/�U as a subspace of YU in
the obvious way, then the same argument gives that ŒYn.i/�U contains Y. To prove
that Œgn.i/

i �U is an isometry just observe that, by the very definition of the sets In
1=n

the operator gn.i/
i W Xn.i/

i ! Yn.i/ is an n.i/�1 isometry and that n.i/�1 tends to 0

along U. This immediately gives that the ultraproduct operator Œgn.i/
i �U preserves the

norm. To see that it extends g it is enough to check that Œgn.i/
i �U.xn/ D Œ.yn/� for

every n 2 N. Take J and zi as in (4.2). Then

Œgn.i/
i �U.x

n/ D Œgn.i/
i �UŒ.zi/� D Œgn.i/

i .zi/� D Œgn.i/
i .xn

i /� D Œ.yn/�;

as required.
Recalling that gn.i/

i W Xn.i/
i ! Yn.i/ is a strict n.i/�1-isometry, Lemma 3.28 gives

an n.i/�1-isometry fi W Yn.i/ ! Xi such that fi.gi.x// D x for each x 2 Xn.i/
i . It is then

obvious that the ultraproduct operator

Œ fi�U W ŒYn.i/�U ! ŒXi�U

preserves the norm and besides the composition Œ fi�U ı Œgn.i/
i �U is the inclusion of

ŒXn.i/
i �U into ŒXi�U. The restriction of Œ fi�U to Y does what we need. ut
Thus, a natural juxtaposition of the preceding Proposition and Theorem 3.34

yields
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Corollary 4.14 Ultrapowers of Banach spaces of almost universal disposition (in
particular, of the Gurariy space) with respect to countably incomplete ultrafilters
are not complemented in any M-space.

Proposition 4.13 gives an alternative construction of spaces of universal disposi-
tion to that presented in Chap. 3. Taking Proposition 3.16 into account one gets:

Theorem 4.15 (CH) The following Banach spaces are isometric:

• Any space of density character c of universal disposition for separable spaces.
• The Kubiś space.
• Any ultrapower of the Gurariy space built over a free ultrafilter on the integers.

It is unclear whether spaces of (almost) universal disposition for finite di-
mensional spaces are (almost) isotropic or not. However, it follows from Propo-
sition 3.41 and its corollary that ultrapowers of the Gurariy space built over a
countably incomplete ultrafilter on N are isotropic and even separably transitive.
We also know from the combination of Theorem 4.4 (ultrapowers of L1 spaces
are universally separably injective) and Proposition 2.52 (universally separably
injective spaces are separably automorphic) that ultrapowers of the Gurariy space
are separably automorphic. We can give a unified proof for both facts improving the
second:

Proposition 4.16 Let U be a countably incomplete ultrafilter. Suppose t W X ! Y
is a linear isomorphism, where X and Y are separable subspaces of GU. Then there
is an automorphism T of GU extending t, with

kTk D ktk and kT�1k D kt�1k:

In particular, ultrapowers of the Gurariy space with respect to countably incomplete
ultrafilters are separably transitive.

Proof We fix a (normalized) linearly independent sequence .xn/ spanning X and we
denote by Xn the subspace spanned by x1; : : : ; xn in X and we set Yn D tŒXn�. Also,
we denote by tn W Xn ! Yn the restriction of t.

For each n we fix a normalized family .xn
i /i representing xn. Taking yn D t.xn/we

may choose families .yn
i / representing yn, with kt�1k�1 � kyn

i k � ktk for all i and
n. We may assume an do that for each fixed i 2 I the sequences .xn

i /n and .yn
i /n are

linearly independent in E. Put Xn
i D spanfx1i ; : : : ; xn

i g and Yn
i D spanfy1i ; : : : ; yn

i g.
We define operators un

i W Xn
i ! Xn by letting un

i .x
k
i / D xk for 1 � k � n. Similarly,

we define vn
i W Yn

i ! Yn by letting vn
i .y

k
i / D yk and extending by linearity on

the rest. All these operators are isomorphisms. Moreover, for each fixed n, the four
families of real numbers kun

i k; k.un
i /

�1k; kvn
i k and k.vn

i /
�1k converge to 1 along U.
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Define tn
i W Xn

i ! Yn
i by the composition tn

i D .vn
i /

�1ıtnıun
i , that is, the following

is a commutative diagram:

Since ktnk � ktk and k.tn/�1k � kt�1k for all n, the sets

In
" D fi 2 I W ktn

i k < .1C "/ktk and k.tn
i /

�1k < .1C "/kt�1kg

are all in U. In particular, In
1=n 2 U for all n 2 N. Take any function m W I ! N such

that m.i/!1 along U and define n W I ! N thus:

n.i/ D
(

m.i/ if i 2 In
1=n for all n

maxfn W i 2 In
1=ng otherwise

Clearly, n.i/ ! 1 along U. Let us form the ultraproduct of the operators tn.i/
i W

Xn.i/
i ! Yn.i/

i . We claim that:

• X � ŒXn.i/
i �U and Y � ŒYn.i/

i �U;

• � D Œtn.i/
i �U is an isomorphism extending t, with k�k D ktk and k��1k D kt�1k.

This is proved as we did in Proposition 4.13. One takes xn 2 X and considers the
family

zi D
(

xn
i if n.i/ � n

0 otherwise
(4.3)

in which zi 2 Xn.i/
i for all i 2 I and we have Œ.zi/� D Œ.xn

i /� D xn. This shows that

ŒXn.i/
i �U contains X and the same argument gives Y � ŒYn.i/

i �U.

To compute the norm of � D Œtn.i/
i �U just observe that, by the very definition

of the sets In
1=n one has ktn.i/

i W Xn.i/
i ! Yn.i/

i k < .1 C n.i/�1/ktk and since n.i/�1

tends to 0 along U we see that k�k D limU ktn.i/
i k � ktk. The same argument yields

k��1k � kt�1k. We check that � extends t, which automatically gives the estimates
k�k � ktk and k��1k � kt�1k. As before it is enough to see that �.xn/ D yn for
every n 2 N. Take zi as in (4.3). Then

�.xn/ D Œtn.i/
i �U.x

n/ D Œtn.i/
i �UŒ.zi/� D Œtn.i/

i .zi/� D Œtn.i/
i .xn

i /� D Œ.yn
i /� D yn:
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To end, we apply Lemma 3.29 to each isomorphism tn.i/
i . This gives a family of

automorphisms Ti of E such that Ti extends tn.i/
i , with kTik � .1 C n.i/�1/ktk

and kT�1
i k � .1 C n.i/�1/kt�1k. Thus, the ultraproduct operator T D ŒTi�U is

the required extension. ut

4.4 Lifting Operators Taking Values in Ultraproducts

In this Section we study the exact sequence associated to an ultraproduct, namely

where .Ei/ is now an arbitrary family of Banach spaces. The first thing one must
know about the preceding sequence is:

Lemma 4.17 cU0 .I;Ei/ is an M-ideal in `1.I;Ei/.

Proof The notion of an M-ideal was introduced in Sect. 2.2.2. Obviously it is very
difficult to manage the dual of `1.I;Ei/ and so we need a different approach
avoiding duality. It is proved in [121, Theorem 2.2] that J is an M-ideal in X if
and only if it satisfies the following condition: given a finite family of closed balls
B.xk; rk/ in X such that B.xk; rk/ \ J ¤ ¿ for all k and

\

k

B.xk; rk/ ¤ ¿;

one has

\

k

B.xk; rk C "/\ J ¤ ¿

for each " > 0.
Let us check this condition for cU0 .I;Ei/. Let B.xk; rk/ be the corresponding balls

and take x D .xi/ in their intersection. Also, for each k, pick yk 2 B.xk; rk/ \
cU0 .I;Ei/. Now, given " > 0, as kyk

i k ! 0 along U we may find I" in U such that
kyk

i k � " for all k and all i 2 I". We define y D .yi/ taking

yi D
(
0 for i 2 I"

xi otherwise

It is clear that y 2T
k B.xk; rk C "/\ cU0 .I;Ei/. ut
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Corollary 4.18 Let T W X ! ŒEi�U be an operator. If T factors through a separable
Banach space with the BAP then T can be lifted to an operator X ! `1.I;Ei/.

Proof The hypothesis means that there is a separable space Y having the BAP and
operators R W X ! Y and S W Y ! ŒEi�U such that T D SıR. Now, by Theorem 2.20
(1), S lifts to `1.I;Ei/. Composing R with the lifting of S gives a lifting of T to
`1.I;Ei/. ut

Note that the lifting occurs whatever the spaces Ei are when X is separable and
has the BAP. But even if X lacks the BAP, the lifting is still possible if the spaces
Ei have the (joint) UAP. This follows from the fact that, if .Ei/ has the joint UAP,
then ŒEi�U has the BAP [126, Theorem 9.1], and that every separable subspace of
a Banach space with the BAP is contained in a further separable subspace with the
BAP [60, Theorem 9.7]. In particular, (the inclusion of) every separable subspace of
ŒEi�U with the BAP lifts to `1.I;Ei/. The analogous statement for finite-dimensional
subspaces of ultrapowers is often used in proving the finite representability of
ultrapowers in the base space, see [126, Proposition 6.1]:

Corollary 4.19 Every separable complemented subspace of ŒEi�U having the BAP
embeds as a complemented subspace of `1.I;Ei/.

This unifies some old results on complemented subspaces of `1.I;Ei/: for
instance, `1.N; `n

p/ contains a complemented copy of Lp for 1 � p < 1. See
[73] for more information on this topic.

4.5 Duality, Twisted Sums, and the BAP

We discuss now some applications to twisted sums.

Theorem 4.20 Let Z be a separable Banach space and E a Banach space such
that Ext.Z;E/ D 0. Suppose that either Z has the BAP or E has the UAP. Then
Ext.Z;EU/ D 0 for all ultrafilters U.

Proof We write the proof in the case where Z has the BAP and leave the case where
E has the UAP to the reader. Let q W `1 ! Z be any quotient map. Consider the
exact sequence

It is well-known that, given a Banach space X, the condition Ext.Z;X/ D 0 is
equivalent to: “every operator v W ker q ! X has an extension Qv W `1 ! X”;
see Lemma A.20. If so, by the open mapping theorem, there is some C > 0 so that
this can be can be done with k Qvk � Ckvk.
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Thus, let u W ker q! EU be an operator. We know from Lusky [189, 190] (there
are also improved versions in [66, 95]) that ker q has the BAP when Z has the BAP
and so u lifts to an operator U W ker q ! `1.I;E/ that we may write as U D .ui/,
with ui 2 L.ker q;E/. The following diagram can be helpful.

Since Ext.Z;E/ D 0 each ui extends to an operator Qui W `1 ! E, with kQuik � Ckuik.
Thus .Qui/ W `1 �! `1.I;E/ is an operator and composing with the natural quotient
map Q we obtain the required extension of u. ut

It is a standard fact that the dual spaces of even order of a Banach space Y are
complemented subspaces of suitably ultrapowers of Y (just iterate Proposition A.8);
one thus has.

Corollary 4.21 Let Z be a separable Banach space and Y a Banach space. If Z
has the BAP or Y has the UAP and Ext.Z;Y/ D 0 then, for all n 2 N, one has
Ext.Z;Y.2n// D 0.

The hypotheses of Corollary 4.18 cannot be easily removed:

• Separability is necessary because if U is a free ultrafilter on N then Œ`n
2�U

is a (nonseparable) Hilbert space that cannot be embedded into the subspace
`1.N; `n

2/ of `1, whose weakly compact sets are separable.
• As for the BAP, we can adapt Lusky’s example in [187]. Let E be a separable

Banach space and let .En/ be an increasing sequence of finite dimensional
subspaces whose union is dense in E. If U is a free ultrafilter on N, E embeds
(isometrically) as a subspace of ŒEn�U : given x 2 E, let us choose xn 2 En in
such a way that kx � xnk ! 0 as n ! 1 and define {.x/ D Œ.xn/�. Suppose {
lifts to an operator L W E ! `1.N;En/. Writing L.x/ D .Ln.x// we have that
Ln W E ! En is a uniformly bounded sequence of finite-rank operators such that
limU kLn.x/ � xk D 0 for all x 2 E, from where it follows that E has the BAP.
Hence if E lacks the BAP, the operator { cannot be lifted.

It would be interesting to know if the approximation properties are truly
necessary in Theorem 4.20 and its Corollary 4.21. Separability is really necessary
in Theorem 4.20: since Œ`1�U is not injective, for some Banach space Z one has
Ext.Z; .`1/U/ ¤ 0, while Ext.Z; `1/ D 0.

A somehow unexpected consequence of Corollary 4.21 is the following.

Corollary 4.22 Let Z be a separable Banach space and Y a Banach space such that
Ext.Z;Y/ D 0. If either Z has the BAP or Y has the UAP, then Ext.Y�;Z�/ D 0.
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(Observe that if Y has the UAP then also Y� has the UAP). This is a formal
consequence of Corollary 4.21 in view of the duality formula Ext.A;B�/ D
Ext.B;A�/ (that holds for all Banach spaces A and B) which can be explicitly seen
in [64, 141], and is implicit in [54], and implies that Ext.Y�;Z�/ D Ext.Z;Y��/.

It is an open problem whether Ext.Z;Y/ D 0 always implies Ext.Y�;Z�/ D
0. The obvious difficulty for a “straightforward” proof is the existence of exact
sequences 0 �! Z� �! X �! Y� �! 0 in which the space X is not a dual
space or even complemented in its bidual (see [53]); therefore the sequence above
cannot be a dual sequence. In other words, there are elements in Ext.Y�;Z�/ not
induced by elements of Ext.Z;Y/.

4.6 Ultra-Isomorphic Spaces

As we mentioned before, the study of the isometric equivalence of ultrapowers goes
back to the inception of the ultraproduct construction in Banach space theory and
has produced many interesting results in the “model theory of Banach spaces”. In
this Section we will rather consider the isomorphic variation introduced by Henson
and Moore [134, p.106] and so we address the question of when two given Banach
spaces have isomorphic ultrapowers.

We begin with the following observation which needs a bit of model theory.
Recall from the preliminaries that� stands for “linearly isomorphic” while� stands
for “linearly isometric”.

Lemma 4.23 Let X and Y be Banach spaces. The following are equivalent:

• There is an ultrafilter U such that XU and YU are isomorphic.
• There are ultrafilters U and V such that XU and YV are isomorphic.

Also, the following are equivalent

ı There is an ultrafilter U such that XU and YU are isometric.
ı There are ultrafilters U and V such that XU and YV are isometric.

Proof We make the proof of the .�/ statements; the proof for the .ı/ statements is
analogous.

The iteration of ultrapowers produces new ultrapowers. Indeed, suppose that U;V
are ultrafilters on I and J respectively. Let W denote the family of all subsets W of
K D I 	 J for which the set f j 2 J W fi 2 I W .i; j/ 2 Wg 2 Ug belongs to V. Then
W is an ultrafilter, often denoted by U	V, and moreover, one has ZW D .ZU/V for
all Banach spaces Z. On the other hand, the Banach space version of the Keisler-
Shelah isomorphism theorem due to Stern [237, Theorem 2.1] establishes that given
a Banach space X and two ultrafilters U;V then there is another ultrafilter W such
that .XU/W � .XV/W.
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Now, if XU � YV, taking an ultrafilter W such that .YU/W � .YV/W we have

XU�W D .XU/W � .YV/W � .YU/W D YU�W;

as we wanted to prove. ut
Definition 4.24 We will say that X and Y are ultraisomorphic or that they have the
same ultratype when they satisfy the equivalent conditions .�/ of Lemma 4.23.

We will say that X and Y are ultraisometric or that they have the same isometric
ultratype, when they satisfy the equivalent conditions .ı/ of Lemma 4.23.

The problem of the classification ofL1-spaces by isomorphic ultratypes appears
posed in [134, p. 106] and [128, p. 315] and was considered in [130]: How many
ultratypes of L1-spaces are there?

Recalling that ultrapowers of M-spaces are again M-spaces, we can reformulate
Corollary 4.14 as follows.

Proposition 4.25 Spaces of almost universal disposition are not ultraisomorphic
to complemented subspace of M-spaces. In particular G and c0 do have different
ultratypes.

In the opposite direction there is a result proved by Henson long time ago [130,
Corollary 3.11] asserting that all infinite dimensional C-spaces are ultraisomorphic
(to be true Henson worked with nonstandard hulls instead of ultrapowers). We
state now a slight generalization for M-spaces. The proof we present is based on
ideas of [237] that can moreover be easily modified to the effect of proving also
Proposition 4.27. To simplify the exposition, we will write X C Y to mean that X is
isomorphic to a complemented subspace of Y.

Proposition 4.26 All infinite dimensional M-spaces have the same ultratype.

Proof The key of the reasoning is the following nice result of Stern [237, Theo-
rem 2.2]:

Let F be a separable subspace of the Banach space E. There exists a separable
subspace L of E containing F and an ultrafilter U such that LU � EU. If E is a
Banach lattice then L can be chosen to be a sublattice of E.

This implies that every M-space X has an ultrapower isometric to an ultrapower
of some separable M-space Y. Since separable M-spaces are isomorphic to C-spaces
(Benyamini [31]), what we have to show is that all C-spaces have the same ultratype.

Thus, let X be a separable C-space. By the very definition, a separable L1-space
X embeds into an ultraproduct Œ`n1�U, where U is any free ultrafilter on the integers.
Therefore X embeds as a subspace of .c0/U. By Stern’s result quoted above there is
a separable C-space L of .c0/U which contains a copy of X and an ultrafilter V such
that LV � .c0/U�V. Since:

• X is isomorphic to its square (Bessaga-Pełczyński [37, Theorem 3]);
• L contains a complemented copy of X (Pełczyński [211, Theorem 1]) .
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We arrive to:

XV C LV � .c0/U�V C XU�V:

Now we can apply Keisler-Shelah-Stern’s theorem to get an ultrafilter W such that
.XV/W � .XU�V/W. Letting T D .U 	 V/ 	W we have

XT � .XV/W C ..c0/U�V/W D .c0/T :

On the other hand, c0 C X and thus .c0/T C XT . Since both spaces X and c0 are
isomorphic to their squares the same is true for their ultrapowers and Pełczyński’s
decomposition method yields XT � .c0/T. ut

This result can be “extended” to:

Proposition 4.27 A Banach space that is isomorphic to its square and comple-
mented in an M-space is ultraisomorphic to `1.

Proof Suppose X is isomorphic to its square and complemented in an M-space E.
As E has the same ultratype as `1 there is an ultrafilter U such that EU � .`1/U
and so XU C .`1/U. But X is an infinite dimensional L1-space and so `1 embeds
as a subspace of XU. Hence `1 C XU C .`1/U. Let V be an ultrafilter such that
.`1/V � .`1/U�V. One has

.`1/U�V � .`1/V C XU�V C .`1/U�V

and since X and `1 and their ultrapowers are all isomorphic to their squares we can
apply Pełczyński’s decomposition method again and we are done. ut

We now prove that the Banach spaces constructed in Chap. 3 all have the same
isometric ultratype. As a preparation, we (partially) complete Proposition 4.13:

Lemma 4.28 A Banach space is of almost universal disposition if and only if so
are its ultrapowers with respect to countably incomplete ultrafilters.

Proof The “only if” part is obvious. To prove the converse suppose XU is of almost
universal disposition (for finite dimensional spaces). Let g W E! F be an isometry,
where F is finite dimensional and E is a subspace of X.

Fix " > 0 and consider X (hence E) as a subspace of XU through the diagonal
embedding. Then there is an "=2-isometry f W F ! XU such that f .g.x// D Œ.x/i�
for every x 2 E. Writing f D Œ. fi/�U for suitable operators fi W F ! X we see that
for most “indices” i 2 I:

• fi W F ! X is an "-isometry, and
• k fi.g.x//� xkX � "kxkX for all x 2 E.

By Lemma 3.27, X is of almost universal disposition. ut
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Proposition 4.29 A Banach space is of almost universal disposition if and only if it
has the same isometric ultratype as G . In particular, all spaces of almost universal
disposition have the same ultratype.

Proof If X is ultraisometric to G then some ultrapower of X is of almost universal
disposition and so is X, by the preceding Lemma.

To check the converse, suppose X is of almost universal disposition. Then,
according to Stern’s result quoted at the beginning of the proof of Proposition 4.26,
there is a separable subspace L � X and an ultrafilter U such that LU � XU. Since
XU and LU are of almost universal disposition the same happens to L and so L is
almost isometric to G by Proposition 3.29 or Theorem 3.38. Hence XU � LU � GU.

ut
The following example shows that it would be a mistake to think that the different

ultratypes of C-spaces and spaces of almost universal disposition is due to the fact
that G is not complemented in any C-space:

Proposition 4.30 There is a (nonseparable) Lindenstrauss space which is comple-
mented in no C-space but has an ultrapower isomorphic to a C-space.

Proof The example can be found in Sect. 2.2.6; it is Benyamini’s construction of
a nonseparable M-space which is complemented in no C-space. That space has an
ultrapower isomorphic to a C-space, by Theorem 4.27. ut

Back to the comment at the end of Sect. 3.3.4, and taking into account that
ultrapowers of C�-algebras are again C�-algebras, we see that every ultrapower of a
separable (complex) Lindenstrauss space lives 1-complemented in an ultrapower of
the CAR algebra A. It follows that every Lindenstrauss space L , separable or not,
has an ultrapower 1-complemented in a C�-algebra. Indeed, applying Stern’s result
quoted in the proof of Proposition 4.26 one obtains a separable subspace L � L
and an ultrafilter U such that LU � LU. But L must be a Lindestrauss space, by
[127, Theorem 2.1], so L is 1-complemented in A and therefore LU, hence LU, is
1-complemented in AU.

4.7 Notes and Remarks

4.7.1 Measurable Cardinals

In this Chapter we have considered ultraproducts based on countably incomplete
ultrafilters only. As the reader can imagine, an ultrafilter is said to be countably
complete if it is closed under countable intersections. A set I supporting a free,
countably complete ultrafilter is said to have measurable cardinal. Otherwise we
call the cardinal of I nonmeasurable.

While questions around the existence of measurable cardinals spurred a consid-
erable interest in set theory and logic, ultraproducts based on countably complete
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ultrafilters should not be very interesting to us. In fact, if U is countably complete
and jXj is nonmeasurable, then XU D X in the sense that the diagonal embedding
is onto. This is so because if U is countably complete, one has hXiiU D ŒXi�U for
all families of Banach spaces in view of the remark following Definition 4.1 and the
diagonal embedding of X into hXiU is onto according to [75, Corollary 4.2.8].

Assuming that all cardinals are nonmeasurable is consistent with ZFC, the usual
setting of set theory, with the axiom of choice. The cardinals

@0;@1; : : : ;@!; : : : ;@!1 ; : : : ;@!! ; : : : and c; 2c; 22
c
; : : :

are all nonmeasurable, and so are cardinals that can be obtained from nonmeasurable
cardinals by the standard processes of cardinal arithmetic. It is conceivable that
no measurable cardinal exists and actually much of the research on measurable
cardinals has been done with the purpose of establish that they do not exist at
all! In any case, measurable cardinals, if they exist, should be very large; see,
for instance, [75, Sect. 4.2] or [159, Chap. 1, Sect. 2]. Lately the existence of a
measurable cardinal is often treated as an additional axiom.

4.7.2 Topological Ultracoproducts

There is a description of the ultracoproduct construction in purely topological terms.
Let .Ki/ be a family of compact spaces indexed by I and let U be an ultrafilter on
I. Let S D F

i Ki be the topological direct sum of the family and ˇS its Stone-Čech
compactification. Then .Ki/

U is obtained as the intersection of those closed sets
C � ˇS for which fi 2 I W Ki � Cg belongs to U. This definition is the usual one
in topology, see [26, 27]. It is equivalent to that appearing in Sect. 4.3.1 in view of
[119, Proposition 2].

It seems to be part of the “topological folklore” that F-spaces tend to be
disconnected (cf. [245, Exercise 3D2, p. 93] or [26, 2.3.9. Remark]). However,
according to Proposition 4.8 and Lemma 4.11 one has:

Corollary 4.31 If .Ki/i2I is a family of connected compact spaces, then the
ultracoproduct .Ki/

U is a connected F-space.

This is nearly obvious once one realizes that K is connected if and only if there
are no idempotents of C.K/, apart from 0 and 1. Also, Proposition 4.8 easily leads
to compact F-spaces having any prescribed (covering) dimension.

Proposition 4.32 Let .Ki/ be a family of compacta indexed by I and let U be a
countably incomplete ultrafilter on I. Then .Ki/

U is an F-space and dim..Ki/
U/ D

limU.i/ dim Ki.

This was first proved by Bankston in [26, Theorem 2.2.2]. Let us indicate an
easier “functional” proof.
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Proof A closed subalgebra A of C.K/ is said to be analytic if f 2 A provided f 2 2
A. If B is any subset of C.K/, then the analytic algebra of base B is the smallest
analytic subalgebra of C.K/ that contains B. A well known result of Katetov [107,
Theorem 16.35] states that dim K � d if and only if every finite subfamily of C.K/
is contained in some analytic subalgebra having a base of cardinal d. The result
follows. ut

Long time ago Bade and Curtis [24] proved that if B is a (complex) commutative
Banach algebra whose spectrum M is a totally disconnected F-space, then the
Gelfand homomorphism is surjective; hence B D C.M/. In [228, Corollary 2]
Seever gave another proof of this fact, and asked if the hypothesis of total
disconnectedness can be dropped. Proposition 4.8 shows that this is not the case.
Indeed, let A be the disk algebra, whose spectrum is the closed disk D. If U is a free
ultrafilter on the integers, then it is easily seen that the spectrum of B D AU equals
that of C.D/U, which is the topological ultracoproduct DU. This is an F-space, but
the Gelfand map AU ! C.D/U is not onto.

4.7.3 Digression About Stern’s Lemma

The following statement appears, without proof, as Lemma 4.2 (ii) in Stern’s paper
[237]:

• If U is a countably incomplete ultrafilter and H is the corresponding ultrapower
of c0, then H contains a complemented subspace isometric to c0.H/.

Here c0.H/ is the space of sequences converging to zero in H, with the sup norm.
This statement, however, turns out to be false since c0.H/ contains a complemented
subspace isometric to c0 and we have seen in Proposition 4.7 that H cannot.
Unfortunately, Stern’s Lemma infected the proofs of a number of results in the
nonstandard theory and ultraproduct theory of Banach spaces. We can mention:

a) If E is isomorphic to a complemented subspace of a C-space, then E has an
ultrapower isomorphic to a C-space (Stern [237, Theorem 4.5(ii)] and also
Henson-Moore [134, Theorem 6.6 (c)]).

b) If E is isomorphic to a complemented subspace of an M-space, then E has an
ultrapower isomorphic to a C-space (Heinrich-Henson [128, Theorem 12(c)]).

c) If E is an M-space then E has an ultrapower isomorphic to an ultrapower of `1
(Henson-Moore [134, Theorem 6.7]).

d) Ultrapowers of the Gurariy space with respect to countably incomplete ultrafil-
ters are not complemented in any C-space (Henson-Moore [134, Theorem 6.8]).

Regarding these statements we have proved (c) and (d) in Proposition 4.26
and Proposition 4.25 respectively, while we have rescued (b) [hence (a)] in
Proposition 4.27 under the additional hypothesis that E is isomorphic to its square.
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The following problem was considered by Henson and Moore in [134, Prob-
lem 21]: Does every (infinite-dimensional, separable) Banach space X have an
ultrapower isomorphic to its square? An affirmative answer would imply that the
hypothesis of being isomorphic to its square is superfluous in Proposition 4.27.

And what if X is anL1-space? It is perhaps worth noticing that Semadeni proved
in [229] that the space of continuous functions on the first uncountable ordinal is
not isomorphic to its square. Under CH, the same happens to C.K /, the space
of continuous functions on Kunen’s compact. According to Proposition 4.26 those
spaces have ultrapowers which are isomorphic to their own squares. Shelah’s space
S˘ quoted in Sect. 3.4.1 is not isomorphic to its square either. However it has an
ultrapower isomorphic to its own square, too. This follows from Proposition 4.29,
taking into account that G � G ˚ G as we show now: To see that Gurariy space is
isomorphic to its square we apply Proposition 3.30 to the Lindenstrauss space c0.G /
to get that it is complemented in G . If H is a complement of c0.G / in G we have

G � c0.G /˚ H D G ˚ c0.G /˚H � G ˚ G :

4.7.4 Ultra-Roots

Heinrich undertook in [127] the classification of Lindenstrauss spaces up to ultra-
isometry. Amongst the many interesting results he proved one finds that the class
of C-spaces is closed under “isometric ultra-roots”: this just means that if a
Banach space X has an ultrapower isometric to a C-space then X is itself isometric
to a C-space. A similar result holds for G-spaces; see [127, Theorems 2.7 and
2.10] and spaces of almost universal disposition for finite dimensional spaces; see
Lemma 4.28.

At the end of [127] Heinrich asked whether the classes of C0-spaces and
M-spaces enjoy the same property. In a subsequent paper [134] it is claimed
that there is a Banach space that fails to be isometric to a Banach lattice but
is ultraisometric to c0. Since c0 is both a C0-space and an M-space this would
imply a negative solution for both questions. Unfortunately, a close inspection to
the example reveals that it is indeed a C0-space since it is a subalgebra of `1.
Indeed, the closed linear span of the characteristic functions of the sets of an almost
disjoint family of subsets of N plus c0 is always a subalgebra of `1. Thus, the
following should be considered as an open problem: Are the classes of C0-spaces
and M-spaces closed under “isometric ultra-roots”?

The following problem appears both in [128] (see Problem 2 on p. 316) and [134]
(see Problems 5 and 7 on pp. 103 and 104): Does Gurariy space have an ultrapower
isometric (or isomorphic) to an ultraproduct of finite dimensional spaces? Of course
the hypothesized finite dimensional spaces could not be at uniform distance from
the corresponding `n1 spaces.
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4.7.5 Sources

This Chapter is largely based on the works [20] and [21]. The results of
Sects. 4.2.1, 4.4 and 4.5 were taken from [20]. Theorem 4.6, Proposition 4.7 and the
subsequent discussion in Sect. 4.6 were taken from [21].

In Sect. 4.3.1 we have followed Heinrich [126] to “define” the ultracoproduct
and then Bankston [27] to study its main properties. Proposition 4.12 appears in
[26, Proposition 2.4. 1]. Proposition 4.8 solves a problem raised by Bankston [26,
2.3.8. Question], who proved a similar result for totally disconnected spaces [26,
2.3.7. Theorem].

Proposition 4.13 appears in [19] with a different proof. The proof given here
is more akin to the one given in [58]. Corollary 4.14 (hence Proposition 4.25) is
basically due to Henson and Moore who solved in [134, Theorem 6.8] a problem
posed by Stern [237, Problem 4.2]. The second part of Proposition 4.16 is an
improvement of an observation by Henson [131, Proposition 3.2]. Proposition 4.26
appeared in [134, Theorem 6.7] with a proof infected by Stern’s Lemma.



Chapter 5
@-Injectivity

Many of the results presented in this monograph about (universal) separable
injectivity can be formulated in terms of the extension of operators with separable
range. It is natural to attempt to obtain analogous results under more relaxed
conditions in the size of the range of the operators. In this Chapter we consider
the notions of (universal) @-injectivity obtained by allowing domain or ranges of
operators to have larger density characters. As we shall see, some results easily
generalize to the higher cardinal context, some present many difficulties, and some
are simply impossible. And, of course, cardinal assumptions are necessary.

Here they are examples of each type: The homological characterizations for
separable injectivity (Proposition 2.5) are straightforwardly transplanted to the
higher cardinal ground. The @-injective character of large ultrapowers can be ob-
tained but there are considerable technical difficulties. The `1.@/-upper saturation
of universally separably injective spaces is simply impossible, although a mildly
satisfactory version (Theorem 5.10) can be obtained. Moreover, other topics, such
as the higher cardinal injectivity properties of C.N�/ are still a mystery: we do not
know even if it is @2-injective! And other basic questions such as if for every good
ultrafilter U on a set of size @ the ultrapower XU of an L1-space X must be @-
injective remain open.

We begin this Chapter by describing the main properties of (universally) @-
injective Banach spaces and some basic examples. Next we consider specific
properties and examples of (universally) .1;@/-injective spaces, mainly C.K/ spaces
and ultraproducts with respect to special ultrafilters. In particular, .1;@/-injective
C-spaces are characterized as those in which the underlying compact is an F@-
space, which is a natural extension of the characterizations of 1-separably injective
C.K/-spaces as those in which K is an F-space (Sect. 2.2.1) and of injective C.K/-
spaces as those in which K is extremely disconnected (Proposition 1.19). Extremely
disconnected compacta are precisely the projective elements in the category of
compacta and continuous maps, a classical result by Gleason (see [108] or [245,
Theorem 10.51]), which suggest to study the interplay between projectiveness
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properties of the compact K and the @-injective character of the corresponding space
C.K/.

Definition 5.1

• A Banach space E is said to be @-injective if for every Banach space X with
dens X < @ and each subspace Y � X every operator t W Y ! E can be extended
to an operator T W X ! E.

• The space E is said to be universally @-injective if for every space X and each
subspace Y � X with dens Y < @, every operator t W Y ! E can be extended to
an operator T W X ! E.

When for every operator t there exists some extension T such that kTk � �ktk
we say that E is (universally) .�;@/-injective.

The case @ D @1 corresponds to (universal) separable injectivity studied so far.
Thus, the resulting name for separable injectivity turns out to be @1-injectivity (not
@0-injectivity), which is perhaps surprising. Nevertheless, we have followed the uses
of set theory where properties labeled by a cardinal@ always indicate that something
happens for sets whose cardinality is strictly lesser than @.
@0-injectivity is a bit singular: All Banach spaces are universally @0-injective

since operators from finite dimensional spaces extend elsewhere. This occurs
because @0 has countable cofinality and thus @0-injectivity does not imply the
existence of a uniform constant � bounding the norms of the extension operators
(see Lemma 5.2 below). Instead, the spaces which are .�;@0/-injective for some �
are quite clearly the �-locally injective spaces.

5.1 Main Properties

We begin establishing a few facts in which the theory of @-injectivity runs parallel
to that of separable injectivity. Our first basic result needs cardinal assumptions.

Lemma 5.2 If @ is a cardinal with uncountable cofinality then every (universally)
@-injective Banach space is (universally) .�;@/-injective for some � � 1.

Proof Assume that there exists a Banach space E that is (universally) @-injective
but not (universally) .�;@/-injective for no � � 1. Then we can pick spaces Xn

(respectively Yn) with density strictly smaller than @, isometric embeddings Yn !
Xn, and norm-one operators tn W Yn ! E all whose extensions Xn ! E have norm
greater than n.

Consider the natural isometric embedding `1.N;Yn/ �! `1.N;Xn/ and the
norm-one operator t W `1.N;Yn/ �! E given by t..xn// D P

tnxn. Since the
density of `1.N;Xn/ [respectively `1.N;Yn/] is still smaller than @, and an extension
T W `1.N;Xn/! E yields extensions for all tn with norm at most kTk, such T cannot
exist, in contradiction with the (universally) @-injective character of E. ut



5.1 Main Properties 137

The proof of Lemma 5.2 does not work for cardinals with countable cofinality,
and indeed the result is false as the trivial case of @0-injectivity shows. Proposi-
tion 2.5 however admits a straightforward generalization, with identical proof:

Proposition 5.3 Let E be a Banach space and let @ be an uncountable cardinal.
The following are equivalent:

1. E is @-injective.
2. For every index set � with j� j < @, every operator from a subspace of `1.� /

into E extends to `1.� /.
3. For every Banach space X and each subspace Y such that dens.X=Y/ < @, every

operator t W Y ! E extends to X.
4. If X is a Banach space containing E and dens.X=E/ < @, then E is complemented

in X.
5. Ext.Z;E/ D 0 for every Banach space Z with density character lesser than @.

Analogous characterizations can be given for universal separable injectivity as in
Proposition 2.6.

Proposition 5.4 Let E be a Banach space and let @ be an uncountable cardinal.
The following are equivalent:

1. E is universally @-injective.
2. Every operator t W S ! E from a Banach space S with density character lesser

than @ can be extended to an operator T W `1.@/ ! E through any embedding
S! `1.@/.

3. For every Banach space X and each subspace Y, every operator t W Y ! E whose
range has density character lesser than @ extends to X.

Proof The equivalence of (1) and (2) is clear: since `1.@/ is injective, once an
operator can be extended from S to `1.@/ it can be extended anywhere. That (1)
implies (3) only requires to draw a push-out diagram:

where { denotes the canonical inclusion. Since the inclusion { can be extended to an
operator I W PO! E, the composition It0 yields an extension of t. ut

Regarding homological characterizations, we cannot prove that universal
@-injectivity is equivalent to Ext.`1.@/=K;E/ D 0 for all K with dens K < @.
Of course, since every space K with dens K < @ is a subspace of `1.@/, given an
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operator t W K ! E we can form the push-out diagram

to obtain that if E is complemented in every superspace X so that X=E � `1.@/=K
for some K with dens K < @ then E is universally @-injective. A homological
characterization of .2@/C-injectivity is however possible:

Proposition 5.5 A Banach space E is .2@/C-injective if and only if for every
subspace K of `1.@/ one has Ext.`1.@/=K;E/ D 0
Proof Every quotient of `1.@/ has density character at most 2@; so the necessity is
clear by Proposition 5.3 (5). To prove the sufficiency, let Z be a Banach space with
density character at most 2@ and let

(5.1)

be an exact sequence. Let $ W `1.2@/ �! Z be a quotient map whose kernel is
denoted by N. By the lifting property of `1.2@/, one has a commutative diagram

(5.2)

where L is a lifting of $ and ` D LjN , which is necessarily a push out diagram; see
Appendix A.4.5. Now, one has:

CLAIM 3 `1.2
@/ is a subspace of `1.@/.

Proof of the Claim Let B be the (closed) unit ball of `1.2@/, equipped with the
weak* topology induced by `1.2@/. Clearly, B is homeomorphic to the product
Œ�1; 1�2@

, which is a continuous image of f0; 1g2@

. This space has density @ since
the clopen sets of 2@ form a dense set of f0; 1g2@

: Indeed, take a basic open set U;
i.e., take points p1; : : : ; pn and q1; : : : ; qm from 2@ and form the basic open set

U D fx 2 f0; 1g2@ W xpi D 1 and xqi D 0g:
Find a clopen C of 2@ such that p1; : : : ; pn are in C, but q1; : : : ; qn do not belong
to C. Then the characteristic function of this set C belongs to U. Since 2@ has @
many clopen sets, we conclude that .B;w�/ has density @. It follows that `1.2@/ has
density character @ in the weak* topology induced by c0.2@/; and therefore it can
be embedded into `1.@/. END OF THE PROOF OF THE CLAIM.
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Thus, there is some embedding 	 W `1.2@/ ! `1.@/ which provides the pull-
back diagram

(5.3)

Assembling Diagrams (5.2) and (5.3) we obtain the following commutative pull-
back/push-out diagram

But making pull-back and making push-out are operations that commute (see
Appendix A.4.6), so the lower sequence in the commutative push-out/pull-back
diagram

is equivalent to (5.1).
The middle sequence splits since Ext.`1.@/=	ŒN�;E/ D 0, and then so does the

lower sequence, hence (5.1). Thus, E is .2@/C-injective by Proposition 5.3 (5). ut
This immediately yields:

Corollary 5.6

• [CH] A Banach space E is cC-injective if and only if it satisfies Ext.`1=X;E/ D
0 for every subspace X of `1.

• [GCH] A Banach space E is @CC-injective if and only if for every subspace X of
`1.@/ one has Ext.`1.@/=X;E/ D 0.



140 5 @-Injectivity

Some stability properties of (universal) separable injectivity have identical
statements and proofs (compare to Proposition 2.11):

Proposition 5.7 Let @ be an uncountable cardinal.

1. The class of @-injective spaces has the 3-space property. In particular, products
of two @-injective spaces are @-injective.

2. The quotient of an @-injective space by an @-injective space subspace is again
@-injective.

3. The product of two universally @-injective spaces is universally @-injective.
4. The quotient of a universally @-injective space by an @-injective subspace is

universally @-injective.
5. Complemented subspaces of (universally) @-injective spaces are (universally)
@-injective. In particular, 1-complemented subspaces of (universally) .�;@/-
injective spaces are (universally) .�;@/-injective.

The translation of other properties, however, presents serious difficulties. For
example, Theorem 2.26 has no analogue for universal @-injectivity. Indeed, the
obvious extension of this result fails because there exist injective Banach spaces
with arbitrarily large density character, like the spaces L1.�/ with � the product
measure on Œ0; 1�@, that do not contain subspaces isomorphic to `1.@1/. This is so
since a family of mutually disjoint sets of positive measure on a finite measure space
must be countable. A partial extension can be obtained by introducing the following
concept.

Definition 5.8 Let @ be an infinite cardinal. We say that a subspace Y of a Banach
space X is c0.@/-supplemented if there exists another subspace Z of X isomorphic
to c0.@/ such that Y \ Z D 0 and the sum Y C Z is closed. In this case we also say
that Z is a c0.@/-supplement of Y.

Lemma 5.9 Every subspace of `1.@/with density@ or less is c0.@/-supplemented.

Proof Let I have cardinality @ and let fIj W j 2 Jg be a family of disjoint subsets of I
with jIjj D @ for every j and jJj D @. Let Y be a subspace of `1.I/ having density
@ (or less). Since dens

�
`1.Ij/

�
> @, for each j 2 J we can find xj 2 `1.Ij/ with

kxjk D 1 and dist.xj;Y/ > 1=2. In this way we obtain a family fxj W j 2 Jg in `1.I/
isometrically equivalent to the basis of c0.I/.

Let � W `1.I/! `1.I/=Y denote the quotient map. Since

inffk�.xj/k W j 2 Jg � 1=2 > 0;

by Rosenthal’s [223, Theorem 3.4] there exists J1 � J with jJ1j D jJj such that the
restriction of � to the closed subspace generated by fxj W j 2 J1g is an isomorphism.
That subspace is a c0.@/-supplement of Y. ut
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The partial extension of Theorem 2.26 we were looking for is:

Theorem 5.10 Let X be a universally @C-injective Banach space and let Y be a
c0.@/-supplemented subspace of X with dens.Y/ � @. Then Y is contained in a
subspace of X isomorphic to `1.@/.
Proof Let Y0 be a subspace of `1.@/ isomorphic to Y and let t W Y0 ! Y
be an isomorphism with kt�1k D 1. By Lemma 5.9, the subspace Y0 is c0.@/-
supplemented in `1.@/.

We can find projections P on X and Q on `1.@/ such that Y � ker P, Y0 �
ker Q, and both ranges ran P and ran Q are isomorphic to `1.@/. Indeed, let � W
X ! X=Y be the quotient map. Using the universal @C-injectivity of X and the
c0.@/-supplements we may find an operator I W `1.@/ ! X such that �I is an
isomorphism on a copy of c0.@/. By Theorem 1.15 �I is an isomorphism on a copy
of `1.@/, too. Therefore, there exists a subspace M of X isomorphic to `1.@/where
the restriction of � is an isomorphism and we have X=Y D �ŒM�˚N, where N is a
complement of �ŒM� in X=Y. Hence X D M˚��1ŒN�, and it is enough to take as P
the projection with range M and kernel��1ŒN�. Since ker P and ker Q are universally
@-injective spaces, we can take operators U W X ! ker Q and V W `1.@/ ! ker P
such that VjY0 D t and UjY D t�1. Note that kUk � 1. From here the proof is
entirely similar to that of Theorem 2.26: just replace `1 there by `1.@/ here. ut

Regarding infinite products, it is obvious that if .Ei/i2I is a family of (universally)
.�;@/-injective Banach spaces, then `1.I;Ei/ is (universally) .�;@/-injective. And,
of course, c0.I;Ei/ is not: If I is infinite then c0.I/ is not @2-injective just because
its complemented subspace c0 is not, since there exist nontrivial sequences

see Sect. 2.2.4.
The simplest examples of (universally) @-injective spaces arise restricting the

size of the support of bounded functions. Indeed, let us consider the spaces

`@1.I/ D fx 2 `1.I/ W jfi W x.i/ ¤ 0gj < @g:

When @ is a cardinal with uncountable cofinality, they coincide with the spaces

` <@1 .I/ D
\

">0

fx 2 `1.I/ W jfi W jx.i/j > "gj < @g

introduced by Pełczyński and Sudakov [214] and studied in Chap. 1, where it is
proven that ` <@1 .I/ is not injective as soon as @0 < @ � jIj; see Corollary 1.27.
When @ is an uncountable regular cardinal, which means that the union of less
than @ sets of less than @ elements each has less than @ elements, the space `@1.I/
is .1;@/-injective. If, moreover, jIj D @ then it cannot be .2@/C-injective by the
Pełczyński-Sudakov result since `@1.@/ � `1.@/, which has density character 2@.
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More interesting examples of @-injective spaces will appear in the next Section:
suitable ultraproducts of L1-spaces and C.K/-spaces for K a F@-space.

5.2 .1;@/-Injective Spaces

Let us begin with the following observation of Neville.

Proposition 5.11 A Banach space which is .1;@C/-injective and has density
character @ is necessarily 1-injective.

Proof By a typical application of Zorn lemma, it suffices to see that if Y is a one-
codimensional subspace of X every norm-one operator t W Y ! E extends to X
without increasing the norm. Once again look at the diagram

where { and 	 are the corresponding inclusions maps. Since PO =tŒY� is isomorphic
to X=Y we have dens.PO/ D dens tŒY� � dens.E/ and there is I W PO! E such that
{ D I ı 	0, with kIk D 1. Letting T D I ı t0 one obtains the required extension. ut

Now we give a characterization of .1;@/-injectivity by intersection properties of
balls, which is the promised generalization of Proposition 2.30.

Proposition 5.12 A Banach space E is .1;@/-injective if and only if every family of
less than @ mutually intersecting balls of E has nonempty intersection.

Proof

SUFFICIENCY. Take an operator t W Y ! E, where Y is a closed subspace of a
Banach space X with dens X < @. We may and do assume ktk D 1. Let z 2 XnY
and let Y0 be a dense subset of Y forming a linear space over the rational numbers
with jY0j < @ and, for each y 2 Y0, consider the ball B.ty; ky� zk/ in E. Any two
of these balls intersect, since for y1; y2 2 Y0 we have

kty2 � ty1k � ktkky2 � y1k � ky2 � zk C ky1 � zk:
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Thus the hypothesis implies that there exists

f 2
\

y2Y0

B.ty; ky � zk/ D
\

y2Y

B.ty; ky � zk/:

It is clear that the map T W Y C hzi ! E defined by T.y C cz/ D ty C cf is an
extension of t with kTk D 1. The rest is clear using Zorn’s lemma.

NECESSITY. Let E be .1;@/-injective and suppose B.ei; ri/ is a family of less than
@ mutually intersecting balls in E. Let Y be the closed subspace of E spanned
by the centers, so that dens Y < @, and let j W Y ! `1.� / be any isometric
embedding. Notice that even if the family of balls BY.ei; ri/ D B.ei; ri/ \ Y are
not mutually intersecting in Y, any two balls of the family B. j.ei/; ri/ meet in
`1.� / because the distance between the centers does not exceed the sum of the
radii. Therefore the intersection

\

i

B. j.ei/; ri/

contains some point, say x 2 `1.� /. Let X be the subspace spanned by x and
j.Y/ in `1.� /, so that dim X=Y � 1. The hypothesis on the space E allows one
to extend the inclusion of Y into E to X through the embedding j W Y ! X without
increasing the norms. It is pretty clear that the image of x in E under any such
extension lives in every B.ei; ri/. ut
Proposition 2.29 (namely that 1-separable injectivity and universal 1-separable

injectivity are equivalent properties under CH) admits a higher cardinal counterpart.
Let @ be a cardinal. Since a set of cardinal @C can be written as the union of an
increasing chain of sets of cardinal @, the same method of Lemma 2.28 applies to
show that when E is .1;@/-injective and Y a subspace of X, with dens.X/ � @C then
every operator t W Y ! E can be extended to an operator T W X ! E with the same
norm. Next recall that a Banach space with density character 	 embeds in `1.	/
which, under GCH, has density character 	C. Therefore, if 	 < @ also 	C � @ and
one gets:

Proposition 5.13 (GCH) Every .1;@/-injective Banach space is .1;@/-universally
injective.

We now pass to obtain the new announced examples of @-injective spaces. The
crucial notion here will be that of good ultrafilter, an invention by Keisler [27, 75].
Recall that fin.S/ denotes the set of finite subsets of a given set S. Given an ultrafilter
U, we say that a map f W fin.S/! U is monotone if f .A/ 
 f .B/ whenever A � B;
moreover, we say that the map f is multiplicative if f .A [ B/ D f .A/\ f .B/.

Definition 5.14 An ultrafilter U on I is said to be @-good if, for every set S with
jSj < @, and every monotone map f W fin.S/ ! U, there is a multiplicative map
g W fin.S/! U such that g.A/ � f .A/ for all A.
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Every set of cardinality @ supports countably incomplete, @C-good ultrafilters;
see [75, Theorem 6.1.4] or [77, Theorem 10.4]. No more can be expected, since an
@CC-good ultrafilter on a set of cardinality @ has to be fixed (by “saturation” and
[75, Proposition 4.2.2]) and so @C-good ultrafilters based on sets of cardinality @
will be simply called “good ultrafilters”. Every countably incomplete ultrafilter is
@1-good (cf. [75, Exercise 6.1.2])

Theorem 5.15 Let U be a countably incomplete, @-good ultrafilter on I and let
.Xi/i2I be a family of Banach spaces. If the ultraproduct ŒXi�U is a Lindenstrauss
space, then it is .1;@/-injective.

Proof Here we need the saturation property of the set-theoretic ultraproducts via
good ultrafilters:

Let .Si/i2I be a family of sets and let U be an ultrafilter on I. A subset A of hSiiU
is called internal if there are sets Ai � Si such that A D hAiiU. It can be proved that
if U is countably incomplete and @-good, then every family of less than @ internal
subsets of hSiiU having the finite intersection property has nonempty intersection;
see [75, Theorem 4.2.5] or [77, 13.9].

Let .B˛/˛2� be a family of mutually intersecting balls in ŒXi�U, with j� j < @.
Let us write B˛ D B.x˛; r˛/ and let x˛ D .x˛i / be. Clearly, hB.x˛i ; r˛ C 1=m/iU
is a lifting of B.x˛; r˛ C 1=m/ in the set-theoretic ultraproduct hXiiU. As ŒXi�U is
a Lindenstrauss space, the original family .B˛/ has the finite intersection property.
This implies the same for the family of internal sets

.hB.x˛i ; r˛ C 1=m/iU/.˛;m/2��N:

Indeed, if F is a finite subset of � 	 N, we may assume it is of the form E 	
f1; : : : ; kg for some finite E � � . Then there exists z 2 T

˛2E B˛. Thus, if .zi/ is a
representative of z, the sets fi 2 I W kx˛i � zik � 1=kg belong to U for every ˛ 2 E
and h.zi/iU 2T

.˛;m/2FhB.x˛i ; r˛ C 1=m/iU.
Since j� 	 Nj < @ and U is @-good, there is x 2 hXiiU in the nonempty

intersection

\

.˛;m/2��N

hB.x˛i ; r˛ C 1=m/iU:

It is clear that if .xi/ is any representation of x, then

Œ.xi/� 2
\

˛;m

B.x˛; r˛ C 1=m/ D
\

˛2�
B˛;

which completes the proof. ut
We turn now our attention to spaces of continuous functions. Theorem 2.14

provided several characterizations of 1-separably injective C-spaces. The following
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more general result summarizes all we know about the interplay between the
topological properties of K, .1;@/-injectivity of C.K/, and its lattice structure.

Recall a cozero set of K is one of the form ft 2 K W f .t/ ¤ 0g for some f 2 C.K/.

Theorem 5.16 For a compact space K and a cardinal number @, the following
statements are equivalent:

1. C.K/ is .1;@/-injective.
2. Given subsets L and U of C.K/ with jLj; jUj < @ such that f � g for every f 2 L

and g 2 U, there exists h 2 C.K/ separating them, that is, such that f � h � g
for all f 2 L and g 2 U.

3. Every family of mutually intersecting balls in C.K/ of cardinal lesser than @ has
nonempty intersection.

4. Every couple of disjoint open sets G and H of K which are the union of less than
@ many closed sets have disjoint closures.

5. Every couple of disjoint open sets G and H of K which are the union of less than
@ many cozero sets have disjoint closures.

Proof We first prove the implications .1/) .2/) .3/) .1/, in that order.
Let L and U be as in (2). We consider C.K/ as a subalgebra of `1.K/. Let

� 2 `1.K/ such that f � � � g for all f 2 L and g 2 U. Let A be the least
unital closed subalgebra of `1.K/ containing L;U and �, and let B D A \ C.K/.
Clearly, dens A < @. By (1), the inclusion of B into C.K/ extends to a norm-one
operator I W A! C.K/. Let M be the maximal ideal space of A and N that of B. By
general representation theorems we have A D C.N/ and B D C.M/, and we get a
commutative diagram

By Lemma 2.38, the operator I is positive, hence I.�/ separates L from U.
We check now .2/) .3/. Let .Bi/i2I be a family of mutually intersecting balls,

where jIj < @. Writing Bi D B. fi; ri/, we have k fi � fjk � ri C rj for all i; j 2 I,
that is,

fi � ri � fj C rj .i; j 2 I/:

By (2) there is h 2 C.K/ such that

fi � ri � h � fj C rj .i; j 2 I/:

In particular fi � ri � h � fi C ri, that is, h 2T
i Bi.
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The implication .3/) .1/ is contained in Proposition 5.12.
We pass to prove the string .2/) .4/) .5/) .2/.
Assume that .2/ holds and let G and H be open sets as in .4/, so that G DS
˛2I C˛ and H D S

˛2I D˛ , where C˛ and D˛ are closed subsets of K and jIj < @.
For every ˛ < @, let f˛ 2 C.K/, 0 � f˛ � 1, such that f˛jKnG D 0 and f˛jC˛ D 1,
and let g˛ 2 C.K/, 0 � g˛ � 1, such that g˛jKnH D 1 and g˛jD˛ D 0. The sets
L D f f˛ W ˛ 2 Ig and U D fg˛ W ˛ 2 Ig satisfy the assumptions of condition .2/.
The function h 2 C.K/ that separates L and U has the property that hjG D 1 and
hjH D 0, hence G \ H D ¿. That .4/ implies .5/ is a consequence of the fact that
each cozero set is the union of countably many closed sets, namely for f 2 C.K/,

fx 2 K W f .x/ ¤ 0g D
[

n2N
fx 2 K W j f .x/j � 1=ng:

Assume now that .5/ holds. As a first step towards .2/, we prove it modulo a
given positive ".

CLAIM Given U and L like in .2/ and given " > 0, there exists h 2 C.K/ such that
f � " � h � gC " for every f 2 L and every g 2 U.

Proof of the claim By homogeneity, it is enough to consider the case " D 1.
Let N 2 N be such that �N < f0 � g0 < N for some f0 2 L and g0 2 U. Let

I D fn 2 N W �N < n < Ng. For every n 2 I, let

Gn D fx 2 K W f .x/ > n for some f 2 Lg D
[

f 2L

f �1.n;C1/;

Hn D fx 2 K W g.x/ < n for some g 2 Ug D
[

g2U

g�1.�1; n/:

For each n, Gn and Hn are disjoint open sets which are the union of less than @
cozero sets, because jLj; jUj < @. Hence Gn \ Hn D ¿, therefore there exists
hn 2 C.K/, �1 � hn � 1 such that hnjGn D 1 and hnjHn D �1. We shall check that
h D 1

2

P
n2I hn 2 C.K/ is the desired function. For f 2 L and x 2 K,

h.x/ D 1

2

X

n2I

hn D 1

2

0

@
X

n2I;n<f .x/

.1/C
X

n2I;n� f .x/

hn.x/

1

A

� jfn 2 I; n < f .x/gj � jfn 2 I; n � f .x/gj
2

� f .x/ � 1:

Similarly, one gets that h.x/ � g.x/ C 1 for all g 2 U and x 2 K. END OF THE

PROOF OF THE CLAIM.
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Now, if U and L are sets like in .2/ we construct inductively a sequence of new
sets Un;Ln � C.K/ and functions hn 2 C.K/ as follows:

• L0 D L;U0 D U.
• For every f 2 Ln and every g 2 Un one has f � 2�n � hn � gC 2�n.
• LnC1 D Ln [ fhn � 2�ng and UnC1 D Un [ fhn C 2�ng.
This can be performed because of the preceding claim. Notice that the sequence
.hn/n2N is uniformly convergent because for m < n, hm�2�m 2 Ln, hmC2�m 2 Un,
hence hm � 2�m � 2�n � hn � hm C 2�m C 2�n and so khn � hmk � 2�mC1. Thus,
we can consider h D limn hn. Then h 2 C.K/ and satisfies f � h � g for f 2 L and
g 2 U. ut

We conclude this section tuning the construction of a 1-universally separably
injective space not isomorphic to any C.K/ space presented in Chaps. 3 and 4. The
presence of an extreme point in Part (2) is reminiscent from the early papers on
injectivity.

Proposition 5.17 For every cardinal @ there exists a Banach space of density 2@
such that

1. It is .1;@C/-injective but it is not isomorphic to a complemented subspace of any
M-space.

2. After suitable renorming, it is still .1;@C/-injective and its unit ball has extreme
points.

Proof

1. If U is a countably incomplete good ultrafilter on a set of cardinality @, then GU is
an .1;@C/-injective Banach space of density 2@ by Theorem 5.15. The assertion
(1) follows from Corollary 4.14.

2. The space G is isomorphic to the space A.P/ of continuous affine functions on
the Poulsen simplex as proved by Lusky [187]. See also [97, 186]. Hence GU is
isomorphic to A.P/U, in turn isometric to the space of continuous affine functions
on certain simplex S, by [127, Proposition 2.1]. Thus, the unit ball of A.S/ D
A.P/U has extreme points: 1S is one. However, A.S/, being isomorphic to GU

cannot be complemented in an M-space. As before, the density character of A.S/
equals 2@ and A.S/ is .1;@C/-injective. ut
The preceding examples are as bad as the generalized continuum hypothesis

allows. Indeed, if a Banach space is .1;@C/-injective and has density character @,
then it is 1-injective and therefore isometric to a C.K/-space, by Proposition 5.11.
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5.3 @-Injectivity Properties of C.N�/

We have already shown in Sect. 2.5 that C.N�/ is .1;@1/-injective. Maintaining the
parameter 1, no cardinal improvement is possible:

Proposition 5.18 C.N�/ is not .1;@2/-injective.

Proof A classical construction in set theory known as the Hausdorff gap [123]
asserts the existence of two !1-sequences of clopen sets in N

�, say .ai/ and .bi/

where i 2 !1, such that .ai/ is increasing, .bi/ is decreasing, ai � bj for all i; j, and
with the additional property that there exists no clopen set c such that ai � c � bj for
all i; j 2 !1. Considering the characteristic functions of those clopen sets, condition
.2/ of Theorem 5.16 is violated for @ D @2. Keep in mind that zero-dimensional
compacta are in fact strongly zero-dimensional, that is, disjoint zero sets can be put
into disjoint clopen sets. ut

It follows from Proposition 2.43 that C.N�/ is not cC-injective. So there is some
room for improvement in the isomorphic case. We refer to Chap. 6 for details.

5.4 Projectiveness Properties of Compact Spaces

The compact spaces arising in Theorem 5.16 constitute a well known class (see
[26, 27, 238]) that we consider now.

Definition 5.19 A compact space K is said to be an F@-space if every couple of
disjoint open subsets of K which are the union of less than @ many closed sets have
disjoint closures.

Thus, the F@1-spaces are simply the F-spaces.

Corollary 5.20 Every topological ultracoproduct of compact spaces via an @-good
ultrafilter is an F@-space.

As we mentioned in Chap. 1, a Banach space is 1-injective if and only if it
is isometrically isomorphic to C.K/ for some extremely disconnected compact
space K. We observe that such compacta are precisely the projective elements in
the category of formed by compact spaces and continuous maps (see Gleason [108]
or [245, Theorem 10.51]). This means that if � W L! M is a continuous surjection
between compact spaces and K is an extremely disconnected compact space, then
any continuous map ' W K ! M lifts to L, in the sense that there is a continuous
map Q' W K ! L such that ' D � ı Q'. Of course this can be rephrased by saying that
C.K/ is injective in the category of commutative C�-algebras.

One may wonder if some natural relativization of this result holds, meaning
whether the fact that the space C.K/ is injective with respect to a subcategory
of Banach spaces is reflected dually by K being projective with respect to some
subcategory of compact spaces.
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If C is some class of continuous surjections between compact spaces, we say that
a compact space K is projective with respect to C if for every continuous surjection
� W L �! M that belongs to C and every continuous map f W K �! M there exists
a continuous function g W K �! M such that �g D f . The first guess would be
that C.K/ being injective with respect to Banach spaces of density character lesser
than @ should be equivalent to the compact space K being projective with respect
to compact spaces of weight lesser than @. There is however a serious obstruction
for this: if � is any surjection from the Cantor set � onto the unit interval and
K is any connected F-space, then the only liftable maps f W K ! Œ0; 1� are the
constant ones (and there are many connected F-spaces; among them those produced
by Corollary 4.31). There are two ways of avoiding this problem. The first one is to
assume K to be totally disconnected (Theorem 5.22). The second one is to reduce
the subcategory we are dealing with and to consider only compact convex sets and
affine maps between them (Theorem 5.29).

Lemma 5.21 Let @ be a cardinal number, and let K be a compact space. The
following assertions are equivalent:

1. Every open cover of every subspace of K has a subcover of cardinality lesser
than @.

2. Every open subset of K is the union of less than @ many closed subsets of K.

Proof Suppose (1) holds and let U be an open subset of K. Simply consider an open
cover of U by open sets V with V � U. Conversely, assume (2) and let S � K and
fUi W i 2 Ig a cover of S by open subsets of K. Consider U D S

i2I Ui. By (2), U is
the union of less than @ many compact sets, so it is enough to take a finite subcover
of each. ut

We denote by HL@ the class of compact spaces satisfying the conditions of the
preceding lemma. Observe that the class HL@ is stable under continuous images,
and that it contains all compact spaces of weight lesser than @. Moreover a compact
space belongs to HL@1 if and only if it is hereditarily Lindelöf, or equivalently, if it
is perfectly normal.

An example of a hereditarily Lindelöf space of uncountable weight is the double
arrow space: the lexicographical product of ordered sets Œ0; 1�	f0; 1g endowed with
the order topology.

Theorem 5.22 For a compact space K the following assertions are equivalent:

1. K is a zero-dimensional F@-space.
2. K is projective with respect to surjections � W L �! M such that w.L/ < @,

where w.L/ denotes the weight of L.
3. K is projective with respect to surjections � W L �! M such that w.M/ < @ and

w.L/ � @.
4. K is projective with respect to surjections � W L �! M with L 2 HL@.

Proof First we prove that (2) implies (1).



150 5 @-Injectivity

In order to show that K is a zero-dimensional F@-space we shall show that for any
disjoint open subsets A and B, which are the union of 	 < @ many closed subsets
of K there exists disjoint clopen sets C and D such that A � C and B � D. Suppose
A D S

˛<	 C˛ and B D S
˛<	 D˛ where each C˛ and each D˛ are closed sets. For

every ˛ < 	 let f˛ W K �! Œ�1; 1� be a continuous function such that

• f˛jC˛ D �1,
• f˛jA � 0,
• f˛jKn.A[B/ D 0,
• f˛jB � 0, and
• f˛jD˛ D 1.

Consider the map f W K �! Œ�1; 1�	 given by f .x/ D . f˛.x//˛<	 . Denote L D
Œ0; 1�	 	 f�1; 1g, let � W L �! Œ�1; 1�	 be the map given by �.x; t/ D .t � x˛/˛<	 ,
and let M D �.L/. Notice that the image of f is contained in M, hence we can apply
the projectivity property so show that there exists g W K �! L with �g D f . But
then g.A/ � Œ0; 1�	 	 f�1g and g.B/ � Œ0; 1�	 	 f1g, hence there are disjoint clopen
sets which separate A and B.

Next we assume that K is a zero-dimensional F@ space and we shall prove (3)
and (4). We suppose that we are given an onto map � W L �! M like either in (3)
or (4), and f W K �! M, and we will find g W K �! L with �g D f .

CASE 1. We suppose that M 2 HL@, L � M 	 f0; 1g and � W L �! M is the
first-coordinate projection.
Consider the sets

A D K n f �1Œ�.L \M 	 f1g/�;
B D K n f �1Œ�.L \M 	 f0g/�:

These are two disjoint open subsets of K which are moreover the union of less
than @ many closed sets, because M 2 HL@. Therefore, since K is a totally
disconnected F@ space, there exists a clopen set C � K such that A � C and
B\C D ¿. The desired function g W K �! L can be defined now as g.x/ D .x; 0/
if x 2 C and g.x/ D .x; 1/ if x 62 C.

CASE 2. We suppose that L 2 HL@;L � M 	 Œ0; 1� and � W L �! M is the
first-coordinate projection.

Let q W 2! �! Œ0; 1� be a continuous surjection from the Cantor set onto the
unit interval. Let L0 D f.x; t/ 2 M 	 2! W .x; q.t// 2 Lg and � 0 W L0 �! M the
first coordinate projection. We shall find a continuous map g0 W K �! L0 such that
� 0g0 D f . From g0 we easily obtain the desired function g by composing with q in
the second coordinate. For every n < m � ! let pm

n W M 	 2m �! M 	 2n be the
natural projection which forgets about coordinates i � n in 2m. Let Ln D p!n .L

0/.
Each Ln � L	 2n is a member of HL@. Hence, by repeated application of the Case 1
proved above, we can construct inductively continuous maps gn W K �! Ln such
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that g0 D f and �nC1
n gnC1 D gn. These functions must be of the form

gn.x/ D . f .x/; �0.x/; : : : ; �n�1.x//

for some continuous functions �i W K �! 2, i < !. The function g0 W K �! L0,
where L0 � M 	 2! , is defined as g0.x/ D . f .x/; �0.x/; �1.x/; : : :/.

GENERAL CASE. We view L as a closed subset of a cube L � 2� , where � is
some cardinal. If we are dealing with condition (3), then � D @.

Let G D f.x; �.x// W x 2 Lg � 2� 	M be the graph of � , and let �1 W G �! L
and �2 W G �! M be the two coordinate functions. We shall find a continuous
function h W K �! G such that �2h D f . From this we immediately get the desired
lifting as g D �1h.

For every ˛ < ˇ � � let pˇ˛ W 2ˇ 	M �! 2˛ 	M be the natural projection and
let G˛ D p�˛ .G/. If we assume condition (3) then all spaces G˛ have weight lesser
than @, while if we assume (4), then all these spaces belong to HL@ because G is
homeomorphic to L and this class is stable under taking continuous images. Thus
we can construct by transfinite induction continuous functions h˛ W K �! G˛ such
that �2h˛ D f and such that they are coherent: pˇ˛gˇ D g˛ for ˛ < ˇ.

In the successor step of the induction, in order to obtain g˛C1 from g˛ we apply
Case 2 above. In the limit step, the function gˇ is uniquely determined by the
functions g˛ with ˛ < ˇ, similarly as we did in Case 2. ut
Definition 5.23 We say that a compact space is metrically projective if it is
projective with respect to all continuous surjections between metrizable compacta.

Let us see some consequences of Theorem 5.22.

Corollary 5.24

• The compact space N� is metrically projective.
• Let .Ki/i2I be a family of totally disconnected compacta and let U be a countably

incomplete ultrafilter on I. Then .Ki/
U is metrically projective.

Corollary 5.25 Totally disconnected F-spaces are projective with respect to hered-
itarily Lindelöf compact spaces.

In the following Corollary, we denote by RO.X/ the set of all regular open subsets
of X, that is, those open sets which coincide with the interior of a closed set.

Corollary 5.26 Let K be a totally disconnected F@-space. Then K is projective with
respect to surjections � W L �! M in which w.M/ < @ and jRO.M/j � @.

Proof Let p W G �! M be the Gleason cover of M. We refer to [245] for an
explanation of this concept. We just recall the facts that we need about it: the space
G is an extremely disconnected space (that is, projective with respect to the full
category of compact spaces), w.G/ D jRO.M/j, and p W G �! M is an onto
continuous map. Since w.G/ � @ and w.M/ < @, by Theorem 5.22 there exists
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h W K �! G such that ph D f . Since G is projective, there exists u W G �! L such
that �u D p. Thus we can take g D uh. ut
Corollary 5.27 Suppose that 	 is a cardinal for which 	C D 2	 , and let K be a
totally disconnected compact F	C-space. Then K is projective with respect to all
surjections � W L �! M such that w.M/ � 	.

Proof Apply the preceding Corollary for @ D 	C, and notice that one always has
jRO.M/j � 2w.M/ because every open set is the union of a family of open sets from
a basis. We conclude that K is projective with respect to all surjections � W L �! M
such that w.M/ � 	 and w.L/ � 2	 . But this includes the case when L D ˇM, the
Čech-Stone compactification of M with the discrete topology, and �M W ˇM �! M
is the canonical surjection. Since ˇM is a projective compact space (it is F@ for any
@), it easily follows that K is projective with respect to any surjection � W L �! M
such that w.M/ � 	. ut

The assumption 	C D 2	 is necessary:

Proposition 5.28 It is consistent that there exists a zero-dimensional compact F-
space which is not projective with respect to surjections � W L �! M with
w.M/ D @0.
Proof Under the assumption that c D @2 and that P.N/= fin contains a chain of
order type !2, Dow and Hart [87, Theorem 5.10] construct a zero-dimensional
compact F-space K which does not map onto ˇN. Let M D ˛N be the one-point
compactification of the natural numbers, L D ˇN and let � W ˇN �! M be the map
defined by �.n/ D n for n 2 N, and �.x/ D 1 if x 2 ˇN nN.

Let f W K �! M be a continuous surjection. We claim that any continuous map
g W K �! L with �g D f must be onto, hence there is no such g. The reason is that
for every n 2 N, if xn is such that f .xn/ D n, then �g.xn/ D n, hence g.xn/ D n.
Therefore N � g.K/ and N is dense in L. ut

In the next result, by a compact convex set we mean a compact convex set
lying inside some locally convex space. Actually, every such set L is affinely
homeomorphic to a closed convex subset of a cube Œ0; 1�� , where the size of �
can be as small as the weight of L.

Theorem 5.29 Suppose @ � @1. For a compact space K the following assertions
are equivalent:

1. K is an F@-space.
2. For every continuous affine surjection � W L �! M between compact convex

sets with w.L/ < @, and every continuous function f W K �! M, there exists a
continuous function g W K �! L such that �g D f .

3. Idem with w.M/ < @ and w.L/ � @.
4. Idem with L 2 HL@.

Proof We suppose that (2) holds, and we shall show that the second condition of
Theorem 5.16 holds for any cardinal � < @.
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Let f˛; g˛ W K �! Œ0; 1�, with ˛ < � , be two families of continuous functions
such that f˛ � gˇ for every ˛; ˇ < � . Consider the sets

M D
	
..t˛/˛<� ; .s˛/˛<� / 2 Œ0; 1�� 	 Œ0; 1�� W sup

˛<�

t˛ � inf
˛<�

s˛



;

L D
	
..t˛/˛<� ; r; .s˛/˛<� / 2 Œ0; 1�� 	 Œ0; 1� 	 Œ0; 1�� W sup

˛<�

t˛ � r � inf
˛<�

s˛



:

Let � W L �! M be the natural surjection which forgets the intermediate coordinate
r, and let f W K �! M be given by

f .x/ D . f˛.x/˛<� ; g˛.x/˛<� /:

The statement of (2) implies the existence of a function g W K �! L such that
�.g.x// D f .x/. Now if we take the composition of g with the projection on the
central coordinate r of L, we obtain a continuous function h W K �! Œ0; 1� such that
f˛ � h � g˛ for every ˛ < � . This proves that K is an F@-space.

Now we suppose that K is an F@-space, f W K �! M is a continuous affine
surjection and � W L �! M. We assume that M is a closed convex subset
of a cube, M � Œ0; 1�� , and we denote by �˛ W M �! Œ0; 1� the projection
on the ˛th coordinate. The first step is to find the desired function f under the
following assumption (it is the analogue of considering a Banach superspace of
codimension 1):

STEP 1. We assume M 2 HL@ and there exists a continuous affine function � W
L �! Œ0; 1� such that the map .�; �/ W L �! M 	 Œ0; 1� given by .�; �/.x/ D
.�.x/; �.x// is one-to-one.

In this case, we shall view L as a closed convex subset of M 	 Œ0; 1�, so that �
and � are just the projections on the first and second coordinate. To find the desired
function g W K �! L is equivalent to find a continuous function � W K �! Œ0; 1�

such that . f .x/; �.x// 2 L for every x 2 K. Let fqn W n < !g be a countable
dense subset of Œ0; 1�. We shall define by induction continuous functions ��

n ; �
C
n W

K �! Œ0; 1� such that ��
n � �C

m for every n;m, and then � will be chosen such that
��

n � � � �C
m for every n;m.

For each n, define

U�
n D fy 2 M W .y; t/ 62 L for every t 2 Œqn; 1�g n �.L \ .M 	 Œqn; 1�//;

UC
n D fy 2 M W .y; t/ 62 L for every t 2 Œ0; qn�g n �.L \ .M 	 Œ0; qn�//;

which are disjoint open subsets of M. Then f �1.U�
n / and f �1.UC

n / are disjoint open
subsets of K and, since M 2 HL@, each of them is a union of less than @many closed
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sets. Since K is an F@-space, there exist continuous functions ı�
n and ıC

n over K such
that

0 � ı�
n � qn; ı

�
n jf �1.U�

n /
� 0; ı�

n jf �1.UC

n /
� qn;

qn � ıC
n � 1; ıC

n jf �1.U�

n /
� qn; ı

C
n jf �1.UC

n /
� 1:

A priori, it may be false that ı�
n � ıC

m for every n;m, so in order to make sure of
this we define inductively:

��
n D minfı�

n ; �
C
m W m < ng; �C

n D maxfıC
n ; �

�
m W m < ng:

Using the fact that if qi < qj, then f �1.U�
i / � f �1.U�

j / and f �1.UC
i / 


f �1.UC
j /, it is easy to see that these new functions still keep the key properties

that

0 � ��
n � qn; �

�
n jf �1.U�

n /
� 0; ��

n jf �1.UC

n /
� qn;

qn � �C
n � 1; �C

n jf �1.U�

n /
� qn; �

C
n jf �1.UC

n /
� 1:

Since K is in particular an F-space, there is a continuous function � W K �! Œ0; 1�

such that ��
n � � � �C

n for all n. We have to show that . f .x/; �.x// 2 L for every
x 2 K. Given x 2 K, let

I D ft 2 Œ0; 1� W . f .x/; t/ 2 Lg D �.��1Œf .x/�/:

Since � and � are affine, I is a closed interval Œa; b�. In order to check that �.x/ 2
I, we show that qn � �.x/ � qm whenever qn < a and qm > b. For example, if
qn < a, then this means that f .x/ 2 UC

n , x 2 f �1.UC
n /, so qn D ��

n .x/ � �.x/.
Analogously, if qm > b, then x 2 f �1.U�

m /, and �.x/ � �C
m .x/ D qm. This finishes

the proof under the assumption made in Step 1.
GENERAL CASE. We view now L as a compact convex subset of the Hilbert

cube Œ0; 1�� [with � D @ when we are under the assumptions of case (3)] and we
call �˛ W L �! Œ0; 1� the coordinate functions, ˛ < � . For every ˛, we consider
the map h˛ W L �! M 	 Œ0; 1�˛ given by h˛.z/ D .�.z/; �ˇ.z/ˇ<˛/, and we call
L˛ D h˛.L/ � M 	 Œ0; 1�˛ the image of this continuous function. For ˛ < ˇ, we
also call pˇ˛ W Lˇ �! L˛ the continuous surjection which forgets about coordinates
ti with i � ˛. We will construct by transfinite induction a sequence of coherent
liftings g˛ W K �! L˛ , ˛ < � , that is, functions satisfying g0 D f and pˇ˛gˇ D g˛
whenever ˛ < ˇ. Observe that this is actually equivalent to finding continuous
functions �˛ W K �! Œ0; 1� such that g˛.x/ D . f .x/; �ˇ.x/ˇ<˛/ 2 L˛ for every
x 2 K and ˛ � � .

In the inductive process g˛C1 is obtained from g˛ by applying Step 1, while in
the limit ordinals one has to take gˇ.x/ D . f .x/; �˛.x/˛<ˇ/. Notice that Step 1 can
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be applied because L˛ 2 HL@: if we are in case (3), we take � D @, so w.L˛/ < @,
while in case (4) L˛ is a continuous image of L and L 2 HL@. Let g� W K �! M	L
be the final output of this inductive construction. We have that p�0 g� D f . Let
g W K �! L be obtained by projecting g� on the second coordinate, so that we can
write g� .x/ D . f .x/; g.x//. The fact that g� .x/ 2 L� implies that �.g.x// D f .x/,
so g is the map that we were looking for. ut

The fact that C.K/ is .1;@/-injective when K is an F@-space is a consequence of
Theorem 5.29. Suppose that Y is a subspace of a Banach space X with dens.X/ < @
and let t W Y �! C.K/ be a norm-one operator. We can apply Theorem 5.29(2) to
� W BX� �! BY� and the mapping f W K �! BY� given by f .x/ D t�.ıx/. We obtain
a weak*-continuous function g W K �! BX� such that �g D f . Then, the formula
T.x/.k/ D kxkg.k/.x=kxk/, x 2 X, k 2 K, defines a norm-one extension of t.

5.5 Notes and Remarks

5.5.1 On Sobczyk’s Theorem

A neat difference between @-injectivity and separable injectivity is that Sobczyk’s
theorem has no simple counterpart for higher cardinals.

In this sense, perhaps the rôle of c0 could be played by Hasanov’s “filter version”
of c0 (see [122]). Recall that a filter F on a set I is called an @-filter if whenever A
is a family of less than @ elements of F then

T
A is again in F. Hasanov’s space

cF0 .I/ is the closure in `1.I/ of the subspace fx 2 `1.I/ W limF x D 0g. Hasanov
shows in [122] that if F is an @-filter, then cF0 .I// is at most 2-complemented in any
superspace E such that dens.E=cF0 .I// � @. Thus, cF0 .I/ is .2;@C/-injective.

5.5.2 @-Injectivity and Universal Disposition

As in Chap. 3, we can adjust the input data in the device of Sect. 3.1.1 to
obtain spaces of universal disposition with respect to the class of Banach spaces
having density character smaller than a given @, which will immediately provide
new examples of .1;@/-injective spaces which are complemented in no C-space.
Precisely, fix a Banach space X and set:

• The class M@ of Banach spaces having density character lesser than @ and a
set of Banach spaces QM@ containing an isometric representative of each Banach
space in M@.

• The family of isometries acting between the elements of QM@.
• The family of all isometries M! X, with M 2 QM@.
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Now, acting as in Sect. 3.1.2, iterate the construction until an ordinal 	 having
cofinality greater than any cardinal below @ (one may take 	 D @C in any case).
The resulting space

M 	
@.X/

is a space of universal disposition for M@ and, consequently is .1;@/-injective (as in
Theorem 3.5). Changing the family of into isometries for “isometries into `1.@/”
the resulting space becomes universally .1;@/-injective (as in Proposition 3.6).

5.5.3 Automorphisms of @-Injective Spaces

From Theorem 5.10 we can derive that universally@C-injective spaces are automor-
phic for c0.@/-supplemented subspaces with density character @ or less.

Theorem 5.30 Let X be a universally @C-injective Banach space, and let Y1 and Y2
be isomorphic c0.@/-supplemented subspaces of X with dens.Yi/ � @ for i D 1; 2.
Then every isomorphism from Y1 onto Y2 extends to an automorphism of X.

Proof Note that we can modify the proof of Theorem 5.10 in such a way that the
subspace Z isomorphic `1.@/ that contains Y has a complement isomorphic to X.

Indeed, if we write ran.P/ as the direct sum of two copies of `1.@/ and take W
so that its image is contained in one of the summands, then the complement Z0 of Z
in X contains a subspace isomorphic to `1.@/; hence

Z0 � Z00 ˚ `1.@/ � Z00 ˚ `1.@/˚ `1.@/ � Z0 ˚ `1.@/ � Z0 ˚ Z � X:

So, for each i D 1; 2, we can assume that Yi is contained in a subspace Zi isomorphic
to `1.@/ such that the complement of Zi in X is isomorphic to X. Therefore, given an
isomorphism T W Y1 ! Y2, since the quotients Z1=X1 and Z2=X2 are not reflexive, we
can first extend T to an isomorphism from Z1 onto Z2 (see [182, Theorem 2.f.12]),
and then extend it to an automorphism of X. ut

5.5.4 Sources

This Chapter is based on the work [22]. Some facts are more or less straightforward
generalizations of the analogous results for the separably injective case and some
others are rounded off forms of the corresponding results. Proposition 5.12 can
be attributed to Lindenstrauss, and Theorem 5.16 to Aronszajn-Panitchpakdi [15],
Henriksen [129] and Seever [228].
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Good ultrafilters were introduced by Keisler who stablished in [162] that every
set of cardinality ˛ supports countably incomplete ˛C-good ultrafilters assuming
˛C D 2˛. Later on Kunen removed that assumption.

Proposition 5.11 appears as Corollary 1 on page 210 in Neville [203] (there are
two different results with the same label in the paper).

The equivalence of (1), (2) and (3) in Theorem 5.22 is due to Neville and Lloyd
[204], and some particular facts concerning the relation of (1) and (4) were found
by Przymusiński [218]. Corollary 5.27 is due to Neville and Lloyd [204].



Chapter 6
Open Problems

In this chapter we present and discuss in some detail problems that we encountered
in the course of our work. Some of them have already been mentioned in previous
chapters, others have appeared under different disguises and a few are new. The
contents of the sections may freely overlap.

6.1 Characterizations of (Universally) Separably Injective
Spaces

Many questions remain unanswered regarding the characterization and basic prop-
erties of separably and universally separably injective spaces. Analogously to what
happens for injective spaces, it is reasonable to ask:

Problem 1 Is every universally separably injective space isomorphic to a univer-
sally 1-separably injective space? Must a �-separably injective space, � < 2, be
isomorphic to a 1-separably injective space?

The second question has an affirmative answer for C-spaces (Proposition 2.34).
Recall, however, that 2-separably injective spaces cannot, in general, be renormed
to become �-separably injective for � < 2 (Proposition 2.32 and the fact that c0 is
2-separably injective); let alone for � D 1 (Proposition 2.31).

Since the first examples of (non-injective) universally separably injective spaces
one encounters are `c1.� / and `1=c0, it makes sense to ask for a pattern to
construct explicit examples of operators into either `c1.� / or `1=c0 that cannot
be extended to some superspace. In the case of `c1.� /, the canonical embedding
c0.� /! `c1.� / is a reasonable candidate to be a non-extendable operator. Indeed,
if some extension T W `1.� / ! `c1.� / would exist, by Rosenthal’s result quoted
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in Theorem 1.14, this T should be an isomorphism on some copy of `1.� /. Since

dens `c1.� / D j� j@0 and dens `1.� / D 2j� j;

the embedding of `1.� / into `c1.� / is impossible when j� j@0 < 2j� j. This
argument works for, say, j� j D c, while it fails—outside CH—for, say, j� j D @1
since it is consistent that @@0

1 D 2@1 . A similar argument could work to show that
no embedding c0.� /! `1=c0 extends to an operator `1.� /! `1=c0.

A different, although akin, topic is the topological characterization of separably
injective and universally separably injective C.K/-spaces. The basic problem is:

Problem 2 Characterize the compact spaces K such that C.K/ is separably injective
or universally separably injective.

Indeed, no known property of compacta seems to provide such characterizations.
It is also an open problem to characterize Grothendieck C-spaces in terms of topo-
logical properties of the underlying compacta (see Sect. 6.8 for more information
on Grothendieck spaces). We have already shown in Theorem 2.14 that K is an F-
space if and only if C.K/ is 1-separably injective; hence, it is a Grothendieck space
and, under CH (see Proposition 2.29), it is universally 1-separably injective. We do
not know, however if, in ZFC, the fact that K is an F-space still implies that C.K/
is universally separably injective or even must contain `1. When K is �-Stonian
every non-weakly compact operator C.K/! Y is an isomorphism on some copy of
`1 [223, Theorem 3.7] and thus C.K/ must necessarily contain `1 (Dashiell [79]
extends this result to different C.K/, including Baire classes—see last paragraph in
Sect. 6.4.2). It is reasonable to conjecture that C.K/ is universally separably injective
when K is �-Stonian (in ZFC). We have even shown in Theorem 2.39 that there
is a consistent example of 1-separably injective C.K/-space that is not universally
1-separably injective, but we do not know whether that example is universally
separably injective or even if it contains `1. Rosenthal asks in [223] whether there
exists an F-space K such that C.K/ is injective but K is not �-Stonian; and remarks
that the answer is affirmative assuming the existence of a measurable cardinal.

It would be interesting to characterize 1-separable injectivity for the most popular
classes of Lindenstrauss spaces, namely, M-spaces, G-spaces, and the like. In
particular we ask for a characterization of those compact convex sets K for which
A.K/, the space of continuous affine functions on K, is 1-separably injective. The
following condition is sufficient (see Theorem 2.14): Given countable subsets L and
U of A.K/ such that f � g for every f 2 L and g 2 U, there exists h 2 A.K/ such
that f � h � g for all f 2 L and g 2 U. Is the converse true? What if K is a simplex?
(See [97] for the basics on simplex spaces). Related to this we have mentioned that
if .Si/i2I is a family of simplices and U an ultrafilter on I, then A.Si/U D A.S/ for
some simplex S. Actually, S is unique by results of Rao [220]. It is also interesting
to know how S is obtained from .Si/i2I .
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The study of .1;@/-injectivity in terms of families of balls presented in Propo-
sitions 2.30 and 2.62 (for @ D @1) and Lemma 5.12 has no known analogue for
universal injectivity. Precisely:

Problem 3 Can universal .1;@/ injectivity be characterized in terms of intersection
of families of balls?

6.2 The 3-Space Problem for Universal Separable Injectivity

The main problem we have been unable to solve is the 3-space problem for universal
separable injectivity.

Problem 4 Is universal separable injectivity a 3-space property?

This problem has a surprising number of connections and ramifications, as
we shall see. An affirmative answer would provide nice characterizations of that
property and unexpected examples and counterexamples. As we already mentioned
in Sect. 2.1.3, in [20, Proposition 3.7 (3)] it was claimed that universal separable
injectivity is a 3-space property; but the proof contains a gap we have been unable
to fill and a few statements in [20] and in [21] were infected. Let us clarify the
situation about what is actually known:

Proposition 6.1 The following assertions are equivalent:

1. Universal separable injectivity is a 3-space property.
2. Upper `1-saturation is a 3-space property.
3. Ext.`1;U/ D 0 for every universally separably injective space U.
4. Ext.`1=S;U/ D 0 for every universally separably injective space U and every

separable space S.

Proof It is clear that (1) and (2) are equivalent; see Theorem 2.26.
We prove that (1) implies (3) by showing that “:.3/ ) :.1/”. The idea is to

prove that if a nontrivial exact sequence

(6.1)

with U universally separably injective exists, one arrives to another exact sequence



162 6 Open Problems

in which X0 lacks Rosenthal’s property .V/ and thus it cannot be universally
separably injective by Proposition 2.8.

Partington’s distortion theorem for `1 [210] establishes that any Banach space
isomorphic to `1 contains, for every " > 0, an .1C "/-isomorphic copy of `1 (see
also Dowling [90]). Let � be the set of all the 2-isomorphic copies of `1 inside `1.
For each E 2 � let {E W E ! `1 be the inclusion map, pE a projection of `1 onto
E of norm at most 2 and let uE W E! `1 be a surjective 2-isomorphism.

Assume that (6.1) is a nontrivial exact sequence, with U universally separably
injective. There is no loss of generality in assuming that i W U ! X is the canonical
inclusion map. We consider, for each E 2 � , a copy of (6.1) and form the product
of all these copies

Let us consider the operator J W `1 ! `1.�; `1/ given by J. f /.E/ D uEpE. f /
and then form the pull-back sequence

Let us show that 0p1 cannot be an isomorphism on any copy of `1 inside PB.
Otherwise, it would have a right inverse on some E 2 � and thus the new pull-back
sequence

would split. Therefore, if �U
E W `1.�;U/ �! U denotes the canonical projection

onto the E-th copy of U, and similarly for �X
E and �`1

E , the lower push-out sequence
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in the diagram

also splits. We want to show that this lower sequence is isomorphically equivalent to
the starting sequence (6.1); more precisely, there is an isomorphism � W PO �! X
rendering commutative the diagram

In particular, one sequence splits if and only if the other does.
To obtain � , observe the commutative square

It is commutative since the restriction of 0J ı0 {E to `1.�;U/ is just the inclusion
into `1.�;X/. Now, the universal property of the push-out construction yields an
operator � making commutative the following diagram:
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For the sake of clarity let us display all the data in the same drawing

Let us see that the “horizontal flat” portion of this diagram is commutative. The left
square is commutative by the very definition. As for the right square since PBE !
PO is onto it suffices to check that the composition

is the same as

which is obvious after realizing that uE D �
`1

E ı J ı {E. And this is trivial since
given f 2 E one has

�
`1

E .J. f // D J. f /.E/ D uE. pE. f // D uE. f /:

That (3) implies (4) is easy: Let S be separable and let U be universally separably
injective. The homology sequence (see Appendix A.4.8) obtained from

is the exact sequence
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If Ext.`1;U/ D 0, the map L.S;U/ �! Ext.`1=S;U/must be surjective and thus
every exact sequence 0 �! U �! X �! `1=S �! 0 fits in a push-out diagram

Since U is universally separably injective the operator S! U extends to an operator
`1 ! U and thus the lower sequence splits according to the splitting criterion for
push-out sequences (Lemma A.20).

That (4) implies (3) is obvious, so both assertions are equivalent.
We show now that (3) implies (1): Let

be an exact sequence in which both Y;Z are universally separably injective; let j W
S! `1 be an into isomorphism with S separable, and let t W S! X be an operator.
Since Z is universally separably injective, the operator qt admits an extension T W
`1 ! Z. We can therefore form the pull-back diagram:

Since Ext.`1;Y/ D 0, there is an operator � W `1 ! X so that q� D T. Since
q� j�qt D Tj�qt D 0 the operator t�� j takes actually values in Y. Let � W `1 ! X
be an extension of t � � j; namely, � j D t � � j. The operator � C � W `1 ! X is the
desired extension of t:

.� C �/j D t � � jC � j D t:

This completes the proof. ut
The preceding result provides a number of reformulations for Problem 4. A

mildly convincing argument to support the idea that universal separable injectivity
(i.e., `1-upper-saturation; see Definition 2.25) is a 3-space property is:

Proposition 6.2 c0-upper-saturation is a 3-space property.

Proof Let 0 �! Y �! X
q�! Z �! 0 be an exact sequence in which both

Y and Z are c0-upper-saturated and let S be a separable subspace of X. Pick Z0 a
subspace of Z isomorphic to c0 and containing qŒS�. It is a standard fact that there is
a separable subspace XS � X containing S and such that qŒXS� D Z0. Thus we have
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a commutative diagram

with YS D XS \ Y. We want to see that there is a subspace of X isomorphic to c0
containing XS. Let Y0 be an isomorphic copy of c0 such that YS � Y0 � Y. Making
push-out with the inclusion YS ! Y0 and taking Sobczyk’s theorem into account
yields the commutative diagram

which shows that S � Y0 ˚ Z0 � X. Since Y0 ˚ Z0 � c0 we are done. ut
On the other hand, a serious argument against could be that, analogously to what

happens with Pełczyński’s property .V/, which is not a 3-space property (see [61];
see also [68]), one has:

Proposition 6.3 Rosenthal’s property (V) is not a 3-space property.

Proof We start with a nontrivial exact sequence

(see [54, Sect. 4.2]). Proceeding as in the proof that (1) implies (3) in Proposition 6.1
we construct an exact sequence

in which q cannot be an isomorphism on any copy of `1. Thus, X0 has not
Rosenthal’s property .V/. The space `1.�; `2/ has Rosenthal’s property .V/ as a
quotient of `1.�; `1/ D `1.N 	 � /, since Rosenthal’s property .V/ obviously
passes to quotients. ut

The following consequence of an affirmative answer to the 3-space problem for
universal separable injectivity was claimed in [20, Theorem 5.5]:

• A space U would be universally separably injective if and only if
Ext.`1=S;U/ D 0 for every separably space S.



6.2 The 3-Space Problem for Universal Separable Injectivity 167

The “only if” part is contained in Proposition 6.1. The other part does not depend
on the solution to Problem 4:

Proposition 6.4 If Ext.`1=S;X/ D 0 for every separable space S then X is
universally separably injective.

Proof Let S be a separable Banach space, t W S ! X an operator and S ! `1 an
embedding. Form the push-out diagram

The lower sequence splits by the assumption Ext.`1=S;X/ D 0 and so t extends to
`1, according to the splitting criterion for push-out sequences (Lemma A.20). ut

In particular, as it was claimed in [20, Proposition 5.6], one would have that
Ext.C.N�/;C.N�// D 0 since C.N�/ D `1=c0. This would rank `1=c0 into the
exclusive list of spaces X for which Ext.X;X/ D 0, currently formed by

• c0, by Sobczyk’s theorem.
• Injective spaces, by the very definition.
• L1.�/-spaces, by Lindenstrauss’ lifting (Proposition A.18).

It is definitely not true however that Ext.U;V/ D 0 for all universally
separably injective spaces U and V . For instance, consider the exact sequence
0 ! `c1.� / ! `1.� / ! `1.� /=`c1.� / ! 0, where � is an uncountable set.
Since the subspace is universally 1-separably injective (Example 2.4), the quotient is
universally separably injective by Proposition 2.11(3). Actually it is even universally
1-separably injective, by Theorem 2.18. The sequence does not split because `c1.� /
is not injective (Proposition 1.28). Each universally separably injective non-injective
space produces a similar counterexample. Moreover, it is easy to see that there
exist universally separably injective spaces U such that Ext.U;U/ ¤ 0: if V is
a universally separably injective non-injective space then every exact sequence
0! V ! `1.� /! `1.� /=V ! 0 is not trivial, by Proposition 2.11. The space
W D `1.� /=V is universally separably injective and, obviously, Ext.W;V/ ¤ 0.
The product space U D V˚W is universally separably injective and Ext.U;U/ ¤ 0.

The following problem seems quite interesting to us:

Problem 5 Characterize the C.K/ spaces so that Ext.C.K/;C.K// D 0.

Probably a step in this direction would be to know whether the following
generalization(s) of Problem 4 are possible:

Problem 6 Are there homological characterizations of @-injectivity and universal
@-injectivity? In particular: Is it true that

• A Banach space E is @C-injective if and only if Ext.c0.@/;E/ D 0?
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• A Banach space E is universally @C-injective if and only if Ext.`1.@/;E/ D 0?
• Ext.`1.� /;U/ D 0 for every universally separably injective space U?

Recall that the information we currently have is:

Theorem 6.5 A Banach space E is

• Separably injective if and only if Ext.Q;E/ D 0 whenever Q is a quotient of
CŒ0; 1�.

• Universally separably injective if Ext.Q;E/ D 0 whenever Q is a quotient of `1
by a separable subspace (Proposition 6.4).

• [CH] @2-injective if and only if Ext.Q;E/ D 0 whenever Q is a quotient of `1
(Corollary 5.6).

• [GCH] @C-injective if and only if Ext.Q;E/ D 0 whenever Q is a quotient of
`1.@/ (Corollary 5.6).

Proof Only the first point has not been explicitly done: if E is separably injective,
then Ext.Q;E/ D 0 for every quotient of CŒ0; 1�; and conversely, if � W S! E is an
operator from any separable Banach space S, pick an embedding S ! CŒ0; 1� and
form the push-out diagram:

Since Ext.Q;E/ D 0, the lower sequence splits and � can be extended to an operator
CŒ0; 1�! E, which shows that E is separably injective. ut

A different way of looking at these questions is the following: A result of
Johnson, Rosenthal and Zippin [148], see also [182], asserts that every separable
Banach space S fits into an exact sequence

in which both A and B have the BAP. Since a Banach space E is separably injective
when Ext.S;E/ D 0 for all separable Banach spaces S, a 3-space argument yields
that a Banach space E is separably injective when Ext.S;E/ D 0 for all separable
Banach spaces S with the BAP. And since there exist a separable space K with the
BAP complementably universal for all separable spaces with the BAP [150, 213], it
follows that E is separably injective if and only if Ext.K ;E/ D 0. Therefore, there
exist (separable) Banach spaces that “test” the separable injectivity. The question is
then whether

• c0, or its quotients, could be test spaces for separable injectivity.
• c0.@/, or its quotients, could be test spaces for @C-separable injectivity.
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• `1, or (some of) its quotients, could be test spaces for universal separable
injectivity.

• `1.@/, or (some of) its quotients, could be test spaces for @C-universal
injectivity.

And if quotients of c0 are a puzzle, quotients of `1 are a conundrum, as we
discuss next.

6.3 Subspaces and Quotients of `1

Many results and ideas in this monograph wheel around the question about to what
extent universally separably injective spaces are “like” `1. This suggests:

Problem 7 Do there exist universally separably injective subspaces of `1 different
from `1?

Nonseparable separably injective subspaces of `1 different from `1 exist:
indeed, Marciszewski and Pol show in [193] that there exist at least 2c non-
isomorphic C-spaces arising as twisted sums of c0 and c0.c/. These are associated
to different choices of almost disjoint families (see Sect. 2.2.4) which yields 2c non-
mutually isomorphic separably injective subspaces of `1. None of them can be
universally separably injective since the pull-back space in a diagram of the form

cannot be universally separably injective: otherwise the two sequences above are
one pull-back of the other and then the diagonal principles yield

PB˚ .`1=c0/ � `1 ˚ c0.� /;

implying that c0.� / should also be universally separably injective, which is not.
The same question for quotients has an obvious answer: `1=c0. A further result

in this direction follows from Dow and Vermeer [88]: if CH is assumed, every
compact F-space of weight @2 (or less) embeds as a closed subset of an extremely
disconnected compact space. Which implies that, under CH, every 1-separably
injective C-space of density character @2 (or less) is an isometric quotient of a 1-
injective Banach space.

As we have already remarked, there are subspaces G of `1 that are not L1
spaces but such that `1=G � `1. No characterization is known of the subspaces
X of `1 for which `1=X is (universally) separably injective. Quotients of `1 must
be Grothendieck spaces and quotients `1=L1 of `1 by a unspecified L1-space
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must be of type L1 since `��1 � L ��1 ˚ .`1=L1/��. We are specially interested
in the following case:

Problem 8 Is `1=CŒ0; 1� separably injective?

Recall that since `1 is separably automorphic the space `1=CŒ0; 1� is well
defined. But we do not know if `1=CŒ0; 1� is even isomorphic to a (complemented
subspace of a) C-space. Additional information is contained in the following
proposition.

Proposition 6.6 Let L1 denote an arbitrary separable L1 space and let U be a
free ultrafilter on N. Then the following statements are equivalent:

1. `1=L1 is separably injective.
2. .L1/U=L1 is separably injective.
3. Œ`n1�U=L1 is separably injective.

Proof We already know that both Œ`n1�U and .L1/U are separably automorphic
so there is no need to particularize which embeddings L1 ! Œ`n1�U or L1 !
.L1/U are used. Look at the lower exact sequence in the complete push-out
diagram

Since the middle horizontal sequence splits, the lower sequence also splits and

.L1/U=L1 � .`1=L1/˚ ..L1/U=`1/:

Thus, since .L1/U=`1 is separably injective, the space .L1/U=L1 is sep-
arably injective if and only if `1=L1 is. We draw now the complete pull-back
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diagram

and recall that cU0 .N; `
n1/ is separably injective (Theorem 2.21 plus Lemma 4.17).

Thus, if Œ`n1�U=L1 is separably injective then `1=L1 is separably injective by a
3-space argument applied to the upper sequence. If, however, `1=L1 is separably
injective then its quotient Œ`n1�U=L1 is separably injective by Proposition 2.11.

ut
Quotients of `1 by separable subspaces are also intriguing. The following

question was posted in Mathoverflow (http://mathoverflow.net/questions/148956/
quo\discretionary-tients-of-ell-infty-by-separable-subspaces) by the authors:

Problem 9 Under which conditions on a separable subspace M of `1 is the
quotient `1=M isomorphic to a subspace of `1?

No complete answer to the question above is known, but the following partial
results that appeared in that page are due to Bill Johnson, with slightly different
proofs:

Proposition 6.7 Let X and Y be subspaces of `1.

1. If X and Y are isomorphic, then `1=X embeds into `1 if and only if `1=Y
embeds into `1.

2. Suppose that Y � X and that `1=X embeds into `1. Then `1=Y embeds into
`1 if and only if X=Y embeds into `1.

3. If X is isomorphic to V� for some separable space V, then `1=X embeds into
`1.

4. If X is isomorphic to a subspace of a separable dual, then `1=X embeds into
`1.

5. If X contains c0 and X=c0 embeds into `1 then `1=X does not embed into `1.
6. If X embeds into L1Œ0; 1�, then `1=X embeds into `1.

http://mathoverflow.net/questions/148956/quodiscretionary {-}{}{}tients-of-ell-infty-by-separable-subspaces
http://mathoverflow.net/questions/148956/quodiscretionary {-}{}{}tients-of-ell-infty-by-separable-subspaces
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Proof

1. Let ˛ W X ! Y be an isomorphism and consider the diagram

By the injectivity of `1, both ˛ and ˛�1 can be extended to operators `1 !
`1. Thus, each sequence is a push-out of the other and the diagonal principle
(Proposition A.22) yields an isomorphism .`1=X/˚ `1 � .`1=Y/˚ `1:

2. In this case one has an exact sequence

Since “to be a subspace of `1” is a 3-space property [61, Theorem 3.2.h], the
result is clear.

3. Let q W `1 ! V be a quotient map. Then V� � .ker q/?, so we can assume
X D .ker q/? by (1). Hence `1=X � .ker q/�, which is a subspace of `1.

Part (4) is a direct consequence of (3), (2), and the fact that separable
subspaces embed in `1.

Part (5) follows from (1), (2) and the fact that `1=c0 does not embed into `1
since it contains an isometric copy of c0.� / with j� j D 2@0 .

6. The case X D L1Œ0; 1� follows from (2) and the fact that L1Œ0; 1� embeds into
CŒ0; 1�� as a complemented subspace: Since `1=CŒ0; 1�� and the complement
of L1Œ0; 1� in CŒ0; 1�� embed into `1, so does `1=L1Œ0; 1�. The general case can
be proved as (4).

ut
Assertion (3) in Proposition 6.7 can be completed with:

Proposition 6.8 Let X be a separable Banach space such that Ext.X; `2/ ¤ 0. Then
`1=jŒX�� is not an L1-space for any embedding j W X� �! `1.

Proof Let q W `1 �! X be a quotient map. Since Ext.X; `2/ ¤ 0, there exists a
nontrivial exact sequence 0 �! `2 �! Y �! X �! 0, and thus an operator
ker q �! `2 that cannot be extended to `1. Since every operator from an L1 into
a Hilbert space is 2-summing, it follows that ker q cannot be an L1-space and thus
.ker q/� D `1=q�ŒX�� cannot be an L1-space.
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Now, let j W X� �! `1 be any embedding. The two sequences in the diagram

are one pull-back of the other since both q� and j can be extended to operators
`1 ! `1, so the diagonal principle (Proposition A.22) yields that `1˚.`1=jŒX��/
is isomorphic to `1 ˚ .ker q/�; and thus `1=jŒX�� cannot be an L1-space. ut

In particular, it could be interesting to know if there exists an infinite dimensional
separable subspace S of `1 for which `1=S � `1.

6.4 Examples of Separably Injective Spaces

We have seen that there are many natural examples of (universally) separably
injective spaces. A few more or less classical spaces could also enjoy separable
injectivity properties:

6.4.1 Tensor Products

The fact that when E is separably injective so is c0.E/ D c0 L̋ "E suggests:

Problem 10 Must F L̋ "E be separably injective if both E and F are?

We do not know the answer even if F is a C.K/-space, in which case C.K/ L̋ "E D
C.K;E/. A particularly interesting test case is that of the space

`1 L̋ "`1 D C.ˇN;C.ˇN// D C.ˇN 	 ˇN/:

The compact space ˇN 	 ˇN is not an F-space and it does not contain convergent
sequences. However, the space C.ˇN 	 ˇN/ D C.ˇN;C.ˇN// cannot be even a
Grothendieck space as it can be inferred from the following result of Cembranos
[72]: If K is an infinite compact and X is an infinite dimensional Banach space, then
C.K;X/ contains a complemented subspace isomorphic to c0. The validity of similar
statements for c0.@1/ under different axioms has been studied by several authors:
Galego and Hagler [100] show that under CH there is a compact K so that c0.@1/
embeds into C.K 	K/ but not in C.K/; Dow et al. [89, Example 2.16] show that in
ZFC there exists C.K/ spaces with density 2@0 containing a copy of c0.@1/ and such



174 6 Open Problems

that C.K	K/ does not contain c0.@1/ complemented; Candido and Koszmider [59]
show that it is consistent that if C.K/ has density character @1 and contains c0.@1/
then C.K 	 K/ contains c0.@1/ complemented.

6.4.2 Baire Classes

The Baire classes of functions on Œ0; 1� were studied by Bade in [23]. As we shall
see, they share some of the properties of the universally separably injective spaces,
and therefore can be considered natural candidates to provide new examples of
separably injective spaces. We set B0 D CŒ0; 1�, and denote by B1 the class of all
bounded functions which are pointwise limits of functions in B0.

Definition 6.9 For each ordinal ˛ with 1 � ˛ � !1, we define the class of Baire
functions of order ˛, denoted B˛, as the class of all bounded functions which are
pointwise limits of functions in

S
ˇ<˛ Bˇ .

Bade shows in [23] that, for 1 � ˛ � !1, the space B˛ is linearly isometric to
C.K˛/, where K˛ is a totally disconnected compact space. He also shows that B!1
is the space of all bounded Borel measurable functions on Œ0; 1�. Dashiell shows in
[78] (see also [80, Corollary 8]) the following results:

• For ˛ < ˇ � !1, B˛ is not complemented in Bˇ.
• The spaces B˛ are injective for no ˛.
• The dual spaces B�̨ are linearly isometric to `�1, for 1 � ˛ � !1.
• For ˛ < !1, B˛ is not isomorphic to B!1 .
• B1 is not isomorphic to B˛ if ˛ > 1.
• For 1 < ˛ < ˇ < !1, the spaces B˛ and Bˇ are not isometric. It is apparently

unknown whether they are isomorphic.

Passing to separable injectivity affairs, Dashiell also shows that B!1 D C.K!1/,
with K!1 �-Stonean. Since each �-Stonean compact is a totally disconnected F-
space, B!1 is 1-separably injective. In Proposition 2.16 it was already shown that
the space of all bounded Borel (resp. Lebesgue) measurable functions on the line
is 1-separably injective (we do not know however if those spaces are universally
1-separably injective in ZFC). One however has:

Proposition 6.10 The space B1 is not 1-separably injective.

Proof Let Q D q1; q2; : : : and Q0 D q0
1; q

0
2; : : : be two disjoint countable dense

subsets of Œ0; 1�. We consider the following sequences of functions of the first Baire
class:

fn D 1qn ; gn D 1Œ0;1� � 1q0

n
:

Then fn � gm for every n;m; hence, if B1 were 1-separably injective, then there
would exist h 2 B1 such that fn � h � gm for every n;m. Consider A D
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h�1.�1; 0:4� and B D h�1Œ0:6;C1/. Then, since h is of the first Baire class, A
and B must be Gı sets, and since Q � B and Q0 � A, they are dense sets. But
A \ B D ¿ while the intersection of two dense Gı sets is a dense Gı set. ut

Thus, while B1 is not 1-separably injective, B1\`c1Œ0; 1� is 2-separably injective:
see the discussion after Theorem 2.18. Moreover, for all ˛ � 1 the spaces B˛ enjoy
Rosenthal’s property .V/ and thus, in particular, they are Grothendieck spaces [79,
Theorem 3.5].

Problem 11 For which 1 � ˛ < !1 is the space B˛ (universally) separably
injective?

However, the question that motivated our interest in Baire classes is the possi-
bility of having the following type of “surrogate” separable injectivity: Does there
exist a function f W !1 ! !1 such that given a separable Banach space X and a
subspace Y � X every operator t W Y �! B˛ admits an extension T W X �! Bf .˛/?

6.4.3 C.N�/ and Its @-Injectivity

We know that C.N�/ fails to be cC-injective (Proposition 2.43) and that it fails to be
.1;@2/-injective (Proposition 5.18). The next question is however open:

Problem 12 Is it consistent that C.N�/ is (universally) @2-injective?

Still, the answer is no for c < 2@1 : since C.N�/ contains c0.@1/, it contains a
c0.@1/-supplemented copy; so, by Theorem 5.10, C.N�/ should contain `1.@1/,
which is impossible if c < 2@1 .

It is not difficult to see that a necessary condition for C.N�/ to be universally
@2-injective is that every operator c0.@1/! C.N�/ can be extended to C.N�/. One
thus has encountered the notion of space c0.@1/-extensible (cf. [199]):

Definition 6.11 Let M be a class of Banach spaces.

• A Banach space X is said to be M-extensible if every operator A ! X with A a
subspace of X in M can be extended to an operator X ! X.

• A Banach space X is said to be M-automorphic if every isomorphism between
two spaces A;B 2 M that are subspaces of X and for which X=A and X=B have
the same density character can be extended to an automorphism of X.

For instance, the choice of M as the class of all separable spaces leads to
separably automorphic spaces; the choice M D fYg leads to Y-automorphic spaces.
When M are “all spaces” then we get the notions of extensible and automorphic
space. For instance, `1 is extensible but not automorphic while `2 is automorphic
but not injective. It is proved in [199] that M-automorphic implies M-extensible.

We see in this way that the problem of injectivity-like properties of C.N�/
is connected at a deep level with its c0.@1/-automorphic character: If C.N�/ is
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not c0.@1/-extensible then it cannot be (universally) @2-injective. Moreover, if all
copies of c0.@1/ in C.N�/ are c0.@1/-supplemented then by Theorem 5.30 the space
C.N�/ is c0.@1/-automorphic, hence c0.@1/-extensible. Obviously, we do not know
if C.N�/ is c0.@1/-extensible:

Problem 13 Is C.N�/ a c0.@1/-automorphic space?

The study of partially automorphic spaces goes beyond the scope of this
monograph, and the interested reader is addressed to [17, 19, 63, 67, 199]. A
few additional results will help to complete the picture about C.N�/ and will
complement Sect. 2.6. We have already shown that C.N�/ is separably automorphic,
a property somehow inherited from `1. So, it would be nice to know “how much”
automorphic the space is. In any case, it will be partially automorphic in a different
sense from `1, since `1 is automorphic for subspaces X so that `1=X contains
`1, while C.N�/ is not since C.N�/ is not C.N�/-automorphic. In contrast with
Proposition 2.55 (1), we do not know if the quotient of a separably automorphic
space by a separably injective space is separably automorphic.

It is obvious that in a c0-automorphic space either all copies of c0 are com-
plemented or all of them are uncomplemented. It follows from Lemma 2.48
that C-spaces in which every copy of c0 is complemented are c0-automorphic.
These spaces include C-spaces over Eberlein compacta by Proposition 2.57 or
ordinal compacta. The C-spaces in which no copy of c0 is complemented are
Grothendieck, but their analysis is not so simple. In particular, some are c0-
automorphic (universally separably injective spaces, for instance) while others are
not: if H denotes Haydon’s Grothendieck C-space without copies of `1, the space
`1 ˚ H is not c0-automorphic. Indeed, if � W `1 ˚ H �! `1 ˚ H is an
automorphism sending c0 ˚ 0 to 0 ˚ c0 and �H W `1 ˚H �! H denotes the
projection onto the second coordinate, then �H �j`1

W `1 !H cannot be weakly
compact, hence must be an isomorphism on a copy of `1, which is also impossible.

Copies of c0 must also be complemented in any WCG Banach superspace,
as it can be proved using the classical Amir-Lindenstrauss Theorem [6]. The
natural question of whether the same happens for c0.� /—must copies of c0.� /
be complemented in every WCG superspace?—has a negative answer, as it was
already mentioned in Sect. 2.2.4. More precisely, [13, 192], there exists under GCH
an Eberlein compact E such that C.E / contains an uncomplemented copy of c0.@!/.
The C-space C.E / ˚ c0.@!/ is therefore WCG and it is not c0.@!/-automorphic.
This shows that the situation is very different from that for c0 and some restrictions
in size are necessary. Indeed, if E is an Eberlein compact of weight @ then, by
Theorem 4.2 in [35], C.E/ contains a copy of c0.@/. For @ D @n, n < !, all those
copies must be complemented in C.E/ due to the following result in [13]:

Theorem 6.12 Let K be a Valdivia compact and let � be a set with cardinal j� j D
@n for some n < !. Then every �-isomorphic copy of c0.� / inside C.K/ is 2nC1�-
complemented.

However, we do not know if C.E/ is c0.@n/-automorphic. A positive answer
to the following question would imply that C.E/ is in fact H-automorphic for all
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subspaces H � c0.@n/: Let E be an Eberlein compact and @ < @! . Does every
complement of c0.@/ in C.E/ (having density character at least @) contain a copy
of c0.@/? Recall that it is even unknown if a complement of c0.@n/ in C.E/ must be
isomorphic to a C-space.

6.5 Ultraproblems

Since ultrapowers of L1 have emerged as unexpected universally separably
injective spaces, questions involving ultraproducts are natural. The Henson-Moore
classification problem of L1-spaces by isomorphic ultrapowers ([134, p. 106],
[128, p. 315], [130]) is perhaps the deepest:

Problem 14 How many ultratypes of L1-spaces are there?

The results in Chap. 4 show only two different ultra-types of L1-spaces: that of
C-spaces and that of spaces of almost universal disposition. It would be interesting
to add some new classes here. If one is thinking about obtaining a third type,
probably the best candidates are “the” quotient CŒ0; 1�=G (more natural should
be thinking about the space `1=G , which is uniquely defined by the separably
automorphic character of `1) or the subspace ker� of a (rightly chosen) quotient
map � W CŒ0; 1� ! G (see Sect. 6.6). Of course that we do not know whether
CŒ0; 1�=G or `1=G are C-spaces, whether they have the same ultratype of a C-
space, or even if both have the same ultratype.

Even if we would pay for a third ultratype, some of the authors believe that:

Conjecture 1 There is a continuum of different ultratypes of L1-spaces.

Reasonable candidates to get such a continuum could then be hereditarily
indecomposable L1-spaces [12, 240], exotic preduals of `1 as in [34, 104], some
Bourgain and Pisier [47] or Bourgain and Delbaen [14, 46] spaces, or some of the
L1-envelopes constructed in [69].

We pass now to problems involving ultraproducts and exact sequences. Recall
from [140, 207] that if 0 ! Y ! X ! Z ! 0 is an exact sequence and U is an
ultrafilter then 0 ! YU ! XU ! ZU ! 0 is also exact (see [61, Lemma 2.2.g]).
No criterion however is known to determine when the ultrapower sequence of a
nontrivial exact sequence is again nontrivial.

Definition 6.13 We will say that an exact sequence ultra-splits if some of its
ultrapower sequences split.

From the results in Sect. 3.3.4, and more specifically Corollary 4.14, one has:

Proposition 6.14 Any exact sequence 0 �! Y �! X �! Z �! 0 in which X
is a C-space and either Y or Z are spaces of almost universal disposition does not
ultra-split.
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Proposition 4.30 shows that the exact sequence

from Example 2.24 in Sect. 2.2.6 yields a nonseparable Lindenstrauss space which
is complemented in no C-space, although it does have an ultrapower isomorphic to
a C-space (cf. Proposition 4.27). We do not know, however, if the sequence above
ultra-splits.

Ultra-splitting problems are connected to the 3-space problem for universal
separable injectivity discussed in Sect. 6.2. Indeed, if universal separable injectivity
were a 3-space property then one would have Ext.C.N�/;C.N�// D 0, which
implies, under CH, that all exact sequences of the form (here � is the Cantor set)

(6.2)

ultra-split no matter whether they are trivial or not. This was claimed in [21,
Example 4.5(a)], but we do not know if it is true or not.

Indeed, assuming CH, one has C.�/U � C.N�/ for all free ultrafilters on the
integers U (Proposition 4.12). Hence the ultrapower sequence of (6.2) has the form

and would split if Ext.C.N�/;C.N�// D 0 were true. This could apply to the exact
sequence

constructed in [57, Corollary 2.4] which has the form (6.2) since CŒ0; 1� � C.�/
by Milutin’s theorem. Thus, if the assertion Ext.C.N�/;C.N�// D 0 were true, and
under CH, the space ˝U � C.N�/˚ C.N�/ would be isomorphic to a C-space, in
spite of the fact [57, Corollary 2.4] that ˝ is not even isomorphic to a quotient of a
Lindenstrauss space.

Some of the authors believe that the following holds:

Conjecture 2 Every exact sequence 0 �! L1 �! X �! C �! 0 in which L1
denotes an arbitrary L1-space and C an arbitrary C-space ultra-splits.

We conclude this section with the explicit formulation of several open ends
already mentioned though the text:

• Since both G and C-spaces are Lindenstrauss spaces, it makes sense to ask: Does
every L1-space have an ultrapower isomorphic to a Lindenstrauss space?

• Does every (infinite-dimensional, separable) Banach space X have an ultrapower
isomorphic to its square? What if X is an L1-space?

• Are the classes of C0-spaces and M-spaces closed under “isometric ultra-roots”?
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• Does the Gurariy space have an ultrapower isometric (or isomorphic) to an
ultraproduct of finite dimensional spaces? Since spaces of universal disposition
cannot be complemented in C-spaces, if GU D .Gi/V then the spaces Gi cannot
be “uniformly injective”.

• Are Lindenstrauss ultraproducts via @-good ultrafilters universally @-injective
spaces in ZFC? In other words, can the conclusion of Theorem 5.15 be
strengthened to obtain universal injectivity? Notice that this is sensitive to
axioms. The answer is of course affirmative under GCH by Theorem 5.15 and
Proposition 5.13.

• Another question regarding a possible generalization of Theorem 5.15 is whether
the hypothesis “Lindenstrauss” can be weakened to just “L1-space”: Namely,
prove or disprove that every ultraproduct built over an @-good ultrafilter is @-
injective as long as it is an L1-space.

6.6 Spaces of Universal Disposition

In this section, if no further specification is made, universal disposition means “with
respect to finite dimensional spaces”. Up to now, under CH, we have encountered
two non-isomorphic spaces of universal disposition: The Grothendieck space S !1

and the non-Grothendieck (since it contains c0 complemented) space F!1 .
Problem 7 of Sect. 6.3 can be reformulated here for spaces of universal disposi-

tion:

Problem 15 Do there exist subspaces of `1 of universal disposition?

Observe that a space of universal disposition for separable spaces cannot be a
subspace of `1 since it must contain copies of all spaces of density character @1,
such as `2.@1/. It could help to decide whether F!1 is a subspace of `1 to know if
it contains a subspace isomorphic to `2.@1/.

The same question for quotients of `1 has an affirmative answer, at least under
CH: Johnson and Zippin proved in [147] that every separable Lindenstrauss space
is a quotient of C.�/, where� is the Cantor set. So one has an exact sequence

(6.3)

No ultrapower of this sequence splits by the results in Sect. 3.3.4; see also
Proposition 6.14. Under CH, the ultrapower sequence with respect to any free
ultrafilter U on N has the form

and thus GU is a quotient of `1. Observe that F!1 cannot be a quotient of `1 since
c0 is not.
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Regarding the nature of ker� , Pełczyński posed on the blackboard to us the
question of whether it is possible to identify the kernel(s) of the sequence(s) (6.3),
and in particular if some such kernel can be a C-space. It is not hard to check that
ker� is an L1-space when � is an “isometric” quotient in the sense that it maps the
open unit ball of C.�/ onto that of G . On the other hand, it is possible to get another
quotient map $ W C.�/ �! G whose kernel is not an L1-space: to this end,
recall that Bourgain has shown that `1 contains an uncomplemented copy of itself.
An obvious localization argument yields an exact sequence 0 �! B� �! c0 �!
c0 �! 0 in whichB� cannot be an L1-space. See [45, Appendix 1]. “Multiplying”
the sequence above by any exact sequence 0 �! Y �! C.�/ �! G �! 0 one
gets the exact sequence 0 �! Y˚B� �! C.�/˚c0 �! G ˚c0 �! 0. Since both
C.�/ and G have complemented subspaces isomorphic to c0, this sequence can be
written as 0 �! Y ˚B� �! C.�/ �! G �! 0 in which the kernel Y ˚B� is
not even an L1-space.

Again, a positive measure subset of authors believes that the following problem
has an affirmative answer:

Problem 16 Is there a continuum of mutually non-isomorphic spaces of universal
disposition having density character c?

The connection between universal disposition and transitivity is not yet clearly
understood. In particular is not clear if every space of universal disposition for
finite dimensional spaces must be F-transitive or whether every space of universal
disposition for separable spaces must be separably transitive. Ultrapowers are also
involved into these affairs: Since it is well known that ultrapowers of almost
isotropic spaces are isotropic, one is tempted to believe that the proof for the
following question is at hand

Problem 17 Do ultrapowers of almost F-transitive spaces must be F-transitive?

More yet: Is every ultrapower of a space of almost universal disposition separably
transitive?

In a different direction it would be interesting to know if the class of almost
isotropic spaces is “axiomatizable”, equivalently if every Banach space whose
ultrapowers are isotropic is itself almost isotropic; see [28] for a related discussion.

6.7 Asplund Spaces

A Banach space is called an Asplund space if every separable subspace has
separable dual. One of the referees of this work formulated the problem of whether
a classification of Asplund separably injective spaces is possible. More precisely, he
asked:
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Problem 18 Is it true that every Asplund separably injective space is c0-upper-
saturated? Does there exist an Asplund separably injective space that contains an
infinite dimensional reflexive subspace?

Observe that Proposition 2.10 can be translated into:

Proposition 6.15 A separably injective space is Asplund if and only if it does not
contain CŒ0; 1�.

Bourgain [43] (see also [105]) proved that any operator T W CŒ0; 1� �! X
that fixes a subspace of finite cotype also fixes a subspace isomorphic to CŒ0; 1�.
Thus, an Asplund and separably injective space X cannot contain finite cotype (in
particular, superreflexive) subspaces: the corresponding embedding would extend
to CŒ0; 1� providing a copy of CŒ0; 1� inside X. Gasparis [102] showed a similar
result for asymptotically `1 spaces, and therefore an Asplund separably injective
space cannot contain asymptotically `1 spaces. Rosenthal’s conjecture is that any
operator T W CŒ0; 1� �! X that fixes an infinite dimensional subspace not
containing c0 would also fix a copy of CŒ0; 1�. If this were true, an Asplund
separably injective space would be c0-saturated. Gasparis [103] solves affirmatively
Rosenthal’s conjecture under the conditions that the operator is contractive and its
restriction to the subspace is an isometry. One therefore has:

Proposition 6.16 Every infinite dimensional Asplund 1-separably injective space
is c0-saturated.

It seems very likely that infinite dimensional Asplund 1-separably injective
spaces do not exist.

6.8 Grothendieck Spaces

As we have already mentioned, it is an open problem that seems to have been
first posed by Lindenstrauss—see [167, 226]—to characterize Grothendieck C.K/
spaces in terms of topological properties of K. An obvious necessary condition
is that every convergent sequence in K is eventually constant. The condition is
insufficient since C.ˇN	ˇN/ contains complemented copies of c0. There is another
example due to Schlumprecht [227, 5.4] of a C.K/-space with the Gelfand-Phillips
property (something that a Grothendieck space cannot have) without non-stationary
convergent sequences in K. Koszmider remarks in [167] that the class of compact
spaces where every convergent sequence is eventually constant does not admit a
characterization by means of isomorphic properties of the Banach space C.K/. To
show this, consider an example of Schachermayer in [226] of the Stone compact
associated to the Boolean algebra A of all subsets A of N such that 2n 2 A if and
only if 2nC 1 2 A for all but finitely many n 2 N. The compact space S.A/ does
not contain non-stationary convergent sequences for almost the same reason as ˇN
does not: in fact, S.A/ n N is homeomorphic to ˇN n N. The space C.S.A// is not
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Grothendieck since T. f / D . f .2nC1/�f .2n//n defines an operator C.S.A// �! c0
which is onto because all the norm one finitely supported sequences are in the image
of the closed unit ball. On the other hand C.S.A// � `1˚c0 � C.ˇNt˛N/, while
the compact ˇN t ˛N has non-stationary convergent sequences.

A Banach space characterization of Lindenstrauss spaces which are
Grothendieck spaces is simple: not containing complemented copies of c0. A
Banach space characterization of Grothendieck L1-spaces seems to be unknown.
We conjecture

Conjecture 3 Every L1 space that contains no complemented separable subspaces
is a Grothendieck space.

The next proposition is implicit in Lindenstrauss [177]:

Proposition 6.17 An L1-space X is Grothendieck if and only if every operator
T W X ! S with S separable can be extended everywhere.

Proof Let S be a separable space, let j W X ! E be an embedding and let t W X ! S
be an operator. Since X is Grothendieck, t must be weakly compact, hence t�� W
X�� ! S is well defined. Since X is an L1-space, X�� is injective and thus it is
complemented in E��. Therefore t�� admits an extension T W E�� ! S, whose
restriction to E is an extension of t. The converse is clear just embed X into some
`1.� /. ut

We have already mentioned that Grothendieck spaces of type L1 do not
necessarily contain `1: Talagrand [239] constructed, under CH, a Grothendieck
C-space that does not have `1 as a quotient; while Haydon [125] obtained an
independent construction, in ZFC, of a Grothendieck C-space that does not admit
`1 as a subspace. The density character of Grothendieck spaces was treated in
Brech [48] who constructed by forcing an example of a Grothendieck space C.Br/
of density @1 in a certain model in which c D @2. In particular, C.Br/ is a
subspace of ` W 1 and cannot contain `1. More examples of Grothendieck spaces
without copies of `1 and additional properties have appeared after Koszmider’s
construction of C-spaces with few operators in [166, 167]. The example of Brech
shows that the assumption of the existence of a nonreflexive Grothendieck space of
density @1 is weaker than CH: there are models of ZFC where no nonreflexive
Grothendieck space of density @1 exists. In particular, if s denotes the smallest
cardinal 	 such that Œ0; 1�	 is not sequentially compact then one has:

Proposition 6.18 Every Grothendieck space with density character strictly smaller
than s must be reflexive.

Proof Assume that X is a Grothendieck space with density character smaller than
s. Its dual unit ball in the weak* topology will be a compact having weight smaller
than s, hence sequentially compact. By the Grothendieck character, it will also be
weakly sequentially compact and X� should be reflexive, as well as X. ut

As it is well-known, @0 < s � c and s D c under Martin’s axiom, and in
particular @1 < s is consistent. If p is defined as the least cardinality of a family F
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of infinite subsets of N which is closed under finite intersections and such that for
every infinite subset A of N there exists B 2 F such that A n B is infinite (in other
words, the smallest cardinal of a filter base in P.N/= fin whose filter is not contained
in a principal filter) then consistently p < s (see [86]).

The following point regarding the relation between separable injectivity and
Grothendieck character remains unsolved:

Problem 19 Is every �-separably injective space, with � < 2, a Grothendieck
space?

This has obvious connections with Problem 1. Another problem connecting
Grothendieck spaces and cardinals is the following: Let .Ei/i2I be a family of
Banach spaces containing no complemented copy of c0. Can `1.I;Ei/ contain a
complemented copy of c0? Leung and Räbiger show in [174] that if jIj is not
real-valued measurable and .Ei/i2I is a family of Grothendieck spaces that are
Lindenstrauss spaces then `1.I;Ei/ is a Grothendieck space and so it cannot contain
a complemented copy of c0. See Sect. 2.2.6.

Although the existence of real-valued measurable cardinals cannot be proved in
ZFC, such cardinals, if they exist, need not to be very large: Ulam proved in [243]
that if real-valued measurable cardinals do exist then the continuum is one (cf. [142,
Theorem 10.1]).



Appendix A

A.1 Dunford-Pettis and Pełczyński Properties

The following properties are important in the study of the C-spaces, that is, the
spaces of type C.K/ for some compact Hausdorff space K.

Definition A.1 A Banach space X is said to have the Dunford-Pettis property
(in short, DPP) if every weakly compact operator defined on X sends weakly
convergent sequences to convergent sequences.

The following result is due to Grothendieck [115]:

Proposition A.2 C-spaces have the DPP.

It is clear that a complemented subspace of a space with the DPP also enjoys
the DPP. And that an infinite dimensional space with DPP cannot be reflexive:
Otherwise, weakly convergent sequences in E must be convergent and E and this
makes the unit ball of E compact. A general background about the Dunford-Pettis
property can be found in [82] and in [61, Chap. 6].

Definition A.3 A Banach space X is said to have Pełczyński’s property .V/ if every
operator defined on X is either weakly compact or an isomorphism on a copy of c0.

Proposition A.4 C-spaces have Pełczyński’s property .V/.

Quotients of spaces enjoying Pełczyński’s property .V/ have the same property.
Since Johnson and Zippin proved in [147] that every separable Lindenstrauss space
is a quotient of CŒ0; 1�, Lindenstrauss spaces also have Pełczyński’s property .V/.
The combination of property .V/ and DPP yields.

Proposition A.5 Every infinite dimensional complemented subspace of a C-space
contains c0.
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Proof Let P be a projection on a space enjoying both DPP and .V/ whose range,
denoted by E, is infinite dimensional. Then P cannot be weakly compact unless E
is reflexive, which is not since it has DPP. Thus, by property .V/, P must be an
isomorphism on some copy of c0. ut

A.2 L1-Spaces

Definition A.6 A Banach space X is said to be an L1;�-space (1 � � < 1) if
every finite dimensional subspace of X is contained in another finite dimensional
subspace of X whose Banach-Mazur distance to the corresponding space `m1 is at
most �. The space X is said to be an L1-space if it is an L1;�-space for some �.

As usual, A Banach space is said to be an L1;�C-space if it is an L1;�0 -space
for each �0 > �. The basic theory and examples of L1-spaces can be found in
[181, Chap. 5]; to see more exotic examples we refer to [12, 45, 240] or [57]. The
L1 spaces can be considered as the local version of C-spaces and for some time
questions such as if every L1-space must be isomorphic to some C-space, or can
be renormed to be an L1;1C space, were open. The following facts are well known
by now:

• L1;1C-spaces are exactly the Lindenstrauss spaces, i.e., the isometric preduals
of L1.�/-spaces [175].

• A Banach space is an L1;1-space if and only if it is a polyhedral Lindenstrauss
space [181, p.199].

• L1-spaces have the DPP (Proposition A.14).
• There exist L1-spaces without Pełczyński’s property .V/. These cannot there-

fore be renormed to be Lindenstrauss spaces [46, 57].
• Every Banach space X can be embedded into some L1-space L1.X/ so that

the quotient space L1.X/=X has the Schur and Radon-Nikodym properties. This
was proved by Bourgain and Pisier [47] for separable X and in full generality by
López-Abad [183].

• The class of L1 spaces includes Schur spaces [46], `2-saturated spaces [46] (see
also [106]), and hereditarily indecomposable spaces [12, 240].

One important fact for this monograph (Proposition A.13) is that a Banach space
is an L1-space if and only if its bidual is an L1 space. The key to prove that is the
so-called principle of local reflexivity [179, Theorem 3.1]:

Theorem A.7 (Principle of Local Reflexivity) Let X be a Banach space, F a finite
dimensional subspace of X��, G a finite dimensional subspace of X� and " > 0.
Then there is an operator T W F ! X so that:

• kTkkT�1k � 1C ",
• Tx D x for every x 2 F \ X, and
• x��.x�/ D x�.Tx��/ for every x� 2 G and every x�� 2 F.
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A consequence of the principle of local reflexivity is:

Proposition A.8 The second dual X�� of a Banach space X embeds isometrically
as a 1-complemented subspace of some ultrapower of X.

Proof Let F.X��/ and F.X�/ denote the set of all finite dimensional subspaces of
X�� and X� and consider the order in F.X��/	F.X�/	 .0;1/ given by .F;G; "/ �
.F0;G0; "0/ if F � F0;G � G0 and "0 � ". Let U be a free ultrafilter refining
the order filter on F.X��/ 	 F.X�/ 	 .0;1/. Given F 2 F.X��/;G 2 F.X�/ and
" > 0 we consider the operator T.F;G;"/ W F ! X provided by the principle of local
reflexivity. We define a map� W X�� ! XU by letting �.x��/ D Œ.x.F;G;"//�, where

x.F;G;"/ D
(

T.F;G;"/.x��/ if x�� 2 F

0 otherwise.
(A.1)

Clearly, � is a linear isometry of X�� into XU . Note that x.F;G;"/ and T.F;G;"/.x��/
agree “eventually” and so the linearity of� is not a problem due to our choice of U .

To complete the proof consider the operator˘ W XU ! X�� given by

˘Œ.x.F;G;"//� D weak*� lim
U

x.F;G;"/:

Clearly, ˘ is a well-defined, contractive operator. Besides, ˘ ı� D 1X�� since, if
x.F;G;"/ are as in (A.1), then one has x.F;G;"/ ! x�� weakly* along U because each
x� 2 X� falls eventually in G. ut

Kalton and Fakhouri [93, 154] “generalized” the situation above as follows:

Definition A.9 A closed subspace E of X is said to be locally complemented if
there is � > 0 so that for every finite-dimensional subspace F � X there is an
operator T W F ! E so that kTk � � and T.x/ D x for every x 2 F \ E.

We refer to [111, Sect. 4] for ultrapower characterizations of locally comple-
mented subspaces and related concepts. With such notion one has:

Proposition A.10 An L1-space is locally complemented in every superspace.

Proof Let E be an L1;�-space embedded into a superspace X. For a given finite
dimensional subspace F � X, consider the inclusion map F \ E ! X. Pick a
subspace G � E containing F\E and �-isomorphic to some `m1. Then the inclusion
F \ E ! G can be extended to an operator T W X ! G, with kTk � �, whose
restriction to F is the operator we are looking for. ut

The general version of the argument above is:

Lemma A.11 E is locally complemented subspace of X if and only if E?? D E��
is complemented in X��.

Proof Suppose E is �-locally complemented in X. For each F 2 F.X/ we consider
an operator TF W F ! E as in the definition of local complementation, that is, with
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TF.x/ D x for x 2 F \ E and kTFk � �. Let U be a free ultrafilter on F.X/ refining
the order filter. We define an operator T W X ! E�� as

T.x��/ D weak�- lim
U

TF.x
��/:

Since T.x/ D x for all x 2 E, the canonical embedding ı W E �! E�� factorizes
as ı D Tj through X. Observe the diagram

If � W E���� �! E�� denotes a projection through ı�� then �T�� W X�� �! E��
is a projection through j��, so E�� is complemented in X��.

The converse, thanks to the principle of local reflexivity, is clear: E is locally
complemented in E��, which is complemented in X��, so E is locally complemented
in X��, hence in X. ut
Lemma A.12 A locally complemented subspace of an L1-space is an L1-space.

Proof By Proposition A.10 every L1-space is a locally complemented subspace of
a C-space. Since “to be a locally complemented subspace of” is a transitive relation
it suffices to prove that each locally complemented subspace of a C-space is an
L1-space.

On the other hand the bidual of any C-space is again a C-space since it is
isometrically isomorphic to some L1.�/. Hence, if E is locally complemented
in a C-space, then E�� is complemented in a C-space. Thus, if we show that a
complemented subspace of a C-space is an L1-space, we are done, because an
immediate consequence of the principle of local reflexivity is that if E�� is an L1;�-
space then E is an L1;�C-space.

To prove that a complemented subspace of a C-space is an L1-space we present
a streamlined version of [179, Theorem 3.2]. So, assume E is an infinite dimensional
subspace of C.K/ and let Q be a projection of C.K/ with range E. Let F be a finite
dimensional subspace of E and let us fix " 2 .0; 1/0. Then F is contained in a finite
dimensional subspace G of C.K/ which is .1 C "/-isomorphic to `m1. Let E0 be a
complement of QŒG� in E, that is, E D QŒG� C E0 and QŒG� \ E0 D 0. As E0 is
complemented in E it is also complemented in the space C.K/.

By Proposition A.5, every (infinite dimensional) complemented subspace of a C-
space contains c0 and every Banach space that contains c0 contains almost-isometric
copies of c0. Thus, E0 contains almost isometric copies of c0. Pick then a normalized
.1C"/-isomorphic embedding � W `m1 ! E0. Also, let u W `m1 ! G be a normalized
surjective .1 C "/-isomorphism and extend u�1 W G ! `m1 to an operator P W
C.K/! `m1 with kPk D ku�1k � 1C ". Of course P can be seen as a “projection”
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since P ı u D 1`m
1

. Finally, consider the operator T W `m1 ! E defined by

T D Q ı uC �.1`m
1
� P ı Q ı u/:

We conclude the proof by showing:

• The range of T contains F: Pick f 2 F and take g D u�1.f / 2 `m1. Then
P.Q.ug// D P.f / D g and

T.g/ D Q.f /C �.g � PQ.ug// D f C �.g � P.f // D f :

• T is an isomorphism and kTkkT�1k depends only on kQk. Note that kTk �
1 C 3kQk. To obtain a lower bound for the action of T observe that the factor
�Œ`m1� is .1 C "/-injective and so it is complemented in QŒ`m1� C �Œ`m1� by a
projection of norm at most 1C " � 2. It follows that

max.kfk; kgk/ � 3kf C gk

for every f 2 QŒ`m1� and every g 2 �Œ`m1�. Hence, for x 2 `m1, we have

kTxk D kQ.u.x//C �.x � PQ.ux//k
� 1

3
max

�kQ.u.x//k; k�.x � PQ.ux/k�

� 1
3

max
�kQ.u.x//k; .1C "/�1kx � PQ.ux/k�:

Now, if kQ.ux/k � 1
2.1C"/kuxk, then

kTxk � ku.x/k
3 � 2 � .1C "/ �

kxk
3 � 2 � .1C "/2 �

kxk
24
:

If, however, kQ.ux/k � 1
2.1C"/kuxk then, choosing the second quantity in the

maximum,

kTxk � kx � PQ.ux/k
3.1C "/ � kxk � kPQ.ux/k

3.1C "/

� kxk � kPkkQ.ux/k
3.1C "/ � kxk

3 � 2 � .1C "/ :

Thus, kTxk � 1
24
kxk in any case. ut

Therefore

Proposition A.13 The space E is an L1-space if and only if E�� is an L1-space.
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Proof One assertion is consequence of the principle of local reflexivity; as for the
other, if E is an L1-space, it is locally complemented in some C.K/-space, so E��
is complemented in C.K/��, and thus it is an L1-space. ut
Proposition A.14 L1-spaces have the DPP. In particular, no infinite dimensional
L1-space is reflexive.

Proof From Lemma A.11—and the well-known fact that weakly compact operators
extend to the bidual—it follows that a locally complemented subspace of a space
with DPP also enjoys DPP. From Propositions A.10 we get that every L1 space is
locally complemented in some `1.I/-space, and from Proposition A.2 that this last
space has the DPP. ut

A.3 L1-Spaces

The L1-spaces are the local version of the L1.�/-spaces. Precisely

Definition A.15 A Banach space X is said to be an L1;�-space (1 � � < 1) if
every finite dimensional subspace of X is contained in another finite dimensional
subspace of X whose Banach-Mazur distance to the corresponding space `m

1 is at
most �. The space X is said to be an L1-space if it is an L1;�-space for some �.

The basic theory and examples of L1-spaces can be found in [181, Chap. 5], and
for some exotic examples we refer to [45]. We are interested in L1-spaces because
of their duality relations with L1-spaces.

Proposition A.16 A Banach space is an L1-space (resp. L1-space) if and only if
its dual is an L1-space (resp. L1-space).

A proof can be found in [181, Theorem II.5.7]. Since dual L1-spaces are
injective (Proposition 1.9) one has:

Corollary A.17 A Banach space is an L1-space if and only if its dual is injective.

There are essential differences in the behaviour of L1 and L1 spaces. For
instance, every infinite-dimensional L1-space contains a complemented copy of `1
[181, Theorem II.5.7], a result for which there is no counter-part for L1-spaces.
The most striking one is the following fundamental result of Lindenstrauss [176]
(see also [158]) for L1-spaces that has no counter-part for L1-spaces.

Proposition A.18 (Lindenstrauss Lifting) Let L1 denote an arbitrary L1-space
and let Y be a space complemented in its bidual. Then Ext.L1;Y/ D 0, that is,
every exact sequence

splits.
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Proof Since L �
1 is injective (Corollary A.17) the dual sequence

splits and so there is an operator 	 W Y� ! X� such that {� ı 	 D 1Y� . If P is any
projection of Y�� onto Y, then the restriction of 	� ı P W X�� ! Y�� ! Y to X
provides a left-inverse for {.

A.4 Homological Tools

We describe now some basic homological constructions.

A.4.1 The Push-Out Construction

In this section we describe the push-out construction for Banach spaces. This
construction appears naturally when one considers a couple of operators defined on
the same space, in particular in any extension problem. Let us explain why. Given
operators ˛ W Y ! A and ˇ W Y ! B, the associated push-out diagram is

(A.2)

The push-out space PO D PO.˛; ˇ/ is quotient of the direct sum space A˚1 B by
the closure of the subspace � D f.˛y;�ˇy/ W y 2 Yg. The map ˛0 is given by
the inclusion of B into A ˚1 B followed by the natural quotient map A ˚1 B !
.A˚1 B/=�, so that ˛0.b/ D .0; b/C� and, analogously, ˇ0.a/ D .a; 0/C�.

The preceding diagram is commutative: ˇ0˛ D ˛0ˇ. Moreover, it is “minimal” in
the sense of having the following universal property: if ˇ00 W A! C and ˛00 W B! C
are operators such that ˇ00˛ D ˛00ˇ, then there is a unique operator � W PO ! C
such that ˛00 D �˛0 and ˇ00 D �ˇ0 as illustrated in the following diagram

(A.3)

Clearly, �..a; b/C�/ D ˇ00.a/C ˛00.b/ and one has k�k � maxfk˛00k; kˇ00kg.
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Regarding the behaviour of the maps in Diagram (A.2), one has:

Lemma A.19

1. maxfk˛0k; kˇ0kg � 1.
2. If ˛ is an isomorphic embedding, then � is closed.
3. If ˛ is an isometric embedding and kˇk � 1 then ˛0 is an isometric embedding.
4. If ˛ is an isomorphic embedding then ˛0 is an isomorphic embedding.
5. If kˇk � 1 and ˛ is an isomorphism then ˛0 is an isomorphism and

k.˛0/�1k � maxf1; k˛�1kg:

Proof (1) and (2) are clear. To prove (3), recall that � is closed. Now, if kˇk � 1,

k˛0.b/k D k.0; b/C�k D inf
y2Y
fk˛ykCkb�ˇykg � inf

y2Y
fkˇykCkb�ˇykg � kbk;

as required. (4) is clear after (3). To prove the assertion about .˛0/�1 in (5), notice
that for all a 2 A and b 2 B one has .a; b/C � D .0; bC ˇy/ C � for any y 2 Y
such that ˛y D a. Therefore, for all y0 2 Y one has

kbC ˇyk � kbC ˇyC ˇy0k C kˇy0k
� jbC ˇyC ˇy0k C ky0k
� kbC ˇyC ˇy0k C k˛�1kk˛y0k

from where the assertion follows. ut
Isomorphic vs. Isometric Push-Out Diagram We will say that a commutative
diagram

(A.4)

is a push-out square (or an isomorphic push-out square if specification is needed) if
it has the universal property reflected in Diagram (A.3), namely that for any couple
of operators ˛00 W B! C and ˇ00 W A! C satisfying ˇ00 ı ˛ D ˛00 ı ˇ there exists a
unique operator � W X ! C such that ˇ00 D � ı b and ˛00 D � ı a.

If the maps in (A.4) are isometries and k�k � maxfk˛00k; kˇ00kg for every
˛00; ˇ00, then we say that (A.4) is an isometric push-out square. In this case there
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is a surjective isometry � W PO! X making commutative the diagram

A.4.2 Further Properties of Push-Out Squares

We collect here several properties of push-out squares that are needed in the
monograph. The proofs are immediate from the universal property of the push-out
construction.

Push-Out Made with Inclusions Let A;B be two subspaces of a Banach space E.
The well-known isomorphism between the spaces AC B=A and B=.A \ B/ can be
reinterpreted by saying that the diagram

is an isomorphic push-out square. Indeed, assume one has operators ˛ W A ! X
and ˇ W B ! X agreeing on A \ B. Then the operator � W A C B ! X given by
�.aCb/ D ˛.a/Cˇ.b/ is well defined, agrees with ˛ on A and agrees with ˇ on B.

Concatenation of Squares Consider a commutative diagram

(A.5)

If the left and right squares are isomorphic (resp. isometric) push-out squares then
so is their “concatenation”



194 Appendix A

As a partial converse, if the preceding diagram is a push-out square, then so is the
right square in Diagram (A.5).

Limits Given a commutative diagram made with push-out squares

in which the inductive limits lim�!An and lim�! POn exist (which is always the case if
one considers isometric push-out squares) then also

is a push-out square.

A.4.3 The Pull-Back Construction

The pull-back construction is the dual of that of push-out in the sense of categories,
that is, “reversing arrows”. Indeed, let ˛ W A ! Z and ˇ W B ! Z be operators
acting between Banach spaces. The associated pull-back diagram is

(A.6)

The pull-back space is PB D PB.˛; ˇ/ D f.a; b/ 2 A˚1 B W ˛.a/ D ˇ.b/g. The
arrows after primes are the restriction of the projections onto the corresponding
factor. Needless to say (A.6) is minimally commutative in the sense that if the
operators 00̌ W C ! A and 00̨ W C ! B satisfy ˛ ı 00̌ D ˇ ı 00̨ , then there is a
unique operator � W C! PB such that 00̌ D 0̌ � and 00̌ D 0̌ � , that is, the following
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diagram is commutative:

Clearly, �.c/ D .00̌ .c/; 00̨ .c// and k�k � maxfk00̨ k; k00̌ kg. Also, the map 0̨ is onto
if ˛ is.

A.4.4 Short Exact Sequences

A short exact sequence of Banach spaces is a diagram

(A.7)

where Y, X and Z are Banach spaces and the arrows are operators in such a way that
the kernel of each arrow coincides with the image of the preceding one. By the open
mapping theorem j embeds Y as a closed subspace of X and Z is isomorphic to the
quotient X=jŒY�. The middle space X in an exact sequence (A.7) is called a twisted
sum of Y an Z.

We say that an exact sequence 0 ! Y ! X1 ! Z ! 0 is equivalent to (A.7) if
there exists an operator T W X ! X1 making commutative the diagram

(A.8)

The operator T above must actually be an isomorphism in view of the classical
“three-lemma” asserting that in a commutative diagram of vector spaces and linear
maps
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having exact rows, if u and w are surjective (resp. injective) then so is v.
Hence, the operator T in Diagram (A.8) is a bijection and therefore it is a linear
homeomorphism, according to the open mapping theorem.

The exact sequence (A.7) is said to be trivial, or that splits if there is an operator
p W X ! Y such that pj D 1Y (i.e., j.Y/ is complemented in X); equivalently, there
is an operator s W Z ! X such that qs D 1Z. Of course that an exact sequence (A.7)
splits if and only if it is equivalent to the direct sum sequence 0! Y ! Y ˚ Z !
Z ! 0.

For every pair of Banach spaces Z and Y, we denote by Ext.Z;Y/ the space
of all exact sequences 0 ! Y ! X ! Z ! 0, modulo equivalence. We write
Ext.Z;Y/ D 0 to mean that every sequence of this form is trivial. The reason for
this notation is that Ext.Z;Y/ has a natural linear structure [55, 61] for which the
(class of the) trivial exact sequence is the zero element.

Two exact sequences 0 ! Y ! X ! Z ! 0 and 0 ! Y1 ! X1 ! Z1 ! 0

are said to be isomorphically equivalent if there exist isomorphisms ˛; ˇ; � making
a commutative diagram

A.4.5 Push-Out and Pull-Back Exact Sequences

Suppose we are given an exact sequence (A.7) and an operator t W Y ! B. Consider
the push-out of the couple .t; j/ and draw the corresponding arrows:

By Lemma A.19(4), j0 is an isomorphic embedding. Now, the operator q W X ! Z
and the null operator 0 W B! Z satisfy the identity qj D 0t D 0; thus, the universal
property of the push-out gives a unique operator$ W PO! Z making the following
diagram commutative:

(A.9)
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An explicit definition for this operator is: $..x; b/ C �/ D q.x/. Elementary
considerations show that the lower sequence in the preceding Diagram (A.9) is
exact, and thus it will be referred to as “the push-out sequence”. In fact, the universal
property of the push-out makes this diagram unique, in the sense that for any other
commutative diagram of exact sequences

(A.10)

the lower exact sequence turns out to be equivalent to the push-out sequence
in (A.9). For this reason we usually refer to a diagram like (A.10) as a push-out
diagram. One has:

Lemma A.20 In a push-out diagram (A.10) the push-out sequence splits if and only
if t extends to X in the sense that there is an operator T W X ! B such that t D T ı j.

Proof The universal property of the push-out construction. ut
Proceeding dually one obtains the pull-back sequence. Consider again (A.7) and

an operator u W A! Z. Let us form the pull-back diagram of the couple .q; u/ to get
a diagram

Recalling that 0q is onto and taking i.y/ D .0; j.y//, it is easily seen that the following
diagram is commutative:

(A.11)

The lower sequence is exact, and we shall refer to it as the pull-back sequence.
Given a commutative diagram

(A.12)
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the lower exact sequence is equivalent to the pull-back sequence in (A.11). For this
reason any diagram like (A.12) is called a pull-back diagram. The splitting criterion
is now as follows.

Lemma A.21 In a pull-back diagram (A.12) the pull-back sequence splits if and
only if u lifts to X in the sense that there is an operator L W A ! X such that
u D q ı L.

Proof The universal property of the pull-back construction. ut

A.4.6 Commutativity of Pull-Back and Push-Out Operations

Let us show that the pull-back and push-out processes are commutative. Making
pull-back first and then push-out yields

While making push-out first and then pull-back yields the commutative diagram

Let us show that the final resulting sequences are equivalent; i.e., that there is an
operator T W PO.PB/ �! PB.PO/ making commutative the diagram

(A.13)
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There are two ways to get such map: one is relying on the fact that PO.PB/ is a
push-out and the other relying on the fact that PB.PO/ is a pull-back. Let us make
this last case. Thus, consider the pull-back square

(A.14)

Let us form another commutative square:

(A.15)

in which the arrow ı is obtained from the push-out square

in combination with the fact that the square

is also commutative: ˛� jB D ˛j D j0˛. Thus, there is a unique operator ı W
PO.PB/! PO such that ı˛ D ˛� and jOB D jO.

A combination of diagrams (A.14) and (A.15) immediately yields the existence
of an operator T W PO.PB/ ! PB.PO/ such that qBOT D qOB and �T D ı. The
first of those equalities, qBOT D qOB is the commutativity of the right square in
diagram (A.13). Let us prove the commutativity of the left square; i.e., TjOB D jBO:
Since qBOT D qOB it is clear that qBOTjOB D qOBjOB D 0 and therefore some
operator u W Y1 ! Y1 must exist so that TjOB D jBOu. But since jOu D � jBOu D
�TjOB D ıjOB D j0 it follows that u D 1Y1 , and this concludes the proof.
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A.4.7 The Diagonal Principle

Diagonal principles were introduced and studied in [63]. They are useful tools
when dealing with problems involving the extension/lifting of embeddings. A
homological proofs for these principles can be seen in [63], while an elementary
proof for the diagonal principle, extension case, can be traced back to Klee [165];
see also [37]. We present here a straightforward proof for the extension case.

Proposition A.22 Let { W Y ! X and j W Y ! X0 be into isomorphisms between
Banach spaces. Then there exist operators I W X0 ! X and J W X ! X0 such that
Ij D { and J{ D j if and only if there exists an automorphism � W X ˚ X0 ! X ˚ X0
such that �.{y; 0/ D .0; jy/.
Proof The maps �j W X ˚ X0 ! X ˚ X0 given by �j.x; x0/ D .x; x0 C J.x// and
�{ W X ˚ X0 ! X ˚ X0 given by �{.x; x0/ D .x � I.x0/; x0/; are both isomorphisms.
So, � D �{�j turns out to be the isomorphism we are looking for:

�.x; x0/ D �{�j.x; x
0/ D �{.x; x0 C J.x//.x � I.x0 C J.x//; x0 C J.x//

and thus

�.{y; 0/ D .{y � I.0C J.{y//; 0C J.{y// D .0; jy/:
The converse is also true. Indeed, if � W X ˚ X0 ! X ˚ X0 is an automorphism such
that �.{y; 0/ D .0; jy/, the restriction of the projection � W X ˚ X0 ! X0 to X is
obviously an extension of j through {. ut

A.4.8 The Homology Sequence

Given an exact sequence 0 �! Y
j�! X

q�! Z �! 0 and another Banach space B,
taking operators with values in B one gets the exact sequence

where q� (resp. j�) means composition with q (resp. j) on the right. The sequence,
so homological algebra says, can be continued to form a “long exact sequence”

0�!L.Z;B/
q�

�! L.X;B/
j��! L.Y;B/

ˇ�! Ext.Z;B/�!Ext.X;B/�!Ext.Y;B/

The dual thing happens taking operators from a given Banach space A: one gets the
exact sequence
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where q� (resp. j�) means composition with q (resp. j) on the left. The sequence, so
homological algebra says, can be continued to form a “long exact sequence”

0�!L.A;Y/
j��! L.A;X/

q��! L.A;Z/
˛�! Ext.A;Y/�!Ext.A;X/�!Ext.A;Z/

A detailed description of such sequences can be seen in [55]. Here we only indicate
the action of the arrows ˛ and ˇ, which suffices for every (but one) purpose in this
monograph.

• Given u 2 L.A;Z/, ˛.u/ is (the class in Ext.A;Y/) of the lower row in the pull-
back diagram (A.11).

• Given t 2 L.Y;B/, ˇ.t/ is (the class in Ext.Z;B/ of) the lower extension of the
push-out diagram (A.9).

A.5 Ordinals and Cardinals

Ordinals are a generalization of natural numbers that allows to use induction
arguments even on uncountable sets. Ordinals are constructed inductively starting
from the ordinal 0 by two procedures: given an ordinal ˛ we can construct its
successor ˛ C 1, and (this is how one goes beyond natural numbers) given any
set of ordinals, we can construct the least ordinal which is above all of them. An
ordinal can be formally defined as a set � where the inclusion and the order relations
coincide, in the sense that for every ˛; ˇ 2 � [ f�g we have that ˛ 2 ˇ if and only
if ˛ ¨ ˇ. Such a definition is good to formalize the theory, but basic intuition and
working knowledge about ordinals are better summarized in the following list of
properties:

1. Each ordinal is a set.
2. Given two ordinals ˛; ˇ, we have that ˛ 2 ˇ if and only if ˛ ¨ ˇ. In that case,

we write ˛ < ˇ.
3. Each ordinal ˇ coincides with the set of all ordinals below ˇ, that is, ˇ D
f˛ ordinal W ˛ < ˇg.

4. The first ordinals are the finite ordinals: the natural numbers, 0 D ¿, 1 D f0g,
2 D f0; 1g, 3 D f0; 1; 2g, etc. But ordinals further continue, the first infinite
ordinal is ! D f0; 1; 2; : : :g, then ! C 1 D f0; 1; 2; : : : ; !g, etc.

5. Ordinals are well ordered. This means that every nonempty class of ordinals A
has a minimum element, an ordinal ˛ such that ˛ � ˇ for all ˇ 2 A. In particular,
< is also a linear order: for any ordinals ˛, ˇ, either ˛ < ˇ or ˇ < ˛ of ˛ D ˇ.

6. For every ordinal ˛ there exists an immediate successor ordinal ˛C 1: just apply
the principle of well order to the class ordinals larger than ˛. Ordinals of the form
˛C 1 are called successor ordinals, and the rest are called limit ordinals. A limit
ordinal ˇ is the supremum (also the union) of all ordinals below ˇ.
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7. The well ordering of ordinals implies the induction principle: If we want to prove
a statement P.˛/ for all ordinals ˛ it is enough to prove that, for every ordinal ˇ,
if P.˛/ holds for all ˛ < ˇ, then P.ˇ/ must hold as well.

8. The induction principle can be used also to make definitions. If we want to define
a function F on all ordinals, it is enough to describe, for every ordinalˇ how F.ˇ/
is constructed if we suppose that F.˛/ is already given for all ˛ < ˇ.

9. Inductive arguments as in the items above are often splitted into two cases,
depending on whether ˇ is a successor or a limit ordinal. Although formally
not needed, the initial case of ˇ D 0 is sometimes considered for clarity.

A cardinal is an ordinal 	 that cannot be bijected with any ordinal ˛ < 	.

1. Every set X can be bijected with a unique cardinal 	, that is called the cardinality
of X, and is denoted as 	 D jXj.

2. By the well ordering principle of ordinals, given a cardinal 	, there exists the
minimum cardinal above 	, that we denote by 	C.

3. All natural numbers are cardinals. The first infinite cardinal is !, that is also
called !0 or @0 when viewed as a cardinal. The cardinal !C is denoted as
!1 or @1. This notation extends by declaring @nC1 D @C

n , and so we have
@0;@1;@2;@3; : : :.

4. Another cardinal is @! , the supremum of the @n for n < !.
5. Given a cardinal 	, the cardinal 2	 is the cardinality of the cartesian product
f0; 1g	 , or equivalently of the power set of 	. It always happens that 	 < 2	 .

6. The cardinal c D 2@0 is the cardinality of the continuum.
7. The cofinality of a limit ordinal ˛ is the least cardinal � for which there is a

subset of ˛ of cardinality � whose supremum is ˛. Thus for example, @! has
cofinality @0. On the other hand, the cofinality of c is strictly greater than @0.

A.6 Direct and Inverse Limits

In Banach space theory it is natural to construct a space as the “union” of a family
of larger and larger spaces as follows:

Let .X˛/ be a family of Banach spaces indexed by a directed set � whose
preorder is denoted by �. Suppose that, for each ˛; ˇ 2 � with ˛ � ˇ we have
an isometry f ˇ˛ W X˛ ! Xˇ in such a way that f ˛˛ is the identity on X˛ for every

˛ 2 � and f �ˇ ı f ˇ˛ D f �˛ provided ˛ � ˇ � � . Then .X˛; f
ˇ
˛ / is said to be a directed

system of Banach spaces.
The direct limit of the system is constructed as follows. First we take the disjoint

union
F

˛ X˛ and we define an equivalence relation  by identifying x˛ 2 X˛ and
xˇ 2 Xˇ if there is � 2 � such that f �˛ .x˛/ D f �ˇ .xˇ/. Then we may use the natural
inclusion maps {� W X� ! F

˛ X˛ to transfer the linear structure and the norm from
the spaces X˛ to

F
˛ X˛=  thus obtaining a normed space whose completion is

called the direct limit of the system and is denoted by lim�!X� . The universal property
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behind this construction is the following: if we are given a system of contractive
operators u� W X� ! Y, where Y is a Banach space, which are compatible with the

f ˇ˛ in the sense that u˛ D uˇ ı f ˇ˛ for ˛ � ˇ, then there is a unique contractive
operator u W lim�! X� ! Y such that u ı {˛ D u˛ for every ˛ 2 � . That operator is

often called the direct limit of the family .u˛/.
A closely related notion is that of an ordinal-indexed sequence of Banach spaces.

Let  be an ordinal. Then a -sequence of Banach spaces is a family of Banach
spaces .X˛/˛� such that X˛ � Xˇ for ˛ � ˇ � . If, besides, one has

Xˇ D
[

˛<ˇ

X˛

for each limit ordinal ˇ � , then .X˛/˛� is said to be continuous.
The following construction is typical. Let X be a Banach space and let  be

the least ordinal such that jj D dens.X/. By the very definition there is a subset
fx˛ W ˛ < g spanning a dense subspace of X. Then

X˛ D spanfxˇ W ˇ < ˛g .˛ � /

is a continuous -sequence, and X D X.
The simplest nontrivial example is the writing of a separable Banach space as the

closure of the union of an increasing sequence of finite dimensional subspaces; that
is, a continuous!-sequence. The next interesting case, which already involves Zorn
lemma, occurs when dens.X/ D @1, so that the nonseparable space X D X!1 can be
seen as a continuous !1-sequence of separable Banach spaces.

The dual construction in topology is that of inverse limit of compact spaces.
An inverse system is a family .K˛/˛ of compact spaces indexed by directed set �
together with continuous surjections �ˇ˛ W Kˇ �! K˛ for ˛ � ˇ, with the property

that �ˇ˛ ı ��ˇ D �
�
˛ when ˛ � ˇ � � and �˛˛ D 1K˛ for every ˛ 2 � . The inverse

limit of the system is

lim � K˛ D
(
.x˛/ 2

Y

˛2�
K˛ W ��ˇ .x� / D xˇ for ˇ � �

)

which is a compact space equipped with the relative product topology.
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119. R. Gurevič, On ultracoproducts of compact Hausdorff spaces. J. Symb. Log. 53, 294–300

(1983)
120. P. Hájek, V. Montesinos Santalucía, J. Vanderwerff, V. Zizler, Biorthogonal Systems in

Banach Spaces. CMS Books in Mathematics (Springer, New York, 2008)
121. P. Harmand, D. Werner, W. Werner, M-Ideals in Banach Spaces and Banach Algebras.

Lecture Notes in Mathematics, vol. 1547 (Springer, New York, 1993)
122. V.S. Hasanov, Some universally complemented subspaces of m.� /. Mat. Zametki 27, 105–

108 (1980)
123. F. Haussdorff, Summen von @1 Mengen. Fund. Math. 26, 241–255 (1936)
124. R.G. Haydon, On dual L1-spaces and injective bidual Banach spaces. Isr. J. Math. 31, 142–152

(1978)
125. R.G. Haydon, A nonreflexive Grothendieck space that does not contain `1. Isr. J. Math. 40,

65–73 (1981)
126. S. Heinrich, Ultraproducts in Banach space theory. J. Reine Angew. Math. 313, 72–104 (1980)
127. S. Heinrich, Ultraproducts of L1-predual spaces. Fund. Math. 113, 221–234 (1981)
128. S. Heinrich, C.W. Henson, Banach space model theory. II. Isomorphic equivalence. Math.

Nachr. 125, 301–317 (1986)
129. M. Henriksen, Some remarks on a paper of Aronszajn and Panitchpakdi. Pac. J. Math. 7,

1619–1621 (1957)
130. C.W. Henson, Nonstandard hulls of Banach spaces. Isr. J. Math. 25, 108–144 (1976)
131. C.W. Henson, Background for Three Lectures on: Nonstandard analysis and ultraproducts in

Banach spaces and functional analysis. Manuscript, 16 p.



210 References

132. C.W. Henson, J. Iovino, Ultraproducts in Analysis. London Mathematical Society Lecture
Notes Series, vol. 262 (Cambridge University Press, Cambridge, 2002), pp. 1–113

133. C.W. Henson, L.C. Moore, Nonstandard hulls of the classical Banach spaces. Duke Math. J.
41, 277–284 (1974)

134. C.W. Henson, L.C. Moore, Nonstandard analysis and the theory Banach spaces, in Non-
standard Analysis–Recent Developments. Lecture Notes in Mathematics, vol. 983 (Springer,
Berlin, 1983), pp. 27–112

135. C.W. Henson, L.C. Moore, The Banach spaces `p.n/ for large p and n. Manuscripta Math. 44,
1–33 (1983)

136. W. Hodges, Model theory, in Encyclopedia of Mathematics and Its Applications, vol. 42
(Cambridge University Press, Cambridge, 1993)

137. O. Hustad, A note on complex spaces. Isr. J. Math. 16, 117–119 (1973)
138. J. Isbell, Z. Semadeni, Projections constants and spaces of continuous functions. Trans. Am.

Math. Soc. 107, 38–48 (1963)
139. R.C. James, Uniformly nonsquare Banach spaces. Ann. Math. 80, 542–550 (1964)
140. H. Jarchow, The three space problem and ideals of operators. Math. Nachr. 119, 121–128

(1984)
141. H.M. Jebreen, F.B. Jamjoom, D.T. Yost, Colocality and twisted sums of Banach spaces. J.

Math. Anal. Appl. 323, 864–875 (2006)
142. T. Jech, Set Theory. The third millennium edition, revised and expanded. Springer Mono-

graphs in Mathematics (Springer, Berlin, 2003)
143. M. Jiménez Sevilla, J.P. Moreno, Renorming Banach spaces with the Mazur intersection

property. J. Funct. Anal. 144, 486–504 (1997)
144. W.B. Johnson, J. Lindenstrauss, Some remarks on weakly compactly generated Banach

spaces. Isr. J. Math. 17, 219–230 (1974)
145. W.B. Johnson, J. Lindenstrauss, Basic concepts in the theory of Banach spaces, in Handbook

of the Geometry of Banach Spaces, vol. 1, ed. by W.B. Johnson, J. Lindenstrauss (North-
Holland, Amsterdam 2001), pp. 1–84

146. W.B. Johnson, T. Oikhberg, Separable lifting property and extensions of local reflexivity. Ill.
J. Math. 45, 123–137 (2001)

147. W.B. Johnson, M. Zippin, Separable L1 preduals are quotients of C.�/. Isr. J. Math. 16,
198–202 (1973)

148. W.B. Johnson, H.P. Rosenthal, M. Zippin, On bases, finite dimensional decompositions and
weaker structures in Banach spaces. Isr. J. Math. 9, 488–506 (1971)

149. W.B. Johnson, T. Kania, G. Schechtman, Closed ideals of operators on and complemented
subspaces of Banach spaces of functions with countable support (2015). arXiv:1502.03026

150. M.I. Kadec, On complementably universal Banach spaces. Stud. Math. 40, 85–89 (1971)
151. R.V. Kadison, The von Neumann algebra characterization theorems. Expo. Math. 3, 193–227

(1985)
152. N.J. Kalton, Universal spaces and universal bases in metric linear spaces. Stud. Math. 61,

161–191 (1977)
153. N.J. Kalton, Transitivity and quotients of Orlicz spaces. Comment. Math. (Special issue in

honor of the 75th birthday of W. Orlicz) 159–172 (1978)
154. N.J. Kalton, Locally complemented subspaces and Lp-spaces for 0 < p < 1. Math. Nachr.

115, 71–97 (1984)
155. N.J. Kalton, Extension of linear operators and Lipschitz maps into C.K/-spaces. N. Y. J.

Math. 13, 317–381 (2007)
156. N.J. Kalton, Automorphism of C.K/-spaces and extension of linear operators. Ill. J. Math. 52,

279–317 (2008)
157. N.J. Kalton, Lipschitz and uniform embeddings into `1. Fund. Math. 212, 53–69 (2011)
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