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Abstract. Answer Set Programming is a widely known knowledge representation
framework based on the logic programming paradigm that has been extensively
studied in the past decades. The semantic framework for Answer Set Programs is
based on the use of stable model semantics. There are two characteristics intrin-
sically associated with the construction of stable models for answer set programs.
Any member of an answer set is supported through facts and chains of rules and
those members are in the answer set only if generated minimally in such a manner.
These two characteristics, supportedness and minimality, provide the essence of
stable models. Additionally, answer sets are implicitly partial and that partiality
provides epistemic overtones to the interpretation of disjunctive rules and default
negation. This paper is intended to shed light on these characteristics by defining
a semantic framework for answer set programming based on an extended first-
order Kleene logic with weak and strong negation. Additionally, a definition of
strongly supported models is introduced, separate from the minimality assumption
explicit in stable models. This is used to both clarify and generate alternative se-
mantic interpretations for answer set programs with disjunctive rules in addition to
answer set programs with constraint rules. An algorithm is provided for computing
supported models and comparative complexity results between strongly supported
and stable model generation are provided.

1 Introduction

Answer Set Programming (ASP) [2, 4–6, 16, 17] is a knowledge representation frame-
work based on the logic programming paradigm that uses an answer set/stable model se-
mantics for logic programs as its basis. There are a number of extensions to the language
of ASP that provide increased expressivity relative to standard Prolog with negation as
failure. ASP allows two kinds of negation, classical or “strong” negation and default or
“weak” negation. Additionally, it is extended to allow disjunctive heads in rules.
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A very attractive feature of ASP is the use of an open world assumption as default
in its semantic theory rather than the closed world assumption present in standard Pro-
log and most variants of Datalog. The open world assumption arises naturally in ASP
since its semantic theory is intrinsically based on partial interpretations or models. Ad-
ditionally, one can syntactically encode local closed world assumptions for particular
relations in an answer set program in a fine-grained manner when needed.

ASP also includes constraint rules, rules whose heads are false. Constraint rules have
been shown to be quite useful as a model filtering technique in various applications of
ASP. Interestingly, the ASP semantics for constraint rules (and existing implementa-
tions) makes implicit use of a technique associated with filtered circumscription where
answer sets are first generated for a subset of rules (non-constraint rules) in an answer
set program and then these answer sets are filtered with the remaining constraint rules.
There are other ways to interpret the semantics of constraint rules that are equally intu-
itive and will be considered.

In [16] the following informal principles that guide such a construction by a rational
reasoner are pointed out. During the construction of an answer set S for an answer set
program Π ,

1. S must satisfy the rules of Π in the sense that any atom in S is in the head of a rule
r of Π and the chain of rules used to satisfy the atom should be grounded in facts
of Π ;

2. the construction of S does not include any atoms that are not forced to be in S
except through the explicit use of chains of rules grounded in facts.

The first principle describes a form of chained rule support for any atom in S while the
second principle describes a minimality principle for any answer set S for an answer set
program Π . In fact, a supported, minimal model for Π is a stable model for Π in the
technical sense.

On the surface, both supportedness and the minimality principle make intuitive sense,
especially in the context of normal answer set programs (those with non-disjunctive
heads) and without constraint rules. When an answer set program is extended with ei-
ther rules with disjunctive heads or constraint rules, or both, there are equally intuitive
semantics that provide partial models for such programs that are not necessary minimal
in the sense used for stable model semantics.

In order to explore these distinctions in the context of semantic alternatives for an-
swer set programs which allow both rules with disjunctive heads and constraint rules,
the underlying formalism has to be able to make a distinction between supportedness
and minimality. Additionally, one would like the underlying semantic theory to elu-
cidate the use of partial interpretations explicitly in the logical apparatus used. This
implies the use of a multi-valued logic as a semantic basis for answer set programming.

The underlying logic used as a basis for a semantic theory for answer set programs
that may include both classical and default negation, disjunctive heads in rules, and
constraint rules will be a well known first-order three-valued logic proposed by Kleene.
This logic uses the strong connectives for disjunction, conjunction. implication and
(strong) negation and is denoted by K3. K3 is then extended with a nonmonotonic
(weak) negation connective,not, in addition to a conditional connective that supports
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the intuitive reading of ASP rules. Rules are also generalized to include arbitrary first-
order Kleene formulas in the bodies of rules.

Interestingly, this logic is sound for ASP programs with finite domains in the fol-
lowing sense. Let Π be an answer set program and Masp(Π) the stable models of Π
using the stable model semantics. Additionally, let MKL�(Π) be the partial models of
Π using the modified Kleene logic and Trans() a straightforward translation function
that takes a partial model from K3 and returns an ASP model consisting of positive and
(classically) negative literals. Then:

Masp(Π) ⊆ {m | m′ ∈ MKL�(Π) ∧m = Trans(m ′)},
where:

Trans(m′) def
= {� | m′(�) = T} ∪ {¬� | m′(�) = F}. (1)

Given that this is the case, definitions will be provided that allow us to distinguish be-
tween strongly supported models for an ASP program Π and minimal, supported mod-
els for Π . For normal ASP’s, supported models and stable models are equivalent. For
ASPs with disjunctive rules, one can define a semantics in terms of only strongly sup-
ported models, or strongly supported, minimal models. In the latter case, equivalence is
shown between the strongly supported, minimal models of an answer set program with
disjunctive rules and its stable models.

An alternative semantics for ASPs is provided by simply appealing to the use of
strongly supported models. The gain here is that the semantic intuitions are equally
convincing, yet the complexity in constructing answer sets for ASPs with disjunctive
rules is lower. An algorithm for generating strongly supported models for ASP’s is also
provided. Comparative complexity results are provided for stable models and supported
models.

The paper concludes with a discussion of constraint rules and ASPs. Two alternative
ways to generate answer sets for ASPs that include constraints are provided. In the first
case, one simply generates the strongly supported, (minimal) models of the ASP using
Kleene semantics and translates these into answer sets using the Trans() function.
In the other case, one partitions an ASP into two sets, C and NC, representing the
constraint rules and other rules, respectively. One then generates the supported minimal
models for NC using Kleene semantics and then filters these with the constraint rules
in C leaving only those models that satisfy the constraints rules in C, too.

The latter case appears to provide the current semantics for ASPs with constraint
rules and existing implementations of ASPs appear to follow this semantics. Interest-
ingly, the former case is equally feasible and seems to make more sense in the context
of ASPs that have an underlying Kleene semantics. A constraint rule is simply a rule
like any other in an ASP and filtering is implicit in the model construction for the full
ASP. These two approaches do not necessarily generate the same models for an ASP.

The paper is structured as follows. In Section 2 we define an extended first-order lan-
guage and its modified Kleene three-valued semantics. In Section 3 we introduce ASPK

and define its semantics using strongly supported models. We also consider ASPK
min

admitting only minimal strongly supported models. Section 4 is devoted to alternative
semantics for constraint rules. In Section 5 we discuss minimality and its effects in the
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context of standard ASP stable model semantics and ASPK strongly supported model
semantics. Section 6 presents an algorithm for computing strongly supported models
and comparative complexity results between standard ASP, ASPK and ASPK

min . Fi-
nally, Section 7 concludes the paper.

2 First-Order Formulas with Default Negation

Answer set rules in the formalism to be introduced will be generalized to allow arbitrary
first-order formulas with default negation in their bodies. In this section, the language
of first-order formulas used is introduced. Additionally, the underlying semantics for
this language will be a modified first-order three-valued Kleene logic K3 with weak
and strong negation that is also described.

Let D be a finite set of constants, called the domain. In the current paper we deal
with finite domains only and assume that these domains consist of constant symbols.
We further assume that V is the set of individual variables and R is the set of relation
symbols. The number of arguments of r ∈ R is denoted by n(r).

Definition 1. By a positive literal (or an atom) we mean any expression of the form
r(a1, . . . , an(r)), where r ∈ R and a1, . . . , an(r) ∈ D ∪ V . A negative literal is an
expression of the form¬�, where � is a positive literal. A literal is a positive or a negative
literal. A ground literal is a literal without variables. A set of literals is consistent if it
contains no literal � together with its negation ¬�.1 �

Definition 2. By Kleene first-order formulas, KFOL, we understand formulas of first-
order logic with an additional connective ‘not’, called default negation:

〈KFOL〉 ::= T | F | U | 〈Atom〉 | ¬ 〈KFOL〉 | not 〈KFOL〉 |
〈KFOL〉 ∨ 〈KFOL〉 | 〈KFOL〉 ∧ 〈KFOL〉 | 〈KFOL〉 ⇒ 〈KFOL〉
∃ 〈V 〉 〈KFOL〉 | ∀ 〈V 〉 〈KFOL〉 | (〈KFOL〉) �

The semantics of KFOL is three-valued, with the set of truth values {T, F, U} ordered
by ‘<’ defined as follows:

F < U < T. (2)

For the propositional connectives, we use the semantics of Kleene’s system with
strong connectives [18]. We denote the logic as K3.

Definition 3. For u,w ∈ {T, F, U} we define:

u ∨ w
def
= max{u,w}, u ∧ w

def
= min{u,w}, (3)

where max,min are maximum and minimum w.r.t. ordering (2).
Strong Kleene negation, ¬, is defined as:

¬F
def
= T, ¬U

def
= U, ¬T

def
= F (4)

1 We always remove double strong negations using ¬(¬�) def
= �.
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Implication ⇒ is defined by:

u ⇒ w
def
= ¬u ∨ w. (5)

�

We then extend K3 logic with two additional external connectives for default negation
and the implication connective used in rules.

Default negation will be defined as weak or external negation, ‘not’:

not F
def
= T, not U

def
= T, not T

def
= F. (6)

Weak negation is a nonmonotonic connective with the intuitive reading absence of truth.
Both types of negation have been used in the study of presupposition in natural lan-
guage [12].

To define the semantics of rules we will also use another implication:

u ← w
def
=

{
F for w = T and u ∈ {F, U};
T otherwise.

(7)

This implication connective is also discussed in [23].

Remark 1.

– A similar logic has been considered in [22]. However, we use different implications
here in addition to using two negation connectives. Also, our definition of satisfia-
bility of rules (Definition 8) is different. There is a rich history of explicit use of par-
tial interpretations and multi-valued logics as a basis for semantic theories for logic
programs. Some related and additional representative examples are [8, 14, 15].

– In [21] the logic of here-and-there (HT) is used to define the semantics of ASP.
HT can be defined by means of a five-valued logic, N5, defined over two worlds:
h (here) and t (there), where the set of literals associated with h is included in the
set of literals associated with t. N5 uses truth values {−2,−1, 0, 1, 2}, where the
values −1, 1 characterize literals associated with h and not associated with t. On
the other hand, for ASP models it is assumed that these sets are equal, so −1, 1
become redundant. Therefore, in the context of ASP one actually does not have to
use full N5 as it reduces to the three-valued logic of Kleene K3 with the additional
implication (7) used in the current paper, with −2, 0, 2 of N5 corresponding to F,
U, T of K3, respectively. �

Definition 4. For a given set of relation symbols R and a set of constants D, by an in-
terpretation over R and D we mean any finite consistent set of ground literals (positive
or negative) with relation symbols from R and constants from D. �

Note that Trans(), defined in (1), allows us to easily switch between three-valued
Kleene interpretations and interpretations in the sense of Definition 4.
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Definition 5.

– Given a domain D, a valuation of variables (valuation, in short) is a mapping
v : V −→ D.

– For A ∈ KFOL and valuation v, by v(A) we mean a formula obtained from A by
replacing every free variable x in A by the constant v(x). �

Definition 6. For a given set of relation symbols R, domain D, interpretation I over D,
R, and valuation v, the value of a KFOL formula A w.r.t. I and v, denoted by AI

v, is
defined as follows:

– for t ∈ {T, F, U} we have tIv
def
= t;

– r(a1, . . . , an(r))
I
v

def
=

⎧⎪⎪⎨
⎪⎪⎩

T when r(a′1, . . . , a
′
n(r)) ∈ I,

where a′i = ai for ai ∈ D and a′i = v(ai) for ai ∈ V ;
F when ¬r(a′1, . . . , a′n(r)) ∈ I, where a′i are as above;
U otherwise;

– for A ◦ B and ◦A, where ◦ is a propositional connective, we use definitions of
connectives (3)–(7), respectively;

– ∃x[A(x)] def
= max

a∈D
{A(a)}, ∀x[A(x)] def

= min
a∈D

{A(a)}, where max,min are maxi-

mum and minimum w.r.t. ordering (2). �

In the case of expressions without variables, in Definition 6 the valuation v becomes
redundant, so we sometimes write AI rather than AI

v .

3 Kleene Answer Set Programs

Kleene answer set programs can now be defined as a set of rules where arbitrary first-
order formulas are allowed in the bodies of rules.

Definition 7. A Kleene answer set program consists of a finite set of rules of the follow-
ing form, where �1, . . . , �k are (positive or negative) literals andA is a Kleene first-order
formula or the empty symbol:

�1 ∨ . . . ∨ �k ← A. (8)

The disjunction �1∨ . . .∨�k is called the head and A is called the body of (8). Variables
occurring in the head of a rule should also occur free in the rule’s body.

The empty head evaluates to F. Rules with the empty head are called constraints. The
empty body evaluates to T. Rules with the empty body are called facts and are written
without the symbol ‘←’. �

Remark 2. Note that in Definition 7 we require a rather weak form of safety. Safety in
the context of answer set programming is usually defined by requiring that in every rule
each variable appearing in the rule appears in at least one positive literal in the body
of that rule (see, e.g., [1, 3]). However, this notion of safety is rather restrictive as it
disallows, e.g., important rules for closing the world locally, such as:

¬p(X) ← not p(X). (9)
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When rules allow for more complex expressions, different versions of safety are con-
sidered [7]. On the other hand, when we fix domains as finite sets of constant symbols,
the problems related to non-safety disappear. Namely, if D is the domain, whenever
a rule uses a variable, the rule implicitly involves the “domain checking” atom for each
variable. For example, (9), in fact, expresses:

¬p(X) ← d(X) ∧ not p(X). (10)

The positive atom d(X) in (10) expresses the fact that the value of X is in D. If there
are more variables, rules semantically behave as if such “domain checks” were added
for each variable appearing in the rule. �

Definition 8. An interpretation I is a model of (8) if for every valuation v : V −→ D,

(
(�1 ∨ . . . ∨ �k) ← A

)I
v
= T. (11)

I is a model of an ASPK program if it is a model of every rule of the program. �

Definition 9. A model I of an ASPK program Π is minimal if there is no model J of
Π such that J � I . �

The following definitions generalize known definitions of well-supported models
for standard normal logic programs with a two-valued semantics [10, 11] to the case of
ASPK programs. This generalization is called strongly supported models. Our formula-
tion concentrates on derivability rather than on the existence of a certain well-founded
ordering, as in [10, 11]. The intuition is that whenever a (positive or negative) literal
belongs to a strongly supported model for a program Π then there should be a finite
derivation of the literal starting from facts of Π and, if needed, using rules of Π . Of
course, our definition can also be given in terms of well-founded relations as in [10, 11],
but the definition used here simplifies presentation and proofs.

Let us start with a definition of the value of a formula w.r.t. two interpretations: the
first one for evaluating formulas outside of the scope of ‘not ’ and the second one for
evaluating formulas of the form ‘not C’.

Definition 10. Given a domain D, interpretations I,N and a valuation v, the value of
a KFOL formula A w.r.t. D, I, N, v, denoted by AI,N

v , is defined as follows:2

AI,N
v

def
= AI

v,

where A is obtained from A by substituting subformulas of the form ‘not C’ by truth
values (not CN

v ).3 �

Strongly supported models can now be defined.

Definition 11. Let Π be an ASPK program. A model N for Π is strongly supported
provided that there is a sequence of interpretations Ii with i = 0, . . . ,m for some
m ∈ ω, such that N =

⋃
0≤i≤mIi, and:

2 Recall that AI
v is defined in Definition 6.

3 Note that CN
v is a truth value, so (not CN

v ) is a truth value, too.
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(i) for every fact of the form ‘�1 ∨ . . . ∨ �k’, at least one of literals of �1, . . . , �k is in
I0;

(ii) for every 0 < n ≤ m, every rule ‘�1 ∨ . . . ∨ �k ← A’ in Π and every valuation

v, if A
⋃

0≤j≤n−1Ij ,N
v = T then a (possibly empty) subset of {v(�1), . . . , v(�k)} is

included in In;
(iii) for i = 0, . . . ,m, Ii can only contain literals obtained by applying points (i) and

(ii) specified above. �

The following examples illustrate various aspects of Definition 11.

Example 1. Let the domain be D1 = {a, b} and let Π1 be the program:

r(X) ← p(X).
p(a).

Then, using the notation of Definition 11, we have that I0 = {p(a)}, I1 = {r(a)}.
Of course, N = I0 ∪ I1 = {p(a), r(a)} is a model for Π1 so it is a strongly sup-
ported model. On the other hand, {p(a), r(a), r(b)} is a model of Π1 but is not strongly
supported. �

Example 2. Let the domain be D2 = {a, b} and let Π2 be the program:

r(X) ← ¬q(X) ∧ not p(X).
¬q(a).
q(b).

Then N = {¬q(a), q(b), r(a)} is a strongly supported model for Π2. Using again the
notation of Definition 11, we have that N = I0 ∪ I1, where I0 = {¬q(a), q(b)},
I1 = {r(a)}. This follows from the fact that for v(X) = a:

(¬q(X) ∧ not p(X)
)I0,N
v

= (¬q(X))I0v ∧ not p(X)Nv
= ¬q(a)I0 ∧ not p(a)N = T. �

Example 3. Let the domain be D3 = ∅ and let Π3 be the program:

p ← q.
q ← not p.
p ← not q.

Then the only strongly supported model for Π3 is N = {p}. Here N = I0 ∪ I1, where
I0 = ∅ (there are no facts) and I1 = {p} since for the third rule we have:

(not q)I0,N = (not qN ) = not U = T.

On the other hand, N ′ = {p, q} is not strongly supported. Again, I0 = ∅, so for the first
rule we have qI0,N = U, for the second rule we have (not p)I0,N = F and, for the third
rule, (not q)I0,N = F. Therefore, no rule produces new results. �

The following example shows that strongly supported models do not have to be
minimal.
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Example 4. Consider the following program Π4 over domain D4 = {a}:

q(X) ← p(X).
p(a) ∨ q(a).

According to Definition 11, program Π4 has two strongly supported models: N =
{q(a)} and N ′ = {p(a), q(a)}. Of course, N ′ is not minimal since N � N ′. �

The following definitions and theorem show the relation between stable models and
strongly supported models. For a discussion of stable models see [19].

Definition 12. An interpretation I for a Kleene answer set program Π is a stable model
for Π provided that I is a minimal strongly supported model for Π . �

We shall consider two versions of ASP.

Definition 13.

– By ASPK we understand Kleene answer set programs with the semantics given by
strongly supported models.

– By ASPK
min we understand Kleene answer set programs with the semantics given

by stable models. �

Theorem 1.

1. For answer set programs with rules of the (traditional) form, where all �i are literals
and k > 0:4

�1 ∨ . . . ∨ �k ← �m, . . . , �n, not �s, . . . , not �t,

ASPK
min coincides with answer set programming in the traditional sense (as pre-

sented, e.g., in [5, 16, 19]).
2. If rules of an ASPK program Π are all of the form ‘� ← A.’, where � is a literal,

then a model I for Π is stable iff I is strongly supported.

Proof.
1. Let I be a stable model in the sense of Definition 12. Then I is both strongly sup-
ported and minimal.

Observe that strongly supported models are constructed in such a way that all for-
mulas of the form ‘not C’ are evaluated in the context of the final interpretation N (see
Definition 11) and, for a given valuation v, they have fixed truth values (not CN

v ). By
assumption, C is a literal. In the traditional definition of stable models [19], the notion
of reduct corresponds to substituting ‘not C’ by (not CN

v ) and removing redundant
literals and rules. Now minimality guarantees stability in the traditional sense.

2. Of course, by definition, stability implies strong supportedness.
To prove that strong supportedness implies stability, suppose that there are two strongly

supported models, J and J ′ such that J � J ′. By the construction of strongly supported
models, J ′ = J ∪ K , where literals in K are obtained by point (ii). of Definition 11.
However, that would mean that J was not a model of Π as literals are added in (ii) only
when there is a rule with true body and head not being true. Such literals are uniquely
determined (by assumption heads contain single literals). �

4 The case when k = 0 (constraints) is dealt with in Section 4.
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4 Constraints

Given a standard ASP program Π , let NC(Π) be the rules in Π that are not constraint
rules and let C(Π) be the rules in Π that are constraint rules, where NC(Π)∪C(Π) =
Π . There are at least two alternatives for providing a semantic theory for constraints.

– In the first, one first computes the stable models for NC(Π) and then eliminates
those models in NC(Π) that do not satisfy the constraint rules in C(Π).

– In the second, one simply computes the stable models of NC(Π) ∪C(Π).

The first alternative is that used traditionally for standard ASP (see, e.g., [16]). It
is the basis for many of the most prominent implementations of ASP in the literature
and is in fact similar to filtered circumscriptive approaches. The second method, which
appears to be as intuitive, is similar to non-filtered circumscriptive approaches. These
methods apply equally well for strongly supported models and ASPK . In Definition 11,
the second alternative is used. However, one can easily adjust the definition to reflect
the first alternative.

The following example shows that these approaches are not equivalent.

Example 5. Consider program Π5 (see [2, Example 32]):

a ∨ b ← . (12)

a ∨ c ← . (13)

← a ∧ (not b) ∧ (not c). (14)

← (not a) ∧ b ∧ c. (15)

According to the standard ASP semantics which uses the first alternative, Π5 has no
stable models. This follows from the fact that stable models of Π5 without constraints
(i.e., with only rules (12), (13)) are {a} and {b, c}, and these models do not satisfy the
constraints (14), (15).

When using the second alternative, when all rules (12)–(15) participate in computing
models, there are two stable models {a, b}, {a, c}, which are also strongly supported
models. The explanation used in [2] is that these models are not minimal for Π5 without
constraints, so they should not be considered. On the other hand, these models are
both minimal and strongly supported for the theory expressed by Π5 (in which case
{a}, {b, c} are not models, so are not considered in checking minimality). Note also
that {a, b, c} is a strongly supported but non-minimal model when Π5 is interpreted
using ASPK . �

Remark 3.

– Theorem 1(ii) holds when we allow constraints with the traditional semantics, since
one first computes models and later eliminates those not satisfying constraints.
Strongly supported models are in this case minimal and remain so even after fil-
tering out some of them.

– Theorem 1(ii) also holds for the case when constraints participate in finding models:
the models are in this case minimal models satisfying the whole program consisting
of rules and constraints. �
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5 Minimality Revisited

In this section, we consider some relationships between stability, minimality [13, 20],
and strong supportedness. When focussing on normal ASPs that do not contain dis-
junctive rules or constraints, stable model construction naturally generates only mini-
mal models due to the lack of choice in the iterated construction from base facts. On
the other hand, when extending expressivity to include rules with disjunctive heads and
constraint rules, choice in the iterated construction of models and the different alterna-
tives that can be used in applying constraints, open up opportunities for making different
semantic choices when interpreting ASPs.

These choices become very clear when one bases semantic theories for ASPs on
an explicit three-valued logic together with distinguishing strong supportedness from
minimality. As is often the case with semantic intuitions associated with nonmonotonic
formalisms, due to the space of choices, one has a number of different alternatives to
choose from. The approach taken in this paper is simply to clarify these choices in as
lucid a manner as possible and provide mechanisms for leaving the choice up to the
knowledge engineer.

In the case of enforcing minimality in ASP theories, there are a number of argu-
ments, not against minimality in principle, but for enforcing strong supportedness in-
stead. For the case of normal ASPs (no disjunctive heads), strong supportedness and
minimality are equivalent. In the case of ASPs with disjunctive rules, there is a history
in the nonmonotonic literature of viewing minimality assumptions applied to disjunc-
tions with suspicion, both for intuitive and pragmatic reasons as some of the examples
have shown.

One of the more interesting reasons for not only having the capability to distinguish
between supportedness and minimality, but to also be able to only construct strongly
supported models in isolation, is a complexity argument (see Theorem 2 in Section 6).
Complexity for constructing strongly supported models in the case of ASPs with dis-
junctive rules is lower than the complexity of constructing minimal, strongly supported
models. Additionally, since one has the capability of applying local closed world as-
sumptions to specific relations due to the default open world assumption associated
with the ASP framework, one seems to have the best of both worlds. In the following,
a number of examples are provided to further clarify the subtle relationships between
stability, minimality and supportedness.

The following example is from [19].

Example 6. Consider the domain D6 = {a, b} and program Π6:

r(X) ← p(X) ∧ not q(X).

p(a). p(b). q(a).

Then Π6 has two minimal models:

I0 = {p(a), p(b), q(a), r(b)}, I1 = {p(a), p(b), q(a), q(b)}.
According to [19], I0 is a “good” model (an answer set) while I1 is “bad” (not an an-
swer set). The explanation given in [19] is related to an argument based on program
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completion. A more direct explanation is that the fact q(b) appearing in I1 is not sup-
ported (not being a conclusion of the rule of Π6). �

Example 7. Let the program domain be D7 = {jack, john, xco} and Π7 consist of the
following rule and facts:5

luckyBroker (X) ∨ successfulBroker(X) ← (16)

∀Y (invests(X,Y ) ⇒ makesProfit(X,Y )). (17)

¬luckyBroker (X) ← not
(∀Y (invests(X,Y ) ⇒ makesProfit(X,Y ))

)
. (18)

perfectBroker (X) ← successfulBroker(X) ∧ luckyBroker (X). (19)

invests(jack, xco). (20)

invests(john, xco). (21)

makesProfit(jack, xco). (22)

According to the ASPK semantics, Π7 has the following strongly supported models:

{
(20), (21), (22), luckyBroker (jack),¬luckyBroker (john)}, (23){
(20), (21), (22), successfulBroker (jack),¬luckyBroker (john)}, (24){
(20), (21), (22), luckyBroker (jack), successfulBroker (jack), (25)

perfectBroker (jack),¬luckyBroker (john)}

According to the ASPK
min semantics, Π7 has only (stable) models (23) and (24). But

model (25) makes perfect intuitive sense and it is questionable whether or not it should
be omitted. �

Recall that one can close the world locally, using rules of the form (9). However,
such closures minimize relations in the classical sense (by minimizing their positive
instances while maximizing negative ones). In Definition 9, minimality is defined w.r.t.
both positive and negative instances. Since the rule (9) adds literals, in general such
closures do not preserve the set of stable models nor strongly supported models and
may seriously affect the result, as the following example shows.

Example 8. Let the domain be D8 = {a} and let Π8 be the program:

r(X) ← not p(X).
s(X) ← ¬p(X).

The only strongly supported model for Π8, being also its stable model, is {r(a)}.
By closing the relation p in Π8 by rule (9), we obtain a program with the only

strongly supported (and stable) model {¬p(a), r(a), s(a)}. �

5 Observe that the right arrow ⇒ is used in formulas in the antecedent of a rule according to the
syntax of first-order formulas allowed in the antecedent to a rule, whereas the left arrow ← is
used to distinguish between the antecedent and consequent of a rule.
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6 Computing Strongly Supported Models and Complexity Results

Algorithm 1 allows us to compute strongly supported models. The intuition is that we
first guess a candidate for a strongly supported model and then we check whether the
model is strongly supported (i.e., can be generated from facts, using rules).

Algorithm 1. Computing strongly supported models for ASPK programs

Input: An ASPK program Π with domain D, consisting of a set of rules S.
Output: A nondeterministically computed strongly supported model N for Π .

/* For notation see Definition 10 */

1 generate nondeterministically an interpretation N with constants from D;
2 if there is r ∈ S and a valuation v of variables in D with rNv �= T then
3 reject N; /* N is not a model for P */
4 stop;

/* otherwise N is a candidate for a strongly supported model. */

/* In the remaining part of the algorithm we verify whether N */
/* is a strongly supported model by generating a supported interpretation I */
/* and checking whether N = I . */

/* We use the fact that during computations I cannot decrease and always I ⊆ N . */

5 set I = ∅;
6 repeat
7 set W =

{
(r, v) | r ∈ S and v is valuation of variables in D with rI,Nv �= T

}
;

8 foreach (r, v) ∈ W do
/* Let r = ‘�1 ∨ . . . ∨ �k ← A.’ */

9 if N ∩ {v(�1), . . . , v(�k)} = ∅ then reject N; stop;
10 /* no subset of {v(�1), . . . , v(�k)}, when added to I , can make rI,Nv = T */
11 /* without violating the invariant I ⊆ N */
12 else set I = I ∪ (N ∩ {v(�1), . . . , v(�k)});
13 until W = ∅;
14 if N = I then accept N as a strongly supported model for Π
15 else reject N ;

In the following theorem we consider data complexity. In the answer set program-
ming literature, expression (program) complexity is more common, mainly due to the
use of grounding. On the other hand, ASPK is a database language (by restriction to fi-
nite domains) and we do not use grounding. Therefore data complexity is more relevant
here.

Theorem 2.

1. Checking whether an ASPK program has a strongly supported model is ΣP
1 -com-

plete (i.e., NP-complete).
2. Checking whether an ASPK

min program has a stable model is ΣP
2 -complete.
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Proof.

1. To prove the first claim it suffices to observe that ASPK is at least as expressive as
ASP, so the considered problem is NP-hard. To show that it is in NP, we use Algo-
rithm 1 which runs in time polynomial w.r.t. the size of the domain D (assuming
the input program Π is fixed, so has size bounded by a constant).

2. To prove the second claim we first show hardness of the considered problem for
ΣP

2 and then we show that the problem actually is in ΣP
2 .

(a) By results of [9, Section 3],6 checking whether an ASPK
min program has a stable

model is ΣP
2 -hard.

(b) To show that checking whether an ASPK
min program has a stable model is in

ΣP
2 , we encode the problem by a second-order formula of the form:

∃P̄∀R̄ A(P̄ , R̄), (26)

where ∃P̄∀R̄ are all second-order quantifiers used.
To check whether an ASPK program Π has a stable model we first guess the
model and then check the model for minimality:

– guessing the model can be expressed by using existential second-order
quantifiers ∃P̄ , where P̄ are all relations in Π ;

– checking the guessed model for minimality can be done in a manner similar
to circumscription, where quantifiers ∀R̄ are used – for details of how the
suitable formula can look like see, e.g., [13].

As a result, one obtains a formula of the required form (26), meaning that the
considered problem is indeed in ΣP

2 . �

The above theorem shows that the minimality requirement raises complexity from
NP (i.e., ΣP

1 ) to ΣP
2 in terms of the polynomial hierarchy.

Remark 4. Note that Algorithm 1 treats rules and constraints uniformly.
The algorithm can be easily modified for the case when constraints are separated.

Namely, S in the algorithm should consist of all rules with nonempty heads (not be-
ing constraints). After generating strongly supported models one should check whether
such models satisfy the constraints and reject models not satisfying them. �

7 Conclusions

This paper has explored the subtle relationship between stability, supportedness and
minimality in the context of Answer Set Programming. This has been done by making
a formal distinction between two characteristics of stable models, strong supported-
ness and minimality. This was done by introducing a modified first-order three-valued
Kleene Logic used as the semantic basis for interpreting Kleene answer set programs
in the language of ASPK . Strongly supported models were then defined. It was shown
that strongly supported models and stable models are equivalent in the context of nor-
mal answer set programs, where no constraint rules or disjunctive rules are allowed.

6 With a suitable encoding allowing one to move from expression complexity to data complexity.
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With the addition of disjunctive rules, use of strongly supported models as a semantic
basis differs from stable models due in part to the separation of support and minimality.
An argument is presented for using (strongly) supported models as a semantic inter-
pretation of disjunctive answer set programs. The argument is not exclusive since one
can combine minimality and supportedness if so desired. One of the advantages of not
doing this is based on a complexity argument. Expressiveness of answer set programs
can be extended to the use of arbitrary first-order formulas in the antecedents of rules
without any modification to the underlying semantics. A non-deterministic algorithm
for generating strongly supported models is also provided. Additionally, an analysis of
constraint rules is provided with consideration of two alternative approaches to their
application, leading to two different semantic interpretations of answer set programs
with constraint rules.
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