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Preface

Gerhard Brewka has made a distinct mark on the field of artificial intelligence
through his pioneering research ideas and fruitful collaborations. The present vol-
ume is a Festschrift in his honor on the occasion of his 60th birthday and covers
the scientific fields Gerd contributed to. The articles address recent research in
areas such as actions and agents, nonmonotonic and human reasoning, prefer-
ences, and argumentation. The Festschrift is complemented by a summary of
Gerd Brewka’s contributions compiled by the editors of this volume, a reflection
on the current and future challenges within the field of knowledge representation
by Wolfgang Bibel, and a personal account by Tom Gordon.

We would like to thank all authors who contributed to this Festschrift and
the colleagues who acted as peer-reviewers.

A special thanks goes to Anni, Alena, and Janna Brewka for providing us
with some photos from times when telephones and cameras were quite different
things.

We finally thank Gerd’s group in Leipzig, who have been of great help in
making this Festschrift a reality.

November 2014 Thomas Eiter
Hannes Strass

Miros�law Truszczyński
Stefan Woltran
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A Glimpse on Gerhard Brewka’s Contributions

to Artificial Intelligence

Thomas Eiter1, Hannes Strass2, Miros�law Truszczyński3, and Stefan Woltran4

1 Knowledge-Based Systems Group, Vienna University of Technology,
Vienna, Austria

2 Computer Science Institute, Leipzig University, Leipzig, Germany
3 Department of Computer Science, University of Kentucky, Lexington, KY, USA

4 Database and Artificial Intelligence Group, Vienna University of Technology,
Vienna, Austria

Abstract. Gerhard Brewka has made a remarkable impact on artificial
intelligence, especially in the area of knowledge representation, through
his ideas, collaborations and mentoring, always amazing those close to
him with his ability to inspire. This short paper offers a glimpse into four
areas of research where Gerd’s imprint has been particularly distinct, in-
tertwined with personal recollections of the authors, and with comments
on those of Gerd’s personal characteristics that make his research per-
spectives so appealing to others.

1 Introduction

“To continue in one path is to go backward.” – Igor Stravinsky

Gerhard Brewka has made a distinct mark on the field of artificial intelligence
through his pioneering research ideas, fruitful collaborations with many col-
leagues, deep influence on his students, and dedicated service to the broad AI
community in high visibility and high impact roles. This article will provide an
overview of Gerd’s professional contributions, focusing on his research. But along
the lines we will comment on those characteristics of Gerd that make him an
inspiring colleague, friend and mentor. The four of us have been beneficiaries of
Gerd’s ideas, enthusiasm and friendship. By writing this article and editing this
volume we hope in some small way to show our gratitude and appreciation.

Gerd’s research covers a spectrum of problems central to AI that concern
knowledge representation and reasoning. All of his endeavors addressed problems
that were both fundamental and in urgent need of solutions. Importantly, he was
able to connect disjoint ideas, for instance developing an integrated perspective
on preferences and nonmonotonic reasoning, or proposing nonmonotonic multi-
context systems. And throughout his career, Gerd’s cutting-edge research has
always been a source of inspiration for many researchers and students.

In order to reflect the multitude of Gerd’s influential work, this paper is
grouped into four sections corresponding roughly to those research areas where
his ideas and contributions were felt the most. We start by reviewing Gerd’s work

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 1–16, 2015.
c© Springer International Publishing Switzerland 2015



2 T. Eiter et al.

in the area of reasoning about actions and change (done by Hannes) and follow
that with an account of his work in argumentation (naturally, done by Stefan).
Section 4 gives an account of Gerd’s record in the field of nonmonotonic reasoning
(by Thomas). Gerd’s ideas and contributions to the topic of preferences in AI
(recollected by Mirek) concludes that brief tour. We must emphasize, however,
that this tour is not an encyclopedic enshrinement of Gerd’s contributions and
achievements; rather it stops at some of the many pieces of a beautiful gallery,
subjectively chosen and with personal commentaries and memories – doing it
differently would have been very difficult if not impossible.

2 Reasoning about Actions and Change

An early, yet influential, work of Gerd was the article “How to Do Things with
Worlds” in the Journal of Logic and Computation that he wrote together with
Joachim Hertzberg [37]. The work started out with a critique of previous ap-
proaches to model the changes induced by actions proposed by Ginsberg and
Smith [57] and Winslett [86]. Gerd and Joachim Hertzberg managed to show that
the approach of Ginsberg and Smith was syntax-dependent, and that Winslett’s
method of measuring the distance between worlds incorporated no notion of
causality and thereby allowed for unintuitive conclusions. In the paper, they
put the possible-models approach on a firm semantic basis that is insensitive
to syntactic variants of specifications. They also provided an early treatment of
indeterminate effects (indeterminate like that of tossing a coin, where the re-
sult is either heads or tails, but it is outside of the scope of the specification to
say which) that had at that time only just begun to be recognized as problem-
atic [62]. Most significantly, that paper was one of the first works in reasoning
about actions to incorporate causality. It was quickly picked up by a number of
researchers [67,2,85] and remains among Gerd’s most cited papers to this date.

But Gerd did not just contribute to the field of reasoning about actions, he
also showed how reasoning about actions can benefit other sub-fields of AI. For
instance, he employed a widely used reasoning about actions formalism, Reiter’s
version of the situation calculus [77], to model dynamic argumentation scenar-
ios, such as discussions or court cases [20]. There, speech acts of single agents
constitute the actions that influence the state of the world, that is, the current
state of the dynamic argumentation scenario. Gerd explicitly formalized rules of
order, and also allowed meta-argumentation about these rules (and meta-meta-
argumentation up to arbitrary depth).

Together with Steven Shapiro, Gerd also investigated dynamic interactions
between goals and beliefs [78]. It was standard practice in the agent/planning
literature that an achievement goal (a goal to make a formula true) should be
dropped when the agent comes to believe that the goal cannot be achieved
any more. Gerd and Steven Shapiro extended this to an approach where, if at
some point in time the beliefs of the agent change such that the goal becomes
achievable again, then the agent can readopt the goal.

While reasoning about actions was probably not Gerd’s main research area, he
still made significant contributions and helped shape the field. In 2008, Gerd and
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my PhD supervisor Michael Thielscher (who was then at Dresden University of
Technology) started a joint DFG1 project on defaults and preferences in action
formalisms. I was employed as a research associate in Dresden by that project
and so came to know Gerd as our project partner. Due to the topic of my
dissertation (default reasoning in action theories), it quickly became clear that
Gerd would be the second supervisor of my PhD. After the conclusion of the
project (culminating in a joint KR paper [5]), he offered me a position as a
(post)doctoral researcher in Leipzig, which I gladly accepted and have held since.
So happy birthday Gerd, and thanks for everything!

3 Argumentation

Formal Argumentation has been one of the success stories in the the recent
history of Artificial Intelligence (AI) [8] and is nowadays a vibrant field at the
intersection of computer science, philosophy, linguistics, and several application
domains the most prominent of which certainly is legal reasoning [7]. Within
AI, several subfields are particularly relevant to – and benefit from – studies of
argumentation, in particular knowledge representation, nonmonotonic reasoning,
and multi-agent systems. Argumentation studies how to model arguments and
their relationships, as well as the necessary conflict resolution in the presence
of diverging opinions, thus providing a general and formal treatment of several
fundamental questions arising in various applications. A particular branch of ar-
gumentation is called abstract argumentation (or Dung’s argumentation named
after the inventor of abstract argumentation frameworks [50]), where the con-
flict between arguments is resolved by abstracting away from the arguments’
contents, yielding a simple yet powerful framework for reasoning.

Taking Gerd’s manifold interests in AI and knowledge representation into
account, it is not at all surprising that he also contributed to argumentation. In
fact, Gerd’s most cited article [12] on preferred subtheories is referred to in many
argumentation papers, since it explicitly deals with issues highly relevant to the
field, namely inconsistency management in the light of preferences.2 Another
relevant paper is the one on dynamic argument systems [20], which has been
already discussed above. Finally, also directly related to argumentation is a novel
proposal to combine argumentation and multi-context systems [31].3

In what follows, I will focus on Gerd’s contributions to the field of argumen-
tation in the last five years, a period wherein I had the pleasure to work jointly
with Gerd.

Abstract Frameworks become Dialectical. During a Dagstuhl meeting on Belief
Change in 2009, Gerd and I recognized that we share some thoughts about how
to generalize Dung’s abstract argumentation frameworks. Indeed, several such

1 Deutsche Forschungsgemeinschaft, the main national agency to fund basic research
in Germany.

2 More comments on that paper are in Section 5.
3 Multi-context systems in Gerd’s work are discussed in Section 4.
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generalizations were already around that time (bipolar frameworks or set-attack
frameworks to mention just two prominent ones, see also the survey paper [42]),
but we had the joint feeling that there should be a more uniform and simple
way to express these generalizations within a single formalism. Although my
memories are a bit vague, I remember that we mainly thought about employing
hypergraphs for argumentation frameworks.

A few months later – I was visiting Gerd in Leipzig for three months in winter
2009 – Gerd already came up with an alternative and strikingly elegant idea for
our purpose. In a nutshell, arguments come with their own acceptance conditions
which explicitly state when to accept an argument depending on the status of its
neighbour arguments. This not only generalizes Dung’s frameworks (“accept an
argument if all parents are not accepted”), but also allows to express relations
which mix supporting and attacking relations. During my visit we fine-tuned
the idea and came up with generalizations of all standard Dung semantics for
this new framework. Typical for Gerd, he thought that he lacks background in
argumentation in order to publish and sell our ideas to the community. Hence, he
organized what was called Argumentation Christmas Meeting (ACM) inviting
experts from the field including Henry Prakken, Tom Gordon, Tony Hunter and
Leila Amgoud. The meeting was an inspiring one, with many ideas proposed.
To Gerd and me it had also yet another significant outcome. The name we
proposed for our formalism raised some well founded objections. Fortunately, a
better one was proposed too (thanks to Tom Gordon and Tony Hunter). And
so we renamed our deliberation frameworks into abstract dialectical frameworks
[24,46] and the name stuck. ACM 2009 was a great event where both Gerd
and I strongly benefited from the talks and fruitful discussions in the course
of the meeting. Moreover, all participants enjoyed the nice atmosphere of this
informal workshop and the social program including a visit to a performance of
Stravinsky’s Le sacre du printemps in the Leipzig Opera House.

Dialectical Frameworks become Mature. In the next years, some further papers
on abstract dialectical frameworks (ADFs ) were published including joint work
with Paul Dunne [27], where we investigated how ADFs can be translated back
to Dungian frameworks, Gerd’s work with Tom Gordon on an embedding of
Carneades in ADF [35], and several system papers [49,51,52,53].

However, it was our students, in particular Johannes Wallner (who was visit-
ing Gerd in spring 2012) and Stefan Ellmauthaler who have found some examples
where the generalizations of the semantics we have proposed do not yield intuitive
results. In the meantime also Hannes Strass was working on a unifying theory
of argumentation semantics [80] based on approximating operators, a technique
going back to a general operator-based theory of nonmonotonic reasoning devel-
oped in [48]. All this led to a correction of semantics which has been published
at IJCAI 2013 [34]. Basically, the main difference is that we switched from a
purely two-valued definition of the semantics to a three-valued approach making
use of a uniform characteristic operator as initially suggested by Hannes Strass.
Further semantics for ADFs have recently been proposed by Sylwia Polberg [73]
and by Sarah Gaggl and Hannes Strass [54].
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The years 2010–2013 also witnessed growing groups in Leipzig and Vienna
working on Argumentation. While Ringo Baumann and Gerd did several works
on enforcing in argumentation [3] and splitting [6] including a joint paper with
Vienna [4], Hannes Strass joined the Leipzig group in 2011. In 2012, Gerd and
I decided to apply for a bilateral FWF-DFG project for further pursuing the
development of ADFs4. The project was launched in Summer 2013, giving us the
opportunity to continue the work on the concept of ADFs and its applications,
in collaboration with our second generation of PhD students.

The much Gerd and I enjoyed the excitement and commitment our students
and local colleagues showed to further develop ADFs (see e.g., [74,65,81,82,83])
we still were slightly disappointed that ADFs – although cited quite often –
were not used by other scientists from the field. One possible explanation is
that due to the abstract notion of ADFs, tailored instantiations techniques are
required to show their potential. During my second visit in Leipzig in winter
term 2013, we thus have worked on a higher-level interface to formalize accep-
tance patterns (for instance, “accept argument a if more supporting arguments
for a are accepted than arguments attacking a”). These abstract patterns are
then associated to arguments and finally “compiled down” automatically taking
the actual structure of the ADF into account. As a result, the rather technical
notion of acceptance condition is thus hidden from the user who now directly
works with a general semantical framework for assigning a precise meaning to
labelled argument graphs. These ideas were first presented by Gerd’s invited talk
“Abstract Dialectical Frameworks and Their Potential for Legal Argumentation”
at JURIX 2013 and have then been published at ECAI 2014 [47].

My second visit to Leipzig also allowed me to attend Ringo Baumann’s PhD
defense. As Pietro Baroni (as a neutral outsider) will agree, the party afterwards
is something one should not have missed indeed! Seriously speaking, Ringo’s
thesis on various aspects of abstract argumentation and the fact that it received
a honorable mention for the ECCAI Artificial Intelligence Dissertation Award
in 2014 underlines that Gerd is not only a world-wide renowned researcher but
also a great advisor and teacher.

Conclusion. Besides all the enjoyment during our scientific achievements, I will
always remember the hospitality Gerd and his family offered; especially our joint
visits to the stadiums of Borussia Dortmund and 1. FC Köln are memories that
will never be forgotten. Danke für alles und die besten Wünsche!

4 Nonmonotonic Reasoning

Nonmonotonic reasoning became an exciting and hot research area in the mid
1980s, after the seminal works of Ray Reiter [76], McDermott and Doyle [70],
and McCarthy [68] had been published in 1980, the Annus Mirabilis of the field.5

4 See http://www.dbai.tuwien.ac.at/research/project/adf/.
5 Cf. the Annus Mirabilis in Physics (1905) owing to several fundamental works of
A. Einstein.

http://www.dbai.tuwien.ac.at/research/project/adf/
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The need for nonmonotonic reasoning capabilities had been widely recognized,
and a whole range of research issues opened up, with lots of challenges and
opportunities for a young researcher. After joining in 1984 the Gesellschaft für
Mathematik und Datenverarbeitung (GMD) in St. Augustin, a major research
facility on Applied Mathematics and Computer Science in Germany at that
time, Gerd thus started working in this field and published first papers [10,11],
followed soon by further papers on different subjects.

In this early period of Gerd’s work on nonmonotonic reasoning, there are
two outstanding and influential contributions, namely his preferred subtheories
[12] and his cumulative default logic [13]. Preferred subtheories are a simple
yet powerful approach to cater for nonmonotonic reasoning on top of “classical”
knowledge bases. An account of the latter is left to Section 5, where first-hand
experience and reactions to the presentation of the paper are reported; we focus
here on cumulative default logic.

In his critical analysis of Reiter’s work, Gerd noticed that the way in which
Reiter’s approach arrives at conclusions (which, as Reiter explained to us in
personal communication was well deliberated) had a weakness, in that assump-
tions (in technical terminology, justifications) that are made to apply default
rules are local and not necessarily respected later in the proof (i.e., derivation)
of a consequence from a default theory; this permits one to make contradictory
assumptions at different steps of a derivation. To even this out, Gerd proposed
a refinement of default logic which keeps track of assumptions in derivations.
Notably, the resulting logic satisfies the following property: if from a stock K of
knowledge we can infer x, then we can infer y from K if and only if we can infer
it from K ∪ {x}, i.e., a “lemma” x can be added without affecting derivability
of y. This property, known as cumulativity, is missed by Reiter’s formalization,
and it was Gerd to term his approach cumulative default logic (CDL). Among
the many variants and refinements that default logic has seen over time, CDL is
still the most striking and important.

A milestone in Nonmonotonic Reasoning was Gerd’s book Nonmonotonic Rea-
soning: Logical Foundations of Commonsense [14] which was based on his PhD
thesis, that he successfully defended in 1989. This was in fact among the first
books in the field presenting the “classical” approaches to nonmonotonic reason-
ing coherently in one text,6 and it enriched them with Gerd’s contributions on
CDL, preferred subtheories and further results. It also included inheritance net-
works, which were popular at this time, as well as a brief glimpse on conditional
logic; and typically for Gerd, the book was closed by a critical chapter reflecting
on the achievements and issues to be addressed, well-thought.

Fueled by the interest in Gerd’s work, he was invited to the International Com-
puter Science Institute (ICSI) in Berkeley, California, where he spent a year from
1991 to 1992 with his family; he there had the opportunity to exchange ideas with
people in the Bay Area and US researchers who were working at the very fron-
tier of this field, and to turn to new subjects. In the sequel he developed an in-
terest to branch out in formalisms and inference methods, and in particular to

6 The book [66] appeared slightly earlier.
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non-monotonic logic programming and abductive reasoning [15,37,38], belief revi-
sion [87], actions and change [37] (see Section 2) but also towards argumentation
[18]; furthermore, in the use of preferences in nonmonotonic logic [16,17].

I remember well when I met Gerd for the first time, which was in 1992 in
Vienna, where he was visiting and gave talks at our department. He presented
nonmonotonic reasoning in a superb lecture to the faculty and in a further talk
his work on preferred subtheories to the specialists, which was inspiring for
our research. Already on this first encounter, I could experience some features
of Gerd which he has proven later many times: first, that he is an excellent
communicator capable of conveying difficult results and material well to a broad
audience; many talks and papers witness this. Second, that he is a good listener
and open to comments, reflecting on them to improve his work. And third, that
vice versa Gerd is concerned with providing useful comments on the work of
others, to question and deepen it for the best of scientific progress. As an episode
of the latter, I remember well that Gerd asked Georg Gottlob, who presented
in a seminar during Gerd’s stay in 1992 a translation of Reiter’s default logic
to Moore’s autoepistemic logic [71], whether it could be modified to achieve
modularity; indeed, this led Georg to come up with a proof that this is in fact
impossible [60], using a smart proof technique which was used as a blueprint
then by others for establishing similar impossibility results.

Notably, our faculty at Vienna University of Technology was impressed with
Gerd’s work and the rector offered him the newly created chair of knowledge-
based systems, which he took over in 1995; for personal reasons, however, he
could regretfully stay only a short time in Vienna before he moved 1996 to
Leipzig, where he still works at the University.

Gerd’s line of work in nonmonotonic reasoning continues with important con-
tributions on well-founded semantics, already in combination with preference in-
formation [19,36]. The issue of preference handling for nonmonotonic formalisms,
and in particular for logic programs had gained increased importance for him
and he devoted much time and efforts thinking about it. An episode in that pe-
riod which nicely exemplifies Gerd’s reflection on the comments of others is our
joint work on preferences [28,29]. It were some review comments on his idea to
capture preferences on rules of an answer set program which made Gerd think
about addressing the problem at a more systematic level and to present, in the
spirit of the AGM Theory in belief revision [1], principles that any semantics
for preferences on non-monotonic logic programs should satisfy. These principles
and the way of looking at the problem had a major impact, and it led to a
number of follow up works; only most recently, a PhD on this subject has been
completed in which the study of principles has been advanced, reconfirming the
value of the idea and of certain principles in the seminal paper [79].

Over the years, Gerd’s interest and work on preferences has then further
intensified such that a whole section (Section 5) ought to be designated to this
stream of work. Furthermore, he also revived his interest in argumentation [20,43]
which later has grown into a stream of contributions in this field that is also
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considered separately (see Section 3). Clearly, nonmonotonic behavior was always
an issue there, as well as with other problems which Gerd studied.

In the past decade, Gerd’s work includes one line that should be highlighted
here, viz. his important contributions onmulti-context systems.Rooted in seminal
work of McCarthy on contexts [69], the Trento School around Fausto Giunchiglia
and Luciano Serafini had developed a formalism to combine local knowledge bases
called “contexts” in a global system interlinked with special bridge rules [56,58].
Later Serafini and colleagues aimed at allowing negation in bridge rules, and it was
Gerd who helped them to get this right [44]. Intrigued by the idea he then pro-
posed to develop a more abstract framework of multi-context systems [30] that
allows for heterogeneous contexts with possible nonmonotonic semantics, mod-
eled by families of belief sets, and bridge rules with nonmonotonic negation; the
global semantics is defined strikingly simple in terms of an equilibrium over local
states, akin to (but different from) notions in game theory. Our group in Vienna
has followed up on this framework in research projects, in this course of which sev-
eral joint works with Gerd have been published [31,32,33,25]. Most recent work on
supported MCS [84] and evolving MCSs [59] shows the interest of other groups to
develop this notion further.

Talking to Gerd has always been a pleasure, and I have enjoyed the privilege
to work with him very much, be it on research or any other matters. Furthermore,
it was always great fun to be out with Gerd or to meet him at home; he and Anni
are perfect hosts and they served the greatest and most memorable asparagus
soup of my life!

Thank you so much for all this Gerd, and on behalf of all who are in Nonmono-
tonic Reasoning and related topics, the very best wishes on your 60th birthday,
and remember: you can’t always get what you want, but if you try sometime you
get what you need. . .

5 Preferences

In 1989 Gerd wrote a paper with the title Preferred Subtheories: An Extended
Logical Framework for Default Reasoning [12].7 The main goal of that paper was
to introduce a new formalism for nonmonotonic reasoning. The formalism was
striking because of its simplicity, on the one hand, and its generality, on the
other. A theory in this formalism was a sequence of sets of gradually less and
less preferred formulas. The theory imposed on interpretations a certain total
preorder and those interpretations that were maximal with respect to this pre-
order were regarded as intended (or preferred) models of the theory. Despite its
natural simplicity, the formalism turned out to be quite powerful, generalizing
several other nonmonotonic logics, most notably the THEORIST by Poole [75].

7 The paper was presented at IJCAI 1989 in Detroit. I attended the presentation and
later talked to Gerd. That was when we first met. At that time I did not realize that
our paths will intersect so many times and so closely in the future.
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While a milestone in nonmonotonic reasoning, we mention the formalism here
as it marks Gerd’s first foray into the area of preference reasoning, an area that
became one of his major fields of interest.

Gerd’s original interest in preferences was driven by a strong sense of deep and
multifaceted connections between nonmonotonicity and preferences. First, at the
most basic level, nonmonotonicity arises in commonsense reasoning because we
view some models as unlikely and restrict attention only to some, for instance,
to minimal ones as in circumscription [68]. Any preference relation on models,
derived in some way from the knowledge we have at our disposal or simply
decided upon by the reasoner, gives rise to a nonmonotonic entailment relation.
Thus, nonmonotonicity can be studied through preference relations. Second, in
the context of specific reasoning systems, with default logic [76] being a prime
example, we often face the problem of multiple extensions. These extensions
result from choices about the order in which defaults are to be applied or, to
put it differently, from priorities assigned to them. As before, these priorities can
be inferred, for instance, by means of the specificity principle [72,64,63], or they
can be selected by the reasoner.

Much of Gerd’s research on preferences in nonmonotonic reasoning focused on
this latter approach. His 1991 paper, written jointly with Ulrich Junker, intro-
duced the prioritized default theories in which defaults were explicitly ordered,
and proposed the notion of an extension for such theories [61]. Later papers
[16,17] expanded these ideas and, in particular, led to generalizations which al-
low one to reason about default priorities [17]. The beauty of this work by Gerd
stems again from the simplicity of the formalisms proposed. Gerd argues that
since non-normal defaults are seen as a means to resolve conflicts (impose pri-
orities), in formalisms that explicitly incorporate preferences it is justified to
restrict attention to the case of normal defaults only! That “design choice” led
Gerd to strong results and an elegant theory.

Nevertheless, in some settings, for instance in logic programming and extended
logic programming [55] non-normal defaults are essential. Around the mid-1990s,
Gerd turned his attention to these formalisms and considered extensions in which
program rules were ordered. The goal was to propose formalisms in which pref-
erences could be expressed directly in the language and could be derived dynam-
ically. His first paper on this topic was concerned with extended logic programs
under the well-founded semantics [19]. Gerd described there an extension of the
language of extended logic programs to accommodate preferences, and defined a
modification of the well-founded semantics extending the original one by taking
preference information into account. He then illustrated the effectiveness of the
formalism in the domain of legal reasoning. A natural next step was to develop
a similar treatment for extended logic programs under the answer-set semantics.
Gerd undertook this project jointly with Thomas Eiter. The resulting paper [28]
is one of the milestones in the study of preferences in nonmonotonic formalisms.
It gives a comprehensive analysis of the problem and presents a particular way
to treat preferences on program rules. However, its most important contribution
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is to cast the problem in terms of general and abstract postulates any satisfac-
tory treatment of preferences should satisfy. Gerd and Thomas formulated two
such natural postulates and showed that, unlike earlier attempts at formalizing
preferences in nonmonotonic formalisms, their proposal satisfied both.

The advent of the new millennium marked the emergence of new directions
in Gerd’s study of preferences. The first of them was based on an observation
that multiple models (extensions) of (nonmonotonic) logic theories are often
caused by the use of disjunction. If that disjunction was “ordered” to indicate
the preferred disjunct (the preferred way in which to satisfy the disjunction), it
would lead to the notion of a preferred model. Working with Salem Benferhat
and Daniel Le Berre, Gerd built on this idea to introduce the qualitative choice
logic [26] and described the precise semantics of statements involving ordered
disjunction. Since disjunctions in the heads of logic programs are also responsible
for multiple answer sets, the idea of an ordered disjunction also applies there.
Gerd, later joined by Ilkka Niemelä and Tommi Syrjänen, proposed and studied
the corresponding version of logic programming called logic programming with
ordered disjunction [21,39].

The second direction was concerned with the design of modular and flexible
languages to represent constraints and preferences. The first such modular lan-
guage of answer-set optimization programs was proposed by Gerd in a joint work
with Ilkka Niemelä and me [40]. It started in 2002, with a talk on preferences
Gerd gave at the Dagstuhl Seminar dedicated to answer-set programming. Both
Ilkka and I had commented upon it. Gerd saw a way to incorporate our com-
ments into his way of thinking and proposed a collaboration. The basic idea was
simple. Standard logic programs (or propositional theories) representing hard
constraints were extended by rules modeling soft constraints in terms of some
conditional preference statements. In answer-set optimization programs, prefer-
ence statements are used to select preferred answer sets (models) from among
those that satisfy all hard constraints. Continuing that line of research, Gerd,
Ilkka and I generalized these ideas in the formalism of prioritized component
systems [41] by incorporating some ideas from CP-nets [9]. Both formalisms
were quite specific. Gerd felt a more general treatment of the issue of preference
language design is needed. Consequently, he suggested and offered a compelling
motivation for a general template of a preference description language [23,22].
Finally, in yet another related effort, in a joint work with Stefan Woltran and
me, Gerd proposed a general language to describe preference orders on subsets
of some ordered domain [45].

This brief account of Gerd’s work on preferences can hardly do justice to
the impact it had on the field. I hope at the very least it shows the breadth of
scope and the depth of the insight. I feel fortunate to have had a chance to work
with Gerd. To use a phrase that Gerd may recognize, this cooperation has been
something I would not want to miss! Even more, I very much hope for more.
Best wishes, on your 60th birthday, Gerd.
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6 Conclusion

In this paper, we gave a brief account of Gerd’s contributions to AI. While
clearly subjective and of necessity non-encyclopedic, our overview nevertheless
showcases Gerd’s manifold contributions in several diverse areas he studied.

As we already have said earlier, Gerd is a great listener while, on the other
hand, his comments and opinions are highly valued by his peers. He has a strong
social attitude and is concerned with enabling scientific exchange and collabo-
ration. It is thus not surprising that Gerd has served the scientific community
throughout his career in many ways. Even in an early stage and as a young
researcher with little institutional support, he was lecturing in the 1980s on
Nonmonotonic Reasoning at the KIFS, the German Spring School on AI, he or-
ganized the (German open) Nonmonotonic ReasoningWorkshop in Bonn in 1989,
very well attended by international researchers, and pushed the Dutch-German
Nonmonotonic Reasoning Workshop series. Furthermore he founded and was
heading the German special interest group (SIG) in Nonmonotonic Reasoning.
Gerd later expanded his service to the emerging KR community, and then all
of AI in roles such as a chair of many meetings, including KI, LPNMR, KR,
and ECAI, with ICJAI 2016 being next in row. He has also served as a member
of review and advisory boards, and as head of major organizations in the field,
including assignments as President of ECCAI and President of KR, Inc. This
service makes him a research facilitator and adds to his scientific merits.

We very much hope that he continues this success story – all the best, Gerd!
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Abstract. Nonmonotonic reasoning is about drawing conclusions in the absence
of (complete) information. Hence, whenever new information arrives, one may
have to withdraw previously drawn conclusions. In fact, Answer Set Program-
ming is nowadays regarded as the computational embodiment of nonmonotonic
reasoning. However, traditional answer set solvers do not account for changing in-
formation. Rather they are designed as one-shot solvers that take a logic program
and compute its stable models, basta! When new information arrives the program
is extended and the solving process is started from scratch once more. Hence the
dynamics giving rise to nonmonotonicity is not reflected by such solvers and left
to the user. This shortcoming is addressed by multi-shot solvers that embrace the
dynamicity of nonmonotonic reasoning by allowing a reactive procedure to loop
on solving while acquiring changes in the problem specification.

In this paper, we provide a hands-on introduction to multi-shot solving with
clingo 4 by modeling the popular board game of Ricochet Robots. Our particular
focus lies on capturing the underlying turn based playing through the procedural-
declarative interplay offered by the Python-ASP integration of clingo 4. From
a technical perspective, we provide semantic underpinnings for multi-shot solv-
ing with clingo 4 by means of a simple stateful semantics along with operations
reflecting clingo 4 functionalities.

1 Introduction

Nonmonotonic reasoning [1,2] is about drawing conclusions in the absence of (com-
plete) information. Hence, whenever new information arrives, one may have to with-
draw previously drawn conclusions. In fact, Answer Set Programming (ASP; [3,4])
can nowadays be regarded as the computational embodiment of nonmonotonic reason-
ing. However, traditional ASP solvers do not account for changing information. Rather
they are designed as one-shot solvers that take a logic program and compute its stable
models, basta! When new information arrives the program is extended and the solving
process is re-started from scratch again. Hence, the dynamics giving rise to nonmono-
tonicity is not reflected by such solvers and left to the user. Turning towards the future,
ASP is and will be an under-the-hood technology. Hence, in practice, ASP solvers are
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embedded in encompassing software environments and thus have to interact with them
in an easy way. Again, such interactions are not accounted for by traditional ASP solvers
and once more left to the user.

This shortcoming is addressed by multi-shot solvers like clingo 4 that embrace the
dynamicity of nonmonotonic reasoning by allowing a reactive procedure to loop on
solving while acquiring changes in the problem specification. Given that this is accom-
plished by complementing the declarative approach of ASP with procedural means, like
Python or Lua, one also gets a handle on communication with an environment. In what
follows, we want to illustrate these aspects by providing a hands-on introduction to
multi-shot solving with clingo 4 through modeling the popular board game of Ricochet
Robots. Our particular focus lies on capturing the underlying round playing through the
procedural-declarative interplay offered by the Python-ASP integration of clingo 4.

Ricochet Robots is a board game for multiple players designed by Alex Randolph.1

A board consists of 16×16 fields arranged in a grid structure having barriers between
various neighboring fields (see Figure 1 and 2). Four differently colored robots roam
across the board along either horizontally or vertically accessible fields, respectively.
In principle, each robot can thus move in four directions. A robot cannot stop its move
until it either hits a barrier or another robot. The goal is to place a designated robot on
a target location with a shortest sequence of moves. Often this involves moving several
robots to establish temporary barriers. In fact, the game is played in rounds. At each
round, a chip with a colored symbol indicating the target location is drawn. Then, the
specific goal is to move the robot with the same color on this location. The player who
reaches the goal with the fewest number of robot moves wins the chip. The next round
is then played from the end configuration of the previous round. At the end, the player
with most chips wins the game.

Ricochet Robots has been studied from the viewpoint of human problem solving [5]
and analyzed from a theoretical perspective [6,7,8]. Moreover, it has a large community
providing various resources on the web. Among them, there is a collection of fifty-six
extensions of the game.2 We also studied alternative ASP encodings of the game in [9],
and used them to compare various ASP solving techniques. More disparate encodings
resulted from the ASP competition in 2013, where Ricochet Robots was included in the
modeling track. ASP encodings and instances of Ricochet Robots are available at [10].

2 Multi-shot Solving with clingo 4

clingo 4 offers high-level constructs for realizing complex reasoning processes that tol-
erate evolving problem specifications, either because data or constraints are added,
deleted, or replaced. This is achieved within a single integrated ASP grounding and
solving process in order to avoid redundancies in relaunching grounder and solver pro-
grams and to benefit from the learning capacities of modern ASP solvers. As detailed
in [11], clingo 4 complements ASP’s declarative input language by control capacities
expressed via the (embedded) scripting languages Lua and Python. On the declarative

1 http://en.wikipedia.org/wiki/Ricochet_Robot
2 http://www.boardgamegeek.com/boardgame/51/ricochet-robots

http://en.wikipedia.org/wiki/Ricochet_Robot
http://www.boardgamegeek.com/boardgame/51/ricochet-robots
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side, clingo 4 offers a new directive #program that allows for structuring logic pro-
grams into named and parametrizable subprograms. The grounding and integration of
these subprograms into the solving process is completely modular and fully controllable
from the procedural side, viz. the scripting languages embedded via the #script direc-
tive. For exercising control, the latter benefit from a dedicated clingo library that does
not only furnish grounding and solving instructions but moreover allows for continu-
ously assembling the solver’s program in combination with the directive #external.

While [11] details the partition and composition of logic programs as well as the use
of Python as an embedded scripting language, we focus here on the usage of externally
defined atoms along with the clingo 4 Python library. Hence, we refer the interested
reader to [11] for more details on #program and #script directives; the semantical
underpinnings of program composition in terms of module theory are given in [12].
Here, it is just important to note that base is a dedicated subprogram that gathers all
rules not preceded by a #program directive. Since we do not use any #program direc-
tives, all rules belong to the base program.

As detailed in the following, the #external directive of clingo 4 allows for a flexi-
ble handling of yet undefined atoms. Moreover, the (external) manipulation of their truth
values provides an easy mechanism to activate or deactivate ground rules on demand.
This allows for continuously assembling ground rules evolving at different stages of a
reasoning process. To be more precise, #external directives declare atoms that may
still be defined by rules added later on. As detailed in [11], in terms of modules, such
atoms correspond to inputs, which must not be simplified by fixing their truth value to
false. In order to facilitate the declaration of input atoms, clingo 4 supports schematic
#external directives that are instantiated along with the rules of their respective sub-
programs. To this end, a directive like ‘#external p(X,Y) : q(X,Z), r(Z,Y).’
is treated similar to a rule ‘p(X,Y) :- q(X,Z), r(Z,Y).’ during grounding. How-
ever, the head atoms of the resulting ground instances are merely collected as inputs,
whereas the ground rules as such are discarded.

We define a (non-ground) logic program P ′ as extensible, if it contains some (non-
ground) external declaration of the form

#external a : B (1)

where a is an atom and B a rule body. For grounding an external declaration as in (1),
it is treated as a rule a ← B, ε where ε is a distinguished ground atom marking rules
from #external declarations. Formally, given an extensible program P ′, we define
the collection D of rules corresponding to #external declarations as follows.

D = {a ← B, ε | (#external a : B) ∈ P ′}
With it, the ground instantiation of the extensible logic program P ′ is defined as the
ground logic program P associated with the set E of ground atoms, where3

P = {r ∈ grd(P ′ ∪ (D ∪ {{ε} ←})) \ {{ε} ←} | ε /∈ B(r)} (2)

E = {h(r) | r ∈ grd(P ′ ∪ (D ∪ {{ε} ←})), ε ∈ B(r)} (3)

3 We use h(r) and B(r) to denote the head and body of a rule r, respectively, and grd(P ) to
denote the set of all ground instances of rules in P .
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For simplicity, we refer to P and E as a logic program with externals, and drop the
reference to P ′ whenever clear from the context. Note that the choice rule ‘{ε} ←’
is added above to cope with grd(P ′ ∪ (D ∪ {{ε} ←})), understood as the outcome
of grounding (including simplifications); in particular, the construction in (2) and (3)
makes sure that neither ε nor ‘{ε} ←’ appear in P or E, respectively.

As an example, consider the following extensible program, R′:

1 #external e(X) : f(X), X < 2.
2 f(1..2).
3 a(X) :- e(X), f(X).
4 b(X) :- not e(X), f(X).

Grounding R′ yields the below program R with externals F = {e(1)}.

1 f(1). f(2).
2 a(1) :- e(1).
3 b(1) :- not e(1).
4 b(2).

Note how externals influence the result of grounding. While e(1) remains untouched,
the atom e(2) is set to false, followed by cascading simplifications.

For capturing the stable models of such logic programs with externals, we need the
following definitions. A (partial) assignment i over a set A ⊆ A of atoms is a function:
i : A → {t, f, u}, where A is the set of given atoms. With this, we define At = {a ∈
A | i(a) = t}, Af = {a ∈ A | i(a) = f}, and Au = {a ∈ A | i(a) = u}. In what
follows, we represent partial assignments either by 〈At, Af 〉 or 〈At, Au〉 by leaving the
respective default value implicit.

Given a program P with externals E, we define the set I = E \ H(P ) as input
atoms of P .4 That is, input atoms are externals that are not overridden by rules in P .
Given a partial assignment 〈It, Iu〉 over I , we define P〈It,Iu〉 = P ∪ ({a ← | a ∈
It} ∪ {{a} ← | a ∈ Iu}) to capture the extension of P with respect to an (external)
truth assignment to the input I . In addition, clingo considers another partial assignment
〈At, Af 〉 over A ⊆ A for filtering stable models, and refers to them as assumptions.5

Then, X is a stable model of a program P with externals E filtered by 〈At, Af 〉, if X
is a stable model of P〈It,Iu〉 such that At ⊆ X and Af ∩ X = ∅. This amounts to a
semantical characterization of one-shot solving of programs with externals in clingo 4.

Note the difference among input atoms and (filtering) assumptions. While a true
input atom amounts to a fact, a true assumption acts as an integrity constraint. Also, un-
defined input atoms are regarded as false, while undefined assumptions remain neutral.
Finally, at the solver level, input atoms are a transient part of the representation, while
assumptions only affect the assignment of a single search process.

For capturing multi-shot solving, we must account for sequences of system states, in-
volving information about the programs kept within the grounder and the solver. To this
end, we define a simple operational semantics based on system states and appropriate
operations. A clingo state is a triple 〈Q,P, I〉 where

4 We use H(P ) = {h(r) | r ∈ P} to denote all head atoms in P .
5 In clingo, or more precisely in clasp, such assumptions are the principal parameter to the

underlying solve function (see below). The term assumption traces back to [13,14].
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– Q is a (non-ground) logic program,
– P is a ground logic program,
– I is a set of input atoms along with an implicit partial assignment 〈It, Iu〉 over I .

Such states can be modified by the following operations.

– create() : �→ 〈∅, ∅, ∅〉
– add(R) : 〈Q,P, I〉 �→ 〈Q ∪R,P, I〉 where R is a (non-ground) logic program

– ground : 〈Q,P1, I1〉 �→ 〈∅, P2, I2〉 where6

• (P,E) = grdP1,I1(Q)
• P2 = P1 ∪ P
• I2 = (I1 ∪ E) \H(P2)

◦ It2 = {a ∈ I2 | I1(a) = t }
◦ Iu2 = {a ∈ I2 | I1(a) = u}

– assignExternal(a, t) : 〈Q,P, I1〉 �→ 〈Q,P, I2〉 where
• I2 = I1

◦ It2 = It1 ∪ {a} if a ∈ I1, and It2 = It1 otherwise
◦ Iu2 = Iu1 \ {a}

assignExternal(a, u) : 〈Q,P, I1〉 �→ 〈Q,P, I2〉 where
• I2 = I1

◦ It2 = It1 \ {a}
◦ Iu2 = Iu1 ∪ {a} if a ∈ I1, and Iu2 = Iu1 otherwise

assignExternal(a, f) : 〈Q,P, I1〉 �→ 〈Q,P, I2〉 where
• I2 = I1

◦ It2 = It1 \ {a}
◦ Iu2 = Iu1 \ {a}

– releaseExternal(a) : 〈Q,P1, I1〉 �→ 〈Q,P2, I2〉 where
• P2 = P1 ∪ {a ← a,∼a} if a ∈ I1, and P2 = P1 otherwise
• I2 = I1 \ {a}

◦ It2 = It1 \ {a}
◦ Iu2 = Iu1 \ {a}

– solve(〈At, Af 〉) : 〈Q,P, I〉 �→ 〈Q,P, I〉 outputs the set XP,I defined as

{X | X is a stable model of P〈It,Iu〉 such that At ⊆ X and Af ∩X = ∅} (4)

For simplicity, we dropped the condition ‘If2 = I2 \ (It2∪ Iu2 )’ from all transitions of I1
to I2 because undefined input atoms are regarded to be false. Note also that the above
semantic account abstracts from the partition and composition of logic programs, dealt
with in [12,11]. Rather it relies on a single (base) program whose addition complies
with modularity (in terms of [15]).

6 We use grdP,I(Q) to denote the (ground) logic program with externals obtained by instantiat-
ing the extensible program Q as defined in (2) and (3), respectively. We add the subscript P, I
to indicate the context of the instantiation.
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A central role is played by the ground function. First, programs like Q are always
grounded in the context of P1 and I1 since they delineate the Herbrand base and uni-
verse. Second, one may also add new externals via E, provided they are not yet defined.
The function assignExternal allows us to manipulate the truth values of input atoms.
While their default value is false, making them undefined results in a choice. If an atom
is not external, then assignExternal has no effect. On the contrary, releaseExternal re-
moves the external status from an atom and sets it permanently to false, otherwise this
function has no effect. Finally, solve leaves the clingo state intact and outputs the fil-
tered set XP,I of stable models of the logic program with externals comprised in the
current state. This set is general enough to define all basic reasoning modes of clingo.
On a technical note, the addition of a ← a,∼a does not offer any derivation for a but
adds a to the head atoms, H(P ), so that it can neither be re-added as an external nor
via a rule (since the latter would violate modularity [12]).

For illustration, reconsider the above extensible program R′. Adding and ground-
ing R′ in an initial state results in the clingo state7 ground(add(R′)(create())) =
〈∅, R, F f〉 where R and F are as given above. Applying solve() to 〈∅, R, F f〉 leaves
the state unaffected and results in a single stable model containing b(1). Unlike this,
the state assignExternal (e(1), u)(〈∅, R, F f〉) induces two models, one with a(1)

and another with b(1), while assignExternal(e(1), t)(〈∅, R, F f 〉) yields only the one
with a(1).

From the viewpoint of operational semantics, the multi-shot solving process of a
clingo object can be associated with the sequence of executed clingo-specific operations
〈ok〉k∈K which in turn induce a sequence 〈Qk, Pk, Ik〉k∈K of clingo states such that

1. o0 = create() and ok �= create() for k > 0

2. 〈Q0, P0, I0〉 = create()

3. 〈Qk, Pk, Ik〉 = ok(〈Qk−1, Pk−1, Ik−1〉) for k > 0

For capturing the result of the multi-shot solving process in terms of stable models,
we consider the sequence of sets of stable models obtained at each solving step. More
precisely, given a sequence of clingo operations and states as above, the multi-shot
solving process can be associated with the sequence 〈XPj ,Ij 〉j∈K,oj=solve(〈At

j ,A
f
j 〉) of

sets of stable models defined in (4).
All of the above state operations have almost literal counterparts in clingo’s Python

(and Lua) module, namely __init__ of clingo’s Control class, add, ground,
assign_external, release_external, and solve.8 However, as mentioned, the
above semantic account abstracts from the partition and composition of logic programs.
In fact, add as well as ground associate rules with subprograms. Moreover, subpro-
grams are usually parametrized and thus grounded several times with different instan-
tiations of the parameters. This is not reflected by ground (where Q is emptied). Also,
our account disregards module composition, which is enforced by clingo (cf. [12]).9

7 We use the informal notation F f to indicate that the members of F are false.
8 For a complete listing of functions and classes available in the gringo module,

see http://potassco.sourceforge.net/gringo.html
9 Among others, this prevents redefining ground atoms.

http://potassco.sourceforge.net/gringo.html
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Finally, it is worth mentioning that several clingo objects can be created and run in a
multi-threaded yet independent fashion.

3 Encoding Ricochet Robots

The following encoding and fact formats follow the ones given in [9],10 except that
we use below the input language of clingo 4 that includes the ASP language standard
ASP-Core-2 [18].

An authentic board configuration of Ricochet Robots is shown in Figure 1 and repre-
sented as facts in Listing 1.1. The dimension of the board is fixed to 16 in Line 1. As put

Fig. 1. Visualization of solving goal(13) from initially cornered robots

forward in [9], barriers are indicated by atoms with predicate barrier/4. The first two
arguments give the field position and the last two the orientation of the barrier, which is
mostly east (1,0) or south (0,1).11 For instance, the atom barrier(2,1,1,0) in Line 3
represents the vertical wall between the fields (2,1) and (3,1), and barrier(5,1,0,1)
stands for the horizontal wall separating (5,1) from (5,2).

Listing 1.1. The Board (board.lp)

1 dim ( 1 . . 1 6 ) .

3 b a r r i e r ( 2 , 1 , 1 , 0 ) . b a r r i e r ( 1 3 , 1 1 , 1 , 0 ) . b a r r i e r ( 9 , 7 , 0 , 1 ) .
4 b a r r i e r ( 1 0 , 1 , 1 , 0 ) . b a r r i e r ( 1 1 , 1 2 , 1 , 0 ) . b a r r i e r ( 1 1 , 7 , 0 , 1 ) .
5 b a r r i e r ( 4 , 2 , 1 , 0 ) . b a r r i e r ( 1 4 , 1 3 , 1 , 0 ) . b a r r i e r ( 1 4 , 7 , 0 , 1 ) .
6 b a r r i e r ( 1 4 , 2 , 1 , 0 ) . b a r r i e r ( 6 , 14 , 1 , 0 ) . b a r r i e r ( 1 6 , 9 , 0 , 1 ) .
7 b a r r i e r ( 2 , 3 , 1 , 0 ) . b a r r i e r ( 3 , 15 , 1 , 0 ) . b a r r i e r ( 2 , 1 0 , 0 , 1 ) .
8 b a r r i e r ( 1 1 , 3 , 1 , 0 ) . b a r r i e r ( 1 0 , 1 5 , 1 , 0 ) . b a r r i e r ( 5 , 1 0 , 0 , 1 ) .

10 The encodings in [9] rely on the input language of clingo 3 [16,17].
11 Symmetric barriers are handled by predicate stop/4 in Line 4 and 5 of Listing 1.3.
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9 b a r r i e r ( 7 , 4 , 1 , 0 ) . b a r r i e r ( 4 , 16 , 1 , 0 ) . b a r r i e r ( 8 , 10 , 0 , −1) .
10 b a r r i e r ( 3 , 7 , 1 , 0 ) . b a r r i e r ( 1 2 , 1 6 , 1 , 0 ) . b a r r i e r ( 9 , 10 , 0 , −1) .
11 b a r r i e r ( 1 4 , 7 , 1 , 0 ) . b a r r i e r ( 5 , 1 , 0 , 1 ) . b a r r i e r ( 9 , 1 0 , 0 , 1 ) .
12 b a r r i e r ( 7 , 8 , 1 , 0 ) . b a r r i e r ( 1 5 , 1 , 0 , 1 ) . b a r r i e r ( 1 4 , 1 0 , 0 , 1 ) .
13 b a r r i e r ( 1 0 , 8 , −1 ,0) . b a r r i e r ( 2 , 2 , 0 , 1 ) . b a r r i e r ( 1 , 1 2 , 0 , 1 ) .
14 b a r r i e r ( 1 1 , 8 , 1 , 0 ) . b a r r i e r ( 1 2 , 3 , 0 , 1 ) . b a r r i e r ( 1 1 , 1 2 , 0 , 1 ) .
15 b a r r i e r ( 7 , 9 , 1 , 0 ) . b a r r i e r ( 7 , 4 , 0 , 1 ) . b a r r i e r ( 7 , 1 3 , 0 , 1 ) .
16 b a r r i e r ( 1 0 , 9 , −1 ,0) . b a r r i e r ( 1 6 , 4 , 0 , 1 ) . b a r r i e r ( 1 5 , 1 3 , 0 , 1 ) .
17 b a r r i e r ( 4 , 10 , 1 , 0 ) . b a r r i e r ( 1 , 6 , 0 , 1 ) . b a r r i e r ( 1 0 , 1 4 , 0 , 1 ) .
18 b a r r i e r ( 2 , 11 , 1 , 0 ) . b a r r i e r ( 4 , 7 , 0 , 1 ) . b a r r i e r ( 3 , 1 5 , 0 , 1 ) .
19 b a r r i e r ( 8 , 11 , 1 , 0 ) . b a r r i e r ( 8 , 7 , 0 , 1 ) .

Listing 1.2 gives the sixteen possible target locations printed on the game’s carton
board (cf. Line 3 to 18). Each robot has four possible target locations, expressed by the
ternary predicate target. Such a target is put in place via the unary predicate goal

that associates a number with each location. The external declaration in Line 1 paves
the way for fixing the target location from outside the solving process. For instance,
setting goal(13) to true makes position (15,13) a target location for the yellow

robot.

Listing 1.2. Robots and targets (targets.lp)

1 #external goal(1..16).

3 target(red, 5, 2) :- goal(1). % red moon
4 target(red, 15, 2) :- goal(2). % red triangle
5 target(green, 2, 3) :- goal(3). % green triangle
6 target(blue, 12, 3) :- goal(4). % blue star
7 target(yellow, 7, 4) :- goal(5). % yellow star
8 target(blue, 4, 7) :- goal(6). % blue saturn
9 target(green, 14, 7) :- goal(7). % green moon

10 target(yellow,11, 8) :- goal(8). % yellow saturn
11 target(yellow, 5,10) :- goal(9). % yellow moon
12 target(green, 2,11) :- goal(10). % green star
13 target(red, 14,11) :- goal(11). % red star
14 target(green, 11,12) :- goal(12). % green saturn
15 target(yellow,15,13) :- goal(13). % yellow star
16 target(blue, 7,14) :- goal(14). % blue star
17 target(red, 3,15) :- goal(15). % red saturn
18 target(blue, 10,15) :- goal(16). % blue moon

20 robot(red;green;blue;yellow).
21 #external pos((red;green;blue;yellow),1..16,1..16).

Similarly, the initial robot positions can be set externally, as declared in Line 21.
That is, each robot can be put at 256 different locations. On the left hand side
of Figure 1, we cornered all robots by setting pos(red,1,1), pos(blue,1,16),
pos(green,16,1), and pos(yellow,16,16) to true.

Finally, the encoding in Listing 1.3 follows the plain encoding of ricocheting robots
given in [9, Listing 2], yet upgraded to the input language of clingo 4.
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Listing 1.3. Simple encoding for Ricochet Robots (ricochet.lp)
1 t ime ( 1 . . h o r i z o n ) .
2 d i r ( −1 , 0 ;1 , 0 ;0 , −1 ;0 , 1 ) .

4 s t o p ( DX, DY, X, Y ) :− b a r r i e r (X, Y,DX,DY ) .
5 s t o p(−DX,−DY,X+DX,Y+DY) :− s t o p (DX,DY, X,Y ) .

7 pos (R , X, Y, 0 ) :− pos (R , X,Y ) .

9 1 { move (R , DX,DY, T ) : r o b o t (R) , d i r (DX,DY) } 1 :− t ime ( T ) .
10 move (R , T ) :− move (R , , , T ) .

12 h a l t (DX,DY, X−DX, Y−DY, T) :− pos ( , X, Y, T ) , d i r (DX,DY) , dim (X−DX;Y−DY) ,
13 n o t s t o p (−DX,−DY, X,Y) , T < h o r i z o n .

15 go to (R ,DX,DY, X, Y, T ) :− pos (R , X, Y, T ) , d i r (DX,DY) , T < h o r i z o n .
16 go to (R ,DX,DY,X+DX,Y+DY, T ) :− go to (R ,DX,DY, X, Y, T ) , dim (X+DX;Y+DY) ,
17 n o t s t o p (DX,DY, X, Y) , n o t h a l t (DX,DY, X, Y, T ) .

19 pos (R , X, Y, T ) :− move (R ,DX,DY, T ) , go to (R ,DX,DY, X, Y, T−1) ,
20 n o t go to (R , DX,DY,X+DX,Y+DY, T−1).
21 pos (R , X, Y, T ) :− pos (R , X, Y, T−1) , t ime (T ) , n o t move (R , T ) .

23 :− t a r g e t (R , X,Y) , n o t pos (R , X, Y, h o r i z o n ) .

25 #show move / 4 .

Following the description in [9], the first lines in Listing 1.3 furnish domain definitions,
fixing the sequence of time steps (time/1)12 and two-dimensional representations of the
four possible directions (dir/2). The constant horizon is expected to be provided via
clingo option -c (eg. ‘-c horizon=20’). Predicate stop/4 is the symmetric version
of barrier/4 from above and identifies all blocked field transitions. The initial robot
positions are fixed in Line 7 (in view of external input).

At each time step, some robot is moved in a direction (cf. Line 9). Such a move can
be regarded as the composition of successive field transitions, captured by predicate
goto/6 (in Line 15–17). To this end, predicate halt/5 provides temporary barriers due
to robots’ positions before the move. To be more precise, a robot moving in direction
(DX,DY) must halt at field (X-DX,Y-DY) when some (other) robot is located at (X,Y),
and an instance of halt(DX,DY,X-DX,Y-DY,T) may provide information relevant to
the move at step T+1 if there is no barrier between (X-DX,Y-DY) and (X,Y). Given
this, the definition of goto/6 starts at a robot’s position (in Line 15) and continues
in direction (DX,DY) (in Line 16–17) unless a barrier, a robot, or the board’s border
is encountered. As this definition tolerates board traversals of length zero, goto/6 is
guaranteed to yield a successor position for any move of a robot R in direction (DX,DY),
so that the rule in Line 19–20 captures the effect of move(R,DX,DY,T). Moreover,
the frame axiom in Line 21 preserves the positions of unmoved robots, relying on the
projection move/2 (cf. Line 10).

Finally, we stipulate in Line 23 that a robot R must be at its target position (X,Y)

at the last time point horizon. Adding directive ‘#show move/4.’ further allows for
projecting stable models onto the extension of the move/4 predicate.

The encoding in Listing 1.3 allows us to decide whether a plan of length horizon

exists. For computing a shortest plan, we may augment our decision encoding with an
optimization directive. This can be accomplished by adding the part in Listing 1.4.

12 The initial time point 0 is handled explicitly.
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Listing 1.4. Encoding part for optimization (optimization.lp)

27 goon (T ) :− t a r g e t (R , X,Y) , T = 0 . . ho r i zon , n o t pos (R , X, Y, T ) .

29 :− move (R , DX,DY, T−1) , t ime ( T ) , n o t goon ( T−1) , n o t move (R ,DX,DY, T ) .

31 # min imize{ 1 ,T : goon ( T ) } .

The rule in Line 27 indicates whether some goal condition is (not) established at a time
point. Once the goal is established, the additional integrity constraint in Line 29 ensures
that it remains satisfied by enforcing that the goal-achieving move is repeated at later
steps (without altering robots’ positions). Note that the #minimize directive in Line 31
aims at few instances of goon/1, corresponding to an early establishment of the goal,
while further repetitions of the goal-achieving move are ignored. Our extended encod-
ing allows for computing a shortest plan of length bounded by horizon. If there is no
such plan, the problem can be posed again with an enlarged horizon. For computing
a shortest plan in an unbounded fashion, we can take advantage of incremental ASP
solving, as detailed in [9].13

Apart from the two external directives that allow us to vary initial robot and target
positions, the four programs constitute an ordinary ASP formalization of a Ricochet
Robots instance. To illustrate this, let us override the external directives by adding facts
accounting for the robot and target positions on the left hand side of Figure 1. The
corresponding call of clingo 4 is shown in Listing 1.5.14

Listing 1.5. One-shot solving with clingo 4

1 $ c l i n g o −4 boa rd . l p t a r g e t s . l p r i c o c h e t . l p o p t i m i z a t i o n . l p \
2 −c h o r i z o n =10 \
3 <(echo ” pos ( red , 1 , 1 ) . pos ( green , 1 6 , 1 ) . \
4 pos ( b lue , 1 , 1 6 ) . pos ( yel low , 1 6 , 1 6 ) . \
5 g o a l ( 1 3 ) . ” )

Listing 1.6. Stable model projected onto the extension of the move/4 predicate

1 move ( b lue ,0 , −1 ,1) move ( b lue , 1 , 0 , 2 ) move ( b lue , 0 , 1 , 3 ) \
2 move ( b lue , 1 , 0 , 4 ) move ( yel low ,0 , −1 ,5) move ( b lue ,0 , −1 ,6) \
3 move ( b lue , 1 , 0 , 7 ) move ( yel low , 0 , 1 , 8 ) move ( yel low , −1 ,0 ,9) \
4 move ( yel low , −1 ,0 ,10)

The resulting one-shot solving process yields a(n optimal) stable model containing the
extension of the move/4 predicate given in Listing 1.6. The move atoms in Line 1–4
of Listing 1.6 correspond to the plan indicated by the colored arrows at the bottom of
the left hand side of Figure 1. That is, the blue robot starts by going north, east, south,
and east, then the yellow one goes north, the blue one resumes and goes north and east,
before finally the yellow robot goes south (bouncing off the blue one) and lands on
the target by going west. This leads to the situation depicted on the right hand side of
Figure 1. Note that the tenth move (in Line 4) is redundant since it merely replicates the
previous one because the goal was already reached after nine steps.

13 Note that [9] uses iclingo [14] for incremental solving. This functionality is now part of
clingo 4 and makes iclingo obsolete. See [11] for details.

14 Note that rather than using input redirection, we also could have passed the five facts via a file.
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4 Playing in Rounds

Ricochet Robots is played in rounds. Hence, the next goal must be reached with robots
placed at the positions resulting from the previous round. For example, when pursuing
goal(4) in the next round, the robots must start from the end positions given on the
right hand side of Figure 1. The resulting configuration is shown on the left hand side
of Figure 2. For one-shot solving, we would re-launch clingo 4 from scratch as shown

Fig. 2. Visualization of solving goal(4) from robot positions after having solved goal(13)

in Listing 1.5, yet by accounting for the new target and robot positions by replacing
Line 3–5 of Listing 1.5 by the following ones.

3 <(echo "pos(red,1,1). pos(green,16,1). \
4 pos(blue,16,10). pos(yellow,15,13). \
5 goal(4)." )

Unlike this, our multi-shot approach to playing in rounds relies upon a single15 op-
erational clingo control object that we use in a simple loop:

1. Create an operational control object (containing a grounder and a solver object)
2. Load and ground the programs in Listing 1.1, 1.2, 1.3, and optionally 1.4

(relative to some fixed horizon) within the control object
3. While there is a goal, do the following

(a) Enforce the initial robot positions
(b) Enforce the current goal
(c) Solve the logic program contained in the control object

15 In general, multiple such control objects can be created and made to interact via Python.
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The control loop is implemented in Python and relies on clingo’s Python module ac-
companying clingo 4.4. This module provides grounding and solving functionalities.
An analogous module is available for Lua. As mentioned in Section 2, both modules
support (almost) literal counterparts to ‘Create’, ‘Load’, ‘Ground’, and ‘Solve’. The
“enforcement” of robot and target positions is more complex, as it involves changing
the truth values of externally controlled atoms (mimicking the insertion and deletion of
atoms, respectively).

The resulting Python program is given in Listing 1.7. This program as well as its Lua
counterpart are available at [10]. Line 1 shows how to import the gringo module.16 We
are only using three classes from the module,17 which we directly pull into the global
namespace to avoid qualification with “gringo.” and so to keep the code compact.

Line 3–34 show the Player class. This class encapsulates all state information in-
cluding clingo’s Control object that in turn holds the state of the underlying grounder
and solver. In the Player’s __init__ function (similar to a constructor in other object-
oriented languages) the following member variables are initialized:

last positions This variable is initialized upon construction with the starting po-
sitions of the robots. During the progression of the game, this variable holds the
initial starting positions of the robots for each turn.

last solution This variable holds the last solution of a search call.
undo external We want to successively solve a sequence of goals. In each step, a

goal has to be reached from different starting positions. This variable holds a list
containing the current goal and starting positions that have to be cleared upon the
next step.

horizon We are using a bounded encoding. This (Python) variable holds the maxi-
mum number of moves to find a solution for a given step.

ctl This variable holds the actual object providing an interface to the grounder and
solver. It holds all state information necessary for multi-shot solving along with
heuristic information gathered during solving.

As shown in Line 4–13, the constructor takes the horizon, initial robot positions,
and the files containing the various logic programs. clingo’s Control object is cre-
ated in Line 9–10 by passing the option -c to replace the logic program constant
horizon by the value of the Python variable horizon during grounding. Finally, the
constructor loads all files and grounds the entire logic program in Line 11–13. Re-
call from Section 2 that all rules outside the scope of #program directives belong to
the base program. Note also that this is the only time grounding happens because the
encoding is bounded. All following solving steps are configured exclusively via manip-
ulating external atoms.

The solve method in Line 15–24 starts with initializing the search for the solution
to the new goal. To this end, it first undos in Line 16–17 the previous goal and starting
positions stored in undo_external by assigning False to the respective atoms. In

16 For historical reasons, it is called gringo in clingo 4.4 but it will be renamed to clingo
with the next release.

17 For a complete listing of functions and classes available in the gringo module,
see http://potassco.sourceforge.net/gringo.html

http://potassco.sourceforge.net/gringo.html
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Listing 1.7. The Ricochet Robot Player (ricochet.py)

1 from g r i n g o i m p o r t Con t ro l , Model , Fun

3 c l a s s P l a y e r :
4 d e f i n i t ( s e l f , ho r i zon , p o s i t i o n s , f i l e s ) :
5 s e l f . l a s t p o s i t i o n s = p o s i t i o n s
6 s e l f . l a s t s o l u t i o n = None
7 s e l f . u n d o e x t e r n a l = [ ]
8 s e l f . h o r i z o n = h o r i z o n
9 s e l f . c t l = C o n t r o l (

10 [’−c ’ , ’ h o r i z o n ={0} ’ . f o r m a t ( s e l f . h o r i z o n ) ] )
11 f o r x i n f i l e s :
12 s e l f . c t l . l o a d ( x )
13 s e l f . c t l . ground ( [ ( ” bas e ” , [ ] ) ] )

15 d e f s o l v e ( s e l f , g o a l ) :
16 f o r x i n s e l f . u n d o e x t e r n a l :
17 s e l f . c t l . a s s i g n e x t e r n a l ( x , F a l s e )
18 s e l f . u n d o e x t e r n a l = [ ]
19 f o r x i n s e l f . l a s t p o s i t i o n s + [ g o a l ] :
20 s e l f . c t l . a s s i g n e x t e r n a l ( x , True )
21 s e l f . u n d o e x t e r n a l . append ( x )
22 s e l f . l a s t s o l u t i o n = None
23 s e l f . c t l . s o l v e ( on model = s e l f . on model )
24 r e t u r n s e l f . l a s t s o l u t i o n

26 d e f on model ( s e l f , model ) :
27 s e l f . l a s t s o l u t i o n = model . a toms ( )
28 s e l f . l a s t p o s i t i o n s = [ ]
29 f o r atom i n model . a toms ( Model .ATOMS) :
30 i f ( atom . name ( ) == ” pos ” and
31 l e n ( atom . a r g s ( ) ) == 4 and
32 atom . a r g s ( ) [ 3 ] == s e l f . h o r i z o n ) :
33 s e l f . l a s t p o s i t i o n s . append (
34 Fun ( ” pos ” , atom . a r g s ( ) [ : − 1 ] ) )

36 h o r i z o n = 15
37 e n c o d i n g s = [ ” boa rd . l p ” , ” t a r g e t s . l p ” , ” r i c o c h e t . l p ” , ” o p t i m i z a t i o n . l p ” ]
38 p o s i t i o n s = [ Fun ( ” pos ” , [ Fun ( ” r e d ” ) , 1 , 1 ] ) ,
39 Fun ( ” pos ” , [ Fun ( ” b l u e ” ) , 1 , 1 6 ] ) ,
40 Fun ( ” pos ” , [ Fun ( ” g r e e n ” ) , 16 , 1 ] ) ,
41 Fun ( ” pos ” , [ Fun ( ” ye l low ” ) , 16 , 1 6 ] ) ]
42 s equence = [ Fun ( ” g o a l ” , [ 1 3 ] ) ,
43 Fun ( ” g o a l ” , [ 4 ] ) ,
44 Fun ( ” g o a l ” , [ 7 ] ) ]

46 p l a y e r = P l a y e r ( hor i zon , p o s i t i o n s , e n c o d i n g s )
47 f o r g o a l i n s equence :
48 p r i n t p l a y e r . s o l v e ( g o a l )
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the following lines 19 to 21, the next step is initialized by assigning True to the cur-
rent goal along with the last robot positions; these are also stored in undo_external

so that they can be taken back afterwards. Finally, the solve method calls clingo’s
ctl.solve to initiate the search. The result is captured in variable last_solution.
Note that the call to ctl.solve takes ctl.on_model as (keyword) argument, which
is called whenever a model is found. In other words, on_model acts as a callback for
intercepting models. Finally, variable last_solution is returned at the end of the
method.

The last function of the Player class is the on_model callback. As mentioned,
it intercepts the (final) models computed by the solver, which can then be inspected
via the functions of the Model class. At first, it stores the shown atoms in variable
last_solution in Line 27.18 The remainder of the on_model callback extracts the
final robot positions from the stable model. For that, it loops in Line 29–34 over the
full set of atoms in the model and checks whether their signatures match. That is, if
an atom is formed from predicate pos/4 and its fourth argument equals the horizon,
then it is appended to the list of last_positions after stripping its time step from its
arguments.

As an example, consider pos(yellow,15,13,20), say the final position of
the yellow robot on the right hand side of Figure 1 at an horizon of 20. This
leads to the addition of pos(yellow,15,13) to the last_positions. Note that
pos(yellow,15,13) is declared an external atom in Line 21 of Listing 1.2. For play-
ing the next round, we can thus make it True in Line 20 of Listing 1.7. And when
solving, the rule in Line 7 of Listing 1.3 allows us to derive pos(yellow,15,13,0)
and makes it the new starting position of the yellow robot, as shown on the left hand
side of Figure 2.

Line 36–44 show the code for configuring the player. They set the search horizon,
the encodings to solve with, and the initial positions in form of gringo terms. Fur-
thermore, we fix a sequence of goals in Line 42–44. In a more realistic setting, either
some user interaction or a random sequence might be generated to emulate arbitrary
draws.

Listing 1.8. Multi-shot solving with clingo 4’s Python module

1 $ py thon r i c o c h e t . py
2 [ move ( red , 0 , 1 , 1 ) , move ( red , 1 , 0 , 2 ) , move ( red , 0 , 1 , 3 ) , . . . ]
3 [ move ( b lue , 0 , −1 , 1 ) , move ( b lue , 1 , 0 , 2 ) , move ( b lue , 0 , 1 , 3 ) , . . . ]
4 [ move ( green , 0 , 1 , 1 ) , move ( green , 1 , 0 , 2 ) , move ( green , 1 , 0 , 3 ) , . . . ]

Finally, Line 46–48 implement the search for sequences of moves that solve the config-
uration given above. For each goal in the sequence, a solution is plainly printed, as
engaged in Line 48. The three lists in Listing 1.8 represent solutions to the three goals in
Line 42–44. The clingo library does not foresee any output, which must thus be handled
by the scripting language. Note also that the first list represents an alternative solution
to the one given in Listing 1.6.

18 In view of ‘#show move/4.’ in Listing 1.3, this only involves instances of move/4, while
all true atoms are included via the argument Model.ATOMS in Line 29.
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5 Discussion

Multi-shot ASP solving is about successive yet operational grounding and solving of
changing logic programs due to the addition, deletion, or replacement of facts or rules.
Special cases include incremental, reactive, and window-based solving. For addressing
such complex reasoning processes, clingo 4 complements ASP’s declarative input lan-
guage by control capacities expressed via the scripting languages Lua and Python. We
elaborated upon clingo’s high-level constructs supporting multi-shot solving in several
ways. First, we provided an operational semantics based on the concepts of clingo states
and associated operations. These operations reflect the major functionalities offered by
clingo’s Lua and Python library. A particular focus lay on the instantiation of extensible
non-ground programs leading to ground programs with externals. Such externals are the
primary means for changing problem specifications. Second, we provided a hands-on
introduction to multi-shot solving with clingo 4 by modeling the popular board game
of Ricochet Robots. In particular, we showed how clingo’s Python library allows for
modeling turn playing by manipulating externals. Finally, we hope that our ASP-based
implementation helps Gerd to win more often at Ricochet Robots.
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Abstract. We consider the problem of verifying whether one action the-
ory can simulate a second one. Action theories provide modular descrip-
tions of state machines, and simulation means that all possible sequences
of actions in one transition system can be matched by the other. We show
how Answer Set Programming can be used to automatically prove sim-
ulation by induction from an axiomatisation of two action theories and
a projection function between them. Our interest in simulation of action
theories comes from general game-playing robots as systems that can
understand the rules of new games and learn to play them effectively in
a physical environment. A crucial property of such games is their playa-
bility , that is, each legal play sequence in the abstract game must be
executable in the real environment.

1 Introduction

Simulation, and bisimulation, of state transition systems is an important and well
researched concept in theoretical computer science and formal logic [30,3] but
has not been applied in the context of action languages that provide logic-based,
compact descriptions of state machines [5,14,29,32]. We consider the problem of
automatically proving whether the transition system represented by one action
theory can simulate the system described by another theory.

Our interest in simulation of action theories comes from an open problem in
general game-playing robotics , which is concerned with the design of autonomous
systems that can understand descriptions of new games and learn to play them in
a physical game environment [28]. This is an attempt to create a new generation
of AI systems that can understand the rules of new games and then learn to play
these games without human intervention [16]. Unlike specialised game-playing
systems such as the chess program Deep Blue [19], a general game player cannot
rely on algorithms that have been designed in advance for specific games. Rather,
it requires a form of general intelligence that enables the player to autonomously
adapt to new and possibly radically different problems. General game playing
programs therefore are a quintessential example of a new generation of systems
that end users can customise for their own specific tasks and special needs [15],

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 33–46, 2015.
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34 M. Thielscher

Fig. 1. A physical game environment

and general game-playing robots extend this capability to AI systems that play
games in the real world [28].

In general game playing, games are represented using a special-purpose ac-
tion description language [16]. These game descriptions must satisfy a few basic
requirements to ensure that a game is effectively playable; for example, there
should always be at least one legal move in every nonterminal position [17]. In
bringing gameplay from mere virtual into physical environments, general game-
playing robots require an additional property that concern the manifestation of
the game rules in the real world. Notably, a suitable game description requires
all moves deemed legal by the rules of the abstract game to be executable in the
real world [28].

As an example, consider the robotic environment shown in Fig. 1. It features
a 4×4 chess-like board with an additional row of 4 marked positions on the right.
Tin cans are the only type of objects and can be moved between the marked
position (but cannot be stacked). This game environment can be interpreted
in countless ways as physical manifestations of a game, including all kinds of
mini chess-like games but also, say, single-player games like the 15-puzzle, where
individual cans represent numbered tiles that need to be brought in the right
order [28]. In fact, any abstract game is playable in this environment provided
that all legal play sequences can be executed by the robot.

In order to prove the playability of a game, we consider its rules and those
that govern the robotic environment as formal descriptions of state transition
systems. This allows us to reduce the problem of verifying that a game is playable
to the problem of proving that an action theory describing the environment can
simulate the action theory that encodes the game. As a general technique, we
will show how Answer Set Programming can be used to automatically prove
the simulation of action theories based on their axiomatisation along with a
projection function between the states of the two systems.
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The remainder of the paper is organised as follows. Section 2 introduces a
basic action description language that we will use for our analysis and which
derives from the general game description language GDL [16]. In Section 3, we
formally define the concept of simulation for action theories. The use of Answer
Set Programming to automatically prove this property by induction are given in
Section 4, and in Section 5 we show how the result can be applied to proving the
playability of abstract games in physical environments. We conclude in Section 6.

2 Action Theories

A variety of knowledge representation languages exist for describing actions and
change, including first-order formalisms such as the classical Situation Calculus
and its variants [26,20,33], special-purpose action description languages [14,29],
planning formalisms [8,11] or the general game description language [16]. While
they are all subtly different, action languages invariably share the following stan-
dard elements:

– fluents , which describe atomic, variable properties of states;
– actions , whose execution triggers state transitions;
– action preconditions , defining conditions on states for an action to be exe-

cutable;
– effect specifications , defining the result of actions;
– initial state description.

For the purpose of this paper, we will use a simple and generic specification lan-
guage for basic action theories that uses Answer Set Programming (ASP) syntax
to describe all of these basic elements. Many of the aforementioned action for-
malisms have straightforward translations into ASP, e.g. [21,6,2,12,34]. Hence,
while our language borrows its five pre-defined predicates from the game descrip-
tion language GDL [16] in view of our motivating application, our definitions and
results can be easily adapted to similar action representation formalisms.

Example. Before providing the formal language definition, let us consider the
example of a 4×4 sliding puzzle, which is formally described by the action theory
given in Fig. 2. The rules use the fluent cell(x, y, z) to indicate the current
state of position (x, y) as either occupied by tile z or being empty, where
x, y ∈ {1, . . . , 4} and z ∈ {1, . . . , 15, empty}. A second fluent step(x) counts
the number of moves, which has been limited to x ∈ {1, . . . , 80} . The only action
in this domain is move(u, v, x, y), denoting the move of sliding the tile in (u, v)
into position (x, y), where u, v, x, y ∈ {1, . . . , 4}. Intuitively, the description can
be understood as follows:

– Facts 1–17 completely describe the initial state as depicted.
– The precondition axioms 19–22 say that a tile can be slid into the adjacent

empty cell.
– The result of sliding the tile in (u, v) into position (x, y) is that
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1 init(cell(1,1, 9)).
2 init(cell(2,1, 2)).
3 init(cell(3,1, 8)).
4 init(cell (4 ,1 ,12)).
5 init(cell (1 ,2 ,11)).
6 init(cell(2,2, 3)).
7 init(cell (3 ,2 ,15)).
8 init(cell (4 ,2 ,10)).
9 init(cell(1,3, 6)).

10 init(cell(2,3,empty )).
11 init(cell (3 ,3 ,13)).
12 init(cell(4,3, 5)).
13 init(cell (1 ,4 ,14)).
14 init(cell(2,4, 4)).
15 init(cell(3,4, 1)).
16 init(cell(4,4, 7)).
17 init(step (1)).
18

19 legal(move(U,Y,X,Y)) :- true(cell(X,Y,empty)), succ(U,X), true(cell(U,Y,Z)).
20 legal(move(U,Y,X,Y)) :- true(cell(X,Y,empty)), succ(X,U), true(cell(U,Y,Z)).
21 legal(move(X,V,X,Y)) :- true(cell(X,Y,empty)), succ(V,Y), true(cell(X,V,Z)).
22 legal(move(X,V,X,Y)) :- true(cell(X,Y,empty)), succ(Y,V), true(cell(X,V,Z)).
23

24 next(cell(U,V,empty)) :- does(move(U,V,X,Y)).
25 next(cell(X,Y,Z)) :- does(move(U,V,X,Y)), true(cell(U,V,Z)).
26

27 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), R != U, R != X.
28 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), R != U, S != Y.
29 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), S != V, R != X.
30 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), S != V, S != Y.
31

32 next(step(Y)) :- true(step(X)), succ(X,Y).
33

34 succ (1 ,2). succ (2 ,3). ... succ (79 ,80).

9 2 8 12

11 3 15 10

6 13 5

14 4 1 7 4

3

2

1

4321

Fig. 2. The 15-puzzle described by an action theory

• cell (u, v) becomes empty while the tile is now in (x, y) (clauses 24, 25);
• all other cells retain their tiles (clauses 27–30);
• the step counter is incremented (clause 25).

As can be seen from this example, our action theory uses the following unary
predicates as pre-defined keywords:

– init(f), to define fluent f to be true initially;
– true(f), denoting the condition that f is true in a state;
– does(a), denoting the condition that a is performed in a state;
– legal(a), meaning that action a is possible;
– next(f), to define the fluents that are true after an action is performed.

For the formal definition of the syntax of the action specification language, we
assume that the reader is familiar with basic concepts of logic programs [23] and
Answer Set Programming [4]. Our action theories are normal logic programs that
have to satisfy a few syntactic restrictions borrowed from GDL [17] in order to
ensure that they admit a unique and finite interpretation.

Definition 1. Consider an alphabet that includes the unary predicates init ,
legal , next , true and does . An action theory is a normal logic program P
such that
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1. P is stratified, that is, its dependency graph has no cycles with a negative
edge [1];

2. P is allowed, that is, each variable in a clause occurs in a positive atom of
the body of that clause [24];

3. P satisfies the following restrictions on the pre-defined predicates:
(a) init occurs only in the head of clauses and does not depend on any of

the other special keywords;
(b) legal occurs only in the head of clauses and does not depend on does ;
(c) next occurs only in the head of clauses;
(d) true and does occur only in the body of clauses.

4. P obeys the following recursion restriction to ensure finite groundings: If
predicates p and q occur in a cycle in the dependency graph of P, or if
p = true and q = next , and P contains a clause

p(s1, . . . , sm) :– b1( t 1), . . . , q(v1, . . . , vk), . . . , bn( t n)

then for every i ∈ {1, . . . , k},
– vi is variable-free, or
– vi is one of s1, . . . , sm, or
– vi occurs in some tj ( 1 ≤ j ≤ n) such that bj does not occur in a

cycle with p in the dependency graph of P .

It is straightforward to verify that the action theory in Fig. 2 satisfies this defi-
nition of a proper action theory.

3 Simulation of Action Theories

The concept of simulation for action theories needs to be defined on the state
transition systems that they describe, where generally states are identified by the
fluents that hold and state transitions are triggered by actions [14,29,32]. In case
of the action description language of Definition 1, this interpretation is obtained
with the help of the stable models [13] of Answer Set Programs. Below, SM[P ]
denotes the unique stable model of a stratified, finitely groundable program P .

Definition 2. Let P be an action theory in the language of Definition 1 with
ground fluents F and ground actions A . P determines a finite state machine
(A, S, s0, δ) as follows:

1. S = 2F are the states;
2. s0 = {f ∈ F : init(f) ∈ SM[P ]} is the initial state;
3. δ(a, s) = {f ∈ F : next(f) ∈ SM[P ∪ does(a) ∪ true|s]} is the transition

function, where
– a ∈ A
– s ∈ S
– true|s = {true(f) : f ∈ s}
– legal(a) ∈ SM[P ∪ true|s] (that is, a is possible in s).
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A state s ∈ S is called reachable if there is a finite sequence of actions a1, . . . , ak
such that s = δ(ak, . . . , δ(a1, s0) . . .).

Put in words,

– states are sets of ground fluents;
– the initial state is given by all derivable instances of init(f);
– to determine if an action is legal in a state s , this state s has to be encoded

using facts true(f), and then a is possible if legal(a) can be derived;
– likewise, to determine the effects of an action a in a state s, the action and

the state have to be encoded using facts does(a) and true(f), respectively,
and then the resulting state is given by all derivable instances of next(f).

Example. Recall the action theory in Fig. 2 describing the 15-puzzle. It is easy
to see that the initial state is

s0 = {cell(1, 1, 9), . . . , cell(1, 3, 6), cell(2, 3, empty), . . . , step(1)} (1)

It is straightforward to verify that the action move(1, 3, 2, 3) is possible in this
state: After adding each of the facts in true|s0 , the unique stable model of
the resulting program includes true(cell (2, 3, empty)), true(cell (1, 3, 6)) and
succ(1, 2), hence also legal(move(1, 3, 2, 3)) according to clause 19. From Def-
inition 2 and the clauses 24–32 it follows that

δ(move(1, 3, 2, 3), s0) =
{cell(1, 1, 9), . . . , cell(1, 3, empty), cell (2, 3, 6), . . . , step(2)}

Given two state transition systems, the standard definition of a simulation re-
quires that one matches all actions in the other. In case of two action theories P1

and P2 , this requires that the actions and states of the simulated domain, P1 ,
can be projected onto actions and states in the simulating domain, P2 , such
that

– the initial state of P1 projects onto the initial state of P2 ;
– if an action is possible in P2 , then the corresponding action is possible in

the corresponding state in P2 and the resulting states correspond, too.

This is formally captured by the following definition.

Definition 3. Let P1 and P2 be two action theories, which describe finite state
machines (A, S, s0, δ) and (B, T, t0, ε), respectively. A projection of P1 onto P2

is a function π such that

– π(a) ∈ B for all a ∈ A
– π(s) ∈ T for all s ∈ S

A projection π is a simulation of P1 by P2 if

1. π(s0) = t0 and
2. for all a ∈ A and all reachable s ∈ S ,

(a) if a is possible in s then π(a) is possible in π(s)
(b) π(δ(a, s)) = ε(π(a), π(s))
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1 init(piece(a,1)).
2 init(piece(b,1)).
3 init(piece(c,1)).
4 init(piece(d,1)).
5 init(piece(a,2)).
6 init(piece(c,2)).
7 init(piece(d,2)).
8 init(piece(a,3)).
9 init(piece(b,3)).

10 init(piece(c,3)).
11 init(piece(d,3)).
12 init(piece(a,4)).
13 init(piece(b,4)).
14 init(piece(c,4)).
15 init(piece(d,4)).
16

17 legal(put(U,V,X,Y)) :- true(piece(U,V)), coord(X,Y), not true(piece(X,Y)).
18

19 next(piece(X,Y)) :- does(put(U,V,X,Y)).
20 next(piece(X,Y)) :- true(piece(X,Y)), not moved(X,Y).
21

22 moved(X,Y) :- does(put(X,Y,U,V)).
23 coord(a,1). coord(a,2). coord(a,3). coord(a,4).
24 ...
25 coord(x,1). coord(x,2). coord(x,3). coord(x,4).

a b c d x

1

2

3

4

Fig. 3. An action theory describing the physical environment of the robot in Fig. 1

Example. The action theory in Fig. 3 describes the physical environment of the
robot in Fig. 1 with the help of a single fluent, piece(i, j), indicating whether a
can has been placed at (i, j) where i ∈ {a, b, c, x} and j ∈ {1, 2, 3}; and the
action put(i, j, k, l) of lifting the object at location (i, j) and putting it down
at location (k, l).

The following projection function maps every action and state in the 15-puzzle
to an action and state in the robotic game environment:

1. π(move(u, v, x, y)) = put(u, 5− v, x, 5− y),
where 1 = a, . . . , 4 = d (to account for the different coordinate systems);

2. π(s) = {piece(x, 5− y) : cell(x, y, z) ∈ s, z �= empty}.
It is easy to see that under this function, initial state (1) of the 15-puzzle projects
onto the initial state of the action theory for the robotic environment. Indeed, the
projection provides a simulation of the 15-puzzle in the physical robot domain:
According to the rules in Fig. 2, the possible actions in the 15-puzzle are to move
from a cell (u, v) to an adjacent and empty cell (x, y). This implies that there is
no piece in the corresponding location (x, 5− y) on the physical board and also
that there is a piece at (u, 5 − v) since there can be no more than one empty
cell in any reachable state of the game. Hence, the corresponding put action in
the robotic environment is possible in the projected state according to clause 17
in Fig. 3. Moreover, the result of sliding a tile is that the tile and the empty
location swap places, which corresponds to the effect of moving the respective
tin can.

It is worth noting that the reverse does not hold: The robot can of course move
any of the pieces into a non-adjacent, empty location, including the 4 marked
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positions to the right of the board. None of these actions can be matched by a
legal move in the 15-puzzle.

4 Automating Simulation Proofs

An automated proof that one action theory indeed simulates a second one
through a given projection, in general needs to inspect all action sequences pos-
sible in the simulated transition system. A viable and sound but incomplete
alternative is to use induction proofs—a technique that has been successfully
applied to automatically proving state constraints in action theories [18,22]. In-
deed, the required properties of a simulation according to Definition 3 can be
considered as state constraints over the combined action theories. In the follow-
ing, we adapt the existing ASP-based proof technique for state constraints in
general games [18] to solve the problem of automatically proving simulation of
two action theories by induction.

Consider two action theories P1 and P2 . We combine these into a single
answer set program P1 ∪ P2 , which is then augmented as follows:

1. An encoding of a given projection function π from P1 to P2 by:

(a) Clauses

1 isimulation_error :- ¬Π [init ] .
2 tsimulation_error :- ¬Π [true ] .
3 nsimulation_error :- ¬Π [next ] .

Here, Π stands for an ASP encoding of the conditions (on the fluents
in the two action theories) under which a state from P1 projects onto a
state from P2 according to π. The expression Π [init] etc. means to
replace every occurrence of a fluent f in Π by init(f) etc.1

(b) Clauses

4 does (π(a)) :- does (a).

for actions a from P1 .

2. An encoding of the induction hypothesis as

5 { true(F) : fluent(F) }.

6 1 { does(A) : action(A) } 1.

7 :- action(A), does (A), not legal(A).

8 :- tsimulation_error .

where the auxiliary predicate fluent ranges over all fluents in either P1 or
P2 while action ranges over the actions of P1 only.

3. The negation of the base case and of the induction step as

1 For example, if the projection function requires that there be no empty cell (x, y)
in the abstract game that houses a piece in the physical environment, then
¬Π could be (∃x, y) cell(x, y, empty) ∧ piece(x, y), in which case ¬Π [init] is
(∃x, y) init(cell(x, y, empty)) ∧ init(piece(x, y)).
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9 counterexample :- isimulation_error .

10 counterexample :- does (A), not legal(A).

11 counterexample :- nsimulation_error .

12 :- not counterexample .

If the resulting ASP admits no stable models, then this proves the projection
function to be a simulation of P1 by P2 : Clause 12 excludes solutions without
a counter-example, which according to clauses 9–11 is obtained when

1. the initial state does not project, which corresponds to condition 1 in Defi-
nition 3;

2. an action exists (clause 6) that is legal (clause 7) but whose projection is
not possible, which corresponds to condition 2(a) in Definition 3;

3. a state, i.e. a set of fluents, exists (clause 5) so that the result of a state tran-
sition does not project, which corresponds to condition 2(b) in Definition 3.

We have thus obtained at a technique for automating simulation proofs that is
correct and also very viable in practice as it avoids inspecting all possible action
sequences of the simulated state transition system, as a variety of systematic
experiments with similar inductive proof techniques have demonstrated in the
past [18].

While sound, these induction proofs are in general incomplete as can be shown
with our two example action theories for the 15-puzzle and the robotic environ-
ment as given in Fig. 2 and 3, respectively.

Example. Using the same schema as the generic clauses 1–4 above, the projec-
tion function defined for our example in Section 3 can be encoded thus (where
for the sake of clarity we assume that the two coordinate systems were identical):

does(put(U,V,X,Y)) :- does(move(U,V,X,Y)).

isimulation_error :- init(piece(X,Y)), not icell_tile (X,Y).

isimulation_error :- not init(piece(X,Y)), icell_tile (X,Y).

tsimulation_error :- true(piece(X,Y)), not tcell_tile (X,Y).

tsimulation_error :- not true(piece(X,Y)), tcell_tile (X,Y).

nsimulation_error :- next(piece(X,Y)), not ncell_tile (X,Y).

nsimulation_error :- not next(piece(X,Y)), ncell_tile (X,Y).

icell_tile (X,Y) :- init(cell(X,Y,Z)), Z != empty.

tcell_tile (X,Y) :- true(cell(X,Y,Z)), Z != empty.

ncell_tile (X,Y) :- next(cell(X,Y,Z)), Z != empty.

Put in words, a projected state requires a tin can at location (x, y) if, and only
if, the corresponding cell in the 15-puzzle exists and is not empty. Combined
with the action theories of Fig. 2 and 3 and augmented by the general clauses
5–12 from above, the resulting ASP does admit stable models. For instance, one
model of the ASP includes

true(cell(1, 1, empty)), true(cell(1, 2, empty)), legal(move(1, 1, 1, 2))
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Indeed, the action theory in Fig. 2 sanctions the move from one empty cell to
a neighbouring empty cell while this is not possible in the robot domain, where
only pieces can be moved. Another model of the ASP includes

true(cell (1, 1, 1)), true(cell(1, 2, empty)), legal(move(1, 1, 1, 2))
true(cell (1, 2, 2)), true(piece(1, 2))

Indeed, the action theory in Fig. 2 sanctions the move into a cell with a numbered
tile, here (1, 2), if the fluent is also true that says that this cell is empty. Again
this is not possible in the robot domain, where a tin can cannot be put down at
a location already occupied by an object.

Clearly, both these generated counter-examples refer to unreachable states in
the 15-puzzle, hence their existence does not disprove our projection to provide
a simulation of this game by the robot. In fact, we can enhance the capability
of any ASP for proving simulation by adding state constraints of the simulated
action theory that help to exclude unreachable states from being considered as
counter-examples. Specifically, the 15-puzzle satisfies these state constraints:

inconsistent :-

true(cell(U,V,empty)), true(cell(X,Y,empty)), U != X.

inconsistent :-

true(cell(U,V,empty)), true(cell(X,Y,empty)), V != Y.

inconsistent :-

true(cell(X,Y,empty)), true(cell(X,Y,Z)), Z != empty.

:- inconsistent .

Put in words, no consistent state contains two different cells that are both empty,
or a cell that is both empty and occupied by a numbered tile. These constraints
themselves can be automatically proved from the underlying action theory of
Fig. 2 using existing methods [18,22]. Once they are added, the ASP for proving
that the robotic domain can simulate the 15-puzzle admits no stable model,
which establishes the intended result.

5 General Game-Playing Robots and the Playability of
Games

The annual AAAI GGP Competition [16] defines a general game player as a sys-
tem that understands the formal Game Description Language (GDL) [25] and
is able to play effectively any game described therein. Since the first contest in
2005, General Game Playing has evolved into a thriving AI research area. Es-
tablished methods include Monte Carlo tree search [9], the automatic generation
of heuristic evaluation functions [7,31], and learning [10].

General game-playing robots extend this capability to AI systems that play
games in the real world [28]. In bringing gameplay from mere virtual into physical
environments, this adds a new requirement for suitable game descriptions, which
concerns the manifestation of the game rules in the real world: An abstract game
described in GDL can be played in a real robotic environment only if all moves
deemed legal by the rules are actually possible in the physical world.
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Fig. 4. (a) Different games and (b) their projections onto the game environment of
Fig. 1

When we use a physical environment to play a game, the real objects become
representatives of entities in the abstract game. A pawn in chess, for instance,
is typically manifested by an actual wooden piece of a certain shape and colour.
But any other physical object, including a tin can, can serve the same purpose.
Conversely, any game environment like the 4× 4(+ 4) board with cans depicted
in Fig. 1 can be interpreted in countless ways as physical manifestation of a
game. For example, Fig. 4(a) shows two positions from two different games, a
mini chess-like game and the 8-puzzle as a smaller variant of the standard sliding
tile game. We can view the states depicted to the left of each position (Fig. 4(b))
as their projection onto our example physical game environment, in which the
extra row can be used to park captured pieces (in chess-like games) or where
gameplay is confined to a subregion of the board (for the 8-puzzle). Note that
this manifestation abstracts away possible differences in the type of cans such
as their colour or shape (or contents for that matter). Hence, it is only through
a projection function that the robotic player knows whether a can stands for a
white or a black pawn, say. The same holds for the sliding puzzles, where the
goal position (with all tiles in ascending order) actually projects onto the very
same abstract environment state as the starting position—the distinction lies
entirely in the meaning attached to individual cans in regard to which number
they represent. It is noteworthy that a similar feature is found in many games
humans play, where also the physical manifestation of a game position is often
an incomplete representation; for example, the pieces on a chessboard alone are
not telling us whose move it is or which side still has castling rights [27].

The manifestation of a game in a physical environment can be mathematically
captured by projecting the positions from the abstract game onto actual states of
the game environment, and then a game is playable if all actions in the abstract
game can be matched by actions in the projected environment [28]. The language
GDL, which is commonly used to describe games in general game playing and
which supports the description of any finite n-player game (n ≥ 1), includes
elements for the specifications of different players and goals [16]. Since these are
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irrelevant for the question whether a game is playable and because our action
language of Definition 1 is in fact a stripped-down version of GDL, the formal
concept of simulation of action theories, along with our proof technique, can be
employed for the purpose of automatically proving that a game is playable in a
robotic environment. The only requirement is to symbolically describe the latter
by an action theory in the same language.

6 Conclusion

In this paper we have defined the concept of one action theory being able to
simulate a second one. We have shown how Answer Set Programming can be
used to automatically prove simulation by induction from an axiomatisation
of the two action theories and a projection function between them. We have
motivated and applied these results in the context of systems that draw together
two topical yet disparate areas of artificial intelligence research: general game
playing and robotics.

Our definition of simulation in action theories follows the standard one in
theoretical computer science and formal logic, in that actions always need to
be matched by single actions. In practice, this requires a similar level of ab-
straction in both models. But our notion of projection in Definition 3 can be
straightforwardly generalised to allow for different degrees of abstraction in that
an action in one model corresponds to a sequence of actions in the other one. A
single move in the abstract 15-puzzle, for example, could then be mapped onto
a complex movement of the robot arm in the physical environment: move above
the can, open the fingers, go down, close the fingers, move to the target location,
open the fingers, raise above the can, close the fingers and return back to the
home position. The automation of simulation proofs then needs to be suitably
extended by incorporating sequences of state updates in one action theory [18]
and aligning them with a single state transition in the simulated system.
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Abstract. Since 10 years our group in Clausthal is organizing the Multi-
Agent Programming Contest, an international contest providing a flexible
testbed for evaluating prototypical implementations of agent systems.
We describe in this paper how the scenarios developed over time, which
lessons we learned, and how this endeavour finally led to the idea of a
scalable multiagent simulation platform. The important conclusion we
draw is the need to move from academic prototypes to more seriously
engineered software systems in order to support the uptake of academic
research in industry.

1 Introduction

The year 1980 marks an important date in knowledge representation and reason-
ing. Artificial Intelligence published a special issue containing three of the most
important papers starting a completely new field: nonmonotonic reasoning. Our
dear colleague, Gerhard Brewka, is working in this area since the mid 80’s and
helped forming the field.

The first two decades have seen an enourmous amount of research which
shed light on the relations and formal properties of many variants of nonmono-
tonic logics. The second author worked for many years on the relation between
logic programming semantics and nonmonotonic reasoning. Two of the most
prevailing goals have always been the following: (1) Define a computable and ef-
ficient formalism to handle commonsense reasoning. (2) Develop an engineering
methodology to apply this formalism to real-world problems.

The gap between theory and practice has been huge in the beginning (it still
is large). While the first goal initiated an impressive amount of work over the
years, the second goal was not taken up with the same devotion.

Interestingly, one of the main researchers in nonmonotonic reasoning, Yoav
Shoham, was also one of the influential people to start in the 90’s another line of

� I would like to express my gratitude for working with Gerd Brewka in the late 80’s
and 90’s, when I started my own research. It was a terrific time!
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research, which led to the ever flourishing area of agent systems (his seminal pa-
per on agent-oriented programming was also published in Artificial Intelligence
in 1993).

The notion of an intelligent agent is perhaps the most important idea in
artificial intelligence in the last four decades and turned out to be extremely
influential in many areas (as evidenced by the recent textbook [10], the AAMAS
conference series and many associated workshops, eg. ProMAS, EMAS, CLIMA,
DALT, AOSE). The question How does an agent take its decisions? is closely
related to classical knowledge representation and reasoning mechanisms: It is
indeed a nonmonotonic procedure. Agents need to reconsider their intentions,
revise their belief in the light of new information, and thus act in a nonmonotonic
fashion.

An important feature is that agents always act in an environment with many
other agents: they are not alone. This led to the introduction of agent pro-
gramming languages. Most of these languages were still in their infancy at the
beginning of this millenium. They were often developed within a PhD or in
similar smaller projects, based on some sort of computational logic. Such im-
plementations were proofs-of-concept, rather than seriously designed software
systems.

In 2004, during one of the CLIMA conferences, the following idea (suggested
by Paolo Torroni and Francesca Toni) came up: to organize an annual inter-
national event as an attempt to stimulate research in the field of programming
multiagent systems by 1) identifying key problems, 2) collecting suitable bench-
marks, and 3) gathering test cases which require and enforce coordinated action
that can serve as milestones for testing multi-agent programming languages,
platforms and tools. In 2014 the competition was organized and held for the
tenth time.

Similar contests, competitions and challenges have taken place in the past few
years. Among them are Google’s AI challenge1 , the AI-MAS Winter Olympics2,
the Starcraft AI Competition3, theMario AI Championship4 , the ORTS competi-
tion5, the Planning Competition6, and the General Game Playing Competition7.

The plan for this paper is as follows. In Section 2 we describe our Contest in
more detail. In Section 3 we discuss the lessons we learned. Section 4 (which is
based on joint work published in [2,3]) develops the idea of a scalable multi-agent
simulation platform MASeRaTi that evolved out of (1) our work on the Contest,
and (2) work on traffic simulation of the group led by our colleague in Clausthal,
Jörg Müller. Finally we draw some conclusions and look into the future.

1 http://aichallenge.org/
2 http://www.aiolympics.ro/
3 http://eis.ucsc.edu/StarCraftAICompetition
4 http://www.marioai.org/
5 http://skatgame.net/mburo/orts/
6 http://ipc.icaps-conference.org/
7 http://games.stanford.edu/

http://aichallenge.org/
http://www.aiolympics.ro/
http://eis.ucsc.edu/StarCraftAICompetition
http://www.marioai.org/
http://skatgame.net/mburo/orts/
http://ipc.icaps-conference.org/
http://games.stanford.edu/
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2 The Multi-Agent Programming Contest

The Contest is an international annual event that first took place in 2005. Over
the years, the contest went through well defined episodes, characterized by the
scenarios in which the agents perform and compete. Originally it was designed
for problem solving approaches that are based on formal approaches and com-
putational logics. But this was never a requirement. Indeed in the last few years
we have seen participating teams which programmed entirely in Java or Python.

The trend in the design of the scenarios has been to increase the complexity;
instead of a clever algorithm that solves the scenario (perfect algorithm), we
wanted scenarios in which intelligent agents can and should make use of capabil-
ities such as autonomy, coordination, flexibility, proactiveness and reactiveness,
etc., features that the multi-agent programming paradigm aims to facilitate. We
wanted to evaluate the underlying languages/systems by checking whether they
support such capabilities.

Even though the contest has inspired some interest from other research com-
munities and individuals, the core of the participants belongs to the multi-agent
programming research community, and most of them are designers of multi-
agent languages and platforms, who find in the Contest an excellent test-bed
and benchmark for their own developments.

For this purpose the scenarios are adapted to the state of the art in multi-
agent programming, and do not increase in complexity arbitrarily. Some desired
features for the environments, such as a greater degree of uncertainty (e.g. by
means of actions failing with higher probability, so that learning or nonmonotonic
formalisms are useful), have been put off. While we could certainly put more
emphasis on evaluating such knowledge representation issues in the future, the
available languages currently do not provide enough constructs to deal with these
problems.

2.1 The Underlying Platform

The first edition of the Contest presented a relatively simple scenario that had
to be implemented in its totality by each participant and delivered as an exe-
cutable for evaluation by the organizers. For the second edition, the MASSim
infrastructure was introduced. MASSim is an extensible simulation server that
provides the environment facilities. Agent programs can connect through the
network to a MASSim server and control simulation level agents; this allowed
the Multi-Agent Programming Contest to be run in a different way: the com-
petitors should only focus on the agents’ design and implementation; agents are
run in the competitors’ own computer infrastructure and connect to a MASSim
instance running in the contest organizer’s infrastructure, in which the scenario
is implemented.

Besides freeing the competitors from dealing with the implementation of the
environment, another key factor provided byMASSim is that agent programs from
different locations can connect to the same simulation, thus enabling competitive
scenarios. Since the introduction ofMASSim in the 2006 edition, the format of the
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Contest has been that of two teams competing against each other for performance
in each simulation, and the overall winner of the contest defined by summing up
the points after all participants have competed in simulations against each other,
in a regular sports’ tournament fashion.

All simulations are run in a step-by-step manner. In each step all agents
execute their actions simultaneously from the point of view of the server, and
there is a time limit within which agents must choose an action (otherwise they
are regarded as a no-op). In the beginning of each step’s cycle, the server sends
each agent its current percepts of the environment, and waits for the response
that specifies the action to execute. When the responses from all agents are
received or when the timeout limit is reached, all received actions are executed
in MASSim, and the agents’ percepts for the next step are calculated. This cycle
is repeated for a fixed number of steps, and then a winner is decided according
to scenario-specific criteria.

MASSim is fully implemented in Java, and the information exchange with the
agent programs is made through XML messages. It follows a plugin architecture
for the simulations, which makes it easy to design new scenarios on top of it,
as has been the case during the evolution of the Contest. Figure 1 describes this
architecture. The addition of new scenarios does not imply the replacement of
the previous one. Many different scenarios can convive within a single instance
of MASSim, and they can be activated by choosing or modifying configuration
files accordingly.

Fig. 1. The massim infraestructure

The MASSim package is fully open-source and openly available (https://
multiagentcontest.org/downloads). It is not only used for the Contest, but

https://multiagentcontest.org/downloads
https://multiagentcontest.org/downloads
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has also proved useful both for researchers testing their advancements in the field,
and in several classrooms, aiding the teaching of the multi-agent programming
paradigm (https://multiagentcontest.org/massim-in-teaching).

To further ease the development of agents, the MASSim package includes
EIS (http://sf.net/projects/apleis/), which is a proposed standard for
agent-environment interaction. It maps the communication between MASSim
and the agents (sending and receiving XML-messages to Java-method-calls and
call-backs). On top of that it automatically establishes and maintains connec-
tions to a specified MASSim.

2.2 Previous Scenarios

The scenario used for the first edition of the Contest (2005) consisted in a simple
grid in which agents could move to empty adjacent spaces. Food units would
appear randomly through the simulation, and the objective was to collect these
units and carry them to a storage location. This rather simplistic scenario had
to be implemented in its totality by the participants.

The idea was refined for the second edition: Gold Miners. Now the agents
were to collect gold in a competitive environment against other team, and some
obstacles were introduced in the grid to add some navigation complexity. This
scenario, which was also used in the third edition of the contest, was still very
simplistic, and agents acted independently of their teammates, in the solutions
proposed.

For the 2008 edition, a new scenario was designed to enforce coordination
of agents: Cows and Cowboys (Figure 2). Still using a grid as the underlying
map, the goal for this scenario was to lead a group to a particular area of
the map, representing the team’s own “corral”, while preventing the opponent
team from doing the same. The cows were animated entities that reacted to the
agents’ positions by trying to avoid them, so solving the map required agents
coordinating their positions in order to lead big groups of cows into the corrals,
whereas a single agent would in most cases disperse the group of cows and fail
to lead them in the desired direction.

The “Cows and Cowboys” scenario was used also in the following two editions
(2009 and 2010), with further refinemets such as the addition of gates that
required explicit coordination: one agent had to stand in a particular position
to keep the gate open while a teammate passed through.

2.3 The Agents on Mars Scenario

The Agents on Mars scenario introduced in 2011 and still in use for the 2014
edition was an important step in the contest’s evolution, as it introduced many
innovative features and increased the game’s complexity. The map now takes the
form a weighted graph representing the surface of Mars. The agents represent All
Terrain Vehicles of different kinds, and their goal in the game is to discover the
best water wells by exploring the map and then to keep control of as many wells
as possible, by placing themselves in specific formations that ensure a covering

https://multiagentcontest.org/massim-in-teaching
http://sf.net/projects/apleis/
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Fig. 2. The Cows and Cowboys scenario

of an area containing the wells while keeping rival agents aside. Figure 3 shows
a screenshot of this scenario.

The agents in this scenario assume different complementing roles, promoting
both autonomy and coordination. For example, Explorers are in charge of dis-
covering the water wells, while Saboteurs can attack agents of the opposing team
to temporarily disable some of their capabilities. Repairers are responsible for
restoring its teammates capabilities when they have been attacked, in a coordi-
nated manner. All roles must collaborate to produce the best map coverings.

These agents are much more complex entities than in the previous scenarios.
They have now a rich set of actions to choose from, in contrast with only moving
around the map. Furthermore, they count with a set of internal parameters
that can vary through the simulation—Energy, Visibility Range, Health and
Strength—that can affect the choice of available actions: almost every action
that an agent can perform has an associated energy cost; once an agent’s energy
level reaches 0, the only action it can successfully execute is the recharge action. If
an agent is attacked by a rival saboteur, it becomes disabled and cannot execute
its role-specific actions until it is repaired.

Another important feature that was introduced with the Agents on Mars
scenario is the concept of Achievements. By reaching certain predefined mile-
stones (e.g. controlling an area is worth a certain amount of points), teams earn
Achievement points. These can be used in two different ways: either they are
kept to directly contribute to the team’s score, or they can be used as currency
to exchange for improvements to the agent’s internals.

The evolution in the complexity of the scenario has remained on a par with
the evolution of multi-agent programming technologies used by the participating
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Fig. 3. The “agents on Mars” scenario

teams. A good quality of the teams has been reached, that ensured interesting
games. Unlike previous scenarios, a strategy that works against every rival has
proven harder to find, and thus the winners are not unbeatable.

2.4 The Next Scenario

While the 2014 edition on the Multi Agent Programming Contest has just taken
place once again using the Agents on Mars scenario, we are already considering
ideas for a completely new scenario for the next edition in 2015. A very promising
possibility, for which some research has been made in other projects, is a traffic-
simulation kind of scenario, we intend to use map information from real cities.
The actual game to be played in this map is still to be refined.

3 Lessons Learned

In this section we will take a deeper look at some observations that we realised
during ten times of hosting the Multi-Agent Programming Contest [5,4]. Most
of them led to improvements of the contest platform or the employed scenario.
Many lessons we learned are related to engineering issues (as opposed to scien-
tific ones). For example, collecting statistical data or visualizations turned out
to be as important as the choice of the scenarios.

3.1 From Gold Miners to Herding Cows

The first lesson we had to learn reaches back all the way to the first Contest in
2005. The agent implementations had to be submitted as an executable system
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and were run locally on the Contest platform. It became clear that a standard
technical infrastructure had to be provided in order to ensure a fair and objective
evaluation of the agent systems and to relieve the participating teams from
having to deal with low-level implementation details. Instead they should focus
on the internal logic of their agents. This finally led to a separation of the
scenario and the agent implementation platform, further trying not to impose
unnecessary constraints on the participants systems.

As already mentioned, we wanted to see agents make use of their distinct
capabilities. It became clear that those features had to be explixitly elicited. Of
those, the two most important were the following:

Cooperation: Clearly, a multiagent platform or framework should be unri-
valled in providing cooperating entities. While it was first believed that
agents would cooperate automatically in order to achieve better results, the
first editions of the Contest proved the contrary. The food gathering and
gold mining scenarios were quite simple and easy to handle by individual
agents. Thus, the subsequent scenarios were designed to enforce rather than
just encourage cooperation, by making it impossible for the agents to win
without seriously coordinating their actions.

Autonomy: Another feature that was not especially required in the first edi-
tions was the autonomy of the agents. It was very much possible to have a
central agent deciding and coordinating the actions of all the other agents
by itself. This, of course, contradicts an agent’s basic characteristics. This
shortcoming has been alleviated to some degree by increasing the number of
agents and the size of the respective scenario, which made it less feasible (or
almost imossible) for one single agent to handle all the information by itself.

From a more technical viewpoint, the Contest has clearly shown that tools for
debugging and testing agent platforms are very important during development.
Indeed, the participants of the first editions of the Contest were more concerned
with debugging rather than with devising good strategies. This became clear
to the participating teams and the agent programming community in general,
making it possible and inviting to put more effort into simplifying those tasks.

Lastly, we realised that the visualization and playability of the respective
scenario is a key to reaching a broader audience, especially students, e.g. when
MASSim is used in teaching in various courses all over the world.

3.2 Mars Scenario

Employing the Mars setting, we were again able to obtain a multitude of results
and observations, mostly regarding (1) the usage of multiagent platforms, (2)
the scenario, and (3) several technical issues.

Additionally, we now learned a lot from interviewing the participants, and
gathering statistical data.

Usage of Multiagent Platforms. Employing the Mars domain, we noted an
increasing application of multiagent platforms, i.e. starting with 33% in 2011
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and up to 80% in 2013. Also, this scenario has always been won by a dedicated
agent platform and those dedicated platforms seemingly outperform “ad-hoc”
solutions. The presented agent solutions get better from year to year, although
the complexity of the scenario is ever increasing. On the one hand, this can
be attributed to some teams taking part repeatedly, but it also points to an
increasing maturitiy and ease of use concerning multiagent platforms.

Scenario. We saw more coordination within the respective agent teams and of
course more interaction with the opponent teams, which tells us again that the
scenario has to be clearly designed to enforce cooperation and interaction.

Technical Issues. As identified earlier, debugging is a key problem inmultiagent
programming. Thus, in the second and third edition of this scenario, we had to
work on our side of the Contest as well and improve the visualization and feedback
that was sent to the agents. This made it easier to at least grasp what was going
on in a simulation, maybe hinting where to start the debugging of the agents.

Asking the Participants. By requiring the participants to answer a predefined
questionnaire [1], we tried to learn not only about the final agent platforms
and the results they produced, but about the whole development process. For
example, we learned why teams participated in the first place. For many, the
motivation was to learn about multiagent systems or to refine their programming
skills concerning them. A lot of teams furthermore shared our goal of evaluating
multiagent frameworks and platforms. Regarding their structure, teams were
composed of students as well as researchers with their background mostly in
MAS or at least artificial intelligence in general.

We also asked the teams how difficult it was and how much effort had to be
put into getting to a point where their system behaved as it finally did. We got
very diverse results, reaching from 150 to 840 person hours and 1000 to 11000
lines of code that had to be written, tested and debugged. This clearly hints at
varying levels of usability concerning different agent platforms.

Furthermore, teams noted that they not only debugged their agents but found
and fixed bugs in the agent framework or platform they used as well, which
shows that the Contest plays an important role concerning the development and
evaluation of different platforms. Nevertheless, the teams are still not satisfied
with the state-of-the-art debugging tools, since it still requires a lot of effort to
debug even 20 agents, each with its own individual mindset.

Not always apparent from the simulation results, we further learned

– which strategies the participants intended to use,
– how they employed different frameworks, and
– how they implemented different features of agent-based systems.

Also, the teams were able to tell us which development tools they used to which
extent. The most time-consuming task in development still was debugging, or,
if that worked out rather well, coming up with a good strategy.
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Gathering Statistical Data. Lastly, we implemented a new module for the
Mars scenario that allowed us to collect a multitude of statistical data for better
and faster analysing a simulation once it was completed. Using these data, we can
easily retrace a whole simulation’s progress by looking at the automatically gen-
erated charts instead of watching the whole replay, which can be quite tedious at
times. The charts mainly focused on scenario-specific data, like the development
of the score or stability of dominated zones. Furthermore, we were finally able to
directly and easily compare different simulation runs without having to keep a lot
of details in mind. This showed that better tools for analysing on our side of the
Contest were as important as better debugging tools for the participants.

For example, in Figure 4, the zone scores of the teams UFSC-SMADAS and
LTI-USP from their third simulation in the 2013 edition of the Contest are given.
One can see that both teams overall managed to increase the size of their zones.
Starting at around step 200, it seems that the USFC team (depicted in green,
having a spike there) gained control of a zone that was formerly dominated by
LTI-USP which suffered a setback with the same size of the spike of USFC.
However, the exchange of control seemingly did not last long, since both scores
quickly return to their original values. One can now easily confirm such an as-
sumption by directly jumping to the right point of the replay.

Fig. 4. UFSC-SMADAS vs. LTI-USP Simulation 3: Zone Scores

As we have seen, the Mars scenario follows the tradition and improved further
on well-tried concepts while confirming observations made in earlier contests.

3.3 The MASSim Platform

Our platform served well over the course of many years in evaluating differ-
ent agent platforms and solutions. Especially, developing the EIS standard and
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accompanying EISMASSim implementation [6,9] helped in easily introducing
agent platforms to the MASSim platform.

However, the platform showed certain shortcomings as well. For one point, it
is completely implemented in Java, which is known not to have the performance
of e.g. C++. Additionally, it is difficult, if not impossible, to efficiently parallelize
it and run it on a high performance cluster.

Another bottleneck can be found in the network traffic with its relatively high
communication overhead. This was even a problem for some participants with
less favorable internet connections.

From the point of view of the organizers, decoupling scenario and agent imple-
mentation made possible to exchange scenarios much more easily. However, the
scenario is still hard-coded in Java and hard-wired to the simulation platform,
which, again, makes implementing a new scenario a rather time-consuming task.

All in all, our long-termgoal is to evolveMASSim into a platform that overcomes
all these drawbacks.Creating a highperformance platformwould allowus to finally
analyse and compare agent platforms with respect to their scalability. One step to
reach the goal could be to establish a standard, e.g. in the spririt of EISMASSim,
that enables all agents, and thus the whole Contest, to be run once again locally
on our server. This would certainly free the participants from having to restart
crashed agents during a simulation. It would also introduce robustness as a new
and important requirement for multiagent systems in order to participate.

4 Large-Scale Simulation: Maserati

We have seen in the last few years that MASSim is a stable platform able to
coordinate up to a hundred agents quite efficiently (and remotely over the net).
Unfortunately, for reasons that we discuss below, it is not possible to extend
MASSim to handle tens of thousands of agents (or even more). However, in
massive simulations, eg. in traffic, energy or logistics, such numbers of agents
are easily reached. Scaling a microsimulation approach (like MASSim) to large
scenarios is still a challenge.

Nowadays massive simulations, eg. in traffic simulation, are undertaken with
classical analytical models. These models only allow to deal with global prop-
erties, like the throughput or flow-rate. An example is the commercial traffic
simulation platform AIMSuN .

Why can’t we simply integrate AIMSuN with an agent programming plat-
form? This has been undertaken in [7] where it was tried to integrate AIMSuN
with the well-known agent platform JADE. However, experience showed that
this is extremely difficult and does not work without having access to the source
code of the commercial software product (which is not available in most cases).

So we are left with two extreme approaches:

Micro-view: a massive multiagent based simulation, where each entity is an
agent, or

Macro-view: a commercial product based on analytical models and describing
global properties of the system.
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The idea of MASeRaTi is to develop a simulation platform which is inbetween:
it supports both a micro-view as well as a macro-view. Ideally, the designer
should be able to zoom in and turn particular parts of the system into agents (if
such a detailed view is needed), or to rely on global parameters for other parts
(there are some similarities to the notion of a view in databases). Often there
are questions where the additional overhead to deal with a micro-view is not
needed. Thus it would be appropriate not to be forced to deal with it.

MASeRaTi, currently being developed in the DeSIM project8 at TU Clausthal,
is a distributed MABS platform that aims at high scalability for networked sim-
ulations of systems-of-systems, e.g. in traffic and transport. It will be capable of
running simulations containing a vast number of software agents.

This section should give the reader a bird’s eye view of MASeRaTi. For details
we refer to [3] and [2] (where parts of this section were taken from).

The MASeRaTi platform combines several promising features from different
areas in one integrated system.

Architecture: Its architecture, in particular communication and the simulation
cycles, are inspired by the architectures of massively multiplayer online role-
playing games (MMORPG): All simulation objects are split into two disjoint
sets, synchronized and non-synchronized objects. Synchronized objects are
for instance the simulation world (also called area) or objects situated within,
because these objects must be consistent over all nodes of the HPC. Other
objects, e.g. agents, are defined as non-sychronized objects, allowing to be
transferred to other nodes.

Scalability: We use high-performance computing algorithms with the message-
passing-interface (MPI), so that we can use scalable structure with a high
performance datalink between the cluster nodes (in the future, a P2P overlay
can be used). Scalability is achieved by splitting the simulation objects into
disjoint sets, so that we can design a distributed system with an optimization
process for calculation.

Lua: We define an abstract agent model for an agent programming interface in
Lua9, which can be extended or fully redefined by the programmer.

The overall MASeRaTi architecture consists of three layers, see Fig. 5:

Micro-kernel (MK): Written in C++, this layer facilitates parallelization over
a HPC using structure, scheduler, scaling and optimization features of the
message passing interface (MPI) library. A plug-in interface allows to replace
MPI by alternative communication technologies like BitTorrent.

Agent model layer (AML): The agent model layer defines an object-orien-
ted model of a multiagent based simulation. Micro-kernel classes and objects
are mapped into this layer, extending the existing structures. Lua is used as a
modeling language because of its flexibility (imperative, object-oriented and
functional programming) and its property of being interpreted at runtime.

8 http://simzentrum.de/en/projects/desim
9 http://www.lua.org/

http://simzentrum.de/en/projects/desim
http://www.lua.org/
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Fig. 5. Overview of the MASeRaTi architecture

Scenario layer (SL): This layer defines instances of an AML, adding domain-
specific entities and behavioural models, e.g., for traffic simulation.

The reason for using Lua as the modeling language in the AML is twofold:
Firstly, it has a very small interpreter (around 100kByte) written in native C.
Secondly, C/C++ data structures can be pushed into the Lua interpreter at
runtime with a native pointer structure, so we can easily extend Lua. The linkage
between MK and AML is defined by Lua binding frameworks, e.g. Lua Bridge10.

Finally, the simulation layer implements a simulation as an instance of the
AML. A native Prolog interpreter is provided for reasoning tasks (e.g., for the
belief base). One can also store Lua functions in it. Area structures like graph or
grid systems can be added with the Data-Type interface. Such a data type models
a certain structure (like a grid, a graph etc.) and implements the corresponding
search algorithms such as Dijkstra’s, A� and D�.

The process of engineering (i.e., modeling and running) a simulation is geared
to exploit the structure of the MASeRaTi platform. The platform itself runs on
a HPC system enabling large sets of experiments. The steps of the process are
illustrated in Fig. 6.

After each iteration, the developer should be able to test her prototype by
creating a request for computation (Step 4). The HPC system instantiates this
task, creates child processes and calculates the outcome. While the simulation
is running, one can create another instance or a completely new scenario and
add the task to the queue. Finally, in Step 5 and 6 the evaluation data of a
simulation is processed by the client and additional analyses are made.

Due to the revision control system of the database, a scenario can run with
different parameters and input data and the resulting datasets can be compared.
The architecture is split into client and server parts, which communicate via the
database. The database stores all scenario data into a repository, so the full

10 https://github.com/vinniefalco/LuaBridge

https://github.com/vinniefalco/LuaBridge
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developing process is being logged. A task can be seen as a current state of a
repository with fixed parameters and input data. This mechanism enables the
possibility to supervise and summarize the results of different tests.

Figure 7 sketches a user interface to support the simulation engineering pro-
cess. The interface will be realised by techniques used in today’s web browsers, so
that each user can add modeling or analysing features to the system. The client,
which can run small simulations, uses Qt QML 11 to create a browser interface.

11 http://qt-project.org/doc/qt-5.0/qtqml/qtqml-index.html

http://qt-project.org/doc/qt-5.0/qtqml/qtqml-index.html
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We plan to add components for visualization like Data-Driven Documents12 or
Chart.js13.

5 Conclusions

An important outcome, or rather insight, of the second author’s work on logic
programming and knowledge representation in the 90’ies is the following. While
basic research flourished and produced many important results on the relation
between various formal systems and on the complexity and expressivity of many
semantical systems, it did not account for developing a methodology to apply
these systems to the real world (or at least to nontrivial applications). The rea-
son is simply that such methodologies are by many considered not scientifically
valuable and thus it is difficult to get publications out of such work. The engi-
neering component, which is invaluable for a potential serious implementation of
a running system, is time-consuming yet the scientific content is low (given that
the original theoretical results have already been published).

But the uptake of basic research in industry heavily depends on well-developed
methodologies and seriously crafted software systems (as opposed to prototypes
developed within PhD projects). Building such systems requires many person
years and is almost never done within an academic environment.

The shift from logic programming semantics to answer set programming, seen
as a paradigm to encode problems on the second level of the polynomial hierarchy
and solve them with appropriate solvers, was of utmost importance. But without
applications and ASP systems developed and improved along such applications
it would have been nothing but an academic toy.

There are some similarities to the area of agent programming. As mentioned
above, in the first few years agent programming languages developed in academia
did only have premature (if any) debugging tools (and many more classical
software tools were missing). The Multi-Agent Programming Contest helped, on a
modest level, to improve some of the languages. But it addressed only relatively
small problems/scenarios. As in the case of ASP, we need more engineering
and we must take scalability seriously. This is what we have tried to do with
MASeRaTi.

With an initial version of MASeRaTi including first scalability tests being
available [3], future work in DeSIM will focus on optimizing the platform and
increasing its runtime performance, e.g. by a more flexible distribution model,
and by more sophisticated agent scheduling algorithms.

A key activity in this respect would be supporting collaborative modeling done
by distributed teams of modelers including appropriate methodologies, tools,
modeling abstractions, and libraries.

12 http://d3js.org/
13 http://www.chartjs.org/

http://d3js.org/
http://www.chartjs.org/
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Abstract. Deontic logic is shown to be applicable for modelling human
reasoning. For this the Wason selection task and the suppression task
are discussed in detail. Different versions of modelling norms with de-
ontic logic are introduced and in the case of the Wason selection task
it is demonstrated how differences in the performance of humans in the
abstract and in the social contract case can be explained. Furthermore,
it is shown that an automated theorem prover can be used as a reasoning
tool for deontic logic.

1 Introduction

Human reasoning and in particular conditional reasoning has been researched in
various disciplines. In cognitive psychology a lot of experimental data is collected
and there are numerous different modelling approaches. In philosophy rationality
and normative reasoning is a topic with increasing interest. In artificial intelli-
gence research the aim is to model human rational reasoning within artificial
systems.

Recently, there are some papers from automated reasoning which try to model
experiments from cognitive psychology; in particular the experiments involving
the Wason selection and the suppression tasks are discussed in the literature
([13,12]).

In this paper we want to contribute to this discussion by advocating deontic
logic to this end. We are well aware that this is not the first paper proposing
deontic logic for conditional reasoning. However, our aim is not only to use this
logic to model the settings and the result of these experiments, moreover, we
want to use an automated reasoning system to solve the tasks. There are only
few automated theorem provers specially dedicated for deontic logic and used by
deontic logicians (see [1,2]). Nonetheless, several approaches to translate modal
logic into (decidable fragments of) first-order predicate logics are stated in the
literature. A nice overview including many relevant references is given in [20].
We will use the first order predicate logic prover Hyper for deontic logic, which
is possible because we translate the latter into the description logic ALC. This
again can be translated into DL-clauses, for which Hyper is a decision procedure.

� Work supported by DFG FU 263/15-1 ’Ratiolog’.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 63–80, 2015.
c© Springer International Publishing Switzerland 2015



64 U. Furbach and C. Schon

(a) If there is a vowel on one
side, the opposite side contains
an even number.

(b) If a person is less than 21
years old, she is not allowed to
drink beer.

Fig. 1. The Wason Selection Task

The Wason selection task (WST) was first presented by the psychologist Peter
C Wason in [24] and is one of the most carefully researched experiments in the
area of human rational reasoning. The abstract case of the task is shown in part
(a) of Fig. 1. In the task, four different cards are presented to a test person. The
test person is told that each card contains a letter on one side and a number on
the opposite side. Furthermore, a statement like “If there is a vowel on one side
of the card, the opposite side contains an even number” is given. Now the test
person is asked to verify/falsify this statement by turning a minimum number
of cards. In this abstract task, less then 25 % of the test persons were able to
find the solution. In [21] the WST and related experiments are discussed in deep
detail. There also is a collection of different approaches using various logics for
modelling the selection task in a way that the results from the experiments are
captured. Very many experiments have shown that humans have problems to
perform this inference properly. If context is added to the problem, people solve
the problem with a much higher correctness rate. By adding additional context,
the problem can be a social contract problem or a precaution problem. One
example for a social contract context, as addressed in part (b) of Figure 1, is a
setting in which one side of the cards shows a beverage, namely beer or lemonade
and the other side the age of the person who drinks this beverage. The rule is
“If a person is less than 21 years old, she is not allowed to drink beer”. In this
case 75 % of the subjects gave the correct solution.

A different class of contexts can be formulated by a so-called “precaution
rule”, e.g., rules of the form “If you agree in a hazardous activity, then you must
take the precaution”. In this case, like in the social contract context, people
perform dramatically better compared to the abstract case.

Besides the WST there is a class of experiments called suppression task, where
different sequences of conditional statements together with related questions are
presented to test persons.We also discussmodelling of these tasks by deontic logic.

In the following section we discuss several logical approaches to model the
WST. In Section 3 we introduce our approach using deontic logic. Section 4
models the suppression task and in Section 5 we show how our approach can
be used to check the consistency of normative systems automatically. For a
conclusion we briefly comment on attempts to formulate a kind of ’robot ethics’.
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2 Logical Models for the WST

Since the WST is dealing with conditional reasoning, it seems to be natural to
use predicate logic for modeling the task and to use existing logical inference
mechanisms to model human reasoning. A very careful discussion of various log-
ics to this end can be found in [21]; in particular all these investigation into
logics are nicely combined with findings about the psychology of human reason-
ing. One of these logics, multi-valued logic, seems to be very likely in the case of
the WST, where the invisible side of a card can easily be modeled by the truth
value “unknown”. Several authors apply multi-valued logic to model human rea-
soning, e.g., [13] uses a Lukaswiewicz logic together with logic programs. In [12]
this approach is combined with the concept of abduction, which is proposed in
[15] and it is also used for modeling human reasoning in [16].

All these approaches use logic programming for modeling human reasoning.
However, one should have in mind that logic programming languages and its
semantics have been designed for programming. There are at least three main
issues of logic programs as used in the cited approaches:

– The language is restricted to definite clauses, i.e. clauses of the form A ←
B1 ∧ · · · ∧ Bn, where the left-hand side, the head, contains only one atom
and the right-hand side, the body, contains a conjunction of literals. This
special form does not allow the representation of a disjunction like A ∨ B.
This is not a problem for programming purposes because one can easily
show that every Turing computable function can be represented by definite
clause programs. However, for the modeling of human reasoning it should be
possible to express disjunctions.1

– The right hand side of a clause can contain literals, i.e. the negation of atoms.
This negation, however, is not a logical negation. It is a non-monotonic
negation, which usually is based on a closed-world assumption.

– The semantics of logic programs with non-monotonic negation involves either
so-called completion mechanisms or interesting fixed-point operations to con-
struct models. For all of these model construction mechanisms it turns out
that they involve much more complex reasoning compared to the monoton
case. Furthermore, we doubt that those constructions are easily accessible
to humans and their inference mechanisms.

The extension of logic programs with abduction turns the clauses, the logical
rules, into licences for conditionals using abnormality predicates: A ← B1∧· · ·∧
Bn ∧ ¬ab, with the reading “If nothing abnormal is known and all the Bi hold,
then A holds”. Note that the negation symbol in front of the ab atom is the non-
monotonic negation as mentioned before. We propose to model this distinction
of normal from abnormal behaviour by introducing an explicit operator instead
of coding it into the clauses; just use deontic logic.

1 In Artificial Intelligence we very well remember the relapse in the development of
artificial neural networks, when the observation that perceptrons cannot compute a
disjunctive or was spread.
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3 Deontic Logic and the WST

The difference in behavior between the abstract case of the WST, the social
contract and the precaution problem leads immediately to a distinction between
descriptive and deontic conditionals. A deontic interpretation of the rules from
the WST leads to a description of a norm; hence the rule makes a statement
about how the world ought to be.

There is an ongoing discussion about the use of deontic logic. In [21] the au-
thors explicitly discuss deontic logic as a modal propositional logic for the WST.
They construct models for a specification of the selection task, but they do not
discuss the representation of the task itself in deontic logic. Another detailed
investigation of deontic logic can be found in [9], where the authors give an
overview from a psychological and neurobiological point of view. They further
discuss the deontic nature of the selection task in various contexts. There is
the purely declarative version, which corresponds in our example to the vowel–
consonant version, and a social contract version, e.g., the beer–age version. Cos-
mides et al further argue that there is also the class of the precaution rules as
introduced above. The different nature of these contexts causes the authors in
[9] to conclude that there cannot be a general deontic logic for capturing human
reasoning about conditionals. Indeed, there is strong evidence that humans have
different reasoning mechanisms available depending on the nature of the reason-
ing task. There is the case of a patient, R.M., reported in [22], who had a severe
accident and suffered from severe retrograde amnesia. The damage of his brain
was in different areas of the cortex such that both sides of the amylgada were dis-
connected. The authors made extensive reasoning experiments with R.M. using
65 reasoning tasks based on the WST. It turned out that R.M.’s performance on
the abstract reasoning problems (16,7 %) and on the precaution rules was com-
parable to controls (70 %), whereas the score on social contract problems was
31 percent points lower. This clearly indicates that there are different reasoning
mechanisms for those contexts. In [9] the conclusion from these findings is that
there is no general deontic logic applicable for the modeling of this behavior. We
support this hypothesis and at the end of Section 3.4 we discuss a multi modal
logic which very well is able to model these diverse kinds of reasoning.

Another observation discussed in [9] is that the WST in general can be seen as
a cheat detection task. In different social contexts humans may apply different
inference systems for cheat detection.

In the following deontic logic as a modal logic is introduced and used to
formalize the WST.

3.1 Deontic Logic as Modal KD

Deontic logic is a well studied modal logic very suitable to model human reason-
ing. It corresponds to the modal logic K together with a seriality axiom D:

D: �Φ → ♦Φ
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In contrast to K, the �-operator is interpreted as ‘it is obligatory that’ and the
♦ as ‘it is permitted that’.

In modal logic, semantics are given by so called Kripke structures consisting
of a set of possible worlds connected by a reachability function. Each world is
labeled by the set of formulae which are true in the respective world. A formula
of the form �F is read as “F is true in every reachable world”. Hence if w is a
world we have

w |= �Φ iff ∀v : R(w, v) → v |= Φ

A formula F is called satisfiable if there is a Kripke structure and a world
in which F is true. This Kripke structure is called a model for F . The above
mentioned seriality axiom states the following: if a formula holds in all reachable
worlds, then there exists such a world. With the deontic reading of � and ♦ this
means whenever the formula Φ ought to be, then there exists a world where it
holds. I.e. there is always a world in which the norms formulated by ‘the ought
to be’-operator hold.

To formalize the WST in deontic logic, we transform the statement about the
cards into the following conditional:

If there is a vowel on one side, it ought to be that the opposite side shows
an even number.

As discussed in [10] and [18], there are different types of conditionals. It is distin-
guished for example between definitional, logical or causal conditionals. Since the
above conditional is not truth functional, it can not be formalized by a material
implication P → Q in classical logic using abbreviations P and Q. Formalizing
the conditional as P → �Q using deontic logic is preferable. Oberserving a card
with a vowel on one side and an odd number on the other side of the card does not
make the formula of this formalization false. In this case, the observed world just
does not correspond to the perfect normative world. Formalizing the conditional
as P → �Q ensures the property that if we observe P , i.e. a card with a vowel on
the upper side, due to the seriality axiom we know that there is a world in which
the deontic conditional holds, henceQ holds. In other words there is a world where
the opposite side of the card contains an even number.

Note that it would also be possible to formalize the statement as: �(P → Q).
In [23] there is a careful discussion which of these two formalizations should
be used for conditional norms. The latter one has severe disadvantages, which is
why we prefer the first method. In Section 5 we demonstrate that the alternative
very easily results in an inconsistent normative system.

Assume for simplicity that the letters on the cards can only be A or K, the
numbers only 4 or 7, and that we consider only one card. We represent the card
by atoms of the form c(l, A), c(l,K), c(n, 4) and c(n, 7). An l in the first position
denotes the letter side and an n denotes the number side of a card. We further
have formulae describing the way the card is constructed:
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� → c(l, A) ∨ c(l,K). (1)

c(l, A) ∧ c(l,K) → ⊥. (2)

� → c(n, 4) ∨ c(n, 7). (3)

c(n, 4) ∧ c(n, 7) → ⊥. (4)

Formula (1) states that the letter side of the card contains an A or a K, for-
mula (2) states, that there is only one letter on the letter side of the card.
Formulae (3) and (4) describe the number side of the card respectively.

The rule expressing the normative conditional reads in this simplified
example as

c(l, A) → �c(n, 4) (5)

Note that all the above formulae are propositional, although atoms like c(l, A)
seem to have a structure; logically, they are propositional variables being either
true or false .

3.2 The WST Task

Until now, we formalized the knowledge and the observation; we did not address
a logical representation of the task itself. Then we want to use an automated
reasoning system in order to solve the task and hence it is mandatory to query
the system in a logical way. To the best of our knowledge, we are not aware
of such a formalization in the literature. Let’s focus first on the abstract case
without social or precaution context.

Usually, in logic based automated reasoning, a knowledge base KB together
with a query Q is given and we want to know if Q is a logical consequence of
KB , i.e. KB |= Q. In the WST the question is different since it corresponds to
a cheat detection task:

Given the knowledge KB , including the knowledge about norms, how
can we detect cheating, or, which cards do we have to turn to detect a
violation against the norm?

In the sequel, we use a standard tableau method for generating models. We
assume the reader to be familiar with tableaux as introduced in [5]. We don’t
use indexing of worlds because we treat the �-operator as a literal and do not
expand it. In the examples of this paper this works because we never have nested
�-operators.

Thesis 1. Boxed literals occurring in open branches can be used for cheat de-
tection: If for example an open branch contains literals �F and �G this branch
tells us to check if the current world fulfills both F and G.

Note that the information provided by an open branch are not necessarily min-
imal. Therefore, in order to find a minimal set of actions required for cheat
detection, it is necessary to construct all open branches and to compare the set
of boxed literals contained in the respective branches. Only those branches con-
taining a minimal (w.r.t. set inclusion) set of boxed literals provide a minimal
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set of actions required for cheat detection. For the WST this thesis leads to the
following interpretation of open branches:

– If there is an open branch not containing any boxed literals, the observed
situation does not require to check the hidden side of the card.

– If all open branches contain the same boxed literal e.g �F , we have to check
the hidden side of the card (in the example we have to check if F is fulfilled).

– If all open branches contain boxed literals but not all open branches contain
the same boxed literals, we have to compare the open branches with respect
to the set of boxed literals. Those branches containing a minimal (w.r.t. set
inclusion) set of boxed literals tell us what we have to check in order to make
sure that the given norms are fulfilled.

Thesis 2. From a model-theoretic point of view turning a card to do cheat de-
tection corresponds to the question, if there is a model for the set of formulae
with a world fulfilling the observed situation which is a successor of itself.

This “self loop” ensures that F has to be fulfilled in the observed world, whenever
a boxed formula �F is true in the observed world. Intuitively this means that this
world corresponds to the observed situation and fulfills everything that “ought
to be”. If there is no such model, it is obvious that the observed situation can
only be caused by cheating.

Next we discuss two formalizations of the WST.

Naive Formalization. The first formalization of the WST we present consists
of the set of formulae given in (1) to (4) together with the formula representing
the norm given in formula (5). As an example, we add the observation of letter A
on the card. In the sequel, B denotes the set of formulae consisting of formula (1)
to (4) together with the observation and letter N denotes formula (5).

In Figure 2(a) we give a tableau for the resulting set of formulae B ∪ N (as
mentioned above, we do not expand the boxed formulae in the tableau). This
tableau has two open branches:

B1 = {c(l, A),�c(n, 4), c(n, 4)} B2 = {c(l, A),�c(n, 4), c(n, 7)}

Both open branches contain the same boxed literal �c(n, 4). According to The-
sis 1, this tells us to check, if the number side of the card depicts 4.

Taking a closer look at the open branches reveals that branch B1 contains
c(n, 4) and �c(n, 4). In B1 the number side of the card depicts 4 and it ought to
be the case that the number side of the card depicts 4, meaning that B1 fulfills
the norm. Contrary to that, B2 contains c(n, 7) and �c(n, 4). In B2 the number
side of the card depicts 7 even though it ought to be the case that the number
side of the card depicts 4. So B2 violates the norm. Hence only from B1 a model
in form of a Kripke structure containing a world fulfilling B ∪ N which has a
“self loop” can be constructed.
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c(l, A)

� → c(l, A) ∨ c(l, K)

� → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l,K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

B

c(l, A) → �c(n, 4)
}N

¬c(l, A)
⊥

�c(n, 4)

c(n, 4) c(n, 7)

(a) Observation c(l, A).

c(n, 7)

� → c(l, A) ∨ c(l,K)

� → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l, K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

B

c(l, A) → �c(n, 4)
}N

c(l, A)

¬c(l, A)
⊥

�c(n, 4)

c(l, K)

¬c(l, A) �c(n, 4)

(b) Observation c(n, 7).

Fig. 2. Tableaux for the simplified 1-card WST with naive formalization. B denotes
the knowledge of the observer and N the normative system.

However this formalization of the WST does not always work as desired. Let
us consider another example, where 7 is observed on the number side of the card.
The tableau for this example is given in Figure 2(b). This tableau has three open
branches:

B′
1 = {c(n, 7), c(l, A),�c(n, 4)} B′

2 = {c(n, 7), c(l,K),¬c(l, A)}
B′

3 = {c(n, 7), c(l,K),�c(n, 4)}

In the case of observing 7 on the number side of the card, the desired conclusion
is that there has to be a K on the letter side of the card. Hence we would
expect to see �c(l,K) in every open branch. However none of the open branches
contains �c(l,K). Taking a closer look at B ∪ N reveals that it is not possible
to deduce �c(l,K) from this set. What makes that even worse is that it is not
possible to deduce information on what ought to be depicted on the letter side
of a card!

The reason for this is well known in the literature about deontic conditionals.
With a classical implication c(l, A) → c(n, 4) we can equivalently formulate the
contrapositive ¬c(n, 4) → ¬c(l, A) expressing, if there is not a 4 on the number
side, there is no A on the letter side. In deontic logic, however, the norm is
represented by c(l, A) → �c(n, 4). The respective contrapositive is ¬�c(n, 4) →
¬c(l, A) or equivalently, ♦¬c(n, 4) → ¬c(l, A). However, what we want to state
is: if we don’t see a 4 on the number side, then there ought to be no A on the
letter side. This would be formalized as ¬c(n, 4) → �¬c(l, A). Unfortunately this
is not included in the naive formalization. Therefore we need to find a different
formalization of the problem.
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c(n, 7)

� → c(l, A) ∨ c(l,K)

� → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l, K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

B

c(l, A) → �c(n, 4)

c(n, 7) → �c(l,K)

}

N

¬c(n, 7)
⊥ �c(l, K)

¬c(l, A)

c(l, A)
⊥

c(l, K)

�c(n, 4)

c(l, A) c(l, K)

Fig. 3. Tableau for the simplified 1-card WST with for the formalization using the
pseudo-contrapositive. B denotes the knowledge of the observer and N the normative
system.

Formalization Using Pseudo-Contraposition. The drawback of the naive
formalization of the WST is the fact that it is not possible to deduce what ought
to be the case for the letter side of the card. To remedy this situation, we use a
second norm called pseudo-contrapositive:

¬c(n, 4) → �¬c(l, A)

which can be transformed into: c(n, 7) → �c(l,K)
We add this norm to the naive formalization resulting in the new normative

system:

c(l, A) → �c(n, 4)

c(n, 7) → �c(l,K)

With the help of the pseudo-contrapositive, we are now able to calculate a solu-
tion for the previous example. Again, we observe card c(n, 7). Fig. 3 shows the
tableau for the resulting set of formulae. This tableau has three open branches:

B′′
1 = {c(n, 7),�c(l,K),¬c(l, A), c(l,K)} B′′

2 = {c(n, 7),�c(l,K),�c(n, 4), c(l, A)}
B′′

3 = {c(n, 7),�c(l,K),�c(n, 4), c(l,K)}

All three branches contain �c(l,K). Therefore, we can deduce that the letter
side of the card ought to show a K.
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Reducing the Wason Selection Task to a Satisfiability Test. As men-
tioned before, the question in the WST is to detect cheating or to find out which
cards have to be turned in order to detect a violation of the norm. The formal-
ization using Pseudo-Contraposition presented in 3.2 can be used to detect if a
card has to be turned.

Next we will transform this question into a satisfiability test: If a card has to
be turned, this information is contained in all models. Given e.g. the observation
c(n, 7), all models constructed contained �c(l,K), meaning that the letter side of
the card ought to showK. Assuming that the set of formulae under consideration
is satisfiable, another possibility would be to add ¬�c(l,K) = ♦c(l, A) to the
set of formulae and show that the resulting set of formulae is unsatisfiable.

In the next section, we will use an automated theorem prover to solve this
satisfiability test. This leads us to an automated solution of the question of the
WST.

3.3 WST and Automated Theorem Proving

Standard deontic logic (SDL) can be translated into decidable fragments of first
order logic. See [20] for details. Hence practically any first order theorem prover
could be used to reason in SDL.

Hyper [25] is a theorem prover for first order logic with equality. It is the im-
plementation of the E-hypertableau calculus [3] which extends the hypertableau
calculus with superposition based equality handling. Hyper has been success-
fully used in various AI-related applications like intelligent interactive books or
natural language query answering. One of the advantages of the hyper tableau
calculus is the avoidance of unnecessary or-branching. This is one reason why we
decided to use Hyper to reason in SDL. Another reason is the fact that recently
the E-hypertableau calculus and its implementation have been extended to deal
with knowledge bases given in the description logic SHIQ [4]. There is a strong
connection between modal logic and description logic. As shown in [19], the de-
scription logic ALC is a notational variant of the modal logic Kn. Therefore any
formula given in the modal logic Kn can be translated into an ALC concept and
vice versa. When using Hyper as a theorem prover for SDL, it is not necessary
to translate the SDL formulae into first order logic. It is sufficient to translate
them to description logic which is more closely related to SDL than first order
logic. Since we are only considering a modal logic as opposed to a multimodal
logic, we will omit the part of the translation handling the multimodal part of
the logic. Table 1 gives the inductive definition of a mapping φ from modal logic
K formulae to ALC concepts.

Mapping φ can be used to translate the deontic logic formulae into the descrip-
tion logic ALC as well. The result of the translation of all formulae is shown in
Table 2. For readability reasons we decided to keep the arguments of a ground
atom e.g. we translate atoms like c(l, A) into atomic concepts c(l, A). In this
very restricted scenario, with just one card, two letters and two numbers, it may
be counterintuitive that c(l, A) is a concept. This concept c(l, A) represents the
class of all cards with an A on the letter side. Considering an actual instance of
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Table 1. Translation of modal logic K formulae into ALC concepts

φ(�) = � φ(⊥) = ⊥
φ(a) = a φ(¬c) = ¬φ(c)

φ(c ∧ d) = φ(c) � φ(d) φ(c ∨ d) = φ(c) � φ(d)
φ(�c) = ∀r.φ(c) φ(♦c) = ∃r.φ(c)

Table 2. Translation of formulae given in the framed part of Figure 3 into ALC

Deontic Logic ALC
� → c(n, 7)

� → c(l, A) ∨ c(l,K)

c(l, A) ∧ c(l,K) → ⊥
� → c(n, 4) ∨ c(n, 7)

c(n, 4) ∧ c(n, 7) → ⊥
� → �(c(l, A) ∨ c(l,K))

�(c(l, A) ∧ c(l,K)) → ⊥
� → �(c(n, 4) ∨ c(n, 7))

�(c(n, 4) ∧ c(n, 7)) → ⊥
c(l, A) → �(c(n, 4))

c(n, 7) → �(c(l,K))

�Φ → ♦Φ

c(n, 7)

c(l, A) � c(l, K)

¬c(l, A) � ¬c(l, K)

c(n, 4) � c(n, 7)

¬c(n, 4) � ¬c(n, 7)
∀r.(c(l, A) � c(l,K))

∀r.(¬c(l, A) � ¬c(l,K))

∀r.(c(n, 4) � c(n, 7))

∀r.(¬c(n, 4) � ¬c(n, 7))
¬c(l, A) � ∀r.(c(n, 4))
¬c(n, 7) � ∀r.(c(l,K))

� � ∃r.�

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

a card is done by introducing an individual: c(l, A)(a) states that individual a
belongs to the concept c(l, A), meaning that the card a shows an A at the letter
side. If more then one card is considered, several individuals are introduced and
the letters or numbers shown on these cards are represented by memberships to
the respective concepts.

Note that line (1) of Table 2 describes the world we observe. Further line (2)
to (5) describe the way the cards are constructed. The construction of the cards
should be effective for all reachable worlds. This is why we add the formulae
given in line (6) to (9). The conjunction of those formulae are denoted by B.
φ(B) denotes the result of the translation into an ALC concept. Line (10) and
(11) describe the norm N . Line (11) presents the translation of the seriality
axiom, where r is a role introduced to represent the reachability relation. Note
that the translation of the seriality axiom is put into the TBox later which will
be denoted by T .

Now the theorem prover Hyper is used to calculate if the card has to be
turned in order to find out, if the observed situation obeys the given normative
system. For this, the ALC concepts given in the right column of Table 2 are
translated into DL-clauses, which is the input language of Hyper. We denote this
transformation by Ξ. During the transformation into DL-clauses many auxiliary
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concepts are introduced, which makes the resulting set of DL-clauses complicated
to read. Since the DL-clauses are not important to understand our example, we
refrain from presenting them. See [17] for details on DL-clauses. In order to check
if we have to turn the card in our example where the number side of the card
shows 7, an individual a representing the card is introduced and we add the
information that individual a belongs to the concepts obtained from translating
B and N into ALC. This is represented by the assertions φ(B(a)) and φ(N (a)).
Furthermore, the assertion ¬∀r.c(l,K)(a) added. All these assertions together
with the translation of the seriality axiom are transformed into DL-clauses and
afterwards Hyper is used to check the satisfiability of the resulting set. According
to Hyper, the resulting set of DL-clauses

Ξ(φ(B)(a) ∪ φ(N )(a) ∪ T ∪ {¬∀r.c(l,K)(a)})
is unsatisfiable. Hence, we know that we have to turn the card.

Since there is no TBox in deontic logic, the translation of the formulae given
in Table 2 lead to a description logic concept together with one TBox axiom for
the seriality axiom. The seriality axiom has to be added to the TBox because
it is supposed to be true for every word. Another possibility to formalize the
WST would be to directly use description logic and to use the TBox not only for
the seriality axiom. The formulae describing the way the cards are constructed
are also supposed to be true in every reachable world. Hence it makes sense to
add the translation of those formulae into the TBox. This leads to the following
TBox:

T = {� 
 ∃r.�,

� 
 c(l, A) � c(l,K),

� 
 ¬c(l, A) � ¬c(l,K),

� 
 c(n, 4) � c(n, 7),

� 
 ¬c(n, 4) � ¬c(n, 7)}
Note that, since the TBox is true in all worlds, we do not have to add formulae
corresponding to line (6) to (9) of Table 2 to the TBox.

3.4 Abstract vs Context WST

We modeled the WST in deontic logic and discussed the use of an automated
theorem prover to compute cheat detection. Next we address how the differences
of the performance of humans in the abstract and in the context case of the WST
can be modeled with the help of our approach.

We argued in Section 3.2 that the formalization of the task resulted in a check
whether the open branches all contain the same boxed literal, as it was the case
in the branches B1 and B2 on page 69. Such an occurrence of an ’ought-to’-literal
tells us that it has to be checked.

Solving the WST in this abstract case more or less makes it necessary to
involve a logical calculus as done by Hyper in order to construct the models and
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under 21 → �¬(drink beer)

drink beer → �¬(under 21 )

¬under 21

¬drink beer �¬(under 21 )

�¬(drink beer)

¬drink beer �¬(under 21 )

Fig. 4. Tableau for the two norms for the social contract version of the WST

to check it with respect to the boxed literals – obviously humans are not good
at constructing models out of the given specification.

In the case of a context, we follow the hypothesis that humans have the
appropriate models explicitly in their mind. They have been constructed by
prior experience or even by evolution. This is very much in accordance with the
mental model theory from Johnson-Laird, which is elaborated for the case of
conditional reasoning in [14]. There the authors assume that there is a mental
representation of models for conditionals as they are used in the WST. It is
argued that the form and nature of the representation heavily influences the
performance of people solving WST.

Thesis 3. In the case of a social contract or a precaution rule, humans have
the models of a world in which the norms hold in form of an explicit mental
representation ready at hand. There is no need to construct them like it was
necessary in the abstract case. – They just have to compare the observations in
the WST with their mental model.

To sum up, in both the abstract and the context version of the WST we have a
model checking task. In the abstract case the model is given only implicitly by
the rules for the norm — before comparing it, it has to be constructed. This can
be done by a logical calculus as we demonstrated with the Hyper-prover. If all
models from the result of the prover still contain the same boxed literal, we have
to check it. This construction obviously is error prone if carried out by humans.

In the remainder of this section we will work this out in detail with the help
of the experiment given in part (b) of Figure 1. The social contract rule for this
example could be

under 21 → �¬drink beer

We add the pseudo-contrapositive to this formalization

drink beer → �¬under 21

resulting in the two formulae of the framed part in Figure 4. This tableau has
four open branches:

B1 = {¬under 21 ,¬drink beer} B2 = {¬under 21 ,�¬under 21}
B3 = {�¬drink beer ,¬drink beer} B4 = {�¬drink beer ,�¬under 21}
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Branches B1 and B2 represent those cases in which the observed persons age is
over 21. Both models do not contain a boxed literal concerning the beverage.
Therefore, whenever we observe a person of age clearly over 21, we instantly
know that we do not have to take a closer look at the beverage. This is totally
different as soon as the observed person is younger than 21. This case contradicts
B1 and B2. This is why we have to consider B3 and B4 in this case. Both B3

and B4 contain �¬drink beer stating that the observed person is not allowed to
drink beer. Therefore, we know that we have to check the beverage.

We argued above that in the social contract case the models are already at
hand and just have to be compared with the open branches. Those four branches
are already constructed as mental models in our brain. When we are confronted
with the social contract version of the selection task, we don’t have to perform
the error prone construction of those models. We can use the mental models we
have at hand and therefore we are able to perform the social contract version of
the WST much better then the abstract version.

In the other case, where we observe a person drinking beer, the two branches
which remain areB2 andB4 indicating thatwehave tomake sure that�¬under 21
holds. Or to put it differently, we have learned that the only cases where we have to
test are those where the premises of our norm and its pseudo-contrapositive holds.

Our approach using deontic logic can be easily extended to handle the effect
of the patient from [9]. This person had a severe brain damage such that he
was able to solve the precaution task very well, but in the task with the social
contract he performed as badly as in the abstract case. It seems as if the mental
representation of a model for the norms concerning precaution rules still exist,
while the model of the social contract norm disappeared. It has to be constructed
very much like in the abstract case.

To model such a behavior, we only have to switch to multi-modal logic; in-
stead of one ought-to operator � we simple introduce an operator �sc for social
contract norms and another �pr for precaution rules. Such a mult-modal logic is
very well investigated and in particular it is the core of description logics. Here
we formulate conditionals with different contexts with different modal operators:
The social contract rule from our example in Figure 1 could be

under 21 → �sc¬(drink beer)

whereas a precaution rule could be

driving a car → �pr(fasten seatbelt)

With such a multi-modal logic it could be the case that a reasoner has an
explicit representation of a norm expressed with one operator, while for the
other operator it has to compute the model before solving the task, just the
same way as in the abstract case.

We suggested above to use the Hyper theorem prover for reasoning in deontic
logic. Hyper is able to handle knowledge bases given in the description logic
SHIQ, which is the description logic ALC extended with transitive roles, role
hierarchies, qualified number restrictions and inverse roles. Since SHIQ allows
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the usage of more than one role, Hyper can be used to reason in multi-deontic
logic as well.

4 Deontic Logic and the Suppression Task

Another well researched phenomenon is the suppression task. In [7] a series
of experiments are reported, which demonstrate that human reasoning is non-
monotonic in a certain sense. Given the following two statements:

If she has an essay to write, she will study late in the library.
She has an essay to write.

In an experiment persons are asked to draw a valid conclusion out of these
premisses. It turned out that 98% of the test persons conclude correctly that

She will study late in the library.

This shows that in such a setting modus ponens a is very natural rule of deduc-
tion. If an additional statement is given, namely

If she has some textbooks to read, she will study late in the library.

this does not change the percentage of correct answers. Obviously this additional
conditional is understood as an alternative. And indeed, we can transform the
two conditionals

essay to write → study late

textbooks to read → study late

equivalently into a single one, where the premise is an disjunction:

essay to write ∨ textbooks to read → study late

If however as an additional premiss

If the library stays open, she will study late in the library.

or as a formula library open → study late is added, only 38% draw the correct
conclusion, although modus ponens is applicable in this case as well. People
are understanding this additional conditional not as an alternative but as an
additional premiss.

We propose the same method as applied in the case of the WST. The con-
ditional library open → study late is not just additional knowledge, moreover
it can be understood as trigger of additional knowledge about the world. We
know that usually to study late in the library, the library is open study late →
library open.

If we assume this additional formula as a norm; which can be formulated with
the help of the deontic ought-to-operator �, this leads to the following:
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Table 3. Contrary-to-duty obligation together with the formalization in deontic logic

Natural Language Normative System N ′

a ought not steal. �¬s
a steals. s
If a steals, he ought to be punished for stealing. s → �p
If a does not steal, he ought not be punished for stealing. �(¬s → ¬p)

essay to write →study late (6)

library open →study late

study late →�library open (7)

essay to write (8)

The question study late can easily be answered positively by using formulae
(6) and (8). If, however, the norm (7) is taken into account, the questions corre-
sponds to a model checking task as discussed in Section 3.2. We can easily find
a model

M = {essay to write , study late,�library open}
by constructing a tableau similar to the one in Figure 3. However we are not
able to check – in contrast to the WST – whether �library open holds, it ought
to be the case. This explains why much lesser persons are answering the question
whether she is studying late positively.

5 Consistency Testing of Normative Systems

In the philosophical literature deontic logic is also used to formulate entire nor-
mative systems (e.g. [23]). In practice such normative systems can be rather
complex. This makes it difficult for the creator of a normative system to see if
a normative system is consistent. We will show that it is helpful to be able to
check consistency of normative systems automatically. We will use the Hyper
theorem prover for this task.

As an example, we consider the well-known problem of contrary-to-duty obli-
gations introduced in [8]. In Table 3 the problem is given in natural language
together with formalization in deontic logic discussed in [23]. As shown in [23],
the normative system given in Table 3 is inconsistent. We will use Hyper to show
this inconsistency. For this, we first transform N ′ into ALC. The result of this
transformation is given in Table 4.

Checking the consistency of the normative system N ′ corresponds to checking
the consistency of φ(N ′) w.r.t. the TBox T = {� 
 ∃R.�}, where φ(N ′) is the
conjunction of the concepts given in the right column of Table 4. We transform
φ(N ′) into DL-clauses, which is the input language of Hyper. We will not give
the result of this transformation and refer to [17] for details. Hyper constructs
a hypertableau for the resulting set of DL-clauses. This hypertableau is closed
and therefore we can conclude that the set of DL-clauses is unsatisfiable. This
tells us that the above formalized normative system N ′ is inconsistent.
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Table 4. Translation of the normative system N ′ into ALC

Deontic Logic ALC
�Φ → ♦Φ � � ∃R.�

�¬s ∀R.¬S
s S
s → �p ¬S � ∀R.P
�(¬s → ¬p) ∀R.(S � ¬P )

6 Conclusion

The goal of this paper was twofold: on one side we wanted to show that deontic
logic can be very well used to model various phenomena in human reasoning.
The different performance of humans in different contexts could be explained
be combining deontic logic with mental model theory from cognitive science.
And secondly, we wanted to demonstrate that an automated theorem proving
system, like Hyper, can be used to decide deontic logic by transforming it into
description logic and in DL-clauses.

To conclude this paper, we want to briefly comment a new area of research,
namely the formalization of ’robot ethics’. In multi-agents systems and in robotics
one is aiming at defining formal rules for the behavior of agents. As an example
consider Asimov’s laws, which aim at controlling the relation between robots and
humans. In [6] the authors depict a small example of two surgery robots, which
have to deal with ethical codes to perform there work. These codes are given
with the help of deontic logic very much the same as we defined the normative
systems in this paper. In [11] we show how to use Hyper to resolve conflicts in
multi-agent systems.
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Abstract. Default rules of the form “If A then (usually, probably) B” can be
represented conveniently by conditionals. To every consistent knowledge base R
with such qualitative conditionals over a propositional language, system Z assigns
a unique minimal model that accepts every conditional in R and that is therefore a
model of R inductively completing the explicitly given knowledge. In this paper,
we propose a generalization of system Z for a first-order setting. For a first-order
conditional knowledge base R over unary predicates, we present the definition of
a system Z-like ranking function, prove that it yields a model of R, and illustrate
its construction by a detailed example.

1 Introduction

Reasoning with default rules, i.e., rules that allow for exceptions and so for a nonmono-
tonic reasoning behaviour, is a core topic of nonmonotonic logics. In many approaches,
conditionals are used as representations of such rules, see e. g. [10]. A conditional has
the form (B |A) and represents the (defeasible) rule “If A then (usually, probably)
B”. Employing conditionals instead of material implications goes beyond the limits
of classical logics which are deemed to be too strict for defeasible reasoning since
conditionals are inherently three-valued, their semantics relying on verification, falsi-
fication, and a neutral behaviour in case the antecedent A is not satisfied [7]. Ordinal
conditional functions (OCF, also called ranking functions) [16,17] provide a popular
and convenient semantical framework for interpreting conditionals by associating de-
grees of (im)plausibility with possible worlds and formulas. According to a given OCF,
a conditional (B |A) is accepted if its verification A ∧ B is more plausible than its
refutation A ∧ ¬B. Within this framework, system Z [15,10] is a prominent approach
to default reasoning which features a method for OCF-based inductive reasoning from
conditional knowledge bases. To each (consistent [1]) conditional knowledge base, sys-
tem Z assigns an OCF that accepts each conditional of the knowledge base and allows
for further inductive reasoning from this OCF-model. In more qualitative frameworks,
system Z corresponds to rational closure [14]. The popularity of system Z relies on
three features [10]: First, its OCF semantics is straightforward and intuitive, and it al-
lows for high quality, expressive inferences. Second, there are obvious algorithms to
compute system Z. Finally, the OCF chosen by system Z is most cautious in that it does
not restrict the plausibility of worlds unnecessarily.

However, as most approaches to default reasoning except for approaches that make
use of logic programming [8], default logics are propositional, only few advances have
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been made to build on first-order logics, or fragments thereof. In [6], Delgrande presents
a first-order conditional logic that allows for the representation of information both on
classes and on individuals in the same framework. Several approaches to first-order
default reasoning focus particularly on applications for description logics, aiming at
making subsumptions defeasible so that typical, but not strict relationships can be ex-
pressed [3,5,9]. Many of these approaches rely on modal logics. In [13], a first-order
conditional semantics was proposed that is based on OCF, extending well-known prop-
erties of OCF in propositional frameworks to first-order settings. As a proof of concept,
that paper presents a model-based inductive reasoning method from first-order condi-
tional knowledge bases that is based on c-representations [11] and that is known to be
similar to (but different from) system Z in propositional settings [12]. An obvious ques-
tion is whether also system Z can be transferred to the first-order case within the same
semantical framework.

In this paper, we show that the first-order conditional semantics from [13] which is
based on OCF and extends seamlessly propositional OCF semantics for conditionals
also allows a generalization of system Z for first-order settings. As a crucial feature, we
focus on conditionals making use of unary predicates only, as this is a straightforward
extension of the rationale behind system Z to the first-order case.

Example 1 (Penguins and super-penguins). Following the long tradition in knowledge
representation and nonmonotonic logic of using scenarios involving birds and abnormal
birds for illustration (e.g. [4]), here we assume that we have penguins (P), birds (B), and
super-penguins (S) as well as winged things (W) and flying things (F). Then the four
conditionals

r1 : (F (x) |B(x))
r2 : (W (x) |B(x))
r3 : (F (x) |P (x))
r4 : (F (x) |S(x))

express that birds usually fly (r1) and have wings (r2), and that penguins usually do not
fly (r3), but super-penguins usually fly (r4).

Thus, propositional conditionals (B|A) are now encoded by (B(x)|A(x)), allowing
us to consider the uncertain relationship between A and B for different instances x = a,
but nevertheless being able to express a general behaviour within a population that justi-
fies the acceptance of (B(x)|A(x)). For this, particularly strong instances via so-called
representatives are necessary for which the conditional is not only accepted but which
surpass other individuals with respect to different criteria in terms of OCF-measured
plausibility. Our approach features a kind of tolerance partitioning of the conditionals
that is crucial for the propositional system Z [10] which comes along with a partitioning
of the domain elements. In this way, a relation on the domain elements is set up which
is a basic component of many other approaches to first-order default reasoning. In our
approach, this relation can be determined by the interactions among the conditionals in
the knowledge base. We also allow factual knowledge on individuals to be given, and
these facts are taken into account when defining a system Z-like OCF that is a model of
the (factual and conditional) knowledge base.

The rest of this paper is organized as follows. We continue with introducing the syn-
tax of first-order conditional logic (Section 2) and describe our ranking semantics for
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first-order conditionals afterwards (Section 3). In Section 4, we present the construction
of a system Z-like ranking function from a knowledge base with given corresponding
partitionings of the conditionals and the domain elements, and prove that this construc-
tion yields an OCF accepting the knowledge base. The construction is illustrated by a
detailed example in Section 5. Finally, in Section 6 we conclude with a brief summary
and discussion of future work.

2 Syntax of First-Order Conditionals

Let Σ be a first-order signature consisting of a finite set of predicates PΣ and a finite
set of constant symbols DΣ but without function symbols of arity > 0. An atom is a
predicate of arity n together with a list of n constants and/or variables. A literal is an
atom or a negated atom. Formulas are built on atoms using conjunction (∧), disjunction
(∨), negation (¬), and quantification (∀, ∃). We abbreviate conjunctions by juxtaposition
and negations usually by overlining, e. g. AB means A∧B and A means ¬A. A ground
formula contains no variables. In a closed formula, all variables (if they occur) are
bound by quantifiers, otherwise, the formula is open, and the variables that occur outside
of the range of quantifiers are called free. If a formula A contains free variables we also
use the notation A(x) where x = (x1, . . . , xn) contains all free variables in A. If c is
a vector of the same length as x then A(c) is meant to denote the instantiation of A
with c. A formula ∀xA(x) (∃xA(x)) is universal (existential) if A involves no further
quantification. Let LΣ be the first-order language that allows no nested quantification,
i.e., all quantified formulas are either universal or existential formulas.

LΣ is extended by a conditional operator “ | ” to a conditional language (LΣ | LΣ)
containing first-order conditionals (B |A) with A,B ∈ LΣ , and (universally or exis-
tentially) quantified conditionals ∀x(B |A), ∃x(B |A)1. When writing (B(x) |A(x)),
we assume x to contain all free variables occurring in either A or B. For r = (B |A) ∈
(LΣ | LΣ) (without outer quantification), we set r = (B |A). Conditionals cannot be
nested. When the signature is clear from context, we will also omit the subscript Σ. To
exemplify the syntax, consider the rules r1, r2, r3, r4 from Example 1 in the introduc-
tion which are open first-order conditionals.

A first-order conditional knowledge base R is a (finite) set of (conditional) formulas
from LΣ ∪ (LΣ | LΣ) with the restriction that no existential (outer) quantification of
conditionals may occur. A first-order knowledge base KB = 〈F ,R〉 consists of a first-
order conditional knowledge base R, together with a set F of closed formulas from
LΣ , called facts.

3 OCF-Based Semantics

In propositional settings, ordinal conditional functions (OCF, [17]), also called ranking
functions are a well-known framework for nonmonotonic reasoning and belief revision.
We recall very briefly the basic details of this approach here before widening the scope
for first-order challenges. So first, let LΣ be a purely propositional language over a set

1 These quantifications will often be distinguished as outer quantifications in the paper.
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Σ of propositional atoms. Let Ω denote the set of possible worlds over L; Ω will be
taken simply as the set of all propositional interpretations over L and can be identified
with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A means that the
propositional formula A ∈ LΣ holds in the possible world ω. A (propositional) condi-
tional (B|A) is an object of a three-valued nature, partitioning the set of worlds Ω in
three parts: those worlds satisfying AB, thus verifying the conditional, those worlds sat-
isfying AB, thus falsifying the conditional, and those worlds not fulfilling the premise
A and so which the conditional may not be applied to at all.

An ordinal conditional function is a function κ : Ω → N ∪ {∞} with κ−1(0) �= ∅
which maps each world ω ∈ Ω to a degree of implausibility κ(ω); ranks of formulas
A ∈ LΣ are defined by κ(A) = min{κ(ω) | ω |= A}. An OCF κ accepts a conditional
(B|A), in symbols κ |= (B|A), if and only if κ(AB) < κ(AB), that is, if and only
if the conditional’s verification AB is more plausible than its falsification AB. In this
case, we call κ a (ranking) model of (B|A), and κ is (ranking) model of a conditional
knowledge base R if it is a model of each of the conditionals in R.

For a given conditional knowledge base R = {(B1|A1), . . . , (Bn|An)}, the sys-
tem Z approach by Pearl [15,10] defines an OCF κz that is a model of R and that is
unique among all such models in that it restricts the plausibility of worlds in a minimal
way. System Z is based on a notion of tolerance: A conditional (B|A) is tolerated by
R if and only if there is a world ω ∈ Ω such that ω |= AB and ω |= Ai ⇒ Bi for
every 1 � i � n. Now, system Z is set up by first partitioning R = R0 ∪ . . . ∪ Rm

into maximal sets Rj such that each conditional in Rj is tolerated by ∪i�jRi. Then
the function Z : R → N is defined by Z(B|A) = k iff (B|A) ∈ Rk, and finally, κz is
given by

κz(ω) =

⎧
⎨

⎩

0, iff ω |= (Ai ⇒ Bi) for all 1 � i � n

max
1�i�n

{Z(Bi|Ai) | ω |= AiBi}+ 1, otherwise.

We will now focus on the first-order case. For classical interpretation of first-order
aspects we use the Herbrand semantics. The Herbrand base HΣ of a first-order signa-
ture Σ is the set of all ground atoms of Σ. A possible world ω is any subset of HΣ .
Analogously to the propositional case, a possible world can be concisely represented as
a complete conjunction or minterm, i. e. a conjunction of literals where every atom of
HΣ appears either in positive or in negated form. Also as in the propositional case, we
denote the set of all possible worlds of Σ by ΩΣ , and |= denotes the classical satisfac-
tion relation between possible worlds and first-order formulas from LΣ .

For an open conditional r = (B(x) |A(x)) ∈ (LΣ | LΣ) let H(B(x) |A(x)) denote
the set of all constant vectors a used for proper groundings of (B(x) |A(x)) from the

Herbrand universe HΣ , i. e. H(B(x) |A(x)) = D
|x|
Σ where |x| is the length of x. For

a ∈ H(B(x) |A(x)), let r(a) = (B(a) |A(a)) denote the instantiation of r by a.
Just as in the propositional case, the set ΩΣ of possible worlds can be ranked by

an ordinal conditional function that assigns degrees of (im)plausibility resp. disbelief
to possible worlds and statements. For a concise and complete introduction of rank-
ing semantics for first-order settings and to make the seamless generalization from the
propositional case explicit, we present the adjusted definitions in full detail.
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Definition 1. An ordinal conditional function (OCF) κ on ΩΣ is a function κ : ΩΣ →
N ∪ {∞} with κ−1(0) �= ∅.

We can now make use of the possible world semantics to assign degrees of disbelief
also to formulas. In the following, let A,B ∈ LΣ denote closed formulas, and let
A(x), B(x) ∈ LΣ denote open formulas.

Definition 2. Let κ be an OCF. The κ-ranks of closed formulas are defined via

κ(A) = min
ω|=A

κ(ω)

Furthermore, we define the κ-ranks for open formulas by evaluating most plausible
instances:

κ(A(x)) = min
a∈HA(x)

κ(A(a))

The ranks of first-order formulas are coherently based on the usage of OCFs for propo-
sitional formulas. Just as in the propositional case, these degrees of beliefs are used to
specify when a formula from (LΣ | LΣ) is accepted, i. e. deemed highly plausible, by
a ranking function κ (where acceptance is denoted by |=). We will first consider the
acceptance of closed (conditional) formulas.

Definition 3. Let κ be an OCF. The acceptance relation between κ and formulas from
LΣ and (LΣ | LΣ) is defined as follows:

– for closed formulas:

• κ |= A iff for all ω ∈ Ω with κ(ω) = 0, it holds that ω |= A.
• κ |= (B |A) iff κ(AB) < κ(AB).

– for universal/existential conditionals:

• κ |= ∀x(B(x) |A(x)) iff κ |= (B(a) |A(a)) for all a ∈ H(B(x) |A(x)).
• κ |= ∃x(B(x) |A(x)) iff there is a ∈ H(B(x) |A(x)) such that κ |=
(B(a) |A(a)).

Acceptance of a sentence by a ranking function is the same as in the propositional
case for ground sentences, and interprets the classical quantifiers in a straightforward
way. Note that no classical relations hold between universal and existential formulas, as
acceptance by ranking functions is three-valued.

The treatment of acceptance of open formulas is more intricate, as such formulas
will be used to express default statements, like in “A is plausible”, or in “usually, if A
holds, then B also holds”. The basic idea here is that such (conditional) open statements
hold if there are individuals that provide most convincing instances of the respective
conditional. These so-called representatives should, of course, allow for the acceptance
of the instantiated conditional (as in Definition 3) while most plausibly verifying the
conditional (i. e. satisfying A and B). Moreover, representatives are expected to be least
exceptional with respect to falsifying the conditional. The following definition makes
use of the κ-ranks of Definition 2 to formalize this precisely.
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Definition 4. Let r = (B(x) |A(x)) ∈ (LΣ | LΣ) be a non-quantified conditional in-
volving open formulas from LΣ . We say that a ∈ H(B(x) |A(x)) is a weak representative
of r iff it satisfies the following conditions:

κ(A(a)B(a)) = κ(A(x)B(x)) (1)

κ(A(a)B(a)) < κ(A(a)B(a)) (2)

The set of weak representatives of r is denoted by WRep(r). We say that a ∈
H(B(x) |A(x)) is a (strong) representative of r iff it is a weak representative of r and

κ(A(a)B(a)) = min
b∈WRep(r)

κ(A(b)B(b)). (3)

The set of all representatives of r is denoted by Rep(r).

(Weak) Representatives of a conditional are characterized by being most general and
least exceptional. This is expressed by condition (1) that postulates that representatives
are most normal with respect to A’s being also B’s, and also by condition (3) that de-
mands that representative individuals should be least specific with respect to violating
the link between A and B; otherwise, this violation might be caused by extraordinary
attributes. This can be easily exemplified in the popular penguin scenario. Consider a
scenario where we have birds, penguins, and super-penguins. Birds usually fly, whereas
penguins are expected not to fly while super-penguins are famous for flying. What is
a representative (flying) bird here? It is definitely not a penguin since penguins usu-
ally do not fly (violating condition (2)). While we might more strongly believe that
super-penguins fly than care about the non-specified bird next to us (super-penguins are
famous!), super-penguins are too specific to serve as good representatives. Representa-
tives should be general, covering as many species of flying birds as possible. But, due
to this generality, we would also be more willing to accept an exception here than for
more specific subclasses. Superpenguins might be able to fly because they are equipped
with motorized wings, and their failure of flying might be caused by a motor problem,
an explanation that certainly does not apply to the failure of flying of a normal bird.
This motivates condition (3). Note that (weak) representatives are only conditional rep-
resentatives, i. e., representatives for the respective conditional relationship, as we do
not postulate that representatives (certainly or plausibly) satisfy the premise of the con-
ditional. It might well be the case that individuals may serve as representatives for dif-
ferent conditionals. Now we can base our definition of acceptance of open conditionals
on the notion of representatives as follows.

Definition 5. Let κ be an OCF and r = (B(x) |A(x)) an open (non-quantified)
conditional. Then κ accepts r, denoted by κ |= r, iff Rep(r) �= ∅, and one of the two
following (exclusive) conditions is satisfied:

(Acc-1) it holds that
κ(A(x)B(x)) < κ(A(x)B(x)); (4)
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(Acc-2) κ(A(x)B(x)) = κ(A(x)B(x)), and for all a1 ∈ Rep((B(x) |A(x))) and
for all a2 ∈ Rep((B(x) |A(x))), it holds that

κ(A(a1)B(a1)) < κ(A(a2)B(a2)). (5)

The acceptance of an open conditional is based on the existence of a suitable a satis-
fying (2), i. e., on the acceptance of the propositional conditional (B(a) |A(a)) (note
that Rep((B(x) |A(x))) �= ∅ iff WRep((B(x) |A(x))) �= ∅). However, conditions
(1) and (2) alone are too weak to justify the acceptance of (B(x) |A(x)) since it might
well be the case that there are a and b fulfilling (1) and (2) for (B(x) |A(x)) and
(B(x) |A(x)), respectively. This means that κ might accept both (B(x) |A(x)) and
(B(x) |A(x)), which would be counterintuitive. Hence, we need to make acceptance
unambiguous by giving preference to one of the two conditionals. This can be done
either by postulating (4) or (5). Condition (4) looks like a natural prerequisite for the
acceptance of (B(x) |A(x)). However, in the birds scenario with penguins and super-
penguins, equalities like κ(A(x)B(x)) = κ(A(x)B(x)) quite naturally arise since
penguins are as normal non-flying birds as doves are normal flying birds (see Example 2
below). In this case, (5) again uses the idea of least exceptionality for specifying proper
representatives; it makes (B(x) |A(x)) acceptable, as opposed to (B(x) |A(x)), if the
representatives of the first conditional less exceptionally violate the respective condi-
tional than the representatives of the latter conditional. Note that (5) holds vacuously
in case that Rep((B(x) |A(x))) is empty. Furthermore, Definition 5 nicely extends
the definition of acceptance in the propositional case, i. e., κ |= (B(a) |A(a)) iff
κ(A(a)B(a)) < κ(A(a)B(a)).

Definitions 4 and 5 can be used to define acceptance of open non-conditional for-
mulas A(x) by considering them as conditionals with tautological antecedents, i.e., as
(A(x) | �). However, it is crucial to remark here that (A(x) | �) mandatorily demands
for a default reading like “being A is plausible”, as opposed to “A certainly holds”. This
distinction is made in our approach by distinguishing between certain knowledge F (all
elements here are closed formulas of LΣ) and default (conditional) beliefs in R which
may involve both closed and open formulas (well-formed according to our syntax defi-
nitions). Formally, this is handled by giving different semantics to the two parts of our
knowledge bases.

Definition 6. Let KB = 〈F ,R〉 be a first-order knowledge base, and let κ be an OCF.

1. κ accepts R, denoted by κ |= R, iff κ |= ϕ for all ϕ ∈ R.
2. κ accepts KB, denoted by κ |= KB, iff κ(ω) = ∞ for all ω �|= F , and κ |= R.

If κ |= KB then we also say that κ is a model of KB. If there is no κ with κ |= KB then
KB is inconsistent.

In this way, we can accurately distinguish between the statements “A certainly holds
for all individuals” (∀xA(x) ∈ F ), “it is plausible that A holds for all individuals”
(∀xA(x) ∈ R, treated as (∀xA(x) | �)), and “A is plausible” (A(x) ∈ R, treated
as (A(x) | �)). In general, having a classical (i. e., unconditional) formula A in F ex-
presses “A is certain” while A in R means “A is plausible”. Before illustrating the
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first-order semantics defined above, we first carry over the idea of (propositional) c-
representations [11] to the first-order case. This will endow us with the possibility of
constructing proper OCF-models of knowledge bases in an easy way.

4 System Z for First-Order Conditionals

In this section, we present the construction of a system Z-like ranking function from
a first-order conditional knowledge base. We assume given partitionings of the condi-
tionals and the domain elements satisfying some contraints inspired by the notion of
tolerance used in system Z. We present a theorem stating that our construction yields
an OCF accepting the given knowledge base.

Let R = {(B1(x1) |A1(x1)), . . . , (Bn(xn) |An(xn))} be a finite set of first-order
conditionals. These conditionals can either involve open or closed formulas; we may
omit the (outer) quantification of conditionals, as no existential conditional may occur,
and all universal conditionals can be replaced by the set of all instantiations, according
to Definition 3. Moreover, all formulas in R can be assumed to have a conditional form,
according to the remarks around Definition 6 at the end of the preceding section.

We focus on conditionals over languages LΣ whose signature consists only of con-
stants and unary predicates. Given a knowledge base KB over LΣ that fulfills certain
prerequisites, we set up a ranking function κz that transfers the main ideas of system Z
[10] into the first-order environment and that we prove to be a model of KB.

Theorem 1. Let KB = 〈F ,R〉 be a first-order knowledge base over a language LΣ

the signature of which consists only of constants and unary predicates that satisfies the
following conditions:

(C1) F is consistent, and no formula in F or R mentions more than one constant or
variable.

(C2) There are partitionings R = R0 ∪ . . .∪Rm and D = D0 ∪ . . .∪Dm such that
for all i, for all r ∈ Ri, there is a ∈ Di and ω ∈ Ω,ω |= F , such that ω verifies
r(a) and ω does not falsify r′(a′) for all r′ ∈ ∪j�iRj and all a′ ∈ Di.

For ω ∈ Ω,ω |= F , and for 0 � i � m, define

λi(ω) =

{
0, if r(a) is not falsified in ω ∀a ∈ Di, ∀r ∈ R
max
a∈Di

max
r∈R

{j | r ∈ Rj and r(a) is falsified in ω}+ 1, otherwise

Then the OCF κz defined by κz(ω) = ∞ for ω �|= F , and

κz(ω) =

m∑

i=0

(m+ 2)iλi(ω)− κ0

κ0 = min
ω∈Ω

m∑

i=0

(m+ 2)iλi(ω)

(6)

for ω |= F , is a model of KB.
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Proof. Since F is consistent so that there is ω ∈ Ω with ω |= F , it is clear that κz is an
OCF since κ0 normalizes κz to ensure that 0 = minω∈Ω κz(ω). Since κ0 is the same
for all ω in κz(ω) in (6), for the proof we can focus on the sum in κz(ω) since min-
imization and inequalities between different κz(ω) only depend upon the summation
part. Furthermore, all λi(ω) are natural numbers between 0 and m+ 1. This allows for
exactly m+2 different values. This means that we can associate with each κz(ω) resp.
its summation part a vector (λ0(ω), . . . , λm(ω)),

κz(ω) ∼ (λ0(ω), . . . , λm(ω)),

such that κz(ω) =
∑m

i=0(m + 2)iλi(ω) − κ0. Then for two ω, ω′ |= F , the following
holds:

– κz(ω) < κz(ω
′) iff κz(ω) ∼ (λ0(ω), . . . , λm(ω)), κz(ω

′) ∼
(λ0(ω

′), . . . , λm(ω′)) and there is j, 0 � j � m such that λj(ω) < λj(ω
′)

and λi(ω) = λi(ω
′) for all i > j;

– κz(ω) = κz(ω
′) iff κz(ω) ∼ (λ0(ω), . . . , λm(ω)), κz(ω

′) ∼
(λ0(ω

′), . . . , λm(ω′)) and λi(ω) = λi(ω
′) for all 0 � i � m.

In particular, this means that κz(ω) is minimal (with respect to given conditions) if all
components λi(ω) are (respectively) minimal.

Since the language contains only unary predicates, and due to prerequisite (C1) in the
theorem, each possible world ω can be written as a conjunction of independent compo-
nents ω(a) that contain all literals for one a ∈ D. So, for each (open) conditional r, r(a)
is verified resp. falsified by ω iff it is verified resp. falsified by ω(a). We write ω(Di)
for the conjunction of all ω(a) for a ∈ Di. Since λi considers only the falsifications
within Di, we have λi(ω) = λi(ω(Di)).

We have to prove that κz |= r for all r ∈ R. More precisely, we have to prove
that Rep(r) �= ∅ (which is the case iff WRep(r) �= ∅) and to verify the conditions of
Definition 5. So let r = (B(x)|A(x)) ∈ R. Then there is i, 0 � i � m, such that
r ∈ Ri. Due to prerequisite (C2), there is a ∈ Di and ωa ∈ Ω,ωa |= F , such that
ωa |= A(a)B(a) and ωa does not falsify r′(a′) for all r′ ∈ ∪j�iRj and all a′ ∈ Di.
This implies that λi(ωa) = λi(ωa(Di)) � (i − 1) + 1 = i. Choose a ∈ Di with
appertaining ωa in such a way that λi(ωa) is minimal; we can even choose ωa such that
λj(ωa) is (overall) minimal for j �= i since for j �= i, ωa(Dj) is independent from
ωa(Di).

We will show that a ∈ WRep(r). First, κz(A(a)B(a)) = κz(ωa) because ωa is
minimal in all λj -components with respect to ω |= A(a)B(a), and even more, we
also have κz(A(a)B(a)) = κz(A(x)B(x)): For, assume there were c ∈ D such that
κz(A(c)B(c)) < κz(A(a)B(a)), κz(A(c)B(c)) = κz(ωc). Then there is a last k such
that λk(ωc) < λk(ωa) and λj(ωc) = λj(ωa) for all j > k. Since for all j �= i, λj(ωa)
was chosen overall minimal, we must have k = i. But within Di, a was chosen in such
a way to make λi(ωa) minimal among all λi(ω) such that ω |= F , ω |= A(d)B(d)
for some d ∈ Di, and ω does not falsify r′(a′) for all r′ ∈ ∪j�iRj and all a′ ∈ Di.
We have ωc |= F , and ωc |= A(c)B(c), so if ωc would falsify any r′(a′) for some
r′ ∈ ∪j�iRj and some a′ ∈ Di, then λi(ωc) > i � λi(ωa) which contradicts the
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assumption κz(A(c)B(c)) < κz(A(a)B(a)). Therefore, (1) from Definition 4 holds
for a, and now, we show (2) from Definition 4 for a. Let κz(A(a)B(a)) = κz(ω

′
a), i.e.,

ω′
a is minimal with respect to falsifying (B(a)|A(a)). For all components ω′

a(Dj) with
j �= i, λj(ω

′
a) = λj(ωa), since both are overall minimal. But for i, we have λi(ω

′
a) �

i + 1 > i, since ω′
a falsifies r(a) and a ∈ Di. Therefore, we have κz(ω

′
a) > κz(ωa)

and hence κz(A(a)B(a)) < κz(A(a)B(a)), so (2) holds as well. Summarizing our
results obtained so far, a is a weak representative of r, and we may also assume in the
following, that a is a representative of r. In particular, Rep(r) �= ∅.

Next, we turn to check the conditions of Definition 5 in order to show that κz ac-
cepts r = (B(x)|A(x)) ∈ R. If κz(A(x)B(x)) < κz(A(x)B(x)), then (Acc-1)
holds and we are done. Otherwise, we have κz(A(x)B(x)) � κz(A(x)B(x)). Let
κz(A(x)B(x)) = κz(A(b)B(b)) with b ∈ Dk, and choose ωb |= A(b)B(b) such that
κz(A(b)B(b)) = κz(ωb). First, we observe that b cannot be in Di because otherwise
we would have λi(ωb) � i+1 due to ωb falsifying r(b) and b ∈ Di. But this would im-
ply λi(ωa) < λi(ωb) and λj(ωa) � λj(ωb) for j �= i since λj(ωa) is minimal. Hence,
we would have κz(A(x)B(x)) = κz(A(a)B(a)) < κz(A(b)B(b)) = κz(A(x)B(x))
which contradicts the assumption of the considered case. So, b ∈ Dk with k �= i.

Because κz(ωb) is minimal among all κz(ω) with ω |= A(b)B(b), it is clear that
also λk(ωb) must be minimal with respect to ω falsifying r(b), and λj(ωb) must be
minimal overall for j �= k. Since k �= i, we can find ωab such that ωab(Di) =
ωa(Di), ωab(Dk) = ωb(Dk), and for j �∈ {i, k}, ωab(Dj) is chosen to make λj(ωab)
minimal. Then ωab |= A(a)B(a) and ωab |= A(b)B(b), λi(ωab) = λi(ωa) and
λk(ωab) = λk(ωb) so that ωab is minimal both with respect to verifying and falsify-
ing r, and hence we must have κz(A(x)B(x)) = κz(A(x)B(x)).

If Rep(r) = ∅, then κ |= r, and we are done. Otherwise, let b ∈ Rep(r) (we
have already presupposed that a ∈ Rep(r)) with b ∈ Dk. It remains to be shown that
κz(A(a)B(a)) < κz(A(b)B(b)). Note that all details that we proved above for b still
hold, in particular, from the above, we have k �= i. Due to presupposition (2), there is
νb ∈ Ω, νb |= F , such that νb does not falsify r′(b′) for all r′ ∈ ∪j�kRj for all b′ ∈ Dk

(including b). Hence λk(νb) � (k− 1)+ 1 = k. W.l.o.g. we may assume that λk(νb) is
minimal. Let us first assume that k < i. Then λk(νb) < i. Choose νab in such a way that
νab(Di) = ωa(Di), νab(Dk) = νb(Dk), and for j �∈ {i, k}, νab(Dj) is chosen to make
λj(νab) minimal. Then λi(νab) = λi(ωa) and λk(νab) = λk(νb) < i, all other λj(νab)
being minimal. Since νab |= A(a)B(a), we have κz(A(a)B(a)) � κz(νab) � κz(ωa)
due to the construction of ωa and νab, hence κz(A(a)B(a)) = κz(νab) = κz(ωa).
But now, recall that κz(A(a)B(a)) = κz(ωa) = κz(ωb) = κz(A(b)B(b)), due to
κz(A(x)B(x)) = κz(A(x)B(x)). This means that all λj-components of ωa and ωb

must be the same. However, we have λk(ωa) = λk(νab) = λk(νb) < i, whereas
for ωb, we have λk(ωb) > i since r(b) is falsified for b ∈ Dk. So, we must have
i < k. Let ω′

b be chosen minimal with respect to ω |= F , ω |= A(b)B(b), in particu-
lar, κz(A(b)B(b)) = κz(ω

′
b). In the first part of the proof, we already chose ω′

a with
κz(A(a)B(a)) = κz(ω

′
a). Now, we have to show κz(ω

′
a) < κz(ω

′
b) to complete the

proof. Altogether, we have (in the considered case)
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κz(ωa) = κz(A(a)B(a)) = κz(A(x)B(x))

= κz(A(x)B(x)) = κz(A(b)B(b)) = κz(ωb),

κz(ω
′
a) = κz(A(a)B(a)) > κz(A(a)B(a)) = κz(ωa),

κz(ω
′
b) = κz(A(b)B(b)) > κz(A(b)B(b)) = κz(ωb),

where ωa and ω′
a differ only in the Di-component with λi(ωa) < λi(ω

′
a) and all other

λj-components chosen minimal, while ωb and ω′
b differ only in the Dk-component with

λk(ωb) < λk(ω
′
b) and all other λj -components chosen minimal. For all j > k(> i),

we have λj(ω
′
a) = λj(ω

′
b), since both components were chosen minimal. For the kth

component, we have λk(ω
′
a) = λk(ωa) = λk(ωb) < λk(ω

′
b). Hence κz(ω

′
a) < κz(ω

′
b)

which shows inequality (5) from condition (Acc-2) in Definition 5. Therefore, κz |= r.
��

Note that condition (C2) of Theorem 1 transfers the idea of tolerance on which sys-
tem Z is based to the first-order setting. Since we do not give an algorithm how to
construct the partitionings of Theorem 1, several κz-models of R are possible. Provid-
ing such an algorithm and determining a unique κz-model of R, maybe equipped with
properties that characterize it among all models of R, as in the propositional case, is
left for future work.

5 Examples

We demonstrate the κz construction introduced in the previous section by a well-known
example (see also [13]).

Fig. 1. Illustration of possibly flying penguins (by Silja Isberner in [2, page 259])



92 G. Kern-Isberner and C. Beierle

Example 2 (Penguins and super-penguins (cont’d)). We extend Example 1 where we
introduced penguins (P), birds (B) and also (flying) super-penguins (S) as well as winged
things (W) and flying things (F). Our universe consists of the following objects resp.
constants D = {p, t, s} with t = Tweety, p = Polly, s = Supertweety. The knowledge
base KBtweety = 〈F ,R〉 consists of the facts

F = {B(p), P (t), S(s), ∀xS(x) ⇒ P (x), ∀xP (x) ⇒ B(x)},

and the conditional knowledge base R = {r1, r2, r3, r4} containing four open first-
order conditionals already given in Example 1:

r1 : (F (x) |B(x))
r2 : (W (x) |B(x))
r3 : (F (x) |P (x))
r4 : (F (x) |S(x))

Precondition (C1) of Theorem 1 is clearly satisfied for this knowledge base.
The set Ω of possible worlds consists of all ω of the form

ω = B(p)Ḟ (p)Ṗ (p)Ṡ(p)Ẇ (p)
︸ ︷︷ ︸

ω(p)

B(t)Ḟ (t)P (t)Ṡ(t)Ẇ (t)
︸ ︷︷ ︸

ω(t)

B(s)Ḟ (s)P (s)S(s)Ẇ (s)
︸ ︷︷ ︸

ω(s)

,

where the dotted predicates indicate that both verification and falsification of the re-
spective atom is possible. Let partitionings of R and D be given as follows:

R0 = {r1, r2}, D0 = {p},
R1 = {r3}, D1 = {t},
R2 = {r4}, D2 = {s}.

Consider the world

ω0 = B(p)F (p)P (p)S(p)W (p)
︸ ︷︷ ︸

ω0(p)

B(t)F (t)P (t)S(t)W (t)
︸ ︷︷ ︸

ω0(t)

B(s)F (s)P (s)S(s)W (s)
︸ ︷︷ ︸

ω0(s)

.

We can easily check that precondition (C2) of Theorem 1 holds by choosing ω0 for
each conditional. For r1 and r2 which are both in R0, we then have to check that
ω0 verifies (F (p) |B(p)) and (W (p) |B(p)) and that it does not falsify (F (p) |B(p)),
(W (p) |B(p)), (F (p) |P (p)), or (F (p) |S(p)), which obviously holds. For r3 ∈ R1,
we observe that ω0 verifies (F (t) |P (t)) and that it does not falsify (F (t) |P (t)) or
(F (t) |S(t)). For r4 ∈ R2, we observe that ω0 verifies (F (s) |S(s)) and that it does
not falsify (F (s) |S(s)).

Since in ω0, no p-instance of a conditional in R is falsified we get λ0(ωo) = 0. Since
(F (t) |B(t)) is falsified by ω0 and (F (x) |B(x)) ∈ R0 and since no other t-instance
of a conditional in R is falsified by ω0 we get λ1(ωo) = 1. Finally, since (F (s) |P (s))
is falsified by ω0 and (F (x) |P (x)) ∈ R1 and since no other s-instance of a conditional
in R is falsified by ω0 we get λ2(ωo) = 2.
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Since m = 2, κz is defined by

κz(ω) =
2∑

i=0

4iλi(ω)− κ0, κ0 = min
ω∈Ω

2∑

i=0

4iλi(ω).

Given that all ω have to satisfy F , i.e., all ω have to satisfy
B(p)B(t)P (t)B(s)P (s)S(s), it is clear that ω0 minimizes the sum in the expression
defining κ0, so we get κ0 =

∑2
i=0 4

iλi(ω0) = 36 since κz(ω0) ∼ (0, 1, 2).
To verify that indeed κz |= R according to the semantics defined in Section 3, the

following table lists all relevant ground formulas φ for each conditional ri ∈ R. For
each φ, the λi-components of its minimal models and the resulting κz value for φ is
given:

φ (λ0, λ1, λ2) κz(φ)
r1 : B(p)F (p) (0, 1, 2) 0

B(t)F (t) (0, 2, 2) 4
B(s)F (s) (0, 1, 2) 0

B(p)F (p) (1, 1, 2) 1

B(t)F (t) (0, 1, 2) 0
B(s)F (s) (0, 1, 3) 16

r2 : B(p)W (p) (0, 1, 2) 0
B(t)W (t) (0, 1, 2) 0
B(s)W (s) (0, 1, 2) 0

B(p)W (p) (1, 1, 2) 1
B(t)W (t) (0, 1, 2) 0

B(s)W (s) (0, 1, 2) 0

r3 : P (p)F (p) (1, 1, 2) 1
P (t)F (t) (0, 1, 2) 0
P (s)F (s) (0, 1, 3) 16
P (p)F (p) (2, 1, 2) 2
P (t)F (t) (0, 2, 2) 4
P (s)F (s) (0, 1, 2) 0

r4 : S(p)F (p) (2, 1, 2) 2
S(t)F (t) (0, 2, 2) 4
S(s)F (s) (0, 1, 2) 0

S(p)F (p) (3, 1, 2) 3
S(t)F (t) (0, 3, 2) 8

S(s)F (s) (0, 1, 3) 16

From this table, we find

– for r1, that κz(B(x)F (x)) = κz(B(x)F (x)) = 0 with WRep(r1) = {p, s} but
Rep(r1) = {p}, and WRep(r1) = {t} = Rep(r1) and hence κz |= r1 since
κz(B(p)F (p)) = 1 < 4 = κz(B(t)F (t));

– for r2, that κz(B(x)W (x)) = κz(B(x)W (x)) = 0 with WRep(r2) = {p} =
Rep(r2), but WRep(r2) = Rep(r2) = ∅, so condition (Acc-2) from Definition 5 is
satisfied trivially, and κz |= r2;
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– for r3, that κz(P (x)F (x)) = κz(P (x)F (x)) = 0 with WRep(r3) = {t} =
Rep(r3) and WRep(r3) = {s} = Rep(r3), furthermore κz(P (t)F (t)) = 4 <
16 = κz(P (s)F (s)) and so κz |= r3;

– for r4, that κz(S(x)F (x)) = 0 < 3 = κz(S(x)F (x)) and hence immediately
κz |= r4.

Finally, it is interesting to check whether κz allows us to find out if penguins have wings.
For in the propositional case, system Z is known to suffer from the so-called drowning
problem [10]: as penguins are exceptional birds, the propositional system Z cannot de-
cide whether penguins have wings or not. So, let us consider the conditional r5 =
(W (x)|P (x)). Here, we find that κz(P (p)W (p)) = κz(P (p)W (p)) = 1 (with λi-
vector (1, 1, 2), and for both t and s, we compute κz(P (t)W (t)) = κz(P (t)W (t)) =
0 = κz(P (s)W (s)) = κz(P (s)W (s)). So, there is not even a single instance such
that the conditional can be verified or falsified, i.e., κz is completely undecided with
respect to penguins having wings. Note that in [13] it was shown that the approach of
c-representations is able to overcome this problem, same as for the propositional case.

6 Conclusions and Future Work

For knowledge bases consisting of propositional default rules in the form of qualitative
conditionals, system Z [15,10] provides a popular and attractive method for inductive
reasoning. Thus, when moving from propositional to first-order conditionals, it is worth-
while to investigate whether the advantages of system Z can also be revealed in such an
extended setting. In this paper, we argued that for the case of unary predicates, the con-
ditional semantics proposed in [13] allows for a system Z-like approach to first-order
default reasoning. In addition to a knowledge base with facts and open conditionals we
assume that a set of constants is given. Using the notion of a representative for a condi-
tional, we showed how a ranking function in the spirit of system Z can be constructed,
and we proved that this construction indead yields a model of the knowledge base.

In the propositional case of system Z, the notion of tolerance induces both a criterion
for the consistency of a knowledge base and a unique partitioning of the conditionals
which is used in the computation of the ranking function. In the extended first-order
setting of this paper, we assume that corresponding partitionings of the conditionals in
R and of the domain elements are given. According to Theorem 1, the existence of such
a pair of partitionings implies the consistency of R.

While for the situation given in Example 2, the considered pair of partitionings seems
to be unique, in general, there may be several different such partitionings, possibly lead-
ing to different ranking functions. For instance, after removing the specific knowledge
about Tweety, Polly, and Supertweety from the knowledge base KBtweety in Example 2,
the three constants t, p and s are pairwise exchangeable; hence, different partitionings
leading to different ranking functions can be obtained. Our current work includes the de-
velopment of criteria for the existence of a pair of partitionings fulfilling condition (C2)
of Theorem 1, and the design of an algorithm computing such pairs. A further open prob-
lem is how the possibly different ranking functions obtained from different partitionings
of the conditionals and the domain elements may be ordered by a preference relation,
and whether such a preference ordering will lead to a unique ranking function for R.
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Abstract. In nonmonotonic reasoning, conclusions can be retracted when new
pieces of information are incorporated into premises. This contrasts with classi-
cal reasoning which is monotonic, i.e., new premises can only increase the set
of conclusions that can be drawn. Slightly weaker properties, such as cumulativ-
ity and rationality, seem reasonable counterparts of such a monotonicity property
for nonmonotonic reasoning but intriguingly it turned out that some major non-
monotonic logics failed to be cumulative. These observations led to the study of
variants in hope of restoring cumulativity but not losing other essential proper-
ties. In this paper, we take a fresh view on cumulativity by starting from a notion
of rule entailment in the context of answer set programs. It turns out that cu-
mulativity can be revived if the expressive precision of rules subject to answer
set semantics is fully exploited when new premises are being incorporated. Even
stronger properties can be established and we illustrate how the approach can be
generalized for major nonmonotonic logics.

1 Introduction

Nonmonotonicity is a frequently appearing phenomenon, e.g., in commonsense reason-
ing, reasoning by default, diagnostic reasoning, etc. The typical pattern is that earlier
conclusions may have to be retracted upon the incorporation of new premises, typically
emerging from new observations about the domain of interest. This contrasts with the
monotonicity1 of classical logic and indicates that classical logic is as such insufficient
for certain applications. The study of nonmonotonicity was put forth by the introduction
of nonmonotonic logics [19,21,24] as well as nonmonotonic classes of logic programs
[9,10,17]. The abstract properties of nonmonotonic formalisms were of interest and
soon cumulativity [15] was proposed as a desired property of nonmonotonic reasoning
once monotonicity was being renounced. Cumulativity can be understood as a combi-
nation of two principles called cautious monotony and cut. They are formulated below
for a prototypical consequence relation |∼, a set of premises Σ, and sentences ϕ and χ.

Cautious monotony: If Σ |∼ ϕ and Σ |∼ χ, then Σ ∪ {ϕ} |∼ χ.
Cut: If Σ |∼ ϕ and Σ ∪ {ϕ} |∼ χ, then Σ |∼ χ.

� The support from the Finnish Centre of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

1 Formally, Σ � ϕ and Σ ⊆ Γ imply Γ � ϕ.
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The classical consequence relation � is cumulative besides being monotonic. By defin-
ing the set of consequences Cn(Σ) = {χ ∈ L | Σ � χ}, cumulativity is expressed by
the equation Cn(Σ) = Cn(Σ∪{ϕ}) for every sentence ϕ such that Σ � ϕ. In words, if
Σ � ϕ, then ϕ is redundant in view of adding it to Σ as the set of consequences Cn(Σ)
remains unchanged. Thus, adding ϕ does not seem reasonable for the sake of compact
representation, but ϕ could also act as a lemma boosting further inference from Σ.

The KLM postulates [15] led to a vivid study of cumulativity in the context of non-
monotonic logics and logic programs (see, e.g., [1,2,3,4,5,12,14]). Unfortunately, only
few positive results were established: McCarthy’s circumscription [19], logic programs
under the well-founded semantics [8], and stratified nonmonotonic inference [2] turned
out to be cumulative. But otherwise, nonmonotonic formalisms failed to be cumulative
and typically this was due to lack of cautious monotony. Our first example provides a
counter-example in the case of logic programs subject to stable model semantics [9],
but the example was first illustrated in the context of truth maintenance systems.

Example 1 (Brewka et al. [2]). Consider a logic program P having the following rules:

a ← ∼b. c ← a. b ← c, ∼a.

The program has a unique stable model M = {a, c}, which makes a and c cautious
consequences of P . If, however, we add c as a fact to P , we obtain another stable
model {b, c} and thus a is not a cautious consequence of P ∪ {c ←} (cf. Definition 2
for a standard definition of cautious consequence). �

Analogous counter-examples can be devised, e.g., for Reiter’s default logic [24] and
Moore’s autoepistemic logic [21]. Consequently, many variants of nonmonotonic for-
malisms were devised, aiming to restore cumulativity in a way or another. For instance,
new cumulative semantics were proposed but no clear solution was found because
other desirable properties of reasoning were sacrificed. Tackling the failure of cautious
monotony at meta level typically increased the computational time complexity of main
reasoning problems. Brewka [1] pointed out the role of witnessing justifications and he
managed to restore cumulativity in a variant of default logic where justifications are
incorporated into premises in addition to actual consequences.

In this paper, we take a fresh view on cumulativity and study it from the perspective
of rule entailment, which is based on the idea of redundancy [13] as discussed above in
the case of classical (monotonic) logic. More formally, a rule r is entailed by a program
P , denoted by P |→ r, if and only if r is redundant in the context of P , i.e., programsP
and P ∪{r} have exactly the same stable models [9]. The resulting notion of entailment
is inherently different from classical entailment. According to a characterization to be
presented later, P |→ r implies that r is satisfied by every stable model of P but,
in general, P |→ r is a stronger relation than satisfaction under stable models. Rule
entailment from P and the gap with respect to satisfaction under the stable models of
P are illustrated by the following example.

Example 2. The rule a ← c, ∼d is entailed by a program P1 having the rules2 a ← b;
b ← c; and c ← ∼d because both P1 and P1 ∪ {a ← c, ∼d} have a unique stable

2 From time to time, we use “;” as a rule separator to avoid confusion with “,” in rule bodies.



98 T. Janhunen and I. Niemelä

model {a, b, c}. The fact a ← is not entailed by a program P2 having a single rule
a ← ∼a, because P2 has no stable models and P2 ∪ {a ←} has a unique stable model
{a}. But a ← is trivially satisfied in every stable model of P since there are none. �

The second program in Example 2 demonstrates an interesting special case, i.e.,
the entailment P |→ a ← of a fact a ← for an atom a ∈ At(P ) of interest. This
particular example shows that being a cautious consequence, denoted by P |∼c a, does
not necessarily imply P |→ a ←. The key observation is that P |∼c a does not entitle
us to add a fact a ← in a program. Doing so may affect stable models as it is clear by
the second program of Example 2. Our hypothesis is that the failure of cumulativity for
stable semantics goes back to this mismatch. In other words, adding a fact a ← in the
face of P |∼c a does not take into account the potential defeasibilty of the conclusion
a and thus can be considered as a misinterpretation of KLM postulates in the context
of logic programs subject to stable semantics. In this paper, we will establish that P |
∼c a coincides with the rule entailment P |→ a ← ∼a and suggest that a cautious
consequence P |∼c a should be recorded as a rule a ← ∼a rather than a fact a ←. This
observation allows us to rewrite the principles of cautious monotony and cut as follows:

Restricted cautious monotony: If P |∼c a and P |∼c b, then P ∪ {a ← ∼a} |∼c b.
Restricted cut: If P |∼c a and P ∪ {a ← ∼a} |∼c b, then P |∼c b.

This is to say that stable semantics is cumulative if the respective KLM rules are inter-
preted in the right way. Actually, much stronger abstract properties can be established
if cautious consequences are incorporated into the underlying logic program in the way
described above. In this paper, we investigate this idea further as follows. First, we in-
troduce a simple class of logic programs in Section 2 and review the basic notions of
stable model semantics. The notion of rule entailment is recalled and elaborated for
the purposes of this paper in Section 3. The cautious entailment based on stable mod-
els is then characterized in a number of ways using rule entailment in Section 4. The
emphasis, however, is on positive consequences whereas the negative ones are covered
in Section 5. As a result, both positive and negative consequences can be incorporated
into programs in a systematic and symmetric way. The connection to search procedures
for stable models is also worked out using the tableau method as the conceptual model.
Potential generalizations for other forms of nonmonotonic reasoning are considered in
Section 6. Related work is briefly addressed in Section 7. Finally, the conclusions of the
paper are presented in Section 8.

2 Preliminaries

The goal of this section is to introduce the class of logic programs of interest in the
propositional case. We aim at a minimal generalization of normal programs that is still
sufficient for characterization results to be presented in Section 4 and leave other classes
of programs to be addressed in Section 6. Our rules of interest are of three forms

a ← b1, . . . , bm, ∼c1, . . . , ∼cn. (1)

{a1, . . . , al} ← b1, . . . , bm, ∼c1, . . . , ∼cn. (2)

← b1, . . . , bm, ∼c1, . . . , ∼cn. (3)
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where a, ai’s, bj’s, and ck’s are propositional atoms, or atoms for short. Atoms are
also called positive literals whereas their negations formed in terms of ∼ are negative
literals. Rules of the form (1) are called normal and they allow the derivation of the
head a in case that the body of the rule is satisfied, i.e., b1, . . . , bm are derivable by
other rules and none of c1, . . . , cn are derivable. A normal rule is positive, if n = 0, and
a fact, if m = n = 0. A choice rule of the form (2) is similar except that any subset
of the head atoms a1, . . . , al can be derived upon the satisfaction of the rule body. An
integrity constraint (3) with an empty head, denoting contradiction, essentially states
that its body is never satisfied. We call logic programs consisting of the rule types above
normal choice-constraint programs, or NCC programs for short.

The meaning of NCC programs depends on the context and to make that precise,
we proceed to the definition of stable models first introduced for normal programs [9].
The signature of a logic program P is denoted by At(P ) and it is assumed that the
rules of P contain atoms from this set only. An interpretation I of P is any subset of
At(P ) determining which atoms a are true (a ∈ I) and which false (a �∈ I). A negative
literal ∼c is satisfied in I , denoted I |= ∼c, iff c �∈ I . A normal rule (1) is satisfied
by I iff {b1, . . . , bm} ⊆ I and {c1, . . . , cn} ∩ I = ∅ imply a ∈ I . A choice rule (2) is
always satisfied by I . An integrity constraint (3) is satisfied by I iff {b1, . . . , bm} �⊆ I
or {c1, . . . , cn} ∩ I �= ∅. An interpretation M ⊆ At(P ) is a model of a program P ,
denoted M |= P , iff M |= r for every rule r ∈ P . A model M |= P is minimal iff
there is no other model N |= P such that N ⊂ M . Every positive program P solely
consisting of positive rules of the form a ← b1, . . . , bm is guaranteed to have a unique
minimal model, the least model of P , denoted by LM(P ). Given a normal rule r of
the form (1) and an interpretation I ⊆ At(P ), the Gelfond-Lifschitz reduct rI of r
with respect to I is the program containing the single positive rule a ← b1, . . . , bm iff
{c1, . . . , cn} ∩ I = ∅, and ∅ otherwise. For a choice rule r of the form (2), the reduct
rI contains a positive rule ai ← b1, . . . , bm iff I |= ai and {c1, . . . , cn} ∩ I = ∅. The
reduct rI of an integrity constraint r of the form (3) is always ∅. For an entire NCC
program P , the reduct P I of P with respect to I is defined as the union

⋃
r∈P rI .

Definition 1 (Stable Models [9,26]). An interpretation M ⊆ At(P ) is a stable model
of an NCC program P iff M |= P and M = LM(PM ).

The number of stable models may vary in general and hence we denote the set of
stable models of a program P by SM(P ).

Definition 2. Given a logic program P , a literal l based on At(P ) is

1. cautious consequence of P iff M |= l for every stable model M ∈ SM(P ), and
2. brave consequence of P iff M |= l for some stable model M ∈ SM(P ).

We use notations P |∼c l and P |∼b l, respectively, to denote that a literal l is a cau-
tious/brave consequence of a programP . Deciding whether a literal l is a cautious/brave
consequence of a finite normal program P forms a coNP/NP-complete decision prob-
lem. This is the case for NCC programs, too, based on the complexity results concerning
SMODELS programs [26]. The effects of choice rules are illustrated next.

Example 3. The program P consisting of a single choice rule {a} ← has two stable
models M1 = ∅ and M2 = {a} justified by PM1 = ∅ and PM2 = {a ←}. �
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Example 3 shows how one can express choices under stable model semantics. The
atom a can be either true or false which is exceptional under stable model semantics
which assigns atoms false by default. Given the choice rule {a} ←, the atom a behaves
classically as there is no longer asymmetry between its truth values. This feature can
be exploited, e.g., when reducing instances of the Boolean satisfiability (SAT) problem
into NCC programs. Such a rule would then be introduced for each atom involved in
the clauses or, alternatively, all atoms a1, . . . , al occuring in the clauses could be incor-
porated into one global choice rule (2) with an empty body, i.e., m = n = 0. A further
by-product of choice rules is that the antichain property of stable models is lost. In-
deed, Example 3 illustrates two stable models in a proper subset relation. Such a setting
cannot arise in the case of pure normal programs.

When NCC programs or logic programs in general are compared with each other,
two natural notions of equivalence arise from stable model semantics. Programs P and
Q are considered to be weakly equivalent if and only if SM(P ) = SM(Q). The notion
of strong equivalence [16] introduces an arbitrary context program R in this setting:
programs P and R are strongly equivalent if and only if SM(P ∪ R) = SM(Q ∪
R) for any R. Strong equivalence (SE) can be characterized in terms of SE-models
[27,28] that generalize for NCC programs given the definitions presented so far. A pair
of interpretations 〈X,Y 〉 where X ⊆ Y ⊆ At(P ) is an SE-model of a program P
iff Y |= P and X |= P Y . This is a generalization of classical models, since for each
X |= P we have 〈X,X〉 |= P . By Turner’s results [27,28], we know that P and Q are
strongly equivalent iff they have exactly the same SE-models. It is also possible to define
a notion of entailment based on SE-models. For an atom a ∈ At(P ), P |=se a iff a ∈ X
for every SE-model 〈X,Y 〉 |= P . Generalizing for a rule r such that At(r) ⊆ At(P ),
〈X,Y 〉 |=se r iff Y |= r and X |= rY for every SE-model 〈X,Y 〉 |= P .

3 Rule Entailment

As discussed in the introduction, the notion of rule entailment parallels that of rule
redundancy [13] in analogy to classical logic. Our next goal is to present the respective
notions for programs and rules and to characterize the resulting entailment relation |→.

Definition 3. A rule r is entailed by a program P , denoted by P |→ r, if and only if
SM(P ) = SM(P ∪ {r}).
Example 4. Consider a program P based on the following rules:

a ← ∼b. b ← ∼c. c ← d. d ← a.

The stable models of P are M1 = {a, c, d} and M2 = {b}. The rule a ← d is entailed
by P because we have that SM(P ) = SM(P ∪ {a ← d}). �

Lemma 1. Let P be a positive program and r a positive rule such that At(r) ⊆ At(P ).
Then LM(P ) |= r if and only if LM(P ) = LM(P ∪ {r}).
Proof. Let M = LM(P ) which implies M |= P . ( =⇒ ) Let M |= r hold. Now
M ⊆ LM(P ∪ {r}) follows by the monotonicity of LM(·). Since M |= P and M |= r
we have LM(P ∪{r}) ⊆ M . ( ⇐= ) Clearly, M = LM(P ∪{r}) implies M |= r. ��
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Proposition 1. For a program P and a rule r such that At(r) ⊆ At(P ), P |→ r iff

1. M |= r for every M ∈ SM(P ) and
2. LM(PM ) |= rM for every M ∈ SM(P ∪ {r}).

Proof. Given the characterization from [13], it is sufficient to establish that for every
M ∈ SM(P ∪ {r}), LM(PM ) |= rM if and only if M = LM(PM ). Since both PM

and rM are positive and At(rM ) ⊆ At(PM ), this relationship holds by Lemma 1. ��

Intuitively speaking, P |→ r demands that r is satisfied in every stable model of P
and, in addition, given any stable model M of P ∪ {r}, the least model LM(PM ) ⊆
M is closed under rM , i.e., LM(PM ) = M . The second part essentially requires
that P without r is able to simulate r in the very contexts created by stable mod-
els of P ∪ {r}. For the program P1 in Example 2, we note that LM(P

{a,b,c}
1 ) =

LM({a ← b; b ← c; c ←}) = {a, b, c} is closed by (a ← c, ∼d){a,b,c} = {a ← c}.
As far as additions of rules are concerned, the relation |→ is not (cautiously) mono-

tonic in general, nor does it satisfy the cut property. Counter-examples for the abstract
properties of interest are provided by the following example. The immediate observa-
tion is that |→ in the raw does not provide us with a cumulative consequence relation.

Example 5. To illustrate the failure of cautious monotonicity, let us reconsider the pro-
gram P2 = {a ← ∼a} from Example 1 under the assumption that At(P2) = {a, b}. It
is clear that P2 |→ {a} ← b and P2 |→ b ←, because adding either rule to P2 will not
affect its stable models, i.e., there are none. However, adding both rules to P2 gives rise
to a unique stable model M = {a, b} justified by the rules a ← b and b ← in the reduct.
Thus, we have symmetrically P2 ∪ {{a} ← b} �|→ b ← and P2 ∪ {b ←} �|→ {a} ← b,
indicating that |→ is not cautiously monotone.

For the lack of the cut property, recall the programP from Example 1. SinceSM(P ) =
SM(P ∪{a ←}) = SM(P ∪{a ←, c ←}), we haveP |→ a ← andP ∪{a ←} |→ c ←.
On the other hand, SM(P ) ⊂ SM(P ∪ {c ←}) so that P �|→ c ←. �

Proposition 2. For a program P and a rule r such that At(r) ⊆ At(P ), P |=se r
implies P |→ r but not necessarily vice versa.

Proof. Let P |=se r hold and assume that P �|→ r, i.e., by Proposition 1 (i) M �|= r for
some M ∈ SM(P ) or (ii) LM(PM ) �|= rM for some M ∈ SM(P ∪ {r}).

In the case (i), M ∈ SM(P ) implies M |= PM which makes 〈M,M〉 an SE-model
of P . In addition, M �|= r implies M �|= rM and P �|=se r, a contradiction.

In the case (ii), M ∈ SM(P ∪{r}) implies M = LM(PM ∪rM ). The monotonicity
of LM(·) implies that N = LM(PM ) ⊆ M and since N �|= rM , it must be the case
that rM �= ∅ and N ⊂ M . It follows that 〈N,M〉 �|=se r, a contradiction.

To see that the converse implication does not hold in general, recall the program P
and the rule a ← d from Example 4. We have P �|=se r witnessed, e.g., by a classical
model X = {b, c, d} of P such that 〈X,X〉 �|= a ← d. ��

It is clear by the preceding analysis that rule entailment is much more specific to the
given program P than SE-entailment, which also covers potential extensions of P .
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4 Characterizing Cautious Entailment

In this section, we characterize the cautious entailment relation P |∼c a in terms of rule
entailment. The basic observation was already made for the program P2 in Example 2,
i.e., whether P entails the fact a ← does not match with P |∼c a. Actually, this rela-
tionship can be made more precise: the former implies the latter. Moreover, we are able
to characterize the exact difference of these two entailment relations as follows.

Lemma 2. For a program P and an atom a ∈ At(P ),

SM(P ∪ {a ← ∼a}) = {M ∈ SM(P ) | a ∈ M}. (4)

Proof. For any interpretation M ⊆ At(P ),

M ∈ SM(P ∪ {a ← ∼a})
⇐⇒ M = LM(PM ∪ {a ← ∼a}M )
⇐⇒ M = LM(PM ) and {a ← ∼a}M = ∅
⇐⇒ M ∈ SM(P ) and a ∈ M . ��

Corollary 1. For a program P and an atom a ∈ At(P ), P |∼c a iff P |→ a ← ∼a.

Lemma 3. For a program P and an atom a ∈ At(P ),

SM(P ∪ {{a} ←}) = SM(P ∪ {← a}) ∪ SM(P ∪ {a ←}). (5)

Proof. Consider any interpretation M ⊆ At(P ).

1. If a �∈ M , then M ∈ SM(P ∪ {{a} ←}) ⇐⇒ M = LM(PM ) ⇐⇒ M ∈
SM(P ) ⇐⇒ M ∈ SM(P ∪ {← a}).

2. If a ∈ M , then M ∈ SM(P ∪ {{a} ←}) ⇐⇒ M = LM(PM ∪ {a ←}) ⇐⇒
M ∈ SM(P ∪ {a ←}). ��

Theorem 1. Given a program P and an atom a ∈ At(P ), P |→ a ← if and only if
P |→ a ← ∼a and P |→ {a} ←.

Proof. Given the definition of |→, the goal is to establish that SM(P ) = SM(P ∪
{a ←}) iff SM(P ) = SM(P ∪ {a ← ∼a}) and SM(P ) = SM(P ∪ {{a} ←}).

( =⇒ ) Assuming that SM(P ) = SM(P ∪ {a ←}) it is clear that a ∈ M for every
M ∈ SM(P ). Thus, SM(P ) = SM(P ∪ {a ← ∼a}) by Lemma 2. Moreover, we have
SM(P ∪ {← a}) = ∅ so that SM(P ) = SM(P ∪ {{a} ←}) follows from (5).

( ⇐= ) Suppose that SM(P ∪ {a ← ∼a}) = SM(P ) = SM(P ∪ {{a} ←}). It
is clear by Lemma 2 that a ∈ M for every M ∈ SM(P ) which enforces SM(P ∪
{← a}) = ∅. Thus, SM(P ) = SM(P ∪ {a ←}) follows from (5) in Lemma 3. ��

Since the rules a ← ∼a and {a} ← can be understood as weakened forms of the
fact a ←, the only-if-direction of Theorem 1 is intuitively clear. For the other direction,
we point to the theorem ∼a ∨ ∼∼a of equilibrium logic [22] that characterizes stable
models. Given this formula and implications ∼a → a and ∼∼a → a corresponding
to rules under consideration, we may derive a as a result of case analysis (disjunctive
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syllogism). On the other hand, it is well-known that a ← a is an SE-consequence of any
program P and we have P |→ a ← a in general by Proposition 2. The formula a ∨ ∼a
is not a theorem of equilibrium logic and thus we cannot derive a from the formulas
a → a and ∼a → a by similar case analysis. Indeed, the model correspondence in (5)
indicates that P �|→ a ← is still possible even if P |→ a ← a and P |→ a ← ∼a.

In the following, we incorporate cautious consequences in programs in terms of con-
straints a ← ∼a rather than facts a ←. This allows us to establish restricted cumula-
tivity as sketched in the introduction, but actually we can establish similarly restricted
versions of monotonicity and the cut rule for |∼c.

Theorem 2. For a program P , an atom a ∈ At(P ), and a literal l based on At(P ):

1. If P |∼c l, then P ∪ {a ← ∼a} |∼c l.
2. If P |∼c a and P ∪ {a ← ∼a} |∼c l, then P |∼c l.

Proof. For the first, we note that SM(P ∪ {a ← ∼a}) ⊆ SM(P ) by Lemma 2. It is
clear by definition of |∼c that if M |= l for every M ∈ SM(P ) this is also the case for
every M ∈ SM(P ∪ {a ← ∼a}). For the second, P |∼c a implies by Lemma 2 that
SM(P ∪ {a ← ∼a}) = SM(P ) and the rest follows again by the definition of |∼c. ��

The respective restricted form of cautious monotonicity is obtained directly as a
weakening of the first item of Theorem 2. Yet another abstract property is rationality
[15] which strengthens cautious monotony by replacing a, the lemma for whichP |∼c a
holds, by a consistent conclusion a, for which P �|∼c ∼a holds. It is clear by Theorem 2
that P |∼c l and P �|∼c ∼a imply P ∪ {a ← ∼a} |∼c l. However, there is a mismatch
in the sense that a ← ∼a does not properly encode the consistency of a.

5 Negative Cautious Consequences

In the previous section, we concentrated on recording positive cautious consequences of
a program in the program itself. We change the perspective in this section by consider-
ing negative cautious consequences of programs. The main observation is thatP |∼c ∼a
corresponds to adding to P an integrity constraint of the form ← a. This gives rise to a
characterization similar to the one in Section 4 but technically in a much simpler way.

Lemma 4. For a program P and an atom a ∈ At(P ),

SM(P ∪ {← a}) = {M ∈ SM(P ) | a �∈ M}. (6)

Proof. This follows directly by the definition of stable models, i.e., Definition 1. ��
Theorem 3. For a program P , an atom a ∈ At(P ), and a literal l based on At(P ):

1. If P |∼c l, then P ∪ {← a} |∼c l.
2. If P |∼c ∼a and P ∪ {← a} |∼c l, then P |∼c l.

Proof. The proof is highly analogous to that of Theorem 2: the rule a ← ∼a is simply
replaced by the integrity constraint ← a and Lemma 2 by Lemma 4. ��
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a ← ∼b
c ← a

b ← c, ∼a

Fa
F{∼b}

Tb
T{c,∼a}

Tc
Fa

T{a}
Ta
×

Ta
T{a}

Tc
T{∼b}

Fb
F{c,∼a}

a ← ∼a

Fa
F{∼a}

Ta
×

Ta
F{∼a}

f ← a, ∼f

Fa
Ff

F{a,∼f}

Ta

Ff
T{a,∼f}

Tf
×

Tf
T{a,∼f}

Ta
Ff
×

Fig. 1. Tableau proofs for the program in Example 1 as well as individual rules

It is highly interesting to put the results formalized by Theorems 2 and 3 together.
Given a set of literals Lwe write P |∼c L to denote thatP |∼c l for every l ∈ L. Overall,
the reasoning mechanism underlying stable model semantics exhibits monotonicity and
cumulativity up to restrictions imposed on recording consequences.

Corollary 2. For a program P , a literal l, and a set of literals L based on At(P ):

1. If P |∼c l, then P ∪ {a ← ∼a | a ∈ L} ∪ {← a | ∼a ∈ L} |∼c l.
2. If P |∼c L and P ∪ {a ← ∼a | a ∈ L} ∪ {← a | ∼a ∈ L} |∼c l, then P |∼c l.

Corollary 2 illustrates how positive and negative consequences of a program can be
incorporated as rules without affecting stable models. In fact, such assumptions have
been used implicitly in algorithms implementing the search for stable models, such as
the SMODELS procedure [26]. The difference is that assumptions about stable models
being computed are stored in the respective data structures of algorithms rather than
inserted as rules in the program. In what follows, we want to illustrate the effects of
such additions on a higher level of abstraction provided by semantic tableaux and, in
particular, when tailored to the case of normal programs [6].3 An example follows.

Example 6. The leftmost tree in Figure 1 provides a tableau constructed for the normal
program P from Example 1. Since the rules of the program act as premises they are
listed in the root of the tableau. As usual, the branches of the tableau represent case
analysis performed in order to determine the stable models of P . The two branches
with assumptions Fa and Ta are first created by the application of the cut tableau rule.

Afterwards, the analysis on the left branch proceeds as follows. Since a should be
false, the rules for a must have false bodies. This makes the only body literal ∼b false
and b true. This must be justified by the unique rule for b, making its body true. Thus,
c must be true and a false. On the other hand, c must be justified by the unique rule
defining it, which makes a true, a contradiction (also indicated by “×” at the end of the
branch). Thus, P cannot have a stable model M such that a �∈ M .

3 The extended rules of the SMODELS system are covered by an extended tableau calculus [7].
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a ← ∼a

Ta

← a

Fa

Fig. 2. Derived tableaux rules to handle rules of the forms a ← ∼a and ← a

Reasoning taking place on the right branch is similar. In particular, the body of the
only rule for b is falsified and thus b can be assumed to be false. The analysis is complete
since the truth values of all atoms and rule bodies are consistently determined. Thus,
the branch identifies the unique stable model M = {a, c} of P . �

The second tableau in Figure 1 shows a partial case analysis in the presence of the
rule a ← ∼a that we would like to insert to P on the basis of Corollary 2 as P |∼c a
holds. The resulting tableau does not depend on other (potential) rules for a and thus
we obtain a derived tableau rule given on the left side of Figure 2. The third tableau
in Figure 1 concerns the case of an integrity constraint ← a
but encoded as a normal rule f ← a, ∼f where f is sup-
posed to be a globally new atom. Abstracting on the out-
come yields a derived rule as illustrated in Figure 2 on the
right. Thus, any positive and negative consequences, if en-
coded by the respective rules, can be immediately unwound
as assumptions on stable models without creating unneces-
sary branches in the resulting tableau. Now, assuming that
a ← ∼a is inserted to the program P and to the root of the
leftmost tableau in Figure 1, too, the application of this de-
rived rule essentially yields a single-branch tableau having
only the right branch of the original tableau as illustrated in
Figure 3. Thus, the tableau proof is condensed and the rule
a ← ∼a acts as a lemma in the traditional sense.

a ← ∼b
c ← a

b ← c, ∼a
a ← ∼a

Ta
T{a}

Tc
T{∼b}

Fb
F{c,∼a}

Fig. 3. Condensed tableau

6 Generalizations for Nonmonotonic Reasoning

While the preceding sections concentrate on the case of NCC programs, the goal of
this section is to take into consideration other nonmonotonic formalisms. Most notably,
we will address other classes of logic programs as well as major nonmonotonic logics
from literature. The outcome of the forthcoming analysis is that analogous results can
be obtained. However, in certain cases, issues related to particular syntax and restricted
expressive power may prohibit an expected generalization. For instance, the introduc-
tion of auxiliary atoms may pre-empt exact correspondences such as (5).

We begin with SMODELS programs which generalize normal programs with ex-
tended rule types such as choice, cardinality, and weight rules [25,26]. Thus, NCC
programs are easily covered so that Theorem 1 and Corollary 2 transfer through the
generalization of stable models for rule extensions. The case of disjunctive programs
[10] is complicated by the fact that a choice rule {a} ← is not available as such in the
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language. The choice can be expressed using a new complementary atom a and rules
a ← ∼a and a ← ∼a but (5) could fail because a is true in stable models where a
is not present. These rules could substitute {a} ← in Theorem 1 under the assumption
that a �∈ At(P ). On the other hand, Theorems 2 and 3 generalize as such. Nested pro-
grams [17] allow for a recursive rule structure where connectives ← and ∼ may nest
arbitrarily. Consequently, a choice rule {a} ← can be systematically substituted by a
rule a ← ∼∼a. 4 Thus, the theorems under consideration lift in a straightforward way.

Next we turn out attention to nonmonotonic logics. McCarthy’s circumscription [19]
is based on ⊆-minimal models of propositional theories. It is an exceptional nonmono-
tonic logic because it features cumulative inference. Given a set of sentences Σ in a
propositional language L, a model M |= Σ is ⊆-minimal iff there is no other model
N ⊂ M such that N |= Σ. Let MM(Σ) denote the set of minimal models of Σ. A clas-
sical literal l is a cautious consequence of Σ subject to circumscription iff M |= l for
every M ∈ MM(Σ). Adding such a literal to Σ will not affect minimal models, which
makes cautious circumscriptive inference cumulatively monotonic. However, adding
arbitrary literals do not correspond to selection of minimal models in general, e.g., in
view of restricted monotonicity established as the first parts of Theorems 2 and 3.

Example 7. Consider the propositional theory Σ = {a ∨ b, c → a, c → b} having two
minimal models M1 = {a} and M2 = {b}. Thus, ¬c is a cautious consequence of Σ
subject to minimal models and it is easy to see that MM(Σ ∪{¬c}) = {M1,M2}. But,
adding a non-consequence c will result in a unique minimal model M = {a, b, c}. �
The example above can be encoded as a disjunctive logic program P consisting of rules

a | b. a ← c. b ← c.

The stable models are M1 and M2 from above. Applying the first half of Theorem 2,
the literal c can be added as a rule c ← ∼c. In contrast with Σ∪{c} above, the resulting
program will have no stable models and hence the restricted monotonicity property is
not jeopardized. Indeed, adding c to Σ amounts to adding the fact c ← to P .

Moore’s autoepistemic logic [21] is based on a modality B for beliefs and the re-
spective modal (propositional) language LB. Given the initial assumptions Σ ⊆ LB

of an agent, its beliefs are determined by stable expansions Δ of Σ satisfying the
fixed point condition Δ = Cn(Σ ∪ BΔ ∪ ¬BΔ) where BΔ = {Bϕ | ϕ ∈ Δ} and
¬BΔ = {¬Bϕ | ϕ ∈ LB \Δ}. We write Exp(Σ) for the set of stable expansions
of Σ. A sentence ϕ ∈ LB is a cautious consequence of Σ, denoted Σ |∼c ϕ, if and
only if ϕ ∈ Δ for every Δ ∈ Exp(Σ). Moreover, it is possible to define Σ |→ ϕ if
and only if Exp(Σ) = Exp(Σ ∪ {ϕ}), i.e., ϕ is redundant given Σ. The difference of
these relations can be illustrated, e.g., using Σ = {¬Bb → a, a → c, ¬Ba ∧ c → b}
derived from the program P in Example 1. Now Σ |∼c c but Σ �|→ c as adding c gives
rise to new expansions. To work out further connections, we point out autoepistemic
formulas which can be introduced as counterparts to rules a ←; a ← ∼a; a ← ∼∼a;
and ← a addressed before. The respective formulas are ϕ, ¬Bϕ → ϕ, Bϕ → ϕ, and
Bϕ ∧ ¬B¬ϕ → ¬ϕ. In particular, we have Σ |∼c ϕ iff Σ |→ ¬Bϕ → ϕ, which is
clear by the first item of Lemma 5 collecting analogs of Lemmas 2–4. The second item
reveals that an autoepistemic theory may have an inconsistent expansion Δ = LB.

4 Rules {a} ← and a ← ∼∼a are unconditionally satisfied and always yield the same reduct.
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Lemma 5. For an autoepistemic theory Σ ⊆ LB and a sentence ϕ ∈ LB:

1. Exp(Σ ∪ {¬Bϕ → ϕ}) = {Δ ∈ Exp(Σ) | ϕ ∈ Δ}.
2. Exp(Σ ∪ {Bϕ ∧ ¬B¬ϕ → ¬ϕ}) =

{Δ ∈ Exp(Σ) | ϕ �∈ Δ} ∪ {LB | LB ∈ Exp(Σ)}.

3. Exp(Σ ∪ {Bϕ → ϕ}) = Exp(Σ ∪ {Bϕ ∧ ¬B¬ϕ → ¬ϕ}) ∪ Exp(Σ ∪ {ϕ}).
Proof. Item 1. For (⊆), let Δ ∈ Exp(Σ ∪ {¬Bϕ → ϕ}). Assuming ϕ �∈ Δ implies
¬Bϕ ∈ ¬BΔ and ϕ ∈ Δ, a contradiction. Thus, ϕ ∈ Δ and Σ ∪ BΔ ∪ ¬BΔ |=
¬Bϕ → ϕ, so that Δ ∈ Exp(Σ). To show (⊇), let Δ ∈ Exp(Σ) and ϕ ∈ Δ. It follows
that Bϕ ∈ BΔ and Σ∪BΔ∪¬BΔ |= ¬Bϕ → ϕ. Thus, Δ ∈ Exp(Σ∪{¬Bϕ → ϕ}).

Item 2. To show inclusion (⊆), consider Δ ∈ Exp(Σ ∪ {Bϕ ∧ ¬B¬ϕ → ¬ϕ}).
First, if Δ is consistent, assuming ϕ ∈ Δ implies that ¬ϕ �∈ Δ, Bϕ ∈ BΔ, ¬B¬ϕ ∈
¬BΔ, and ¬ϕ ∈ Δ, a contradiction. Therefore ϕ �∈ Δ is necessary and ¬Bϕ ∈ ¬BΔ.
Thus, Σ ∪ BΔ ∪ ¬BΔ entails Bϕ ∧ ¬B¬ϕ → ¬ϕ, and we obtain Δ ∈ Exp(Σ) in
addition to ϕ �∈ Δ. Second, if Δ = LB, then ¬BΔ = ∅ and we obtain Σ ∪ BΔ |=
Bϕ ∧ ¬B¬ϕ → ¬ϕ since B¬ϕ ∈ BΔ. Thus, Δ = Cn(Σ ∪ BΔ), so that Δ ∈
Exp(Σ). For (⊇), similar cases arise. If Δ ∈ Exp(Σ) is inconsistent, augmenting
Σ by Bϕ ∧ ¬B¬ϕ → ¬ϕ is redundant and Δ ∈ Exp(Σ ∪ {Bϕ ∧ ¬B¬ϕ → ¬ϕ})
follows. The same can be concluded, if Δ ∈ Exp(Σ) is consistent and ϕ �∈ Δ, since
the latter implies that ¬Bϕ ∈ ¬BΔ and Σ ∪BΔ ∪ ¬BΔ |= Bϕ ∧ ¬B¬ϕ → ¬ϕ.

Item 3. Consider any stable theory5 Δ such that ϕ ∈ Δ. Now Bϕ ∈ BΔ, enforcing
Σ ∪ {Bϕ → ϕ}∪BΔ∪¬BΔ and Σ ∪ {ϕ}∪BΔ∪¬BΔ logically equivalent. Thus,
Δ ∈ Exp(Σ ∪ {Bϕ → ϕ}) iff Δ ∈ Exp(Σ ∪ {ϕ}). Secondly, let ϕ �∈ Δ for a stable
theoryΔ. It follows thatΔ is consistent and¬Bϕ ∈ ¬BΔ. ThenΣ∪BΔ∪¬BΔ entails
both Bϕ → ϕ and Bϕ ∧ ¬B¬ϕ → ¬ϕ. It follows that Δ ∈ Exp(Σ ∪ {Bϕ → ϕ}) iff
Δ ∈ Exp(Σ) iff Δ ∈ Exp(Σ ∪ {Bϕ ∧ ¬B¬ϕ → ¬ϕ}) by Item 2, since ϕ �∈ Δ. ��

The second item of Lemma 5 illustrates the fact that an inconsistent expansion pos-
sessed by an autoepistemic theory cannot be filtered out by adding formulas. However,
inconsistent expansions do not affect cautious reasoning and thus our results from previ-
ous sections can be naturally generalized without additional consistency requirements.

Theorem 4. Given an autoepistemic theory Σ ⊆ LB and a sentence ϕ ∈ LB, Σ |→ ϕ
if and only if Σ |→ ¬Bϕ → ϕ and Σ |→ Bϕ → ϕ.

Proof. ( =⇒ ) Assuming that Σ |→ ϕ, we obtain Exp(Σ) = Exp(Σ ∪ {ϕ}) and that
ϕ ∈ Δ for each Δ ∈ Exp(Σ). In particular, if Δ = LB ∈ Exp(Σ), then ϕ ∈ Δ and
Δ ∈ Exp(Σ ∪ {ϕ}), too. Thus, Exp(Σ) = Exp(Σ ∪ {Bϕ → ϕ}) and Exp(Σ) =
Exp(Σ ∪ {¬Bϕ → ϕ}) by Lemma 5 so that Σ |→ ¬Bϕ → ϕ and Σ |→ Bϕ → ϕ.

( ⇐= ) Using the definition of |→, we obtain Exp(Σ) = Exp(Σ ∪ {¬Bϕ → ϕ})
and Exp(Σ) = Exp(Σ ∪ {Bϕ → ϕ}). The former implies Σ |∼c ϕ so that Exp(Σ ∪
{Bϕ ∧ ¬B¬ϕ → ¬ϕ}) can include Δ = LB only if Exp(Σ) does. Thus, the equality
Exp(Σ) = Exp(Σ∪{ϕ}) follows from Exp(Σ) = Exp(Σ∪{Bϕ → ϕ}) by Lemma 5
and we may conclude that Σ |→ ϕ. ��

5 A stable theory Δ ⊆ LB contains (i) ϕ ∈ LB whenever Δ |= ϕ, (ii) Bϕ whenever ϕ ∈ Δ,
and (iii) ¬Bϕ whenever ϕ ∈ LB \Δ. Stable expansions of Σ are stable theories including Σ.
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The following result incorporates two sets of positive and negative assumptions Γ
and Υ , respectively, which can be arbitrary sentences of LB.

Theorem 5. Given an autoepistemic theory Σ ⊆ LB and two subsets Γ and Υ of LB:

1. If Σ |∼c ϕ, then Σ∪{¬Bχ → χ | χ ∈ Γ}∪{Bχ ∧ ¬B¬χ → ¬χ | χ ∈ Υ} |∼c ϕ.
2. If Σ |∼c χ for each χ ∈ Γ , Σ |∼c ¬Bχ for each χ ∈ Υ , and Σ ∪ {¬Bχ → χ |

χ ∈ Γ} ∪ {Bχ ∧ ¬B¬χ → ¬χ | χ ∈ Υ} |∼c ϕ, then Σ |∼c ϕ.

Proof. Let Σ′ extend Σ by {¬Bχ → χ | χ ∈ Γ} and {Bχ ∧ ¬B¬χ → ¬χ | χ ∈ Υ}.
By the repeated application of the first two items of Lemma 5, we have Δ ∈ Exp(Σ′)
iff (i) Δ ∈ Exp(Σ), Γ ⊆ Δ, and Υ ∩ Δ = ∅, or (ii) Δ = LB ∈ Exp(Σ). Thus,
Exp(Σ′) ⊆ Exp(Σ). For the first item, it is then clear that Σ |∼c ϕ implies Σ′ |∼c ϕ.

For the second item, let Δ ∈ Exp(Σ). If Δ = LB, then Δ ∈ Exp(Σ′) is immediate
by (ii). Otherwise, Δ is consistent and Σ |∼c χ implies χ ∈ Δ for any χ ∈ Γ . Thus,
Γ ⊆ Δ. Then consider any χ ∈ Υ for which Σ |∼c ¬Bχ implies ¬Bχ ∈ Δ. Assuming
that χ ∈ Δ implies Bχ ∈ Δ indicating the inconsistency of Δ. Thus, Υ ∩Δ = ∅ and
we have shown that Δ ∈ Exp(Σ′) by (i). ��

Reiter’s default logic [24] is based on default rules, or simply defaults, of the form
α:β1,...,βn

γ . Such an inference rule allows the derivation of γ upon the derivation of α
if, in addition, each one of justifications β1, . . . , βn can be consistently assumed. A
default theory is a pair 〈D,W 〉 where D is a set of defaults and W is a propositional
theory in some propositional language L. The semantics of 〈D,W 〉 is determined by
its extensions E ⊆ L which are defined in [18] as the least theories that contain W and
are closed under propositional consequence and the set of ordinary inference rules

DE = {α
γ
| α : β1, . . . , βn

γ
∈ D and each βi is consistent with E}. (7)

We write Ext(D,W ) for the set of extensions of 〈D,E〉. Disjunctive defaults [11]
generalize defaults by allowing disjunctive consequents γ1 | . . . | γk. Such disjunctions
turn closures under DE non-unique and hence extensions E are required to be minimal
theories containing W and being closed under propositional consequence and DE .

However, even disjunctive defaults lack expressive precision in view of our purposes
and hence we resort to nested defaults [27]. Such defaults are written in the form of
inference rules but connectives | and ∼ may be used recursively in propositional for-
mulas. The reduct of a nested rule α

γ with respect to a theory E ⊆ L is obtained by
replacing any maximal occurrence of the form ∼β in α or γ by ⊥, if β ∈ E, and �
otherwise. In view of the results to be established, the following nested defaults will
form the counterparts of rules that were used in the context of nested programs:

�
ϕ
,

∼ϕ

ϕ
,

∼∼ϕ

ϕ
,

�
∼ϕ

.

For instance, the reduct of ∼∼ϕ
ϕ is �

ϕ , if ϕ ∈ E, and ⊥
ϕ otherwise, assuming that ϕ is

negation-free. This demonstrates how the choice about ϕ can be realized in analogy to
Example 3. We write DE for the reduct of a set of defaults D with respect to E ⊆ L.
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In the case of nested default logic, the background theory W can be incorporated as
inference rules �

ϕ for ϕ ∈ W . Thus, we write Ext(D) for a set D of nested defaults and
omit W altogether. A propositional sentence ϕ is a cautious consequence of D, denoted
D |∼c ϕ, iff ϕ ∈ E for every E ∈ Ext(D). Similarly, we write D |∼c ∼ϕ to indicate
that ϕ �∈ E for every E ∈ Ext(D). To define rule entailment for any nested rule α

γ , let
D |→ α

γ hold iff Ext(D) = Ext(D ∪ {α
γ }) in analogy to our previous notions.

Lemma 6. For a set of nested defaults D based on L and a sentence ϕ ∈ L:

1. Ext(D ∪ {∼ϕ
ϕ }) = {E ∈ Ext(D) | ϕ ∈ E}.

2. Ext(D ∪ { �
∼ϕ}) = {E ∈ Ext(D) | ϕ �∈ E} ∪ {L | L ∈ Ext(D)}.

3. Ext(D ∪ {∼∼ϕ
ϕ }) = Ext(D ∪ { �

∼ϕ}) ∪ Ext(D ∪ {�
ϕ }).

Proof. Let E ⊆ L be a propositionally closed theory.
Item 1. The reduct of ∼ϕ

ϕ with respect to E is ⊥
ϕ , if ϕ ∈ E, and �

ϕ , if ϕ �∈ E. Thus,
E ∈ Ext(D ∪ {∼ϕ

ϕ }) implies ϕ ∈ E. But then E ∈ Ext(D ∪ {∼ϕ
ϕ }) iff E ∈ Ext(D).

Item 2. The reduct of �
∼ϕ with respect to E is �

⊥ , if ϕ ∈ E, and �
� , if ϕ �∈ E. Thus,

if E = L, then E ∈ Ext(D ∪ { �
∼ϕ}) iff E ∈ Ext(D). Otherwise, E is consistent. If

additionally E ∈ Ext(D ∪ { �
∼ϕ}), then ϕ �∈ E is necessary because ϕ ∈ E would

insert �
⊥ to the reduct. So, whenever ϕ �∈ E, E ∈ Ext(D ∪ { �

∼ϕ}) iff E ∈ Ext(D).

Item 3. Recall that the reduct of ∼∼ϕ
ϕ with respect to E is �

ϕ , if ϕ ∈ E, and ⊥
ϕ , if ϕ �∈

E. Now, assuming that ϕ ∈ E, we have that E ∈ Ext(D ∪ {∼∼ϕ
ϕ }) iff E ∈ Ext(D ∪

{�
ϕ }). On the other hand, if ϕ �∈ E, then E is consistent and E ∈ Ext(D ∪ {∼∼ϕ

ϕ }) iff

E ∈ Ext(D) iff E ∈ Ext(D ∪ { �
∼ϕ}) by Item 2. ��

Theorem 6. Given a set of nested defaults D based on L and a sentence ϕ ∈ L:
D |→ �

ϕ if and only if D |→ ∼ϕ
ϕ and D |→ ∼∼ϕ

ϕ .

Proof. The proof is perfectly analogous to that of Theorem 4 where the respective de-
faults replace autoepistemic formulas and Lemma 6 takes the role of Lemma 5. ��

The generalization of restricted monotonicity and cut involve sets of positive and
negative assumptions, viz. P and N , now encoded in terms of defaults.

Theorem 7. Given a set of nested defaults D based on L, two sets of sentences P ⊆ L
and N ⊆ L, and a sentence ϕ ∈ L:

1. If D |∼c ϕ, then D ∪ {∼χ
χ | χ ∈ P} ∪ { �

∼χ | χ ∈ N} |∼c ϕ.

2. If D |∼c χ for each χ ∈ P , D |∼c ∼χ for each χ ∈ N , and D ∪ {∼χ
χ | χ ∈ P} ∪

{ �
∼χ | χ ∈ N} |∼c ϕ, then D |∼c ϕ.

Proof. The proof is obtained in the same way as for Theorem 6. ��
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7 Related Work
As recalled in the introduction, the study of cumulativity led to the introduction of non-
monotonic formalisms with non-standard syntax or semantics. Due to limited space,
we mention only a few representative examples. For instance, rational default logic
[20] modifies the semantics of defaults. Our results suggest that this is not necessary in
view of obtaining restricted cumulativity. On the other hand, cumulative default logic
[1] extends the language so that justifications for conclusions drawn can be incorpo-
rated. Theorems 6 and 7 suggest that this is not necessary if the full expressive power
and preciseness of nested defaults is available. Interestingly, this was not the case in
the early 90:s when [1] was published. Similar attempts were done in the realm of logic
programming. The revised stable models of [23] achieve cumulativity but sacrifice other
abstract properties. For instance, the existence of stable models, i.e., coherence is pre-
sumed. Coherence is problematic from the point of view of applications: non-existence
of stable models typically captures the non-existence of solutions to the problem of in-
terest. In contrast, no such requirement is needed in our approach. Stable models remain
intact and additional constraints of the forms a ← ∼a and ← a can be freely used to
constrain them as done by the search procedures designed for stable models, too.

8 Conclusions
In this paper, we re-evaluate the grounds for the cumulativity of nonmonotonic rea-
soning from a new perspective. The starting point for the study was the notion of rule
entailment based on rule redundancy, which was first analyzed to remove redundancy
from logic programs. Although rule entailment is not cumulative per se, it provided
the necessary insight into understanding the failure of cumulativity in major nonmono-
tonic formalisms. The key observation is that cautious consequences have traditionally
been incorporated into premises too firmly as facts in view of obtaining cumulativity.
Our conclusion is that it is crucial to respect the defeasibilty of nonmonotonic con-
clusions in general and to take advantage of the expressive precision of nonmonotonic
languages. Consequently, a restricted form of cumulativity and even monotonicity can
be established. Our results indicate that this can be achieved in a broad spectrum for cen-
tral formalisms, such as major classes of nonmonotonic logic programs, default logic,
and autoepistemic logic. Interestingly, the underlying formalisms and their semantics
require no changes if cumulativity is understood in its restricted form proposed in this
paper and thus the computational complexity of the main reasoning tasks is not affected.
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Abstract. We revisit non-monotonic description logics based on circum-
scription (with preferences) and prove several decidability results for their
satisfiability problem. In particular, we consider circumscribed descrip-
tion logics without the finite model property (DL-LiteF andALCFI) and
with fixed roles (DL-LiteF and a fragment of DL-LiteR), improving upon
previous decidability results that are limited to logics which have the finite
model property and do not allow to fix roles during minimization.

1 Introduction

During the evolution from frame systems to description logics (DLs), nonmono-
tonic inferences and constructs (such as those supported by the LOOM sys-
tem in the 1990s) have disappeared from the mainstream. However, a range of
knowledge engineering requirements kept interest in nonmonotonic DLs alive,
see e.g. [21,23,5] for more details. In fact, along the years all of the major non-
monotonic semantics have been adapted to DLs, including the integration of
default rules and DLs [2,12,20,16,17], circumscription [7,22], and variations of
autoepistemic logics, preferential semantics and rational closure [8,11,14,15,10].
In this paper, we focus on circumscription, which was first applied in the DL
context by Gerd Brewka to whom this volume is dedicated [7]. The general idea
of circumscription is to select a subclass of the classical models of the knowl-
edge base by minimizing the extension of some selected predicates that represent
abnormal situations. During minimization, the interpretation of the other pred-
icates can be fixed or vary freely. To achieve a faithful modeling, in addition it
is often necessary to allow a preference order on the minimized predicates, that
is, if P1 is preferred to P2, then we allow the interpretation of P2 to become
larger (or change in an orthogonal way) if this allows the interpretation of P1 to
become smaller.

All these aspects of circumscription are incorporated in the circumscription
patterns studied in [6,5], where a range of (un)decidability results for circum-
scribed DLs based on circumscription patterns has been obtained. The positive
results are mostly obtained by using a filtration type of construction as known
from modal logic [4], which is limited to logics that enjoy the finite model prop-
erty. The negative results show that a main cause of undecidability is to allow
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role names (binary relations) to be minimized or fixed during minimization in-
stead of minimizing/fixing only concept names (unary relations). However, many
popular description logics such as those underlying the OWL ontology language
recommended by the W3C do not enjoy the finite model property; moreover,
minimizing/fixing roles would be useful as a modeling tool for applications.

In this paper, we contribute to a better understanding of the computational
properties of circumscribed DLs without the finite model property and with fixed
role names. Regarding the former, we deviate from the filtration approach and
prove decidability by reduction to the (decidable) first-order theory of set systems
with a binary predicate expressing that two sets have the same cardinality [13].
The reduction is inspired by reductions of inseparability problems for DL TBoxes
to BAPA (Boolean Algebra with Presburger Arithmetic) from [19]. We note
that the surprisingly close relationship between inseparability (and conservative
extensions) of DL TBoxes and circumscribed DLs has been exploited to prove
results in both areas before: complexity results for circumscribed DLs have been
used to investigate the complexity of deciding inseparability and conservative
extensions in [18]. Conversely, undecidability results for inseparability proved in
[18] have been used in [5] to prove undecidability results for circumscribed EL
TBoxes. Regarding fixed roles, we show that decidability results can be obtained
for members of the DL-Lite family of inexpressive DLs. Considering two such
members, we show that decidability results can be both obtained by reduction
to the afore mentioned theory of set systems and by the original filtration-style
method from [5].

In detail, our results are as follows (all referring to concept satisfiability rela-
tive to circumscribed knowledge bases as introduced in Section 2):

1. Circumscribed ALCFI without minimized roles and fixed roles is decidable
where ALCFI is the basic DL ALC extended with functional and inverse
roles. This extends the previous decidability results for DLs such as ALCI
and ALCQ which enjoy the finite model property [6].

2. Circumscribed DL-LiteFboolwith fixed roles (but no minimized roles) is de-
cidable where DL-LiteFboolis DL-Lite with boolean concept connectives and
functional roles. Note that, in addition, DL-LiteFboolis another example of a
decidable circumscribed DL without the finite model property.

3. Circumscribed DL-LiteRbool with fixed roles (but no minimized roles) is decid-
able if it is additionally assumed that no minimized or fixed role is subsumed
by a varying role, where DL-LiteRbool is DL-Lite with boolean concept con-
nectives and role inclusions.

2 Preliminaries

The alphabet of description logics (DLs) consists of three (pairwise disjoint)
sets: a set NI of individual names, denoted a, b, . . . , a set NC of concept names,
denoted A,B, . . . , and a set NR of role names, denoted P . A role, denoted R, is
either a role name or an inverse role, that is, an expression of the form P−. As a
convention, we set R− = P if R = P−. We consider two members of the DL-Lite
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family of DLs [9,1]. The concepts C of DL-LiteFbool are defined inductively as
follows:

B ::= ⊥ | � | Ai | ∃R,

C ::= B | ¬C | C1 � C2.

The concepts of the form B are called basic. A concept inclusion in DL-LiteFbool
is of the form C1 � C2, where C1 and C2 are DL-LiteFbool concepts. A TBox T in
DL-LiteFbool is a finite set of concept inclusions in DL-LiteFbool and functionality
assertions func(R), where R is a role.

Concept inclusions in DL-LiteRbool are defined in the same way as concept
inclusions in DL-LiteFbool. A TBox T in DL-LiteRbool is a finite set of concept
inclusions in DL-LiteRbool and role inclusions R1 � R2, where R1 and R2 are
roles.

The concepts C of the DL ALCFI are defined inductively as follows:

C ::= ⊥ | � | Ai | ¬C | C1 � C2 | ∃R.C.

Concept inclusions and TBoxes T in ALCFI are defined in the same way as
TBoxes in DL-LiteFbool, where concepts in DL-LiteFbool are replaced by concepts
in ALCFI.

An ABox A is a finite set of assertions of the form A(a) and P (a, b). We
use P−(a, b) to denote the assertion P (b, a). By Ind(A) we denote the set of
individual names in A. A knowledge base (KB, for short) is a pair K = (T ,A)
with a TBox T and an ABox A.

The semantics of DL knowledge bases is defined as usual, see [3] for details.
An interpretation I = (ΔI , ·I) is given by its domain ΔI and an interpretation
function that associates with every concept name A a set AI ⊆ ΔI , with every
role name P a relation P I ⊆ ΔI × ΔI , and with every individual name a an
element aI ∈ ΔI . We make the unique name assumption (aI 	= bI if a 	= b). We
denote by CI ⊆ ΔI the interpretation of a (complex) concept C in I and say
that an interpretation I is a model of a KB K = (T ,A) if

– CI ⊆ DI , for all C � D ∈ T ;
– RI ⊆ SI , for all R � S ∈ T ;
– RI is a partial function, for all func(R) ∈ T ;
– aI ∈ AI , for all A(a) ∈ A;
– (aI , bI) ∈ P I , for all R(a, b) ∈ A.

Given a DL L, concept satisfiability relative to L KBs is the following problem:
given a concept C in L and a KB K in L, decide whether there exists a model
I of K such that CI 	= ∅. Concept satisfiability is NP-complete for DL-LiteFbool
and DL-LiteRbool, and ExpTime-complete for ALCFI.

To define DLs with circumscription, we start by introducing circumscription
patterns. Such a pattern describes how individual predicates are treated during
minimization.

Definition 1 (Circumscription pattern, <CP). A circumscription pattern
is a tuple CP of the form (≺,M, F, V ), where ≺ is a strict partial order over M ,
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and M , F , and V are mutually disjoint and exhaustive subsets of NC ∪ NR, the
minimized, fixed, and varying predicates, respectively. By , we denote the re-
flexive closure of ≺. Define a preference relation <CP on interpretations by setting
I <CP J iff the following conditions hold:

1. ΔI = ΔJ and, for all a ∈ NI, a
I = aJ ,

2. for all p ∈ F , pI = pJ ,
3. for all p ∈ M , if pI 	⊆ pJ then there exists q ∈ M , q ≺ p, such that qI ⊂ qJ ,
4. there exists p ∈ M such that pI ⊂ pJ and for all q ∈ M such that q ≺ p,

qI = qJ .

A circumscribed knowledge base with circumscription pattern CP = (≺,M, F, V )
and KB K is denoted by CircCP(K). An interpretation I is a model of CircCP(K)
if it is a model of K and no J <CP I is a model of K.

In this paper, we consider the decidability and complexity of concept satisfia-
bility relative to circumscibed KBs : a concept C is satisfiable relative to a circum-
scribed KB CircCP(T ,A) if some model I of CircCP(T ,A) satisfies CI 	= ∅. By
(concept) satisfiability problem relative circumscribed KBs we mean the prob-
lem to decide whether a given concept C is satisfiable relative to a given cir-
cumscribed KB. Other reasoning problems such as subsumption and instance
checking relative to circumscribed KBs can be reduced to concept satisfiability
relative to circumscribed KBs [6].

3 Decidability for DL-LiteFbool

We show decidability of concept satisfiability relative to circumscribed DL-
LiteFbool KBs with fixed roles and without minimized roles. Note that fixed
roles easily lead to undecidability of concept satisfiability relative to circum-
scribed KBs, such as for the circumscribed version of the popular lightweight
(and tractable) DL EL [5]. Also note that DL-LiteFbool does not have the finite
model property. An example showing this is given by the KB K = (T ,A), where

T = {A � ∃P, ∃P− � ∃P,A � ¬∃P−, func(P−)}, A = {A(a)}.

It is easy to see that K is satisfiable but has no finite model. Thus, approaches
to reasoning in circumscribed DLs that are based on filtration [6] cannot be
employed in this case.

We prove decidability by reduction to the first-order theory of set systems with
a binary predicate expressing that two sets have the same cardinality, which is
decidable [13]. Formally, the language SC of set systems with cardinality is de-
fined as follows. Its terms are constructed from variablesX1, X2, . . . (interpreted
as sets) and constants 0 (the empty set) and 1 (the whole set) using the binary
function symbols ∩ (intersection), ∪ (union), and the unary function symbol
· (complement). As usual, we prefer the infix notation for the binary function
symbols and write, e.g., X ∩ Y instead of ∩(X,Y ). Atomic SC formulas are of
the form
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– B1 = B2 and B1 ⊆ B2, where B1 and B2 are terms;
– |B1| = |B2| and |B1| ≤ |B2|, where B1 and B2 are terms.

SC formulas are now constructed in the standard way using quantification, con-
junction and negation. We are interested in the satisfiability of SC sentences in
structures of the form A = (2Δ,∩,∪, ·, ∅, Δ), where Δ is a non-empty set. We
call such structures SC structures. An SC model M consists of an SC structure
A and an interpretation function XM

i ⊆ Δ of the variables Xi in A. The truth
of SC sentences in an SC model is defined in the obvious way, for example,

– M |= B1 = B2 if BM
1 = BM

2 ;
– M |= |B1| = |B2| if |BM

1 | = |BM
2 |.

Decidability of satisfiability of SC sentences in SC models is proved in [13]:

Theorem 1. Satisfiability of SC sentences is decidable.

Suppose that a KB K = (T ,A), a circumscription pattern CP = (≺,M, F, V ),
and a concept C0 are given such that no role name is minimized in CP (that is,
M contains no role names). We encode satisfiability of C0 relative to CircCP(K)
as a satisfiability problem for SC sentences.

Take for every concept name B in K∪{C0} and any B of the form ∃P or ∃P−

such that P occurs in K∪{C0}, an SC variable XB. Then define inductively for
every subconcept C of K ∪ {C0} an SC term Cs:

Bs = XB, ⊥s = 0, �s = 1,

(¬C)s = Cs, (C1 � C2)
s = Cs

1 ∩Cs
2 .

We also set
T s = {Cs

1 ⊆ Cs
2 | C1 � C2 ∈ T }.

If T and C0 do not contain roles, then clearly C0 is satisfiable relative to (un-
circumscribed) T iff the SC sentence ∃X (¬(Cs

0 = 0) ∧∧
α∈T s α

)
is satisfiable

where X is the sequence of variables occurring in T s or Cs
0 . To extend this to

an encoding of satisfiability of C0 relative to (uncircumscribed) T with roles, it
is sufficient to state that X∃P is empty iff X∃P− is empty for every role name P
and to state for functional roles R that the cardinality of X∃R is not smaller that
the cardinality of X∃R− . Thus, we extend T s to T s,e by adding the following SC
formulas to T s:

(¬(X∃P = 0) ↔ ¬(X∃P− = 0)),

for every role name P in K ∪ {C0}, and
|X∃R| ≥ |X∃R− |

for every role R with func(R) ∈ T . We prove that C0 is satisfiable relative to
T iff the SC formula ϕ = ∃X (¬(Cs

0 = 0) ∧ ∧
α∈T s,e α

)
is satisfiable. First

let I be a model of T such that CI
0 	= ∅. Define an SC structure M based on

A = (2Δ,∩,∪, ·, ∅, Δ) by setting Δ = ΔI , XM
A = AI for all concept names A,

and XM
∃R = {d ∈ Δ | ∃d′ (d, d′) ∈ RI} for all roles R. It is readily checked that M

satisfies ϕ. Conversely, assume that a model M based on A = (2Δ,∩,∪, ·, ∅, Δ)
satisfies ϕ. Define I by setting ΔI = Δ,



Decidability of Circumscribed Description Logics Revisited 117

– AI = XM
A for all concept names A;

– P I = XM
∃P ×XM

∃P− for all roles P with neither func(P ) nor func(P−) in T ;
– and defining RI as a surjective function with domain XM

∃R and range XM
∃R−

if func(R) ∈ T (such a function exists since |XM
∃R| ≥ |XM

∃R− | for every role R
with func(R) ∈ T ).

One can check that I satisfies T and that CI
0 	= ∅.

To encode circumscription, we define a second translation Cm of every sub-
concept C in K ∪ {C0}. Cm is defined in exactly the same way as Cs except
that we use fresh SC variables YB instead of the SC variables XB used in the
translation Cs. We define T m and T m,e in exactly the same way as T s and T s,e

with XB replaced by YB.
Assume now that the ABox A is empty. Then we can encode satisfiability of

C0 relative to CircCP(K) in a straightforward way by considering satisfiability of
the SC sentence

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈T s,e

α ∧ ∀Y (Y <CP X → ¬
∧

α∈T m,e

α)
)

(1)

whereX is as above, Y is the sequence of variables occuring in T m and Y <CP X
stands for the conjunction of

XB = YB,

for each concept name B in F and B of the form ∃P or ∃P− with P ∈ F ,
∧

A∈M

((YA 	⊆ XA) →
∨

B∈M,B≺A

(YB ⊂ XA)),

and ∨

A∈M

((YA ⊂ XA) ∧
∧

B∈M,B≺A

(YB = XB)).

We now extend the encoding above to KBs with non-empty ABox A. To encode
the ABox, take for every individual name a ∈ Ind(A) an SC variable Xa and
define the set of SC formulas As as follows:

(A1) |Xa| = 1 for all a ∈ Ind(A), where |Xa| = 1 abbreviates the conjunction of
|Xa| > |0| and ∀X((X ⊂ Xa) → (X = 0)).

(A2) Xa∩Xb = 0 for a 	= b and a, b ∈ Ind(A). These formulas encode the unique
name assumption.

(A3) Xa ⊆ XA if A(a) ∈ A for a ∈ Ind(A).
(A4) Xa ⊆ X∃P if P (a, b) ∈ A for some b.
(A5) Xa ⊆ X∃P− if P (b, a) ∈ A for some b.
(A6) 0 = 1 if there exists a role R with func(R) ∈ T and a, b, b′ with b 	= b′ such

that R(a, b), R(a, b′) ∈ A.
(A7) If func(R) ∈ T and func(R−) 	∈ T , then let XR be the set of a ∈ Ind(A)

such that there exists b with R(a, b) ∈ A and let YR be the set of b ∈ Ind(A)
such that there exists a with R(a, b) ∈ A. Include

|X∃R \ (
⋃

a∈XR

Xa)| ≥ |X∃R− \ (
⋃

a∈YR

Xa)|
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in As. (Note that for such R we can remove from T s the formulas |X∃R| ≥
|X∃R− | since they are implied.)

Define Am analogously to As with XB replaced by YB (note that we do not
introduce fresh variables Ya since the interpretation of individual names is fixed).
Set Ks = (T s,e,As) and Km = (T m,e,Am). Now, it is readily checked that C0

is satisfiable relative to CircCP(K) if the following SC sentence is satisfiable:

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈Ks

α ∧ ∀Y (Y <CP X → ¬
∧

α∈Km

α)
)

(2)

We have proved the following result:

Theorem 2. Satisfiability of concepts relative to circumscribed DL-LiteFboolKBs
without minimized roles is decidable.

4 Decidability for ALCFI
We show decidability of concept satisfiability for circumscribed ALCFI KBs
without minimized and fixed roles. The proof is again by reduction to the theory
of set systems with a binary predicate expressing that two sets have the same
cardinality. Note that decidability of concept satisfiability for circumscribed KBs
without minimized and fixed roles has been proved using filtration in [6] for DLs
with the finite model property such as ALCI and ALCF . As an extension of
DL-LiteFbool, ALCFI does not have the finite model property.

Consider a circumscribe ALCFI KB K = CircCP(T ,A) where the pattern
CP = (≺,M, F, V ) has no minimized or fixed role names, and a ALCFI-concept
C0. We encode satisfiability of C0 relative to CircCP(K) as a satisfiability problem
for an SC sentence.

Take for every concept name B in K ∪ {C0} and any concept B of the form
∃P.C or ∃P−.C which occurs in K ∪ {C0}, an SC variable XB. Then define
inductively for every subconcept C of K ∪ {C0} an SC term Cs as before:

Bs = XB, ⊥s = 0, �s = 1,

(¬C)s = Cs, (C1 � C2)
s = Cs

1 ∩Cs
2 .

By sub(K ∪ {C0}) we denote the closure under single negation of the sub-
concepts that occur in K ∪ {C0}. A type t is a subset of sub(K ∪ {C0}) such
that

– ⊥ 	∈ t and � ∈ t;
– ¬C ∈ t iff C 	∈ t, for all ¬C ∈ sub(K ∪ {C0});
– C1 � C2 ∈ t iff C1, C2 ∈ t, for all C1 �C2 ∈ sub(K ∪ {C0}).

We use ts as an abbreviation for the SC term
⋂

C∈tC
s. To encode the behavior of

roles we, intuitively, decompose roles R into roles Rt,t′ such that two individuals
d, d′ are in relation Rt,t′ iff they are in relation R and d is in t and d′ is in t′.
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We cannot directly talk about Rt,t′ in SC and so we introduce variables denoting
the domain and range ofRt,t′ , respectively: for any pair t, t′ of types and any role
R introduce an SC variable XR,t,t′ . Intuitively XR,t,t′ stands for all individuals
which are in t and which are in the relation R to an individual in t′. Define T r

as the union of {Cs
1 ⊆ Cs

2 | C1 � C2 ∈ T } and the following SC formulas:

(a) ts ∩ XR,t′,t′′ = 0 if t 	= t′, for all types t, t′. These formulas state that an
individual in t cannot be in the domain of Rt′,t′′ for t 	= t′.

(b) ts ⊆ ⋃
C∈t′ XR,t,t′ if ∃R.C ∈ t. These formulas state that if d is in t and

t contains some ∃R.C, then d must be in relation R to some d′ in t′ with
C ∈ t′.

(c) ts ∩XR,t,t′ = 0 if ¬∃R.C ∈ t and C ∈ t′.
(d) XR,t,t′ ∩XR,t,t′′ = 0 if R is functional and t′ 	= t′′.

Now we extend T r to T r,e by adding the following SC formulas to T r:

(¬(XP,t,t′ = 0) ↔ ¬(XP−,t′,t = 0)),

for every role name P in K ∪ {C0}, and

|XR,t,t′ | ≥ |XR−,t′,t|

for every role R with func(R) ∈ T . We show that C0 is satisfiable relative to T
iff the SC sentence ∃X (¬(Cs

0 = 0) ∧ ∧
α∈T r,e α

)
is satisfiable where X is the

sequence of variables occurring in T r,e or Cs
0 .

First let I be a model of T such that CI
0 	= ∅. Define an SC model M based

on A = (2Δ,∩,∪, ·, ∅, Δ) by setting Δ = ΔI , XM
A = AI for all concept names

A, XM
∃R.C = {d ∈ Δ | ∃d′ ∈ CI and (d, d′) ∈ RI} for all ∃R.C ∈ sub(K,∪{C0}),

and

XM
R,t,t′ = {d ∈ (ts)M | ∃d′ ∈ (t′s)M and (d, d′) ∈ RI},

for all roles R and types t, t′. It is readily checked that M satisfies ϕ. Conversely,
assume that a model M based on A = (2Δ,∩,∪, ·, ∅, Δ) satisfies ϕ. Define I by
setting ΔI = Δ,

– AI = XM
A for all concept names A;

– P I =
⋃

t,t′ X
M
P,t′,t ×XM

P−,t,t′ for all roles P with func(P ), func(P−) 	∈ T ;

– RI is the union of surjective functions ft,t′ with domain XM
R,t,t′ and range

XM
R−,t′,t if func(R) ∈ T (where t, t′ range over all types).

One can check that I satisfies T and that CI
0 	= ∅.

To encode circumscription, we again define a second translation Cn of every
subconcept C in K ∪ {C0}. Cn is defined in exactly the same way as Cs except
that we use fresh SC variables YB instead of the SC variables XB used in the
translation Cs. We also introduce fresh SC variables YR,t,t′ for every role R and
types t, t′. Now define T n and T n,e in exactly the same way as T r and T r,e,
where the variables X are replaced by the corresponding variables Y .
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Assume again that the ABox A is empty. Then we can encode satisfiability
of C0 relative to CircCP(K) in a straightforward way by considering satisfiability
of the SC sentence

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈T r,e

α ∧ ∀Y (Y <a
CP X → ¬

∧

α∈T n,e

α
)
) (3)

where X is as above, Y is the sequence of variables occuring in T m and now
Y <a

CP X is obtained from Y <CP X by taking the equations XA = YA for
concept names A ∈ F only. (The remaining equations involving X∃R do not
make sense here.)

We extend the encoding above to KBs with non-empty ABox A. Take again
for every individual name a ∈ Ind(A) an SC variable Xa and define a set Ar of
SC formulas by taking the formulas in (A1), (A2), (A3), and (A6) from above
as well as the following:

– for all R(a, b) ∈ A and all types t1, t2 include

(Xa ⊆ ts1) ∧ (Xb ⊆ ts2) → (Xa ⊆ XR,t1,t2),

into Ar.
– Assume, as in (A7), that func(R) ∈ T and func(R−) 	∈ T . Let XR be the set
of a ∈ Ind(A) such that there exists b with R(a, b) ∈ A and let YR be the set
of b ∈ Ind(A) such that there exists a with R(a, b) ∈ A. Include for all types
t, t′ the formula

|XR,t,t′ \ (
⋃

a∈XR

Xa)| ≥ |XR−,t′,t \ (
⋃

a∈YR

Xa)|

into Ar.

Define An analogously to Ar with variables X replaced by the corresponding
variables Y . Set Kr = (T r,e,Ar) and Kn = (T n,e,An). Now, it is readily checked
that C0 is satisfiable relative to CircCP(K) if the following SC sentence is satisfi-
able:

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈Kr

α ∧ ∀Y (Y <a
CP X → ¬

∧

α∈Kn

α
)
) (4)

We have proved the following result:

Theorem 3. Satisfiability of concepts relative to circumscribed ALCFI KBs
without minimized and fixed roles is decidable.

5 Decidability for DL-LiteRbool

We prove decidability of concept satisfiability relative to circumscribed DL-
LiteRbool knowledge bases with fixed roles and without minimized roles under the
additional assumption that no varying role is subsumed by a fixed role. In con-
trast to the previous two sections, our approach is to use a filtration-style tech-
nique to establish a finite (in fact, single exponential) model property. To capture
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the mentioned syntactic restriction, we call a circumscribed KB CircCP(T ,A) in
DL-LiteRbool role-layered if for each role inclusion R � S ∈ T either R ∈ F or
S ∈ V .

For a concept C0, ABox A, and TBox T , we denote by cl(C0, T ,A) the set
of subconcepts of concepts in C0, A, and T . The concept-size of C0 and a KB
(T ,A) is the cardinality of cl(C0, T ,A).

Lemma 1. Let C0 be a concept in DL-LiteRbool and CircCP(T ,A) a KB in DL-
LiteRbool that is role-layered and does not contain minimized roles. If C0 is satis-
fiable relative to CircCP(T ,A), then it is satisfied in a model J of CircCP(T ,A)
with |ΔJ | ≤ 2n + |Ind(A)|, where n is the concept size of C0 and (T ,A).

Proof. Let I be a model of CircCP(T ,A) satisfying C0. Set Ind
I(A) = {aI | a ∈

Ind(A)}. Define on ΔI the equivalence relation ∼ by setting d ∼ d′ iff

{C ∈ cl(C0, T ,A) | d ∈ CI} = {C ∈ cl(C0, T ,A) | d′ ∈ CI}
and d, d′ 	∈ IndI(A) or d = d′ (this is needed to respect the unique name as-
sumption). We use [d] to denote the equivalence class of d w.r.t. ∼. Let J be
the following interpretation:

ΔJ = {[d] | d ∈ ΔI}
AJ = {[d] | d ∈ AI}
PJ = {([d1], [d2]) | ∃d ∈ [d1], d

′ ∈ [d2] s.t. (d, d
′) ∈ P I}

aJ = [aI ].

We show that J is a model of CircCP(T ,A) that satisfies C0. It is standard to
show the following by induction on C:

Claim 1. For all d ∈ ΔI and C ∈ cl(C0, T ,A): d ∈ CI iff [d] ∈ CJ .

Claim 1 implies that J satisfies C0 and is a model of the KB (T ,A). To prove
that J is a model of CircCP(T ,A), it thus remains to show that J is minimal
w.r.t. <CP. Assume for a proof by contradiction that there exists a model J ′ of
T and A such that J ′ <CP J . Define I ′ as follows:

ΔI′
= ΔI

AI′
=

⋃

[d]∈AJ′
[d]

P I′
=

⋃

([d1],[d2])∈PJ′
[d1]× [d2] if P ∈ V

P I′
= P I if P ∈ F

aI
′
= aI .

Observe that, by construction, each fixed concept name A has the same inter-
pretation in I and I ′.
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Claim 2. Let d, d′ ∈ ΔI′
and let R be a role occurring in T . Then

1. if R ∈ V , then (d, d′) ∈ RI′
iff ([d], [d′]) ∈ RJ ′

;
2. if R ∈ F , then (d, d′) ∈ RI′

implies ([d], [d′]) ∈ RJ ′
.

For Point 1, assume first that R ∈ V . Let (d, d′) ∈ RI′
. By construction (d, d′) ∈

[d1] × [d2], for some ([d1], [d2]) ∈ RJ ′
. Clearly, [d1] = [d] and [d2] = [d′]. The

converse direction is by construction. For Point 2, assume R ∈ F and let (d, d′) ∈
RI′

. Then (d, d′) ∈ RI . By construction ([d], [d′]) ∈ RJ . Then, using R ∈ F and
the semantics it follows that ([d], [d′]) ∈ RJ ′

.

Claim 3: For all d ∈ ΔI′
and C ∈ cl(C0, T ,A): d ∈ CI′

iff [d] ∈ CJ ′
.

The proof is by induction on the structure of C, where the interesting case is
C = ∃R. If R ∈ V , Claim 3 follows directly from Point 1 of Claim 2. Assume
that R ∈ F . By Point 2 of Claim 2, d ∈ (∃R)I

′
implies [d] ∈ (∃R)J

′
. Conversely,

assume that [d] ∈ (∃R)J
′
. Clearly, we have that ([d], [d′]) ∈ RJ ′

, for some
[d′] ∈ ΔJ ′

. Since R ∈ F , ([d], [d′]) ∈ RJ , i.e. [d] ∈ (∃R)J . By Claim 1, d ∈ (∃R)I

and using that R ∈ F we obtain that d ∈ (∃R)I
′
.

We now prove that I ′ is a model of T and A. Indeed, if d ∈ CI′
1 \ CI′

2

for some C1 � C2 ∈ T , then, by Claim 3, [d] ∈ CJ ′
1 \ CJ ′

2 which contradicts
the assumption that J ′ is a model of T . Let R � S ∈ T and assume that
(d, d′) ∈ RI′ \ SI′

. If R and S are varying, by Point 2 of Claim 2 we obtain
that ([d], [d′]) ∈ RJ ′ \ SJ ′

in contradiction to J ′ being a model of T . If R and
S are fixed, then (d, d′) ∈ RI \ SI in contradiction to I being a model of T .
Finally, if R is fixed and S varying, by Point 2 of Claim 2, ([d], [d′]) ∈ RJ ′

and
Point 1 implies that ([d], [d′]) 	∈ SJ ′

, again a contradiction. These three cases are
exhaustive since our circumscribed knowledge base is role-layered. Therefore, I ′

is a model of T . That I ′ is a model of A follows directly from the construction
of I ′.

Finally, notice that for each A ∈ NC, A
I �AI′

iff AJ �AJ ′
, where � = ⊆,⊇.

Consequently, since M ⊆ NC, J ′ <CP J implies I ′ <CP I. Therefore, I is not a
model of CircCP(T ,A) and we have derived a contradiction. ��

The single exponential model property just proved implies the following de-
cidability result.

Theorem 4. Satisfiability of concepts relative to circumscribed role-layered DL-
LiteRbool KBs without minimized roles is decidable.

Note that we also obtain a NExpNP-upper bound for checking concept satisfi-
ability: given C0 and CircCP(T ,A) guess a model I with |ΔI | ≤ 2n + |Ind(A)|,
where n is the concept size of C0 and (T ,A) and then check using an NP-oracle
whether I is a model of C0 and CircCP(T ,A).

6 Open Problems

We briefly discuss some computational problems regarding DLs with circum-
scription that remain open.
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– First note that we have not proved any new results for circumscription pat-
terns with minimized roles. In particular, the decidability and complexity of
circumscribed reasoning in DL-LiteFbool and DL-LiteRbool with minimized roles
remains open.

– Our concern in this was paper was decidability of reasoning in circumscribed
DLs without the finite model property and/or fixed roles instead of a detailed
complexity analysis. Thus, the complexity of reasoning in circumscribed DL-
LiteFbool KBs with fixed roles (and without minimized roles), the complexity
of reasoning in circumscribed ALCFI KBs without fixed and minimized
roles, and the complexity of reasoning in role-layered circumscribed DL-
LiteRbool KBs without minimized roles remains open. For ALCFI, we con-
jecture concept satisfiability to be NExpNP-complete. Note that, in this case,
hardness follows from the NExpNP-lower bound for ALC established in [6].

– It remains open whether the condition of being role-layered is necessary for
obtaining the finite model property/decidability result for DL-LiteRbool.

– Finally, it would be of great interest to extend our results to more expressive
ontology and query languages and, for example, to consider the decidability
and complexity of conjunctive query answering relative to circumscribedKBs.
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Abstract. Answer Set Programming is a widely known knowledge representation
framework based on the logic programming paradigm that has been extensively
studied in the past decades. The semantic framework for Answer Set Programs is
based on the use of stable model semantics. There are two characteristics intrin-
sically associated with the construction of stable models for answer set programs.
Any member of an answer set is supported through facts and chains of rules and
those members are in the answer set only if generated minimally in such a manner.
These two characteristics, supportedness and minimality, provide the essence of
stable models. Additionally, answer sets are implicitly partial and that partiality
provides epistemic overtones to the interpretation of disjunctive rules and default
negation. This paper is intended to shed light on these characteristics by defining
a semantic framework for answer set programming based on an extended first-
order Kleene logic with weak and strong negation. Additionally, a definition of
strongly supported models is introduced, separate from the minimality assumption
explicit in stable models. This is used to both clarify and generate alternative se-
mantic interpretations for answer set programs with disjunctive rules in addition to
answer set programs with constraint rules. An algorithm is provided for computing
supported models and comparative complexity results between strongly supported
and stable model generation are provided.

1 Introduction

Answer Set Programming (ASP) [2, 4–6, 16, 17] is a knowledge representation frame-
work based on the logic programming paradigm that uses an answer set/stable model se-
mantics for logic programs as its basis. There are a number of extensions to the language
of ASP that provide increased expressivity relative to standard Prolog with negation as
failure. ASP allows two kinds of negation, classical or “strong” negation and default or
“weak” negation. Additionally, it is extended to allow disjunctive heads in rules.
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A very attractive feature of ASP is the use of an open world assumption as default
in its semantic theory rather than the closed world assumption present in standard Pro-
log and most variants of Datalog. The open world assumption arises naturally in ASP
since its semantic theory is intrinsically based on partial interpretations or models. Ad-
ditionally, one can syntactically encode local closed world assumptions for particular
relations in an answer set program in a fine-grained manner when needed.

ASP also includes constraint rules, rules whose heads are false. Constraint rules have
been shown to be quite useful as a model filtering technique in various applications of
ASP. Interestingly, the ASP semantics for constraint rules (and existing implementa-
tions) makes implicit use of a technique associated with filtered circumscription where
answer sets are first generated for a subset of rules (non-constraint rules) in an answer
set program and then these answer sets are filtered with the remaining constraint rules.
There are other ways to interpret the semantics of constraint rules that are equally intu-
itive and will be considered.

In [16] the following informal principles that guide such a construction by a rational
reasoner are pointed out. During the construction of an answer set S for an answer set
program Π ,

1. S must satisfy the rules of Π in the sense that any atom in S is in the head of a rule
r of Π and the chain of rules used to satisfy the atom should be grounded in facts
of Π ;

2. the construction of S does not include any atoms that are not forced to be in S
except through the explicit use of chains of rules grounded in facts.

The first principle describes a form of chained rule support for any atom in S while the
second principle describes a minimality principle for any answer set S for an answer set
program Π . In fact, a supported, minimal model for Π is a stable model for Π in the
technical sense.

On the surface, both supportedness and the minimality principle make intuitive sense,
especially in the context of normal answer set programs (those with non-disjunctive
heads) and without constraint rules. When an answer set program is extended with ei-
ther rules with disjunctive heads or constraint rules, or both, there are equally intuitive
semantics that provide partial models for such programs that are not necessary minimal
in the sense used for stable model semantics.

In order to explore these distinctions in the context of semantic alternatives for an-
swer set programs which allow both rules with disjunctive heads and constraint rules,
the underlying formalism has to be able to make a distinction between supportedness
and minimality. Additionally, one would like the underlying semantic theory to elu-
cidate the use of partial interpretations explicitly in the logical apparatus used. This
implies the use of a multi-valued logic as a semantic basis for answer set programming.

The underlying logic used as a basis for a semantic theory for answer set programs
that may include both classical and default negation, disjunctive heads in rules, and
constraint rules will be a well known first-order three-valued logic proposed by Kleene.
This logic uses the strong connectives for disjunction, conjunction. implication and
(strong) negation and is denoted by K3. K3 is then extended with a nonmonotonic
(weak) negation connective,not, in addition to a conditional connective that supports
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the intuitive reading of ASP rules. Rules are also generalized to include arbitrary first-
order Kleene formulas in the bodies of rules.

Interestingly, this logic is sound for ASP programs with finite domains in the fol-
lowing sense. Let Π be an answer set program and Masp(Π) the stable models of Π
using the stable model semantics. Additionally, let MKL�(Π) be the partial models of
Π using the modified Kleene logic and Trans() a straightforward translation function
that takes a partial model from K3 and returns an ASP model consisting of positive and
(classically) negative literals. Then:

Masp(Π) ⊆ {m | m′ ∈ MKL�(Π) ∧m = Trans(m ′)},
where:

Trans(m′) def
= {� | m′(�) = T} ∪ {¬� | m′(�) = F}. (1)

Given that this is the case, definitions will be provided that allow us to distinguish be-
tween strongly supported models for an ASP program Π and minimal, supported mod-
els for Π . For normal ASP’s, supported models and stable models are equivalent. For
ASPs with disjunctive rules, one can define a semantics in terms of only strongly sup-
ported models, or strongly supported, minimal models. In the latter case, equivalence is
shown between the strongly supported, minimal models of an answer set program with
disjunctive rules and its stable models.

An alternative semantics for ASPs is provided by simply appealing to the use of
strongly supported models. The gain here is that the semantic intuitions are equally
convincing, yet the complexity in constructing answer sets for ASPs with disjunctive
rules is lower. An algorithm for generating strongly supported models for ASP’s is also
provided. Comparative complexity results are provided for stable models and supported
models.

The paper concludes with a discussion of constraint rules and ASPs. Two alternative
ways to generate answer sets for ASPs that include constraints are provided. In the first
case, one simply generates the strongly supported, (minimal) models of the ASP using
Kleene semantics and translates these into answer sets using the Trans() function.
In the other case, one partitions an ASP into two sets, C and NC, representing the
constraint rules and other rules, respectively. One then generates the supported minimal
models for NC using Kleene semantics and then filters these with the constraint rules
in C leaving only those models that satisfy the constraints rules in C, too.

The latter case appears to provide the current semantics for ASPs with constraint
rules and existing implementations of ASPs appear to follow this semantics. Interest-
ingly, the former case is equally feasible and seems to make more sense in the context
of ASPs that have an underlying Kleene semantics. A constraint rule is simply a rule
like any other in an ASP and filtering is implicit in the model construction for the full
ASP. These two approaches do not necessarily generate the same models for an ASP.

The paper is structured as follows. In Section 2 we define an extended first-order lan-
guage and its modified Kleene three-valued semantics. In Section 3 we introduce ASPK

and define its semantics using strongly supported models. We also consider ASPK
min

admitting only minimal strongly supported models. Section 4 is devoted to alternative
semantics for constraint rules. In Section 5 we discuss minimality and its effects in the
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context of standard ASP stable model semantics and ASPK strongly supported model
semantics. Section 6 presents an algorithm for computing strongly supported models
and comparative complexity results between standard ASP, ASPK and ASPK

min . Fi-
nally, Section 7 concludes the paper.

2 First-Order Formulas with Default Negation

Answer set rules in the formalism to be introduced will be generalized to allow arbitrary
first-order formulas with default negation in their bodies. In this section, the language
of first-order formulas used is introduced. Additionally, the underlying semantics for
this language will be a modified first-order three-valued Kleene logic K3 with weak
and strong negation that is also described.

Let D be a finite set of constants, called the domain. In the current paper we deal
with finite domains only and assume that these domains consist of constant symbols.
We further assume that V is the set of individual variables and R is the set of relation
symbols. The number of arguments of r ∈ R is denoted by n(r).

Definition 1. By a positive literal (or an atom) we mean any expression of the form
r(a1, . . . , an(r)), where r ∈ R and a1, . . . , an(r) ∈ D ∪ V . A negative literal is an
expression of the form¬�, where � is a positive literal. A literal is a positive or a negative
literal. A ground literal is a literal without variables. A set of literals is consistent if it
contains no literal � together with its negation ¬�.1 �

Definition 2. By Kleene first-order formulas, KFOL, we understand formulas of first-
order logic with an additional connective ‘not’, called default negation:

〈KFOL〉 ::= T | F | U | 〈Atom〉 | ¬ 〈KFOL〉 | not 〈KFOL〉 |
〈KFOL〉 ∨ 〈KFOL〉 | 〈KFOL〉 ∧ 〈KFOL〉 | 〈KFOL〉 ⇒ 〈KFOL〉
∃ 〈V 〉 〈KFOL〉 | ∀ 〈V 〉 〈KFOL〉 | (〈KFOL〉) �

The semantics of KFOL is three-valued, with the set of truth values {T, F, U} ordered
by ‘<’ defined as follows:

F < U < T. (2)

For the propositional connectives, we use the semantics of Kleene’s system with
strong connectives [18]. We denote the logic as K3.

Definition 3. For u,w ∈ {T, F, U} we define:

u ∨ w
def
= max{u,w}, u ∧ w

def
= min{u,w}, (3)

where max,min are maximum and minimum w.r.t. ordering (2).
Strong Kleene negation, ¬, is defined as:

¬F
def
= T, ¬U

def
= U, ¬T

def
= F (4)

1 We always remove double strong negations using ¬(¬�) def
= �.
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Implication ⇒ is defined by:

u ⇒ w
def
= ¬u ∨ w. (5)

�

We then extend K3 logic with two additional external connectives for default negation
and the implication connective used in rules.

Default negation will be defined as weak or external negation, ‘not’:

not F
def
= T, not U

def
= T, not T

def
= F. (6)

Weak negation is a nonmonotonic connective with the intuitive reading absence of truth.
Both types of negation have been used in the study of presupposition in natural lan-
guage [12].

To define the semantics of rules we will also use another implication:

u ← w
def
=

{
F for w = T and u ∈ {F, U};
T otherwise.

(7)

This implication connective is also discussed in [23].

Remark 1.

– A similar logic has been considered in [22]. However, we use different implications
here in addition to using two negation connectives. Also, our definition of satisfia-
bility of rules (Definition 8) is different. There is a rich history of explicit use of par-
tial interpretations and multi-valued logics as a basis for semantic theories for logic
programs. Some related and additional representative examples are [8, 14, 15].

– In [21] the logic of here-and-there (HT) is used to define the semantics of ASP.
HT can be defined by means of a five-valued logic, N5, defined over two worlds:
h (here) and t (there), where the set of literals associated with h is included in the
set of literals associated with t. N5 uses truth values {−2,−1, 0, 1, 2}, where the
values −1, 1 characterize literals associated with h and not associated with t. On
the other hand, for ASP models it is assumed that these sets are equal, so −1, 1
become redundant. Therefore, in the context of ASP one actually does not have to
use full N5 as it reduces to the three-valued logic of Kleene K3 with the additional
implication (7) used in the current paper, with −2, 0, 2 of N5 corresponding to F,
U, T of K3, respectively. �

Definition 4. For a given set of relation symbols R and a set of constants D, by an in-
terpretation over R and D we mean any finite consistent set of ground literals (positive
or negative) with relation symbols from R and constants from D. �

Note that Trans(), defined in (1), allows us to easily switch between three-valued
Kleene interpretations and interpretations in the sense of Definition 4.
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Definition 5.

– Given a domain D, a valuation of variables (valuation, in short) is a mapping
v : V −→ D.

– For A ∈ KFOL and valuation v, by v(A) we mean a formula obtained from A by
replacing every free variable x in A by the constant v(x). �

Definition 6. For a given set of relation symbols R, domain D, interpretation I over D,
R, and valuation v, the value of a KFOL formula A w.r.t. I and v, denoted by AI

v, is
defined as follows:

– for t ∈ {T, F, U} we have tIv
def
= t;

– r(a1, . . . , an(r))
I
v

def
=

⎧
⎪⎪⎨

⎪⎪⎩

T when r(a′1, . . . , a
′
n(r)) ∈ I,

where a′i = ai for ai ∈ D and a′i = v(ai) for ai ∈ V ;
F when ¬r(a′1, . . . , a′n(r)) ∈ I, where a′i are as above;
U otherwise;

– for A ◦ B and ◦A, where ◦ is a propositional connective, we use definitions of
connectives (3)–(7), respectively;

– ∃x[A(x)] def
= max

a∈D
{A(a)}, ∀x[A(x)] def

= min
a∈D

{A(a)}, where max,min are maxi-

mum and minimum w.r.t. ordering (2). �

In the case of expressions without variables, in Definition 6 the valuation v becomes
redundant, so we sometimes write AI rather than AI

v .

3 Kleene Answer Set Programs

Kleene answer set programs can now be defined as a set of rules where arbitrary first-
order formulas are allowed in the bodies of rules.

Definition 7. A Kleene answer set program consists of a finite set of rules of the follow-
ing form, where �1, . . . , �k are (positive or negative) literals andA is a Kleene first-order
formula or the empty symbol:

�1 ∨ . . . ∨ �k ← A. (8)

The disjunction �1∨ . . .∨�k is called the head and A is called the body of (8). Variables
occurring in the head of a rule should also occur free in the rule’s body.

The empty head evaluates to F. Rules with the empty head are called constraints. The
empty body evaluates to T. Rules with the empty body are called facts and are written
without the symbol ‘←’. �

Remark 2. Note that in Definition 7 we require a rather weak form of safety. Safety in
the context of answer set programming is usually defined by requiring that in every rule
each variable appearing in the rule appears in at least one positive literal in the body
of that rule (see, e.g., [1, 3]). However, this notion of safety is rather restrictive as it
disallows, e.g., important rules for closing the world locally, such as:

¬p(X) ← not p(X). (9)
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When rules allow for more complex expressions, different versions of safety are con-
sidered [7]. On the other hand, when we fix domains as finite sets of constant symbols,
the problems related to non-safety disappear. Namely, if D is the domain, whenever
a rule uses a variable, the rule implicitly involves the “domain checking” atom for each
variable. For example, (9), in fact, expresses:

¬p(X) ← d(X) ∧ not p(X). (10)

The positive atom d(X) in (10) expresses the fact that the value of X is in D. If there
are more variables, rules semantically behave as if such “domain checks” were added
for each variable appearing in the rule. �

Definition 8. An interpretation I is a model of (8) if for every valuation v : V −→ D,

(
(�1 ∨ . . . ∨ �k) ← A

)I
v
= T. (11)

I is a model of an ASPK program if it is a model of every rule of the program. �

Definition 9. A model I of an ASPK program Π is minimal if there is no model J of
Π such that J � I . �

The following definitions generalize known definitions of well-supported models
for standard normal logic programs with a two-valued semantics [10, 11] to the case of
ASPK programs. This generalization is called strongly supported models. Our formula-
tion concentrates on derivability rather than on the existence of a certain well-founded
ordering, as in [10, 11]. The intuition is that whenever a (positive or negative) literal
belongs to a strongly supported model for a program Π then there should be a finite
derivation of the literal starting from facts of Π and, if needed, using rules of Π . Of
course, our definition can also be given in terms of well-founded relations as in [10, 11],
but the definition used here simplifies presentation and proofs.

Let us start with a definition of the value of a formula w.r.t. two interpretations: the
first one for evaluating formulas outside of the scope of ‘not ’ and the second one for
evaluating formulas of the form ‘not C’.

Definition 10. Given a domain D, interpretations I,N and a valuation v, the value of
a KFOL formula A w.r.t. D, I, N, v, denoted by AI,N

v , is defined as follows:2

AI,N
v

def
= AI

v,

where A is obtained from A by substituting subformulas of the form ‘not C’ by truth
values (not CN

v ).3 �

Strongly supported models can now be defined.

Definition 11. Let Π be an ASPK program. A model N for Π is strongly supported
provided that there is a sequence of interpretations Ii with i = 0, . . . ,m for some
m ∈ ω, such that N =

⋃
0≤i≤mIi, and:

2 Recall that AI
v is defined in Definition 6.

3 Note that CN
v is a truth value, so (not CN

v ) is a truth value, too.
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(i) for every fact of the form ‘�1 ∨ . . . ∨ �k’, at least one of literals of �1, . . . , �k is in
I0;

(ii) for every 0 < n ≤ m, every rule ‘�1 ∨ . . . ∨ �k ← A’ in Π and every valuation

v, if A
⋃

0≤j≤n−1Ij ,N
v = T then a (possibly empty) subset of {v(�1), . . . , v(�k)} is

included in In;
(iii) for i = 0, . . . ,m, Ii can only contain literals obtained by applying points (i) and

(ii) specified above. �

The following examples illustrate various aspects of Definition 11.

Example 1. Let the domain be D1 = {a, b} and let Π1 be the program:

r(X) ← p(X).
p(a).

Then, using the notation of Definition 11, we have that I0 = {p(a)}, I1 = {r(a)}.
Of course, N = I0 ∪ I1 = {p(a), r(a)} is a model for Π1 so it is a strongly sup-
ported model. On the other hand, {p(a), r(a), r(b)} is a model of Π1 but is not strongly
supported. �

Example 2. Let the domain be D2 = {a, b} and let Π2 be the program:

r(X) ← ¬q(X) ∧ not p(X).
¬q(a).
q(b).

Then N = {¬q(a), q(b), r(a)} is a strongly supported model for Π2. Using again the
notation of Definition 11, we have that N = I0 ∪ I1, where I0 = {¬q(a), q(b)},
I1 = {r(a)}. This follows from the fact that for v(X) = a:

(¬q(X) ∧ not p(X)
)I0,N
v

= (¬q(X))I0v ∧ not p(X)Nv
= ¬q(a)I0 ∧ not p(a)N = T. �

Example 3. Let the domain be D3 = ∅ and let Π3 be the program:

p ← q.
q ← not p.
p ← not q.

Then the only strongly supported model for Π3 is N = {p}. Here N = I0 ∪ I1, where
I0 = ∅ (there are no facts) and I1 = {p} since for the third rule we have:

(not q)I0,N = (not qN ) = not U = T.

On the other hand, N ′ = {p, q} is not strongly supported. Again, I0 = ∅, so for the first
rule we have qI0,N = U, for the second rule we have (not p)I0,N = F and, for the third
rule, (not q)I0,N = F. Therefore, no rule produces new results. �

The following example shows that strongly supported models do not have to be
minimal.
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Example 4. Consider the following program Π4 over domain D4 = {a}:

q(X) ← p(X).
p(a) ∨ q(a).

According to Definition 11, program Π4 has two strongly supported models: N =
{q(a)} and N ′ = {p(a), q(a)}. Of course, N ′ is not minimal since N � N ′. �

The following definitions and theorem show the relation between stable models and
strongly supported models. For a discussion of stable models see [19].

Definition 12. An interpretation I for a Kleene answer set program Π is a stable model
for Π provided that I is a minimal strongly supported model for Π . �

We shall consider two versions of ASP.

Definition 13.

– By ASPK we understand Kleene answer set programs with the semantics given by
strongly supported models.

– By ASPK
min we understand Kleene answer set programs with the semantics given

by stable models. �

Theorem 1.

1. For answer set programs with rules of the (traditional) form, where all �i are literals
and k > 0:4

�1 ∨ . . . ∨ �k ← �m, . . . , �n, not �s, . . . , not �t,

ASPK
min coincides with answer set programming in the traditional sense (as pre-

sented, e.g., in [5, 16, 19]).
2. If rules of an ASPK program Π are all of the form ‘� ← A.’, where � is a literal,

then a model I for Π is stable iff I is strongly supported.

Proof.
1. Let I be a stable model in the sense of Definition 12. Then I is both strongly sup-
ported and minimal.

Observe that strongly supported models are constructed in such a way that all for-
mulas of the form ‘not C’ are evaluated in the context of the final interpretation N (see
Definition 11) and, for a given valuation v, they have fixed truth values (not CN

v ). By
assumption, C is a literal. In the traditional definition of stable models [19], the notion
of reduct corresponds to substituting ‘not C’ by (not CN

v ) and removing redundant
literals and rules. Now minimality guarantees stability in the traditional sense.

2. Of course, by definition, stability implies strong supportedness.
To prove that strong supportedness implies stability, suppose that there are two strongly

supported models, J and J ′ such that J � J ′. By the construction of strongly supported
models, J ′ = J ∪ K , where literals in K are obtained by point (ii). of Definition 11.
However, that would mean that J was not a model of Π as literals are added in (ii) only
when there is a rule with true body and head not being true. Such literals are uniquely
determined (by assumption heads contain single literals). �

4 The case when k = 0 (constraints) is dealt with in Section 4.
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4 Constraints

Given a standard ASP program Π , let NC(Π) be the rules in Π that are not constraint
rules and let C(Π) be the rules in Π that are constraint rules, where NC(Π)∪C(Π) =
Π . There are at least two alternatives for providing a semantic theory for constraints.

– In the first, one first computes the stable models for NC(Π) and then eliminates
those models in NC(Π) that do not satisfy the constraint rules in C(Π).

– In the second, one simply computes the stable models of NC(Π) ∪C(Π).

The first alternative is that used traditionally for standard ASP (see, e.g., [16]). It
is the basis for many of the most prominent implementations of ASP in the literature
and is in fact similar to filtered circumscriptive approaches. The second method, which
appears to be as intuitive, is similar to non-filtered circumscriptive approaches. These
methods apply equally well for strongly supported models and ASPK . In Definition 11,
the second alternative is used. However, one can easily adjust the definition to reflect
the first alternative.

The following example shows that these approaches are not equivalent.

Example 5. Consider program Π5 (see [2, Example 32]):

a ∨ b ← . (12)

a ∨ c ← . (13)

← a ∧ (not b) ∧ (not c). (14)

← (not a) ∧ b ∧ c. (15)

According to the standard ASP semantics which uses the first alternative, Π5 has no
stable models. This follows from the fact that stable models of Π5 without constraints
(i.e., with only rules (12), (13)) are {a} and {b, c}, and these models do not satisfy the
constraints (14), (15).

When using the second alternative, when all rules (12)–(15) participate in computing
models, there are two stable models {a, b}, {a, c}, which are also strongly supported
models. The explanation used in [2] is that these models are not minimal for Π5 without
constraints, so they should not be considered. On the other hand, these models are
both minimal and strongly supported for the theory expressed by Π5 (in which case
{a}, {b, c} are not models, so are not considered in checking minimality). Note also
that {a, b, c} is a strongly supported but non-minimal model when Π5 is interpreted
using ASPK . �

Remark 3.

– Theorem 1(ii) holds when we allow constraints with the traditional semantics, since
one first computes models and later eliminates those not satisfying constraints.
Strongly supported models are in this case minimal and remain so even after fil-
tering out some of them.

– Theorem 1(ii) also holds for the case when constraints participate in finding models:
the models are in this case minimal models satisfying the whole program consisting
of rules and constraints. �
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5 Minimality Revisited

In this section, we consider some relationships between stability, minimality [13, 20],
and strong supportedness. When focussing on normal ASPs that do not contain dis-
junctive rules or constraints, stable model construction naturally generates only mini-
mal models due to the lack of choice in the iterated construction from base facts. On
the other hand, when extending expressivity to include rules with disjunctive heads and
constraint rules, choice in the iterated construction of models and the different alterna-
tives that can be used in applying constraints, open up opportunities for making different
semantic choices when interpreting ASPs.

These choices become very clear when one bases semantic theories for ASPs on
an explicit three-valued logic together with distinguishing strong supportedness from
minimality. As is often the case with semantic intuitions associated with nonmonotonic
formalisms, due to the space of choices, one has a number of different alternatives to
choose from. The approach taken in this paper is simply to clarify these choices in as
lucid a manner as possible and provide mechanisms for leaving the choice up to the
knowledge engineer.

In the case of enforcing minimality in ASP theories, there are a number of argu-
ments, not against minimality in principle, but for enforcing strong supportedness in-
stead. For the case of normal ASPs (no disjunctive heads), strong supportedness and
minimality are equivalent. In the case of ASPs with disjunctive rules, there is a history
in the nonmonotonic literature of viewing minimality assumptions applied to disjunc-
tions with suspicion, both for intuitive and pragmatic reasons as some of the examples
have shown.

One of the more interesting reasons for not only having the capability to distinguish
between supportedness and minimality, but to also be able to only construct strongly
supported models in isolation, is a complexity argument (see Theorem 2 in Section 6).
Complexity for constructing strongly supported models in the case of ASPs with dis-
junctive rules is lower than the complexity of constructing minimal, strongly supported
models. Additionally, since one has the capability of applying local closed world as-
sumptions to specific relations due to the default open world assumption associated
with the ASP framework, one seems to have the best of both worlds. In the following,
a number of examples are provided to further clarify the subtle relationships between
stability, minimality and supportedness.

The following example is from [19].

Example 6. Consider the domain D6 = {a, b} and program Π6:

r(X) ← p(X) ∧ not q(X).

p(a). p(b). q(a).

Then Π6 has two minimal models:

I0 = {p(a), p(b), q(a), r(b)}, I1 = {p(a), p(b), q(a), q(b)}.
According to [19], I0 is a “good” model (an answer set) while I1 is “bad” (not an an-
swer set). The explanation given in [19] is related to an argument based on program
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completion. A more direct explanation is that the fact q(b) appearing in I1 is not sup-
ported (not being a conclusion of the rule of Π6). �

Example 7. Let the program domain be D7 = {jack, john, xco} and Π7 consist of the
following rule and facts:5

luckyBroker (X) ∨ successfulBroker(X) ← (16)

∀Y (invests(X,Y ) ⇒ makesProfit(X,Y )). (17)

¬luckyBroker (X) ← not
(∀Y (invests(X,Y ) ⇒ makesProfit(X,Y ))

)
. (18)

perfectBroker (X) ← successfulBroker(X) ∧ luckyBroker (X). (19)

invests(jack, xco). (20)

invests(john, xco). (21)

makesProfit(jack, xco). (22)

According to the ASPK semantics, Π7 has the following strongly supported models:

{
(20), (21), (22), luckyBroker (jack),¬luckyBroker (john)}, (23)

{
(20), (21), (22), successfulBroker (jack),¬luckyBroker (john)}, (24)

{
(20), (21), (22), luckyBroker (jack), successfulBroker (jack), (25)

perfectBroker (jack),¬luckyBroker (john)}

According to the ASPK
min semantics, Π7 has only (stable) models (23) and (24). But

model (25) makes perfect intuitive sense and it is questionable whether or not it should
be omitted. �

Recall that one can close the world locally, using rules of the form (9). However,
such closures minimize relations in the classical sense (by minimizing their positive
instances while maximizing negative ones). In Definition 9, minimality is defined w.r.t.
both positive and negative instances. Since the rule (9) adds literals, in general such
closures do not preserve the set of stable models nor strongly supported models and
may seriously affect the result, as the following example shows.

Example 8. Let the domain be D8 = {a} and let Π8 be the program:

r(X) ← not p(X).
s(X) ← ¬p(X).

The only strongly supported model for Π8, being also its stable model, is {r(a)}.
By closing the relation p in Π8 by rule (9), we obtain a program with the only

strongly supported (and stable) model {¬p(a), r(a), s(a)}. �

5 Observe that the right arrow ⇒ is used in formulas in the antecedent of a rule according to the
syntax of first-order formulas allowed in the antecedent to a rule, whereas the left arrow ← is
used to distinguish between the antecedent and consequent of a rule.
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6 Computing Strongly Supported Models and Complexity Results

Algorithm 1 allows us to compute strongly supported models. The intuition is that we
first guess a candidate for a strongly supported model and then we check whether the
model is strongly supported (i.e., can be generated from facts, using rules).

Algorithm 1. Computing strongly supported models for ASPK programs

Input: An ASPK program Π with domain D, consisting of a set of rules S.
Output: A nondeterministically computed strongly supported model N for Π .

/* For notation see Definition 10 */

1 generate nondeterministically an interpretation N with constants from D;
2 if there is r ∈ S and a valuation v of variables in D with rNv �= T then
3 reject N; /* N is not a model for P */
4 stop;

/* otherwise N is a candidate for a strongly supported model. */

/* In the remaining part of the algorithm we verify whether N */
/* is a strongly supported model by generating a supported interpretation I */
/* and checking whether N = I . */

/* We use the fact that during computations I cannot decrease and always I ⊆ N . */

5 set I = ∅;
6 repeat
7 set W =

{
(r, v) | r ∈ S and v is valuation of variables in D with rI,Nv �= T

}
;

8 foreach (r, v) ∈ W do
/* Let r = ‘�1 ∨ . . . ∨ �k ← A.’ */

9 if N ∩ {v(�1), . . . , v(�k)} = ∅ then reject N; stop;
10 /* no subset of {v(�1), . . . , v(�k)}, when added to I , can make rI,Nv = T */
11 /* without violating the invariant I ⊆ N */
12 else set I = I ∪ (N ∩ {v(�1), . . . , v(�k)});
13 until W = ∅;
14 if N = I then accept N as a strongly supported model for Π
15 else reject N ;

In the following theorem we consider data complexity. In the answer set program-
ming literature, expression (program) complexity is more common, mainly due to the
use of grounding. On the other hand, ASPK is a database language (by restriction to fi-
nite domains) and we do not use grounding. Therefore data complexity is more relevant
here.

Theorem 2.

1. Checking whether an ASPK program has a strongly supported model is ΣP
1 -com-

plete (i.e., NP-complete).
2. Checking whether an ASPK

min program has a stable model is ΣP
2 -complete.
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Proof.

1. To prove the first claim it suffices to observe that ASPK is at least as expressive as
ASP, so the considered problem is NP-hard. To show that it is in NP, we use Algo-
rithm 1 which runs in time polynomial w.r.t. the size of the domain D (assuming
the input program Π is fixed, so has size bounded by a constant).

2. To prove the second claim we first show hardness of the considered problem for
ΣP

2 and then we show that the problem actually is in ΣP
2 .

(a) By results of [9, Section 3],6 checking whether an ASPK
min program has a stable

model is ΣP
2 -hard.

(b) To show that checking whether an ASPK
min program has a stable model is in

ΣP
2 , we encode the problem by a second-order formula of the form:

∃P̄∀R̄ A(P̄ , R̄), (26)

where ∃P̄∀R̄ are all second-order quantifiers used.
To check whether an ASPK program Π has a stable model we first guess the
model and then check the model for minimality:

– guessing the model can be expressed by using existential second-order
quantifiers ∃P̄ , where P̄ are all relations in Π ;

– checking the guessed model for minimality can be done in a manner similar
to circumscription, where quantifiers ∀R̄ are used – for details of how the
suitable formula can look like see, e.g., [13].

As a result, one obtains a formula of the required form (26), meaning that the
considered problem is indeed in ΣP

2 . �

The above theorem shows that the minimality requirement raises complexity from
NP (i.e., ΣP

1 ) to ΣP
2 in terms of the polynomial hierarchy.

Remark 4. Note that Algorithm 1 treats rules and constraints uniformly.
The algorithm can be easily modified for the case when constraints are separated.

Namely, S in the algorithm should consist of all rules with nonempty heads (not be-
ing constraints). After generating strongly supported models one should check whether
such models satisfy the constraints and reject models not satisfying them. �

7 Conclusions

This paper has explored the subtle relationship between stability, supportedness and
minimality in the context of Answer Set Programming. This has been done by making
a formal distinction between two characteristics of stable models, strong supported-
ness and minimality. This was done by introducing a modified first-order three-valued
Kleene Logic used as the semantic basis for interpreting Kleene answer set programs
in the language of ASPK . Strongly supported models were then defined. It was shown
that strongly supported models and stable models are equivalent in the context of nor-
mal answer set programs, where no constraint rules or disjunctive rules are allowed.

6 With a suitable encoding allowing one to move from expression complexity to data complexity.
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With the addition of disjunctive rules, use of strongly supported models as a semantic
basis differs from stable models due in part to the separation of support and minimality.
An argument is presented for using (strongly) supported models as a semantic inter-
pretation of disjunctive answer set programs. The argument is not exclusive since one
can combine minimality and supportedness if so desired. One of the advantages of not
doing this is based on a complexity argument. Expressiveness of answer set programs
can be extended to the use of arbitrary first-order formulas in the antecedents of rules
without any modification to the underlying semantics. A non-deterministic algorithm
for generating strongly supported models is also provided. Additionally, an analysis of
constraint rules is provided with consideration of two alternative approaches to their
application, leading to two different semantic interpretations of answer set programs
with constraint rules.
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Abstract. We present asynchronous multi-context systems (aMCSs), a frame-
work for loosely coupling different knowledge representation formalisms that
allows for online reasoning in a dynamic environment. An aMCS interacts with
the outside world via input and output streams and may therefore react to a con-
tinuous flow of external information. In contrast to recent proposals, contexts in
an aMCS communicate with each other in an asynchronous way which fits the
needs of many application domains and is beneficial for scalability. The federal
semantics of aMCSs renders our framework an integration approach rather than a
knowledge representation formalism itself. We illustrate the introduced concepts
by means of an example scenario dealing with rescue services. In addition, we
compare aMCSs to reactive multi-context systems and describe how to simulate
the latter with our novel approach.

1 Introduction

The achievements in knowledge representation and reasoning (KR) have originated a
vast amount of different languages and formats. Nowadays many of them (e.g., ontolo-
gies, triple-stores, modal logics, temporal logics, nonmonotonic logics, logic programs
under nonmonotonic answer set semantics, . . . ) are utilised in diverse applications. Each
formalism has its own specialised concepts to model knowledge and is often tailored
towards a specific task. Due to this specialisation it would often be beneficial to com-
bine different approaches when problems of multiple kinds have to be solved. However,
exchanging information between different KR formalisms is not always a trivial task.
Expressing all the knowledge usually represented in specifically tailored languages in a
universal language would be too hard to achieve from the point of view of complexity
as well as the troubles arising from the translation of the representations. Moreover, in a

“connected world” it is desirable not to spread out all information over different appli-
cations but to have it available for every application if need be. Therefore, a framework
seems desirable that integrates multiple existing formalisms in order to represent every
piece of knowledge in the language that is most appropriate for it.

Another aspect that has received relatively little attention until recently in the devel-
opment of KR formalisms (notable exceptions include, e.g., earlier work on evolving
logic programs [1]) is that in a variety of applications, knowledge is provided in a con-
stant flow of information and it is desired to reason over this knowledge in a continuous
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T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 141–156, 2015.
c© Springer International Publishing Switzerland 2015



142 S. Ellmauthaler and J. Pührer

manner. Many formalisms operate in a one-shot fashion: given a knowledge base, the
user triggers the computation of a result (e.g., the answer to a query). In this paper we
aim at using KR formalisms in an online fashion as it has been done in recent works,
e.g., on stream data processing and querying [17,15], stream reasoning with answer set
programming [12], and forgetting [14,8].

To address the demand for an integration of heterogeneous knowledge representa-
tion formalisms together with the awareness of a continuous flow of knowledge over
time, reactive multi-context systems (rMCSs) [6] and evolving multi-context systems
(eMCSs) [13] where proposed. Both frameworks are based on the ideas of managed
multi-context systems (mMCSs) [5] which combine multiple contexts which can be
seen as representations of different formalisms. The semantics of rMCSs and eMCSs
are based on the notion of an equilibrium which realises a tight semantical integration
of the different context formalisms. Due to reasoning over all contexts, the whole com-
putation is necessarily synchronous as the different contexts have to agree on common
beliefs for establishing equilibria.

Many real world applications which utilise communication between different services
use asynchronous communication protocols (e.g., web services) and compute as soon as
they have appropriate information about the problem they have to address. Therefore, we
introduce asynchronous multi-context systems (aMCSs), a framework for loosely cou-
pled knowledge representation formalisms and services. It still provides the capabilities
to express different knowledge representation languages and the translation of informa-
tion from one formalism to another. In addition, aMCSs are also aware of continuous
streams of information and provide ways to model the asynchronous exchange of infor-
mation. To communicate with the environment, they utilise input and output streams.

We illustrate aMCSs using the example of a task planner for medical rescue units.
Here, we assume a scenario where persons are calling an emergency response employee
to report incidents. The employee needs to collect all relevant information about the case.
Then, the case needs to be classified and available resources (e.g., free ambulances, . . . )
are assigned. In addition, current traffic data as well as the estimated time of arrival should
be considered by another employee, the dispatcher. The aMCS we propose provides rec-
ommendations for the emergency response employee as well as for the dispatcher. It in-
corporates different contexts like a medical ontology, a database with the current state of
the ambulances, and a navigation system which is connected to a traffic density reporter.
We want to stress that in this application, allowing for asynchronous computation and
communication is a great gain for the overall system, as it is not necessary for a context
to wait for all other contexts (e.g., there is no need to wait for the recommendation of a
plan for the dispatcher during the treatment of an emergency call).

The remainder of this paper is structured as follows. At first we will give a short
background on concepts we need. In Section 3, we extend the basic ideas of MCSs
to propose our new notion of aMCSs for modelling asynchronous interaction between
coupled knowledge representation formalisms and formally characterise its behaviour
over time. The subsequent section presents an example scenario, where asynchronous
computation and a reactive response to different events is needed. Section 5 compares
aMCSs to rMCSs and shows how the latter can be simulated by the former. Section 6
concludes this paper with a discussion including an outlook on future work.
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2 Preliminaries

We base our approach on the underlying ideas of mMCSs [5] which extend heteroge-
neous multi-context systems (MCSs) [4] by a management layer. It allows for complex
updates and revisions of knowledge bases and is realised by a management function
that provides the updates for each equilibrium. Despite we build on mMCSs, they differ
substantially in some aspects from the formalism we introduce in this work for rea-
sons intrinsic to the asynchronous approach. We discuss these reasons and introduce
rMCS that generalise mMCSs later in Section 5. Next, we define basic notions needed
throughout the paper.

Like mMCS, aMCSs build on the notion of a logic suite which can be seen as an
abstraction of different KR formalisms. A logic suite is a triple LS = 〈KB,BS,ACC〉,
where KB is the set of admissible knowledge bases (KBs) of LS . Each knowledge base
is a set of formulas that we do not further specify. BS is the set of possible belief sets of
LS , whose elements are beliefs. A semantics for LS is a function ACC : KB → 2BS

assigning to each KB a set of acceptable belief sets. Using a semantics with potentially
more than one acceptable belief set allows for modelling non-determinism, where each
belief set corresponds to an alternative solution. Finally, ACC is a set of semantics for
LS . For a given logic suite LS = 〈KB,BS,ACC〉, we denote KB, BS, respectively,
ACC, by KBLS , BSLS , respectively, ACCLS .

The motivation behind having multiple semantics for one formalism is that in our
framework, the semantics of a formalism can be changed over time. While it is probably
rarely the case that one wants to switch between different families of semantics during
a run, e.g., from the stable-model semantics to the well-founded semantics of logic
programs, other switches of semantics are quite natural to many applications: we use
different semantics to express different reasoning modes or to express different queries,
i.e., ACC1 returns belief sets answering a query q1, whereas ACC2 answers query q2;
ACC3, in turn, could represent the computation of all solutions to a problem, whereas at
some point in time one could be interested in using ACC4 that only computes a single
solution. For instance one that is optimal with respect to some criterion.

3 Asynchronous Multi-Context Systems

An aMCS is built up by multiple contexts which are defined next and which are used
for representing reasoning units. We assume a set N of names that will serve as labels
for sensors, contexts, and output streams.

Definition 1. A context is a pair C = 〈n,LS〉 where n ∈ N is the name of the context
and LS is a logic suite.

For a given context C = 〈n,LS〉 we denote n and LS by nC and LSC , respectively.

Definition 2. An aMCS (of length n with m output streams) is a pair M = 〈C,O〉,
where C = 〈C1, . . . , Cn〉 is an n-tuple of contexts and O = 〈o1, . . . , om〉 with oj ∈ N
for each 1 ≤ j ≤ m is a tuple containing the names of the output streams of M .

By N (M) we denote the set {nC1 , . . . , nCn , o1, . . . , om} of names of contexts and
output streams of M .
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A context in an aMCS communicates with other contexts and the outside world by
means of streams of data. In particular, we assume that every context has an input stream
on which information can be written from both external sources (we call them sensors)
and internal sources (i.e., other contexts). For the data in the communication streams
we assume a communication language IL where every i ∈ IL is an abstract piece of
information. In our framework, the data in the input stream of a context and the data in
output streams are modelled by information buffers that are defined in the following.

Definition 3. A data package is a pair d = 〈s, I〉, where s ∈ N is either a context name
or a sensor name, stating the source of d , and I ⊆ IL is a set of pieces of information.
An information buffer is a sequence of data packages.

As we assume that data is asynchronously passed to a context on its input stream, it
is natural that not all information required for a computation is available at all times.
Consequently, we need means to decide whether a computation should take place, de-
pending on the current KB and the data currently available on the stream, or whether
the context has to wait for more data. In our framework, this decision is made by a
computation controller as defined next.

Definition 4. Let C = 〈n,LS〉 be a context. A computation controller for C is a rela-
tion cc between a KB KB ∈ KBLS and a finite information buffer.

Thus, if 〈KB, ib〉 ∈ cc then a computation should take place, whereas 〈KB, ib〉 �∈ cc
means that further information is required before the next computation is triggered in
the respective context.

In contrast to the original definition of multi-context systems [3] and extensions
thereof, we do not make use of so-called bridge rules as a means to communicate: a
bridge rule defines which information a context should obtain based on the results of
all the contexts of a multi-context system. In the asynchronous approach, we do not
have (synchronised) results of all contexts available in general. As a consequence we
use another type of rules, called output rules, that define which information should be
sent to another context or an output stream, based on a result of a single context.

Definition 5. Let C = 〈n,LS〉 be a context. An output rule r for C is an expression of
the form

〈n, i〉 ←b1, . . . , bj, not bj+1, . . . , not bm, (1)

such that n ∈ N is the name of a context or an output stream, i ∈ IL is a piece
of information, and every b� (1 ≤ � ≤ m) is a belief for C, i.e., b� ∈ S for some
S ∈ BSLS .

We call n the stakeholder of r, 〈n, i〉 the head of r denoted by hd(r), and b1, . . . , bj ,
not bj+1, . . . , not bm the body bd(r) of r. Moreover, we say that r is active under S,
denoted by S |= bd(r), if {b1, . . . , bj} ⊆ S and {bj+1, . . . , bm} ∩ S = ∅.

Intuitively, the stakeholder is a reference to the addressee of information i.

Definition 6. Let C = 〈n,LS〉 be a context, OR a set of output rules for C, S ∈ BSLS
a belief set, and n′ ∈ N a name. Then, the data package

dC(S,OR, n′) = 〈n, {i | r ∈ OR, hd(r) = 〈n′, i〉, S |= bd(r)}〉
is the output of C with respect to OR under S relevant for n.
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Compared to previous notions of multi-context systems, contexts in our setting only
specify which formalisms they use but they do not contain knowledge bases, the con-
crete semantics to use, and communication specifications. The reason is that for aMCSs
these may change over time. Instead, we wrap concepts that are subject to change during
runtime in the following notion of a configuration.

Definition 7. Let C = 〈n,LS〉 be a context. A configuration of C is a tuple cf =
〈KB,ACC, ib, cm〉, where KB ∈ KBLS , ACC ∈ ACCLS , ib is a finite information
buffer, and cm is a context management for C which is a triple cm = 〈cc, cu,OR〉,
where

– cc is a computation controller for C,
– OR is a set of output rules for C, and
– cu is a context update function for C which is a function that maps an information

buffer ib = d1, . . . , dm and an admissible knowledge base of LS to a configuration
cf ′ = 〈KB′,ACC′, ib′, cm ′〉 of C with ib′ = dk, . . . , dm for some k ≥ 1.

We write cccm , cucm , and ORcm to refer to the components of a given context manage-
ment cm = 〈cc, cu,OR〉. The context management is the counterpart of a management
function of an rMCS (see Section 5), that computes an update of the knowledge base of
a context given the results of bridge rules of the context.

In Section 2 we already discussed why we want to change semantics over time. Al-
lowing also for changes of output rules can be motivated with applications where it
should be dynamically decided where to direct the output of a context. For example,
if a particular sub-problem can be solved by two contexts C1 and C2 and it is known
that some class of instances can be better solved by C1 and others by C2. Then a third
context that provides an instance can choose whether C1 or C2 should carry out the
computation by adapting its output rules. Dynamically changing output rules and se-
mantics could require adjustments of the other components of the context management.
Thus, it makes sense that also computation controllers and context update functions are
subject to change for the sake of flexibility.

Definition 8. Let M = 〈〈C1, . . . , Cn〉, 〈o1, . . . , om〉〉 be an aMCS. A configuration of
M is a pair

Cf = 〈〈cf 1, . . . , cf n〉, 〈ob1, . . . , obm〉〉,
where

– for all 1 ≤ i ≤ n cf i = 〈KB,ACC, ib, cm〉 is a configuration for Ci and for every
output rule r ∈ ORcm we have n ∈ N (M) for 〈n, i〉 = hd(r), and

– For each 1 ≤ j ≤ m, obj = . . . , dl−1, dl is an information buffer with a final
element dl such that for each h ≤ l with dh = 〈n, i〉 we have n = nCi for some
1 ≤ i ≤ n.

Intuitively, each information buffer obj corresponds to the data on the output stream
named oj . Figure 1 depicts an aMCS M with three contexts and a configuration for M .

We next characterise the dynamic behaviour of an aMCS. Our approach requires a
discrete notion of time. This could be realised in an event-based fashion, where the
availability of new information triggers a new logical point in time. In this paper, we
stick to timestamps represented by integers for easier notation.



146 S. Ellmauthaler and J. Pührer

aMCS Ms1

s2

s3

C3
KB

ACC

ib cc cu OR
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ib cc cu OR
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KB
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ib cc cu OR

Fig. 1. An aMCS with three contexts, three sensors on the left side, and three output streams
on the right side. A solid line represents a flow of information from a context to its stakeholder
streams, whereas a dashed line indicates sensor data written to the input buffer of a context.

Definition 9. Let M = 〈〈C1, . . . , Cn〉, 〈o1, . . . , om〉〉 be an aMCS. A run structure for
M is a sequence

R = . . . ,Cf t,Cf t+1,Cf t+2, . . . ,

where t ∈ Z is a point in time, and every Cf t
′

in R (t′ ∈ Z) is a configuration of M .

We will sometimes use cf ti to denote the configuration of a context i that appears at time
t in a given run structure in the context of a given aMCS. Similarly, obtj refers to the
information buffer representing the data in the output stream named oj . Moreover, we
write KBt

i, ACC
t
i , ib

t
i, and cmt

i to refer to the components of cf ti =〈KB,ACC, ib, cm〉.
We say that context Ci is waiting at time t if 〈KBt

i, ib
t
i〉 �∈ cccmt

i
.

In aMCSs we take into account that the computation of the semantics of a knowledge
base needs time. Moreover, in a computation of our framework, different belief sets may
become available at different times and verifying the non-existence of further belief
sets can also take time after the final belief set has been computed. In order to model
whether a context is busy with computing, we introduce a boolean variable busyt

i for
each configuration cf ti in a run structure. Hence, context Ci is busy at time t if and only
if busy t

i is true. While a context is busy, it does not read new information from its input
stream until every belief set has been computed and it has concluded that no further
belief set exists.

After the computation of a belief set, the output rules are applied in order to de-
termine which data is passed on to stakeholder contexts or output streams. These are
represented by stakeholder buffers: An information buffer b is the stakeholder buffer of
Ci (for n) at time t if

– b = ibt
i′ for some 1 ≤ i′ ≤ n such that n = nCi is stakeholder of some output rule

in ORcmt
i

or

– b = obtj′ for some 1 ≤ j′ ≤ m such that n = oj′ is stakeholder of some output
rule in ORcmt

i
.
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In order to indicate that a computation has finished we assume a dedicated symbol
EOC ∈ IL that notifies a context’s stakeholder buffers about the end of a computation.

The behaviour of aMCSs is characterised by the notion of a run. A run structure is
a run if it adheres to five conditions that we describe next. In the following, let M be
an aMCS of length n with m output streams, R a run structure for M , 1 ≤ i ≤ n, and
1 ≤ j ≤ m. Condition (i) describes the transition from an idle phase to an ongoing
computation.

(i) if cf ti and cf t+1
i are defined, Ci is neither busy nor waiting at time t, then

• Ci is busy at time t+ 1,
• cf t+1

i = cucmt
i
(ibt

i,KBt
i)

We say that Ci started a computation for KBt+1
i at time t + 1. The end of such a

computation is marked by an end of computation notification as introduced in Item (ii).

(ii) if Ci started a computation for KB at time t then
• we say that this computation ended at time t′, if t′ is the earliest time point with
t′ ≥ t such that 〈nCi ,EOC〉 is added to every stakeholder buffer b of Ci at t′;
the addition of 〈nCi ,EOC〉 to b is called an end of computation notification.

• for all t′ > t such that cf t
′
i is defined, Ci is busy at t′ unless the computation

ended at some time t′′ with t < t′′ < t′.
• if the computation ended at time t′ and cf t

′+1
i is defined then Ci is not busy at

t′ + 1.

Condition (iii) states that between the start and the end of a computation all belief sets
are computed and stakeholders are notified.

(iii) if Ci started a computation for KB at time t that ended at time t′ then for every
belief set S ∈ ACCt

i there is some time t′′ with t ≤ t′′ ≤ t′ such that
• dCi(S,ORcmt′′

i
, n) is added to every stakeholder buffer b of Ci for n at t′′.

We say that Ci computed S at time t′′. The addition of dCi(S,ORcmt′′
i
, n) to b is called

a belief set notification. Finally, Conditions (iv) and (v) express how data is added to an
output stream or to an input stream, respectively.

(iv) if obtj and obt+1
j are defined and obtj = . . . , dl−1, dl then obt+1

j = . . . , dl−1,
dl, . . . , dl′ for some l′ ≥ l. Moreover, every data package dl′′ with l < l′′ ≤ l′ that
was added at time t+ 1 results from an end of computation notification or a belief
set notification.

(v) if cf ti and cf t+1
i are defined, Ci is busy or waiting at time t, and ibti = d1, . . . , dl

then we have ibt+1
i = d1, . . . , dl, . . . , dl′ for some l′ ≥ l. Moreover, every data

package dl′′ with l < l′′ ≤ l′ that was added at time t + 1 either results from an
end of computation notification or a belief set notification or n /∈ N (M) (i.e., n is
a sensor name) for dl′′ = 〈n, i〉.

Note that in these conditions, sensors and the flow of information from sensors to the
input buffers of contexts are implicit. That is, data packages from a sensor may appear
at the end of input buffers at all times and the only reference to a particular sensor is its
name appearing in a data package. We are now ready to define a run.
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Definition 10. Let M be an aMCS of length n with m output streams and R a run
structure for M . R is a run for M if Conditions (i)-(v) hold for every 1 ≤ i ≤ n and
every 1 ≤ j ≤ m.

Summarising the behaviour characterised by a run, whenever a context C is not busy,
its context controller cc checks whether a new computation should take place, based on
the knowledge base and the current input buffer of C. If yes, the current configuration
of the context is replaced by a new one, computed by the context update function cu of
C. Here, the new input buffer has to be a suffix of the old one and a new computation
for the updated knowledge base starts. After an undefined period of time, belief sets are
computed and based on the application of output rules of C, data packages are sent to
stakeholder buffers. At some point in time, when all belief sets have been computed,
an end of computation notification is sent to stakeholders, and the context is not busy
anymore.

4 Scenario: Computer-Aided Emergency Team Management

Now we want to consider a scenario, where aMCSs may be used to describe the asyn-
chronous information-exchange between different specialised reasoning systems. Our
example deals with a system for the coordination and handling of ambulance assign-
ments. Note that there are different commercial computer-aided dispatch and computer-
aided call handling systems (for an overview see [9]). Our example has the purpose to
illustrate aMCSs and thus we consider a simplified problem setting, providing a more
meta-level centred point of view. Albeit our example is simplified, it still shares a simi-
lar structure to these commercial solutions. The suggested aMCS supports decisions in
different stages of an emergency case. It gives assistance during the rescue call, helps
in assigning priorities and rescue units to a case, and assists in the necessary commu-
nication among all involved parties. The suggestions given by the system are based
on different specialised systems which react to sensor readings. Moreover, the system
can tolerate and incorporate overriding solutions proposed by the user that it considers
non-optimal.

Figure 2 depicts the example aMCS which models such a Computer-Aided Emer-
gency Team Management System (CAET Management System). Note that interaction
with a human (e.g., EM employee) is modelled as a pair containing an input stream and
an output stream. The system consists of the following contexts:

Case Analyser (ca). This context implements a computer-aided call handling system
which assists an emergency response employee (ER employee) during answering
an emergency call. The system utilises reasoning methods to choose which ques-
tions need to be asked based on previous answers. In addition, it may check whether
answers are inconsistent (e.g., amniotic sac bursts when the gender is male). For
these purposes the case analyser context may also consult a medical ontology rep-
resented by another context. The communication with the ER employee is repre-
sented, on the one hand, as a sensor that reads the input of the employee and, on
the other hand, by an output stream which prints the questions and results on a
computer screen.
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Navigation

Amb Manager Task Planner

Case AnalyserMed Ontology

ER Employee

Case Dispatcher

Traffic state

Ambulance

CAET Management

Fig. 2. The Computer-Aided Emergency Team Management aMCS

During the collection of all the important facts for this emergency case, the analyser
computes the priority of the case and passes it to the task planner.

Med Ontology (mo). This medical ontology can be realised, e.g., by a description
logic reasoner which handles requests from the case analyser and returns more
specific knowledge about ongoing cases. This information may be used for the pri-
oritisation of the importance of a case.

Task Planner (tp). This context keeps track of emergency cases. Based on the priority
and age of a case and the availability and position of ambulances it suggests an
efficient plan of action for the ambulances to the (human) case dispatcher (cd). The
dispatcher may approve some of the suggestions or all of them. If the dispatcher
has no faith in the given plan of action, she can also alter it at will. These decisions
are reported back to the planning system such that it can react to the alterations and
provide further suggestions. Based on the final plan, the task planner informs the
ambulance about their new mission.
The knowledge base of the context is an answer-set program for reasoning about
a suggested plan. It gets the availability and position of the ambulances by the
ambulance manager. In addition, the cases with their priority are provided by the
case analyser. With this information, the task planner gives the locations of the
ambulances together with the target locations of the cases to a navigation system
which provides the distances (i.e., the estimated time of arrival (ETA)) of all the
ambulances to all the locations.

Amb Manager (am). The ambulance manager is a database, which keeps track of the
status and location of ambulance units. Each ambulance team reports its status (e.g.,
to be on duty, waiting for new mission, . . . ) to the database (modelled by the sensor
“Ambulance” (amb)). Additionally, the car periodically sends GPS-coordinates to
the database. These updates will be pushed to the task planner.

Navigation (na). This part of the aMCS gets traffic information (e.g., congestions, con-
struction zones, roadblocks, . . . ) to predict the travel time for each route as accurate
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as possible. The task planner may push a query to the navigation system, which con-
sists of a list of locations of ambulance units and a list of locations of target areas.
Based on all the given information this context will return a ranking for each target
area, representing the ETAs for each ambulance.

Now we want to have a closer look on the instantiation details of some aspects of our
example. At first we investigate the cc relation of the case analyser. It allows for the
computation of new belief sets whenever the ER employee pushes new information to
the analyser. In addition, it will also approve of a new computation if the medical on-
tology supplies some requested information. Recall that the case analyser also assigns
a priority to each case and that we want to allow the employee to set the priority man-
ually. Let us suppose that such a manual override occurs and that the case analyser has
an ongoing query to the medical ontology. Due to the manual priority assignment, the
requested information from the ontology is no longer needed. Therefore, it would be
desirable that cc does not allow for a recomputation if all conclusions of the ontology
are only related to the manually prioritised case. With the same argumentation in mind,
the context update function cu will also ignore this information on the input stream.
This kind of behaviour may need knowledge about past queries which can be provided
by an additional output rule for the case analyser which feeds the relevant information
back to the context.

Next, we will have a look at the task planner that is based on answer-set program-
ming. We will only present parts of the program, to show how the mechanics are in-
tended to work. To represent the incoming information on the input stream, the follow-
ing predicates can be used:

case(caseid,loc,priority) represents an active case (with its location and
priority) which needs to be assigned to an ambulance.

avail(amb,loc) states the location of an available ambulance.
eta(caseid,amb,value) provides the estimated time of arrival for a unit at the

location of the target area of the case.
assign(amb,caseid) represents the assignment of an ambulance to a case by the

dispatcher.

These predicates will be added by the context update function to the knowledge base
if corresponding information is put on the input stream of the context. Based on this
knowledge, the other components of the answer-set program will compute the belief
sets (e.g., via the stable model semantics). Note that an already assigned ambulance or
case will not be handled as an available ambulance or an active case, respectively. In
addition, cu can (and should) also manage forgetting of no longer needed knowledge.
For our scenario it may be suitable to remove all eta, avail and case predicates
when the cases or the unit is assigned. The assign predicate can be removed when
the ambulance manager reports that the assigned ambulance is available again.

The set OR of output rules of the task planner could contain the following rules:

〈cd,assign(A,C)〉 ← sugassignment(A,C)
〈na,queryA(L)〉 ← avail(A), not assign(A, ), loc(A,L)
〈na,queryC(L)〉 ← case(C,P ), loc(A,L), not assign(A, )

〈amb,assigned(A,C)〉 ← assign(A,C)
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The first rule informs the case dispatcher (cd) about a suggested assignment that has
been computed by the answer-set program. Rules two and three prepare lists of ambu-
lances and cases for querying the navigation context. Recall that the latter needs a list
of ambulance locations (generated by rule two) and a list of target area locations (gen-
erated by rule three). Also keep in mind that for each belief set a data package with all
information for one context or output stream is constructed. So the whole list of current
target areas and free ambulance units will be passed to the navigation context at once.
The last rule notifies the ambulance team that it has been assigned to a specific case.

Related to this example we want to mention privacy aspects as a real world policy
which is especially important to applications in public services and health care. As the
multi-context system is a heterogeneous system with different contexts, a completely
free exchange of data may be against privacy policies. This issue can be addressed by
the adequate design of output rules, which can also be altered with respect to additional
information in the input stream (e.g., some context gains the permission to receive real
names instead of anonymous data). So each context may decide by its own which parts
of the belief sets are shared and exchanged with other contexts.

Another interesting aspect about aMCSs is the possibility to easily join two aMCSs
together, outsource a subset of contexts in a new aMCS, or to view an aMCS as an
abstract context for another aMCS in a modular way. This can be achieved due to the
abstract communication by means of streams. With respect to our scenario there could
be some aMCS which does the management of resources for hospitals (e.g., free beds
with their capabilities). The task planner might communicate with this system to take
the needed services for a case into account (e.g., intensive care unit) and informs the
hospital via these streams about incoming patients. It would be easy to join both aMCSs
together to one big system or to outsource some contexts as input sensors paired with an
output stream. In addition, one may also combine different contexts or a whole aMCS to
one abstract context to provide a dynamic granularity of information about the system
and to group different reasoning tasks together.

5 Relation to Reactive Multi-Context Systems

In this section we want to address differences and commonalities between aMCSs and
rMCSs [6] as both are types of multi-context systems that work in an online fashion and
can react to external information.

Next, we introduce rMCSs. For simplicity, as in [6], for each context in an rMCS
(called r-context), we assume a single semantics. An r-context is of the form C =
〈LS, ops,mng〉, where

– LS is a logic suite with ACCLS = {ACC},
– ops is a set of operations,
– mng : 2ops ×KBLS → KBLS is a management function.

For an indexed r-context Ci we denote its components and ACC by LSi, opsi, mngi,
and ACCi.

External information is integrated in rMCSs by means of sensors. A sensor Π =
〈LΠ , π〉 is a device which is able to provide new information in a given language LΠ
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specific to the sensor. At all times, the set π ⊆ LΠ represents the current sensor reading.
Given a tuple of sensors Π = 〈Π1, . . . , Πk〉, an observation Obs for Π (Π-observation
for short) consists of a sensor reading for each sensor, that is Obs = 〈π1, . . . , πk〉 where
for 1 ≤ i ≤ k, πi ⊆ LΠi .

Integrating sensor information and communication between r-contexts is realised by
means of bridge rules. Let Cr = 〈C1, . . . , Cn〉 be a tuple of r-contexts and Π as above.
A bridge rule for Ci (1 ≤ i ≤ n) over Cr and Π is of the form

op ←a1, . . . , aj, not aj+1, . . . , not am, (2)

such that op ∈ opsi and every a� (1 ≤ � ≤ m) is either a context atom of form c:b
where c∈{1, . . . , n}, and b is a belief for Cc, i.e., b ∈ S for some S ∈ BSLc , or a
sensor atom of form o@s, where s is an index determining a sensor (1 ≤ s ≤ k) and
o ∈ LΠs is a piece of sensor data. For a bridge rule r, the operation hd(r) = op is the
head of r, while bd(r) = {a1, . . . , aj , not aj+1, . . . , not am} is the body of r.

Definition 11. A reactive multi-context system (rMCS ) over sensorsΠ = 〈Π1, . . . , Πk〉
is a tuple M = 〈Cr,BR,KB〉, where Cr = 〈C1, . . . , Cn〉 is a tuple of r-contexts,
BR = 〈br1, . . . , brn〉, where each bri is a set of bridge rules for Ci over Cr and Π ,
and KB = 〈kb1, . . . , kbn〉 such that kbi ∈ KBLSi

.

A belief state S = 〈S1, . . . , Sn〉 for a rMCS M consists of belief sets Si ∈ BSBSLSi
,

1 ≤ i ≤ n. A context atom c:p ∈ bd(r) is satisfied by S if p ∈ Sc. Moreover, let Π be
a tuple of sensors and Obs = 〈π1, . . . , πk〉 a Π-observation. Then, a sensor atom o@s
is satisfied by Obs if o ∈ πs; a literal not o@s is satisfied by Obs if o �∈ πs.

A bridge rule r in BR is applicable with respect to S and Obs, symbolically S |=Obs

bd(r), if every atom in bd(r) is satisfied by S orObs and every negated atom in bd(r) is
neither satisfied by S nor byObs. For each r-contextCi in an rMCS, we collect the heads
of applicable bridge rules in the set appi(S, Obs) = {hd(r) | r ∈ bri∧S |=Obs bd(r)}.

Runs of rMCSs are based on equilibria which are collections of belief sets—one for
each context—on which, intuitively, all of the contexts have to agree.

Definition 12. Let M = 〈Cr,BR,KB〉 be an rMCS with sensors Π and Obs a Π-
observation. A belief state S = 〈S1, . . . , Sn〉 for M is an equilibrium of M under Obs
if, for 1 ≤ i ≤ n, Si ∈ ACCi(mngi(appi(S, Obs), kbi)).

The tuple KBS = 〈mng1(app1(S, Obs), kb1), . . . ,mngn(appn(S, Obs), kbn)〉 con-
tains all KBs generated by an equilibrium S. We call the pair 〈S,KBS〉 a full equilibrium
of M under Obs.

We now introduce the notion of a run of an rMCS (called r-run) induced by a se-
quence of observations:

Definition 13. Let M = 〈Cr,BR,KB〉 be an rMCS with sensors Π and O = (Obs0,
Obs1, . . .) a sequence of Π-observations. An r-run of M induced by O is a sequence of
pairs R = (〈S0,KB0〉, 〈S1,KB1〉, . . .) such that

– 〈S0,KB0〉 is a full equilibrium of M under Obs0,
– for 〈Si,KBi〉 with i > 0, 〈Si,KBi〉 is a full equilibrium of 〈C,BR,KBi−1〉 under

Obsi.
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Being based on equilibria, r-runs realise a tight integration approach in which the
semantics of the individual contexts are interdependent. However, the high level of
integration also comes at the price that the different contexts must wait for each other for
the computation of each equilibrium, i.e., they are synchronised. In aMCSs, on the other
hand, the coupling of the semantics is much looser—communication between contexts
only works via data packages that are sent to another context after a computation and
not via a higher-level common semantics for multiple contexts. But as a benefit, each
context can run at its own pace which is useful in settings where there is a context that
requires much more time for evaluating its semantics than others.

A further difference is the role of non-determinism in the semantics of aMCSs and
rMCSs. An equilibrium in a rMCS consists of a single belief set for each context. Hence,
as rMCSs also use a multiple belief set semantics, there may also be multiple equilibria
as a source of non-determinism at each step in an r-run. For aMCSs, all belief sets of a
context are computed in a consecutive way (we assume that if only a single belief set is
desired than the semantics of the respective context should be adapted accordingly by
the knowledge engineer). Nevertheless, there is also a source of non-determinism in the
case of aMCSs caused by the undefined duration of computations.

Regarding the computational complexity of the two frameworks, the computation
of an equilibrium requires guessing an equilibrium candidate before the semantics of
the context is computed which is expensive regarding runtime when put to practice.
In theory, this guess does not add extra complexity if the context semantics is already
NP-hard (as shown in [6]) because it can be combined with the guesses required in the
contexts. However, this trick cannot be used in implementations that uses black boxes
for computing context semantics. On the other hand, aMCSs do not add substantial
computational requirements to the effort needed for computing context semantics. In
particular, aMCSs are scalable as adding a further context has no direct effect on how
the semantics of the other contexts are computed but can only influence their input.

Both, aMCSs and rMCSs are very general frameworks that allow for simulating
Turing machines and thus for performing multi-purpose computations even if only very
simple context formalisms are used (if the length of a run is not restricted). In this sense
the approaches are equally expressive. Moreover, when allowing for arbitrary contexts
one could trivially simulate the other by including it as a context. Despite the existence
of these straightforward translations, we next sketch how we simulate an rMCS with an
aMCS using a more direct translation, as this gives further insight into the differences of
the two frameworks. Moreover, it demonstrates a way to implement rMCSs by means
of aMCSs. For every r-context Ci of a given rMCS Mr, we introduce three contexts in
the aMCS Ma that simulates Mr:

– a context Ckb
i that stores the current knowledge base of the r-context,

– a context Ckb′
i in which a candidate for an updated knowledge base can be written

and its semantics is computed, and
– a context Cm

i that implements the bridge rules and the management function of Ci.

There are three further contexts:

– Cobs receives sensor data and distributes it to every context Cm
i where Ci depends

on the respective sensor. The context is also responsible for synchronisation: for each
sensor, new sensor data is only passed on after an equilibrium has been computed.
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– Cguess guesses equilibrium candidates for M and passes them to the management
contexts Cm

i . Based on that and the information from Cobs, Cm
i computes an up-

date kb′i of the knowledge base in Ckb
i and stores kb′i in Ckb′

i . The latter r-context
then computes the semantics of kb′i and passes it to the final r-context

– Ccheck that compares every belief set it receives with the equilibrium candidate
(that it also receives from Cguess). If a matching belief set has been found for each
context of Mr, the candidate is an actual equilibrium. In this case Ccheck sends the
equilibrium to an output stream and notifies the other contexts about the success.

In case of a success, every r-context Cm
i replaces the knowledge base in Ckb

i by kb′i
and a next iteration begins. In case no equilibrium was found but one of the Ckb′

i con-
texts has finished its computation, Ccheck orders Cguess to guess another equilibrium
candidate.

6 Related Work and Discussion

A concept similar to output-rules has been presented in the form of reactive bridge
rules [10] for multi-context systems. There the flow of information is represented by
rules which add knowledge to the input streams of other contexts. Which information
is communicated to other contexts is also determined by the local belief set of each
context.

Note that evolving multi-context systems [13] follow a quite similar approach as
rMCSs and hence the relation of aMCSs to rMCSs sketched in the previous section also
applies in essence to this approach.

The Dedalus language [2] allows for modelling distributed systems over time. A
Dedalus program is a datalog program using a non-monotonic choice construct that ad-
heres to certain syntactic restrictions. For modelling time, every predicate has a times-
tamp as its final attribute. Three types of rules are admitted that differ in the relation
of the time variable T that their body literals refer to and the time variable S of their
respective head atom. Head and body of so-called deductive rules refer to the same
time instant, i.e., T = S. Inductive rules derive atoms for the next point in time, hence
T + 1 = S. The network interaction between different systems is modelled by means
of the third type of rules, so-called communication rules, where there is no given re-
lation between T and S. Instead, the value of S is guessed non-deterministically, for
modelling asynchronous and unreliable network communication where data may be re-
ceived in wrong order or not at all. Thus, communication rules play a similar role as
output rules in our approach, namely dispatching information. Conceptually, context
formalisms are incorporated in an aMCS, whereas in Dedalus, reasoning within indi-
vidual nodes of a distributed system must be modelled using datalog or simulated by
adding facts of extensional predicates to the Dedalus program. The individual contexts
in our approach are meant to operate independently from each other, whereas in Dedalus
the whole distributed system is represented in a single datalog program. Accordingly,
a run of an aMCS emerges from communicating the results of the context semantics
over time, whereas the semantics of a Dedalus program is given by its (infinite) perfect
model.
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Peer-to-peer systems [7] address the problem of data integration and distributed
knowledge over so-called “peers”. Similar to contexts in our settings, peers also act
independently of each other. In difference to peer-to-peer systems, aMCSs are meant
to incorporate heterogeneous contexts, while peers are usually understood as equally
privileged and equipotent. In addition, peer-to-peer systems usually focus on query an-
swering between different databases, while an aMCS is supposed to act as a generalised
framework for exchanging arbitrary information between independent reasoners.

Also multi-agent systems [16] share some aspects with aMCSs. A multi-agent sys-
tem comprises different interacting agents and their environment. Agents exchange in-
formation among each other, have means to perceive the environment, and may per-
form actions to manipulate the environment. As both, aMCSs and multi-agent systems
are expressive frameworks, it is easy to view one in terms of the other when contexts
are interpreted as agents or vice versa. Conceptually, contexts in aMCSs are intended
to represent knowledge bases of different formalisms, whereas agents in a multi-agent
system typically represent physical entities or beings of some kind.

The system clingo [12] is a reactive answer-set programming solver. It utilises
TCP/IP ports for incoming input streams and does also report the resulting answer sets
via such a port. It provides means to compute different semantics and can keep learned
structures and knowledge from previous solving steps. Although there are no output
rules or input stream pre-processing as in aMCSs, the system features embedded im-
perative programming languages which may be helpful to model some of the presented
concepts.

In general, the tasks performed by a context management can be realised by different
formalisms (e.g., imperative scripting languages or declarative programming). Here, it
seems likely that different languages can be the most appropriate management language,
depending on the type of context formalism and the concrete problem domain. A feature
that is not modelled in our proposal but that is potentially useful and we intend to
consider in the future is to allow for aborting computations. Moreover, we want to study
modelling patterns and best practices for aMCSs design for typical application settings
and compare different inter-context topologies and communication strategies.

As a next step we plan to implement a prototype of our framework that allows for
integrating external knowledge sources as contexts and for specifying context manage-
ments. We want to analyse whether and how existing tools such as clingo can be used
for the implementation. We are also interested in how reactive features of clingo (e.g.,
iterative computation, on-demand grounding, online-queries, . . . ) relate to aMCS con-
cepts (e.g., cc, ib, . . . ) and whether they can be described in terms of an aMCS.
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Abstract. In the seminal paper [6], Gerd Brewka argued that ranking a set of
default rules without prerequisites, and selecting extensions according to a lexi-
cographic refinement of the inclusion ordering proves to be a natural, simple and
efficient way of dealing with the multiple extension (or “subtheories”) problem.
This natural idea has been reused, discussed, revisited, reinvented, adapted many
times in the AI community and beyond. Preferred subtheories do not only have an
interest in default reasoning, but also in reasoning about time, reasoning by anal-
ogy, reasoning with compactly represented preferences, judgment aggregation,
and voting. They have several variants (but arguably not so many). In this short
paper I will say as much as I can about preferred subtheories in sixteen pages.

1 Prioritized Default Theories and Preferred Subtheories

Preferred subtheories were introduced in [6] as a way of representing and exploiting
priorities between default rules. Their starting point was the THEORIST system [28] for
default reasoning. In Poole’s system – equivalent to the restriction of Reiter’s default
logic to normal defaults without prerequisites – a default theory is a set of facts F
plus a set of hypotheses Δ (both composed of logical formulas) and an extension is
the set of logical consequences of a set-inclusion maximal subset D of Δ such that
D ∪ F is consistent. In spite of the (apparently drastic) restriction to normal defaults
without prerequisites, this system is able to deal adequately with many of the standard
default reasoning examples from the literature, but not all, because of the impossibility
of expressing priorities between defaults. Let me reuse this example from [6], suggested
to Gerd Brewka by Ulrich Junker.

“Usually one has to go to a meeting.
This rule does not apply if somebody is sick, unless he only has a cold.
The rule is also not applicable if somebody is on vacation.”

As shown by [6] (Section 3), given that the person is sick, the natural writing of this
example in Poole’s system generates two extensions: one where she has to attend the
meeting and one where she does not. In order to avoid this, one would need to

“(...) look down in the hierarchy of exceptions and block defaults lower in the
hierarchy. (...) the number of defaults may increase heavily in cases where more
exceptions and exceptions of exceptions are involved”

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 157–172, 2015.
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which is arguably unpleasant and inefficient. The core of the problem is the impos-
sibility to express that a default has a priority over an other default – in this case, when
an agent only has a cold and is on vacation, the rule that someone on vacation does not
have to attend should have priority over the rule that someone who has only a cold has
to attend. This inability to represent priorities in Poole’s system was Brewka’s motiva-
tion for generalizing it by introducing explicit priorities among defaults. By convention,
degree 1 corresponds to the highest priority defaults.

Definition 0. A ranked default theory T is a tuple (T1, . . . , Tn) where each Ti is a set
of classical first-order (possibly open) formulas. Without loss of generality, we assume
that all formulas appearing in T are different.1

The meeting example is expressed as

T1 = { cold → sick, vacation → ¬r1, cold → ¬r2,
r2 ∧ sick → ¬r1, r1 → meeting }

T2 = {r2}
T3 = {r1}
while the classical Tweety story is expressed as

T1 = {bird(tweety), ∀x.penguin(x) → bird(x)}
T2 = {penguin(x) → ¬flies(x)}
T3 = {bird(x) → flies(x)}
Now, it remains to define the preferred subtheories of a ranked default theory. This

beautiful yet simple notion has several equivalent characterizations, each of which can
be used as a definition. Below we give no less than six definitions; two others will come
in Section 2.

We first define a subtheory of T as a tuple S = (S1, . . . , Sn) with Si ⊆ Ti for each
i, and such that ∪iSi is consistent. By abuse of language, we also consider S as a subset
of T , that is, we sometimes note δ ∈ S for (δ ∈ Si for some i). The first definition we
give is Brewka’s original definition [6]. In all definitions, T = (T1, . . . , Tn) is a ranked
default theory and S = (S1, . . . , Sn) is a subtheory of T .

Definition 1 (preferred subtheories, first definition). S is a preferred subtheory of T
iff for all k = 1, . . . , n, S1 ∪ . . . ∪ Sk is a maximal consistent subset of T1 ∪ . . . ∪ Tk.

To paraphrase the definition in the author’s terms:

“(...) to obtain a preferred subtheory of T we have to start with any maximal
consistent subset of T1, add as many formulas from T2 as consistently can be
added (in any possible way), and continue this process for T3, . . . , Tn.”

This explanation does not in fact correspond to Definition 1, but to the following
equivalent, more constructive definition with a clear algorithmic flavour, which is also

1 This is without loss of generality, because if a formula appears several times, all its occurrences
except one can be rewritten into syntactically different, equivalent formulas. We could have
chosen to allow some formulas to appear several times, but then each Ti should be defined as
a multiset rather than a set, and this would be slightly more complicated.



Twenty-Five Years of Preferred Subtheories 159

the definition used for prioritized removal in prioritized base revision [25]. Given two
sets of formulas F and G, we say that G′ ⊆ G is maximal F -consistent if G′ ∪ F is
consistent and for all G′′ such that G′ ⊂ G′′ ⊆ G, G′′ ∪ F is inconsistent.

Definition 2 (preferred subtheories, second definition). S is a preferred subtheory of
T iff for all i = 1, . . . , n, Si is a maximal (S1 ∪ . . . Si−1)-consistent subset of Ti.

In the meeting example, if we add the facts F = {cold, vacation} to T1, then
meeting is not derived from the preferred subtheory F ∪ T1; but if we add only
F ′ = {cold}, then the preferred subtheory is F ′ ∪ T1 ∪ {r1}, and meeting is derived,
and if we don’t add any fact, then the preferred subtheory is T1 ∪ {r1, r2}, and again,
meeting is derived. In the Tweety example, the only preferred subtheory is T1∪T2 and
allows to derive ¬flies(Tweety).

Here is another example with more than one preferred subtheory: T = T1 ∪ T2 ∪ T3

with T1 = {a∨b, a → c}, T2 = {¬a,¬b}, T3 = {¬c}. T has two preferred subtheories:
T1 ∪ {¬a,¬c} and T1 ∪ {¬b}.

Two dual notions of provability from a default theory can be defined: given a default
theory T , formula α is strongly provable from T if for every preferred subtheory S of
T we have S |= α, and weakly provable from T if for some preferred subtheory S
of T we have S |= α. These notions come back to Rescher [29] and have been used
and discussed many times afterwards, under different names such as credulous and
skeptical inferences, in various areas such as nonmonotonic reasoning, belief revision,
inconsistency-tolerant reasoning, argumentation, and beyond (see, e.g., [9,4]). In this
short paper we focus on subtheories and won’t discuss inference again.

The third definition is the basis of Brewka’s second generalization of Poole’s system
[6], introduced for priority orders between defaults that are strict partial orders (see
Section 2.1). It says that a preferred subtheory can be obtained by consistently adding
formulas in any possible order that respects the priority relation. Given two defaults δ, δ′

of T , let r(δ) be the integer i such that δ ∈ Ti.2 A ranking of T is a bijective mapping
σ from {1, . . . , |T |} to T ; for all i ≤ |T | we note σ(i) = δi. We say that σ respects T
iff for all δi, δj ∈ T , r(δ) < r(δ′) implies i < j.

Definition 3 (preferred subtheories, third definition). S is a preferred subtheory of
T if there is a ranking σ of T respecting T , such that S = Sσ , where Sσ is defined
inductively by:

Σ0 = ∅
for i = 1, . . . , n do

if Σi−1 ∪ {δi} is consistent then
Σi = Σi−1 ∪ {δi}

else
Σi = Σi−1

end if
end for
return Sσ = Σ

2 Recall that we assumed that Ti ∩ Tj = ∅ for i �= j.
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The next definition is based on the “discrimin” order (the terminology comes from
[16]); it appears under different forms in [21] (there the definition works also for par-
tially ranked default theories), [11] (under the name “democratic”), and [19] (in the
context of soft constraint satisfaction problems).

Definition 4 (preferred subtheories, fourth definition). Let S and S′ be two subtheo-
ries of T . Define MinIndex(S\S′) = min{j|Sj \S′

j �= ∅}. We say that S is discrimin-
preferred to S′ with respect to T , denoted by S discrimin

T S′, if MinIndex(S \S′) <
MinIndex(S′ \ S). Finally, S is a preferred subtheory of T if there is no consistent
subtheory S′ of T such that S′ discrimin

T S.

The next definition we give is from [17,3].

Definition 5 (preferred subtheories, fifth definition). Let S and S′ be two subtheo-
ries of T . We say that S is preferred to S′ with respect to T , denoted by S T S′, if and
only if there is some k ≤ n such that

– for all i ≤ k, Si = S′
i;

– Sk ⊃ S′
k.

Finally, S is a preferred subtheory of T if there is no subtheory S′ of T such that
S′ T S.

The last definition is semantical, as it is based on a preference relation over inter-
pretations. Let PS be the set of propositional symbols on which the formulas of T are
defined. Given an interpretation I ∈ 2PS , and a default theory, we define Sat(Ti, I) =
{δ ∈ Ti | I |= δ} and Sat(T, I) = (Sat(T1, I), . . . , Sat(Tn, I)). Note that Sat(T, I)
is a subtheory of T .

Definition 6 (preferred subtheories, sixth definition). Given two interpretations I,
I ′ ∈ 2PS , we say that I is preferred to I ′ with respect to T , denoted by I T I ′, if and
only if there is some k ≤ n such that

– for all i ≤ k, Sat(Tk, I) = Sat(Tk, I
′).

– Sat(Ti, I) ⊃ Sat(Ti, I
′).

Finally, I is a preferred model with respect to T iff there is no I ′ such that I ′ T I ,
and S is a preferred subtheory of T if there exists a preferred model I with respect to T
such that Sat(T, I) = S.

Proposition 1. Definitions 1, 2, 3, 4, 5 and 6 are equivalent.

This result is more or less a “folklore” result3, in the sense that most equivalences
are already known without there being an well-identified reference for them. Still,
some equivalences have been proven in [3,16] (and probably elsewhere, I apologize

3 Ulrich Junker made me notice that “folklore” may be understood by some people in a pejo-
rative way (e.g., for unproven claims). It should be clear that the meaning I give here to this
word is the same as there:
http://en.wikipedia.org/wiki/Mathematical_folklore

http://en.wikipedia.org/wiki/Mathematical_folklore


Twenty-Five Years of Preferred Subtheories 161

for missed references). I however give a proof (in Appendix), not only for the sake
of completeness, but also because I cannot see a place where all these definitions are
assembled and proven equivalent.

While the notion of preferred subtheory is based on set inclusion, there is a natural
variant, defined in [3], based on cardinality. Our definition is a variant of the second
definition of a preferred subtheory. If X and Y are two sets of formulas, a maxcard
X-consistent subset of Y is a X-consistent subset Z of Y such that for all Z ′ ⊆ Y , Z ′

is X-consistent implies |Z ′| ≤ |Z|.
Definition 7 (cardinality-preferred subtheories, first definition). S is a C-preferred
subtheory of T iff for all k = 1, . . . , n, Si is a maxcard (S1∪. . . Si−1)-consistent subset
of Ti.

Again we have equivalent definitions, but less than for preferred subtheories. The
second definition has been proposed by [17,3] under the name “lexicographic preferred
subbases” and in [24] under the name “lexicographic closure”.

Definition 8 (cardinality-preferred subtheories, second definition). S is a C-
preferred subtheory of T if there is no subtheory S′ of T such that S′ C

T S, where
S′ C

T S if for some k ≤ n we have

– for all i ≤ k, |Si| = |S′
i|;

– |Sk| > |S′
k|.

Definition 9 (cardinality-preferred subtheories, third definition). Define I ′ C
T I if

and only if there is some k ≤ n such that

– for all i ≤ k, |Sat(Ti, I)| = |Sat(Ti, I
′)|.

– |Sat(Tk, I)| > |Sat(Tk, I
′)|.

Then S is a C-preferred subtheory of T if S = Sat(T, I) for some C-preferred model I
with respect to T , where I is C-preferred w.r.t. T if there is no I ′ such that I ′ C

T I .

Proposition 2. Definitions 7, 8 and 9 are equivalent.

This is again a “folklore” result. We omit the proof, which is similar to the proof of
Proposition 1.

While Definitions 3 and 4 do not seem to be adaptable to cardinality-preferred sub-
theories, Definition 1 can, but interestingly, leads to a more conservative notion, based
on first-order stochastic dominance:

Definition 10 (SD-preferred subtheories, first definition). S is an SD-preferred sub-
theory of T iff for all k = 1, . . . , n, S1 ∪ . . . ∪ Sk is a maxcard consistent subset of
T1 ∪ . . . ∪ Tk.

Again is is possible to give two equivalent definitions (which we omit).
Let PST (T ) be the set of preferred subtheories of T , CPST (T ) be the set of C-

preferred subtheories of T , and SDPST (T ) be the set of SD-preferred subtheories of
T . Then we have these straightforward facts:
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1. PST (T ) ⊇ CPST (T ) �= ∅.
2. if SDPST (T ) �= ∅ then CPST (T ) = SDPST (T ).

Sometimes the set of SD-preferred subtheories is empty. Let T = ({a∧b}, {¬a,¬b}).
T has a single C-preferred subtheory, namely S = ({a ∧ b}, ∅). However S is not a
SD-preferred subtheory of T , because {a∧b} is not a maxcard subset of {a∧b,¬a,¬b}.

2 What For? Where Do Priorities Come From?

One key question is, where do these priorities come from, what do they correspond to?
As we will see below, there is not a single but a lot of different interpretations of prior-
ities, in various domains of knowledge representation, reasoning, and decision making,
which in turn correspond to various understandings of preferred subtheories. I will re-
view here several such interpretations – no less then five, and I’m sure I forget some.
Two of these interpretations will allow us to derive new equivalent characterizations of
preferred subtheories, in case the reader would think we don’t have enough with the six
already stated.

2.1 Default Reasoning

The interpretation that Brewka had in mind in [6] was default reasoning. Priorities there
correspond to a precedence order bearing on the application of default rules, and allow-
ing to choose between multiple extensions. The examples he uses (two of which are
quoted in Section 1) are of that kind: the rule that penguins do not fly has precedence
over the rule that birds fly, in the sense that when both are “candidate for application”,
the first one should be applied first (which, here, implies that the second one will not be
applied). While [6] deals with normal defaults without prerequisites, also called super-
normal defaults, he goes further in [7] and extends the framework to normal defaults.

Brewka argues that there are two kinds of priorities: explicit and implicit priorities,
that I’d prefer to call exogeneous and endogeneous. Quoting from [7]:

A number of different techniques for handling priorities of defaults have been
developed. Two main types of approaches can be distinguished:
1. approaches which handle explicit priority information that has to be spec-

ified by the user and is not part of the logical language (...)
2. approaches which handle implicit priority information based on the speci-

ficity of defaults (...).
(...) For real world applications it seems unrealistic to assume that all relevant
priorities can be specified by the user explicitly. On the other hand, specificity
as the single preference criterion is (...) insufficient in many cases.

As a consequence, he argues that both types of priorities should be handled together
in an homogeneous way.

Deriving priorities from specificity relations between default rules originates in the
work on conditionals by [1] and was given more attention in a number of papers start-
ing from Pearl’s System Z [27]. This systematic construction of priorities from the
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expression of defaults is beautiful and elegant, but insufficient when the defaults are not
ordered into a single specificity hierarchy: for instance, if Δ contains δ1 = birds fly, δ2
= birds that can be seen in Antarctica don’t fly, δ3 = birds that can be seen in Antarctica
because they escaped from a ship fly, δ4 = birds that can be seen in Antarctica because
they escaped from a ship but had their wings broken during the trip don’t fly, δ5 = lions
eat meat, δ6 = vegetarian lions don’t eat meat, then System-Z will produce the following
ranking: δ4 ∼ δ6 > δ3 ∼ δ5 > δ2 > δ1. While it does make sense to order δ4, δ3, δ2
and δ1 this way, and similarly, to rank δ6 over δ5, does it make sense to give δ5 and δ3
the same rank, and a fortiori, that δ5 should have priority over δ2? Of course not: either
the order between {δ1, δ2, δ3, δ4} and {δ5, δ6} should be given exogeneously (by some
expert in zoology, for instance), or there should be no order between them. For this, a
generalization of preferred subtheories to partially ordered defaults is proposed in [6]. It
is a generalization of Definition 3: instead of starting from a complete weak order over
defaults, we start from a partial order > between defaults and we say that a bijective
mapping σ from {1, . . . , |T |} to T respects (T,>) iff for all δ, δ′ ∈ T , δ > δ′ implies
σ−1(δ) < σ−1(δ′). The rest of the definition is unchanged.

2.2 Goal-Based Preference Representation

So far we considered a ranked base as being composed of beliefs; these beliefs may
take the form of facts with some degree of reliability, facts that persist through time
with some degree of certainty (see further), rules with possible exceptions, actions with
normal and exceptional effects, and so on, but in all cases they deal with an agent’s
doxastic and epistemic state (her beliefs, her knowledge). Now, ranked bases can also be
used with a totally different meaning, so as to express the preferential state of an agent,
that is, her preferences, goals, desires. The difference between beliefs and preferences
is paramount to decision theory – in standard decision theory, beliefs are expressed by
probability distributions over states of the world whereas preferences are expressed by
utility values over possible consequences of the acts.

Because of this, in this subsection we change the terminology – and notation. A
ranked goal base, or prioritized goal base, is defined exactly as a stratified belief base:
it is a tuple (G1, . . . , Gn) where each Gi is a set of classical formulas, representing the
agent’s goals of priority degree i – with the convention that lower indexes correspond
to more important goals.

Prioritized goals bases prove to be a very efficient way of representing succinctly
preferences over combinatorial domains of solutions to a decision problem. Let me
quote [8]:

“By a solution we mean an assignment of a certain value d to each variable
v in given set of variables V such that d is taken from the finite domain of
v. (...) [In] the Boolean case where the values for each variable are true or
false (...), solutions (...) correspond to interpretations in the sense of classical
propositional logic. (...)
We are (...) looking for ways of specifying preferences among such models in
a concise yet flexible way. (...)
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The number of models is exponential in the number of variables. For this reason
it is, in general, impossible for a user to describe her preferences by enumer-
ating all pairs of the preference relation among models. This is where logic
comes into play.”

Using prioritized bases for succinct preference representation has been discussed in
a few papers that all appeared around the same time: [8] defines a general rank-based
preference representation language (see further); [22] focuses on the complexity of the
computational tasks; and [12] on the expressivity and the succinctness of these lan-
guages. Note that here we are no longer interested in preferred subtheories themselves,
but in the preference relation between solutions: again quoting [8],

“Traditionally, logic is used for proving theorems. Here, we are not so much
interested in logical consequence, we are interested in whether a model satisfies
a formula or not.”

Thus, the definition that makes most sense here is the sixth one, which we rewrite
here into: I G I ′ if and only if there is some k ≤ n such that Sat(Gk, I) ⊃
Sat(Gk, I

′) and for all i ≤ k, Sat(Gi, I) = Sat(Gi, I
′). Moreover, I ∼G I ′ if and

only if Sat(Gi, I) = Sat(Gi, I
′) for all i ≤ n, and I �G I ′ if I G I ′ or I ∼G I ′.

The two cardinality-based notions are now rewritten as follows:

– I ′ C
T I if and only if there is some k ≤ n such that |Sat(Gk, I)| > |Sat(Gk, I

′)|
and for all i ≤ k, |Sat(Gi, I)| = |Sat(Gi, I

′)|. Moreover, I ∼C
G I ′ if and only if

for all i ≤ n, |Sat(Gi, I)| = |Sat(Gi, I
′)|; and I �C

G I ′ if I C
G I ′ or I ∼C

G I ′.
– I ′ �SD

G I if and only if for all k ≤ n, |Sat(G1 ∪ . . . ∪Gk, I)| ≥ |Sat(G1 ∪ . . . ∪
Gk, I

′)|.
The following implications are parts of the “folklore”: I ′ �SD

G I implies I ′ �C
G I ,

and I ′ �G I implies I ′ �C
G I . Note also that �C

G is a complete weak order, whereas
�G and �SD

G are partial orders.
These three ways of deriving a preference relation from a prioritized goal base can

be characterized utility-theoretically. Given a goal base G = (G1, . . . , Gn) with Gi =
{gji , j = 1, . . . ,mi}, we say that (uj

i |i = 1, . . . , n; j = 1, . . . ,mi), where each uj
i is a

strictly positive real number, is a utility vector for G.
Given a utility vector u for G, and an interpretation I , define

uG(I) =
∑{

uj
i | i ≤ n; j ≤ mi; I |= gji

}
,

that is, each goal induces a fiwed reward if it is satisfied by I , and 0 if not.
We now consider three restrictions on utility vectors. A utility vector u for G is

– uniform if for all i ≤ n and all j, j′ ≤ mi, we have uj
i = uj′

i .
– faithful if for all i < k ≤ n, j ≤ mi, l ≤ mk, we have uj

i > ul
k.

– big-stepped if for all i ≤ n and all j ≤ mi, we have uj
i >

∑n
k=i+1

∑mk

l=1 u
l
k.

Note that any big-stepped vector is faithful.4 The next result gives one more charac-
terization of preferred subtheories and its two variants.

4 The terminology “big-stepped” comes from [15].
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Proposition 3. Let G be a goal base and I, I ′ two interpretations.

1. I G I ′ if and only if uG(I) > uG(I
′) holds for all big-stepped vectors u for G.

2. I C
G I ′ if and only if uG(I) > uG(I

′) holds for all uniform and big-stepped
vectors u for G.

3. I SD
G I ′if and only if uG(I) > uG(I

′) holds for all uniform and faithful vectors
u for G.

Point 1 leads to a seventh definition of a preferred subtheory:

Definition 11 (preferred subtheories, seventh definition). S is a preferred subtheory
of T if and only if S = Sat(T, I) for some interpretation I such that for all big-stepped
vectors u for T , there is no I ′ such that uT (I

′) > uT (I).

Once these different semantics for defining a preference relation from a prioritized
goal base are defined, they can be combined: [8] defines a language allowing to express
Boolean combinations of prioritized goals bases, possibly with different semantics.

Since prioritized goal bases can be used for representing compactly preferences over
combinatorial domains, they can be used efficiently in several domains where prefer-
ence play a role and where domains are typically of this kind, such as planning [20],
game theory [5] or voting [22].

2.3 Reliability

We now come back to the primary interpretation of ranked bases as belief bases. Perhaps
the most obvious interpretation of a ranked belief base is that each formula is a piece of
information that has been provided by some unreliable source. This is also the interpre-
tation at work in prioritized merging [14], where preferred subtheories and C-preferred
subtheories are used for defining prioritized merging operators. Let B = (B1, . . . , Bn)
where Bi = {bji | j = 1, . . . ,mi}. For every formula bji in Bi we define a source σj

i

with reliability degree pji ∈ (12 , 1) for all i, j (sources have a bias towards reliability,
and no source is perfectly reliable). The reliability of a source is the likelihood that it
tells the truth about pji , that is pji = Prob(σj

i : bji | bji ) = Prob(σj
i : ¬bji | ¬bji ), where

σj
i : ϕ is the event “σj

i says ϕ”. Let σ : B be the conjunction of all events σj
i : bji : infor-

mally, B is observed if all sources give the formulas that are contained in B. Now, let
S = (S1, . . . , Sn) be a consistent subbase of B. The likelihood of observing B given
that the “true” subbase of B (the one composed of the fomulas of T that are true in the
actual world) is S is

Prob(σ : B | S) =
∏

(i,j):bji∈S

pji
∏

(i,j):bji /∈S

(1− pji )

Now we have
logProb(s : B|S) = ∑

(i,j):bji∈S log pji +
∑

(i,j):bji /∈S log(1− pji )

=
∑

(i,j)|i≤n,j≤mi
log(1− pji ) +

∑
(i,j):bji∈S log

(
pj
i

1−pj
i

)

= α+
∑

(i,j):bji∈S log
(

pj
i

1−pj
i

)

where α is a constant, independent of S. Define p as: S p S′ if and only if Prob(σ :
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B | S) ≥ Prob(σ : B | S′). Now, let uj
i = log

(
pj
i

1−pj
i

)
. We have that S p S′

if and only if
∑

(i,j):bji∈S uj
i >

∑
(i,j):bji∈S′ u

j
i ; furthermore, if S = Sat(T, I) and

S′ = Sat(T, I ′), then S p S′ if and only if u(IS) > u(IS′). This correspondence
allows to translate the conditions of Proposition 3 in probabilistic terms. Say that p is

– uniform if for all i ≤ n and all j, j′ ≤ mi, we have pji = pj
′

i .
– faithful if for all i < k ≤ n, j ≤ mi, l ≤ mk, we have pji > plk.

– big-stepped if for all i ≤ n and all j ≤ mi, we have pj
i

1−pj
i

>
∏n

k=i+1

∏mk

l=1
pl
k

1−pl
k

.

Corollary 1. Let B be a goal base and S, S′ two subbases of B.

1. S B S′ if and only if S p S′ holds for all big-stepped vectors p for B.
2. S C

B S′ if and only if S p S′ holds for all uniform, big-stepped vectors p for B.
3. S SD

B S′if and only if S p S′ holds for all uniform, faithful vectors p for B.

Point 1 leads to an eighth definition of a preferred subtheory:

Definition 12 (preferred subtheories, eighth definition). S is a preferred subtheory
of T if there is no consistent subtheory S′ of T such that S p S′ holds for all big-
stepped vector p for B.

2.4 Time, Space, Analogy

A context where prioritized defaults oocur in a natural way is that of time-stamped data
bases: there, priorities correpond to recency, and a fact observed at time t − 1 is more
likely to have persisted until t than a fact observed at time t− 2.

Example 1
now : a ∨ b
now − 1 : a → c
now − 2 : ¬a,¬b
now − 3 : ¬c

If we focus on what holds now, then this scenario gives us the ranked default theory
(T1 = {a ∨ b}, T2 = {a → c}, T3 = {¬a,¬b}, T4 = {¬c}) – with two preferred
subtheories {a∨b, a → c,¬a,¬c} and {a∨b, a → c,¬b}.. However, default persistence
does not only work forward but also backward: if a ∨ b holds now, by default it holds
also at now − 1, etc. If we focus on what holds at now − 3, we get the ranked default
theory (T1 = {¬c}, T2 = {¬a,¬b}, T3 = {a → c}, T4 = {a ∨ b}) with one preferred
subtheory T1 ∪ T2 ∪ T3. If we focus on what holds at now − 1, this becomes more
complicated: should we have the ranked default theory (T1 = {a → c}, T2 = {a ∨
b,¬a,¬b}, T3 = {¬c}), that is, should the information at now and the information
at now − 2 count equally, or should we rather have a partially ordered default theory
a → c > a∨ b, a → c > ¬a,¬b > ¬c}, and apply the second generalization of [6]? (In
both cases we get three preferred subtheories {a → c, a∨b,¬a,¬c}, {a → c, a∨b,¬b}
and {a → c,¬a,¬b,¬c}.
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Other natural examples involve reasoning about spatial observations, about case-
labelled facts (reasoning by analogy, case-based reasoning), about ontologies. A more
general framework where priorities come from distances between ‘labels’ (such as time
points, points in space, cases, classes) and where observations are labelled, is described
in [2].

2.5 Judgment Aggregation and Voting

Given a set of formulas A = {α1,¬α1, . . . , αm,¬αm} closed under negation (called
the agenda), a judgment set is a consistent subset of A containing, for all i, either αi or
¬αi, and a profile is a collection of n individual judgment sets. An (irresolute) judgment
aggregation rule maps a profile into a set of collective judgment sets. As common in
social choice, there is a tension between respecting majority and requiring consistency
of the collective judgment sets.

An interesting family of judgment aggregation rules is composed of rules that are
based on the support of a profile, that is, the vector containing, for each element of the
agenda, the number of individual judgment sets that contain it. For instance, if A =
{p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}, and P = 〈J1, J2, J3, J4, J5, J6, J7〉 where J1 = J2 =
J3 = {p, q, p∧ q}, J4 = J5 = {¬p, q,¬(p∧ q)} and J6 = J7 = {p,¬q,¬(p∧ q)}, the
support vector associated with P is sP = 〈5, 2, 5, 2, 3, 4〉. Now, define the prioritized
base T (P ) where priorities correspond to strength of support: in our example, T1(P ) =
{p, q} (support 5), T2(P ) = {¬(p ∧ q)} (support 4), T3(P ) = {p ∧ q} (support 3),
and T4(P ) = {¬p,¬q} (support 2). Given a profile P , Nehring et al. [26] define a
supermajority efficient judgment set as (reformulated in my terms) a SD-undominated
subtheory of T (P ), and define the so-called leximin judgment aggregation rule as the set
of C-preferred subtheories of T (P ), while Lang et al. [23] define the so-called ranked
agenda rule as the set of preferred subtheories of T (P ). See also [18] for a discussion
on these rules.

These connections between judgment aggregation rules and preferred theories and
their variants carry on to voting rules, which is not surprising given that preference
aggregation can be see as a specific case of judgment aggregation. The ranked pairs
voting rule [30] thus corresponds to the ranked agenda rule, when the agenda consists
of propositions of the form xPy (“x is preferred to y”), where x and y range over a
set of candidates, together with the transitivity constraint bearing on judgment sets. In
other terms, this means that the ranked pairs voting rule can be seen as a specific ap-
plication of preferred subtheories. This is is probably the first time that this connection
between this well-known voting rule (and the corresponding judgment aggregation rule)
is mentioned; interestingly, the ranked pairs rule and preferred subtheories have been
invented roughly at the same time, in two research areas that were (at the time) totally
disconnected from each other. Let me end up with an example.

Example 2. Let the set of candidates be C = {a, b, c, d} and the 38-voter profile P
consisting of 5 votes abdc (with the usual convention that abdc is a shorthand for a 
b  d  c), 7 votes cdab, 8 votes bcad, 7 votes dabc, 4 votes dcab, 3 votes cbda, 2 votes
bacd, 1 vote dbca and 1 vote acdb. The pairwise majority matrix is
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a b c d
a − 24 15 16
b 14 − 23 18
c 23 15 − 21
d 22 20 17 −

and the corresponding prioritized base is T (P ) = (T1(P ), T2(P ), . . . , T11(P ))), where
T1(P ) = Trans is the transitivity constraint, T2(P ) = {aPb}, T3(P ) = {bPc, cPa},
T4(P ) = {dPa}, T5(P ) = {cPd}, T6(P ) = {dPb}) etc. The preferred subtheories
of T (P ) are {Trans, aPb, bPc, dPa, dPb, aPc, dPc}, corresponding to the collective
ranking dabc and to the winner d, and {Trans, aPb, cPa, dPa, cPd, dPb, cPb}, cor-
responding to the collective ranking cdab and to the winner c.

Note that taking C-preferred subtheories instead of preferred subtheories leads to a
refinement of the ranked pairs rules (in our example, the sole winner for this rule is c).

3 Conclusion

We have seen that preferred subtheories and their extensions and variants have had a
tremendous impact in the Artificial Intelligence literature and beyond, and are tightly
connected to notions that have been developed independently in social choice. If I had
more pages, I could talk for instance about the computation of preferred subtheories
and inferences therefrom (e.g., [10,13]. A further question is, is logic really useful when
defining preferred subtheories? We have seen at least one example (voting) where logic
isn’t necessary at all. After all, all we use from logic is the notion of consistency. When
defining the ranked pairs voting rule, a weighted graph plays the role of the ranked base,
and acyclicity plays the role of consistency. How can we define an abstract (logic-free)
notion of preferred subtheory and what about other applications and/or connections?

Acknowledgements. Thanks to Richard Booth and Ulrich Junker for helpful com-
ments on a previous version of this paper.
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Appendix

Proof of Proposition 1

Proof. Throughout the proof, we say that S is a i-PST of T (where 1 ≤ i ≤ 6) if S is a
preferred subtheory of T according to Definition i. Let S be a subtheory of T .

– 1 ⇒ 2: Assume that S is not a 2-PST of T ; then for some i there is S′
i ⊃ Si such

that S′
i is S1 ∪ . . . ∪ Si−1-consistent. Since S1 ∪ . . . ∪ Si−1 ∪ S′

i is consistent and
S1∪ . . .∪Si−1∪Si ⊂ S1∪ . . .∪Si−1∪S′

i, S1∪ . . .∪Si is not a maximal consistent
subset of T1 ∪ . . . ∪ Ti, henceforth, not a 1-PST of T .

– 2 ⇒ 1: Assume that S is not a 1-PST of T ; then for some i, S1 ∪ . . . ∪ Si is not a
maximal consistent subset of T1 ∪ . . . ∪ Ti. Let S′

1 ∪ . . . S′
i ⊃ S1 ∪ . . . ∪ Si be a

maximal consistent subset of T1 ∪ . . . ∪ Ti and let j = min{i, Si �= S′
i}. Then S′

j

is a S1 ∪ . . . ∪ Sj−1 consistent subset of Tj , which implies that Sj is not, and that
S is not a 2-PST of T .

– 4 ⇒ 2: Assume that S is not a a 2-PST of T ; then for some i there is S′
i ⊃ Si

such that S′
i is S1 ∪ . . . ∪ Si−1-consistent. Let S′ = S1 ∪ . . . ∪ Si−1 ∪ S′

i. S
′ is a

subtheory of T and we have MinIndex(S′ \ S) = i and MinIndex(S \ S′) > i,
therefore S is not a a 4-PST of T .

– 5 ⇒ 4: Assume that S is not a 4-PST of T ; then for some S′ we have MinIndex
(S′ \S) ≤ MinIndex(S \S′). Since MinIndex(S′ \S) = MinIndex(S \S′) is
not possible, we must have MinIndex(S′ \ S) = k < MinIndex(S \ S′). Now,
for all j < k we have Sj = S′

j and S′
k ⊃ Sk, therefore S is not a 5-PST of T .

– 2 ⇒ 3: assume S is a 2-PST of T . Let us construct σ this way: σ considers first
formulas of S1 (in any order), followed by formulas in T1 \ S1 (in any order), then
S2 then T2 \S2, etc. until Tn \Sn. We show by induction on i that after considering
all formulas of Ti, we have Σt(i) = S1 ∪ . . . ∪ Si, where t(i) = |T1 ∪ . . . ∪ Ti|.
This is true for i = 1, because S1 is maximal consistent. Assume it is true for i, i.e.,
Σt(i) = S1∪ . . .∪Si. Because S is a 2-PST of T , Si+1 is (S1∪ . . .∪Si)-consistent,
therefore, all formulas of Si+1 are added, and because it is maximal (S1∪ . . .∪Si)-
consistent, none of the formulas of Ti+1 \ Si+1 are added. Therefore, at the end of

http://ideas.repec.org/p/pra//46721.html
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step t(i) Σt(i+1) = S1 ∪ . . . ∪ Si+1. Applying the induction hypothesis to i = n
leads to Sσ = Σt(n) = S: S is a 3-PST of T .

– 3 ⇒ 6: Let S be a 3-PST of T and let σ such that Sσ = S. Note that S is necessarily
maximal consistent: if there was δ ∈ T \ S such that S ∪ {δ} is consistent, then δ
would have been added to Σ when considered; therefore, there exists I such that
Sat(T, I) = S. Assume S is not a 6-PST of T : then there is I ′ T I , that is, for
some k, we have that for all i < k, Sat(Ti, I) = Sat(Ti, I

′), and Sat(Tk, I) ⊂
Sat(Tk, I

′). But then, when the defaults of Tk are considered for addition to Σ, all
formulas of Sat(Tk, I

′) \ Sat(Tk, I) should have been added, which contradicts
Sσ = S.

– 6 ⇒ 5: Assume that S is a 6-PST of T : there is an I such that Sat(T, I) = S.
Assume that S is not a 5-PST of T : then there is an S′ such that S′ T S. Because
S′ ⊂ S′′ ⊆ T implies S′ T S, there is a maximal consistent subset S′′ of T
such that S′′ T S. Let S′′ = Sat(T, I ′′): then I ′′ T I , which contradicts the
assumption that S is a 6-PST of T .

Proof of Proposition 4

Proof. 1. Assume I G I ′ and let k such that Sat(Gj , I) = Sat(Gj , I
′) for all

j < k, and Sat(Gk, I) ⊃ Sat(Gk, I
′). Let u be a big-stepped vector for G.

Let Ai =
∑{uj

i | j ≤ ni; gji ∈ Sat(Gi, I) \ Sat(Gi, I
′)} − ∑{uj

i | j ≤
ni; g

j
i ∈ Sat(Gi, I

′)\Sat(Gi, I)}. We have uG(I)−uG(I
′) =

∑
i≤n Ai. Because

Sat(Gj , I) = Sat(Gj , I
′) for all j < k, we have (1) Ai = 0 for all i < k. Because

Sat(Gk, I) ⊃ Sat(Gk, I
′), there exists some glk ∈ Sat(Gk, I) ⊃ Sat(Gk, I

′).
Because u is big-stepped, we have ul

k >
∑n

p=k+1

∑mp

q=1 u
q
p, which implies (2)

ul
k >

∑n
p=k+1 |Ap|. Now, (1) and (2) imply uG(I)−uG(I

′) = Ak+
∑

i>k Ai > 0,
that is, u(I) > u(I ′).
Conversely, assume I �G I ′. If I ∼G I ′, then clearly u(I) = u(I ′). If not, then
there is a k such that Sat(Gj , I) = Sat(Gj , I

′) for all j < k, and Sat(Gk, I
′) \

Sat(Gk, I) �= ∅. Let glk ∈ Sat(Gk, I
′) \ Sat(Gk, I). Define u as follows: ul

k =

|Bk|; for all l′ �= l, ul′
k = 1; and the other values uj

i are defined in any way such
that u is big-stepped (since we have put constraints on values concerning level k,
this is obviously possible to do so). Let Ai be defined as above. Since u is big-
stepped, we have, for all l′ �= l, ul′

k = 1 >
∑n

p=k+1

∑mp

q=1 u
l
k, which implies

−1 <
∑n

p=k+1 Ak < 1. Finally, Ak ≤ −|Bk|+
∑

j≤mk,j �=l u
j
i ≤ −1, and u(I)−

u(I ′) =
∑

i≤n Ai = Ak +
∑

i>k Ai < 0, that is, u(I) < u(I ′).
2. Assume I C

G I ′ and let k such that |Sat(Gj , I)| = |Sat(Gj , I
′)| for all j < k,

and |Sat(Gk, I)| > |Sat(Gk, I
′)|. Let u be a uniform, big-stepped vector for G,

and let uj
i = ui for all j ≤ mi. Define Ai, for all i ≤ n, as above. Then (1) for

all i < k, Ai = (2|Sat(Gi, I)| − mi).ui − (2|Sat(Gi, I
′)| − mi).ui = 0, (2)

Ak = 2|Sat(Gk, I)| − mk).uk − (2|Sat(Gk, I
′)| −mk).uk = 2(Sat(Gk, I)| −

|Sat(Gk, I
′)| > 2uk and because u is big-stepped, (3) uk >

∑n
p=k+1 |Ap|. (1),

(2) and (3) imply uG(I)− uG(I
′) > 0, that is, u(I) > u(I ′).

Conversely, assume I �C
G I ′. If I ∼C

G I ′, then clearly u(I) = u(I ′). If not, then,
because C

G is total, we have I ′ C
G I , which using the first part of the proof,

implies that for all uniform, big-stepped u for G, we have u(I) < u(I ′).
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3. Assume I SD
G I ′. Then for all i ≤ n,

∑
j≤i |Sat(Gj , I)| ≥

∑
j≤i |Sat(Gj , I),

and for some k, (1)
∑

j≤k |Sat(Gj , I)| >
∑

j≤k |Sat(Gj , I). Let u be uniform
and faithful. Let αi = |Sat(Gi, I)| and βi = |Sat(Gi, I

′)|. Let V (resp. W ) be
the multiset containing αi (resp. βi) occurrences of ui for all i, and reorder V and
W non-increasingly, that is, V = {v(1), . . . , v(p)} and W = {w(1), . . . , w(q)} with
v(1) ≥ . . . ≥ v(p) and w(1) ≥ . . . ≥ w(q). I SD

G I ′ and the faithfulness of u imply
p ≥ q and for all i, v(i) ≥ w(i). Finally, together with (1) they imply that there is a
j such that v(i) > w(i). Now, u(I)− u(I ′) =

∑q
i=1(v(i) −w(i)) +

∑p
i=q+1 v(i) is

a sum of positive terms, with at least one strictly positive term, therefore, u(I) >
u(I ′).
Conversely, assume I �SD

G I ′. If I ∼SD
G I ′, then I ∼C

G I ′ and u(I) = u(I ′). If not,
then there is some k such that

∑
j≤k |Sat(Gj , I)| <

∑
j≤k |Sat(Gj , I). Define the

uniform, faithful vector u as ui = i + (k − i)ε for all i ≤ k and ui = (i − k).ε
for all i > k, where ε < 1

k|G| . Then u(I ′) − u(I) > 1 −∑
i<k |Gi|(k − 1)ε > 0,

therefore, u(I) < u(I ′).



A Fuzzy Set Approach to Expressing

Preferences in Spatial Reasoning

Hans W. Guesgen

Massey University, Palmerston North, New Zealand
h.w.guesgen@massey.ac.nz

Abstract. The way we use spatial descriptions in many everyday situa-
tions is of a qualitative nature. This is often achieved by specifying spatial
relations between objects or regions. The advantage of using qualitative
descriptions is that we can be less precise and thereby less prone to mak-
ing an error. For example, it is often easier to decide whether an object
is inside another object than to specify exactly where the first object
is with respect to the second one. In artificial intelligence, a variety of
formalisms have been developed that deal with space on the basis of rela-
tions between objects or regions that objects might occupy. One of these
formalisms is the RCC theory, which is based on a primitive relation,
called connectedness, and uses a set of topological relations, defined on
the basis of connectedness, to provide a framework for reasoning about
regions. This paper discusses an extension of the RCC theory based on
fuzzy logic, which enables us to express preferences among spatial de-
scriptions.

1 Introduction

The ability to reason about space plays a significant role in everyday life. There
are many ways of dealing with spatial and temporal information, but it can
be argued that humans often do so in qualitative way. It is therefore not a
surprise that researchers in computer science, particularly artificial intelligence,
have developed qualitative spatial reasoning methods to mimic how humans
reason about space and time.

One of the early approaches [11] is based on Allen’s temporal logic [1]. It ex-
tends this logic to the three dimensions of space by applying very simple meth-
ods for constructing higher-dimensional models. Other approaches to qualitative
spatial reasoning followed and addressed aspects of space such as topology, di-
rection, and distance. It is beyond the scope of this chapter to name them all
or to even find a representative sample. We therefore rather refer the reader to
Ligozat’s book on spatial and temporal reasoning [16], which provides a good
overview of the various approaches to reasoning about space and time.

The approach that this chapter is based on, the RCC theory, has gained
particular interest in the research community in the past twenty years [17]. It is a
first-order theory based on a primitive relation called connectedness. The theory
uses a number of topological relations, defined on the basis of connectedness, to

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 173–185, 2015.
c© Springer International Publishing Switzerland 2015
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Point outside the region

Vague point

Point in the region

Fig. 1. A vague region represented by two crisp regions (the egg and the yolk)

provide a framework for reasoning about regions. Of particular interest is the
RCC8 theory, which restricts the topological relations to eight jointly exhaustive
and pairwise disjoint relations.

The original RCC theory assumes that regions are well defined, which is not
always the case. For example, it is almost impossible to specify exactly the
boundary of a forest region, or which part of a country counts as the northern
part. In most cases, this is a matter of preference and might vary from observer
to observer.

To address this issue, the RCC theory has been extended to cope with uncer-
tainty in spatial representations, in particular vague or indeterminate boundaries
[6]. The extension, called the egg-yolk theory, uses two crisp regions, the egg and
the yolk, to characterise a vague region. All points within the yolk are considered
to be in the region, whereas all points outside the egg are outside the region.
The white characterises the points that may or may not belong to the region
(see Figure 1).

When interpreting descriptions that contain elements of uncertainty, we are
often confronted with the question of what the preferred interpretations are in a
particular scenario. In the late eighties, Brewka [4] introduced a framework for
expressing preferred subtheories in default logic. This work has been widely cited
and has inspired similar approaches in other areas, including the one introduced
in this chapter.

Our approach utilises the neighbourhood structure that is inherent in the
RCC8 theory and defines fuzzy sets for the relations between regions based
on this neighbourhood structure. Our approach is related to the one described
in [19], which also introduces fuzzy sets into the RCC theory. However, they
do not use the neighbourhood structure but replace the primitive relation of
connectedness by a fuzzy relation. They then generalise the definitions of the
other RCC relations accordingly. Our approach is to some degree also related to
[8], which uses the concept of 9-intersection instead of the RCC theory as basis.
They do not use fuzzy logic, but they utilise a structure similar to the RCC8
neighbourhood structure, called the closest topological relationship graph, to
deal with indeterminate boundaries. There is also some overlap with the work
described in [3], where fuzzy spatial relationships are used for image processing
and interpretation.

The chapter is organized as follows. We start with a brief review of the RCC
theory and its extension to regions with indeterminate boundaries. We then show
a way of associating fuzzy sets with the relations in the RCC theory. This enables
us to express preferences among the relations in situations where the boundaries
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Fig. 2. The relations between two rectangles with respect to the x-axis and y-axis,
where d denotes the Allen relation during, which is interpreted as inside in the spatial
domain. The relations suggest that one rectangle is inside the other rectangle, which
in fact is not the case.

of the regions are not precisely defined. After that, we sketch an algorithm to
reason about these fuzzy sets. Finally, we demonstrate how the same approach
can be used for reasoning in dynamic environments, i.e., environments where
regions can move and change their shape. The aim here is to express preferences
among the possible movements and deformations.

2 The RCC Theory Revisited

The idea of using relations to reason about spatial information dates back at
least to the eighties [11], when Allen’s temporal logic [1] was extended to three-
dimensional space. The problem with this approach is that it often leads to
counterintuitive results, in particular if rectangular objects are not aligned to
the chosen axes (see Figure 2).

The RCC theory [17] avoids this problem by using topological properties to
define the relation between two regions. The basis of the RCC theory is the
connectedness relation, which is a reflexive and symmetric relation, satisfying
the following axioms:

1. For each region X : C(X,X)
2. For each pair of regions X , Y : C(X,Y ) → C(Y,X)

From this relation, additional relations can be derived, which include the eight
jointly exhaustive and pairwise disjoint RCC8 relations shown in Figure 3:

RCC8 = {DC,EC,PO,EQ,TPP,TPPi,NTPP,NTPPi}
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Relation/Interpretation Illustration

DC(X,Y)

X disconnected from Y

��

��
X

��

��
Y

EC(X,Y)

X externally connected to Y

��

��
X

��

��
Y

PO(X,Y)

X partially overlaps Y

��

��
X

��

��

Y

EQ(X,Y)

X identical with Y ��

��
X
Y

TPP(X,Y)

X tangential proper part of Y ��

�	
Y

��

��
X

TPPi(X,Y)

Y tangential proper part of X ��

�	
X

��

��
Y

NTPP(X,Y)

X nontangential proper part of Y ��

�	
Y

��

��
X

NTPP(X,Y)

Y nontangential proper part of X ��

�	
X

��

��
Y

Fig. 3. An illustration of the RCC8 relations
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Reasoning about space is achieved in the RCC theory by applying a com-
position table to pairs of relations, similar to the composition table in Allen’s
logic. Given the relation R1 between the regions X and Y , and the relation R2

between the regions Y and Z, the composition table determines the relation R3

between the regions X and Z, i.e., R3 = R1 ◦R2. In the case of a set of regions X
with more than three regions, the composition table can be applied repeatedly
to three-element subsets of X until no more relations can be updated, resulting
in a set of relations that is locally consistent.

3 Expressing Preferences of Spatial Relations

Reasoning about space often has to deal with some form of uncertainty. For
example, when we talk about a region like a forest, we usually do not know
exactly where the boundary is for that region. Nevertheless, we are perfectly
capable to reason about such a region: If we hear on the radio that a fire is
spreading towards the forest, we can estimate when the fire “connects” with the
forest, although we might not be able to decide with certainty whether the fire is
still disconnected from (DC), externally connected to (EC), or already partially
overlapping (PO) the forest. However, we usually prefer some relation over others
when making such an estimate.

[15] introduces an extension to the RCC theory, called the egg-yolk theory,
which deals with imprecision in spatial representations by using two crisp regions
to characterise an imprecise region. One of these regions is called the yolk, the
other one the egg. All points within the yolk are considered to be in the region,
whereas all points outside the egg are outside the region. The white (i.e., the
egg without the yolk) characterises the points that may or may not belong to
the region.

The egg-yolk theory uses a set of five base relations, called RCC5, instead of
the eight base relations in RCC8:

RCC5 = {DR,PO,EQ,PP,PPi}

Given two imprecise regions X̃ and Ỹ , the RCC5 relations are used to describe
the relationship between (1) the egg of X̃ and the egg of Ỹ , (2) the yolk of X̃

and the yolk of Ỹ , (3) the egg of X̃ and the yolk of Ỹ , and (4) the yolk of X̃

and the egg of Ỹ , resulting in 46 possible relationships between X̃ and Ỹ .
As [15] points out, it is possible to use more than two regions to describe

an imprecise region. We follow this idea here and combine it with an approach
that we used before to introduce imprecise reasoning into Allen’s logic. The
approach is based on the concept of conceptual neighbourhoods, which was first
introduced in [9] for Allen relations and later applied to the RCC theory [5,6].
An alternative would have been to use the lattice structure of the RCC relations,
but this would have resulted in a more complex framework.
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Fig. 4. The RCC8 relations arranged in a graphs showing the conceptual neighbours

4 Conceptual Neighbourhoods and Fuzzy Sets

Two relations on regions X and Y are conceptual neighbours if the shape of X
or Y can be continuously deformed such that one relation is transformed into
the other relation without passing through a third relation. Figure 4 shows the
conceptual neighbours for the RCC8 relations.

The notion of conceptual neighbours can be used to introduce imprecision
into reasoning about spatial relations [12]. For that purpose, we first represent
each RCC8 relation by a characteristic function as follows:

μR : RCC8 −→ {0, 1}

The function yields a value of 1 if and only if the argument is equal to the RCC8
relation denoted by the characteristic function:

μR(R
′) =

{
1, if R′ = R
0, else

The next step towards the introduction of imprecision is to transform the
RCC8 relations into fuzzy sets. In general, a fuzzy set Ã of a domain D is a set
of ordered pairs, (d, μÃ(d)), where d is an element of the underlying domain D

and μÃ : D → [0, 1] is the membership function of Ã. In other words, instead of
specifying whether an element d belongs to a subset A of D or not, we assign a
grade of membership to d. The membership function replaces the characteristic
function of a classical subset of D.

In analogy to the intersection, union, and complement of crisp sets, we can
define similar operations for fuzzy sets. [20] defines these as follows. Given two
fuzzy sets Ã1 and Ã2 with membership functions μÃ1

(d) and μÃ2
(d), respectively,
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then the membership function of the intersection Ã3 = Ã1 ∩ Ã2 is pointwise
defined by:

μÃ3
(d) = min{μÃ1

(d), μÃ2
(d)}

Analogously, the membership function of the union Ã3 = Ã1 ∪ Ã2 is pointwise
defined by:

μÃ3
(d) = max{μÃ1

(d), μÃ2
(d)}

The membership grade for the complement of a fuzzy set Ã, denoted as ¬Ã, is
defined in the same way as the complement in probability theory:

μ¬Ã(d) = 1− μÃ(d)

[20] stresses that this is not the only scheme for defining intersection and
union of fuzzy sets, and that it depends on the context which scheme is the most
appropriate. While some of the schemes are based on empirical investigations,
others are the result of theoretical considerations [7,14].

In the context of the RCC8 relations, this means that each RCC8 relation
is represented as a set of pairs, each pair consisting of an element of RCC8
(which is the underlying domain) and the value of the characteristic function of
the relation applied to that element. For example, if two regions X and Y are
externally connected (i.e., EC(X,Y )), we use the characteristic function of the
relation EC to convert this statement into the following:

{(R, μEC(R)) | R ∈ RCC8}(X,Y ) =
{(EC, 1), (DC, 0), (PO, 0), . . .}(X,Y )

Instead of having two classes, one with the accepted relations where μEC results
in 1 and another with the discarded relations where μEC results in 0, we now
assign acceptance grades (or membership grades, to use the term from fuzzy set
theory) to the relations. If the relation is EC, we assign a high membership grade,
say 1 ≥ α0 ≥ 0; if the relation is a neighbour of EC, we choose a membership
grade α1 with α0 ≥ α1 ≥ 0; if the relation is a neighbour of a neighbour of EC,
we assign a grade α2 with α1 ≥ α2 ≥ 0; and so on.

Since there is no general formula for determining α0, α1, α2, . . . ,, choosing the
right grade for each degree of neighbourhood can be a problem. On the other
hand, there are experiments showing that fuzzy membership grades are quite
robust, which means that it is not necessary to have precise estimations of these
grades [2]. The explanation given for this observation is twofold: first, fuzzy
membership grades are used to describe imprecise information and therefore do
not have to be precise, and second, each individual fuzzy membership grade plays
only a minor role in the whole reasoning process, as it is usually combined with
several other membership grades. If the membership grades are combined using
the min/max combination scheme, as it is the case in the rest of this paper, we
do not even need numeric values for the alphas. In this case, reasoning can be
performed on symbolic values, provided that there is a total order on the alphas.

Non-atomic RCC8 relations (i.e., disjunctions of RCC8 relations) can be trans-
formed into fuzzy RCC8 relations by using the same technique. A non-atomic
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Fig. 5. The assignment of membership grades to the RCC8 relations with EC(X,Y ) as
reference relation

RCC8 relation is given by a set of atomic RCC8 relations, which is interpreted
in a disjunctive way. We therefore transform each atomic relation in the set into
a fuzzy RCC8 relation and compute the fuzzy union of the resulting sets. There
are different ways of computing the union of fuzzy sets. Here, we choose the one
introduced in [20], which associates with each element in the resulting fuzzy set
the maximum of the membership grades that the element has in the original
fuzzy sets.

Formally, a fuzzy RCC8 relation R̃ can be defined by using a function Δ that
denotes the conceptional distance between the relation R and a relation R′, i.e.,
Δ results in 1 if R is a neighbour of R′, in 2 if R is a neighbour of a neighbour
of R′, and so on:

Δ : RCC8× RCC8 −→ {0, 1, 2, . . .}
Δ can be defined recursively as follows:

1. If R = R′, then
Δ(R,R′) = 0

2. Otherwise,
Δ(R,R′) = min{Δ(R,R′′) + 1 | R′′ neighbour of R′}

Given a sequence of membership grades, 1 ≥ α0 ≥ α1 ≥ α2 ≥ · · · ≥ 0, the
function Δ can be used to associate RCC8 relations with membership grades,
depending on some given RCC8 relation R (see Figure 5 for an example). In
particular, we can define a membership function μR̃ as follows:

μR̃ : RCC8 −→ [0, 1]

μR̃(R
′) = αΔ(R,R′)
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With this definition, the fuzzy RCC8 relation R̃ of a relation R ∈ RCC8 is given
by the following:

R̃ = {(R′, μR̃(R
′)) | R′ ∈ RCC8}

We now extend the formulation of RCC8 relations as characteristic functions
to the composition of RCC8 relations, starting again with crisp relations and
continuing with fuzzy relations. In the crisp case, the composition table can be
represented as a set of characteristic functions of the following form:

μR1◦R2 : RCC8 −→ {0, 1}
The function yields a value of 1 for arguments that are elements of the corre-
sponding entry in the composition table; otherwise, a value of 0:

μR1◦R2(R) =

{
1, if R ⊆ R1 ◦ R2

0, else

For example, if R1 = EC and R2 = TPPi, then the characteristic function of the
relation R1 ◦ R2 = EC ◦ TPPi = {EC,DC} is defined as follows:

μEC◦TPPi(R) =
{
1, if R ∈ {EC,DC}
0, else

Adopting the min/max combination scheme from fuzzy set theory, we can

now define the fuzzy composition R̃1 ◦ R̃2 of two fuzzy RCC8 relations R̃1 and R̃2

as the following fuzzy RCC8 relation:

{(R, μR̃1◦R̃2
(r)) | R ∈ RCC8}

where μR̃1◦R̃2
is given by the following:

μR̃1◦R̃2
(r) = max

R′
1,R

′
2∈RCC8

μR′1◦R′2 (r)=1

{min{μR̃1
(R′

1), μR̃2
(R′

2)}}

The advantage of using the min/max combination scheme, rather than one of
the other schemes proposed in the literature [7,14], is that we can use qualitative
instead of numeric values for α0, α1, α2 . . .

The fuzzy composition of relations plays a central role in a number of algo-
rithms for reasoning about fuzzy RCC8 relations. One of these algorithms is an
Allen-type algorithm for computing local consistency in networks of fuzzy RCC8
relations. Input to this algorithm is a set of regions and a set of (not necessar-
ily atomic) fuzzy RCC8 relations. The aim of the algorithm is to transform the
given relations into a set of relations that are consistent with each other. This is
achieved through an iterative process that repeatedly looks at three regions X ,
Y , and Z, and their fuzzy relations R̃1(X,Y ), R̃2(Y, Z), and R̃3(X,Z), computes
the composition of two of the relations, and compares the result with the third
relation:

R̃3(X,Z) ← R̃3(X,Z) ∩ [R̃1(X,Y ) ◦ R̃2(Y, Z)]
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Unlike Allen’s original algorithm, the fuzzy version of the algorithm does
not make a yes–no decision about whether a relation is admissible or not, but
computes a new membership grade for that relation. The new membership grade
is compared with the initial membership grade of the relation. If the new grade
is smaller than the initial grade, the membership grade of the relation is updated
with the new grade.

Figure 6 shows pseudocode for the extended algorithm. A more elaborate
discussion of the algorithm can be found in [13].

Fuzzy RCC8 Algorithm

– Let R̃ be a set of fuzzy RCC8 relations between regions {X1, X2, . . . , Xn}.
– While R̃ is not empty:

1. Select a relation R̃(Xi, Xj) ∈ R̃
2. R̃ ← R̃ − {R̃(Xi, Xj)}
3. For k ∈ {1, . . . , n} with k �= i, j:

R̃(Xk, Xj) ← R̃(Xk, Xj) ∩ [R̃(Xk, Xi)◦R̃(Xi, Xj)]

If R̃(Xk, Xj) changed, then R̃ ← R̃ ∪ {R̃(Xk, Xj)}
R̃(Xi, Xk) ← R̃(Xi, Xk) ∩ [R̃(Xi, Xj)◦R̃(Xj , Xk)]

If R̃(Xi, Xk) changed, then R̃ ← R̃ ∪ {R̃(Xi, Xk)}

Fig. 6. Fuzzy version of Allen’s algorithm for the RCC8 relations. Without loss of
generality, we assume that R̃(Xi, Xj) is defined for every i, j ∈ {1, 2, . . . , n} with i �= j,
possibly as universal relation {(DC, 1), (EC, 1), (PO, 1), . . .}.

Research in the area of spatio-temporal reasoning has shown that Allen’s
algorithm in general only computes local consistency. To obtain a globally con-
sistent network of relations, additional methods have to be used, which usually
involves some form of backtracking in the non-fuzzy case. In networks with fuzzy
relations, we are seeking some level of optimality, which means that a plain back-
tracking algorithm is insufficient. Instead, the algorithm must continue after a
consistent instantiation is found, if this instantiation is not ‘good enough’ (in
terms of the membership grades of the instantiation). One way to achieve this
goal is by applying an optimization technique like branch and bound [10], which
operates in the same way as backtracking search with some variations:

1. The best instantiation so far is recorded.
2. A search path is abandoned when it is clear that it cannot lead to a better

solution.
3. Search stops when all search paths have been either explored or abandoned,

or when a perfect instantiation has been found.
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5 From Static to Dynamic Spatial Environments

We will show now how the same approach can be used to model situations
where regions are not static but can change over time. For example, a glacier
usually changes its shape and size over time, or a river its width as the season
changes. A fire, which previously had not spread over a residential area, might
after some time overlap that area. These situations require the ability to model
movement and deformation of regions and to express preferences among the
possible movements and deformations.

Movement and deformation is closely related to the notion of direction. The
idea of incorporating directions into a static spatial theory is not new. [18], for
example, introduces the directed interval algebra, which uses 26 base relations to
describe the relationship between two directed intervals. However, this approach
cannot directly be applied to the RCC theory, because movement or deformation
is not aligned to a particular axis in this theory (see Figure 7).

Intervals Regions

—– x —–>
—– y —–>

<—– x —–
—– y —–>

—– x —–>
<—– y —–

X
Y

X
Y

X
Y

X
Y

Fig. 7. All possible movements/deformations in the directed interval algebra for the
meets relation as opposed to some examples of movements/deformations in the RCC
theory for the EC relation

A purely qualitative approach to modeling movements or deformations of
regions in the RCC theory, similar to the one used in the directed interval algebra,
would lead to descriptions that are too coarse to make meaningful inferences. On
the other hand, precise mathematical descriptions of movements or deformations
are often too complex. In the following, we suggest a formalism that is more
powerful than the analog of the directed interval algebra for regions and, at the
same time, computationally less expensive than a precise mathematical one.

The approach taken here is again based on the notion of conceptual neigh-
bours. Given a particular relation between two regions X and Y , this relation
may change due to movement or deformation of the regions. However, it is likely
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that the new relation is a conceptual neighbour of the original relation, or if this
it not the case, at least a neighbour of the neighbour of the original relation, and
so on. To quantify this fact, we replace the original relation again with a fuzzy
set, but this time take the expected movement or deformation into consideration.

For example, if two regions X and Y are externally connected (i.e., EC(X,Y ))
and moving towards each other, we would assume that neither DC(X,Y ) nor
EC(X,Y ) can be observed in the next time instance, but all the other relations
are plausible with decreasing membership grades 1 ≥ α0 ≥ α1 ≥ α2 · · · ≥ 0.
Figure 8 illustrates this observation.
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Fig. 8. The assignment of membership grades to the RCC8 relations with EC(X,Y ) as
reference relation

Once the preferred alpha values have been chosen, we can reason about the
fuzzy sets by applying the same algorithm as in the previous section.

6 Conclusion

This chapter looked at a particular approach to qualitative spatial reasoning,
namely the RCC theory, and showed how preferences can be expressed in this
theory by utilising fuzzy set theory. The reason for looking at qualitative spatial
reasoning is that qualitative descriptions can be less precise and thereby less
prone to making errors. It can also be argued that qualitative descriptions are
more adequate from the cognitive point of view, since the way humans use spatial
descriptions in many everyday situations is of a qualitative nature.

The theory that we have looked at in this chapter focuses on topological rela-
tions among objects. Topology is only one aspect relevant in spatial reasoning;
other aspects are orientation and distance. There are various theories for these,
and it would be interesting to explore whether similar fuzzification techniques
can be applied to them as well.
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Upside-Down Preference Reversal:

How to Override Ceteris-Paribus Preferences?�
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Abstract. Decision making may involve multiple viewpoints which are
comparing the given options according to different preference relations.
The paper studies questions that arise when multiple viewpoints are
merged into a single one. It shows how more specific preference state-
ments over the merged viewpoint can override ceteris-paribus preferences
resulting from aggregating the preferences of the individual viewpoints.

1 Introduction

Preferences guide decision making and guarantee that choice behaviour is consis-
tent in recurrent situations. Decision scientists use preference models to explain,
predict, and improve human and organizational decision making. Those prefer-
ence models include quantitative (cardinal) preferences such as numeric utilities
as well as qualitative (ordinal) preferences such as complete preorders.

A preference model is based on basic principles (axioms). Examples are the
transitivity of the preference order and the ceteris-paribus principle, which says
that a preference over (a group of) attributes is valid as long as the values of
other attributes remain the same. For example, if Chris prefers meat to fish, all
else equal, then Chris will prefer meat with beer to fish with beer and Chris will
prefer meat with wine to fish with wine.

The ceteris-paribus principle appears to be quite natural and not very re-
strictive. Combined with transitivity, it can nevertheless lead to strong results.
Suppose that Chris and Pam want to have a dinner together while respecting
their combined ceteris-paribus preferences. If Pam prefers beer to wine, all else
equal, then Pam will prefer meat with beer to meat with wine and Pam will
prefer fish with beer to fish with wine. By transitivity, Chris and Pam will prefer
meat with beer to fish with wine. If a preference relation rigorously respects
given axioms, it thus is possible to deduce new preferences from given ones.

But what if Chris and Pam don’t agree to those conclusions? Perhaps they
prefer meat to fish and beer to wine individually, but they prefer the combination
of fish and wine to the combination of meat and beer. Is there a way to relax the
ceteris-paribus principle in certain circumstances and to reverse its conclusions?

A previous work [6] studies the effects of discovering new criteria when con-
structing a preference relation and the effects of combining preference relations
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over different sets of attributes. The ceteris-paribus principle is applied by de-
fault, but it may be reversed when a viewpoint is enlarged. Whereas [6] shows
how to represent reversals in a compact form, the present paper investigates
which ceteris-paribus preferences are overridden when more specific preference
statements are added. For example, a specific preference of fish with wine to
meat with beer will override some of the ceteris-paribus preferences that im-
ply the preference of meat with beer to fish with wine since otherwise cyclic
preferences are obtained. This leads to a preference revision problem.

Section 2 recalls the enlargement and merging of combinatorial viewpoints
from [6], thus setting the context of the preference revision problem. Section 3
distinguishes derived and reduced preferences. Section 4 defines and characterizes
preference revisions in terms of the reduced preferences. An arbitrary revision
may relax all the original preferences. As this is not desired, Section 5 studies
minimal revisions. After adding a preference of a desired outcome to an outcome
that is optimal under ceteris-paribus preferences, this desired outcome should be
optimal under the revised preferences. Minimality of revisions does not guarantee
this property. However, Section 6 defines preferred revisions based on a universal
meta-preference relation between preferences that have this desired property and
that are uniquely defined in the considered scenario.

2 Enlargements of Combinatorial Viewpoints

Classic decision-making problems consist in choosing a single decision from a
set of actions A. A viewpoint constitutes an independent way to analyze the
actions and to evaluate and compare the outcomes of the actions. We model the
evaluation by a mapping of the actions to single outcomes and the comparison
by a reflexive and transitive preference relation. We thus restrict our discussion
to actions having deterministic outcomes, but allow incomplete preferences.

Definition 1. A viewpoint v for a finite set of actions A is characterized by a
finite outcome space Ωv, a criterion zv : A → Ωv mapping actions to their out-
comes, and a pre-order �v over Ωv defining weak preferences between outcomes.

The preference order �v can be split into a strict partial order �v expressing
strict preferences and an equivalence relation ∼v expressing indifference. An
outcome ω1 is strictly preferred to an outcome ω2 if ω1 is weakly preferred to
ω2, but not vice versa. The outcomes ω1 and ω2 are indifferent if ω1 is weakly
preferred to ω2 and ω2 is weakly preferred to ω1. Two outcomes ω1 and ω2 are
called comparable if ω1 is weakly preferred to ω2 or ω2 is weakly preferred to
ω1. A pre-order �v is called complete if all pairs of outcomes are comparable.
We also use the partial order �v where ω1 �v ω2 if ω1 �v ω2 or ω1 = ω2.

As an example, we formulate Chris’ and Pam’s viewpoints C and P over the
sets of dishes V1 := {m, f} and drinks V2 := {b, w}. The actions are the dinners
A = V1 × V2 consisting of a dish and a drink. As Chris cares only about the
dish, ΩC is V1 and zC is the projection of a tuple to its first component. As Pam
cares only about the drink, ΩP is V2 and zP is the projection of a tuple to its
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second component. Their respective strict preferences are m �C f and b �P w
and their indifference relations coincide with equality.

An extension w of a viewpoint v is a viewpoint having the same actions,
outcome space, criterion, and indifference relation as v, but additional strict
preferences, i.e. �w is a superset of �v. An extension of a viewpoint is complete
if its preorder �w is complete. An action is an optimal decision of a complete
viewpoint if its outcome is at least as preferred as the outcomes of all other
actions of this viewpoint. An action is an optimal decision of an incomplete
viewpoint if it is an optimal decision of a complete extension of this viewpoint.
This is the case iff no other action has an outcome that is strictly preferred to
the outcome of the considered action in the original viewpoint.

A viewpoint v is combinatorial if Ωv is a vectorial space of nv dimensions.
Given an ordered set I of indices π1, . . . , πk from Nv := {1, . . . , nv}, we denote
the projection of Ωv to I by Ωv,I , the projection of zv to I by zv,I , and the
projection of ω ∈ Ωv to I by ωv,I . Note that the projection XI of X to I
consists of the π1-th, π2-th, . . . , πk-th components of X .

As each non-combinatorial viewpoint can be transformed into a one-
dimensional viewpoint, we define the following concepts only for combinatorial
viewpoints. A combinatorial viewpoint w is an enlargement of a combinatorial
viewpoint v under an ordered set I of indices from Nw if the viewpoints are
defined for the same actions, the size of I is nv, Ωv = Ωw,I and zv = zw,I . A
default enlargement is an enlargement under the ceteris-paribus semantics, i.e.
α �w β holds if αI �v βI and αNw−I = βNw−I hold.

A viewpoint w is a merge of two viewpoints u, v under an ordered set I of
indices from Nw := {1, . . . , nw} if w is an enlargement of u under I and an
enlargement of v under Nw − I. A default merge of two viewpoints is a merge
under the ceteris-paribus semantics, which is the case if both enlargements are
default enlargements of the respective viewpoints.

The smallest default merge CP of Chris’ and Pam’s viewpoints has the out-
come space ΩCP := V1 × V2 and the identity function as criterion zCP . We
abbreviate the elements of ΩCP by mb,mw, fb, fw. The strict preferences of
CP are mb �CP mw, fb �CP fw, mb �CP fb, mw �CP fw, mb �CP fw and
its indifference relation is the equality. Its optimal decision is mb. Let us suppose
that Chris’ and Pam change their attitude when being together and prefer fw to
mb. The viewpoint CP thus needs to be revised to accommodate to this change.

3 Reduced Preferences

Revisions of viewpoints are obtained when adding and removing preferences.
In this section, we distinguish between derived and reduced preferences. These
reduced preferences will permit us to define revisions of a viewpoint.

The transitive closure R+ of a binary relation R is the smallest superset of
R that is transitive. The reflexive transitive closure R∗ of R is the smallest
superset of R that is reflexive and transitive. A binary relation is acyclic if its
transitive closure is irreflexive. In this paper, we say that a binary relation R is
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irreducible if p /∈ (R−{p})+ for all p ∈ R. Irreducibility implies anti-transitivity,
but is stronger. A binary relation R is anti-transitive if (a, b) ∈ R and (b, c) ∈ R
imply (a, c) /∈ R. For example, {(a, b), (b, c), (c, d), (a, d)} is anti-transitive, but
not irreducible since {(a, d)} is in the transitive closure of {(a, b), (b, c), (c, d)}.
However, an irreducible acyclic binary relation satisfies the following property:

Lemma 1. Let R be an irreducible acyclic binary relation. If (α, β) ∈ R+ and
(β, γ) ∈ R+ then (α, γ) /∈ R.

Proof. Suppose (α, β) ∈ R+, (β, γ) ∈ R+, and (α, γ) ∈ R. Hence, there exists
a chain γ1, . . . , γk for k ≥ 2 s.t. (α, β) = (γ1, γk) and (γi, γi+1) ∈ R for all
i = 1, . . . , k − 1 and a chain δ1, . . . , δm for m ≥ 2 s.t. (β, γ) = (δ1, δm) and
(δi, δi+1) ∈ R for all i = 1, . . . ,m−1. As (α, γ) ∈ R and R is irreducible, (α, γ) is
equal to (γj , γj+1) for a j ∈ {1, . . . , k−1} or to (δj , δj+1) for a j ∈ {1, . . . ,m−1}.
In the first case, (γ, β) ∈ R∗ holds. As (β, γ) ∈ R+ holds as well, this implies
(γ, γ) ∈ R+. In the second case, (β, α) ∈ R∗ holds. As (α, β) ∈ R+ holds as well,
this implies (α, α) ∈ R+. In both cases, R is not acyclic. �	

A transitive reduction of a finite binary relation R over Ω is a minimal
relation R over Ω that has the same transitive closure as R [1]. Minimal-
ity implies that a transitive reduction is irreducible. A finite acyclic relation
R has a unique transitive reduction R− which is a subset of R. As noted in
[1], it can be determined by removing all transitive links, i.e. by computing
R− = R − {p ∈ R | p ∈ (R − {p})+}. However, multiple transitive reductions
may be obtained for relations containing cycles. An example is a preorder � over
{a, b, c} such that a � b, b � a, c � a, c � b. This preorder has two transitive
reductions, namely {(a, b), (b, a), (c, a)} and {(a, b), (b, a), (c, b)}. As a strict par-
tial order is acyclic, it has a unique transitive reduction which is irreducible and
acyclic. Furthermore, the transitive closure of an irreducible and acyclic binary
relation is a strict partial order. The transitive reduction of the transitive closure
of such an irreducible and acyclic relation is equal to itself:

Lemma 2. Let R be an irreducible and acyclic finite binary relation The tran-
sitive reduction of the transitive closure of R is equal to R.

Proof. The transitive closure R+ is acyclic and finite since R is acyclic and finite.
Hence, it has a unique transitive reduction S. As S has the same transitive closure
as R+, S+ is equal to R+ since R+ is already closed.

Suppose (α, β) ∈ R− S. Hence, (α, β) is in R+ and thus in S+. There exists
a chain γ1, . . . , γk for k ≥ 2 s.t. (α, β) = (γ1, γk) and (γi, γi+1) ∈ S for all
i = 1, . . . , k − 1. As (α, β) is not in S, k is at least 3. Consequently, (α, γ2) and
(γ2, β) are both in S+ and thus in R+. Due to Lemma 1, R is not irreducible.

Suppose (α, β) ∈ S −R. We can show in a similar way as above that S is not
irreducible. Hence, there is a p ∈ S s.t. p ∈ (S − {p})+. Then S+ = (S − {p})+
and S is not a minimal relation having the same transitive closure as R. �	

As the preference order of a viewpoint is a preorder, it does not have a unique
transitive reduction as explained above. In this paper, we consider only the
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transitive reduction of the strict part of the preference order and use it to define
the reduced preferences of a viewpoint:

Definition 2. The set �−
v of reduced preferences of a viewpoint v is the tran-

sitive reduction of the strict part of the preference order of the viewpoint.

Strict preferences α �v β that are not among the reduced preferences will be
called derived preferences as they can be derived from a chain γ1 �−

v γ2, γ2 �−
v

γ3, . . . , γk−1 �−
v γk of reduced preferences for some k ≥ 3 where (α, β) = (γ1, γk).

In the example of Section 2, (mb, fw) is a derived preference and the other strict
preferences are reduced preferences.

Whereas every acyclic and irreducible relation represents a strict preference
order, namely its transitive closure, this preference order is not necessarily dis-
joint from a given indifference relation. Certain properties need to be satisfied
to guarantee this. Firstly, we note that α ∼v β and α �v γ imply α �v γ and
thus β �v γ since ∼v is an equivalence relation. As α ∼v β and α �v γ imply
β �v γ, they furthermore imply β �v γ. Now we consider an indifference α ∼v β
and a reduced preference α �−

v γ. According to the property above, this implies
a strict preference β �v γ. If this were a derived preference, then there would
exist a δ such that β �v δ and δ �v γ. According to the property above, this
would imply α �v δ, meaning that α �−

v γ does not hold.
Similar arguments hold for a reduced preference γ �−

v α and an indifference
α ∼v β. Hence reduced preferences are ‘closed’ under indifference:

1. If α ∼v β and α �−
v γ then β �−

v γ.

2. If α ∼v β and γ �−
v α then γ �−

v β.

Vice versa, an acyclic and irreducible relation needs to satisfy these properties
if we want to combine it with a given indifference relation:

A binary relation R is compatible with an equivalence relation∼ if R is disjoint
from ∼ and R is closed under the indifference relation, i.e.

1. If α ∼ β and (α, γ) ∈ R then (β, γ) ∈ R.

2. If α ∼ β and (γ, α) ∈ R then (γ, β) ∈ R.

Given an acyclic and irreducible relation R that is compatible with ∼, the
reflexive transitive closure of the union of these two relations is a preorder that
has strict preferences represented by R and ∼ as indifference relation:

Proposition 1. If an acyclic relation R is compatible with an equivalence rela-
tion ∼ then the strict part of the reflexive transitive closure of R ∪ ∼ is equal to
the transitive closure of R and the indifference relation of the reflexive transitive
closure of R ∪ ∼ is equal to ∼.

Proof. Let (α, β) be an element of the reflexive transitive closure of R ∪ ∼.
Consider a shortert chain γ1, . . . , γk for deriving (α, β) from R ∪ ∼. This chain
satisfies (α, β) = (γ1, γk) and (γi, γi+1) ∈ R ∪ ∼ for all i = 1, . . . , k − 1. If k = 1
then (α, β) is in ∼ since α = β. If k = 2 then (α, β) is in R+ ∪ ∼ by definition.
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If k ≥ 3 and (γi, γi+1) ∈ R for all i = 1, . . . , k−1 then (α, β) ∈ R+. Now suppose
that k ≥ 3 and γj ∼ γj+1 for a j ∈ {1, . . . , k − 1}. First consider the case where
j = 1. If γ2 ∼ γ3, then γ1 ∼ γ3. Moreover, if (γ2, γ3) ∈ R, then (γ1, γ3) ∈ R
since R is compatible with ∼. In both cases, γ1, γ3, . . . , γk is a shorter chain for
deriving (α, β) from R ∪ ∼. Next consider the case where j > 1. If γj−1 ∼ γj ,
then γj−1 ∼ γj+1. Moreover, if (γj−1, γj) ∈ R, then (γj−1, γj+1) ∈ R since R
is compatible with ∼. In both cases, γ1, . . . , γj−1, γj+1 . . . , γk is a shorter chain
for deriving (α, β) from R ∪ ∼. Therefore, (α, β) is in R+ ∪ ∼ in all cases. As a
consequence, the reflexive transitive closure of R ∪ ∼ is equal to R+ ∪ ∼.

Suppose α ∼ β for an (α, β) ∈ R+. As R is disjoint from ∼, there is a γ s.t.
(α, γ) ∈ R and (γ, β) ∈ R+. As R is closed under ∼, (β, γ) ∈ R, meaning that
R is not acyclic. Therefore, R+ is disjoint from ∼. As a consequence, the strict
part of R+ ∪ ∼ is R+ and the indifference relation of R+ ∪ ∼ is ∼. �	

Hence, any acyclic, irreducible, and ∼-compatible relation can be extended to
a strict preference order that is disjoint from the indifference relation ∼.

4 Preference Revisions

In this section, we revise the strict preferences of a viewpoint by adding new
preferences while keeping the indifference relation unchanged. The added prefer-
ences may reverse existing preferences of the viewpoint, thus requiring a removal
of some of those existing preferences. This corresponds to a revision problem sim-
ilar to those studied by Gärdenfors [4] and his colleagues. The approach chosen
in this paper formulates the revision in terms of reduced preferences. It is closer
to Brewka’s belief revision framework [3], which operates over underived beliefs.

When adding new preferences to a viewpoint, we require that the newly added
preferences are reduced preferences of the revised viewpoint. Moreover, we re-
quire that all reduced preferences of the revised viewpoint that are not reduced
preferences of the original viewpoint are among the newly added preferences.

Definition 3. Let v be a viewpoint and Δ be an acyclic and irreducible set of
preferences that is compatible with ∼v. A revision of v under Δ is a viewpoint
w of same outcome space, criterion, and indifference relation as v such that all
elements of Δ are reduced preferences of w and all reduced preferences of w are
reduced preferences of v or are elements of Δ.

According to this definition, any viewpoint v can be transformed into any
other viewpoint w of same outcome space, criterion, and indifference relation by
adding all reduced preferences of w that are not reduced preferences of v and by
removing all reduced preferences of v that are not reduced preferences of w. A
revision may not only add or remove preferences, but also change the status of a
preference. A reduced preference of v becomes a derived preference of a revision
of v if it can be derived with help of the added preferences. Moreover, a derived
preference of v becomes a reduced preference of a revision of v if it is explicitly
added. However, adding a reduced preference of v has no effect.
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The set of reduced preferences of a revision w of v under Δ is the union of Δ
and a subset R of the reduced preferences of v. The complement of R is the set
D of reduced preferences of v that are not reduced preferences of the revision
w. This set of reduced preferences of v removed in w uniquely characterizes a
revision under Δ:

Lemma 3. If a viewpoint w is a revision of the viewpoint v under Δ and D is
the set of reduced preferences of v removed in w then the preference order of w
is the reflexive transitive closure of �−

v −D ∪Δ ∪ ∼v.

Proof. By definition, the set of reduced preferences of w is a superset of Δ and
a subset of �−

v ∪Δ. As all the reduced preferences of v that are not reduced
preferences of w are in D, the set of reduced preferences of w is �−

v −D ∪ Δ.
Hence the strict part �w of the preferences of w is the transitive closure of
�−

v −D ∪ Δ. Then the preference order �w of w is the union of ∼w and the
transitive closure of �−

v −D ∪Δ. As �w is a preorder, it is equal to its reflexive
transitive closure, i.e. the reflexive transitive closure of the union of ∼w and
the transitive closure of �−

v −D ∪Δ. It is thus equal to the reflexive transitive
closure of the union of ∼w and �−

v −D∪Δ. Finally, it should be noted that ∼w

is equal to ∼v. �	
We will now characterize the set D of reduced preferences to be removed from

v in terms of constraints that guarantee the construction of a revision. These
constraints state which preferences of v need to be broken:

A set D of preferences breaks a strict preference α �v β if for each chain
γ1, . . . , γk satisfying (α, β) = (γ1, γk) and γi �−

v γi+1 for i = 1, . . . , k − 1 there
exists a j s.t. (γj , γj+1) ∈ D. A set D of preferences breaks α �v β if α �v β and
D breaks α �v β. Note that a preference (α, β) can be derived from the reduced
preferences in �−

v −D if α �v β holds and D does not break α �v β.

Definition 4. A set D of removed reduced preferences is a diagnosis for the
revision of v under Δ if the following conditions are satisfied:

1. If there are k ≥ 1 and (αi, βi) ∈ Δ for i = 1, . . . , k such that βi �v

α(i mod k)+1 for i = 1, . . . , k then D breaks βi �v α(i mod k)+1 for some
i = 1, . . . , k.

2. If there are k ≥ 1 and (αi, βi) ∈ Ω2
v for i = 1, . . . , k such that βk �−

v αk and
k ≥ 2 hold or (βk, αk) is in Δ, and (αi, βi) is in Δ and different to (βk, αk)
for i = 1, . . . , k − 1, and βi �v α(i mod k)+1 for i = 1, . . . , k then D breaks
βi �v α(i mod k)+1 for some i = 1, . . . , k or (βk, αk) is in D.

3. If α ∼v β and α �−
v γ then (α, γ) ∈ D iff (β, γ) ∈ D.

4. If α ∼v β and γ �−
v α then (γ, α) ∈ D iff (γ, β) ∈ D.

The first condition ensures that D breaks all cycles involving preferences of v
andΔ. The second condition ensures that D breaks all ways to derive preferences
of Δ from other preferences of v and Δ. It also ensures that D breaks all ways to
derive reduced preferences of v that are not elements of D from preferences of v
andΔ. The third and fourth conditions ensure that revised preferences are closed
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under indifference. These four conditions indicate conflicting sets of preferences
in v and impose constraints on a diagnosis D as D contains an element from
each conflicting set. Note that if Δ contains a reduced preference of v then this
preference will be a reduced preference of each revision of v under Δ and thus
cannot be an element of any diagnosis for the revision of v under Δ.

A diagnosis necessarily exists. For example, the set of all reduced preferences
of v that are not in Δ is a diagnosis for the revision of v under Δ. As it breaks
all strict preferences of D that are not in Δ, it satisfies condition 1 since Δ
is acyclic, condition 2 since Δ and �−

v are both irreducible, and conditions 3
and 4 since D contains all reduced preferences of v that are not in Δ and Δ is
closed under ∼v. The following lemma relates diagnoses to acyclic, irreducible,
and ∼-compatible relations:

Lemma 4. D is a diagnosis for the revision of a viewpoint v under Δ iff �−
v

−D ∪Δ is acyclic, irreducible, and compatible with ∼v.

Proof. Suppose �−
v −D ∪Δ is not acyclic. There is n ≥ 1 and γ1, . . . , γn such

that γn = γ1 and (γj , γj+1) is in �−
v −D ∪Δ for j = 1, . . . , n− 1. Let J be the

set of indices j such that (γj , γj+1) is not in �−
v −D. As �−

v −D is acyclic, J
contains at least one element. Let k be the cardinality of J and πi be the i-th
element of J . Then k ≥ 1 and (γπi , γπi+1) ∈ Δ for i = 1, . . . , k. Furthermore,
γπi+1 is either equal to γπ(i mod k)+1

or the preference (γπi+1, γπ(i mod k)+1
) can be

derived from preferences in �−
v −D. Therefore, γπi+1 �v γπ(i mod k)+1

and D does
not break γπi+1 �v γπ(i mod k)+1

for all i = 1, . . . , k. Hence D is not a diagnosis.

Suppose �−
v −D ∪Δ is not irreducible and contains a preference (α, β) that

is in the transitive closure of (�−
v −D ∪ Δ) − {(α, β)}. Hence, there exists a

chain γ1, . . . , γn for an n ≥ 3 such that α = γ1, β = γn and (γj , γj+1) is in
(�−

v −D ∪ Δ) − {(α, β)} for j = 1, . . . , n − 1. Let J be the set of indices j
s.t. (γj , γj+1) is not in �−

v −D. As �−
v is irreducible, J contains at least one

element or (α, β) is in Δ− �−
v . Let k be the cardinality of J plus 1 and πi be

the i-th element of J . Then k ≥ 1 and (γπi , γπi+1) in Δ and different to (α, β)
for i = 1, . . . , k − 1. Define γn+1 as α and πk as n. Then (α, β) is equal to
(γπk+1, γπk

) which is in �−
v ∪Δ and not in D. Furthermore, γπi+1 is either equal

to γπ(i mod k)+1
or the preference (γπi+1, γπ(i mod k)+1

) can be derived from �−
v −D.

Therefore, γπi+1 �v γπ(i mod k)+1
and D does not break γπi+1 �v γπ(i mod k)+1

for
all i = 1, . . . , k. Hence D is not a diagnosis.

Suppose �−
v −D ∪Δ is not compatible with ∼v. First suppose that there are

α, β, γ ∈ Ωv such that α ∼ β and (α, γ) is in �−
v −D ∪Δ and (β, γ) is not in

�−
v −D ∪ Δ. If (α, γ) were in Δ, (β, γ) would be in Δ as well as Δ is closed

under ∼v, which contradicts the supposition. Hence, (α, γ) is not in Δ. As Δ is
closed under ∼v, (β, γ) is not in Δ either. Hence, (α, γ) is in �−

v and not in D.
As the reduced preferences of v are closed under ∼v, (β, γ) is in �−

v as well and
consequently in D. Hence, D is not a diagnosis in that case. Next suppose that
there are α, β, γ ∈ Ωv such that α ∼ β and (γ, α) is in �−

v −D ∪Δ and (γ, β) is
not in �−

v −D ∪Δ. Again, it can be shown that D is not a diagnosis.
Suppose that �−

v −D∪Δ is acyclic, irreducible, and compatible with ∼v and
that D is not a diagnosis. Hence any of the four conditions is violated: If the
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first condition is violated, there will be k ≥ 1 and (αi, βi) ∈ Δ for i = 1, . . . , k
such that βi �v α(i mod k)+1 for all i = 1, . . . , k and D does not break βi �v

α(i mod k)+1 for all i = 1, . . . , k. Hence, �−
v −D ∪Δ contains a cycle.

If the second condition is violated, then there will be a k ≥ 1 and (αi, βi) ∈ Ω2
v

for i = 1, . . . , k such that βk �−
v αk and k ≥ 2 hold or (βk, αk) is in Δ, and

(αi, βi) is in Δ and different to (βk, αk) for i = 1, . . . , k−1 and βi �v α(i mod k)+1

for i = 1, . . . , k and D does not break βi �v α(i mod k)+1 for all i = 1, . . . , k and
(βk, αk) /∈ D. If k = 1 then β1 �−

v α1 does not hold. Hence, (β1, α1) is in
Δ− �−

v in that case. As Δ is acyclic, α1 and β1 need to be different. Hence,
β1 �v α1. As β1 �−

v α1 does not hold, there is γ ∈ Ωv such that β1 �v γ
and γ �v α1 and D does not break β1 �v γ and γ �v α1. Hence, (β1, γ) and
(γ, α1) are in the transitive closure of �−

v −D∪Δ and (β1, α1) is in �−
v −D∪Δ.

Therefore, �−
v −D∪Δ is not irreducible due to Lemma 1. If k ≥ 2 then (α1, β1)

is different to (βk, αk). Suppose that βk = α1. Hence β1 �= αk and (β1, αk) is in
the transitive closure of �−

v −D ∪Δ. As (α1, β1), which is equal to (βk, β1), is
also in this closure and (βk, αk) is in �−

v −D ∪Δ, the relation �−
v −D ∪ Δ is

not irreducible due to Lemma 1. Now suppose βk �= α1. Then (βk, α1) is in the
transitive closure of �−

v −D∪Δ. Furthermore, (α1, αk) is in the transitive closure
of �−

v −D ∪Δ. As (βk, αk) is in �−
v −D ∪Δ, this relation is not irreducible.

If the third condition is violated, there will be α ∼v β and α �−
v γ such that

(α, γ) ∈ D and (β, γ) /∈ D. As �−
v is closed under ∼v, β �−

v γ holds. Hence,
�−

v −D∪Δ contains (β, γ), but not (α, γ). Therefore, �−
v −D ∪Δ is not closed

under ∼v and thus not compatible with ∼v. If the fourth condition is violated,
similar arguments show that �−

v −D ∪Δ is not compatible with ∼v. �	
On the one hand, the reduced preferences of a viewpoint that are removed in

a revision of this viewpoint form a diagnosis. On the other hand, each diagnosis
D permits the construction of a revision vD. Both results follow from Lemma 4:

Proposition 2. Let w be a revision of the viewpoint v under Δ. Then the set
D of reduced preferences of v removed in w is a diagnosis for the revision of v
under Δ.

Proof. By definition, �−
v −D∪Δ is the set of reduced preferences of w, meaning

that it is acyclic and irreducible. As the set of the reduced preferences of w is
disjoint from and closed under the indifference relation ∼w, it is compatible with
∼w and thus with ∼v. Hence, D is a diagnosis for the revision of v under Δ. �	
Proposition 3. Let D be a diagnosis for the revision of a viewpoint v under
Δ and let vD be a viewpoint of same actions, outcome space, and criterion as v
such that the reflexive transitive closure of �−

v −D ∪Δ ∪ ∼v is the preference
order of vD. Then vD is a revision of v under Δ.

Proof. Due to Lemma 4, �−
v −D∪Δ is acyclic, irreducible, and ∼v-compatible.

As the preference order of vD is the reflexive transitive closure of �−
v −D ∪

Δ ∪ ∼v, its indifference relation is equal to ∼v and its strict part is equal to
the transitive closure of �−

v −D ∪ Δ due to Proposition 1. The set of reduced
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preferences of vD is equal to the transitive reduction of the transitive closure
of �−

v −D ∪Δ, which is equal to �−
v −D ∪Δ since this set is irreducible and

acyclic. Hence, the set of reduced preferences of vD is a superset of Δ and a
subset of �−

v ∪Δ. �	
As a consequence, revisions of a viewpoint exist as diagnoses for this revi-

sion exist. The merged viewpoint of Chris and Pam even has nine revisions
under (fw,mb) as each diagnosis contains at least one element of the conflicting
preferences (mb,mw) and (mw, fw) and at least one element of the conflicting
preferences (mb, fb) and (fb, fw). We therefore need a way to choose among
those diagnoses.

5 Minimal Preference Revisions

Certain revisions may remove more preferences than others, meaning that the
removal of these additional preferences is not necessary. Minimal revisions seek
to preserve a maximal subset of the original preferences:

Definition 5. A revision w of v under Δ is a minimal revision of v under Δ
iff there is no other revision w∗ of v under Δ such that the preference order of
w∗ is a proper superset of the preference order of w.

It can be shown that a minimal revision leads to a minimal removal of reduced
preferences. However, the inverse relationship does not hold as there are mini-
mal diagnoses that lead to non-minimal revisions. An example is a viewpoint v
with three possible outcomes a, b, c, an indifference relation that is the equality
relation, and two reduced preferences (a, b) and (a, c). This viewpoint has three
revisions w1, w2, w3 under {(b, c)}. Diagnosis D1 := {(a, b)} leads to a revision
w1 that has the reduced preferences (a, c) and (b, c) and no derived preference.
Diagnosis D2 := {(a, c)} leads to a revision w2 that has the reduced preferences
(a, b) and (b, c) and the derived preference (a, c). Diagnosis D3 := {(a, b), (a, c)}
leads to a revision w3 that has the reduced preference (b, c) and no derived pref-
erences. Whereas D2 is a minimal diagnosis that leads to the minimal revision
w2, the minimal diagnosis D1 leads to a non-minimal revision w1. The diagnosis
D1 is minimal as D2 contains a derived preference of w2.

We therefore exclude preferences of diagnoses that are derived preferences
of the resulting revisions when comparing two diagnoses. The core core(D) of a
diagnosisD for the revision of v underΔ is the set of preferences ofD that are not
derived preferences of the revision vD constructed from D. The elements of the
core of a diagnosis D are neither reduced, nor derived preferences of the revision
vD. However, all reduced preferences of v that are not in the core of a diagnosis
D are reduced or derived preferences of vD. Moreover, all preferences that are
elements of �−

v −core(D) ∪ Δ ∪ ∼v, but not of its subset �−
v −D ∪ Δ ∪ ∼v,

are elements of D outside the core of D and can thus be derived from �−
v −D∪

Δ ∪ ∼v. As a consequence, the reflexive transitive closure of �−
v −D ∪Δ ∪ ∼v

is equal to the reflexive transitive closure of �−
v −core(D)∪Δ ∪ ∼v. If the core
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of a diagnosis violates condition 1 or 2 of the definition of a diagnosis D for the
case where (βk, αk) ∈ Δ, then the diagnosis also violates those conditions as we
can replace derived preferences of D by chains of preferences from core(D)∪Δ.

We now define diagnoses having a minimal core and show that they charac-
terize all minimal revisions and only minimal revisions:

Definition 6. A diagnosis D for the revision of v under Δ is a diagnosis of
minimal core for the revision of v under Δ iff there is no other diagnosis D∗ for
the revision of v under Δ s.t. the core of D∗ is a proper subset of the core of D.

Proposition 4. Let w be a revision of a viewpoint v under Δ and D be the set
of reduced preferences of v removed in w. Then w is a minimal revision of v
under Δ if and only if D is diagnosis of minimal core for the revision of v under
Δ.

Proof. Suppose that w is a minimal revision of v under Δ, but that D is not
a diagnosis of minimal core. Hence, there exists a diagnosis D∗ for the revision
of v under Δ such that core(D∗) ⊂ core(D). Consequently, there is a reduced
preference p of v that is in core(D), but not in core(D∗). As p is in core(D),
it is not among the preferences of w. Moreover, the reflexive transitive closure
of �−

v −core(D∗) ∪ Δ ∪ ∼v is a superset of the reflexive transitive closure of
�−

v −core(D) ∪ Δ ∪ ∼v. According to the properties of cores, the reflexive
transitive closure of �−

v −D∗ ∪Δ ∪ ∼v is a superset of the reflexive transitive
closure of �−

v −D ∪ Δ ∪ ∼v. The first closure is the preference order of the
revision vD∗ and the second closure is the preference order of w. Hence, the first
closure contains p, but not the second one, meaning that the preference order of
vD∗ is a proper superset of that w. Hence, w is not a minimal revision.

Suppose that D is a diagnosis of minimal core for the revision of v under Δ,
but that w is not a minimal revision of v under Δ. Hence, there exists a revision
w∗ of v under Δ such that the preference order of w∗ is a proper superset of the
preference order of w. Let D∗ be the set of reduced preferences of v removed
in w∗. Then D∗ is a diagnosis for the revision of v under Δ and the transitive
closure of �−

v −D∗ ∪ Δ ∪ ∼v is a proper superset of the transitive closure
of �−

v −D ∪ Δ ∪ ∼v. According to the properties of the core of a diagnosis,
the transitive closure of �−

v −core(D∗) ∪ Δ ∪ ∼v is a proper superset of the
transitive closure of �−

v −core(D) ∪Δ ∪ ∼v. Since D is a diagnosis of minimal
core, core(D∗) cannot be a proper subset of core(D) and it cannot be equal to
core(D) either since this implies that the two closures are equal. Hence, there
exists a preference p in core(D∗) − core(D). Since p is in core(D∗), it is not a
preference of w∗, but a reduced preference of v. As p is not in core(D), p is a
preference of w and thus of w∗ since �w∗ is a superset of �w. �	

Chris’ and Pam’s merged viewpoint under (fw,mb) has four min-
imal revisions obtained by the following diagnoses of minimal core:
DCP,1 := {(mb,mw), (mb, fb)}, DCP,2 := {(mb,mw), (fb, fw)}, DCP,3 :=
{(mw, fw), (mb, fb)}, DCP,4 := {(mw, fw), (fb, fw)}. In this example, each di-
agnosis is equal to its core.
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6 Preferred Preference Revisions

Constructive approaches to decision making are able to accommodate a prefer-
ence model to a situation where the decision maker did not follow a recommended
decision, but made another decision. The model is extended by adding a prefer-
ence between the chosen decision and the recommended decision, thus ensuring
that the chosen decision becomes an optimal decision of the extended model.

This approach can also be applied to revisions of preferences. After adding a
preference between a desired outcome and an optimal outcome of a viewpoint,
the desired outcome should be optimal under the revised preferences. However,
this property is not satisfied by every minimal revision. For example, fw is not
an optimal outcome of the minimal revisions of Chris’ and Pam’s viewpoint
under (fw,mb) that correspond to the diagnosis DCP,1, DCP,2, and DCP,3.

When choosing a revision, it appears to be more important to keep prefer-
ences among preferred outcomes than to keep preferences among dispreferred
outcomes. This idea can be expressed by a meta-preference relation between
strict preferences. Given two strict preferences (α, β) and (γ, δ) of a base order
�, (α, β) is meta-preferred to (γ, δ) under � if β � γ. This meta-preference
relation is a strict partial order if the base order is a strict partial order. If a
strict preference (α, β) were meta-preferred to itself then β � α would hold, thus
implying α � α, which contradicts the irreflexivity of �. Moreover, if a strict
preference (α1, β1) is meta-preferred to a second strict preference (α2, β2) which
is meta-preferred to a third strict preference (α3, β3), then β1 � α2 and β2 � α3

hold. As � is transitive, β1 � α3 holds as well, meaning that (α1, β1) is meta-
preferred to (α3, β3). This shows that the meta-preference relation is irreflexive
and transitive. In the example, (mb,mw) is meta-preferred to (mw, fw) and
(mb, fb) is meta-preferred to (fb, fw).

The meta-preference order over individual preferences can be lifted to a meta-
preference order over preference relations by using a scheme studied in [5]. Con-
sider two preference relations R1 and R2 that are subsets of the same base order
�. R1 is meta-preferred to R2 under � if R1 is different to R2 and for each
preference p ∈ R2 − R1, there exists a preference p∗ ∈ R1 − R2 that is meta-
preferred to p under �. Similarly, R1 is meta-dispreferred to R2 under � if R1

is different to R2 and for each preference p ∈ R1 −R2, there exists a preference
p∗ ∈ R2 − R1 that is meta-preferred to p under �. The latter relation is the
inverse of the former relation.

We cannot compare the strict preference orders of different revisions of a
viewpoint as those preference orders are not subsets of a common strict partial
order. Consider a viewpoint v with three outcomes a, b, c, equality as indifference
relation, and two reduced preferences (a, b) and (b, c). The viewpoint v has two
minimal revisions under (c, a), where the first one has (c, a) and (a, b) as reduced
preferences and the second one has (b, c) and (c, a) as reduced preferences. The
union of these reduced preferences is not acyclic and there is no transitive relation
that contains all these reduced preferences and that is irreflexive.

As diagnoses for a revision of a viewpoint are subsets of the strict preference
order of this viewpoint, we can compare them under the meta-preference relation.
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Definition 7. A diagnosis D for the revision of v under Δ is a dispreferred
diagnosis for the revision of v under Δ if there is no diagnosis D∗ for the revision
of v under Δ s.t. the core of D∗ is meta-dispreferred to the core of D under �v.

Due to this definition, a dispreferred diagnosis is a diagnosis of min-
imal core. Now, consider a viewpoint v having the reduced preferences
(γ1, γ2), (γ1, γ2), . . . (γk−2, γk−1), (γk−1, γk). A dispreferred diagnosis for the re-
vision of v under {(γk, γ1)} seeks to exclude as many meta-preferred elements
from its core as possible. It thus consists of the last element, namely (γk−1, γk).

The revision of Chris’ and Pam’s merged viewpoint under (fw,mb) has a
single dispreferred diagnosis, namely DCP,4 which contains the dispreferred ele-
ment (mw, fw) among the conflicting preferences (mb,mw) and (mw, fw) and
the dispreferred element (fb, fw) among the conflicting preferences (mb, fb)
and (fb, fw). It leads to a revision having the reduced preferences (fw,mb),
(mb,mw) and (mb, fb) and the derived preferences (fw,mw) and (fw, fb).
None of the other diagnoses is meta-dispreferred to DCP,4. Indeed, we even
observe that each of the other diagnoses is meta-preferred to DCP,4. For exam-
ple, DCP,2 is meta-preferred to DCP,4 since core(DCP,2)− core(DCP,4) contains
the preference (mb,mw) which is meta-preferred to the single element (mw, fw)
of core(DCP,4)− core(DCP,2). Similar arguments hold for the other diagnoses.

It should be noted that DCP,4 contains all preferences of the form (α, fw) and
thus avoids that some other outcome is preferred to fw in the resulting revision.
We can generalize this property for those cases where all preferences in Δ have
the same preferred outcome. We say that Δ is head-equal under ∼v if α1 ∼v α2

for all (α1, β1) and (α2, β2) in Δ. This leads to our main result:

Theorem 1. If Δ is head-equal then there is a unique dispreferred diagnosis for
the revision of v under Δ.

Proof. Let C∗ be the set of preferences (α, β) in �−
v −Δ s.t. γ �v α for a γ ∈ Ωv

and (1) (β, γ) ∈ Δ or (2) (δ, β) ∈ Δ and (δ, γ) ∈�−
v ∪Δ for a δ ∈ Ωv. Let v

∗ be
a viewpoint having the same outcome space and criterion as v and the reflexive
transitive closure of �−

v −C∗ ∪Δ ∪ ∼v as preference order. Let D∗ be the set
of reduced preferences of v that are not reduced preferences of v∗.

The set C∗ is disjoint from Δ by definition and disjoint from ∼v since it is
a subset of �−

v . Hence, the preferences in C∗ are not in �−
v −C∗ ∪Δ∪ ∼v and

can neither be reduced preferences of this set, nor reduced preferences of the
reflexive transitive closure of this set, i.e. �v∗ . Hence, the elements of C∗ are
reduced preference of v, but not of v∗. Consequently C∗ is a subset of D∗.

Since Δ, �−
v , and �v are all closed under ∼v, it can be shown that C∗ is

compatible with ∼v and that �−
v −C∗ ∪Δ is compatible with ∼v as well.

Suppose that �−
v −C∗∪Δ is not acyclic. Consider a chain γ1, . . . , γk of length

k ≥ 2 s.t. (γi, γi mod k+1) is a preference from �−
v −C∗ ∪Δ for i = 1, . . . , k. As

Δ is acyclic, the chain contains at least one element from �−
v −Δ. Without loss

of generality, suppose (γ1, γ2) is in �−
v −Δ. Since �−

v is acyclic, the chain also
contains at least one element from Δ. Let s and l be the smallest and largest
index of those preferences from Δ. Note that s ≥ 2, meaning that (γs−1, γs) is
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in �−
v −Δ. Furthermore, γl mod k+1 �v γs−1 holds. As Δ is head-equal, γs ∼v γl

holds. As Δ is closed under ∼v, it also contains (γs, γl mod k+1). Hence, (γs−1, γs)
is in C∗, which contradicts the fact that it is in �−

v −C∗ ∪ Δ. Therefore, �−
v

−C∗ ∪Δ is acyclic. Due to Proposition 1, the strict preference order of v∗ is the
transitive closure of �−

v −C∗ ∪Δ and its indifference relation is ∼v.
Suppose that p ∈ Δ is a derived preference of �−

v −C∗ ∪Δ. There exists a
chain γ1, . . . , γk of length k ≥ 3 s.t. (γi, γi+1) is a preference from �−

v −C∗ ∪Δ
for i = 1, . . . , k − 1 and p is equal to (γ1, γk). As Δ is irreducible, at least one
of these preference is in �−

v −Δ. Let l be the largest index s.t. (γl, γl+1) is in
�−

v −Δ and s be the largest index s.t. s < l and (γs, γs+1) is in Δ or s ≤ 0.
Then γs+1 �v γl and γs+1 �v γl+1. If l < k − 1 then Δ contains (γl+1, γl+2),
which implies γ1 ∼v γl+1 and γ1 ��v γl+1. Hence s cannot be 0 if l < k − 1. If
s = 0 and l = k− 1 then (γ1, γ2) is in �−

v and γ2 �v γl holds and (γ1, γl+1) ∈ Δ.
Hence, (γl, γl+1) is in C∗ since it satisfies condition (2). If s ≥ 1 then Δ contains
(γs, γs+1) and also (γ1, γs+1) since it is head-equal and closed under ∼v. If s ≥ 1
and l = k − 1 hold, then (γl, γl+1) is in C∗ since it satisfies condition (2). If
s ≥ 1 and l < k − 1, then Δ contains (γl+1, γl+2) and also (γl+1, γs+1) since
it is head-equal and closed under ∼v. Then (γl, γl+1) is in C∗ since it satisfies
condition (1). However, as (γl, γl+1) is in �−

v −C∗ ∪ Δ, it cannot be in C∗ in
any of those cases. Therefore, all elements of Δ are reduced preferences of v∗.
By definition, all reduced preferences of v∗ are elements of �−

v −C∗ ∪ Δ and
thus of �−

v ∪Δ. As a consequence, v∗ is a revision of v under Δ.
Suppose some preference p of D∗ is not in C∗. As p is in D∗, it is a reduced

preference of v, but not of v∗. Due to the definition of v∗, p is a preference of v∗

since it is not in C∗. Consequently, p is a derived preference of v∗ and cannot be
in the core of D∗. Hence, the core of D∗ is a subset of C∗.

Suppose there is a diagnosis D s.t. core(D∗) is not dispreferred to core(D).
Hence, there is a preference (α, β) in core(D∗) − core(D) s.t. no preference in
core(D)−core(D∗) is meta-preferred to (α, β) under �v. As core(D

∗) is a subset
of C∗, (α, β) is in C∗ and there exists γ ∈ Ωv s.t. γ �v α for a γ ∈ Ωv and (1)
(β, γ) ∈ Δ or (2) (δ, β) ∈ Δ and (δ, γ) ∈�−

v ∪Δ for a δ ∈ Ωv. Consider a chain
γ1, . . . , γk of length k ≥ 1 s.t. γi �−

v γi+1 for i = 1, . . . , k−1 and (γ1, γk) = (γ, α).
Let γ0 be δ if condition (2) holds and γ otherwise. Let l be the largest index
s.t. (γl, γl+1) is in C∗ or not in �−

v or l < 0. Then γl+1 �v α and γl+1 �v β
hold. Each of the reduced preferences (γi, γi+1) is meta-preferred to (α, β) for
i = l+ 1, . . . , k − 1 and not in core(D)− core(D∗). As these preferences are not
in C∗, they are not in its subset core(D∗) and thus not in core(D). Hence, the
core of D does not break γl+1 �v β. If (γl, γl+1) ∈ C∗, (γl+1, ω) or (ω, γl+1) are
in Δ for some ω ∈ Ωv. Consider the first case. If (β, γ) were in Δ, then γl+1 ∼v β
would hold, which contradicts γl+1 �v β. Hence, (δ, β) is in Δ, which implies
δ ∼v γl+1 and (γl+1, β) ∈ Δ, meaning that the core of D violates condition 2 of
a diagnosis. In the second case, β ∼v ω or δ ∼v ω hold and (β, γl+1) or (δ, γl+1)
are in Δ, respectively. If (γl, γl+1) /∈ C∗, this also holds or δ = γl+1. In those
cases, the core of D violates condition 1 or 2 of a diagnosis. It can be shown that
D violates those conditions as well and cannot be a diagnosis. �	
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We thus obtain a preference revision operator that maps a viewpoint and a
suitable set of preferences to a uniquely defined preferred revision, i.e. the revision
produced by the dispreferred diagnosis. Future work is needed to investigate
which of Gärdenfors’ postulates are satisfied by this operator.

The dispreferred diagnosis contains critical preferences of the form (γ, α∗)
where α∗ is the head of some preference in Δ. This allows us to show that α∗

is an optimal outcome of the preferred revision if Δ contains preferences of the
form (α∗, β) for all optimal outcomes β of the original viewpoint:

Proposition 5. Let α∗ ∈ Ωv be the outcome of an action in A, but not of an
optimal decision of v. Let Δ be the set of preferences (α, β) such that α∗ ∼v α and
β is the outcome of an optimal decision of v. Let D∗ be a dispreferred diagnosis
for the revision of v under Δ. The outcome ω∗ of each optimal decision of wD∗

satisfies ω∗ ∼v α∗.

Proof. By definition, Δ is head-equal and there is a unique dispreferred diagnosis
D∗ for the revision of v under Δ. Consider the outcome ω∗ of an optimal decision
of wD∗ . If it were the outcome of an optimal decision of v, then there would be
the preference (α∗, ω∗) in Δ, which contradicts the optimality of ω∗ in wD∗ .
Hence, ω∗ is not an optimal decision of v and there exists an outcome β∗ of an
optimal decision of v such that β∗ �v ω∗. Then the preference (α∗, β∗) is in Δ.
Consider a chain γ1, . . . , γk of length k ≥ 2 s.t. γi �−

v γi+1 for i = 1, . . . , k − 1
and (γ1, γk) = (β∗, ω∗). As ω∗ is optimal in wD∗ , some of the reduced preferences
γi �−

v γi+1 is not a preference of w. Let l be the largest index s.t. γl �−
v γl+1 is

in the core of D∗. Then either (δ, γl+1) or (γl+1, δ) are in Δ for some δ ∈ Ωv. In
the first case, α∗ ∼v δ holds and (α∗, γl+1) is in Δ. This implies α∗ �w ω∗ and
contradicts the optimality of ω∗ in wD∗ . In the second case, α∗ ∼v γl+1 holds.
This implies α∗ �w ω∗ and thus α∗ ∼w ω∗ since ω∗ is optimal in wD∗ . �	

It is thus possible to accommodate a viewpoint to a desired decision by adding
preferences between the desired decision and the optimal decisions of the view-
point. This gives a justification to the chosen meta-preference ordering and shows
that the approach is able to override existing preferences in a desired way, includ-
ing ceteris-paribus preferences. As a consequence, ceteris-paribus preferences are
not universally valid, but only by default. This is similar to the work of Brafman
and Dimopoulos who use the partial stable model semantics to relax ceteris-
paribus preferences in presence of inconsistent CP-networks [2], but which do
not give higher priority to more specific preferences.

Our approach also provides a new way to model conditional ceteris-paribus
preferences: let us say that, by default, Jim prefers meat to fish all else equal, but
that he prefers fish to meat if the drink is wine. The default enlargement of Jim’s
viewpoint has the reduced preferences (mb, fb) and (mw, fw), but its preferred
revision under (fw,mw) has the reduced preferences (mb, fb) and (fw,mw),
which express conditional ceteris-paribus preferences. Similarly, we can model
trade-offs by adding preferences between incomparable outcomes. For example,
the revision of Chris’ and Pam’s viewpoint under (fb,mw) extends the preference
order of this viewpoint, but does not remove any element from it.



Upside-Down Preference Reversal 201

7 Conclusion

We introduced a mechanism for overriding aggregated preferences by more spe-
cific preferences. It results in preference orders that respect the ceteris-paribus
semantics by default, but which remove certain ceteris-paribus preferences if they
conflict with the more specific preferences. As there are different minimal revi-
sions of the preference order, we prefer those that keep as many preferences be-
tween more preferred outcomes as possible, thus gaining several benefits. Firstly,
there is a unique preferred revision that dominates all other ones under this uni-
versal meta-preference relation. Secondly, the revision mechanism permits an
adaption of a preference model to situations where the recommended decision
does not correspond to a desired decision. It is sufficient to add a preference
between the desired decision and the recommended decision and the desired
decision will become an optimal decision in the preferred revision.

Other approaches for relaxing ceteris-paribus preferences do not give higher
priority to more specific preferences [2] or do not use a universal preference order
to compare different revisions, but similarity measures [7].

Future work consists in studying which of Gärdenfors’ postulates are satis-
fied by the preferred revision and in elaborating algorithms for computing the
dispreferred diagnosis and using it for optimization and dominance checking.
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Abstract. This paper introduces a default logic based approach to defining goal
specification languages that can be non-monotonic and allow for the specifica-
tion of inconsistencies and priorities among goals. The paper starts by presenting
a basic goal specification language for planning with preferences. It then defines
goal default theories (resp. with priorities) by embedding goal formulae into de-
fault logic (resp. prioritizing default logic). It is possible to show that the new
language is general, as it can express several features of previously developed
goal specification languages. The paper discusses how several other features can
be subsumed by extending the basic goal specification language. Finally, we iden-
tify features that might be important in goal specification that cannot be expressed
by our language.

1 Introduction

An important component of autonomous agent design is goal specification. In classical
planning, goals deal with reaching one of a particular set of states. Nevertheless, goals
of agents are not just about reaching a particular state; goals are often about satisfying
desirable conditions imposed on the trajectory. For example, a person can have the
following desire in preparing travel plans to conferences:

(*) I prefer to fly to the conference site (since it is usually too far to drive).

The user’s preference restricts the means that can be used in achieving her goal of
reaching the conference site, which leads to the selection of a plan that reaches the
conference site by airplane, whenever possible. Ultimately, this affects what actions the
person should take in order to achieve the goal.

These observations led to the development of languages for the specification of soft
goals in planning, such as the language PP , introduced in [13] and extended in [6]. In
PP , a basic desire is a temporal formula describing desirable properties of a trajectory.
Atomic and general preferences are particular classes of formulae built over basic de-
sires. A preference formula Φ defines a preference order ≺Φ among the trajectories that
achieve the hard goal of the problem, i.e., for every pair of trajectories α and β, α ≺Φ β
indicates that α is preferable to β. ≺Φ is often a partial order, built on a notion of sat-
isfaction between trajectories and preference specifications. Similar ideas have been
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considered in the planning community and led to extensions of the Planning Domain
Description Language (PDDL), with features for representing classes of preferences
over plans using temporal extended preferences (e.g., [10]).

In [4], the authors argue that a goal specification language should be non-monotonic
for various reasons, such as elaboration tolerance and simplicity of goal specification.
For example, the same traveler with the preference (*) would probably not mind driving
at most three hours to the conference site if the only flight to the destination requires to
travel the day before the conference starts. In this case, her preference becomes:

(**) Normally, I prefer to fly to the conference site (since it is usually too far to
drive). However, if there are no flights on the same day of the conference and
the driving time is at most three hours, then I will drive.

To address this issue, an extension of LTL [11], called N-LTL, has been proposed,
allowing weak and strong exceptions to certain rules. A weakness of this language is
that it requires the classification of weak and strong exceptions when a goal is specified.
In [5], the language ER-LTL is introduced to address this limitation of N-LTL. Similarly
to PP , the semantics of N-LTL and ER-LTL rely on the notion of satisfaction between
plans and N-LTL or ER-LTL specifications. Observe that the issue of non-monotonicity
is dealt with in PP and in the extensions of PDDL by revising the soft goals, which is
an approach that N-LTL specifically tries to avoid.

We observe that the focus of the work in [1, 4, 5, 6, 10] is on classical planning, i.e.,
the planning domains are deterministic and the initial state is complete, while the work
in [13] considers non-deterministic domains and only discusses preferences among
weak plans. In [2], it is argued that a plan for a non-deterministic domain should be
a policy (i.e., a partial function from the set of states to the set of actions); this leads to
the design of the language π-CTL∗ or specifying goals in non-deterministic domains.
π-CTL∗ is an extension of CTL∗ [9] with two modalities Aπ and Eπ for considering
all or some trajectories w.r.t. a given policy. In [3], the language π-CTL∗ is extended
with quantifiers over policies to increase its expressiveness. Policies satisfying a goal
specification are viewed as the solutions of a planning problem.

In this paper, we explore an approach based on prioritizing default logic for defining
a goal specification language. The new language, called goal default theories with pri-
orities, is a variation of prioritizing default logic, in which formulae occurring within a
default can be temporally extended preference formulae. We show that the core of the
new language subsumes several features from existing goal languages and can be ex-
tended to subsume several other features from other goal languages. Finally, we discuss
the possible applications of the new language in the study of existing goal languages
and the development of new ones.

2 Background

In this section, we briefly review the basic definitions of planning, linear temporal logic
(LTL) and its extension for specifying preferences in planning.
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2.1 LTL and Temporal Extended Preferences

Let L be a propositional language. By 〈p〉 we denote a propositional formula from L.
LTL-formulae 〈f〉 are defined by the following grammar:

〈f〉 ::= 〈p〉 | 〈f〉 ∧ 〈f〉 | 〈f〉 ∨ 〈f〉 |
¬〈f〉 | © 〈f〉 | �〈f〉 | �〈f〉 | 〈f〉U〈f〉 (1)

The semantics of LTL-formulae is defined with respect to sequences of interpretations
of L. For later use, we will refer to an interpretation of L as a state and a possibly
infinite sequence of interpretations s0, s1, . . . of L as a trajectory. For a trajectory σ =
s0, s1, . . . , by σi we denote the suffix si, si+1, . . . of σ. A trajectory σ = s0, s1, . . .
satisfies an LTL-formula f , denoted by σ |= f , if σ0 |= f where:1

• σj |= p iff sj |= p

• σj |= ¬f iff σj �|= f

• σj |= f1 ∧ f2 iff σj |= f1 and σj |= f2
• σj |= f1 ∨ f2 iff σj |= f1 or σj |= f2
• σj |= ©f iff σj+1 |= f

• σj |= �f iff σk |= f , for all k ≥ j

• σj |= �f iff σi |= f for some i ≥ j

• σj |= f1 U f2 iff there exists k ≥ j such that
σk |= f2 and for all i, j ≤ i < k, σi |= f1.

A finite trajectory s0, . . . , sn satisfies an LTL-formula f if its extension
s0, . . . , sn, sn+1, . . . satisfies f , where sk = sn for k > n. In order to deal with plan-
ning problems, LTL is extended with the following constructs

at end 〈p〉 | 〈p〉 sometime before 〈p〉 | 〈p〉 sometime after 〈p〉 (2)

Formulae of the extended LTL are referred to as Temporal Extended Preferences (TEP).
Note that the last two are syntactic sugar for LTL formulae. Temporal extended pref-
erences are interpreted over finite trajectories. The notion of satisfaction for standard
LTL-formulae is defined as above, while satisfaction of TEP formulae is as follows:
given a finite trajectory σ = s0, . . . , sn:

• σ |= at end p iff sn |= p;
• σ |= p1 sometime before p2 iff for every i, 0 ≤ i ≤ n, if σi |= p1 then σj |= p2

for some i ≤ j ≤ n; and
• σj |= p1 sometime after p2 iff for every i, 0 ≤ i ≤ n, if σi |= p1 then σj |= p2

for some 0 ≤ j < i ≤ n.

2.2 Planning
We describe a dynamic domain as a labeled transition system T = (F,A, S, L), where:

• F is a set of fluents (or propositions),
• A is a set of actions,
• S is a set of interpretations (or states) of F , and
• L ⊆ S ×A× S.

1 We will also use the other propositional connectives, e.g., ⇒ with the expected meaning.
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Each triple 〈s1, a, s2〉 ∈ L indicates that the execution of the action a in the state s1
might result in the state s2. T is deterministic if for each state s and action a, L contains
at most one triple 〈s, a, s2〉; otherwise, T is non-deterministic.

Given a transition system T , a finite or infinite sequence s0a0s1a1 . . . snansn+1 . . .
of alternate states and actions is called a run if 〈si, ai, si+1〉 ∈ L for every i = 0, . . . A
policy π in a transition system T is a partial function π : S → A from the set of states
to the set of actions. A run s0a0s1a1 . . . skaksk+1 . . . is said to be induced by a policy
π if ai = π(si) for every i = 0, . . . , k, . . . With a slight abuse of terminology, we will
refer to a plan as either a sequence of actions or a policy from a transition system T .

Definition 1. A planning problem is a triple 〈T, Si, Sf 〉 where T = (F,A, S, L) is a
transition system, Si ⊆ S is the set of initial states, and Sf ⊆ S is the set of final states.

Intuitively, a planning problem asks for a plan which transforms the transition system
from any state belonging to Si to some state in Sf . In the rest of the discussion, we
assume Si and Sf to be finite sets. We distinguish two classes of planning problems:

◦ Deterministic planning: in this case, T is deterministic and a solution (or plan)
of 〈T, Si, Sf〉 is an action sequence [a0; . . . ; an] such that, for every s0 ∈ Si,
s0a0s1a1 . . . ansn+1 is a run in T and sn+1 ∈ Sf ;

◦ Non-deterministic planning: T is non-deterministic and a solution (or plan) of
〈T, Si, Sf 〉 is a policy π such that, for every s0 ∈ Si and every run induced by π in
T , the run is finite and is of the form s0a0s1a1 . . . skaksk+1 where sk+1 ∈ Sf .

In the following, whenever we refer to a possible plan in a transition system T , we mean
a sequence of actions (resp. a policy) if T is deterministic (resp. non-deterministic) that
can generate a correct run. Let us illustrate these basic definitions using the following
simple example.

Example 1. Consider a transportation robot. There are different locations, say l1, . . . , lk,
whose connectivity is given by a graph and there might be different objects at each lo-
cation. Let O be a set of objects. The robot can travel between two directly connected
locations. It can pick up objects at a location, hold them, drop them, and carry them
between locations. We assume that, for each pair of connected locations li and lj , the
robot has an action ai,j for traveling from li to lj . The robot can hold only one object
at a time. The domain can be represented by a transition system T1 = (F,A, S, L):2

• F contains the following types of propositions:
− at(i) denotes that the robot is at the location li;
− o at(o, i) denotes that the object o is at the location li;
− h(o) denotes that the robot is holding the object o.

• A contains of the following types of actions:
− ai,j the robot moves from li to lj ;
− release(o) the robot drops the object o;
− pickup(o) the robot picks up the object o.

2 We simplify the definitions of S and L for readability.
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• S contains the interpretations of F which satisfy the basic constraints, such as the
robot is at one location at a time, it holds only one object, etc.

• L contains transitions of the form 〈s, a, s′〉 such that s′ is the result of the execu-
tion of a in s; for example, if a = ai,j and at(i) ∈ s then s′ = s\{at(i)}∪{at(j)}.

T1 is a deterministic transition system. We will also refer to T2 as the non-deterministic
version of T1 by defining T2 = (F,A, S, L′) where L′ = L∪ {〈si, ai,j , si〉 | ai,j ∈ A}
and at(i) ∈ s. Intuitively, T2 encodes the fact that the action ai,j might fail and, when
it does, the robot will remain in position li after the execution of ai,j .

A planning problem P in this domain is given by specifying the initial location of
the robot and of the objects and the final location of the robot and of the objects. It is
deterministic (resp. non-deterministic) if T1 (resp. T2) is considered.

For example, Pi = 〈Ti, {{at(1)}}, Sf〉 where for each s ∈ Sf , at(k) ∈ s is a
planning problem for Ti. A solution for P1 is a sequence [a1,2; . . . ; ak−1,k]. On the
other hand, a solution for P2 is a policy π defined by (for each t < k): π(s) = at,t+1

iff at(t) ∈ s.

3 A Basic Goal Specification Language for Planning with
Preferences

In the literature, a planning problem with preferences is defined as a pair (P,Φ), where
P = 〈T, Si, Sf 〉 is a planning problem, with T = (F,A, S, L), and Φ is a preference
formula in a goal specification language. A plan δ of P is called a preferred plan if it is
a plan for P and satisfies Φ, where the notion of satisfaction of a preference formula by
a plan is language dependent.

In general, we can characterize a goal specification language G over a transition
system T by a set of preference formulae F and a satisfaction relation |=G between the
set of possible plans of T and formulae in F . We will write δ |=G Φ to denote that the
plan δ satisfies the formula Φ under the language G.

For later use, we will define a basic goal specification language for a transition
system T = (F,A, S, L), written as Gb = (Fb, |=Gb

), as follows:
• The set of preference formulae Fb is the set of TEP-formulae over F ∪ A, and
• The relation |=Gb

is defined as follows: for each planning problem P = 〈T, Si, Sf〉
− If T is deterministic, a plan δ = [a0, . . . , an] forP satisfies a formulaΦ in Fb if

for every s0 ∈ Si, s0a0s1a1 . . . ansn+1 is a run in T and (s0∪{a0}), . . . , (sn∪
{an}), sn+1 is a trajectory satisfying Φ (in the TEP-language over F ∪ A);

− If T is non-deterministic, a plan π for P satisfies a formula Φ in Fb if for
every s0 ∈ Si and every run s0a0s1a1 . . . skaksk+1 in T induced by π, (s0 ∪
{a0}), . . . , (sn ∪{an}), sn+1 is a trajectory satisfying Φ (in the TEP-language
over F ∪ A).

In the following, we will assume that any goal specification language G is a conserva-
tive extension of Gb, i.e., (i) G contains all formulae in Gb; and (ii) for every planning
problem P and a formula Φ in G, if Φ ∈ Gb and δ |=Gb

Φ then δ |=G Φ.

Example 2. Some preference formulae in Gb for the transition systems in Example 1:
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− �at(2): the robot should visit the location l2 during the execution of the plan;
− at(1) ∧ �at(2): the robot must (i) start in a state satisfying at(1) (or the robot

is at the location l1 initially); and (ii) visit the location l2 at some point during the
execution of the plan;

− �[at(2) ⇒ (
∨

i�=2 a2,i)]: whenever the robot visits l2, it should leave that location
immediately by executing an action going to one of its neighbors;

− h(o) ⇒ © © ¬h(o): if the robot holds an object o in the initial state then it
should release o after the execution of one action;

− �[h(o) ⇒ ©©¬h(o)]: whenever the robot holds an object o it should release o
after the execution of an action;

− h(o) sometime before at(5): whenever the robot holds the object o, it must
visit the location l5 thereafter before reaching the goal;

− at end [
∧

o∈O ¬h(o)]: at the end, the robot should not hold any object. �

With a slight abuse of notation, let us view a state s as a formula
∧

s |= f f∧
∧

s |= ¬f ¬f .
Let Si and Sf be two sets of states and

Φ =

⎡

⎢
⎣

∨

s∈Si

s

︸ ︷︷ ︸
Φ1

∧ at end [
∨

s∈Sf

s]

︸ ︷︷ ︸
Φ2

⎤

⎥
⎦

It is easy to see that any plan satisfying Φ requires its execution to start from a state
satisfying Φ1, which is one of the states in Si, and end in a state satisfying Φ2, which
is one of the states in Sf . For this reason, the description of the initial and final states
can be folded into a preference formula. We will therefore define planning problems as
follows.

Definition 2. Given a transition system T and a goal specification language G =
(F , |=G) over T , a goal formula Φ in F is called a planning problem. A solution of
Φ is a plan δ in T such that δ |=G Φ.

By Def. 2, a goal formula represents a planning problem. The literature is quite varied
when a user faces two or more goal formulae which are contradictory with each other.
For example, the formula �at(2) is contradictory with �¬at(2); �¬(∧o∈O h(o)) con-
flicts with �h(o1); etc. A possibility is to consider a possible plan as solution if it
satisfies some goal formulae. Another possibility is to rank the goal formulae and iden-
tify solutions as plans that satisfy the formula with the highest possible ranking. In the
following, we will show that a uniform framework for dealing with conflicting goal
formulae can be obtained by embedding goal formulae into Reiter’s default logic.

4 Goal Default Theories

In this section, we will introduce a new goal specification language, called goal de-
fault theory. A goal default theory is a variation of Reiter’s default theory [12], whose
defaults can contain preference formulae. Goal default theories provide a possible treat-
ment of planning with multiple goal formulae.
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A goal default theory is defined over a transition system T = (F,A, S, L) and a goal
specification language G = (F , |=G) over T . We say that two formulae ϕ, ψ in F are
equivalent w.r.t. |=G if, for each plan δ of T , we have that δ |=G ( ϕ ⇔ ψ ).3 We can
easily extend this to define the notion of logical consequence w.r.t. |=G—if S is a set of
formulae from F and f is another formula in F , then S |=G f if, for each plan δ of T ,
we have that δ |=G

∧
ϕ∈S ϕ implies δ |=G f . Given a set of formulae S from F , we

define Decl(S) = {ϕ | ϕ ∈ F , S |=G ϕ}.
A preference default (or p-default) d over G is of the following form

α : β

γ
(3)

where α, β, and γ are formulae in F . We call α the precondition, β the justification,
and γ the consequence of d, and we denote them with prec(d), just(d), and cons(d),
respectively. A default d is said to be

• Normal if its justification is equivalent to its conclusion;
• Prerequisite-free if its precondition is equivalent to true; and
• Supernormal if it is normal and prerequisite-free.

Given a set of formulae S from F , a default d is said to be defeated in S if S |=
¬just(d). Some preferences and their representation as p-defaults over Gb for the do-
main from Example 1 are given next.

Example 3. In these examples, o denotes a particular object in the domain.
• If there is no evidence that the robot is initially at location l2, then it should even-

tually go to l2:
� : ¬at(2)
�at(2)

(4)

• Assume that objects might be defective, represented by the proposition defective.
We can write � : �[¬defective(o)]

�[at(2) ⇒ h(o)]
(5)

to indicate that, normally, we would like the robot to hold the object o whenever
it is at location l2. An exception to this rule is possible if the object o becomes
defective.

• If the robot is not required to hold the object o in the final state and there is no
evidence that it initially holds o, then it should not execute the action of picking up
the object o:

� : at end (¬h(o)) ∧ ¬h(o)
�[¬pickup(o)] (6)

• If there is no evidence that the object o is initially in the wrong place then the
robot should not start by executing the action of picking up the object o:

at end (o at(o, i)) :
∧

i�=j ¬o at(o, j)

¬pickup(o) (7)

3 ϕ ⇔ ψ is a shorthand for (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).
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• A stronger version of (7) is

at end (o at(o, i)) :
∧

i�=j ¬o at(o, j)

�¬pickup(o) (8)

indicates that the robot should never pick up the object o if o could already be in
the desired final location.

• If there is the possibility that the robot might reach location l2, then it must leave
the location immediately after its arrival at l2:

� : �[at(2)]

�[at(2) ⇒ ©∨
i�=2 a2,i]

(9)

• If there is no evidence that an object o will ever appear in location i then the robot
should never go there.

� : �[¬o at(o, i)]

�[
∨

j �=i ¬aj,i]
(10)

In the following, we will refer to the p-defaults in (4)-(9) by p1, . . . , p6, respectively. �

We next define the notion of a goal default theory.

Definition 3. A goal default theory over a goal languageG = (F , |=G) and a transition
system T is a pair Σ = (D,W ) where D is a set of p-defaults over G and W ⊆ F .

Given a set of p-defaults D, we denote with cons(D) the set cons(D) = {cons(d) |d ∈
D}. A p-default d is applicable w.r.t. a set of formulae S from F if S |=G prec(d) and
S �|=G ¬just(d). Let us denote with ΠD(S) the set of p-defaults from D that are
applicable w.r.t. S. The next definition is similar to the notion of extension in [12].

Definition 4. Let Σ = (D,W ) be a goal default theory over G = (F , |=G) and T . An
extension of Σ is a minimal set E ⊆ F that satisfies the condition E = Decl(W ∪
Cons(ΠD(E))). We say that Σ is satisfiable if it has at least one extension.

From this definition, any default over the propositional language F ∪ A is a p-default,
and any Reiter’s default theory over the language F ∪ A is a goal default theory.

Definition 5. Given a transition system T = (F,A, S, L) and a goal specification lan-
guage G = (F , |=G) over T , a planning problem over T and G is a goal default theory
Σ = (D,W ) over G and T .

The notion of a solution to a planning problem is modified as follows.

Definition 6. Given a transition system T = (F,A, S, L), a goal specification lan-
guage G = (F , |=G) over T , and a planning problem Σ over T and G, a solution of Σ
is a plan δ in T such that δ |=G E for some extension E of Σ.

Some planning problems over the transition systems in Example 1 and the language Gb

are given in the next example.
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Example 4 (Continuation of Example 3)
• Let Σ1 = ({p1}, {at(1), at end at(5)}) where p1 is the default (4). Intuitively,

we have that Σ1 identifies plans where the robot starts at location l1, goes through
the location l2, and ends in location l5.

• Let Σ2 = ({p6}, {at(1), at end at(5)}) where p6 is the default (9). This iden-
tifies plans where the robot starts at location l1, ends in location l5, and either (i)
never goes through the location l2; or (ii) never stays in the location l2 within two
consecutive steps. �

The planning problems in Example 4 are simple, in that they are specified by goal
default theories whose set of defaults is a singleton. Let us consider a more complicated
example. Assume that we have two temporal formulae Φ and Ψ such that there exists
no plan that can satisfy both Φ and Ψ . In this case, the use of goal default theory as a
goal formula is convenient. Indeed, every solution of the planning problem expressed
by the goal default theory

ΣΦ,Ψ =

({� : ¬Ψ
Φ

,
� : ¬Φ

Ψ

}

, ∅
)

(11)

satisfies either Φ or Ψ . The following result generalizes this observation—whose truth
is a natural consequence of the notion of applicability; the sets Δδ are maximal subsets
of Δ which are consistent.

Proposition 1. Let T = (F,A, S, L) be a transition system, G = (F , |=G) be a goal
specification language, and Δ = {Φ1, . . . , Φn} be a set of preference formulae in F .
Furthermore, let

ΣΔ =
({ � : Ψ

Ψ Ψ ∈ Δ
}
, ∅) (12)

For every solution δ to the problem ΣΔ there exists a maximal (w.r.t. ⊆) set of prefer-
ences Δδ ⊆ Δ such that δ |=G

∧
Ψ∈Δδ

Ψ .

Proof. Since δ is a solution to the problem ΣΔ, there exists an extension E of ΣΔ such
that δ |=G E. We have that Δδ = {Ψ | Ψ ∈ Δ, Ψ ∈ E} is the set of preference
formulae satisfying the condition of the proposition. ��

5 Goal Default Theories with Priorities

Proposition 1 shows that goal default theories can be used to specify planning problems
with multiple preferences which might not be consistent with each other. For instance,
consider a traveler from New York to San Francisco who has two preferences: reach
the destination as fast as possible (Φ1) and spend the least amount of money (Φ2). In
general, these two preferences cannot be satisfied at the same time. It is reasonable
to assume that a plan satisfying one of the criteria is an acceptable solution. Thus,
Σ{Φ1,Φ2} is a reasonable goal specification if the traveler is impartial about Φ1 and Φ2.
On the other hand, if the traveler prefers Φ1 over Φ2 (or vice versa), we will need to
change the goal specification or provide additional ways for the traveler to specify this
priority. The literature offers several approaches for adding priorities to default theories
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[7, 8], which can be easily adapted to goal default theories. We next define goal default
theories with priorities by adapting the work of [7] to goal default theories.

Let us start by introducing static priorities, encoded by a well-ordering relation ≺
among p-defaults—i.e., ≺ is transitive, irreflexive, and each set of elements admits a
least element in the ordering. We denote with min≺(X) the least element of X with
respect to ≺. We define a goal default theory with priorities as follows.

Definition 7. A goal default theory with priorities over a goal language G = (F , |=G)
and a transition system T is a triple (D,W,≺) where D is a set of p-defaults over G,
≺ is a well-ordering relation over D, and W ⊆ F .

Following the general design of prioritizing default theories [7], the notion of preferred
extension can be defined by successively simplifying the structure of the defaults.

Let us define a construction of preferred extension through the application of defaults
according to the ordering imposed by ≺. In the following, let Π∗

D(S) = {d | d ∈
ΠD(S), S �|= cons(d)}. Let us introduce the PR operator which computes the next
“preferred” set of goal formulae from an existing one:

• PR≺(S) = Decl(S ∪ {cons(d)})
if Π∗

D(S) �= ∅ ∧ d = min≺({x | x ∈ Π∗
D(S)});

• PR≺(S) = S if Π∗
D(S) = ∅

If the elements in D (for a goal default theory (D,W )) are supernormal, then it is
possible to use PR≺ to produce a monotone sequence of goal formulae, by setting S0 =
Decl(W ), Si+1 = PR≺(Si) for any successor ordinal i+ 1 and Si = Decl(

⋃
j≤i Sj)

for any limit ordinal i. We will denote the result of this construction asPref≺(D,W ) =
⋃

i≥0 Si.
The process of determining a preferred extension will apply Pref≺ on a reduced

version of the theory, in a style similar to that used in the Gelfond-Lifschitz reduct.
Following the model proposed in [7], the reduct of a goal default theory with priorities
(D,W,≺) w.r.t. a set of goal formulae S, denoted (DS ,W,≺S), is obtained as follows:

– Determine D′ = {� : just(d)
cons(d) | d ∈ D,S |=G prec(d)}

– Determine DS = {d ∈ D′ | cons(d) �∈ S or S �|=G ¬just(d)} and ≺S is such that
d′1 ≺S d′2 if d1 ≺ d2 and d1 (d2) is the ≺-least element that introduced d′1 (d′2) in
D′.

We define preferred extensions as follows.

Definition 8. Let (D,W,≺) be a goal default theory with priorities over G = (F , |=G)
and T . A preferred extension E of (D,W,≺) is a set of goal formulae in F such that
E is an extension of (D,W ) and E = Pref≺E (DE ,W ).

Similar to [7], we can generalize the above definitions and define (i) A goal default
theory with priorities as a triple (D,W,≺) where (D,W ) is a goal default theory and
≺ is a partial order among defaults in D; and (ii) A set of formulae E is a preferred
extension of (D,W,≺) if it is a preferred extension of some (D,W,≺E) for some well-
ordering ≺E which is an extension of ≺. For brevity, we omit the precise definitions.
Definitions 5 and 6 can be extended in the obvious way: a planning problem is a goal
default theory with priorities (D,W,≺) and its solutions are preferred extensions of
(D,W,≺).
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Example 5. Let us consider the domain in Example 1. Let us assume that, among the
objects, there is a very valuable object o1 and a dangerous object o2. Furthermore, let
us assume that the robot is equipped with actions that can detect the object o2 whenever
the robot is at the same location as o2. However, the equipment might not be working.
We will denote with working the fact that the equipment is working properly. Let us
consider the two formulae:

• ϕ :=�h(o1): the robot should try to get the object o1
• ψ := �[

∧
i∈{1,...,k}(o at(o2, i) ⇒ ¬at(i))]: the robot should not be at the same

place with object o2 at any time.

With these formulae, we can define the following p-defaults:

g1 ≡ � : working

ψ ∧ ϕ
g2 ≡ � : ¬working

ϕ

g1 indicates that if the equipment is initially working, then the robot will get o1 while
trying to avoid o2. g2 states that if the equipment is not working, then the robot will
only worry about getting o1. The theory ({g1, g2}, ∅, {g1 ≺ g2}) states that we prefer
that the robot tries to satisfy g1 before trying to satisfy g2.

6 Relationship to other Goal Languages

In this section, we relate a goal default theory with priorities to previously developed
goal specification languages. In this section, for a plan δ and a formula Φ, we write
δ |= Φ to denote that δ satisfies Φ as defined in the other goal languages.

6.1 Temporal Extended Preferences

Temporal extended preferences (or TEP formulae) (Section 2) are defined as part of
PDDL 3.0, and used to specify preferences over plans in deterministic domains. They
are referred to as constraints. TEP formulae have been implemented in a heuristic
search based planner in [1]. Given a set of TEP formulaeΔ = {Φ1, . . . , Φn}, a planning
problem is an optimization problem that maximizes the rewards obtained by satisfying
the preferences in Δ. Formally, the reward over a plan δ is

ΣΦi∈Δ,δ|=Φi
reward(Φi)−ΣΦi∈Δ,δ �|=Φi

penalty(Φi)

where reward(Φ) and penalty(Φ) denote the reward and penalty for satisfying and not
satisfying the preference Φ, respectively.

Observe that the basic goal specification language (Section 3) does not provide the
means for selecting a plan based on such a reward function. Nevertheless, the planning
problem can be expressed by a goal default theory with priorities as follows. Let S be a
set of formulae, S ⊆ Δ, and dS be the default

� :
∧

Φ∈S Φ ∧∧
Φ∈Δ\S ¬Φ

∧
Φ∈S Φ ∧∧

Φ∈Δ\S ¬Φ
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Let DΔ = {dS | S ⊆ Δ} and ≺Δ be the partial order over DΔ where dS ≺Δ dS′ if

ΣΦi∈Sreward(Φi)−ΣΦi �∈Spenalty(Φi) ≥ ΣΦi∈S′reward(Φi)−ΣΦi �∈S′penalty(Φi).

We can show that (DΔ, ∅,≺Δ) is a goal default theory with priorities representing the
given planning problem, i.e., any preferred solution of (DΔ, ∅,≺Δ) is a solution of the
original planning problem and vice versa.

6.2 PP
The language PP introduced in [13] allows the specification of basic desires, atomic
preferences, and general preferences. In [6], the language PP is modified and extended
with aggregate formulae. The modification and extension are applied over general pref-
erences. We discuss how basic desires and atomic preferences can be encoded as a goal
default theory with priorities. We will also identify a difficulty in expressing a general
preference as a goal default theory with priorities.

– Basic desires: a basic desire ϕ is a preference over a trajectory and, therefore, is a
part of the basic goal language described in Section 3.

– Atomic preferences: an atomic preference is an ordering among basic desires Φ =
Φ1 �Φ2 . . .�Φk and expresses that the preference Φi is more important than Φi+1

for 1 ≤ i < k−1. The semantics of PP states that a plan δ is a solution of Φ if there
exists no plan δ′ such that there exists some i and (i) for every j < i, δ |= Φj iff
δ′ |= Φj , and (ii) δ �|= Φi while δ′ |= Φi. It is easy to see that an atomic preference
Φ can be represented by the following goal default theory with priorities

({
� : Φi

Φi
i = 1, . . . , k

}
, ∅,≺Φ

)

where ≺Φ is defined by � : Φi

Φi
≺Φ

� : Φj

Φj
for 1 ≤ i < j ≤ k.

– General preferences: a general preference is either an atomic preference or a combi-
nation of general preferences such as Φ&Ψ , Φ|Ψ , and !Φ where Φ and Ψ are general
preferences. Intuitively, general preferences add finitely many levels to the specifi-
cation of preferences and thus cannot be easily represented by goal default theories
which assume ceteris paribus over the preferences. Adding priorities allows only
an extra layer of comparison between preferences. We view this as a weakness of
goal default theories and plan to further investigate this issue.

6.3 N-LTL and ER-LTL

N-LTL is defined in [4] and it allows the specification of weak and strong exceptions
within goal formulae represented as LTL-formulae. An N-LTL theory consists of a set of
rules of the form 〈e : f〉, where e is a label drawn from a set of labels R (which contains
a distinct element g) and f is an LTL-formula over P (as defined in (1)) extended with
the following constructs

〈f〉 ::= [〈r〉](〈f〉) | [[〈r〉]](〈f〉) (13)
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where 〈r〉 is a label in R. [〈r〉](〈f〉) denotes that normally 〈f〉 is true with the weak
exception denoted by 〈r〉, while [[〈r〉][(〈f〉) denotes that normally 〈f〉 is true with the
strong exception denoted by 〈r〉. A label a depends on a label b if b occurs in the body
of a rule of the form 〈a : f〉. The notion of dependency between labels is extended
by transitivity. A theory is said to be loop-free if there is no label r which depends on
itself. In [4], the semantics of an N-LTL theory is defined for loop-free N-LTL theories
by compiling away the extended constructs [〈r〉] and [[〈r〉]] to create a single LTL-
formula. In this sense, Gb subsumes N-LTL.

ER-LTL [5] replaces the two constructs in (13) by the single construct

[〈r〉](〈f1〉 � 〈f2〉) (14)

which states that normally, if the precondition 〈f1〉 is satisfied then the consequence
〈f2〉 should be satisfied except for the exceptions indicated by 〈r〉. Again, the semantics
of an ER-LTL theory is defined by a compilation process that creates an LTL-formula,
and thus, we can conclude that Gb also subsumes ER-LTL.

Observe that the constructs in (13) or (14) are fairly close to default logic. We believe
that interesting collections of N-LTL (ER-LTL) theories can be translated into goal
default theories—which would provide a reasonable semantics for N-LTL (ER-LTL)
theories with loops. For simple cases, there is a straightforward translation of N-LTL
(ER-LTL) formulae to p-defaults. For example, if Φ and Ψ are LTL-formulae then the
formula [r]Φ could be viewed as the p-default � : ¬abr

Φ where abr denotes that the rule
r is applicable; the formula [r] : (Φ � Ψ) can be represented by Φ : ¬abr

Ψ . However, N-
LTL (ER-LTL) formulae allow, for example, labels to be nested and this straightforward
translation will not be sufficient. We leave this question of how to translate arbitrary N-
LTL (ER-LTL) theories into goal default theories as future work.

Finally, we would like to note that Gb can be easily extended to consider N-LTL
(ER-LTL) formulae by extending

• Fb with N-LTL (ER-LTL) formulae;
• |=Gb

to define that δ |=Gb
S iff δ |=Gb

c(S) where c(S), a LTL formula, denotes
the result of compiling S to an LTL formula as described in [4, 5].

6.4 π-CTL∗ and P-CTL∗

With the exception of the language PP , which considers non-deterministic domains,
all other goal specification languages are defined only for deterministic systems. PP ,
however, only deals with trajectories. In presence of non-deterministic actions, we need
to expand the notion of a plan from a simple sequence of actions to a policy, i.e., a
mapping from states to actions. As such, preferences should be defined over policies.
The language π-CTL∗ [2], which is an extension of CTL∗, is defined for expressing
goals in non-deterministic domains, but does not allow for preferences among goals to
be defined.

To relate our goal language with π-CTL∗ we need to review its basic definitions.
There are two kinds of formulae in CTL∗: state formulae and path formulae. Let 〈p〉
denote an atomic proposition, 〈sf〉 denotes state a formula, and 〈pf〉 denotes a path
formula. The syntax of state and path formulae in π-CTL∗ is as follows.
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〈sf〉 ::= 〈p〉 | 〈sf〉 ∧ 〈sf〉 | 〈sf〉 ∨ 〈sf〉 | ¬〈sf〉 | E〈pf〉 | A〈pf〉 | Eπ〈pf〉 | Aπ〈pf〉
〈pf〉 ::= 〈sf〉 | 〈pf〉 ∨ 〈pf〉 | ¬〈pf〉 | 〈pf〉 ∧ 〈pf〉 | 〈pf〉 U 〈pf〉 | © 〈pf〉 | �〈pf〉 | �〈pf〉

Intuitively, state formulae are properties of states, while path formulae are properties of
paths. Compared to CTL∗, π-CTL∗ introduces two new constructs: Eπ and Aπ, whose
intuitive readings are: there is a path (resp. for all paths) that is (are) consistent with
respect to the policy π. These two constructs address the issues raised in [2].

Given a transition system T and a policy π, π-CTL∗ formulae are interpreted with
respect a state s. For a run σ = s0a0s1a1 . . . snansn+1 . . . in T , by traj(σ) we denote
the trajectory s0, s1, . . . , sn, sn+1 . . . obtained from σ by removing every occurrence
of actions in σ. The entailment of a state formula ϕ with respect to a state s and a policy
π, denoted by (s, π) |= ϕ, is defined as follows:

• (s, π) |= p iff s |= p

• (s, π) |= ¬f iff (s, π) �|= f

• (s, π) |= f ∨ f ′ iff (s, π) |= f or (s, π) |= f ′

• (s, π) |= f ∧ f ′ iff (s, π) |= f and (s, π) |= f ′

• (s, π) |= E pf iff there exists a run σ = s0a0s1a1 . . . snansn+1 in T such that
s0 = s and (traj(σ), π) |= pf

• (s, π) |= A pf iff for every run σ = s0a0s1a1 . . . snansn+1 in T such that s0 = s,
we have that (traj(σ), π) |= pf

• (s, π) |= Eπ pf iff there exists a run σ = s0a0s1a1 . . . snansn+1 induced by π in
T such that s0 = s and (traj(σ), π) |= pf

• (s, π) |= Aπ pf iff for every run σ = s0a0s1a1 . . . snansn+1 induced by π in T
such that s0 = s, we have that ((traj(σ), π) |= pf

The entailment of a path formulaϕ is defined with respect to a trajectory σ = s0, s1, . . . ,
and is denoted by (σ, π) |= ϕ where:

• (σ, π) |= sf iff (s0, π) |= sf
• (σ, π) |= ¬pf iff (σ, π) �|= pf

• (σ, π) |= pf1 ∧ pf2 iff (σ, π) |= pf1 and (σ, π) |= pf2
• (σ, π) |= pf1 ∨ pf2 iff (σ, π) |= pf1 or (σ, π) |= pf2
• (σ, π) |= ©pf iff (σ1, π) |= pf

• (σ, π) |= �pf iff (σi, π) |= pf for each i ≥ 0

• (σ, π) |= �pf iff (σi, π) |= pf for some i ≥ 0

• (σ, π) |= pf1Upf2 iff there is k ≥ 0 such that (σk, π) |= pf2 and for all 0 ≤ i < k
we have (σi, π) |= pf1.

A planning problem is a triple P = 〈T, {s}, Φ〉 where T is a transition system, s is a
state, and Φ is a π-CTL∗ path formula. A policy π is a solution of P if (traj(σs), π) |=
Φ where σs is the run induced by π with s0 = s.

Observe that the set of formulae Fb contains path formulae of π-CTL∗ which do not
contain the operators A, E, Aπ, and Eπ. Nevertheless, the definition of entailment |=Gb

,
as defined in Section 3, does take into consideration the policy in its definition. Indeed,
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we can show that if Φ is a π-CTL∗ formula, which belongs to Fb, and s is a state then
for every policy π, (s, π) |= Φ then π is a solution to the planning problem 〈T, {s}, Φ〉.
Thus, the CTL∗ part of π-CTL∗ can be expressed in Gb. It is easy to see that Gb can be
extended to allow formulae of π-CTL∗.

π-CTL∗ was developed for specifying goals in non-deterministic systems. It does not
provide means for specifying preferences between goals in π-CTL∗. This is addressed
in P-CTL∗ [3] by adding the two quantifiers EP and AP over state formulae. We ob-
serve that using goal default theories or goal default theories with priorities, we can
easily introduce preferences into π-CTL∗ but the two new operators are not expressible
in our goal language.

7 Conclusions and Future Work

In this paper, we describe a default logic based approach to defining non-monotonic
goal specification languages. We start with a basic goal specification language and use
default logic (or prioritizing default logic) to provide a natural way for dealing with
inconsistency and priorities over goals. We show that the new language subsumes some
goal languages in the literature and can describe several features from other goal lan-
guages. We identify desirable features that cannot be easily expressed by our goal lan-
guage, among them is the multi-level of preferences between goals, which we intend
to investigate in the near future. We also discuss possible applications of the proposed
goal language.
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Abstract. In this paper we study the possibility of providing causal explanations
for preferred answer sets, such as those obtained from logic programs with or-
dered disjunction (LPODs). We use a recently defined multi-valued semantics
for answer sets based on a causal algebra and consider its direct application to
LPODs by several illustrating examples. We also explain the limitations of this
simple approach and enumerate some open topics to be explored in the future.

1 Introduction

Although much work in problem solving has been devoted to problems with a small set
of solutions that are hard to find, there are many other situations in which the number
of solutions is astronomical, but not all of them are preferred in the same way. Think,
for instance, on the configuration of a timetable for a university or a school: there exists
a huge number of combinations with physically feasible timetables, but most of them
do not have a reasonable distribution.

The definition of a suitable Knowledge Representation (KR) language for specifying
preferences has proved to be a difficult endeavour. Apart from the long list of features
usually expected from a KR formalism (simplicity, clear semantics, flexibility, elabora-
tion tolerance, computability, complexity assessment, efficient inference methods, etc),
the specification of preferences has an extra difficulty that has to do with their subjec-
tive, ambiguous definition. For instance, while any student or teacher could easily tell
why a given random timetable is not reasonable, it is very difficult to formally encode
all the preferences that capture the commonsense idea of “reasonable timetable” in the
general case – furthermore, there would not be a complete agreement among different
persons either and, in a multi-agent setting, taking into account everyone’s preferences
means seeking for a kind of compromise. But even when we have a single person, she
may initially declare a list of preferences such as “A is better than B.” However, when
this list grows, the results obtained by formal systems are usually far away from the
expected outcomes that the person had in mind. To bridge the gap, several refinements
can be applied, such as adding conditional preferences or including an ordering among
them. Still, while the strict physical rules that govern a timetable assignment are objec-
tive and accurate, it is practically impossible to guarantee that the set of preferences is
working as expected from a commonsense point of view.

Although there exist both qualitative and quantitative approaches for dealing with
preferences in Artificial Intelligence, the interest in KR has been mostly focused on

� This research was partially supported by Spanish MEC project TIN2013-42149-P.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 218–232, 2015.
c© Springer International Publishing Switzerland 2015



Explaining Preferences and Preferring Explanations 219

the qualitative orientation, probably because it is closer to commonsense reasoning, as
humans rarely express their preferences in numerical terms1.

As explained in [7], the relation between preferences and Non-Monotonic Reason-
ing (NMR) has been evident from the very beginning. On the one hand, the nature of
preferences is clearly non-monotonic: the addition of new preferences may drastically
change the obtained conclusions. On the other hand, we can also see a default as a kind
of preference specification: a sentence like “birds normally fly” can be read as “if X is a
bird, my preferred belief is that X flies.” Indeed, many non-monotonic formalisms are
defined in terms of a preference relation among logical models of a theory.

When one mentions research on preferences and NMR there is one researcher’s name
that immediately comes to mind: Gerhard Brewka. Being one of the pioneers in NMR,
Gerd soon became interested in the topic of preferences, proposing extensions of Reiter’s
Default Logic [26] to include priorities among defaults [1,2]. He also got interested on
an emerging problem solving paradigm, Answer Set Programming (ASP) [22,21] whose
semantics (stable models [16] or answer sets) can also be seen as a particular case of
Default Logic. ASP has become nowadays [5] a de facto standard for practical NMR
and problem solving thanks to its clear semantics and the availability of efficient solvers
together with a wide spectrum of applications running in real scenarios. In 1998, Gerd
coauthored, together with Thomas Eiter, one of the first remarkable approaches of pref-
erences in ASP [4]. Four years later, he introduced a different orientation called Logic
Programs with Ordered Disjunction (LPODs) [3]. In LPODs, logic programs were ex-
tended with a new connective called ordered disjunction allowing the representation of
ranked options for problem solutions in the heads of rules. As a result, LPODs pro-
vided a flexible and readable way for expressing (conditional) preferences combined
with the expressiveness of default negation already embodied in ASP. Originally, the
semantics of LPODs relied on an adapted definition of answer sets or, alternatively, re-
sorted to program transformations (so-called “split programs”). However, in [8], it was
shown how the ordered disjunction connective could be naturally captured in Equilib-
rium Logic [23], the most general logical characterisation of ASP. This actually allows
seeing LPODs as a “regular” type of ASP programs extended with an additional pref-
erence relation on answer sets.

As we explained before, in a practical scenario, one can expect that the specifica-
tion of preferences is obtained after several attempts and refinements, by repeatedly
observing the obtained results and comparing them to the expected behaviour. In such
a context, it seems clear that explanations play a fundamental role. There exist sev-
eral approaches in the ASP literature focused on providing explanations for debug-
ging [15,25,27,12] or obtaining justifications for the program outcome [24,13,29]. In a
recent proposal [9], the idea of causal justifications for ASP programs was introduced.
These causal justifications are embodied in ASP as a multi-valued extension where
each true atom in a stable model is associated with an expression involving rule labels
corresponding to the alternative proofs to derive the atom.

1 An exception is, perhaps, when we consider optimization problems (minimizing cost, maxi-
mizing profit, etc) as an instance of preference specification. In any case, we mean here that,
even though we are sometimes able to assign numerical weights to preferences, this is not
usually present at our commonsense level, but a forced assignment a posteriori.
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In this paper we study the possibility of providing explanations for LPODs. As a
first direct attempt, we have considered the combination of LPODs with causal justifi-
cations, showing its behaviour on several examples. We also explain how it may seem
sometimes reasonable to provide preferences, not only among program rules, but also
on the explanations obtained. Finally, we discuss the obvious limitations of this first
approach and foresee some interesting open topics to be explore in the future.

2 Logic Programs with Ordered Disjunction

In this section we begin providing some preliminary definitions and notation and then
proceed to recall the definition of LPODs, both in its original formulation and in terms
of a logical characterisation found in [8].

2.1 Preliminaries

We begin introducing some preliminary notation that will be useful later. Let A be a
(possibly empty) sequence of (possibly repeated) formulas. We write |A| to stand for
the length of A. For any k ∈ {1, . . . , |A|}, by A[k] we mean the k-th expression in A
and by A[1..k], the prefix of A of length k, that is, (A[1] . . .A[k]). For a binary operator
� ∈ {∨,∧,×}, by (�A) we mean the formula resulting from the repeated application
of � to all formulas in A in the same ordering. As an example, given the sequence of
atoms A = (a,b,c,d,e), the expression (×A[1..3]) represents the formula a×b×c. We
write not A to stand for the sequence of formulas ( (not A[1]) . . . (not A[k]) ) where
k = |A|. An empty conjunction is understood as � whereas an empty disjunction (both
ordered × or regular ∨) is understood as ⊥. The concatenation of two lists of formulas,
A and B, is simply written as AB.

A logic program is a set of rules of the form:

(∨A)∨ (∨not A′)← (∧B)∧ (∧ not B′) (1)

where A,A′,B and B′ are lists of atoms. The consequent and antecedent of the implica-
tion above are respectively called the head and the body of the rule. In the examples, we
will usually represent conjunctions in the body as commas, to follow the standard ASP
notation. A rule with an empty head ⊥ (that is, |A|+ |A′|= 0) is called a constraint. A
rule with an empty body � (that is, |B|+ |B′|= 0) is called a fact, and we usually write
the head F instead of F ←�. A rule is said to be normal when |A|= 1 and |A′|= 0. A
rule is positive when |A′|= |B′|= 0. We extend the use of these adjectives to a program,
meaning that all its rules are of the same kind.

A rule head2 of the form p∨¬p behaves as a choice rule: we are free to include p
or not. This kind of head is usually written as {p} in ASP and we will sometimes use it
too to increase readability.

2 It can be noted that we allow the use of default negation in the head. This feature was first
defined by [18]. The paper [20] explained how negation in the head could be expressed as double
negation in the body. In [19], Janhunen proved that default negation in the head can be removed
by a polynomial introduction of auxiliary atoms, showing that this feature does not introduce
new expressiveness. However, it must be noted that this kind of programs may have non-minimal
stable models, something that does not happen if default negation is not allowed in the head. As a
final remark, [11] proved that rules of form (1) actually constitute a normal form for equilibrium
logic [23] or, equivalently, for stable models for arbitrary propositional theories [14].
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Answer sets of a program P are defined in terms of the classical Gelfond-Lifschitz
reduct [16], that is extended as follows for the syntactic case we are considering (dis-
junctive heads with default negation [18]). The reduct of a program P with respect to a
set of atoms I, written PI , consists of a rule of the form (∨A)← (∧B) per each rule in
P of the form (1) that satisfies I |= (∧A′)∧ (∧ not B′). We say that a set of atoms I is an
answer set of a program P if I is a minimal model of PI .

Answer sets differ from stable models in that they further allow a new negation (also
called classical, explicit, or strong negation). For simplicity, we will understand strong
negation of an atom p as a new atom “¬p” and assume that each time one of these
“negative” atoms is used, we implicitly further include the constraint:

⊥ ← p,¬p

2.2 LPODs: Original Definition

A logic program with ordered disjunction (LPOD) is a set of rules of the form:

(×A)← (∧B)∧ (∧ not B′) (2)

where A,B and B′ are lists of atoms. We say that a set of atoms I satisfies an LPOD rule
r such as (2), written I |= r, when I |= (∨A)← (∧B)∧ (∧ not B′) in classical logic.

For each LPOD rule r of the form (2), we define its k-th option, written rk, with
k ∈ {1, . . . , |A|}, as the normal rule:

A[k]← (∧B)∧ (∧ not B′)∧ (∧ not A[1..k−1])

A normal logic program P′ is a split program of P if it is the result of replacing each
LPOD rule r ∈ P by one of its possible options rk. A set of atoms I is an answer set of
P if it is an answer set of some split program P′ of P.

Example 1 (From [6]). Let P1 be the LPOD:

a× b ← not c b× c ← not d

This LPOD has four split programs:

P1 =

{
a ← not c
b ← not d

P2 =

{
a ← not c
c ← not d,not b

P3 =

{
b ← not c,not a
b ← not d

P4 =

{
b ← not c,not a
c ← not d,not b

that yield three answer sets {a,b} (from P1), {c} (from P2 and P4) and {b} (from P3 and
P4). �

As explained in [6], answer sets of LPODs can also be described in terms of a pro-
gram reduct, instead of using split programs.
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Definition 1 (×-reduct). The ×-reduct of an LPOD rule r such as (2) with respect to
a set of atoms I denoted as rI× and defined as the set of rules:

A[i]← (∧B) (3)

for all i = 1, . . . , |A| such that I |= (∧ not B′)∧ (∧ not A[1..i−1])∧A[i]. �

As expected, the ×-reduct of an LPOD P with respect to I, written PI× is the union of
all rI× for all LPOD rules r ∈ P. For instance, for I = {b,c} and P:

a× b ← c,not d (4)

d× a ← not b (5)

d × e ← not a (6)

the reduct PI× would be the rule {b ← c}. Notice that PI× defined in this way is always a
positive (non-disjunctive) logic program and so it has a least model [28].

Theorem 1 (Brewka et al. [6]). A set of atoms I is an answer set of an LPOD P iff
I |= P and I is the least model of PI×. �

It is important to note that I |= PI× does not imply I |= P, and thus, the latter is also
required in the above theorem. For instance, in the last example, the interpretation /0 is
the least model of PI× but does not satisfy the LPOD rule (6).

Three ordering relations can be used for selecting preferred answer sets. We say that
an LPOD rule r of the form (2) is satisfied to degree j ∈ {1, . . . , |A|} by a set of atoms I,
written I |= j r, when: I does not satisfy the body of r and j = 1; I satisfies the body of r
and j is the minimum index for which A[ j] ∈ I. We define degI(r)

def= j when I |= j r and
define the set I j(P) def= {r ∈ P | I |= j r}. Given two answer sets I,J of a given LPOD:

1. I is cardinality-preferred to J, written I >c J, when for some truth degree k, |Ik(P)|>
|Jk(P)| whereas |Ii(P)|= |Ji(P)| for all i < k.

2. I is inclusion-preferred to J, written I >i J, when for some truth degree k, Jk(P)⊂
Ik(P) while Ii(P) = Ji(P) for all i < k.

3. I is Pareto-preferred to J, written I >p J, if for some rule r ∈ P, degI(r)< degJ(r)
whereas for no rule r′ ∈ P, degI(r′)> degJ(r′).

As an example, suppose we have a program with three preference rules r,s and t and
that we get four answer sets I1, I2, I3 and I4 so that the degree of satisfaction for each
rule in each interpretation is given by the table:

r s t
I1 1 2 1
I2 1 1 2
I3 1 3 2
I4 1 3 4



Explaining Preferences and Preferring Explanations 223

Then, under cardinality preference we get that I1 and I2 are equally preferred, because
they both have two rules with degree 1 and one rule with degree 2. I1 >c I3 because I3

only has one rule with degree 1, whereas I3 >c I4 because they tie in 1’s but I3 has a
2 and I4 no. As for the inclusion preference, I1 and I2 are now not comparable, since
their sets of rules with degree 1 cannot be included one on another. However, we have
I1 >i I3 and I1 >i I4 because the set of 1’s in I3 and I4 are a subset of those in I1. The
same happens with I2 >i I3 and I2 >i I4. Finally, for Pareto preference, we get that I1,
I2 and I3 are all preferred to I4 because the latter has equal or worse degree in all rules,
one by one. Similarly, I3 is less preferred than I1 or I2. However, I1 is unrelated to I2

because it has a better degree for rule t but worse degree for rule s.

2.3 Ordered Disjunction as an Operator

As explained in the introduction, in [8] it was shown how the original definition of
answer sets for LPODs can be alternatively characterised by a logical encoding into
Equilibrium Logic [23], and in particular, into its monotonic basis called the logic of
here-and-there (HT) [17]. [8] showed that the expression A×B can be defined in HT
as A∨ (not A∧B). As a result of some simple transformations in the logic of HT, it
was possible to prove that a rule of the form (2) can be seen as an abbreviation of the
conjunction of the following rules:

A[k]∨not A[k] ← (∧B)∧ (∧ not B′)∧ (∧ not A[1..k−1]) (7)

⊥ ← (∧B)∧ (∧ not B′)∧ (∧ not A) (8)

for all k = 1, . . . , |A|. For a rule r like (2) we denote each rule (7) by r[k]. As an example,
the HT translation of the LPOD rule r : a× b× c← p,not q consists of:

r[1] : a∨not a ← p,not q

r[2] : b∨not b ← p,not q,not a

r[3] : c∨not c ← p,not q,not a,not b

⊥ ← p,not q,not a,not b,not c

Note that rule heads have the form of choice expressions: as explained before, we would
usually write a∨¬a as {a}. So, essentially, r[1] says that when p∧ not q, we have
freedom to choose a or not. In its turn, r[2] further says that if, additionally, a is false,
then we can freely choose b or not, and so on. The constraint just checks that at least
one choice is eventually chosen.

At a first sight, this definition may seem similar to the one based on split programs.
Note that, in fact, r[k] can be seen as a weaker version of the previously defined rk where
we have just added not A[k] with a disjunction in the head. However, it is important to
note that the HT translation provides a unique ASP program and that the translation of
each LPOD rule (2) is modular, so we can safely understand it as an abbreviation of all
the rules (7) and (8).
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3 Causal Justifications

In this section, we recall several definitions and notation from [9]. The intuitive idea
is that atoms in a stable model will be assigned algebraic expressions instead of truth
values 0,1. These algebraic expressions are built with labels for the program rules plus
three operations: a product ‘∗’ meaning conjunction or joint causation; a concatenation
‘·’ meaning ordered sequence of application of terms; and an addition ‘+’ meaning
different alternative proofs for a same atom.

A signature is a pair 〈At,Lb〉 of sets that respectively represent atoms (or proposi-
tions) and rule labels.

The syntax is defined as follows. As usual, a literal is defined as an atom p (positive
literal) or its default negation not p (negative literal). In this paper, we will concentrate
on programs without disjunction in the head (leaving its treatment for future work).

Definition 2 (Causal logic program). Given a signature 〈At,Lb〉, a (causal) logic pro-
gram P is a set of rules of the form3:

t : H ∨ (∨not A′)← (∧B)∧ (∧ not B′) (9)

where t ∈ Lb∪{1} where H is an atom and A,B,B′ lists of atoms as before. �

For any rule R of the form (9) we define label(R) def= t. When t ∈ Lb we say that the
rule is labelled; otherwise t = 1 and we omit both t and ‘:’. By these conventions, for
instance, an unlabelled fact p is actually an abbreviation of (1 : p ←). A logic program
P is positive if it contains no default negation.

The semantics relies on assigning, to each atom, a causal term defined as follows.

Definition 3 (Causal term). A (causal) term, t, over a set of labels Lb, is recursively
defined as one of the following expressions t ::= l | ∏S | ∑S | t1 · t2 | (t1) where l ∈ Lb,
t1, t2 are in their turn causal terms and S is a (possibly empty and possible infinite) set
of causal terms. When S is finite and non-empty, S = {t1, . . . , tn} we write ∏S simply as
t1 ∗ · · · ∗ tn and ∑S as t1 + · · ·+ tn. The set of causal terms is denoted by TLb. �

We assume that ‘∗’ has higher priority (lower precedence) than ‘+’. When S = /0, we
denote ∏S by 1 and ∑S by 0. These values are the indentities for the product and the
addition, respectively. All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Further-
more, ‘∗’ and ‘+’ are commutative and they hold the usual absorption and distributive
laws with respect to infinite sums and products of any completely distributive lattice,
as shown4 in Figure 1. The behaviour of the ‘·’ operator is captured by the properties

3 Note that disjunction of positive atoms are not allowed. In this paper, such a feature is unneces-
sary whereas its introduction in causal logic programs is still under study. The main difficulty
for dealing with this extension has to do with the fact that the explanation for a disjunction
A∨B can be, in principle, “divided” into the two disjuncts rather than alternatively assigned
to one or another. This suggests that the right encoding of a rule a∨ b ← c should actually
correspond to a disjunction of rules (a ← c)∨ (b ← c) which is not an equivalent formulation
under this multi-valued framework.

4 For the sake of readability, we only show the properties for finite sums and products, but they
still hold in the infinite case.
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shown in Figure 2. As we can see, distributivity with respect to the product is only ap-
plicable to terms c, d, e without sums (this means that the empty sum, 0, is not allowed
either). We define the standard order relation ≤ as follows:

t ≤ u iff (t ∗ u = t) iff (t + u = u)

By the identity properties of + and ∗, this immediately means that 1 is the top element
and 0 the bottom element of this order relation.

Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity
t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 1. Sum and product satisfy the properties of a completely distributive lattice

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Associativity

t · (u·w) = (t·u) · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

t · t = t

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c ·d · e = (c ·d)∗ (d · e) with d �= 1
c · (d ∗e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 2. Properties of the ‘·’ operator (c,d,e are terms without ‘+’)

As proved in [9], any causal term can be equivalently reduced to a disjunctive normal
form with an addition of products of pairs (l · l′) where l, l′ are labels. In fact, each
product of pairs can be seen as a syntactic representation of a graph whose nodes are
labels and with an arc (l, l′) per each pair (l · l′).

Given a signature 〈At,Lb〉 a causal interpretation is a mapping I : At → TLb as-
signing a causal term to each atom. We denote the set of causal interpretations by I.
For interpretations I and J we say that I ≤ J whether I(p)≤ J(p) for each atom p ∈ At.
Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that maps
each atom p to 0 (resp. 1). Valuation of formulas is defined as follows:

I(not p) =

{
1 if I(p) = 0
0 otherwise

I(α ∧β ) = I(α)∗ I(β )
I(α ∨β ) = I(α)+ I(β )

An interpretation I satisfies a positive rule t : H ← (∧B) when:

I(∧B) · t ≤ I(H)
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As usual, I is a model of a positive program iff it satisfies all its rules. Positive programs
have a ≤-least model that corresponds to the least fixpoint of a direct consequences
operator (see [9] for further details).

The reduct of a program P with respect to a causal interpretation I, written PI , is
defined in a similar manner as before. Program PI consists of all positive rules t : H ←
(∧B) such that there is a rule (9) in P for which I

(
(∧A′)∧ (∧ not B′)

)
= 1.

Definition 4 (Causal model). Given a positive causal logic program P, a causal inter-
pretation I is a causal stable model iff I is the ≤-least model of PI. �

In [9], it was also shown that there exists a one-to-one correspondence between
causal stable models of a program and its regular stable models (when labels are ig-
nored). Furthermore, given the causal stable model I and its corresponding two-valued
stable model J, the assignment I(p) for an atom p precisely captures all the (non-
redundant) proofs that can be built for deriving p in the positive program PJ .

Example 2 (From [9]). Some country has a law l that asserts that driving drunk is pun-
ishable with imprisonment. On the other hand, a second law m specifies that resisting
arrest has the same effect. The execution e of a sentence establishes that a punishment
implies imprisonment by default but there may be exceptional cases in which this pun-
ishment is not effective. In particular, some of such exceptions are a pardon, that the
punishment was revoked, or that the person has diplomatic immunity. Suppose that
some person drove drunk and resisted to be arrested. �
We can capture this scenario with the following logic program P1:

l : punish ← drive,drunk d : drive a : abnormal ← pardon
m : punish ← resist k : drunk a : abnormal ← revoke
e : prison ← punish,not abnormal r : resist a : abnormal ← diplomat

This program has a unique causal stable model I where I(abnormal) = I(pardon) =
I(revoke) = I(diplomat) = 0 (false by default), I(drive) = d, I(drunk) = k, I(resist) =
r, I(punish) = (d ∗ k) · l + r ·m and I(prison) = ((d ∗ k) · l + r ·m) ·e = (d ∗ k) · l ·e+ r ·
m · e. If we add one of the exceptions as a fact, like for instance pardon, we get a new
unique stable model I′ where the only differences with respect to I are I′(pardon) = 1,
I′(abnormal) = a and I′(prison) = 0. Note that default negation does not propagate
causal information (the label a for abnormal has no effect on prison).

4 Causal Explanations for a Preferred Answer Set

In this section we directly combine both approaches (LPODs and causal logic pro-
grams) by extracting explanations of LPODs expressed as causal terms. Consider the
following example from [3] about how to spend a free afternoon.

Example 3 (Brewka [3]). You like to go to the beach, but also to the cinema. Normally
you prefer the cinema over the beach, unless it is hot (which is the exception in the area
where you live, except during the summer). If it is hot the beach is preferred over the
cinema. In summer it is normally hot, but there are exceptions. If it rains the beach is
out of question. �
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This information can be captured by the following set of rules P1:

c : cinema× beach ← not hot

b : beach× cinema ← hot

h : hot ← not ¬hot,summer

r : ¬beach ← rain

This program has two choices with ordered disjunction, c and b, that respectively cor-
respond to preferring cinema or beach depending on the context. As explained before,
these rules can be unfolded into:

c[1] : {cinema} ← not hot

c[2] : {beach} ← not hot,not cinema

⊥ ← not hot,not cinema,not beach

b[1] : {beach} ← hot

b[2] : {cinema} ← hot,not beach

⊥ ← hot,not beach,not cinema

Assume now that we are given the fact summer. The answer sets for P1 ∪ {summer}
are J0 = {summer,hot,beach} and J1 = {summer,hot,cinema} but only J1 is preferred
(under all preference orderings) since it satisfies rule b to degree 1 while J2 only satisfies
b to degree 2, and coincides in the rest of rules. As explained before, there exists one
causal stable model per each regular stable model for any program P. In particular, the
causal stable model I1 corresponding to J1 assigns the causal values I1(summer) = 1,
I1(hot) = h, I1(beach) = h · b[1] while all false atoms in J1 are assigned the value 0.
On the other hand, the causal stable model I2 corresponding to J2 only differs in the
assignments I(cinema) = h · b[2] and I(beach) = 0. It is interesting to note that, since
fact summer was not labelled, the truth value for that atom becomes 1 (“completely”
true), which is the top element of the lattice of causal values. A second observation is
that the causal value of atoms can also be used to find out the degree of satisfaction of
an ordered choice rule. For instance, in I1 we can see that rule b is being satisfied to
degree 1 because the head atom in that position, beach, is assigned a value in which
b[1] occurs. Similarly, in I2, we know that b is satisfied to degree 2 because I2(cinema)
contains a reference to b[2]. If an LPOD contains no repeated labels, it can be checked
that, for any ordered choice rule r, we will never get two different occurrences r[i] and
r[k] with i �= k in the values of atoms in a causal stable model.

Let us continue with the example as done in [3] and assume now that we add the
information ¬hot. That is, we consider the program program P1 ∪ {summer,¬hot}.
Then, the new preferred answer set becomes J3 = {summer,¬hot,cinema} and its cor-
responding causal version I3 makes the assignments I3(summer) = 1, I3(¬hot) = 1 and
I3(cinema) = c[1]. A second, non-preferred answer set, I4, would vary in the assign-
ments I4(cinema) = 0 and I4(beach) = c[2]. Notice that I1 and I3 are analogous in the
sense that they switch their preference orders depending on whether we had hot or not,
respectively. However, the causal values are not completely analogous: while in I1 the
explanation for cinema involves two labels, h ·b[1], in I3 the explanation for beach only
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refers to c[1]. This is because the meaning of default negation in causal justifications is
understood as a default precondition, rather than an actual, effective cause. To generate
a symmetric with respect to I1 we should encode rule b as:

b : beach× cinema←¬hot

and, if fact ¬hot were labelled to trace its effects, say using:

g : ¬hot

then I3(beach) would become g · c[1].
It is not difficult to see that program P1 ∪{summer,rain} yields a unique preferred

answer set whose causal version, I5, yields the explanations I5(summer) = I5(rain) = 1,
I5(¬beach) = r, I5(hot) = h and I5(cinema) = h ·c[2]. Note how, in this case, cinema is
justified by h (the rule concluding hot) and, after that, c[2] meaning that we were forced
to select the second choice of rule c (since beach was not possible5).

In all the previous variations of the example, we never had alternative proofs for an
atom: all true atoms had a unique possible derivation in a given answer set. This is
reflected by the fact that we did not get any instances of + in algebraic expressions.
To illustrate this effect, suppose that whenever we go windsurfing we always go to the
beach whereas, normally, when the day is windy we are in the mood for windsurfing
(if nothing prevents us from doing so). To capture this refinement, assume that P2 is
program P1 plus rules:

s : beach ← windsur f

w : windsur f ← wind,not ¬windsur f

and that we are in a windy day in the summer. The program P2 ∪{wind,summer} has
one preferred answer set I6 whose corresponding causal explanations are I6(summer) =
I6(wind) = 1, I6(windsur f ) =w, I6(hot)= h, I6(beach)= h ·b[1]+w ·s. In other words,
we get two explanations for beach: the previous one saying that, as it is hot h, we used
the first choice of rule b; plus a second one saying that, as we want to make windsurf
w, we applied rule s.

5 Preferred Explanations

In [10] it was shown how the number of alternative causal explanations for an atom
in a positive program may grow exponentially in the worst case. The reason for that
is related to the application of distributivity, something we need when we want to ex-
press the final atom value in disjunctive normal form (sum of alternative causes). So,
as we explained in the introduction, this is another case in which we may have many
potential “solutions” (the causal explanations) where we may be interested in showing
preferences among them.

One straightforward manner to incorporate preferences among terms in the causal
values lattice is adding axioms involving the order relation among terms. As an elemen-
tary expression, if we add an axiom r ≤ r′ (that is r+ r′ = r′ or equivalently r ∗ r′ = r)

5 Remember that we implicitly assume the existence of constraint ⊥← beach,¬beach.
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for a pair of rule labels r,r′ we will be able to remove some less preferred explanations
from causal terms. For instance, think about the last variation of the example, program
P2. We may be interested in preferring explanations that involve a non-preference rule
like s or w over explanations that involve a preference like b. In our case, we could add
the axioms:

b[1]≤ s b[2]≤ s b[1]≤ w b[2]≤ w

As a result, we would be able to prove that:

b[1]+w · s = (b[1]+w
︸ ︷︷ ︸

=w

) · (b[1]+ s
︸ ︷︷ ︸

=s

) = w · s

that is, b[1] ≤ w · s. Since h · b[1] ≤ b[1] by absorption, we conclude h · b[1] ≤ w · s
and, thus, I6(beach) = h · b[1]+w · s = w · s removing, in this way, the less preferred
explanation based on rule b.

Many different preference criteria can be thought for selecting the “best” explana-
tions. For instance, it makes sense to prefer an explanation that uses the i-th choice of an
ordered disjunction rather than the one that uses a j-th choice with i < j. To capture that
behaviour, we could define the degree n of a causal term without sums as the maximum
value k occurring in any label of the form r[k] (0 if no label of that form occurs), and
add axiom schemata to force that causal explanations with higher degree are smaller
under the causal order relation. As an example, consider the following LPOD:

a : p× q× r

b : t × h× p× q

c : h× t × q

⊥← p

⊥← h

⊥← t

The preferred answer set makes q true with the explanation I(q) = a[2] + b[4] +
c[3] that, under the criterion mentioned above, would collapse to the explanation with
smallest degree I(q) = a[2]. In other words, the “strongest” reason for q is that we took
the second choice of rule a.

6 Conclusions and Open Topics

In this paper we have presented a first exploratory attempt to provide explanations or
justifications for the preferred answer sets obtained from Logic Programs with Ordered
Disjunction (LPODs). At a same time, we have also discussed the possibility of incor-
porating preferences when there exist alternative explanations for a same atom.

The current approach is a simple first step towards the final goal of providing expla-
nations of preferred answer sets and helping the user to refine her formal representation.
There are many open topics that are interesting for future work. As a first example, when
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explaining the outcome of an LPOD, the approach in this paper only provides the ex-
planation of true atoms in a given preferred answer set. This may help us to find out
where did the information contained in one preferred choice come from. However, in
many cases, the question of why a given fact or literal, that we know that may be true
in another solution to our problem (i.e., some answer set perhaps not preferred) has not
been eventually true in some preferred answer set. Answering questions of the form
“why-not” has been studied in [12] for a different algebraic approach and the incorpo-
ration of this type of queries to causal justifications is currently under study. Formally,
this will involve the incorporation of a negation operator in the algebra of causal val-
ues. Still, even if we are eventually able of answering “why-not” questions, the case
of LPODs introduces an additional difficulty since what we would probably want is to
know how the set of preferences has prevented that a literal (possible in another answer
set) became true in any preferred solution.

Regarding the topic on preferring explanations, the addition of a negation operator
to the causal algebra could also be interesting to express preferences like, for instance,
saying that any positive proof is preferred over a proof that depends on negation (a
default). In the windsurfing variant of our running example, this would mean that adding
a rule of the form:

m : beach ← romantic

together with the fact t : romantic should provide a stronger explanation than w · s since
t ·m has not applied any default, whereas w was actually a default rule.
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21. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm,
pp. 169–181. Springer (1999)
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Abstract. Nonmonotonic Multi-Context Systems (MCS) provide a rigorous
framework and flexible approach to represent and reason over interlinked, het-
erogeneous knowledge sources. Not least due to nonmonotonicity, however, an
MCS may be inconsistent and resolving inconsistency is a major issue. Notions
of diagnosis and inconsistency explanations have been developed for this purpose,
considering the information exchange as the primary culprit. To discriminate be-
tween different possible solutions, we consider preference-based diagnosis selec-
tion. We develop a general meta-reasoning technique, i.e., an MCS transformation
capable of full introspection on possible diagnoses, and we present a natural en-
coding of preferred diagnosis selection on top. Moreover, for the more involved
notions of diagnosis utilized, we establish that the complexity does not increase.
However, this does not carry over to selecting most preferred diagnoses as the
encoding is not polynomial.

1 Introduction

Multi-Context Systems (MCS) provide a rigorous and flexible approach to represent
and reason over multiple interlinked, possibly heterogeneous, knowledge sources. They
thus address a highly important issue in contemporary knowledge representation and
reasoning (KRR) as more and more bodies of knowledge, formalized in different rep-
resentation languages, are shared, e.g., over the Web, and utilized in combination. The
origins of MCS are rooted in the Trento School [10] and can be traced back to funda-
mental thoughts on contextualizing knowledge by McCarthy [11]. However, their sig-
nificance for modern KRR is due to seminal advancements of the framework attributed
to Gerd Brewka. His work on the topic was pioneering the incorporation of (i) non-
monotonic reasoning [6], thus allowing to reason from the absence of knowledge from
a source (called context), further generalized by (ii) the accommodation of both hetero-
geneous and nonmonotonic contexts [4], thus paving the way to integrate predominant
KR formalisms and logics as utilized today.

Our present contribution addresses the resulting framework of Nonmonotonic MCS
[4], where a context is associated (in addition to a knowledge base) with a so-called logic,
i.e., a formal abstraction of its particular representation language and semantics, and
with a set of so-called bridge rules that intuitively represent its interlinking with other
contexts. An MCS consists of a collection of contexts. Its semantics is defined in terms of
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equilibria, i.e., a collection of belief sets (one for each context) compliant with the bridge
rules and the semantics associated with each context. Not least due to nonmonotonicity,
an MCS may be inconsistent (lack equilibria), which is undesired since it renders the
system useless given that equilibria represent the meaning of an MCS.

In order to cope with this problem, notions of diagnosis and inconsistency explana-
tions have been developed [7]. They aim at giving reasons for inconsistency and hinting
at possible ways for resolution under the assumption that the information exchange is
the culprit. For instance, given an inconsistent MCS the set of all diagnoses intuitively
characterizes all possible ways to remove inconsistency by modifying its bridge rules
(including deletion). Since this notion is purely technical, however, it is not amenable
to a further distinction of unwanted diagnoses from preferred ones. Although a minimal
diagnosis yields minimal modifications in order to ensure the existence of an equilib-
rium, this does not discriminate diagnoses whose modifications, e.g, yield serious con-
sequences like wrongfully considering an ill patient as healthy and not giving her any
medication.

Example 1. Let M be an MCS handling patient treatments and billing in a hospital; it
contains the following contexts: a patient database C1, a logic program C2 suggesting
proper medication, and a logic program C3 handling the billing. Context C1 provides
information that the patient has severe hyperglycemia, that she is allergic to animal in-
sulin, and that her health insurance is from a company classified B. Context C2 suggests
applying either human or animal insulin if the patient has hyperglycemia and requires
that the applied insulin does not cause an allergic reaction. Context C3 does the billing
and encodes that insurance of class B only pays animal insulin. An overview of the
MCS and its bridge rules is given in Figure 1 (cf. the next section for a more formal
account). Bridge rule r1 intuitively conveys the information regarding hyperglycemia;
r2 states that animal insulin can be applied if the patient is not allergic to it; bridge rules
r3 and r4 encode that animal insulin, respectively human insulin, is billed if applied;
and r5 ensures that the insurance class of a patient is taken into account for billing.

As the patient has hyperglycemia and is allergic to animal insulin, a belief set would
only be acceptable for C2 if human insulin is given. As the insurance company doesn’t
cover human insulin, the billing context C3 would not admit this; M is inconsistent.

Applying one of its (subset minimal) diagnoses would yield, respectively, that the
illness of the patient is ignored, that the medication is not billed, that the insurance
receives a bill it will not pay, or that the patient is given a medication she is allergic to.

It is thus not easy to identify a best minimal diagnosis among those available. If the
health of the patient is most important, then diagnoses just causing wrong billing would
be preferable. On the other hand, from an economic perspective, one might consider
medication leading to wrong billing as unacceptable.

In this article we therefore address the problem of distinguishing and selecting most
preferred diagnoses. Our goal is to realize corresponding reasoning tasks within the
established MCS framework in a general way, in particular without confinement to a
certain preference formalism. The core idea towards achievement is to use a context of
an MCS for preference specification. This requires the ability of introspection or meta-
reasoning regarding possible diagnoses of the MCS. Finding techniques that enable an
MCS to achieve capabilities for meta-reasoning (about the diagnoses of itself) therefore
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Patient databaseC1 Medication C2

Billing C3

r1

r2 r3r4

r5

Fig. 1. Contexts and bridge rules of a hospital MCS M = (C1, C2, C3)

is an important task. Our contribution in this respect is the definition of a general meta-
reasoning technique as well as an investigation of some of its properties and a natural
encoding for total preference orders.

Finally, we focus on computational complexity and present complexity results for
decision problems associated with the more general notions of diagnosis applied. More
specifically, we establish that both protecting bridge rules as well as prioritizing bridge
rules, i.e., the techniques applied in our meta-reasoning encoding, do not incur addi-
tional cost. This does not carry over to the problem of selecting most preferred diagnosis
though. Regarding the latter, the presented encoding, while intuitive, is not polynomial
but exponential in the number of bridge rules used.

Compared to our previous work on the topic [8], which aimed at an encoding for
CP-nets, we (i) address preference relations in general; (ii) advance the meta-reasoning
approach regarding its introspective accuracy, enabling the distinct observation of all
potential modifications that any diagnosis (candidate) may yield; and (iii) complement
an intuitive discussion of computational complexity issues with formal results.

There are several close connections to the work of Gerd Brewka, to honor his 60th
birthday which this collection set out for. For one, as already mentioned in the very
beginning, the research area on MCS would probably lack most of its justification in
terms of applicability to contemporary KRR practice without Gerd’s significant achieve-
ments. Moreover, we are addressing preference issues over diagnoses for MCS, while
Gerd Brewka has made numerous substantial contributions to preference handling in
nonmonotonic logics; we refer to the article of the editors of this volume for a review
and an appraisal of Gerd’s eminent account of trend-setting contributions.

The remainder of this article is structured as follows. After some preliminaries,
in Section 3 we introduce basic and general notions of preferred diagnoses under
preference-based selection. In Section 4 we develop our approach to achieve meta-
reasoning in MCS, and encode preference orders. In Section 5 we present and discuss
computational complexity results of associated diagnostic reasoning tasks, before we
conclude. Proofs of all results can be found in [14].

2 Preliminaries

We start by recalling MCS basics from [4] and the notion of diagnoses following [7].

Definition 1. An abstract logic L, is a triple L = (KBL,BSL,ACCL) where:
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– KBL is the set of knowledge bases of L. We assume each element of KBL is a set.
– BSL is the set of possible belief sets, where the elements of a belief set are state-

ments that possibly hold.
– ACCL : KBL → 2BSL is a function describing the semantics of the logic by

assigning to each knowledge base a set of acceptable belief sets.

Example 2 (Classical Propositional Logic). To capture classical (propositional) logic
over a set Σ of propositional atoms, we may define:

– KBc = 2Σ
wff

is the set of all subsets of Σwff , where Σwff is the set of well-formed
formulas over Σ built using the connectives ∧,∨,¬,→;

– BSc = 2Σ
wff

, i.e., each set of formulas is a possible belief set; and
– ACCc returns for each set kb ∈ KBc of well-formed formulas a singleton set that

contains the set of formulas entailed by kb; if |=c denotes classical entailment, then
ACCc(kb) = {{F ∈ Σwff | kb |=c F}}.

The resulting logic Lc
Σ = (KBc,BSc,ACCc) captures entailment in classical logics.

Observe that any tautological formula is entailed by any knowledge base, hence any
bs ∈ ACCc(kb) for some kb ∈ KBc is infinite (for Σ �= ∅). In practice, therefore
the formulas in knowledge bases and belief sets might be restricted to particular forms,
e.g., to literals; we denote the logic where belief sets are restricted to literals by Lpl

Σ =

(KBpl,BSpl, ACCpl), where BSpl = {bs ∈ BSc | bs ⊆ {A,¬A | A ∈ Σ}},
KBpl = KBc, and ACCpl(kb) = {{A∈Σ | kb |=c A} ∪ {¬A | A∈Σ, kb |=c

¬A}}.

Example 3 (Disjunctive Answer Set Programming). For disjunctive logic programs un-
der answer set semantics over a non-ground signature Σ (cf. [12] and [9]), we use the
abstract logic Lasp

Σ = (KB,BS,ACC), which is defined as follows:
– KB is the set of disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of

(safe) rules of the form

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm, n+m > 0,

where all ai, bj , are atoms over a first-order language Σ.
– BS is the set of Herbrand interpretations over Σ, i.e., each bs ∈ BS is a set of

ground atoms from Σ, and
– ACC(kb) returns the set of kb’s answer sets: for P ∈ KB and T ∈ BS, let
PT = {r ∈ grnd(P ) | T |= B(r)} be the FLP-reduct of P w.r.t. T , where
grnd(P ) returns the ground version of all rules in P . Then bs ∈ BS is an answer
set, i.e., bs ∈ ACC(kb), iff bs is a minimal model of kbbs .

Definition 2. Given a sequence L = (L1, . . . , Ln) of abstract logics and 1 ≤ k ≤ n,
an Lk bridge rule over L is of the following form:

(k : s) ←(c1 : p1), . . . , (ci : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where for each 1 ≤ j ≤ m we have that cj ∈ {1, . . . , n}, pj is an element of some belief
set of the abstract logic Lcj , and s ∈ ⋃

KBLk
is a knowledge base formula of Lk.

We denote by ϕ (r) the formula s in the head of r and by Ch (r) the context identifier
k of the context where r belongs to. We refer to literals in the body of r as follows:
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– body±(r) = {(c1 : p1), . . . , (cm : pm)},
– body+(r) = {(c1 : p1), . . . , (cj : pj)},
– body−(r) = {(cj+1 : pj+1), . . . , (cm : pm)}, and
– body(r) = {(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm)}.

Furthermore, Cb (r) denotes the set of contexts referenced in r’s body, i.e., Cb (r) =
{ci | (ci : pi) ∈ body±(r)}. Note that different from [4], we explicitly state in the head
of r the contextk where r belongs to. This choice merely is syntactic sugar and allows for
easier identification of the respective context. For technical use later, we denote by cf (r)
the condition-free bridge rule stemming from r by removing all elements in its body, i.e.,
cf (r) is (k : s) ← . and for any set of bridge rules R, we let cf (R) =

⋃
r∈R cf (r).

Definition 3. A Multi-Context System M = (C1, . . . , Cn) is a collection of contexts
Ci = (Li, kbi, br i), 1 ≤ i ≤ n, where

– Li = (KBi,BSi,ACCi) is an abstract logic,
– kbi ∈ KBi is a knowledge base, and
– br i is a set of Li-bridge rules over L = (L1, . . . , Ln).

Furthermore, for each H ⊆ {ϕ (r) | r ∈ br i} it holds that (kbi ∪H) ∈ KBi, i.e.,
adding bridge rule heads to a knowledge base again yields a knowledge base.

By br(M) =
⋃n

i=1 br i and C (M) = {1, . . . , n} we denote the set of all bridge
rules, respectively the set of all context identifiers of M . We write br i(M) to denote
the set of bridge rules of context i of M , i.e., br i(M) = {r ∈ br(M) | Ch (r) = i}.

Formally, given an MCS M = (C1, . . . , Cn) with Ci = (Li, kbi, br i) and Li =
(KBi,BSi,ACCi), a belief state of M is a sequence S = (S1, . . . , Sn) of belief sets
Si ∈ BSi, 1 ≤ i ≤ n.

Given a belief state S of M , one can evaluate for all bridge rules r ∈ br (M) whether
the body of r is satisfied in S, i.e., whether r is applicable in S. Formally, a bridge rule
r of form (1) is applicable in a belief state S, denoted by S r, if for all (j : p) ∈
body+(r) it holds that p ∈ Sj , and for all (j : p) ∈ body−(r) it holds that p /∈ Sj . For a
set R of bridge rules and a belief state S, app (R,S) denotes the set of bridge rules of
R that are applicable in S, i.e., app (R,S) = {r ∈ R | S r}.

Equilibrium semantics designates some belief states as acceptable. Intuitively, equi-
librium semantics selects a belief state S = (S1, . . . , Sn) of an MCS M as acceptable,
if each context Ci takes the heads of all its bridge rules that are applicable in S into ac-
count to enrich its knowledge base with, and accepts its designated belief set Si under
this enlarged knowledge base.

Definition 4. A belief state S = (S1, . . . , Sn) of an MCS M is an equilibrium, if for
every belief set Si, 1 ≤ i ≤ n, it holds that

Si ∈ ACCi

(
kbi ∪ {ϕ (r) | r ∈ app (br i, S)}

)
. (2)

The set of all equilibria of M is denoted by EQ(M).

To create bridge rules that are always resp. never applicable, we also allow bridge
rules with body � resp. ⊥; this is syntactic sugar for an empty body resp. a body con-
taining (� : p),not (� : p) where p is any belief of some context C�. For a bridge rule
r of form (k : s) ← �. it therefore holds for all belief states S that S r, while for a
bridge rule r′ of form (k : s) ← ⊥. it holds for all belief states S that S � r′.
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In the following, we often consider modifications to the bridge rules of an MCS. We
use the following notation to denote an MCS where bridge rules have been exchanged:
given an MCS M = (C1, . . . , Cn) over abstract logics L = (L1, . . . , Ln) and a set R of
bridge rules over L (compatible with M ), we denote by M [R] the MCS obtained from
M by replacing its set of bridge rules br(M) with R. For example, M [br(M)] = M
and M [∅] is M with no bridge rules at all.

Regarding equilibria, we write M |= ⊥ to denote that M has no equilibrium, i.e.,
EQ(M) = ∅. Conversely, by M �|= ⊥ we denote the opposite, i.e., EQ(M) �= ∅.

We say that an MCS is inconsistent, if it EQ(M) = ∅; equivalently, M |= ⊥.

Example 4. Let us reconsider our introductory Example 1 more formally. In the MCS
M = (C1, C2, C3) handling patient treatments and billing in a hospital, context C1

uses the abstract logic Lpl
Σ , while both C2 and C3 use Lasp

Σ . We restrict our example to
a single patient with the following knowledge bases for contexts:

kb1 = {hyperglycemia , allergic animal insulin, insurance class B},
kb2 =

{
give human insulin ∨ give animal insulin ← hyperglycemia .
⊥ ← give animal insulin, not allow animal insulin

}

,

kb3 =

⎧
⎨

⎩

bill ← bill animal insulin.
bill more ← bill human insulin.
⊥ ← insurance class B , bill more.}

⎫
⎬

⎭
,

The bridge rules of M are:

r1: (2 : hyperglycemia) ← (1 : hyperglycemia).
r2: (2 : allow animal insulin)←not (1 : allergic animal insulin).
r3: (3 : bill animal insulin) ← (2 : give animal insulin).
r4: (3 : bill human insulin) ← (2 : give human insulin).
r5: (3 : insurance class B) ← (1 : insurance class B).

As already argued intuitively in the introduction,M is inconsistent: Since the patient
has hyperglycemia and is allergic to animal insulin, the only acceptable belief set at
context C2 contains give human insulin , i.e., the human insulin must be given. Since
the insurance company does not cover human insulin, the billing context C3 admits no
acceptable belief set and the MCS M therefore is inconsistent.

Definition 5. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆
br(M), such that M [br(M) \ D1 ∪ cf (D2)] �|= ⊥. By notation, D±(M) is the set
of all diagnoses.

To obtain a more relevant set of diagnoses, by Occam’s razor we prefer subset-minimal
diagnoses, where for pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise
subset relation A ⊆ B holds iff A1 ⊆ B1 and A2 ⊆ B2.

Definition 6. Given an MCS M , D±
m(M) is the set of all pointwise subset-minimal

diagnoses of an MCS M , i.e.,

D±
m(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : D′ ⊆ D ⇒ D ⊆ D′}.

Diagnoses correspond to potential repairs of an MCS as captured by the correspond-
ing modification of bridge rules according to Definition 5. For instance, the minimal
diagnoses of M in the previous example are the following:

D±
m(M) = {({r1} , ∅) , ({r4} , ∅) , ({r5} , ∅) , (∅, {r2})}
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Prof. KC1 Dr. J C2

r1

r2

r3

Fig. 2. Contexts and bridge rules of the MCS M = (C1, C2) from Example 5

They respectively correspond to potential repairs, where the illness of the patient is
ignored, where the medication is not billed, where the insurance receives a bill it will
not pay, and where the patient is given a medication she is allergic to.

For another example, consider the following scenario.

Example 5. Prof. K and Dr. J plan to write a paper. We formalize their reasoning in an
MCS M using two contexts C1 and C2, each employing Lasp

Σ for answer set semantics.
Dr. J will write most of the paper and Prof. K will participate if she finds time or if Dr. J
thinks the paper needs improvement (bridge rule r1). Dr. J knows that participation of
Prof. K results in a good paper (r2 and kb1) and he will name Prof. K as author if she
participates (r3). The knowledge bases of the contexts are:

kb1 = { contribute ← improve.; contribute ← has time.}
kb2 = { good ← coauthored .}

The bridge rules of M are:

r1 : (1 : improve) ← not (2 : good). (3)

r2 : (2 : coauthored ) ← (1 : contribute). (4)

r3 : (2 : name K ) ← (1 : contribute). (5)

Figure 2 depicts the contexts and bridge rules of M . It appears that M is inconsistent,
intuitively as the cycle through bridge rules r1 and r2 has an odd number of negations.

The set of minimal diagnoses of M is:

D±
m(M) = { ({r1} , ∅) , ({r2} , ∅) , (∅, {r2}) , (∅, {r1}) }

The first two diagnoses break the cycle by removing a rule, the last two “stabilize” it.

In the remainder, we will allow for certain bridge rules to be exempt from mod-
ification in a diagnosis, i.e., they are protected. Protecting certain bridge rules from
modification is essential for our meta-reasoning approach.

Definition 7 ([8]). Let M be an MCS with protected rules brP ⊆ br(M). A diagnosis
excluding protected rules brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆
br(M) \ brP ; by D±

m(M, brP ) we denote the set of all minimal such diagnoses.

3 Preference-Based Diagnosis Selection

To compare diagnoses with each other and select the most appealing one(s), we use
preferences. In the spirit of MCS, we also want this approach to be open to any kind
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of formalism for specifying preference. Taking a general stance, since any preference
formalism essentially yields an order relation, preference is just an order relation (i.e. a
transitive relation) on diagnoses.

Definition 8. A preference order over diagnoses for an MCS M is a transitive binary
relation � on 2br(M) × 2br(M); we say that D is preferred to D′ iff D � D′.

Given a preference order �, we denote by ≺ its irreflexive version, i.e., D ≺ D′

holds iff D � D′ and D �= D′ hold. Using a preference order �, we can now define
what constitutes a most preferred diagnosis. Again the intuition is that such a diagnosis
is one which incurs the least amount of modifications and there exists no other diagnosis
that is strictly more preferred. To do so, we first introduce �-preferred diagnoses as
diagnoses such that no other diagnosis is strictly more preferred; among them, we select
then the subset-minimal ones. Formally,

Definition 9. Let M be an inconsistent MCS. A diagnosis D ∈ D±(M) of M is �-
preferred , if for all D′ ∈ 2br(M) × 2br(M) with D′ ≺ D ∧ D �� D′ it holds that
D′ /∈ D±(M). A diagnosis D ∈ D±(M) is minimal �-preferred , if D is subset-
minimal among all �-preferred diagnoses. The set of �-preferred (resp., minimal �-
preferred) diagnoses is denoted by D±

�(M) (resp., D±
m,�(M)).

Observe that we do not require � to be acyclic and therefore we consider all diag-
noses in a cycle to be equally preferred; this justifies the condition of D′ ≺ D∧D �� D′

for defining D±
�(M).

Example 6. Consider the hospital MCS M of Example 4 again, where bridge rules r1
and r2 transport information regarding the patient’s health and bridge rules r3, r4, and
r5 cover the information flow for billing. If we consider it most important that infor-
mation flow regarding health information is changed as little as possible, a preference
order � as follows might be used:

(D1, D2) � (D′
1, D

′
2) iff {r1, r2} ∩ (D1 ∪D2) ⊆ (D′

1 ∪D′
2) ∩ {r1, r2}.

Under this definition, the following preferences (and several more) hold:

({r4, r5}, ∅) � ({r1}, ∅) ({r4}, ∅) � ({r1}, ∅) ({r5}, ∅) � ({r1}, ∅)
({r4, r5}, ∅) � (∅, {r2}) ({r4}, ∅) � (∅, {r2}) ({r5}, ∅) � (∅, {r2})

({r4}, ∅) � ({r5}, ∅) ({r5}, ∅) � ({r4}, ∅)
Note that � indeed yields cyclic preferences among those diagnosis candidates that are
incomparable, especially it holds that ({r4}, ∅) ≺ ({r5}, ∅) and ({r5}, ∅) ≺ ({r4}, ∅).
The set of �-preferred diagnoses of M then is:

D±
�(M) = {(D1, D2) | D1, D2 ⊆ {r3, r4, r5} and r4 ∈ D1 \D2 or r5 ∈ D1 \D2}.

Note that ({r5}, ∅), ({r4}, ∅) and ({r4, r5}, ∅) are all in D±
�(M). Selecting from

D±
�(M) the subset-minimal ones, we obtain

D±
m,�(M) = {({r5}, ∅), ({r4}, ∅)}

This agrees with our intuition that a minimum amount of modifications should be ap-
plied and we favor to modify bridge rules for billing information rather than modifying
health-related bridge rules.
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4 Meta-reasoning Encoding in MCS

A critical issue in realizing a meta-reasoning approach to select preferred diagnoses is
accurate introspection: all potential modifications that some diagnosis may yield need
to be distinctly observable. As we will show, one can encode the modifications of a
diagnosis directly in an MCS such that observations are perfect, and the original system
is no longer just observed but actively modified instead. Conceptually, given an MCS
M = (C1, . . . , Cn) all its bridge rules are rewritten and protected such that a diagnosis
is applied only to the bridge rules of an additional context Cn+1. This context Cn+1

then is able to definitely observe the modifications and to disclose this observation to
all other contexts via its acceptable belief set.

The bridge rules of the original system are modified to consider the belief set of
Cn+1. So they either behave like removed or like made unconditional, depending on
what Cn+1 beliefs. For these two modes of behavior, each bridge rule r ∈ br(M) is re-
placed by two bridge rules in the meta-reasoning system: one bridge rule for becoming
unconditional and one that behaves like r or like being removed (i.e., it simply does not
fire when Cn+1 believes r to be removed). The form of these two bridge rules is similar
to the form of bridge rules in the HEX-encoding for computing diagnoses in [7] (rules
(15), (21), and (22)).

While aiming at preferences, our meta-reasoning encoding is intended to be general
enough to encompass further selection criteria such as, e.g., filters [8]. Therefore, we
introduce a property θ that represents additional behavior of the context Cn+1. A pref-
erence encoding requires further bridge rules for mapping preferences to bridge rules;
this set of additional bridge rules is called K, so we obtain as meta-reasoning encoding
of M an MCS Mmr(θ,K). In Section 4.1 we craft θ such that preferences on diagnoses
map to the ⊆-relation on K. But first, we specify Mmr(θ,K) in general and show its
suitability for meta-reasoning.

To encode (observe) diagnoses, the context Cn+1 needs bridge rules where a di-
agnosis can be applied to and which can be observed reliably. To that end, for every
r ∈ br(M), we have the following two bridge rules to encode/observe whether r is
removed or made unconditional.

d1(r) : (n+1 : not removed r) ← �. (6)

d2(r) : (n+1 : uncond r) ← ⊥. (7)

By d1(r) (resp., d2(r)) we denote the bridge rule of form (6) (resp. (7)). Likewise,
for a set R ⊆ br(M), let di(R) = {di(r) | r ∈ R}, i ∈ {1, 2}. The meta-reasoning
encoding Mmr(θ,K) is then as follows.

Definition 10. Let M = (C1, . . . , Cn) be an MCS and let K be a set of bridge rules r
such that body(r) = {⊥}, Ch (r) = n+1, and ϕ (r) /∈ {not removedr′ , uncondr′ |
r′ ∈ br(M)}. Let θ be a ternary property over 2br(M) × 2br(M) × 2K. Then, the MCS
Mmr(θ,K) = (C′

1, . . . , C
′
n, Cn+1) is the meta-reasoning encoding wrt. θ and K if
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(i) for every Ci = (Li, kbi, br i), 1 ≤ i ≤ n, it holds that C′
i = (Li, kbi, br

′
i) where

br ′i contains for every r ∈ br i of form (1) the following two bridge rules:

(i : s) ←(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm),

not (n+1 : removed r). (8)

(i : s) ←(n+1 : uncond r). (9)

and br ′i contains no other bridge rules.
(ii) Cn+1 = (Ln+1, kbn+1, brn+1) is any context such that:

(a) brn+1 = d1(br(M)) ∪ d2(br (M)) ∪ K and all rules with a head formula of
form not removed r or uncondr are of form (6) or (7).

(b) for every H ⊆ {ϕ (r) | r ∈ brn+1}, we have Sn+1 ∈ ACCn+1(kbn+1 ∪
H) iff θ(R1, R2, R3) holds for R1 = {r ∈ br(M) | not removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H}, R3 = {r ∈ K | ϕ (r) ∈ H}, and
Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2}.

The protected bridge rules brP of Mmr(θ,K) are all rules of form (8) and (9).

The condition on acceptable belief sets at Cn+1, namely that Sn+1 = {removedr |
r ∈ R1} ∪ {uncondr | r ∈ R2} at first seems to be strong, as it disallows that any
other belief occurs. On the other hand, however, the set of output-projected beliefs of
context Cn+1 is OUTn+1 = {removedr, uncondr | r ∈ br(M)}, i.e., no other belief
of Cn+1 is used by any bridge rule of Mmr(θ,K). We can therefore safely permit that
Cn+1 discloses other beliefs while the proofs of the results in this section go through.
Note that the meta-reasoning encoding Mmr(θ,K) of some MCS M wrt. given θ and K
is unique. If M , θ, andK are arbitrary but fixed, we call Mmr(θ,K) some meta-reasoning
encoding.

Example 7. Recall the MCS M = (C1, C2) in Example 5. Let K = ∅ and θ(D1, D2, ∅)
always hold; then Mmr(θ,K) = (C′

1, C
′
2, C3) is such that the contexts C1 and C2 equal

modulo bridge rules the contexts C′
1 and C′

2, respectively. As M has the bridge rules
r1–r3 in (3)–(5), the bridge rules of Mmr(θ,K) are as follows:

r′1 : (1 : improve) ← not (2 : good),not (3 : removed r1).

r′′1 : (1 : improve) ← (3 : uncond r1).

(2 : coauthored ) ← (1 : contribute),not (3 : removed r2).

(2 : coauthored ) ← (3 : uncond r2).

(2 :name K ) ← (1 : contribute),not (3 : removed r3).

(2 :name K ) ← (3 : uncond r3).

d1(r1) : (3 :not removed r1) ← �. d2(r1) : (3 : uncond r1) ← ⊥.

d1(r2) : (3 :not removed r2) ← �. d2(r2) : (3 : uncond r2) ← ⊥.

d1(r3) : (3 :not removed r3) ← �. d2(r3) : (3 : uncond r3) ← ⊥.

Notice that only the latter half of the bridge rules of Mmr(θ,K) is not protected, i.e.,
the first six bridge rules are guaranteed not to be modified in a diagnosis with protected
bridge rules. Figure 3 depicts the contexts and, for better visibility, it includes only the
bridge rules of Mmr(θ,K) stemming from r1 ∈ br(M).
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Fig. 3. Contexts of the meta-reasoning encoding Mmr(θ,K) = (C1, C2, C3) from Example 7;
only r′1, r

′′
1 , d1(r1), d2(r1) of Mmr(θ,K) stemming from r1 ∈ br(M) are shown

The remainder of this subsection is dedicated to prove that Mmr(θ,K) allows us to
do meta-reasoning on diagnoses of M . For this purpose, we state fundamental proper-
ties essentially establishing a correspondence between minimal θ-satisfying diagnoses
of M and minimal diagnoses of Mmr(θ,K). This result is central for our encoding of
preferences which is addressed in the following subsection. Note that by M [D1, D2]
we denote the MCS M modified according to the diagnosis candidate (D1, D2), i.e.,
M [D1, D2] = M [br(M) \D1 ∪ cf (D2)].

First of all, there is a one-to-one correspondence between diagnoses of M and diag-
noses of Mmr(θ,K).

Proposition 1. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding with
protected bridge rules brP , and let D1, D2 ⊆ br(M), K ⊆ K.

(1) Let S = (S1, . . . , Sn) be a belief state of M and let S′ = (S1, . . . , Sn, Sn+1)
where Sn+1 = {removedr | r ∈ D1} ∪ {uncondr | r ∈ D2}. Then, S ∈
EQ(M [D1, D2]) and θ(D1, D2,K) holds iffS′ ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2)∪
K]) holds.

(2) (D1, D2) ∈ D±(M) and θ(D1, D2,K) hold if and only if (d1(D1), d2(D2) ∪
K) ∈ D±(Mmr(θ,K), brP ) holds.

Moreover, there are no diagnoses in D±
m(Mmr(θ,K), brP ) other than those which

correspond to diagnoses of M .

Lemma 1. Let M be an MCS and Mmr(θ,K) be some meta-reasoning encoding for M .
For every (R1, R2) ∈ D±

m(Mmr(θ,K), brP ) there exist D1, D2 ⊆ br(M) and K ⊆ K
such that R1 = d1(D1) and R2 = d2(D2) ∪K .

We can now combine Lemma 1 with Proposition 1 to establish the correspondence
between minimal θ-satisfying diagnoses of M and minimal diagnoses of Mmr(θ,K).

Proposition 2. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding, then
the set of minimal θ-satisfying diagnoses with protected bridge rules brP is

D±
m(Mmr(θ,K), brP ) =

{
(d1(D1), d2(D2) ∪K) |

(D1, D2) ∈ D±(M), θ(D1, D2,K) holds,
[
�(D′

1, D
′
2) ∈ D±(M),K ′ ⊆ K :

(D′
1, D

′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′

1, D
′
2,K

′)holds
]}

.
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4.1 Preference Encoding

We now show how to use the meta-reasoning encoding Mmr(θ,K) for realizing prefer-
ences. The set K plays a crucial role, as a given preference order on diagnoses is mapped
to the ⊆ relation on K. This allows us to select minimal �-preferred diagnoses by con-
sidering ⊆-minimal diagnoses of Mmr(θ,K). Since the ⊆-minimality on K should take
precedence over the remaining modified bridge rules of Mmr(θ,K), we introduce a par-
tial order on diagnosis candidates of Mmr(θ,K) such that D′ occurs later than D if (1) D
is a subset of D′ wrt. K and (2) in case that both modify the same bridge rules of K,
then D is a subset of D′ wrt. ordinary bridge rules of Mmr(θ,K) (i.e., the order is lexi-
cographic wrt. set inclusion in (1) and (2)). Our encoding, called plain meta-reasoning
encoding yields a one-to-one correspondence with minimal �-preferred diagnoses for
total preference orders.

In the following, we write (D1, D2) ⊆brH (D′
1, D

′
2) for (D1 ∩ brH , D2 ∩ brH) ⊆

(D′
1∩brH , D′

2∩brH), i.e., we denote by⊆brH (resp.=brH ) the restriction of ⊆ (resp.=)
to the set brH . To realize a total preference order, the next definition is suitable which
selects from the set of minimal diagnoses with protected bridge rules those that are
minimal w.r.t. the prioritized bridge rules. The bridge rules that are marked as prioritized
take precedence for minimality. A prioritized-minimal diagnosis is subset-minimal w.r.t.
prioritized bridge rules (regardless of minimality of the remaining bridge rules).

Definition 11. Let M be an MCS with protected rules brP ⊆ br(M) and prioritized
rules brH ⊆ br (M). The set of prioritized-minimal diagnoses is

D±(M, brP , brH) =
{
D ∈ D±

m(M, brP )
∣
∣∀D′ ∈ D±

m(M, brP ) : D
′ ⊆brH D ⇒ D′ =brH D

}
.

The letter H in brH stands for higher importance. Before presenting the plain preference
encoding, we illustrate how an arbitrary order relation over a pair of sets may be mapped
to the ⊆-relation on an exponentially larger set, i.e., we map � on diagnoses of an MCS
M , to another set which is exponentially larger than the set of diagnoses of M .

Definition 12. Let � be a preference relation on 2br(M) and let g : 2br(M) × 2br(M) →
K be an arbitrary bijective mapping. The subset-mapping mapg

� : 2br(M) × 2br(M) →
2K is for every (D1, D2) ∈ 2br(M) × 2br(M) given by

mapg
�(D1, D2) =

{K ∈ K | K = g(D′
1, D

′
2) for some (D′

1, D
′
2) � (D1, D2)} ∪ {g(D1, D2)}.

Observe that mapg
�(D1, D2) collects g(D′

1, D
′
2) of all (D′

1, D
′
2) “below” (D1, D2).

Furthermore, adding g(D1, D2) mimics reflexivity regardless of the reflexivity of �.
The next lemma shows that the subset-mapping correctly maps a preference relation

on diagnoses to the subset-relation on an exponentially larger set. This allows to decide
whether a diagnosis is more preferred than another solely based on set inclusion.

Lemma 2. Let � be a preference on diagnosis candidates of an MCS M and g be any
bijective mapping g : 2br(M) × 2br(M) → K. Then, for any (D1, D2) �= (D′

1, D
′
2) ∈

2br(M) × 2br(M), we have (D1, D2) � (D′
1, D

′
2) iffmapg

�(D1, D2) ⊆ mapg
�(D

′
1, D

′
2).
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We now use mapg
� to map the preference of a total order � to a set K which occurs in

Mmr(θ,K). To this end, we choose θ(D1, D2,K) as mapg
�(D1, D2) = K . Then every

diagnosis with protected bridge rules (d1(D1), d2(D2)∪K) of Mmr(θ,K) contains the
preference � encoded in K . Selecting a diagnosis of Mmr(θ,K) where K is minimal
selects then a preferred diagnosis according to �.

Definition 13. Let M be an MCS and let � be a preference relation. Furthermore, let

K = {(n+1 : diagD1,D2
) ← ⊥. | D1, D2 ⊆ br (M)}

and let g be a bijective function such that g(D1, D2) = (n+1 : diagD1,D2
) ← ⊥. for

all D1, D2 ⊆ br(M). Define θ(D1, D2,K) as mapg
�(D1, D2) = K . Then the MCS

Mmr(θ,K) is called the plain encoding of M w.r.t. �, which we also denote by Mpl�;
all bridge rules of K are prioritized, i.e., brH = K.

Note that as mapg
� is a function, also θ amounts to a function 2br(M) × 2br(M) → K.

Example 8. We consider the hospital MCS M of Example 4 again using a preference
order on diagnoses that is similar to the one of Example 6, i.e., we prefer diagnoses
that change the bridge rules regarding health, r1, r2, as little as possible. To make
the preference of the latter example total, we use cardinality-minimality, i.e., given
(D1, D2), (D

′
1, D

′
2) ∈ 2br(M) × 2br(M) the preference order � is given by

(D1, D2) � (D′
1, D

′
2) iff

∣
∣{r1, r2} ∩ (D1 ∪D2)

∣
∣ ≤ ∣

∣(D′
1 ∪D′

2) ∩ {r1, r2}
∣
∣.

Figure 4 shows the resulting MCS Mmr(θ,K), where only bridge rules stemming
from r5 ∈ br(M) and some bridge rules of the observation context (i.e., from K), are
indicated. Note that br4(Mmr(θ,K)) has a bridge rule for every possible diagnosis of
M .

As for the logic and knowledge base employed in C4 = (Lasp
Σ , kb4, br4), we use

ASP again to demonstrate a possible realization, where kb4 contains the following rules:

removedr ← not not removedr. for all r ∈ br(M)

⊥ ← cur diagD1,D2
, not diagD1,D2

. for all D1, D2 ⊆ br(M)

cur diagD′
1,D

′
2
← cur diagD1,D2

. for all (D′
1, D

′
2) � (D1, D2)

cur diagD1,D2
← removedr1 , . . . , removedrk , for all D1 = {r1, . . . , rk}⊆ br(M),

uncondr′1 , . . . , uncondr′m . D2 = {r′1, . . . , r′m}⊆ br(M)

Intuitively, the first group of rule ensures that diagnosis observation is exposed correctly
in an accepted belief set of C4. The constraints ensure the presence of condition-free
bridge rules (i.e., they map each diagnosis candidate to the corresponding bridge rule
being condition-free); the next rules guarantee that all bridge rules corresponding to
more-preferred diagnoses also must be condition-free (under ASP semantics, they effect
mapg

�(D1, D2)); the last group of rules recognizes one of the diagnosis candidates.

The set D±
m(Mpl�, brP ) of minimal diagnoses with protected bridge rules of Mpl�

corresponds to those diagnoses of M which are at the same time preferred according to
� and ⊆-minimal; they are not minimal �-preferred in general.

For a total preference �, however, the minimal �-preferred diagnoses of M and the
prioritized-minimal diagnoses of Mpl� coincide. As mapg

� is a function, this corre-
spondence indeed is one-to-one. Intuitively, this shows that for a total preference order,
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Patient databaseC1 Medication C2

Billing C3

Observer/EncoderC4

r1

r2 r3r4

r′5

r′′5

d1(r5)

d2(r5)diag∅,∅diag{r1},∅diag{r1,r2},∅
. . . . . .

diagbr(M),br(M)

Fig. 4. Contexts and some bridge rules of Mpl� = (C1, C2, C3, C4) for the hospital MCS M
from Example 8 w.r.t. �. Only bridge rules stemming from r5 and some from K are shown;
dashed lines indicate bridge rules r1, . . . , r4 from M (corresponding bridge rules in Mpl� are
omitted).

the set of prioritized-minimal diagnoses of the plain encoding of M w.r.t. � can be used
to select the minimal �-preferred diagnoses of M w.r.t. �.

Theorem 1. For every MCS M and total preference � on its diagnoses, it holds that

D±(Mpl�, brP , brH) =

{(d1(D1), d2(D2) ∪mapg
�(D1, D2)) | (D1, D2) ∈ D±

m,�(M)}.

5 Computational Complexity

In this section we analyze the computational complexity of the more sophisticated no-
tions of diagnoses for an MCS that have been utilized in the preceding sections. We for-
mally establish that recognizing subset-minimal diagnoses with protected bridge rules is
not harder than recognizing subset-minimal diagnoses, i.e., deciding D ∈ D±

m(M, brP )
is not harder than deciding D ∈ D±

m(M). Another result shows the same for prioritized-
minimal diagnoses, i.e., deciding D ∈ D±(M, brP , brH) is as hard as deciding D ∈
D±

m(M). The latter notion of diagnosis is essentially applied by the plain encoding
Mpl� and, given a total preference order �, selects minimal �-preferred diagnoses
according to the preference. However, this does not mean that selecting minimal �-
preferred diagnoses according to a (total) preference order has the same complexity as
the previous problems, as Mpl� uses exponentially many bridge rules (w.r.t. M ).

Table 1 summarizes our results, where MCSDm (resp., MCSDPm, MCSDPH) de-
notes the problem of deciding whether for a given MCS M and D ∈ 2br(M) × 2br(M)

it holds that D ∈ D±
m(M) (resp., D ∈ D±

m(M, brP ), D ∈ D±(M, brP , brH), where
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Table 1. Membership results for deciding whether a diagnosis candidate is a protected, respec-
tively prioritized-minimal, diagnosis; hardness holds if at least one context is hard for CC(M)

(D1, D2)∈D? MCSDm MCSDPm MCSDPH

Context complexity CC(M) D=D±
m(M) D=D±

m(M, brP ) D=D±(M, brP , brH)

P DP
1 DP

1 DP
1

NP DP
1 DP

1 DP
1

ΣP
i , i ≥ 1 DP

i DP
i DP

i

Proposition cf. [7] 3 4

brP , brH ⊆ br(M)). As for CC(M), the context complexity CC(Ci) of a context Ci

(cf. [7] for formal details) is informally the complexity of deciding whether Ci has an
acceptable belief set for a given interpretation of its bridge rules that is compliant with
a given expected output (i.e., beliefs occurring in other bridge rules); CC(M) is then an
upper bound for all CC(Ci), 1 ≤ i ≤ n. More formally, we have:

Proposition 3. The computational complexity (hardness and membership) of MCSDPm
is the same as for MCSDm.

Now consider the problem MCSDPH which amounts to deciding whether for all T ∈
D±

m(M, brP ) it holds that T ⊆brH D ⇒ T =brH D, where D is a given diagnosis can-
didate. Again, we end up in the same complexity classes as for the previous problems.

Proposition 4. MCSDPH is in DP
i for context complexity CC(M) in ΣP

i and i ≥ 1; if
at least one context of M is hard for ΣP

i , then MCSDPH is DP
i -hard.

6 Conclusion

We addressed the problem of discriminating between multiple diagnoses for an incon-
sistent MCS and selecting most preferred ones given additional preference information.
Our method allows for the protection of certain bridge rules from modification and has
been realized for total orders by means of a meta-reasoning approach, i.e., by an encod-
ing into diagnostic reasoning on (ordinary) MCS that is capable of introspection regard-
ing possible diagnoses. An investigation concerning computational complexity revealed
that the generalized notions of diagnosis applied, i.e., protecting and prioritizing bridge
rules, come at no additional cost. However, this is not the case for selecting most pre-
ferred diagnoses, where the encoding grows exponential in the number of bridge rules.

Concerning related work, most notably in a series of papers [1,2,3] an approach has
been developed that guarantees the existence of an equilibrium (and thus consistency)
in MCS. It is based on trust among contexts and provenance information. In contrast
to that, we do not focus on a single formalism for preference, and in the spirit of MCS
aim for a solution which is general and open to a wide variety of preference formalisms.
Managed MCS [5] are a generalization of the MCS framework facilitating more com-
plex operations on context knowledge bases rather than mere addition of information.
This is achieved by means of so-called operational statements in bridge rule heads. This
generalization paves the way to address potential inconsistency also at the knowledge



248 T. Eiter, M. Fink, and A. Weinzierl

sources, an issue complementary to inconsistency resolution at the bridge rule level. An-
other, however more specific, means to address inconsistency also on the source level is
by resorting to supported equilibrium semantics [13]. It extends equilibrium semantics
with notions for support and justification, which may be exploited for diagnoses that
take modifications of the knowledge base for potential repair into account.

In additional work, we investigated a different, more succinct encoding on the basis
of our general meta-reasoning approach, which extends to arbitrary preference orders.
While succinctness expectedly leads to an increase in complexity, the encoding thus
stays polynomial in size and can be shown to be worst-case optimal. Several problems
in this context, however, remain as interesting topics for further research. For instance,
the investigation of sufficient conditions to ensure locality/modularity properties, or
the identification of classes of preference relations which do not yield a complexity
increase are highly relevant issues. Eventually, also the practical realization of a succinct
encoding in terms of meta-reasoning, e.g., as a front-end to the MCS-IE system (see [7]),
may yield a working prototype implementation.
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Abstract. This paper reconsiders Modgil’s Extended Argumentation
Frameworks (EAFs) that extend Dung’s abstract argumentation frame-
works by attacks on attacks. This allows to encode preferences directly
in the framework and thus also to reason about the preferences them-
selves. As a first step to reduction-based approaches to implement EAFs,
we give an alternative (but equivalent) characterization of acceptance in
EAFs. Then we use this characterization to provide EAF encodings for
answer set programming and propositional logic. Moreover, we address
an open complexity question and the expressiveness of EAFs.

1 Introduction

Since the seminal paper of Dung in 1995 [9] argumentation has emerged to one of
the major research fields in artificial intelligence and non-monotonic reasoning,
with Dung’s abstract argumentation frameworks (AFs) being one of the core for-
malisms. In this very simple yet expressive model, arguments and a binary attack
relation between them, denoting conflicts, are the only components one needs
for the representation of a wide range of problems and the reasoning therein.
Nowadays numerous semantics exist to solve the inherent conflicts between the
arguments by selecting sets of “acceptable” arguments.

In certain scenarios there are preferences about which arguments should go
into the set of acceptable arguments, e.g. because the source of one argument is
more trustworthy than the source of another [18]. Such preferences can have a
significant impact on the evaluation of discussions. Consider for example a sit-
uation with two mutually conflicting arguments a and b. The only possibilities
(under e.g. stable semantics of AFs) would be to accept either a or b. Thus, nei-
ther argument is skeptically justified, i.e. none of them appears in each solution,
but given a preference of argument a over b one can resolve this situation such
that a is skeptically justified. However, the basic Dung-style framework does not
support the handling of preferences within the framework, neither on a syntacti-
cal nor on a semantical level. For example it is not possible to model a situation
where one argument (resp. attack) is preferred over another one, or where some
particular preference weakens an attack between two arguments.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 249–264, 2015.
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Several approaches for incorporating preferences have been proposed in the
literature. When instantiating an AF from a knowledge base one can deal with
preferences in the underlying logical formalism and resolve them when building
the framework (see e.g. [19]). Preferences can also be handled at the abstract
level by generalizations of AFs. In preference-based argumentation frameworks
(PAFs) [1] one has a partial ordering over the arguments, and an attack is only
successful if the attacked argument is not preferred over the attacker with respect
to the ordering. Thus the acceptability of an argument can be based either on
defense or on preference with respect to the attacking arguments. Value-based
argumentation frameworks (VAFs) [3] allow to assign values to the arguments.
An additional ordering over the values can be used to evaluate preferences in
a similar way as in PAFs. Brewka and Woltran introduced prioritized bipolar
abstract dialectical frameworks (BADFs) [5] which allow to express for each
statement a strict partial order on the links leading to it. Then, a statement is
accepted unless its attackers are jointly preferred.

All these approaches have in common that they are tailored to fixed pref-
erences. In some scenarios it might very well be the case that the assumed
preference ordering is itself open to debate. Modgil’s extended argumentation
frameworks (EAFs) [18] are particularly appealing in this regard, as they allow
to represent preferences as defeasible arguments themselves. More concretely,
this approach is based on the idea that a preference for one argument a over
another argument b can weaken an attack from b to a. Considering the example
with mutually attacking arguments from above, in EAFs one can resolve this sit-
uation by introducing an argument c which stands for a preference of a over b by
attacking the attack from b to a. Thereby, argument a is reinstated, while b can-
not be accepted. However, if c is attacked by another argument d, the argument
b can be reinstated again. Thus, EAFs can be used as a meta-argumentation ap-
proach to argue also about the preferences, where the acceptance of an argument
depends on whether it can be reinstated. For instance one can encode VAFs as
EAFs and then argue about the value ordering [18].

Although Modgil presented an extensive study of the new formalism and its
extensions to VAFs and logic programs in [18], several computational properties
of EAFs have been neglected therein. Dunne et al. [12] gave an exact complexity
classification for reasoning in EAFs. They showed that whether an argument is
acceptable w.r.t. a given set can be decided in polynomial time via a reduction to
an AF. Hence the reasoning tasks in EAFs have the same complexity as in AFs.
Later this reduction has also been turned into labeling-based algorithms [21].
In this work we will show the exact complexity of Grounded-Scepticism,
i.e. of deciding whether the grounded extension is contained in all preferred
extensions, which was left open in [12]. Moreover we will show that, despite
reasoning tasks having the same complexity, EAFs enjoy higher expressiveness
in terms of realizability [11] compared to Dung-style AFs.

Recently the reduction-based approach for the implementation of argumenta-
tion related problems became very popular. In particular reductions to well es-
tablished formalisms like answer set programming (ASP) [6,20] and propositional
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logic turned out to be suitable for the relevant reasoning problems [15,4,13].
So far, no such approach is known for EAFs. We believe this is partly due to
fact that the given characterizations for the acceptance of an argument are not
well suited for such encodings. Thus we will first present an alternative, but
equivalent, characterization for the acceptance of an argument which then al-
lows us to design succinct ASP encodings for all standard semantics of EAFs.
These encodings have been incorporated in the web-interface GERD - Gen-
teel Extended argumentation Reasoning Device and are freely accessible under
http://gerd.dbai.tuwien.ac.at. Furthermore, the alternative characteriza-
tion facilitates encodings in terms of propositional formulas which we will exem-
plify on the admissible semantics.

The organization of the remainder of the paper is as follows: In Section 2 we
give the necessary background on argumentation and answer set programming.
In Section 3 we first show an alternative characterization of acceptance and then
exploit this characterization to encode the semantics in answer set programming
and propositional logic. Further, in Section 4 we provide an exact complexity
characterization of Grounded-Scepticism, an open problem raised in [12] and
show that all the EAF semantics from [18], except grounded, are more expressive
than their counterparts in standard Dung AFs. Finally we conclude in Section 5.

2 Background

In this section we briefly introduce Dung’s abstract argumentation frameworks
(AFs) [9] (for an introduction to abstract argumentation see [2]) and Modgil’s
extended argumentation frameworks (EAFs) [18]. We first give the definition of
AFs. In contrast to [9] we restrict ourselves to finite frameworks.

Definition 1. An Argumentation Framework (AF) is a pair F = (A,R) where
A is a non-empty, finite set of arguments and R ⊆ A×A is the attack relation.

The idea of EAFs is to express preferences of arguments over each other
by allowing attacks on attacks. This allows one to argue about the preferences
themselves. Attacks on attacks are implemented by an additional relation D
which relates arguments to attacks in R.

Definition 2. An Extended Argumentation Framework (EAF) is a triple F =
(A,R,D) where (A,R) is an AF and D ⊆ A × R a relation describing an
argument x attacking an attack (y, z) ∈ R. Moreover, whenever {(x, (y, z)),
(x′, (z, y))} ⊆ D then {(x, x′), (x′, x)} ⊆ R. 1

Given a set of arguments S ⊆ A, an attack (x, y) ∈ R succeeds w.r.t. S (we
write x �S y) iff there is no z ∈ S with (z, (x, y)) ∈ D. By RS we denote the
relation containing all attacks (x, y) ∈ R that succeed w.r.t. S. A set S ⊆ A is
said to be conflict-free in F , i.e. S ∈ cf (F ), if x ��S y and {(x, y), (y, x)} �⊆ R
for all x, y ∈ S.

1 Note that this property is essential for showing Dung’s fundamental lemma for EAFs.
However our implementations would still work for EAFs violating this property.

http://gerd.dbai.tuwien.ac.at
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a

b

c d

e

Fig. 1. The EAF F from Example 1

Now, as attacks can be defeated themselves, when defending an argument we
have to make sure that also the used attacks are defended.

Definition 3. Given an EAF F = (A,R,D), S ⊆ A, and v �S w. Then RS ⊆
RS is a reinstatement set for v �S w if it satisfies the following conditions:

R1 v �S w ∈ RS.
R2 For each (y, z) ∈ RS it holds that y ∈ S.
R3 For every (y, z) ∈ RS and every (x, (y, z)) ∈ D there is a (y′, x) ∈ RS.

An argument a ∈ A is acceptable w.r.t. (or defended by) a set S ⊆ A if
whenever z �S a then there is a y ∈ S with y �S z and there is a reinstatement
set for y �S z. For any S ∈ cf (F ) the characteristic function FF is defined as
FF (S) = {x | x is acceptable w.r.t. S}.
Example 1. Consider the EAF F = (A,R,D) from Figure 1, and let S = {b, d}.
Then, RS = {(b, a), (b, c), (b, e), (d, c), (e, d)}, and there are the following rein-
statement sets for the succeeding attacks:

– RS for b �S a: {(b, a)}; – RS for b �S c: {(b, c), (b, a)};
– RS for b �S e: {(b, e)}; – RS for d �S c: {(d, c), (b, a)}.
There is no reinstatement set for e �S d, as e �∈ S. Regarding acceptability,

the argument d is acceptable w.r.t. S because for e �S d we have b ∈ S with
b �S e with RS = {(b, e)}. Furthermore, b is acceptable w.r.t. S as well. �

Definition 4. Given an EAF F = (A,R,D), a conflict-free set S is

– an admissible set, i.e. S ∈ adm(F ), if each a ∈ S is acceptable w.r.t. S,
– a preferred extension, i.e. S ∈ prf (F ), if S is a ⊆-maximal admissible set,
– a stable extension, i.e. S ∈ stb(F ), if for each b /∈ S, there is some a ∈ S

with a �S b,
– a complete extension, i.e. S ∈ com(F ), if a ∈ S iff a is acceptable w.r.t. S,
– and the grounded extension grd(F ) is given by grd(F ) =

⋃
k≥1 Fk

F (∅).
Example 2. For the EAF F from Figure 1 we have the following extensions:
adm(F ) = {∅, {e}, {b}, {b, d}, {b, e}}, stb(F ) = com(F ) = prf (F ) = {{b, d},
{b, e}}, and {b, d} is the unique grounded extension. �
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2.1 Answer Set Programming

In this section we recall the basics of logic programs under the answer set se-
mantics [6,20].

We fix a countable set U of (domain) elements, also called constants. An atom
is an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti
is either a variable or an element from U . An atom is ground if it is free of
variables. BU denotes the set of all ground atoms over U . A rule r is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a, b1, . . . , bm are atoms, and “not ” stands for default
negation. The head of r is the set H(r) = {a} and the body of r is B(r) =
{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r)
= {bk+1, . . . , bm}. A constraint is a rule with empty head. A rule r is safe if each
variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A
fact is a ground rule with empty body. An (input) database is a set of facts. A
program is a finite set of rules. For a program π and an input database D, we
often write π(D) instead of D ∪ π.

For any program π, let UP be the set of all constants in π. Gr(π) is the set of
rules rσ obtained by applying, to each rule r ∈ π, all possible substitutions σ from
the variables in r to elements of UP. An interpretation I ⊆ BU satisfies a ground
rule r iffH(r)∩I �= ∅ whenever B+(r) ⊆ I and B−(r)∩I = ∅. I satisfies a ground
program π, if each r ∈ π is satisfied by I. A non-ground rule r (resp., a program
π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,
Gr(π)). I ⊆ BU is an answer-set of π iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. We
denote the set of answer-sets of π by AS(π).

3 Reduction-Based Approaches to EAFs

Towards reductions to answer set programming encodings and propositional logic
we first give an alternative characterization of acceptance.

3.1 An Alternative Characterization of Acceptance

Reinstatement sets are defined for a single attack in an EAF F = (A,R,D)
and a set of arguments S ⊆ A. Here we show that we just need to consider one
reinstatement set for all attacks in RS .

Lemma 1. If RS, RS ′ are reinstatement sets for y �S z and y′ �S z′ respec-
tively then RS ∪RS ′ is a reinstatement set for both y �S z and y′ �S z′.

Proof. We have to verify conditions R1-R3 from Definition 3.
R1) We have y �S z ∈ RS ∪ RS ′ and y′ �S z′ ∈ RS ∪ RS ′ as the former is
contained in RS and the latter is in RS ′.
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R2) Consider (y, z) ∈ RS ∪RS ′ and w.l.o.g. assume that (y, z) ∈ RS. As RS is
a reinstatement set for y �S z we have y ∈ S.
R3) Consider (y, z) ∈ RS ∪ RS ′ with (x, (y, z)) ∈ D and again w.l.o.g. assume
that (y, z) ∈ RS. As RS is a reinstatement set for y �S z we have that there
is a (y′, x) ∈ RS and thus also (y′, x) ∈ RS ∪RS ′. 
�

As the union of two reinstatement sets for the same set S is again a reinstate-
ment set there exists a unique maximal reinstatement set. This is by a standard
argument: assume that there are two of them then the union of them would be
a larger one contradicting the maximality of the original ones. This leads us to
the definition of the maximal reinstatement set RS[S] of a set S.

Definition 5. Given an EAF (A,R,D) and S ⊆ A. The (unique) maximal
reinstatement set RS[S] of S is the maximal subset of RS satisfying

R2 For each (y, z) ∈ RS[S] it holds that y ∈ S.
R3 For every (y, z) ∈ RS[S] and every (x, (y, z)) ∈ D there is a (y′, x) ∈ RS[S].

We next show that when it comes to the verification of extensions S in EAFs
we only have to consider the maximal reinstatement set RS[S] instead of all
possible reinstatement sets for each attack y �S z.

Proposition 1. Given an EAF F = (A,R,D), S ⊆ A, and y �S z. There
exists a reinstatement set for y �S z iff RS[S] is a reinstatement set for y �S z.

Proof. ⇒: Towards a contradiction assume that there is a reinstatement set RS
for y �S z but y �S z /∈ RS[S]. Then by Lemma 1 the set RS ∪RS[S] would
be a reinstatement set for y �S z. Thus RS[S] ⊂ RS ∪RS[S] and RS ∪RS[S]
satisfying R2 and R3 contradicting the maximality of RS[S].

⇐: By assumption RS[S] is a reinstatement set for y �S z. 
�
Next we reformulate the condition for an argument to be acceptable.

Corollary 1. Given an EAF F = (A,R,D), an argument a ∈ A is acceptable
w.r.t. S ⊆ A if whenever z �S a then there is some y ∈ S with (y, z) ∈ RS[S].

Given S, the reinstatement set RS[S] can be computed in polynomial time.

Proposition 2. Given an EAF (A,R,D) and S ⊆ A. RS[S] can be computed
in polynomial time.

Proof. The proof proceeds as follows. We first present a procedure to compute
RS[S] and then show correctness and that it terminates in polynomial time.

Procedure:

– Start with U = RS ∩ (S ×A).
– Repeat until fixed-point is reached:

• For each y �S z ∈ U : if there is (x, (y, z)) ∈ D such that there is no
(y′, x) ∈ U then remove y �S z from U .

– return RS[S] = U
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Correctness: To prove correctness we show (1) that the fixed-point satisfies R2
and R3. and (2) that in each iteration only attacks which are not in RS[S] are
removed, i.e. RS[S] ⊆ U holds during the whole procedure.

(1) The property R2 is ensured by the initialization U = RS ∩ (S ×A), that
is at each time the set U only contains (y, z) with y ∈ S. Now consider property
R3. As the algorithm terminated we have that for every y �S z ∈ U , if there is
a (x, (y, z)) ∈ D then there is also a (y′, x) ∈ U . That is R3 holds.

(2) We prove this by induction on the number of iterations n. As base case
we consider n = 1 meaning that the algorithm returns U = RS ∩ (S × A). As
by definition RS[S] ⊆ RS ∩ (S ×A) we are fine. Now let Ui be the set after the
i-th iteration. For the induction step we assume that RS[S] ⊆ Un−1 and show
that then also RS[S] ⊆ Un. To this end consider a (y, z) ∈ Un−1 \ Un. Then
there is an (x, (y, z)) ∈ D such that there is no (y′, x) ∈ Un−1. But this implies
that there is an (x, (y, z)) ∈ D such that there is no (y′, x) ∈ RS[S] and thus,
because of property R3, (y, z) �∈ RS[S]. Hence RS[S] ⊆ Un.

Polynomial-Time: For the initialization step notice that RS can be computed
in polynomial time and also checking whether an attack has its source in S is
easy. As in each iteration of the loop, except the last one, at least one attack is
removed from the set, there are at most as many iterations as attacks. Finally
the condition in the loop can be tested in polynomial time. 
�

3.2 Answer Set Programming Encodings

In this section we present ASP encodings based on our characterization of EAF
acceptance of arguments. In our encodings we will use atoms in(a) to represent
that an argument a is in an extension. The answer-sets of the combination of an
encoding for a semantics σ with an ASP representation of an EAF F are in a 1-to-
1 correspondence to σ(F ). More formally we have the following correspondence.

Definition 6. Let I be an interpretation, I a set of interpretations, S a set and
S a set of sets. We define I ∼= S iff {a | in(a) ∈ I} = S. Further, I ∼= S iff there
is a bijective function f : I → S such that for each I ∈ I we have I ∼= f(I).

For readability we partition the encodings into several modules. We begin with
the input database for a given EAF F = (A,R,D), i.e. the facts representing
the EAF.

F̂ :={arg(x). | x ∈ A}∪
{att(x, y). | (x, y) ∈ R}∪
{d(x, y, z). | (x, (y, z)) ∈ D}

That is, arg(x) is a fact that represents that x is an argument in F . The
binary predicate att(x, y) indicates that there is an attack from x to y and
d(x, y, z) signifies that there is an attack from x to the attack from y to z.
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Listing 1.1. Module πcf

% guess a s e t S
in (X) ← arg (X) , not out (X) .
out (X) ← arg (X) , not in (X) .

% mutual l y a t t a c k i ng arguments are f orb i dden in a c f s e t
← att (X,Y) , att (Y,X) , in (X) , in (Y) .

% cance l ed a t t a c k s v i a D
cancel (X,Y) ← att (X,Y) , in (Z) , d(Z ,X,Y) .
succeed (X,Y) ← att (X,Y) , not cancel (X,Y) .
← in (X) , in (Y) , succeed (X,Y) .

The first basic module πcf is shown in Listing 1.1. Comments can be distin-
guished from rules by the preceding ’%’ symbol. The first two lines encode a
typical ASP guess. The in and out predicates identify a subset S of the argu-
ments in the given EAF. If in(x) is present in an answer-set then x ∈ S and
otherwise we have out(x) in the answer-set and x /∈ S. The first constraint en-
codes that mutually attacking arguments cannot be in a conflict-free set of F .
Using the predicates succeed and cancel we can derive all attacks (x, y) which
are canceled by a (z, (x, y)) ∈ D, s.t. z ∈ S for the guessed S. The last line
encodes that no two conflicting arguments can be in S, if an attack in either
direction succeeds.

Next we look at module πrs in Listing 1.2, which computes RS[S] in the
predicate rs. Intuitively the “procedure” is as in the proof of Proposition 2. We
collect with rsinit all successful attacks coming from an argument in S. If for
such an attack (y, z) there is an x ∈ A s.t. (x, (y, z)) ∈ D, then we need to
check if the attack (y, z) is reinstated by RS[S], in particular we need to check
if there is an attack (y′, x) ∈ RS[S]. We mark such a case with todef(x, y, z).
The procedure for computing the maximal reinstatement set now starts with
the initial set of attacks and iteratively removes attacks until a fixed-point is
reached. We remove (y, z) if there is an (x, (y, z)) ∈ D, s.t. in the set of the
current iteration there is no (y′, x).

The fixed-point computation is simulated by the predicate unattacked upto
and remove. The latter predicate marks attacks to be removed from rsinit in
order to compute the unique maximal reinstatement set in rs. We iterate for
each removal candidate marked by todef(x, y, z) over each argument n in the
EAF. If rsinit(n, x) is not derivable or remove(n, x) was derived then (n, x)
is not in the maximal reinstatement set and thus does not defend the attack
(y, z) from (x, (y, z)). If this holds for all arguments in the EAF, then (y, z) is
not defended and we mark it for removal by remove(y, z). For achieving this we
use the module πorder to impose an order on the arguments. This is a standard
module used in several ASP encodings of AF semantics, e.g. in [15]. We present
here only the main predicates defined in this module. The predicate lt(x, y)
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Listing 1.2. Module πrs

% r s i n i t r ep r e s en t s a l l succeed ing a t t a c k s coming from S
rs in i t (Y,Z) ← in (Y) , succeed (Y,Z ) .

% removal cand ida te s
todef (X,Y,Z) ← rs in i t (Y,Z) , d(X,Y,Z ) .

% remove a t t a c k s
unattacked upto (X,Y,Z ,N) ← inf (N) , todef (X,Y,Z) ,

not rs in i t (N,X) .
unattacked upto (X,Y,Z ,N) ← inf (N) , todef (X,Y,Z) , remove(N,X) .
unattacked upto (X,Y,Z ,N) ← succ (M,N) ,

unattacked upto (X,Y,Z ,M) ,
not rs in i t (N,X) .

unattacked upto (X,Y,Z ,N) ← succ (M,N) ,
unattacked upto (X,Y,Z ,M) ,
remove(N,X) .

unattacked (X,Y, Z) ← sup (N) , unattacked upto (X,Y,Z ,N) .
remove(Y,Z) ← unattacked (X,Y, Z ) .

% rs r ep r e s en t s RS[ S ]
rs (X,Y) ← rs in i t (X,Y) , not remove(X,Y) .

is used to relate x and y, s.t. x is ordered lower than y. Using succ(x, y) we
derive that y is the immediate successor of x in this ordering and lastly inf and
sup are the infimum and supremum elements. Now, we start with the infimum
argument and go through the successor predicate succ to the next argument. If
(y, z) is undefended up to the supremum then we have to remove it. Intuitively
unattacked upto(x, y, z, n) states that (x, (y, z)) is not successfully attacked
by an attack in RS[S] up to the argument n in the ordering. Lastly, in rs we
simply derive all attacks from rsinit, for which we cannot derive that the attack
should be removed. The attacks derived via rs correspond to RS[S].

In πdefense (Listing 1.3) we simply state that each y is defeated if there is an
attack in our reinstatement set given by rs. Note that we still refer to a guessed
set S. Using this we derive which arguments are undefended. Now we present our
ASP encoding for admissible sets. We combine the modules for the conflict-free
property, reinstatement sets, order and defense and add an intuitive constraint
ensuring that if an argument is in, then it has to be defended.

πadm := πcf ∪ πrs ∪ πorder ∪ πdefense ∪ {← in(X),undefended(X).}
It is straightforward to extend this encoding to complete semantics as follows.

πcom := πadm ∪ {← out(X), not undefended(X).}
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Listing 1.3. Module πdefense

% arguments which are de f ea t ed by RS[ S ]
defeated (Y) ← rs (X,Y) .

% undefended arguments
undefended(A) ← arg (A) , succeed (Z ,A) , not defeated (Z ) .

Listing 1.4. Module πrange

in range (Z) ← in (Y) , succeed (Y,Z ) .

For the stable semantics we compute for S ⊆ A the set {a | b �S a, b ∈ S}.
This is encoded in πrange in Listing 1.4. Stable semantics can be computed via

πstb := πcf ∪ πrange ∪ {← out(Z), not in range(Z).}
The 1-to-1 correspondence between the answer-sets of our encodings and the

σ-extensions is summarized in the following proposition.

Proposition 3. For any EAF F : (i) AS(πcf (F̂ )) ∼= cf (F ); (ii) AS(πadm(F̂ )) ∼=
adm(F ); (iii) AS(πcom(F̂ )) ∼= com(F ); and (iv) AS(πstb(F̂ )) ∼= stb(F ).

Encodings for grounded semantics of EAFs are straightforward to achieve via
techniques used in [15]. Essentially by starting with the empty set we derive the
grounded extension of a given EAF, by iteratively applying the characteristic
function of EAFs [18]. The ASP encoding of the characteristic function is based
on the module πrs .

In spirit of promising approaches for computing reasoning tasks under pre-
ferred semantics [8,13] in AFs we can compute preferred extensions in EAFs by
iteratively using simple adaptations of encodings for admissible semantics. The
basic idea is to traverse the search space of admissible (or complete) extensions
and iteratively compute larger admissible sets until we reach a maximal set. By
restricting the future search space to admissible sets not contained in previously
found preferred extensions, we can compute all preferred extensions in this way.

We implemented reasoning for EAFs under conflict-free, admissible, complete,
grounded, preferred and stable semantics in the tool “GERD” available online2.
Except for preferred semantics, we provide a single ASP encoding for download
which computes all extensions of the desired semantics if augmented with an
input database representing the given EAF. For solving one can use modern ASP
solvers, like clingo [17]. For preferred semantics we provide a UNIX bash script,
which calls clingo repeatedly to compute preferred extensions in the manner
described above. In Fig. 2 one can see a screenshot of the web-interface.

2 See http://gerd.dbai.tuwien.ac.at

http://gerd.dbai.tuwien.ac.at
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Fig. 2. Web-interface for ASP encodings of EAF semantics

3.3 Propositional Encoding

Our alternative characterization is not only useful in the context of ASP. To
exemplify this we encode admissible semantics in terms of propositional logic.
Notice that such encodings are the basis to generalize several (implementation)
approaches studied for abstract argumentation, like for using SAT and QBF-
solvers [4,16], monadic second order logic encodings [14], and approaches using
iterative SAT-calls [8,13].

The idea of propositional logic encodings is to give a formula such that the
models of the formula correspond to the extensions of the EAF. Given an EAF
F = (A,R,D) for each x ∈ A we introduce a variable ax encoding that x is
in the extension S, i.e. x is in the extension iff ax is true in the corresponding
model. Then for each pair (y, z) ∈ R we introduce variables ry,z encoding that
y �S z. The truth-values of ry,z can be defined in terms of ax.

ϕr =
∧

(x,(y,z))∈D

(¬ax ∨ ¬ry,z) ∧
∧

(y,z)∈R

(ry,z ∨ (
∨

(x,(y,z))∈D

ax))

The first part saying that for each attack (x, (y, z)) either x �∈ S or y ��S z.
The second part is the reverse direction saying that either y �S z or there is an
attack (x, (y, z)) with x ∈ S. We are now ready to encode conflict-freeness.

ϕcf =
∧

(x,y)∈R

(¬ax ∨ ¬ay ∨ ¬rx,y) ∧
∧

(x,y),(y,x)∈R

(¬ax ∨ ¬ay)

The first part says that for each (x, y) ∈ R either x �∈ S or y �∈ S or the attack
must be canceled by S. The second part encodes the condition that mutually
conflicting arguments cannot be in the same conflict-free set.
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To test admissibility we need a reinstatement set RS which is encoded by
variables rsy,z , i.e. the attack (y, z) ∈ R is in the reinstatement set RS iff rsy,z
is true in the corresponding model.

ϕRS =
∧

(y,z)∈R

((¬rsy,z ∨ ay) ∧ (¬rsy,z ∨ ry,z)) ∧
∧

(x,(y,z))∈D

(¬rsy,z ∨
∨

(z′,x)∈R

rsz′,x)

The first part stating that if an attack (y, z) is in RS then y ∈ S and y �S z.
The second one says that for each (x, (y, z)) either there is an attack (z′, x) in
RS or (y, z) cannot be in RS.

Finally we can encode the condition for a set S defending its arguments.

ϕdef =
∧

(y,z)∈R

(¬az ∨ ¬ry,z ∨
∨

(x,y)∈R

rsx,y)

So for each attack (y, z) either z �∈ S, the attack is canceled by S or y is
counter attacked by an attack in RS.

Now it is straight forward to show the following proposition.

Proposition 4. Consider the function Ext(M) = {x ∈ A | ax ∈ M} map-
ping models to extensions. For any EAF F we have adm(F ) = {Ext(M) |
M is model of ϕr ∧ ϕcf ∧ ϕRS ∧ ϕdef}.

4 Complexity and Expressiveness of EAFs

In this section we first use our characterization of acceptance to answer an open
complexity-question from [12]. Second, given that the complexity of the main
reasoning tasks in EAFs and AFs coincide and complexity is often considered
as an indicator for expressiveness one might expect that they have the same
expressiveness. We answer this negatively by showing that for each semantics
considered in this paper, except grounded, EAFs are more expressive than AFs.

4.1 Complexity of Grounded-Scepticism

Modgil [18] observed that in EAFs the grounded extension is not always con-
tained in all the preferred extensions. This is in contrast to Dung’s AFs where
this is always the case and grounded semantics can be seen as strictly more
skeptical than skeptical preferred reasoning, i.e. than considering the arguments
that are contained in all preferred extensions. Dunne et al. [12] introduced the
computational problem of Grounded-Scepticism, i.e. deciding whether the
grounded extension is contained in all the preferred extensions, and gave a coNP
lower bound but left the exact complexity open.

Theorem 1. Grounded-Scepticism is ΠP
2 -complete.
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AF F

x

a

b

g

Fig. 3. The AF F ′ from the proof of Theorem 1, for A = {a, b, x}

Proof. We first show membership in ΠP
2 . This is by a ΣP

2 algorithm for disprov-
ing that the grounded extension is contained in each preferred extension. This
algorithm first computes the grounded extension G which is in P [12] and then
guesses a preferred extension E. Then the NP-oracle is used to verify that E is
a preferred extension and finally G ⊆ E is tested.

To obtain hardness we give a reduction from the ΠP
2 -hard problem SkeptAF

prf ,
that is deciding whether an argument x ∈ A is skeptically accepted w.r.t. prf in
Dung AFs [10]. To this end consider an instance F = (A,R), x ∈ A of SkeptAF

prf .
W.l.o.g. we can assume that (x, x) /∈ R. We construct an EAF F ′ = (A′, R′, D′)
with A′ = A ∪ {g}, R′ = R ∪ {(g, a) | a ∈ A \ {x}} and D′ = {(b, (g, a)) | a, b ∈
A \ {x}} (see also Figure 3). Clearly F ′ can be constructed in polynomial time.

To complete the proof we next show that x is skeptically accepted in F iff
grd(F ′) ⊆ E for each E ∈ prf (F ′). To this end we show that com(F ′) =
{{g, x}} ∪ {E ∪ {g} | E ∈ com(F )}. First as g is not attacked at all it has
to be contained in each complete extension. Considering S = {g} we have that
RS[S] = {(g, a) | a ∈ A \ {x}} and thus that g defends x and thus x must
be in the grounded extension. Now consider S = {g, x}. Still RS[S] = {(g, a) |
a ∈ A \ {x}} and none of the a ∈ A \ {x} is acceptable as a is not defended
against (g, a). Hence, {g, x} is the grounded extension. Next consider an S with
S ∩ (A \ x) �= ∅. Then �S corresponds to R. As no attack in R is attacked by
D′ we have that E ∪ {g} is complete iff E ∈ com(F ).

By the above we have that either (i) prf (F ′) = {E∪{g} | E ∈ prf (F )} if there
is an E ∈ prf (F ) with x ∈ E, or (ii) prf (F ′) = {{g, x}}∪{E∪{g} | E ∈ prf (F )}
otherwise. In the former {g, x} is contained in all preferred extensions of F ′ iff
x was skeptically accepted in F and in the latter {g, x} is not contained in all
preferred extensions but also x was not skeptically accepted in F . Hence, {g, x}
is contained in all preferred extensions of F ′ iff x is skeptically accepted in F . 
�

4.2 Expressiveness of EAFs

Recently the expressiveness of the most prominent semantics of AFs was studied
in terms of realizability [11]. A collection of sets of arguments S, frequently called
extension-set in the remainder of this section, is said to be realizable under a
semantics σ, if there exists some AF F such that the σ-extensions of F coin-
cide with S, i.e. σ(F ) = S. In the following we show that the additional modelling
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c

(a) Conflict-free.

a

b c

d

e

(b) Stable.

a a′

x3 x4

x2 x1

b′ b

(c) Admissible, preferred,
and complete.

Fig. 4. EAFs witnessing the increased expressive power compared to AFs

power of EAFs also gives rise to increased expressiveness. This means that for
every semantics under consideration, except grounded, there are extension-sets
obtained by some EAF which do not have an AF as syntactic counterpart. We
show EAFs with sets of extensions which cannot be realized under the corre-
sponding AF-semantics in the following example (see also Figure 4).

Conflict-Free Sets: Given an arbitrary AF F , it holds that cf (F ) is downward
closed, that is for every E ∈ cf (F ) also E′ ∈ cf (F ) for each E′ ⊆ E. This is,
as already pointed out in [12], not necessarily true in EAFs. For example, the
conflict-free sets of the EAF F1 in Figure 4a coincide with {∅, {a}, {b}, {c},
{b, c}, {a, b, c}}, which cannot be the collection of conflict-free sets of any AF.
Observe that for E = {a, b, c} both {a, b} ⊆ E and {a, c} ⊆ E, but neither one
of those sets is a conflict-free set of F1. This comes by the fact that the success
of attacks can be conditioned by the presence of arguments.

Stable Semantics: It was shown in [11] that for every AF F = (A,R), the stable
extensions of F , denoted by S, form a tight set, i.e. the following holds: S ⊆
max⊆{S ⊆ A | ∀a, b ∈ S ∃T ∈ S : {a, b} ⊆ T }. One can check that this condition
does not hold for the extension-set T = {{a, b}, {a, c, e}, {b, d, e}}. Hence there is
no AF F with stb(F ) = T. On the other hand, the EAF F2 depicted in Figure 4b
has exactly T as stable extensions.

Preferred Semantics: The preferred semantics is among the most expressive se-
mantics in AFs. For a collection of sets of arguments S, the property called
adm-closed is decisive for prf -realizability [11]: For each A,B ∈ S such that
A∪B �∈ S (for prf just A �= B) there have to be some a, b ∈ (A ∪B) with �C ∈
S : {a, b} ⊆ C. Now consider the extension-set U = {{a, b}, {a′, b′}, {a, a′, x1},
{a′, b, x2}, {b, b′, x3}, {a, b′, x4}} and observe that A = {a, b} and B = {a′, b′}
violate the condition. Each pair of arguments in (A∪B) occurs together in some
element of U and is therefore necessarily without conflict in every AF trying to
realize U. On the other hand, we can again find an EAF realizing U under the
preferred semantics, namely F3 shown in Figure 4c, where conflicts are resolved
by attacks from the xi-arguments.
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Admissible and Complete Semantics: Finally one can also show that adm(F3)
(resp. com(F3)) are not realizable by AFs under the admissible (resp. complete)
semantics, indicating the increase in expressiveness for admissible and complete
semantics. Towards a contradiction assume that adm(F3) (resp. com(F3)) could
be realized by an AF F under admissible (resp. complete) semantics. Then the
preferred extensions prf (F ) of F are just the ⊆-maximal sets in adm(F3) (resp.
com(F3)) and thus prf (F ) = U. However, this contradicts the observation from
above that U is not prf -realizable in AFs.

5 Conclusion

In this work we revisited Modgil’s extended argumentation frameworks [18], an
appealing approach to incorporate preferences in abstract argumentation for-
malisms. We provided a different, yet equivalent, characterization of acceptance
in EAFs, of which we made use of in reductions to two well-established for-
malisms. First we presented ASP encodings for all semantics together with an
implementation in the online tool GERD. Second we encoded admissible se-
mantics in terms of propositional logic as a basis for implementation approaches
such as SAT- and QBF-solving. Moreover, we addressed a problem which was left
open in the complexity analysis of EAFs [12] by showing that deciding whether
the grounded extension is contained in all preferred extensions is ΠP

2 -complete
for EAFs. Finally we showed that the additional modelling capabilities within
EAFs give rise to higher expressiveness for all but the grounded semantics.

Making use of the propositional encoding of admissible semantics in an (itera-
tive) SAT-based implementation of EAF reasoning tasks is an obvious direction
of future work. Moreover, the performance of our ASP-based implementation
could be compared to labeling-based algorithms [21] in an empirical evaluation.
Finally, the connection of EAFs to ADFs [7], a very recent and general argu-
mentation formalism, should be explored, particularly by providing an efficient
translation from EAFs to ADFs.

Acknowledgements. We express our gratitude to Gerd Brewka, to whom this
Festschrift is dedicated. Each of the authors visited Gerd’s group in Leipzig in the
course of their work, which has led to many ongoing and fruitful collaborations
and discussions. Insights gained through these visits have been, and continue to
be, influential for our works.

We further thank Günther Charwat and Andreas Pfandler for their support for
developing the web front-end GERD, Gerald Weidinger for his contributions to
earlier versions of the ASP encodings and Pietro Baroni for his helpful comments
on an earlier version of this paper.

This research has been supported by the Austrian Science Fund (FWF).
Thomas Linsbichler’s work has been funded by FWF project I1102 and Johannes
Wallner’s work has been funded by FWF project P25521.



264 W. Dvořák et al.
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Abstract. Incompleteness and undecidedness are pervasively present in
human reasoning activities and make the definition of the relevant com-
putational models challenging. In this discussion paper we focus on one
such model, namely abstract argumentation frameworks, and examine
several flavours of incompleteness and undecidedness thereof, by provid-
ing a conceptual analysis, a critical literature review, and some new ideas
with pointers to future research.
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1 Introduction

In everyday life answering a question is not just a matter of choosing between
“Yes” and “No”. You may have no interest in giving a definite answer (whether
you have it ready or not) or, for some justified reason, may be unable to produce
it and prefer to take a less committed position. This variety of behaviors (and the
reasoning underlying them) is a key feature of dialogues between human beings,
and, in a sense, of human intelligence itself. Providing a formal counterpart to
them is therefore a plus, if not a must, for any formal approach aiming at repre-
senting and/or supporting intelligent dialogical and/or inferential activities. This
paper focuses on one such approach, namely abstract argumentation, and aims
at providing a conceptual analysis, a critical literature review, and some new
ideas with pointers to future research concerning the treatment of incomplete-
ness and undecidedness in this context. In a nutshell, abstract argumentation
focuses on the evaluation of the justification status of a set of (typically con-
flicting) arguments according to a given argumentation semantics. So it can be
roughly regarded as a formal approach to answer, for every single argument,
the question: “Is this argument acceptable?” Analyzing and discussing which
answers are available beyond “Yes” and “No” is the subject of this work.

The paper is organized as follows. Section 2 recalls the necessary background
concepts, Section 3 is devoted to partial evaluations in argumentation semantics,
Section 4 deals with different forms of undecidedness, and Section 5 concludes.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 265–280, 2015.
c© Springer International Publishing Switzerland 2015



266 P. Baroni, M. Giacomin, and B. Liao

2 Background

This work lies in the context of Dung’s theory [15] of abstract argumentation
frameworks (AF s), whose definition is recalled below.

Definition 1. An argumentation framework (AF ) is defined as a pair 〈A,→〉
in which A is a set of arguments and →⊆ A×A describes the attack relation
between arguments in A, so that (α, β) ∈→ (also denoted as α → β) indicates
that the argument α attacks the argument β. For a set S ⊆ A, the attackers of
S are defined as S← = {α ∈ A | ∃β ∈ S : α → β} and the attackees of S are
defined as S→ = {α ∈ A | ∃β ∈ S : β → α}.

In Dung’s theory arguments are abstract entities, whose nature and structure
are not specified, as the formalism is focused only on the representation of their
conflicts. Given an AF , a basic problem consists in determining the conflict
outcome, namely assigning a justification status to arguments. An argumentation
semantics can be conceived, in broad terms, as a formal way to answer this
question.

Two main approaches to semantics definitions have been adopted in the lit-
erature (see [5] for a review). In the extension-based approach the “outcome” of
an argumentation semantics when applied to a given AF is a set of extensions,
where each extension is a set of arguments considered to be jointly acceptable.

Definition 2. Given an AF F = 〈A,→〉, an extension-based semantics σ as-
sociates with F a subset of 2A, denoted as Eσ(F).

In the labelling-based approach the “outcome” is a set of labellings, where a
labelling is the assignment to each argument of a label taken from a fixed set.

Definition 3. Let F = 〈A,→〉 be an AF and Λ a set of labels. A Λ−labelling
of F is a total function L : A −→ Λ. The set of all Λ−labellings of F is denoted
as L(Λ,F).

Definition 4. Given an AF F = 〈A,→〉 and a set of labels Λ, a labelling-based
semantics σ associates with F a subset of L(Λ,F), denoted as Lσ(F).

Some observations concerning the relationships between the labelling and
extension-based approaches are worth making. First, as set membership can
be expressed in terms of a binary labelling, e.g. with Λ = {∈, /∈}, the extension-
based approach can be regarded as a special case of the general labelling-based
approach. The latter is therefore potentially more expressive under a suitable
choice of Λ. It has however to be noted that the almost universally adopted
choice for Λ in the literature, namely the set Λiou � {in, out, und}, has exactly
the same expressiveness as the extension-based approach.

To see this, and also to introduce some concepts useful in the sequel, let us
give some comments on the common intuitions underlying the two approaches.

First, coming back to the question about the justification status of arguments,
each extension and each Λiou-labelling can be regarded as one of the possible
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(according to the semantics at hand) answers to the question. Indeed, an exten-
sion E identifies as justified arguments the members of E itself while a labelling
identifies as justified arguments those that are labelled in. Further, arguments
not included in E can be partitioned between those that are attacked by some
member of E and those that are not. The former ones can be regarded as defi-
nitely rejected, and correspond to those labelled out, while the latter ones are in
a sort of intermediate status between acceptance and rejection, and correspond
to those labelled und. On this intuitive basis, a one-to-one formal correspondence
between extensions and Λiou-labellings can be defined, which has been shown to
hold for the main semantics in the literature [5].

As this paper deals mainly with general notions rather than with semantics-
specific properties, we don’t need to go through the various argumentation se-
mantics considered in the literature and, for the sake of exemplification, we recall
only the definition of complete semantics (denoted as CO) in the two approaches.
The two definitions are indeed equivalent (using the correspondence mentioned
above) though they may appear rather different at first glance.

In the extension-based approach, basically a complete extension is a set of
arguments which has no conflicts inside, defends all its elements against external
attacks, and includes all the arguments it defends.

Definition 5. Given an AF F = 〈A,→〉, a set S ⊆ A is conflict-free iff �α, β ∈
S : α → β. S defends an argument α iff ∀β s.t. β → α ∃γ ∈ S : γ → β. The set
of arguments defended by S in F is denoted as DF(S). A set S is a complete
extension of F , i.e. S ∈ ECO(F), iff S is conflict-free and S = DF (S).

In the labelling-based approach, a complete labelling is such that every ar-
gument label satisfies some legality constraints taking into account the labels
assigned to the attackers of the argument.

Definition 6. Let L be a Λiou-labelling of an AF F = 〈A,→〉.
– An in-labelled argument is legally in iff all its attackers are labelled out.
– An out-labelled argument is legally out iff it has at least one attacker that

is labelled in.
– An und-labelled argument is legally und iff not all its attackers are labelled

out and it doesn’t have an attacker that is labelled in.

L is a complete labelling, i.e. L ∈ LCO(F) iff every argument is legally labelled.

Given that a semantics provides, in general, many1 alternative answers (in
form of extensions or labellings) to the “argument justification question”, it has
to be remarked that a further step consists in deriving a “synthetic” justification
status for each argument considering the whole set of extensions or labellings.

1 Most literature semantics provide at least one extension/labelling for every AF , with
the exception of stable semantics [15] for which the set of extensions/labellings may
be empty. To avoid detailed precisations, inessential to the subject of this paper, we
assume non-empty sets of extensions/labellings in the following.



268 P. Baroni, M. Giacomin, and B. Liao

In the extension-based approach the two simplest ways to obtain this synthe-
sis basically consist in the set-theoretical operations of intersection and union,
leading respectively to the notions of skeptical and credulous justification, which
have an obvious counterpart in the labelling-based approach.

Definition 7. Given an extension-based semantics σ and an AF F = 〈A,→〉,
an argument α is skeptically justified iff ∀E ∈ Eσ(F) α ∈ E; an argument α is
credulously justified iff ∃E ∈ Eσ(F) : α ∈ E. Given a labelling-based semantics
σ and an AF F = 〈A,→〉, an argument α is skeptically justified iff ∀L ∈ Lσ(F)
L(α) = in; α is credulously justified iff ∃L ∈ Lσ(F) : L(A) = in.

On the basis of the quick review above, one may observe that traditional
definitions in abstract argumentation are characterized by exhaustiveness (all
the arguments in a framework are assigned a status by the semantics) and allow
a unique form of undecidedness, corresponding to the und label. Both these
constraints may turn out to be too rigid. On the one hand, exhaustiveness may
be too demanding in practice, since it might be the case that providing an answer
for all arguments is not always necessary. On the other hand, having a unique
form of undecidedness may be regarded as poorly expressive, since the variety
of cases where you don’t have a definite answer may require a richer set of
representation alternatives. We review and discuss approaches and ideas aiming
at tackling these limitations in the next sections.

3 “ I don’t care! ” Allowing for Incomplete Answers

Providing exhaustive answers is neither always a goal nor a necessity. In partic-
ular, there are several reasons why one may prefer not to evaluate the status of
every argument. In the context of the reasoning or dialogical activity where the
argumentation process is embedded, typically the actual goal is just assessing
the status of a restricted subset of arguments, regarded as more important than
the others2, which are considered in the evaluation only if necessary for the main
goal. Further, considering a dynamic context, where arguments and attacks may
be modified on the fly, it may be the case that some parts of the framework are
more subject to change than others and one may prefer, if possible, to restrict
his/her evaluation to those parts of the framework which are regarded as “more
stable”, deferring the evaluation of other parts to a later moment and so avoiding
to produce judgments probably needing a revision very soon. Two (not disjoint)
motivations for partial evaluations emerge from these examples:

– saving computational resources by avoiding useless (i.e. unnecessary or too
ephemeral) evaluations;

– even if computational resources are not an issue, avoiding to express positions
beyond what is required (taking into account the goals and/or the dynamics
of the process) according to a general criterion of cautiousness or minimal
commitment.

2 See, for instance, the notion of desired set introduced by Baumann and Brewka [10]
in the context of the problem of argument enforcement.
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Both motivations call for identifying some technically sound form of partial
evaluation, though with different nuances that may have an effect on what kind
of soundness is required. We review some literature approaches to partial argu-
mentation semantics in the following subsections.

3.1 Using a don’t-care Label

In [19] a labelling-based approach using the set of four labels ΛJV = {+,−,±,⊗}
is proposed. The first three labels correspond respectively to in, out, and und

of the “traditional” Λiou set (the symbol ± indicating that both + and − are
considered possible), while the fourth label3 corresponds to a don’t-care situa-
tion, namely to a non-assigned label. Indeed, a labelling L such that L(α) = ⊗
for some argument α is called partial in [19], while a labelling L where �α such
that L(α) = ⊗ will be called total.

In [19] the motivation for introducing a label corresponding to a don’t-care
situation is to have the possibility of not saying more than necessary, i.e. of not
expressing any judgment concerning “arguments that are irrelevant or that do
not interest the observer”. This implies that, in principle, the choice of don’t-
care arguments is completely at the discretion of the agent carrying out the
argumentation process. This freedom is however limited by the general legality
constraints4 on labellings based on the attack relation. In fact, according to [19,
Definition 3] a (possibly partial) labelling L of an AF F = 〈A,→〉 must satisfy
the following conditions:

– ∀α ∈ A if L(α) ∈ {−,±} then ∃β ∈ {α}← such that L(β) ∈ {+,±};
– ∀α ∈ A if L(α) ∈ {+,±} then ∀β ∈ {α}← L(β) ∈ {−,±};
– ∀α ∈ A if L(α) ∈ {+,±} then ∀β ∈ {α}→ L(β) ∈ {−,±}.
While these rules do not mention explicitly the arguments labelled ⊗, they

induce some constraints on them too. Intuitively, if you care about an argument,
you should care also about some other arguments affecting or affected by it.

More precisely, L(α) = ⊗ is possible only if the following conditions hold:

– ∀β ∈ {α}← L(β) ∈ {⊗,−};
– �β ∈ {α}→ such that L(β) ∈ {+,±};
– ∀β ∈ {α}→ if L(β) = − then ∃γ ∈ {β}← \ {α} such that L(γ) ∈ {+,±}.
The first condition states that one can not abstain on an argument which has

at least one attacker labelled + or ±. This evidences a sort of asymmetry in
the approach of [19]: one can abstain on an argument that would otherwise be
labelled +, but can not abstain on an argument that would otherwise be labelled
− or ±. The second and third conditions concern the cases where one abstains
on an argument α but not on (some of) the arguments attacked by α. More
specifically, the second condition forbids any abstention on the attackers of an

3 In [19] ∅ is used for the fourth label, we avoid the use of this overloaded symbol.
4 Note that the legality constraints of [19] do not coincide with the “standard” legality
constraints recalled in Definition 6.
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argument labelled + or ±, while the third condition allows the abstention on an
attacker of an argument β labelled − only if there is another attacker γ, labelled
+ or ±, justifying the label − of β.

The above rules imply in particular that “full carelessness” (i.e. a labelling
L such that L(α) = ⊗ for every argument α) is always possible, but partial
carelessness is not arbitrary.

An additional observation concerns the relationship between abstention and
the potential completions of a partial labelling L. A total labelling L′ is a com-
pletion of a partial labelling L if L(α) 
= ⊗ ⇒ L′(α) = L(α), i.e. if L′ is obtained
from L by replacing all and only the ⊗ labels with other labels (taking into ac-
count the legality constraints). In general, a legal partial labelling admits several
different completions (and always admits at least one). It can be the case that
a don’t-care argument α gets the same label in all the possible completions of a
partial labelling L, i.e. that the (only) legal label of α is univocally determined
by the information carried by L. Still, according to [19], it is legal to abstain
on α. This confirms that the ⊗ label does not correspond, per se, to any no-
tion of indecision and is applicable to some arguments with an (implicitly) well
determined label too.

While a further detailed discussion of the approach in [19] is beyond the scope
of the present paper, the features discussed above will be enough to point out the
basic differences with other notions of partial argumentation semantics reviewed
in the next subsection.

3.2 Partial Semantics for Partial Computation

Given an AF F = 〈A,→〉, let S ⊂ A be a set of arguments which are of some
interest for an agent (in a sense, they are the complement of the don’t-care
arguments mentioned in the previous section). In order to derive the justifica-
tion status of the interesting arguments one may wonder whether it is necessary
to preliminarily carry out a computation involving the whole AF , i.e. to first
compute Eσ(F) or Lσ(F), or it is sufficient to carry out a partial computation in-
volving only S and those other parts of the framework affecting the evaluation of
the arguments in S. Given that most computational problems in abstract argu-
mentation are intractable, reducing the set of arguments and attacks considered
in the derivation of the desired outcomes is of great interest, since it may yield
significant savings of computational resources. This calls for a suitable notion of
partial semantics applicable to the restrictions of a framework.

This notion is also crucial in the area of argumentation dynamics, namely in
contexts where the considered AF is subject to modifications over time. If these
modifications affect only a part of the whole framework, there is the opportu-
nity to reuse previously computed results concerning the part of the framework
unaffected by modifications, instead of reevaluating the whole framework from
scratch. Similar issues also arise from related investigation lines in abstract argu-
mentation, like the study of incremental algorithms for argumentation dynamics
[22,8] and of multi-sorted reasoning [24].
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Defining a partial semantics involves dealing with two interplaying notions:
on the one hand, one has to devise suitable ways to restrict a framework to
subframeworks which are appropriate for the definition of partial semantics, on
the other hand, one has to identify suitable semantics properties ensuring that
the relation between local and global semantics evaluation is sound.

As to defining restrictions, given an AF F = 〈A,→〉 and a set of arguments
S ⊂ A a straightforward way to define the restriction of F to S is to suppress
all arguments in A \ S and all attacks involving at least one argument not in S.
Accordingly, the restriction F ↓S of F to S is defined as F ↓S= 〈S,→ ∩(S×S)〉.

This definition appears rather rough as it “cuts” all the links between S and
other arguments: indeed it ignores S← ∩ (A \ S) and S→ ∩ (A \ S). In spite
of this, such definition turns out to be very useful under a suitable choice of
S and of the semantics σ to be “partialized”. First, one can simply choose S
such that it is unattacked, namely such that S← ∩ (A\S) = ∅. Second, one may
focus on semantics featuring the directionality property [6], namely such that
the evaluation of an unattacked set is not affected by the remaining parts of the
framework. The relevant formal definitions are recalled below.

Definition 8. Given an AF F = 〈A,→〉, a set S ⊆ A is unattacked iff S← ∩
(A \ S) = ∅. The set of unattacked sets of F is denoted as US(F).

Definition 9. An extension-based semantics σ satisfies the directionality crite-
rion iff ∀F = 〈A,→〉, ∀S ∈ US(F),AEσ(F , S) = Eσ(F ↓S), where AEσ(F , S) �
{(E ∩ S) | E ∈ Eσ(F)} ⊆ 2S. A labelling-based semantics σ with label set Λ
satisfies the directionality criterion iff ∀F = 〈A,→〉, ∀S ∈ US(F),ALσ(F , S) =
Lσ(F ↓S), where ALσ(F , S) � {L ∩ (S × Λ) | L ∈ Lσ(F)}.

Under the above mentioned assumptions, a notion of partial semantics useful
for partial and incremental computation has been introduced in [21]. Basically,
given a set of arguments of interest S, the semantics evaluation is carried out on
the restriction of F to the minimal unattacked set including S.

Definition 10. Given an AF F = 〈A,→〉 and a set of arguments S ⊆ A, define
rlvtF (S) = min⊆{U | S ⊆ U∧U ∈ US(F)}. Given an extension-based (labelling-
based) semantics σ satisfying the directionality criterion the partial semantics of
F with respect to S is defined as Eσ(F ↓rlvtF (S)) (Lσ(F ↓rlvtF (S))).

The restriction to an unattacked set for a directional semantics has been (of-
ten implicitly) exploited as a starting point in works oriented towards incremen-
tal computation, like splitting argumentation frameworks [9], the division-based
method [22] for argumentation dynamics and the decomposition-based approach
[20]. In these contexts a further step towards a richer notion of partial semantics
is made by considering the restriction to a set S which is not unattacked and
receives some fixed influence from outside, formally this amounts to remove the
assumption that S← ∩ (A \ S) = ∅, while still ignoring S→ ∩ (A \ S).

This has led to various notions of conditioned AF in the literature, where ba-
sically a conditioned AF is a framework receiving some attacks from a condition-
ing AF . In general, the conditioned and conditioning frameworks are obtained
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by partitioning a global framework according to some criterion. For instance,
in a dynamic context, the conditioning framework corresponds to the part of
the original framework which is not affected by a modification, so that previous
computation results concerning this part can be reused for the new semantics
evaluation concerning the affected part, corresponding to the conditioned frame-
work. We recall here the relevant definitions from [22].

Definition 11. Given an AF F1 = 〈A1,→1〉, a conditioned AF with respect to
F1 is a tuple CAF = (〈A2,→2〉, (C(A1), I(C(A1),A2))) in which

– F2 = 〈A2,→2〉 is an AF that is conditioned by C(A1) in which A2∩A1 = ∅;
– C(A1) ⊆ A1 is a nonempty set of arguments (called conditioning arguments)

that have interactions with arguments in A2, i.e., ∀α ∈ C(A1), ∃β ∈ A2,
such that (α, β) ∈ I(C(A1),A2);

– I(C(A1),A2) ⊆ C(A1) × A2 is the set of interactions from the arguments in
C(A1) to the arguments in A2.

Semantics directionality still plays a crucial role in this context: the idea is
that extension (labelling) computation in F2 depends on F1 but not vice versa
(since F1 does not receive attacks from F2), hence one can use the extensions
(labellings) of F1 as fixed conditions to determine the extensions (labellings) of
F2 (the reader is referred to [22] for details). It must however also be stressed that
in this enriched context directionality alone is no more sufficient to ensure that
local semantics definitions at the local level are coherent with those at the global
level, i.e. that combining the results of local evaluations one obtains the same
outcomes of global evaluation. In particular, the role of the SCC-recursiveness
property [7] in this context has been pointed out in [8].

Recently, a further generalization in the study of partial argumentation se-
mantics has been achieved [3,4] by considering arbitrary partitions of an AF
into subframeworks that, differently from the cases reviewed above, can be in a
relation of mutual dependence5. In this context, a partition induces a set of sub-
frameworks, each of which can be regarded as an AF receiving inputs (through
some attacks) from other subframeworks and in turn feeding inputs to other
subframeworks through other attacks. Modeling each of these subframeworks
as an argumentation framework with input, it has been possible to identify a
canonical local function [4] representing the counterpart at the local level of the
semantics definition at a global level, under very mild requirements satisfied by
most argumentation semantics in the literature.

It turns out however that combining the outcomes of the canonical local func-
tion of a semantics σ applied to the subframeworks does not always yield the
same results obtained by applying σ at the global level. In other words, not
every semantics is decomposable with respect to arbitrary partitions of an AF :
this result poses a theoretical limit to the possibility of defining a partial notion
of semantics preserving the same meaning as a global one. Accordingly, an in-
teresting issue consists in identifying some restricted classes of partitions (e.g.

5 The use of arbitrary partitions is called parameterized splitting in [11].
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those based on the graph-theoretical notion of strongly connected components)
where decomposability is recovered (the reader is referred to [4] for some relevant
results). A further research direction than can benefit from a generalized notion
of local evaluation is multi-sorted argumentation [24], namely the study of the
application of different semantics to different parts of a framework.

3.3 Discussion

While the approach in [19] represents explicitly the notion of don’t-care argu-
ments with a specific label, all the approaches reviewed in section 3.2 use some
restriction of the framework to focus attention on some set of arguments which,
for some reasons, deserves to be considered separately. Both don’t-care argu-
ments and (most of) the restriction mechanisms have to obey some constraints
and, to the best of our knowledge, their relations have not been investigated yet
in the literature. As a preliminary observation it can be noted that constraints
on don’t-care arguments take directly into account the effect that ignoring an
argument has on other arguments, while the restriction mechanisms typically
considered in the literature take this effect into account indirectly through some
graph-theoretical properties (e.g. the one of being an unattacked set). It follows
that contraints referred to restriction mechanisms can be more limiting than
those expressed in terms of don’t-care arguments. To exemplify this, consider the
simple framework F1 = 〈{α, β, γ}, {(α, γ)(β, γ)}〉. Here the status of γ can be de-
termined by considering only one of its attackers (indifferently α or β) and in fact
the following labellings are legal according to [19]: L1 = 〈(α,+), (β,⊗), (γ,−)〉,
L2 = 〈(α,⊗), (β,+), (γ,−)〉, which means (correctly) that one can focus on ei-
ther F1 ↓{α,γ} or F1 ↓{β,γ} without losing any information about the status of
γ. However, {α, γ} and {β, γ} are not unattacked sets in F1, thus none of the
restriction mechanisms considered in subsection 3.2 would allow this: they would
either force the inclusion of the missing argument or take into account it as an
input, while (in this specific case) this is, in fact, unnecessary. It must be said
however that constraints concerning don’t-care arguments concern local attack
relations only, while the restriction mechanisms provide a direct way to select
suitable partitions of a framework at a global level.

This suggests that combining don’t-care arguments with restriction mecha-
nisms may yield more advanced notions of partial semantics with respect to the
state of the art. This appears a very interesting direction of future research: in
particular, this combined approach may gain additional efficiency improvements
by providing better solutions to the problem of identifying the minimal amount
of computation sufficient to ensure that the status of a given set of interest-
ing arguments is the same as the one resulting from a computation over the
whole framework. In this perspective interesting relations may be drawn with
the notions of argumentation multipoles [4] and of critical sets [17].

As a final note, since partial semantics notions can be considered also in
extensions of the traditional Dung’s AFs (in particular in Abstract Dialectical
Frameworks [14]), considering the use of don’t-care arguments in these extended
formalisms represents another interesting line of future work.
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4 “ I don’t know . . . I know too much ”
Variations of Undecidedness

4.1 Undecidedness Is Not All the Same

Even if you care about an argument, you may be unable to assign it a definite
acceptance status (in or out using the Λiou label set, + or − using ΛJV ) and
must be content with an intermediate status (und or ± respectively) representing
some form of indecision. In both Λiou and ΛJV the intermediate label is meant
to represent every form of indecision, but one might observe that the reasons to
be undecided can be rather different.

On the one hand, one may be undecided because s/he has no enough informa-
tion to express a definite judgment and needs to wait for further information to
arrive. For instance, if asked about whether it will rain tomorrow, you may have
no hint at all, reply “I don’t know”, and then look for weather forecasts on the
web. After surfing several weather web sites, however, you are not guaranteed to
have gained a definite position, because some of them may promise a sunny day,
while others presage thunderstorms. In this case, your indecision is still there
but has changed nature since it is due to contradiction rather than to ignorance.
Indeed, as suggested in [16], your reply should now be “I know too much”, since
you got an excess of (inconsistent) information.

Distinguishing these two kinds of indecision is the cornerstone of Belnap-
Dunn (BD) four-valued logic [12]. BD-logic is based on the assumption that
an information-providing agent has two basic moves available (namely asserting
that a given statement is true or asserting that it is false) and that the status of
a statement then results from the union of all the moves concerning it. So, if no
move at all has been done, its status corresponds to indecision by ignorance (N:
“neither told true nor told false”), if only positive or negative moves have been
done the statement has a definite status (T: “told true” or F: “told false” respec-
tively), if both positive and negative moves have been done, one gets indecision
by contradiction (B: “both told true and told false”). The set of BD truth values
is then ΛBD = {N, T, F, B}.

The use in abstract argumentation of a set of labels Λ4 = {none, in, out, both}
corresponding to the four truth values in ΛBD has recently been proposed by
Arieli [1], in the context of a conflict-tolerant approach to semantics definition,
where the requirement of conflict-freeness for extensions/labellings is relaxed, in
order to achieve non-conventional results in the handling of attack loops.

In this way a correspondence between extensions and Λ4-labellings is obtained
as follows. Given an extension E and an argument α:

– α is labelled in iff α ∈ E ∧ α /∈ E→;
– α is labelled out iff α /∈ E ∧ α ∈ E→;
– α is labelled none iff α /∈ E ∧ α /∈ E→;
– α is labelled both iff α ∈ E ∧ α ∈ E→.

Note that the fourth case is possible only if E is not conflict-free. While there
is a formal correspondence and some intuitive analogy between the four labels
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in Λ4 and the four truth values of BD-logic, it has to be remarked that they are
conceptually different as they lie at different stages of the reasoning process.

The BD-model can be regarded as basically consisting of three phases:

1. assertion production: where agents make assertions by associating truth val-
ues to propositions;

2. aggregation: where different assertions concerning the same sentence are “put
together” (by a simple union operation) yielding a four-valued labelling of
propositions;

3. use of aggregation outcomes : where reasoning about labelled propositions is
carried out (e.g. given two propositions p1, labelled B, and p2, labelled N,
BD-logic specifies the truth value of p1 ∨ p2, p1 ∧ p2, and so on . . .).

To draw a comparison, also argumentation-based reasoning, called AB-model
in the following, can be schematized in three phases:

1. argument production: where agents produce (possibly conflicting) arguments
each supporting some conclusion;

2. conflict management : where semantics evaluation is applied to the set of
arguments and attacks yielding a set of labellings of arguments;

3. use of conflict outcomes : where argument conclusions are evaluated on the
basis of argument labels (note that the same conclusion can be supported
by many arguments) and further reasoning is possibly carried out based on
these evaluations.

The two models feature several structural similarities. Assertions in the BD-
model can be regarded as a special kind of arguments following the generic
scheme “If an agent tells that a given proposition p has a truth value v then
there is a reason to believe that p has the truth value v.” Hence the assertions
correspond to the conclusions of the arguments. The aggregation in the BD-
model can be regarded as a special kind of conflict management. The basic idea
is that conflict arises when different truth values are asserted for the same propo-
sition and that every conflict gives rise to “indecision by contradiction”. In terms
of Dung’s theory, this amounts to consider the special case where only symmet-
ric conflicts are present and to adopt a sceptical semantics (in particular the
grounded semantics) for the evaluation of arguments. This in particular implies
that only one labelling of arguments exists where all non conflicting arguments
are accepted and all conflicting arguments are undecided. Then the conclusions
of the accepted arguments get exactly the truth value that was asserted in the
first phase, while the conclusions of conflicting arguments get the B value and
the propositions not supported by any assertion/argument keep the N value. Due
to its simplicity, conflict management is left implicit in the BD-model, which,
in the aggregation phase, jumps directly to the assignment of truth values to
propositions. Differently, conflict management between arguments is the focus
of abstract argumentation theory, where semantics evaluation concerns assigning
labels to arguments not to conclusions, while the step of evaluating conclusions
and reasoning about the outcomes, namely the third process phase, is completely
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left out of the theory. Differently, this last phase is the main subject (not re-
viewed here) of the BD-model.

According to the analysis carried out above, we can identify three different
“labelling” activities during the reasoning process.

First, propositions are labelled with truth values. This labelling is explicit
in the assertion production phase of the BD-model, hence we will call these
truth values assertible values. In the AB-model, this labelling corresponds to the
contents of argument conclusions in the phase of argument production. These
aspects are abstracted away and hence left implicit in abstract AF s.

Second, for the sake of conflict resolution, arguments are labelled with accep-
tance values. This activity is explicit in the conflict management phase of the
AB-model (where acceptance values are called labels tout court), while it is left
implicit in the BD-model.

Third, taking into account the results of conflict resolution, argument con-
clusions, i.e. propositions, are labelled with aggregated conflict outcome values.
These values are produced in the aggregation phase in the BD-model, whose
four-valued logic specifies then how to reason with them. On the other hand, in
the AB-model they are regarded as a by-product of argument evaluation and,
to the best of our knowledge, reasoning with them has received, by far, lesser
attention in the literature.

The analysis carried out above evidences first of all the different nature of the
uses of the “same” four values in the BD-model and in [1]. In the BD-model they
are associated with propositions/argument conclusions and represent aggregated
conflict outcome values, in [1] they are associated with arguments and represent
acceptance values.

More interestingly, it points out some opportunities of cross-fertilization be-
tween these research areas.

On the one hand, the BD-model provides an advanced logic for reasoning
about aggregated conflict outcomes which, to the best of our knowledge, has no
parallel in the argumentation literature and could be used as a starting point to
fill this significant gap in existing models of argumentation-based reasoning pro-
cesses. Further, the use of a richer set of labels than Λiou, like Λ4 in [1], promises
a significant increase in the expressiveness (but also complexity) of labelling-
based argumentation semantics, whose implications can be regarded as a largely
unexplored research avenue. Moreover, since the notion of don’t-care arguments
encompassed in the ΛJV set of labels is “orthogonal” to the distinction between
none and both encompassed by the Λ4 set, one might investigate the combination
of the two ideas by considering a set of labels Λ5 = {none, in, out, both,⊗}.

On the other hand, the BD-model, initially conceived for the management
of inconsistent inputs by a computer system [12] and recently considered as an
approach to address the problem of inconsistent information on the Web [16],
appears to rely on a very simple implicit argumentation model, using just one
argumentation scheme for assertion production and an implicit skeptical seman-
tics for argument acceptance evaluation. As a variety of more articulated models
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for argument construction [13] and evaluation [5] are available in the literature,
using them to enrich the BD-model is a natural direction of investigation.

Leaving the development of these suggestions to future consideration, we focus
in next subsection on another more fundamental issue concerning the modelling
of undecidedness.

4.2 Epistemological Undecidedness

As discussed in the previous subsection, the BD-model assumes that the basic
assertions an agent can make are binary: the set AV of assertible values is AV =
{T, F} and the four labels in ΛBD arise from the aggregation of multiple moves (or
no move at all). In fact they correspond to all the possible subsets (including the
empty one) of the set {T, F}. This model appears to be based on the assumption
that the notion of a definite belief (corresponding to T and F) is more basic
than the one of undecidedness, which is a derived concept: something which is
undecided could (and, in a sense, should) be T or F in the end, but the lack of
information or the presence of unresolved contradictory information prevents a
more definite position.

It may be observed however that this modeling stance is somehow restricted
and could be generalized. From a purely formal point of view, one may consider
the case where the agents making the basic assertions adopt a richer set of
assertible values. Following the BD-model scheme, this would give rise in turn
to a richer set of aggregated conflict outcome values, since they correspond to the
elements of 2AV . To motivate this extension from a conceptual point of view,
one may suggest the existence of an additional, more “fundamental”, case of
undecidedness, called epistemological undecidedness in the sequel. To provide a
case for this, consider again the example of the weather forecast and suppose
that the location you are interested in lies in a region with a specially complex
geography, such that no existing weather forecast model is applicable. Then,
you are undecided about whether tomorrow will be sunny (indeed you have good
fundamental reasons to be so) and this indecision is rather different from the ones
considered above. First, it clearly does not arise from contradictory information:
you can not certainly say “I know too much”. Second, even if it bears some
superficial resemblance with the case “I don’t know” represented by the truth
value N in BD-logic, it is really different. The truth value N is meant to represent
absence of information, i.e. no move at all by an agent, and can not conflict with
a subsequent move: for instance if another agent makes a positive assertion then
N is directly superseded by T. Epistemological undecidedness, instead, relies on
some information and corresponds to a kind of move not encompassed by the
models reviewed above: it may be represented by an additional assertible value U!
corresponding to the intuitive answer: “I know that it is impossible to know”. As
a consequence, epistemological undecidedness can actually conflict with moves
of other kinds. In the example, if one says that tomorrow will be sunny, your
position will not be superseded and you may object to this assertion, even if you
don’t assert that it will be rainy.
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One might think that objections based on epistemological undecidedness are
analogous to the undercutting attacks exemplified by the famous Pollock’s “red
light” example [23]. In a nutshell, since an object looks red to you, you derive that
it is red, but when you learn that the object is under a red light, your derivation
is undercut and your reason to believe that the object is red is defeated, while
still leaving open the possibility that it is actually red. In both epistemological
undecidedness and Pollock’s undercut, an objection is raised not by asserting
the contrary of a given statement but providing reasons to leave it undecided.
However there is a basic difference in the reasons of being undecided in the two
cases. In Pollock’s example the reason to be undecided is specific to the way the
conclusion that the object is red has been derived. Knowing that the object is
under a red light does not imply that you can not know whether the object is red,
but only that you can not get to know it by looking at the object. For instance,
if you have an old picture of the object under normal light, you get a new
argument for which this specific undercut is no more effective (while, of course,
other undercuts may arise). Thus Pollock’s undercut is coherent with the view
that indecision is due to the unability to definitely accept or reject a statement,
while epistemological undecidedness means that you have reasons to regard a
topic as unknowable independently of the way different positions can be derived.
If you have reasons to believe that there is no way to forecast weather in a given
location, then you are in conflict with any weather forecast, independently of the
way it is derived. In this sense, an attack based on epistemological undecidedness
can be seen as an additional form of rebut. The standard notion of rebut is based
on the set of assertible values {T, F} and a rebutting attack arises when different
values are asserted for the same sentence, independently of the way they are
derived. When extending the set of assertible values to AV3 = {T, F, U!}, the
notion of rebut remains the same, i.e. that different values are asserted for the
same sentence, independently of the way they are derived, but there is a larger
variety of rebut situations: not just T vs. F but also, U! vs. T, U! vs. F, and
possibly even a three-way duel6 U! vs. T vs. F.

A research agenda to encompass epistemological undecidedness into a BD-
inspired AF model can then be drafted.

First, a suitable argument generation logic encompassing the extended set
of assertible values AV3 = {T, F, U!} has to be investigated. For the sake of
exploring the implications of the adoption of AV3 at a more abstract level one
could consider a simple BD-like model where agents can make three kinds of
assertions about a sentence.

Second, an abstract framework to represent the attack relations between argu-
ments has to be identified. Traditional AFs encompass a unique kind of binary
attack relation, but its expressiveness is probably insufficient in the extended
context. First, one may wonder whether attacks involving arguments based on
U! assertions against arguments involving arguments based on T or F assertions
should be classified and treated differently from “traditional” attacks involving
T vs. F assertions. Further, the distinction between rebutting and undercutting

6 Like in the classic non-classical western movie The Good, the Bad and the Ugly.
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attacks may need to be reassessed in this context. As a bottom ground for
this representation, one may consider again a BD-like model where all attacks
are symmetric and only unattacked arguments are accepted. A further research
jump would be to consider the above issues in the contexts of abstract dialectical
frameworks [14], where generic influence relations among arguments, rather than
just attacks, are considered.

Finally, turning to reasoning about conflict outcomes for the propositions of
interest, an extended logic would be needed for the aggregated conflict outcome
values, which, following the line of the BD-model, might correspond to the ele-
ment of 2AV3

. To this purpose existing studies on bilattice-based generalizations
of BD-logic could be taken as starting point [18,2].

5 Conclusions

We believe that sketching a few fluid research directions for the future is a suit-
able way to celebrate many solid research results achieved in the past. In this
spirit, in this work we have analyzed and discussed some “non-mainstream” as-
pects of the treatment of incompleteness and undecidedness in argumentation,
with the aim of posing questions rather than of giving answers. Whether these
and similar matters represent just theoretical curiosities or will somehow con-
tribute to narrow the gap between human reasoning and its formal models is
an issue for next generations of researchers. For sure, their work will profit from
the rich and still increasing conceptual and technical asset built by outstanding
researchers like Gerhard Brewka, to whom the book including this chapter is
dedicated.
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Abstract. Abstract properties satisfied for finite structures do not ne-
cessarily carry over to infinite structures. Two of the most basic proper-
ties are existence and uniqueness of something. In this work we study
these properties for acceptable sets of arguments, so-called extensions,
in the field of abstract argumentation. We review already known results,
present new proofs or explain sketchy old ones in more detail. We also
contribute new results and introduce as well as study the question of
existence-(in)dependence between argumentation semantics.

1 Introduction

In the past two decades much effort has been spent on abstract argumentation,
mainly with finite structures in mind. Be it in the context of non-monotonic reas-
oning, as an application of modal logic, or as a tool for structural text-analysis
and data-mining (see [10] for an excellent summary). From a mathematicians
point of view the infinite case has been widely neglected, although one should
also highlight efforts of encoding infinite argumentation structures for efficient
handling [3] as well as corresponding work in similar areas [1,11] and logical
foundations of argumentation [16,9].

Clearly finite or countably infinite structures are an attractive and reasonable
restriction, due to their computational nature. But the bigger picture in terms
of fulfilled properties (such as existence and uniqueness) tends to hide behind
bigger structures or certain subclasses of them. Which is why this work is to be
seen as an effort of emphasizing arbitrary infinities for abstract argumentation.

In his seminal paper [14] Phan Minh Dung introduced a formal framework for
argumentation, along with notions of acceptance, already including concepts of
conflict-freeness, admissibility, completeness and stability (see [2] for an overview
of acceptance conditions in argumentation). An argumentation framework (AF)
consists of arguments and attacks, where attacks are presented by a directed
binary relation on the arguments representing conflict between arguments. Dung
and subsequent works use the term semantics to refer to acceptance conditions
for sets of arguments. Whether such sets do exist at all is a main property of

� This research has been supported by DFG (project BR 1817/7-1) and FWF (project
I1102).

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 281–295, 2015.
c© Springer International Publishing Switzerland 2015



282 R. Baumann and C. Spanring

interest. A (dis)proof in case of finite AFs appears to be mostly straightforward,
in the general infinite case however conducting such proofs is more intricate. It
usually involves the proper use of set theoretic axioms, like the axiom of choice
or equivalent statements.

Dung already proposed the existence of preferred extensions in the case of in-
finite argumentation frameworks. It has later on (e.g. [13]) been pointed out that
Dung has not been precise with respect to the use of principles. The existence
of semi-stable extensions for finitary argumentation frameworks was first shown
in [19], with the use of model-theoretic techniques, techniques that could also
be extended to stage and other semantics. In this work we provide complete or
alternative proofs. Furthermore, beside semi-stable and preferred semantics we
consider a bunch of semantics considered in the literature. For instance, as a new
result, we show that stage extensions are guaranteed as long as finitary AFs are
considered. Finally, we shed light on the question of uniqueness of extensions.

Section 2 gives the necessary background information. We continue warming
up with basic observations in Section 3. In Section 4 we present further results for
preferred and lesser semantics. We proceed by giving insights into more advanced
semantics (e.g. semi-stable) in Section 5. We conclude in Section 6.

2 Background

An argumentation framework (AF) F = (A,R) is an ordered pair consisting of
a possibly infinite set of arguments A and an attack relation R ⊆ A×A. Instead
of (a, b) ∈ R we might write a � b and say that a attacks b. For sets E1, E2 ⊆ A
and arguments a, b ∈ A we write E1 � b if some a ∈ E1 attacks b, a � E2

if a attacks some b ∈ E2 and E1 � E2 if some a ∈ E1 attacks some b ∈ E2.
An argument a ∈ A is defended by a set E ⊆ A in F if for each b ∈ A with
b � a, also E � b. An AF F = (A,R) is called finite if |A| ∈ N. Furthermore,
we say that F is finitary if every argument has only finitely many attackers,
i.e. for any a ∈ A, we have |{b ∈ A | b � a}| ∈ N. The range E+ of a set of
arguments E is defined as extension with all the arguments attacked by E, i.e.
E+ = E ∪ {a ∈ A | E � a}.

A semantics σ is a function which assigns to any AF F = (A,R) a set of
sets of arguments denoted by σ(F ) ⊆ ℘(F ). Each one of them, a so-called σ-
extension, is considered to be acceptable with respect to F . For two semantics
σ and τ we use σ ⊆ τ to indicate that for any AF F , σ(F ) ⊆ τ(F ). There is a
huge number of commonly established semantics, motivations and intuitions for
their use ranging from desired treatment of specific examples to fulfillment of
a number of abstract principles. We consider ten prominent semantics, namely
admissible, complete, preferred, semi-stable, stable, naive, stage, grounded, ideal
and eager semantics (abbreviated by cf , ad , co, pr , ss , stb, na, stg, gr , id and eg
respectively). For recent overviews we refer the reader to [4,2].

Definition 1. Given an AF F = (A,R) and let E ⊆ A.

1. E ∈ cf (F ) iff for all a, b ∈ E we have a �� b,
2. E ∈ ad(F ) iff E ∈ cf (F ) and for all a � E also E � a,
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3. E ∈ co(F ) iff E ∈ cf (F ) and for any a ∈ A defended by E in F , a ∈ E,
4. E ∈ pr(F ) iff E ∈ ad(F ) and there is no E′ ∈ ad(F ) s.t. E � E′,
5. E ∈ ss(F ) iff E ∈ ad(F ) and there is no E′ ∈ ad(F ) s.t. E+ � E′+,
6. E ∈ stb(F ) iff E ∈ cf (F ) and E+ = A,
7. E ∈ na(F ) iff E ∈ cf (F ) and there is no E′ ∈ cf (F ) s.t. E � E′,
8. E ∈ stg(F ) iff E ∈ cf (F ) and there is no E′ ∈ cf (F ) s.t. E+ � E′+,
9. E ∈ gr(F ) iff E ∈ co(F ) and there is no E′ ∈ co(F ) s.t. E′ � E,

10. E ∈ id(F ) iff E ∈ ad(F ), E ⊆ ⋂
pr (F ) and there is no E′ ∈ ad(F ) satisfy-

ing E′ ⊆ ⋂
pr(F ) s.t. E � E′,

11. E ∈ eg(F ) iff E ∈ ad(F ), E ⊆ ⋂
ss(F ) and there is no E′ ∈ ad(F ) satisfying

E′ ⊆ ⋂
ss(F ) s.t. E � E′.

We recall that the intersection of an empty family of sets does not exist, as it
would coincide with the universal set leading to the well known Russel’s paradox
(cf. [17] for more details). Consequently, functions like ideal or eager semantics
may return undefined since their definitions include a subset-check with regard
to an intersection.1 The usual way to avoid undefined intersections is to fix a
background set U , a so-called universe (which is often explicitly stated or im-
plicitely assumed in argumentation papers), and to define the intersection of a
family of subsets S as

⋂S = {x ∈ U | ∀S ∈ S : x ∈ S}. Furthermore, in case
of ideal and eager semantics one may equivalently replace U by A since the can-
didate sets E have to be admissible sets of the considered AF F = (A,R). This
means,

⋂
σ(F ) = {x ∈ A | ∀E ∈ σ(F ) : x ∈ E}.

The following proposition shows well known relations for the considered se-
mantics.2 In the interest of readability we present them graphically.

Proposition 1. For semantics σ and τ , σ ⊆ τ iff there is a path from σ to τ
in Figure 2, e.g. stb ⊆ na for (stb, stg, na) is a path from stb to na.

dstbp

dssp

dstgp

dprp

dnap

dcop dadp

dcf p

dgrp didp degp

Fig. 2. Relations between Semantics

1 We will see that ss(F ) = ∅ may indeed be the case (Example 4) and thus, these
considerations are essential for eager semantics.

2 Note that the presented relations apply to both finite and infinite AFs. Detailed
proofs can be found in [7, Proposition 2.7].
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We call a semantics σ universally defined if for any AF F , |σ(F )| ≥ 1. Whether
a semantics warrants existence of extensions is of high interest. For instance,
Dung already showed that AFs can be used to solve well known problems like
the stable marriage problem [14]. If the considered problem is modeled correctly
and the used semantics provides a positive answer with respect to universal
definedness, then solutions of the problem are guaranteed. If a unique solution is
guaranteed, i.e. |σ(F )| = 1 for any F we say that σ follows the unique status ap-
proach. We will see that existence as well as uniqueness depend on the considered
structures. In the following section we start with a preliminary analysis.

3 Warming Up

As we have seen in Figure 2 the general subset relations for the considered
semantics are fairly well known. Given two semantics σ, τ such that σ ⊆ τ ,
then (obviously) universal definedness of σ carries over to τ . We start with the
investigation of finite AFs.

3.1 Finite AFs

It is well known that stable semantics does not warrant the existence of exten-
sions even in the case of finite AFs. The following minimalistic AFs demonstrate
this assertion.

aF : aG :
b

c

Fig. 3. Non-existence of Stable Extension

Both AFs represent odd-cycles and indeed this is a decisive property. It can
be shown that being odd-cycle free is sufficient for warranting at least one stable
extension.3 The universal definedness of complete semantics is a well-investigated
result from [14].

What about the other semantics considered in this paper? If we take a closer
look at Definition 1 we observe that they always possess at least one extension in
case of finite AFs.4 This can be seen as follows: Firstly, the empty set is always
admissible and conflict-free. Furthermore, the definitions of the semantics are
looking for conflict-free or admissible sets maximal in range or maximal/minimal

3 This is due to the fact that firstly, limited controversial AFs always possess a stable
extension [14, Theorem 33] and secondly, in case of finite AFs being odd-cycle free
coincides with being limited controversial.

4 In Sections 4 and 5 we prove this assertion in a rigorous manner for finitary or even
arbitrary AFs. The existence of extensions for finite AFs is implied.
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with respect to subset relation. Finally, since we are dealing with finite AFs there
are only finitely many subsets that have to be considered and thus, the existence
of maximal and minimal elements is guaranteed.

3.2 Infinite AFs

It is an important observation that warranting the existence of σ-extensions
in case of finite AFs does not necessarily carry over to the infinite case, i.e. the
semantics σ does not need to be universally defined. Take for instance semi-stable
and stage semantics. To the best of our knowledge the first example showing that
semi-stable as well as stage semantics does not guarantee extensions in case of
infinite AFs was given in [18, Example 5.8.] and is picked up in the following
example.

Example 1. Consider the AF F = (A∪B∪C,R) as illustrated in Figure 4 where

– A = (ai)i∈N, B = (bi)i∈N, C = (ci)i∈N and
– R = {ai � bi, bi � ai, bi � ci, ci � ci | i ∈ N}∪

{bi � bj , bi � cj | i, j ∈ N, j < i}

b1

a1

c1

b2

a2

c2

b3

a3

c3

b4

a4

c4

b5

a5

c5

. . .

Fig. 4. An illustration of the AF from Example 1

The set of preferred and naive extensions coincide, in particular pr(F ) =
na(F ) = {A} ∪ {Ei | i ∈ N} where Ei = (A \ {ai}) ∪ {bi}. Furthermore, none of
these extensions is maximal with respect to range since A+ � E+

i � E+
i+1 for

any i ∈ N. In consideration of ss ⊆ pr and stg ⊆ na (cf. Figure 2) we conclude
that this framework does have neither semi-stable nor stage extensions.

There are two questions which arise naturally. Firstly, do stage or semi-stable
extensions exist in case of finitary AFs. A positive answer in case of semi-stable
semantics was conjectured in [13, Conjecture 1] and firstly proved with substan-
tial effort by Emil Weydert in [19, Theorem 5.1]. Weydert proved his result in a
first order logic setup using generalized argumentation frameworks. In this paper
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we provide an alternative proof using transfinite induction. Moreover, as a new
result, we present a proof for the existence of stage semantics in case of finitary
AFs.

The second interesting question is whether there is some kind of existence-
dependency between semi-stable and stage semantics in case of infinite AFs.
The following two examples show that this is not the case. More precisely, it is
possible that some AF does have semi-stable but no stage extensions and it is
also possible that there are stage but no semi-stable extensions.

Example 2 (No Stage but Semi-stable Extensions). Taking into account the AF
F = (A∪B ∪C,R) from Example 1. Consider a so-called normal deletion [6] F ′

of F as illustrated in Figure 5 where F ′ = F |B.

b1 b2 b3 b4 b5 b6
. . .

Fig. 5. An illustration of the AF from Example 2

We observe that the empty set is the unique admissible extension of F ′. Con-
sequently, by definition of semi-stable semantics, ss(F ′) = {∅}. On the other
hand, stg(F ′) = ∅. This can be seen as follows: for any i ∈ N, Bi = {bi} is a
naive extension in F ′ and there are no other naive extensions. Obviously, there
is no range maximal naive set since B+

i � B+
i+1 for any i ∈ N.

Example 3 (No Semi-Stable but Stage Extensions). Consider again Example 1.
We define a so-called normal expansion [8] F ′ = (A ∪B ∪C ∪D ∪E,R ∪R′) of
F as illustrated in Figure 6, where

– D = (di)i∈N, E = (ei)i∈N and
– R′ = {ai � di, di � ai, bi � di, di � bi, di � ci, ei � di, ei � ei | i ∈ N}
In comparison to Example 1 we do not observe any changes as far as pre-

ferred and semi-stable semantics are concerned. In particular, pr(F ′) = {A} ∪
{Ei | i ∈ N} where Ei = (A \ {ai}) ∪ {bi} and again, none of these extensions is
maximal with respect to range. Hence, ss(F ′) = ∅. Observe that we do have ad-
ditional conflict-free as well as naive sets, especially the set D. Since any e ∈ E is
self-defeating and unattacked and furthermore, D+ = A∪B∪C∪D we conclude,
stg(F ′) = {D}.

4 Minor Results

4.1 Universal Definedness of Preferred and Naive Semantics

We start with proving that preferred as well as naive semantics are universally
defined. We mention that the case of preferred semantics was already considered
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Fig. 6. An illustration of the AF from Example 3

in [14, Corollary 12]. The proof is mainly due to Zorn’s lemma. In order to keep
the paper self-contained we recapitulate the famous lemma below.

Lemma 1 ([20]). Given a partially ordered set (P,≤). If any ≤-chain possesses
an upper bound, then (P,≤) has a maximal element.

One may easily show that the following “strengthened” version is equivalent
to Zorn’s lemma.

Lemma 2. Given a partially ordered set (P,≤). If any ≤-chain possesses an
upper bound, then for any p ∈ P there exists a maximal element m ∈ P , s.t.
p ≤ m.

The following lemma paves the way for showing the universal definedness of
naive and preferred semantics.

Lemma 3. Given F = (A,R) and E ⊆ A,

1. if E ∈ cf (F ), then there exists E′ ∈ na(F ) s.t. E ⊆ E′ and
2. if E ∈ ad(F ), then there exists E′ ∈ pr(F ) s.t. E ⊆ E′.

Proof. For any F = (A,R) we have the associated powerset lattice (℘(A),⊆).
Consider now the partially ordered fragments C = (cf (F ),⊆) andA = (ad(F ),⊆ ).
In accordance with Lemma 2 the existence of naive and preferred supersets is
guaranteed if any ⊆-chain possesses an upper bound in C or A, respectively.
Given a ⊆-chain (Ei)i∈I in C or A, respectively.5 Consider now E =

⋃
i∈I Ei.

Obviously, E is an upper bound of (Ei)i∈I , i.e. Ei ⊆ E for any i ∈ I. It remains
to show that E is conflict-free or admissible, respectively. Conflict-freeness is a
finite condition. This means, if there were conflicting arguments a, b ∈ E there
would have to be some i ∈ I with a, b ∈ Ei. Assume now E is not admissible.
Consequently, there is some a ∈ E that is not defended by E. Hence, for some
i ∈ I we have a ∈ Ei contradicting the admissibility of Ei.

5 Remember that any set can be written as an indexed family. This can be done via
using the set itself as index set.
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Theorem 7. For any F , pr (F ) �= ∅ and na(F ) �= ∅.
Proof. Since the empty set is always conflict-free and admissible we may apply
Lemma 3 and the assertion is shown.

Since any preferred extension is a complete one (cf. Proposition 1) we deduce
that complete semantics is universally defined too. The following proposition
shows even more, namely any admissible set is bounded by a complete extension
and furthermore, any complete extension is contained in a preferred one.

Proposition 2. Given F = (A,R) and E ⊆ A,

1. if E ∈ ad(F ), then there exists E′ ∈ co(F ) s.t. E ⊆ E′ and
2. if E ∈ co(F ), then there exists E′ ∈ pr(F ) s.t. E ⊆ E′.

Proof. Given E ∈ ad(F ). Thus, there exists E′ ∈ pr (F ) s.t. E ⊆ E′ (Lemma 3).
Since pr ⊆ co (Proposition 1) the first statement is shown. Consider E ∈ co(F ).
Hence, E ∈ ad(F ) (Proposition 1). Consequently, there exists E′ ∈ pr (F ) s.t.
E ⊆ E′ (Lemma 3) and we are done.

4.2 Uniqueness of Grounded and Ideal Semantics

We now turn to grounded as well as the more credulous ideal semantics. The
universal definedness in case of grounded semantics was already implicitly given
in [14]. Unfortunately, this result was not explicitly stated in the paper. Nev-
ertheless, in [14, Theorem 25] it was shown that firstly, the set of all complete
extensions form a complete semi-lattice, i.e. the existence of a greatest lower
bound for any non-empty subset S is implied. Secondly, it was proven that the
grounded extension is the least complete extension. Consequently, for any AF F
we may set S = co(F ) and the assertion is shown. The following theorem shows
that the same applies to ideal semantics.

Theorem 8. For any F , id(F ) �= ∅.
Proof. Given an arbitrary AF F = (A,R). We define ad∩pr (F ) = {E ∈ ad(F ) |
E ⊆ ⋂

P∈pr(F ) P}. Now consider A = (ad∩pr (F ),⊆). Obviously, ad∩pr (F ) �= ∅
since for any F , ∅ ∈ ad(F ) and furthermore, ∅ ⊆ S for any set S. In order to show
that id(F ) �= ∅ it suffices to prove that there is a ⊆-maximal set in A. Again
we use Zorn’s lemma. Given a ⊆-chain (Ei)i∈I in A. Consider E =

⋃
i∈I Ei.

Obviously, E is an upper bound of (Ei)i∈I and furthermore, conflict-freeness
and even admissibility is given because Ei ∈ ad(F ) for any i ∈ I (cf. proof of
Lemma 3 for more details). Moreover, since Ei ⊆ ⋂

P∈pr(F ) P for any i ∈ I

we deduce E ⊆ ⋂
P∈pr(F ) P guarenteeing E ∈ A. Consequently, by Lemma 1

A = (ad∩pr (F ),⊆) possesses ⊆-maximal elements concluding the proof.

The uniqueness of grounded semantics was shown already by Dung [14, The-
orem 25, statement 2]. We present a proof for ideal semantics.
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Theorem 9. For any F , |id(F )| = 1.

Proof. |id(F )| ≥ 1 is already given by Theorem 8. Hence, it suffices to show
|id(F )| ≤ 1. Suppose, to derive a contradiction, that for some I1 �= I2 we
have I1, I2 ∈ id(F ). Consequently, by Definition 1, I1, I2 ∈ ad(F ) and I1, I2 ⊆⋂

P∈pr(F ) P as well as neither I1 ⊆ I2, nor I2 ⊆ I1. Obviously, I1 ∪ I2 ⊆
⋂

P∈pr(F ) P and since preferred extensions are conflict-free we obtain I1 ∪ I2 ∈
cf (F ). Since both sets are assumed to be admissible we derive I1 ∪ I2 ∈ ad(F )
contradicting the ⊆-maximality of I1 and I2.

5 Main Results

When dealing with range-maximal extensions in infinite AFs as seen in the pre-
vious examples we might deal with sets of sets of arguments that keep growing
in size with respect to their range. For being able to handle constructions of
this kind we introduce the following two definitions. The intuition for the first
definition is that we want to be able to say something about arguments and sets
occuring (un)restricted in collections of extensions. For the second definition we
focus on the idea of infinitely range-growing sets of extensions.

Definition 10 (Keepers, Outsiders, Keeping Sets and Compatibility).
Consider some AF F . For E a set of sets of arguments we call E+ =

⋃
E∈E E

+

the range of E and for some argument a ∈ E+ we say that:

– a is a keeper of E if it occurs range-unbounded in E, i.e. for any E1 ∈ E
with a �∈ E1 there is some E2 ∈ E such that a ∈ E2 and E+

1 ⊆ E+
2 ;

– a is an outsider of E if it is not a keeper of it, i.e. there is some E1 ∈ E with
a �∈ E1 such that there is no E2 ∈ E with a ∈ E2 and E+

1 ⊆ E+
2 .

Furthermore for a set A ⊆ E+ we say that:

– A is a keeping set of E, or kept in E, if it occurs range-unbounded in E, i.e.
for every E1 ∈ E with A �⊆ E1 there is some E2 ∈ E such that A ⊆ E2 and
E+

1 ⊆ E+
2 .

– A is called compatible with E if every finite subset of A is kept in E, i.e. for
every finite A<ω ⊆<ω A we have that A<ω is a keeping set of E.

Definition 11 (Range Chain, Chain Range, Induced AF). Consider some
AF F . A set of sets of arguments E is called a range chain if for any E1, E2 ∈ E
we have E+

1 ⊆ E+
2 or E+

2 ⊆ E+
1 , again the range of E (the chain range E+) is

defined as E+ =
⋃

E∈E E
+.

Now for a given range chain E we will consider the by E induced AF F |E :

F |E = (E+,
{
(a, b) | a, b ∈ E+, (a, b) ∈ RF

} ∪ {(b, b) | b outsider of E})
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Observe that naturally finite range chains or chains that have a maximum will
not be of interest to us. Also observe the implicit transitivity, i.e. for E1, E2, E3 ∈
E from E+

1 � E+
2 and E+

2 � E+
3 it follows that also E+

1 � E+
3 . Thus a range

chain by definition gives a well-ordering on the equivalence class of elements with
equal range. We might need the axiom of choice though, to select one specific
extension for every equivalence class.

Lemma 4 (Axiom of Choice). For every set of non-empty sets E there is a
choice function, i.e. a function f selecting one member of each set, for all E ∈ E
we have f(E) ∈ E.

One may show that the axiom of choice is equivalent to Zorn’s lemma. It is
nowadays widely accepted, but the concept has been shown to be independent
from other axioms of set theory. Uses of choice often appear to be implicit, in
the following we explicitly mark when the axiom of choice is necessary.

5.1 Semi-stable and Stage Extensions in Case of Finitary AFs

In the case of semi-stable and stage extensions we deal with semantics that
sometimes are seen as weaker forms of stable semantics. In this sense we think
of range chains that range-cover the whole framework, or in other words we
will reduce frameworks to arguments being relevant (Definition 11) to some
range chain only. The following definition deals with the question whether some
argument or sets of arguments might be part of some stable extension. The
intuition being that we can recursively try to cover the full range of some AF,
the following definition helps in defining the recursion step.

Definition 12 (Unresolved Range). Given some AF F , a range chain E
such that F |E = F , and a set A ⊆ E+. We define the unresolved range of A as
the set A∗ that as a next step has to be resolved if A is to be subset of a stable
extension. A∗ thus consists of arguments endangering A without defense, as well
as arguments attacked by A+ but not by A. Also see Figure 13 for an illustration.

A∗ =
{
b �∈ A+ | b � A

} ∪ {
a �∈ A+ | A+ � a

}

Lemma 5. Given some finitary AF F , some range chain E, such that F |E = F ,
and some with E compatible set A ⊆ E+. Then there is some with E compatible
set B ⊆ E+ such that A ⊆ B and A∗ ⊆ B+, we have A+ ∪ A∗ ⊆ B+.

Proof. First observe that for every finite set A<ω ⊆ A+ ∪ A∗ there has to be a
finite set B<ω such that A<ω ∩ A ⊆ B<ω and A<ω ∩ A∗ ⊆ B+

<ω. This is due to
the finitary condition and the definitions, for every finite set of arguments there
are only a finite number of sets that have at most this range, but since the chain
E is unbounded in F there is at least one. Furthermore if B resolves A1 ∪ A2

then B resolves A1 and A2. By transfinite induction on the size of B we can
show that there is a set with the desired properties. Observe that the axiom of
choice might be necessary though.
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A+ \A

A

A∗

Fig. 13. An illustration of unresolved range A∗ (Definition 12). Observe that the right-
most area characterizes all arguments that can resolve A∗, when incorporating A.

Theorem 14. For any finitary F , |ss(F )| ≥ 1 and |stg(F )| ≥ 1.

Proof. Take some finitary AF F , and σ = pr or σ = na, and σ+ = ss or
σ+ = stg respectively. We will show that for any range chain E ⊆ σ(F ) there
is some σ-extension E that covers the full chain range, i.e. E+ ⊆ E+ ∈ σ(F ).
By then applying Zorn’s Lemma it follows that E also contains at least one
range-maximum, i.e. a range-maximal set or in other words a σ+-extension.

To this end for any range chain E ⊆ σ(F ), we proceed with the following steps
using transfinite recursion to find an upper bound A with E+ ⊆ A+ such that
there is some E ∈ σ(F ) with A ⊆ E.

1. Consider only relevant arguments of F
2. Recursion Start, motivation and intuition
3. Successor Step, augment by resolving keeper sets or compatible keepers
4. Limit Step, collect successor steps
5. Remarks, conflict-freeness and range-completeness

1. Consider Only Relevant Arguments of F : As presented in Definition 11 we
will make use of some AF F |E that contains only arguments from the range of E ,
plus all outsiders are self-attacking. If we retrieve a conflict-free (admissible) set
A such that A contains only keepers of E and spans the whole range, A+ = E+,
we can as stated in Lemma 2 retrieve a σ-extension that covers the whole chain
range. Clearly every stable extension of F |E serves this purpose. In the following
we will thus construct a stable extension and consider some AF F where F |E = F .

2. Define the Recursion Start: As recursion start we will use the set A0 = {a}
for some keeper a of E . In each step we will augment this set in a clever way, by
choosing compatible sets that either cover the unresolved range or some arbitrary
compatible keeper.

3. Successor Steps, α = β + 1: Given some compatible set Aβ . If Aβ has some
unresolved range A∗

β �= ∅ we choose a compatible set Aα ⊃ Aβ such that A∗
β ⊂

A+
α . As stated in Lemma 5 such a set exists, but we might need the axiom of

choice to find one. If on the other hand A∗
β = ∅ we pick some compatible keeper

a �∈ Aβ such that Aα = Aβ ∪ {a} is compatible with E .
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4. Limit Steps, α: Given a range chain {Ai}i<α where for any i < j we have
Ai ⊆ Aj and all Ai are finitely compatible. We define Aα =

⋃
i<α Ai, implicitly

using the axiom of choice. By definition Aα is compatible with E for otherwise
there would be some finite subset B ⊆<ω Aα that is not kept in E , but then
due to the construction it follows that already B ⊆ Ai for some i < α, in
contradiction to the successor step.

5. Conflict-Freeness and Range-Completeness: Conflict-freeness follows from
compatibility, range-completeness follows from definition of unresolved range
and successor/limit steps resolving this issue. Latest at each limit step, Aα be-
comes admissible and independent from arguments that are not member of A+

α ,
i.e. if a � Aα then Aα � a, and if A+

α � a then Aα � a, and if a � b where
b ∈ A+

α then Aα � b.
Having showed that every range chain of σ-extensions has an upper bound

in σ(F ) using Zorn’s lemma we now conclude that there is a range-maximal
σ-extension, in other words a σ+-extension.

5.2 The Special Case of Eager Semantics

One may have wondered why we did not consider eager semantics in Section 4.2.
The reason for this simply is that eager semantics does not follow the unique
status approach.6 More precisely, if there are no semi-stable extensions then eager
semantics equals preferred semantics. Moreover, in this case we have infinitely
many eager extensions. If the set of semi-stable extensions is nonempty then
eager semantics is uniquely determined.

Theorem 15. For any F , we have:

1. ss(F ) �= ∅ ⇒ |eg(F )| = 1,
2. ss(F ) = ∅ ⇒ eg(F ) = pr (F ) and
3. ss(F ) = ∅ ⇒ |eg(F )| ≥ |N|.
Proof. ad 1.) The proof is almost identical with the one presented for Theorem 8.
Simply replace preferred by semi-stable semantics.

ad 2.) Let F = (A,R) and assume ss(F ) = ∅. Remember that
⋂

P∈ss(F ) P =

{x ∈ A | ∀P ∈ ss(F ) : x ∈ P}. Given that ss(F ) = ∅ we deduce
⋂

P∈ss(F ) P = A

since ∀P ∈ ss(F ) : x ∈ P becomes a vacuous truth. Hence, eager semantics calls
for subset-maximal admissible sets. This means, eg(F ) = pr(F ).

ad 3.) Assume |eg(F )| = n for some finite cardinal n ∈ N. Due to statement 2
we derive, |pr(F )| = n. Remember that ss ⊆ pr (cf. Proposition 1). Consequently,
among the finitely many preferred extensions there has to be a range-maximal
one. This means, ss(F ) �= ∅.

Since finitary AFs do always possess semi-stable extensions we state the fol-
lowing corollary.

Corollary 1. For any finitary F , |eg(F )| = 1.

6 Observe that our assertion does not contradict the claimed uniqueness in [12] since
the author considered the restricted case of finite AFs only.
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5.3 A Note on cf2 and stg2 Semantics

Two semantics which have defied any attempt of solving w.r.t. the problem of ex-
istence in case of finitary AFs are cf2 and stg2 semantics [5,15]. Both are defined
via a general recursive schema which is based on decomposing AFs along their
strongly connected components (SCCs). Roughly speaking,7 the schema takes a
base semantics σ and proceeds along the induced partial ordering and evaluates
the SCCs according to σ while propagating relevant results to subsequent SCCs.
This procedure defines a σ2 semantics.8

Given SCC-recursiveness we have to face some difficulties in drawing conclu-
sions with respect to infinite or finitary AFs. If every subframework does have an
initial SCC (which is guarenteed for finite AFs), i.e. some strongly connected sub-
framework that is not attacked from the outside, then obviously this AF provides
a σ2 -extension as soon as every single component provides a σ-extension. If on
the other hand there is no initial SCC things become more complicated and in
particular especially due to the recursive definitions not that easy to handle. So
for now we go with the following conjecture.

Conjecture 1. For any finitary F , |cf2 (F )| ≥ 1 and |stg2 (F )| ≥ 1.

A noteworthy observation is that both semantics are not universally defined.
Consider therefore the following example.

Example 4 (Example 2 continued). Let σ ∈ {cf2 , stg2}. Consider the AF F ′

depicted in Figure 5. Here, for a sequence (bi)i∈N of arguments we have that
bi � bj iff i > j. This means, any argument bi constitutes a SCC {bi} which
is evaluated as {bi} by the base semantics of σ. Consequently, ∅ cannot be a
σ-extension. Furthermore, a singleton {bj} cannot be a σ-extension either. The
bi’s for i > j are not affected by bj and thus, the evaluation of {bi} do not return
∅ as required. Finally, any set containing more than two arguments would rule
out at least one of them and thus, cannot be a σ-extension.

5.4 Summary of Results

The following table gives a comprehensive overview over results presented in this
paper. The entry ∃ (∃!) in row certain and column σ indicates that the exist-
ence of σ-extension is guaranteed (and uniquely determined) given that certain
frameworks are considered. The question mark represents an open problem.

7 Due to the limited space we have to refer the reader to [5] for more details.
8 Following this terminology we have to rename cf2 semantics to na2 semantics since
its base semantics is the naive semantics and not conflict-free sets.
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Fig. 16. Existence and Uniqueness of Extension

6 Conclusions and Related Work

In this paper we gave an overview on the question whether certain semantics
guarantee the existence or even unique determination of extensions. Whereas
most of the literature concentrated on finite AFs we stick to the arbitrary in-
finite case as well as the subclass of finitary AFs. We present full or alternative
proofs for already known results like universal definedness of preferred semantics
and existence of semi-stable extensions in case of finitary frameworks. Further-
more, we completed the picture for the remaining semantics in case of non-finite
structures. To mention two results: Firstly, stage semantics behaves similarly to
semi-stable, i.e. extensions are guaranteed as long as finitary AFs are considered.
Secondly, eager semantics is universally defined but either there is exactly one
or there are infinitely many eager extensions. The former case is ensured for
finitary structures. In the latter case eager semantics coincide with preferred se-
mantics. To sum up, eager semantics does not generally follow the unique status
approach.

It is a non-trivial problem to decide whether certain abstract properties satis-
fied for finite AFs carry over to infinite structures. In [2, Section 4.4] the authors
wrote “As a matter of fact, we are not aware of any systematic literature analysis
of argumentation semantics properties in the infinite case.”. This paper can be
seen as a first step in this direction.
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Abstract. Abstract dialectical frameworks (ADFs) are a knowledge
representation formalism introduced as a generalisation of Dung’s ab-
stract argumentation frameworks (AFs) by Gerhard Brewka and co-
authors. We look at a judgment aggregation problem in ADFs, namely
the problem of aggregating a profile of complete interpretations. We gen-
eralise the family of interval aggregation methods, studied in the AF case
in our previous work, to the ADF case. Along the way we define the
notions of down-admissible and up-complete interpretations, that were
already previously defined for the AF case by Caminada and Pigozzi.
These aggregation methods may open the way to define interesting new
semantics for ADFs, such as a generalisation to the ADF case of the ideal
semantics for AFs.

Keywords: Abstract dialectical frameworks, argumentation frameworks,
judgment aggregation, interval methods.

1 Introduction

Abstract Dialectical Frameworks (ADFs) [5,4] have recently been introduced by
Gerhard Brewka and colleagues as a knowledge representation formalism that
generalises the popular Abstract Argumentation Frameworks (AFs) introduced
by Dung [9]. Several different semantics for ADFs have been defined which each
provide a way to map any ADF to its set of models or interpretations. Usually
these different semantics are defined so as to generalise an existing semantics of
AFs, such as admissible and complete semantics. In this paper we likewise seek
to explore within the wider setting of ADFs a problem that has recently received
attention in the more confined setting of AFs. Namely we are interested in the
problem of aggregation opinions in ADFs.

Our aggregation problem can be described as follows. Suppose we have a
group of agents who share a given ADF D. Each agent has a particular opinion
about the truth-value of the statements in D, and we assume each agent is
rational in the sense that their interpretation is a model of D according to
some commonly agreed semantics (which, in this paper, will be the complete
semantics). The question is, can we aggregate these opinions into a single group
interpretation that represents the opinion of the group as a whole? In the AF
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setting, this question (which can be thought of as a special case of the problem of
judgment aggregation [11,12]) has been investigated in [3]. There, a general family
of methods for aggregating complete AF labellings called interval methods was
defined and studied. In this paper we will show how this family can be extended
to cover the case of aggregation in ADFs.

Although simple to define and understand, the interval methods of [3] suf-
fered from the rather severe drawback that they were not guaranteed to output
a rational (i.e., complete) labelling for every possible AF. To remedy this, it
was suggested to add a post-processing repair step to the output. This step con-
sisted of two sub-procedures, the down-admissible followed by the up-complete
procedures, which were first introduced in [7]. We will see that these procedures,
that were so far only defined in the AF setting, can be generalised to the ADF
case, thus yielding a family of ADF aggregation operators - the DAUC interval
methods - that guarantee a rational outcome.

The plan of this paper is as follows. We start in the next section by giving
preliminary background on ADFs. Then in Section 3 we formally introduce the
ADF aggregation problem and give some postulates for aggregation methods. In
Section 4 we define interval aggregation methods and axiomatically characterise
them. Then in Section 5 we present the down-admissible and up-complete pro-
cedures for ADFs and define the DAUC interval methods. Lastly we conclude,
including a discussion about possible applications for defining new semantics for
ADFs, in particular a counterpart of ideal semantics from AFs.

2 Abstract Dialectical Frameworks

Abstract dialectical frameworks were first introduced by Brewka and Woltran
[5] and then further developed by Brewka et al [4] as a useful generalisation
of Dung’s abstract argumentation frameworks [9]. The idea is that we have a
collection S of atomic statements (essentially just propositional atoms), and each
s � S has a propositional formula ϕs associated to it that intuitively represents
the justification for accepting s. Roughly, if we have enough grounds for holding
ϕs to be true, then that gives us license to hold s to be true. The following setup
of ADFs is based on [4] (which was, in turn, inspired by the algebraic approach
to non-monotonic reasoning from [8] - see also [13] for a comprehensive study of
algebraic semantics for ADFs).

To begin, we assume a countable universal set U of possible statements from
which all ADFs are formed. Then an ADF may be defined as follows:

Definition 1. An abstract dialectical framework is a pair D � �S,C� where
– S � U is a finite set of statements.
– C is a collection �ϕs�s�S of propositional formulas built from S. Formula ϕs

is called the condition of s.
We will sometimes (if D is not clear from the context) denote the sets of state-
ments and conditions of an ADF D by SD and CD respectively.

For simplicity we assume for each s � S that ϕs doesn’t contain redundant
statements, that is, for each statement t appearing in ϕs, the set of (2-valued)
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interpretations satisfying ϕs�t�t� differs from the set of (2-valued) interpretations
satisfying ϕs�t�f�, where ϕs�t�t� denotes the formula resulting from substituting
t everywhere by t, and similarly for ϕs�t�f�, where t and f denote propositional
truth and falsity respectively. That is, the truth or falsity of t can make a dif-
ference to the truth value of ϕs.

An ADF comes with an implicit graph structure, with S as the nodes, reflect-
ing the dependencies between statements. To each ADF D we associate the set
of links LD by setting �t, s� � LD iff s, t � SD and t appears in ϕs. We denote
the set of parents of s by ParD�s�, i.e., ParD�s� � �t � SD 	 �t, s� � LD�. Dung
argumentation frameworks (AFs) form a subclass of the class of ADFs. Indeed
an ADF D is an AF iff each ϕs is equivalent to

�
t�ParD�s�


t.

Example 1. Following [4], we may represent an ADF by listing its statements,
with the condition of each statement written in square brackets immediately
after it. For example one possible ADF D0 with SD0 � �a, b, c� may be written
as follows.

a �t�, b �b�, c �
a b�.

A D-interpretation is just a function v : S � �t, f ,u� assigning one of the
truth-values t (true), f (false) or u (unknown) to each statement in S. For
notational convenience we define a negation operator on the set of truth-values by
setting 
t � f , 
f � t and 
u � u. The ordering � between D-interpretations
is defined by v1 � v2 iff for all s � S, v1�s� � v2�s�, where � is the (reflexive)
information ordering between truth-values given by u � t and u � f (and no
other pair �x,y� for x � y is in �). The set of truth-values forms a complete
meet-semi-lattice1 under �, with meet operation � behaving as a “consensus”
operator, i.e., t�t � t, f�f � f , and the meet of all other pairs returning u. The
set of all D-interpretations, equipped with ordering �, inherits this semi-lattice
structure with meet operation � defined by �v1 � v2��s� � v1�s� � v2�s�.

We say a D-interpretation is 2-valued if it assigns only values in �t, f�. Given
a D-interpretation v, the set of 2-valued interpretations �-extending v is de-
noted by �v�2. Then we define a function ΓD taking D-interpretations to D-
interpretations as follows by setting, for all s � SD:

�ΓD�v���s� �
�
�w�ϕs� 	 w � �v�2�.

That is, to determine �ΓD�v���s� we look at all possible ways the 3-valued in-
terpretation v may be completed to a 2-valued one. If there is consensus on
the value of the condition ϕs among all of these then �ΓD�v���s� is set to
that value. Otherwise �ΓD�v���s� � u. An alternative formulation of ΓD can
be given as follows. For each D-interpretation v let v� denote the conjunction

1 A complete meet-semi-lattice is such that (i) every non-empty finite subset has a
greatest lower bound, and (ii) every non-empty directed subset has a least upper
bound, where a subset X is directed if any two elements of X have an upper bound
in X.
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�
�s 	 v�s� � t� �

�
�
s 	 v�s� � f�. Then, for each s � SD

�ΓD�v���s� �

��
�

t if v� 	� ϕs

f if v� 	� 
ϕs

u otherwise

where 	� denotes entailment in classical propositional logic. It is shown in [5]
that ΓD is monotonic in �, i.e., if v1 � v2 then ΓD�v1� � ΓD�v2�.

The notions of admissible and complete D-interpretations can then be defined
in terms of the ΓD-function as follows.

Definition 2. A D-interpretation is admissible iff v � ΓD�v�. It is complete iff
v � ΓD�v�.

Intuitively, a D-interpretation is admissible if it doesn’t assign t or f to any
statement s without justification for doing so. An admissible D-interpretation is
complete if it assigns t or f to every statement for which justification is at hand.
As a fixed point of ΓD, a complete D-interpretation can be thought of a rational,
internally coherent belief state regarding the truth or falsity of the statements
in SD. For the special case in which D is an AF, these notions coincide with the
notions of admissible and complete argument labellings of [6] (see also [1]).

Example 2. Consider ADF D0 from Example 1. We can writeD0-interpretations
as triples �p, q, r� of truth-values expressing the values of a, b, c in that order.
There are three possible completeD0-interpretations: v1 � �t, t, t�, v2 � �t,u,u�
and v3 � �t, f , f�. An example of an interpretation which is admissible but
not complete is v4 � �u, t, t�. The all-unknown interpretation - in this case
v5 � �u,u,u� - is always admissible.

The notions of admissible or complete D-interpretations provide just two pos-
sible semantics for ADFs. Others are possible (see [4,13]) but for this paper we
will focus on only these.

3 Aggregating Complete Interpretations: Postulates

The aggregation setting we have in mind is as follows. We assume a fixed set
Ag � �1, . . . , n� of agents (for some fixed n � 2). The idea is that, given some
arbitrary ADF D, each agent forms some opinion over the truth or falsity of
each statement, subject to the constraints encoded in D. Each agent i’s opinion
is expressed as a complete D-interpretation vi, and they are collected in a D-
profile v � �v1, . . . , vn�. For any T � SD and D-interpretation v we denote by
v�T � the projection of v to just the statements in T , and we denote by v�T � the
n-tuple �v1�T �, . . . , vn�T ��. We would like to determine a single D-interpretation
that reflects the opinion of the group as a whole.

Definition 3. An ADF aggregation method (hereafter aggregation method for
short) is a function F that assigns, to each ADF D and each profile v of complete
D-interpretations, a D-interpretation FD�v�.
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How should we define a good aggregation method? Before describing some
concrete families of such methods in the next sections, we take a look at a
few desirable postulates for aggregation methods. These are inspired by and
appropriately modified from postulates studied in the AF case in [3] (which, in
turn, have been mostly inspired by postulates from the judgment aggregation
literature [11,12]). Free variables in these postulates, e.g., D, v in the first three
postulates below, are implicitly universally quantified.

The first, basic, group of postulates is as follows:

Collective Completeness FD�v� is a complete D-interpretation.

Anonymity If v� is a permutation of v then FD�v
�� � FD�v�.

Unanimity If vi = v for all i � Ag then FD�v� � v.

Collective Completeness requires that the output of the aggregation should be
a rational interpretation. For Anonymity we say “v� is a permutation of v” to
mean that v � �v1, . . . , vn� and v� � �vσ�1�, . . . , vσ�n�� for some permutation σ
on Ag. Thus this postulate says the identity of the agents does not matter in
the aggregation process. Unanimity says that if all agents agree on the same
D-interpretation then this should be the output.

Although a basic requirement, Collective Completeness will turn out not to
be satisfied by the family of aggregation methods we present in the next section.
However, restricting it to a particularly simple kind of ADF - in fact a kind of
AF - brings it to within much easier reach. We say an AF D is a 2-loop AF iff
SD � �s, t� and LD � ��s, t�, �t, s�� for some distinct s, t � U .

Minimal Collective Completeness If D is a 2-loop AF, then FD�v�
is a complete D-interpretation.

The next two postulates try to ensure minimum levels of satisfaction for the
agents with the collective outcome. Given a tuple �xi�i�Ag of truth-values the
t/f-winner (resp. t/f-loser) in �xi�i�Ag is that value among �t, f� which appears
more (resp. less) often in �xi�i�Ag . For example the t/f -loser in �t,u,u, f , t� is f .

t/f-Plurality If x is the t/f -loser in �vi�s��i�Ag then �FD�v���s� � x.

Compatibility vi�s� � 
�FD�v���s� implies vi�s� � u.

t/f-Plurality thus says the collective value assigned to s cannot be x � �t, f� if
strictly more agents voted for it to be 
x. Compatibility is a stronger property
that says the collective value cannot be x � �t, f� if at least one agent voted
for it to be 
x. The postulate is so-called because it says that the collective
interpretation FD�v� must be compatible with the interpretation of every agent i.

Definition 4. Two D-interpretations u, v are compatible iff there is no state-
ment s such that u�s� � 
v�s� � u.



Judgment Aggregation in Abstract Dialectical Frameworks 301

This notion of compatibility plays a leading role in the AF aggregation setting
of Caminada and Pigozzi [7]. The following lemma regarding the interplay be-
tween the notions of compatibility and completeness will be used in the proof of
Proposition 5 in Section 5.

Lemma 1. Let u be a complete D-interpretation. Then, for any D-interpretation
v, if v is compatible with u then so is ΓD�v�.

Proof. Suppose u is complete but ΓD�v� is not compatible with u. Then there
must be some s � SD such that �ΓD�v���s� � 
u�s� � u. By completeness of u
this gives �ΓD�v���s� � 
�ΓD�u���s� � u, which implies v� � u� 	� �. But this
can only happen if v�t� � 
u�t� � u for some t � SD, i.e., if v is not compatible
with u. ��

For the next aggregation postulate, we say that a given truth-value y is be-
tween truth-values x and z iff y � x or y � z or [y � u and x � 
z]. The next
postulate implies that if a particular collective outcome x � �t, f� is obtained for
statement s, and if some of the agents then change the truth-value they assign to
s so that they move closer to this collective outcome, then the collective outcome
does not change.

Monotonicity Let v,v� be D-profiles such that for all s � SD and all
i � Ag, if vi�s� � v�i�s� then (�FD�v���s� � �t, f� and v�i�s� is between
vi�s� and �FD�v���s�). Then FD�v

�� � FD�v�.

All the postulates until now referred to only a single ADF D. The remaining
postulates deal with restricting the behaviour of F across different, but related,
ADFs. The first enforces a certain neutrality over the names of the statements
used in an ADF. Given two ADFs D � �S,C� and D� � �S�, C �� a renaming
from D to D� is a bijection τ : S � S� such that ϕτ�s� � τ�ϕs� for each
s � S, where τ�ϕs� is obtained from ϕs by replacing every occurrence of each
statement t with τ�t�. A renaming lifts to a function taking D-interpretations
v to D�-interpretations τ�v� by taking �τ�v���s� � v�τ�1�s�� for each s � S�.
As the following result shows, both the admissible and complete semantics for
ADFs are invariant under renaming.2

Proposition 1. Let τ be a renaming from D to D�. If v is an admissible,
resp. complete, D-interpretation then τ�v� is an admissible, resp. complete, D�-
interpretation.

Proof. (Outline) Follows mainly from that fact that, for each s � SD and any
D-interpretation v we have v� 	� ϕs iff τ�v�� 	� ϕτ�s�, and v� 	� 
ϕs iff
τ�v�� 	� 
ϕτ�s�. ��

A renaming τ further extends naturally to a mapping from D-profiles v to
D�-profiles τ�v� � �τ�v1�, . . . , τ�vn��. The Renaming postulate for aggregation
methods can then be formalised as follows:
2 In the AF setting, this is known as the language independence property of AF se-
mantics [2].
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Renaming If τ is a renaming fromD to D� then τ�FD�v�� � FD��τ�v��.

We remark that in the restricted case of AFs this postulate can be simplified so
that it talks about graph isomorphisms rather than renamings (see the Isomor-
phism postulate in [3]).

The next postulate is a strong version of the Independence postulate which
forms the basis of several important results (especially impossibility results) in
judgment aggregation. It says that the collective truth-value of s depends at most
on the tuple of individual truth-values assigned to s by the agents, regardless of
which other statements may or may not be present in D.

ADF-Independence If v is a D-profile and v� is a D�-profile and s �
SD � SD� , then v�s� � v��s� implies �FD�v���s� � �FD��v����s�.

As expected, this postulate turns out to be too strong, and anyway could be
argued against on the basis that it asks us to disregard dependency information
between statements (in the form of the set LD) that is explicitly submitted as
part of the input to the problem. We thus formulate a weaker version, inspired by
the Directionality property for AF semantics [2]. Given an ADFD � �S, �ϕs�s�S�
and T � S, we say T is primary in D if for no t � T, s � S�T do we have
�s, t� � LD, i.e., each statement in T depends only on statements within T . We
denote by D �T the ADF �T, �ϕs�s�T �, with the ϕs “inherited” from D. Then
the Directionality postulate for ADF aggregation can be formulated as follows:

Directionality If T � SD is primary inD then FD�T �v�T �� � FD�v��T �.

(Note one can straightforwardly show that if v is admissible, resp. complete, in
D and T is primary in D, then v�T � is admissible, resp. complete, in D�T .) This
property says that the outcome of aggregation for a primary set T of statements
is independent of statements outside the set.

4 Interval Aggregation Methods

We now describe a family of ADF aggregation methods, generalised from the
family of AF aggregation methods from [3] known as interval methods.

Let Intn denote the set of non-zero intervals over �0, 1, . . . , n�, i.e., Intn �
��k, l� 	 k, l � �0, 1, . . . , n� and k � l�. Then to define a member of this family,
we just choose some distinguished set Y � Intn. We say Y is widening3 if
�a, b� � Y whenever �k, l� � Y and a � k, l � b, and is zero-based if k � 0
whenever �k, l� � Y . Each possible choice of Y yields an aggregation method FY

by setting, for each ADF D, D-profile v and s � SD:

�FY
D �v���s� �

�
x if x � �t, f� and �	Nv

s:�x	, 	N
v
s:x	� � Y.

u otherwise

3 The widening interval methods are very closely related to quota systems studied in
voting theory by Young et al [14].
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Here, Nv
s:x denotes the set of agents who assign value x to s in v, i.e., Nv

s:x � �i �
Ag 	 vi�s� � x�. Thus FY

D �v� sets the collective truth-value of s to be the t/f -
winner x in �vi�s��i�Ag provided such a winner exists and �	Nv

s:�x	, 	N
v
s:x	� � Y .

Otherwise the collective value is set to u.

Definition 5. An aggregation method F will be called an interval method iff
F � FY for some Y � Intn such that �0, n� � Y . If, furthermore, Y is widening,
resp. zero-based, then we say F is a widening, resp. zero-based, interval method.

The restriction �0, n� � Y is essentially made to ensure FY satisfies the Una-
nimity postulate.

The family of interval methods contains a number of interesting special cases.
We mention three here, the first two of which were first studied in the AF case
in [7]:
– Sceptical: Y Scep � ��0, n��. Take the collective value of a statement s to be

x if all agents voted for x, otherwise take u. We use FScep to denote FY Scep

.
Note that FScep�v� �

�
i�Ag vi.

– Credulous: Y Cred � ��0, l� 	 l � 1�. Take the collective value to be x � �t, f� if
at least one agent voted for x and none voted for the opposite 
x. Otherwise

take u. We use FCred to denote FY Cred

.
– Simple majority: Y SMaj � Intn. Here we just take the t/f -winner whenever

it exists, and take u otherwise. We use FSMaj to denote FY SMaj

.
Notice that all three of Y Scep, Y Cred and Y SMaj are widening, and all except
Y SMaj are zero-based.

Example 3. Consider the following ADF D1 with SD1 � �a, b, c, d�.

a �a�, b �b�, c �c�, d �
a�
b�
c�.

Assume n � 4 and that v � �v1, v2, v3, v4� with v1 � �t, t, t, f�, v2 � �f , t,u, f�,
v3 � �t, t,u, f�, v4 � �u, f ,u,u�. Then FScep�v� � �u,u,u,u�, FCred�v� �
�u,u, t, f� and FSMaj�v� � �t, t, t, f�.

We can characterise the family of interval methods in terms of postulates as
follows.

Theorem 1. Let F be an aggregation method. Then F is an interval method
iff it satisfies Anonymity, Unanimity, Minimal Collective Completeness, t/f -
Plurality, Renaming and ADF-Independence.

Proof. (Outline). Soundness is relatively straightforward. The completeness part
largely follows the same pattern as the proof of the corresponding theorem for
the restricted AF case in [3]. We first show how to construct, from any given
aggregation method F , a subset Y �F� � Intn : Let D0 be a 2-loop AF such
that SD0 � �a0, b0�. There are three complete D0-interpretations, which we
denote by vt, vf and vu, where the subscript represents the value of a0 (with
the label of b0 of course being always 
v�a0�). Then we define Y �F� by setting
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Y �F� � ��k, l� � Intn 	 �FD0�vk,l���a0� � t�, where vk,l is any D0-profile such
that precisely k agents provide labelling vf and l agents provide vt. Note by
Anonymity that the precise distribution of labellings among vk,l doesn’t matter.
Y �F� is well-defined, i.e., it doesn’t matter which 2-loop AF we take to define
it (by Renaming) and �0, n� � Y �F� (by Unanimity). One can then show that
F and FY �F� agree on the 2-loop AF D0, i.e., that for every D0-profile v we

have FD0�v� � FY �F�
D0

�v�. This part depends on Anonymity, Renaming, Minimal
Collective Completeness and t/f-Plurality. Then finally we extend this to hold
for any ADF D using ADF-Independence and Renaming. ��

Regarding the other postulates mentioned in the previous section, Direction-
ality is satisfied by every interval method, since it is a direct weakening of ADF-
Independence, but it can be shown that none of the remaining three, i.e., Collec-
tive Completeness, Compatibility and Monotonicity is satisfied in general. The
last two, however, can be obtained by adding restrictions on Y .

Proposition 2. Let FY be an interval method.
(i) FY satisfies Monotonicity iff Y is widening.
(ii) FY satisfies Compatibility iff Y is zero-based.

(The proof of this is straightforward. We remark that the “only if” directions of
these two results are essentially already covered by the analogous results proved
for the AF case in [3].) As a corollary we see that all three of our example interval
methods FScep, FCred and FSMaj satisfy Monotonicity, while all except FSMaj

satisfy Compatibility.
What about Collective Completeness? Readers familiar with the judgment

aggregation literature will not be surprised to learn that there is no interval
method satisfying Collective Completeness, even if we restrict to AFs, as shown
in [3].

Theorem 2 ([3]). There is no aggregation method (for any n � 1) satisfying all
of Anonymity, Unanimity, Renaming, ADF-Independence and Collective Com-
pleteness.

One response to this result in the AF case which was followed in [3] (thereby
generalising the approach of [7] who focussed only on the special cases FScep

and FCred) was to give up ADF-Independence by applying the down-admissible
and up-complete procedures to the outcome of aggregation. We will follow this
route here.

5 Down-admissible and Up-complete Procedures

The purpose of the down-admissible procedure in [7] was to take any AF-labelling
and to revise it downwards (along the ordering �), just enough so that it be-
comes an admissible labelling. It turns out that this procedure quite easily gen-
eralises to the ADF setting. Suppose we start from any given D-interpretation v.
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We then iteratively construct a sequence v0, v1, . . . ofD-interpretations by setting
v0 � v and vi	1 � vi � ΓD�vi� for i � 0. Clearly vi	1 � vi for each i. Let
a � min�i 	 vi	1 � vi�. By the finiteness of SD a is guaranteed to exist.

Definition 6. Let D be an ADF and v a D-interpretation. The down-admissible
interpretation of v, denoted by �v is defined by �v � va, where the sequence
v0, v1, . . . , va is defined as above.

Since va � va � ΓD�va� we have va � ΓD�va� and so �v is admissible. In fact it
is the largest admissible D-interpretation that is �-smaller than v, as the next
result confirms.

Proposition 3. Let v� be an admissible D-interpretation such that v� � v. Then
v� ��v.

Proof. We show by induction on i that v� � vi for all i � 0, 1, . . . , a in the above
procedure. Since v0 � v the base case i � 0 holds by assumption. So now assume
v� � vi. We will show also v� � vi	1, i.e., v

�
� �vi � ΓD�vi��. To show this it

is enough to show both v� � vi and v� � ΓD�vi�. The first of these holds by
inductive hypothesis. For the second, we know v� � ΓD�v

�� from the assumption
that v� is admissible. We also know ΓD�v

�� � ΓD�vi� from v� � vi and the
monotonicity of ΓD. From these two we conclude v� � ΓD�vi� as required. ��

Example 4. Let D2 be the following ADF, with SD2 � �a, b, c, d�.

a �a�, b �b�, c �
a b�, d �c�,

and consider the D2-interpretation v � v0 � �t, f , t, t�. We have ΓD2�v0� �
�t, f , f , t�, so v1 � v0 � ΓD2�v0� � �t, f ,u, t�. Now ΓD2�v1� � �t, f , f ,u�, so
v2 � �t, f ,u,u�. Since v2 is admissible, the procedure stops here with �v � v2 �
�t, f ,u,u�.

As the previous example shows, the down-admissible interpretation of v need
not be a complete D-interpretation. In [7] the purpose of the up-complete proce-
dure was to take any admissible AF-labelling and to revise it upwards (along �),
just enough so that it becomes a complete labelling. As with the down-admissible
procedure, it is relatively straightforward to generalise this procedure to the ADF
case. Starting with an admissible D-interpretation v we can construct a sequence
v � v0, v1, v2, . . . of D-interpretations by setting vi	1 � ΓD�vi� for i � 0. From
the assumption that v is admissible (so v0 � v1) and the monotonicity of ΓD we
have vi � vi	1 for i � 0. Let c � min�i 	 vi	1 � vi�. Again, by finiteness c is
guaranteed to exist.

Definition 7. Let D be an ADF and v an admissible D-interpretation. The up-
complete interpretation of v, denoted by �v is defined by �v � vc, where the
sequence v � v0, v1, . . . , vc is defined as above.

Clearly vc is complete, and the next result confirms it to be the smallest complete
D-interpretation that is �-larger than v.
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Proposition 4. Let v� be a complete D-interpretation such that v � v�. Then
�v � v�.

Proof. We show by induction on i that vi � v�. Since v0 � v the base case
i � 0 holds by assumption. So now assume vi � v�. Then, by monotonicity of
ΓD we know ΓD�vi� � ΓD�v

��, i.e., vi	1 � ΓD�v
��. But since v� � ΓD�v

�� by the
assumption that v� is complete, this gives us vi	1 � vi as required. ��

Example 5. Let us continue Example 4. Let v0 ��v � �t, f ,u,u�. Then v1 �
ΓD2�v0� � �t, f , f ,u�, v2 � ΓD2�v1� � �t, f , f , f� � ΓD2�v2�. Thus � �� v� �
�t, f , f , f�.

We denote the composite operation ���v� of taking the down-admissible fol-
lowed by the up-complete interpretations of v by � v. Taken in combination,
these procedures provide a way of transforming any aggregation method into
one that is guaranteed to satisfy Collective Completeness.

Definition 8. Let F be an aggregation method. The DAUC version of F , de-
noted by �F , is defined by setting, for any ADF D and D-profile v, �FD�v� �
��FD�v��.

What can we say about the properties of �F , other than Collective Complete-
ness? The next proposition gives us some other properties of �F , provided that
F satisfies them.

Proposition 5. Let F be an aggregation method. For each of the following pos-
tulates, if F satisfies that postulate then so does �F: Anonymity, Unanimity,
Renaming, Compatibility and Directionality.

Proof. (Outline) The proofs for Anonymity and Unanimity are straightforward.
Renaming is preserved mainly due to the fact that, for any D-interpretation v
and renaming τ (to some D�) we have v� 	� ϕs iff τ�v�� 	� ϕτ�s�, and v� 	�

ϕs iff τ�v�� 	� 
ϕτ�s�. For Compatibility suppose F satisfies that postulate.
Then for every D,v, FD�v� is compatible with every agent’s interpretation vi.
Since �FD�v� � FD�v� we know �FD�v� must also be compatible with every
vi. By Lemma 1 this compatibility is then preserved at each step of the up-
complete procedure for � ��FD�v�� and so finally �FD�v� is also compatible.
Finally, Directionality is preserved due to that fact that if t is a statement not
appearing in ϕs, then v� 	� ϕs iff v�� 	� ϕs (and similarly for 
ϕs), where v�� is
the same as v� but with any literal t or 
t removed. ��

Combined with the results of the previous section, this gives us a list of sound
postulates for the DAUC versions of the interval methods.

Corollary 1. Let F be an interval method. Then �F satisfies Collective Com-
pleteness, Anonymity, Unanimity, Renaming and Directionality.
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Of course the DAUC interval methods do not satisfy ADF-Independence by
Theorem 2. Regarding t/f-plurality, we know from Propositions 2 and 5 that if

Y is zero-based then �FY satisfies Compatibility and hence also t/f-plurality. In

fact it turns out that being zero-based is a necessary condition for �FY to satisfy
t/f-plurality. This follows already from the analogous result proved for the AF
case in [3].

Proposition 6 ([3]). Let FY be an interval method. Then �FY satisfies t/f -
plurality iff Y is zero-based.

Regarding Monotonicity, in view of Proposition 2 one might expect that a
necessary and sufficient condition for �FY to satisfy that postulate is that Y is
widening. However we have thus far been unable to prove or disprove this, and
so it remains an open question for now.

6 Conclusion

We looked at the problem of defining methods for aggregation that take any
profile of complete D-interpretations, over any given ADF D, and return a group
D-interpretation. We showed that much of the same machinery used in the more
specialised case of aggregating complete labellings of AFs can be applied to this
problem. In particular we were able to define and axiomatically characterise
a generalised version of the interval methods of [3], and to apply the down-
admissible and up-complete procedures to transform the output of any interval
method into a complete D-interpretation.

As noted in [7] for the AF case, one imaginative use for aggregation meth-
ods is as a route to define a (single-status) semantics for AFs. The role of an
AF semantics is to prescribe, for every possible AF and for each argument a
in the AF, which label represents the “common sense” label that a should be
assigned in the context of that AF. One way to obtain this common sense la-
belling is to aggregate all possible rational labellings. In [7] this manoeuvre was

carried out using both �FScep and �FCred, and both were shown to correspond to
some already existing semantics. Specifically, the result of aggregating all possi-
ble complete labellings4 using �FScep coincides with the grounded labelling [6,9],

while aggregating all possible complete labellings using �FCred results in the ideal
labelling [7,10]. This latter result is interesting, since until now there has been no
generalised version of ideal semantics proposed for ADFs. The above discussion
suggests that we can obtain such an ADF semantics by taking the output of the
result of aggregating all complete D-interpretations using �FCred. A related ques-
tion is: what happens when we aggregate all complete D-interpretations using
other members of the family of DAUC interval methods, such as �FSMaj. Does
this give rise to other meaningful ADF semantics? These questions will be left
for further study.

4 [7] also considered the results of aggregating other sets of labellings, such as all
possible preferred labellings.
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Another open question regards the axiomatic characterisation of the DAUC
versions of the interval methods. In this paper we have managed to give a list
of sound postulates for this family (Corollary 1). It remains to be proved that
this list is complete. Finally, in this paper we have restricted ourselves to the
problem of aggregating complete interpretations. It would be interesting to look
at aggregation using other ADF semantics, such as those described in [4].
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Semantics?
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Abstract. In view of the plethora of different argumentation seman-
tics, we consider the question what the essential properties of a “reason-
able” semantics are. We discuss three attempts of such a characterization,
based on computational complexity, logical expressivity and invariance
under partial duplication, which are satisfied by most, if not all, known
semantics. We then challenge each of these proposals by exhibiting plau-
sible semantics which still not satisfy our criteria, demonstrating the
difficulty of our endeavor.

Keywords: abstract argumentation, complexity, expressiveness, invari-
ance under modifications.

1 Introduction

Since initiated by Dung’s seminal paper [12], the field of abstract argumentation
has attracted a lot of interest from researchers all over the world. One striking
phenomenon in the community that sets it apart from other fields related to
logic and knowledge representation is the past and ongoing proliferation of the
proposed different semantics [3,15].

Typically, new argumentation semantics are motivated by providing scenarios
where existing semantics do not exhibit the wanted behavior. This phenomeno-
logical and case-based approach is certainly worthwhile in a “pioneering phase”,
where the space of possibilities needs to be explored. However, with the field
advancing and becoming more mature, it becomes more and more important to
categorize and compare the different proposals for argumentation semantics as
well as to identify common principles.

There is a lot of ongoing work on this along different lines. Most notably,
argumentation semantics can be distinguished and classified according to the
computational complexities of the associated reasoning tasks [14]. Note that
evaluation criteria and rationality postulates have been discussed for abstract
argumentation and its many variations and extensions [4,9].

With the wide range of existing argumentation semantics and many criteria
around that help distinguishing them, it seems interesting to ask for commonal-
ities shared by all semantics that are considered “reasonable”. Is it possible to
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identify a “common core” of criteria that would characterize minimal require-
ments to an argumentation semantics? This paper discusses three properties
shared by most, if not all, current semantics:

– Computational complexity. Reasoning tasks associated with argumentation
semantics seem to be situated at a rather low (mostly the first, not more
than the second) level of the polynomial hierarchy.

– Expressibility in monadic second-order logic (MSO). This logic has been
propagated as an appropriate language for defining argumentation seman-
tics [17]. This proposal insinuates that any “reasonable” semantics should
be MSO-expressible.

– Invariance under duplication of parts of the framework. To the best of our
knowledge, this criterion has not been proposed in the literature, but we
found it intuitive and indeed, widely applicable.

For each of the three criteria, we show that they are satisfied by a majority
of argumentation semantics. On the other hand, we critically scrutinize their
universal validity and succeed in coming up with semantics which violate them
while still being intuitively reasonable.

The paper is organized as follows. In Section 2 we recall the background on
abstract argumentation frameworks and computational complexity. In Section 3
we introduce a semantics based on a game-theoretic approach and show that its
computational complexity is higher than for the standard semantics. Then, in
Section 4 we consider MSO-expressibility and exhibit a seemingly natural seman-
tics which is not expressible in MSO logic. Section 5 is dedicated to the study of
the behavior of semantics when an AF contains “structural duplicates”. Finally,
in Section 6 we conclude the article and point out possible future directions.

2 Preliminaries

In this section we introduce the basics of abstract argumentation, the semantics
we need for further investigations and recall necessary notions from complexity
theory.

Abstract Argumentation. We start with a definition of abstract argumentation
frameworks following [12].

Definition 1. An argumentation framework (AF ) is a pair F = (A,R), where
A is a finite set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means
that a attacks b. A set S ⊆ A defeats b (in F ) in symbols S � b, if ∃a ∈ S,
s.t. (a, b) ∈ R. An a ∈ A is defended by S ⊆ A (in F ) iff, ∀b ∈ A, it holds that,
if (b, a) ∈ R, then S defeats b (in F ). An a ∈ A is in conflict with b ∈ A, if
either (a, b) ∈ R or (b, a) ∈ R.

The inherent conflicts between the arguments are solved by selecting subsets of
arguments, where a semantics σ assigns a collection of sets of arguments to an
AF F . The basic requirement for all semantics is that the sets are conflict-free.



What Is a Reasonable Argumentation Semantics? 311

a b c d e

Fig. 1. AF F from Example 1

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free
(in F ), if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of
sets which are conflict-free (in F ) by cf (F ). A set S ⊆ A is maximal conflict-
free or naive, if S ∈ cf (F ) and for each T ∈ cf (F ), S �⊂ T . We denote the
collection of all naive sets of F by naive(F ). For the empty AF F0 = (∅, ∅), we
set naive(F0) = {∅}.
Towards definitions of the semantics we introduce the following formal con-
cepts [12].

Definition 3. Given an AF F = (A,R) and some S ⊆ A, the characteristic
function FF : 2A → 2A of F is defined as FF (S) = {x ∈ A | x is defended by S}.
We consider the following semantics.

Definition 4. Let F = (A,R) be an AF. A set S ∈ cf (F ) is said to be

– a stable extension (of F ), i.e. S ∈ stable(F ), if S+
R = A where S+

R = S∪{a |
∃b ∈ S : (b, a) ∈ R} is the range of S;

– an admissible extension, i.e. S ∈ adm(F ) if each a ∈ S is defended by S;
– a complete extension (of F ), i.e. S ∈ comp(F ), if each S ∈ adm and for

each a ∈ A defended by S (in F ), a ∈ S holds;
– a preferred extension, i.e. S ∈ prf (F ) if S ∈ adm(F ) and for each T ∈

adm(F ), S �⊂ T ;
– the grounded extension (of F ), i.e. the unique set S ∈ grd(F ), is the least

fixed point of the characteristic function FF .

AFs are typically represented as directed graphs where the nodes correspond
to the arguments and the edges to the attacks.

Example 1. Let F = (A,R) be an AF with arguments A = {a, b, c, d, e} and
attacks R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The corresponding graph
is depicted in Figure 1. F has the following sets of extensions for the intro-
duced semantics, stable(F ) = {{a, d}}, prf (F ) = {{a, c}, {a, d}}, comp(F ) =
{{a}, {a, c}, {a, d}}, grd(F ) = {{a}} and adm(F ) = {{}, {a}, {c}, {d}, {a, c},
{a, d}}.

Computational Complexity. We assume the reader to be familiar with standard
complexity classes, i.e. P, NP, coNP and PSpace (polynomial space). Never-
theless, we briefly recapitulate the concept of oracle machines and some related
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Table 1. Complexity of decision problems (C-c denotes completeness for class C)

Verσ Credσ Skeptσ Exists¬∅
σ

naive in P in P in P in P

stable in P NP-c coNP-c NP-c

adm in P NP-c trivial NP-c

comp in P NP-c P-c NP-c

prf coNP-c NP-c ΠP
2 -c NP-c

complexity classes. Let C notate some complexity class. By a C-oracle machine
we mean a (polynomial time) Turing machine which can access an oracle that
decides a given (sub)-problem in C within one step. We denote the class of de-
cision problems, that can be solved by such machines, as PC if the underlying
Turing machine is deterministic and NPC if the underlying Turing machine is

non-deterministic. The class ΣP
2 = NPNP, denotes the problems which can be

decided by a non-deterministic polynomial time algorithm that has access to an

NP-oracle. The class ΠP
2 = coNPNP is defined as the complementary class of

ΣP
2 , i.e. Π

P
2 = coΣP

2 . The relations between the complexity classes used in this
work are P ⊆ NP (coNP) ⊆ ΣP

2 (ΠP
2 ) ⊆ PSpace.

We are interested in the following decision problems (for a semantics σ).

– Credσ: Given AF F = (A,R) and a ∈ A. Is a contained in some S ∈ σ(F )?
– Skeptσ: Given AF F = (A,R) and a ∈ A. Is a contained in each S ∈ σ(F )?
– Verσ: Given AF F = (A,R) and S ⊆ A. Is S ∈ σ(F )?

– Exists¬∅
σ : Given AF F = (A,R). Does there exist a set S ⊆ A,S �= ∅ such

that S ∈ σ(F )?

The complexity landscape for the semantics considered in this article is given
in Table 1 (see [10,11,13]).

3 About Computational Requirements

The decision problems associated with most of the classical Dung semantics have
relatively low computational complexity. Indeed, most of the problems belong
to the first level of the polynomial hierarchy, with the exception of the skeptical
acceptance for preferred semantics, which is complete for the second level of the
polynomial hierarchy (see Table 1). This is an appreciable feature, since it allows
one to use efficient solvers developed in other communities, such as satisfiability
solvers or answer-set programming solvers, either directly or used as oracles in
a more complex algorithm [18,16].

In our task of compiling a set of properties that reasonable semantics should
fulfill, should we include an upper-bound on the complexity of classical reasoning
problems? To tackle this question, we adopt a game-oriented approach, as in [19].
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As already argued in the literature, games are a natural approach to argumenta-
tion, since they fit with the intuition of an iterative process. Their main use with
respect to abstract argumentation frameworks has been to provide alternative
characterizations of credulously and skeptically accepted arguments according
to a variety of known semantics. We adopt a dual approach here, using games to
define novel semantics. We then explore the complexity of reasoning under such
semantics.

This section is organized as follows:

– first, we argue that shifting the focus from the extension to the way it has
been built may allow to distinguish between extensions that would otherwise
be similar; in particular, we present a way to structurally (and partially) rank
preferred extensions;

– second, we explore semantics that can be expressed thanks to games. In
particular, we introduce a semantics whose credulous acceptance problem is
PSpace-complete. While this semantics is maybe not immediate, we believe
that it demonstrates a still unexplored space of game-based semantics of
high complexity.

Dynamics of Preferred Extensions. In the argumentation semantics that
we have presented so far, all arguments are chosen simultaneously. That is, an
acceptance condition is checked on a potential extension, but the way this exten-
sion has been created is ignored. In [19], this is indicated as not fully intuitive,
as argumentation often refers to an iterative process, where arguments are given
one at a time. We provide another reason to pay attention to the generation
process and not only to its result: it provides further structural insights on how
to distinguish extensions.

To illustrate our point, let us consider the argumentation framework Fd drawn
in Figure 2. This framework has two preferred extensions, which are {1, 2} and
{3, 4}. By looking only at these two sets, there is no reason to distinguish one
from the other: both are preferred, both are of the same size, and we assume not
to have any preference information on the arguments. However, let us assume
that arguments are added one at a time. There are two ways to generate the first
extension: either choose 1 then 2, or choose 2 and then 1. Similarly, there are
two ways to generate the second extension. By looking at these sequences, the
two extensions can then be distinguished: at any step, the set built towards the
second extension is admissible. Indeed, {3} is admissible, as well as {3, 4}. This
is the case neither for {1} nor for {2}. This means that the extension {3, 4} can
be generated by constructing only admissible sets, whereas {1, 2} cannot. Let us
define formally a malus function on preferred extensions.

Definition 5 (Malus of a preferred extension). Let F be an argumentation
framework, and let S be a preferred extension of F . Let (s1, . . . , sn) be a sequence
of elements of S where each element of S appears exactly once. The malus of
(s1, . . . , sn) is the number of indices i such that 1 ≤ i ≤ n and {s1, . . . , si} is not
an admissible set. The malus of S is the minimal malus of any such a sequence
(s1, . . . , sn).
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1 3

2 4

Fig. 2. The argumentation framework Fd

Equipped with this notion of malus, we can now define a notion of preference
on preferred extensions.

Definition 6. Let F be an argumentation framework, S1 and S2 be two preferred
extensions of F . S1 is preferred to S2 if the malus of S1 is smaller than the malus
of S2.

The intuition behind this notion of preference is that a (linear) argumentation,
where at each step the obtained set of arguments is admissible, is more solid than
one for which this is not the case.

From Semantics to Games and Back. A natural way to use information
on how an extension has been generated is to look at it as the result of a game.
We already mentioned that games have been used to characterize credulous and
skeptical acceptance for a variety of semantics. Let us give some more details
about this approach, as presented in [19]. Two player games are used, where both
players, “PRO” and “CON”, play alternately. PRO aims at proving credulous
acceptance of an argument, while CON tries to disprove this. The set of moves
allowed is defined in order to capture a given semantics. Credulous acceptance is
then defined with respect to winning strategies of PRO. Hence, games have been
used to shed a new light on already existing semantics. We adopt here a dual
approach, where we start from a family of games, and explore which semantics
may be defined in this way.

In the literature, an extension is defined from the arguments that PRO uses.
We adopt a slightly different approach: both players “collaborate” to create an
extension, but their contributions are chosen with the goal to maximize their own
satisfaction. By collaborating, we mean that both players are adding arguments
to what will become an extension. At each step, the arguments they can add
depends on the structure of the graph and on the already played arguments. This
is specified thanks to the definition of legal sequences. However, both players may
have different objectives: this is represented by a payoff function, that associates
each outcome of the game with a payoff for each player. An extension is then the
set of arguments that have been played during an optimal play of both players.

Let us now formally define the three ingredients of an argumentation game
G which we introduced informally above: legal sequences, payoff function and
optimal play.
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Definition 7 (Legal sequences). A set of legal sequences S on an argumen-
tation framework F is a finite set of tuples of arguments of F that is prefix-closed,
that is, if (a1, . . . , an) ∈ S, then (a1, . . . , an−1) also belongs to S. The outcomes
O of the game are sequences that are not a strict prefix of any other sequence in
S.

A move of the game is the transition from a legal sequence to another legal
sequence by adding an argument at the end. Moves resulting in a sequence of
odd size are played by Player 1, while other moves are played by player 2.

Note that we could also define infinite games, but we stick to the finite case for
simplicity. We now introduce payoff functions, that describe the “satisfaction”
of each player after playing a given sequence.

Definition 8 (Payoff function). Let S be a set of sequences, O be the set of
outcomes. A payoff function is a function from O to N×N. The first component
is the payoff for Player 1, while the second is for Player 2.

Players aim at maximizing their payoff, and use strategies in order to do so.
Strategies define what to play in each given situation.

Definition 9 (Strategy). A strategy for Player 1 (resp. Player 2) is a function
that associates to each legal sequence of even length (resp. odd length) another
legal sequence that can be reached by a move of Player 1 (resp. Player 2).

Strategies of particular interest are the so-called optimal strategies.

Definition 10 (Optimal strategy). A strategy is optimal if it maximizes the
minimal payoff a player may get by playing it, whatever the opponent’s strategy
is.

We now have all the tool to define the semantics associated with a game.

Definition 11 (Game semantics). Let G be an argumentation game. Let F =
(A,R) be an argumentation framework. The extensions of F according to G are
the set of arguments E that can be played when both players are following an
optimal strategy.

Thus, the choices of a set of legal sequences and a payoff function define a
semantics for argumentation frameworks. Let us notice that some choices may
violate even the most widely accepted properties of a semantic, such as language
independence [4]. It is however possible to regain such a property by adequately
restricting the set of legal sequences and the set of payoff functions one may use.

We now instantiate the previous definitions to define the last-word game and
its associated semantics. The aim of each player is the following: either he/she
wants to ensure that he/she will choose the last argument, or, if that cannot be
ensured, he/she wants the extension to be as large as possible. At each time, they
can choose any argument that maintain conflict-freeness, and that is attacked
by at least one argument that was attacked by the previously chosen argument.
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Definition 12 (Legal sequence for the last-word game). Let F = (A,R)
be an argumentation framework. A legal sequence for the last word game is de-
fined inductively as follows:

– the empty sequence is a legal sequence;
– (a1) is a legal sequence for any a1 ∈ A such that (a1, a1) �∈ R;
– if (a1, . . . , an) is a legal sequence, and there exists b, an+1 ∈ A such that

(an, b) ∈ R and (b, an+1) ∈ R, and (ai, an+1) �∈ R for any i with 1 ≤ i ≤
n+ 1, then (a1, . . . , an, an+1) is a legal sequence.

Definition 13 (Payoff for the last-word game). Let (a1, . . . , an) be an out-
come for the last word game. The last-word payoff flw is defined as follows:

– if n is odd, then flw = (|A| + n, n);
– if n is even, flw = (n, |A|+ n).

Theorem 1. Credulous acceptance for the last-word semantics is PSpace-com-
plete.

Proof. (Sketch) Membership is direct. For hardness, we reduce the problem of the
existence of a winning strategy for the first player in GeneralizedGeography
to credulous acceptance under the last-word semantics. Let us first recall that
GeneralizedGeography is a two player game played on a directed graph. At
each step, a player chooses a non-visited vertex that is a successor of the last
played vertex. The last player who can play wins. An example of instance is given
in Example 2. We first create an instance G∗ of GeneralizedGeography such
that the first player has a winning strategy starting from one of two special moves
depending on the existence of a winning strategy in the original instance G. We
thus create an argumentation framework by replacing each edge in G∗ by two
attacks.

�
Example 2. Figure 3 presents an example of instance for GeneralizedGeog-
raphy. Player 1 could play 1. Player 2 has two choices: either 2 or 3. If Player 2
plays 2, Player 1 plays 3 and wins. If Player 2 plays 3, Player 2 wins. A winning
strategy for Player 1 is to play 3 from the beginning.

Figure 4 is the argumentation framework obtained from the instance of Figure
3 by the reduction used in the proof of Theorem 1. a1, a2 and a3 correspond
to vertices of the original instance. av1 and av2 correspond to vertices added
to ensure that Player 1 has a winning strategy, starting either with av1 or av2 .
Other vertices corresponds to edges in the original instance.

While possibly not overly intuitive, we believe that this semantics helps mak-
ing a case for interesting semantics that incorporate information on how an
extension may have been created, and such semantics are likely to have a higher
computational complexity than the classical ones.
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1 3

2

Fig. 3. An instance of GeneralizedGeography

a1 a13 a3

a12 a23

a2

av2

av1

av1v2

av21

av22

av23

Fig. 4. The argumentation framework obtained from the instance of Example 2

4 Expressiveness of Argumentation Semantics

Another angle from which one can investigate argumentation semantics is the
logical expressivity needed to define them. Note that each argumentation frame-
work F = (A,R) can be seen as a relational structure with one binary relation
and therefore as a logical interpretation for a signature containing one binary
predicate symbol. This perspective allows for characterizing argumentation se-
mantics in terms of the logical expressiveness needed for defining them.

It has been argued before [17] that a significant number of semantics can
be expressed by monadic second-order (MSO) logic formulae. MSO logic is an
extension of first-order predicate logic by set variables (usually denoted by upper
case letters like X) which are used to represent sets of domain elements. They
can be quantified over and used in membership atoms of the form x ∈ X which
are interpreted in the intuitive way.
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Now, an MSO formulae ϕ[X ] with one free set variable X can be seen as a
formal definition of some semantics σ as follows: for any AF F = (A,R) and
S ⊆ A the following holds: S ∈ σ(F ) iff F satisfies ϕ[X ] under the variable
assignment X �→ S. Finally, a semantics σ is called MSO-expressible if such a
defining MSO formula exists for it.

As stated above, virtually all mainstream argumentation semantics are MSO-
expressible. As an example, the admissible semantics can be expressed by the
following formula:

∀x, y (
R(x, y) ∧ (y ∈ X) → ¬(x ∈ X) ∧ ∃z.(R(z, x) ∧ z ∈ X)

)

Note that MSO-expressibility guarantees certain properties: the computa-
tional complexity of all the reasoning tasks described in Section 2 will be on
some fixed level of the polynomial hierarchy. By contraposition, we can infer
that any semantics with a complexity of PSpace or above cannot be expressed
in MSO logic. While we saw an example of this in Section 3, we focus here
on the question if there is a reasonable semantics with comparably low reason-
ing complexity which is nevertheless not MSO-expressible. Indeed, the following
semantics satisfies these properties.

Definition 14. A set S ∈ cf (F ) is said to be a multi-admissible extension if
|{b ∈ S | (a, b) ∈ R}| ≤ |{c ∈ S | (c, a) ∈ R}| holds for every a ∈ A \ S.

In words, a multi-admissible extension S must attack each argument a outside
S at least as often as a attacks S. We deem this a rather reasonable semantics,
as it is very close to the admissible semantics (in fact, every multi-admissible
extension is also admissible), but additionally takes the multiplicity of the at-
tacks carried out by an external argument into account by requiring them to be
compensated by an according number of counter-attacks.

It is straightforward to check that verifying if some set S is a multi-admissible
extension can be done in polynomial time, which immediately ensures that the
complexity of all other reasoning tasks is not worse than on the first level of the
polynomial hierarchy.

We will next show that despite this comparably low complexities, this seman-
tics cannot be expressed in MSO logic.

Theorem 2. There is no MSO formula that expresses the multi-admissible se-
mantics.

For the proof of this theorem, we use a well known result of Büchi linking
regular word languages and MSO logic.

Definition 15. Let Σ be a finite alphabet. The word interpretation Iw of some
word w = α1 . . . αn ∈ Σ∗ is the relational structure with base set {1, . . . , n} the
binary relation < defined in the usual way, and unary relations Pα for all α ∈ Σ
with i ∈ P Iw

α iff α = αi for every i ∈ {1, . . . , n}.
Theorem 3 (Büchi [8]). A word language L ⊆ Σ∗ is regular if and only if
there exists an MSO sentence ϕ satisfying L = {w | Iw |= ϕ}.



What Is a Reasonable Argumentation Semantics? 319

This result is now leveraged for an indirect proof: we argue that a hypothetical
MSO formula expressing multi-admissible semantics could be used to come up
with an MSO formula characterizing a non-regular language.

Proof. (Sketch) Assume there is an MSO formula ϕ[X ] characterizing multi-
admissible extensions. Let ϕ′[X ] be the MSO formula obtained from ϕ[X ] by
replacing every atom R(x, y) by the subformula (Pb(x)∧Pc(y))∨(Pc(x)∧Pa(y)).
Thereby, we assume an abstract framework where every node is labeled by a, b
or c; then we let each b-labeled node attack every c-labeled node and have each
c-labeled node attack every a-labeled node.

Finally, for checking if the set of all nodes labeled with a or b can be an
extension, let ψ[X ] = ∀x.(x ∈ X ↔ Pa(x) ∨ Pb(x)). By construction this is the
case, if more nodes are labeled with b than with a.

Then, every word interpretation Iw corresponding to some wordw over {a, b, c}
satisfies that it is a model of ∃X.(ϕ′[X ] ∧ ψ[X ]) if and only if w contains more
bs than as. However, the language of all words with these properties is not reg-
ular as can be easily shown using the well-known pumping lemma for regular
languages. �

From a more general perspective, MSO logic is known to be incapable of
comparing cardinalities of sets of unbounded size. Thus, it will be difficult to
cast any semantics relying on such a comparison into MSO logic.

5 Invariant Behavior under Modification of the
Framework

The evaluation of AFs is solely based on syntactic properties. For example check-
ing whether a set of arguments is accepted under stable semantics requires that
there are no two arguments in the set which attack each other and all arguments
not contained in the set are attacked by the set.

Due to the non-monotonic behavior of AFs, modifications, i.e. adding or delet-
ing arguments or attacks, may change the outcome of a semantics in a way that
arguments which have been accepted before are not acceptable afterwards. In
the literature, most of the work was focused on studying equivalences, where
one identifies a kernel of an AF, and if two different AFs posses the same kernel
they are strongly equivalent to each other [20].

In this section we study what happens to the extensions if some part of the
framework is duplicated. A duplicate will be a set of arguments which has in-
ternally and externally the same relations as its original. However, there is no
connection i.e. no attacks between the original and the duplicate.

Definition 16. Let F = (A,R) be an AF. A set D ⊂ A is a duplicate in F ,
with its original set D̂ = {â ∈ A | a ∈ D} satisfying D̂ ∩D = ∅ and |D̂| = |D| if
there are only the following four types of attacks between arguments d′, e′ ∈ D,
their originals d̂, ê ∈ D̂ and x, y ∈ A \ (D ∪ D̂).
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a

b c

d

b′ c′

Fig. 5. AF F from Example 3

R1) (d′, e′) ∈ R iff (d̂, ê) ∈ R;

R2) (d′, x) ∈ R iff (d̂, x) ∈ R;

R3) (x, d′) ∈ R iff (x, d̂) ∈ R;
R4) (x, y) ∈ R.

In the following we will denote the duplicate of an argument a with a′ and the
original of a duplicate b with b̂. For an AF F = (A,R) and a set D ⊆ A we
can add a set of duplicate A′ such that A′ = {a′ | a ∈ D}, then the obtained
AF with duplicates will be denoted by F ′ = (A ∪ A′, R ∪ R′), where R′ is as in
R1−R3 in Definition 16.

Example 3. Consider AF from Figure 5. There, the set A′ = {b′, c′} is a duplicate
in F with its original set Â = {b, c}.

We say a semantics σ is weakly duplicate invariant if for any AF F and its
related AF F ′ with duplicates, each σ-extension S of F is related to a σ-extension
S′ of F ′ in such a way that all arguments from S are accepted as well as those
duplicates from A′ if their original argument was contained in S.

Definition 17. A semantics σ is weakly duplicate invariant if for any AF F =
(A,R) and F ′ = (A ∪ A′, R ∪ R′) such that the set A′ is a duplicate in F ′, R′

are the attacks related to duplicates and for any S ⊆ A the following holds

S ∈ σ(F ) ⇒ S′ ∈ σ(F ′),

where S′ = S ∪ {a′ ∈ A′ | a ∈ S}.
Lemma 1. Conflict-free sets are weakly duplicate invariant.

Proof. Let F = (A,R) and F ′ = (A ∪ A′, R ∪ R′) be AFs such that the set
A′ is a duplicate in F ′, R′ are the attacks related to duplicates in F ′. Towards
a contradiction assume there is a set S ∈ cf (F ) but S′ �∈ cf (F ′), where S′ =
S ∪ {a′ ∈ A′ | a ∈ S}, thus S ⊆ S′ and we can have the four following cases.

R1: a, b ∈ A′ then it follows that (â, b̂) ∈ R with â, b̂ ∈ S, a contradiction;
R2: a ∈ A′, it follows that (â, b) ∈ R with â ∈ S, a contradiction;

R3: b ∈ A′, it follows that (a, b̂) ∈ R with b̂ ∈ S, a contradiction;
R4: (a, b) is an ordinary attack, thus a, b ∈ S, a contradiction.

�
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Theorem 4. Stable, admissible, preferred, complete and naive semantics are
weakly duplicate invariant.

Proof. Let F = (A,R) and F ′ = (A∪A′, R∪R′) be AFs such that the set A′ is
a duplicate in F ′, R′ are the attacks related to duplicates in F ′.

For stable semantics: Towards a contradiction assume there is a set S ∈
stable(F ) but S′ �∈ stable(F ′), where S′ = S∪{a′ ∈ A′ | a ∈ S}. As S ∈ stable(F )
clearly S ∈ cf (F ), and from Lemma 1 we thus know that S′ ∈ cf (F ′). Hence,
there is an argument a �∈ S′+

R and due to the definition of the range, a �∈ S′

and clearly a �∈ S. Hence, for each b ∈ S′ we have (b, a) �∈ R ∪ R′. We need to
consider the following four cases.

R1: a, b ∈ A′ then it follows that (b̂, â) �∈ R, thus â �∈ S+
R , a contradiction;

R2: b ∈ A′, it follows that (b̂, a) �∈ R and a �∈ S+
R , a contradiction;

R3: a ∈ A′, it follows that (b, â) �∈ R and â �∈ S+
R , a contradiction;

R4: a, b ∈ A \A′ ∪ Â thus a �∈ S+
R , a contradiction.

For admissible semantics: Towards a contradiction assume there is a set S ∈
adm(F ) but S′ �∈ adm(F ′), where S′ = S ∪ {a′ ∈ A′ | a ∈ S}. As S ∈ adm(F )
clearly S ∈ cf (F ), and from Lemma 1 we thus know that S′ ∈ cf (F ′). Hence,
there is an argument a ∈ S′ which is not defended by S′. This means, there
is an argument b ∈ A ∪ A′ s.t. (b, a) ∈ R ∪ R′ but for each c ∈ S′ we have
(c, b) �∈ R ∪R′. We can have the following eight cases.

C1: (c′, b′) �∈ R′ and (b′, a′) ∈ R′, then (ĉ, b̂) �∈ R and (b̂, â) ∈ R, thus â ∈ S is
not defended by S, a contradiction;

C2: (c′, b′) �∈ R′ and (b′, a) ∈ R′, then (ĉ, b̂) �∈ R and (b̂, a) ∈ R, with a ∈
A \ (A′ ∪ Â), thus, a ∈ S is not defended by S, a contradiction;

C3: (c′, b) �∈ R′ and (b, a′) ∈ R′, then (ĉ, b) �∈ R and (b, â) ∈ R, with b ∈
A \ (A′ ∪ Â), thus, â ∈ S is not defended by S, a contradiction;

C4: (c′, b) �∈ R′ and (b, a) ∈ R, then (ĉ, b) �∈ R, with a, b ∈ A \ (A′ ∪ Â), thus,
a ∈ S is not defended by S, a contradiction;

C5: (c, b′) �∈ R′ and (b′, a′) ∈ R′, then (c, b̂) �∈ R and (b̂, â) ∈ R, with c ∈
A \ (A′ ∪ Â), thus, â ∈ S is not defended by S, a contradiction;

C6: (c, b′) �∈ R′ and (b′, a) ∈ R′, then (c, b̂) �∈ R and (b̂, a) ∈ R, with a, c ∈
A \ (A′ ∪ Â), thus, a ∈ S is not defended by S, a contradiction;

C7: (c, b) �∈ R and (b, a′) ∈ R′, then (b̂, a) ∈ R, with b, c ∈ A \ A′ ∪ Â, thus,
a ∈ S is not defended by S, a contradiction;

C8: (c, b) �∈ R and (b, a) ∈ R, with a, b, c ∈ A \ A′ ∪ Â, thus, a ∈ S is not
defended by S, a contradiction;

For preferred semantics: We show that for each S ∈ prf (F ) it holds that
S′ ∈ prf (F ′) for S′ = S ∪ {a′ ∈ A′ | a ∈ S}. We know that S ∈ adm(F ) and
from above that also S′ ∈ adm(F ′). Moreover, for each T ∈ adm(F ) we have
T ⊆ S. As in the primed version of the extension we only add arguments if their
originals are contained in the non-primed version, one can easily see that for
each T ′ ∈ adm(F ), T ′ ⊆ S′ as well, where T ′ = T ∪ {a′ ∈ A′ | a ∈ T }. It follows
that S ∈ prf (F ′).

The proofs of other semantics rely on similar arguments. �
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We find that all standard semantics are weakly duplicate invariant. So one can
see this as a preference on argumentation semantics. Interestingly, this means
that all these semantics have a monotonic behavior when duplicates are added
to the framework.

Still, weak duplicate invariance is not a criterion to be taken for granted for
all reasonable argumentation semantics: indeed, it is not too hard to see that
the multi-admissible semantics introduced in the previous section violates this
criterion.

Theorem 5. The multi-admissible semantics is not weakly duplicate invariant.

Proof. Consider the AF F = (A,R) with A = {a, b, c} and R = {(c, a), (b, c)}.
Obviously S = {a, b} is a multi-admissible extension of (A,R). Now consider
the AF F ′ = ({a, a′, b, c}, {(c, a), (c, a′), (b, c)}). Clearly, S′ = {a, a′, b} is not a
multi-admissible extension of F ′, thus we have shown our claim. �

What happens if one considers the other direction of duplicate invariance? In
the following we define that a semantics σ is strongly duplicate invariant if for
each σ-extension S′ of the AF F ′ with the duplicate A′, the extension S obtained
by deleting the duplicate arguments from S′ is a σ-extension of the respective
AF F without duplicates.

Definition 18. A weakly duplicate invariant semantics σ is strongly duplicate
invariant if for any AFs F = (A,R) and F ′ = (A∪A′, R∪R′) such that the set
A′ is a duplicate in F ′, R′ are the attacks related to duplicates and S′ ⊆ A∪A′,
the following holds

S′ ∈ σ(F ′) ⇒ S ∈ σ(F )

where S = S′ ∩ A.

Theorem 6. Stable, preferred, complete, admissible and naive semantics are
not strongly duplicate invariant.

Proof. Consider the AF F ′ = (A ∪ A′, R ∪ R′) with arguments A = {a, b, c, d}
and A′ = {b′, c′}, and attacks R = {(a, b), (b, a), (b, c), (c, b), (c, d)} and R′ =
{(a, b′), (b′, a), (b′, c′), (c′, b′), (c′, d)} as depicted in Figure 6. Let F = (A,R) be
an AF obtained from F ′ without the duplicate A′. Consider the set S′ = {b, c′}
which is a stable (resp. preferred, complete, admissible, naive) extension of F ′

but the set S = {b} obtained from S′ by deleting the duplicate argument c′ is
not a stable (resp. preferred, complete, admissible, naive) extension of F . �

Theorem 7. The grounded semantics is strongly duplicate invariant.

Proof. (Sketch) Let F be an argumentation framework, and let F ′ be obtained
by F by duplicating some of its arguments. Let us denote E0 = E′

0 = ∅. Let
us also define Ei+1 = FF (Ei) as well as E′

i+1 = FF ′(E′
i), where we recall that

FF denotes the characteristic function. We prove by induction on i that E′
i =

Ei ∪ {y′ | ∃y ∈ Ei : y′ is a duplicate of y}. This proves in particular the result
for the grounded extensions of F and F ′. Weak and strong duplicate invariance
are clear from this equality. �
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b′ c′

Fig. 6. AF F ′

6 Conclusion

On our quest for a better understanding of the gist of argumentation seman-
tics, we have been investigating three characteristics we found to be shared by
the mainstream argumentation semantics. These characteristics were based on
three general classification schemes typically encountered in theoretical com-
puter science: computational complexity, expressibility in some logical language
and invariance under certain transformations.

While this endeavor certainly enhanced our understanding of the matter, we
found that for each of the criteria, counterexamples can be constructed which,
arguably, still have the “look and feel” of a typical argumentation semantics. In
our view, this demonstrates the nontrivial philosophical dimension of an area
that tries to capture the essence of “argumentation” on an abstract and formal
level.

While our studies focused on the traditional Dung-style setting, a plethora of
generalizations and extensions have been proposed, such as abstract dialectical
frameworks [7,6], bipolar AFs [1], preference-based AFs [2], and value-based AFs
[5]. All of these new approaches would certainly benefit from a thorough study
of commonalities and differences in terms of general formal properties of the
diverse semantics.

Acknowledgements. As this Festschrift is dedicated to Gerd Brewka’s 60 th
birthday, we want to congratulate him as well as thank him for his inspiring
work and the fruitful and enjoyable discussions.
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Open Problems in Abstract Argumentation

Ringo Baumann and Hannes Strass

Computer Science Institute, Leipzig University, Germany

Abstract We give a list of currently unsolved problems in abstract ar-
gumentation. For each of the problems, we motivate why it is interesting
and what makes it (apparently) hard to solve.

1 Introduction

Formal argumentation has established itself as an active subfield of artificial in-
telligence [16]. Argumentation is concerned with how conflicts between different
pieces of knowledge, possibly involving preferences among them, can be resolved
in a principled manner. The further subfield of abstract argumentation ignores
the potential internal structure of arguments, and instead concentrates on the in-
teraction between different arguments. The predominantly used approach is that
by Dung [20], where argumentation scenarios are represented using argumenta-
tion frameworks (AFs) F = (A,R) consisting of a set A of abstract arguments
and a relation R of attacks between these arguments.

This seemingly lightweight formalism has led to a large amount of research
around it. Gerd Brewka is among those who had a lasting impact on the field.
With this paper, we want to honor his contributions and take the opportunity
to point out some avenues for future work.

We do this by collecting together various open problems from different areas
and presenting them all in one place.1 The list we give here is not necessarily
complete, nor is it representative. However, we think that it nicely illustrates
the breadth of abstract argumentation research, and the various connections to
other fields of mathematics and logic that have been discovered. For presentation
purposes, we keep the common background to a minimum, and rather introduce
the necessary background that is needed for each problem individually.

2 Background

In the following we consider a fixed countably infinite set U of arguments, called
universe. Furthermore, we define A = {F | F = (A,R), A ⊆ U , R ⊆ A × A}
containing all AFs w.r.t. U . Instead of (a, b) ∈ R we write a � b and say that

1 Independently, Stefan Woltran had the same idea for his invited talk “Abstract
Argumentation: All Problems Solved?” at ECAI 2014 (as part of the Frontiers of
Artificial Intelligence series). We took up several suggestions for open problems from
that talk and subsequent personal communication with Stefan.

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 325–339, 2015.
c© Springer International Publishing Switzerland 2015
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a attacks b. For sets E1, E2 ⊆ A and arguments a, b ∈ A we say that E1 � b
if some a ∈ E1 attacks b, a � E2 if a attacks some b ∈ E2 and E1 � E2 if
some a ∈ E1 attacks some b ∈ E2. An argument a ∈ A is defended by a set
E ⊆ A in F if for each b ∈ A with b � a, E � b. The range E+ of a set of
arguments E is defined by the extension of E with all arguments attacked by E,
i.e. E+ = E ∪ {a ∈ A | E � a}.

A semantics σ is a function which assigns to any F a set of sets of argu-
ments denoted by σ(F ). Each one of them, a so-called σ-extension, is con-
sidered to be acceptable with respect to F (for a recent overview see [1]).
In the following we define conflict-free and admissible sets as well as com-
plete, preferred, semi-stable, stable, naive, stage, grounded, ideal and eager se-
mantics which will be frequently considered throughout the paper (abbreviated
by cf, adm, com, pr , ss , st , nai , stg, grd, id, eg). Semantics that are used only once
will be defined in the corresponding sections.

Definition 1. Given an AF F = (A,R). We call a set E ⊆ A

1. E ∈ cf(F ) if for all a, b ∈ E we have a �� b,
2. E ∈ adm(F ) if E ∈ cf(F ) and for all a � E also E � a,
3. E ∈ com(F ) if E ∈ adm(F ) and for any a ∈ A defended by E in F , a ∈ E,
4. E ∈ pr(F ) if E ∈ adm(F ) and there is no E′ ∈ adm(F ) s.t. E � E′,
5. E ∈ ss(F ) if E ∈ adm(F ) and there is no E′ ∈ adm(F ) s.t. E+ � E′+,
6. E ∈ st(F ) if E ∈ cf(F ) and E+ = A,
7. E ∈ nai(F ) if E ∈ cf(F ) and there is no E′ ∈ cf(F ) s.t. E � E′,
8. E ∈ stg(F ) if E ∈ cf(F ) and there is no E′ ∈ cf(F ) s.t. E+ � E′+,
9. E ∈ grd(F ) if E ∈ com(F ) and there is no E′ ∈ com(F ) s.t. E′ � E.

10. E ∈ id(F ) if E ∈ adm(F ), E ⊆ ⋂
P∈pr(F ) P and there is no E′ ∈ adm(F )

satisfying E′ ⊆ ⋂
P∈pr(F ) P s.t. E � E′,

11. E ∈ eg(F ) if E ∈ adm(F ), E ⊆ ⋂
P∈ss(F) P and there is no E′ ∈ adm(F )

satisfying E′ ⊆ ⋂
P∈ss(F) P s.t. E � E′.

3 Open Problems

1. Given an AF, can all implicit conflicts (pairs of arguments that do not occur
jointly in any extension) be made explicit (by adding one or two attacks
between them)?

2. What are the signatures (sets of extension-sets that can be realized by AFs
under a semantics) of complete, cf2 and resolution-based grounded semantics?

3. What is the precise computational complexity of credulous acceptance with
respect to ideal semantics?

4. What is the maximal number of complete extensions in an AF with n argu-
ments?

5. Is there a closed-form expression for the average number of stable extensions
of AFs with n arguments and x attacks?

6. What is the (σ, Φ)-characteristic of semi-stable semantics?
7. What is the (stable, semi-stable, preferred)-spectrum?
8. How can normal deletion equivalence in case of stage, semi-stable, eager,

preferred, ideal and naive semantics be characterized?
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3.1 Explicit-Conflict Conjecture

The fundamental building blocks of Dung’s AFs are arguments. The fundamental
means of expression, however, are attacks between arguments, as these ultimately
influence which arguments can be accepted together. An attack between two ar-
guments a and b is an explicit manifestation of a conflict between the two. But
in addition to such syntactic, explicit conflicts, incompatibilities between argu-
ments may also arise on the semantical level, that is, whenever two arguments
never occur in an extension together. In such a case, we will speak about an
implicit conflict. Clearly, for semantics based on conflict-freeness, each explicit
conflict leads to an implicit conflict. But it is also possible to have implicit con-
flicts that are not explicit, as we show below in Figure 1. To make matters more
formal, consider the following definition. Roughly, for a set X of sets of argu-
ments (say, extensions), PairsX captures which arguments co-occur in at least
one of the elements of X . This relation directly yields implicit conflicts, and can
be used to figure out whether there are implicit conflicts that are not explicit.

Definition 2. Let X ⊆ 2U and PairsX = {(a, b) | exists E ∈ X s.t. {a, b} ⊆ E}.
An AF F = (A,R) is conflict-explicit under semantics σ iff for each a, b ∈ A
such that (a, b) /∈ Pairsσ(F ), we find (a, b) ∈ R or (b, a) ∈ R (or both).

In words, a framework is conflict-explicit under σ if any two arguments of the
framework that do not occur jointly in a σ-extension are explicitly conflicting,
that is, there is an attack one way or the other.

c a b d

Fig. 1. An argumentation framework that is not conflict-explicit under stable se-
mantics. Observe that st(F ) = {{a, d}, {b, c}} and (c, d) /∈ PairsS but (c, d) /∈ R
as well as (d, c) /∈ R. If we add attacks (c, d) or (d, c) we obtain an equivalent (under
stable semantics) conflict-explicit (under stable semantics) AF.

The open problem now consists of proving or disproving whether every AF
F has a conflict-explicit AF F ′ over the same arguments with the same stable
extensions.

Conjecture 1. For each AF F = (A,R) there exists an AF F ′ = (A,R′) which
is conflict-explicit under the stable semantics such that st(F ) = st(F ′).

While formulating this conjecture is reasonably straightforward (it is perhaps
the “easiest” conjecture of this paper, in terms of required background), Bau-
mann et al. [13] have illustrated in a series of examples that the problem itself is
far from easy. Clearly, given an argumentation framework F that is not conflict-
explicit, our first try at making it conflict-explicit would be to add, for each
conflict that is implicit but not explicit, an attack (or two). However, as Figure 2
shows, we cannot choose attacks to add at random. This creates a combinatorial
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s a1 a2
a3

x1 x2 x3 y

Fig. 2. Orientation of attacks due to previously non-explicit conflicts matters: First
observe that st(F ) = {{a1 , a2 , x3}, {a1 , a3 , x2}, {a2 , a3 , x1}, {s, y}}. Next, Pairsst(F)

yields one pair of arguments a1 and s whose conflict is not explicit by F , that is,
(a1, s) /∈ Pairsst(F), but (a1, s), (s, a1) /∈ RF . Now adding the attack (a1, s) to F would
create the additional stable extension {a1, a2, a3} /∈ st(F ). On the other hand, by
adding the attack (s, a1), we get the conflict-explicit AF F ′ with st(F ) = st(F ′).

problem, since for each of k non-explicit implicit conflicts, we have three pos-
sibilities of how to deal with it, thus 3k possibilities in total. Even worse, just
adding attacks does not suffice in the general case. In an example that is too
large to reproduce here, Baumann et al. [13] show that there are cases where
one has to modify parts of the framework that are not directly involved in the
implicit conflicts.

3.2 Signatures of Complete, cf2 and Resolution-Based Grounded
Semantics

Given an argumentation semantics σ, the signature of σ is the set

Σσ = {σ(F ) | F is an AF } .
That is, the signature of a semantics collects all sets of sets of arguments that
can possibly arise as extension-set of some argumentation framework. This is
a quite fundamental concept, since it provides a bird’s eye view on capabilities
and limitations of the semantics. For example, the signature of the grounded
semantics clearly contains only (and all) singleton sets, since the grounded se-
mantics is unique for any given AF, but an arbitrary singleton {E} is realized
by the AF (E, ∅).

The notion of signature has been defined and studied by Dunne et al. [24,25],
who also provide characterizations of the signatures for conflict-free, naive, stage,
admissible, preferred and stable semantics. A characterization of Σσ consists of
necessary and sufficient conditions that allow to decide (in a more sophisticated
way than using brute force), given a set X of desired extensions, whether there
exists an AF F such that σ(F ) = X . For example, for the grounded semantics,
the property of X being a singleton is both necessary and sufficient; therefore,
the easily checkable singleton property precisely characterizes Σgrd. For stable
semantics, it is a necessary condition that X is a ⊆-antichain, but this condition
is not sufficient as the extension-set X = {{a, b} , {a, c} , {b, c}} is not stable-
realizable [25] (while being a ⊆-antichain).
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However, for several semantics, precise characterizations of their signatures
are as yet unknown. Among these are the complete, cf2 and resolution-based
grounded semantics. We will first recall some additional necessary technical pre-
requisites to formulate the open problems. However, for a lack of space, we have
to refer the reader to [4] for details on the cf2 semantics.2 The resolution-based
family of semantics is defined as follows [2]: for an AF F = (A,R), a resolution
of F is any AF F ′ = (A,R′) such that R′ ⊆ R, (a, a) ∈ R implies (a, a) ∈ R′,
(a, b) ∈ R with a �= b implies either (a, b) ∈ R′ or (b, a) ∈ R′ (but not both).
Denoting the set of all resolutions of F by γ(F ), for a semantics σ, its resolution-
based version σ∗ is defined by

σ∗(F ) = min
⊆

⎛

⎝
⋃

G∈γ(F )

σ(G)

⎞

⎠

The resolution-based grounded semantics is then the grounded instance of this
general scheme, that is, rbg = grd∗.

Now we can sketch the current state of knowledge and formulate the open
problems: For complete semantics, we have Σadm � Σcom [25]. For cf2, the cur-
rent knowledge only says that Σnai � Σcf2 � Σstg.

3 For the resolution-based
grounded semantics, we know that Σrbg � Σpr and that Σrbg is incomparable to
the signatures of naive, stage and stable semantics [26]. Thus the open problem
is this:

Open Problem 2. What are exact characterizations of Σcom, Σcf2 , Σrbg?

3.3 Computational Complexity of Ideal Semantics

The ideal semantics was introduced by Dung, Mancarella and Toni [21]. It covers
an important middle ground between the grounded semantics (that is sometimes
too restrictive) and sceptical reasoning over the preferred semantics (that is some-
times too permissive). As an illustration, consider Figure 3, an example taken
from [22]. Recall that formally, for an argumentation framework F = (A,R), a
set S ⊆ A is an ideal set if it is admissible and a subset of each preferred exten-
sion. Furthermore, S is the ideal extension if it is the ⊆-maximal ideal set. Thus
arises the question of the computational complexity of ideal semantics, that is,
whether its attractive properties (from a semantical standpoint) are (somewhat
negatively) reflected in a high computational cost.

As a quick recapitulation [31], recall that the complexity class NP contains all
problems L that have polytime-computable witness relation; that is, L ∈ NP
iff there are WL ∈ P and k ∈ N such that: x ∈ L iff there is a y such that

2 Roughly, the computation of cf2 semantics proceeds along the strongly connected
components of AFs. Naive extensions are determined in all components in the order
of their dependence on one another, and statuses of arguments in previous SCCs are
propagated to subsequent SCCs.

3 Stefan Woltran, personal communication.
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F1:

x

y

z w

F2:

x

y

z w

Fig. 3. Two argumentation frameworks F1, F2. In both, the grounded extension is
empty, and argument w is contained in every preferred extension. The ideal semantics
can distinguish between the two, since in F1 argument w cannot defend itself (ideal
extension ∅) while in F2 it can (ideal extension {w}).

(x, y) ∈ WL and |y| ≤ |x|k. (Intuitively y is the polynomial-size witness proving
that x ∈ L.) The class coNP contains all languages L whose complement L is
in NP. The complexity class ΘP

2 = PNP
‖ contains all problems that are decidable

in deterministic polynomial time using polynomially many non-adaptive calls to
an NP oracle. An NP oracle call can be understood as having a constant-time
decision subroutine for NP problems. Non-adaptive means that the oracle calls
are independent of each other, that is, the answer to one oracle call may not
influence a latter query to the oracle. (In the class ΔP

2 , on the other hand, oracle
calls can build upon one another.) There is a special subclass of ΘP

2 , the class
DP = DP

2 , where the number of oracle calls is exactly two. We clearly find that
NP ⊆ DP

2 ⊆ ΘP
2 = PNP

‖ ⊆ PNP = ΔP
2 .

Dunne [22] studies the following decision problems for ideal semantics:4

CAI Given F = (A,R) and a ∈ A, is a contained in the ideal extension of F?
INE Given F = (A,R), is its ideal extension non-empty?
VIE Given F = (A,R) and S ⊆ A, is S the ideal extension?

Theorem 1 ([22, Theorem 1]). CAI is coNP-hard; INE is NP-hard; VIE
is DP-hard.

Dunne [22] later provides conditional completeness results, dependent on
knowing the exact complexity of CAI:

Theorem 2 ([22, Theorem 6])

– If CAI is NP-hard, then CAI is PNP
‖ -complete.

– If CAI is in coNP, then INE is NP-complete.
– If CAI is in coNP, then VIE is DP-complete.

Thus many of the open problems rest on resolving whether CAI is NP-hard
or CAI is in coNP. Currently, there is strong evidence that CAI is not in
coNP. This evidence rests on the (open) complexity of the unique satisfiability
problem (given a propositional formula ϕ, is there exactly one model for ϕ?),
and randomised reductions [22]. Dunne [22] shows that with high probability:

4 The paper contains many more results, but for the purpose of this paper we are only
interested in the open problems.
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Conjecture 1. CAI, INE and VIE are PNP
‖ -complete.

Dunne et al. [23] observed that the ideal semantics can be parameterized with
respect to base semantics. They also conjecture the gap between the complexity
of credulous and skeptical acceptance for preferred extensions to be a major in-
fluence on the difficulty in determining the precise complexity of ideal semantics.

3.4 Maximal Number of Complete Extensions

In [14] the authors presented a first analytical and empirical study of the max-
imal and average numbers of extensions in case of abstract argumentation frame-
works. The study was restricted to the case of stable semantics. In particular,
it was shown that for any AF possessing n arguments the maximal number of
stable extensions does not exceed 3

n
3 . Interestingly, the authors reduced the

problem of determining the maximal number of stable extensions in argumenta-
tion frameworks to the problem of determining the maximal number of maximal
independent sets in undirected graphs. The latter was already solved by John
W. Moon and Leo Moser in 1965 [29].

We recapitulate the main theorem. The upper bound is presented as a function
in the number of arguments denoted by σmax(n).

Theorem 3 ([14, Theorem 1]). In the case of stable sematics, the function
σmax : N → N is given by

σmax(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

Recently, it was shown that σmax(n) also serves as the maximal number of semi-
stable, preferred, stage as well as naive extensions [25].

Why is it interesting to study the maximal number of extensions? The ob-
tained results can be used to provide lower bounds for the minimal realizability
of certain sets of extensions (cf. [13] for a detailed analysis). Furthermore, the
results may yield upper bounds for algorithms computing extensions. Last but
not least, the maximal number of extensions is simply a further criterion (or bet-
ter, fundamental property) which helps to classify the plethora of argumentation
semantics. This line of research was motivated and initiated by Pietro Baroni
and Massimiliano Giacomin [3].

In case of admissible and conflict-free sets we may only state the naive bound
2n in case of n arguments. This is due to the fact that for any set A and its
associated AF FA = (A, ∅) we have cf(F ) = adm(F ) = 2A. Up to now we were
not able to find a proof for the maximal number of complete extensions.

Open Problem 3. What is σmax in case of complete semantics?

We as well as our colleagues from Vienna, Thomas Linsbichler and Stefan
Woltran, conjecture the following.
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Conjecture 4. In case of complete semantics σmax : N → N is given by

σmax(n) =

⎧
⎪⎨

⎪⎩

1, if n = 0 or n = 1,

3
n
2 , if n ≥ 2 and n even,

4 · 3n−3
2 , otherwise.

To see that the maximal number is at least as large as conjectured consider
the AFs En and On for even or odd n, respectively:

En =
({

ai, bi | 1 ≤ i ≤ n

2

}
,
{
(ai, bi), (bi, ai) | 1 ≤ i ≤ n

2

})

C3 = ({a, b, c} , {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)})

On = C3 ∪
({

ai, bi | 1 ≤ i ≤ n− 3

2

}

,
{
(ai, bi), (bi, ai) | 1 ≤ i ≤ n

2

})

Obviously, for even n, com(En) = 3
n
2 and for odd n ≥ 3, com(On) = 4 · 3n−3

2 .
To prove Conjecture 4, it would thus suffice to show that the given values are
also upper bounds for the maximal number of complete extensions.

3.5 Average Number of Stable Extensions

What is the average number of extensions for an AF possessing n arguments and
k attacks? This means, we are interested in an expectation value without actually
inspecting the AF except for determining the parameters n and k, which can be
done in linear time. This problem was firstly tackled in [14] for the case of stable
semantics. The authors presented some precise values, denoted by σ(n, k), given
that the number of attacks k is close to 0 or close to n2.

Proposition 1 ([14, Proposition 3]). For any suitable5 n ∈ N, we have

σ(n, 0) = 1 σ(n, n2 − 3) =
3 · (n2 − n− 1)

(n+ 1) · (n2 − 2)

σ(n, 1) = 1− 1

n
σ(n, n2 − 2) =

2

n+ 1

σ(n, 2) = 1− 2n− 2

n2 + n
σ(n, n2 − 1) =

1

n

The reason why the authors did not present a closed-form function is the
enourmus combinatorial blowup which has to be handled efficently. Nevertheless,
the achieved results can be used to show that the average number of stable
extensions in the case of very small numbers of attacks approaches from below
to 1. In the case of very large numbers of attacks we have a convergence to 0
from above. What happens in the middle ground? With an increasing number of
attacks, does the average number of stable extensions just decrease in a monotone

5 Note that AFs do not possess negative numbers of attacks. Consequently, the con-
sidered n’s have to ensure that the second argument of σ is non-negative.
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fashion? It turns out that while the number of attacks linearly increases, the
average number of extensions first decreases, then increases and then decreases
again. This observation is not restricted to a specific number of arguments (cf.
[14, Figures 1 and 2, Table 1]). The main open problem of this section is a
sufficiently precise specification of the function σ(n, k).

Open Problem 5. What is σ(n, k)?

In this regard we present two conjectures supported by the analytical and empir-
ical results in [14]. The first conjecture claims that the average number of stable
extensions of AFs is always located in between 0 and 1.

Conjecture 6. For any natural numbers n and k with 0 < k < n2 we have:

0 < σ(n, k) < 1.

The second conjecture claims that the local maximum always coincides with
n2 − n. This conjecture is precisely verified for AFs possessing at most 10 argu-
ments (cf. [14, Table 1]).

Conjecture 7. Let n ∈ N and define σn(k) : N → R where σn(k) = σ(n, k).
Then,

σn(k) possesses a local maximum at kmax = n2 − n.

3.6 Minimal Change Problem for Semi-stable Semantics

More recently several problems regarding dynamic aspects of abstract argument-
ation have been addressed in the literature [18,19,17,27]. One much cited problem
among these concerns the acceptability of certain arguments and is called enfor-
cing problem [10]. This is, in brief, the question whether it is possible, given a
specific set of allowed operations, to modify a given AF such that a desired set
of arguments becomes an extension or a subset of an extension of the modified
AF. Several sufficient conditions under which enforcements are (im)possible were
identified.

Consider the following snapshot of a dialogue among agents A and B depicted
in Figure 4. Assume it is A’s turn and her desired set of arguments is E =
{a1, a2, a3}. Furthermore, A and B are discussing under preferred semantics.

In order to enforce E agent A may come up with new arguments (for example
through introducing an argument which attacks b2 and b3) and/or question old
arguments or attacks between them, respectively (for example through ques-
tioning the self-attack of c). Please note that firstly, in this scenario enforcing is
possible and secondly, there are at least two different possibilities to achieve that.
This observation leads to the more general problem of minimal change [7]. That
is, in brief, i) is it possible to enforce a desired set of arguments, and if so, ii)
what is the minimal number of modifications (additions or removals of attacks)
to reach such an enforcement. This value, called (σ, Φ)-characteristic, depends
on the underlying semantics σ and type of allowed modifications Φ. Here is the
precise definition taken from [7].
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a1 a2 a3

b1 b2 b3

c

jkj jkjklll
c b2 b3

d

?

Fig. 4. Snapshot of a Dialogue

Definition 3. Given a semantics σ, an AF F = (A,R) and a relation Φ ⊆
A×A. The (σ, Φ)-characteristic of a set C ⊆ A is a natural number or infinity
defined by the following function

NF
σ,Φ : 2A → N∞

C 
→

⎧
⎪⎨

⎪⎩

0, ∃C′ : C ⊆ C′ and C′ ∈ σ(F )

k, k = min{d(F,G) | (F,G) ∈ Φ,NG
σ,Φ(C) = 0}

∞, otherwise.

The distance function d(F,G) is defined as the number of added or removed
attacks needed to transform F to G.

Quite surprisingly, it was shown that, in case of stable, preferred, complete
and admissible semantics there are local criteria to determine the characteristic,
although infinitely many possibilities to modify a given AF exist (see [9] for
detailled explanations including all proofs). Let us consider again the dialouge
depicted in Figure 4. Using the results in [7] one may show that the characteristic
equals 1 if we allow arbitrary modifications, 2 if the deletion of former attacks
is forbidden and ∞ (i.e. it is impossible to enforce {a1, a2, a3}) if A only can
come up with weaker arguments. These are fresh arguments which do not attack
previous arguments.

Let F be an AF and Φ be a certain modification type. Due to the fact that
any stable extension is a semi-stable one and furthermore, any semi-stable ex-
tension is preferred we have, NF

st,Φ ≥ NF
ss,Φ ≥ NF

pr ,Φ ([7, Corollary 3]). Whereas

NF
st,Φ and NF

pr ,Φ are already computable a characterization in case of semi-stable
semantics remains an open problem.

Open Problem 8. Are there local criteria determining NF
ss,Φ?

The main reason why semi-stable semantics has defied any attempt of solving
is the requirement of range-maximization which cannot be decided by looking at
the candidate set only. On a final note, we want to mention that neither NF

st,Φ

nor NF
pr ,Φ coincide with NF

ss,Φ in general (cf. examples at the end of Sections
4.1, 4.2 and 4.3 in [7]).
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3.7 Spectra and Fibres

An at first glance more theoretical problem is the so-called spectrum problem [11].
The name was chosen because of its similarity with the famous Spektralproblem
in model theory [32].6 Given a certain semantics σ and a modification type Φ,
the question is whether there is, for a given natural number n, an AF F and
a set of arguments E such that n is the (σ, Φ)-characteristic of E with respect
to F . In other words, we ask for the set of natural numbers which may occur
as (σ, Φ)-characteristics, the so-called (σ, Φ)-spectrum. More generally, one may
ask for n-tuples of characteristics representing several semantics simultaneously.
Here is the definition of the (st , ss , pr ,Φ)-spectrum.7

Definition 4. Let Φ ⊆ A × A. The (st , ss , pr ,Φ)-spectrum is a set of triples
(so-called fibres) defined as follows:

S(st,ss,pr ,Φ) = {(k, l,m) | ∃ AF F = (A,R) ∃ C ⊆ A, s.t.

NF
st,Φ = k,NF

ss,Φ = l and NF
pr ,Φ = m}.

The first open problem is related to the spectrum w.r.t. to weak expansions,
denoted by S(st,ss,pr ,W ). In case of weak expansion the addition of weaker ar-
guments, i.e. arguments which do not attack previous arguments, is allowed. In
case of stable and preferred semantics it is already shown [7, Theorem 6] that
there are only two possibilities, namely either a desired set is already contained
in an extension, i.e. the characteristic equals zero, or the set is unenforceable,
i.e. the characteristic equals infinity. Interestingly, semi-stable semantics does
possess values between zero and infinity. Here is an example.

F : a1 a2 a3

Fig. 5. NF
ss,W ({a1}) = 2

In [11, Section 3.2] it is formally shown that NF
ss,W ({a1}) = 2 holds, indeed.

Morever, the AF F and the set {a1} justify (∞, 2, 0) ∈ S(st,ss,pr ,W ). Unfortu-
nately, up to now, there are no characterization theorems for semi-stable se-
mantics (see Problem 8). Nevertheless, several results are already achieved and
it turns out that a complete classification of S(st,ss,pr ,W ) can be given provided
that the following problem is solved.

Open Problem 9. For any natural number n ≥ 2, (∞, n, 0) ∈ S(st,ss,pr ,W )?

Conjecture 10. Yes!

6 Roughly speaking, Scholz investigated the possible sizes finite models of a first-order
sentence may have.

7 A more general definition including arbitrary n-tuples is given in [11, Definition 2].
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The reason why we believe Yes! is the following proposition stating that there
are infinitely many numbers n between 2 and ∞, i.e. (∞, n, 0) is a fibre of the
(st , ss , pr ,W )-spectrum.

Proposition 2 ([11, Proposition 6]). For any natural number n ∈ N there
exists k ∈ N, such that n ≤ k ≤ 2n and (∞, k, 0) ∈ S(st,ss,pr ,W ).

The second open problem regarding spectra and fibres is with respect to
arbitrary modifications, so-called updates [8, Definition 5]. More precisely, what
are the fibres of the corresponding (st , ss , pr)-spectrum, denoted by S(st,ss,pr ,U ).

Open Problem 11. What is S(st,ss,pr ,U )?

It is already shown that (k, l,m) ∈ S(st,ss,pr ,U ) implies k ≥ l ≥ m [11, Pro-
position 7]. This property is called m.d.s. – standing for “monotonic decreasing
sequence”. We conjecture that the considered spectrum is even m.d.s.-complete,
i.e. for any k ≥ l ≥ m we have (k, l,m) ∈ S(st,ss,pr ,U ).

Conjecture 12. S(st,ss,pr ,U ) is m.d.s.-complete.

To verify this conjecture one has to present witnessing AFs Fk,l,m together

with a certain set of arguments C, s.t. N
Fk,l,m

st,U (C) = k, N
Fk,l,m

ss,U (C) = l and

N
Fk,l,m

pr ,U (C) = m. Due to the multitude of possibilities to modify a certain ar-
gumentation scenario together with the lack of local criteria to determine the
semi-stable characteristic (Problem 8) we were unable to find a proof so far.

The determination of spectra yields interesting insights into how particular
semantics are related. For instance, the fact that S(st,ss,pr ,U ) is m.d.s. simply
means that whenever enforcing is possible for all of them it is at least as dif-
ficult using stable (semi-stable) semantics as it is using semi-stable (preferred)
semantics. If it is indeed m.d.s.-complete we know in addition that it can in fact
be arbitrarily more difficult.

3.8 Characterizing Normal Deletion Equivalence

Notions of equivalence which guarantee intersubstitutability w.r.t. further modi-
fications have received considerable interest in nonmonotonic reasoning (see
[28,34,33] among others). Quite recently this topic emerged in abstract argu-
mentation. In the following we list the notions considered in the literature in
chronological order (see [15,12] for recent overviews).

1. expansion and local expansion equivalence [30]8

2. weak expansion equivalence [5]
3. normal and strong expansion equivalence [6]
4. minimal change equivalence [7]
5. update, deletion, local deletion and normal deletion equivalence [8]

8 In [30] the authors used the term strong equivalence instead of expansion equivalence.
Due to the different notions defined later, expansion equivalence became similarly
popular since the term precisely characterizes the considered modifications.
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Much work has been done to characterize the mentioned equivalence notions.
Many characterization theorems rely on kernels which are purely syntactical
concepts. Quite surprisingly, so-called context-sensitive kernels originally intro-
duced to characterize strong expansion equivalence even serve as parts of the
characterizations of normal deletion equivalence w.r.t. admissible, complete and
grounded semantics [8, Theorem 16]. Unfortunalety, further standard semantics
have defied any characterization attempts.

Open Problem 13. How to characterize normal deletion equivalence in case
of stage, semi-stable, eager, preferred, ideal and naive semantics?

We proceed with the precise definition togehter with an example.

Definition 5. Two AFs F = (A,R) and G = (B,S) are normal deletion
equivalent w.r.t. σ (denoted by F ≡σ

ND G) iff for any set of argumens C,
σ(F \ C) = σ(G \ C). Hereby F \ C def=

(
(A,R)|A\C

)
.

Roughly speaking, normal deletion equivalent frameworks cannot be semantic-
ally distinguished by forgetting arguments together with their corresponding
attacks.

Example 1. Consider the following two AFs F and G.

aF : b c aG : b c

Although both possess the unique preferred extension {a} the AFs are not
normal deletion equivalent w.r.t. preferred semantics. This can be seen as follows.
If we retract the argument c, then {b} becomes preferred in G \ {c} but still not
in F \ {c}. Consequently, F �≡pr

ND G.

aF \ {c} : b aG \ {c} : b

As a final note we mention that it is already checked that none of the existing
kernels can contribute anything to solving Open Problem 13. This means, if
kernels play a decisive role, then new kernel definitions are required.

4 Conclusion

We presented eight open problems in abstract argumentation, one of Gerd’s
major research areas in the last decade. For each of the problems, we tried to
motivate why the problem is important, gave a formal problem statement and
explained why the problem is (or at least seems to be) hard to solve. Some of the
problems stem directly from work that Gerd was personally involved in, while
others are inspired by his work.
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26. Dvořák, W., Linsbichler, T., Oikarinen, E., Woltran, S.: Resolution-based grounded
semantics revisited. In: COMMA. IOS Press (2014)

27. Liao, B.S., Jin, L., Koons, R.C.: Dynamics of argumentation systems: A division-
based method. Artificial Intelligence, 1790–1814 (2011)

28. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 526–541 (2001)

29. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics, 23–28
(1965)

30. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation
frameworks. Artificial Intelligence 175(14-15), 1985–2009 (2011)

31. Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd (2003)
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Mind the Divide Surrounding Knowledge

Representation

Wolfgang Bibel

Abstract. The paper identifies the so-called belief sets mediation prob-
lem as one of those important issues which tend to fall into the cracks
between KR and its neighboring areas and thus do not receive the de-
served attention by KR. It also questions the exclusive restriction of KR
on the traditional linguistic (or symbolic) representation of knowledge
and argues for a widening of the research agenda in this respect in col-
laboration with neighboring fields. These specific issues are embedded in
a general view of knowledge and its representation.

1 Introduction

This contribution is written in order to honor and congratulate Gerhard (Gerd)
Brewka who is about to become sixty. Due to our joint interest in logic-based
reasoning our respective paths crossed for the first time in the eighties of the
last century. In the course of our interactions then Gerd asked Bernd Neumann,
Hamburg, and me to supervise his PhD thesis which, in essence and in detail,
he worked out more or less on his own with an excellent result. Since then it has
always been a great pleasure for me to interact with him in a variety of ways.

Over the course of our careers both of us have taken for granted the basic
assumptions underlying logic as well as the area of knowledge representation
and reasoning (KR). In this note I try to alert our community to the general
issue whether some of these basic assumptions should still be held undisputed.
In particular I point to two specific issues which in my view today might call for
a revision of some of those assumptions. One (discussed in Section 5) concerns
the aggregation of belief and knowledge sets if more than one person is involved.
More specifically it concerns what I call the belief sets mediation problem, an
issue which seems to be largely ignored in KR on the assumption that this is a
topic beyond KR, ie. beyond the divide which separates KR from neighboring
areas. But the neighboring areas have their own assumptions so that in fact
no seamless approach between KR and those areas is possible. In consequence
serious cracks remain, rather than co-evolving results which might inform each
other.

The other issue I point out in Section 6 of this note concerns the exclusive focus
of KR on the traditional linguistic (or symbolic) representation of knowledge in
systems. As we all experience, knowledge means much more to humans with a
conscious mind than some symbolic formula. I argue that the time might have
come to extend the focus in KR on aspects of knowledge which go beyond the
pure symbolism of the kind considered so far. This means that, in collaboration

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 340–355, 2015.
c© Springer International Publishing Switzerland 2015



Mind the Divide Surrounding Knowledge Representation 341

with cognitive neuroscientists and cognitive scientists, KR scientists should step
back and query the basic assumptions underlying our field in that basic aspect
and possibly explore some new terrain in it.

These two specific issues are embedded in a broader view of the concept of
knowledge and its representation, expanded in Sections 2 through 4 in order to
present a somewhat holistic perspective as might be appropriate for a senior
scientist. Concerning my views on the reasoning part in KR I refer, for instance,
to my earlier articles [5,6].

2 The Role of Knowledge and Inference in Society and IT

Knowledge is an essential component of any individual as well as of any society as
a whole. Its importance is emphasized by the fact that modern societies are often
even tagged as “knowledge societies”.1 It is also a commonplace that different
pieces of knowledge can be combined to yield a further piece of knowledge,
a process termed reasoning. Reasoning is omnipresent in human thinking. For
instance, without reasoning, communication via natural language would simply
not be possible. In short, knowledge and reasoning (K&R) without the slightest
doubt are of utmost importance.

Due to the eminent role of K&R their modeling in computers was attemp-
ted shortly after these new devices became more generally available in the early
fifties of the last century. Since that time a huge amount of work has been done
in modeling K&R in computers with varying success and many ups and downs.
For instance, we experienced the “expert systems” hype of the eighties in the
last century focusing on the explicit representation of knowledge and involving
inferencing. A renewed interest in these knowledge-based methods came up un-
der the label of “semantic web” in the last decade. Independently, dealing with
knowledge in a less hard-coded form than in the expert systems approach and
involving learning techniques in a substantial way the new paradigm of cognit-
ive computing2 has been coined. Also, a discipline termed KR (for knowledge
representation and reasoning) evolved in the past decades.

Yet the fact is that the role of K&R has remained stuck in a relatively small
niche within the whole of information technology (IT).3 In other words, there is
a huge discrepancy between the importance of K&R in IT and the one in society,
discussed already in [6] (under a perspective different from the one in the present
article). What explains this wide gap? Is the tiger still in the cage [13]? Or, might
it be that we are not on the right track in this area, in formal or technological

1 As we will notice later in the text our societies are actually rather contradictory in
the appreciation of knowledge, eg. when democratic voting on knowledge-intensive
issues is concerned.

2 See eg. http://www.research.ibm.com/cognitive-computing, last access 11 Aug.
2014.

3 Note that the processing of text as done, for instance, in search machines like Google
or in so-called knowledge management systems in a strict sense use the techniques
of K&R only in a marginal way.

http://www.research.ibm.com/cognitive-computing
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terms? Is what we call knowledge adequately formalized and represented in IT?
Or is something substantial still missing? Might Wolfram have a point when he
writes in [31, p. 627]: “But it is my strong suspicion that in fact logic is very far
from fundamental, particularly in human thinking.”4

It is these kinds of questions which motivate the analysis in the present paper.

3 Embedding Knowledge in the Cosmic Evolution

In order to set the stage for our analysis of the role of knowledge let us start with
the well-known model of the cosmic evolution as it is currently held by science.
This model on the basis of numerous data, in brief, assumes that the cosmos
started out some 14 billion years ago with an event called the “big bang”. A
consequence of the model is that there was nothing “preceding” this event.5

There are numerous theories about how the cosmos evolved from this begin-
ning. In [31, ch. 9] many of these are discussed in some detail and a new theory is
added therein. Wolfram assumes that the physical evolution of the cosmos might
follow a simple set of rules comparable perhaps to those in the cellular automata
studied in his book. In this view at any state the entire cosmos would consist
of an (astronomically huge) number of cells. To each of these a mechanism set
up by a fixed set of rules applies, this way transforming any cell to another one
quasi in a computational manner. The accumulation of all these transformations
at any state amounts to the steady evolution of the entire cosmos. Altogether
this view of the universe as a computational system is meant to explain how the
cosmos (including space and time and everything else) continues to evolve in a
discrete way.6

To take such an alternative view of the universe seems to be consistent with
all the scientific knowledge we up to this point have accumulated. But like with
the issue concerning some precedence of the big bang we have no firm knowledge
about the evolution of the universe, just a huge amount of data, knowledge of
details and many theories with underlying but unconfirmed assumptions. This
shakiness of even our knowledge about the physical world is an important feature
of all our knowledge, let alone the one about knowledge as a phenomenon in
our minds. In formal terms and in a first approximation, all our knowledge is

4 See also [31, p. 809].
5 Since according to the model time and space originated with the event, strictly
speaking it makes not even sense to use a term like “preceding”. But the point here
is rather to be aware that the model and its consequences are based on assumptions
which could still turn out false (cf. eg. [21] for some discussion). Recent theories
assume even that the cosmos might consist of billions of universes, ie. multiverses
rather than a single universe.

6 Konrad Zuse already in the 1940s was perhaps the first to come up with this idea
under the term “Rechnender Raum”, published much later, eg. in [32] to cite an
English text. Wolfram acknowledges this [31, p. 1026], claiming however that Zuse
had in mind a continuous rather than something like a discrete cellular automaton,
which presumably misinterprets Zuse’s view.
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therefore of the logical form A → K, whereby A summarizes all the basing
assumptions and K the scientifically established facts. Let us keep this in mind
for our analysis of KR and work out some of the assumptions underlying it in
the following sections.

In Section 3 of [7] two major steps in the evolution of the universe were pointed
out. The first one is characterized by the evolutionary discovery of information
coding and inheriting which appeared with life through DNA encoding. In the
computational view of the universe this discovery amounts to the linguistic – or
rather chemical – specification of a kind of a subroutine in the form of a DNA
which is copied, possibly with modifications, and called again and again through
the course of billions of years.

The second major step occurred when creatures such as humans obtained
access to some of the information processed within their bodies by way of con-
scious thinking. That is, we humans are able to be aware of some of the input
into our senses which by our brains is somehow transformed into a model of
the perceived world. We can consciously store and memorize it and in this way
extend our model of the environment and accumulate knowledge about it. Any
such acquired knowledge can be passed on to later generations. Also, with such
knowledge (along with assumptions or beliefs) we can explain observed phenom-
ena and even make predictions. Perhaps most importantly, we can imagine whole
processes in anticipation as well as in recollection. This way sort of a virtual world
has come into existence — or rather billions of such virtual worlds, one for each
conscious creature —, in a sense besides the real one, whereby this virtual world
may play the roles of a representation or a simulation of parts of the real one.
Since this virtual world itself to some extent is under our conscious observation,
this observation insofar takes place at a meta-knowledge level, which means that
we know about our knowing and thinking. It is exactly this meta-level feature
and everything related to it which historically appears to be a completely novel
feature and which we therefore consider as an outstanding (second) step in the
cosmic evolution.

This novel feature endows humans with unprecedented capabilities. For in-
stance, we are able to ask and pursue fundamental questions such as ones about
the course of the cosmic evolution, its origin and destination, about the possib-
ility of some purpose behind this evolution, about human’s free will and reason-
able goals, and many others. None of those has found a scientifically convincing
answer so far, but due to this feature we now already have under certain as-
sumptions found answers to myriads of less fundamental, but practically relevant
questions.7

7 The preceding description of the second step has reminded Ulrich Furbach of Plato’s
Allegory of the Cave in his work “The Republic” or “Politeia” (514–521) [24]. Indeed,
the allegory describes the potential of human Erkenntnis which I summarize in the
notion of the second step in a similar way. Given our current state of scientific know-
ledge, Plato’s understanding of the allegory might nevertheless have been somewhat
different from ours of the second step.
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4 On the Notion of Knowledge

Humans are so familiar with their thinking and knowing that in everyday life
it rarely is a topic for consideration. For philosophers however it has been a
fiercely debated topic for thousands of years, establishing a discipline called
epistemology. For human thinking it seems to be a rather hard discipline as the
endless debates over the centuries demonstrate. With the advent of Intellectics,
ie. of AI (including KR), Cognitive Science and Cognitive Neuroscience, some
precision entered into this discipline. I therefore begin with the illustration of the
various aspects around the concept of knowledge in a detail which might be clear
to specialists but may often be ignored thus occasionally leading to confusions.

The illustration will be done with a simple example of a knowledge fact, say the
fact in the real world that Mr. Gauck is (currently our German) president, form-
ally is president(Gauck), or shortly p(G). Now consider any person, sayMarie , or
shortly M , who knows about this fact. In detail this means a lot of things at the
same time. Namely, inM ’s brain there is some representation of the personG, say
GM , as well as of the property p of being president, say pM . In addition, Marie’s
brain associates GM with pM , say [p(G)]M , in whatever way this might physiolo-
gically be achieved.8 So [p(G)]M is a representation in the brain’s virtual world of
the p(G) in the real world and similarly for its constituents.

When we refer to p(G) in this example we actually refer to the denoted actual
fact in the real world rather than to the linguistic term ′[′p′(′G′)]′ (in the real
world) which is still something different to be noted. Moreover, this linguistic
term has yet again a representation in Marie’s brain, say ′[′p′(′G′)]′M , which
again is somehow related by Marie’s brain to [p(G)]M .9

This kind of a terminological description of the various aspects underlying the
concept of knowledge which is illustrated here was in essence already introduced
in [2]. Logicians like W.V.O. Quine have pointed out such distinctions under
terms such as “de re” for p(G) and “de dictu” for [p(G)]M (see eg. [22, p. 268ff]),
to mention just one example. For neuroscientists the distinction is obvious any-
way.10 If these different aspects are precisely kept apart and formally introduced,

8 For readers familiar with the philosophical literature it will be clear from this wording
that we stay away from the debate about “qualia” in this manner. In the author’s
opinion such a discussion will become of substance not before science gets some clues
on whatever level of abstraction how consciousness might be realized in the brain.

9 ′[′p′(′G′)]′M might be seen as the term denoting an expression in what is called
the mental language. In the philosophical literature one can find numerous further
distinctions such as whether M ’s consciousness is focused on, say, GM or not. This
particular distinction is made because we may indeed consciously concentrate on
something like a person or a color, or this object or property may just be taken into
account in our reasoning more or less unconsciously. We regard this and any other
distinction not relevant for the present purpose and therefore do not take account
of them here.

10 Graciano illustrates the distinction for the example of white light. He speaks of item
I for the phyical thing in the real world (cf. p(G)) and distinguishes three (resp.
four) items (IIa,b-IV) in the brain which refer to the real world thing (and which we
summarize here as [p(G)]M ) [14, p. 48].
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several of the (pseudo-) problems from the philosophical literature evaporate. As
one out of several examples for this observation I mention the philosophical de-
bate about F. Jackson’s “knowledge argument” to which, for instance, the whole
part 4 in [22] is devoted. Given the precise distinctions presented here this part
becomes trivially obvious and thus more or less superfluous along with the ex-
tended literature on which it is based.11

The question now is in which context any of these aspects comes to bear. Hu-
man thinking obviously takes place on the level illustrated for Marie by [p(G)]M .
Since our thinking to an important part is associated with language, this asso-
ciation means that ′[′p′(′G′)]′M somehow goes along with [p(G)]M within the
brain. Section 2 (entitled “Knowledge and Language”) in [6] analyses this asso-
ciation in more details.

But what then is common knowledge? It is a social fabric: Only if any member
i of a social group agrees that [p(G)]i holds then the group as a whole will accept
p(G) as common knowledge communicated as ′[′p′(′G′)]′.12 The constructs and
phrases in some natural language are common knowledge of this kind. For this
reason no distinction is usually made between a language construct in the real
world (like ′[′p′(′G′)]′ or its natural language counterpart) and its mental repres-
entation ′[′p′(′G′)]′M . Above we spoke of the “actual fact in the real world” in
the context of p(G). Actually, the property p is socially attributed to the person
G rather than one of his intrinsic properties. In other words, the “real world” in
some respect is human-imagined as well. But we nevertheless take it as the real
world in the common understanding.

The systems based on the techniques from KR are known as knowledge sys-
tems (see eg. [6]). In such a system p(G) is represented and processed linguist-
ically, ie. by way of ′[′p′(′G′)]′. In contrast to human knowledge processing, the
processed symbols have no associated meanings, ie. they are not “grounded” as
this association is usually called. Before we discuss these important statements
in Section 6 in more detail, let us have a look on further aspects of knowledge
which will lead to the first of the two issues announced in Section 1.

11 To give an example, in thought experiments Jackson considers, for instance, a person
Mary, a brilliant and omniscient scientist but constrained in a black-white world,
and poses the question whether she would learn something new when freed from
this constraint and seeing blue sky for the first time. Of course, the blueness of sky
gives rise to a literal exactly like [p(G)]M which could not be present in the former
black-white scenario. This illustrates that, once such precise notations were used
throughout the entire debate, the posed questions became trivial and the answers
obvious.

12 This characterisation of common knowledge is admittedly insufficient. In the given
version it covers what [12] call “group knowledge”. In their view common knowledge
C means that not only everyone knows C (as with group knowledge), but also every-
one knows that everyone knows C, and everyone knows that everyone knows that
everyone knows C, and so on to infinity. Such an infinite construction seems unsatis-
factory either in this case. [14, p. 202ff] points out the direction how we could reach
a more satisfactory definition: everone is aware type A of C and everyone attributes
awareness type B of C to everyone in the group (for details see there).
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5 Knowledge and Belief

There is no firm knowledge available for humans. As we already pointed out in
Section 3 even the physical theories concerning our universe are ultimately based
on a number of assumptions which may or may not turn out true. All the more
the same holds for the aspects of knowledge discussed in Section 4. The heated
debates among scientists on these and any other topics are ample proof for these
evident facts. In order to cope with these uncertainties in our knowledge we need
make precise the differing degrees of certainty for any pieces of knowledge.

In a first rough distinction concerning these uncertainties there is knowledge
on the one side and beliefs on the other. Assumptions, like those of which we
talked before, thus belong to the beliefs rather than to the knowledge. And we
already pointed out that all of our knowledge K should actually be written as
A → K whereby A summarizes the assumptions (or beliefs).13 If this advice
were carefully followed many disputes would dissolve.

Let us have a look at such a situation in which for simplicity just two persons,
say Marie and Peter, are involved. Both have a certain amount of knowledge
at their disposal, say KM

1 and KP
2 . Similarly, they have a set of beliefs, say

BM
1 and BP

2 . Assume BM
1 = BP

2 and that M and P have the justification for
their knowledge on the basis of their beliefs available then they could share their
respective knowledge with each other leading to (K1 ∪K2)

M = (K1 ∪K2)
P .

This case just described is a typical one for scientific disciplines. Their scient-
ists share common beliefs underlying their work and they use rational methods
for justifying their results. Also science has established procedures for scrutiniz-
ing and then publishing the results. Due to the authority established for science
as a whole through the successes experienced in the past by the society at large,
knowledge accumulated this way by individuals becomes sanctioned as common
knowledge (see Section 4).14

However, the case just described nevertheless is a rare one. Typically, we are
faced with the situation characterized by BM

1 �= BP
2 . In words, any two persons

hold different beliefs. As long as BM
1 → KM

1 , BM
1 → KP

2 , BP
2 → KM

1 , and
BP

2 → KP
2 all hold then M and P could still share their respective knowledge

with each other leading to (K1 ∪K2)
M = (K1 ∪K2)

P as before.
Again, it is a rare case that BX

i → KY
j hold for all the noted combinations.

Except for these two special cases in all remaining cases we run into difficulties
in any straightforward attempt to aggregate the respective belief and knowledge
sets. Namely, such an aggregation requires sort of a mediation of the belief sets
beforehand. Let us, hence, talk of the belief sets mediation in the context of
the problem just described. Although we are obviously talking here of a rather
fundamental issue in the context of knowledge and belief, I am not aware of any
work that has addressed it explicitly within KR. Only if you surpass the divide

13 In Computer Science (CS) scientists have for a long time been careful to note their
assumptions explicitly like in theorems of the kind: “If P�=NP then . . . ”; similarly,
of course, for mathematicians.

14 In former times other authorities (like the church, the ruling celebrities etc.) tried
to sanction common knowledge.
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in the landscape made up by respective scientific areas you get again ground
under your feet in the sense that problems of the kind of belief sets mediation
have been addressed there at least in an implicit way. This is, for instance, the
case in the area of multiagent systems. In other words, because of this divide
there is no seamless extension of the theories from KR to cover other than the
generally preferred issues in this field.

What we have illustrated here for the knowledge and beliefs approach, notably
for the belief sets mediation problem, holds for other approaches in a similar
way. For instance, the entire part V on “Uncertain knowledge and reasoning”
(chapters 13–17) in the standard AI text [27] with only a minor exception is
exclusively focused on the single-agent case, the minor exception being a few
pages on game theory as an entirely new theory with no connection to the rest
of the part.

What we experience here in KR seems to be a general phenomenon in our
current science structure. This is made up of numerous areas which are very
specialized and in which each is based on its own assumptions. In other words,
each of these areas is surrounded by numerous cracks which separate it from
otherwise closely related areas. As a consequence the potential synergy between
such closely related areas does not come to bear. Often the wheel is rediscovered
in each of them.

As already indicated above, in the present case of the belief sets mediation
problem beyond the divide we would reach areas such as, for instance, multiagent
systems, computational social choice, etc. (see eg. [30], [26], [15]). The emphasis
in those areas however is on “multi”. But how can you deeply understand the
mechanisms effective in a collective of many agents concerning the belief sets me-
diation problem, if you have not first come to a grip of the mechanisms effective
among just two agents based on those of a single agent? What mechanism —
to illustrate the point made here with a nice example from [9] – prevented Ar-
istotle from acknowledging and supporting Aristarch’s early idea that the earth
revolves around the sun?15

In general words, I am pleading here for taking into our research focus import-
ant topics which lie in the cracks surrounding our core area KR as illustrated
with the particular problem of aggregating the beliefs and the knowledge of two
persons. In the particular case in quest, this would, for instance, mean that we
start out from the results in KR on preferences within belief sets of a single
agent, for instance those nicely presented in [8]. Then we study the mechanisms
which would seem most useful, rational and fair to aggregate two such belief
sets of two different agents into a common one and this way solve the belief sets
mediation problem.

A number of questions would arise in such a study. For instance, different
belief sets tend to be inconsistent; how could consistency be established thereby
respecting the individual preferences? Should there be some “objective” back-
ground knowledge base for judging arguments? And how could one agree on

15 A similarly revealing example is Newton’s discovery of the physical nature of white
light (discussed in [14, p. 47]).
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such background knowledge base? How can beliefs be supported by arguments?
Is this a way to weight beliefs by the strength of the arguments supporting it? Is
this a way for a more objective measurement of beliefs in comparison with just
individual preferences? What other ways for this purpose could one think of?
What would voting mean in the two-agent case, thus possibly revealing further
fundamental flaws in the näıve use of this widely used mechanism? Namely, if
the knowledge status of two individuals is differing wrt. the knowledge relevant
for the issue over which the vote is taken, then the principle of the equality of all
citizens and in consequence the one-vote-per-person principle becomes extremely
questionable in view of a rational solution for knowledge-intensive problems. In
this respect our democratic societies intentionally ignore the knowledge status
and thus fail to appreciate the relevance of knowledge, in an extreme way in fact,
rendering our societies contradictory in their general attitude towards knowledge
(and in many other respects at that).

Once the two-agent case has been studied to a certain extent and those and
many more questions have satisfactorily been answered, then – and only then -–
one would be in a position to generalize the results to the case of more than two
agents resp. belief sets. It is to be expected that by way of these insights results
in multiagent systems under the topics of preference aggregation, negotiation,
argumentation, etc. might appear in a new light. Similarly, a deeper understand-
ing of the mechanisms might evolve which underlie what Thomas Kuhn coarsely
described as “paradigm shifts” in science [19].

The research strategy which we just illustrated might similarly be applied
to other issues as well. Of particular importance in our context would be the
integration or mediation of individual and general goals, of interests, of values,
and so forth. Knowledge and reasoning derive their importance especially in
their roles within planning ahead in time in order to achieve aspired goals to
the benefit of individuals, groups, societies or humankind. Hence again the step
from planning in the one-agent case, extensively studied in KR, to that of more
agents again requires a careful study.

As we see our analysis has identified research areas which fall into the cracks
between well-established areas. As already indicated these in-between-areas are
by no means of a purely academic character. Rather we are addressing here prac-
tical problems which are truly omnipresent and extremely important in everyday
scenarios. They loom in any discussion among two or more people, in any sci-
entific, commercial, political or religious dispute and thus in any situation where
differing beliefs need become harmonized. Had KR worked out some kind of
solution, it could be readily applied to a realization of the outline of a truly
democratic society given in [4] at a high level of abstraction (see especially Sec-
tion 4.6 there). It is therefore amazing that the kind of problems posed here have
been neglected so far to a large extent within KR. Rather humanity continues
to stick to the general human attitude to defend a belief the more the less gener-
ally accessible and provable evidence is available for backing it. In other words,
humans compensate the lack of generally defendable evidence for some belief by
intolerance with those holding different respective beliefs. The millions of people
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killed, for instance, for religious beliefs in the course of history are proof to these
statements. KR could help to improve this sad situation.

Perhaps the negligence of these kinds of practical problems in KR might be
one important reason why knowledge and reasoning is not as dominant in IT as
one would expect, as discussed in Section 2. I would therefore like to urge science,
especially researchers in KR to focus not only on knowledge (based on fixed sets
of assumptions) but to a similar extent also on the sets of beliefs which determine
our reasoning in various applications. It is obvious from every day experience
that much can be gained from progress in this so far largely neglected area.

There is a lot which could then be done in this respect in numerous applic-
ations. Imagine, for instance, if politics would begin to involve operations like
those mentioned above (such as the aggregation of belief sets) – in order to
appreciate the extreme importance of the sort of problem that I am address-
ing here. As the recent successes of systems such as Eugene Goostman16 or
Watson17 demonstrate, systems dealing with knowledge in some way or another
have reached a level of performance which seems sufficient and appropriate for
attacking problems of the kind addressed here.

Before we end this section, we briefly sketch some of the areas (within or out-
side of KR) of relevance for the issues discussed above, in order to take the wind
out of the sails of potential superficial critics of our analysis. This survey is by
no means meant to be exhaustive. We already mentioned above the relevance for
the belief sets mediation problem introduced in this section of the areas of mul-
tiagent systems and computational social choice with representative references,
but pointed out also the different focus of these areas. Similarly, we already
mentioned game theory [28] which is related to the issue raised here, especially
if one takes information exchange in game trees and cooperative game theory
into consideration. But how could game theory help Aristotle and Aristarch in
their imagined dispute on a heliocentric universe, mentioned above? As far as
I can judge it, the tools in game theory are not readily applicable to the belief
sets mediation problem for two or more individuals.

At first sight the “highly abstract” argumentation frameworks introduced in
[11] might seem tuned to address problems like our mediation problem. Unfor-
tunately, the research initiated by this framework up to this day has remained
too abstract and thus has not become of any relevance for practical problems.
In particular, these frameworks ignore the contents of the knowledge contained
in the arguments; as the name says, they are frameworks, which is not enough
for solving our problem.

The mediation of belief sets might remind of the area of merging (or amal-
gamating) ontologies, knowledge bases, or theories within KR (eg. [10], [18]).
Indeed, part of the problem with differing beliefs might be related to eg. concep-
tually diverging ontologies, merging operators and such. But on the whole the
work in these related areas does not cover the core of the belief sets mediation

16 See http://en.wikipedia.org/wiki/Eugene_Goostman, accessed 9 June 2014.
17 See http://en.wikipedia.org/wiki/Watson_%28computer%29 , accessed 9 June

2014.

http://en.wikipedia.org/wiki/Eugene_Goostman
http://en.wikipedia.org/wiki/Watson_%28computer%29
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problem. Similarly with the area of belief revision [1] which covers, for instance,
changing the assumption of yoghurt being in my fridge, but not beliefs such as
scientific, political or religious ones and the problems these cause if they differ
between two or more agents. The area which perhaps comes closest to dealing
with the belief sets mediation problem is the one of judgment aggregation. But
again, work such as [23] is too abstract to be really helpful in our context.

6 Conscious Knowledge

In Section 2 we have emphasized the importance of knowledge for individuals
as well as for the society. Is knowledge truly important for humans? In what
sense – or under what common goal for humanity as a whole – does knowledge
improve the human condition in a wide sense? We are not going to discuss these
questions in any detail here. They are rather meant to point to the fact that even
the “knowledge” of the importance of knowledge is rather a belief in the sense
of the previous section, if a strong belief at that. Its strength derives from the
fact that in comparison with the conditions of our ancestors, say those around
200 years ago, our present conditions are much preferable. This improvement
is almost exclusively due to accumulated knowledge and its application. Also,
numerous psychological studies support the view that the use of knowledge is
greatly advantageous.18 Even in your personal life you can experience every day
that knowing helps a lot in any circumstances. So we continue to assume as a
strong hypothesis that knowledge is of a great value.

In Section 4 we have pointed out that there are several different aspects of
knowledge in dependence of the particular representation we envisage. Basically,
we have distinguished four different such aspects, illustrated with our Gauck
example by p(G), the fact in the real world, [p(G)]M , its representation in Mary’s
brain, ′[′p′(′G′)]′, the (real world) linguistic description of the real world fact,
and finally ′[′p′(′G′)]′M , the representation in the brain of this linguistic artifact.

The field KR has restricted its attention exclusively to the linguistic represent-
ation ′[′p′(′G′)]′. In this respect, it follows the long tradition of (mathematical)
logic which for more than two thousand years has abstracted from the meanings
of the symbols it is manipulating. There is no doubt that this logical approach
has brought us an enormous progress and many impressive results. But will it be
sufficient, in order to bring about intelligence at the level of human intelligence
in the long run, if we are dealing exclusively with the linguistic representation?

In this final section I will argue that we should extend our focus to include in
some way or another the information represented by [p(G)]M .19 This of course

18 See eg. [17], [29], etc.
19 The author has brought up this issue in earlier publications. For instance, in [6,

p. 95] the basis for logic-based KR is presented in the form of a thesis (termed “Sprac-
hbedeutungsthese”, or “thesis about the meaning of language”) and it is stated “that
this thesis holds only in a first approximation and cannot be maintained under a
more precise analysis” (translated by the present author). Further details concerning
this issue can be found on the pp. 100f of that publication.
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is much easier said than done, since I am asking here to deal with our conscious
knowledge. As we all know consciousness has remained one of the great mysteries
and so far has withstood any attempts to be unveiled. My point is that KR should
all the more vigorously participate in those attempts.

Consciousness has attracted the interest of philosophers for many hundreds
of years since Aristotle (see eg. [22, p. 397f]). A famous early definition can
be found in the works of John Locke: “Consciousness is the perception of what
passes in a man’s own mind” (see [20], vol. 1, book II, ch. 1, §19, p. 95). From our
viewpoint the sentence does not pass as an acceptable definition at all.20 Rather
consciousness is such a complex phenomenon that as yet no such definition, let
alone a generally accepted scientific theory, of consciousness exists despite the
many volumes filled with discussions – or should we rather say stories – on the
topic.

On the other hand, the evolution of certain aspects of consciousness lies at
the heart of the dominance of the human species in this world. In other words,
the underlying phenomena must somehow play a crucial role in our intellectual
capabilities. Indeed, if Mary thinks of Gauck being president, this seems to
anyone with the same thought so much more than what is indicated by the two
symbols p and G in [p(G)]M .21 Yet, logic – and with it KR – are based on the
assumption that in a sense we can dispense with these additional ingredients
of a thought like “Gauck being president” and nevertheless achieve human-level
intelligence just by manipulating symbols like p and G instead.22

With these remarks I am not criticizing the path of logic and KR up to
this point in our history. The progress achieved on this formal basis has been
impressive. In fact, the present author has spent his entire career to support
it, although we always have known (or rather believed) that this formal basis
will most likely not be the end of the story. It is now felt, however, that we
have reached the point in time where one should dare taking a revolutionary
further step in which the ingredients involved in consciousness will play a role
in knowledge representation.

I am not alone in pleading for such a step. Support also comes from cognitive-
psychological studies of human reasoning. For instance, Johnson-Laird quite
early established a whole line of research on deduction as experienced by hu-

20 The underlying view of consciousness is also strongly disputed, eg. by G. Güzeldere
in [22, pp. 397ff]. As long as we don’t have a precise computational model for the
realization of consciousness in the brain or in some artifact, in the author’s opinion
these disputes are anyway bound to lack substance.

21 “Each word has so much meaning behind it that it is like a flag that stands for an
entire country.” [14, p. 109]

22 There are first steps within KR to account for such “additional ingredients”. For
instance, in a symbol-oriented representation all formal knowledge around any such
symbol like G (ie. containing G) might be attached to it (and similarly with p)
which might be a first näıve approximation of what the brain achieves during such
a thought (see paragraph at the end of this section). But what about the picture I
have in mind of Gauck along with p(G), to mention one of the further possibilities?
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mans and in some contrast with deductive formalisms in KR [16].23 This ap-
proach does not yet take conscious ingredients explicitly into account, of course;
yet, its “mental models” are a step towards conscious experiences in human
thinking and reasoning. So, definitely cognitive scientists of such a genre should
get involved in the endeavor I am proposing.

Another one whom I would like to mention in support of my proposal is Alan
Robinson, a pioneer of KR and famous for his work on resolution. One of his
works [25] starts with the following sentences:

Twenty years ago I wrote the following: “Logic deals with what follows
from what. . . . The correctness of a piece . . . does not depend on what
the reasoning is about.” (Robinson, 1979, p. 1) I believed then that this
explanation of logic is enough to account also for real proofs. I have now
come to appreciate the shortcomings of this point of view.

Again, he does not yet take conscious ingredients into account in his analysis. But
what he proposes in the cited text and in related publications24 is nothing else
than a step in exactly that direction, restricted to the context of mathematical
proofs.25 If logic and KR under its present paradigms seem not sufficient for
mathematics and proofs, how much more will this insufficiency be felt in less
formalized areas of knowledge processing.

The discipline which in our days has the say about consciousness is cognitive
neuroscience. Here is certainly not the place to give an overview of the state of
the art in this discipline concerning this particular topic. A remarkable recent
book on the topic is [14]. In our context one should simply take note that it is a
truly hot topic within this discipline with a huge amount of literature available.
Cognitive neuroscientists do however encourage the collaboration of other dis-
ciplines involved.26 But KR stays apart as if it had nothing to say on this topic?
Why?

An obvious explanation is the complexity of the problem one is facing, a
good reason for shying away rather than delving into it. But neuroscientists like

23 The theory of mental models, developed in that book and refined in several pub-
lications following it, aims at capturing the difference between human and formal
reasoning.

24 Concretely, he for instance argues for “much careful empirical study of the assimil-
ation of real proofs by real recipients.” [25, p. 294]

25 Wolfram in [31, p. 1156] on the other hand points out that there are a number of
practical proofs done with the aid of computers which “can be quite devoid of what
might be considered meaningful structure.” But this does of course not devaluate the
importance of “meaningful structure” in creative mathematical thinking.

26 An example is [9, Sect. I] in which the author writes on the topic of revealing the
mechanisms subserving psychological functions: “. . . it would be wisest to conduct
research on many levels simultaneously . . . ”. As long as AI (and KR) are committed
to pursue their original goals they represent one of those levels. In fact Churchland
speaks of the consciousness problem as of a “constraint problem”, a term borrowed
from KR. And Graziano explicitly says: “. . . awareness is a description, a repres-
entation, constructed in the brain [14, p. 36], whereby in his terminology awareness
is an essential part of consciousness.
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Graziano take on the challenge – why not joined and supported by KR scientists?
Perhaps we are still too much influenced by Frege’s view which made us believe
that natural language (NL) itself is just a syntactic language like that of formal
logic. However, it is very likely that NL texts potentially carry more information
for conscious human minds than is visible at the syntactic level. If so, how could
this information be represented and activated in a computational way?

We in the logic community have all been proud to stay in a tradition which
has lasted for more than two thousand years. The tradition — like all traditions
— is based on assumptions (like those mentioned by Robinson above). Such
assumptions are useful for making progress for a while, sometimes even for two
thousand years. But as we discussed in Section 5 assumptions are beliefs which
may turn out false. I believe that it is time to query the truth of some of the
beliefs behind traditional logic and KR.27

Unfortunately, I have to disappoint those readers who now might expect a de-
tailed roadmap for attacking the problem of activating knowledge which might
be associated with the conscious [p(G)]M and its relation with ′[′p′(′G′)]′M ,
whereby I continue to illustrate the general case with our example. This would
amount to the outline of a major project in the field, far beyond the limits given
for the present paper. Due to age I take it as my privilege to encourage the
younger generations of KR researchers in collaboration with cognitive neuros-
cientists and cognitive scientists to take up the problem which we raised in this
section and design a work plan for it. I just note that [p(G)]M refers to some
kind of a mental simulation of the person Gauck and its attribute or, in general,
to a model of the world and the conscious self. Something similar would have to
be realized in a system in order to bring knowledge representation and reasoning
closer to the human model both in terms of performance and of similarity with
the original.

At the very least, the traditional representation of knowledge by way of the
exclusively linguistic approach discussed above, should take serious well-known
insights mostly ignored so far. Namely, think of a knowledge base (KB) involving
G for Gauck and p for being president. Imagine that the entire KB were repres-
ented as a directed acyclic graph (DAG) with each occurring symbol represented
only once in the KB.28 Then this representation would already model an import-
ant feature out of all those of conscious knowledge. Namely, a symbol like the G
would assemble as its direct next neighbors all the knowledge about the person
Gauck available in the KB – exactly like with the conscious thought of Gauck
which immediately triggers all kinds of knowledge about this person present in
our brains. Or, perhaps a novel computer architecture such as the recent chip

27 [9, Sect. I] talks of “eliminative materialism” to emphasize that a materialistic ap-
proach to consciousness might eventually force us to eliminate previously held as-
sumptions (like those underlying KR).

28 An explanation and illustration of this kind of representation of KB (already alluded
to in Footnote 22 above) can eg. be found in [3, pp. 26f].
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built by IBM29 might lend itself to a representation of knowledge closer to the
one in our brains?

Acknowledgements. I thank Ulrich Furbach and Alan Robinson for helpful
comments and suggestions on a preliminary version of this text. Thanks are also
due to an anonymous referee whom I owe a number of helpful suggestions for
improvements, to Jim Delgrande, Joe Halpern, Vladimir Lifschitz and Torsten
Schaub for inspiring discussions on the topics of the paper, the editors for the
invitation to this contribution, and Hannes Straß for his support in coping with
the Springer style.

References

1. Alchourrón, C.A., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510–530 (1985)

2. Bibel, W.: On first-order reasoning about knowledge and belief. In: Plander, I.
(ed.) Proceedings of the 3rd International Conference on Artificial Intelligence
and Information-Control Systems of Robots, pp. 9–16. North Holland, Amsterdam
(1984)

3. Bibel, W.: Wissensrepräsentation und Inferenz – Eine grundlegende Einführung.
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Still Craving a Porsche

Thomas F. Gordon

Fraunhofer FOKUS
Berlin, Germany

Abstract. Reminiscence of my private and professional experiences with
Gerd.

Gerd and I were colleagues at the Institute for Applied Information Technology
(FIT) of the Gesellschaft für Mathematik and Datenverarbeitung (GMD) at
Schloß Birlinghoven in Sankt Augustin, near Bonn. Gerd joined the new Expert
Systems group, soon to be led by Thomas Christaller, in 1984, at about the time
he completed his diploma in Computer Science at the University of Bonn. I had
started working at GMD a bit earlier, in the Spring of 1983, as a member of
the Research Center for Information Law headed by Herbert Fiedler, one of the
founders of legal informatics in Germany. As luck would have it, the two groups
were located on the same floor of the same building. Gerd’s office was located
almost directly across from mine on the other side of the building. All of us had
private offices back then, which seems like a luxury today. But thanks to a coffee
room and twice a day coffee breaks, when just about everyone took the time to
chat and socialize, another luxury, we weren’t at all isolated and got to know
each other well.

As it happens, I had been hired by Herbert Fiedler to conduct research on legal
expert systems, so the founding of an expert systems research group on the same
floor was a happy coincidence, one of many in my career. I had just completed a
law degree at the University of California, Davis, and was in Germany to be with
my future wife, Ines. (At that time, I still believed this would be a temporary
visit, just long enough for Ines to finish her doctorate, but here I am, still in
Germany, more than 30 years later.) Herbert Fielder was nearing retirement
and his research group was moving to a location nearer to the law school of the
University of Bonn, where he held his professorship. I made the wise decision to
take the opportunity offered to me to switch to the Expert Systems group. Due
to our shared research interests we had been working together closely anyway,
so this just formalized the status quo.

Gerd and I, along with Ulrich Junker, shared an interest in nonmonotonic
logic. Gerd had already done some research on the topic for his diploma thesis.
I had been trying to model legislation using Horn clause logic in Prolog and
struggling to find ways to handle legal rules with exceptions and priority re-
lations among conflicting rules, which became the subject of some of my first
publications [7,8]. I remember the three of us spending hours at the chalk board
exchanging ideas and helping each other with our research. And I would like to

T. Eiter et al. (Eds.): Brewka Festschrift, LNAI 9060, pp. 356–359, 2015.
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think the legal examples I introduced helped to shape our common understand-
ing of some of the problems, such as the insufficiency of specificity as a principle
for prioritising default rules. The law recognizes a variety of principles for pri-
oritizing conflicing rules, such as preferring rules from a higher authority (Lex
Superior) and preferring newer rules (Lex Posterior), in addition to preferring
more specific rules (Lex Specialis).

Later Gerd and I had an opportunity to intensify our collaboration, by work-
ing together in the TASSO project [5] funded by the German Federal Ministry
for Research and Technology and headed by Wolfgang Bibel at the Technical
University of Darmstadt. Other members of the project included Josef Schnee-
berger and Torsten Schaub, in Darmstadt, along with Dieter Bolz, Hans-Werner
Güsgen, Peter Henne, Joachim Hertzberg, Ulrich Junker, Rüdiger Kolb, Ger-
hard Paaß, Franco di Primio, Erich Rome, Günther Schmitgen and Karl-Heinz
Wittur at GMD. During this time, Gerd, Josef, Torsten and I all were or became
PhD students with Wolfgang Bibel, our “doctor father”, which makes us I sup-
pose “doctor brothers”. I have fond memories of this period as being especially
productive and enjoyable, with a great, harmonious team and nearly perfect re-
search conditions. It seems that back then it was easier to obtain funding for
large, long research projects.1

Gerd was a guest researcher at the International Computer Science Institute
(ICSI), in Berkeley, California, from 1991 to 1992. Since I lived in California for
many years and had family there, I flew over regularly and remember visiting
Gerd and his family at their home in Berkeley.

It wasn’t until 1994, both of us still at GMD, that Gerd and I wrote our
first article together, “How to Buy a Porsche” [1], for the AAAI-94 Workshop
on Computational Dialectics in Seattle, Washington [11], which Ron Loui and
I organized. The paper presented a new logic for decision-making, called Qual-
itative Value Logic, as part of our work in the Zeno project [9] on developing
methods and tools for supporting argumentation about the pros and cons of
alternative options in deliberation dialogues. The leading example in the paper
was about a deliberation between a husband and wife, purely fictional of course,
about whether to buy a Volvo or Porsche. Our wives and children were with us
in Seattle, and I remember a nice day trip after the conference with our families
to visit a nearby forest, where we were astonished by the tame deer.

In 1996, Gerd and I organized a second computational dialectics workshop [2],
which took place in Bonn as part of the Fundamentals of Applied and Practical
Reasoning (FAPR) conference. It was there that Douglas Walton and I met for
the first time. Doug became my principal collaborator in the Carneades project
several years later.

1 I am deeply grateful to Wolfgang Bibel for pulling strings to have me accepted as a
PhD student, despite my lack of computer science degree and my inability to write
German. And also for his guidance and continued encouragement, also many years
later. And while I am thanking people, let me also acknowledge Torsten Schaub for
helping me to obtain an honorary professorship at the computer science department
of the University of Potsdam.
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Gerd and I remained in contact over the years. I remember visting him in
Vienna during his first professorship there. And also visiting him several times
in Leipzig, which after all is not so far from Berlin, where I now work, including a
very enjoyable workshop in 2009 on computational models of argument that Gerd
hosted. Other participants I remember include Leila Amgoud, Tony Hunter,
Henry Prakken, and Stefan Woltran.

The original Carneades model of argument and burden of proof [10] was lim-
ited to cycle-free argument graphs and not based on Dung’s work on abstract
argumentation frameworks [6], the leading model of argument in the computa-
tional models of argument community. I asked Gerd if he would be interested
in helping me to overcome the cycle-free limitation by finding some mapping
from Carneades argument graphs to Dung abstract argumentation frameworks,
and thus also bring Carneades in line with the mainstream of the field. A short
time later he contacted me to tell me he had found another way to overcome
the limitation, based on a new model he had developed with Stefan Woltran,
to be called “Abstract Deliberation Frameworks”. I hope I remember this story
correctly, but my recollection is that I suggested calling them Abstract Dialec-
tical Frameworks (ADFs) instead, to avoid confusion with deliberation in argu-
mentation theory, where it is a kind of dialogue, but also to resonate with our
prior work on computational dialectics. This suggestion was adopted in their KR
2010 paper presenting the system [4]. It was noted that the work on ADFs had
started as an attempt to add proof standards of the kind modeled in Carneades
to Dung frameworks, but the paper stopped short of showing how to reconstruct
Carneades, without the cycle limitation, using ADFs. This was done shortly
thereafter in a paper Gerd was invited to present at the 2010 Computational
Models of Argument (COMMA) conference [3].

I consider Gerd a good friend, perhaps I should say old friend by now, if that
is appropriate on this occasion. I have always enjoyed his company and good
humor. We share several interests, including being hobby musicians. I remember
Gerd accompaning me on bass when I played a few songs at the party to celebrate
the completion of my PhD. Perhaps we will find further opportunities to col-
laborate professionally. Certainly work remains to be done on relations between
computational models of argument and practical decision-making. Perhaps the
time will come to continue our work on “How to Buy a Porsche”. Neither of us
has one yet.
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