
Nested Parallelism in Transactional Memory

Ricardo Filipe and João Barreto

Instituto Superior Técnico, Universidade de Lisboa /INESC-ID
{rfilipe,jpbarreto}@gsd.inesc-id.pt

Abstract. We are witnessing an increase in the parallel power of computers for
the foreseeable future, which requires parallel programming tools and models
that can take advantage of the higher number of hardware threads. For some ap-
plications, reaching up to such high parallelism requires going beyond the typical
monolithic parallel model: it calls for exposing fine-grained parallel tasks that
might exist in a program, possibly nested within memory transactions.

While most current mainstream transactional memory (TM) systems do not
yet support nested parallel transactions, recent research has proposed approaches
that leverage TM with support for fine-grained parallel transactional nesting.
These novel solutions promise to unleash the parallel power of TM to unprece-
dented levels. This chapter addresses parallel nesting models in transactional
memory from two distinct perspectives.

We start from the programmer’s perspective, studying the spectrum of parallel-
nested models that are available to programmers, and giving a practical tutorial on
the utility of each model, as well as the languages, tools and frameworks that help
programmers build nested-parallel programs. We then turn to the perspective of a
TM runtime designer, focusing on state-of-the art algorithms that support nested
parallelism.

1 Introduction

Harnessing the parallel power of today’s computers calls for concurrent programs that
expose and exploit as much parallelism as the ever increasing hardware thread count.
More than easily coding concurrent programs that yield some parallelism, we want
concurrent programs that expose as much parallelism as the ever increasing hardware
thread count.

This goal becomes dramatically more challenging as affordable multicore machines
include more and more cores each year. While 4-core processors supporting up to eight
simultaneous hardware threads are already regarded as commodity hardware, 8-core,
16-core and even chips with tens or hundreds of cores promise to be an affordable
reality soon [1].

Achieving such parallelism levels will not always be possible with the traditional
monolithic organization of coarse-grained parallel threads. For many real applications,
the programmer may not be able to find enough coarse-grained top-level parallelism
to fork. Hence, the alternative is to recursively expose the fine-grained parallel tasks
that might exist within coarser-grain parallel tasks in the program. This leads to nested-
parallel programs.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 192–209, 2015.
c© Springer International Publishing Switzerland 2015



Nested Parallelism in Transactional Memory 193

As a motivational example, let us assume that a programmer building an application
finds different tasks that, according to the application semantics, can safely run in par-
allel threads. Furthermore, inside such tasks, the programmer finds that some sub-tasks
of a same task can also be parallelized in a fork-join fashion. Proceeding recursively
with this approach, the final application will comprise a dynamic tree of nested fork-
join tasks, each of which can run in concurrent threads to exploit the available hardware
resources. This tree can even be deeper if we consider that some tasks may invoke func-
tions from other modules (e.g., a library call) that may themselves be implemented by
nested-parallel programs.

If the tasks work on shared data, then the above application will most likely have
concurrent accesses to that data. Concurrency in traditional parallel programming is
well known to be a hard problem to tackle, as we need to correctly synchronize access
to shared data. Shifting to nested-parallel programming can further complicate synchro-
nization to dantesque levels.

Nested-parallel programs comprise dynamic trees of tasks, running at concurrent
threads, where correct synchronization depends on ancestor-descendant relations. On
the one hand, data contention between concurrent threads needs to be synchronized.
But, on the other hand, tasks that are ancestor/descendant of each other need to be
treated differently: for instance, a nested task trying to access some memory location
locked by some ancestor may be allowed to proceed with the access. Further, deadlock
situations are more likely and harder to prevent, as they may happen between tasks at
any nesting depths.

Relying on the programmer to explicitly solve such intricate synchronization
challenges (e.g., using lock-based programming) is usually unrealistic for the average
programmer. Except for embarrassingly parallel programs, the programmer is strongly
discouraged to explore into the possibilities of nested-parallel programming.

Memory transactions, in contrast, are an elegant and effective solution to hide the
hard synchronization parallel programming, especially if nested, away from the pro-
grammer. This makes transactional memory (TM) a promising paradigm to leverage
fine-grained nested parallelism in tomorrow’s multi/many-core machines.

Hereafter, let us designate the original non-nested TM programming model as flat-
parallel (in contrast to the nested-parallel counterpart). The key insight is that the flat-
parallel TM programming model is easily extensible to support nested transactions [2],
an extension that has been introduced well earlier in the context of database transac-
tions [3]. Essentially, a nested transaction is one whose execution is contained inside
another transaction’s execution. A program may hence recursively create nested trans-
action trees while executing.

When building a parallel-nested program, the programmer simply needs to apply the
same rule that she was required to follow in traditional flat-parallel programming: to
identify each code region that needs to run atomically and wrap it inside a transaction.
Since transactions are composable [4], if all the atomic regions in a task have been
properly defined, then executing such a task nested within a nested-parallel program
will be correct. This holds true even if some of the tasks in a nested-parallel program
belong to different modules, whose implementation the programmer does not know
about (e.g. a call to a parallelized library function).



194 R. Filipe and J. Barreto

Programming in a nested-parallel fashion using TM, when compared to flat-parallel
programming, introduces new challenges that programmers must be aware of in order
to build correct and efficient programs. Firstly, the nested-parallel model is more com-
plex than the flat one. Secondly, starting nested tasks may be cumbersome, error-prone
and lead to inefficient, slow and not scalable programs if is not handled correctly. Fi-
nally, not of all today’s mainstream TM runtimes support a fully nested-parallel model.
Instead, many TM runtimes support limited nesting models, which need to be taken into
account by the programmer.

This chapter approaches parallel nesting models in TM from two distinct perspec-
tives. We start from the programmer’s perspective. Section 2 studies the spectrum of
parallel-nested models that are available to programmers, and gives a practical tutorial
on the utility of each model. Section 3 then surveys languages, tools and frameworks
that help programmers build nested-parallel programs in TM. Section 4 then focuses on
the inner works of TM runtimes that support parallel nesting, describing state-of-the art
algorithms. Finally, Section 5 summarizes.

2 Nested Parallelism Models in Transactional Memory

In theory, the TM model is extensible to support parallel-nested programs [5]. This
extension implies redefining the correctness guarantees that were originally defined in
the context of flat-parallel programming in TM.

The key insight is that correctness must now consider the ancestor-descendant rela-
tionships between parallel transactions, as we shall detail next.

However, supporting parallel nesting also implies changes to the TM runtime that
may introduce substantial overheads or limit scalability. For this reason, many current
mainstream TM runtimes opt for limited nesting models. For the sake of efficiency of
flat-parallel programs, these typically restrict the nested parallelism that programmers
can actually extract from their programs.

Hence, the reality is that, instead of a single nested-parallel model, TM runtimes
actually offer a spectrum of models. It is, of course, important that the programmer
understands each model in order to produce programs that, while ensuring correctness,
are able to fully exploit the model supported by the underlying runtime.

This section presents and discusses each different model in the spectrum of nested
models for TM. We start by focusing on the pure parallel-nested model, before delving
in restricted variants of such a model in the subsequent subsections.

2.1 Parallel Nesting

Simply put, the nested-parallel model for TM means that the TM runtime supports
nested transactions and allows the child transactions of a common parent to run in
parallel. This model is a straightforward extension of the closed nesting model proposed
by Moss and Hosking [2].

Conceptually, the execution of a nested-parallel program yields a dynamic tree of
active transactions, inter-connected by child-parent relations. At any moment, some of
the transactions will be running, while others will be waiting (for instance, for some
processor to become available, or waiting for their children to commit).



Nested Parallelism in Transactional Memory 195

Algorithm 1. Example of parallel nested transactions

1 function sb7-longTraversal(root)
2 atomic {
3 parallel {
4 sb7-traverseComplexAssembly(root.leaf1);
5 sb7-traverseComplexAssembly(root.leaf2);
6 sb7-traverseComplexAssembly(root.leaf3);
7 }
8 }

We illustrate with an excerpt taken from a modified long transaction of the popular
STMBench7 benchmark [6], presented in Algorithm 1. Method sb7-longTraversal in-
cludes an atomic region (i.e. encloses a transaction), which calls the
sb7-traverseComplexAssembly method for each leaf of the root data item. The sb7-
traverseComplexAssembly method also executes a transaction inside of it. In this ex-
ample the programmer is calling methods within the same program, but they could be
calls to an external library.

In the above example, the programmer calls the sb7-traverseComplexAssembly meth-
ods in parallel threads, thereby building a nested-parallel program. These methods
will perform accesses that may conflict with transactions running concurrently at other
threads. Furthermore, the parallel-nested threads may also contend for shared memory
locations. If that is the case, the programmer should have identified the code regions at
the called methods that need to run atomically and created transactions to ensure the
necessary synchronization.

The transactions defined by the atomic regions within sb7-traverseComplexAssembly
will compose with the parent transaction initiated at method sb7-longTraversal. In other
words, the sb7-traverseComplexAssembly methods will start nested transactions. We
call each such nested transaction a child of the parent transaction from sb7-longTraversal.
By extension, we say that two transactions are siblings if they have a common parent
transaction. Furthermore, we define that transaction t is an ancestor of transaction s if t
is included in the path from s’s node to the root node in the tree of nested transactions.

For model simplicity, most definitions of the nested-parallel transactional model (e.g.
[5]) assume that the parent transaction halts until all the threads that it spawned (and the
inherent nested transactions) complete. Only after all children tasks finish does the par-
ent’s execution continue. We adopt such assumption too. Hence, when a given nested
task is running, all its ancestors’ threads are waiting. Accordingly, when a nested trans-
action is active, all its ancestor transactions are waiting.

A nested transaction is seen as executing after all the accesses that its ancestors have
performed so far. In particular, when some transaction t reads from a memory location
that has been written by any of its ancestors, t should observe the most recently written
value by its ancestors.

Each nested transaction runs in isolation relatively to any other concurrent trans-
action. More precisely, the concurrent transactions of a given transaction include its
own siblings and all its ancestors’ siblings and their descendants (including the root



196 R. Filipe and J. Barreto

transactions that are concurrent to the transaction’s root ancestor).Note that a transac-
tion never runs concurrently with its descendants, as it waits for the descendants to
complete.

Conceptually, a nested transaction has its own read set and write set. This enables
rolling back the nested transaction without having to roll back its entire root transaction.

On commit, a nested transaction’s read and write sets are inherited by the transac-
tion’s parent. In other words, the reads and writes of the committed nested transaction
are, from that moment on, considered to have been performed on behalf of the parent
transaction.

Committing a nested transaction does not make its writes visible to the rest of the
world. 1 Instead, committing a nested transaction means that the committed writes be-
come visible to its active siblings and to its ancestors (which are blocked until all chil-
dren commit). Following this rule recursively, the writes of a nested transaction become
gradually visible to other transactions, starting at the set of siblings of the transaction
and then going upwards the nesting tree.

The nested-parallel transactional model is very powerful to ease programmers’ lives
when exploiting nested parallelism in their programs. The key insight is that the nested-
parallel model retains the composability of the traditional flat model. Hence, when shift-
ing from the flat-parallel model to the nested-parallel one, the programmer is required to
apply the very same principle as before: to identify regions within the program that are
atomic and wrap them in transactions. Having done that, correct synchronization is en-
sured by the TM runtime even for a program that has been structured in a nested-parallel
fashion. This holds true even if some of the tasks in a nested-parallel program belong
to different modules, whose implementation the programmer does not know about (e.g.
a call to a parallelized library function).

However, porting a flat parallel program with monolithic coarse-grained threads to a
nested-parallel alternative that exposes more fine-grained parallelism is not transparent
and requires caution from the programmer. Let us consider a thread that executes a
seguence of tasks. Before parallelizing such tasks, the programmer needs to carefully
confirm that:

• The candidate tasks to parallelize safely commute. Parallelizing them can yield ex-
ecutions where the serialized order of the transactions within the parallelized tasks
is different than the serial order in the original flat thread’s program. Whether such
a reordering of such tasks is safe or not depends on the semantics of the operations
being performed at each candidate task.
When two or more tasks are not commutable, spawning them inside nested-parallel
threads is not a safe choice.

• The tasks to parallelize should be long enough to compensate the overheads as-
sociated with nesting. Namely, the cost of forking/joining the new threads to run
each task in parallel, the costs of beginning and committing nested transactions, the
additional overheads of deeper nesting in the transactional tree, among others.

1 This means that we consider only a closed nesting model. An alternative is the open nesting
model introduced briefly in Section 2.3. We leave that alternative out of the scope of this
chapter, since no research work on parallel nesting support includes open nesting. In theory,
however, open nesting is applicable to both parallel and linear nesting models.



Nested Parallelism in Transactional Memory 197

Nested tasks should only be parallelized when the associated speed-ups clearly
compensate the above costs.

• There are available hardware contexts to run each task in parallel. Of course, ex-
posing additional fine-grained parallelism is advantageous as long as there are idle
hardware contexts to run the spawned nested tasks. Blindly spawning nested tasks
may lead to pathological executions where spawned tasks are actually condemned
to spend substantial periods waiting for an available core. Furthermore, it increases
thread preemption cost.

Ensuring the above conditions is not trivial and is, perhaps, the key obstacle to build-
ing efficient nested-parallel programs. There are, however, tools, frameworks and lan-
guage support that assist the programmer with some of the above issues. We describe
some examples of such items in the following sections.

Although appealing in theory, only a few of today’s state-of-the-art TMs support
this nested-parallel model. As we shall discuss in Section 4, the nested-parallel model
brings about a number of technical challenges that can substantially complicate the
implementation of a TM runtime. Hence, many TMs offer support for nesting but in-
troduce restrictions that do not exist in the pure nested-parallel model we described
previously.

We address such restricted models next.

2.2 Shallow Parallel Nesting

Volos et al. [7] define one poorer variant of the nested-parallel model, which they call
shallow nesting. In shallow nesting, a transaction can have several threads executing, in
parallel, parts of the transaction’s code. However, no nested transactions are allowed.

The memory accesses performed by the threads running on behalf of a common
(parallelized) transaction are added to the transaction’s read and write set. However, the
TM does not guarantee that such threads run in isolation.

Hence, the programmer’s role is harder, since shallow nesting places the burden of
ensuring correct synchronization among the parallel threads running on behalf of a same
transaction. Shallow nesting is, though, a nice fit for parallelizing long transactions that
perform multiple independent operations (e.g. a loop on disjoint data).

2.3 Nesting with Restricted Parallelism

Other variants of the nested-parallel model restrict the allowed parallelism among nested
tasks (and transactions).

Hierarchical Lock Atomicity. One such model consists in disallowing sibling trans-
actions (i.e., nested transactions descending from a common parent) to run in parallel.
Volos et al. [7] define this as the Hierarchical Lock Atomicity (HLA) model. In con-
cept, it is as if each parent transaction has a single lock, which the children transactions
need to obtain before proceeding. More precisely, let us consider that some transac-
tion spawned a set of threads. When any of such threads wishes to begin a (nested)



198 R. Filipe and J. Barreto

transaction, it needs to wait until there is no other sibling or any sibling’s descendant
transaction running.

Note that, like shallow nesting, HLA also allows a transaction to effectively run in
parallel - as long as such parallel threads do not begin simultaneous nested transactions.
Hence, in long transactions that can be parallelized into tasks that contain few and short
transactions, HLA is able to yield parallel executions that resemble those of the pure
nested-parallel model.

Linear Nesting. For implementation simplicity, many mainstream TMs support nested
transactions but simply disallow a transaction to spawn any threads. In other words,
if some parent transaction creates child transactions, then the children will run in the
same thread that runs the parent transaction, one after another. This is called the linear
nesting model.

Linear nesting imposes a decisive limitation on the potential parallelism that is made
available to programmers, who can only create threads in code locations that lie out-
side atomic blocks. Hence, it severely restricts composability of parallel programs [16],
as a program cannot call a parallel library function from inside a transaction without
serializing the function [1]. Or, alternatively, the programmer cannot decompose long
transactions into parts that do not conflict among each other (at least not too much).

We can actually identify three main variants of the linear nesting model, as follows:

• Flat Nesting.
The parent transaction sees all modifications to program state made by inner trans-
actions, since child and parent transactions are coupled onto a single transaction.
This is the simpler approach, since aborting the child transaction will also abort
the parent, but committing the child transaction has no effect until the parent trans-
action also commits. Flattened transactions are easy to implement, since there is
only one transaction in execution coupled with a nesting depth counter. However,
this is a poor programming abstraction, since if an explicit abort is issued in a li-
brary routine that contains transactions, all surrounding transactions must terminate
execution.

• Closed Nesting.
A closed transaction behaves similarly to a flattening one, except the inner transac-
tion can abort without terminating its parent transaction. When a closed transaction
commits or aborts, control passes to its parent. If the inner transaction commits, its
changes become visible to the parent. However, they only become visible to other
threads when the parent transaction commits. Hence, closed nesting ensures the
same correctness properties as flat nesting.

• Open Nesting.
When an open transaction commits, its changes become visible to all other trans-
actions in the system, even if the parent transaction is still executing. Further-
more, if the parent transaction aborts, the results of the nested open transactions
remain committed. Thus, open nesting allows greater concurrency between transac-
tions. For example, it allows concurrent transactions to increment a shared counter
without provoking a conflict for the whole parent transaction. While using open
transactions allows for greater concurrency in the application, they can subvert the



Nested Parallelism in Transactional Memory 199

isolation of a parent transaction, thus requiring extra care. For instance, consider
the case where a child transaction reads data tentatively written by the parent; then
the child transaction commits but the parent transaction later aborts. Now there is
some inconsistent global state which depends on a write operation that actually
never occurred. Another problematic case is the one where the parent transaction
reads some location that the child transaction writes to. The child can commit a
new value to that location, and then the parent may abort and read the value that
was updated by its child transaction upon re-execution.

2.4 Nested-Parallelism with Thread-Level Speculation

As discussed earlier in this section, the nested-parallelism model requires careful
reasoning about the semantics of the parent task being parallelized. Namely, the pro-
grammer must assert if the work performed by the parallel children tasks is actually
commutative.

This assertion may not be trivial for all applications. For the average programmer,
this may pose a significant effort and introduce a non-negligible risk of errors due to
parallelizing tasks that, after all, were not semantically commutable. At the end, most
programmers will most likely feel discouraged from exposing fine-grained parallelism
lying within their applications.

Furthermore, some tasks are simply not commutable, as the application’s semantics
require them to run accordingly to the sequential program’s order. That is, any task
reordering that leads to different results is simply prohibited by the semantics. However,
this does not mean that running the tasks in parallel will always lead to such undesirable
executions. Consider, for instance, a sequence of tasks that work on some shared data
structure (e.g., a large array or matrix) such that some tasks may occasionally read or
write to the same elements in the shared structure. Any task reading from an element
that other tasks in the sequence write to should obtain the value updated by the most
recent task that, in program order, precedes the reader. Hence, parallelizing these tasks
as sibling nested transactions may violate this condition, as the nested-parallel model
may serialize siblings in a different order than that of the original program.

A recent research direction has proposed a variant of the nested-parallel model that
address the two above issues [8]. This new model combines TM and thread-level spec-
ulation (TLS) [9].

As in the nested-parallel model, the programmer can sub-divide a transaction into
parallel tasks. The key difference in the hybrid TM+TLS model is that runtime is re-
sponsible for ensuring that any data dependencies stemming from the original sequen-
tial program order are respected in the speculatively parallelized execution.

This hybrid model eliminates the two issues discussed above. On the one hand, the
programmer in doubt about task commutativity can conservatively parallelize a trans-
action using this hybrid model. Since the underlying runtime guarantees that the paral-
lelized execution will be equivalent to a sequential execution of the same transaction,
the parallelized program is correct no matter if the tasks were actually commutable or
not. On the other hand, situations where the sequence of tasks in a transaction is not
commutable may now be safely parallelized, since the TM ensures that such tasks will
be serialized according to program order.



200 R. Filipe and J. Barreto

Algorithm 2. Example of nested-parallel programs with TFJ

9 function sb7-longTraversal-TFJ(root)
10 transaction(proc, params) {
11 onacid;
12 proc(params);
13 commit;
14 }
15 onacid;
16 spawn transaction(sb7-traverseComplexAssembly, root.leaf1);
17 spawn transaction(sb7-traverseComplexAssembly, root.leaf2);
18 spawn transaction(sb7-traverseComplexAssembly, root.leaf3);
19 commit;
20 }

It is thus pertinent to compare the the hybrid TM+TLS model with the nested-parallel
model. The TM+TLS model is perhaps more appealing to the average programmer, as
it strongly simplifies programming fine-grained parallel programs where the tasks do
not commute or the programmer simply is not sure that they commute.

However, the main question is which model is able to actually deliver higher par-
allelism. In fact, each model can, in theory, achieve more parallelism than the other,
depending on the program being parallelized. As discussed above, the TM+TLS model
can expose parallelism in situations where the pure nested-parallel model cannot.

However, in situations where the nested-parallel tasks are commutable, the TM+TLS
model is limited. Whereas the pure nested-parallel model is free to serialize the sibling
tasks in any order, the TM+TLS model will always enforce the sequential program or-
der. Unfortunately, the sequential program order may not be the serialization order that
allows for highest parallelism, when considered among the remaining possible serial-
ization orderings.

3 Support

In order to aid the programmer in building nested parallel programs it should be easy for
him to: i) create nested tasks in a fork-join pattern; ii) protect the accesses to regions of
shared data using transactions. Recently several frameworks in different programming
languages have added support for such mechanisms, which we will now address.

The flat-nesting TM API makes use of functions to start and end transactional code,
e.g. tx-begin() and tx-commit(), or simply use an annotation or construct that surrounds
the transactional code, e.g. @Atomic or atomic { }. When using nested transactions
there is, usually, a need for an extended TM API that supports each of the models
described in Section 2.

The first framework support for parallel nested transactions was proposed by Vitek et
al. in Transactional Featherweight Java (TFJ) [10]. TFJ used a spawn keyword to create
a new thread for executing a transaction, an onacid keyword that represents the start of
a transaction and a commit keyword for ending a transaction (example Algorithm 2).



Nested Parallelism in Transactional Memory 201

Algorithm 3. Example of nested-parallel programs with Cilk

21 function sb7-longTraversal-Cilk(root)
22 atomic {
23 parallel {
24 atomic {
25 traverseComplexAssembly(root.leaf1);
26 }
27 atomic {
28 traverseComplexAssembly(root.leaf2);
29 }
30 atomic {
31 traverseComplexAssembly(root.leaf3);
32 }
33 }
34 }

They proceed to define the semantics in which such keywords can be used to program
parallel nested applications. Then, they describe theoretical proofs that validate these
keywords as building blocks for any model of nested transactions.

The work on TFJ was followed by Agrawal et al. [5] implementing similar con-
structs in Cilk, a dynamic multi-threaded language. Cilk already supported executing
parallel sections of code, using a parallel { } construct, to tell the runtime that there
exists a possibility for parallelism, and transactions, using the atomic { } construct.
The combination of these two constructs allowed for the specification of parallel nested
transactions, with an unbounded nesting depth (example Algorithm 3).

The support for parallel nested transactions on TFJ and Cilk executed all sibling
transactions independently, as most parallel nested transactions’ models require. How-
ever, Ramadan et al. [11] argued that this execution model was not expressive enough,
and that siblings should affect each other’s outcomes. They introduced coordinated sib-
ling transactions in Xfork, a programming construct that allowed TM programmers to
express intra-transaction concurrency. Inside an atomic { } construct, a TM programmer
could define parallel transactions with the construct xfork (form, numForks, xforkPro-
cedure, data), where:

• form : the form of sibling coordination (AND, OR, XOR)
• numForks: the number of concurrent sibling transactions to spawn
• xforkProcedure: a list of procedures to execute inside sibling transactions
• data: a list of arguments for each of the procedures

Xfork supports three forms of coordinated sibling transactions:

• AND: All sibling transactions must succeed, or none succeed
• OR: Sibling transactions succeed or fail independently
• XOR: Only one sibling transaction must succeed



202 R. Filipe and J. Barreto

Algorithm 4. Example of nested-parallel programs with xFork

35 function sb7-longTraversal-xFork(root)
36 atomic {
37 xfork (AND, 3, { traverseComplexAssembly, traverseComplexAssembly,

traverseComplexAssembly }, {root.leaf1, root.leaf2, root.leaf3});
38 }

Algorithm 5. Example of nested-parallel programs with JVSTM

39 @Atomic
40 function sb7-longTraversal-JVSTM(root)
41 @Parallel
42 for each leaf in root do
43 traverseComplexAssembly(leaf);

The AND form is used for regular nested parallel transactions (Example Function
4). The OR form emulates independent nested transactions, where all successfully
completed siblings will commit. The XOR form allows for speculative parallel nested
transactions, where if some sibling is successful the parent is also successful.
Non-speculatively, the XOR form can execute several transactions in parallel when the
programmer knows that only one sibling will commit successfully (e.g. when doing a
parallel search for an item on a data structure).

Finally, the work by Diegues et al. [12] uses the annotations @Atomic and @Par-
allel, identical to the constructs of Agrawal et al. and DeuceSTM [13], in the Java
programming language. These annotations are enough to fully program parallel nested
transactions, with an unbounded nesting depth, in JVSTM [12] (example Algorithm 5).

4 Algorithms

Extending a TM runtime with parallel nested transactions support is not trivial. Conflict
detection, in particular, becomes much more complex. Not only does the TM need to
detect conflicts between concurrent running transactions accessing the same data object,
but now the TM must also allow accesses from child transactions to objects written to
and commited by its siblings. Handling such accesses in an efficient manner requires a
re-organization of the TM data structures.

Therefore, for a TM runtime to fully support nested parallel transactions it has to
tackle several challenges that did not exist in the traditional flat nesting scenario:

1. To support partial rollback of child transactions, without affecting the parent
2. To handle concurrent data structures correctly, such as the parent-child read and

write sets
3. To coordinate the commit or abort of parent and child transactions
4. To detect conflicts by verifying ancestor-descendant relationships, which may be

complicated for deep nested trees



Nested Parallelism in Transactional Memory 203

This section addresses several state of the art algorithms for the nested parallel trans-
actions models we presented in Section 2. Since this chapter focuses on parallel nesting
models, we omit algorithms that support only linear nesting. A survey of linear nesting
algorithms can be found in the technical report of Diegues [14].

Each of the following algorithms solves some or all of the previous challenges in
different ways, with different complexity degrees. As discussed in Section 2, some so-
lutions opt for limited models in exchange for better performance or scalability.

4.1 CWSTM

This approach builds on Cilk, a dynamic multi-threaded language that allows the pro-
grammer to use special constructs to create new threads with assigned tasks. The CW-
STM [5] dynamically unfolds the program execution into a computation tree that is used
for conflict detection. This structure serves as the basis for a work-stealing algorithm
that allows the exploration of a transaction’s inner parallelism.

The work-stealing technique is a means of distributing a set of tasks to threads: Each
thread maintains a double-ended queue of tasks; when the thread runs out of work, it
reaches the top of another thread’s dequeue and steals a task to execute on that thread’s
behalf. Given the uniform random access for stealing, there should never exist any con-
tention in accessing a dequeue, as long as there is work left to be done.

CWSTM uses the aforementioned computation tree for eager conflict detection, with
a computational intensity that is independent of the nesting depth. Each transactional
object has an associated access stack in which entries correspond to accesses performed
by active transactions. The content of these stacks is a form of multiple-readers-single-
writer locking scheme: The last entry always corresponds to the youngest descendant
writer transaction, or a set of reader transactions all descendant of a common writer
ancestor. Therefore, below the first stack entry there may only exist accesses of descen-
dants of the last access owner. This way, as soon as a transaction accesses an object,
that transaction may eagerly detect a conflict.

However, maintaining these per-object stacks is very inefficient. Hence, their effort
only resulted in providing a STM specification and a theoretical upper bound for the
execution time of a parallel nested transaction. No complete implementation of such
design was achieved for this paper, albeit the proposed design solves all of the chal-
lenges we described.

4.2 PNSTM

The Parallel Nesting STM (PNSTM) [15] followed the approach of Agrawal et al. and
succeeded in implementing an algorithm for parallel nested transactions support. PN-
STM provides a simple work-stealing approach with a single global queue, into which
the application’s blocks may be enqueued for concurrent transactional execution.

Moreover, each transactional object is associated with a stack that contains all the
accesses (both reads and writes) performed by active transactions. To achieve constant
time ancestor queries for eager conflict detection, the per-object stack is represented by
a memory word that has each bit assigned to a transaction (called a bitnum). When two



204 R. Filipe and J. Barreto

transactions access the same object, a conflict is easily detected by performing a bitwise
operation on the object’s stack.

By using a memory word for this representation they achieved performance improve-
ments but limit the maximum number of transactions on the system at all times. As a
workaround, PNSTM uses a mechanism that allows for new transactions to reuse bit-
nums of completed transactions.

The system is limited to a determined maximum number of concurrent transactions.
However, PNSTM claims that no more parallelism would be achieved over that limit if
it is larger than the maximum number of worker threads.

When a transaction commits, it leaves behind traces in all the objects it accessed,
namely the stack frames stating its ownership. To avoid having to go through all the ob-
jects in the write-set by locking and merging the frame with the previous entry, PNSTM
does that lazily, similarly to Agrawal’s algorithm. This may lead to false conflicts when
some transaction accesses an object and finds an entry in the stack that corresponds to
an already committed but not yet reclaimed transaction. The authors show that it is pos-
sible to avoid it by resorting to a global structure maintaining data about all committed
transactions.

This was the first implementation of parallel nesting with constant time ancestor
queries, for an arbitrary nesting depth. It solves all of the challenges we presented in a
more efficient way, at the cost of a bound in the active threads count.

4.3 NePalTM

The Nested Parallelism for Transactional Memory (NePalTM) [16] provides in-place
updates with strict two-phase locking for writes. Memory addresses are mapped to
transactional records with a granularity of several addresses.

The transactional records may be read in two modes: in pessimistic mode they have
to acquire a lock in read-mode, or by using version timestamps which are accessed by
optimistic readers. Therefore, it actually provides both visible and invisible readers.

NePalTM supports the Shallow Nesting model, described in Section 2, by having
each member of an atomic region store its own transactional logs (read, write and undo
logs). This way, no synchronization is required to access the logs of an atomic region,
and they are all used only at commit time of that atomic region.

NePalTM also supports the Hierarchical Lock Atomicity model, defined in Section
2. In this case, NePalTM has a major limitation of requiring such sibling transactions
to run in mutual exclusion. Hence, it does not support parallel nesting entirely. Thus,
NePalTM solves the first challenge, of supporting partial rollback, since there is no
concurrency between parent and child transactions. It also solves the second challenge,
since in shallow nesting members of an atomic region are concurrently logging trans-
actional data.

4.4 NeSTM

The Nested STM (NeSTM) [17] is based on McRT-STM [18]. McRT-STM is a tra-
ditional blocking STM, with eager conflict detection, with undo logs for writes at the
word granularity. In the extension of McRT-STM to support parallel nesting, the focus



Nested Parallelism in Transactional Memory 205

point was that it should not interfere with the performance of workloads in which nest-
ing is not used. They were also driven by the intent of keeping the memory footprint as
close to constant as possible, regardless of the nesting depth in use.

The original McRT-STM assumed that no other transaction could access a locked
variable. With nested-parallel transactions this is no longer the case: due to the parallel
nested transactions, other transactions can correctly access the locked object as long as
they are descendants of the owner. When a transaction accesses an object, it locks such
an object. That object’s lock includes a new field with information about its current
owner. This way, when another transaction wishes to access the same object, it may
confirm if it is a descendant of the lock’s owner.

Similarly, the version number of an object must also be visible at all times, in order to
serialize conflicting transactions. Consequently, the lock variable now has some reserved
bits to identify the transaction owning it, and the rest of the bits are used for the version
number. This scheme allows visible readers even when the object is locked. This leads
to two practical consequences: first, there is a maximum number of concurrent transac-
tions at a given time, since the transaction identifier is just a few bits long; second, the
transaction identifier overflows several orders of magnitude faster than normal.

At transaction start, the global clock is used to timestamp the transaction. Reads will
cause an abort if an object was written since the transaction started. This might cause
unnecessary aborts: picture two transactions Ti and Tk; Ti did not perform any access,
Tk commits values, Ti reads one of the values and will abort. When writing a value,
the transaction will attempt to acquire the lock corresponding to the variable and then
it will validate the object: The transaction attempting to write, as well as its ancestors,
must not have a timestamp smaller than the object’s timestamp, in case they read it
previously.

To reduce the work needed for this validation, only transactions that were not ances-
tors of the previous owner of the object must go through the check. Yet, this mechanism
yields considerable costs in terms of computation at deeper levels.

Given that the nested commit procedure requires validating the reads across the trans-
action and its ancestors, followed by the merge of the sets into the parent, this set of
actions must be atomic in the algorithm. This is meant to prevent concurrent siblings
from committing simultaneously and breaking serializability. This was solved by intro-
ducing a lock at each transaction and making nested transactions acquire their parent’s
lock in mutual exclusion with their siblings.

In addition, NeSTM is subject to livelocks at the level of nested transactions. Picture
two transactions, T1 who writes to x and T2 who writes to y, they will both have acquired
ownership of the respective objects. Now if the T1 spawns T1:1 while T2 spawns T2:1 and
both these nested transactions cross-access y and x, respectively, they will abort since
those variables are neither owned by them or their ancestors. However, they will have
mutually blocked each other unless one of their ancestors aborts as well and releases
the corresponding variable. The authors placed a mechanism to avoid this in which they
heuristically count consecutive aborts and abort the parent as well.

NeSTM solves all of the challenges we identified, in a more efficient manner than
PNSTM, but still with several limitations. Baek et al. [19] and Liu et al. [20] studied how



206 R. Filipe and J. Barreto

hardware acceleration could improve the performance of nested transactional systems,
using NeSTM as a baseline.

4.5 HParSTM

The Hierarchy-based Parallel STM (HParSTM) [21] allows a parent to execute con-
currently with its children nested transactions. The advantage of this is that it allows
more nodes in the transactional tree to be active in computations concurrently, which
enhances the distribution of tasks.

The same protocol used for top-level transactions is extended for nesting by replicat-
ing most control data structures. The baseline STM design promotes a mixed invalida-
tion strategy with visible readers and lazy lock acquisition and write-back on commit
time.

To achieve this, a global structure is used to register transactions that are doomed
to abort. This is accomplished by having a transaction’s commit procedure invalidate
active readers of objects that it is writing-back in the aforementioned structure. Any
transaction has to check that it does not belong to the doomed transactions list prior to
commit.

Furthermore, this information is also scattered across the shared objects which have
a forbidden set associated to them, better defined by an example: if T1 read x and T2

wrote x and y followed by commit, it not only adds T1 to the global doomed set, but also
to the forbidden set of x and y. If T1 attempts to read y it will fail to do so, in order to
prevent an inconsistent view state.

This procedure is used by nested transactions, except that they must ensure that these
invalidation sets contain neither the nested transaction’s identifier or any of its ances-
tors’. The control data structures of nested parallel transactions are merged into the
parent transaction by concurrent siblings (and the parent’s execution itself) with mutual
exclusion.

HparSTM goes even further in the design space of parallel nested transactions algo-
rithms. Although it solves all our challenges, HparSTM still has some limitations when
supporting higher levels of nested transactions.

4.6 JVSTM

The first STM to solve all challenges we described in an efficient manner was the work
by Diegues et al. in JVSTM [12]. They extended the original JVSTM [22] with parallel
nesting support, assuming that each top-level transaction may unfold a nesting tree in
which a transaction performs transactional accesses only when all its children are no
longer active.

Their approach is to extend VBoxes (JVSTM’s placeholders for transactional lo-
cations’ values) such that transactions may now write directly to the VBoxes, rather
than having to maintain a private write set mapping each location written to its new
value. In order to distinguish between globally committed values and the tentative val-
ues of ongoing transactions, a VBox now contains both values. A permanent value has
been consolidated via a commit of some top-level transaction, whereas a tentative value



Nested Parallelism in Transactional Memory 207

belongs to an active top-level transaction (or any of its children nested transactions),
and is thus part of its write-set.

Additionally, each tentative write points to an ownership record (orec) that encapsu-
lates the transaction that owns it, the version of the write, and the status of the owner.
Each writing transaction creates one such orec and propagates it to the transaction’s par-
ent when it commits. Through these orecs a nested transaction can perform the ancestor
query, which depends only on the number of tentative writes on the location.

The algorithm proposed in this work has three major features that make it efficient: a
fast path in the read operation that is performed in constant time (independently of the
nesting depth); a fast mode for writing, backed up by a slow mode for fallbacks; and a
commit operation that is independent of the write-set size.

The fast read path is achieved by checking if the read operation being performed
is not a read-after-write. In that case the read operation can be done directly from the
last permanent write, and avoid the ancestor query. The fast path for writing occurs
when the transaction that is writing to a location already owns that location, thus it
can simply overwrite the tentative value. The commit operation of nested transactions
simply changes the ownership of orecs that the child transaction owns to its parent. The
set of location orecs is usually smaller than the whole write-set.

4.7 TLSTM

TLSTM is the first algorithm to tackle the challenges of nested-parallelism using thread
level speculation. TLSTM extends an existing STM, SwissTM [23]. The key insight is
that a SwissTM transaction is used as the speculative execution unit that supports two
concepts: STM transactions (defined by the user) and TLS speculative tasks (automat-
ically created at compile time). An STM transaction is seen as a sequence of one or
more TLS speculative tasks, which can run out-of-order in a speculative fashion, until
they commit sequentially.

Most of the maintenance load of STM and TLS that typically dominates the asso-
ciated execution overheads is, in fact, common to both approaches. Namely, conflict
detection, speculative reads and writes, read-log and write-log maintenance, commit
and rollback are issues that both STM and TLS must handle. Hence, by combining
both STM and TLS in TLSTM, the overhead associated with the above aspects remains
comparable to the overhead of stand-alone STM, rather than doubling.

Cross-transaction conflict detection follows the original approach of SwissTM: using
eager, lock-based conflict detection for write/write conflicts, and lazy counter-based
validation for read/write conflicts. Within each top-level transaction, cross-task conflict
detection relies on the very data structures maintained for cross-transaction conflict
detection, with the addition of a task read-set for speculative cross-task reads. TLSTM
allows only one task to write on each location at a time, also using eager, lock-based
write-write conflict detection. TLSTM validates the task and transaction read-sets at
write and commit time, looking for cross-task Write after Read conflicts. Furthermore,
TLSTM only allow speculative reads from completed tasks within a transaction.



208 R. Filipe and J. Barreto

5 Summary

For many real applications, harnessing the hardware parallelism of modern multi- and
many-core machines calls for exposing fine-grained parallel tasks, possibly nested within
memory transactions. Memory transactions, being a composable abstraction, are a
promising way to enable the average programmer to exploit nested-parallel program-
ming.

This chapter has given an insight into the concepts, techniques and challenges behind
nested-parallel programming. We started with a view from the programmer’s point of
view, describing the nested-parallel model in transactional memory and its variants.
Complementarily, we surveyed available support to build and run nested-parallel pro-
grams. We then turn to the perspective of a TM runtime designer, studying the state-of-
the art algorithms that support currently nested parallelism.

References

1. Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D., Wilson,
H., Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella, S., Salihundam,
P., Erraguntla, V., Konow, M., Riepen, M., Droege, G., Lindemann, J., Gries, M., Apel, T.,
Henriss, K., Lund-Larsen, T., Steibl, S., Borkar, S., De, V., Van Der Wijngaart, R., Mattson,
T.: A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In: 2010 IEEE
International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.
108–109 (February 2010)

2. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: Model and architecture sketches.
Sci. Comput. Program. 63, 186–201 (2006)

3. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 1st edn. Morgan
Kaufmann Publishers Inc., San Francisco (1992)

4. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2005, pp. 48–60. ACM, New York (2005)

5. Agrawal, K., Fineman, J.T., Sukha, J.: Nested parallelism in transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2008, pp. 163–174. ACM, New York (2008)

6. Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: A benchmark for software transactional
memory. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, EuroSys 2007, pp. 315–324. ACM, New York (2007)

7. Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., Narayanaswamy, R.:
NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 123–147. Springer,
Heidelberg (2009)

8. Barreto, J., Dragojevic, A., Ferreira, P., Filipe, R., Guerraoui, R.: Unifying thread-level spec-
ulation and transactional memory. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware
2012. LNCS, vol. 7662, pp. 187–207. Springer, Heidelberg (2012)

9. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: 25 Years of the Inter-
national Symposia on Computer Architecture (Selected Papers), ISCA 1998, pp. 521–532.
ACM, New York (1998)

10. Vitek, J., Jagannathan, S., Welc, A., Hosking, A.L.: A semantic framework for designer
transactions. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 249–263. Springer,
Heidelberg (2004)



Nested Parallelism in Transactional Memory 209

11. Ramadan, H., Witchel, E.: The xfork in the road to coordinated sibling transactions. In: 4th
ACM SIGPLAN Workshop on Transactional Computing (TRANSACT 2009) (2009)

12. Diegues, N., Cachopo, J.: Practical parallel nesting for software transactional memory. In:
Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 149–163. Springer, Heidelberg (2013)

13. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with java stm. In: Third Work-
shop on Programmability Issues for Multi-Core Computers (MULTIPROG) (2010)

14. Diegues, N., Cachopo, J.: Review of nesting in transactional memory. Tech. rep., Technical
Report RT/1/2012, Instituto Superior Técnico/INESC-ID (2012)

15. Barreto, J.A., Dragojević, A., Ferreira, P., Guerraoui, R., Kapalka, M.: Leveraging parallel
nesting in transactional memory. SIGPLAN Not 45, 91–100 (2010)

16. Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., Narayanaswamy, R.:
NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 123–147. Springer,
Heidelberg (2009)

17. Baek, W., Kozyrakis, C.: NesTM: Implementing and Evaluating Nested Parallelism in Soft-
ware Transactional Memory. In: Proceedings of the 9th International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2009)

18. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-stm: A high
performance software transactional memory system for a multi-core runtime. In: Proceedings
of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2006, pp. 187–197. ACM, New York (2006)

19. Baek, W., Bronson, N., Kozyrakis, C., Olukotun, K.: Making nested parallel transactions
practical using lightweight hardware support. In: Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 61–71. ACM (2010)

20. Liu, Y., Diestelhorst, S., Spear, M.: Delegation and nesting in best-effort hardware transac-
tional memory. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 38–47. ACM (2012)

21. Kumar, R., Vidyasankar, K.: Hparstm: A hierarchy-based stm protocol for supporting nested
parallelism. In: The 6th ACM SIGPLAN Workshop on Transactional Computing (TRANS-
ACT 2011) (2011)

22. Cachopo, J.A., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci.
Comput. Program. 63, 172–185 (2006)

23. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In: Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2009, pp. 155–165. ACM (2009)


	Nested Parallelism in Transactional Memory
	1
Introduction
	2
Nested Parallelism Models in Transactional Memory
	2.1
Parallel Nesting
	2.2
Shallow Parallel Nesting
	2.3
Nesting with Restricted Parallelism
	2.4
Nested-Parallelism with Thread-Level Speculation

	3
Support
	4
Algorithms
	4.1
CWSTM
	4.2
PNSTM
	4.3
NePalTM
	4.4
 NeSTM
	4.5
HParSTM
	4.6
JVSTM
	4.7
TLSTM

	5
Summary
	References




