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Abstract. Software Transactional Memory algorithms associate metadata with
the memory locations accessed during a transaction’s lifetime. This metadata may
be stored in an external table and accessed by way of a function that maps the ad-
dress of each memory location with the table entry that keeps its metadata (this
is the out-place or external scheme); or alternatively may be stored adjacent to
the associated memory cell by wrapping them together (the in-place scheme).
In transactional memory multi-version algorithms, several versions of the same
memory location may exist. The efficient implementation of these algorithms re-
quires a one-to-one correspondence between each memory location and its list of
past versions, which is stored as metadata. In this chapter we address the matter
of the efficient implementation of multi-version algorithms in Java by propos-
ing and evaluating a novel in-place metadata scheme for the Deuce framework.
This new scheme is based in Java Bytecode transformation techniques and its
use requires no changes to the application code. Experimentation indicates that
multi-versioning STM algorithms implemented using our new in-place scheme
are in average 6× faster than when implemented with the out-place scheme.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the properties and in the
guarantees they provide. Among other differences, one can refer distinct strategies used
to read (visible or invisible) and update memory (direct or deferred), the consistency
(opacity or snapshot isolation) and progress guarantees (solo, global and local progress),
the policies applied to conflict resolution (contention management), and the sensitiv-
ity to interactions with non-transactional code (weak or strong atomicity). Some STM
frameworks, e.g., DSTM2 [10] and Deuce [11], address the need of experimenting with
new algorithms and their comparative evaluation by providing a single transactional
interface over which the STM algorithms are built. However, the internal architecture
each STM framework tends to favor the performance of some classes of STM algo-
rithms and disfavor others. For instance, the Deuce framework stores the metadata in
an external table and favors algorithms like TL2 [6] and LSA [14], which are resilient
to the false sharing of transactional metadata (such as ownership records), and disfavor
multi-version algorithms, which require unique metadata per memory location.

STM algorithms manage information per transaction (frequently referred to as the
transaction descriptor), and per memory location (or object reference) accessed within
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that transaction. The transaction descriptor is typically stored in a thread-local mem-
ory space and keeps the information required to validate and commit the transaction,
e.g., the read- and write-sets. The per memory location information, henceforth be re-
ferred as metadata, depends on the nature of the STM algorithm and may contain locks,
timestamps, version lists. Metadata is stored either adjacent to each memory location
(in-place scheme), or in an external table (out-place or external scheme). STM libraries
for imperative languages, such as C, frequently use the out-place scheme, while those
addressing object-oriented languages bias towards the in-place scheme.

The out-place scheme is implemented by using a table-like data structure that effi-
ciently maps memory references to its metadata. Storing the metadata in such a pre-
allocated table avoids the overhead of dynamic memory allocation, but incurs in the
overhead for evaluating the location-to-metadata mapping function. The bounded size
of the external table also induces a false sharing situation, where multiple memory
locations share the same table entry and hence the same metadata, in a many-to-one
relation between memory locations and metadata units. The in-place scheme is usually
implemented using the decorator design pattern [8], by extending the functionality of
an original class by wrapping it in a decorator class that contains the required meta-
data. This scheme implements a one-to-one relation between memory locations and
metadata units, thus no false sharing occurs. It allows the direct access to the object
metadata without significant overhead, but is very intrusive to the application code,
which must be heavily rewritten to use the decorator classes instead of the original
ones. The decorator pattern based technique bears two other problems: additional over-
head for non-transactional code, and multiple difficulties while working with primitive
and array types. Riegel et al. [15] briefly describe the trade-offs of using in-place versus
out-place strategies.

Deuce is among the most efficient STM frameworks for the Java programming lan-
guage and provides a well defined interface that is used to implement several STM
algorithms. On the application developer’s side, a memory transaction is defined by
adding the annotation @Atomic to a Java method, and the framework automatically in-
struments the application’s bytecode to intercept the read and write memory accesses
by injecting call-backs to the STM algorithm. These call-backs receive the referenced
memory address as argument, hence limiting the range of viable STM algorithms to
be implemented by forcing an out-place scheme. Implementing in Deuce an algorithm
that requires a one-to-one relation between metadata and memory locations, such as
a multi-version algorithm, requires the use of an external table to handles collisions,
which significantly degrades the throughput of the algorithm.

In the remaining of this Chapter we present a novel approach to support the in-place
metadata scheme that does not use the decorator pattern, and thoroughly evaluate its
implementation in Deuce. This extension allows the efficient implementation of multi-
version algorithms, which require a one-to-one relation between metadata and memory
locations. The developed extension has the following properties:

Efficiency. The extension fully supports primitive types, even in transactional code.
Transactional code does not require the extra memory dereference imposed by the
decorator pattern. Non-transactional code is in general oblivious to the presence
of metadata in objects, hence no significant performance overhead is introduced.
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And we propose a solution for supporting transactional n-dimensional arrays with
a negligible overhead for non-transactional code.

Flexibility. The extension supports both the original out-place and the new in-place
strategies simultaneously, hence it is fully backwards compatible and imposes no
restrictions on the nature of the STM algorithms to be used, nor on their implemen-
tation strategies.

Transparency. The extension automatically identifies, creates and initializes all the nec-
essary additional metadata fields in objects. No source code changes are required,
although we apply some light transformations to the non-transactional bytecode.

Compatibility. Our extension is fully backwards compatible and the already existing
implementations of STM algorithms are executed with no changes, and with zero
or negligible performance overhead.

Compliance. The extension and bytecode transformations are fully-compliant with the
Java specification, hence supported by standard Java compilers and JVMs.

The Deuce framework assumes a weak atomicity model, i.e., transactions are atomic
only with respect to other transactions, and hence their execution may be interleaved
with non-transactional code. Multi-version algorithms update objects (memory loca-
tions) by writing the new value to the object (memory cell) metadata (which contain the
lists or past values), and therefore transactional accesses cannot see non-transactional
updates, and vice-versa. We tackle this problem by proposing an algorithmic adaptation
for multi-version algorithms that enables the support of a weak atomicity model for
multi-version algorithms with meaningless impact in the overall performance.

This chapter follows with a description of the Deuce framework and its out-place
scheme in Section 2. Section 3 describes properties of the in-place scheme, its imple-
mentation, and its limitations as an extension to Deuce. We present an evaluation of
the extension’s implementation using several metrics in Section 4. Section 5 describes
the implementation of several state-of-the-art STM multi-version algorithms using our
proposed extension. In Section 6 we show how to adapt the multi-version algorithms
to support a weak-atomicity model. Finally, we present a comparison between different
single- and multi-version algorithms using standard benchmarks in Section 7.

2 The Deuce Framework

Deuce supplies a single @Atomic Java annotation, and relies heavily on bytecode in-
strumentation to provide a transparent transactional interface to application developers,
which are unaware of how the STM algorithms are implemented and which strategies
they use to store the transactional metadata. Algorithms such as TL2 [6] or LSA [14]
use an out-place scheme by resorting to a very fast hashing function and storing a single
lock in each table entry. Due to performance issues, the mapping table does not avoid
hash collisions and thus two memory locations may be mapped to the same table entry,
resulting in the false sharing of a lock by two different memory locations. In these al-
gorithms, false sharing may have some impact in the performance but does not affect
the correctness. To implement multi-version algorithms with the out-place scheme, one
has to manage collision lists in the table, which significantly degrades performance.
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public interface Context {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(Object obj, long field);
int onReadAccess(Object obj, int value, long field);
// ... onReadAccess for the remaining types
void onWriteAccess(Object obj, int value, long field);
// ... onWriteAccess for the remaining types

}

Fig. 1. Context interface for implementing an STM algorithm

To support the out-place scheme, Deuce identifies an object’s field by the object
reference and the field’s logical offset. This logical offset is computed at compile time,
and for every field f in every class C an extra static field f o is added to that class,
whose value represents the logical offset of f in class C. No extra fields are added for
array cells, as the logical offset of each cell corresponds to its index. Within a memory
transaction, when there is a read or write memory access to a field f of an object O,
or to the array element A[i], the runtime passes the pair (O, f o) or (A, i) respectively
as the argument to the call-back function. The STM algorithm shall not differentiate
between field and array accesses. If an algorithm wants to, e.g., associate a lock with
a field, it has to store the lock in an external table indexed by the hash value of the
pair (O, f o) or (A, i). STM algorithm implementations must comply with a well defined
Java interface, as depicted in Figure 1. The methods specified in the interface are the
call-back functions that are injected by the instrumentation process in the application
code. For each read and write of a field of an object, the methods onReadAccess and
onWriteAccess, are invoked respectively. The method beforeReadAccess is called
before the actual read of an object’s field.

3 Supporting the In-Place Scheme in Deuce

In our approach to extend Deuce to support the in-place scheme, we replace the previous
pair of arguments to call-back functions (O, f o) with a new metadata object f m, whose
class is specified by the STM algorithm’s programmer. We guarantee that there is a
unique metadata object f m for each field f of each object O, and hence the use of f m

to identify an object’s field is equivalent to the pair (O, f o). The same applies to arrays,
where we ensure that there is a unique metadata object am for each position of any
array A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs con-
siderably for class fields and array elements, a common interface is used to interact with
the STM algorithm implementation. This common interface is supported by a well de-
fined hierarchy of metadata classes, illustrated in Figure 2, where the rounded rectangle
classes are defined by the STM algorithm developer.
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TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Fig. 2. Metadata classes hierarchy

public class TxField {
public Object ref;
public final long offset;
public TxField(Object ref, long offset) {

this.ref = ref;
this.offset = offset;

}
}

Fig. 3. TxField class

public interface ContextMetadata {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(TxField field);
int onReadAccess(int value, TxField field);
// ... onReadAccess for the remaining types
void onWriteAccess(int value, TxField field);
// ... onWriteAccess for the remaining types

}

Fig. 4. Context interface for implementing an STM algorithm supporting in-place metadata

All metadata classes associated with class fields extend directly from the top class
TxField (see Figure 3). The constructor of TxField class receives the object ref-
erence and the logical offset of the field. All subclasses must call this constructor.
For array elements, we created specialized metadata classes for each primitive type
in Java, the TxArr*Field classes, where * ranges over the Java primitive types1. All
the TxArr*Field classes extend from TxField, providing the STM algorithm with a
simple and uniform interface for call-back functions.

We defined a new interface for the call-back methods (see Figure 4). In this new
interface, the read and write call-back functions (onReadAccess and onWriteAcess

respectively) receive only the metadata TxField object, not the object reference and
logical offset of the Context interface. This new interface coexists with the original
one in Deuce, allowing new STM algorithms to access the in-place metadata while
ensuring backward compatibility.

The TxField class can be extended by the STM algorithm programmer to include
additional information required by the algorithm for, e.g., locks, timestamps, or

1 int, long, float, double, short, char, byte, boolean, and Object.
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@InPlaceMetadata(
fieldObjectClass="TL2ObjField",
fieldIntClass="TL2IntField",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
public class TL2Context implements ContextMetadata {

...
}

Fig. 5. Declaration of the STM algorithm specific metadata

class C {
int a;
Object b;

}
=⇒

class C {
int a;
Object b;
final TxField a_metadata;
final TxField b_metadata;

}

Fig. 6. Example transformation of a class with the in-place scheme

version lists. The newly defined metadata classes need to be registered in our frame-
work to enable its use by the instrumentation process, using a Java annotation in the
class that implements the STM algorithm, as exemplified in Figure 5. The programmer
may register a different metadata class for each kind of data type, either for class field
types or array types. As shown in the example of Figure 5, the programmer registers the
metadata implementation class TL2IntField for the fields of int type, by assigning
the name of the class to the fieldIntClass annotation property.

The STM algorithm must implement the ContextMetadata interface (Figure 4)
that includes a call-back function for the read and write operations on each Java type.
These functions always receive an instance of the super class TxField, but no confu-
sion arises from there, as each algorithm knows precisely which metadata subclass was
actually used to instantiate the metadata object.

Lets now see where and how the metadata objects are stored, and how they are used
on the invocation of the call-back functions. We will explain separately the management
of metadata objects for class fields and for array elements.

3.1.1 Adding Metadata to Class Fields
During the execution of a transaction, there must be a metadata object f m for each
accessed field f of object O. Ideally, this metadata object f m is accessible by a single
dereference operation from object O, which can be achieved by adding a new metadata
field (of the corresponding type) for each field declared in a class C. The general rule
for this process can be described as: given a class C that has a set of declared fields
F = { f1, . . . , fn}, for each field fi ∈ F we add a new metadata object field f m

i+n to C,
such that the class ends with the set of fields Fm = { f1, . . . , fn, f m

1+n, . . . , f m
n+n}, where

each field fi is associated with the metadata field f m
i+n for any i ≤ n. In Figure 6 we show

a concrete example of the transformation of a class with two fields.
Instance and static fields are expected to have instance and static metadata fields, re-

spectively. Thus, instance metadata fields are initialized in the class constructor, while
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static metadata fields are initialized in the static initializer (static { ... }). This
ensures that whenever a new instance of a class is created, the corresponding metadata
objects are also new and unique, while static metadata objects are the same in all in-
stances. Since a class can declare multiple constructors that can call each other, using
the telescoping constructor pattern [1], blindly instantiating the metadata fields in all
constructors would be redundant and impose unnecessary stress on the garbage collec-
tor. Therefore, the creation and initialization of metadata objects only takes place in the
constructors that do not rely in another constructor to initialize its target.

Opposed to the transformation approach based in the decorator pattern, where prim-
itive types must be replaced with their object equivalents (e.g., in Java an int field is
replaced by an Integer object), our transformation approach keeps the primitive type
fields untouched, simplifying the interaction with non-transactional code, limiting the
code instrumentation and avoiding auto-boxing and its overhead.

3.1.2 Adding Metadata to Array Elements
The structure of an array is very strict. Each array cell contains a single value of a well
defined type and no other information can be added to those cells. The common ap-
proach to overcome this limitation, and add some more information to each cell, is to
change the original array to an array of objects that wrap the original value and also
contain the additional information. This straight forward transformation has many im-
plications in the application code, as statements accessing the original array, or array
elements, will now have to be rewritten to use the new array type, or wrapping class,
respectively. This problem is even more complex if the new arrays with wrapped ele-
ments are to be manipulated by non-instrumented libraries, such as the JDK libraries,
which are unaware of the new array types.

We address this matter by changing the type of the array to be manipulated by
the instrumented application code, but with minimal impact on the performance of
non-instrumented code. We keep all the values in the original array, and have a sib-
ling second array, only manipulated by the instrumented code, that contains the addi-
tional information and references to the original array. The type in the declaration of the
base array is changed to the type of the corresponding sibling array (TxArr*Field),
as shown in Figure 7. This Figure also illustrates the general structure of the sibling
TxArr*Field arrays (in this case, a TxArrIntField array). Each cell of the sibling
array has the metadata information required by the STM algorithm, its own position/in-
dex in the array, and a reference to the original array where the data is stored (i.e., where
the reads and updates take place). This scheme allows the sibling array to keep a meta-
data object for each element of the original array, while maintaining the original array
always updated and compatible with non-instrumented legacy code. With this approach,
the original array can still be retrieved with a minimal overhead by dereferencing twice
the sibling TxArr*Field array. Since the original array serves as the backing store,
no memory allocation or copies need to be performed, even when array elements are
changed by non-instrumented code.

Non-transactional methods that have arrays as parameters are also instrumented
to replace the array type by the corresponding sibling TxArr*Field. For non-
instrumented methods, the method signature does not provide information enough
to know if there is the need to revert to primitive arrays. Take, for example, the
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class D {
int[] a; //base array

}
=⇒ class D {

TxArrIntField[] a;
TxField a_metadata;

}
class TxArrIntField {

int[] array; //base array
int index;

}

Fig. 7. Memory structure of a TxArrIntField array

void foo(int[] a) {
// ...
t = a[i];

}

=⇒
void foo(TxArrIntField[] a) {

// ...
t = a[0].array[i];

}

Fig. 8. Example transformation of array access in the in-place scheme

System.arraycopy(Object, int, Object, int, int) method from the Java
platform. The signature refers Object but it actually receives arrays as arguments. We
identify these situations by inspecting the type of the arguments on a virtual stack2 and
if an array is found, despite the method’s signature, we revert to primitive arrays. The
value of an array element is then obtained by dereferencing the pointer to the original
array kept in the sibling, as illustrated in Figure 8. When passing an array as argument to
an non-instrumented method (e.g., from the JDK library), we can just pass the original
array instance. Although the instrumentation of non-transactional code adds an extra
dereference operation when accessing an array, we still do avoid the auto-boxing of
primitive types, which would impose a much higher overhead.

3.1.3 Adding Metadata to Multi-dimensional Arrays
The special case of multi-dimensional arrays is tackled using the TxArrObjectField
class, which has a different implementation from the other specialized metadata array
classes. This class has an additional field, nextDim, which may be null in the case
of a unidimensional reference type array, or may hold the reference of the next ar-
ray dimension by pointing to another array of type TxArr*Field. Once again, the
original multi-dimensional array is always up to date and can be safely used by non-
instrumented code. Figure 9 depicts the memory structure of a bi-dimensional array of
integers. Each element of the first dimension of the sibling array has a reference to the
original integer matrix. The elements of the second dimension of the sibling array have
a reference to the second dimension of the matrix array.

2 During the instrumentation process we keep the type information of the operand stack.
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Fig. 9. Memory structure of a multi-dimensional TxArrIntField array

The limitations of our support for in-place metadata for single- and multi-dimensional
arrays in Deuce are discussed with further detail in [5].

4 Evaluation of the In-Place Scheme

The implementation of the proposed Deuce extension, described in the previous sec-
tions, introduces more complexity to the transactional processing when comparing with
the original Deuce implementation. This complexity, in the form of additional memory
operations and allocations, may slowdown the performance in some cases. In our first
step to assess the extension implementation performance, we evaluate the overhead of
the new implementation by comparing it with the original Deuce implementation.

In a second step we evaluate the performance speedup of using our extension to
implement a multi-version STM algorithm, against an implementation of the same
algorithm using the original Deuce interface. We chose a well known multi-version
STM algorithm, JVSTM, described in [3], and implemented two versions of the algo-
rithm, one using the original Deuce interface and an out-place scheme (referred to as
jvstm-outplace), and another using our new interface and extension supporting an
in-place scheme (referred to as jvstm-inplace).

Both the overhead and speedup evaluations are preformed using several micro- and
macro-benchmarks. Micro-benchmarks are composed by the Linked List, Red-Black
Tree, and Skip-List data structures. Macro-benchmarks are composed by the STAMP [4]
benchmark suite and the STMBench7 [9] benchmark. All these benchmarks were ex-
ecuted in our extension of Deuce with in-place metadata with no changes whatsoever,
as all the necessary bytecode transformations were performed automatically by our in-
strumentation process. The benchmarks were executed on a computer with four AMD
Opteron 6272 16-Core processors @2.1GHz with 8×2MB of L2 cache, 16 MB of L3
cache, and 64GB of RAM, running Debian Linux 3.2.41 x86 64, and Java 1.7.0 21.
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Fig. 10. Performance overhead measure of the usage of metadata objects relative to out-place TL2

In the following sections we describe in detail, and present the results, of the over-
head evaluation as well as the speedup evaluation.

4.1 Overhead Evaluation

To evaluate the overhead introduced by the management of the metadata object fields
and sibling arrays as required by our extension, we measured and compared the perfor-
mance of two very similar implementations of the TL2 algorithm, which only differ in
which API (context interface) is used to implement the algorithm: one uses the origi-
nal API as provided by the Deuce distribution, and another (named tl2-overhead)
uses the new interface of our modified Deuce (as described in Figure 4 in page 170). The
change of API requires the additional management of metadata objects (allocation, and
array manipulation), and two additional dereferences on the metadata object to obtain
the field’s object reference and the field offset, for each read and write operation.

Figure 10 depicts the average overhead introduced by the tl2-overhead imple-
mentation with respect to the original Deuce TL2 implementation. The Figure reports
on several benchmarks, with each benchmark aggregating results from executions rang-
ing form 1 to 64 threads. The overhead of the additional management of metadata ob-
jects and sibling arrays is in average about 20%. The benchmarks that use metadata
arrays (SkipList, Kmeans, Genome, Labyrinth, SSCA2) have in general a higher over-
head than those that only use metadata objects for class fields (RBTree, STMBench7,
Vacation, Intruder). The micro-benchmarks (Linked List, Red-Black Tree and Skip-
List) were all tested in four scenarios: with a read-only workload (0% of updates), and
read-write workloads with 10%, 50%, and 90% of updates. These micro-benchmarks
are composed of small transactions which only perform read and write accesses to
shared memory, and thus, the overhead is more visible. The higher overhead in the
LinkedList micro-benchmark is due to the long running transactions that perform a very
large number of read operations, and our extension requires an external table lookup and
an additional object dereference to retrieve the metadata object for each memory read
operation.

The STAMP benchmarks, show relatively low overhead,except for the SSCA2+
benchmark. These benchmarks have medium sized transactions which perform some
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computations with the data read from the shared memory. The SSCA2+ benchmark
only preforms read and write operations over arrays, and may be considered the worst-
case scenario for our extension. The STMBench7 benchmark was executed with a
read-dominant workload, without long-traversals, and with structural modifications ac-
tivated. In this benchmarks transactions are computationally much heavier, which hides
the small overhead introduced by the management of in-place metadata.

From this results we can conclude that out new in-place scheme introduces a small
overhead due to the management of in-place metadata, but it also enables the efficient
implementation of single- and multi-version STM algorithms in a single STM frame-
work. In the next sections we show the comparison of the performance of the same
multi-version algorithm implemented using the original Deuce framework and our ex-
tension.

4.2 Implementing a Multi-versioning Algorithm: JVSTM

The JVSTM algorithm defines the notion of version box (vbox), which maintains a
pointer to the head of an unbounded list of versions, where each version is composed
by a timestamp and the data value. Each version box represents a distinct memory
location. The timestamp in each version corresponds to the timestamp of the transaction
that created that version, and the head of the version list always points to the most recent
version. During the execution of a transaction, the read and write operations are done in
versioned boxes, which hold the data values. For each write operation a new version is
created and tagged with the transaction timestamp. For read operations, the version box
returns the version with the highest timestamp less than or equal to the transaction’s
timestamp. A particularity of this algorithm is that read-only transactions never abort.
To commit a transaction, a global lock must be acquired to ensure mutual exclusion
with all other concurrent transactions. Once the global lock is acquired, the transaction
validates the read-set, and in case of success, creates the new version for each memory
location that was written, and finally releases the global lock. To prevent version lists
from growing indefinitely, versions that are no more necessary are cleaned up by a vbox
garbage collector.

To implement the JVSTM algorithm, we need to associate a vbox with each field
of each object. For the sake of the correctness of the algorithm, this association must
guarantee a relation of one-to-one between the vbox and the object’s field. We will detail
the implementation of this association for both, the out-place and the in-place strategies.

4.2.1 Out-Place Scheme
To implement JVSTM algorithm in the original Deuce framework, which only supports
the out-place scheme, the vboxes must be stored in an external table3. The vboxes are
indexed by a unique identifier for the object’s field, composed by the object reference
and the field’s logical offset. Whenever a transaction performs a read or write operation
on an object’s field, the respective vbox must be retrieved from the table. In the case
where the vbox does not exists, we must create one and add it into the table. These two
steps, verifying if a vbox is present in the table and creating and inserting a new one

3 We opted to use a concurrent hash table from the java.util.concurrent package.
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public class VBox extends TxField {
protected VBoxBody body;
public VBox(Object ref, long offset) {

super(ref, offset);
body = new VBoxBody(read(), 0, null);

}
// ... methods to access and commit versions

}

Fig. 11. VBox in-place implementation

if not, must be performed atomically, otherwise we would incur in the case where two
different vboxes may be created for the same object’s field. Once the vbox is retrieved
from the table, either it is a read operation and we look for the appropriate version using
the transaction’s timestamp and return the version’s value, or it is a write operation and
we add an entry to the transaction’s write-set.

We use weak references in the table indices to reference the vbox objects and not
hamper the garbage collector from collecting old objects. Whenever an object is col-
lected our algorithm is notified in order to remove the respective entry from the table.

Despite using a concurrent hash map, this implementation suffers from a high over-
head penalty when accessing the table, since it is a point of synchronization for all
the transactions running concurrently. This implementation (jvstm-outplace) will be
used as a base reference when comparing with the implementation of the same JVSTM
algorithm using the in-place scheme (jvstm-inplace).

4.2.2 In-Place Scheme
The in-place version of JVSTM algorithm makes use of the metadata classes to hold
the same information as the vbox in the out-place variant. This will allow direct access
to the version list whenever a transaction is reading or writing.

We extend the vbox class from the TxField class as shown in Figure 11. The actual
implementation creates a VBox class for each Java type in order to prevent the boxing
and unboxing of primitive types. When the constructor is executed, a new version with
timestamp zero is created, containing the current value of the field identified by object
ref and logical offset offset. The value is retrieved using the private method read().
The code to create these VBox objects during the execution of the application is inserted
automatically by our bytecode instrumentation process. The lifetime of an instance of
the class VBox is the same as the lifetime of the object ref. When the garbage collector
decides to collect the object ref, all metadata objects of class VBox associated with
each field of the object ref, are also collected.

Our comparison evaluation shows that the direct access to the version list allowed by
the in-place scheme will greatly benefit the performance of the algorithm. We present
the comparison results in the next section by presenting the speedup of the in-place
version with respect to the out-place version.
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Fig. 12. In-place over Out-place scheme speedup: the case of JVSTM

4.3 Speedup Evaluation

From the evaluation of the in-place management overhead, we concluded that this
scheme is a viable option for implementing algorithms biased to in-place transactional
metadata. Hence, we implemented and evaluated two versions of the JVSTM algo-
rithm as proposed in [3], one in the original Deuce using the native out-place scheme
(jvstm-outplace), and another in the extended Deuce using our in-place scheme
(jvstm-inplace), as described in the previous Section.

Figure 12 depicts the average speedup of our two implementations of the JVSTM al-
gorithm: one In-Place (jvstm-inplace) and another Out-Place (jvstm-outplace).
We used the same set of benchmarks and configuration that was used for the over-
head evaluation in Section 4.1. In The in-place version of the JVSTM algorithm is in
average 7 times faster than its dual out-place version. The speedup observed for the
micro-benchmarks, where transactions are small and contention is low, shows that the
multi-versioning algorithms greatly benefit from our in-place support. In the case of
the STAMP benchmarks, where transactions are submitted to workloads of intensive
contention, the in-place version is much faster than the out-place approach as it avoids
completely the use of a shared external table, which becomes a serious bottleneck in the
presence of high contention. In the special case of KMeans and Intruder benchmarks,
the overhead of managing a shared external table drastically increases the probability
of transaction aborts as depicted in Figure 13, which in turn makes the transactional
throughput to decrease. The STMBench7 macro-benchmark has many long-running
transactions and the overall throughput for both algorithms is relatively low. Even so,
the in-place algorithm is in average 6× faster.

5 State-of-the-Art Multi-version Algorithm’s Implementations

Our main purpose for extending Deuce with support for in-place metadata was to al-
low the efficient implementation of a class of STM algorithms that require a one-to-one
relation between memory locations and their metadata. Multi-version based algorithms
fit into that class, as they associate a list of versions (holding past values) with each
memory location. With the support for in-place metadata we can implement and com-
pare the state-of-the-art multi-version algorithms, both between themselves and with
single-version algorithms.
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Fig. 13. Performance and transaction aborts of JVSTM-Inplace/Outplace for the Intruder and
KMeans benchmarks

To support this fact, we implemented two state-of-the-art multi-version algorithms:
SMV [12] and JVSTM-LockFree [7]. These algorithms are significantly different, al-
though both are MV-permissive [13]. They differ on the progress guarantees, e.g.,
JVSTM-LockFree implements a commit algorithm that is lock-free, while SMV uses
write-set locking, and also differ on the technique used to garbage collect unneces-
sary versions, where JVSTM-LockFree uses a custom parallel garbage collector, while
SMV resorts to the JVM garbage collector by using weak-references. In the following
sections we describe the implementation details of each of the above algorithms.

5.1 SMV – Selective Multi-Versioning STM

The SMV algorithm described in [12] is an MV-permissive multi-version algorithm,
which uses the JVM garbage collector to automatically collect unreachable versions.
The implementation of this algorithm in our extension of Deuce was based on the orig-
inal source code released by the authors4. The original algorithm is object-based, oppo-
site to Deuce, and our extension, which only supports word-based STMs, and hence we
adapted the SMV algorithm to work as a word-base STM.

The transactional metadata required by SMV can be depicted in Figure 14. This is a
direct adaptation of the SMVAdapterLight class provided by the original source code.
Also, we used the same source code that implements the behavior of read- and update-
transactions with minimal changes. We did this by implementing our extension’s inter-
face ContextMetadata as an adapter of the original source code, each transactional
operation (read, write, commit, abort) is forward to the original implementation.

The change from an object-based to a word-based approach only required minimal
changes on the read and write procedures. In the case of a read operation, instead of
returning an object, is returned a field’s value. And in the case of a write operation,
instead of cloning the object to be written and storing in the transaction’s write-set, the
tentative value of a field is stored in the write-set. The overall adaptation of the original
source code to our framework was very easy and fast, which proves the flexibility of
our support for implementing different STM algorithms.

4 http://tx.technion.ac.il/ dima39/sourcecode/
SMVLib-29-06-11.zip

http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip
http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip
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public class SMVObjAdapter extends TxField {
public volatile Object latest;
public int creatorTxnId;
public final AtomicInteger version = new AtomicInteger(1);
public volatile WeakReference<VersionHolder> prev =

new WeakReference<VersionHolder>(null);
// ... public methods

}

Fig. 14. SMV transactional metadata class

public class VBoxAdapter extends TxField {
protected VBox<Object> vbox;
// ... public methods

}

Fig. 15. JVSTM-LockFree transactional metadata class

5.2 JVSTM Lock Free

The JVSTM-LockFree [7] is an adaptation of the original JVSTM algorithm [3], which
enhances the commit procedure using a lock-free algorithm, instead of using a global
lock, and also improves the garbage collector algorithm by the use of a parallel collect-
ing approach. Once again, we based our implementation in the original source code5.

We created a metadata object containing a reference to a vbox, as implemented origi-
nally by the JVSTM-LockFree algorithm. We show the object metadata implementation
in Figure 15. The context class was implemented as an adapter to the original implemen-
tation of the read-only and update transactions. Actually, we used the JVSTM-LockFree
implementation as an external library (JAR file), and the Deuce context class only for-
wards the transactional calls to the external library. This approach was possible because
there was no need to make any changes to the JVSTM-LockFree algorithm, for it to
work in our framework extension.

6 Supporting Efficient Non-transactional code

Multi-version algorithms read and write the data values from and into the list of ver-
sions. This implies that all accesses to fields in shared objects must be done inside
a memory transaction, and thus multi-version algorithms require a strong atomicity
model [2]. Deuce does not provide a strong atomicity model as memory accesses done
outside of transactions are not instrumented, and hence it is possible to have non-
transactional accesses to fields of objects that were also accessed inside memory trans-
actions. This hinders the usage of multi-version algorithms in Deuce. This problem can
be circumvented by rewriting the existing benchmarks to wrap all accesses to shared

5 https://github.com/inesc-id-esw/jvstm

https://github.com/inesc-id-esw/jvstm
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objects inside an atomic method, but such code changes are always a cumbersome and
error prone process. We addressed this problem by proposing an adaptation to the multi-
version algorithms that makes them compatible with the weak atomicity model.

When using a weak atomicity model with a multi-version scheme, updates made
by non-transactional code to object fields are not seen by transactional code and, on the
other way around, updates made by transactional code are not seen by non-transactional
code. The key idea for our solution is to store the value of the latest version in the
object’s field instead of in the node at the head of the version list. When a transaction
needs to read a field of an object, it requests the version corresponding to the transaction
timestamp. If it receives the head version, then it reads the value directly from the
object’s field, otherwise it reads the value from the version node.

The main issue with this approach is how to guarantee the atomicity of the commit of
a new version, because now we have two steps: adding a new version node to the head
of the list and updating the field’s value. These two steps must be atomic with respect
to the other concurrent transactions. Our solution is to create a temporary new version
with an infinite timestamp, making it unreachable for other concurrent transactions,
until we update the value and then change the timestamp to its proper value. The algo-
rithmic adaptation that we propose is not intended to support a workload of intertwined
non-transactional and transactional accesses, but rather a phased workload where non-
transactional code does not execute concurrently with transactional code. Many of the
transactional benchmarks we used exhibit such a phased workload, because the data
structures are initialized in the program startup using non-transactional code. After this
initialization, the transactional code can now operate over the data previously installed
by non-transactional code. After the transactional processing, non-transactional code
may also post-process the data, such as in a case of a validation procedure.

6.1 Read Access Adaptation

In a multi-version scheme, read-only transactions always search for a correct version to
return its value. Each version container holds the timestamp (or version number) and
the respective value. When the transaction finds the correct version, it returns the value
contained in the version.

To support non-transactional accesses mixed with a multi-version scheme, the latest
value of an object’s field is stored in-place, and therefore the head version might not
have the correct value because of a previous non-transactional update. The read proce-
dure of a multi-version transaction must be adapted to reflect the new location of the
latest value. When a transaction queries for a version, and receives the head version, cor-
responding to the latest value, it has to return the value directly from the object’s field.
The pseudo-code of this adaptation is presented below, where the additional operations
are denoted in underline.

1. val := read()

2. ver := find version()

3. return

{
val if is head version(ver)

ver.val otherwise
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The read() function returns the value from the object’s field, the find version func-
tion retrieves the corresponding version according to the transaction timestamp, and the
is head version function asserts if version ver is the head version. This small change
introduces the additional shared memory access performed in step 1. The correctness
of this adaptation can only be assessed with the explanation of the commit adaptation,
which guarantees that whenever the is head version function returns true the value val
is correct.

6.2 Commit Adaptation

The commit operation is typical composed by a validation phase and write-back phase.
In the write-back phase, for each new value present in the write-set, a new version is
created and is stored as the head version. The write-back phase must be atomic, and this
can be achieved using a global lock (JVSTM), a write-set entry locking (SMV), or even
a lock-free algorithm (JVSTM-LockFree).

Our adaptation only makes changes to the write-back phase. In each iteration of
the write-back phase, a new version is installed as the head version of the version list
associated with the object’s field being written. The version contains the commit times-
tamp, which defines the commit ordering, and the new value. Additionally, to support
the weak-atomicity model, we also need to write the new value directly to the object’s
field. The problem that arises with this additional operation is that concurrent transac-
tions need to see the update on the version list, and the update of the object’s value as a
single operation. The key idea to solve this problem is to create a version with a tempo-
rary infinite timestamp, which will prevent concurrent transactions from accessing the
head version, and consequently the object’s field value.

Below we present the pseudo-code of the adaptation to the commit of a new version,
where tc is the timestamp of the transaction that is performing the commit, t∞ is the
highest timestamp, val is the value to be written, and verh is the pointer to the head
version. For the sake of simplicity, we assume that these steps execute in mutual ex-
clusion with respect to other concurrent commits (in Section 6.2.3 we explain how to
apply these steps to a lock-free context as in the JVSTM-LockFree algorithm).

1. verh.value := read()
2. vern := create version(new val, t∞,verh)
3. verh := vern

4. write(new val)
5. verh.timestamp := tc

Once again, the additional changes are denoted in underline. The first step is to update
the value of the head version with the current value of the object’s field. This update is
safe because until this point transactions that retrieve the head version read the value
directly from the object’s field, as described in the previous section. Then we create a
new version with an infinite timestamp and the new value to be written in the object’s
field, and the pointer to the current head version. In the third step, we make the new
version vern the current head version and it becomes visible to all concurrent transac-
tions. This version will never be accessed by any concurrent transaction because of the
infinite timestamp. Then we can safely update the object’s field value in the fourth step
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Fig. 16. Performance comparison between original JVSTM and adapted JVSTM

because no concurrent transaction gets the head version (the head version still has an
infinite timestamp up to this point). In the last step we change the timestamp of the
current head version to its proper value making accessible to concurrent transactions.

The adaptation of the commit operation introduces three new shared memory ac-
cesses, where two of them are write accesses. Thus, this adaptation is expected to
slightly lower the throughput of the multi-version algorithm. We applied this adapta-
tion to the multi-version algorithms that we described previously, and compared the
performance of both versions of each. In the next section we report the experience of
adapting each algorithm.

6.2.1 JVSTM
The JVSTM algorithms preform the commit operation in mutual exclusion with other
concurrent committing transactions. The adaptation of these algorithms to support a
weak-atomicity model is straightforward. The changes that we presented in the previ-
ous section to modify the read and commit operation can be applied directly to both
implementations. Moreover, the Deuce framework already provides the memory value
when a read access is issued (see Figure 4 in page 170), which simplifies the first step
of the read procedure described in Section 6.1.

Figure 16 depicts the performance comparison between the original and adapted
versions of JVSTM. The comparison is done by showing the relative performance of
the adapted version over the original version. The adapted version of JVSTM shows
a performance very similar to the original versions. Sometimes, the adapted version
can even outperform the original version. This is due to the specificity of the Deuce
framework that already provides the memory value for each read access callback. In the
case of the adapted version, most of the times that value is used, opposed to the original
version where the value is always obtained by dereferencing a version container.

6.2.2 SMV
The SMV algorithm defines a different memory layout for the version list. In SMV,
the value of the latest version is stored outside of the version list, which reassembles
our adaptation proposal of storing the latest value directly on the memory location. To
apply the support for a weak-atomicity model, we simply moved the value of the latest
version from an auxiliary variable (used in SMV original implementation) directly to
the associated memory location.
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Fig. 17. Performance comparison between original SMV and adapted SMV

This modification has consequences in the commit operation, which must also be
adapted to atomically update the latest version information and the memory location
value. The first step in the SMV commit operation is to move the latest value and times-
tamp to a newly created version container and add it to the head of the version list. We
change this step by using the latest value stored in memory. In the last step of the SMV
commit operation the variable containing the latest value is updated with the new tenta-
tive value. We changed this step by writing the tentative value directly to memory. The
changes made to the SMV algorithm are minimal and thus we expect that the perfor-
mance differences between the two versions to be also minimal. The results depicted in
Figure 17 confirm our expectations, showing minimal differences between the original
version and adapted version.

6.2.3 JVSTM-LockFree
The JVSTM-LockFree implements a lock free commit operation. The assumption to
apply the adaptation for the commit procedure, presented in Section 6.2, is that the
commit should be done in mutual exclusion. This assumption is true for the previous
algorithms but not for the JVSTM-LockFree. In this algorithm, the commit of a single
version can be done by more than one thread at the same time by resorting to atomic
primitives such as compare-and-swap.

The adaptation of the read procedure is straightforward as in the JVSTM algo-
rithm. The adaptation of the commit procedure is rather complex and requires addi-
tional atomic operations to ensure the correctness of the algorithm. Figure 18 depicts
a simplified version of the original commit. The method commit preforms a compare-
and-swap to install the new version. Other threads may be executing the same method
for the same vbox, but only one of them will install the new version. Further details on
how the JVSTM-LockFree commit algorithm works can be found in [7].

Figure 19 depicts the adapted version of the JVSTM-LockFree commit algorithm
to support a weak-atomicity model. The new algorithm has roughly three times more
operations than the original one. We explain this adapted version by describing how
each step of the adaptation described in Section 6.2 is related to the code listed in the
Figure 19.

The first step verh.value := read() is preformed by lines 5 and 7-9. The update of
the head version’s value (line 8) is done inside a conditional statement because other
concurrent thread may had already preformed the same update. The creation of a new
version in the second step vern := create version(new val, t∞,verh) is preformed in



Framework Support for the Efficient Implementation of Multi-version Algorithms 185

1 public void commit(Object newValue, int txNumber) {
2 Version currHead = this.head;
3 Version existingVersion = currHead.getVersion(txNumber);
4 if (existingBody.version < txNumber) {
5 Version newVer = new Version(newValue, txNumber, currHead);
6 compare_and_swap(this.head, currHead, newVer);
7 }
8 }

Fig. 18. JVSTM-LockFree original commit operation

1 public void commit(Object newValue, int txNumber) {
2 Version currHead = this.head;
3 Version existingVersion = currHead.getVersion(txNumber);
4

5 Object latest = read(memory_location);
6 if (existingVersion == currHead
7 && existingVersion.version < txNumber) {
8 if (this.head == existingVersion) {
9 currHead.value = latest;

10 }
11 Version newVer = new Version(newValue, Integer.MAX_VALUE,
12 currHead);
13 if (compare_and_swap(this.head, currHead, newVer)) {
14 existingVersion = newVer
15 } else {
16 existingVersion = this.head;
17 Version tmpVer = existingVersion.getVersion(txNumber);
18 if (tmpVer.version == txNumber) {
19 existingVersion = tmpVer;
20 }
21 }
22 if (existingVersion.version == Integer.MAX_VALUE) {
23 compare_and_swap(memory_location, latest, newValue);
24 }
25 existingVersion.version = txNumber;
26 }
27 else {
28 if (existingVersion.version < txNumber) {
29 existingVersion = currHead;
30 if (existingVersion.version == Integer.MAX_VALUE)
31 compare_and_swap(memory_location, latest, newValue);
32 existingVersion.version = txNumber;
33 }
34 }
35 }

Fig. 19. JVSTM-LockFree adapted commit operation
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Fig. 20. Performance comparison between original JVSTM-LockFree and adapted JVSTM-
LockFree

line 10. The publication of the new version in the third step verh := vern is preformed in
lines 11-19. In this step we preform a compare-and-swap, as in the original algorithm,
to publicize the new version, but if other concurrent thread already publicize the new
version, then we need to get a pointer to the new version. This is done in lines 14 to 18.
Using this pointer we can preform the final fourth and fifth steps write(new val) and
verh.timestamp := tc, which are done in lines 20-23. The writing of the new value
directly to memory (line 21) is done using a compare-and-swap atomic operation to
prevent lost updates. The update of the version number (line 23) is safe because we
always have a pointer to the correct version container. These last two steps are also
preformed in lines 28-31, in the case when a thread attempting to commit finds out, in
line 6, that other concurrent thread already publicized the new version, and therefore it
helps finishing the commit. Another source of overhead is caused by a limitation of the
compare-and-swap operation, which can only be preformed for reference and integer
types. Thus, for other primitive type such as float, or byte, the compare-and-swap
operations preformed in lines 21 and 29, must be substituted by some mutual exclusion
block. Fortunately the use of compare-and-swap non-supported types in the benchmarks
is rare.

Figure 20 presents the results of comparing the adapted version over the original ver-
sion of JVSTM-LockFree. In the case of the LinkedList micro-benchmark, the trans-
actions generate small write-sets (the add and remove operations only write to a single
object), and typically the commit rate is low due to the long duration of the lookup of
a node, which is linear with the size of the list. As so, the adapted version outperforms
the original version, due to the read accesses that use value directly from memory and
are immediately provided by the Deuce framework. In the case of the SkipList and
RBTree micro-benchmarks, the adapted commit overhead is more notorious when the
contention increases with the number of threads. These benchmarks generate a high
rate of commit operations, although still with small write-sets per transaction. In the
STMBench7 benchmark, known to generate very large read- and write-sets, the adapted
version can only achieve half the performance of the original version. The results con-
firm our performance expectations, and also confirm that the overhead introduced by
adapting a multi-version algorithm to support a weak-atomicity model is almost nil for
algorithms that preform the commit of versions in mutual exclusion, and has a consid-
erable cost otherwise.
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7 Performance Comparison of STM Algorithms

In this chapter we presented an extension of the Deuce framework to support the ef-
ficient implementation of STM algorithms that require a one-to-one relation between
memory locations and transactional metadata, being multi-version algorithms an
instance of this class of algorithms. We evaluated the extension considering the im-
plications in both performance and memory consumption. The results were very satis-
factory and thus we implemented two state-of-the-art multi-version algorithms (SMV
and JVSTM-LockFree).

Given this support for very different classes of STM algorithms, we may now aim
at a fair comparison of their performance, i.e., compare the algorithms implemented in
the same framework and with the same benchmarks. In this section we show the direct
comparison between several out-place and in-place STM algorithms. The list of STM
algorithms chosen for comparison are TL2, JVSTM, JVSTM-LockFree, and SMV. In
the case of TL2 we use two versions: the out-place version (TL2-Outplace) which is
distributed with Deuce, and an in-place version (TL2-Inplace) which we implemented
in our extension. The in-place version moves the locks from the external lock table
to the transactional metadata, and completely avoids the false-sharing on locks. In the
case of multi-version algorithms our measurements were conducted under two settings.
The first setup consisted on executing the (unmodified) benchmarks combined with the
weak-atomicity-adapted multi-version algorithms. In the second setup, we executed a
modified version of the micro-benchmarks and STMBench7 combined with the orig-
inal multi-version algorithms that do not support weak-atomicity. In the comparison
results, we will only use the best of the results of the original and the adapted versions
of each multi-version algorithm. As in the extension evaluation, the benchmarks were
executed on a computer with four AMD Opteron 6272 16-Core processors @2.1GHz
with 8×2MB of L2 cache, 16 MB of L3 cache, and 64GB of RAM, running Debian
Linux 3.2.41 x86 64, and Java 1.7.0 21.

Figure 21 shows the results of the execution of the micro-benchmarks Linked List,
Red-Black Tree, and Skip List. The Linked List benchmark is characterized by transac-
tions with large read-sets and by a high abort rate. In this benchmark the algorithms do
not scale well with the increase in the number of threads. The single-version algorithms
TL2-Outplace and TL2-Inplace exhibit better performance. These algorithms have very
efficient implementations and the read accesses are very lightweight. Additionally, in
the case of read-only transactions, each read access is checked for consistency but the
transaction can safely commit without further verification. To support multiple versions
per memory location, the multi-version algorithms add a high number of extra com-
putations when reading a value from a memory location, with the benefit of avoiding
spurious transaction aborts and hence avoid the re-execution of transactions. Although,
in the micro-benchmarks this possible benefit is not observed. In the Red-Black Tree
and Skip List benchmarks, transactions are very small and fast, and have a low con-
flict probability, except in the Red-Black Tree when tree rotations are preformed. These
benchmarks hide even more the advantages of multi-version algorithms when compared
with single-version algorithms. The poor performance of SMV when compared to the
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Fig. 21. Micro-benchmarks comparison
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Fig. 22. STAMP benchmarks comparison

other multi-version algorithms is due to the strain imposed on the Java garbage collec-
tor: the micro-benchmarks generate millions of transactions per second, generating a
lot of activity of the Java garbage collector.
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Fig. 23. STMBench7 comparison

The comparison results for the STAMP benchmarking suite are depicted in Fig-
ure 22. In these results the y-axis represents execution time and therefore lower values
are better. The benchmarks in this suite exhibit very different workloads, some of them
even generate such high contention that hinders the scaling for all of the tested algo-
rithms. The benchmarks KMeans, Genome, and Intruder, exposes the corner cases of
the adapted JVSTM-LockFree algorithm, hence its performance is strongly penalized.
We believe that the original JVSTM-LockFree algorithm would perform much better
than the adapted version in these particular benchmarks. The TL2 based algorithms
overall exhibit a very good performance. In the Labyrinth benchmark the multi-version
algorithm JVSTM-LockFree presents a very good result. This algorithm has a low abort
rate when compared with the other algorithms, which allows it to not waist so much
work in transaction restarts. In the SSCA2 benchmark all the in-place algorithms suffer
from the high overhead of transactional metadata management shown in Figure 10 of
Section 4.1.

In Figure 23 we show the results for the STMBench7 benchmarks. This benchmark
generate CPU-intensive transactions with large read-sets and write-sets. This bench-
marks allows to exploit the benefits of multi-version algorithms which can avoid spu-
rious aborts and thus achieve better performance than single-version algorithms. The
JVSTM-Lockfree algorithm achieves a good performance, higher than the remaining
algorithms, confirming the advantages of using an MV-permissive algorithm in this
kind of workload. In this benchmark, there is a significant performance difference be-
tween the out-place and in-place versions of TL2 algorithm. The out-place version does
not even scale with the number of threads. The reason of this behavior may be due to
cache locality issues. The in-place version is much more cache-friendly than the out-
place version. The in-place version has a high probability of having the metadata in the
same cache line as the memory location. This does not happen in the out-place version,
and in the special case of STMBench7, where transactions perform a large number of
reads and writes, the out-place version must read many entries from the external lock
table, which may not fit in the cache and requiring much more page transfers from
main memory to the cache. In the write-dominated workload of STMBench7, all algo-
rithms have similar performance with the exception of TL2-Outplace. Although almost
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all transactions are read-write, the multi-version algorithms can still compete with the
single-version TL2-Inplace algorithm, and JVSTM-LockFree almost always exhibit the
best performance.

8 Concluding Remarks

In this chapter we presented an extension of Deuce that provides a performance-wise
support for implementing STM multi-version algorithms. This is achieved by a trans-
formation process of the program Java bytecode that adds new metadata objects for
each class field, and that includes a customized solution for N-dimensional arrays that
is fully backwards compatible with primitive type arrays.

We evaluated the proposed system by measuring the overhead introduced by the new
in-place scheme with respect to the original Deuce implementation. Although we can
observe a light slowdown caused by the in-place metadata management, the slowdown
is quickly absorbed by the performance gains achieved when using the in-place scheme
to store the STM algorithms metadata.

The new efficient implementation support for STM multi-version algorithms al-
lowed to implement two state-of-the-art multi-version algorithms SMV and JVSTM-
LockFree. Moreover, we present the first performance comparison between the two.

Finally, we proposed an algorithmic adaptation for multi-version algorithms to sup-
port the weak-atomicity model as provided in the Deuce framework. We reported the
experience of adapting several state-of-the-art multi-version algorithms and evaluate
their performance. In general, multi-version algorithms can be adapted to support the
weak-atomicity model without a performance penalty, except the case of the algorithms
that implement a lock-free commit operation.
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