
Conflict Detection in Hardware Transactional Memory

Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata

Dept. Computer Architecture, University of Malaga, E-29071, Malaga, Spain
{quislant,eladio,zapata,oplata}@uma.es

Abstract. This chapter is dedicated to the conflict detection mechanism in the
context of hardware transactional memory (HTM) systems. An effective mecha-
nism is needed to detect conflicts amongst transactions, thus ensuring atomicity
while allowing concurrency. Together with version management and conflict res-
olution, the conflict detection mechanism is one of the main design choices in
HTM systems.

In this chapter, the two most common ways of detecting conflicts are de-
scribed: eager and lazy. Then, we discuss the main HTM approaches to conflict
detection, from the very first system proposed by Herlihy and Moss in 1993, to
the commercial systems delivered by Intel or IBM, amongst others. Finally, a sur-
vey on conflict detection virtualization, i.e. support for unbounded transactions,
is presented, emphasizing the signature topic.

1 Introduction

One of the most important design choices in hardware transactional memory (HTM)
systems is how to address the conflict detection problem. Transactions must be per-
ceived by the user as though they were a single, indivisible instruction. That is, the
HTM system must ensure the atomicity property of transactions. A single global lock
is able to provide atomicity, but eliminates concurrency. In order for a HTM system to
exploit potential parallelism, an effective mechanism must be designed that keeps track
of every memory access issued by transactions to detect conflicts amongst them and
preserve atomicity.

Conflict detection mechanisms can be classified into two main categories depending
on when data conflicts are detected: eager and lazy.

Eager Conflict Detection

When conflicts are detected eagerly, the HTM system has to intercept each memory ac-
cess so that the conflict is detected just before it occurs. This way of detecting conflicts
is conservative since it keeps transactions from working with stale data, thus reducing
the amount of useless computation.

Eager conflict detection can be combined with either form of version management,
also categorized as eager and lazy, where eager version management updates trans-
actional data directly to memory, and lazy version management isolates transactional
writes into a private buffer. We can therefore find eager-eager HTM approaches [4,19]
and eager-lazy ones [2,15,26].

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 127–149, 2015.
c© Springer International Publishing Switzerland 2015

128 R. Quislant et al.

Most HTM systems rely on the cache coherence mechanism to detect conflicts early
[2,15,19,27]. Note that having transactional state together with each cache block allows
the conflict detection mechanism to check for conflicts in an effective way. Although
the cache coherence protocol is a critical element of a multicore processor, which is
difficult to specify and verify [31], this is a common way to address eager conflict
detection implementation.

As far as conflict resolution is concerned, eager conflict detection enables another
alternative than aborting transactions, which is stalling them [19]. As conflicts are de-
tected just before happening, the HTM system might as well delay the resolution of the
conflicting memory access until it is not a conflict anymore. The involved transaction is
then stalled and its work preserved unless the transaction has to be aborted eventually,
either to ensure forward progress or to avoid performance pathologies [5].

Lazy Conflict Detection

With lazy conflict detection the HTM system allows transactions to access shared data
concurrently regardless of conflicts, whose detection is deferred to commit time. This
kind of conflict detection is optimistic, as it encourages parallelism. However, the lazy
approach could readily serialize execution when conflicts are often encountered, be-
cause the only conflict resolution possibility is to abort one of the conflicting trans-
actions. In general, stalling is impossible with lazy conflict detection. The increased
level of speculation translates into an increased amount of discarded computation in
case of conflict. On the other hand, anti-dependencies (WAR) and output dependencies
(WAW) can be filtered out as the instructions of the committing transaction are consid-
ered sequentially earlier than the instructions of the other transactions that have not yet
committed.

Unlike eager conflict detection, lazy conflict detection can be coupled only with lazy
version management. Otherwise, the isolation property of transactions would not be
enforced as conflicts are not detected until commit time. We can find several lazy-lazy
HTM systems in the literature [7,14].

The lazy conflict detection mechanism can simplify the implementation of the HTM
system by minimizing added complexity to the cache coherence protocol and primary
caches. Private buffers are often used to keep new versions of the data accessed by a
transaction. But the system must deal with an increased interconnection network traffic
as the transactional state of a transaction has to be broadcast in order for the rest of
processors to detect conflicts.

A third form of conflict detection can be considered for those systems that allow
validations inside transactions. Conflict validation consists of checking that the data
accessed by a transaction have not been updated by other transactions, and it can be
thought of as a way to attain a trade-off between eager and lazy conflict detection,
since it can be performed at any point in the transaction. Although validation is more
frequent in software transactional memory (STM) systems, we can also find it in HTM
systems [15], where the conflict is detected eagerly but users can be notified whenever
they ask for validation.

Conflict Detection in Hardware Transactional Memory 129

HTM system proposals can also be classified by the amount of transactional accesses
they are able to track. This can be determined by either the conflict detection or the ver-
sion management mechanism. Depending on whether or not HTM systems can cope
with transactions of any duration and size, they can be classified into unbounded and
bounded HTM systems. Bounded systems, also known as best-effort HTM systems,
are able to deal with transactions that do not overflow their hardware resources or do
not survive operating system events. Some of them burden programmers with the task
of handling overflow events, which defeats a key TM motivation: reducing the diffi-
culty of parallel programming. Conversely, unbounded systems deploy mechanisms to
tackle transactions of any size and duration, thus facilitating the task of transactional
programming.

In this chapter, we focus on hardware conflict detection from the point of view of
bounded and unbounded HTM systems. Section 2 discusses the main HTM proposals
with bounded conflict detection mechanisms. The recent approaches of main hardware
manufacturers are also surveyed. Section 3 is devoted to the unbounded HTM system
proposals and their conflict detection mechanisms, with special interest in signatures
as the means to effective conflict detection virtualization. Finally, Section 4 draws the
conclusions.

2 Bounded Conflict Detection

This section discusses several HTM systems that implements bounded conflict detection
mechanisms. These best-effort systems execute transactions properly as long as certain
events do not occur during the execution.

The main events that can abort transactions in a bounded HTM system, apart from
conflicts, are those coming from the operating system (OS) and the ones caused by
hardware overflow. In regard to OS events, virtual memory paging can cause the relo-
cation of pages that contain transactional data, which means that the physical address of
the data has changed and the conflict detection mechanism loses track of the locations
accessed by a transaction. Also, context switches caused by descheduling or thread mi-
gration are difficult to manage if the transactional information is not visible to the OS.
As far as hardware overflow is concerned, bounded HTM systems are not able to exe-
cute transactions whose data set (DS) is larger than the hardware structures used to hold
it. Usually, the response to these events is to abort the transaction in the hope that they
do not happen again. This can work in case of OS events. However, overflow events are
likely to recur, thus risking livelock whenever a fall-back solution is not provided.

The remainder of this section deals with bounded conflict detection in bounded HTM
systems that use the cache coherence protocol to enforce atomicity (Section 2.1). We
also discuss those systems that use alternative methods to implement the conflict detec-
tion mechanism (Section 2.2). We then review the main approaches taken by hardware
manufacturers (Section 2.3).

2.1 Leveraging the Cache Coherence Protocol

There are several bounded HTM system proposals in the literature that modify the
cache coherence protocol to implement the conflict detection mechanism [2,15,19,27].

130 R. Quislant et al.

They usually implement eager conflict detection. Next, the most relevant characteristics
of them are described.

Herlihy and Moss [15] were the first to propose a HTM implementation leveraging
the cache coherence protocol to detect conflicts amongst transactions and ensure atom-
icity. Figure 1 depicts the hardware needed to implement their proposal. They use a
transactional cache besides the private primary cache to keep track of the data accessed
by transactions, both old and new values. New transactional states are added to those
of the coherence protocol to indicate whether the entry is old or new. Data updates are
performed over the new version. Old versions are discarded (invalidated) on commits,
and new versions are invalidated on aborts. The transactional cache is fully associative
and has additional logic to perform commits and aborts in a single cache cycle, as they
assume a few entries are needed per transaction. The primary cache and the transac-
tional cache are exclusive, so a location can only be in one of them at a time, and the
coherence protocol probes both caches in parallel.

Herlihy and Moss modify an invalidation-based snoopy coherence protocol [13] to
add three more messages related to transactional accesses. One of the new messages
requests a location needed by a transactional load, the second one is for requesting a
location needed by a transactional exclusive load or a transactional store, and the third
message signals a conflict for requested transactional locations (busy message). When a
transaction loads a location, its transactional cache is searched just in case the location
was previously written by the same transaction. In case of a miss, a transactional load
message is broadcast to check all the transactional caches. This is done in one cycle,
as transactional caches are fully associative. If there is at least one hit in the transac-
tional caches, a busy message is sent to the requesting core. Then, the requesting core
sets a flag to false (aborted), indicating that the transaction conflicted and must abort.
Subsequent transactional loads and stores of the conflicting transaction do not cause
network traffic and may return arbitrary values. Therefore, conflict detection can be
said to be eager, although the conflict does not resolve until the program executes a
commit/abort/validate instruction that checks the abort flag.

The use of a fully-associative cache is an important implementation constraint due
to its higher hardware requirements and the slower access time compared with other
implementations. Also, a bus-based coherence protocol limits scalability.

Fig. 1. Herlihy and Moss
HTM implementation.
Transactional data are stored
in an exclusive transactional
cache apart from the pri-
vate primary cache. The
snooping coherence pro-
tocol probes both caches
in parallel on request. The
cache coherence protocol is
modified to detect conflicts
eagerly. Core N

...
Core 1

Data Cache
(direct mapped)

Transactional
Cache (fully assoc)

Exclusive

Shared Bus

CPU

... ...

State Tag Data State Addr Data

Conflict Detection in Hardware Transactional Memory 131

Another approach to bounded conflict detection is that of Moore et al. [19]. They
propose LogTM, a HTM system implementation devised to provide better scalability
and to support larger transactions than the Herlihy and Moss proposal. LogTM virtual-
izes version management by using the concept of before-image log taken from the data
base field, where old values are saved in a per-thread log in cacheable virtual memory.
New values are kept in place and isolation is ensured by the coherence protocol. The
log allows unbounded version management, unlike the fully-associative cache of Her-
lihy and Moss, but it has the disadvantage of slow aborts, as the log has to be undone to
restore old versions. Nevertheless, LogTM is bounded because of the conflict detection
mechanism.

Figure 2 shows the hardware needed to implement conflict detection in LogTM. Pri-
vate caches are augmented with transactional read (R) and write (W) bits per cache
block. These bits are set whenever a location is read or written by a transaction to keep
track of its read set (RS) and write set (WS). The cache must support flash clear of these
bits to reset them when a transaction commits. The system implements a directory that
holds a bit vector of sharers per memory block so that the coherence protocol knows
which cores share the block (multiple readers) or which one owns it (one writer). When
a transaction running in core X requests a block that has been written by another trans-
action running in core A, the coherence protocol (by means of the directory) forwards
the request to core A, which checks the block against its private caches. If the check
is a hit and the W bit is set, then core A accessed the block transactionally. Therefore,
core A sends a NACK message (like Herlihy’s busy message) to core X, which has to
manage the conflict.

LogTM deals with transaction overflow in a peculiar manner. A novel “sticky” state
is defined for those blocks in the directory that were evicted from the second level cache
(L2) during the execution of a transaction. Hence, subsequent requests for those blocks
are still forwarded to that core. The core should check its caches on a forwarded request
for an evicted block. However, the block is not in the caches anymore, so the core should
respond with an ACK, which would result in an atomicity violation. The Overflow bit is
used to avoid this situation. The bit is set whenever a transactional block is evicted, and

Fig. 2. LogTM implemen-
tation. Transactional state is
supported by R/W bits per
cache block. The directory
is not updated when a cache
block is evicted. Instead,
the block state is changed
to “sticky”, and requests
are still forwarded to the
core ensuring atomicity. The
cache controller’s Overflow
flag is set when transactional
data are evicted.

...

Core N
...

Core 1

L1 Data Cache

CPU

...

State Tag R W Data

State Tag R W Data

L2 Cache State Tag Sharers

Directory

Cache Controller
Overflow

Interconnect

132 R. Quislant et al.

the controller checks the bit when a block is not in the caches. If the Overflow bit is set,
the core conservatively NACKs the requester. Sticky states are cleaned lazily once the
transaction has committed. A forwarded request due to a stale sticky state is responded
with a message to clean the sticky state as long as the Overflow bit of the core is cleared.
Otherwise, false conflicts can arise because of overlapping of stale sticky states from an
earlier transactions with an overflowed current one.

Although LogTM can cope with larger transactions it is still a bounded HTM system.
OS events cannot be survived because conflict detection information is not persistent
since it cannot be saved in a context change. Furthermore, LogTM does not resolve
replacements of sticky blocks in the directory.

Having transactional bits or tags to label cache blocks that have been accessed by
transactions, along with the modification of the cache coherence protocol to maintain
atomicity are the main techniques when it comes to implementing the conflict detection
mechanism in these bounded systems. Some approaches before LogTM have used these
same techniques although with certain subtleties. Speculative lock elision (SLE) [27]
associates an Access bit with each cache block that interacts with the coherence pro-
tocol. The difference is that SLE accepts code with locks as input, elides the lock and
speculatively executes the critical section enclosed by the lock as though it is a trans-
action. In case of repeated speculation failure because of conflicts, the lock is acquired
and progress guaranteed. Large transactional memory (LTM) [2] has a T bit per cache
block to label transactional data. The cache coherence protocol uses NACK messages
to hint conflicts. LTM is different from LogTM in the way it deals with cache overflows.
Each cache set is extended with an overflow bit that is set when the block is evicted.
Then, the block moves into an uncached hash table in memory that has to be traversed
by the core on each request from other cores.

2.2 Alternatives to Cache Coherence Protocol Modification

Adding complexity to an already complex mechanism like the cache coherence pro-
tocol or to a fine-tuned structure like a cache memory could bring implementation
issues. Some alternative implementations have been proposed to manage conflict de-
tection without having to make major changes to the cache hierarchy. They are usually
based on lazy conflict detection [7,14].

Transaction coherency and consistency (TCC) [14] is proposed to ease the design of
chip multiprocessors by defining consistency and coherence at the granularity of trans-
actions. Regarding consistency, all memory accesses from a core that commits earlier
happen before the memory accesses of cores that commit later, regardless of if such ac-
cesses actually interleaved each other. The coherence protocol is also simplified since
“shared” and “exclusive” states are not needed anymore. A block can be unmodified or
modified in different cores at the same time, and coherency is enforced at transaction
boundaries.

The TCC’s conflict detection mechanism needs the deployment of the hardware
structures shown in Figure 3. Although no extra complexity is added to the coherence
protocol, the core private caches are modified to include transactional read (R) and mod-
ified (M) bits. Also, a write buffer is required to store modified data addresses. Thus, a
transactional write stores the new value in the cache, sets its M bit and stores the address

Conflict Detection in Hardware Transactional Memory 133

in the write buffer. Transactional loads simply set the R bit. Once the transaction comes
to commit, the core broadcasts the write buffer for the other cores to check it against
their R bits (notice that WAR and WAW dependencies are filtered out). If a core finds a
conflict, it invalidates its modified data by transferring (through NOT gates) the W bits
to the valid bits (V) of the cache, thus keeping caches coherent. An alternative imple-
mentation broadcasts addresses and data to update other caches instead of invalidating
their copies of the data. TCC also suggests an optimization by means of the Rename bit
field that avoids false conflicts because of false sharing of cache blocks. It extends the
M bit to each word or byte in the cache block.

Hammond et al.’s TCC conflict detection mechanism is bounded by the size of the
cache and the write buffer. If these structures overflow, they propose to request commit
permission, which ensures that all earlier transactions have committed and no other has
begun, so there is no need to track transactional information anymore. However, this
can be severely detrimental to the system performance. Also, the commit phase may
suppose a bottleneck to scalability as addresses have to be broadcast one by one, or in
packets. The network bandwidth requirements could increase dramatically, specially if
data are transferred as well.

Qian et al. present OmniOrder [21], a lazy-lazy HTM system that keeps the cache
coherence protocol untouched and conflict-serializes transactions to avoid unnecessary
aborts. The history of transactional stores to a memory block is maintained in a per-
processor fully associative buffer called speculative version buffer (SVB). The SVB’s
information for a memory block is moved piggybacked on coherence messages on each
block’s transition to the M state in a directory-based MESI coherence protocol [30].
From these transitions, each core figures out the processors that are executing prede-
cessor and successor transactions to the one it is executing, and stores that information
into bitmask registers. Thus, if processor P1 updates block B, the coherence protocol
brings B to P1’s cache an set the B’s state to M. The new value of B is also stored in the
P1’s SVB. When another processor, P2, updates B, the unmodified coherence protocol
moves B to P2’s cache and invalidates the block in the P1’s cache. P1 piggybacks the
SVB’s entry for B in the coherence message and P2 is now responsible for it. Also,

Fig. 3. TCC implementa-
tion. A write buffer is added
to store the addresses of
transactional modified data.
Such a buffer is broadcast
on commit for other cores to
check it against their trans-
actional read bits (R). In
case of conflict, their modi-
fied data (M) is invalidated
(V). Alternatively, the write
buffer can be broadcast to-
gether with the modified
values in order to update
instead of invalidating. Core N

...
Core 1

Data Cache

Shared Bus

CPU

...

V Tag Data

Addr

W
rit

e
Bu

ffe
r

StoresLoad & Stores

Rename R M

... ...

134 R. Quislant et al.

P1 is marked as predecessor of P2 so that P2 must commit after P1 filtering out the
WAW output dependence. In case of a cycle where a group of processors are both in
the predecessor and the successor list of each other, one transaction must be aborted to
break the cycle. On L1 cache evictions, OmniOrder aborts the transaction and restarts it
in a conventional transactional mode that does not expose its transactional state to other
transactions.

2.3 Hardware Manufacturers’ Approaches

Hardware manufacturers include HTM support in their multiprocessors that is bounded
and based on the cache hierarchy. Below we describe the main HTM extensions focus-
ing on the implementation of the conflict detection mechanism.

Sun Microsystems’ Rock multicore processor was the first production processor
to include HTM support [8], although it was never distributed commercially as a re-
sult of Sun acquisition by Oracle. Each Rock core has hardware support to run two
threads simultaneously. Rock implements a form of speculative threading that uses
the second thread to execute the code whose data is not yet available because of
long-latency instructions. Rock leverages the speculative threading hardware to sup-
port HTM. In addition, two new instructions have been added to the instruction set:
checkpoint fail-pc to denote the beginning of a transaction, which accepts a
pointer to compensating action code used in case of abort, and commit to denote the
end of the transaction. Also, cache lines include a bit to mark lines as transactional.
Stores within the transaction are placed in the store queue and sent to the L2 cache,
which tracks conflicts with loads and stores from other threads. If the L2 cache detects
a conflict, it reports the conflict to the core, which aborts the transaction. When the
commit instruction begins, the L2 cache locks all lines being written by the transaction.
Locked lines cannot be read or written by any other threads, thus ensuring atomicity.
Rock’s TM supports efficient execution of moderately sized transactions that fit within
the hardware resources. However, a wide variety of events may abort a transaction: in-
validation or replacement of cache lines marked as transactional, interrupts and proces-
sor exceptions, TLB misses, context switches, divide instructions, etc. These constraints
make it difficult to predict and reason about why transactions abort, thus complicating
parallel programming.

AMD Advanced Synchronization Facility (ASF) [11] is proposed as an eager-lazy
AMD64 extension. ASF adds two bits per L1 cache line to mark read and written
data inside a transaction. Besides, two queues are used to hold transactional loads and
stores to guarantee a higher minimum transaction length. This is because a 4-way set-
associative L1 cache implies a minimum transaction size of 4 different cache blocks,
since a mapping miss in a set might cause a transaction to abort. With this design choice
ASF reduces the unpredictable nature of transactions, unlike Rock’s HTM. The AMD
cache coherence protocol detects conflicts by checking the cache transactional bits on
each forwarded coherence request. On commit, the cache bits are flash-cleared and the
L1 cache is update with the data in the store queue. ASF is designed to coexist with an
out-of-order processor design and it allows a transaction to survive branch mispredic-
tions and TLB misses. Last but not least, programmers need to write software fallback
code to deal with capacity overflows.

Conflict Detection in Hardware Transactional Memory 135

Intel has released its Transactional Synchronization Extensions (TSX) [28] on the
multicore processor code-named Haswell. TSX provides two interfaces to denote trans-
actional code. The first one is known as Hardware Lock Elision (HLE — similar to SLE
described in Section 2.1), and involves two prefixes for instructions: XACQUIRE and
XRELEASE. HLE is compatible with the conventional lock-based programming model.
So, software written using the HLE prefixes can run on both legacy hardware without
TSX and new hardware with TSX, since the prefixes correspond to the REPNE/REPE
IA-32 prefixes which are ignored on the instructions whereXACQUIRE andXRELEASE
are valid. Thus, the programmer uses the XACQUIRE prefix in front of the instruction
that is used to acquire the lock which is protecting the critical section. The processor
treats the indication as a hint to elide the write associated with the lock acquire oper-
ation, and a transaction is started instead. If the transaction aborts, the processor will
roll back the execution and then resume it non-transactionally. In case of a proces-
sor not supporting TSX, the lock is acquired normally, and the execution is serialized.
The second interface provided by TSX is known as Restricted Transactional Mem-
ory (RTM) and allows more flexibility in transaction declaration than HLE. RTM adds
three new instruction to the ISA: XBEGIN, XEND and XABORT. Intel does not pro-
vide implementation details of TSX, but gives some hints which suggest that TSX is
a best effort approach to HTM, like Sun’s Rock and AMD’s ASF. That is, they do not
guarantee successful execution of transactions of any size and duration, and they abort
transactions that exceed on-chip resources for HTM, or encounter certain events like
page faults, cache misses or interrupts. Thus, Intel enumerates a list of runtime events
that may cause transactional execution to abort, namely, synchronous and asynchronous
exceptions, memory operations other than write-back cacheable type operations, exe-
cuting self-modifying code, excessive sizes for transactional regions, non-transactional
requests to a cache line accessed within a transaction (strong atomicity [17] is ensured),
and so on.

IBM BlueGene/Q hardware support for TM [33] leverages the L2 cache to imple-
ment the main transactional mechanisms. The shared L2 cache is 16-way set-associative
and it is multi-versioned, to allow multiple versions (old and new speculative data) of
the same physical memory block. Each L2 cache set guarantees up to 10 ways to be used
for transactional writes, so it can handle a maximum transaction size of up to 20MB,
out of the 32MB shared L2 cache. However, a transaction might be aborted with just
11 speculative blocks due to mapping misses. The L2 directory maintains read, write,
and speculative bits per block of the cache, and it also holds a transaction ID to iden-
tify the transaction that read or wrote the block. There are 128 transaction IDs and a
scrubbing process is executed every 132 cycles to recover IDs of aborted or committed
transactions. The conflict detection mechanism uses the read/write bits of the direc-
tory to detect RAW, WAR and WAW conflicts among transactions through the cache
coherence protocol. Also, a conflict is detected when non-transactional code writes a
memory location that was previously accessed by a transaction (BlueGene/Q ensures
strong atomicity). Transactional threads involved in a conflict are hardware interrupted
and the conflict handler resolves the conflict. A special conflict register is set to indicate
the cause of the conflict.

136 R. Quislant et al.

BlueGene/Q extends a pre-existing core design and therefore private L1 caches are
not modified. To ensure forward progress without bothering the programmer, Blue-
Gene/Q uses irrevocability [34], a special transactional mode that, once engaged, en-
sures transaction commit with the impossibility of being aborted. With the irrevocable
mode, transactions can handle I/O irreversible operations, hardware overflows and other
events. A runtime algorithm can make a transaction irrevocable after being aborted a
fixed number of times. Also, if the aborting ratio for that transaction surpasses a thresh-
old, subsequent executions will be performed in irrevocable mode after only one abort.

A different implementation approach to HTM has been used in IBM’s System z main-
frame computers with the microprocessor generation zEC12 [16]. Each IBM zEC12
chip has 6 cores with 2 levels of private caches that share a 3rd-level cache. Six of
these Central Processing (CP) chips are connected to an off-chip 4th-level cache, thus
forming a multi-chip module (MCM) with 36 cores. Up to 4 MCM’s can form a co-
herent SMP system with up to 144 cores. Coherency is managed with a MESI protocol
variant.

Unlike BlueGene/Q, System z chips implement HTM by leveraging the L1 private
cache instead of the shared one. Figure 4 depicts the core organization with the trans-
actional state highlighted. The L1 cache directory is augmented with two transactional
state bits per cache line (tx-read and tx-dirty bits) with flash-clear support to reset all
bits in one cycle on transaction commit. Also, tx-dirty bits are connected to the valid bits
so that every transactional store can be flash-invalidated on aborts. L1 and L2 caches
are store-through caches, so every store causes an L3 access. To hide L1 and L2 store
miss latencies, the core has a store queue and a store cache respectively. Both buffers
are augmented with a tx-dirty bit and are probed in parallel with the caches by the co-
herence protocol. In case of conflict, that is, an exclusive or demote (from exclusive to
shared) coherence request is received, then the core rejects the request back to the sender
which will repeat the coherence request. This mechanism, called stiff-arming [16] or
stall [19], gives more time to the requested core in the hope of finishing its transaction.
The number of rejects is determined by a counter that triggers a transaction abort when
a threshold is exceeded. Thereby, deadlock is prevented.

Fig. 4. IBM System z HTM
implementation. The L1
cache and the store buffers
(both the store queue and
the store cache are used to
hide the store miss latency)
maintain the transactional
state that comprises a tx-
read bit (tx-r) and a tx-dirty
bit (tx-d). The valid bit
is tied to the tx-dirty bit
to flush-invalidate cache
entries in case of abort. The
L1 cache and the buffers
are probed in parallel on a
coherency request.

Store Queue

Private L2

CPU

Private L1

Tags Data

V tx-r tx-d Tags Data tx-d Data

Store Cache

tx-d Data

To Shared L3From Shared L3Coherency
requests
from L3

Coherency
requests
from L2 to L1
and store buffers

Conflict Detection in Hardware Transactional Memory 137

IBM zEC12 processor’s L1 cache is a 96KB cache organized in 64 sets with 6 ways
and 256 byte lines. Its latency is 4 cycles. On the other hand, the private L2 cache is a
1MB 8-way associative cache with a 7 cycle L1 miss penalty. On abort, the tx-dirty lines
in L1 are invalidated (new values), and the old values are very close in L2 at 7 cycle L1
miss penalty. In order for transactions not to be limited by L1 size and associativity, a
special bit per L1 set is asserted whenever a transactional line is evicted from L1. Thus,
transactional footprint capability is extended to L2 size and associativity without mod-
ifying L2, and to the store cache size, at the cost of false positives. The special eviction
bits in the L1 cache do not store address information, so every coherence request for an
address that maps to a set whose eviction bit is set will abort the transaction regardless
of whether the address was transactional or not. Therefore, a false positive might occur.
However, the system can track much larger transactions, specially on the read set. The
write set is limited to the size of the store cache (64 x 128 bytes).

Finally, IBM has added a HTM facility to the POWER8 processor [1,6] from which
few implementation-specific details have been revealed. Each POWER8 core has two
data private caches, L1 and L2, and one bank of a larger shared L3 cache. Unlike Blue-
Gene/Q and System z, the POWER8 processor keeps track of transactional state in
the private L2 cache [1]. When the transaction commits, the new values stored in L2
are committed to the memory sub-system. POWER8 introduces the concept of sus-
pended transactional mode [6] to allow for transactions to survive interruptions (con-
text switches, hypervisor, debuggers,...). In this mode, memory accesses are performed
non-transactionally and cannot be undone if the transaction eventually aborts. The ini-
tiation of a new transaction is prevented, and the hardware tracks conflicts with the
transactional data of the suspended transaction. Stores to memory locations that were
transactionally accessed by the same thread will abort the suspended transaction.

3 Unbounded Conflict Detection

Programming a bounded HTM system might become a difficult task if the hardware is
overflowed persistently, and it can happen more frequently than expected. Table 1 shows
the number of overflowed transactions and the average number of evicted blocks for the
STAMP benchmark suite [18]. Those figures have been obtained from an implicitly
transactional system, where only the boundaries of transactions have to be defined and
all memory accesses within them are tracked1, and 32KB L1D caches. As a result, none
of the benchmarks would have been able to complete in a bounded HTM system that
uses the primary cache to provide transactional support.

Increasing the size of caches does not always guarantee that the HTM system can
handle larger transactions, since an eviction can happen because of mapping misses re-
gardless of whether the cache is full or empty. Bounded HTM systems usually provide
a fallback mechanism to tackle overflowing situations, which might involve the pro-
grammer. However, next we describe several unbounded HTM proposals that are able
to handle transactions of arbitrary size and duration, even in the presence of OS events,
without further programming effort.

1 Conversely, explicitly transactional systems urge the programmer to explicitly identify trans-
actional memory accesses.

138 R. Quislant et al.

Table 1. Number of transactions that overflow the L1D cache and the number of cache blocks
replaced on average, both read and written within a transaction

Benchmark
Overflowed Average Number of Block Evictions

Transactions Read Written
Bayes 102 68.2 100.8
Genome 447 78.7 1.8
Intruder 4511 2.1 0.1
Kmeans 387 1.0 0
Labyrinth 48 62.9 76.8
Vacation 2710 7 0.1
Yada 816 117.2 73.2

3.1 Persistent Meta-Data Systems

The unbounded HTM systems described in this section hold transactional meta-data
(the information needed to perform conflict detection and version management) in vir-
tual memory that persists hardware overflows and OS events.

Unbounded transactional memory (UTM) [2] holds, in virtual memory, a structure
called XSTATE that represents the state of all transactions running in the system. Be-
sides, each memory block is augmented with a transactional read/write bit and a pointer
to the old value of the block that resides in an entry of the XSTATE structure. Such an
entry of the XSTATE structure, in turn, has a pointer to the memory block. So, the XS-
TATE structure holds a linked list of memory blocks whose transactional read/write bits
are set. Conflict detection is carried out eagerly, so every memory access operation must
check the pointer and bits of the memory block to detect any conflict. The access to the
XSTATE and memory block meta-data is done by means of several hardware registers
that hold pointers to their base and bounds. For non-overflowed transactions, UTM im-
plements a conventional cache-based HTM to accelerate execution, called LTM (see
Section 2.1).

Virtual transactional memory (VTM) [26] assigns each transaction a status word
(XSW), which is used to commit or abort the transaction by modifying it atomically
with a CAS instruction. VTM also defines a transaction address data table (XADT),
which is the shared log for holding overflowed transactional data. Both structures reside
in the application’s virtual address space. However, they are invisible to the user. The
VTM system, implemented in either hardware or microcode, manages these structures
by means of new registers added to each thread context that point to them and are
initialized by the application. When a transaction issues a memory operation that is a
cache miss, it must be checked against overflowed addresses by traversing the XADT.
Traversing the XADT might be too slow, so VTM provides two mechanisms for not
interfering with transactions that do not overflow. First, an XADT overflow counter
records the number of overflowed entries. If it is set to zero, no traffic is needed as
it is locally cached at each processor. Second, an XADT filter (XF), implemented as
a software counting Bloom filter [12] that allows deletions, provides fast detection of
conflicts. A miss in the filter guarantees that the address does not conflict, and a hit
triggers an XADT walk.

Conflict Detection in Hardware Transactional Memory 139

TokenTM [4] is an unbounded, eager conflict detection HTM system that augments
each memory block with transactional meta-data. As depicted in Figure 5, the meta-
data consist of a Token and a thread identifier, TID. The system must comply with the
following invariant for each memory block: a block can be non-transactional, part of
the RS of one or more transactions, or part of the WS of only one transaction. There-
fore, a block that is non-transactional will have 0 tokens, and the TID is not necessary.
A block read by one transaction will have 1 token and the TID of the thread executing
such a transaction. A block read by n transactions will have n tokens, and the TID is not
necessary. And a block written by one transaction will have all the tokens, T, and the
TID of the thread that issued the transactional write. So, if a transaction reads a block
with (Token=T,TID=X) and the TID does not match its own TID (the TID is stored in
a CPU register, see Figure 5) a conflict is detected with the thread X. Also, if a trans-
action writes a block with (1,Y), a conflict is detected with the thread Y. However, if a
transaction writes a block with (n,-), the conflict is quickly detected, but the resolution
can be costly, as the TIDs of the n sharers cannot be stored in the TID field. In this case,
if all shared copies of the block were in the cache hierarchy, the coherence protocol
would provide the TIDs of the conflicting transactions. Otherwise, the system has to
traverse the thread logs, that hold old data versions and precise meta-data, in order to
find that information. The coherence protocol is not modified except for piggybacking
the transactional meta-data (Token, TID) in each coherence message. Then, to maintain
meta-data coherency, as multiple copies of a block can coexist in the cache hierarchy,
TokenTM defines simple rules to fission and fusion transactional meta-data.

As transactional meta-data is attached to each memory block, transactions can over-
flow the caches without losing transactional state. Also, conflict detection suffers no
false conflicts unlike other unbounded proposals (see Section 3.2). TokenTM handles
paging and context switches easily by initializing, saving, restoring meta-data, and
flash-clearing/ORing meta-data in L1 cache. Finally, by means of a Fast Release (this
CPU bit is set when none of the locations in the WS have been evicted, so Fast Release
is safe), small transactions that fit in the cache can commit at full hardware speed, just
by flash-clearing their tokens. Larger transactions must walk the log to reset all their
tokens on commit.

Fig. 5. TokenTM imple-
mentation. Each memory
block is augmented with a
field holding a token num-
ber, and another field for
the thread ID, TID, of the
transaction. Caches are also
modified to hold such meta-
data, but the coherence
protocol is not modified.
Meta-data is piggybacked
on coherence messages. Memory Bank

Shared L2 Cache Bank

CPU Private L1

...

TID
Fast
Release

Token TID State Tag Data

Token TID State Tag Data

Token TID Data

Memory Controller

140 R. Quislant et al.

3.2 Signature-Based Systems

Ceze et al. [7] propose Bulk as a mechanism to detach conflict detection from caches,
and they manage to implement an unbounded conflict detection mechanism based on
signatures that is able to track an indeterminate number of addresses and survive certain
OS events like context switches.

Bulk is a lazy-lazy HTM system that presumes an invalidation-based coherence pro-
tocol that works unmodified when dealing with non-transactional data, and puts off
invalidations until commit time when dealing with transactional data. Bulk is similar to
TCC (Section 2.2), but the latter only supports transactional data, thus simplifying the
cache coherence protocol specification. Unlike TCC, Bulk does not hold transactional
state in primary caches. Instead, a Bulk Disambiguation Module (BDM) is defined per
core which supports unbounded conflict detection.

Figure 6 shows the architecture of the BDM. The main part of the module consists
of a set of signatures. Signatures are defined as Bloom filters (see Section 3.2.1), time
and space-efficient hash structures that are implemented as a bit array and a set of hash
functions. Such functions are a surjection between a larger set of addresses, the memory
space, and a smaller set of indexes, the bit array, so the signature represents a superset
of the real RS and WS of transactions. Hence, aliases or false positives can arise that do
not compromise correctness but can hurt system performance as transactions get larger.

Bulk broadcasts fixed-sized signatures on commit for the other cores to invalidate
stale data, just as TCC does, but with the difference that addresses are compacted in
the signature instead of having a write set with individual addresses. The Bulk Func-
tional Units implement operations, like signature intersection, to quickly perform the
disambiguation of addresses. Thus, when a core receives the WS signature from other
core that attempts to commit, the former intersects the received signature with its RS
signature. If the result is not empty the conflict has to be resolved, so the receiver in-
validates its modified data. To invalidate the speculatively written data, the BDM could
walk the cache sets, retrieve the tags of valid entries and perform a membership query
to its WS signature. This could be very inefficient if the number of valid lines is small.
Instead, the BDM has a bit array (Current W Cache Sets) of length the number of sets
in the cache, that holds the valid written sets of the cache and is calculated from the

Fig. 6. Bulk Disambigua-
tion Module (BDM) im-
plementation. Bulk de-
taches transactional state
from caches and defines the
BDM to implement an un-
bounded conflict detection
mechanism. It is based on
signatures, time and space-
efficient hash structures that
are able to store an indefinite
number of addresses at the
cost of false positives.

Bulk Disambiguation Module

Controller

WS RSWS RS

Signatures

Processor

Network

Cache
Controller

...

Overflow

Bulk
Functional

Units

Current W
Cache Sets

ORed W
Cache Sets

Conflict Detection in Hardware Transactional Memory 141

WS signature with a decoding operation of the Bulk Functional Units. Invalidations are
done sequentially, regardless of that optimization.

The BDM has a set of signatures to support context switches and to keep on detect-
ing conflicts with a transaction that has been preempted. In case that the private caches
evict a transactional block, the overflow bit is set. Checking for conflicts with evicted
cache blocks does not necessarily imply traversing an overflow memory space as the
information is in the signature. However, if the module runs out of signatures, the sig-
nature of one thread is moved to the overflow memory space and conflict detection is
carried out like in VTM (see Section 3.1) until one transaction commits and clears one
signature. There is another bit array, the ORed W Cache Sets, that stores the union of
each written cache sets of every signature managed by the BDM, both current and pre-
empted. These bit arrays also help to maintain the set restriction property introduced
by Bulk, by which each cache set must only contain transactional or non-transactional
blocks.

Although Bulk can be considered as unbounded from the conflict detection mecha-
nism point of view, it does not clarify what happens on a page relocation or a thread
migration.

LogTM-SE [35] is the unbounded extension of LogTM. Unlike Bulk, LogTM-SE is
an eager-eager HTM system with an architecture that fully supports unbounded trans-
actions that can survive thread migration, paging, context switches and transactions of
indeterminate size. LogTM-SE stands for LogTM Signature Edition, so it is based on
Bulk signatures, although the eager nature of the conflict detection mechanism simpli-
fies the implementation.

The Bulk’s BDM implements Bulk Functional Units that provide intersect, decode,
and other operations to deal with address disambiguation. The BDM holds the cache
sets of transactionally modified blocks and implements a finite state machine to inval-
idate those blocks on abort, as lazy conflict detection implies bulk disambiguation at
commit time. However, LogTM-SE does not need such a complex hardware surround-
ing the signature since addresses are disambiguated individually and eagerly by the
coherence protocol. When a core, A, reads a block within a transaction, the cache co-
herence protocol forwards the request to the owner of the block, B. Core B checks its
WS signature and responds with an ACK or a NACK message depending on whether it
was a miss or a hit in the signature. If the block is not in the cache hierarchy, it is fetched
from main memory and a signature check is broadcast for the directory to rebuild the
block state in cache. If a core hits its signature, its bit in the bit vector of sharers is set,
and a conflict is signaled if the owner was not core A.

In order to support context switches and migrations, LogTM-SE proposes to add
an additional hardware summary signature per thread context that holds the union of
the signatures from all descheduled threads. In addition, the signatures are saved to the
transaction’s log header to be reinstalled in the normal signature when the thread is
rescheduled. The summary signature is maintained by the OS in software, which is in
charge of interrupting all threads of the same process to set their hardware summary
signature to the global software summary signature. The hardware summary signature
is checked before loads and stores reach the primary cache, so coherence requests do
not have to check the summary signature because that early checking filters out conflicts

142 R. Quislant et al.

1 1 0 0 0 1 0 1 0 0 0 0 ... 1 1 0

x y z

w

In
se

rti
on

Te
st

Hash function
indexes

Fig. 7. Design of a Bloom filter. A false positive scenario.

with descheduled transactions. When a conflict is detected in the summary signature,
the OS traps to a conflict handler since normal hardware conflict resolution is not valid
as one of the conflicting transactions is not running in the system.

With virtual memory paging the problem lies in the fact that signatures operates on
physical memory addresses, so if a page is relocated to a different address space, false
negatives can arise risking incorrect conflict detection. LogTM-SE proposes to interrupt
all threads to update their signatures whenever a page relocation occurs. This signature
update consists in decoding the signature to get the addresses inserted in it and check
if those addresses belonged to the old page. If so, the addresses are reinserted with the
new page address.

LogTM-SE support for virtualization is costly and can be very detrimental to per-
formance if large transactions become the norm. Otherwise, if these OS events are not
frequent, the described mechanisms prove to be an effective solution.

3.2.1 Signature Implementation Enhancements
Signatures have been proved an effective mechanism to implement unbounded conflict
detection. They are implemented as Bloom filters [3], proposed by Burton H. Bloom in
1970 as a time and space-efficient hash coding method with allowable errors. Figure 7
shows the design of a Bloom filter. It comprises a bit array of 2m bits and k different
hash functions that map elements into k randomly distributed bits of the array. Such an
array is initially set to 0, and inserting an element into the filter consists in setting to
1 the k bits indexed by the hash functions. Test for membership consists in checking
that those k bits are asserted. As the array is fixed-sized there exists the possibility of
errors of testing, called false positives. For instance, in Figure 7, elements x, y and z are
inserted in the filter and the bits indexed by the hash functions (k = 2 in this case) are
set to 1. When we test for element w, it happens to be mapped into bits that have already
been set to 1, so the test is a false positive. However, false negatives are not possible.

The probability of false positives rises as signature fills, and it might cause substantial
performance degradation because of false conflicts or false contention. Figure 8 shows
the probability of false positives for a signature implemented as a Bloom filter [3] with
a 1Kbit array and different number of hash functions. The false positive rate is given by
the equation:

pFP(M,n,k) =

(
1−

(
1− 1

M

)nk
)k

≈
(

1− e−
nk
M

)k
, (1)

Conflict Detection in Hardware Transactional Memory 143

where M is the signature size, n the number of insertions and k the number of hash
functions. And pFP can be simplified by using the Taylor series expansion of the expo-
nential function, ex = ∑∞

n=0
1
n! xn [29]. We can see that better false positive probability

is expected for low populated filters and a high number of hash functions (k ∈ {4,8}).
However, the more hash functions the Bloom filter has, the earlier the filter populates
and the higher the false positive probability is expected for high populated filters.

We can find manifold signature implementation proposals in the literature that try to
enhance signature performance by reducing both the false positive rate and the hardware
budget as well.

Bloom filter signatures can be implemented as a k-ported SRAM in its regular
version. However, Sanchez et al. [29] proposed parallel signatures as an alterna-
tive hardware-efficient implementation to regular Bloom filter signatures. Multiported
SRAMs require much hardware as they grow quadratically with the number of ports.
Figure 9 shows the implementation of both regular and parallel filters. Whereas the reg-
ular filter is implemented as a k-ported SRAM, the parallel one consists of k subfilters
implemented as single-ported SRAMs, yielding the same or better false positive rate.

Cuckoo-Bloom signatures are also proposed in [29]. They are intended to perform
like high-k Bloom filters for small transactions, while yielding the false positive rate of
Bloom filters with few hash functions when transactions are large, i.e. Cuckoo-Bloom
signatures try to get the lowest false positive rate in each situation. Cuckoo-Bloom
filters act like a hash table at the beginning of the transaction. Addresses are stored as if
in a set-associative cache, where tags and data are the result of hashing the address with
two independent hash functions, and sets are indexed by other hash function. When
a set is full, the filter executes a sequence of evictions and re-insertions to store the
incoming address. If such a sequence takes too long, the set is converted into a regular
Bloom filter with low k, after storing the addresses into a separate storage space. Then
such addresses are hashed into the newly converted Bloom filter. Lookups are fast, but
insertions are more complicate, and the filter needs certain control logic, additional
storage, a bit array to signal whether a set has been converted into a Bloom filter or
not, and other structures (comparators,...) that complicate the design and might rise the
hardware budget.

Fig. 8. False positive prob-
ability of signatures im-
plemented as regular Bloom
filters. The signature’s bit ar-
ray is 1024bit length and the
number of hash functions
k ∈ {1,2,4,8}.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of elements inserted

P
ro

ba
bi

lit
y

of
 fa

ls
e

po
si

tiv
es

k=8
k=4
k=2
k=1

144 R. Quislant et al.

100110 01010...

h0 h1 hk-1
...

0

Address

0110 1010

h0 h1 hk-1
...

Address

0110 ...

insert

...

query

...

R
eg

ul
ar

 B
lo

om
 F

ilt
er

P
ar

al
le

l B
lo

om
 F

ilt
er

query

insert

2m

2m/k 0

h0 h1 hk-1...

W
or

dl
in

es

Bitlines
k-ported SRAM

of 2m bits

h0 h1 hk-1...

k single-ported SRAM of
2m/k bits

Fig. 9. Regular Bloom filter vs. parallel Bloom filter design and implementation. The bit array is
implemented as a bidimensional SRAM where the most significant bits of the hash index select
the wordline and the less significant bits select the bitline within the word.

An alternative hardware-efficient implementation of hash functions, Page-Block-
XOR hashing (PBX), is proposed in [36]. They use the concept of entropy to find the
highest randomness bits of the address, to allow reducing the hardware complexity of
hash functions, that are usually implemented as a tree of XOR gates per hash index
bit. PBX compacts those trees to a single XOR gate per hash bit, although it requires a
profiling of the application to find the most random address bits. Notary [36] also pro-
poses a technique to reduce the number of asserted bits in the signature. Their approach
is based on segregating addresses into private and shared sets. Then, only the shared
addresses are recorded. This solution requires support at the compiler, runtime/library
and operating system levels. In addition, the programmer must define which objects are
private or shared, which might be a difficult and error-prone task.

Titos et al. [32] propose a directory-based scheme for detection of conflicts in HTM.
They detach conflict detection from the L1 caches and shift it to the directory level.
This approach optimizes eager conflict detection HTM systems with an unordered and
scalable network, when running applications with high number of conflicts. The net-
work traffic is reduced up to 30% since the directory does not have to send signature
check messages to the cores. Furthermore, transactional bookkeeping is more efficient
since transactional information is globally encoded into the directory instead of hav-
ing a local signature per core. Transactions usually access the same shared data which
is not kept redundantly into the directory. The main disadvantage of this proposal is
that hits on private caches do not go through the directory. A message has to be sent
out to notify the directory of transactional loads and stores that hit private caches. The
problem is that the critical path of a private cache cannot be slowed down by an access to

Conflict Detection in Hardware Transactional Memory 145

the directory, so the communication between cache and directory is set asynchronously,
thus introducing races in conflict detection.

Orosa et al. [20] propose FlexSig as a flexible hardware signature implementation
to change dynamically the amount of signatures per core according to system require-
ments. FlexSig groups all signatures in the system into a pool of signatures and assigns
them to the cores on demand. It relies in the fact that all cores are not always running
transactional code at the same time. Thus, if there are only two transactions running in
the system, they will use half of the signature pool each. If other cores start a trans-
action, they demand signature allocation to the pool and it is repartitioned to meet the
necessities of all the cores running transactions in the system, without incurring false
positives.

Choi and Draper [9] propose adaptive grain signatures, that keep the history of trans-
action aborts and dynamically changes the input bit range to the hash functions on the
abort history. The aim of this design is to reduce the number of false positives that harm
the execution performance.

Quislant et al. [22,25] propose locality-sensitive signatures, LS-Sig, that exploit the
spatial locality property of memory references to reduce the probability of false con-
flicts. LS-Sig defines new maps for hash functions to reduce the number of bits inserted
in the filter (occupancy) for those addresses with spatial locality. That is, nearby mem-
ory locations share some bits of the Bloom filter. As a result, false conflicts are signifi-
cantly reduced in transactions that exhibit spatial locality in their read or write sets, but
the false conflict rate remains unalterable for transactions that do not exhibit locality at
all. This is favorable particularly for large transactions that usually present a significant
amount of spatial locality. In addition, as the proposal is based on new locality-aware
hash maps, its implementation does not require extra hardware.

The probability of false positives for LS-Sig can be expressed as follows:

plocal
FP (M,n,k) =

(
1−

(
1− 1

M

)n∑k
t=1 t ft

)k

, (2)

where the exponent nk of Equation 1, which stands for the number of bits of the array
that are set after n insertions, is replaced by n∑k

t=1 t ft . Now, inserting an address in the
filter does not necessarily set k bits as fewer bits can be set depending on locality. ft
is the probability that an insertion only sets t bits in the filter because a nearby address
was already inserted.

Figure 10 shows the analytical evaluation of false positive probability for the generic
Bloom filter given by Equation 1 with several k values, and the proposed LS-Sig scheme
(Equation 2) for k = 4. To parameterize the evaluation, f = ∑k−1

t=1 ft was introduced
as the probability of an address being near to some inserted address. Consequently,
1− f = fk is the probability of being far from those already in the filter. With a generic
Bloom filter low values of k are advantageous for large transactions and high values of
k for small ones. However, it can be inferred from Figure 10 that the LS-Sig scheme
can achieve the benefits of both situations if the address sequence exhibits medium/high
spatial locality.

Unified [10], Multiset and Asymmetric [23,24] signatures are proposed to deal
with asymmetry in transactional data sets. Read and write signatures are usually

146 R. Quislant et al.

Fig. 10. Probability of false
positives of generic and LS-
Sig varying the parameter
f = ∑3

t=1 ft (the higher the
f , the more the locality).

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
f=0
f=0.2

f=0.4

f=0.6

f=0.8

f=0.875

Number of addresses inserted

P
ro

ba
bi

lit
y

of
 fa

ls
e

po
si

tiv
es

Generic Bloom vs Locality Sensitive, 1024 bits

Generic k=4
Generic k=2
Generic k=1
LS−Sig k=4

Fig. 11. Unified (UNI),
Multiset Shared (MS s)
and Asymmetric (ASYM)
signature configurations
studied in [10,23]. UNI
blind is the same as MS
s=4 (the number of hash
functions is set to 4 and
s=4 means that all hashes
are shared between the RS
and the WS). ASYM a=7
devotes 7 subfilters to the
RS and 1 to the WS. SEP
is the conventional separate
parallel signature proposed
in [29].

0

1

0

1

0

0.5

1

MS s=0MS s=1

MULTISET

MS s=2

ASYM a=4
ASYM a=5
ASYM a=6
ASYM a=7

ASYMMETRIC

SEP

MS s=3

SHARED

UNI helper

UNI blind
MS s=4

m
R

m
W

m
MS

m
SH

 ↓ ↓ ↓ ↓ ↓
 hr hw hrhw hrw

implemented as two separate, same-sized Bloom filters. In contrast, transactions fre-
quently exhibit read and write sets of uneven cardinality. In addition, both sets are not
disjoint, as data can be read and also written. This mismatch between data sets and
hardware storage introduces inefficiencies in the use of signatures that have some im-
pact on performance, as, for example, read signatures may populate earlier than write
ones, increasing the expected false positive rate.

Figure 11 shows all the signature configurations explored in [10,23]. There are three
orthogonal axes: asymmetric, shared or unified, and multiset. Asymmetric signatures
are implemented using parallel Bloom filters, where the number of subfilters devoted
to the RS and the WS can be configured via a reconfiguration register that can be set
by a new instruction of the ISA or by the HTM system. A profiled RS to WS ratio
can be computed for each application to configure the asymmetric signature. Multiset
signatures merge RS and WS bit arrays into a common array while keeping their hash
functions separate one another. However, sharing/unifying the hash functions of the
RS and the WS is also proposed and it proves to be a good and general solution to
the problem of asymmetry in data sets. Shared/Unified signatures have the problem of

Conflict Detection in Hardware Transactional Memory 147

introducing read-read dependencies, since they share all hash functions so they cannot
distinguish between read and written locations. In [10], it is proposed to augment the
signature with an extra register to filter out read-read dependencies, called the helper
register, where only writes are stored. The same helper register effect is achieved with
multiset shared signatures by segregating one hash function per set while sharing the
rest (the number of hash functions is assumed greater than one). Last but not least, a
study of the different combinations of multiset shared signatures with LS-Sig is carried
out in [23].

4 Conclusions

The conflict detection mechanism is a key element in the design and implementation
of a HTM system, as it is the means to attain atomicity while providing optimistic
parallelism. In this chapter, we have surveyed the main approaches to hardware conflict
detection implementation and we have classified them into two big groups: bounded
and unbounded.

Whereas unbounded HTM conflict detection mechanisms release the programmers
from worrying about HTM limitations and restrictions, they may require a signifi-
cant multicore architecture modification that could compromise overall system perfor-
mance. Signature-based proposals try to keep the hardware simple but suffers from
false-positives on conflict detection that can be detrimental for the performance.

On the other hand, bounded HTM conflict detection is more feasible from the point
of view of the hardware design and implementation. Several approaches have been ex-
plored that either leverage the cache hierarchy or use alternative implementation solu-
tions. Hardware manufactures have adopted this bounded approach and some of them
are releasing commercial processors with bounded HTM support. However, these HTM
extensions could fail to comply with one of the main features that transactional mem-
ory systems claim to deliver, i.e. simplifying concurrent programming. Thus, effective
unbounded HTM systems, and unbounded conflict detection in particular, could help
to ease multicore processor programming so that transactional memory becomes the
paradigm to use.

Acknowledgement. This work has been supported by the Government of Spain with
project CICYT TIN2010-16144.

References

1. Adir, A., Goodman, D., Hershcovich, D., Hershkovitz, O., Hickerson, B., Holtz, K., Kadry,
W., Koyfman, A., Ludden, J., Meissner, C., Nahir, A., Pratt, R.R., Schiffli, M., St. Onge, B.,
Thompto, B., Tsanko, E., Ziv, A.: Verification of Transactional Memory in Power8. In: 51st
Ann. Design Automation Conference (DAC 2014), pp. 1–6 (2014)

2. Ananian, C., Asanovic, K., Kuszmaul, B., Leiserson, C., Lie, S.: Unbounded transactional
memory. In: 11th Int’l. Symp. on High-Performance Computer Architecture (HPCA 2005),
pp. 316–327 (2005)

148 R. Quislant et al.

3. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM 13(7), 422–426 (1970)

4. Bobba, J., Goyal, N., Hill, M., Swift, M., Wood, D.: TokenTM: Efficient execution of large
transactions with hardware transactional memory. In: 35th Ann. Int’l. Symp. on Computer
Architecture (ISCA 2008), pp. 127–138 (2008)

5. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.: Perfor-
mance pathologies in hardware transactional memory. In: 34th Ann. Int’l. Symp. on Com-
puter Architecture (ISCA 2007), pp. 81–91 (2007)

6. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust architectural
support for transactional memory in the power architecture. In: 40th Ann. Int’l. Symp. on
Computer Architecture (ISCA 2013), pp. 225–236 (2013)

7. Ceze, L., Tuck, J., Torrellas, J., Cascaval, C.: Bulk disambiguation of speculative threads
in multiprocessors. In: 33th Ann. Int’l. Symp. on Computer Architecture (ISCA 2006), pp.
227–238 (2006)

8. Chaudhry, S., Cypher, R., Ekman, M., Karlsson, M., Landin, A., Yip, S., Zeffer, H., Trem-
blay, M.: Rock: A high-performance sparc cmt processor. IEEE Micro 29(2), 6–16 (2009)

9. Choi, W., Draper, J.: Locality-aware adaptive grain signatures for transactional memories.
In: IEEE Int’l. Symp. on Parallel and Distributed Processing (IPDPS 2010), pp. 1–10 (2010)

10. Choi, W., Draper, J.: Unified signatures for improving performance in transactional mem-
ory. In: IEEE Int’l. Parallel Distributed Processing Symp. (IPDPS 2011), pp. 817–827 (May
2011)

11. Chung, J., Yen, L., Diestelhorst, S., Pohlack, M., Hohmuth, M., Christie, D., Grossman, D.:
Asf: Amd64 extension for lock-free data structures and transactional memory. In: 43rd Ann.
Int’l. Symp. on Microarchitecture (MICRO 43), pp. 39–50 (2010)

12. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. on Networking 8(3), 281–293 (2000)

13. Goodman, J.R.: Using cache memory to reduce processor-memory traffic. In: 10th Ann. Int’l.
Symp. on Computer Architecture (ISCA 1983), pp. 124–131 (1983)

14. Hammond, L., Wong, V., Chen, M., Carlstrom, B., Davis, J., Hertzberg, B., Prabhu, M.,
Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consistency.
In: 31th Ann. Int’l. Symp. on Computer Architecture (ISCA 2004), pp. 102–113 (2004)

15. Herlihy, M., Moss, J.: Transactional memory: Architectural support for lock-free data struc-
tures. In: 20th Ann. Int’l. Symp. on Computer Architecture (ISCA 1993), pp. 289–300 (1993)

16. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and implementation
for ibm system z. In: 45th Ann. Int’l Symp. on Microarchitecture (MICRO 45), pp. 25–36
(2012)

17. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity semantics.
IEEE Computer Architecture Letters 5(2), 17–20 (2006)

18. Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Appli-
cations for Multi-Processing. In: IEEE Int’l Symp. on Workload Characterization (IISWC
2008), pp. 35–46 (2008)

19. Moore, K., Bobba, J., Moravan, M., Hill, M., Wood, D.: LogTM: Log-based transactional
memory. In: 12th Int’l. Symp. on High-Performance Computer Architecture (HPCA 2006),
pp. 254–265 (2006)

20. Orosa, L., Antelo, E., Bruguera, J.: FlexSig: Implementing flexible hardware signatures.
ACM Trans. on Architecture and Code Optimization 8(4), 30:1–30:20 (2012)

21. Qian, X., Sahelices, B., Torrellas, J.: Omniorder: Directory-based conflict serialization of
transactions. In: 41th Ann. Int’l. Symp. on Computer Architecture (ISCA 2014) (2014)

22. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Improving signatures by locality exploita-
tion for transactional memory. In: Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT 2009), pp. 303–312 (2009)

Conflict Detection in Hardware Transactional Memory 149

23. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Hardware signature designs to deal with
asymmetry in transactional data sets. IEEE Trans. on Parallel and Distributed Systems 24(3),
506–519 (2013)

24. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Multiset signatures for transactional mem-
ory. In: Int’l. Conf. on Supercomputing (ICS 2011), pp. 43–52 (2011)

25. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: LS-Sig: Locality-sensitive signatures for
transactional memory. IEEE Trans. on Computers 62(2), 322–335 (2013)

26. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: 32th Ann. Int’l.
Symp. on Computer Architecture (ISCA 2005), pp. 494–505 (2005)

27. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling highly concurrent multi-
threaded execution. In: 34th Ann. Int’l. Symp. on Microarchitecture (MICRO 34), pp. 294–
305 (2001)

28. Reinders, J.: Transactional synchronization in Haswell. Intel’s software blogs (2012),
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/

29. Sanchez, D., Yen, L., Hill, M., Sankaralingam, K.: Implementing signatures for transactional
memory. In: 40th Ann. Int’l Symp. on Microarchitecture (MICRO 2007), pp. 123–133 (2007)

30. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coher-
ence, 1st edn. Morgan & Claypool Publishers (2011)

31. Sorin, D.J., Plakal, M., Condon, A.E., Hill, M.D., Martin, M.M.K., Wood, D.A.: Specifying
and verifying a broadcast and a multicast snooping cache coherence protocol. IEEE Trans.
Parallel and Distributed Systems 13(6), 556–578 (2002)

32. Titos, R., Acacio, M.E., Garcı́a, J.M.: Directory-based conflict detection in hardware transac-
tional memory. In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2008. LNCS, vol. 5374, pp. 541–554. Springer, Heidelberg (2008)

33. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera, R., Michael,
M.: Evaluation of Blue Gene/Q hardware support for transactional memories. In: 21st Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT 2012), pp. 127–136
(2012)

34. Welc, A., Bratin, S., Adl-Tabatabai, A.R.: Irrevocable transactions and their applications. In:
20th Symp. on Parallelism in Algorithms and Architectures (SPAA 2008), pp. 285–296 (June
2008)

35. Yen, L., Bobba, J., Marty, M., Moore, K., Volos, H., Hill, M., Swift, M., Wood, D.: LogTM-
SE: Decoupling hardware transactional memory from caches. In: 13th Int’l. Symp. on High-
Performance Computer Architecture (HPCA 2007), pp. 261–272 (2007)

36. Yen, L., Draper, S., Hill, M.: Notary: Hardware techniques to enhance signatures. In: 41st
Ann. Int’l Symp. on Microarchitecture (MICRO 2008), pp. 234–245 (2008)

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Conflict Detection in Hardware Transactional Memory
	1Introduction
	2Bounded Conflict Detection
	2.1Leveraging the Cache Coherence Protocol
	2.2Alternatives to Cache Coherence Protocol Modification
	2.3Hardware Manufacturers' Approaches

	3Unbounded Conflict Detection
	3.1Persistent Meta-Data Systems
	3.2Signature-Based Systems

	4Conclusions
	References

