Safety and Deferred Update in Transactional Memory

Hagit Attiya!, Sandeep Hans', Petr Kuznetsov?, and Srivatsan Ravi’

' Technion
{hagit, sandeep}@cs.technion.ac.il
2 Télécom ParisTech
petr.kuznetsov@telecom-paristech. fr
3 TU Berlin
srivatsan@srivatsan.in

Abstract. Transactional memory allows the user to declare sequences of in-
structions as speculative transactions that can either commit or abort, providing
all-or-nothing semantics. If a transaction commits, it should appear to execute
sequentially, so that the committed transactions constitute a correct sequential ex-
ecution. If a transaction aborts, none of its instructions should affect other trans-
actions. These semantics allow the programmer to incorporate sequential code
within transactions and let the transactional memory care about conflicts between
concurrent transactions. In this sense, it is important that the memory is safe, i.e.,
every transaction has a consistent view even if the transaction aborts later. Other-
wise, inconsistencies not predicted by the sequential program may cause a fatal
irrecoverable error or an infinite loop. Furthermore, in a general setting, where a
transaction may be explicitly aborted by the user or an external contention man-
ager, a transaction should not be allowed to read from a not yet committed trans-
action, which is often called deferred-update semantics. This chapter overviews
the scope of consistency criteria proposed so far to capture deferred-update se-
mantics, and shows that—under reasonable conditions—the semantics induces a
safety property.

1 Introduction

Resolving conflicts in an efficient and consistent manner is a big challenge in concur-
rent software design. Transactional memory (TM) [10, 19] addresses this challenge by
offering an interface in which sequences of shared-memory instructions can be declared
as speculative transactions. The underlying idea, borrowed from databases, is to treat
each transaction as atomic: a transaction may either commit, in which case it appears
as executed sequentially, or abort, in which case none of its update instructions affect
other transactions. The user can therefore design software having only sequential se-
mantics in mind and let the TM take care of conflicts (concurrent reading and writing
to the same memory location) resulting from concurrent executions.

In databases, a correct implementation of concurrency control should guarantee that
committed transactions constitute a serial execution [9]. Uncommitted transactions can
be aborted without invalidating the correctness of committed ones. (In the literature on
databases, the latter feature is called recoverability [9].)

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 50-71, 2015.
(© Springer International Publishing Switzerland 2015

Safety and Deferred Update in Transactional Memory 51

In the TM context, intermediate states witnessed by the read operations of an incom-
plete transaction may affect the application. If the intermediate state is not consistent
with any sequential execution, the application may experience a fatal irrecoverable error
or enter an infinite loop. Thus, it is important that each transaction, including aborted
ones observes a consistent state.

A state should be considered consistent if it could result from a serial application of
transactions observed in the current execution. In this sense, every transaction should
witness a state that could have been observed in some execution of the sequential code
put by the programmer within the transactions. Additionally, a consistent state should
not depend on a transaction that has not started committing yet (referred to as deferred-
update semantics). This restriction appears desirable, since the ongoing transaction may
still abort (explicitly by the user or because of consistency reasons) and, thus, render
the read inconsistent. Further, the set of histories specified by the consistency criterion
must constitute a safety property, as defined by Owicki and Lamport [17], Alpern and
Schneider [1] and refined by Lynch [16]: it must be non-empty, prefix-closed and limit-
closed.

In this chapter, we define the notion of deferred-update semantics formally, which
we then apply to a spectrum of TM consistency criteria. Additionally, we verify if the
resulting TM consistency criterion is a safety property, as defined by Lynch [16].

We first consider the popular criterion of opacity [7]. Opacity requires the states
observed by all transactions, included uncommitted ones, to be consistent with a global
serialization, i.e., a serial execution constituted by committed transactions. Moreover,
the serialization should respect the real-time order: a transaction that completed before
(in real time) another transaction started should appear first in the serialization.

By definition, opacity reduces correctness of a history to correctness of all its pre-
fixes, and thus is prefix-closed and limit-closed by definition. Thus, to verify that a his-
tory is opaque, one needs to verify that each of its prefixes is consistent with some global
serialization. To simplify verification and explicitly introduce deferred-update seman-
tics into a TM correctness criterion, we specify a general criterion of du-opacity [3],
which requires the global serial execution to respect the deferred-update property. In-
formally, a du-opaque history must be indistinguishable from a totally-ordered history,
with respect to which no transaction reads from a transaction that has not started com-
mitting.

Du-opacity is prefix-closed, that is, every prefix of a du-opaque history is also du-
opaque. We then show that extending opacity (and du-opacity) to infinite histories in a
non-trivial way (i.e., requiring that even infinite histories should have proper serializa-
tions), does not result in a limit-closed property. However, under certain restrictions, we
show that du-opacity is limit-closed. In particular, assuming that in an infinite history,
every transaction completes each of the operations it invoked, the limit of any sequence
of ever extending du-opaque histories is also du-opaque. Therefore, under this assump-
tion, du-opacity is a safety property [1,16,17], and to prove that a TM implementation
that complies with the assumption is du-opaque, it suffices to prove that all its finite
histories are du-opaque.

One may notice that the intended safety semantics does not require that all transac-
tions observe the same serial execution. Intuitively, we only need that every transaction

52 H. Attiya et al.

witnesses some consistent state, while the views of different aborted transactions do not
have to be consistent with the same serial execution. As long as committed transactions
constitute a serial execution and every transaction witnesses a consistent state, the exe-
cution can be considered “safe”: no run-time error that cannot occur in a serial execution
can happen. Recently, several definitions adopted this approach: virtual-world consis-
tency (VWC) [12] and Transactional Memory Specifications (TMS) [5]. We introduce
“deferred-update” versions of these proporties and discuss how the resulting properties
relate to du-opacity.

The chapter is organized as follows. In Section 2, we introduce our model definitions,
recall the notion of safety, and recall the original definition of opacity. In Section 3, we
define du-opacity and discuss the property from the safety perspective. In Section 4, we
relate du-opacity to the conventional notion of opacity [7]. In Section 5, we compare
du-opacity to other TM correctness criteria, such as VWC [12], TMS1 and TMS2 [5],
restricted to provide the deferred-update semantics. Section 6 gives a summary of our
comparative analysis and concludes the chapter.

2 Preliminaries

A transactional memory (in short, TM) supports atomic transactions. Each transaction
is a sequence of accesses, reading from and writing to a set of transactional objects (in
short, t-objects). Each transaction T has a unique identifier k.

A transaction T} accesses t-objects with t-operations, each being a matching pair of
invocation and response events: ready (X) returns a value in some domain V or a special
value Ay ¢ V (abort); write(X,v), for a value v € V, returns ok or Ay; tryA; returns
Ay; tryCy, returns a special value Ci ¢ VU {A;} (commir) or Ag.

2.1 Implementations and Histories

We consider an asynchronous shared-memory system in which processes communicate
via transactions. A TM implementation provides processes with algorithms for imple-
menting ready, writeg, tryCy () and tryA; () of a transaction 7.

A history of a TM implementation is a (possibly infinite) sequence of invocation and
response events of t-operations.

For every transaction identifier k, H|k denotes the subsequence of H restricted to
events of transaction T;. If H |k is non-empty, we say that T participates in H, and let
txns(H) denote the set of transactions that participate in H. In an infinite history H, we
assume that for each T € txns(H), H |k is finite; i.e., transactions do not issue an infinite
number of t-operations.

Two histories H and H' are equivalent if txns(H) = txns(H') and for every transac-
tion Ty € txns(H), H)k = H'|k.

A history H is sequential if every invocation of a t-operation is either the last event
in H or is immediately followed by a matching response.

A history is well-formed if for all Ty, H |k begins with an invocation of a t-operation,
H]|k is sequential and has no events after A; or Ci. For simplicity, we assume that all
histories are well-formed, i.e., the client of the transactional memory never invokes a

Safety and Deferred Update in Transactional Memory 53

t-operation before receiving a response from the previous one and does not invoke any
t-operation opy, after receiving C; or Aj. Note that the assumption excludes the TM
designs providing nested parallelism discussed in a dedicated chapter of this book.

The read set of a transaction T} in history H, denoted Rset(T},), is the set of t-objects
that T, reads in H; the write set of Ty in history H, denoted Wset(T}), is the set of
t-objects 7} writes to in H. More specifically, we say that X € Rset(T}) (resp., X €
Wset(T;.)) in H if H contains an invocation of ready(X) (resp., writey(X,v)). We avoid
parameterizing Rset(T;.) and Wset(T}.) with the history H since it is clear from the usage.
If Wset(Ty) # 0, then Ty is an updating transaction.

2.2 Complete Histories and Real-Time Precedence

A transaction T € txns(H) is complete in a history H if H|k ends with a response event.
A history H is complete if all transactions in txns(H) are complete in H.

A transaction Ty, € txns(H) is t-complete if H|k ends with A; or Cy; otherwise, Ty, is
t-incomplete. Ty, is committed (resp., aborted) in H if the last event of T is Cy (resp.,
Ay). The history H is t-complete if all transactions in txns(H) are t-complete.

For t-operations opy,opj, we say that opy precedes op; in the real-time order of H,
denoted opy. <ZT 0pm, if the response of opy, precedes the invocation of op;.

We overload the notation and say, for transactions Ty, T,, € txns(H), that Ty, precedes
T,, in the real-time order of H, denoted Ty, <XT T,,, if T is t-complete in H and the last
event of T} precedes the first event of 7, in H. If neither T -<f]T T, nor T, -<§T Tx,
then T; and T,, overlap in H. A history H is t-sequential if there are no overlapping
transactions in H.

For simplicity of presentation, we assume that each history H begins with an “imag-
inary” t-complete transaction T that writes initial values to all t-objects and commits
before any other transaction begins in H.

2.3 Latest Written Value and Legality

Let H be a t-sequential history. For every operation ready(X) in H, we define the latest
written value of X as follows: if T} contains a writei(X,v) preceding ready (X), then the
latest written value of X is the value of the latest such write to X. Otherwise, the latest
written value of X is the value of the argument of the latest write,,(X,v) that precedes
ready(X) and belongs to a committed transaction in H. (This write is well-defined since
H starts with Tj writing to all t-objects.)

We say that ready(X) is legal in a t-sequential history H if it returns the latest written
value of X, and H is legal if every read;(X) in H that does not return Ay is legal in H.

We also assume, for simplicity, that the client invokes a read; (X) at most once within
a transaction 7. This assumption incurs no loss of generality, since a repeated read can
be assigned to return a previously returned value without affecting the history’s legality.

2.4 Safety

A property &7 is a set of (transactional) histories.

54 H. Attiya et al.

H H
Wi (X, 1 1ryC,
T G
Ry(X) = 1 tryC
oy i —C

Fig. 1. History H is final-state opaque, while its prefix H’ is not final-state opaque

Definition 1 (Lynch [16]). A property & is a safety property if it satisfies the following
two conditions:

Prefix-closure: For every history H € P, every prefix H' of H (i.e., every prefix of the
sequence of the events in H) is also in 2.

Limit-closure: For every infinite sequence of finite histories H*,H' ... such that for
every i, H € & and H' is a prefix of H™', the limit of the sequence is also in 2.

Notice that the set of histories produced by a TM implementation M is, by con-
struction, prefix-closed. Therefore, every infinite history of M is the limit of an infinite
sequence of ever-extending finite histories of M. Thus, to prove that M satisfies a safety
property P, it is enough to show that all finite histories of M are in P. Indeed, limit-
closure of P then implies that every infinite history of M is also in P.

2.5 Opacity

Definition 2 (Completions). Let H be a history. A completion of H, denoted H, is a
history derived from H as follows:

— First, for every transaction Ty, € txns(H) with an incomplete t-operation opy. in H,
if opy = ready \ writey, insert Ay somewhere after the invocation of opy, otherwise,
if opy = tryCy(), insert Cy or Ay somewhere after the last event of Tj.

— After all transactions are complete, for every transaction Ty that is not t-complete,
insert tryCy - Ay after the last event of transaction Ty.

Definition 3 (Guerraoui and Kapalka [7]). A finite history H is final-state opaque if
there is a legal t-complete t-sequential history S, such that

1. for any two transactions Ty, T,, € txns(H), if Ty <X T,,, then Ty <s Ty, and
2. S is equivalent to a completion of H.

We say that S is a final-state serialization of H.

Final-state opacity is not prefix-closed. Figure 1 depicts a t-complete sequential his-
tory H that is final-state opaque, with 7} - 75 being a legal t-complete t-sequential history
equivalent to H. Let H' = write; (X, 1), read>(X) be a prefix of H in which T; and T are
t-incomplete. Transaction 7; (i = 1,2) is completed by inserting tryC; - A; immediately
after the last event of 7; in H. Observe that neither 77 - 7> nor 15 - T; allow us to derive a
serialization of H' (we assume that the initial value of X is 0).

A restriction of final-state opacity, which we refer to as opacity [7] explicitly filters
out histories that are not prefix-closed.

Safety and Deferred Update in Transactional Memory 55

Definition 4 (Guerraoui and Kapalka [7]). A history H is opaque if and only if every
finite prefix H' of H (including H itself if it is finite) is final-state opaque.

It can be easily seen that opacity is prefix- and limit-closed, and, thus, it is a safety
property.

3 Deferred-Update Semantics and Its Properties

We now give a formal definition of opacity with deferred-update semantics. Then we
show that the property is prefix-closed and, under certain /iveness restrictions, limit-
closed.

3.1 Du-Opacity

Let H be any history and let S be a legal t-complete t-sequential history that is equivalent
to some completion of H. Let <g be the total order on transactions in S.

Definition 5 (Local serialization). For any read,(X) that does not return Ay, let SkX
be the prefix of S up to the response of ready(X) and H*X be the prefix of H up to the
response of ready,(X).

Sllfl’x, the local serialization of ready (X) with respect to H and S, is the subsequence
of SYX derived by removing from S©X the events of all transactions Ty, € txns(H) \ {T;;}
such that HX does not contain an invocation of tryC,,().

We are now ready to present our correctness condition, du-opacity.

Definition 6. A history H is du-opaque if there is a legal t-complete t-sequential history
S such that

1. there is a completion of H that is equivalent to S, and

2. for every pair of transactions Ty, T,, € txns(H), if T, <8I Ty, then Ty, <s Ty, i.e., S
respects the real-time ordering of transactions in H, and

3. each ready(X) in S that does not return Ay is legal in S];;X.

We then say that S is a (du-opaque) serialization of H.

Informally, a history H is du-opaque if there is a legal t-sequential history S that is
equivalent to H, respects the real-time ordering of transactions in H and every t-read
is legal in its local serialization with respect to H and S. The third condition reflects
the implementation’s deferred-update semantics, i.e., the legality of a t-read in a serial-
ization does not depend on transactions that start committing after the response of the
t-read.

For any du-opaque serialization S, seq(S) denotes the sequence of transactions in S
and seq(S)[k] denotes the k" transaction in this sequence.

56 H. Attiya et al.

3.2 Du-Opacity Is Prefix-Closed

Lemma 1. Let H be a du-opaque history and let S be a serialization of H. For any
i € N, there is a serialization S' of H' (the prefix of H consisting of the first i events),
such that seq(S") is a subsequence of seq(S).

Proof. Given H, S and H', we construct a t-complete t-sequential history S’ as follows:

— for every transaction Ty that is t-complete in H', S|k = S|k.

— for every transaction 7} that is complete but not t-complete in H’, S'|k consists of
the sequence of events in H'|k, immediately followed by tryCy() - Ay.

— for every transaction 7; with an incomplete t-operation, opy = ready \V write; \V
tryA() in H', S'|k is the sequence of events in S|k up to the invocation of opy,
immediately followed by A;.

— for every transaction T; € txns(H') with an incomplete t-operation, op; = tryC,(),
S'lk = S|k.

By the above construction, S’ is indeed a t-complete history and every transaction
that appears in S’ also appears in S. We order transactions in S’ so that seq(S’) is a
subsequence of seq(S).

Note that S’ is derived from events contained in some completion H of H that is
equivalent to S and some other events to derive a completion of §’. Since S’ contains
events from every complete t-operation in H' and other events included satisfy Defini-
tion 2, there is a completion of H' that is equivalent to S'.

We now argue that S’ is a serialization of H'. First we observe that S’ respects the
real-time order of H'. Indeed, if 7; -<f],T Ty, then T; <X T, and T; <s Ty. Since seq(S')
is a subsequence of seq(S), we have T} <g Tj.

To show that §' is legal, suppose, by way of contradiction, that there is some read;, (X)
that returns v # A in H' such that v is not the latest written value of X in S'. If T} contains
a writey(X,V') preceding ready(X) such that v # v/ and v is not the latest written value
for read,(X) in §', it is also not the latest written value for read(X) in S, which is a
contradiction. Thus, the only case to consider is when read; (X) should return a value
written by another transaction.

Since § is a serialization of H, there is a committed transaction T, that performs
the last write,,(X,v) that precedes ready(X) in T in S. Moreover, since ready(X) is
legal in the local serialization of read, (X) in H with respect to S, the prefix of H up to

the response of read (X) must contain an invocation of tryC,,(). Thus, read; (X) ART

tryC,,() and T,, € txns(H'). By construction of ', T,, € txns(S’) and T,, is committed
in§'.

We have assumed, towards a contradiction, that v is not the latest written value for
ready(X) in S'. Hence, there is a committed transaction 7; that performs write;(X,v');V/
#vin S such that 7,, <g T; <g Tr. But this is not possible since seq(S') is a subse-
quence of seq(S).

Thus, S’ is a legal t-complete t-sequential history equivalent to some completion of
H'. Now, by the construction of S’, for every read; (X) that does not return Ay in S%, we

kX . ik X .
have §';;; = S];{’X. Indeed, the transactions that appear before 7j in §';;; are those with a

tryC event before the response of read; (X) in H and are committed in S. Since seq(S’)

is a subsequence of seq(S), we have Si];_l’f(= Sllfl’x. Thus, ready(X) is legal in Sillc_l’,)-(. O

Safety and Deferred Update in Transactional Memory 57

Fig. 2. An infinite history in which #ryCy is incomplete and any two transactions are concurrent.
Each finite prefix of the history is du-opaque, but the infinite limit of the ever-extending sequence
is not du-opaque.

Lemma 1 implies that every prefix of a du-opaque history has a du-opaque serialization
and thus:

Corollary 1. Du-opacity is a prefix-closed property.

3.3 The Limit of Du-Opaque Histories

We observe, however, that du-opacity is, in general, not limit-closed. We present an
infinite history that is not du-opaque, but each of its prefixes is.

Proposition 1. Du-opacity is not a limit-closed property.

Proof. Let H/ denote a finite prefix of H of length j. Consider an infinite history H that
is the limit of the histories H/ defined as follows (see Figure 2):

— Transaction T} performs a write; (X, 1) and then invokes tryC () that is incomplete
inH.

— Transaction T, performs a read,(X) that overlaps with tryC; () and returns 1.

— There are infinitely many transactions 7;, i > 3, each of which performing a single
read;(X) that returns O such that each T; overlaps with both 7} and 75.

We now prove that, for all j € N, H/ is a du-opaque history. Clearly, H° and H' are
du-opaque histories. For all j > 1, we first derive a completion of H/ as follows:

1. tryCy() (if it is contained in H/) is completed by inserting C; immediately after its
invocation,

2. for all i > 2, any incomplete read;(X) that is contained in H/ is completed by
inserting A; and tryC; - A; immediately after its invocation, and

3. forall i > 2 and every complete read j(X) that is contained in H/, we include tryC; -
A; immediately after the response of this read;(X).

We can now derive a t-complete t-sequential history S/ equivalent to the above de-
rived completion of H/ from the sequence of transactions T3,...,T;,T;,T> (depending
on which of these transactions participate in H/), where i > 3. It is easy to observe that
S/ so derived is indeed a serialization of H/.

However, there is no serialization of H. Suppose that such a serialization S exists.
Since every transaction that participates in H must participate in S, there exists n € N
such that seq(S)[n] = T;. Consider the transaction at index n+ 1, say T; in seq(S). But for
any i > 3, T; must precede 7 in any serialization (by legality), which is a contradiction.

O

58 H. Attiya et al.

Notice that all finite prefixes of the infinite history depicted in Figure 2 are also opaque.
Thus, if we extend the definition of opacity to cover infinite histories in a non-trivial
way, i. e., by explicitly defining opaque serializations for infinite histories, we can re-
formulate Proposition 1 for opacity.

3.4 Du-Opacity is Limit-Closed for Complete Histories

We show now that du-opacity is limit-closed if the only infinite histories we consider are
those in which every transaction eventually completes (but not necessarily t-completes).

We first prove an auxiliary lemma on du-opaque serializations. For a transaction
T € txns(H), the live set of T in H, denoted Lsety (T) (T included), is defined as follows:
every transaction 7' € fxns(H) such that neither the last event of 7’ precedes the first
event of T in H nor the last event of T precedes the first event of 77 in H is contained
in Lsety (T). We say that transaction 7" € txns(H) succeeds the live set of T and we
write T -<gs T' if in H, for all T" € Lsety(T), T" is complete and the last event of 7"
precedes the first event of T”.

Lemma 2. Let H be a finite du-opaque history and assume Ty € txns(H) is a complete
transaction in H, such that every transaction in Lsety (T},) is complete in H. Then there
is a serialization S of H, such that for all Ty, T, € txns(H), if Ty <55 T,,, then Ty <s Tp.

Proof. Since H is du-opaque, there is a serialization S of H.

Let S be a t-complete t-sequential history such that txns(§) = txns(S), and V T; €
txns(S) : S|i = S|i. We now perform the following procedure iteratively to derive seq(S)
from seq(S). Initially seq(S) = seq(S). For each Ty € txns(H), let T; € txns(H) de-
note the earliest transaction in § such that Ty <& T,. If T <g T} (implying 7} is not
t-complete), then move 7 to immediately precede 7y in seq(S).

By construction, S is equivalent to S and for all T, Ty € txns(H); Ty <11r,5 T, T <s T,
We claim that S is a serialization of H. Observe that any two transactions that are com-
plete in H, but not t-complete are not related by real-time order in H. By construction
of S, for any transaction Ty € txns(H), the set of transactions that precede 7} in S, but
succeed T} in S are not related to T} by real-time order. Since S respects the real-time
order in H, this holds also for S.

We now show that S is legal. Consider any ready (X) performed by some transaction
Ty that returns v € V in S and let 7; € txns(H) be the earliest transaction in § such that
T; -<ZS T;. Suppose, by contradiction, that read;(X) is not legal in S. Thus, there is a
committed transaction 7, that performs write, (X,v) in Ssuchthat 7, =Ty or Ty < 5
T,n <g Ti. Note that, by our assumption, ready(X) <& tryC,(). Since ready(X) must
be legal in its local serialization with respect to H and S, read; (X) AR tryC,,(). Thus,
T, € Lsety(Ty). Therefore T,, # T;. Moreover, T,, is complete, and since it commits in
S, it is also t-complete in H and the last event of T, precedes the first event of 7y in H,
i.e., T,, <RT T,. Hence, T; cannot precede T;, in S—a contradiction.

Observe also that since T is complete in H but not t-complete, H does not contain
an invocation of tryCy(). Thus, the legality of any other transaction is unaffected by
moving 7 to precede 7y in S. Thus, S is a legal t-complete t-sequential history equivalent
to some completion of H. The above arguments also prove that every t-read in S is legal
in its local serialization with respect to H and S and, thus, S is a serializationof H. O

Safety and Deferred Update in Transactional Memory 59

The proof uses Konig’s Path Lemma [13] formulated as follows. Let G on a rooted
directed graph and let vg be the root of G. We say that v, a vertex of G, is reachable
from vy, if there is a sequence of vertices vy ...,V such that for each i, there is an edge
from v; to vi41. G is connected if every vertex in G is reachable from vy. G is finitely
branching if every vertex in G has a finite out-degree. G is infinite if it has infinitely
many vertices.

Lemma 3 (Konig’s Path Lemma [13]). If G is an infinite connected finitely branching
rooted directed graph, then G contains an infinite sequence of distinct vertices vo,v1,. . .,
such that v is the root, and for every i > 0, there is an edge from v; to v 1.

Theorem 1. Under the restriction that in any infinite history H, every transaction Ty €
txns(H) is complete, du-opacity is a limit-closed property.

Proof. We want to show that the limit H of an infinite sequence of finite ever-extending
du-opaque histories is du-opaque. By Corollary 1, we can assume the sequence of du-
opaque histories to be H°,H',...H! H™! ... such that for all i € N, H'*! is the one-
event extension of H'.

We construct a rooted directed graph Gy as follows:

1. The root vertex of Gy is (H,S°) where S° and H® contain the initial transaction
To.

2. Each non-root vertex of Gy is a tuple (H',S’), where S’ is a du-opaque serialization
of H' that satisfies the condition specified in Lemma 2: for all Ty, 7,, € txns(H);
T -<ZSI T, implies Ty <g T,,. Note that there exist several possible serializations for
any H i For succinctness, in the rest of this proof, when we refer to a specific St it
is understood to be associated with the prefix H' of H.

3. Let cseq;(S/), j > i, denote the subsequence of seq(S/) restricted to transactions
whose last event in H is a response event and it is contained in H'. For every pair
of vertices v = (H',S") and v/ = (H*! S™1) in Gy, there is an edge from v to V' if
cseq;(S') = cseq;(S™1).

The out-degree of a vertex v = (H',S") in Gy is defined by the number of possi-
ble serializations of H'*!, bounded by the number of possible permutations of the set
txns(S™H), implying that Gy is finitely branching.

By Lemma 1, given any serialization S™*! of H™*!, there is a serialization S’ of H'
such that seq(S) is a subsequence of seq(S'!). Indeed, the serialization S' of H' also
respects the restriction specified in Lemma 2. Since seq(S"*!) contains every complete
transaction that takes its last step in H in H', cseq;(S') = cseq;(S™*"). Therefore, for
every vertex (H'*! S™1) there is a vertex (H',S%) such that cseq;(S') = cseq;(S™H1).
Thus, we can iteratively construct a path from (H°,8°) to every vertex (H',S") in Gy,
implying that Gy is connected.

We now apply Konig’s Path Lemma (Lemma 3) to Gy. Since Gy is an infinite con-
nected finitely branching rooted directed graph, we can derive an infinite sequence of
distinct vertices

2= (H°,8%),(H",S"),...,(H',S,...

such that cseq;(S") = cseq;(S™1).

60 H. Attiya et al.

The rest of the proof explains how to use .Z to construct a serialization of H. We
begin with the following claim concerning .Z.

Claim. For any j > i, cseq;(S') = cseq;(S7).

Proof. Recall that cseg;(S') is a prefix of cseq;(S™!), and cseq, . (S!) is a prefix of
cseq; 1 (S2). Also, cseq;(S™!) is a subsequence of cseg; | (S"*!). Hence, cseq;(S") is
a subsequence of cseq;, ;(S72). But, cseg; ,(S"?) is a subsequence of cseq;,,(S+?).
Thus, cseq;(S?) is a subsequence of cseq;,,(S™"2). Inductively, for any j > i, cseq;(S’)
is a subsequence of cseq; (87). But cseq;(S) is the subsequence of cseq j (87) restricted
to complete transactions in H whose last step is in H'. Thus, cseg;(S’) is indeed equal
to cseq;(S7). a

Let f : N — txns(H) be defined as follows: f(1) = Ty. For every integer k > 1, let
i = min{¢ € N|Vj > £ : cseq,(S))[k] = cseqj(Sj)[k]}

Then, f(k) = cseq;, (S%) [k].
Claim. The function f is fotal and bijective.

Proof. (Totality and surjectivity)

Since each transaction T € txns(H) is complete in some prefix H' of H, for each k €
N, there exists i € N such that cseq;(S?)[k] = T. By Claim 3.4, for any j > i, cseq;(S") =
cseq;(S7). Since a transaction that is complete in H' w.r.t H is also complete in H/ w.r.t
H, it follows that for every j > i, cseq; (8/)[K'] =T, with ¥ > k. By construction of Gy
and the assumption that each transaction is complete in H, there exists i € N such that
each T € Lsety:(T) is complete in H and its last step is in H’, and T precedes in S
every transaction whose first event succeeds the last event of each T’ € Lset i (T) in H'.
Indeed, this implies that for each k € N, there exists i € N such that cseq;(S")[k] = T;
Vji>i: cseqj(Sj)[k} =T.

This shows that for every T € txns(H), there are i,k € N; cseq;(S")[k] = T, such that
for every j > i, cseq;(S/)[k] = T. Thus, for every T € txns(H), there is k such that
flk)y=T.

(Injectivity)

If f(k) and f(m) are transactions at indices k, m of the same cseq;(S"), then clearly
f(k) = f(m) implies k = m. Suppose f(k) is the transaction at index k in some cseq;(S")
and f(m) is the transaction at index m in some cseq,(S%). For every £ > i and k < m, if
cseq;(SH)[k] = T, then cseq,(S*)[m] # T since cseq;(S") = cseq;(S*). If £ > i and k > m,
it follows from the definition that f(k) # f(m). Similar arguments for the case when
¢ < iprove that if f(k) = f(m), then k = m. O

By Claim 3.4, .7 = f(1),f(2),...,f(i),... is an infinite sequence of transactions.
Let S be a t-complete t-sequential history such that seq(S) = % and for each t-complete
transaction 7 in H, S|k = H |k; and for transaction that is complete, but not t-complete in
H, S|k consists of the sequence of events in H |k, immediately followed by tryA;() - Ay.
Clearly, there is a completion of H that is equivalent to S. N

Let .7 be the prefix of .Z of length i, and S’ be the prefix of S such that seq(S") = .Z'.

Safety and Deferred Update in Transactional Memory 61

Wi (X, 1) tryCy
i —— P4
Ra(X) > 1
L
W3 (X, 1 tryC
I (X, yC3 c

Fig. 3. A history that is opaque, but not du-opaque

Claim. Let FAIj be a subsequence of H/ reduced to transactions T; € txns(@) such that
the last event of Tp i in H is a response event and it is contained in H/. Then, for every i,
there is j such that §' is a serialization of H. H/

Proof. Let H/ be the shortest preﬁx of H (from Z) such that for each T € txns(S'\’),
if seq(S/)[k] = T, then for every j > j, seq(S/)[k] = T. From the construction of .%#,

such j and k exist. Also, we observe that rxns(8") C txns(S7) and F' is a subsequence of
seq(S7). Using arguments similar to the proof of Lemma 1, it follows that S'is indeed a
serialization of H/. O

Since H is complete, there is exactly one completion of H, where each transac-
tion 7 that is not t-complete in H is completed with tryC; - A after its last event. By
Claim 3.4, the limit t-sequential t-complete history is equivalent to this completion, is
legal, respects the real-time order of H, and ensures that every read is legal in the cor-
responding local serialization. Thus, S is a serialization of H. ad

Theorem 1 implies the following:

Corollary 2. Let M be a TM implementation that ensures that in every infinite history
H of M, every transaction T € txns(H) is complete in H. Then, M is du-opaque if and
only if every finite history of M is du-opaque.

4 Du-Opacity vs. Opacity

We now compare our deferred-update requirement with the conventional TM correct-
ness property of opacity [7].

Theorem 2. Du-opacity G Opacity.

Proof. We first claim that every finite du-opaque history is opaque. Let H be a finite
du-opaque history. By definition, there is a final-state serialization S of H. Since du-
opacity is a prefix-closed property, every prefix of H is final-state opaque. Thus, H is
opaque.

Again, since every prefix of a du-opaque history is also du-opaque, by Definition 4,
every infinite du-opaque history is also opaque.

To show that the inclusion is strict, we present an an opaque history that is not du-
opaque. Consider the finite history H depicted in Figure 3: transaction 7, performs a
read,(X) that returns the value 1. Observe that read,(X) — 1 is concurrent to tryCy,

62 H. Attiya et al.

but precedes tryCs in real-time order. Although tryC; returns A; in H, the response
of read,(X) can be justified since T3 concurrently writes 1 to X and commits. Thus,
read,(X) — 1 reads-from transaction T, in any serialization of H, but since read, (X) <R"
tryCs, H is not du-opaque even though each of its prefixes is final-state opaque.

We now formally prove that H is opaque. We proceed by examining every prefix

of H.

1. Each prefix up to the invocation of read,(X) is trivially final-state opaque.

2. Consider the prefix, H' of H where the ' event is the response of read,(X). Let S
be a t-complete t-sequential history derived from the sequence 77,7, by inserting
C) immediately after the invocation of tryC| (). It is easy to see that §' is a final-state
serialization of H'.

3. Consider the t-complete t-sequential history S derived from the sequence 11,73, 1>
in which each transaction is t-complete in H. Clearly, S is a final-state serialization
of H.

Since H and every (proper) prefix of it are final-state opaque, H is opaque.

Clearly, the required final-state serialization S of H is specified by seq(S) =T1,T3,T»
in which Tj is aborted while 73 is committed in S (the position of 77 in the serialization
does not affect legality). Consider read,(X) in S; since H>¥, the prefix of H up to the
response of read,(X) does not contain an invocation of tryC;(), the local serialization
of ready(X) with respect to H and S, S5 is Ty - reads(X). But read,(X) is not legal in

S,zi"x, which is a contradiction. Thus, H is not du-opaque. a

4.1 The Unique-Write Case

We now show that du-opacity is equivalent to opacity assuming that no two transactions
write identical values to the same t-object (“unique-write” assumption).
Let Opacity,,, C Opacity, be a property defined as follows:

1. an infinite opaque history H € Opacity,,, if and only if every transaction T €
txns(H) is complete in H, and

2. an opaque history H € Opacity,,, if and only if for every pair of write operations
writep(X,v) and write,, (X V'), v £ V.

Theorem 3. Opacity,,, =du-opacity.

Proof. We show first that every finite history H €Opacity,,, is also du-opaque. Let H
be any finite opaque history such that for every pair of write operations write; (X ,v) and
write, (X ,v), performed by transactions Ty, T, € txns(H), respectively, v # V.

Since H is opaque, there is a final-state serialization S of H. Suppose by contradiction
that H is not du-opaque. Thus, there is a read)(X) that returns a value v € V in S that is
not legal in S/;;X, the local serialization of read (X) with respect to H and S. Let H*X
and S&X denote the prefixes of H and S, respectively, up to the response of read(X) in
H and S. Recall that S];;X, the local serialization of read; (X) with respect to H and S,
is the subsequence of S¥X that does not contain events of any transaction 7; € txns(H)
so that the invocation of #ryC;() is not in H*X. Since read;(X) is legal in S, there is a

Safety and Deferred Update in Transactional Memory 63

WX, 1) W(Y,1) Gy
T 1

Iz } 1T 1 (&}
Wi(X,1) ryCy Ry(X) — 1 Ry(Y) =1
T I—e G nhH— | —

Fig. 4. A sequential du-opaque history, which is not opaque by the definition of [6]

committed transaction 7, € txns(H) that performs write,,(X,v) that is the latest such
write in S that precedes T. Thus, if read;(X) is not legal in SEX the only possibility is
that ready (X) <XT tryC,,(). Under the assumption of unique writes, there does not exist
any other transaction T; € txns(H) that performs write j(X,v). Consequently, there does
not exist any o (some completion of H*X) and a t-complete t-sequential history §',
such that S’ is equivalent to H X and §' contains any committed transaction that writes
vto X. This is, H*X is not final-state opaque. However, since H is opaque, every prefix
of H must be final-state opaque, which is a contradiction.

By Definition 4, an infinite history H is opaque if every finite prefix of H is final-state
opaque. Theorem 1 now implies that Opacity,,, C du-Opacity.

Definition 4 and Corollary 1 imply that du-Opacity C Opacity,,,. O

4.2 The Sequential-History Case

The deferred-update semantics was mentioned by Guerraoui et al. [6] and later adopted
by Kuznetsov and Ravi [14]. In both papers, opacity is only defined for sequential his-
tories, where every invocation of a t-operation is immediately followed by a matching
response. In particular, these definitions require the final-state serialization to respect
the read-commit order: in these definitions, a history H is opaque if there is a final-state
serialization S of H such that if a t-read of a t-object X by a transaction 7; precedes
the tryC of a transaction 7, that commits on X in H, then T; precedes 7, in S. As
we observed in Figure 4, this definition is not equivalent to opacity even for sequential
histories.

The property considered in [6, 14] is strictly stronger than du-opacity: the sequential
history H in Figure 4 is du-opaque (and consequently opaque by Theorem 2): a du-
opaque serialization (in fact the only possible one) for this history is 77, 73, 7. However,
in the restriction of opacity defined above, 7> must precede 73 in any serialization, since
the response of read,(X) precedes the invocation of tryCs().

5 Du-Opacity vs. Other Deferred-Update Criteria

In this section, we compare du-opacity to other TM correctness conditions, restricted
to provide the deferred-update semantics. We first discuss the stronger TMS2 prop-
erty [5], and then describe deferred-update versions of conditions weaker than opacity,
VWC [12] and TMS1 [5].

64 H. Attiya et al.

Ri(X) =0 wi(X,1 1ryC,
T — G

Ry(X) =0 Wh(Y,1) tryC,
L — G

Fig. 5. A history that is du-opaque, but not TMS2 [5]

5.1 TMS2

Transactional Memory Specification (TMS) 1 and 2 were formulated in I/O automata
[5]. Following [2], we adapt these definitions to our framework and explicitly intro-
duce the deferred-update requirement. We start with TMS2, a restriction of opacity, and
discuss TMS1, a relaxation of du-opacity, in Section 5.3.

Definition 7 (du-TMS2). A history H is du-TMS2 if there is a legal t-complete t-
sequential history S equivalent to some completion, H of H such that

1. for any two transactions Ty, T,, € txns(H), such that T,, is a committed updating
transaction, if Cy -<§T tryC,, or Ay -<§T tryC,,, then Ty, <s T, and

2. for any two transactions Ty, T,, € txns(H), if Ty %ZT T, then Ty, <s T, and

3. each ready(X) in S that does not return Ay is legal in SZ’X.

We refer to S as the du-TMS2 serialization of H.

It has been shown [15] that TMS?2 is a strictly stronger property than Opacity, i.e.,
TMS2 g Opacity. We now show that du-TMS2 is strictly stronger than du-opacity.
Indeed, from Definition 7, we observe that every history that is du-TMS2 is also du-
opaque. The following proposition completes the proof.

Proposition 2. There is a history that is du-opaque, but not du-TMS?2.

Proof. Figure 5 depicts a history H that is du-opaque, but not du-TMS2. Indeed, there
is a du-opaque serialization S of H such that seq(S) = T5,T;. On the other hand, since
T\ commits before 75, 71 must precede 7, in any du-TMS?2 serialization, there does not
exist any such serialization that ensures every t-read is legal. Thus, H is not du-TMS2.

O

Theorem 4. Du-TMS?2 is prefix-closed.

Proof. Let H be any du-TMS2 history. Then, H is also du-opaque. By Corollary 1,
for every i € N, there is a du-opaque serialization S* for H'. We now need to prove
that, for any two transactions T, T,, € txns(H'), such that T, is a committed updating
transaction, if Gy <KT tryC,, or Ay <1 tryC,,, there is a du-opaque serialization S’ with
the restriction that Ty <gi Tp,.

Suppose by contradiction that there exist transactions Ty, T, € txns(H'), such that T,
is a committed updating transaction and Cj, -<ZIT tryC,, or Ay -<§,T tryC,,, but T, must
precede 7; in any du-opaque serialization S*. Since T, §,T T, the only possibility is
that 7, performs write,,(X,v) and there is read)(X) — v. However, by our assumption,

Safety and Deferred Update in Transactional Memory 65

writey(X,v) <RI tryC,,: thus, ready(X) is not legal in its local serialization with respect
to H' and S'—contradicting the assumption that S’ is a du-opaque serialization of H'.
Thus, there is a du-TMS2 serialization for H', proving that du-TMS2 is a prefix-closed
property. O

Proposition 3. Du-TMS?2 is not limit-closed.

Proof. The counter-example to establish that du-opacity is not limit-closed (Figure 2)
also shows that du-TMS?2 is not limit-closed: all histories discussed in the counter-
example are in du-TMS2. O

5.2 Virtual World Consistency (VWC)

Intuitively, VWC [12] and TMSI1 [5] achieve intuitively understood safety of each trans-
action or response, without enforcing a single serialization. Both definitions use the
following “deferred-update” version of strict serializability [18]:

Definition 8 (Strict serializability). A finite history H is strictly serializable if there is
a legal t-complete t-sequential history S, such that

1. there is a completion H of H, such that S is equivalent to cseq(H), where cseq(H)
is the subsequence of H reduced to committed transactions in H,

2. for any two transactions Ty, T, € txns(H), if Ty <ZT T, then Ty precedes T,, in S,
and

3. each ready(X) in S that does not return Ay is legal in SZ’X.

We refer to S as the (strictly serializable) serialization of H.

Notice that every du-opaque history is strictly serializable, but not vice-versa. The fol-
lowing result will be instrumental for understanding the properties of du-VWC and
du-TMSI1.

Theorem 5. Strict serializability is a safety property.

Proof. (Sketch) Observe that any serialization of a finite history H does not include
events of any transaction that has not invoked tryC in H.

To show prefix-closure, a proof almost identical to that of Lemma 1 implies that,
given a strictly serializable history H and a serialization S, there is a serialization S’ of
H' (H' is some prefix of H) such that seq(S’) is a prefix of seq(S).

Consider an infinite sequence of finite histories

0 i i+1
HY,... H H*' . .,

where H'*! is a one-event extension of H', we prove that the infinite limit H of this
ever-extending sequence is strictly serializable. As in Theorem 1, we construct an in-
finite rooted directed graph Gy: a vertex is a tuple (H',S%) (note that for each i € N,
there are several such vertices of this form), where S’ is a serialization of H' and there
is an edge from (H',S%) to (H™!,8™1) if seq(S') is a prefix of seq(S™""). The resulting
graph is finitely branching since the out-degree of a vertex is bounded by the number of

66 H. Attiya et al.

possible serializations of a history. Observe that for every vertex (H'+1 S™1), there is

a vertex H',S") such that seq(S’) is a prefix of seq(S*!). Thus, Gy is connected since

we can iteratively construct a path from the root (H°, S°) to every vertex (H', %) in Gy.

Applying Konig’s Path Lemma to Gy, we obtain an infinite sequence of distinct ver-

tices, (H,8°),(H',S"),...,(H',S"),.... Then, S = 1i_>m S; gives the desired serialization
i—soo

of H. O

Virtual World Consistency (VWC) [12] was proposed as a relaxation of opacity
(in our case, du-opacity), where each aborted transaction should be consistent with its
causal past (but not necessarily with a serialization formed by committed transactions).
Intuitively, a transaction 7 causally precedes 75 if 7, reads a value written and com-
mitted by 7. The original definition [12] required that no two write operations are ever
invoked with the same argument (the unique-writes assumption). Therefore, the causal
precedence is unambiguously identified for each transactional read. Below we give a
more general definition.

Given a t-sequential legal history S and transactions 7;,T; € txns(S), we say that T;
reads X from T; if (1) T; reads v in X and (2) 7; is the last committed transaction that
writes v to X and precedes 7; in S.

Now consider a (not necessarily t-sequential) history H. We say that T; could have
read X from Tjin H if T; writes a value v to a t-object X, T; reads v in X, and read;(X)
A5 tryC;().

Given .7 C txns(H), let H 7 denote the subsequence of H restricted to events of
transactions in .7 .

Definition 9 (du-VWC). A finite history H is du-virtual-world consistent if it is strictly
serializable, and for every aborted or t-incomplete transaction T; € txns(H), there is
T Cwxns(H) including T; and a t-sequential t-complete legal history S such that:

1. S is equivalent to a completion of HY ,

2. Forall Tj, Ty € txns(S), if Tj reads X from Ty in S, then Tj could have read X from
Tk n H,

3. Srespects the per-process order of H: if Tj and Ty are executed by the same process
and T; %ZT Ty, then T; <5 Tx.

We refer to S as a du-VWC serialization for 7; in H.

Intuitively, with every t-read on X performed by 7; in H, the du-VWC serialization S as-
sociates some transaction 7; from which 7; could have read the value of X. Recursively,
with every read performed by 7}, S associates some 7, from which 7} could have read,
etc. Altogether, we get a “plausible” causal past of 7; that constitutes a serial history.
Notice that to ensure deferred-update semantics, we only allow a transaction T; to read
from a transaction 7 that invoked tryC; by the time of the read operation of T;.

We now prove that du-VWC is a strictly weaker property than du-opacity. Since du-
TMS?2 is strictly weaker than du-opacity (cf. Section 5.1), it follows that Du-TMS2 g
du-VWC.

Theorem 6. Du-opacity G du-VWC.

Safety and Deferred Update in Transactional Memory 67

R](X)—}l R](Y)—)O
T —— A

Wh(X,1
) G

R3(X)—>0 W3(Y,l)
s — G

Fig. 6. A history that is du-VWC, but not du-opaque

Proof. If a history H is du-opaque, then there is a du-opaque serialization S equivalent
to H, where H is some completion of H. By construction, § is a total-order on the set
of all transactions that participate in S. Trivially, by taking .7 = txns(H), we derive that
S is a du-VWC serialization for every aborted or t-incomplete transaction 7; € txns(H).
Indeed, S respects the real-time order and, thus, the per-process order of H. Since S
respects the deferred-update order in H, every t-read in S “could have happened” in H.

To show that the inclusion is strict, Figure 6 depicts a history H that is du-VWC, but
not du-opaque. Clearly, H is strictly serializable. Here 7>, 7 is the required du-VWC
serialization for aborted transaction 7. However, H has no du-opaque serialization. O

Theorem 7. Du-VWC is a safety property.

Proof. By Definition 9, a history H is du-VWC if and only if H is strictly serializable
and there is a du-VWC serialization for every transaction 7; € txns(H) that is aborted
or t-incomplete in H.

To prove prefix-closure, recall that strict serializability is a prefix-closed property
(Theorem 5). Therefore, any du-VWC serialization S for a transaction 7; in history H
is also a du-VWC serialization S for a transaction 7; in any prefix of H that contains
events of T;.

To prove limit-closure, consider an infinite sequence of du-VWC histories H?, H',
... HY, H . where each H'! is the one-event extension of H’ and prove that the
infinite limit, H of this sequence is also a du-VWC history. Theorem 5 establishes that
there is a strictly serializable serialization for H.

Since, for all i € N, H! is du-VWC, for every transaction 7; that is t-incomplete or
aborted in H, there is a VWC serialization for 7;. Consequently, there is a du-VWC
serialization for every aborted or incomplete transaction 7; in H. O

5.3 TMS1

Given a history H, TMSI1 requires us to justify the behavior of all committed transac-
tions in H by a legal t-complete t-sequential history that preserves the real-time order
in H (strict serializability), and to justify the response of each complete t-operation per-
formed in H by a legal t-complete t-sequential history S. The t-sequential history S used
to justify a complete t-operation op; ;. (the i t-operation performed by transaction T)
includes T; and a subset of transactions from H whose operations justify op; . (Our
description follows [2].)

Let H*' denote the prefix of a history H up to (and including) the response of "
t-operation opy; of transaction ;. We say that a history H” is a possible past of H*if

68 H. Attiya et al.

H" is a subsequence of H*' and consists of all events of transaction 7; and all events
from some subset of committed transactions and transactions that have invoked #ryC in
H i such that if a transaction T € H”, then for a transaction 7" %ﬂ_i T,T' € H" if and
only if 7’ is committed in H%'. Let cTMSpast(H ,0py;) denote the set of possible pasts
of H*!.

For any history H" € cTMSpast(H,opy;), let ccomp(H") denote the history gener-
ated from H” by the following procedure: for all m # k, replace every event A,, by
C,, and complete every incomplete tryC,, with including C,, at the end of H”; include
tryCy - Ay at the end of H”.

Definition 10 (du-TMS1). A history H satisfies du-TMSI1 if

1. H is strictly serializable, and
2. for each complete t-read op; that returns a non-Ay response in H, there exist a
legal t-complete t-sequential history S and a history H' such that:
— H' = ccomp(H"), where H" € cTMSpast(H ,opy.;)
— H' is equivalent to S
— for any two transactions Ty and Ty, in H', if T -<§,T T then Ty, <s Ty,

We refer to S as the du-TMS1 serialization for op; .
Theorem 8. Du-TMS1 is a safety property.

Proof. A history H is du-TMSI if and only if H is strictly serializable and there is a
du-TMST1 serialization for every t-operation opy ; that does not return Ay in H.

To see that du-TMS is prefix closed, recall that strict serializability is a prefix-closed
property. Let H be any du-TMS1 history and H', any prefix of H. We now need to prove
that, for every t-operation opy ; # tryC, that returns a non-Ay response in H i, there is a
du-TMS1 serialization for opy ;. But this is immediate since the du-TMS1 serialization
for op; ;. in H is also the required du-TMS1 serialization for opy ; in H'.

To see that du-TMSI1 is limit closed, consider an infinite sequence

HO.H' .. H HT' .

of finite du-TMS1 histories, such that H*! is a one-event extension of H'. Let let H be
the corresponding infinite limit history. We want to show that H is also du-TMSI.
Since strict serializability is a limit-closed property (Theorem 5), H is strictly serial-
izable. By assumption, for alli € N, H ! is du-TMS1. Thus, for every transaction 7; that
participates in H', there is a du-TMS1 serialization S"* for each t-operation opy ;. But
S is also the required du-TMS1 serialization for opi,1 in H. The claim follows. g

It has been shown [15] that Opacity is a strictly stronger property than du-TMSI,
that is, Opacity G du-TMSI. Since Du-Opacity & Opacity (Theorem 2) it follows that
Du-Opacity g du-TMSI1. On the other hand, du-TMSI1 is incomparable to du-VWC, as
demonstrated by the following examples.

Proposition 4. There is a history that is du-TMS1, but not du-VWC.

Safety and Deferred Update in Transactional Memory 69

Wi (X,1) tryC,
n— G

Wa(X,0 iC
it —21c,

R3 (X) -0 tryCs
B —43

Fig. 7. A history which is du-VWC but not du-TMS1

Ri(X) =0 Wi (Y, 1 1ryC
ﬁ() (. 1) €y

T Cy
Wh(X,2) tryCy
L G
Rs(X) 50 Wy(Z,3 nCs
3 —— P43
Ry(X) =2 Ry(Y) =0 Ry(Z) =3 e,
o —— — — A

Fig. 8. A history which is du-TMS1 but not du-VWC

Proof. Figure 8 depicts a history H that is du-TMSI1, but not du-VWC. Observe that
H is strictly serializable. To prove that H is du-TMS1, we need to prove that there is
a TMS1 serialization for each t-read that returns a non-abort response in H. Clearly,
the serialization in which only 73 participates is the required TMS1 serialization for
reads(X) — 0. Now consider the aborted transaction 7;. The TMSI serialization for
reads(X) — 2 is Tr, Ty, while the TMS] serialization that justifies the response of
reads(Y)— > 0 includes just Ty itself. The only nontrivial t-read whose response needs
to be justified is reads(Z) — 3. Indeed, tryC; overlaps with reads(Z) and thus, the re-
sponse of reads(Z) can be justified by choosing transactions in cTMSpart(H ,reads(Z))
to be {73, T>, T4 } and then deriving a TMS1 serialization S = T3, T>, T4 for reads(Z) — 3
in which #ryC; may be completed by including the commit response.

However, H is not du-VWC. Consider transaction 73 which returns Az in H: T3 must
be aborted in any serialization equivalent to some direct causal past of 7y. But reads(Z)
returns the value 3 that is written by 73. Thus, reads(Z) cannot be legal in any du-VWC
serialization for 7. O

Proposition 5. There is a history that is du-VWC, but not du-TMS1.

Proof. Figure 7 depicts a history H that is du-VWC, but not du-TMSI1. Clearly, H is
strictly serializable. Observe that 73 could have read only from 77 in H (7 writes the
value 0 to X that is returned by reads;(X)). Therefore, T1, T is the required du-VWC
serialization for aborted transaction T3.

However, H is not du-TMS1: since both transactions 77 and 7> are committed and
precede T3 in real-time order, they must be included in any du-TMSI serialization for
read;(X) — 0. But there is no such du-TMS1 serialization that would ensure the legality
of read;(X). a

70 H. Attiya et al.

Fig. 9. Relations between TM consistency definitions

6 Concluding Remarks

The properties discussed in this paper explicitly preclude reading from a transaction
that has not yet invoked #ryC, which makes them prefix-closed and facilitates their veri-
fication. We believe that this constructive definition is useful to TM practitioners, since
it streamlines possible implementations of t-read and tryC operations.

We showed that du-opacity is limit-closed under the restriction that every operation
eventually terminates, while du-VWC and du-TMS| are (unconditionally) limit-closed,
which makes them safety properties [16].

Figure 9 summarizes the containment relations between the properties discussed in
this chapter: opacity, du-opacity, du-VWC, du-TMS1 and du-TMS2.

Linearizability [4, 11], when applied to objects with finite nondeterminism (i.e., an
operation applied to a given state may produce only finitely many outcomes) sequen-
tial specifications is a safety property [8, 16]. Recently, it has been shown [8] that
linearizability is not limit-closed if the implemented object may expose infinite non-
determinism [8], that is, an operation applied to a given state may produce infinitely
many different outcomes. The limit-closure proof (cf. Theorem 1), using Konig’s
lemma, cannot be applied with infinite non-determinism, because the out-degree of the
graph Gp, constructed for the limit infinite history H, is not finite.

In contrast, the TM abstraction is deterministic, since reads and writes behave de-
terministically in serial executions, yet du-opacity is not limit-closed. It turns out that
the graph Gy for the counter-example history H in Figure 2 is not connected. For ex-
ample, one of the finite prefixes of H can be serialized as T3, T7, T, but no prefix has
a serialization T3, 77 and, thus, the root is not connected to the corresponding vertex of
Gpy. Thus, the precondition of Konig’s lemma does not hold for Gy: the graph is in fact
an infinite set of isolated vertices. This is because du-opacity requires even incomplete
reading transactions, such as 73, to appear in the serialization, which is not the case for
linearizability, where incomplete operations may be removed from the linearization.

Safety and Deferred Update in Transactional Memory 71

References

15.
16.
17.

. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181—

185 (1985)

. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in transactional

memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp- 376-390. Springer, Heidelberg (2014)

. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-

ory. In: ICDCS, pp. 601-610 (2013)

. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced

Topics, 2nd edn. Wiley Interscience (2004)

. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying

transactional memory. Formal Asp. Comput. 25(5), 769-799 (2013)

. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In:

Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305-319. Springer, Heidelberg (2008)

. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on Dis-

tributed Computing Theory. Morgan and Claypool (2010)

. Guerraoui, R., Ruppert, E.: Linearizability is not always a safety property. In: Noubir, G.,

Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8539, pp. 57-69. Springer, Heidelberg (2014)

. Hadzilacos, V.: A theory of reliability in database systems. J. ACM 35(1), 121-145 (1988)
. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2), 289-300 (1993)

. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3), 463-492 (1990)

. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a ver-

satile protocol with invisible read operations). Theor. Comput. Sci. 444 (July 2012)

. Konig, D.: Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie

der Streckenkomplexe. Akad. Verlag (1936)

. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. CoRR,

abs/1103.1302 (2011)

Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: WTTM (2012)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)

Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst. 4(3), 455-495 (1982)

. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631-653

(1979)

. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204-213 (1995)

	Safety and Deferred Update in Transactional Memory
	1 Introduction

	2
Preliminaries
	2.1
Implementations and Histories
	2.2
Complete Histories and Real-Time Precedence
	2.3
Latest Written Value and Legality
	2.4
Safety
	2.5
city

	3
Deferred-Update Semantics and Its Properties
	3.1
Du-Opacity
	3.2
Du-Opacity Is Prefix-Closed
	3.3
The Limit of Du-Opaque Histories
	3.4
Du-Opacity is Limit-Closed for Complete Histories

	4
Du-Opacity vs. Opacity
	4.1
 The Unique-Write Case
	4.2
The Sequential-History Case

	5
Du-Opacity vs. Other Deferred-Update Criteria
	5.1
TMS2
	5.2
Virtual World Consistency (VWC)
	5.3
TMS1

	6
Concluding Remarks
	References

