
Safety and Deferred Update in Transactional Memory

Hagit Attiya1, Sandeep Hans1, Petr Kuznetsov2, and Srivatsan Ravi3

1 Technion
{hagit,sandeep}@cs.technion.ac.il

2 Télécom ParisTech
petr.kuznetsov@telecom-paristech.fr

3 TU Berlin
srivatsan@srivatsan.in

Abstract. Transactional memory allows the user to declare sequences of in-
structions as speculative transactions that can either commit or abort, providing
all-or-nothing semantics. If a transaction commits, it should appear to execute
sequentially, so that the committed transactions constitute a correct sequential ex-
ecution. If a transaction aborts, none of its instructions should affect other trans-
actions. These semantics allow the programmer to incorporate sequential code
within transactions and let the transactional memory care about conflicts between
concurrent transactions. In this sense, it is important that the memory is safe, i.e.,
every transaction has a consistent view even if the transaction aborts later. Other-
wise, inconsistencies not predicted by the sequential program may cause a fatal
irrecoverable error or an infinite loop. Furthermore, in a general setting, where a
transaction may be explicitly aborted by the user or an external contention man-
ager, a transaction should not be allowed to read from a not yet committed trans-
action, which is often called deferred-update semantics. This chapter overviews
the scope of consistency criteria proposed so far to capture deferred-update se-
mantics, and shows that—under reasonable conditions—the semantics induces a
safety property.

1 Introduction

Resolving conflicts in an efficient and consistent manner is a big challenge in concur-
rent software design. Transactional memory (TM) [10, 19] addresses this challenge by
offering an interface in which sequences of shared-memory instructions can be declared
as speculative transactions. The underlying idea, borrowed from databases, is to treat
each transaction as atomic: a transaction may either commit, in which case it appears
as executed sequentially, or abort, in which case none of its update instructions affect
other transactions. The user can therefore design software having only sequential se-
mantics in mind and let the TM take care of conflicts (concurrent reading and writing
to the same memory location) resulting from concurrent executions.

In databases, a correct implementation of concurrency control should guarantee that
committed transactions constitute a serial execution [9]. Uncommitted transactions can
be aborted without invalidating the correctness of committed ones. (In the literature on
databases, the latter feature is called recoverability [9].)

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 50–71, 2015.
c© Springer International Publishing Switzerland 2015

Safety and Deferred Update in Transactional Memory 51

In the TM context, intermediate states witnessed by the read operations of an incom-
plete transaction may affect the application. If the intermediate state is not consistent
with any sequential execution, the application may experience a fatal irrecoverable error
or enter an infinite loop. Thus, it is important that each transaction, including aborted
ones observes a consistent state.

A state should be considered consistent if it could result from a serial application of
transactions observed in the current execution. In this sense, every transaction should
witness a state that could have been observed in some execution of the sequential code
put by the programmer within the transactions. Additionally, a consistent state should
not depend on a transaction that has not started committing yet (referred to as deferred-
update semantics). This restriction appears desirable, since the ongoing transaction may
still abort (explicitly by the user or because of consistency reasons) and, thus, render
the read inconsistent. Further, the set of histories specified by the consistency criterion
must constitute a safety property, as defined by Owicki and Lamport [17], Alpern and
Schneider [1] and refined by Lynch [16]: it must be non-empty, prefix-closed and limit-
closed.

In this chapter, we define the notion of deferred-update semantics formally, which
we then apply to a spectrum of TM consistency criteria. Additionally, we verify if the
resulting TM consistency criterion is a safety property, as defined by Lynch [16].

We first consider the popular criterion of opacity [7]. Opacity requires the states
observed by all transactions, included uncommitted ones, to be consistent with a global
serialization, i.e., a serial execution constituted by committed transactions. Moreover,
the serialization should respect the real-time order: a transaction that completed before
(in real time) another transaction started should appear first in the serialization.

By definition, opacity reduces correctness of a history to correctness of all its pre-
fixes, and thus is prefix-closed and limit-closed by definition. Thus, to verify that a his-
tory is opaque, one needs to verify that each of its prefixes is consistent with some global
serialization. To simplify verification and explicitly introduce deferred-update seman-
tics into a TM correctness criterion, we specify a general criterion of du-opacity [3],
which requires the global serial execution to respect the deferred-update property. In-
formally, a du-opaque history must be indistinguishable from a totally-ordered history,
with respect to which no transaction reads from a transaction that has not started com-
mitting.

Du-opacity is prefix-closed, that is, every prefix of a du-opaque history is also du-
opaque. We then show that extending opacity (and du-opacity) to infinite histories in a
non-trivial way (i.e., requiring that even infinite histories should have proper serializa-
tions), does not result in a limit-closed property. However, under certain restrictions, we
show that du-opacity is limit-closed. In particular, assuming that in an infinite history,
every transaction completes each of the operations it invoked, the limit of any sequence
of ever extending du-opaque histories is also du-opaque. Therefore, under this assump-
tion, du-opacity is a safety property [1, 16, 17], and to prove that a TM implementation
that complies with the assumption is du-opaque, it suffices to prove that all its finite
histories are du-opaque.

One may notice that the intended safety semantics does not require that all transac-
tions observe the same serial execution. Intuitively, we only need that every transaction

52 H. Attiya et al.

witnesses some consistent state, while the views of different aborted transactions do not
have to be consistent with the same serial execution. As long as committed transactions
constitute a serial execution and every transaction witnesses a consistent state, the exe-
cution can be considered “safe”: no run-time error that cannot occur in a serial execution
can happen. Recently, several definitions adopted this approach: virtual-world consis-
tency (VWC) [12] and Transactional Memory Specifications (TMS) [5]. We introduce
“deferred-update” versions of these proporties and discuss how the resulting properties
relate to du-opacity.

The chapter is organized as follows. In Section 2, we introduce our model definitions,
recall the notion of safety, and recall the original definition of opacity. In Section 3, we
define du-opacity and discuss the property from the safety perspective. In Section 4, we
relate du-opacity to the conventional notion of opacity [7]. In Section 5, we compare
du-opacity to other TM correctness criteria, such as VWC [12], TMS1 and TMS2 [5],
restricted to provide the deferred-update semantics. Section 6 gives a summary of our
comparative analysis and concludes the chapter.

2 Preliminaries

A transactional memory (in short, TM) supports atomic transactions. Each transaction
is a sequence of accesses, reading from and writing to a set of transactional objects (in
short, t-objects). Each transaction Tk has a unique identifier k.

A transaction Tk accesses t-objects with t-operations, each being a matching pair of
invocation and response events: readk(X) returns a value in some domain V or a special
value Ak /∈ V (abort); writek(X ,v), for a value v ∈ V , returns okk or Ak; tryAk returns
Ak; tryCk returns a special value Ck /∈V ∪{Ak} (commit) or Ak.

2.1 Implementations and Histories

We consider an asynchronous shared-memory system in which processes communicate
via transactions. A TM implementation provides processes with algorithms for imple-
menting readk, writek, tryCk() and tryAk() of a transaction Tk.

A history of a TM implementation is a (possibly infinite) sequence of invocation and
response events of t-operations.

For every transaction identifier k, H|k denotes the subsequence of H restricted to
events of transaction Tk. If H|k is non-empty, we say that Tk participates in H, and let
txns(H) denote the set of transactions that participate in H. In an infinite history H, we
assume that for each Tk ∈ txns(H), H|k is finite; i.e., transactions do not issue an infinite
number of t-operations.

Two histories H and H ′ are equivalent if txns(H) = txns(H ′) and for every transac-
tion Tk ∈ txns(H), H|k = H ′|k.

A history H is sequential if every invocation of a t-operation is either the last event
in H or is immediately followed by a matching response.

A history is well-formed if for all Tk, H|k begins with an invocation of a t-operation,
H|k is sequential and has no events after Ak or Ck. For simplicity, we assume that all
histories are well-formed, i.e., the client of the transactional memory never invokes a

Safety and Deferred Update in Transactional Memory 53

t-operation before receiving a response from the previous one and does not invoke any
t-operation opk after receiving Ck or Ak. Note that the assumption excludes the TM
designs providing nested parallelism discussed in a dedicated chapter of this book.

The read set of a transaction Tk in history H, denoted Rset(Tk), is the set of t-objects
that Tk reads in H; the write set of Tk in history H, denoted Wset(Tk), is the set of
t-objects Tk writes to in H. More specifically, we say that X ∈ Rset(Tk) (resp., X ∈
Wset(Tk)) in H if H contains an invocation of readk(X) (resp., writek(X ,v)). We avoid
parameterizing Rset(Tk) and Wset(Tk) with the history H since it is clear from the usage.
If Wset(Tk) �= /0, then Tk is an updating transaction.

2.2 Complete Histories and Real-Time Precedence

A transaction Tk ∈ txns(H) is complete in a history H if H|k ends with a response event.
A history H is complete if all transactions in txns(H) are complete in H.

A transaction Tk ∈ txns(H) is t-complete if H|k ends with Ak or Ck; otherwise, Tk is
t-incomplete. Tk is committed (resp., aborted) in H if the last event of Tk is Ck (resp.,
Ak). The history H is t-complete if all transactions in txns(H) are t-complete.

For t-operations opk,op j, we say that opk precedes op j in the real-time order of H,
denoted opk ≺RT

H opm, if the response of opk precedes the invocation of op j.
We overload the notation and say, for transactions Tk,Tm ∈ txns(H), that Tk precedes

Tm in the real-time order of H, denoted Tk ≺RT
H Tm, if Tk is t-complete in H and the last

event of Tk precedes the first event of Tm in H. If neither Tk ≺RT
H Tm nor Tm ≺RT

H Tk,
then Tk and Tm overlap in H. A history H is t-sequential if there are no overlapping
transactions in H.

For simplicity of presentation, we assume that each history H begins with an “imag-
inary” t-complete transaction T0 that writes initial values to all t-objects and commits
before any other transaction begins in H.

2.3 Latest Written Value and Legality

Let H be a t-sequential history. For every operation readk(X) in H, we define the latest
written value of X as follows: if Tk contains a writek(X ,v) preceding readk(X), then the
latest written value of X is the value of the latest such write to X . Otherwise, the latest
written value of X is the value of the argument of the latest writem(X ,v) that precedes
readk(X) and belongs to a committed transaction in H. (This write is well-defined since
H starts with T0 writing to all t-objects.)

We say that readk(X) is legal in a t-sequential history H if it returns the latest written
value of X , and H is legal if every readk(X) in H that does not return Ak is legal in H.

We also assume, for simplicity, that the client invokes a readk(X) at most once within
a transaction Tk. This assumption incurs no loss of generality, since a repeated read can
be assigned to return a previously returned value without affecting the history’s legality.

2.4 Safety

A property P is a set of (transactional) histories.

54 H. Attiya et al.

tryC2R2(X)→ 1

tryC1W1(X ,1)
T1 C1

T2 C2

H ′ H

Fig. 1. History H is final-state opaque, while its prefix H ′ is not final-state opaque

Definition 1 (Lynch [16]). A property P is a safety property if it satisfies the following
two conditions:

Prefix-closure: For every history H ∈P , every prefix H ′ of H (i.e., every prefix of the
sequence of the events in H) is also in P .

Limit-closure: For every infinite sequence of finite histories H0,H1, . . . such that for
every i, Hi ∈P and Hi is a prefix of Hi+1, the limit of the sequence is also in P .

Notice that the set of histories produced by a TM implementation M is, by con-
struction, prefix-closed. Therefore, every infinite history of M is the limit of an infinite
sequence of ever-extending finite histories of M. Thus, to prove that M satisfies a safety
property P, it is enough to show that all finite histories of M are in P. Indeed, limit-
closure of P then implies that every infinite history of M is also in P.

2.5 Opacity

Definition 2 (Completions). Let H be a history. A completion of H, denoted H, is a
history derived from H as follows:

– First, for every transaction Tk ∈ txns(H) with an incomplete t-operation opk in H,
if opk = readk ∨writek, insert Ak somewhere after the invocation of opk; otherwise,
if opk = tryCk(), insert Ck or Ak somewhere after the last event of Tk.

– After all transactions are complete, for every transaction Tk that is not t-complete,
insert tryCk ·Ak after the last event of transaction Tk.

Definition 3 (Guerraoui and Kapalka [7]). A finite history H is final-state opaque if
there is a legal t-complete t-sequential history S, such that

1. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk <S Tm, and

2. S is equivalent to a completion of H.

We say that S is a final-state serialization of H.

Final-state opacity is not prefix-closed. Figure 1 depicts a t-complete sequential his-
tory H that is final-state opaque, with T1 ·T2 being a legal t-complete t-sequential history
equivalent to H. Let H ′ =write1(X ,1),read2(X) be a prefix of H in which T1 and T2 are
t-incomplete. Transaction Ti (i = 1,2) is completed by inserting tryCi ·Ai immediately
after the last event of Ti in H. Observe that neither T1 ·T2 nor T2 ·T1 allow us to derive a
serialization of H ′ (we assume that the initial value of X is 0).

A restriction of final-state opacity, which we refer to as opacity [7] explicitly filters
out histories that are not prefix-closed.

Safety and Deferred Update in Transactional Memory 55

Definition 4 (Guerraoui and Kapalka [7]). A history H is opaque if and only if every
finite prefix H ′ of H (including H itself if it is finite) is final-state opaque.

It can be easily seen that opacity is prefix- and limit-closed, and, thus, it is a safety
property.

3 Deferred-Update Semantics and Its Properties

We now give a formal definition of opacity with deferred-update semantics. Then we
show that the property is prefix-closed and, under certain liveness restrictions, limit-
closed.

3.1 Du-Opacity

Let H be any history and let S be a legal t-complete t-sequential history that is equivalent
to some completion of H. Let <S be the total order on transactions in S.

Definition 5 (Local serialization). For any readk(X) that does not return Ak, let Sk,X

be the prefix of S up to the response of readk(X) and Hk,X be the prefix of H up to the
response of readk(X).

Sk,X
H , the local serialization of readk(X) with respect to H and S, is the subsequence

of Sk,X derived by removing from Sk,X the events of all transactions Tm ∈ txns(H)\{Tk}
such that Hk,X does not contain an invocation of tryCm().

We are now ready to present our correctness condition, du-opacity.

Definition 6. A history H is du-opaque if there is a legal t-complete t-sequential history
S such that

1. there is a completion of H that is equivalent to S, and
2. for every pair of transactions Tk,Tm ∈ txns(H), if Tk ≺RT

H Tm, then Tk <S Tm, i.e., S
respects the real-time ordering of transactions in H, and

3. each readk(X) in S that does not return Ak is legal in Sk,X
H .

We then say that S is a (du-opaque) serialization of H.

Informally, a history H is du-opaque if there is a legal t-sequential history S that is
equivalent to H, respects the real-time ordering of transactions in H and every t-read
is legal in its local serialization with respect to H and S. The third condition reflects
the implementation’s deferred-update semantics, i.e., the legality of a t-read in a serial-
ization does not depend on transactions that start committing after the response of the
t-read.

For any du-opaque serialization S, seq(S) denotes the sequence of transactions in S
and seq(S)[k] denotes the kth transaction in this sequence.

56 H. Attiya et al.

3.2 Du-Opacity Is Prefix-Closed

Lemma 1. Let H be a du-opaque history and let S be a serialization of H. For any
i ∈ N, there is a serialization Si of Hi (the prefix of H consisting of the first i events),
such that seq(Si) is a subsequence of seq(S).

Proof. Given H, S and Hi, we construct a t-complete t-sequential history Si as follows:

– for every transaction Tk that is t-complete in Hi, Si|k = S|k.
– for every transaction Tk that is complete but not t-complete in Hi, Si|k consists of

the sequence of events in Hi|k, immediately followed by tryCk() ·Ak.
– for every transaction Tk with an incomplete t-operation, opk = readk ∨ writek ∨

tryAk() in Hi, Si|k is the sequence of events in S|k up to the invocation of opk,
immediately followed by Ak.

– for every transaction Tk ∈ txns(Hi) with an incomplete t-operation, opk = tryCk(),
Si|k = S|k.

By the above construction, Si is indeed a t-complete history and every transaction
that appears in Si also appears in S. We order transactions in Si so that seq(Si) is a
subsequence of seq(S).

Note that Si is derived from events contained in some completion H of H that is
equivalent to S and some other events to derive a completion of Si. Since Si contains
events from every complete t-operation in Hi and other events included satisfy Defini-
tion 2, there is a completion of Hi that is equivalent to Si.

We now argue that Si is a serialization of Hi. First we observe that Si respects the
real-time order of Hi. Indeed, if Tj ≺RT

Hi Tk, then Tj ≺RT
H Tk and Tj <S Tk. Since seq(Si)

is a subsequence of seq(S), we have Tj <Si Tk.
To show that Si is legal, suppose, by way of contradiction, that there is some readk(X)

that returns v �=Ak in Hi such that v is not the latest written value of X in Si. If Tk contains
a writek(X ,v′) preceding readk(X) such that v �= v′ and v is not the latest written value
for readk(X) in Si, it is also not the latest written value for readk(X) in S, which is a
contradiction. Thus, the only case to consider is when readk(X) should return a value
written by another transaction.

Since S is a serialization of H, there is a committed transaction Tm that performs
the last writem(X ,v) that precedes readk(X) in Tk in S. Moreover, since readk(X) is
legal in the local serialization of readk(X) in H with respect to S, the prefix of H up to
the response of readk(X) must contain an invocation of tryCm(). Thus, readk(X) �≺RT

H
tryCm() and Tm ∈ txns(Hi). By construction of Si, Tm ∈ txns(Si) and Tm is committed
in Si.

We have assumed, towards a contradiction, that v is not the latest written value for
readk(X) in Si. Hence, there is a committed transaction Tj that performs write j(X ,v′);v′
�= v in Si such that Tm <Si Tj <Si Tk. But this is not possible since seq(Si) is a subse-
quence of seq(S).

Thus, Si is a legal t-complete t-sequential history equivalent to some completion of
Hi. Now, by the construction of Si, for every readk(X) that does not return Ak in Si, we

have Sik,X
Hi = Sk,X

H . Indeed, the transactions that appear before Tk in Sik,X
Hi are those with a

tryC event before the response of readk(X) in H and are committed in S. Since seq(Si)

is a subsequence of seq(S), we have Sik,X
Hi = Sk,X

H . Thus, readk(X) is legal in Sik,X
Hi . 	

Safety and Deferred Update in Transactional Memory 57

W1(X ,1) tryC1

R2(X)→ 1

Ri(X)→ 0R3(X)→ 0

T1

T2

T3 Ti

Fig. 2. An infinite history in which tryC1 is incomplete and any two transactions are concurrent.
Each finite prefix of the history is du-opaque, but the infinite limit of the ever-extending sequence
is not du-opaque.

Lemma 1 implies that every prefix of a du-opaque history has a du-opaque serialization
and thus:

Corollary 1. Du-opacity is a prefix-closed property.

3.3 The Limit of Du-Opaque Histories

We observe, however, that du-opacity is, in general, not limit-closed. We present an
infinite history that is not du-opaque, but each of its prefixes is.

Proposition 1. Du-opacity is not a limit-closed property.

Proof. Let H j denote a finite prefix of H of length j. Consider an infinite history H that
is the limit of the histories H j defined as follows (see Figure 2):

– Transaction T1 performs a write1(X ,1) and then invokes tryC1() that is incomplete
in H.

– Transaction T2 performs a read2(X) that overlaps with tryC1() and returns 1.
– There are infinitely many transactions Ti, i ≥ 3, each of which performing a single

readi(X) that returns 0 such that each Ti overlaps with both T1 and T2.

We now prove that, for all j ∈ N, H j is a du-opaque history. Clearly, H0 and H1 are
du-opaque histories. For all j > 1, we first derive a completion of H j as follows:

1. tryC1() (if it is contained in H j) is completed by inserting C1 immediately after its
invocation,

2. for all i ≥ 2, any incomplete readi(X) that is contained in H j is completed by
inserting Ai and tryCi ·Ai immediately after its invocation, and

3. for all i ≥ 2 and every complete readj(X) that is contained in H j, we include tryCi ·
Ai immediately after the response of this readj(X).

We can now derive a t-complete t-sequential history S j equivalent to the above de-
rived completion of H j from the sequence of transactions T3, . . . ,Ti,T1,T2 (depending
on which of these transactions participate in H j), where i ≥ 3. It is easy to observe that
S j so derived is indeed a serialization of H j.

However, there is no serialization of H. Suppose that such a serialization S exists.
Since every transaction that participates in H must participate in S, there exists n ∈ N

such that seq(S)[n]= T1. Consider the transaction at index n+1, say Ti in seq(S). But for
any i ≥ 3, Ti must precede T1 in any serialization (by legality), which is a contradiction.

	

58 H. Attiya et al.

Notice that all finite prefixes of the infinite history depicted in Figure 2 are also opaque.
Thus, if we extend the definition of opacity to cover infinite histories in a non-trivial
way, i. e., by explicitly defining opaque serializations for infinite histories, we can re-
formulate Proposition 1 for opacity.

3.4 Du-Opacity is Limit-Closed for Complete Histories

We show now that du-opacity is limit-closed if the only infinite histories we consider are
those in which every transaction eventually completes (but not necessarily t-completes).

We first prove an auxiliary lemma on du-opaque serializations. For a transaction
T ∈ txns(H), the live set of T in H, denoted LsetH(T) (T included), is defined as follows:
every transaction T ′ ∈ txns(H) such that neither the last event of T ′ precedes the first
event of T in H nor the last event of T precedes the first event of T ′ in H is contained
in LsetH(T). We say that transaction T ′ ∈ txns(H) succeeds the live set of T and we
write T ≺LS

H T ′ if in H, for all T ′′ ∈ LsetH(T), T ′′ is complete and the last event of T ′′
precedes the first event of T ′.

Lemma 2. Let H be a finite du-opaque history and assume Tk ∈ txns(H) is a complete
transaction in H, such that every transaction in LsetH(Tk) is complete in H. Then there
is a serialization S of H, such that for all Tk,Tm ∈ txns(H), if Tk ≺LS

H Tm, then Tk <S Tm.

Proof. Since H is du-opaque, there is a serialization S̃ of H.
Let S be a t-complete t-sequential history such that txns(S̃) = txns(S), and ∀ Ti ∈

txns(S̃) : S|i = S̃|i. We now perform the following procedure iteratively to derive seq(S)
from seq(S̃). Initially seq(S) = seq(S̃). For each Tk ∈ txns(H), let T� ∈ txns(H) de-
note the earliest transaction in S̃ such that Tk ≺LS

H T�. If T� <S̃ Tk (implying Tk is not
t-complete), then move Tk to immediately precede T� in seq(S).

By construction, S is equivalent to S̃ and for all Tk,Tm ∈ txns(H); Tk ≺LS
H Tm, Tk <S Tm

We claim that S is a serialization of H. Observe that any two transactions that are com-
plete in H, but not t-complete are not related by real-time order in H. By construction
of S, for any transaction Tk ∈ txns(H), the set of transactions that precede Tk in S̃, but
succeed Tk in S are not related to Tk by real-time order. Since S̃ respects the real-time
order in H, this holds also for S.

We now show that S is legal. Consider any readk(X) performed by some transaction
Tk that returns v ∈ V in S and let T� ∈ txns(H) be the earliest transaction in S̃ such that
Tk ≺LS

H T�. Suppose, by contradiction, that readk(X) is not legal in S. Thus, there is a
committed transaction Tm that performs writem(X ,v) in S̃ such that Tm = T� or T� <S̃
Tm <S̃ Tk. Note that, by our assumption, readk(X) ≺RT

H tryC�(). Since readk(X) must
be legal in its local serialization with respect to H and S̃, readk(X) �≺RT

H tryCm(). Thus,
Tm ∈ LsetH(Tk). Therefore Tm �= T�. Moreover, Tm is complete, and since it commits in
S̃, it is also t-complete in H and the last event of Tm precedes the first event of T� in H,
i.e., Tm ≺RT

H T�. Hence, T� cannot precede Tm in S̃—a contradiction.
Observe also that since Tk is complete in H but not t-complete, H does not contain

an invocation of tryCk(). Thus, the legality of any other transaction is unaffected by
moving Tk to precede T� in S. Thus, S is a legal t-complete t-sequential history equivalent
to some completion of H. The above arguments also prove that every t-read in S is legal
in its local serialization with respect to H and S and, thus, S is a serialization of H. 	

Safety and Deferred Update in Transactional Memory 59

The proof uses König’s Path Lemma [13] formulated as follows. Let G on a rooted
directed graph and let v0 be the root of G. We say that vk, a vertex of G, is reachable
from v0, if there is a sequence of vertices v0 . . . ,vk such that for each i, there is an edge
from vi to vi+1. G is connected if every vertex in G is reachable from v0. G is finitely
branching if every vertex in G has a finite out-degree. G is infinite if it has infinitely
many vertices.

Lemma 3 (König’s Path Lemma [13]). If G is an infinite connected finitely branching
rooted directed graph, then G contains an infinite sequence of distinct vertices v0,v1, . . .,
such that v0 is the root, and for every i ≥ 0, there is an edge from vi to vi+1.

Theorem 1. Under the restriction that in any infinite history H, every transaction Tk ∈
txns(H) is complete, du-opacity is a limit-closed property.

Proof. We want to show that the limit H of an infinite sequence of finite ever-extending
du-opaque histories is du-opaque. By Corollary 1, we can assume the sequence of du-
opaque histories to be H0,H1, . . .Hi,Hi+1, . . . such that for all i ∈ N, Hi+1 is the one-
event extension of Hi.

We construct a rooted directed graph GH as follows:

1. The root vertex of GH is (H0,S0) where S0 and H0 contain the initial transaction
T0.

2. Each non-root vertex of GH is a tuple (Hi,Si), where Si is a du-opaque serialization
of Hi that satisfies the condition specified in Lemma 2: for all Tk,Tm ∈ txns(H);
Tk ≺LS

Hi Tm implies Tk <Si Tm. Note that there exist several possible serializations for
any Hi. For succinctness, in the rest of this proof, when we refer to a specific Si, it
is understood to be associated with the prefix Hi of H.

3. Let cseqi(S
j), j ≥ i, denote the subsequence of seq(S j) restricted to transactions

whose last event in H is a response event and it is contained in Hi. For every pair
of vertices v = (Hi,Si) and v′ = (Hi+1,Si+1) in GH , there is an edge from v to v′ if
cseqi(S

i) = cseqi(S
i+1).

The out-degree of a vertex v = (Hi,Si) in GH is defined by the number of possi-
ble serializations of Hi+1, bounded by the number of possible permutations of the set
txns(Si+1), implying that GH is finitely branching.

By Lemma 1, given any serialization Si+1 of Hi+1, there is a serialization Si of Hi

such that seq(Si) is a subsequence of seq(Si+1). Indeed, the serialization Si of Hi also
respects the restriction specified in Lemma 2. Since seq(Si+1) contains every complete
transaction that takes its last step in H in Hi, cseqi(S

i) = cseqi(S
i+1). Therefore, for

every vertex (Hi+1,Si+1), there is a vertex (Hi,Si) such that cseqi(S
i) = cseqi(S

i+1).
Thus, we can iteratively construct a path from (H0,S0) to every vertex (Hi,Si) in GH ,
implying that GH is connected.

We now apply König’s Path Lemma (Lemma 3) to GH . Since GH is an infinite con-
nected finitely branching rooted directed graph, we can derive an infinite sequence of
distinct vertices

L = (H0,S0),(H1,S1), . . . ,(Hi,Si), . . .

such that cseqi(S
i) = cseqi(S

i+1).

60 H. Attiya et al.

The rest of the proof explains how to use L to construct a serialization of H. We
begin with the following claim concerning L .

Claim. For any j > i, cseqi(S
i) = cseqi(S

j).

Proof. Recall that cseqi(S
i) is a prefix of cseqi(S

i+1), and cseqi+1(S
i+1) is a prefix of

cseqi+1(S
i+2). Also, cseqi(S

i+1) is a subsequence of cseqi+1(S
i+1). Hence, cseqi(S

i) is
a subsequence of cseqi+1(S

i+2). But, cseqi+1(S
i+2) is a subsequence of cseqi+2(S

i+2).
Thus, cseqi(S

i) is a subsequence of cseqi+2(S
i+2). Inductively, for any j > i, cseqi(S

i)
is a subsequence of cseq j(S

j). But cseqi(S
j) is the subsequence of cseq j(S

j) restricted
to complete transactions in H whose last step is in Hi. Thus, cseqi(S

i) is indeed equal
to cseqi(S

j). 	

Let f : N→ txns(H) be defined as follows: f (1) = T0. For every integer k > 1, let

ik = min{� ∈ N|∀ j > � : cseq�(S
�)[k] = cseq j(S

j)[k]}

Then, f (k) = cseqik (S
ik)[k].

Claim. The function f is total and bijective.

Proof. (Totality and surjectivity)
Since each transaction T ∈ txns(H) is complete in some prefix Hi of H, for each k ∈

N, there exists i ∈N such that cseqi(S
i)[k] = T . By Claim 3.4, for any j > i, cseqi(S

i) =
cseqi(S

j). Since a transaction that is complete in Hi w.r.t H is also complete in H j w.r.t
H, it follows that for every j > i, cseq j(S

j)[k′] = T , with k′ ≥ k. By construction of GH

and the assumption that each transaction is complete in H, there exists i ∈ N such that
each T ∈ LsetHi(T) is complete in H and its last step is in Hi, and T precedes in Si

every transaction whose first event succeeds the last event of each T ′ ∈ LsetHi(T) in Hi.
Indeed, this implies that for each k ∈ N, there exists i ∈ N such that cseqi(S

i)[k] = T ;
∀ j > i : cseq j(S

j)[k] = T .
This shows that for every T ∈ txns(H), there are i,k ∈ N; cseqi(S

i)[k] = T , such that
for every j > i, cseq j(S

j)[k] = T . Thus, for every T ∈ txns(H), there is k such that
f (k) = T .

(Injectivity)
If f (k) and f (m) are transactions at indices k, m of the same cseqi(S

i), then clearly
f (k) = f (m) implies k =m. Suppose f (k) is the transaction at index k in some cseqi(S

i)
and f (m) is the transaction at index m in some cseq�(S

�). For every � > i and k < m, if
cseqi(S

i)[k] = T , then cseq�(S
�)[m] �= T since cseqi(S

i) = cseqi(S
�). If � > i and k > m,

it follows from the definition that f (k) �= f (m). Similar arguments for the case when
� < i prove that if f (k) = f (m), then k = m. 	

By Claim 3.4, F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of transactions.
Let S be a t-complete t-sequential history such that seq(S) =F and for each t-complete
transaction Tk in H, S|k=H|k; and for transaction that is complete, but not t-complete in
H, S|k consists of the sequence of events in H|k, immediately followed by tryAk() ·Ak.
Clearly, there is a completion of H that is equivalent to S.

Let F i be the prefix ofF of length i, and ̂Si be the prefix of S such that seq(̂Si) =F i.

Safety and Deferred Update in Transactional Memory 61

W1(X ,1) tryC1

R2(X)→ 1

W3(X ,1) tryC3

T1 A1

T2

T3 C3

Fig. 3. A history that is opaque, but not du-opaque

Claim. Let ̂H j
i be a subsequence of H j reduced to transactions Tk ∈ txns(̂Si) such that

the last event of Tk in H is a response event and it is contained in H j. Then, for every i,
there is j such that ̂Si is a serialization of ̂H j

i .

Proof. Let H j be the shortest prefix of H (from L) such that for each T ∈ txns(̂Si),
if seq(S j)[k] = T , then for every j′ > j, seq(S j′)[k] = T . From the construction of F ,
such j and k exist. Also, we observe that txns(̂Si)⊆ txns(S j) and F i is a subsequence of
seq(S j). Using arguments similar to the proof of Lemma 1, it follows that ̂Si is indeed a
serialization of ̂H j

i . 	

Since H is complete, there is exactly one completion of H, where each transac-

tion Tk that is not t-complete in H is completed with tryCk ·Ak after its last event. By
Claim 3.4, the limit t-sequential t-complete history is equivalent to this completion, is
legal, respects the real-time order of H, and ensures that every read is legal in the cor-
responding local serialization. Thus, S is a serialization of H. 	

Theorem 1 implies the following:

Corollary 2. Let M be a TM implementation that ensures that in every infinite history
H of M, every transaction T ∈ txns(H) is complete in H. Then, M is du-opaque if and
only if every finite history of M is du-opaque.

4 Du-Opacity vs. Opacity

We now compare our deferred-update requirement with the conventional TM correct-
ness property of opacity [7].

Theorem 2. Du-opacity � Opacity.

Proof. We first claim that every finite du-opaque history is opaque. Let H be a finite
du-opaque history. By definition, there is a final-state serialization S of H. Since du-
opacity is a prefix-closed property, every prefix of H is final-state opaque. Thus, H is
opaque.

Again, since every prefix of a du-opaque history is also du-opaque, by Definition 4,
every infinite du-opaque history is also opaque.

To show that the inclusion is strict, we present an an opaque history that is not du-
opaque. Consider the finite history H depicted in Figure 3: transaction T2 performs a
read2(X) that returns the value 1. Observe that read2(X) → 1 is concurrent to tryC1,

62 H. Attiya et al.

but precedes tryC3 in real-time order. Although tryC1 returns A1 in H, the response
of read2(X) can be justified since T3 concurrently writes 1 to X and commits. Thus,
read2(X)→1 reads-from transaction T2 in any serialization of H, but since read2(X)≺RT

H
tryC3, H is not du-opaque even though each of its prefixes is final-state opaque.

We now formally prove that H is opaque. We proceed by examining every prefix
of H.

1. Each prefix up to the invocation of read2(X) is trivially final-state opaque.
2. Consider the prefix, Hi of H where the ith event is the response of read2(X). Let Si

be a t-complete t-sequential history derived from the sequence T1,T2 by inserting
C1 immediately after the invocation of tryC1(). It is easy to see that Si is a final-state
serialization of Hi.

3. Consider the t-complete t-sequential history S derived from the sequence T1,T3,T2

in which each transaction is t-complete in H. Clearly, S is a final-state serialization
of H.

Since H and every (proper) prefix of it are final-state opaque, H is opaque.
Clearly, the required final-state serialization S of H is specified by seq(S) = T1,T3,T2

in which T1 is aborted while T3 is committed in S (the position of T1 in the serialization
does not affect legality). Consider read2(X) in S; since H2,X , the prefix of H up to the
response of read2(X) does not contain an invocation of tryC3(), the local serialization
of read2(X) with respect to H and S, S2,X

H is T1 · read2(X). But read2(X) is not legal in
S2,X

H , which is a contradiction. Thus, H is not du-opaque. 	

4.1 The Unique-Write Case

We now show that du-opacity is equivalent to opacity assuming that no two transactions
write identical values to the same t-object (“unique-write” assumption).

Let Opacityuw ⊆ Opacity, be a property defined as follows:

1. an infinite opaque history H ∈ Opacityuw if and only if every transaction T ∈
txns(H) is complete in H, and

2. an opaque history H ∈ Opacityuw if and only if for every pair of write operations
writek(X ,v) and writem(X ,v′), v �= v′.

Theorem 3. Opacityuw =du-opacity.

Proof. We show first that every finite history H ∈Opacityuw is also du-opaque. Let H
be any finite opaque history such that for every pair of write operations writek(X ,v) and
writem(X ,v), performed by transactions Tk,Tm ∈ txns(H), respectively, v �= v′.

Since H is opaque, there is a final-state serialization S of H. Suppose by contradiction
that H is not du-opaque. Thus, there is a readk(X) that returns a value v ∈V in S that is
not legal in Sk,X

H , the local serialization of readk(X) with respect to H and S. Let Hk,X

and Sk,X denote the prefixes of H and S, respectively, up to the response of readk(X) in
H and S. Recall that Sk,X

H , the local serialization of readk(X) with respect to H and S,
is the subsequence of Sk,X that does not contain events of any transaction Ti ∈ txns(H)
so that the invocation of tryCi() is not in Hk,X . Since readk(X) is legal in S, there is a

Safety and Deferred Update in Transactional Memory 63

W1(X ,1) tryC1 R2(X)→ 1 R2(Y)→ 1

W3(X ,1) W3(Y,1) tryC3

T1 C1 T2

T3 C3

Fig. 4. A sequential du-opaque history, which is not opaque by the definition of [6]

committed transaction Tm ∈ txns(H) that performs writem(X ,v) that is the latest such
write in S that precedes Tk. Thus, if readk(X) is not legal in Sk,X

H , the only possibility is
that readk(X)≺RT

H tryCm(). Under the assumption of unique writes, there does not exist
any other transaction Tj ∈ txns(H) that performs write j(X ,v). Consequently, there does

not exist any H
k,X

(some completion of Hk,X) and a t-complete t-sequential history S′,
such that S′ is equivalent to H

k,X and S′ contains any committed transaction that writes
v to X . This is, Hk,X is not final-state opaque. However, since H is opaque, every prefix
of H must be final-state opaque, which is a contradiction.

By Definition 4, an infinite history H is opaque if every finite prefix of H is final-state
opaque. Theorem 1 now implies that Opacityuw ⊆ du-Opacity.

Definition 4 and Corollary 1 imply that du-Opacity ⊆ Opacityuw. 	

4.2 The Sequential-History Case

The deferred-update semantics was mentioned by Guerraoui et al. [6] and later adopted
by Kuznetsov and Ravi [14]. In both papers, opacity is only defined for sequential his-
tories, where every invocation of a t-operation is immediately followed by a matching
response. In particular, these definitions require the final-state serialization to respect
the read-commit order: in these definitions, a history H is opaque if there is a final-state
serialization S of H such that if a t-read of a t-object X by a transaction Tk precedes
the tryC of a transaction Tm that commits on X in H, then Tk precedes Tm in S. As
we observed in Figure 4, this definition is not equivalent to opacity even for sequential
histories.

The property considered in [6,14] is strictly stronger than du-opacity: the sequential
history H in Figure 4 is du-opaque (and consequently opaque by Theorem 2): a du-
opaque serialization (in fact the only possible one) for this history is T1,T3,T2. However,
in the restriction of opacity defined above, T2 must precede T3 in any serialization, since
the response of read2(X) precedes the invocation of tryC3().

5 Du-Opacity vs. Other Deferred-Update Criteria

In this section, we compare du-opacity to other TM correctness conditions, restricted
to provide the deferred-update semantics. We first discuss the stronger TMS2 prop-
erty [5], and then describe deferred-update versions of conditions weaker than opacity,
VWC [12] and TMS1 [5].

64 H. Attiya et al.

R1(X)→ 0 W1(X ,1) tryC1

R2(X)→ 0 W2(Y,1) tryC2

T1 C1

T2 C2

Fig. 5. A history that is du-opaque, but not TMS2 [5]

5.1 TMS2

Transactional Memory Specification (TMS) 1 and 2 were formulated in I/O automata
[5]. Following [2], we adapt these definitions to our framework and explicitly intro-
duce the deferred-update requirement. We start with TMS2, a restriction of opacity, and
discuss TMS1, a relaxation of du-opacity, in Section 5.3.

Definition 7 (du-TMS2). A history H is du-TMS2 if there is a legal t-complete t-
sequential history S equivalent to some completion, H of H such that

1. for any two transactions Tk,Tm ∈ txns(H), such that Tm is a committed updating
transaction, if Ck ≺RT

H tryCm or Ak ≺RT
H tryCm, then Tk ≺S Tm, and

2. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk <S Tm, and

3. each readk(X) in S that does not return Ak is legal in Sk,X
H .

We refer to S as the du-TMS2 serialization of H.

It has been shown [15] that TMS2 is a strictly stronger property than Opacity, i.e.,
TMS2 � Opacity. We now show that du-TMS2 is strictly stronger than du-opacity.
Indeed, from Definition 7, we observe that every history that is du-TMS2 is also du-
opaque. The following proposition completes the proof.

Proposition 2. There is a history that is du-opaque, but not du-TMS2.

Proof. Figure 5 depicts a history H that is du-opaque, but not du-TMS2. Indeed, there
is a du-opaque serialization S of H such that seq(S) = T2,T1. On the other hand, since
T1 commits before T2, T1 must precede T2 in any du-TMS2 serialization, there does not
exist any such serialization that ensures every t-read is legal. Thus, H is not du-TMS2.

	

Theorem 4. Du-TMS2 is prefix-closed.

Proof. Let H be any du-TMS2 history. Then, H is also du-opaque. By Corollary 1,
for every i ∈ N, there is a du-opaque serialization Si for Hi. We now need to prove
that, for any two transactions Tk,Tm ∈ txns(Hi), such that Tm is a committed updating
transaction, if Ck ≺RT

Hi tryCm or Ak ≺RT
Hi tryCm, there is a du-opaque serialization Si with

the restriction that Tk ≺Si Tm.
Suppose by contradiction that there exist transactions Tk,Tm ∈ txns(Hi), such that Tm

is a committed updating transaction and Ck ≺RT
Hi tryCm or Ak ≺RT

Hi tryCm, but Tm must
precede Tk in any du-opaque serialization Si. Since Tm �≺RT

Hi Tk, the only possibility is
that Tm performs writem(X ,v) and there is readk(X)→ v. However, by our assumption,

Safety and Deferred Update in Transactional Memory 65

writek(X ,v)≺RT
Hi tryCm: thus, readk(X) is not legal in its local serialization with respect

to Hi and Si—contradicting the assumption that Si is a du-opaque serialization of Hi.
Thus, there is a du-TMS2 serialization for Hi, proving that du-TMS2 is a prefix-closed
property. 	

Proposition 3. Du-TMS2 is not limit-closed.

Proof. The counter-example to establish that du-opacity is not limit-closed (Figure 2)
also shows that du-TMS2 is not limit-closed: all histories discussed in the counter-
example are in du-TMS2. 	

5.2 Virtual World Consistency (VWC)

Intuitively, VWC [12] and TMS1 [5] achieve intuitively understood safety of each trans-
action or response, without enforcing a single serialization. Both definitions use the
following “deferred-update” version of strict serializability [18]:

Definition 8 (Strict serializability). A finite history H is strictly serializable if there is
a legal t-complete t-sequential history S, such that

1. there is a completion H of H, such that S is equivalent to cseq(H), where cseq(H)
is the subsequence of H reduced to committed transactions in H,

2. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk precedes Tm in S,

and
3. each readk(X) in S that does not return Ak is legal in Sk,X

H .

We refer to S as the (strictly serializable) serialization of H.

Notice that every du-opaque history is strictly serializable, but not vice-versa. The fol-
lowing result will be instrumental for understanding the properties of du-VWC and
du-TMS1.

Theorem 5. Strict serializability is a safety property.

Proof. (Sketch) Observe that any serialization of a finite history H does not include
events of any transaction that has not invoked tryC in H.

To show prefix-closure, a proof almost identical to that of Lemma 1 implies that,
given a strictly serializable history H and a serialization S, there is a serialization S′ of
H ′ (H ′ is some prefix of H) such that seq(S′) is a prefix of seq(S).

Consider an infinite sequence of finite histories

H0, . . . ,Hi,Hi+1, . . . ,

where Hi+1 is a one-event extension of Hi, we prove that the infinite limit H of this
ever-extending sequence is strictly serializable. As in Theorem 1, we construct an in-
finite rooted directed graph GH : a vertex is a tuple (Hi,Si) (note that for each i ∈ N,
there are several such vertices of this form), where Si is a serialization of Hi and there
is an edge from (Hi,Si) to (Hi+1,Si+1) if seq(Si) is a prefix of seq(Si+1). The resulting
graph is finitely branching since the out-degree of a vertex is bounded by the number of

66 H. Attiya et al.

possible serializations of a history. Observe that for every vertex (Hi+1,Si+1), there is
a vertex Hi,Si) such that seq(Si) is a prefix of seq(Si+1). Thus, GH is connected since
we can iteratively construct a path from the root (H0,S0) to every vertex (Hi,Si) in GH .
Applying König’s Path Lemma to GH , we obtain an infinite sequence of distinct ver-
tices, (H0,S0),(H1,S1), . . . ,(Hi,Si), Then, S = lim

i→∞
Si gives the desired serialization

of H. 	

Virtual World Consistency (VWC) [12] was proposed as a relaxation of opacity

(in our case, du-opacity), where each aborted transaction should be consistent with its
causal past (but not necessarily with a serialization formed by committed transactions).
Intuitively, a transaction T1 causally precedes T2 if T2 reads a value written and com-
mitted by T1. The original definition [12] required that no two write operations are ever
invoked with the same argument (the unique-writes assumption). Therefore, the causal
precedence is unambiguously identified for each transactional read. Below we give a
more general definition.

Given a t-sequential legal history S and transactions Ti,Tj ∈ txns(S), we say that Ti

reads X from Tj if (1) Ti reads v in X and (2) Tj is the last committed transaction that
writes v to X and precedes Ti in S.

Now consider a (not necessarily t-sequential) history H. We say that Ti could have
read X from Tj in H if Tj writes a value v to a t-object X , Ti reads v in X , and readi(X)
�≺RT

H tryC j().
Given T ⊆ txns(H), let HT denote the subsequence of H restricted to events of

transactions in T .

Definition 9 (du-VWC). A finite history H is du-virtual-world consistent if it is strictly
serializable, and for every aborted or t-incomplete transaction Ti ∈ txns(H), there is
T ⊆ txns(H) including Ti and a t-sequential t-complete legal history S such that:

1. S is equivalent to a completion of HT ,
2. For all Tj,Tk ∈ txns(S), if Tj reads X from Tk in S, then Tj could have read X from

Tk in H,
3. S respects the per-process order of H: if Tj and Tk are executed by the same process

and Tj ≺RT
H Tk, then Tj ≺S Tk.

We refer to S as a du-VWC serialization for Ti in H.

Intuitively, with every t-read on X performed by Ti in H, the du-VWC serialization S as-
sociates some transaction Tj from which Ti could have read the value of X . Recursively,
with every read performed by Tj, S associates some Tm from which Tj could have read,
etc. Altogether, we get a “plausible” causal past of Ti that constitutes a serial history.
Notice that to ensure deferred-update semantics, we only allow a transaction Tj to read
from a transaction Tk that invoked tryCk by the time of the read operation of Tj.

We now prove that du-VWC is a strictly weaker property than du-opacity. Since du-
TMS2 is strictly weaker than du-opacity (cf. Section 5.1), it follows that Du-TMS2 �

du-VWC.

Theorem 6. Du-opacity � du-VWC.

Safety and Deferred Update in Transactional Memory 67

R1(X)→ 1 R1(Y)→ 0

W2(X ,1)

W3(Y,1)R3(X)→ 0

T1 A1

T2 C2

T3 C3

Fig. 6. A history that is du-VWC, but not du-opaque

Proof. If a history H is du-opaque, then there is a du-opaque serialization S equivalent
to H, where H is some completion of H. By construction, S is a total-order on the set
of all transactions that participate in S. Trivially, by taking T = txns(H), we derive that
S is a du-VWC serialization for every aborted or t-incomplete transaction Ti ∈ txns(H).
Indeed, S respects the real-time order and, thus, the per-process order of H. Since S
respects the deferred-update order in H, every t-read in S “could have happened” in H.

To show that the inclusion is strict, Figure 6 depicts a history H that is du-VWC, but
not du-opaque. Clearly, H is strictly serializable. Here T2, T1 is the required du-VWC
serialization for aborted transaction T1. However, H has no du-opaque serialization. 	

Theorem 7. Du-VWC is a safety property.

Proof. By Definition 9, a history H is du-VWC if and only if H is strictly serializable
and there is a du-VWC serialization for every transaction Ti ∈ txns(H) that is aborted
or t-incomplete in H.

To prove prefix-closure, recall that strict serializability is a prefix-closed property
(Theorem 5). Therefore, any du-VWC serialization S for a transaction Ti in history H
is also a du-VWC serialization S for a transaction Ti in any prefix of H that contains
events of Ti.

To prove limit-closure, consider an infinite sequence of du-VWC histories H0, H1,
. . ., Hi, Hi+1 , . . ., where each Hi+1 is the one-event extension of Hi and prove that the
infinite limit, H of this sequence is also a du-VWC history. Theorem 5 establishes that
there is a strictly serializable serialization for H.

Since, for all i ∈ N, Hi is du-VWC, for every transaction Ti that is t-incomplete or
aborted in Hi, there is a VWC serialization for Ti. Consequently, there is a du-VWC
serialization for every aborted or incomplete transaction Ti in H. 	

5.3 TMS1

Given a history H, TMS1 requires us to justify the behavior of all committed transac-
tions in H by a legal t-complete t-sequential history that preserves the real-time order
in H (strict serializability), and to justify the response of each complete t-operation per-
formed in H by a legal t-complete t-sequential history S. The t-sequential history S used
to justify a complete t-operation opi,k (the ith t-operation performed by transaction Tk)
includes Tk and a subset of transactions from H whose operations justify opi,k. (Our
description follows [2].)

Let Hk,i denote the prefix of a history H up to (and including) the response of ith

t-operation opk,i of transaction Tk. We say that a history H ′′ is a possible past of Hk,i if

68 H. Attiya et al.

H ′′ is a subsequence of Hk,i and consists of all events of transaction Tk and all events
from some subset of committed transactions and transactions that have invoked tryC in
Hk,i such that if a transaction T ∈ H ′′, then for a transaction T ′ ≺RT

Hk,i T , T ′ ∈ H ′′ if and

only if T ′ is committed in Hk,i. Let cTMSpast(H,opk,i) denote the set of possible pasts
of Hk,i.

For any history H ′′ ∈ cTMSpast(H,opk,i), let ccomp(H ′′) denote the history gener-
ated from H ′′ by the following procedure: for all m �= k, replace every event Am by
Cm and complete every incomplete tryCm with including Cm at the end of H ′′; include
tryCk ·Ak at the end of H ′′.

Definition 10 (du-TMS1). A history H satisfies du-TMS1 if

1. H is strictly serializable, and
2. for each complete t-read opi,k that returns a non-Ak response in H, there exist a

legal t-complete t-sequential history S and a history H ′ such that:
– H ′ = ccomp(H ′′), where H ′′ ∈ cTMSpast(H,opk,i)
– H ′ is equivalent to S
– for any two transactions Tk and Tm in H ′, if Tk ≺RT

H′ Tm then Tk <S Tm

We refer to S as the du-TMS1 serialization for opi,k.

Theorem 8. Du-TMS1 is a safety property.

Proof. A history H is du-TMS1 if and only if H is strictly serializable and there is a
du-TMS1 serialization for every t-operation opk,i that does not return Ak in H.

To see that du-TMS1 is prefix closed, recall that strict serializability is a prefix-closed
property. Let H be any du-TMS1 history and Hi, any prefix of H. We now need to prove
that, for every t-operation opk,i �= tryCk that returns a non-Ak response in Hi, there is a
du-TMS1 serialization for opk,i. But this is immediate since the du-TMS1 serialization
for opi,k in H is also the required du-TMS1 serialization for opk,i in Hi.

To see that du-TMS1 is limit closed, consider an infinite sequence

H0,H1, . . .Hi,Hi+1, . . .

of finite du-TMS1 histories, such that Hi+1 is a one-event extension of Hi. Let let H be
the corresponding infinite limit history. We want to show that H is also du-TMS1.

Since strict serializability is a limit-closed property (Theorem 5), H is strictly serial-
izable. By assumption, for all i ∈ N, Hi is du-TMS1. Thus, for every transaction Ti that
participates in Hi, there is a du-TMS1 serialization Si,k for each t-operation opk,i. But
Si,k is also the required du-TMS1 serialization for opk,1 in H. The claim follows. 	

It has been shown [15] that Opacity is a strictly stronger property than du-TMS1,
that is, Opacity � du-TMS1. Since Du-Opacity � Opacity (Theorem 2) it follows that
Du-Opacity � du-TMS1. On the other hand, du-TMS1 is incomparable to du-VWC, as
demonstrated by the following examples.

Proposition 4. There is a history that is du-TMS1, but not du-VWC.

Safety and Deferred Update in Transactional Memory 69

W1(X ,1) tryC1

W2(X ,0) tryC2

R3(X)→ 0 tryC3

T1 C1

T2 C2

T3 A3

Fig. 7. A history which is du-VWC but not du-TMS1

tryC1

tryC2

tryC3

tryC4

R1(X)→ 0 W1(Y,1)

W2(X ,2)

R3(X)→ 0 W3(Z,3)

R4(X)→ 2 R4(Y)→ 0 R4(Z)→ 3

T1 C1

T2 C2

T3 A3

T4 A4

Fig. 8. A history which is du-TMS1 but not du-VWC

Proof. Figure 8 depicts a history H that is du-TMS1, but not du-VWC. Observe that
H is strictly serializable. To prove that H is du-TMS1, we need to prove that there is
a TMS1 serialization for each t-read that returns a non-abort response in H. Clearly,
the serialization in which only T3 participates is the required TMS1 serialization for
read3(X) → 0. Now consider the aborted transaction T4. The TMS1 serialization for
read4(X) → 2 is T2,T4, while the TMS1 serialization that justifies the response of
read4(Y)−> 0 includes just T4 itself. The only nontrivial t-read whose response needs
to be justified is read4(Z)→ 3. Indeed, tryC3 overlaps with read4(Z) and thus, the re-
sponse of read4(Z) can be justified by choosing transactions in cTMSpart(H,read4(Z))
to be {T3,T2,T4} and then deriving a TMS1 serialization S= T3,T2,T4 for read4(Z)→ 3
in which tryC3 may be completed by including the commit response.

However, H is not du-VWC. Consider transaction T3 which returns A3 in H: T3 must
be aborted in any serialization equivalent to some direct causal past of T4. But read4(Z)
returns the value 3 that is written by T3. Thus, read4(Z) cannot be legal in any du-VWC
serialization for T4. 	

Proposition 5. There is a history that is du-VWC, but not du-TMS1.

Proof. Figure 7 depicts a history H that is du-VWC, but not du-TMS1. Clearly, H is
strictly serializable. Observe that T3 could have read only from T1 in H (T1 writes the
value 0 to X that is returned by read3(X)). Therefore, T1,T3 is the required du-VWC
serialization for aborted transaction T3.

However, H is not du-TMS1: since both transactions T1 and T2 are committed and
precede T3 in real-time order, they must be included in any du-TMS1 serialization for
read3(X)→ 0. But there is no such du-TMS1 serialization that would ensure the legality
of read3(X). 	

70 H. Attiya et al.

Fig. 9. Relations between TM consistency definitions

6 Concluding Remarks

The properties discussed in this paper explicitly preclude reading from a transaction
that has not yet invoked tryC, which makes them prefix-closed and facilitates their veri-
fication. We believe that this constructive definition is useful to TM practitioners, since
it streamlines possible implementations of t-read and tryC operations.

We showed that du-opacity is limit-closed under the restriction that every operation
eventually terminates, while du-VWC and du-TMS1 are (unconditionally) limit-closed,
which makes them safety properties [16].

Figure 9 summarizes the containment relations between the properties discussed in
this chapter: opacity, du-opacity, du-VWC, du-TMS1 and du-TMS2.

Linearizability [4, 11], when applied to objects with finite nondeterminism (i.e., an
operation applied to a given state may produce only finitely many outcomes) sequen-
tial specifications is a safety property [8, 16]. Recently, it has been shown [8] that
linearizability is not limit-closed if the implemented object may expose infinite non-
determinism [8], that is, an operation applied to a given state may produce infinitely
many different outcomes. The limit-closure proof (cf. Theorem 1), using König’s
lemma, cannot be applied with infinite non-determinism, because the out-degree of the
graph GH , constructed for the limit infinite history H, is not finite.

In contrast, the TM abstraction is deterministic, since reads and writes behave de-
terministically in serial executions, yet du-opacity is not limit-closed. It turns out that
the graph GH for the counter-example history H in Figure 2 is not connected. For ex-
ample, one of the finite prefixes of H can be serialized as T3, T1, T2, but no prefix has
a serialization T3, T1 and, thus, the root is not connected to the corresponding vertex of
GH . Thus, the precondition of König’s lemma does not hold for GH : the graph is in fact
an infinite set of isolated vertices. This is because du-opacity requires even incomplete
reading transactions, such as T2, to appear in the serialization, which is not the case for
linearizability, where incomplete operations may be removed from the linearization.

Safety and Deferred Update in Transactional Memory 71

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–
185 (1985)

2. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in transactional
memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp. 376–390. Springer, Heidelberg (2014)

3. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-
ory. In: ICDCS, pp. 601–610 (2013)

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, 2nd edn. Wiley Interscience (2004)

5. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

6. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)

7. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on Dis-
tributed Computing Theory. Morgan and Claypool (2010)

8. Guerraoui, R., Ruppert, E.: Linearizability is not always a safety property. In: Noubir, G.,
Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8539, pp. 57–69. Springer, Heidelberg (2014)

9. Hadzilacos, V.: A theory of reliability in database systems. J. ACM 35(1), 121–145 (1988)
10. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)
11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
12. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a ver-

satile protocol with invisible read operations). Theor. Comput. Sci. 444 (July 2012)
13. König, D.: Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie

der Streckenkomplexe. Akad. Verlag (1936)
14. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. CoRR,

abs/1103.1302 (2011)
15. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: WTTM (2012)
16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
17. Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst. 4(3), 455–495 (1982)
18. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631–653

(1979)
19. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–213 (1995)

	Safety and Deferred Update in Transactional Memory
	1 Introduction
	2Preliminaries
	2.1Implementations and Histories
	2.2Complete Histories and Real-Time Precedence
	2.3Latest Written Value and Legality
	2.4Safety
	2.5city

	3Deferred-Update Semantics and Its Properties
	3.1Du-Opacity
	3.2Du-Opacity Is Prefix-Closed
	3.3The Limit of Du-Opaque Histories
	3.4Du-Opacity is Limit-Closed for Complete Histories

	4Du-Opacity vs. Opacity
	4.1 The Unique-Write Case
	4.2The Sequential-History Case

	5Du-Opacity vs. Other Deferred-Update Criteria
	5.1TMS2
	5.2Virtual World Consistency (VWC)
	5.3TMS1

	6Concluding Remarks
	References

