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Abstract. In this chapter we give a formal overview of liveness properties of
transactional memory (TM) systems. Unlike safety properties, which require some
’bad’ events not to occur, liveness properties require some ’good’ events to even-
tually occur. Usually, liveness properties of shared memory systems require some
operations to eventually return a response (terminate). However, in the context of
TM systems operation termination is not enough to ensure meaningful progress.
It is necessary to require some transactions to eventually commit. In this chapter
we give precise definitions of liveness properties and what it means for a TM sys-
tems to satisfy a liveness property. Using the defined formal framework we give
some impossibility results. We show that it is impossible to guarantee both local
progress, the strongest TM liveness property that requires every correct trans-
action to eventually commit, and common TM safety properties such as strict
serializability or opacity in a fault prone system.

1 Introduction

Transactional memory (TM) [13, 16, 26] is a concurrency control paradigm that aims at
simplifying concurrent programming. It provides non-expert programmers with an ab-
straction, called transaction, such that transactions concurrently execute atomic pieces
of sequential code of some application. Each transaction is executed by some process
(thread) and contains transactional operations. A transactional operation is either an ac-
cess (read or write) to a transactional variable (data item) or a request to commit the
transaction. If the transaction is committed, then the effects of its operations become
visible to subsequent transactions, and if it is aborted, then the effects are rolled back.
Transactions are viewed as a simple way to write concurrent programs and hence lever-
age multicore architectures. Not surprisingly, a large body of work has been dedicated
to implementing the paradigm and reducing its overheads.

Most of the work on the theory of transactional memory focused solely on safety
(consistency), i.e., on what TMs should not do. Indeed, correctness conditions for TMs
have been proposed in [11, 18, 5, 6, 8] and programming language level semantics of
specific classes of TM implementations have been determined, e.g., in [1, 19, 22, 23].
Most those efforts, however, focused solely on safety, i.e., on what TMs should not
do. Clearly, a TM that ensures only a safety property can trivially be implemented by
aborting all operations. To be meaningful, a TM has to ensure that some transactions
should eventually commit which is captured by a liveness property [2].

Generally, in shared-memory systems, a liveness property states when a certain pro-
cess that invokes an operation on a shared object is guaranteed to return from this
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operation, i.e. makes progress [17]. One of the widely studied such property is wait-
freedom [14]. It ensures, intuitively, that every process invoking an operation on a shared
object eventually returns from this operation, even if other processes crash. It is the ul-
timate liveness property in concurrent computing as it ensures that every process makes
progress and forms the consensus number hierarchy of shared objects [14]. However,
requiring TM systems to ensure only wait-freedom would, however, not be enough to
ensure any meaningful progress: processes of which all transactions are aborted might
be satisfying wait-freedom (since every transactional operation returns a response) but
would not be making any real progress. To ensure meaningful progress, a TM live-
ness property should require transaction commitment, beyond operation termination.
In other words, it should require certain processes to eventually commit some of their
transactions. One would expect from a TM that every process that keeps executing
transactions eventually commits some of them—a property that we call local progress
and that is similar in spirit to wait-freedom. Not satisfying this property means that
some processes might never commit any of their transactions starting from some point
in time.

A TM implementation that protects every transaction using a single fair global lock
could ensure local progress: such a TM would execute all transactions sequentially, thus
avoiding conflicts between transactions. Yet, such a TM would force processes to wait
for each other, preventing them from progressing independently. A process that acquires
a global lock and gets suspended for a long time, or that enters an infinite loop and keeps
running forever without releasing the lock, would prevent all other processes from mak-
ing any progress. This would go against the very essence of wait-freedom. Hence, to be
really meaningful a TM liveness property should enforce some ”independent” progress.

p1 T1

p2 T2
x.read → 0

x.write(1)
commit

x.read → 0 x.write(1)
abort

Fig. 1. An illustration of the difficulty of ensuring local progress. The scenario can be repeated
infinitely many times preventing transaction T1 from ever committing.

The classical way of modeling shared-memory systems in which processes can make
progress independently, i.e., without waiting for each other, is to consider asynchronous
systems in which processes can be arbitrarily slow and can fail by crashing. A TM
implementation that is resilient to crashes enables the progress of a process even if
other processes are suspended for a long time or crashed.

However, resiliency against crashes is not enough. Consider a transaction that holds
a global lock which does not crash and never invokes a commit request. Such a transac-
tion would prevent all other transactions from making progress. Therefore, one should
also ensure progress in the face of parasitic processes—those that keep executing trans-
actional operations without ever attempting to commit. These model long-running pro-
cesses whose duration cannot be anticipated by the system, e.g., because of an infinite
loop.
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To illustrate the underlying challenges, consider the following example, shown in
Figure 1. Two processes, p1 and p2, execute transactions T1 and T2, respectively. Pro-
cess p1 reads value 0 from a shared variable x and then gets suspended for a long time.
Then, process p2 also reads value 0 from x, writes value 1 to x, and attempts to commit.
Because of asynchrony, the processes can be arbitrarily delayed. Hence, the TM does
not know whether p1 has crashed or is just very slow, and so, in order to ensure the
progress of process p2, the TM might eventually allow process p2 to commit T2. But
then, if process p1 writes value 1 to x and attempts to commit T1, the TM cannot allow
process p1 to commit, as this would violate safety. A similar situation can occur in the
case of parasitic processes, say if p1 keeps repeatedly reading from variable x. If the
maximum length of a transaction is not known, the TM cannot say whether p1 is para-
sitic or not, and thus may eventually allow process p2 to commit T2, forcing process p1

to abort T1 later.
We consider a set-based definition of liveness, i.e. we consider a TM-liveness prop-

erty L as a set of fair histories, so that a TM implementation ensures the property if
every fair history of the implementation belongs to L. A history is basically a sequence
of invocations and responses of operations executed within transactions, and a fair his-
tory is a history augmented with crash events. The focus on fair histories is necessary
because a TM-liveness property should not require progress from processes which do
not take any steps in an execution, i.e. crash in that execution. So, to distinguish crashed
processes from processes that take infinitely many steps without returning a response of
a transactional operation, we augment histories with crash events. Like fairness prop-
erties are defined in [27], we define a TM-liveness property as a weakening of local
progress, which has the strongest progress requirement among TM-liveness properties.

Since safety properties state that some events should not occur and liveness prop-
erties state that some events should eventually occur, safety and liveness requirements
might contradict each other. A safety requirement may make it impossible to guarantee
a liveness requirement and vice versa. The question is, under what conditions which
safety and liveness properties are impossible to guarantee? We address this question
in the TM context by proving an impossibility result which states that no TM imple-
mentation can ensure both local progress and opacity in any fault-prone system, i.e. in
a system in which any number of processes can crash or be parasitic. Opacity is the
safety property ensured by most TM implementations. It states that every transaction
(even aborted or live) observes a consistent state of the system. Local progress is a
TM-liveness property, highlighted above, which states that every correct process, i.e. a
process which is not parasitic and does not crash, eventually commits its transactions.
In fact, we prove a more general result stating that no TM implementation can ensure
any safety property that is at least as strong as strict serializability together with the
progress of at least two correct processes and any correct process that runs alone.

2 Preliminaries

2.1 System Model

We consider a system of n asynchronous processes p1, . . . , pn that communicate with
each other by executing operations on shared objects (which represent the shared
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memory, e.g., provided in hardware). A shared object is a higher-level abstraction
provided to processes, and implemented typically in software using a set of base ob-
jects. Base objects are shared objects which are accessed via atomic operations called
primitives.

For instance, if base objects are memory locations with basic operations such as read,
write, and compare-and-swap, then shared objects could be shared data structures such
as linked lists or hash tables. When a process pi invokes an operation op on a shared
object O, then pi follows the implementation of O, possibly accessing some number
of base objects and executing local computations, until pi is returned the result of op.
We assume that processes are sequential; that is, whenever a process pi invokes an
operation op on any shared object, pi does not invoke another operation on any shared
object until pi returns from op. Invocations and responses on shared objects operations
are called (invocation and response) events.

2.2 Histories and Executions

Let I be an implementation of a shared object O. A configuration C of I determines the
current state of each process and of each base object used in I. The initial configuration
C0 of I is a configuration when all processes and all base objects are at their initial
states. A step s (executed by some process pi) of I can be one of the following: (i)
an invocation event of some operation on O, (ii) a response event of some operation
from O, (iii) a single primitive operation and one or more computations local to pi. An
execution α = C0 · s1 ·C1 · s2 ·C2 . . . of I is a (finite or infinite) sequence of alternating
configurations and steps of I such that: (i) C0 is the initial configuration, and for any
Ci, si, and Ci+1 in α the execution of step si by I at configuration Ci results in the new
configuration Ci+1. We define a projection α|pk of an execution α on a process pk as
the longest subsequence of α consisting only of steps of pk.

The order in which processes take steps is determined by a scheduler. Processes and
TM implementations have no control over a scheduler. The scheduler decides which
process is allowed to execute a step at a given point in time. These decisions form a
schedule which is a finite or an infinite sequence of process identifiers.

The longest subsequence of an execution α of I consisting only of invocation and
response events is called a history of I, and is denoted by Hα . We define a projection
H|pk of a history H on a process pk as the longest subsequence of H consisting of
invocation and response events associated with pk.

2.3 Transactional Memory

Transactional memory allows processes to execute pieces of sequential code within
transactions. The code contains accesses to transactional variables (t-variables for short)
which represent shared data. For presentation simplicity, we focus on t-variables that
support read and write operations. Let K be the set of process identifiers, P = {pk|k ∈
K} be the set of processes, and let X be the set of t-variables. Each t-variable can take
values from a set V . To write a value v to a t-variable x process pk invokes x.writek(v)
and receives as a response either ok, if the write was successful, or an abort event Ak if
the transaction has to be aborted. To read a value from a t-variable x process pk invokes
x.readk and receives as a response either the value of t-variable v or an abort event Ak if
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the transaction has to be aborted. To commit a transaction process pk invokes a commit
request tryCk and receives as a response either a commit event Ck or an abort event
Ak. Let Invk = {x.writek(v)|x ∈ X and v ∈V}∪{x.readk|x ∈ X}∪{tryCk} be the set of
invocation events of process pk and Resk = {vk|v ∈ V}∪{okk,Ak,Ck} be the set of re-
sponse events of process pk. Also, let Inv=∪k∈KInvk and Res=∪k∈KResk. Usually TM
implementations provide additional transactional operations such as the request to start
a transaction, the request to create a new t-variable (in the case of dynamic TMs), and a
request to abort a transaction. Our theoretical results hold for TM implementations that
provide these operations. However, for simplicity, we assume TM implementations that
provide only operations to read/write a t-variable and commit a transaction.

Denote by Σk a set such that Σk = {x.writek(v) ·okk|x.writek(v)∈ Invk}∪{x.readk() ·
vk|x.readk() ∈ Invk and vk ∈ Resk}∪{tryCk ·Ck}∪{inv ·Ak|inv ∈ Invk}, i.e. Σk contains
concatenations of invocations and their possible responses associated with process pk.
Also, let Σ∞

k be the set of all finite and infinite sequences over Σk. A history H of a TM
implementation is well-formed if for every pk ∈ P either H|pk ∈ Σ∞

k or H|pk ∈ Σ∗
k · Invk

holds, i.e. H|pk is a sequence of alternating invocation and response events. In the rest
of the chapter we assume only well-formed histories.

Given projection H|pk of history H of some TM implementation, a transaction of pk

in H is a subsequence T = e1 · . . . · em of H|pk such that:

• either e1 is the first event in H|pk, or the event e′ which precedes e1 in H|pk is either
Ak or Ck, and

• em is either Ak or Ck or the last event in H|pk, and
• no event in T , except em, is Ak or Ck.

Transaction T is committed (aborted) if the last event in T is a commit (abort) event.
Given transactions T1 and T2 in history H, we say that T1 precedes T2 in H, denoted by
T1 <H T2, if T1 is committing or aborting and the last event of T1 precedes the first event
of T2 in H. Transactions T1 and T2 are concurrent if T1 does not precede T2 and T2 does
not precede T1. History H is sequential if no two transactions in H are concurrent to
each other.

Processes communicate with each other only through a TM implementation by in-
voking concurrently requests (read, write, and commit requests) and receiving corre-
sponding responses from the implementation. Processes send commit requests to the
TM implementation that decides which transactions should be committed or aborted.
To reduce contention between transactions, a TM implementation may use a logically
separate module called a contention manager. A contention manager can force the TM
implementation to abort or delay some transactions. In this work we consider a con-
tention manager as an integral part of a TM implementation. That is, all the results of
the paper apply to the entire TM, including the contention manager.

2.4 Process Failures

Let α be an infinite execution. Process pk crashes in α if α|pk is finite. That is, a process
crashes in an infinite execution if it stops taking steps in the execution.

Intuitively, a parasitic process is a process that keeps executing transactional
operations but, from some point in time, never attempts to commit (by invoking
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operation tryC) when given a chance to do so. Note that if starting from some moment
in time every transaction executed by the process is prematurely aborted, i.e. aborted
before the process invokes a commit request, in general, we cannot tell whether the
process intended to eventually invoke a commit request or not. Therefore, we consider
such processes as not parasitic.

Let α be an infinite execution. Process pk is parasitic in α , if there is a suffix α ′ of
α such that: (i) pk executes infinitely many transactional operations in α ′, (ii) α ′ does
not contain Ak events, and (iii) α ′ does not contain tryCk requests.

Process pk is correct in an infinite execution α if pk is not parasitic in α and does
not crash in α .

We define a crash-prone system (respectively, parasitic-prone system) Sys to be
a system of processes in which any process can crash (respectively, be parasitic). A
fault-prone system Sys is a system which is crash-prone or parasitic-prone. Note that a
fault-prone system can have both crashed and parasitic processes.

2.5 Safety Properties of TM

Intuitively a safety property of TM implementations should capture the fact that all
events within a transaction appear to other transactions as if they occur instantaneously.
If a transaction is committed, then all the changes made by write operations within the
transaction are made visible to other transactions; otherwise all the changes are rolled
back. We consider two safety properties of TM implementations: strict serializability
and opacity. Intuitively, strict serializability requires every committed transaction to
observe a consistent state of the system [24], while opacity requires every transaction
(even aborted or unfinished) to observe a consistent state of the system [12].

We say that history H is equivalent to history H ′ if for every process pk ∈ P we
have H|pk = H ′|pk. A transaction T in history H is commit-pending if T ends with a
commit request tryC. A transaction T in history H is live if T is not commit-pending,
aborted, or committed. We obtain a completion of a finite history H by aborting every
live transaction and by committing or aborting every commit-pending transaction. For-
mally a completion comp(H) of a history H is a history derived from H by appending
the following events:

• for every live transaction T (executed by pk) we append tryCk ·Ak

• for every commit pending transaction T (executed by pk) we append either Ck or
Ak.

If comp(H) = H, then H is a complete history. We say that a history H ′ preserves
the real time order of a history H if for any two transactions T1 and T2 in H if T1 <H T2,
then T1 <H′ T2. Let Hs be a complete sequential history and Tj be a transaction in H.
Denote by visible(Tj) the longest subsequence of Hs such that for every transaction Ti

in the subsequence, either j = i or Ti <Hs Tj. Transaction Tj is legal in Hs if for every
t-variable x ∈ X history visible(Tj) respects the sequential specification of x, i.e. for
every transaction Ti in visible(Tj) and every response event vk in Ti, v is the value of the
previous write to x invocation event within a committing transaction in visible(Tj) or v
is the initial value of x if there are no write to x invocation events within any committing
transaction in visible(Tj) before vk.
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A finite history H is opaque1 if there exists a sequential history Hs equivalent to
comp(H), such that Hs preserves the real-time order of comp(H), and every transac-
tion in Hs is legal. A finite history H is strictly serializable if there exists a sequential
history Hs equivalent to H ′, where H ′ is obtained from H by removing every aborted
and live transaction and some of the commit-pending transactions and appending to H
a commit event for every commit-pending transaction which is not removed, such that
Hs preserves the real-time order of H, and every transaction in Hs is legal. A TM imple-
mentation I ensures opacity (respectively, strict serializability) if for every execution α
of I, Hα is opaque (respectively, strictly serializable).

For example, the history in Figure 1 is opaque, while the history in Figure 2 is not
opaque but strictly serializable.

p1
r → 0

p2

w(1)
C

r → 1
A

Fig. 2. A history which is not opaque but strictly serializable. All operations access the same t-
variable. For simplicity, r → v denotes both the invocation of a read operation and its response v,
w(v) denotes both the invocation of a write operation (with value v) and its response ok, C denotes
both the invocation of a commit request and a commit event, A denotes both the invocation of a
commit request and an abort event.

3 Liveness of a TM

3.1 TM-Liveness Properties

Basically, a TM-liveness property states whether some process pk should make progress
in some execution α . Clearly, progress cannot be required for crashed or parasitic pro-
cesses: these processes have executions with a finite number of tryC operation invo-
cations. Thus, we should require progress only for correct processes (which basically
captures the fairness requirement). Like a fairness property is defined in [27], we de-
fine a TM-liveness property as a weakening of the strongest TM-liveness property. The
strongest TM-liveness property that we can require of a TM system is to ensure that
every correct process makes progress.

Next we introduce the notion of a fair history in order to distinguish a process that
crashes from a process that takes infinitely many steps without returning a response
when defining a liveness property. We derive a fair history Fα by augmenting a history
Hα , of some execution α , with crash events. Formally, we derive a fair history Fα in
the following way: for every process pk that crashes in α we insert a crash event crashk

between the last event e of pk and the event that follows after e in Hα . A process pk is

1 Since the way we define opacity is not prefix-closed it is not exactly a safety property. However,
for the sake of simplicity, we do not consider a prefix-closed definition of opacity since in terms
of TM implementations a prefix-closed definition is equivalent to a non-prefix-closed one (i.e.
every TM implementation which ensures non-prefix-closed also ensure a prefix-closed one).
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correct in a fair history Fα , if pk is correct in α . Herein, if α is clear from the context,
we omit α from the notation of a (fair) history Hα and use just H instead. A process pk

makes progress in a fair history F , if F contains infinitely many commit events Ck.
A fair history F ensures local progress if every correct process makes progress in

F , or F does not have any correct processes. Let Llocal denote the set of all possible
fair histories that satisfy local progress. Then, a TM-liveness property L is a set of fair
histories such that Llocal ⊆ L. Given two TM-liveness properties L1 and L2, we say that
L1 is weaker (stronger) than L2 if L2 ⊆ L1 (L1 ⊆ L2). A fair history F ensures a TM-
liveness property L iff H ∈ L. A TM implementation I ensures a TM-liveness property
L if for every execution α of I its corresponding fair history Fα ensures L.

3.2 Examples of TM-Liveness Properties

Local Progress. Roughly speaking, a TM implementation I ensures local progress if I
guarantees that every correct process in a fair history makes progress, i.e. has infinitely
many of its transactions committed. Note that local progress requirements also imply
the requirement of wait-freedom of individual transactional operations. Therefore, ev-
ery TM-implementation that ensures local progress also ensures wait-freedom [14],
which requires each individual transactional operation to receive a response. However,
a TM-implementation might ensure wait-freedom without ensuring local progress, e.g.
when all transactional operations receive a response each transaction is aborted.

For example, Figure 3 shows an infinite history which ensures local progress in a
system with two processes and one t-variable. Both processes make progress in the
history.

p1
r → 0

w(1)
C

p2
r → 0

w(1)
A

r → 1

w(0)
C

r → 1

w(0)
A

r → 0

w(1)
C

r → 0

w(1)
A

Fig. 3. An infinite fair history with two processes and one t-variable that ensures local progress.
Each process executes an infinite number of transactions that either read value 0 and write value
1 or read value 1 and write value 0.

Global Progress. A TM implementation I ensures global progress if I guarantees that
some correct process in a fair history makes progress, i.e. has infinitely many of its
transactions committed. Formally, we define global progress, as a TM-liveness prop-
erty Lglobal such that a fair history F belongs to Lglobal iff at least one correct process
in F makes progress in F , or F does not have correct processes. Note that every TM-
implementation that ensures global progress also ensures lock-freedom [14], which re-
quires some individual transactional operation to receive a response.
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p1
r → 0

w(1)
C

p2
r → 0

w(1)
A

r → 1

w(0)
C

r → 1

w(0)
A

r → 0

w(1)
C

r → 0

w(1)
A

Fig. 4. An infinite fair history with two processes and one t-variable that ensures global progress.
Processes execute an infinite number of transactions that either read value 0 and write value 1 or
read value 1 and write value 0.

Figure 4 shows an infinite fair history which ensures global progress in a system
of two processes and one t-variable. Both of the processes are correct in the history.
However, only process p1 makes progress in the history.

Solo Progress. A TM implementation I ensures solo progress if I guarantees that ev-
ery correct process which runs alone in a fair history makes progress, i.e. has infinitely
many of its transactions committed. A correct process runs alone if starting from some
point in time it is the only process that takes steps in an execution. Formally, a pro-
cess pk runs alone in an infinite fair history F if pk is correct in F and all other pro-
cesses crash in F (i.e. stop taking steps in the corresponding execution). We define solo
progress, as a TM-liveness property Lsolo such that a fair history F belongs to Lsolo iff
a process that runs alone in F makes progress in H, or F does not have a process that
runs alone in F . Note that every TM-implementation that ensures solo progress also en-
sures obstruction-freedom [15], which requires each individual transactional operation
to receive a response if the operation runs alone.

Figure 5 depicts an infinite fair history which ensures solo progress in a system with
three processes and one t-variable. Processes p1 and p2 crash, and process p3 runs alone
and makes progress.

Note that according to the definition of solo progress, a transaction which does not
encounter step contention with other transactions, i.e. the transaction runs alone, is
allowed to abort. This is because solo progress is a liveness property, and therefore
it should allow any possible finite fair history (by the definition of a liveness prop-
erty [2, 25]). If we change the definition of solo progress so that the new definition
requires every transaction which runs alone to commit, then the resulting new defini-
tion would not be a liveness property.

Obstruction-free TM implementations [12, 15] ensure solo progress in systems that
are not parasitic-prone. Lock-based TM implementations, such as TinySTM [9] and
SwissTM [7], ensure solo progress in systems that are not crash-prone. However, lock-
based TMs that use lazy acquire, such as TL2 [4], ensure solo progress in systems that
are not crash-prone.

Using the same formal framework we can define other kinds of TM-liveness prop-
erties. For example, in [3] we define a stronger version of solo progress which requires
progress from a process if all other processes either crash or become parasitic starting
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p1
r → 0 crash

p2
w(1)

C
r → 1 crash

p3
r → 1

w(0)
A

r → 0

w(1)
C

r → 1

w(0)
C

Fig. 5. An infinite fair history with three processes and one t-variable that ensures solo progress.
Process p1 starts a transaction by invoking a read operations, but then it crashes. Process p2
executes two transactions, but it crashes during the execution of the second transaction. Process
p3 executes an infinite number of transactions that either read value 0 and write value 1 or read
value 1 and write value 0.

from some point in time. Basically, such TM-liveness property states that if no other
processes attempt to commit their transactions then the only correct process should
make progress.

4 Impossibility of Local Progress

Like in any distributed problem, each execution of a TM implementation can be thought
of as a game between the environment and the implementation. The environment con-
sisting of processes and a scheduler decides on inputs (operation invocations) given to
the implementation and schedule of steps and the implementation decides on outputs
(responses) returned to the environment. To prove that there is no TM implementation
that ensures both opacity and local progress in a fault prone system we use the environ-
ment as an adversary that acts against the implementation. The environment wins the
game against a TM implementation, if the resulting infinite fair history violates local
progress. To prove the impossibility result, we show a wining strategy for the environ-
ment.

Theorem 1. For every fault-prone system, there does not exist a TM implementation
that ensures both local progress and opacity in that system.

Proof. Assume otherwise, i.e. that there exists a fault-prone system Sys for which there
exists a TM implementation I that ensures local progress and opacity in Sys. To find a
contradiction, we exhibit a winning strategy (Strategies 1 and 2 below) for the environ-
ment resulting in an infinite fair history of I which does not ensure local progress.

By its definition, a fault-prone system Sys is a system in which any number of
processes can crash or be parasitic. We thus consider two different cases:

Sys is Crash-Prone
Consider two processes p1 and p2 and the environment that interacts with I using
Strategy 1.
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Strategy 1

1. Step 1. Process p1 invokes a read operation on t-variable x. Only process p1 takes
steps until it receives a response. When p1 receives a response, which is either v′1
or A1, the strategy goes to Step 2.

2. Step 2. Process p2 invokes a read operation on t-variable x and takes steps until
it receives as a response v′′2 or A2. If the response is A2, then the strategy repeats
Step 2. Otherwise p2 invokes an operation on x, which writes to x either (I) value
v′+1, if p1 received v′1 in Step1, or (II) value v′′+1, if p1 received A1 in Step1, and
takes steps until it receives as a response ok2 or A2. If the response is A2, then the
strategy repeats Step 2. Otherwise p2 invokes tryC2 operation and takes steps until
it receives a response C2 or A2. If the response is A2, the strategy repeats Step 2.
Otherwise the strategy goes to Step 3. Only process p2 takes steps until it receives
C2 as a response.

3. Step 3. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise pro-
cess p1 resumes taking steps by invoking a write operation on t-variable x which
writes value v′′ + 1 to x, and then executes until it receives a response. If the re-
sponse is A1, then the strategy goes to Step 1. Otherwise p1 invokes tryC1 opera-
tion and executes the operation until it receives a response. If the response is A1,
the strategy goes to Step 1. Otherwise the strategy stops.

First, we prove that processes p1 and p2 cannot be parasitic in any execution corre-
sponding to Strategy 1. This is because Strategy 1 does not have loops in which some
process invokes infinitely many operations within the same transaction without ever in-
voking a commit request or receiving an abort event. Note that according to the strategy,
process p1 can crash when transactions of process p2 are repeatedly aborted in Step 2.
Therefore, the strategy does not describe the behavior of processes in a crash-free sys-
tem, i.e. system in which no process is allowed to crash.

Next, we show that there exists an infinite fair history F of I corresponding to some
execution of I according to Strategy 1. To do so, we prove that Strategy 1 never termi-
nates. We first prove that the individual transactional operations of I are obstruction-
free, i.e. we prove that each operation in Strategy 1 eventually returns a response. If
in Strategy 1 some process pk, where k ∈ {1,2}, executing a transactional operation,
does not return a response, then pk takes infinitely many steps, and consequently pk is
correct. However, pk does not make progress: a contradiction to the fact that I ensures
local progress. Since individual operations of the implementation are obstruction-free,
then the strategy terminates iff at Step 3 process p1 is returned C1 by I.

Assume some finite history Hf of I corresponding to an execution according to Strat-
egy 1 such that the last event in Hf is C1 (Figure 6). Since I ensures opacity, there exists
a sequential finite history Hs which is equivalent to comp(Hf ), preserves the real-time
order of comp(Hf ), and every transaction in Hs is legal. Since history Hf has no trans-
actions which are either live or commit-pending, then comp(Hf ) = Hf . Hence Hs is
equivalent to Hf and preserves the real-time order of Hf . Since Hs is a sequential history
and preserves the real-time order of Hf , then Hs could only have one of the following
forms, where H ′

s is a prefix of Hs:

1. Hs =H ′
s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+

1) ·ok2 · tryC2 ·C2
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2. Hs =H ′
s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+

1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′ + 1. In the second case,
the last transaction executed by process p1 is not legal in Hs, because p1 reads value
v′ from t-variable x the value of which is v′+ 1. Thus, Hf is not opaque. Since every
history Hf of I that ends with a commit event C1 is not opaque and I ensures opacity,
then Hf is not a history of I corresponding to Strategy 1. In other words, every history
of I corresponding to some execution according to Strategy 1 is infinite.

p1 T1

p2 T2
x.read → v′′

x.write(v′+1)
commit

x.read → v′ x.write(v′′+1)
commit

Fig. 6. A suffix of history Hf corresponding to an execution according to Strategy 1 (and Strategy
2) with the last two transactions of p1 and p2

Consider some infinite execution α of I corresponding to Strategy 1. Since process
p1 never receives commit event C1 from I, then p1 does not make progress in the cor-
responding infinite fair history Fα . Since Sys is crash-prone, then process p1 either
crashes in α or does not. Therefore, we focus on the following two cases:

• Process p1 crashes in α . According to the strategy, process p1 crashes in Fα iff
starting from some point in time the strategy executes infinitely many iterations of
Step 2 without going to Step 3. Since no process can be parasitic in any execution
corresponding to Strategy 1 and p2 takes infinitely many steps in α , process p2 is
correct in Fα . Since I ensures local progress and p2 is correct in Fα , then process
p2 eventually receives commit event C2 in Step 2, and therefore the strategy should
eventually go to Step 3: a contradiction.

• Process p1 does not crash in α . Since p1 cannot be parasitic in α , then p1 is correct
in Fα . Since I ensures local progress, then p1 makes progress in Fα : a contradiction.

Sys is Parasitic-Prone. Consider two processes p1 and p2 and the environment that
interacts with I using the following strategy:

Strategy 2

1. Step 1. Process p1 invokes a read operation on t-variable x and takes steps until
it receives as a response v′1 or A1. Then process p2 invokes a read operation on x
and takes steps until it receives as a response v′′2 or A2. If the response is A2, then
the strategy repeats Step 1. Otherwise p2 invokes a write operation which writes
to x either (I) value v′ + 1, if p1 received v′1, or (II) value v′′ + 1, if p1 received
A1, and then p2 takes steps until it receives a response. If the response is A2, then
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the strategy repeats Step 1. Otherwise p2 invokes tryC2 operation and takes steps
until it receives a response. If the response is A2, then the strategy repeats Step 1.
Otherwise the strategy goes to Step 2.

2. Step 2. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise
process p1 invokes a write operation on x which writes value v′′ + 1 to x, and p1

takes steps until it receives a response. If the response is A1, then the strategy goes
to Step 1. Otherwise p1 invokes tryC1 operation and takes steps until it receives
a response. If the response is A1, then the strategy goes to Step 1. Otherwise the
strategy stops.

We first prove that the individual transactional operations of I are obstruction-free,
i.e. we prove that each operation in Strategy 2 eventually returns a response. If in Strat-
egy 1 some process pk, where k ∈ {1,2}, executing a transactional operation, does not
return a response, then pk takes infinitely many steps, and consequently pk is correct.
However, pk does not make progress: a contradiction to the fact that I ensures local
progress. Because the individual transactional operations are obstruction-free and be-
cause both processes take steps before Step 1 in Strategy 2 can be repeated, processes
p1 and p2 cannot crash in any execution corresponding to Strategy 2. Note that accord-
ing to the strategy, process p1 can become parasitic when transactions of process p2 are
repeatedly aborted in Step 1 and the read operation of p1 is never aborted. Therefore,
the strategy does not describe the behavior of processes in a parasitic-free system, i.e.
system in which no process is allowed to be parasitic.

Next, we prove that Strategy 2 never terminates, i.e. that at Step 2 process p1 is never
returned C1 by I in any history of I corresponding to an execution of the strategy. As-
sume some finite history Hf of I corresponding to an execution of Strategy 2 such that
the last event in Hf is C1 (Figure 6). Since I ensures opacity, there exists a sequen-
tial finite history Hs which is equivalent to comp(Hf ), preserves the real-time order of
comp(Hf ), and every transaction in Hs is legal. Since history Hf has no transaction
which are either live or commit-pending, then comp(Hf ) = Hf . Hence Hs is equivalent
to Hf and preserves the real-time order of Hf . Since Hs is a sequential history and pre-
serves the real-time order of Hf , then Hs could only have one of the following forms,
where H ′

s is a prefix of Hs:

1. Hs =H ′
s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+

1) ·ok2 · tryC2 ·C2

2. Hs =H ′
s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+

1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′+ 1. In the second case, the
last transaction executed by process p1 is not legal in Hs, because p1 reads value v′ from
t-variable x the value of which is v′+1. Thus, Hf is not opaque. Since every history Hf

of I that ends with commit event C1 is not opaque and I ensures opacity, then Hf is
not a history of I corresponding to the execution of the strategy. In other words, every
history of I corresponding to the execution of Strategy 2 is infinite.

Consider now some infinite execution α of I corresponding to the execution of the
above strategy. Since process p1 never receives commit event C1 from I, then p1 does
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not make progress in the corresponding infinite fair history Fα . Since Sys is parasitic-
prone, then process p1 is either parasitic in α or not. Therefore, we focus on the follow-
ing two cases:

• Process p1 is parasitic in α . According to the strategy, process p1 is parasitic in Fα
iff starting from some point in time the strategy executes infinitely many iterations
of Step 1 without going to Step 2. Strategy 2 repeats Step 1 without going to Step 2
iff process p2 is repeatedly returned abort event A2 in Step 1. Since no process can
crash in any execution corresponding to Strategy 1 and p2 receives infinitely many
abort events in α , process p2 is correct in Fα . Since I ensures local progress and p2

is correct in Fα , then process p2 shoudl eventually receive commit event C2 in Step
1, and therefore the strategy should eventually go to Step 2: a contradiction.

• Process p1 is not parasitic in α . Since p1 does not crash in α , p1 is correct in Fα .
Since I ensures local progress, then p1 makes progress in Fα : a contradiction.

�	

5 Generalizing the Impossibility

In this section we generalize the impossibility result of the previous section. Namely,
we determine a larger class of TM-liveness properties that are impossible to implement
together with strict serializability, which is weaker than opacity, in fault-prone systems.

p1
r → 0 crash

p2
w(1)

C
r → 1 crash

p3
r → 1

w(0)
A

r → 0

w(1)
A

r → 1

w(0)
A

Fig. 7. An infinite fair history with three processes and one t-variable that does not ensure any
non-blocking TM-liveness property. Process p1 starts a transaction by invoking a read operations,
but then it crashes. Process p2 executes two transactions, but it crashes during the execution of
the second transaction. Process p3 executes an infinite number of transactions which read value
0 (read value 1) and write value 1 (write value 0).

5.1 Classes of TM-Liveness Properties

Non-blocking TM-liveness properties. Intuitively, we say that a TM-liveness property
is non-blocking if it guarantees progress for every correct process that eventually runs
alone. More precisely, a TM-liveness property L is non-blocking iff L is stronger than
Lsolo.
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For example, Figure 3, Figure 4, and Figure 5 show infinite fair histories which en-
sure non-blocking TM-liveness properties while Figure 7 shows an infinite fair history
which does not ensure any non-blocking TM-liveness property. Local progress, global
progress, and solo progress are non-blocking. Note that solo progress is the weak-
est among non-blocking TM-liveness properties while local progress is the strongest
among non-blocking properties.

Biprogressing TM-liveness properties. Intuitively, we say that a TM-liveness property
L is a biprogressing property if it requires that at least two correct processes make
progress. More precisely, a TM-liveness property L is biprogressing if for every F ∈ L
at least two processes are correct in F , only if at least two processes make progress
in F .

For example, Figure 3 and Figure 5 show infinite fair histories which ensure a bipro-
gressing property while Figure 4 shows an infinite fair history which does not ensure
any biprogressing property. Local progress is a biprogressing property while global
progress and solo progress are not biprogressing.

5.2 Generalized Result

In this section we show that TM-liveness properties that are both non-blocking and
biprogressing are impossible to implement together with strict serializability in any
fault-prone system. We start by stating the following lemma, which says, intuitively,
that there exists a fair history in which a process executing infinitely many transactions
can block the progress of all other processes if the TM ensures any non-blocking TM-
liveness property. The proof of the lemma follows the same line of reasoning as the
proof of Theorem 1.

Lemma 1. For any fault-prone system and every TM implementation that ensures strict
serializability and a non-blocking TM-liveness property in that system, there exists an
infinite fair history F of the implementation such that at least two processes are correct
in F and at most one process makes progress in F.

Proof. Let I be a TM implementation ensuring strict serializability and a non-blocking
TM-liveness property in a fault-prone system Sys. To exhibit a fair history in which at
least two processes are correct and at most one process makes progress we consider a
game between the environment and the implementation. The environment acts against
the implementation and wins the game if the resulting history satisfies the requirements
of the lemma.

By definition, fault-prone system Sys is a system in which any process can crash or
be parasitic. We thus consider two different cases:

Sys is Crash-Prone. Consider two processes p1 and p2 that interact with I. The envi-
ronment uses Strategy 1 to win the game. We can show that processes p1 and p2 cannot
be parasitic in any execution corresponding to Strategy 1 and that Strategy 1 never ter-
minates using the arguments as in Theorem 1 (because those arguments do not involve
live or aborted transactions).
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Consider some infinite execution α of I corresponding to Strategy 1. Since process
p1 never receives commit event C1 from I, then p1 does not make progress in the cor-
responding infinite fair history Fα . Since Sys is crash-prone, then process p1 either
crashes in α or does not.

Assume that process p1 crashes in fair history Fα . According to the strategy, process
p1 crashes in Fα only if process p2 invokes infinitely many operations and does not
make progress, i.e. only if p2 is returned an infinite number of abort events at Step 2.
Since p2 is returned an infinite number of abort events and p2 cannot crash, p2 is correct
in Fα . Because p2 runs alone in Fα and I ensures a TM-liveness property which is non-
blocking, then p2 makes progress in H: a contradiction. Thus, p1 does not crash in Fα .
Since p1 is not parasitic in α , p1 is correct in Fα .

According to the strategy, p2 does not crash in Fα since Step 2 is repeated infinitely
often. Since Step 2 and Step 1 are repeated infinitely often (because p1 does not crash
in Fα ), then p2 receives infinitely many commit events C2, i.e. p2 is correct. Thus, in
fair history Fα both of the processes are correct and at most one process makes progress
(since p1 is never returned C1).

Sys is Parasitic-Prone. Consider two processes p1 and p2 that interact with I. The
environment uses Strategy 2 to win the game. We can show that processes p1 and p2

do not crash in any execution corresponding to Strategy 2 and that Strategy 2 never
terminates using the same line of reasoning as in Theorem 1.

Consider now some infinite execution α of I corresponding to the execution of the
above strategy. Since process p1 never receives commit event C1 from I, then p1 does
not make progress in the corresponding infinite fair history Fα . Since Sys is parasitic-
prone, then process p1 is either parasitic in α or not.

Assume that p1 is parasitic in α . According to the strategy, p1 can be parasitic only
if p2 does not make progress in Fα and is returned A2 infinitely often (i.e. p2 is correct
in Fα ). Since process p2 runs alone in Fα and I ensures a non-blocking TM-liveness
property, then p2 makes progress in H: a contradiction. Thus, p1 cannot be parasitic in
α . Since p1 does not crash in α , p1 is correct in Fα .

Process p2 cannot be parasitic in α since p2 either invokes tryC2 or is returned A2

infinitely often at Step 1. Thus, in history Fα both of the processes are correct and at
most one process makes progress (since p1 is never returned C1). �	

By definition, a biprogressing TM-liveness property should ensure progress for at
least two correct processes in every infinite history. While, by the above lemma, if
the property is also non-blocking, then we can find an infinite fair history of any TM
implementation in any fault-prone system in which at least two processes are correct
and at most one process makes progress: a contradiction. Thus, we have the following
theorem.

Theorem 2. For every fault-prone system and every TM-liveness property L which is
non-blocking and biprogressing there is no TM implementation that ensures strict seri-
alizability and L in that system.
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6 Conclusion

In this chapter we introduced a set-based framework to formally reason about liveness
properties of TM systems. The framework separates liveness properties of transactions
from liveness properties of transactional operations. For example, a TM implementa-
tion might satisfy global progress, which requires some correct transaction to commit,
and wait-freedom, which requires every correct operation within a transaction to return
a response. Our definition of a TM-liveness property conforms to standard general def-
initions of liveness [2, 21, 25] in the sense that (i) it is a trace property [21, 25] (i.e. it
is defined in terms of invocations and responses which are external events) and (ii) it
allows any finite execution [2].

We proved that it is impossible to guarantee both local progress, the strongest TM-
liveness property, and opacity in any fault-prone system. There are several ways to cir-
cumvent our impossibility result. One way is to weaken safety or TM-liveness property
requirements, for example, to require only global progress. There are implementations
that ensure opacity and global progress, e.g., OSTM [10]. A second way is to assume
that all transactions are static and predefined. That is, when a transaction T starts a TM
implementation knows exactly which operations, on which t-variables, will be invoked
in T , and the operations invoked in T should be the same in any execution. In that case
transactions can be viewed as simple operations and one can apply classical universal
construction [14] to ensure local progress. A third way is to assume a fault-free system,
i.e. assume that no process can crash or be parasitic. However, it was shown in [20] that
even in a fault-free system it is impossible to guarantee opacity and local progress when
a TM implementation uses a direct-update algorithm and the result can be circumvented
only for deferred-update algorithms. An algorithm is deferred-update if every transac-
tion that writes a value must invoke a commit request before other transactions can read
that value; an algorithm which is not deferred-update is called direct-update. A fourth
way is to assume a different system model instead of the multi-threaded programming
model. For example, [28] shows a TM implementation that ensures local progress in
an asynchronous multicore system model which assumes that a transaction can be exe-
cuted by different processes and that some process crashes are detectable by the runtime
system.
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