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Abstract. Many different mechanisms have been developed to imple-
ment Distributed Transactional Memory (DTM). Unfortunately, there is
no “one-size-fits-all” design that offers the desirable performance across
all possible workloads and scales. In fact, the performance of these mech-
anisms is affected by a number of intertwined factors that make it hard,
or even impossible, to statically configure a DTM platform for optimal
performance. These observations have motivated the emergence of self-
tuning schemes for automatically adapting the algorithms and param-
eters used by the main building blocks of DTM systems. This chapter
surveys existing research in the area of autonomic DTM design, with a
focus on the approaches aimed at answering the following two funda-
mental questions: how many resources (number of nodes, etc.) should a
DTM platform be provisioned with, and which protocols should be used
to ensure data consistency.

1 Introduction

After more than a decade of research, implementations of the Transactional
Memory (TM) abstraction have matured and are now ripe to enter the realm of
mainstream commodity computing. Over the last couple of years, TM support
has been integrated in the most popular open-source compiler, GCC, and also
in the CPUs produced by industry-leading manufacturers such as Intel [1] and
IBM [2]. Distributed Transactional Memory (DTM) [3,4,5] represents a natural
evolution of this technology, in which transactions are no longer confined within
the boundaries of a single multi-core machine but, instead, may be used as a syn-
chronization mechanism to coordinate concurrent executions taking place across
a set of distributed machines. Just like TM have drawn their fundamental mo-
tivation in the advent of multi-core computing, the need for identifying simple,
yet powerful and general programming models for the cloud is probably one of
the key factors that have garnered growing research interest in the area of DTM
over the last years [6]. Another major driver underlying existing research efforts
in the area of DTM is fault-tolerance: as TM-based applications are expected
to turn mainstream in the short term, it becomes imperative to devise efficient
mechanisms capable of replicating the state of a TM system across a set of dis-
tributed nodes in order to ensure their consistency and high-availability despite
the failures of individual nodes [7,8].
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From the existing literature in the area of DTM, it can be observed that the
design space of DTM platforms is very large and encompasses many complex
issues, such as data placement and caching policies, replication protocols, con-
currency control mechanisms, and group communication support, just to name a
few. The performance of these fundamental building blocks of a DTM is affected
by multiple intertwined factors. This has motivated the development of a wide
range of alternative implementations, each exploring a different trade-off in the
design space and optimized for different workload types, platform’s scales, and
deployment scenarios. As a result, the body of literature on DTM encompasses
solutions tailored for read-intensive [7] vs conflict-prone [9,10] workloads, replica-
tion mechanisms optimized for small clusters [11], large scale data centers [12,13],
as well as approaches specifically targeting geographically distributed DTM plat-
forms [3].

One of the key conclusions that can be easily drawn by analyzing the results
above is that there is no “one-size-fits-all” solution that can provide optimal
performance across all possible workloads and scales of the platform. This rep-
resents a major obstacle for the adoption of DTM systems in the cloud, which
bases its success precisely in its ability to adapt the type and amount of pro-
visioned resources in an elastic fashion depending on the current applications’
needs. Besides, a DTM encompasses an ecosystem of complex subcomponents
whose performances are governed by a plethora of parameters: manually identi-
fying the optimal tuning of these parameters can be a daunting task even when
applications are faced with static workloads and fixed deployments. Guaran-
teeing optimal efficiency in presence of a time varying operational envelope, as
typically occurs in cloud computing environments, requires to adjust these pa-
rameters in a dynamic fashion — a task that is arguably extremely onerous, if
not impossible, without the aid of dedicated self-tuning mechanisms.

This is precisely the focus of this chapter, in which we dissect the problem of
architecting self-tuning mechanisms for DTM platforms, with a special emphasis
on solutions that tackle the following two fundamental issues:

• elastic scaling: DTM systems can be deployed over platforms of different
scales, encompassing machines with different computational capacities in-
terconnected via communication networks exhibiting diverse performances.
Hence, a fundamental question that needs to be addressed when architecting
a DTM-based application is how many and what types of resources (number
of nodes, their configuration, etc.) should be employed (e.g., acquired from
an underlying IaaS (Infrastructure as a Service) cloud provider) in order to
ensure predetermined performance and reliability levels. In cloud comput-
ing environments, where resources can be dispensed elastically, this is not
a one-off problem, but rather a real-time optimization problem. Its opti-
mal solution requires not only to estimate the performance of applications
when deployed over infrastructures of different scale and types, but also to
encompass economical aspects (e.g., by comparing the cost of a DTM de-
ployment over a large number of relatively slow nodes against a deployment
on a smaller number of more powerful machines) as well as issues related to
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the on-line reconfiguration of the platform (namely, how to rearrange data
after scaling);

• adapting the data consistency protocol: the literature on data consistency
protocols for distributed and replicated transactional systems is a quite pro-
lific one. Existing approaches explore a number of different design choices,
concerning aspects such as whether to execute transactions on all nodes (as
in active replication [14]) or executing in just one replica and only propagat-
ing the transaction’s updates (a.k.a. deferred update schemes [15]), how to
implement transaction validation [16], and whether to use distributed lock-
ing [17] vs total order communication protocols [18] to serialize transactions.
This has motivated research aimed at supporting the automatic switching
between multiple data consistency protocols, and, in some cases even the si-
multaneous coexistence of different protocols. The key challenges addressed
in these works are related to how to preserve consistency despite the (possi-
bly concurrent) employment of alternative consistency protocols, as well as
to the identification of the best strategy to adopt given the current workload
and system’s characteristics.

The remainder of this chapter is structured as follows. We first provide, in
Section 2, an overview of the main building blocks encompassing typical DTM
architectures, and illustrate some of the key choices at the basis of their design.
Next, in Section 3, we identify the DTM components that would benefit the
most from the employment of adaptive, self-tuning designs. In Section 4, we
provide background on the main methodologies employed in the literature to
decide when to trigger an adaptation and to predict which among the available
strategies to adopt. In Section 5 we focus on elastic scaling, and in Section 6 we
discuss adaptation of the consistency protocols. Finally, Section 7 concludes the
paper.

2 Background on DTM

This section is devoted to overview on the key mechanisms that are encompassed
by typical DTM architectures. It should be noted that the discussion that follows
does not aim at providing a thorough and exhaustive survey of existing DTM
designs, but rather to facilitate the description of the self-tuning DTM systems
described in the remainder of this chapter.

The diagram in Figure 1 depicts the high level architecture of a typical DTM
platform, illustrating the key building blocks that compose the software stack of
this type of system.

DTM API. At their top most layer, existing DTM platforms expose APIs
analogous to those provided by non-distributed TMs that allow to define a set
of accesses to in-memory data to be performed within an atomic transaction.
The actual API exposed by a DTM is ultimately influenced by the data model
that it adopts; the range of data models explored in the DTM literature in-
cludes, besides the object-based [7] and word-based [5] ones (typically employed
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Fig. 1. High level architecture of typical DTM platforms (single node)

in non-distributed TMs), also popular alternatives in the NoSQL domain, like
the key-value [13,19] model. Certain DTM platforms [20,21] that support par-
tial replication schemes (i.e., which do not replicate data at every replica of the
system) provide also dedicated API support to influence the policies employed
to determine the placement of data (and its replicas) across the nodes of the
system, with the goal of enhancing the data locality achieved by DTM applica-
tions. These include programmatic mechanisms to ensure the co-location of data
items [21] or to provide the data placement service with semantic information
(like the data item’s type and the relations in which it is involved) concerning
the data access patterns generated by the nodes of the platform [20].

Data Placement Service. The data placement service, as the name suggests,
is responsible for locating the nodes that maintain (replicas of) the data items
accessed during the transaction execution. This module is required exclusively in
case the DTM platform adopts a partial replication scheme (as in fully replicated
systems each node maintain a replica of every data item), although certain DTM
platforms may rely on analogous abstractions to establish ownership privileges
of nodes on data items [21]. The actual implementation of this service is strongly
affected by the transaction execution model embraced by the DTM, which can
be either control-flow or data-flow. In control-flow systems data items are stati-
cally assigned (unless the platform is subject to elastic scaling) to the nodes of
the platform, which retrieve non-local data items via RPC. In data-flow systems,
conversely, transactions are immobile and objects are dynamically migrated to
invoking transactional nodes. As in the control-flow model the placement of data
is static, several control-flow DTM systems [21,22,12] adopt simple policies based
on consistent hashing [23]. This technique, which essentially maps data items to
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nodes of the platform randomly via the use of a hash function, has the desirable
properties of executing data items look ups locally (i.e., the nodes that replicate
a given data item can be identified by computing the hash of its identifier) and
achieving a good balance in the data distribution. Data-flow DTMs, on the other
hand, rely on ad-hoc (distributed) directory or cache coherence protocols, such
as the Arrow [24] or the Ballistic [25] protocols. These protocols require that, in
order for a node to access a data item, it must first acquire its ownership (which
implies locating the current data item owner). As a result, data-flow models
can introduce additional network hops along the critical path of execution of
transactions with respect to control-flow solutions (that do not allow migration
of data). On the pro-side, by dynamically moving the ownership of items to
the nodes that access them, data-flow systems can spontaneously lead to data
placement strategies achieving better locality than static policies, like consistent
hashing, supported exclusively by control-flow systems. A detailed discussion on
control-flow and data-flow models, as well as on systems adopting these models,
can be found in Chapter 16.

Transaction Dispatcher. The transaction dispatcher is a component present
in several DTM platforms [10,5,26], and is in charge of determining whether
the execution of a transaction should take place on the node that generated it,
on a different one, or even by all nodes in the platform. This decision can be
driven by different rationales, such as reducing data contention [26] or enhanc-
ing data locality [10,5,21]. In order to support the migration and execution of
entire transactions at remote nodes, the transaction dispatching mechanism typ-
ically requires ad-hoc support at the DTM API layer in order to ensure proper
encapsulation of the transaction logic, i.e., a function/procedure encoded in a
programming language, and of its input parameters (using classic RPI mecha-
nisms).

Local STM. As for the local data stores, existing DTM platforms typically
leverage on state of the art local STMs, which implement efficient concurrency
control algorithms optimized for modern multi-core architectures [7,11,9,27].

Cache for Remote Data. Some partially replicated DTM platforms [28,21]
cache frequently accessed remote data items, and update them using lazy/
asynchronous invalidation strategies. Clearly, it must be possible to manipulate
also cached data without breaking consistency: therefore they are maintained in
memory and their manipulation is subdued to some form of concurrency control.
However, cached data need typically to be associated with different meta-data
and managed with different rules than the data stored in the local STM (whose
ownership can be established via the data placement service). As a consequence,
cached data are normally maintained in separate in-memory structures.

Distributed Consistency Protocol. Clearly, the data accesses performed by
local transactions need to be synchronized with those issued by transactions
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Fig. 2. Taxonomy for consistency protocols in transactional systems

executing at different nodes. The responsibility of this task is delegated to a dis-
tributed consistency protocol, which is ultimately responsible for enforcing the
consistency guarantees ensured by the DTM platform. The literature on DTM
(and more in general on distributed transactional platforms, e.g., distributed
DBMS) has explored a number of alternative consistency levels, like 1-copy seri-
alizability [13], virtual world consistency [9], extended update serializability [12]
and parallel SI [29]. Clearly, the choice of the consistency criterion has a strong
impact on the design of the underlying distributed consistency protocol. An-
other factor that has a key impact on the distributed consistency protocol is
whether the system employs full or partial replication. In fully replicated DTM
platforms, in fact, once the transaction serialization order is established (typi-
cally by means of a consensus or atomic broadcast service [7]), the nodes can
determine the outcome of committing transactions locally (by validating their
read-set with respect to the most recent committed version). Conversely, in par-
tially replicated DTM systems, some sort of 2PC-like agreement is unavoidable,
as the snapshot accessed by a committing transaction needs to be validated, in
general, by multiple nodes, which must certify the freshness of the transaction’s
snapshot with respect to the locally stored authoritative copies of data. Over the
last decades, a vast literature on distributed consistency protocols for transac-
tional systems has emerged [15,30,31]. A possible taxonomy of existing solutions
is reported in Figure 2.

Single-master. In single master schemes, also known as primary backup, write
transactions are executed exclusively at a single node (also called master or
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primary), whereas the remaining replicas can only run read-only transactions [32].
Upon failure of the master, a backup replica is elected to become the new master.

Note that, as the write transactions can be serialized locally by the master
using its local concurrency control algorithm, this approach can rely on a simpler
replica synchronization scheme with respect to multi-master solutions (as we will
see shortly). On the down side, the throughput of write transactions does not
clearly scale up with the number of nodes in the system, which makes the master
prone to become the system bottleneck.

Multi-master. Multi-master schemes, on the other hand, are typically more scal-
able as transactions can be processed on all nodes. There are two types of syn-
chronizing the accesses to data: eager and lazy. The first relies on a remote
synchronization phase upon each (read/write) access, which normally results in
very poor performance results [33].Conversely, the lazy approach defers replica
synchronization till the commit time, which is when the transaction is finally
validated. Lazy multi-master schemes can be classified based on whether they
rely on Atomic Commit Protocols (such as Two-Phase Commit) or Total Or-
der (TO) [34] broadcast/multicast schemes to determine the global serialization
order of transactions.

Two-Phase Commit. In solutions based on Two-Phase Commit (2PC), transac-
tions attempt to atomically acquire locks at all nodes that maintain data ac-
cessed by the transaction. Even though these schemes normally incur in minor
communication overheads with respect to those relying on TO, these solutions
are well known to suffer of scalability problems due to the rapid growth of the
distributed deadlock rate as the number of replicas in the system grows [17].

Total Order based schemes. Conversely, TO-based replication is a family of (dis-
tributed) deadlock-free algorithms that serializes transactions according to the
total order established by a TO service [34]. These solutions can be distinguished
into two further classes: state machine replication and certification.

State Machine Replication. In the state machine replication [14,35], all replicas1

execute the same set of transactions in the same order. The transactions are
shipped to all replicas using total order broadcast and, consequently, all replicas
receive transactions in the same order and execute them in that order. However,
both transactions and validation scheme must be fully deterministic so that all
replicas begin and finish transactions in the same state.

Certification. Unlike State Machine Replication, certification based techniques
undertake a speculative approach, which can achieve higher scalability, in low
conflict workloads, by fully executing the transaction only at one node. This
means that different transactions may be executed on different replicas concur-
rently. If the transaction aborts during its execution, no further coordination is

1 This technique has been proposed for fully replicated systems.
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required. However, if the transaction is ready to commit, a transaction validation
phase is triggered in order to certify that it has not accessed stale items. The in-
formation exchanged to certify transactions varies depending on the considered
certification protocol (e.g., non-voting [36], voting [37] or bloom-filter based [7]),
but the certification request is disseminated by means of a TO broadcast service
that targets all the nodes that maintain replicas of the data items accessed by the
transaction. In case of partial replication, as already mentioned, this certification
phase may have to involve a voting phase to gather positive acknowledgements
from at least one replica of each data item accessed within the transaction; in
this case the message pattern of the distributed consistency protocols coincides
with the one of the 2PC scheme, in which the prepare messages are disseminated
using a TO service.

3 What Should Be Self-tuned in a DTM?

As it clearly emerges from the discussion in the previous section, the design and
configuration space of DTM is quite vast, and there are several components in
the DTM stack whose setting and parametrization has a strong impact on DTM
performance. Indeed, performance of a DTM application are driven by com-
plex non-linear dynamics stemming from the intertwined effects of workload’s
resource utilization (e.g., in terms of CPU and network bandwidth), data access
pattern (e.g., data contention and locality), inter-nodes communication (e.g., for
remote read operations) and distributed synchronization (e.g., for committing
transactions).

Typical Key Performance Indicators (KPIs) of a DTM are general purpose
metrics like transactions response time and achievable throughput. DTM-specific
KPIs include also metrics like transactions abort probability, execution time of
the distributed commit phase, number of remote accesses during the execution
phase, and number of nodes involved in the transaction processing. While Qual-
ity of Service specifications are typically expressed in terms of throughput and
response time, DTM-specific KPIs are fundamental metrics in many DTM self-
tuning schemes, as they allow for pinpointing bottlenecks and for identifying
sub-optimal configurations. For example, a high abort rate may imply an ex-
cessive concurrency level in the platform and may lead to the decrease of the
number of concurrently active transactions in the platform.

Recent research [26,38,39,40] has shown that transactional workloads are very
heterogeneous and affected by so many variables that no-one-size-fits-all solution
exists for the DTM configuration that guarantees optimal performance across
all possible applications’ workloads. To address this issue, a number of alterna-
tive solutions have been proposed to tackle the problem of self-tuning DTMs.
Such solutions draw from different fields of performance modeling and forecast-
ing and aim to optimize several major building blocks/configuration parameters
of DTMs, focusing in particular on the following five aspects: elastic scaling,
choice of the consistency protocol, data placement and replication degree, com-
munication layer and local TM implementation.
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In the following, we analyze the main trade-offs that emerge in the self-tuning
of these DTM building blocks. In Section 5 and Section 6 we will return to in-
vestigate in greater detail the problems of automating the elastic scaling process
and the choice of consistency protocol, by surveying existing research in these
areas.

Scale. The scale of a DTM consists in the number of nodes composing the plat-
form and, possibly, the maximum number of active threads allowed on each node,
namely, the multiprogramming level (MPL). Accordingly, the elastic scaling, i.e.,
dynamic resizing, of a DTM can take place horizontally, by altering number of
nodes in the platform, or vertically, by adapting the MPL.

Different scales in the DTM not only result in a different physical resources
utilization, but also into different data access patterns. In fact, increasing the
number of active transactions in the system, either by scaling horizontally or
vertically the platform, other than requiring more processing power, also results
into a higher concurrency in accessing and modifying shared data, with a possible
commensurate increase of conflicts and, hence, abort rate. This poses a major
challenge when devising elastic scaling schemes for DTMs as the bottleneck of a
DTM application may lie in data contention. Hence, scalability trends of DTM
applications are far from being easily predictable, as increasing the processing
power, i.e., number of nodes, or processing units, i.e., number of threads, does
not always entail better performance.

Scaling out a DTM poses additional challenges than altering its MPL level:
changing the number of nodes composing a DTM, in fact, results not only into
an increased processing power, but also into a modification of the placement
of data, which can get redistributed across the nodes of the platform (as it
is case, for instance, when using consistent hashing-based placement policies).
Such modification can imply a shift in data locality, and affect the probability
that a transaction accesses data maintained by its originating node. For write
transactions this results also in a change in the number of nodes to be con-
tacted at commit time to propagate updates and, hence, in the duration of the
corresponding phase.

The aforementioned DTM dynamics are not encompassed by the vast major-
ity of available state-of-the-art solutions for automatic resource provisioning, as
they mainly target stateless applications or neglect the impact of elastic scaling
on data distribution and contention [41,42,43,44,45,46]. Devising an optimal au-
tonomic elastic scaling schemes for DTM is, thus, a very challenging task, which
needs to be tackled by means of ad hoc solutions.

Distributed Consistency Protocol. Like for the scale, the choice of the dis-
tributed consistency protocol has a huge impact on both logical and physical
resource utilization. Single master approaches deal with the concurrency control
of update transactions on the master node: on one side this tends to mitigate
data contention, as conflicts can be resolved more efficiently, i.e., in a fully lo-
cal fashion and without the need to run a distributed consensus algorithm to
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determine the outcome of a transaction; on the other hand, the master node
may become a bottleneck in case the arrival rate of update transactions exceeds
its processing capacity.

Multi-master schemes, instead, allow for a better load balancing among nodes
even in write dominated workloads (by distributing update transactions across
all the nodes of the DTM platform), but generally require onerous inter-node
synchronization mechanisms for detecting and resolving conflicts among trans-
actions. As mentioned in Section 2, consistency protocols based on 2PC require
only two round-trip between a transaction’s initiator and other involved nodes to
agree on the outcome of the transaction, but are liable to distributed deadlocks;
TO-based protocols, conversely, achieve deadlock freedom, but the latency in-
duced by the TO primitive may lead to higher synchronization costs at commit
time [39].

Data Placement and Replication Degree. Data locality plays a role of
paramount importance in DTMs, as it determines the frequency of access to
remote data present in the critical path of execution of transactions [20]. The
tuning of the data placement and of the replication degree is aimed at enhancing
the quality of the data layout, so as to increase data locality and reduce the
execution time of transactions.

Two fundamental challenges that need to be tackled for implementing effective
self-tuning data placement schemes are i) how to identify the optimal data lay-
out (i.e., the data layout that maximizes the performance of the platform), and
ii) how to keep track of the new mapping between data item replicas and nodes
in the DTM platform. The former is in fact a distributed optimization problem,
which has been addressed both in its on-line [20,47] and off-line [48,49] formula-
tion, considering different objective functions and constraints (e.g., maximizing
locality [20,48] vs balancing load [47]) and both centralized [48] and decentral-
ized [20] solutions. As for the tracking of the mapping between data items and
nodes of the DTM platform, there are two main trade-offs that need to be taken
into account. Approaches relying on external (and properly dimensioned) direc-
tory services [48,47] can typically support fine-grained mapping strategies also
for large data sets, but impose non-negligible additional latency in the transac-
tion’s critical path. Approaches that explicitly store the mapping of the entire
data set at each node either rely on random hash functions [21] or on coarse
grained mapping strategies — as the overhead for storing and keeping synchro-
nized a fine-grained mapping would be unbearable with large data sets. This has
motivated the usage of probabilistic techniques [20,49] that sacrifice accuracy of
data items lookups in order to reduce the memory footprint of the meta-data
used to encode the data-to-nodes mapping.

The tuning of the replication degree in a DTM [50,38] is another closely re-
lated problem, which encompasses a subtle trade-off between the probability of
accessing locally stored data and the cost of the synchronization phase neces-
sary to validate committing transactions. On one hand, in fact, increasing the
replication degree generally results into a higher probability that a transaction
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accesses a data item that is maintained by the local node; on the other hand, for
update transactions, it also typically leads to an increase in the number of nodes
to be contacted at commit time for validating the transaction and propagating
its updates [38].

Group Communication System. Inter-nodes communication represents a
major source of overhead in DTM, as it can introduce relatively large latencies in
the critical path of execution of transactions, both for the retrieval of remote data
items and to support the distributed commit phase [4,51]. Other than increasing
transactions’ completion time (and hence reducing the achievable throughput),
these latencies can have a great impact also on the conflict rate of transactions:
in fact, the longer a transaction takes to execute, the higher is the chance that
another transaction will try to concurrently access and/or modify a common
datum.

A typical trade-off that arises in the design of coordination services, like
consensus or total order multicast primitives, is that configurations/protocols
that exhibit minimum latencies at low message arrival rate tend also to sup-
port relatively low throughputs. Conversely, protocols/configurations optimized
for supporting high throughputs normally introduce much higher latencies when
operating at low throughput levels. These trade-offs have motivated the devel-
opment of self-tuning mechanisms supporting both the dynamic switching be-
tween alternative implementations of communication primitives (e.g., variants of
TO) [52,53], as well as automatic configuration of internal parameters of these
protocols (e.g., message batching) [54,55].

Local TM. As discussed in Section 4.2, the typical architecture stack of DTM
systems includes a non-distributed (S)TM, which is used to regulate concurrent
access to locally stored data. The problem of self-tuning TM has also been largely
explored in literature, as TM and DTM, unsurprisingly, exhibit similar trade-
offs, e.g., the workload characteristics can strongly affect the performance of the
concurrency control algorithm, as well as the optimal MPL. Examples of self-
tuning solutions that dynamically adjust these TM mechanisms/parameters can
be found in [56,57,58,59].

Another TM parameter that has been object of self-tuning techniques is the
lock granularity [60]. Lock granularity expresses what is the atomic portion of
the data set (or of the memory space, for centralized TMs) that the concurrency
control scheme deals with. The finer is the granularity, the higher is the con-
currency that the concurrency control scheme allows for, but also the overhead
incurred to maintain and manage meta-data. For example, in a per-item locking
scheme, every data item is guarded by a lock and conflicts can be detected at
the granularity of the single item. A coarser scheme, instead, reduces the num-
ber of employed locks at the cost of inducing false conflicts, i.e., conflicts among
transactions that access different data items, which, nonetheless, insist on the
same lock.



Self-tuning Distributed Transactional Memories 429

Finally, self-tuning techniques have been proposed to optimize the thread
mapping strategy [61] and efficiently exploit the memory hierarchy of modern
multiprocessors. In these architectures, just like we just described for the dis-
tributed case, data locality plays a fundamental role in determining the perfor-
mance of an application. Thread mapping consists in placing threads on cores
so as to amortize memory access latency and/or to reduce memory contention,
i.e., it tries to allocate a thread that frequently accesses a given memory region
on the core that incurs the minimal latency when accessing that portion of the
memory space.

4 When and Which Adaptation to Trigger?

In this section, we provide background on the main methodologies that are
commonly employed in the literature of self-tuning systems to tackle two key
issues: when to trigger an adaptation, and how to predict which among the
available reconfigurations to enact.

4.1 When to Trigger Adaptations?

An important aspect to consider when dealing with self-tuning of systems is
determining when to trigger an adaptation. This aspect gains a paramount im-
portance in DTMs, in particular when performing elastic scaling, replication
switching or change in the replication degree. In fact, global reconfigurations and
data migration can pose significant overhead on transactions processing, which
may severely hinder performance during a non-negligible time window [62].

In this context, a key classification of existing self-tuning techniques is whether
they react to workload changes, or they try to anticipate them. Another funda-
mental problem is related to the issue of distinguishing in a robust way actual
workload changes from transient noise, which frequently affect workload metrics
measurements in large scale systems. Finally, another relevant issue, which is
at the basis of proactive schemes, is how to predict future workload trends. In
the following we provide an overview of the key methodologies/building blocks
that are used to address these issues. It should be noted that the techniques
described below can be employed in a broad range of self-tuning systems, and
their applicability is not restricted to adaptive DTM platforms.

Before describing each of these techniques, it is worth noting that in a DTM
environment a workload can be characterized using a multitude of metrics. Be-
sides classical/general-purpose metrics, like transactions arrival rate and CPU/
bandwidth demand to perform operations, the workload of a DTM can be char-
acterized also using DTM-specific metrics, such as the ratio of read-only vs
update transactions, the number of accessed data items per transaction, and the
transaction conflict probability.

Reacting to vs Predicting Workload Changes. A key characteristic that
allows for coarsely classifying existing self-tuning mechanisms is whether they
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rely on reactive vs proactive approaches. Reactive schemes evaluate the need
for reconfiguration based on the current workload, whereas proactive self-tuning
strategies attempt to anticipate the need for changing system’s configuration by
predicting future workload trends.

Since reactive schemes track variations of the workload based on recent obser-
vations,they typically allow the system to react promptly even to abrupt work-
load changes due to exogenous factors (like flash crowds [63]), which would be
very hard, if not impossible, to predict using proactive schemes. However, given
that the reconfiguration is carried out against the current workload, reactive
schemes can yield sub-optimal performance during transitory phases, especially
in case the adaptation phase incurs a non-negligible latency.

On the other hand, the pros of proactive strategies coincide with the cons
of reactive ones. By anticipating the need for changing system’s configuration,
adaptations can be enacted before the occurrence of workload changes. As a
result, proactive approaches can reduce the period of time during which subop-
timal configurations are used. On the other hand, the effectiveness of proactive
approaches is strongly dependent on the accuracy of the mechanisms that they
adopt to predict future workload trends (which we will overview shortly). For
this reason, proactive and reactive schemes are sometimes combined into hybrid
schemes [63,64,45].

Robust Change Detection. Workload measurement, especially in complex
distributed platforms like DTMs, are typically subject to non-negligible noises.
Hence, the robustness of any self-tuning scheme is strongly affected by its ability
to distinguish small workload fluctuations, e.g., due to short transitory phases or
transient spikes, from actual workload shifts, i.e., transitions from one workload
to a different, stable one. This is a fundamental requisite to enforce the system’s
stability, i.e., to avoid its continuous oscillation among different states, namely
configurations, due to frequent re-adaptations triggered by unavoidable, fleeting
workload’s fluctuations.

A principled approach to tackle this issue is based on the idea of considering
the workload as a generic signal. Filtering techniques [65] can, then, be applied in
order to reduce/remove noise and extract statistically meaningful information.
One of the simplest examples of a filter is the Moving Average (MA), in which,
given a time window composed by t intervals, the value v at observation j is given
by vj =

∑j
i=j−t+1

vi
t ; in the Exponential Moving Average (EMA), elements in

the summation are given a weight that decreases as the measurement becomes
older, in order to give more importance to recent measurements.

A more advanced filter employed to perform measurements in presence of
noise is the Kalman Filter [66], which computes the value of the target metric as
a weighted sum of the last prediction and the latest measurement. The weights
reflect the confidence of such estimate and measurement and it is inversely pro-
portional to the variance associated with those two values. The Kalman Filter
represents a reference technique to track systems’ parameters [67] and have
been successfully applied in a wide range of applications, from CPU
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provisioning in virtualized environments [68] to performance optimization with
energy constraints [69].

Another prominent related technique, originally introduced in the literature
on statistical process control [70] to verify whether a process complies to its
behavioral expectations, is the CUSUM (Cumulative Sum Control Chart) [71].
CUSUM involves the computation of a cumulative sum: noting xn the n-th mea-
surement for the target metric and wn the corresponding weight, the cumulative
sum at the n-th step, namely Sn, is expressed as Sn = max{0, Sn−1 + wnxn},
with S0 = 0. When Sn grows over a predefined threshold, a change in the metric
is identified.

The CUSUM technique, whose employment has been borrowed from the man-
ufacturing field, has been applied not only to workload monitoring and charac-
terization for distributed transactional platforms [72], but also to tackle other
issues like tracking faults in distributed systems [73] and detecting divergence
from a desired QoS [74].

Workload Forecasting. As already mentioned, workload forecasting is a key
problem at the basis of proactive self-tuning techniques. The techniques used to
this purpose are typically borrowed from the literature on time-series analysis
and forecasting, and can be classified depending on whether they operate in the
time or in the frequency domain [75].
Time-domain methods. Techniques belonging to this category forecast the value
for a metric in the next time window based on the raw measurements of such
metric in the past. Auto Regression and Moving Averages methods are at the
basis of a broad family of time-domain solutions: ARMA (Auto-Regressive Mov-
ing Average), which combines the two; ARIMA (AR Integrated MA), which
generalizes the previous one to the case of non-stationary time series (i.e., time
series whose shape changes over time); SARIMA (Seasonal ARIMA), which al-
lows the ARIMA technique to incorporate preexistent knowledge about seasonal,
namely recurring, behaviors [76]. Other popular solutions are based on the use
of filtering techniques, such as the aforementioned Kalman Filter. In fact, due
to its recursive nature, once instantiated, the Kalman Filter can be queried not
only to filter out noisy components from the current measurements, but also to
predict future values of the tracked workload metrics.

Frequency-domain methods. Techniques belonging to this category are aimed
at extracting from time series information about seasonality and recurrence.
Frequency-domain methods rely either on spectral analysis or on wavelet anal-
ysis. They are both based on the idea of decomposing a time series into a sum-
mation in the frequency domain: the former uses sinusoids as basis, the latter
uses wavelets [76].

4.2 Which Adaptation to Trigger?

Once workload changes are detected, self-tuning systems need to decide which
adaptation to trigger, if any, to react to such change. The identification of the
optimal configuration is typically performed by means of performance models,
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Fig. 3. Taxonomy of performance modeling techniques

which allow for the estimation/prediction of the system’s performance in the
various available configurations. The literature on performance modeling of com-
puting systems is very prolific, and the models used in self-tuning system differ
significantly in their nature and complexity. In Figure 3, we classify them into
white, black and gray (an hybrid of black and white) box techniques, according
to whether (and how) they exploit knowledge on the internal dynamics of the
system. Moreover, we further classify black box, and hence grey box, approaches
into off-line and on-line, depending on whether the model is built before putting
the application in execution or at runtime.

White Box Modeling. This approach leverages on available expertise on the
internal dynamics of systems and/or applications, and uses such knowledge to
build an Analytical Model (AM) (e.g., based on queueing theory) or simula-
tors, aimed at capturing how system’s configuration and workload’s parameters
map onto performance [77]. Once defined, analytical models typically require
no training (or a minimal profiling to obtain the value for some basic parame-
ters) for being instantiated. In order to ensure their mathematical tractability,
however, analytical models typically rely on approximations and simplifying as-
sumptions on how the modeled system and/or its workload behave. Their accu-
racy can hence be challenged in scenarios (i.e., areas of the configurations’ space
or specific workload conditions) in which such approximations are too coarse,
or are simply not matched. In addition, aside from possible re-evaluations of
internal parameters, analytical models’ inaccuracies are not amendable, as the
mathematical characterization of the system’s dynamics in encoded by means of
immutable equations.

Black Box Modeling. This approach lies on the opposite side of the spectrum
with respect to the white box solutions. Black box modeling does not require any
knowledge about the target system/application’s internal behavior. Conversely,
it relies on a training phase, namely on observing the system’s actual behavior
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under different configurations and while subject to different workloads, in order
to infer a statistical performance model via different Machine Learning (ML)
techniques [78]. Over the last years, these approaches have become more and
more popular as tools for performance prediction of modern systems and ap-
plications, whose ever growing complexity challenges the viability of developing
sufficiently detailed, and hence accurate, analytical models.

In practice, the accuracy achievable by black box models strongly depends
on the representativeness of configurations and workloads that the ML has wit-
nessed with during its training phase. This results in the ability of black box
models to achieve a very good accuracy for scenarios sufficiently close to the
ones observed during the training phase; on the other hand, predictions’ accu-
racy of ML techniques is typically poor in regions of the parameters’ space that
were not sufficiently sampled during the training (in which case the model is
often said to be used in extrapolation).

Unfortunately, the space of all possible configurations for a target sys-
tem/application grows exponentially with the number of variables (a.k.a. fea-
tures in the ML terminology) that can affect its performance — the so called
curse of dimensionality [79]. Hence, in complex systems, like DTMs, the cost
of conducting an exhaustive training process, spanning all possible configura-
tions of the design and configuration’s space and experimenting with all possible
workloads, can typically be prohibitive.

Grey Box Modeling. Grey box approaches, as the name suggests, employ
white and black model methodologies in hybrid fashions, so as to inherit the
best features of the two worlds: the good accuracy in extrapolation (i.e., for
unseen configuration/workloads) and minimal training time typical of white box
models, and the robustness and possibility to incrementally enhance accuracy,
via periodic retraining, of black box models.

Grey box techniques can, in their turn, be grouped into three categories.

• Parameter fitting: this solution relies on fitting techniques [80] to identify
the values of (a subset of) the input parameters of a white box model, whose
direct measurement is undesirable or infeasible. This is the case, for instance,
of models that require detailed workload characterization [42] or service de-
mand times [41], and whose measurement from an operational system may
introduce prohibitive overheads. This technique is used also in case some
parameters of white-box models do not map directly to any physical as-
pect of the system, and are instead used to encapsulate complex systems’
dynamics that would be otherwise hard to capture explicitly via analytical
techniques [58]. In these situations, fitting techniques can be used to de-
termine the values of the unknown parameters that minimize the model’s
prediction errors over a given training set.

• Divide et impera: this technique consists in building performance models
of individual parts of the entire system, which are either based on AM or
on ML. The sub-models are then combined in order to obtain a prediction
of the system as a whole [72,38]. This approach is particularly suited for
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scenarios in which the internals dynamics of certain sub-components of the
system are not known and/or are not easy to model using white-box analyt-
ical models, e.g., the networking infrastructure in a cloud-based distributed
platform. The performance of these sub-components can then be predicted
using black-box ML-based techniques, whereas white-box modeling can be
used for the remainder of the system. By narrowing the domain over which
ML techniques are used, their learning time is normally significantly reduced;
also, the joint usage of white box models allows for achieving better accuracy
in extrapolation when compared with pure black-box approaches.

• Bootstrapping: this methodology relies on an AM predictor to generate an
initial synthetic training set for the ML, with the purpose of avoiding the
initial, long profiling phase of the target application under different settings.
Then, the ML is retrained over time in order to incorporate the knowledge
coming from samples collected from the operational system [59,55].

While white box modeling is an inherently off-line technique, ML solutions, at
the basis of purely black or grey box models, can be instantiated either off-line
or on-line.

Off-line Learning. Off-line black box performance models are typically built
by means of Supervised Learning (SL), in which the ML algorithm is trained on
labeled features, i.e., input for which the output is known.

In SL, the training algorithm, noted γ, is a function defined over the training
set Dtr = {< x, y >}, where x =< x1, . . . , xn > is a point in a n−dimensional
features’ space, noted F , and y is the value of some unknown function φ : F → C.
The co-domain C of the function may be a discrete set, whose elements are called
classes, or a continuous space. The problem of learning the mapping of elements
of F to C is called classification in the first case, and regression in the second
one.

The output of γ is a function, also called model, noted Γ , which represents
an approximation of φ over the features’ space F . More precisely, a model Γ :
F → C takes as input a point x ∈ F , possibly not observed in Dtr, and returns
a value ŷ ∈ C.

In off-line SL, the training set Dtr is assumed fully available to the learning
algorithm. When new data is available, e.g. by gathering new sample from a
running application, a new model can be built from scratch, considering the
whole available training data set. Note that this palingenesis of the statistical
model does not qualify as an instance of on-line learning, as we shall discuss
briefly, as the model is built ex novo over an ever-increasing training set. Exam-
ples of off-line SL algorithms are Decision Trees, Support Vector Machines and
Artificial Neural Networks [78].

On-line Learning. We distinguish three main approaches to on-line black box
learning. The first one consists in on-line SL, according to which the model is
built incrementally over a stream of training samples, i.e., only a subset of Dtr

(possibly of cardinality 1) is available at the time, and it has to be incorporated
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in the model without being stored for further consideration [81]. Approaches in
this domain typically assume that the learning algorithm can access each sample
only once during the training phase. As a consequence, they normally require
considerably less computational resources than off-line techniques, but may also
achieve lower prediction accuracy.

A second on-line ML technique is Reinforcement Learning (RL). RL aims at
inferring the best way of performing actions in an environment (characterized
in DTM context by a set of workload and performance indicators) given a state
(i.e., a workload), so as to maximize some notion of cumulative reward (e.g.,
throughput). The main challenge tackled by RL techniques [82,83] is finding a
balance between exploration (of untested actions for a given state) and exploita-
tion (of available, and typically incomplete, knowledge), while minimizing the,
so called, regret, that is the cumulative error with respect to the optimal strat-
egy. Frequent explorations allow for acquiring a good knowledge of the rewards
corresponding to different actions in a given state, but also causes the system
to oscillate among several sub-optimal configurations, yielding to instability and
hindering performance. On the other hand, an overly conservative policy, which
does not test the available options sufficiently often, may get stuck in local max-
ima, especially in scenarios in which the reward distribution is subject to large
variance (and may hence require a relatively large number of samples to be
accurately estimated).

Finally, on-line black box self-tuning schemes can be based on optimization
techniques like Gradient Descent or Genetic algorithms [84]. These approaches
seek to minimize/maximize a given application’s performance indicator: similarly
to RL approaches, they combine exploration and exploitation; however, they do
not encompass the notion of cumulative reward, thus differing from RL in the
way the search of the optimal configuration is carried out and in the amount
of information maintained about the system/application’s state and previously
performed explorations.

5 Elastic Scaling in DTM Systems

In this section we review solutions aimed at self-tuning the scale of DTMs.
Though we focus on this kind of platform, we also include in the analysis solutions
that have been proposed and evaluated in the broader field of elastic scaling of
distributed data platforms and which could be applied also to the case of DTMs.

In our analysis we will focus on three main technical challenges, which need
to be tackled in order to implement effective elastic scaling solutions for DTM,
namely: how to preserve consistency during elastic scaling, when to trigger elastic
scaling, how to determine the new scale of the DTM.

How Is Elastic Scaling Supported? DTM can either scale vertically,
namely, by changing the number of concurrent threads active in each of the
platform’s nodes, or horizontally, namely, changing the number of nodes in the
platform. In the first case, the scaling procedure does not encompass inter-node
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synchronization or state transfer, as it simply consists of activating/deactivating
the desired number of threads [57].

Scaling out a DTM is, conversely, a much more challenging task given the
stateful nature of the platform that implies the need for a state transfer phase and
the constraint of preserving the consistent and atomic access to data items during
the reconfiguration. In this paragraph we survey some state transfer techniques
that have been proposed to elastically scale databases but that are applicable
also to the case of DTMs.

The simplest solution to scale out a distributed transactional platform is the
stop and go technique, which naively consists in blocking transactions execution
during the state transfer and restoring it when it is over. Of course, the major
drawback of this solution is that it implies service unavailability during the
scaling phase, and it is, thus, employed only when there is no other option
available [21].

For this reason, a number of solutions have been proposed to perform the
state transfer at the application level, i.e., relying only on the transactional
middleware of the platform.

A first one represents an improvement over the stop and go: while a new node
is being initiated it cannot serve requests, but other nodes can, thus maintaining
the service available. This technique basically consists of three phases. In the
first one, a new node is spawned and starts receiving data from the source nodes
designated by the data placement component. In the second one, it receives newer
versions of data that it has already received during the first phase, but which
have been updated in the meanwhile. In the last phase, the new node receives the
last stream of data and starts processing transactions; in order to allow the new
node to catch up with the state of running nodes without breaking atomicity
and consistency, this phase may require all the nodes in the system to stop
processing transactions, thus resulting into a short service unavailability window.
This technique has been applied to the context of live migrations of databases in
multi-tenant [85] and single instance [86,46] environments. Optimized variants
for partially replicated systems also exist, in which the amount of data sent by
live nodes to the joining one(s) is evenly split, thus resulting into an optimal
load balancing [87].

A further optimization of the aforementioned scheme consists in allowing the
new node to start serving transactions as soon as it gets data. In order to main-
tain atomic and consistent access to data, schemes relying on this optimization
integrate the state transfer with the distribution and concurrency control pro-
tocol employed by the platform [88].

Another technique employed for elastic scaling of distributed databases, espe-
cially in the case of multi-tenant infrastructures, consists in transferring a snap-
shot of the database, i.e., an image of the database state at a given point in time.
This can be achieved by means of VM migration [89] and backup tools [90,91]
or by relying on the presence of a Network Attached Storage [85].

Finally, Barker et al. [92] show that no-one-size-fits-all solutions exists in the
landscape of the described techniques for databases migration and state transfer.
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Therefore, they introduce a hybrid scheme that automatically selects the best
elastic scaling scheme to employ, choosing between a black-box VM migration
and a database-aware, application-level state transfer.

When to Trigger Elastic Scaling? As introduced in Section 4, the literature
on elastic scaling of distributed data platforms includes proposals based on the
reactive and proactive approaches.

Among the solutions based on reactive schemes, Exponential Moving Aver-
age (EMA) is employed in the provisioning of a one-copy serializable database
by Soundararajan et Amza [46] and of an eventually consistent data store by
Trushkowsky et al. [93]: given a current raw measurement vr and the output
of last EMA computation vl, the current value for target metric vc (average
response time of queries in the first case and arrival rate to a dataset partition
in the second one) is obtained as vc = αvr + (1 − α)vl. Here, α is a weighting
factor: the higher, the faster older observation are discounted.

Scaling the size of a DTM, however, is a very onerous operation, as it triggers
a state transfer phase that can induce significant additional load on the system
for a potentially long time [62,92,89]. Thus, as a result of relying on a reactive
scheme to trigger the elastic scaling, during the whole reconfiguration phase, the
platform can suffer from severe performance degradation due to a sub-optimal
configuration with respect to the incoming workload. To avoid such a shortcom-
ing, the majority of recent research works on automatic resource provisioning
rely on proactive schemes to trigger the elastic scaling of data platforms.

Approaches operating in the time domain, based on simple linear extrapo-
lation [94] and filtering [62], have been applied to drive the elastic scaling of
distributed databases. Solutions relying on time series analysis, namely ARMA
and ARIMA, have also been frequently applied to drive automatic elastic scaling
policies for Cloud applications [43,95,44].

Likewise, works based on time series analysis in the frequency domain find
application in automatic resource provisioning scheme for Cloud infrastructures.
They are either used alone, as in the case of the Agile system [96], or in con-
junction with ANN in a recent work by Napoli et al. [97].

Approaches [45,64] combining reactive and proactive techniques, especially in
QoS-oriented and SLA-based Cloud platforms, typically favor a more aggressive
scheme in adding nodes and more conservative ones in scaling down removing
nodes from a platform. The rationale behind this choice is that the cost, both
monetary and in terms of performance, for maintaining resources that are not
strictly necessary to guarantee a desired QoS is lower than the one resulting from
an unfortunate scaling down choice, both because of the overhead due to a new
scaling up phase and to the penalties stemming from possible SLA violations.

In the Cloud-TM data platform [40,98], Kalman filter and polynomial re-
gression are employed to predict future workloads; however, they are comple-
mented by a reactive scheme based on a filter that detects variations of average
values over two consecutive time-windows, and the CUSUM algorithm. Differ-
ent trade-offs between pro and reactiveness can be achieved depending on the
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parametrization of such algorithms. A similar approaches is undertaken also in
ShuttleDB [92], where a threshold-based reactive scheme is complemented by
times series forecasting by means of an ARIMA model. Iqbal et al. [45] pro-
pose a hybrid scheme which is reactive in acquiring resources, while it employs
a second order regression to detect over-provisioning with respect to the in-
coming workload and, accordingly, release resources. In MeT [64], resources are
greedily acquired in a non-linear and iterative fashion, i.e., if the system is under-
provisioned, the number of acquired nodes at iteration i is twice as much as at
last iteration; nodes in the system are, instead, released linearly, namely, one by
one. Ali-Eldin et al. [63] provide a thorough analysis of controllers for elastic
Cloud-based application relying on nine different schemes combining reactive
and proactive approaches. Their work suggest that, indeed, hybrid schemes do
perform better than pure ones.

With the exception of the techniques integrated in the Cloud-TM platform,
the aforementioned solutions typically target either stateless/non-transactional
platforms or transactional ones with external storage systems (e.g., Network
Attached Storages) or backup services.

Their application to DTMs without those specific supports or in typical,
commercial Cloud deployment is, hence, not straightforward. Moreover, such
proposals do not account for other potential concurrent reconfigurations of the
platforms at other levels, e.g., at the consistency protocol one. Challenging re-
search problems in this direction that demand further investigation are the es-
timation of the duration of the reconfiguration phase and of SLA violations
incurred during that time.

Which Scale to Choose? A plethora of analytical and simulative models for
distributed transactional data platforms exist [99,100] that are aimed at com-
puting the performance of the platform when deployed over different number of
nodes. However, they mainly target relational databases and do not encompass
complex dynamics that stem from elastically scaling the platform at runtime, like
the variation in data locality. For this reason, in recent years, performance mod-
eling and forecasting specifically aimed at supporting elastic scaling of DTM has
garnered much attention, resulting into solutions that cover the whole spectrum
of the techniques introduced in Section 4.2.

A pure white box model, relying on Parallel Discrete Event Simulation, has
been proposed by Di Sanzo et al. [101]. It allows for the definition of trace based
workloads in order to forecast the effect of elastically scaling, both vertically
and horizontally, a DTM, encompassing generic data placement schemes and
arbitrary data access patterns exhibited by the hosted application.

Pure black box approaches, instead, have been undertaken in [50,102], where
ANN are employed to predict transactions’ throughput and response time while
varying the number of nodes composing a DTM. In particular, the work in [102]
allows for supporting what-if analysis at the granularity of individual transac-
tional classes, and not only on the overall average performance of the entire
transactional workload.
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A divide et impera grey box modeling approach is proposed by Didona et al.,
which targets performance prediction of fully [72] and partially replicated [38]
DTMs when varying its scale over Cloud infrastructures. In such approach,
analytical modeling is employed to model resource contention over the CPU
and to capture transactions’ conflict probability on data. Conversely, ML, and
specifically decision tree based regression, is employed to predict the latency of
network-bound operations, e.g., the retrieval of remote data and the execution
of the distributed commit phase.

A variant of the bootstrapping grey box methodology is proposed in [57], and
extended in [103], with the aim of determining the scale for a DTM application
that results in the higher throughput. This approach combines analytical mod-
eling, supervised learning and pure exploration in order to build a performance
model that incrementally enhances its accuracy. A DT regressor is employed to
learn at runtime a corrective function to be applied to the output of the base
performance predictor (based on [72]) so as to progressively reduce its prediction
error. The DT is incrementally trained over the base model’s mis-predictions for
workloads and scales that the DTM has experienced with. In order to widen the
training set of the DT without incurring the cost of state transfer, different levels
of MPL are explored for a given workload and number of nodes in the DTM.

6 Adaptation of the Data Consistency Protocol

In this section we review the most relevant solutions that focus on the adaptation
of the protocol used to enforce data consistency in DTM platforms. Each system
is described according to the three major concerns for supporting automatic
protocol switching in DTM platforms: how is consistency ensured despite the
on-line switching between different data consistency protocols, when the system
should switch the protocol, and which is the most suitable consistency protocol
according to the current conditions.

How Is Protocol Switching Supported? There are two main architectural
approaches for protocol switching in DTM platforms, ad-hoc and generic, which
explore different trade-offs between simplicity, efficiency and generality.

In the ad-hoc approach, the system is designed to accommodate specific and
predetermined protocols and it is highly tailored to provide seamless switching
mechanisms between protocols, i.e., to minimize the impact on performance dur-
ing the switching phase. By exploiting the knowledge on the internal dynamics
of the origin and target consistency protocols (for instance, how they are imple-
mented), one can indeed design specialized switching mechanisms that exploit
possible compatibilities with the purpose of reducing the overhead and/or dura-
tion of the switching phase. Typically, it is not possible to support the switching
from/to additional protocols without making profound changes in the system.

Examples of these systems include PolyCert [16] and HTR [26]. PolyCert is a
DTM that relies on three certification-based consistency protocols: non-voting cer-
tification, which sends the read-set of transactions as is; Bloom filter certification,
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which encodes the transaction’s read-set in a Bloom filter, minimizing the size of
the messages exchanged by nodes but increasing the complexity of processing the
received message; and voting certification, in which only the write-set of transac-
tions is disseminated but replicas must wait for a commit decision from the node
where the transaction originally executed. As transactions finish their local execu-
tion, the protocol thatminimizes the commit phase is selected from the three avail-
able (using techniques described further ahead in the section), improving therefore
the throughput of the system. HTR also determines the optimal protocol on a per
transaction basis: based on the abort rate on the moment each transaction is is-
sued, either the deferred update model, which takes advantage of multicore hard-
ware to process transactions in parallel, is chosen or the state machine approach,
which guarantees an abort free execution. Both systems are tailored for those spe-
cific protocols and do not contemplate the addition of others.

Ideally, developers should be allowed to choose the most suitable replication
protocols for their systems and workloads. Also, these protocols should be easy
to plug into the system, and oblivious of other protocols (i.e., there should be no
dependencies between protocols neither while the system is in normal operation
nor when during the switching phase).

Recently, a new approach was proposed that offers both flexibility and perfor-
mance. MorphR [39] is a framework that supports multiple replication protocols
by only requiring their adherence to a specified API. It provides two mechanisms
for the switching phase: stop and go and fast switching. The first approach re-
lies on a blocking scheme to guarantee that there is no transaction from the old
protocol running in the system when the new protocol starts executing, ensuring
isolation between the switching protocols and avoiding the need to implement
interactions between protocols. The second approach leverages on the knowl-
edge of developers to implement specialized switching algorithms between pairs
of protocols enabling their co-existence so that the performance of the system is
not affected by this adaptation. MorphR’s prototype was tested with three very
different protocols representing distinct classes of replication approaches: 2PC,
PB and a TOB-based scheme.

When to Switch? The most common approach to trigger switching in these
systems is employing reactive schemes, that detect changes in the workload and
react to those changes. Most adaptive DTM systems [39,72] rely on this ap-
proach, especially systems like HTR and PolyCert, which determine the best
protocol on a per-transaction basis and transactions’ operations are not known
prior to their actual execution.

On the opposite side of the spectrum, CloudTM platform [40] integrates work-
load and resource demand prediction schemes, by including algorithms for time-
series forecasting which allow predicting future workload’s trends and allow the
system to enact proactive self-tuning schemes. This functionality represents a
fundamental building block for any proactive adaptation scheme, i.e., schemes
triggering reconfigurations of the platform anticipating imminent workload’s
changes, which are particularly desirable in case the platform’s reconfiguration
(as in the case of elastic scaling) can have non-negligible latencies.
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Which Protocol to Choose? The most straightforward way to approach the
problem of determining the most suitable protocol is to set thresholds that, using
one or more metrics, define the scenarios in which each protocol delivers (or is ex-
pected to deliver) the best performance. HTR follows this approach: it monitors
the abort rate of the system before each transaction and if it exceeds a certain
threshold, the transaction is executed in the state machine mode, which guaran-
tees abort free execution. When the abort rate is lower than the set threshold,
transactions will revert to executing in the deferred update mode.

However, threshold-based approaches become very hard to properly tune when
the complexity of the replication schemes and workloads increases, as the increas-
ing number of metrics and thresholds will eventually become unmanageable by an
administrator. Let aside, the lack of flexibility imposed by the usage of fixed val-
ues for the thresholds. Both PolyCert andMorphR rely on the black box approach,
namely machine learning techniques which were previously presented in Section 4,
to cope with a larger number of protocols, with potentially complex algorithms,
system configurations and workloads.While PolyCert assesses protocol suitability
on a per transactionbasis (i.e., each transaction issuedwill be certifiedwith the pro-
tocol that minimizes its total execution time), MorphR evaluates the state of the
system periodically (at a frequency tuned by the administrator) to verify whether
the protocol in use is the optimal one and, if not, changes the protocol used by the
entire system to match the most suitable option for the observed conditions.

However, a pure black box approach will not be able to cope with work-
loads and system configurations that were not included in the data used as its
training set. The grey box approach, used in TAS [72,38], relies on analytical
models designed to predict the behavior of 2PC and PB regardless of the work-
load and system configuration (number of machines, hardware used, etc.). This
method is especially well tailored for systems in which administrators do not
have prior knowledge of workloads and deployment configurations or when these
two aspects are constantly varying. On the other hand, taking advantage of this
approach entails possessing a very deep knowledge of the system’s internals to
be able to design a complete and accurate model.

7 Conclusions and Open Research Questions

In this chapter we have investigated the problem of designing self-tuning DTM
platforms. Along the way, we have exposed some of the key trade-offs in the
design of the main components of DTM systems, and recalled some of the base
methodologies that are commonly employed in self-tuning systems. We have
then focused our attention on two specific self-tuning problems, elastic scaling
and adaptation of the distributed consistency protocol, and critically analyzed
existing literature in these areas.

The analysis that we have conducted in this chapter shows that, despite be-
ing a relatively young research area, the existing literature encompasses already
a number of self-tuning solutions that target the key building blocks of DTM
platforms. On the other hand, our analysis suggests also that there are still a
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number of unexplored areas and open research problems, which represent inter-
esting opportunities for future research.

In the elastic scaling area, for instance, we are not aware of solutions for es-
timating the impact on performance due to the occurrence of the state transfer
activities that are necessary to redistribute data across nodes of the DTM plat-
form. Another aspect that has not been satisfactorily addressed, to the best of
our knowledge, by existing solutions in the area of elastic scaling of DTM is the
prediction of the locality shifts (i.e., the change in the probability of incurring
in remote accesses) due to the redistribution of data among the nodes caused by
the elastic scaling process.

As for the dynamic switching of the DTM consistency protocol, existing
solutions only take into account adaptations of the distributed consistency
mechanisms, and do not seek integration with the self-tuning mechanisms for
non-distributed TMs (e.g., targeting the local concurrency control or the thread
mapping).

A related, albeit more fundamental open question, is how to effectively in-
tegrate the various self-tuning mechanisms proposed in literature and targeting
different modules/parameters of DTM platforms. These systems are constituted
by a complex ecosystem of components, each one associated with specific key
performance indicators, utility functions and monitorable/tunable parameters.
These components exhibit non-trivial mutual interdependencies; hence, in gen-
eral, it is not possible to optimize separately different modules of a DTM, as the
effect on performance of tuning different parameters are often intertwined. The
complexity of this type of system is simply too high for monolithic self-tuning
approaches, i.e., approaches that try to optimize the system as a whole by try-
ing to identify all possible relations among the feasible adaptation alternatives
of the entire ecosystem of components. Alternative, modular approaches would
be highly desirable, as they would allow for unifying the large set of existing
self-tuning mechanisms that target different aspects of DTMs. To the best of
our knowledge, this problem is still unexplored by existing research.
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J., del Carmen Bañuls, M.: Globdata: A platform for supporting multiple con-
sistency modes. In: Proceedings of the International Conference on Information
Systems and Databases (ISDB), pp. 104–109. Acta Press (2002)

38. Didona, D., Romano, P.: Performance modelling of partially replicated in-memory
transactional stores. In: Proceedings of the International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS). IEEE (2014)



Self-tuning Distributed Transactional Memories 445

39. Couceiro, M., Ruivo, P., Romano, P., Rodrigues, L.: Chasing the optimum in repli-
cated in-memory transactional platforms via protocol adaptation. In: Proceedings
of the International Conference on Dependable Systems and Networks (DSN), pp.
1–12. IEEE Computer Society (2013)

40. Didona, D., Romano, P.: Self-tuning transactional data grids: The cloud-tm ap-
proach. In: Proceedings of the Symposium on Network Cloud Computing and Ap-
plications (NCCA), pp. 113–120. IEEE (2014)

41. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.J.: Autonomic mix-aware provision-
ing for non-stationary data center workloads. In: Proceedings of the International
Conference on Autonomic Computing (ICAC), pp. 21–30. ACM (2010)

42. Zhang, Q., Cherkasova, L., Mi, N., Smirni, E.: A regression-based analytic model
for capacity planning of multi-tier applications. Cluster Computing 11(3), 197–211
(2008)

43. Roy, N., Dubey, A., Gokhale, A.S.: Efficient autoscaling in the cloud using predic-
tive models for workload forecasting. In: Proceedings of the International Confer-
ence on Cloud Computing (CLOUD), pp. 500–507. IEEE (2011)

44. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware
server provisioning and load dispatching for connection-intensive internet services.
In: Symposium on Networked Systems Design & Implementation (NSDI), pp. 337–
350. USENIX Association (2008)

45. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Generation Comput-
ing Systems 27(6), 871–879 (2011)

46. Soundararajan, G., Amza, C.: Reactive provisioning of backend databases in shared
dynamic content server clusters. ACM Transactions on Adaptive and Autonomous
Systems (TAAS) 1(2), 151–188 (2006)

47. You, G.-w., Hwang, S.-w., Jain, N.: Scalable load balancing in cluster storage sys-
tems. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp.
101–122. Springer, Heidelberg (2011)

48. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: A workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB En-
dowment 3(1-2), 48–57 (2010)

49. Turcu, A., Palmieri, R., Ravindran, B.: Automated data partitioning for highly
scalable and strongly consistent transactions. In: Proceedings of the International
Systems and Storage Conference (SYSTOR), pp. 1–11. ACM (2014)

50. di Sanzo, P., Rughetti, D., Ciciani, B., Quaglia, F.: Auto-tuning of cloud-based
in-memory transactional data grids via machine learning. In: Proceedings of the
Symposium on Network Cloud Computing and Applications (NCCA), pp. 9–16.
IEEE (2012)

51. Vale, T.M., Dias, R.J., Lourenço, J.M.: On the relevance of total-order broadcast
implementations in replicated software transactional memories. In: Lourenço, J.M.,
Farchi, E. (eds.) MUSEPAT 2013 2013. LNCS, vol. 8063, pp. 49–60. Springer,
Heidelberg (2013)

52. Mocito, J., Rodrigues, L.: Run-time switching between total order algorithms. In:
Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 582–591. Springer, Heidelberg (2006)

53. Mocito, J., Rosa, L., Almeida, N., Miranda, H., Rodrigues, L., Lopes, A.: Context
adaptation of the communication stack. International Journal of Parallel, Emergent
and Distributed Systems 21(3), 169–181 (2006)

54. Didona, D., Carnevale, D., Galeani, S., Romano, P.: An extremum seeking algo-
rithm for message batching in total order protocols. In: Proceedings of the Inter-
national Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp.
89–98. IEEE (2012)



446 M. Couceiro et al.

55. Romano, P., Leonetti, M.: Self-tuning batching in total order broadcast protocols
via analytical modelling and reinforcement learning. In: Proceedings of the Inter-
national Conference on Computing, Networking and Communications, ICNC, pp.
786–792. IEEE (2011)

56. Wang, Q., Kulkarni, S., Cavazos, J., Spear, M.F.: A transactional memory with
automatic performance tuning. ACM Transactions on Architecture and Code Op-
timization (TACO) 8(4), 1–54 (2012)

57. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the op-
timal level of parallelism in transactional memory applications. Computing (2013)

58. di Sanzo, P., Re, F.D., Rughetti, D., Ciciani, B., Quaglia, F.: Regulating concur-
rency in software transactional memory: An effective model-based approach. In:
Proceedings of the International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pp. 31–40. IEEE (2013)

59. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Analytical/ml mixed approach
for concurrency regulation in software transactional memory. In: Proceedings of
the International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
pp. 81–91. IEEE (2014)

60. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the Symposium on Principles and
Practice of Parallel Programming, pp. 237–246. ACM (2008)
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