
Consistency for Transactional Memory Computing

Dmytro Dziuma2, Panagiota Fatourou1, and Eleni Kanellou3

1 FORTH ICS & University of Crete, Heraklion (Crete), Greece
faturu@csd.uoc.gr

2 FORTH ICS, Heraklion (Crete), Greece
dixond@acm.lviv.ua

3 FORTH ICS, Heraklion (Crete), Greece & University of Rennes 1, Rennes, France
kanellou@ics.forth.gr

Abstract. This chapter provides formal definitions for a comprehensive collec-
tion of consistency conditions for transactional memory (TM) computing. We ex-
press all conditions in a uniform way using a formal framework that we present.
For each of the conditions, we provide two versions: one that allows a transaction
T to read the value of a data item written by another transaction T ′ that can be
live and not yet commit-pending provided that T ′ will eventually commit, and a
version which allows transactions to read values written only by transactions that
have either committed before T starts or are commit-pending. Deriving the first
version for a consistency condition was not an easy task but it has the benefit that
this version is weaker than the second one and so it results in a wider universe
of algorithms which there is no reason to exclude from being considered cor-
rect. The formalism for the presented consistency conditions is not based on any
unrealistic assumptions, such as that transactional operations are executed atom-
ically or that write operations write distinct values for data items. Making such
assumptions facilitates the task of formally expressing the consistency conditions
significantly, but results in formal presentations of them that are unrealistic, i.e.
that cannot be used to characterize the correctness of most of the executions pro-
duced by any reasonable TM algorithm.

1 Introduction

Software Transactional memory (or STM for short) [21,35] is a promising program-
ming paradigm that aims at simplifying parallel programming by using the notion of
a transaction. A transaction executes a piece of code containing accesses to pieces of
data, known as data items, which are accessed simultaneously by several threads in a
concurrent setting. A transaction may either commit and then its updates take effect
or abort and then its updates are discarded. By using transactions, the naive program-
mer needs only enhance its sequential code with invocations of special routines (which
we call transactional operations, or t-operations for short) to read or write data items.
When a transaction executes all its reads and writes on data items, it tries to commit.
From that point on and until its completion, the transaction is commit-pending. Once a
transaction starts and before its completion, it is live.

The STM algorithm provides implementations for t-operations (from base objects)
so that all synchronization problems that may arise during the concurrent execution of

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 3–31, 2015.
c© Springer International Publishing Switzerland 2015

4 D. Dziuma, P. Fatourou, and E. Kanellou

transactions are addressed. The implementation details of the STM algorithm are hidden
from the naive programmer whose programming task is therefore highly simplified.
STM has been given special attention in the last ten years with hundreds of papers
addressing different problems arising in STM computing (see e.g. [20,19] for books
addressing different aspects of STM computing).

One of the most fundamental problems of STM computing is to define when an STM
algorithm is correct. Most STM consistency conditions [4,18,19,24,15,9,10] originate
from existing shared memory or database consistency models. However, in contrast
to what happens in shared memory models where correctness has been defined in the
granularity of single operations on shared objects, correctness in STM computing is
defined in terms of transactions, each of which may invoke more than one read or write
t-operations on data items. Comparing now to database transactions, the main diffi-
culty when presenting consistency conditions for STM computing is that the execution
of a t-operation has duration and is usually overlapping with the execution of other
t-operations, whereas in database transactions reads and writes are considered to be
atomic. For these reasons, existing consistency conditions for these two settings (shared
memory and database concurrent transactions) cannot be applied verbatim to STM al-
gorithms. Formalizing consistency conditions for STM computing requires more effort.

This chapter presents a comprehensive collection of consistency conditions for STM
computing. All conditions are expressed in a uniform way using a formal framework
that we present in Section 2. This chapter can therefore serve as a survey of consistency
conditions for STM computing. However, it aspires to be more than this.

For all known STM consistency conditions we provide a new version, called eager,
in which a transaction T is allowed to read the value of a data item written by an-
other transaction T ′ that can be live and not yet commit-pending provided that T ′ will
eventually commit (or that T ′ will commit if T commits). Most STM consistency con-
ditions [4,9,10,18,19,24] presented thus far did not allow a transaction to read values
that have been written by transactions that are neither committed nor commit-pending;
we call this version of a consistency condition deferred-update (or du for short). The
eager version of a consistency condition is weaker than its deferred-update version, thus
resulting in a wider universe of algorithms which should not be excluded from being
considered correct. For instance, in a database system, a transaction T may perform a
dirty read, i.e. T may read a value v for a data item x written by a transaction T ′ which
is still live (and not commit-pending) when T ’s read of x completes. To ensure the well-
known consistency condition from databases, called recoverability [8], one technique
described in the database literature [40], is to employ deferred commits and enforce
cascading aborts whenever necessary. This is usually achieved by providing sufficient
bookkeeping to determine essential orderings of commit and abort events that need to
be enforced. In the aforementioned scenario, T has to defer its commit until T ′ com-
pletes its execution, and it necessarily aborts in case T ′ aborts. If an STM algorithm
worked in a similar way, there would be no reason for executions of the algorithm not
to be considered correct. However, current consistency conditions, as they are formally
expressed, exclude such executions from the set of executions they allow. The eager
version of a consistency condition we present here solves this problem.

Consistency for Transactional Memory Computing 5

In [37], Siek and Wojciechowski discuss why well-known STM consistency condi-
tions, like opacity [18], serializability [29], virtual world consistency [24], and the TMS
family [15] fail to support early release [30,36]. Early release is a technique introduced
for optimizing performance; it allows a transaction to read a value for a data item writ-
ten by another live transaction that is not commit-pending. Siek and Wojciechowski also
discuss in [37] how one can design consistency conditions that support early release.
They then use the proposed conditions to characterize the correctness of a distributed
STM system they present in [36]. The way the eager versions of the consistency condi-
tions are formulated in this chapter is flexible enough to support early release.

It is remarkable that deriving the eager version of consistency conditions was not an
easy task so we consider their presentation as a significant contribution of this chap-
ter. For the derivation of the presented consistency conditions, we do not make any
restrictive assumptions, such as that t-operations are executed atomically or that writes
write distinct values for data items. Making such assumptions is unrealistically restric-
tive since all STM algorithms produce executions that do not satisfy these assumptions.
Thus, a consistency condition that has been expressed making such an assumption can-
not be used to characterize such executions, and thus fail to also characterize whether
the STM algorithm itself satisfies the condition. We remark that making such assump-
tions significantly facilitates the task of formally expressing a consistency condition
but the formal presentation of the condition that results is very restrictive since it can-
not be used to characterize the correctness of most of the executions produced by any
reasonable STM algorithm.

Among the consistency conditions met in STM computing papers are strict seri-
alizability [29], serializability [29], opacity [18,19], virtual world consistency [24],
TMS1 [15] (and TMS2 [15]), and snapshot isolation [3,13,32,9,10]. Weaker consis-
tency conditions like processor consistency [10], causal serializability [9,10] and weak
consistency [10] have also been considered in the STM context when proving impossi-
bility results.

Strict serializability, as well as serializability, are usually presented in an informal
way in STM papers which cite the original paper [29] where these conditions have first
appeared in the context of database research. Thus, the differences that exist between
database and STM transactions have been neglected in STM research. We present for-
mal definitions of these consistency conditions here. Additional consistency conditions
originating from the database research are presented in [4]. To present their formalism,
the authors of [4] make the restrictive assumption that t-operations are atomic. The pre-
sentation of most of the other consistency conditions (e.g. opacity [18,19], virtual world
consistency [24], snapshot isolation [3,13,32,9,10] and weaker variants of them [9,10])
is based on the assumption that a read for a data item by a transaction T can read a
value written by either a transaction that has committed or is commit-pending when T
starts its execution. Finally, the definition of virtual world consistency [24] is based on
the assumption that each instance of WRITE writes a distinct value for the data item it
accesses (or that the t-operations are executed atomically).

In this chapter, we do not cope with transactions whose code is determined at run
time (i.e. after the beginning of the execution of the transaction). For instance, such a
transaction could be produced on a web environment by deciding the next t-operations

6 D. Dziuma, P. Fatourou, and E. Kanellou

to be invoked by the transaction while executing it. We also do not discuss consis-
tency issues that arise when data items are accessed not only by transactions but also
outside the transactional scope (as it is e.g. the case for systems that support privatiza-
tion [1,26,34,25,27,38]).

The rest of this chapter is organized as follows. Section 2 presents the formal frame-
work which is employed in Section 3 to express the studied consistency conditions.
Table 1 shows the relationships between consistency conditions.

2 Model

2.1 System

The system is asynchronous with a set of threads executed in it. Each thread is sequen-
tial (i.e. it executes a single sequential program) but different threads can be executed
concurrently. Threads communicate via shared memory, i.e. by accessing simple shared
objects, called base objects, usually provided by the hardware. Formally, a base object
has a state and supports a set of operations, called primitives, to read or update its state.
Base objects are usually as simple as read/write or CAS objects. A read/write object O
stores a value from some set and supports two atomic primitives read and write;
read(O) returns the current value of object O without changing it, and write(O,v)
writes the value v into O and returns an acknowledgement. A CAS object O stores
a value and supports, in addition to read, the atomic primitive CAS(O,v′,v) which
checks whether the value of O is v′ and, if so, it sets the value of O to v and returns
true, otherwise, it returns false and the value of O remains unchanged.

We model each thread as a state machine. A configuration describes the system at
some point in time, so it provides information about the state of threads and the state of
base objects. In an initial configuration, threads and base objects are in initial states. A
step of a thread consists of applying a single primitive on some base object, the response
to that primitive, and zero or more local computation performed by the thread; local
computation accesses only local variables of the thread, so it may cause the internal
state of the thread to change but it does not change the state of any base object. As a step,
we will also consider the invocation of a routine or the response to such an invocation;
notice that a step of this kind (1) is either the first or the last when executing the routine
(more steps may be needed after the invocation of the routine in order for it to respond),
and (2) does not change the state of any base object. Each step is executed atomically.
An execution α is an alternating sequence of configurations and steps starting with an
initial configuration. An execution is legal if the sequence of steps performed by each
thread follows the algorithm for that thread and, for each base object, the responses to
the primitives performed on the base object are in accordance with its specification (and
the state of the base object at the configuration that the primitive is applied).

2.2 STM Definitions

Transactions and t-Operations. A transaction is a piece of sequential code which ac-
cesses (reads or writes) pieces of data, called data items. A data item may be accessed

Consistency for Transactional Memory Computing 7

by several threads simultaneously when a transaction is executed in a concurrent en-
vironment. Transactions call specific routines, called READ and WRITE, to read and
update, respectively, data items. A transaction may commit and then all its updates to
data items take effect, or abort and then all its updates are discarded.

An STM algorithm uses a collection of base objects to store the state of data items. It
also provides an implementation, for each thread, for READ and WRITE (from the base
objects). READ receives as argument the data item x to be accessed (and possibly the
thread p invoking READ and the transaction T for which p invokes READ) and returns
either a value v for x or a special value AT which identifies that T has to abort. WRITE

receives as arguments the data item x to be modified, a value v (and possibly the thread
p invoking WRITE and the transaction T for which p invokes WRITE), and returns
either an acknowledgment or AT . The STM algorithm provides implementations for
two additional routines, called COMMIT and ABORT, which are called to try to commit
or to abort a transaction, respectively. When COMMIT is executed by some transaction
T it returns either a special value CT , which identifies that T has committed, or AT .
ABORT always returns AT .

We refer to all these routines as t-operations. A t-operation starts its execution when
the thread executing it issues an invocation for it; the t-operation completes its execution
when the thread executing it receives a response. Thus, the execution of a t-operation op
is not atomic, i.e. the thread executing it may perform a sequence of primitives on base
objects in order to complete the execution of the t-operation. Moreover, the invocation
and the response of op are considered as two separate steps (with each of them being
atomic). The invocation and the response of a t-operation are referred to as events. We
sometimes say that these events are caused by T .

Histories. A history is a finite sequence of events. Consider any history H. A transaction
T (executed by a thread p) is in H or H contains T , if there are invocations and responses
of t-operations in H issued (or received) by p for T . The transaction subhistory of H for
T , denoted by H|T , is the subsequence of all events in H issued by p for T . We say that
a response res matches an invocation inv of a t-operation op in some history H, if they
are both by the same thread p, res follows inv in H, res is a response for op, and there is
no other event by p between inv and res in H. A history H is said to be well-formed if,
for each transaction T in H, H|T is an alternating sequence of invocations and matching
responses, starting with an invocation, such that:

• no events in H|T follow CT or AT ;
• if T ′ is any transaction in H executed by the same thread that executes T , either

the last event of H|T precedes in H the first event of H|T ′ or the last event of H|T ′
precedes in H the first event of H|T .

From now on we focus on well-formed histories. Assume that H is such a history.
A t-operation is complete in H, if there is a response for it in H; otherwise, the t-
operation is pending. Thus, in H, there are two events for every complete t-operation
op, an invocation inv(op) and a matching response res(op); moreover, H contains only
one event for each pending t-operation in it, namely its invocation. A transaction T is
committed in H, if H|T includes CT ; a transaction T is aborted in H, if H|T includes
AT . A transaction is complete in H, if it is either committed or aborted in H, otherwise

8 D. Dziuma, P. Fatourou, and E. Kanellou

History H
p: T1.READ(x)
p′: T2.READ(x)
p: T1.v
p′: T2.v

T2.READ(y)
p: T1.WRITE(x,v′)

T1.ok
T1.COMMIT

p′: T2.v′′
p: T1.CT1

T3.WRITE(z,v)
p′: T2.COMMIT

T2.CT2

p: T3.ok

Subhistory H|p
p: T1.READ(x)

T1.v
T1.WRITE(x,v′)
T1.ok
T1.COMMIT

T1.CT1

T3.WRITE(z,v)
T3.ok

Subhistory H|T2
p′: T2.READ(x)

T2.v
T2.READ(y)
T2.v′′
T2.COMMIT

T2.CT2

History H’
p′: T2.READ(x)
p: T1.READ(x)
p′: T2.v

T2.READ(y)
p: T1.v
p′: T2.v′′

T2.COMMIT

p: T1.WRITE(x,v′)
T1.ok
T1.COMMIT

p′: T2.CT2

p: T1.CT1

T3.WRITE(z,v)
T3.ok

Fig. 1. Examples of histories: A history H, the subhistories H|p and H|T2 of H, and a history H ′,
which is equivalent to H

p

p’

R(x) v W (x)v’ ok Commit C W (z)v ok

R(x) v R(y) v” Commit C

T1 T3

T2

Fig. 2. A schematic representation of H presented in Figure 1. The horizontal axis represents
time.

it is live. A transaction T is commit-pending in H if T is live in H and H|T includes
an invocation to COMMIT for T . If H|T contains at least one invocation of WRITE, T
is called an update transaction; otherwise, T is read-only. We denote by comm(H) the
subsequence of all events in H issued and received for committed transactions.

For each thread p, we denote by H|p the subsequence of H containing all invoca-
tions and responses of t-operations issued or received by p. Two histories H and H ′ are
equivalent, if for each thread p, H|p = H ′|p. Roughly speaking, two histories H and H ′
are equivalent if they contain the same set of transactions, and each t-operation invoked
in H is also invoked in H ′ and receives the same response in both H and H ′. This means
that the order of invocation and response events may be different in H ′ compared to H,
although the orders of invocation and response events are the same in H|p and H ′|p for
each thread p. An example of history equivalence is presented in Figure 1. It shows H
as a sequence of invocation and response events, and presents H ′, which is a history
equivalent to H. History H is further illustrated in Figure 2.

Consistency for Transactional Memory Computing 9

We denote by Complete(H) a set of histories that extend H. Specifically, a history
H ′ is in Complete(H) if and only if, all of the following hold:

1. H ′ is well-formed, H is a prefix of H ′, and H and H ′ contain the same set of trans-
actions;

2. for every live transaction1 T in H:
(a) if H|T ends with an invocation of COMMIT, H ′ contains either CT or AT ;
(b) if H|T ends with an invocation other than COMMIT, H ′ contains AT ;
(c) if H|T ends with a response, H ′ contains ABORTT and AT .

Roughly speaking, each history in Complete(H) is an extension of H where some of the
commit-pending transactions in H appear as committed and all other live transactions
appear as aborted. We say that H is complete if all transactions in H are complete. Each
history in Complete(H) is complete.

Given an execution α , the history of α , denoted by Hα , is the subsequence of α
consisting of just the invocations and the responses of t-operations. The execution in-
terval of a complete transaction T in an execution α is the subsequence of consecutive
steps of α starting with the first step executed by any of the t-operations invoked by
T and ending with the last such step. The execution interval of a transaction T that
does not complete in α is the suffix of α starting with the first step executed by any
of the t-operations invoked by T . We remark that similar definitions to the ones given
on the base of histories, can also be given for executions: We say that a t-operation
is complete in some execution α if it is complete in Hα ; otherwise it is pending. A
transaction T is committed (res. live, commit-pending) in α if it is committed (res. live,
commit-pending) in Hα , etc.

Real-Time Order on Transactions and Sequential Histories. Consider a well-formed
history H. We define a partial order, called real time order and denoted <H , on the set
of transactions in H, as follows:

• for any two transactions T1 and T2 in H, if T1 is complete in H and the last event of
H|T1 precedes the first event of H|T2 in H, then T1 <H T2.

Transactions T1 and T2 are concurrent in H, if neither T1 <H T2 nor T2 <H T1. Sim-
ilarly, transactions T1 and T2 are concurrent in an execution α , if neither T1 <Hα T2

nor T2 <Hα T1. We say that a history H (or an execution α) is sequential if no two
transactions in H (in α) are concurrent.

Legality. Consider a sequential history S and a transaction T in S. We say that T is legal
in S, if for every invocation inv of READ on each data item x that T performs, whose
response is res �= AT , the following hold:

1. if there is an invocation of WRITE for x by T that precedes inv in S then res is the
value argument of the last such invocation,

2. otherwise, if there are no committed transactions preceding T in S which invoke
WRITE for x, then res is the initial value for x,

1 We remark that the order in which the live transactions of H are inspected to form H ′ is
immaterial, i.e. all histories that result by processing the live transactions in any possible such
order are added to Complete(H).

10 D. Dziuma, P. Fatourou, and E. Kanellou

3. otherwise, res is the value argument of the last invocation of WRITE with parameter
x, by any committed transaction that precedes T in S.

A complete sequential history S is legal if every transaction in S is legal.

Real-Time Order on t-operations and Operation-wise Sequential Histories. We de-
fine a partial order, called operation real-time order and denoted by <op

H , on the set of
t-operations in H, as follows:

• for any two t-operations op1 and op2 in H, if H contains a response for op1 which
precedes the invocation of op2, then op1 <

op
H op2.

Operations op1 and op2 are concurrent in H, if neither op1 <
op
H op2 nor op2 <

op
H op1.

H is operation-wise sequential if no two t-operations in H are concurrent.
Let Sop be an operation-wise sequential history equivalent to H. Since Sop is equiva-

lent to H, Sop and H contain the same set of transactions. We say that Sop respects some
relation< on the set of transactions in H if the following holds: for any two transactions
T1 and T2 in Sop, if T1 < T2, then T1 <Sop T2. We say that Sop respects some relation <op

on the set of t-operations in H if the following holds: for any two t-operations op1 and
op2 in Sop, if op1 <

op op2, then op1 <
op
Sop

op2. Notice that a partial order is a relation,
so these definitions hold for partial orders as well.

3 TM Consistency

In this section, we present a collection of consistency conditions for STM computing.

3.1 Strict Serializability

Strict serializability was first introduced in [29] as a (strong) consistency condition for
executions of concurrent transactions in database systems. Roughly speaking, an exe-
cution α is strictly serializable if each complete transaction that does not abort (as well
as some of the live transactions) is executed in α like if it was executed serially at some
point within its execution interval. A special case of strict serializability where trans-
actions are restricted to consist of a single t-operation applied to a single data item is
known as linearizability [22].

In STM computing, strict serializability can be expressed in several different flavors,
two of which are discussed below. We start with eager strict serializability (or e-strict
serializability for short).

Definition 1 (e-Strict Serializability). We say that an execution α is e-strictly serial-
izable if it is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T somewhere between T’s first
invocation of a t-operation and T ’s last response of a t-operation in α .

• To choose a subset B of the live transactions in α and, for each transaction T ∈ B,
associate with T a point ∗T somewhere after T ’s first invocation of a t-operation in
α .

Consistency for Transactional Memory Computing 11

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

An STM algorithm is e-strictly serializable if each execution it produces is e-strictly
serializable.

If an execution α is e-strictly serializable, there exists a sequential execution σ (and
a set B of live transactions in α) that satisfies the properties of Definition 1; we say
that σ (and B) justifies that α is e-strictly serializable. Notice that since σ is the se-
quential execution produced by serially executing (the code of) each transaction at its
serialization point starting from an initial configuration, σ is a legal execution and each
transaction T ∈ B commits in σ . Moreover, Hσ is a legal history containing only com-
mitted transactions.

We continue to provide a stronger version of e-strict serializability in Definition 2,
called deferred-update strict serializability (or du-strict serializability for short), which
is based on the definition of Complete.

Definition 2 (du-Strict Serializability, expressed in terms of histories). A history
H is du-strictly serializable, if there exist a history H ′ ∈ Complete(H) and a history S
equivalent to comm(H ′) such that:

• S is a legal sequential history, and
• S respects <comm(H′).

An execution α is du-strictly serializable, if Hα is du-strictly serializable. An STM al-
gorithm is du-strictly serializable, if each execution α it produces is du-strictly serial-
izable.

Definition 2 follows the standard technique, employed in STM theory research,
of presenting consistency conditions in terms of histories. We remark that this is not
straightforward to achieve when defining the e-version of a consistency condition since
in the e-version, serialization points can be associated even with live transactions (that
are not commit-pending) for which it is unknown which t-operations they would in-
voke if they were to continue their execution until they complete. For compatibility
with Definition 1, we present below, in Definition 3, du-strict serializability in terms of
executions.

Definition 3 (du-Strict Serializability, expressed in terms of executions). We say
that an execution α is du-strictly serializable if it is possible to do all of the following:

12 D. Dziuma, P. Fatourou, and E. Kanellou

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T somewhere between T’s first
invocation of a t-operation and T ’s last response of a t-operation in α .

• To choose a subset B of the commit-pending transactions in Hα and, for each
transaction T ∈ B, associate with T a point ∗T somewhere after T’s first invocation
of a t-operation in α .

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A∪B, the same t-operations, as in α , are invoked by T in
σ and the response of each such t-operation (other than COMMIT) in σ is the same
as that in α .

An STM algorithm is du-strictly serializable if each execution it produces is du-strictly
serializable.

Lemma 1 argues that Definitions 2 and 3 are equivalent. Its proof is heavily based on
the definitions of the concepts employed in Definitions 2 and 3.

Lemma 1. Definitions 2 and 3 are equivalent in whatever concerns du-strictly serial-
izable executions and STM algorithms.

Sketch of proof. For the purpose of the proof, we will call an execution (or history)
which satisfies the properties of Definition 2, history-based du-ss. Similarly, we will
call an execution (or a history) which satisfies the properties of Definition 3, execution-
based du-ss.

1. Consider an execution α which is history-based du-ss. We prove that α is execution-
based du-ss.

Since α is history-based du-ss, Definition 2 implies that Hα is history-based du-
ss. Specifically, there exists a history H ′ ∈Complete(Hα) and a history S equivalent
to comm(H ′) such that:

• S is a legal sequential history, and
• S respects <comm(H′).

By definition of Complete(Hα), H ′ is an extension of Hα where some of the
commit-pending transactions in Hα appear as committed and all other live trans-
actions appear as aborted. Let B be those commit-pending transactions in Hα that
are committed in H ′, and let A be the set of all complete transactions in α (which
are the same as in Hα) that do not abort. By definition of comm, comm(H ′) is the
subsequence of all events in H ′ issued and received for committed transactions, i.e.
comm(H ′) is the subsequence of all events issued or received for transactions in
A∪B.

Since S is equivalent to comm(H ′), S contains all transactions in A∪B (and no
more transactions), and thus all transactions in S commit. Since S is sequential,

Consistency for Transactional Memory Computing 13

it defines a total order on all transactions in comm(H ′). Since S is equivalent to
comm(H ′) and respects <comm(H′), it is possible to do the following: (1) for each
transaction T ∈ A, to assign a serialization point for T somewhere between T ’s
first invocation of a t-operation and T ’s last response of a t-operation in α , and
(2) for each transaction T ∈ B, to assign a serialization point for T somewhere
after T ’s first invocation of a t-operation in α , so that the total order defined by
the serialization points on transactions in A∪B to be the same as that defined on
transactions by S.

Let σ be the sequential execution, starting from the initial configuration, in which
each transaction in S is serially executed, in the order it appears in S. Since S is legal,
it is a straightforward induction to prove that, each transaction invokes the same t-
operations in σ as in S and for each such invocation inv, inv has the same response
in σ as in S. Thus, σ justifies that α is execution-based du-ss.

2. Now consider an execution β which is execution-based du-ss. We prove that β is
history-based du-ss.

Let A be the set of complete transactions in β that are not aborted, and let B
and σ be the set of commit-pending transactions in β and the sequential execu-
tion, respectively, that justify the (execution-based) du-ss property of β . Let H ′ be
an extension of Hβ which is constructed as follows: (1) for each commit-pending
transaction T ∈ B we add a CT response, and (2) for each other live transaction T
in β we add an AT response. Then, H ′ ∈ Complete(Hβ) and comm(H ′) is the sub-
sequence of H ′ containing all events issued or received for transactions in A∪B.

Let S = Hσ . Since σ is the sequential execution produced by serially executing
(the code of) each transaction in A∪B at its serialization point, σ is a legal exe-
cution and each transaction T ∈ A∪B commits in σ . Thus, S is a legal sequential
history which contains all transactions in A∪B (and no further transactions), and
all these transactions commit in S. Since for each transaction T ∈ A∪B, the same
t-operations, as in β (or in Hβ), are invoked by T in σ (or in Hσ) and the response
of each such t-operation (other than COMMIT) in Hσ is the same as that in Hβ , it
follows that S is equivalent to comm(H ′).

Since (1) for each transaction T ∈A, ∗T is placed between T ’s first invocation of a
t-operation and T ’s last response of a t-operation in β , and (2) for each transaction
T ∈ B, ∗T is placed somewhere after T ’s first invocation of a t-operation in β , it
follows that S = Hσ respects <comm(H′). So, H ′ and S justify that Hβ is history-
based du-ss. Therefore, β is history-based du-ss.

��

Since a commit-pending transaction is live, it is straightforward to see that Defini-
tion 1 provides a weaker version of strict serializability than Definition 3 (or Defini-
tion 2). Intuitively, this is so since Definition 1 allows a transaction to read a value for
a data item written by another transaction that is not committed or commit-pending in
H. (This is allowed only if eventually, all complete transactions that are not aborted,
and some of those that are still live can be ”serialized” within their execution intervals.)
It follows that if an execution is du-strictly serializable, it is also e-strictly serializable.
However, the opposite is not true. For instance, let’s consider the history H and its prefix

14 D. Dziuma, P. Fatourou, and E. Kanellou

H1 both shown in Figure 3. H is both e-strictly serializable and du-strictly serializable,
whereas H1 is just e-strictly serializable.

Lemma 2. If an execution α is du-strictly serializable then α is e-strictly serializable,
but not vice versa.

A set S of sequences is prefix-closed if, whenever H is in S , every prefix of H is
also in S . Recall that the history H shown in Figure 3 is du-strictly serializable but
its prefix H1 is not. Thus, du-serializability is not a prefix-closed property. On the con-
trary, e-strict serializability is a prefix-closed property. We remark that prefix-closure
can be imposed to du-strict serializability in an explicit way, i.e. by directly stating in
Definition 2 that each prefix Hp of H must also satisfy the conditions imposed by the
definition. This would make Definition 2 stronger.

T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Fig. 3. Example of a history H showing that du-strict serializability is not a prefix-closed property.
We remark that H is operation-wise sequential. In all our example histories, we assume that the
initial value of each of the employed data items is 0.

3.2 Serializability

As with strict serializability, serializability was first introduced in [29] as a consistency
condition for executions of concurrent transactions in database systems. It is weaker
than strict serializability in that it does not ensure that the serialization point of each
transaction is within its execution interval. Below, we discuss two different flavors of
serializability in a way similar to that for strict serializability.

Definition 4 (e-Serializability). We say that an execution α is e-serializable if it is
possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T in α .

• To choose a subset B of the live transactions in α and, for each transaction T ∈ B,
to associate with T a point ∗T in α .

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

Consistency for Transactional Memory Computing 15

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

An STM algorithm is e-serializable if each execution it produces is e-serializable.

We continue to provide a stronger version of serializability in Definition 5, called
deferred-update serializability (or du-serializability for short), which is based on the
definition of Complete.

Definition 5 (du-Serializability). A history H is du-serializable, if there exists a his-
tory H ′ ∈Complete(H) and a history S equivalent to comm(H ′) such that:

• S is a legal sequential history.

An execution α is du-serializable, if Hα is du-serializable. An STM algorithm is du-
serializable if each execution α it produces is du-serializable.

Notice that S in Definition 5 respects the program order of t-operations executed by
the same thread in H. This is implied by the definition of equivalent histories.

We remark that, similarly to the corresponding definitions of strict serializability,
Definition 4 provides a weaker version of serializability than Definition 5. This can
be easily seen by deriving an execution-based version of Definition 5 (in the spirit of
Definition 3) and proving that this version is equivalent to Definition 5 (as proved in
Lemma 1 for du-strict serializability).

Lemma 3. If an execution α is du-serializable then α is e-serializable, but not vice
versa.

The difference between serializability and strict serializability is that strict serializ-
ability additionally ensures that the real-time order of transactions is respected by the
sequential history defined by the serialization points. Thus, every history/execution that
is (du-) e-strictly serializable is also (du-) e-serializable but not vice versa.

T

T

W(x)2 Commit

R (x)2 Commit

H1 H

Fig. 4. Example showing that du-serializability is not a prefix-closed property

Lemma 4. If an execution α is strictly serializable then α is serializable, but not vice
versa2.

2 When we say that an execution (or an STM algorithm) satisfies a consistency condition without
specifying which variant of the condition it satisfies, then the claim holds for both variants of
that condition.

16 D. Dziuma, P. Fatourou, and E. Kanellou

It is worth pointing out that e-serializability and du-serializability are not prefix-
closed properties. This is so, since it is easy to design a history H which is e-serializable
(as well as du-serializable) in which a committed transaction T (executed by some
thread p) reads for some data item x a value v and then commits. H also contains a
second transaction T ′ (executed by some thread p′ �= p) which starts its execution after
T has completed, writes v into x, and commits. Such a history is shown in Figure 4. We
remark that H is e-serializable and du-serializable. However, the prefix of H up until
CT is neither e-serializable, nor du-serializable.

We remark that prefix-closure can be imposed to e-serializability (as well as to du-
serializability) in an explicit way, as discussed for du-strict serializability above. It is
not clear if the versions that would then result will be weaker than the corresponding
versions of strict serializability. Imposing prefix closure to the consistency conditions
presented in Sections 3.4-3.5 may be too restrictive as well. Thus, we present the non-
prefix-closed versions of them given that it is straightforward to derive their prefix-
closed versions, in an explicit way.

Several impossibility results [6,11,16] and lower bounds [6] in STM computing have
been proved for strict serializability or serializability. Most STM algorithms in the lit-
erature (see e.g. [12,39,14,33] for some examples) satisfy some form of serializability.

3.3 Opacity

Opacity was first introduced in [18]. Definition 6 follows that in [18]. Roughly speaking,
a history H that is du-opaque is also du-strictly serializable; additionally, if S is the
sequential history which justifies that S is du-strictly serializable, opacity ensures that
those transactions in H that are not included in S are also legal. For instance, such
transactions are those that have aborted in H (but there may be more).

Definition 6 (du-Opacity [19]). A history H is du-opaque if there exists a sequential
history S equivalent to some history H ′ ∈Complete(H) such that:

• S is legal, and
• S respects <H′ .

An execution α is du-opaque, if Hα is du-opaque. An STM algorithm is du-opaque if
each execution α it produces is du-opaque.

In [19], a prefix-closed version of opacity was formally stated. According to it, a
history H is du-opaque if the conditions imposed by Definition 6 are satisfied for each
prefix Hp of H; this version of du-opacity is stronger than that provided in Definition 6
which is not prefix-closed. Figure 5 illustrates a situation that would be acceptable by
the non-prefix-closed version of du-opacity. History H ′, which is a prefix of history
H, does not satisfy du-opacity, as transaction T2 reads a value written by a transaction
which is still not committed. However, as transaction T1 is committed in history H,
H complies with du-opacity. A different formalization of du-opacity as a prefix-closed
property was elaborated in [5].

Lemma 5 argues that du-opacity is stronger than du-strict serializability.

Consistency for Transactional Memory Computing 17

T1

T2

W (x)1

R(x)1 Abort

Commit

H1 H

Fig. 5. Example showing that du-opacity is not a prefix-closed property

Lemma 5. If an execution α is du-opaque, then α is du-strictly serializable, but not
vice versa.

Proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a sequential
history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal and S
respects <H′ .

Let S′ be the subsequence of S consisting of all events in S issued or received by
transactions in comm(H ′). Then, the following hold:

• Since S is equivalent to H ′, it follows that S′ is equivalent to comm(H ′).
• Since S respects <H′ , it follows that S′ respects <comm(H′).
• Since S is legal, it follows that each transaction in S is legal. Since S is equivalent

to H ′ and S′ is comprised of the events of all transactions in comm(H ′), it follows
that S′ is legal.

Thus, H ′ and S′ satisfy the properties of Definition 2 and, therefore, Hα is du-strictly
serializable. So, α is du-strictly serializable.

Figure 6 shows an example of a history that is not du-opaque but is du-strictly seri-
alizable. This history is not du-opaque because it violates the first condition of Defini-
tion 6; specifically, transaction T2 cannot be legal.

T1

T2

W (x)1 Commit

R(x)2

Fig. 6. A du-strictly serializable history which is not du-opaque

Lemmas 2 and 5 imply the following corollary.

Corollary 1. If an execution α is du-opaque, then α is e-strictly serializable.

Consider an execution α which is du-strictly serializable, and let S be the sequential
history that justifies that α is du-strictly serializable. Strict serializability doesn’t impose
any restrictions on those transactions in α that are not included in S, whereas (roughly
speaking) du-opacity requires that all reads of each such transaction T (independently
of whether the transaction is aborted or live in α) read values written by previously

18 D. Dziuma, P. Fatourou, and E. Kanellou

committed transactions (or by T itself). This additional property is required in order to
avoid undesired situations where a transaction may cause an exception or enter into an
infinite loop after reading a value for a data item written by a live transaction that may
eventually abort.

It is remarkable that the first of these undesired situations (i.e. the production of an
exception or an error code) can be avoided even by STM systems that ensure only strict
serializability if we make the following simple assumptions in our model. An excep-
tion (or an error code) that has been resulted by the execution of a t-operation op is
considered as a response for op. A transaction that has experienced an exception or has
received an error code as a response to one of its t-operations, is considered to be com-
plete (but not aborted). Then, a (e- or du-) strictly serializable STM implementation
will never produce such exceptions (or error codes). Notice that the second undesir-
able situation, namely having some transaction enter an infinite loop, will not appear in
STM systems that ensure standard progress properties, like lock-freedom, starvation-
freedom, etc. A thread p experiences starvation in an execution α , if p takes infinitely
many steps in α and it receives only a finite number of commit responses for the trans-
actions that it initiates; an STM algorithm is starvation-free, if, in every execution that
it produces, no thread ever experiences starvation. Obstruction-freedom ensures that
for each thread p, if p runs solo starting from any configuration C in α , it eventually
completes the execution of its transaction successfully within a finite number of steps.

We continue to present eager opacity (e-opacity). Consider any history H and a trans-
action T in H. An instance op of READ for some data item x executed by T is global if
T has not invoked WRITE on x in H before invoking op. Let H|T |read be the longest
subsequence of H|T consisting of those invocations of READ (and their responses) for
which there is a response and this response is not AT , followed by COMMITT ,CT . Let
H|T |readg be the subsequence of H|T |read consisting only of the invocations of the
global instances of READ and their responses, followed by COMMITT ,CT . We denote
by Tr(H) a transaction that invokes the same t-operations (and in the same order) as
those invoked in H|T |read. Similarly, denote by Tgr(H) a transaction that invokes the
same t-operations (and in the same order) as those invoked in H|T |readg. Tr(H) and
Tgr(H) are defined for an execution α in terms of Hα . For each READ t-operation op
on any data item x that is in Tr(H) (Tr(α)) but not in Tgr(H) (Tgr(α)), we say that the
response for op (if it exists) is legal, if it is the value written by the last WRITE for x
performed by T before the invocation of op.

Definition 7 (e-Opacity). We say that an execution α is e-opaque if there exists a set
B of live transactions in α and some sequential execution σ which justify that α is
e-strictly serializable, and all of the following hold:

1. We can extend the history Hσ of σ to get a sequential history H ′
σ such that:

• if A is the set of complete transactions in α that are not aborted, for each
transaction T in α that is not in A∪B (i.e. for each transaction T in α that is
not in σ), H ′

σ contains Hα |T |readg,
• if < is the partial order which is induced by the real time order <Hα in such a

way that for each transaction T in α that is not in σ , we replace each instance
of T in the set of pairs of <Hα with transaction Tgr(α), then H ′

σ respects <,
and

Consistency for Transactional Memory Computing 19

• H ′
σ is legal.

2. For each transaction T in α that is not in σ , and for each invocation of a READ

operation op which is in Hα |T |read but not in Hα |T |readg, the response for op is
legal.

An STM algorithm is e-opaque if each execution α it produces is e-opaque.

Lemma 6 proves that du-opacity is stronger than e-opacity.

Lemma 6. If an execution α is du-opaque, then α is e-opaque, but not vice versa.

Sketch of proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a se-
quential history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal
and S respects <H′ .

Let S′ be the subsequence of S consisting of all events in S issued or received by
transactions in comm(H ′). Then, by following similar arguments as in the proof of
Lemma 5 we argue that H ′ and S′ satisfy the properties of Definition 2 and, therefore,
Hα is du-strictly serializable. So, α is du-strictly serializable.

Let B be those commit-pending transactions in Hα that are committed in H ′. Let
σ be the sequential execution, starting from the initial configuration, in which each
transaction in S′ is serially executed, in the order it appears in S′. We follow similar
arguments as in the proof of Lemma 1 to argue that σ justifies that α is execution-based
du-ss. Thus, Lemma 2 implies that α is e-strictly serializable; moreover, we argue that
Hσ = S′.

Denote by A the set of complete transactions in Hα that are not aborted. Let H ′
σ be

the subsequence of S such that H ′
σ contains all events in S′, and for each transaction

T �∈ A∪B, H ′
σ additionally contains each event in H|T |readg. Since S and S′ are legal,

it follows that H ′
σ is also legal. Also, since S respects <H′ , it follows that S′ respects <

(as defined in item 1 of Definition 7). Thus, H ′
σ (which is equal to S′) respects <.

Finally, legality of S implies that for each transaction T in α that is not in σ , and for
each t-operation op in T |read that is not in T |readg, the response for op is legal. We
conclude that α is e-opaque.

Figure 6 shows an example of a history that is not du-opaque but is du-strictly se-
rializable (and therefore also e-strictly serializable, by Lemma 2). This history is not
du-opaque because it violates the first condition of Definition 6; specifically, transac-
tion T2 cannot be legal. ��

We remark that most STM algorithms presented in the literature are opaque.

3.4 Causality-Related Consistency Conditions

Consider any operation-wise sequential history Sop that is equivalent to H. Since Sop is
equivalent to H, there are the same transactions in Sop as in H. We define a binary rela-
tion with respect to Sop, called reads-from and denoted by <r

Sop
, between transactions

in H such that, for any two transactions T1,T2 in H, T1 <
r
Sop

T2 only if:

• T2 executes a READ t-operation op that reads some data item x and returns a value
v for it,

20 D. Dziuma, P. Fatourou, and E. Kanellou

• T1 is the transaction in Sop which executes the last WRITE t-operation that writes v
for x and precedes op.

Notice that each operation-wise sequential history Sop that is equivalent to H, induces
a reads-from relation for H. We denote by RH the set of all reads-from relations that
can be induced for H.

For each <r in RH , we define the causal relation for <r on transactions in H to
be the transitive closure of

⋃
i

(
<H|pi

)∪ <r. We define CH to be the set of all causal
relations in H.

Causal Consistency. Causal consistency was informally introduced as a shared mem-
ory consistency condition in [23], and it was formally defined in [2]. Roughly speaking,
an execution α is causally consistent if for each thread pi, there exists a sequential
execution σi of the complete transactions that are not aborted (as well as of some of
the live transactions) in α such that in σi each of these transactions invokes the same
t-operations and gets the same responses as in α . Thus, causal consistency allows the
sequential executions to be different for different threads. However, it imposes the ad-
ditional constraint that all sequential executions respect the same causal relation.

As in the previous sections, we provide two formal definitions of causal consistency
for STM computing.

Definition 8 (e-Causal Consistency). Consider an execution α and let A be the set
of all complete transactions in α that are not aborted. We say that α is e-causally-
consistent if there exists a subset B of live transactions in α and a causal relation <c

in CH′
α

, where H ′
α is the subsequence of Hα consisting of the events (in Hα) issued and

received for the transactions in A∪B, such that, for each thread pi, it is possible to do
the following:
For each transaction T ∈ A∪ B, to associate with T a point ∗i

T in α . Let σi be the
sequential execution we get by serially executing (the code of) each transaction T ∈
A∪B at the place that its point has been selected (for pi) in α starting from the initial
configuration. The set B, and the points of transactions in A∪B should be selected (for
pi) so that:

• Hσi respects <c,
• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σi

and the response of each such t-operation in σi is the same as that in α , and
• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σi is the

same as the sequence of t-operations invoked by T in α , and the response of each
such t-operation in σi is the same as that in α (if it exists in α).

An STM algorithm is e-causally-consistent if each execution α it produces is e-causally-
consistent.

We continue with the presentation of the du-version of causal consistency.

Definition 9 (du-Causal Consistency). A history H is du-causally consistent if there
exists a history H ′ ∈Complete(H) and a causal relation <c in Ccomm(H′) such that, for
each thread pi, there exists a sequential history Si such that:

Consistency for Transactional Memory Computing 21

• Si is equivalent to comm(H ′),
• Si respects the causality order <c, and
• every transaction executed by pi in Si is legal.

An execution α is du-causally consistent, if Hα is du-causally consistent. An STM algo-
rithm is du-causally consistent if each execution α it produces is du-causally consistent.

By following similar arguments as in the proof of Lemma 2, it can be proved that
du-causal consistency is stronger than e-causal consistency.

Lemma 7. If an execution α is du-causally consistent then α is e-causally consistent,
but not vice versa.

Lemma 8 argues that serializability is stronger than causal consistency.

Lemma 8. If an execution α is serializable then α is causally consistent, but not vice
versa.

Sketch of proof. We prove the claim for the e-versions of the consistency conditions.
The proof of the claim for the du-variants of them can be performed using similar
reasoning.

Let A be the set of complete transactions in α that are not aborted. Moreover, let
B and σ be the set of live transactions in α and the sequential execution, respectively,
which justify that α is serializable. By Definition 4, the following hold for σ :

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α , and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

Let H ′
σ be the subsequence of Hσ in which, for each transaction T ∈ B, we exclude

those events issued or produced for T in σ that are not in α . Then, H ′
σ is equivalent

to H ′
α , where H ′

α is the subsequence of Hα containing just the events of transactions
in A∪B. Since H ′

σ is sequential, it is also operation-wise sequential, so <r
H′

σ
is well-

defined. Let <c be the causal relation for <r
H′

σ
. Then, by letting σi = σ , for each thread

pi, all conditions of Definition 8 hold.
Figure 7 shows an example of a history which is du-causally consistent (and there-

fore also e-causally consistent, by Lemma 7) but not e-serializable. In this history both
transactions T1 and T2 should be serialized before transactions T3 and T4, because both
T1 and T2 read 0 from data item y which is written by T3 and T4. Regardless of how
the serialization points for T1 and T2 are ordered, both T3 and T4 should read the same
value for data item x. Thus, this history is not e-serializable (and therefore it is not
e-serializable, by Lemma 3). However, it is du-causally consistent because threads run-
ning T3 and T4 may see writes executed by threads running T1 and T2 in a different
order.

��

22 D. Dziuma, P. Fatourou, and E. Kanellou

T1

T2

T3

T4

R(y)0

R(y)0

W (x)1

W (x)2

Commit

Commit

R(x)1 W (y)1

R(x)2 W (y)1 Commit

Commit

Fig. 7. A du-causally consistent history which is not e-serializable

Causal Serializability. Causal serializability was introduced in [31] as a consistency
condition which is stronger than causal consistency but weaker than serializability. In-
formally, in addition to the constraints imposed by causal consistency, the following
constraint must also be satisfied: all transactions that update the same data item must be
perceived in the same order by all threads.

Definition 10 (e-Causal Serializability). Consider an execution α and let A be the
set of all complete transactions in α that are not aborted. We say that α is e-causally
serializable if there exists a subset B of live transactions in α and a causal relation <c

in CH′
α

where H ′
α is the subsequence of Hα consisting of the events (in Hα) issued and

received for the transactions in A∪B, such that, for each thread pi, it is possible to do
the following:
For each transaction T ∈ A∪ B, to associate with T a point ∗i

T in α . Let σi be the
sequential execution we get by serially executing (the code of) each transaction T ∈
A∪B at the place that its point has been selected (for pi) in α starting from the initial
configuration. The set B, and the points of transactions in A∪B should be selected (for
pi) so that:

• Hσi respects <c,
• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σi

and the response of each such t-operation in σi is the same as that in α ,
• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σi are the

same as the sequence of t-operations invoked by T in α , the response of each such
t-operation in σi is the same as that in α (if it exists in α).

• for each pair of transactions T1,T2 ∈ A∪ B that write to the same data item, if
T1 <Hσi

T2, then for each j ∈ {1, . . . ,n}, it holds that T1 <Hσ j
T2.

An STM algorithm is e-causally serializable if each execution α it produces is e-causally
serializable.

We continue with the presentation of the du-version of causal serializability.

Definition 11 (du-Causal Serializability). A history H is du-causally serializable if
there exists a history H ′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such
that, for each thread pi, there exists a sequential history Si for which the following
hold:

Consistency for Transactional Memory Computing 23

• Si is equivalent to comm(H ′),
• Si respects the causality order <c,
• every transaction executed by pi in Si is legal, and
• for each pair of transactions T1 and T2 in comm(H ′) that write to the same data

item, if T1 <Si T2, then for each j ∈ {1, . . . ,n}, it holds that T1 <S j T2.

An execution α is du-causally serializable, if Hα is du-causally serializable. An STM
algorithm is du-causally serializable if each execution α it produces is du-causally se-
rializable.

By following similar arguments as in the proof of Lemma 2, it can be proved that
du-causal serializability is stronger than e-causal serializability.

Lemma 9. If an execution α is du-causally serializable then α is e-causally serializ-
able, but not vice versa.

Obviously, every (e- or du-) causally serializable history satisfies the properties of
(e- or du-, respectively) causal consistency, but the opposite is not true. For instance,
the du-causally consistent history shown in Figure 7 is not e-causally serializable, since
threads executing transactions T3 and T4 do not see writes from T1 and T2 to data item x
in the same order.

Lemma 10. If an execution α is causally serializable then α is causally consistent, but
not vice versa.

T1

T2

T3

T4

W (x)1

W (y)1

Commit

Commit

R(x)1 R(y)0 Commit

R(x)0 R(y)1 Commit

Fig. 8. A du-causally serializable history which is not e-serializable

Using similar arguments as those in the proof of Lemma 8, it can be easily proved
that causal serializability is weaker than serializability. However, the opposite does not
hold. Figure 8 shows an example of a history H which is du-causally serializable (and
therefore also e-causally serializable, by Lemma 9) but not e-serializable (and therefore
not du-serializable, by Lemma 3). In H, if transaction T1 is serialized before T2 (the op-
posite case is symmetrical), then it is not possible to serialize transaction T4. However,
by definition of causal serializability, sequential histories constructed for threads p3 and
p4 may include transactions T1 and T2 in different orders.

24 D. Dziuma, P. Fatourou, and E. Kanellou

Lemma 11. If an execution α is serializable then α is causally serializable, but not
vice versa.

In STM research, causal consistency, as well as causal serializability, are interesting
in the context of proving impossibility results [9,10] and lower bounds. We remark that
when proving such results, considering a weak consistency condition makes the result
stronger. It is therefore an interesting open problem to see whether some of the STM
impossibility results (e.g. [6,11,16]) that have been proved assuming some strong con-
sistency condition, like opacity, strict serializability or serializability, can be extended
to hold for weaker consistency conditions like those formulated in this or later sections.
For instance in this avenue, the impossibility result proved in [17] assuming serializ-
ability is extended in [9,10] to hold for a much weaker consistency condition.

Virtual World Consistency. Virtual World Consistency (VWC) was defined in [24]
as a family of consistency conditions. Informally, VWC ensures serializability or strict
serializability for the committed (and some of the commit-pending) transactions but a
weaker condition than that imposed by opacity for the rest of the transactions.

For each transaction T in history H and each causal relation <c
H in CH , we define

the causal past of T denoted by pastT (H,<c
H) as the subsequence of all events of H

issued or produced either for transaction T itself or for any transaction Ti in H such that
Ti <

c
H T .

Definition 12 (du-Virtual World Consistency). A history H is du-virtual world con-
sistent if there exists a history H ′ ∈Complete(H) and a causal relation <c in CH′ such
that:

• there exists a legal sequential history S which is equivalent to comm(H ′), and
• for each transaction Ti in H ′ that is not in S, there exists a legal sequential history

Si which is equivalent to pastTi(H
′,<c) and respects the restriction of <c to those

pairs whose components are transactions in pastTi(H
′,<c).

An execution α is du-virtual world consistent, if Hα is du-virtual world consistent. An
STM algorithm is du-virtual world consistent if each execution α it produces is du-
virtual world consistent.

Definition 13 (du-Strong Virtual World Consistency). A history H is du-strongly
virtual world consistent if there exists a history H ′ ∈Complete(H) and a causal relation
<c in CH′ such that:

• there exists a legal sequential history S which is equivalent to comm(H ′) and re-
spects <comm(H′), and

• for each transaction Ti in H ′ that is not in S, there exists a legal sequential history
Si which is equivalent to pastTi(H

′,<c) and respects the restriction of <c to those
pairs whose components are transactions in pastTi(H

′,<c).

An execution α is du-strongly virtual world consistent, if Hα is du-strongly virtual world
consistent. An STM algorithm is du-strongly virtual world consistent if each execution
α it produces is du-strongly virtual world consistent.

Consistency for Transactional Memory Computing 25

T1

T2

T3

T4

W (x)1

W (x)2

Commit

Commit

R(x)1

R(x)2

Fig. 9. A du-virtual world consistent history which is not du-opaque

By comparing Definitions 12 and 13 with Definitions 5 and 2, respectively, it is
straightforward to see that du-virtual world consistency is stronger than du-serializability
and du-strong virtual world consistency is stronger than du-strict serializability.

Lemma 12. If an execution α is du-virtual world consistent (du-strongly virtual world
consistent) then α is du-serializable (du-strictly serializable), but not vice versa.

Du-strong virtual world consistency (and therefore also du-virtual world consis-
tency) is weaker than du-opacity.

Lemma 13. If an execution α is du-opaque then α is du-strongly virtual world consis-
tent, but not vice versa.

Sketch of proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a se-
quential history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal
and S respects <H′ . Let S′ be the subsequence of S consisting of all events in S issued or
received by transactions in comm(H ′). Then, S′ is a legal sequential history, equivalent
to comm(H ′), which respects <comm(H′).

Since S is sequential, it is also operation-wise sequential, so <r
S is well-defined. Let

<c be the causal relation for <r
S. Consider any transaction Ti in H ′ that is not in S′.

Then, pastTi(H
′,<c) is the subsequence of all events of H ′ issued or produced either

for transaction Ti itself or for any transaction Tj in H ′ such that Tj <
c Ti.

Let Si be the subsequence of S consisting of all events issued or produced for trans-
actions in pastTi(H

′,<c). Since S is equivalent to H ′, it follows that Si is equivalent
to pastT (H ′,<c). Since Si is a subsequence of S and <c is the causal relation for <r

S,
it follows that Si respects the restriction of <c to those pairs whose components are
transactions in pastTi(H

′,<c). Since S is legal and Si is a subsequence of S equivalent
to pastT (H ′,<c), it follows that Si is legal. Thus, all conditions of Definition 13 hold.

The history shown in Figure 9 is du-strongly virtual world consistent but not du-
opaque: regardless of the order of the serialization points of transactions T1 and T2, it is
not possible to derive a sequential history where both transaction T3 and T4 are legal. ��

We continue to present the eager versions of virtual world consistency and strong
virtual world consistency.

Definition 14 (e-Virtual World Consistency and e-Strong Virtual World Consis-
tency). We say that an execution α is e-virtual world consistent (e-strongly virtual

26 D. Dziuma, P. Fatourou, and E. Kanellou

world consistent) if there exists some sequential execution σ which justifies that α is
e-serializable (e-strictly serializable, respectively), and the following holds:

1. for each transaction Ti in α that is not in σ there exists a legal sequential history
Si which is equivalent to pastTi(H

′,<c) and respects the restriction of <c to those
pairs whose components are transactions in pastTi(H

′,<c).

An STM algorithm is e-virtual world consistent (e-strongly virtual world consistent)
if each execution α it produces is e-virtual world consistent (e-strongly virtual world
consistent).

Using similar arguments as in the proof of Lemma 6, we can prove that du-virtual
world consistency is stronger than e-virtual world consistency.

Lemma 14. If an execution α is du-virtual world consistent (du-strongly virtual world
consistent) then α is e-virtual world consistent (e-strongly virtual world consistent), but
not vice versa.

The following lemma is an immediate consequence of Definition 14.

Lemma 15. If an execution α is e-virtual world consistent (e-strongly virtual world
consistent) then α is e-serializable (e-strictly serializable), but not vice versa.

Using similar reasoning as that in the proof of Lemma 13, we can prove that e-opacity
is stronger than e-strong virtual world consistency.

Lemma 16. If an execution α is e-opaque then α is e-strongly virtual world consistent,
but not vice versa.

Strong consistency conditions such as opacity ensure the safe execution of non-
committed transactions by imposing on them the same correctness demands as those
that committed transactions are required to obey. This has been criticized in [24] to
result in STM algorithms that produce histories in which live transactions are forced
to abort in order to preserve the consistency of other transactions that are deemed
to also abort. Virtual world consistency relaxes the correctness property used for
non-committed transactions in order to avoid such scenarios in several cases, and by
consequence, allow for more live transactions to commit than an STM algorithm that
implements a stronger consistency condition would.

3.5 Snapshot Isolation

Snapshot isolation was originally introduced as a consistency condition in the database
world [7,28]. Snapshot isolation is an appealing property for STM computing [3,13,32]
since it provides the potential to increase throughput for workloads with long transac-
tions [32]. The first formal definitions for STM snapshot isolation was given in [9,10].

Consider a history H and let T be a transaction that either commits or is commit-
pending in H. Recall that we have already defined the sequences H|T |read, H|T |readg,
as well as transactions Tr(H) and Tgr(H) in Section 3.3. Let H|T |other be the sub-
sequence of H|T that consists of all invocations performed by T (and their matching

Consistency for Transactional Memory Computing 27

responses) in H other than those comprising H|T |readg, followed by COMMITT ,CT .
Let To(H) be a transaction that invokes the same t-operations (and in the same order) as
those invoked in H|T |other; for an execution α To(α) is defined in terms of Hα in the
same way.

Definition 15 (du-Snapshot isolation [10]). An execution α satisfies du-snapshot iso-
lation, if there exists a set D consisting of all committed and some of the commit-pending
transactions in α for which the following holds:
For each transaction T ∈ D, it is possible to insert (in α) a point ∗T,gr, called the global
read point of T , and a point ∗T,w, called the write point for T , so that if δα is the
sequence defined by these serialization points, the following hold:

1. ∗T,gr precedes ∗T,w in δα ,
2. both ∗T,gr and ∗T,w are inserted within the execution interval of T ,
3. if Hδα is the history we get by replacing each ∗T,gr with Hα |T |readg and each ∗T,w

with Hα |T |other in δα , then Hδα is legal.

An STM algorithm satisfies du-snapshot isolation if each execution α it produces satis-
fies du-snapshot isolation.

We now present eager snapshot isolation. Consider a legal execution α and let C(α)
be the set of all legal executions such that each execution α ′ ∈C(α) is an extension of
α such that the same transactions are executed in α and α ′ and no transaction is live in
α ′.

Definition 16 (e-Snapshot Isolation). Consider an execution α . We say that α satisfies
e-snapshot isolation, if there exists an execution α ′ ∈ C(α) for which the following
holds: if A is the set of transactions that commit in α ′ then for each transaction T ∈ A,
it is possible to insert a point ∗T,gr, called global read point of T , and a point ∗T,w,
called write point of T , in α , so that:

1. ∗T,gr precedes ∗T,w,
2. both ∗T,gr and ∗T,w are inserted somewhere between T’s first invocation of a t-

operation and T’s last response of a t-operation in α ′, and
3. if σ is the sequential execution that we get when for each transaction T ∈ A, we

serially execute transactions Tgr(α) and To(α) at the points that ∗T,gr and ∗T,w,
respectively, have been inserted, then for each transaction T ∈ A, the response
of each t-operation invoked by Tgr(α) and To(α) in σ is the same as that of the
corresponding t-operation in Hα |T |readg and Hα |T |other, respectively.

An STM algorithm satisfies e-snapshot isolation if each execution α it produces satisfies
e-snapshot isolation.

Lemma 17 argues that du-snapshot isolation is stronger than e-snapshot isolation.

Lemma 17. If an execution α satisfies du-snapshot isolation then α satisfies e-snapshot
isolation, but not vice versa.

Lemma 18 argues that strict serializability is stronger than snapshot isolation.

28 D. Dziuma, P. Fatourou, and E. Kanellou

Ta
bl

e
1.

A
qu

ic
k

re
fe

re
nc

e
gu

id
e

sh
ow

in
g

th
e

re
la

ti
on

sh
ip

s
be

tw
ee

n
co

ns
is

te
nc

y
co

nd
it

io
ns

.W
e

re
m

ar
k

th
at

a
co

ns
is

te
nc

y
co

nd
it

io
n

de
te

rm
in

es
a

se
t

of
hi

st
or

ie
s,

na
m

el
y

th
os

e
hi

st
or

ie
s

th
at

sa
ti

sf
y

th
e

co
ns

tr
ai

nt
s

im
po

se
d

by
th

e
co

nd
it

io
n.

E
ac

h
ro

w
an

d
ea

ch
co

lu
m

n
of

th
e

ta
bl

e
re

pr
es

en
ts

a
co

ns
is

te
nc

y
co

nd
iti

on
.

E
ac

h
ce

ll
of

th
e

ta
bl

e
sh

ow
s

th
e

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

co
ns

is
te

nc
y

co
nd

iti
on

of
th

e
ro

w
an

d
th

e
co

ns
is

te
nc

y
co

nd
iti

on
of

th
e

co
lu

m
n

th
at

th
e

ce
ll

be
lo

ng
s

to
.F

or
ex

am
pl

e,
th

e
ce

ll
th

at
is

fo
un

d
in

th
e

cr
os

si
ng

be
tw

ee
n

th
e

ro
w

of
e-

s
(e

-s
er

ia
liz

ab
ili

ty
)

an
d

th
e

co
lu

m
n

of
du

-s
(d

u-
se

ri
al

iz
ab

il
it

y)
co

nt
ai

ns
⊇.

T
hi

s
m

ea
ns

th
at

e-
s

is
a

su
pe

rs
et

of
du

-s
,i

.e
.,

th
at

e-
s

is
w

ea
ke

r
th

an
du

-s
.T

he
in

ve
rs

e
re

la
ti

on
is

de
no

te
d

by
⊆,

as
ca

n
be

se
en

in
th

e
ce

ll
th

at
is

fo
un

d
in

th
e

cr
os

si
ng

be
tw

ee
n

th
e

ro
w

of
e-

ss
an

d
th

e
co

lu
m

n
of

e-
s:

e-
ss

is
st

ro
ng

er
th

an
e-

s,
an

d
th

us
,i

ti
s

a
su

bs
et

of
e-

s.
E

qu
al

ity
of

tw
o

co
nd

iti
on

s
is

de
no

te
d

by
=

.I
nc

om
pa

ra
bi

li
ty

be
tw

ee
n

th
em

is
de

no
te

d
by

�=.

e-
ss

:
e-

st
ri

ct
se

ri
al

iz
ab

il
it

y
du

-s
s:

du
-s

tr
ic

ts
er

ia
li

za
bi

li
ty

e-
s:

e-
se

ri
al

iz
ab

il
it

y
du

-s
:

du
-s

er
ia

li
za

bi
li

ty
e-

op
:

e-
op

ac
it

y
du

-o
p:

du
-o

pa
ci

ty
e-

cc
:

e-
ca

us
al

co
ns

is
te

nc
y

du
-c

c:
du

-c
au

sa
lc

on
si

st
en

cy
e-

cs
:

e-
ca

us
al

se
ri

al
iz

ab
il

it
y

du
-c

s:
du

-c
au

sa
ls

er
ia

li
za

bi
li

ty
e-

vw
c:

e-
vi

rt
ua

lw
or

ld
co

ns
is

te
nc

y
du

-v
w

c:
du

-v
ir

tu
al

w
or

ld
co

ns
is

te
nc

y
e-

sv
w

c:
e-

st
ro

ng
vi

rt
ua

lw
or

ld
co

ns
is

te
nc

y
du

-s
vw

c:
du

-s
tr

on
g

vi
rt

ua
lw

or
ld

co
ns

is
te

nc
y

e-
si

:
e-

sn
ap

sh
ot

is
ol

at
io

n
du

-s
i:

du
-s

na
ps

ho
t

is
ol

at
io

n

e-
ss

du
-s

s
e-

s
du

-s
e-

op
du

-o
p

e-
cc

du
-c

c
e-

cs
du

-c
s

e-
vw

c
du

-v
w

c
e-

sv
w

c
du

-s
vw

c
e-

si
du

-s
i

e-
ss

=
⊇

⊆
�=

⊇
⊇

⊆
�=

⊆
�=

�=
�=

⊇
⊇

⊆
�=

du
-s

s
=

⊆
⊆

�=
⊇

⊆
⊆

⊆
⊆

�=
�=

�=
⊇

⊆
⊆

e-
s

=
⊇

⊇
⊇

⊆
�=

⊆
�=

⊇
⊇

⊇
⊇

�=
�=

du
-s

=
�=

⊇
⊆

⊆
⊆

⊆
�=

⊇
�=

⊇
�=

�=
e-

op
=

⊇
⊆

�=
⊆

�=
⊆

�=
⊆

�=
⊆

�=
du

-o
p

=
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
e-

cc
=

⊇
⊇

⊇
⊇

⊇
⊇

⊇
�=

�=
du

-c
c

=
�=

⊇
�=

⊇
�=

⊇
�=

�=
e-

cs
=

⊇
⊇

⊇
⊇

⊇
�=

�=
du

-c
s

=
�=

⊇
�=

⊇
�=

�=
e-

vw
c

=
⊇

⊇
⊇

�=
�=

du
-v

w
c

=
�=

⊇
�=

�=
e-

sw
vc

=
⊇

⊆
�=

du
-s

w
vc

=
⊆

⊆
e-

si
=

⊇
du

-s
i

=

Consistency for Transactional Memory Computing 29

Lemma 18. If an execution α satisfies e-strict serializability (du-strict serializability)
then α satisfies e-snapshot isolation (du-snapshot isolation), but not vice versa.

Since strict virtual world consistency and opacity are stronger than strict serializabil-
ity, Lemma 18 implies that they are stronger than snapshot isolation.

Snapshot isolation is incomparable to virtual world consistency, serializability, causal
consistency and causal serializability. For instance, there is an execution which is seri-
alizable that does not satisfy snapshot isolation. An example of a history that satisfies
snapshot isolation but not serializability is given in Figure 10.

T1

T2

R(y)1

W (y)2 R(x)1 Commit

W (x)2 Commit

Fig. 10. A history complying with snapshot isolation which is not serializable

Acknowledgments. This work has been supported by the European Commission un-
der the 7th Framework Program through the TransForm (FP7-MC-ITN-238639) project
and by the ARISTEIA Action of the Operational Programme Education and Lifelong
Learning which is co-funded by the European Social Fund (ESF) and National Re-
sources through the GreenVM project.

We would like to thank Victor Bushkov for his valuable comments in a preliminary
version of this chapter and Eleftherios Kosmas for several useful discussions that mo-
tivated this work. Many thanks also to Hagit Attiya Petr Kuznetsov, and Sandeep Hans
for their comments on a previous version of this article.

References

1. Afek, Y., Avni, H., Dice, D., Shavit, N.: Efficient lock free privatization. In: Lu, C., Ma-
suzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 333–347. Springer,
Heidelberg (2010)

2. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: definitions,
implementation, and programming. Distributed Computing 9(1), 37–49 (1995)

3. Ardekani, M.S., Sutra, P., Shapiro, M.: The impossibility of ensuring snapshot isolation in
genuine replicated stms. In: TransForm/Euro-TM WTTM 3rd Workshop on the Theory of
Transactional Memory, WTTM 2011 (2011)

4. Attiya, H., Hans, S.: Transactions are Back-but How Different They Are? In: 7th ACM SIG-
PLAN Workshop on Transactional Computing, New Orleans, LA, USA (February 2012)

5. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-
ory. In: Proceedings of the 33rd International Conference on Distributed Computing Systems,
ICDCS 2013, pp. 601–610. IEEE (2013)

6. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory. In: Proceedings of the 21st ACM Symposium on Parallel
Algorithms and Architectures, SPAA 2009, pp. 69–78. ACM, New York (2009)

7. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ansi sql
isolation levels. SIGMOD Rec. 24(2), 1–10 (1995)

30 D. Dziuma, P. Fatourou, and E. Kanellou

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1987)

9. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: Snapshot isolation does not scale ei-
ther. Tech. Rep. TR-437, Foundation of Research and Technology – Hellas (FORTH) (Octo-
ber 2013)

10. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The pcl theorem - transactions cannot
be parallel, consistent and live. In: Proceedings of the 4th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2014, pp. 178–187. ACM, New York (2014)

11. Bushkov, V., Guerraoui, R., Kapałka, M.: On the liveness of transactional memory. In: Pro-
ceedings of the 31st ACM Symposium on Principles of Distributed Computing, PODC 2012,
pp. 9–18. ACM, New York (2012)

12. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm by abolishing ownership
records. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2010, pp. 67–78. ACM, New York (2010)

13. Dias, R.J., Seco, J., Lourenço, J.M.: Snapshot isolation anomalies detection in software trans-
actional memory. In: Proceedings of INForum Simpósio de Informática (InForum 2010).
Universidade do Minho, Braga (2010)

14. Dice, D., Shavit, N.: What really makes transactions faster? In: 1st ACM SIGPLAN
Workshop on Languages Compilers, and Hardware Support for Transactional Computing,
TRANSACT 2006 (2006)

15. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Aspects of Computing 25(5), 1–31 (2012)

16. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal constructions that en-
sure disjoint-access parallelism and wait-freedom. In: Proceedings of the 31st ACM Sympo-
sium on Principles of Distributed Computing, PODC 2012, pp. 115–124. ACM, New York
(2012)

17. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: Proceedings of the Twen-
tieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008, pp.
304–313. ACM, New York (2008)

18. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2008, pp. 175–184. ACM, New York (2008)

19. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory (Synthesis Lectures on Dis-
tributed Computing Theory). Morgan and Claypool Publishers (2010)

20. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and Claypool Pub-
lishers (2010)

21. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

22. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

23. Hutto, P., Ahamad, M.: Slow memory: Weakening consistency to enhance concurrency in
distributed shared memories. In: Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, ICDCS 1990, pp. 302–309. IEEE (1990)

24. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a versa-
tile protocol with invisible read operations). Theoretical Computer Science 444(0), 113–127
(2009), Structural Information and Communication Complexity (SIROCCO) 2009

25. Maessen, J.: Arvind: Store atomicity for transactional memory. Electr. Notes Theor. Comput.
Sci. 174(9), 117–137 (2007)

26. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable techniques for transparent privatization in
software transactional memory. In: Proceedings of the 37th International Conference on Par-
allel Processing (ICPP), pp. 67–74. IEEE Computer Society (2008)

Consistency for Transactional Memory Computing 31

27. Martin, M.M.K., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity se-
mantics. Computer Architecture Letters 5(2) (2006)

28. Normann, R., Østby, L.T.: A theoretical study of ‘snapshot isolation’. In: Proceedings of the
13th International Conference on Database Theory, ICDT 2010, pp. 44–49. ACM, New York
(2010)

29. Papadimitriou, C.H.: The serializability of concurrent database updates. Journal of the
ACM 26(4), 631–653 (1979)

30. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an
stm. In: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2009, pp. 163–172. ACM, New York (2009)

31. Raynal, M., Thia-Kime, G., Ahamad, M.: From serializable to causal transactions for collab-
orative applications. In: Proceedings of the 23rd EUROMICRO Conference, EUROMICRO
1997, pp. 314–321. IEEE (1997)

32. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In:
1st ACM SIGPLAN Workshop on Languages Compilers, and Hardware Support for Trans-
actional Computing, TRANSACT 2006 (2006)

33. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable time bases.
In: Proceedings of the 19th ACM Symposium on Parallel Algorithms and Architectures,
SPAA 2007, pp. 221–228. ACM, New York (2007)

34. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Transactions and privatization in
delaunay triangulation. In: Proceedings of the 26th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 336–337. ACM, New York (2007)

35. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing, PODC 1995, pp. 204–213. ACM, New
York (1995)

36. Siek, K., Wojciechowski, P.T.: Brief announcement: Towards a fully-articulated pessimistic
distributed transactional memory. In: Proceedings of SPAA 2013: The 25th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, Montreal, Canada, pp. 111–114. ACM
(July 2013)

37. Siek, K., Wojciechowski, P.T.: Zen and the art of concurrency control: An exploration of tm
safety property space with early release in mind. In: Euro-TM WTTM 6th Workshop on the
Theory of Transactional Memory, WTTM 2014 (2014)

38. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques for soft-
ware transactional memory. In: Proceedings of the 26th ACM Symposium on Principles of
Distributed Computing (PODC), pp. 338–339. ACM, New York (2007)

39. Spear, M.F., Michael, M.M., von Praun, C.: Ringstm: scalable transactions with a single
atomic instruction. In: Proceedings of the 20th ACM Symposium on Parallel Algorithms and
Architectures, SPAA 2008, pp. 275–284. ACM, New York (2008)

40. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers (2002)

	Consistency for Transactional Memory Computing
	1Introduction
	2Model
	2.1System
	2.2STM Definitions

	3TM Consistency
	3.1Strict Serializability
	3.2 Serializability
	3.3Opacity
	3.4Causality-Related Consistency Conditions
	3.5Snapshot Isolation
	References

