
Rachid Guerraoui
Paolo Romano (Eds.)

Tu
to

ria
l

LN
CS

 8
91

3

COST Action Euro-TM IC1001

Transactional Memory
Foundations, Algorithms, Tools,
and Applications

 123

Lecture Notes in Computer Science 8913
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rachid Guerraoui Paolo Romano (Eds.)

TransactionalMemory

Foundations, Algorithms, Tools,
and Applications

COSTAction Euro-TM IC1001

1 3

Volume Editors

Rachid Guerraoui
EPFL, Lausanne, Switzerland
E-mail: rachid.guerraoui@epfl.ch

Paolo Romano
INESC-ID, Lisboa, Portugal
E-mail: romano@inesc-id.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-14719-2 e-ISBN 978-3-319-14720-8
DOI 10.1007/978-3-319-14720-8
Springer Cham Heidelberg NewYork Dordrecht London

Library of Congress Control Number: 2014958340

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

Acknowledgments: Euro-TM is an Action supported by the COST Association that
has gathered researchers from 17 European countries and over 40 institutions.All the
authors of the book have actively participated in the activities of Euro-TM.
The editors are grateful to the COST programme for supporting the Euro-TM initia-
tive (IC1001 - Transactional Memories: Foundations, Algorithms, Tools, and Appli-
cations), a forum that was fundamental for the preparation of this book. The editors
also express their gratitude to all authors, for their enthusiastic and meticulous coop-
eration in the preparation of this book. A special thank goes to Maria Couceiro for
her valuable support with the editing of the book.
This publication is supported by COST.

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of thework.Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

COST Description

COST - European Cooperation in Science and Technology is an intergovernmen-
tal framework aimed at facilitating the collaboration and networking of scientists
and researchers at European level. It was established in 1971 by 19 member coun-
tries and currently includes 35 member countries across Europe, and Israel as a
cooperating state.

COST funds pan-European, bottom-up networks of scientists and researchers
across all science and technology fields. These networks, called ’COST Actions’,
promote international coordination of nationally-funded research.

By fostering the networking of researchers at an international level, COST
enables break-through scientific developments leading to new concepts and prod-
ucts, thereby contributing to strengthening Europe’s research and innovation
capacities.
COST’s mission focuses in particular on:

• Building capacity by connecting high quality scientific communities through-
out Europe and worldwide;

• Providing networking opportunities for early career investigators;
• Increasing the impact of research on policy makers, regulatory bodies and
national decision makers as well as the private sector.

Through its inclusiveness policy, COST supports the integration of research
communities in less research-intensive countries across Europe, leverages na-
tional research investments and addresses societal issues.

Over 45 000 European scientists benefit from their involvement in COST
Actions on a yearly basis. This allows the pooling of national research funding
and helps countries research communities achieve common goals.

As a precursor of advanced multidisciplinary research, COST anticipates
and complements the activities of EU Framework Programmes, constituting a
”bridge” towards the scientific communities of emerging countries.

Traditionally, COST draws its budget for networking activities from succes-
sive EU RTD Framework Programmes.

VI COST Description

COST Association Legal Notice
Neither the COST Association nor any person acting on its behalf is responsible
for the use which might be made of the information contained in this publication.
The COST Association is not responsible for the external websites referred to
in this publication.

COST is supported by the EU
Framework Programme
Horizon 2020

To waves and wind,
to the marvel and the fury of elements,

to the search for perfection.

Preface

Parallel programming (PP) used to be an area once confined to a few niches,
such as scientific and high-performance computing applications. However, with
the proliferation of multicore processors, and the emergence of new, inherently
parallel and distributed deployment platforms, such as those provided by cloud
computing, parallel programming has definitely become a mainstream concern.

Unfortunately, writing scalable parallel programs using traditional lock-based
synchronization primitives is well known to be a hard, time-consuming, and
error-prone task, mastered by a minority of programmers only. Thus, to bring
parallel programming into the mainstream of software development, we are in
urgent need of better programming models.

Building on the abstraction of atomic transactions, and freeing program-
mers from the complexity of conventional synchronization schemes, transactional
memories (TMs) promise to respond exactly to this need, simplifying the devel-
opment and verification of concurrent programs, enhancing code reliability, and
boosting productivity.

Over the last decade, TM has been subject to intense research in computer
science and engineering, with hundreds of papers published in prestigious in-
ternational conferences and journals addressing a wide range of complementary
aspects including hardware and operating systems (OSs) support, language in-
tegration, as well as algorithms and theoretical foundations. Moreover, even if
TMs were first introduced in the context of shared-memory multiprocessors,
the abstraction of distributed transactional memory (DTM) has been garnering
growing interest of late in the area of cloud computing, due to two main rea-
sons. On the one hand, the increasing reliance of cloud computing platforms on
in-memory data management techniques, fostered by the need for maximizing
efficiency and supporting real-time data processing of ever-growing volumes of
data. On the other hand, the inherent complexity of building large-scale applica-
tions on top of the weakly consistent models embraced by the first generation of
large-scale NoSQL data stores, which has motivated intensive research on mech-
anisms aimed to enforce strong consistency semantics in large-scale distributed
platforms.

The growing interest in TMs has not only been confined to academic en-
vironments. On the industrial side, some of the major players of the software
and hardware markets have been up-front in the research and development of
prototypal products providing support for TMs. The maturing of research in
the field of TM has recently led to hardware TM implementations on several
mainstream commercial microprocessors and to the integration of TM support
for the world’s leading open source compiler.

In such a vast inter-disciplinary domain, the Euro-TMCOST Action (IC1001)
has served as a catalyzer and a bridge for the various research communities look-

X Preface

ing at disparate, yet subtly interconnected, aspects of TM. Starting in February
2011 and ending in February 2015, Euro-TM established a Pan-European re-
search network that brought together more than 250 researchers from 17 Euro-
pean countries. Over the last 4 years Euro-TM helped shape the research agenda
in the TM area and ensured timely dissemination of research results via thematic
workshops; fostered joint publications and research projects; showcased relevant
research results in the area in industrial conferences; and educated early-stage
researchers via doctoral schools hosting renowned specialists both from industry
and academy.

This book emerged from the idea to have Euro-TM experts compile recent
results in the TM area in a single and consistent volume. Contributions have
been carefully selected and revised to provide a broad coverage of several fun-
damental issues associated with the design and implementation of TM systems,
including their theoretical underpinnings and algorithmic foundations, program-
ming language integration and verification tools, hardware supports, distributed
TMs, self-tuning mechanisms, as well as lessons learnt from building complex
TM-based applications.

Organization. The book is organized in four sections. The four chapters encom-
passed by Section 1 address theoretical foundations of TM systems, focusing not
only on the definition of safety (Chaps. 1 and 3) and liveness (Chap. 2) guaran-
tees in TM, but also on the problem of designing disjoint-access (i.e., inherently
scalable) TM implementations (Chap. 4).

Section 2 covers algorithmic aspects associated with the design of TM sys-
tems. First, it illustrates the main algorithmic alternatives in the design space
of software (Chap. 5) and hardware (Chap. 6) implementations of TM. Next,
it addresses the design and implementation of multi-version TM (Chaps. 7 and
8). Finally, it surveys existing techniques in the literature on TM support for
parallel nesting (Chap. 9).

Section 3 deals with the issue of mitigating or even avoiding contention in
TM systems, by leveraging on various policies for contention management and
transaction scheduling (Chap. 10), as well as techniques that attempt to leverage
on semantic knowledge on the code to be executed transactionally (Chap. 11).

Section 4 investigates aspects related to TM and reliability from a twofold
perspective: how to leverage on the TM abstraction to simplify exception han-
dling in programming languages (Chap. 12) and mask exceptions at the hard-
ware level (Chap. 13); how to ensure the correctness of TM-based applications
by means of automatic verification tools (Chap. 14).

Section 5 addresses the design of DTM platforms. Chapter 15 first provides
background on algorithms for replication of transactional systems, by focusing on
fully replicated systems (in which each node maintains a full copy of the system
state). Chapter 16 considers partially replicated TM systems, analyzing trade-
offs between the data-flow and control-flow paradigms. The section is concluded
by a survey of existing protocols for DTM systems that adopt the data-flow
paradigm.

Preface XI

Finally, Section 6 covers the development of TM-based applications, and on
their self-tuning. In more detail, Chap. 17 reports the lessons learnt while de-
veloping complex TM-based applications. Chapters 18 and 19 focus instead on
self-tuning techniques for TM systems. The former addresses the issue of dy-
namically adapting the degree of parallelism in shared-memory TM systems.
The latter discusses the key challenges associated with the design of self-tuning
mechanisms in DTM platforms, surveying existing work in this area.

In summary, the present book provides a unique collection of tutorials, which
will allow graduate students in computer science to get familiar with state-of-
the-art research in TM and its applications, typically along their road to doctoral
studies.

It is noteworthy that this book has only been made possible thanks to the
dedication and expertise of our contributing authors, many of whom are from
the COST Action Euro-TM. Their effort resulted in a book that is an invaluable
tool for researchers active in this emerging domain.

October 2014 Rachid Guerraoui
Paolo Romano

This book may be cited as
COST Action IC1001 (Euro-TM) - “Transactional Memory: Foundations, Algo-
rithms, Tools, and Applications”, Editors Rachid Guerraoui and Paolo Romano,
ISBN 978-3-319-14719-2, 2015

Table of Contents

Theoretical Foundations

Consistency for Transactional Memory Computing 3
Panagiota Fatourou, Dmytro Dziuma, and Eleni Kanellou

Liveness in Transactional Memory . 32
Victor Bushkov and Rachid Guerraoui

Safety and Deferred Update in Transactional Memory 50
Hagit Attiya, Sandeep Hans, Petr Kuznetsov, and Srivatsan Ravi

Disjoint-Access Parallelism in Software Transactional Memory 72
Hagit Attiya and Panagiota Fatourou

Algorithms

Algorithmic Techniques in STM Design . 101
Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and
Eleftherios Kosmas

Conflict Detection in Hardware Transactional Memory 127
Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata,
and Oscar Plata

Multi-versioning in Transactional Memory . 150
Idit Keidar and Dmitri Perelman

Framework Support for the Efficient Implementation of Multi-version
Algorithms . 166

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço

Nested Parallelism in Transactional Memory . 192
Ricardo Filipe and João Barreto

Contention Management and Scheduling

Scheduling-Based Contention Management Techniques for Transactional
Memory . 213

Danny Hendler and Adi Suissa-Peleg

Proactive Contention Avoidance . 228
Hillel Avni, Shlomi Dolev, and Eleftherios Kosmas

XIV Table of Contents

Transactional Memory and Reliability

Safe Exception Handling with Transactional Memory 245
Pascal Felber, Christof Fetzer, Vincent Gramoli, Derin Harmanci,
and Martin Nowack

Transactional Memory for Reliability . 268
Gulay Yalcin and Osman Unsal

Verification Tools for Transactional Programs . 283
Adrian Cristal, Burcu Kulahcioglu Ozkan, Ernie Cohen,
Gokcen Kestor, Ismail Kuru, Osman Unsal, Serdar Tasiran,
Suha Orhun Mutluergil, and Tayfun Elmas

Distributed Transactional Memory

Introduction to Transactional Replication . 309
Tadeusz Kobus, Maciej Kokociński, and Pawe�l T. Wojciechowski

Transaction Execution Models in Partially Replicated Transactional
Memory: The Case for Data-Flow and Control-Flow 341

Roberto Palmieri, Sebastiano Peluso, and Binoy Ravindran

Directory Protocols for Distributed Transactional Memory 367
Hagit Attiya, Vincent Gramoli, and Alessia Milani

Applications and Self-tuning

Tuning the Level of Concurrency in Software Transactional Memory:
An Overview of Recent Analytical, Machine Learning and Mixed
Approaches . 395

Diego Rughetti, Pierangelo Di Sanzo, Alessandro Pellegrini,
Bruno Ciciani, and Francesco Quaglia

Self-tuning in Distributed Transactional Memory . 418
Maria Couceiro, Diego Didona, Lúıs Rodrigues, and Paolo Romano

Case Study: Using Transactions in Memcached . 449
Michael Spear, Wenjia Ruan, Yujie Liu, and Trilok Vyas

Author Index . 469

Theoretical Foundations

Consistency for Transactional Memory Computing

Dmytro Dziuma2, Panagiota Fatourou1, and Eleni Kanellou3

1 FORTH ICS & University of Crete, Heraklion (Crete), Greece
faturu@csd.uoc.gr

2 FORTH ICS, Heraklion (Crete), Greece
dixond@acm.lviv.ua

3 FORTH ICS, Heraklion (Crete), Greece & University of Rennes 1, Rennes, France
kanellou@ics.forth.gr

Abstract. This chapter provides formal definitions for a comprehensive collec-
tion of consistency conditions for transactional memory (TM) computing. We ex-
press all conditions in a uniform way using a formal framework that we present.
For each of the conditions, we provide two versions: one that allows a transaction
T to read the value of a data item written by another transaction T ′ that can be
live and not yet commit-pending provided that T ′ will eventually commit, and a
version which allows transactions to read values written only by transactions that
have either committed before T starts or are commit-pending. Deriving the first
version for a consistency condition was not an easy task but it has the benefit that
this version is weaker than the second one and so it results in a wider universe
of algorithms which there is no reason to exclude from being considered cor-
rect. The formalism for the presented consistency conditions is not based on any
unrealistic assumptions, such as that transactional operations are executed atom-
ically or that write operations write distinct values for data items. Making such
assumptions facilitates the task of formally expressing the consistency conditions
significantly, but results in formal presentations of them that are unrealistic, i.e.
that cannot be used to characterize the correctness of most of the executions pro-
duced by any reasonable TM algorithm.

1 Introduction

Software Transactional memory (or STM for short) [21,35] is a promising program-
ming paradigm that aims at simplifying parallel programming by using the notion of
a transaction. A transaction executes a piece of code containing accesses to pieces of
data, known as data items, which are accessed simultaneously by several threads in a
concurrent setting. A transaction may either commit and then its updates take effect
or abort and then its updates are discarded. By using transactions, the naive program-
mer needs only enhance its sequential code with invocations of special routines (which
we call transactional operations, or t-operations for short) to read or write data items.
When a transaction executes all its reads and writes on data items, it tries to commit.
From that point on and until its completion, the transaction is commit-pending. Once a
transaction starts and before its completion, it is live.

The STM algorithm provides implementations for t-operations (from base objects)
so that all synchronization problems that may arise during the concurrent execution of

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 3–31, 2015.
c© Springer International Publishing Switzerland 2015

4 D. Dziuma, P. Fatourou, and E. Kanellou

transactions are addressed. The implementation details of the STM algorithm are hidden
from the naive programmer whose programming task is therefore highly simplified.
STM has been given special attention in the last ten years with hundreds of papers
addressing different problems arising in STM computing (see e.g. [20,19] for books
addressing different aspects of STM computing).

One of the most fundamental problems of STM computing is to define when an STM
algorithm is correct. Most STM consistency conditions [4,18,19,24,15,9,10] originate
from existing shared memory or database consistency models. However, in contrast
to what happens in shared memory models where correctness has been defined in the
granularity of single operations on shared objects, correctness in STM computing is
defined in terms of transactions, each of which may invoke more than one read or write
t-operations on data items. Comparing now to database transactions, the main diffi-
culty when presenting consistency conditions for STM computing is that the execution
of a t-operation has duration and is usually overlapping with the execution of other
t-operations, whereas in database transactions reads and writes are considered to be
atomic. For these reasons, existing consistency conditions for these two settings (shared
memory and database concurrent transactions) cannot be applied verbatim to STM al-
gorithms. Formalizing consistency conditions for STM computing requires more effort.

This chapter presents a comprehensive collection of consistency conditions for STM
computing. All conditions are expressed in a uniform way using a formal framework
that we present in Section 2. This chapter can therefore serve as a survey of consistency
conditions for STM computing. However, it aspires to be more than this.

For all known STM consistency conditions we provide a new version, called eager,
in which a transaction T is allowed to read the value of a data item written by an-
other transaction T ′ that can be live and not yet commit-pending provided that T ′ will
eventually commit (or that T ′ will commit if T commits). Most STM consistency con-
ditions [4,9,10,18,19,24] presented thus far did not allow a transaction to read values
that have been written by transactions that are neither committed nor commit-pending;
we call this version of a consistency condition deferred-update (or du for short). The
eager version of a consistency condition is weaker than its deferred-update version, thus
resulting in a wider universe of algorithms which should not be excluded from being
considered correct. For instance, in a database system, a transaction T may perform a
dirty read, i.e. T may read a value v for a data item x written by a transaction T ′ which
is still live (and not commit-pending) when T ’s read of x completes. To ensure the well-
known consistency condition from databases, called recoverability [8], one technique
described in the database literature [40], is to employ deferred commits and enforce
cascading aborts whenever necessary. This is usually achieved by providing sufficient
bookkeeping to determine essential orderings of commit and abort events that need to
be enforced. In the aforementioned scenario, T has to defer its commit until T ′ com-
pletes its execution, and it necessarily aborts in case T ′ aborts. If an STM algorithm
worked in a similar way, there would be no reason for executions of the algorithm not
to be considered correct. However, current consistency conditions, as they are formally
expressed, exclude such executions from the set of executions they allow. The eager
version of a consistency condition we present here solves this problem.

Consistency for Transactional Memory Computing 5

In [37], Siek and Wojciechowski discuss why well-known STM consistency condi-
tions, like opacity [18], serializability [29], virtual world consistency [24], and the TMS
family [15] fail to support early release [30,36]. Early release is a technique introduced
for optimizing performance; it allows a transaction to read a value for a data item writ-
ten by another live transaction that is not commit-pending. Siek and Wojciechowski also
discuss in [37] how one can design consistency conditions that support early release.
They then use the proposed conditions to characterize the correctness of a distributed
STM system they present in [36]. The way the eager versions of the consistency condi-
tions are formulated in this chapter is flexible enough to support early release.

It is remarkable that deriving the eager version of consistency conditions was not an
easy task so we consider their presentation as a significant contribution of this chap-
ter. For the derivation of the presented consistency conditions, we do not make any
restrictive assumptions, such as that t-operations are executed atomically or that writes
write distinct values for data items. Making such assumptions is unrealistically restric-
tive since all STM algorithms produce executions that do not satisfy these assumptions.
Thus, a consistency condition that has been expressed making such an assumption can-
not be used to characterize such executions, and thus fail to also characterize whether
the STM algorithm itself satisfies the condition. We remark that making such assump-
tions significantly facilitates the task of formally expressing a consistency condition
but the formal presentation of the condition that results is very restrictive since it can-
not be used to characterize the correctness of most of the executions produced by any
reasonable STM algorithm.

Among the consistency conditions met in STM computing papers are strict seri-
alizability [29], serializability [29], opacity [18,19], virtual world consistency [24],
TMS1 [15] (and TMS2 [15]), and snapshot isolation [3,13,32,9,10]. Weaker consis-
tency conditions like processor consistency [10], causal serializability [9,10] and weak
consistency [10] have also been considered in the STM context when proving impossi-
bility results.

Strict serializability, as well as serializability, are usually presented in an informal
way in STM papers which cite the original paper [29] where these conditions have first
appeared in the context of database research. Thus, the differences that exist between
database and STM transactions have been neglected in STM research. We present for-
mal definitions of these consistency conditions here. Additional consistency conditions
originating from the database research are presented in [4]. To present their formalism,
the authors of [4] make the restrictive assumption that t-operations are atomic. The pre-
sentation of most of the other consistency conditions (e.g. opacity [18,19], virtual world
consistency [24], snapshot isolation [3,13,32,9,10] and weaker variants of them [9,10])
is based on the assumption that a read for a data item by a transaction T can read a
value written by either a transaction that has committed or is commit-pending when T
starts its execution. Finally, the definition of virtual world consistency [24] is based on
the assumption that each instance of WRITE writes a distinct value for the data item it
accesses (or that the t-operations are executed atomically).

In this chapter, we do not cope with transactions whose code is determined at run
time (i.e. after the beginning of the execution of the transaction). For instance, such a
transaction could be produced on a web environment by deciding the next t-operations

6 D. Dziuma, P. Fatourou, and E. Kanellou

to be invoked by the transaction while executing it. We also do not discuss consis-
tency issues that arise when data items are accessed not only by transactions but also
outside the transactional scope (as it is e.g. the case for systems that support privatiza-
tion [1,26,34,25,27,38]).

The rest of this chapter is organized as follows. Section 2 presents the formal frame-
work which is employed in Section 3 to express the studied consistency conditions.
Table 1 shows the relationships between consistency conditions.

2 Model

2.1 System

The system is asynchronous with a set of threads executed in it. Each thread is sequen-
tial (i.e. it executes a single sequential program) but different threads can be executed
concurrently. Threads communicate via shared memory, i.e. by accessing simple shared
objects, called base objects, usually provided by the hardware. Formally, a base object
has a state and supports a set of operations, called primitives, to read or update its state.
Base objects are usually as simple as read/write or CAS objects. A read/write object O
stores a value from some set and supports two atomic primitives read and write;
read(O) returns the current value of object O without changing it, and write(O,v)
writes the value v into O and returns an acknowledgement. A CAS object O stores
a value and supports, in addition to read, the atomic primitive CAS(O,v′,v) which
checks whether the value of O is v′ and, if so, it sets the value of O to v and returns
true, otherwise, it returns false and the value of O remains unchanged.

We model each thread as a state machine. A configuration describes the system at
some point in time, so it provides information about the state of threads and the state of
base objects. In an initial configuration, threads and base objects are in initial states. A
step of a thread consists of applying a single primitive on some base object, the response
to that primitive, and zero or more local computation performed by the thread; local
computation accesses only local variables of the thread, so it may cause the internal
state of the thread to change but it does not change the state of any base object. As a step,
we will also consider the invocation of a routine or the response to such an invocation;
notice that a step of this kind (1) is either the first or the last when executing the routine
(more steps may be needed after the invocation of the routine in order for it to respond),
and (2) does not change the state of any base object. Each step is executed atomically.
An execution α is an alternating sequence of configurations and steps starting with an
initial configuration. An execution is legal if the sequence of steps performed by each
thread follows the algorithm for that thread and, for each base object, the responses to
the primitives performed on the base object are in accordance with its specification (and
the state of the base object at the configuration that the primitive is applied).

2.2 STM Definitions

Transactions and t-Operations. A transaction is a piece of sequential code which ac-
cesses (reads or writes) pieces of data, called data items. A data item may be accessed

Consistency for Transactional Memory Computing 7

by several threads simultaneously when a transaction is executed in a concurrent en-
vironment. Transactions call specific routines, called READ and WRITE, to read and
update, respectively, data items. A transaction may commit and then all its updates to
data items take effect, or abort and then all its updates are discarded.

An STM algorithm uses a collection of base objects to store the state of data items. It
also provides an implementation, for each thread, for READ and WRITE (from the base
objects). READ receives as argument the data item x to be accessed (and possibly the
thread p invoking READ and the transaction T for which p invokes READ) and returns
either a value v for x or a special value AT which identifies that T has to abort. WRITE

receives as arguments the data item x to be modified, a value v (and possibly the thread
p invoking WRITE and the transaction T for which p invokes WRITE), and returns
either an acknowledgment or AT . The STM algorithm provides implementations for
two additional routines, called COMMIT and ABORT, which are called to try to commit
or to abort a transaction, respectively. When COMMIT is executed by some transaction
T it returns either a special value CT , which identifies that T has committed, or AT .
ABORT always returns AT .

We refer to all these routines as t-operations. A t-operation starts its execution when
the thread executing it issues an invocation for it; the t-operation completes its execution
when the thread executing it receives a response. Thus, the execution of a t-operation op
is not atomic, i.e. the thread executing it may perform a sequence of primitives on base
objects in order to complete the execution of the t-operation. Moreover, the invocation
and the response of op are considered as two separate steps (with each of them being
atomic). The invocation and the response of a t-operation are referred to as events. We
sometimes say that these events are caused by T .

Histories. A history is a finite sequence of events. Consider any history H. A transaction
T (executed by a thread p) is in H or H contains T , if there are invocations and responses
of t-operations in H issued (or received) by p for T . The transaction subhistory of H for
T , denoted by H|T , is the subsequence of all events in H issued by p for T . We say that
a response res matches an invocation inv of a t-operation op in some history H, if they
are both by the same thread p, res follows inv in H, res is a response for op, and there is
no other event by p between inv and res in H. A history H is said to be well-formed if,
for each transaction T in H, H|T is an alternating sequence of invocations and matching
responses, starting with an invocation, such that:

• no events in H|T follow CT or AT ;
• if T ′ is any transaction in H executed by the same thread that executes T , either

the last event of H|T precedes in H the first event of H|T ′ or the last event of H|T ′
precedes in H the first event of H|T .

From now on we focus on well-formed histories. Assume that H is such a history.
A t-operation is complete in H, if there is a response for it in H; otherwise, the t-
operation is pending. Thus, in H, there are two events for every complete t-operation
op, an invocation inv(op) and a matching response res(op); moreover, H contains only
one event for each pending t-operation in it, namely its invocation. A transaction T is
committed in H, if H|T includes CT ; a transaction T is aborted in H, if H|T includes
AT . A transaction is complete in H, if it is either committed or aborted in H, otherwise

8 D. Dziuma, P. Fatourou, and E. Kanellou

History H
p: T1.READ(x)
p′: T2.READ(x)
p: T1.v
p′: T2.v

T2.READ(y)
p: T1.WRITE(x,v′)

T1.ok
T1.COMMIT

p′: T2.v′′
p: T1.CT1

T3.WRITE(z,v)
p′: T2.COMMIT

T2.CT2

p: T3.ok

Subhistory H|p
p: T1.READ(x)

T1.v
T1.WRITE(x,v′)
T1.ok
T1.COMMIT

T1.CT1

T3.WRITE(z,v)
T3.ok

Subhistory H|T2
p′: T2.READ(x)

T2.v
T2.READ(y)
T2.v′′
T2.COMMIT

T2.CT2

History H’
p′: T2.READ(x)
p: T1.READ(x)
p′: T2.v

T2.READ(y)
p: T1.v
p′: T2.v′′

T2.COMMIT

p: T1.WRITE(x,v′)
T1.ok
T1.COMMIT

p′: T2.CT2

p: T1.CT1

T3.WRITE(z,v)
T3.ok

Fig. 1. Examples of histories: A history H, the subhistories H|p and H|T2 of H, and a history H ′,
which is equivalent to H

p

p’

R(x) v W (x)v’ ok Commit C W (z)v ok

R(x) v R(y) v” Commit C

T1 T3

T2

Fig. 2. A schematic representation of H presented in Figure 1. The horizontal axis represents
time.

it is live. A transaction T is commit-pending in H if T is live in H and H|T includes
an invocation to COMMIT for T . If H|T contains at least one invocation of WRITE, T
is called an update transaction; otherwise, T is read-only. We denote by comm(H) the
subsequence of all events in H issued and received for committed transactions.

For each thread p, we denote by H|p the subsequence of H containing all invoca-
tions and responses of t-operations issued or received by p. Two histories H and H ′ are
equivalent, if for each thread p, H|p = H ′|p. Roughly speaking, two histories H and H ′
are equivalent if they contain the same set of transactions, and each t-operation invoked
in H is also invoked in H ′ and receives the same response in both H and H ′. This means
that the order of invocation and response events may be different in H ′ compared to H,
although the orders of invocation and response events are the same in H|p and H ′|p for
each thread p. An example of history equivalence is presented in Figure 1. It shows H
as a sequence of invocation and response events, and presents H ′, which is a history
equivalent to H. History H is further illustrated in Figure 2.

Consistency for Transactional Memory Computing 9

We denote by Complete(H) a set of histories that extend H. Specifically, a history
H ′ is in Complete(H) if and only if, all of the following hold:

1. H ′ is well-formed, H is a prefix of H ′, and H and H ′ contain the same set of trans-
actions;

2. for every live transaction1 T in H:
(a) if H|T ends with an invocation of COMMIT, H ′ contains either CT or AT ;
(b) if H|T ends with an invocation other than COMMIT, H ′ contains AT ;
(c) if H|T ends with a response, H ′ contains ABORTT and AT .

Roughly speaking, each history in Complete(H) is an extension of H where some of the
commit-pending transactions in H appear as committed and all other live transactions
appear as aborted. We say that H is complete if all transactions in H are complete. Each
history in Complete(H) is complete.

Given an execution α , the history of α , denoted by Hα , is the subsequence of α
consisting of just the invocations and the responses of t-operations. The execution in-
terval of a complete transaction T in an execution α is the subsequence of consecutive
steps of α starting with the first step executed by any of the t-operations invoked by
T and ending with the last such step. The execution interval of a transaction T that
does not complete in α is the suffix of α starting with the first step executed by any
of the t-operations invoked by T . We remark that similar definitions to the ones given
on the base of histories, can also be given for executions: We say that a t-operation
is complete in some execution α if it is complete in Hα ; otherwise it is pending. A
transaction T is committed (res. live, commit-pending) in α if it is committed (res. live,
commit-pending) in Hα , etc.

Real-Time Order on Transactions and Sequential Histories. Consider a well-formed
history H. We define a partial order, called real time order and denoted <H , on the set
of transactions in H, as follows:

• for any two transactions T1 and T2 in H, if T1 is complete in H and the last event of
H|T1 precedes the first event of H|T2 in H, then T1 <H T2.

Transactions T1 and T2 are concurrent in H, if neither T1 <H T2 nor T2 <H T1. Sim-
ilarly, transactions T1 and T2 are concurrent in an execution α , if neither T1 <Hα T2

nor T2 <Hα T1. We say that a history H (or an execution α) is sequential if no two
transactions in H (in α) are concurrent.

Legality. Consider a sequential history S and a transaction T in S. We say that T is legal
in S, if for every invocation inv of READ on each data item x that T performs, whose
response is res �= AT , the following hold:

1. if there is an invocation of WRITE for x by T that precedes inv in S then res is the
value argument of the last such invocation,

2. otherwise, if there are no committed transactions preceding T in S which invoke
WRITE for x, then res is the initial value for x,

1 We remark that the order in which the live transactions of H are inspected to form H ′ is
immaterial, i.e. all histories that result by processing the live transactions in any possible such
order are added to Complete(H).

10 D. Dziuma, P. Fatourou, and E. Kanellou

3. otherwise, res is the value argument of the last invocation of WRITE with parameter
x, by any committed transaction that precedes T in S.

A complete sequential history S is legal if every transaction in S is legal.

Real-Time Order on t-operations and Operation-wise Sequential Histories. We de-
fine a partial order, called operation real-time order and denoted by <op

H , on the set of
t-operations in H, as follows:

• for any two t-operations op1 and op2 in H, if H contains a response for op1 which
precedes the invocation of op2, then op1 <

op
H op2.

Operations op1 and op2 are concurrent in H, if neither op1 <
op
H op2 nor op2 <

op
H op1.

H is operation-wise sequential if no two t-operations in H are concurrent.
Let Sop be an operation-wise sequential history equivalent to H. Since Sop is equiva-

lent to H, Sop and H contain the same set of transactions. We say that Sop respects some
relation< on the set of transactions in H if the following holds: for any two transactions
T1 and T2 in Sop, if T1 < T2, then T1 <Sop T2. We say that Sop respects some relation <op

on the set of t-operations in H if the following holds: for any two t-operations op1 and
op2 in Sop, if op1 <

op op2, then op1 <
op
Sop

op2. Notice that a partial order is a relation,
so these definitions hold for partial orders as well.

3 TM Consistency

In this section, we present a collection of consistency conditions for STM computing.

3.1 Strict Serializability

Strict serializability was first introduced in [29] as a (strong) consistency condition for
executions of concurrent transactions in database systems. Roughly speaking, an exe-
cution α is strictly serializable if each complete transaction that does not abort (as well
as some of the live transactions) is executed in α like if it was executed serially at some
point within its execution interval. A special case of strict serializability where trans-
actions are restricted to consist of a single t-operation applied to a single data item is
known as linearizability [22].

In STM computing, strict serializability can be expressed in several different flavors,
two of which are discussed below. We start with eager strict serializability (or e-strict
serializability for short).

Definition 1 (e-Strict Serializability). We say that an execution α is e-strictly serial-
izable if it is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T somewhere between T’s first
invocation of a t-operation and T ’s last response of a t-operation in α .

• To choose a subset B of the live transactions in α and, for each transaction T ∈ B,
associate with T a point ∗T somewhere after T ’s first invocation of a t-operation in
α .

Consistency for Transactional Memory Computing 11

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

An STM algorithm is e-strictly serializable if each execution it produces is e-strictly
serializable.

If an execution α is e-strictly serializable, there exists a sequential execution σ (and
a set B of live transactions in α) that satisfies the properties of Definition 1; we say
that σ (and B) justifies that α is e-strictly serializable. Notice that since σ is the se-
quential execution produced by serially executing (the code of) each transaction at its
serialization point starting from an initial configuration, σ is a legal execution and each
transaction T ∈ B commits in σ . Moreover, Hσ is a legal history containing only com-
mitted transactions.

We continue to provide a stronger version of e-strict serializability in Definition 2,
called deferred-update strict serializability (or du-strict serializability for short), which
is based on the definition of Complete.

Definition 2 (du-Strict Serializability, expressed in terms of histories). A history
H is du-strictly serializable, if there exist a history H ′ ∈ Complete(H) and a history S
equivalent to comm(H ′) such that:

• S is a legal sequential history, and
• S respects <comm(H′).

An execution α is du-strictly serializable, if Hα is du-strictly serializable. An STM al-
gorithm is du-strictly serializable, if each execution α it produces is du-strictly serial-
izable.

Definition 2 follows the standard technique, employed in STM theory research,
of presenting consistency conditions in terms of histories. We remark that this is not
straightforward to achieve when defining the e-version of a consistency condition since
in the e-version, serialization points can be associated even with live transactions (that
are not commit-pending) for which it is unknown which t-operations they would in-
voke if they were to continue their execution until they complete. For compatibility
with Definition 1, we present below, in Definition 3, du-strict serializability in terms of
executions.

Definition 3 (du-Strict Serializability, expressed in terms of executions). We say
that an execution α is du-strictly serializable if it is possible to do all of the following:

12 D. Dziuma, P. Fatourou, and E. Kanellou

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T somewhere between T’s first
invocation of a t-operation and T ’s last response of a t-operation in α .

• To choose a subset B of the commit-pending transactions in Hα and, for each
transaction T ∈ B, associate with T a point ∗T somewhere after T’s first invocation
of a t-operation in α .

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A∪B, the same t-operations, as in α , are invoked by T in
σ and the response of each such t-operation (other than COMMIT) in σ is the same
as that in α .

An STM algorithm is du-strictly serializable if each execution it produces is du-strictly
serializable.

Lemma 1 argues that Definitions 2 and 3 are equivalent. Its proof is heavily based on
the definitions of the concepts employed in Definitions 2 and 3.

Lemma 1. Definitions 2 and 3 are equivalent in whatever concerns du-strictly serial-
izable executions and STM algorithms.

Sketch of proof. For the purpose of the proof, we will call an execution (or history)
which satisfies the properties of Definition 2, history-based du-ss. Similarly, we will
call an execution (or a history) which satisfies the properties of Definition 3, execution-
based du-ss.

1. Consider an execution α which is history-based du-ss. We prove that α is execution-
based du-ss.

Since α is history-based du-ss, Definition 2 implies that Hα is history-based du-
ss. Specifically, there exists a history H ′ ∈Complete(Hα) and a history S equivalent
to comm(H ′) such that:

• S is a legal sequential history, and
• S respects <comm(H′).

By definition of Complete(Hα), H ′ is an extension of Hα where some of the
commit-pending transactions in Hα appear as committed and all other live trans-
actions appear as aborted. Let B be those commit-pending transactions in Hα that
are committed in H ′, and let A be the set of all complete transactions in α (which
are the same as in Hα) that do not abort. By definition of comm, comm(H ′) is the
subsequence of all events in H ′ issued and received for committed transactions, i.e.
comm(H ′) is the subsequence of all events issued or received for transactions in
A∪B.

Since S is equivalent to comm(H ′), S contains all transactions in A∪B (and no
more transactions), and thus all transactions in S commit. Since S is sequential,

Consistency for Transactional Memory Computing 13

it defines a total order on all transactions in comm(H ′). Since S is equivalent to
comm(H ′) and respects <comm(H′), it is possible to do the following: (1) for each
transaction T ∈ A, to assign a serialization point for T somewhere between T ’s
first invocation of a t-operation and T ’s last response of a t-operation in α , and
(2) for each transaction T ∈ B, to assign a serialization point for T somewhere
after T ’s first invocation of a t-operation in α , so that the total order defined by
the serialization points on transactions in A∪B to be the same as that defined on
transactions by S.

Let σ be the sequential execution, starting from the initial configuration, in which
each transaction in S is serially executed, in the order it appears in S. Since S is legal,
it is a straightforward induction to prove that, each transaction invokes the same t-
operations in σ as in S and for each such invocation inv, inv has the same response
in σ as in S. Thus, σ justifies that α is execution-based du-ss.

2. Now consider an execution β which is execution-based du-ss. We prove that β is
history-based du-ss.

Let A be the set of complete transactions in β that are not aborted, and let B
and σ be the set of commit-pending transactions in β and the sequential execu-
tion, respectively, that justify the (execution-based) du-ss property of β . Let H ′ be
an extension of Hβ which is constructed as follows: (1) for each commit-pending
transaction T ∈ B we add a CT response, and (2) for each other live transaction T
in β we add an AT response. Then, H ′ ∈ Complete(Hβ) and comm(H ′) is the sub-
sequence of H ′ containing all events issued or received for transactions in A∪B.

Let S = Hσ . Since σ is the sequential execution produced by serially executing
(the code of) each transaction in A∪B at its serialization point, σ is a legal exe-
cution and each transaction T ∈ A∪B commits in σ . Thus, S is a legal sequential
history which contains all transactions in A∪B (and no further transactions), and
all these transactions commit in S. Since for each transaction T ∈ A∪B, the same
t-operations, as in β (or in Hβ), are invoked by T in σ (or in Hσ) and the response
of each such t-operation (other than COMMIT) in Hσ is the same as that in Hβ , it
follows that S is equivalent to comm(H ′).

Since (1) for each transaction T ∈A, ∗T is placed between T ’s first invocation of a
t-operation and T ’s last response of a t-operation in β , and (2) for each transaction
T ∈ B, ∗T is placed somewhere after T ’s first invocation of a t-operation in β , it
follows that S = Hσ respects <comm(H′). So, H ′ and S justify that Hβ is history-
based du-ss. Therefore, β is history-based du-ss.

��

Since a commit-pending transaction is live, it is straightforward to see that Defini-
tion 1 provides a weaker version of strict serializability than Definition 3 (or Defini-
tion 2). Intuitively, this is so since Definition 1 allows a transaction to read a value for
a data item written by another transaction that is not committed or commit-pending in
H. (This is allowed only if eventually, all complete transactions that are not aborted,
and some of those that are still live can be ”serialized” within their execution intervals.)
It follows that if an execution is du-strictly serializable, it is also e-strictly serializable.
However, the opposite is not true. For instance, let’s consider the history H and its prefix

14 D. Dziuma, P. Fatourou, and E. Kanellou

H1 both shown in Figure 3. H is both e-strictly serializable and du-strictly serializable,
whereas H1 is just e-strictly serializable.

Lemma 2. If an execution α is du-strictly serializable then α is e-strictly serializable,
but not vice versa.

A set S of sequences is prefix-closed if, whenever H is in S , every prefix of H is
also in S . Recall that the history H shown in Figure 3 is du-strictly serializable but
its prefix H1 is not. Thus, du-serializability is not a prefix-closed property. On the con-
trary, e-strict serializability is a prefix-closed property. We remark that prefix-closure
can be imposed to du-strict serializability in an explicit way, i.e. by directly stating in
Definition 2 that each prefix Hp of H must also satisfy the conditions imposed by the
definition. This would make Definition 2 stronger.

T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Fig. 3. Example of a history H showing that du-strict serializability is not a prefix-closed property.
We remark that H is operation-wise sequential. In all our example histories, we assume that the
initial value of each of the employed data items is 0.

3.2 Serializability

As with strict serializability, serializability was first introduced in [29] as a consistency
condition for executions of concurrent transactions in database systems. It is weaker
than strict serializability in that it does not ensure that the serialization point of each
transaction is within its execution interval. Below, we discuss two different flavors of
serializability in a way similar to that for strict serializability.

Definition 4 (e-Serializability). We say that an execution α is e-serializable if it is
possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to associate with T a point ∗T in α .

• To choose a subset B of the live transactions in α and, for each transaction T ∈ B,
to associate with T a point ∗T in α .

For each T ∈ A∪B, ∗T is called the serialization point of T . Let σ be the sequential
execution we get by serially executing (the code of) each transaction T ∈ A∪B at the
place that its serialization point has been selected in α starting from the initial configu-
ration. The set B and the serialization points of transactions in A∪B should be selected
so that:

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

Consistency for Transactional Memory Computing 15

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

An STM algorithm is e-serializable if each execution it produces is e-serializable.

We continue to provide a stronger version of serializability in Definition 5, called
deferred-update serializability (or du-serializability for short), which is based on the
definition of Complete.

Definition 5 (du-Serializability). A history H is du-serializable, if there exists a his-
tory H ′ ∈Complete(H) and a history S equivalent to comm(H ′) such that:

• S is a legal sequential history.

An execution α is du-serializable, if Hα is du-serializable. An STM algorithm is du-
serializable if each execution α it produces is du-serializable.

Notice that S in Definition 5 respects the program order of t-operations executed by
the same thread in H. This is implied by the definition of equivalent histories.

We remark that, similarly to the corresponding definitions of strict serializability,
Definition 4 provides a weaker version of serializability than Definition 5. This can
be easily seen by deriving an execution-based version of Definition 5 (in the spirit of
Definition 3) and proving that this version is equivalent to Definition 5 (as proved in
Lemma 1 for du-strict serializability).

Lemma 3. If an execution α is du-serializable then α is e-serializable, but not vice
versa.

The difference between serializability and strict serializability is that strict serializ-
ability additionally ensures that the real-time order of transactions is respected by the
sequential history defined by the serialization points. Thus, every history/execution that
is (du-) e-strictly serializable is also (du-) e-serializable but not vice versa.

T

T

W(x)2 Commit

R (x)2 Commit

H1 H

Fig. 4. Example showing that du-serializability is not a prefix-closed property

Lemma 4. If an execution α is strictly serializable then α is serializable, but not vice
versa2.

2 When we say that an execution (or an STM algorithm) satisfies a consistency condition without
specifying which variant of the condition it satisfies, then the claim holds for both variants of
that condition.

16 D. Dziuma, P. Fatourou, and E. Kanellou

It is worth pointing out that e-serializability and du-serializability are not prefix-
closed properties. This is so, since it is easy to design a history H which is e-serializable
(as well as du-serializable) in which a committed transaction T (executed by some
thread p) reads for some data item x a value v and then commits. H also contains a
second transaction T ′ (executed by some thread p′ �= p) which starts its execution after
T has completed, writes v into x, and commits. Such a history is shown in Figure 4. We
remark that H is e-serializable and du-serializable. However, the prefix of H up until
CT is neither e-serializable, nor du-serializable.

We remark that prefix-closure can be imposed to e-serializability (as well as to du-
serializability) in an explicit way, as discussed for du-strict serializability above. It is
not clear if the versions that would then result will be weaker than the corresponding
versions of strict serializability. Imposing prefix closure to the consistency conditions
presented in Sections 3.4-3.5 may be too restrictive as well. Thus, we present the non-
prefix-closed versions of them given that it is straightforward to derive their prefix-
closed versions, in an explicit way.

Several impossibility results [6,11,16] and lower bounds [6] in STM computing have
been proved for strict serializability or serializability. Most STM algorithms in the lit-
erature (see e.g. [12,39,14,33] for some examples) satisfy some form of serializability.

3.3 Opacity

Opacity was first introduced in [18]. Definition 6 follows that in [18]. Roughly speaking,
a history H that is du-opaque is also du-strictly serializable; additionally, if S is the
sequential history which justifies that S is du-strictly serializable, opacity ensures that
those transactions in H that are not included in S are also legal. For instance, such
transactions are those that have aborted in H (but there may be more).

Definition 6 (du-Opacity [19]). A history H is du-opaque if there exists a sequential
history S equivalent to some history H ′ ∈Complete(H) such that:

• S is legal, and
• S respects <H′ .

An execution α is du-opaque, if Hα is du-opaque. An STM algorithm is du-opaque if
each execution α it produces is du-opaque.

In [19], a prefix-closed version of opacity was formally stated. According to it, a
history H is du-opaque if the conditions imposed by Definition 6 are satisfied for each
prefix Hp of H; this version of du-opacity is stronger than that provided in Definition 6
which is not prefix-closed. Figure 5 illustrates a situation that would be acceptable by
the non-prefix-closed version of du-opacity. History H ′, which is a prefix of history
H, does not satisfy du-opacity, as transaction T2 reads a value written by a transaction
which is still not committed. However, as transaction T1 is committed in history H,
H complies with du-opacity. A different formalization of du-opacity as a prefix-closed
property was elaborated in [5].

Lemma 5 argues that du-opacity is stronger than du-strict serializability.

Consistency for Transactional Memory Computing 17

T1

T2

W (x)1

R(x)1 Abort

Commit

H1 H

Fig. 5. Example showing that du-opacity is not a prefix-closed property

Lemma 5. If an execution α is du-opaque, then α is du-strictly serializable, but not
vice versa.

Proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a sequential
history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal and S
respects <H′ .

Let S′ be the subsequence of S consisting of all events in S issued or received by
transactions in comm(H ′). Then, the following hold:

• Since S is equivalent to H ′, it follows that S′ is equivalent to comm(H ′).
• Since S respects <H′ , it follows that S′ respects <comm(H′).
• Since S is legal, it follows that each transaction in S is legal. Since S is equivalent

to H ′ and S′ is comprised of the events of all transactions in comm(H ′), it follows
that S′ is legal.

Thus, H ′ and S′ satisfy the properties of Definition 2 and, therefore, Hα is du-strictly
serializable. So, α is du-strictly serializable.

Figure 6 shows an example of a history that is not du-opaque but is du-strictly seri-
alizable. This history is not du-opaque because it violates the first condition of Defini-
tion 6; specifically, transaction T2 cannot be legal.

T1

T2

W (x)1 Commit

R(x)2

Fig. 6. A du-strictly serializable history which is not du-opaque

Lemmas 2 and 5 imply the following corollary.

Corollary 1. If an execution α is du-opaque, then α is e-strictly serializable.

Consider an execution α which is du-strictly serializable, and let S be the sequential
history that justifies that α is du-strictly serializable. Strict serializability doesn’t impose
any restrictions on those transactions in α that are not included in S, whereas (roughly
speaking) du-opacity requires that all reads of each such transaction T (independently
of whether the transaction is aborted or live in α) read values written by previously

18 D. Dziuma, P. Fatourou, and E. Kanellou

committed transactions (or by T itself). This additional property is required in order to
avoid undesired situations where a transaction may cause an exception or enter into an
infinite loop after reading a value for a data item written by a live transaction that may
eventually abort.

It is remarkable that the first of these undesired situations (i.e. the production of an
exception or an error code) can be avoided even by STM systems that ensure only strict
serializability if we make the following simple assumptions in our model. An excep-
tion (or an error code) that has been resulted by the execution of a t-operation op is
considered as a response for op. A transaction that has experienced an exception or has
received an error code as a response to one of its t-operations, is considered to be com-
plete (but not aborted). Then, a (e- or du-) strictly serializable STM implementation
will never produce such exceptions (or error codes). Notice that the second undesir-
able situation, namely having some transaction enter an infinite loop, will not appear in
STM systems that ensure standard progress properties, like lock-freedom, starvation-
freedom, etc. A thread p experiences starvation in an execution α , if p takes infinitely
many steps in α and it receives only a finite number of commit responses for the trans-
actions that it initiates; an STM algorithm is starvation-free, if, in every execution that
it produces, no thread ever experiences starvation. Obstruction-freedom ensures that
for each thread p, if p runs solo starting from any configuration C in α , it eventually
completes the execution of its transaction successfully within a finite number of steps.

We continue to present eager opacity (e-opacity). Consider any history H and a trans-
action T in H. An instance op of READ for some data item x executed by T is global if
T has not invoked WRITE on x in H before invoking op. Let H|T |read be the longest
subsequence of H|T consisting of those invocations of READ (and their responses) for
which there is a response and this response is not AT , followed by COMMITT ,CT . Let
H|T |readg be the subsequence of H|T |read consisting only of the invocations of the
global instances of READ and their responses, followed by COMMITT ,CT . We denote
by Tr(H) a transaction that invokes the same t-operations (and in the same order) as
those invoked in H|T |read. Similarly, denote by Tgr(H) a transaction that invokes the
same t-operations (and in the same order) as those invoked in H|T |readg. Tr(H) and
Tgr(H) are defined for an execution α in terms of Hα . For each READ t-operation op
on any data item x that is in Tr(H) (Tr(α)) but not in Tgr(H) (Tgr(α)), we say that the
response for op (if it exists) is legal, if it is the value written by the last WRITE for x
performed by T before the invocation of op.

Definition 7 (e-Opacity). We say that an execution α is e-opaque if there exists a set
B of live transactions in α and some sequential execution σ which justify that α is
e-strictly serializable, and all of the following hold:

1. We can extend the history Hσ of σ to get a sequential history H ′
σ such that:

• if A is the set of complete transactions in α that are not aborted, for each
transaction T in α that is not in A∪B (i.e. for each transaction T in α that is
not in σ), H ′

σ contains Hα |T |readg,
• if < is the partial order which is induced by the real time order <Hα in such a

way that for each transaction T in α that is not in σ , we replace each instance
of T in the set of pairs of <Hα with transaction Tgr(α), then H ′

σ respects <,
and

Consistency for Transactional Memory Computing 19

• H ′
σ is legal.

2. For each transaction T in α that is not in σ , and for each invocation of a READ

operation op which is in Hα |T |read but not in Hα |T |readg, the response for op is
legal.

An STM algorithm is e-opaque if each execution α it produces is e-opaque.

Lemma 6 proves that du-opacity is stronger than e-opacity.

Lemma 6. If an execution α is du-opaque, then α is e-opaque, but not vice versa.

Sketch of proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a se-
quential history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal
and S respects <H′ .

Let S′ be the subsequence of S consisting of all events in S issued or received by
transactions in comm(H ′). Then, by following similar arguments as in the proof of
Lemma 5 we argue that H ′ and S′ satisfy the properties of Definition 2 and, therefore,
Hα is du-strictly serializable. So, α is du-strictly serializable.

Let B be those commit-pending transactions in Hα that are committed in H ′. Let
σ be the sequential execution, starting from the initial configuration, in which each
transaction in S′ is serially executed, in the order it appears in S′. We follow similar
arguments as in the proof of Lemma 1 to argue that σ justifies that α is execution-based
du-ss. Thus, Lemma 2 implies that α is e-strictly serializable; moreover, we argue that
Hσ = S′.

Denote by A the set of complete transactions in Hα that are not aborted. Let H ′
σ be

the subsequence of S such that H ′
σ contains all events in S′, and for each transaction

T �∈ A∪B, H ′
σ additionally contains each event in H|T |readg. Since S and S′ are legal,

it follows that H ′
σ is also legal. Also, since S respects <H′ , it follows that S′ respects <

(as defined in item 1 of Definition 7). Thus, H ′
σ (which is equal to S′) respects <.

Finally, legality of S implies that for each transaction T in α that is not in σ , and for
each t-operation op in T |read that is not in T |readg, the response for op is legal. We
conclude that α is e-opaque.

Figure 6 shows an example of a history that is not du-opaque but is du-strictly se-
rializable (and therefore also e-strictly serializable, by Lemma 2). This history is not
du-opaque because it violates the first condition of Definition 6; specifically, transac-
tion T2 cannot be legal. ��

We remark that most STM algorithms presented in the literature are opaque.

3.4 Causality-Related Consistency Conditions

Consider any operation-wise sequential history Sop that is equivalent to H. Since Sop is
equivalent to H, there are the same transactions in Sop as in H. We define a binary rela-
tion with respect to Sop, called reads-from and denoted by <r

Sop
, between transactions

in H such that, for any two transactions T1,T2 in H, T1 <
r
Sop

T2 only if:

• T2 executes a READ t-operation op that reads some data item x and returns a value
v for it,

20 D. Dziuma, P. Fatourou, and E. Kanellou

• T1 is the transaction in Sop which executes the last WRITE t-operation that writes v
for x and precedes op.

Notice that each operation-wise sequential history Sop that is equivalent to H, induces
a reads-from relation for H. We denote by RH the set of all reads-from relations that
can be induced for H.

For each <r in RH , we define the causal relation for <r on transactions in H to
be the transitive closure of

⋃
i

(
<H|pi

)∪ <r. We define CH to be the set of all causal
relations in H.

Causal Consistency. Causal consistency was informally introduced as a shared mem-
ory consistency condition in [23], and it was formally defined in [2]. Roughly speaking,
an execution α is causally consistent if for each thread pi, there exists a sequential
execution σi of the complete transactions that are not aborted (as well as of some of
the live transactions) in α such that in σi each of these transactions invokes the same
t-operations and gets the same responses as in α . Thus, causal consistency allows the
sequential executions to be different for different threads. However, it imposes the ad-
ditional constraint that all sequential executions respect the same causal relation.

As in the previous sections, we provide two formal definitions of causal consistency
for STM computing.

Definition 8 (e-Causal Consistency). Consider an execution α and let A be the set
of all complete transactions in α that are not aborted. We say that α is e-causally-
consistent if there exists a subset B of live transactions in α and a causal relation <c

in CH′
α

, where H ′
α is the subsequence of Hα consisting of the events (in Hα) issued and

received for the transactions in A∪B, such that, for each thread pi, it is possible to do
the following:
For each transaction T ∈ A∪ B, to associate with T a point ∗i

T in α . Let σi be the
sequential execution we get by serially executing (the code of) each transaction T ∈
A∪B at the place that its point has been selected (for pi) in α starting from the initial
configuration. The set B, and the points of transactions in A∪B should be selected (for
pi) so that:

• Hσi respects <c,
• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σi

and the response of each such t-operation in σi is the same as that in α , and
• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σi is the

same as the sequence of t-operations invoked by T in α , and the response of each
such t-operation in σi is the same as that in α (if it exists in α).

An STM algorithm is e-causally-consistent if each execution α it produces is e-causally-
consistent.

We continue with the presentation of the du-version of causal consistency.

Definition 9 (du-Causal Consistency). A history H is du-causally consistent if there
exists a history H ′ ∈Complete(H) and a causal relation <c in Ccomm(H′) such that, for
each thread pi, there exists a sequential history Si such that:

Consistency for Transactional Memory Computing 21

• Si is equivalent to comm(H ′),
• Si respects the causality order <c, and
• every transaction executed by pi in Si is legal.

An execution α is du-causally consistent, if Hα is du-causally consistent. An STM algo-
rithm is du-causally consistent if each execution α it produces is du-causally consistent.

By following similar arguments as in the proof of Lemma 2, it can be proved that
du-causal consistency is stronger than e-causal consistency.

Lemma 7. If an execution α is du-causally consistent then α is e-causally consistent,
but not vice versa.

Lemma 8 argues that serializability is stronger than causal consistency.

Lemma 8. If an execution α is serializable then α is causally consistent, but not vice
versa.

Sketch of proof. We prove the claim for the e-versions of the consistency conditions.
The proof of the claim for the du-variants of them can be performed using similar
reasoning.

Let A be the set of complete transactions in α that are not aborted. Moreover, let
B and σ be the set of live transactions in α and the sequential execution, respectively,
which justify that α is serializable. By Definition 4, the following hold for σ :

• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σ
and the response of each such t-operation in σ is the same as that in α , and

• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σ is the
same as the sequence of t-operations invoked by T in α , and the response of each
such t-operation in σ is the same as that in α (if it exists in α).

Let H ′
σ be the subsequence of Hσ in which, for each transaction T ∈ B, we exclude

those events issued or produced for T in σ that are not in α . Then, H ′
σ is equivalent

to H ′
α , where H ′

α is the subsequence of Hα containing just the events of transactions
in A∪B. Since H ′

σ is sequential, it is also operation-wise sequential, so <r
H′

σ
is well-

defined. Let <c be the causal relation for <r
H′

σ
. Then, by letting σi = σ , for each thread

pi, all conditions of Definition 8 hold.
Figure 7 shows an example of a history which is du-causally consistent (and there-

fore also e-causally consistent, by Lemma 7) but not e-serializable. In this history both
transactions T1 and T2 should be serialized before transactions T3 and T4, because both
T1 and T2 read 0 from data item y which is written by T3 and T4. Regardless of how
the serialization points for T1 and T2 are ordered, both T3 and T4 should read the same
value for data item x. Thus, this history is not e-serializable (and therefore it is not
e-serializable, by Lemma 3). However, it is du-causally consistent because threads run-
ning T3 and T4 may see writes executed by threads running T1 and T2 in a different
order.

��

22 D. Dziuma, P. Fatourou, and E. Kanellou

T1

T2

T3

T4

R(y)0

R(y)0

W (x)1

W (x)2

Commit

Commit

R(x)1 W (y)1

R(x)2 W (y)1 Commit

Commit

Fig. 7. A du-causally consistent history which is not e-serializable

Causal Serializability. Causal serializability was introduced in [31] as a consistency
condition which is stronger than causal consistency but weaker than serializability. In-
formally, in addition to the constraints imposed by causal consistency, the following
constraint must also be satisfied: all transactions that update the same data item must be
perceived in the same order by all threads.

Definition 10 (e-Causal Serializability). Consider an execution α and let A be the
set of all complete transactions in α that are not aborted. We say that α is e-causally
serializable if there exists a subset B of live transactions in α and a causal relation <c

in CH′
α

where H ′
α is the subsequence of Hα consisting of the events (in Hα) issued and

received for the transactions in A∪B, such that, for each thread pi, it is possible to do
the following:
For each transaction T ∈ A∪ B, to associate with T a point ∗i

T in α . Let σi be the
sequential execution we get by serially executing (the code of) each transaction T ∈
A∪B at the place that its point has been selected (for pi) in α starting from the initial
configuration. The set B, and the points of transactions in A∪B should be selected (for
pi) so that:

• Hσi respects <c,
• for each transaction T ∈ A, the same t-operations, as in α , are invoked by T in σi

and the response of each such t-operation in σi is the same as that in α ,
• for each transaction T ∈ B, a prefix of the t-operations invoked by T in σi are the

same as the sequence of t-operations invoked by T in α , the response of each such
t-operation in σi is the same as that in α (if it exists in α).

• for each pair of transactions T1,T2 ∈ A∪ B that write to the same data item, if
T1 <Hσi

T2, then for each j ∈ {1, . . . ,n}, it holds that T1 <Hσ j
T2.

An STM algorithm is e-causally serializable if each execution α it produces is e-causally
serializable.

We continue with the presentation of the du-version of causal serializability.

Definition 11 (du-Causal Serializability). A history H is du-causally serializable if
there exists a history H ′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such
that, for each thread pi, there exists a sequential history Si for which the following
hold:

Consistency for Transactional Memory Computing 23

• Si is equivalent to comm(H ′),
• Si respects the causality order <c,
• every transaction executed by pi in Si is legal, and
• for each pair of transactions T1 and T2 in comm(H ′) that write to the same data

item, if T1 <Si T2, then for each j ∈ {1, . . . ,n}, it holds that T1 <S j T2.

An execution α is du-causally serializable, if Hα is du-causally serializable. An STM
algorithm is du-causally serializable if each execution α it produces is du-causally se-
rializable.

By following similar arguments as in the proof of Lemma 2, it can be proved that
du-causal serializability is stronger than e-causal serializability.

Lemma 9. If an execution α is du-causally serializable then α is e-causally serializ-
able, but not vice versa.

Obviously, every (e- or du-) causally serializable history satisfies the properties of
(e- or du-, respectively) causal consistency, but the opposite is not true. For instance,
the du-causally consistent history shown in Figure 7 is not e-causally serializable, since
threads executing transactions T3 and T4 do not see writes from T1 and T2 to data item x
in the same order.

Lemma 10. If an execution α is causally serializable then α is causally consistent, but
not vice versa.

T1

T2

T3

T4

W (x)1

W (y)1

Commit

Commit

R(x)1 R(y)0 Commit

R(x)0 R(y)1 Commit

Fig. 8. A du-causally serializable history which is not e-serializable

Using similar arguments as those in the proof of Lemma 8, it can be easily proved
that causal serializability is weaker than serializability. However, the opposite does not
hold. Figure 8 shows an example of a history H which is du-causally serializable (and
therefore also e-causally serializable, by Lemma 9) but not e-serializable (and therefore
not du-serializable, by Lemma 3). In H, if transaction T1 is serialized before T2 (the op-
posite case is symmetrical), then it is not possible to serialize transaction T4. However,
by definition of causal serializability, sequential histories constructed for threads p3 and
p4 may include transactions T1 and T2 in different orders.

24 D. Dziuma, P. Fatourou, and E. Kanellou

Lemma 11. If an execution α is serializable then α is causally serializable, but not
vice versa.

In STM research, causal consistency, as well as causal serializability, are interesting
in the context of proving impossibility results [9,10] and lower bounds. We remark that
when proving such results, considering a weak consistency condition makes the result
stronger. It is therefore an interesting open problem to see whether some of the STM
impossibility results (e.g. [6,11,16]) that have been proved assuming some strong con-
sistency condition, like opacity, strict serializability or serializability, can be extended
to hold for weaker consistency conditions like those formulated in this or later sections.
For instance in this avenue, the impossibility result proved in [17] assuming serializ-
ability is extended in [9,10] to hold for a much weaker consistency condition.

Virtual World Consistency. Virtual World Consistency (VWC) was defined in [24]
as a family of consistency conditions. Informally, VWC ensures serializability or strict
serializability for the committed (and some of the commit-pending) transactions but a
weaker condition than that imposed by opacity for the rest of the transactions.

For each transaction T in history H and each causal relation <c
H in CH , we define

the causal past of T denoted by pastT (H,<c
H) as the subsequence of all events of H

issued or produced either for transaction T itself or for any transaction Ti in H such that
Ti <

c
H T .

Definition 12 (du-Virtual World Consistency). A history H is du-virtual world con-
sistent if there exists a history H ′ ∈Complete(H) and a causal relation <c in CH′ such
that:

• there exists a legal sequential history S which is equivalent to comm(H ′), and
• for each transaction Ti in H ′ that is not in S, there exists a legal sequential history

Si which is equivalent to pastTi(H
′,<c) and respects the restriction of <c to those

pairs whose components are transactions in pastTi(H
′,<c).

An execution α is du-virtual world consistent, if Hα is du-virtual world consistent. An
STM algorithm is du-virtual world consistent if each execution α it produces is du-
virtual world consistent.

Definition 13 (du-Strong Virtual World Consistency). A history H is du-strongly
virtual world consistent if there exists a history H ′ ∈Complete(H) and a causal relation
<c in CH′ such that:

• there exists a legal sequential history S which is equivalent to comm(H ′) and re-
spects <comm(H′), and

• for each transaction Ti in H ′ that is not in S, there exists a legal sequential history
Si which is equivalent to pastTi(H

′,<c) and respects the restriction of <c to those
pairs whose components are transactions in pastTi(H

′,<c).

An execution α is du-strongly virtual world consistent, if Hα is du-strongly virtual world
consistent. An STM algorithm is du-strongly virtual world consistent if each execution
α it produces is du-strongly virtual world consistent.

Consistency for Transactional Memory Computing 25

T1

T2

T3

T4

W (x)1

W (x)2

Commit

Commit

R(x)1

R(x)2

Fig. 9. A du-virtual world consistent history which is not du-opaque

By comparing Definitions 12 and 13 with Definitions 5 and 2, respectively, it is
straightforward to see that du-virtual world consistency is stronger than du-serializability
and du-strong virtual world consistency is stronger than du-strict serializability.

Lemma 12. If an execution α is du-virtual world consistent (du-strongly virtual world
consistent) then α is du-serializable (du-strictly serializable), but not vice versa.

Du-strong virtual world consistency (and therefore also du-virtual world consis-
tency) is weaker than du-opacity.

Lemma 13. If an execution α is du-opaque then α is du-strongly virtual world consis-
tent, but not vice versa.

Sketch of proof. Since α is du-opaque, Hα is also du-opaque. Thus, there exists a se-
quential history S, equivalent to some history H ′ ∈ Complete(Hα), such that S is legal
and S respects <H′ . Let S′ be the subsequence of S consisting of all events in S issued or
received by transactions in comm(H ′). Then, S′ is a legal sequential history, equivalent
to comm(H ′), which respects <comm(H′).

Since S is sequential, it is also operation-wise sequential, so <r
S is well-defined. Let

<c be the causal relation for <r
S. Consider any transaction Ti in H ′ that is not in S′.

Then, pastTi(H
′,<c) is the subsequence of all events of H ′ issued or produced either

for transaction Ti itself or for any transaction Tj in H ′ such that Tj <
c Ti.

Let Si be the subsequence of S consisting of all events issued or produced for trans-
actions in pastTi(H

′,<c). Since S is equivalent to H ′, it follows that Si is equivalent
to pastT (H ′,<c). Since Si is a subsequence of S and <c is the causal relation for <r

S,
it follows that Si respects the restriction of <c to those pairs whose components are
transactions in pastTi(H

′,<c). Since S is legal and Si is a subsequence of S equivalent
to pastT (H ′,<c), it follows that Si is legal. Thus, all conditions of Definition 13 hold.

The history shown in Figure 9 is du-strongly virtual world consistent but not du-
opaque: regardless of the order of the serialization points of transactions T1 and T2, it is
not possible to derive a sequential history where both transaction T3 and T4 are legal. ��

We continue to present the eager versions of virtual world consistency and strong
virtual world consistency.

Definition 14 (e-Virtual World Consistency and e-Strong Virtual World Consis-
tency). We say that an execution α is e-virtual world consistent (e-strongly virtual

26 D. Dziuma, P. Fatourou, and E. Kanellou

world consistent) if there exists some sequential execution σ which justifies that α is
e-serializable (e-strictly serializable, respectively), and the following holds:

1. for each transaction Ti in α that is not in σ there exists a legal sequential history
Si which is equivalent to pastTi(H

′,<c) and respects the restriction of <c to those
pairs whose components are transactions in pastTi(H

′,<c).

An STM algorithm is e-virtual world consistent (e-strongly virtual world consistent)
if each execution α it produces is e-virtual world consistent (e-strongly virtual world
consistent).

Using similar arguments as in the proof of Lemma 6, we can prove that du-virtual
world consistency is stronger than e-virtual world consistency.

Lemma 14. If an execution α is du-virtual world consistent (du-strongly virtual world
consistent) then α is e-virtual world consistent (e-strongly virtual world consistent), but
not vice versa.

The following lemma is an immediate consequence of Definition 14.

Lemma 15. If an execution α is e-virtual world consistent (e-strongly virtual world
consistent) then α is e-serializable (e-strictly serializable), but not vice versa.

Using similar reasoning as that in the proof of Lemma 13, we can prove that e-opacity
is stronger than e-strong virtual world consistency.

Lemma 16. If an execution α is e-opaque then α is e-strongly virtual world consistent,
but not vice versa.

Strong consistency conditions such as opacity ensure the safe execution of non-
committed transactions by imposing on them the same correctness demands as those
that committed transactions are required to obey. This has been criticized in [24] to
result in STM algorithms that produce histories in which live transactions are forced
to abort in order to preserve the consistency of other transactions that are deemed
to also abort. Virtual world consistency relaxes the correctness property used for
non-committed transactions in order to avoid such scenarios in several cases, and by
consequence, allow for more live transactions to commit than an STM algorithm that
implements a stronger consistency condition would.

3.5 Snapshot Isolation

Snapshot isolation was originally introduced as a consistency condition in the database
world [7,28]. Snapshot isolation is an appealing property for STM computing [3,13,32]
since it provides the potential to increase throughput for workloads with long transac-
tions [32]. The first formal definitions for STM snapshot isolation was given in [9,10].

Consider a history H and let T be a transaction that either commits or is commit-
pending in H. Recall that we have already defined the sequences H|T |read, H|T |readg,
as well as transactions Tr(H) and Tgr(H) in Section 3.3. Let H|T |other be the sub-
sequence of H|T that consists of all invocations performed by T (and their matching

Consistency for Transactional Memory Computing 27

responses) in H other than those comprising H|T |readg, followed by COMMITT ,CT .
Let To(H) be a transaction that invokes the same t-operations (and in the same order) as
those invoked in H|T |other; for an execution α To(α) is defined in terms of Hα in the
same way.

Definition 15 (du-Snapshot isolation [10]). An execution α satisfies du-snapshot iso-
lation, if there exists a set D consisting of all committed and some of the commit-pending
transactions in α for which the following holds:
For each transaction T ∈ D, it is possible to insert (in α) a point ∗T,gr, called the global
read point of T , and a point ∗T,w, called the write point for T , so that if δα is the
sequence defined by these serialization points, the following hold:

1. ∗T,gr precedes ∗T,w in δα ,
2. both ∗T,gr and ∗T,w are inserted within the execution interval of T ,
3. if Hδα is the history we get by replacing each ∗T,gr with Hα |T |readg and each ∗T,w

with Hα |T |other in δα , then Hδα is legal.

An STM algorithm satisfies du-snapshot isolation if each execution α it produces satis-
fies du-snapshot isolation.

We now present eager snapshot isolation. Consider a legal execution α and let C(α)
be the set of all legal executions such that each execution α ′ ∈C(α) is an extension of
α such that the same transactions are executed in α and α ′ and no transaction is live in
α ′.

Definition 16 (e-Snapshot Isolation). Consider an execution α . We say that α satisfies
e-snapshot isolation, if there exists an execution α ′ ∈ C(α) for which the following
holds: if A is the set of transactions that commit in α ′ then for each transaction T ∈ A,
it is possible to insert a point ∗T,gr, called global read point of T , and a point ∗T,w,
called write point of T , in α , so that:

1. ∗T,gr precedes ∗T,w,
2. both ∗T,gr and ∗T,w are inserted somewhere between T’s first invocation of a t-

operation and T’s last response of a t-operation in α ′, and
3. if σ is the sequential execution that we get when for each transaction T ∈ A, we

serially execute transactions Tgr(α) and To(α) at the points that ∗T,gr and ∗T,w,
respectively, have been inserted, then for each transaction T ∈ A, the response
of each t-operation invoked by Tgr(α) and To(α) in σ is the same as that of the
corresponding t-operation in Hα |T |readg and Hα |T |other, respectively.

An STM algorithm satisfies e-snapshot isolation if each execution α it produces satisfies
e-snapshot isolation.

Lemma 17 argues that du-snapshot isolation is stronger than e-snapshot isolation.

Lemma 17. If an execution α satisfies du-snapshot isolation then α satisfies e-snapshot
isolation, but not vice versa.

Lemma 18 argues that strict serializability is stronger than snapshot isolation.

28 D. Dziuma, P. Fatourou, and E. Kanellou

Ta
bl

e
1.

A
qu

ic
k

re
fe

re
nc

e
gu

id
e

sh
ow

in
g

th
e

re
la

ti
on

sh
ip

s
be

tw
ee

n
co

ns
is

te
nc

y
co

nd
it

io
ns

.W
e

re
m

ar
k

th
at

a
co

ns
is

te
nc

y
co

nd
it

io
n

de
te

rm
in

es
a

se
t

of
hi

st
or

ie
s,

na
m

el
y

th
os

e
hi

st
or

ie
s

th
at

sa
ti

sf
y

th
e

co
ns

tr
ai

nt
s

im
po

se
d

by
th

e
co

nd
it

io
n.

E
ac

h
ro

w
an

d
ea

ch
co

lu
m

n
of

th
e

ta
bl

e
re

pr
es

en
ts

a
co

ns
is

te
nc

y
co

nd
iti

on
.

E
ac

h
ce

ll
of

th
e

ta
bl

e
sh

ow
s

th
e

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

co
ns

is
te

nc
y

co
nd

iti
on

of
th

e
ro

w
an

d
th

e
co

ns
is

te
nc

y
co

nd
iti

on
of

th
e

co
lu

m
n

th
at

th
e

ce
ll

be
lo

ng
s

to
.F

or
ex

am
pl

e,
th

e
ce

ll
th

at
is

fo
un

d
in

th
e

cr
os

si
ng

be
tw

ee
n

th
e

ro
w

of
e-

s
(e

-s
er

ia
liz

ab
ili

ty
)

an
d

th
e

co
lu

m
n

of
du

-s
(d

u-
se

ri
al

iz
ab

il
it

y)
co

nt
ai

ns
⊇.

T
hi

s
m

ea
ns

th
at

e-
s

is
a

su
pe

rs
et

of
du

-s
,i

.e
.,

th
at

e-
s

is
w

ea
ke

r
th

an
du

-s
.T

he
in

ve
rs

e
re

la
ti

on
is

de
no

te
d

by
⊆,

as
ca

n
be

se
en

in
th

e
ce

ll
th

at
is

fo
un

d
in

th
e

cr
os

si
ng

be
tw

ee
n

th
e

ro
w

of
e-

ss
an

d
th

e
co

lu
m

n
of

e-
s:

e-
ss

is
st

ro
ng

er
th

an
e-

s,
an

d
th

us
,i

ti
s

a
su

bs
et

of
e-

s.
E

qu
al

ity
of

tw
o

co
nd

iti
on

s
is

de
no

te
d

by
=

.I
nc

om
pa

ra
bi

li
ty

be
tw

ee
n

th
em

is
de

no
te

d
by

�=.

e-
ss

:
e-

st
ri

ct
se

ri
al

iz
ab

il
it

y
du

-s
s:

du
-s

tr
ic

ts
er

ia
li

za
bi

li
ty

e-
s:

e-
se

ri
al

iz
ab

il
it

y
du

-s
:

du
-s

er
ia

li
za

bi
li

ty
e-

op
:

e-
op

ac
it

y
du

-o
p:

du
-o

pa
ci

ty
e-

cc
:

e-
ca

us
al

co
ns

is
te

nc
y

du
-c

c:
du

-c
au

sa
lc

on
si

st
en

cy
e-

cs
:

e-
ca

us
al

se
ri

al
iz

ab
il

it
y

du
-c

s:
du

-c
au

sa
ls

er
ia

li
za

bi
li

ty
e-

vw
c:

e-
vi

rt
ua

lw
or

ld
co

ns
is

te
nc

y
du

-v
w

c:
du

-v
ir

tu
al

w
or

ld
co

ns
is

te
nc

y
e-

sv
w

c:
e-

st
ro

ng
vi

rt
ua

lw
or

ld
co

ns
is

te
nc

y
du

-s
vw

c:
du

-s
tr

on
g

vi
rt

ua
lw

or
ld

co
ns

is
te

nc
y

e-
si

:
e-

sn
ap

sh
ot

is
ol

at
io

n
du

-s
i:

du
-s

na
ps

ho
t

is
ol

at
io

n

e-
ss

du
-s

s
e-

s
du

-s
e-

op
du

-o
p

e-
cc

du
-c

c
e-

cs
du

-c
s

e-
vw

c
du

-v
w

c
e-

sv
w

c
du

-s
vw

c
e-

si
du

-s
i

e-
ss

=
⊇

⊆
�=

⊇
⊇

⊆
�=

⊆
�=

�=
�=

⊇
⊇

⊆
�=

du
-s

s
=

⊆
⊆

�=
⊇

⊆
⊆

⊆
⊆

�=
�=

�=
⊇

⊆
⊆

e-
s

=
⊇

⊇
⊇

⊆
�=

⊆
�=

⊇
⊇

⊇
⊇

�=
�=

du
-s

=
�=

⊇
⊆

⊆
⊆

⊆
�=

⊇
�=

⊇
�=

�=
e-

op
=

⊇
⊆

�=
⊆

�=
⊆

�=
⊆

�=
⊆

�=
du

-o
p

=
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
e-

cc
=

⊇
⊇

⊇
⊇

⊇
⊇

⊇
�=

�=
du

-c
c

=
�=

⊇
�=

⊇
�=

⊇
�=

�=
e-

cs
=

⊇
⊇

⊇
⊇

⊇
�=

�=
du

-c
s

=
�=

⊇
�=

⊇
�=

�=
e-

vw
c

=
⊇

⊇
⊇

�=
�=

du
-v

w
c

=
�=

⊇
�=

�=
e-

sw
vc

=
⊇

⊆
�=

du
-s

w
vc

=
⊆

⊆
e-

si
=

⊇
du

-s
i

=

Consistency for Transactional Memory Computing 29

Lemma 18. If an execution α satisfies e-strict serializability (du-strict serializability)
then α satisfies e-snapshot isolation (du-snapshot isolation), but not vice versa.

Since strict virtual world consistency and opacity are stronger than strict serializabil-
ity, Lemma 18 implies that they are stronger than snapshot isolation.

Snapshot isolation is incomparable to virtual world consistency, serializability, causal
consistency and causal serializability. For instance, there is an execution which is seri-
alizable that does not satisfy snapshot isolation. An example of a history that satisfies
snapshot isolation but not serializability is given in Figure 10.

T1

T2

R(y)1

W (y)2 R(x)1 Commit

W (x)2 Commit

Fig. 10. A history complying with snapshot isolation which is not serializable

Acknowledgments. This work has been supported by the European Commission un-
der the 7th Framework Program through the TransForm (FP7-MC-ITN-238639) project
and by the ARISTEIA Action of the Operational Programme Education and Lifelong
Learning which is co-funded by the European Social Fund (ESF) and National Re-
sources through the GreenVM project.

We would like to thank Victor Bushkov for his valuable comments in a preliminary
version of this chapter and Eleftherios Kosmas for several useful discussions that mo-
tivated this work. Many thanks also to Hagit Attiya Petr Kuznetsov, and Sandeep Hans
for their comments on a previous version of this article.

References

1. Afek, Y., Avni, H., Dice, D., Shavit, N.: Efficient lock free privatization. In: Lu, C., Ma-
suzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 333–347. Springer,
Heidelberg (2010)

2. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: definitions,
implementation, and programming. Distributed Computing 9(1), 37–49 (1995)

3. Ardekani, M.S., Sutra, P., Shapiro, M.: The impossibility of ensuring snapshot isolation in
genuine replicated stms. In: TransForm/Euro-TM WTTM 3rd Workshop on the Theory of
Transactional Memory, WTTM 2011 (2011)

4. Attiya, H., Hans, S.: Transactions are Back-but How Different They Are? In: 7th ACM SIG-
PLAN Workshop on Transactional Computing, New Orleans, LA, USA (February 2012)

5. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-
ory. In: Proceedings of the 33rd International Conference on Distributed Computing Systems,
ICDCS 2013, pp. 601–610. IEEE (2013)

6. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory. In: Proceedings of the 21st ACM Symposium on Parallel
Algorithms and Architectures, SPAA 2009, pp. 69–78. ACM, New York (2009)

7. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ansi sql
isolation levels. SIGMOD Rec. 24(2), 1–10 (1995)

30 D. Dziuma, P. Fatourou, and E. Kanellou

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1987)

9. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: Snapshot isolation does not scale ei-
ther. Tech. Rep. TR-437, Foundation of Research and Technology – Hellas (FORTH) (Octo-
ber 2013)

10. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The pcl theorem - transactions cannot
be parallel, consistent and live. In: Proceedings of the 4th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2014, pp. 178–187. ACM, New York (2014)

11. Bushkov, V., Guerraoui, R., Kapałka, M.: On the liveness of transactional memory. In: Pro-
ceedings of the 31st ACM Symposium on Principles of Distributed Computing, PODC 2012,
pp. 9–18. ACM, New York (2012)

12. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm by abolishing ownership
records. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2010, pp. 67–78. ACM, New York (2010)

13. Dias, R.J., Seco, J., Lourenço, J.M.: Snapshot isolation anomalies detection in software trans-
actional memory. In: Proceedings of INForum Simpósio de Informática (InForum 2010).
Universidade do Minho, Braga (2010)

14. Dice, D., Shavit, N.: What really makes transactions faster? In: 1st ACM SIGPLAN
Workshop on Languages Compilers, and Hardware Support for Transactional Computing,
TRANSACT 2006 (2006)

15. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Aspects of Computing 25(5), 1–31 (2012)

16. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal constructions that en-
sure disjoint-access parallelism and wait-freedom. In: Proceedings of the 31st ACM Sympo-
sium on Principles of Distributed Computing, PODC 2012, pp. 115–124. ACM, New York
(2012)

17. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: Proceedings of the Twen-
tieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008, pp.
304–313. ACM, New York (2008)

18. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2008, pp. 175–184. ACM, New York (2008)

19. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory (Synthesis Lectures on Dis-
tributed Computing Theory). Morgan and Claypool Publishers (2010)

20. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and Claypool Pub-
lishers (2010)

21. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

22. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

23. Hutto, P., Ahamad, M.: Slow memory: Weakening consistency to enhance concurrency in
distributed shared memories. In: Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, ICDCS 1990, pp. 302–309. IEEE (1990)

24. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a versa-
tile protocol with invisible read operations). Theoretical Computer Science 444(0), 113–127
(2009), Structural Information and Communication Complexity (SIROCCO) 2009

25. Maessen, J.: Arvind: Store atomicity for transactional memory. Electr. Notes Theor. Comput.
Sci. 174(9), 117–137 (2007)

26. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable techniques for transparent privatization in
software transactional memory. In: Proceedings of the 37th International Conference on Par-
allel Processing (ICPP), pp. 67–74. IEEE Computer Society (2008)

Consistency for Transactional Memory Computing 31

27. Martin, M.M.K., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity se-
mantics. Computer Architecture Letters 5(2) (2006)

28. Normann, R., Østby, L.T.: A theoretical study of ‘snapshot isolation’. In: Proceedings of the
13th International Conference on Database Theory, ICDT 2010, pp. 44–49. ACM, New York
(2010)

29. Papadimitriou, C.H.: The serializability of concurrent database updates. Journal of the
ACM 26(4), 631–653 (1979)

30. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an
stm. In: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2009, pp. 163–172. ACM, New York (2009)

31. Raynal, M., Thia-Kime, G., Ahamad, M.: From serializable to causal transactions for collab-
orative applications. In: Proceedings of the 23rd EUROMICRO Conference, EUROMICRO
1997, pp. 314–321. IEEE (1997)

32. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In:
1st ACM SIGPLAN Workshop on Languages Compilers, and Hardware Support for Trans-
actional Computing, TRANSACT 2006 (2006)

33. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable time bases.
In: Proceedings of the 19th ACM Symposium on Parallel Algorithms and Architectures,
SPAA 2007, pp. 221–228. ACM, New York (2007)

34. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Transactions and privatization in
delaunay triangulation. In: Proceedings of the 26th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 336–337. ACM, New York (2007)

35. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing, PODC 1995, pp. 204–213. ACM, New
York (1995)

36. Siek, K., Wojciechowski, P.T.: Brief announcement: Towards a fully-articulated pessimistic
distributed transactional memory. In: Proceedings of SPAA 2013: The 25th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, Montreal, Canada, pp. 111–114. ACM
(July 2013)

37. Siek, K., Wojciechowski, P.T.: Zen and the art of concurrency control: An exploration of tm
safety property space with early release in mind. In: Euro-TM WTTM 6th Workshop on the
Theory of Transactional Memory, WTTM 2014 (2014)

38. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques for soft-
ware transactional memory. In: Proceedings of the 26th ACM Symposium on Principles of
Distributed Computing (PODC), pp. 338–339. ACM, New York (2007)

39. Spear, M.F., Michael, M.M., von Praun, C.: Ringstm: scalable transactions with a single
atomic instruction. In: Proceedings of the 20th ACM Symposium on Parallel Algorithms and
Architectures, SPAA 2008, pp. 275–284. ACM, New York (2008)

40. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers (2002)

Liveness in Transactional Memory

Victor Bushkov and Rachid Guerraoui

EPFL, IC, LPD, Lausanne, Switzerland
{victor.bushkov,rachid.guerraoui}@epfl.ch

Abstract. In this chapter we give a formal overview of liveness properties of
transactional memory (TM) systems. Unlike safety properties, which require some
’bad’ events not to occur, liveness properties require some ’good’ events to even-
tually occur. Usually, liveness properties of shared memory systems require some
operations to eventually return a response (terminate). However, in the context of
TM systems operation termination is not enough to ensure meaningful progress.
It is necessary to require some transactions to eventually commit. In this chapter
we give precise definitions of liveness properties and what it means for a TM sys-
tems to satisfy a liveness property. Using the defined formal framework we give
some impossibility results. We show that it is impossible to guarantee both local
progress, the strongest TM liveness property that requires every correct trans-
action to eventually commit, and common TM safety properties such as strict
serializability or opacity in a fault prone system.

1 Introduction

Transactional memory (TM) [13, 16, 26] is a concurrency control paradigm that aims at
simplifying concurrent programming. It provides non-expert programmers with an ab-
straction, called transaction, such that transactions concurrently execute atomic pieces
of sequential code of some application. Each transaction is executed by some process
(thread) and contains transactional operations. A transactional operation is either an ac-
cess (read or write) to a transactional variable (data item) or a request to commit the
transaction. If the transaction is committed, then the effects of its operations become
visible to subsequent transactions, and if it is aborted, then the effects are rolled back.
Transactions are viewed as a simple way to write concurrent programs and hence lever-
age multicore architectures. Not surprisingly, a large body of work has been dedicated
to implementing the paradigm and reducing its overheads.

Most of the work on the theory of transactional memory focused solely on safety
(consistency), i.e., on what TMs should not do. Indeed, correctness conditions for TMs
have been proposed in [11, 18, 5, 6, 8] and programming language level semantics of
specific classes of TM implementations have been determined, e.g., in [1, 19, 22, 23].
Most those efforts, however, focused solely on safety, i.e., on what TMs should not
do. Clearly, a TM that ensures only a safety property can trivially be implemented by
aborting all operations. To be meaningful, a TM has to ensure that some transactions
should eventually commit which is captured by a liveness property [2].

Generally, in shared-memory systems, a liveness property states when a certain pro-
cess that invokes an operation on a shared object is guaranteed to return from this

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 32–49, 2015.
c© Springer International Publishing Switzerland 2015

Liveness in Transactional Memory 33

operation, i.e. makes progress [17]. One of the widely studied such property is wait-
freedom [14]. It ensures, intuitively, that every process invoking an operation on a shared
object eventually returns from this operation, even if other processes crash. It is the ul-
timate liveness property in concurrent computing as it ensures that every process makes
progress and forms the consensus number hierarchy of shared objects [14]. However,
requiring TM systems to ensure only wait-freedom would, however, not be enough to
ensure any meaningful progress: processes of which all transactions are aborted might
be satisfying wait-freedom (since every transactional operation returns a response) but
would not be making any real progress. To ensure meaningful progress, a TM live-
ness property should require transaction commitment, beyond operation termination.
In other words, it should require certain processes to eventually commit some of their
transactions. One would expect from a TM that every process that keeps executing
transactions eventually commits some of them—a property that we call local progress
and that is similar in spirit to wait-freedom. Not satisfying this property means that
some processes might never commit any of their transactions starting from some point
in time.

A TM implementation that protects every transaction using a single fair global lock
could ensure local progress: such a TM would execute all transactions sequentially, thus
avoiding conflicts between transactions. Yet, such a TM would force processes to wait
for each other, preventing them from progressing independently. A process that acquires
a global lock and gets suspended for a long time, or that enters an infinite loop and keeps
running forever without releasing the lock, would prevent all other processes from mak-
ing any progress. This would go against the very essence of wait-freedom. Hence, to be
really meaningful a TM liveness property should enforce some ”independent” progress.

p1 T1

p2 T2
x.read → 0

x.write(1)
commit

x.read → 0 x.write(1)
abort

Fig. 1. An illustration of the difficulty of ensuring local progress. The scenario can be repeated
infinitely many times preventing transaction T1 from ever committing.

The classical way of modeling shared-memory systems in which processes can make
progress independently, i.e., without waiting for each other, is to consider asynchronous
systems in which processes can be arbitrarily slow and can fail by crashing. A TM
implementation that is resilient to crashes enables the progress of a process even if
other processes are suspended for a long time or crashed.

However, resiliency against crashes is not enough. Consider a transaction that holds
a global lock which does not crash and never invokes a commit request. Such a transac-
tion would prevent all other transactions from making progress. Therefore, one should
also ensure progress in the face of parasitic processes—those that keep executing trans-
actional operations without ever attempting to commit. These model long-running pro-
cesses whose duration cannot be anticipated by the system, e.g., because of an infinite
loop.

34 V. Bushkov and R. Guerraoui

To illustrate the underlying challenges, consider the following example, shown in
Figure 1. Two processes, p1 and p2, execute transactions T1 and T2, respectively. Pro-
cess p1 reads value 0 from a shared variable x and then gets suspended for a long time.
Then, process p2 also reads value 0 from x, writes value 1 to x, and attempts to commit.
Because of asynchrony, the processes can be arbitrarily delayed. Hence, the TM does
not know whether p1 has crashed or is just very slow, and so, in order to ensure the
progress of process p2, the TM might eventually allow process p2 to commit T2. But
then, if process p1 writes value 1 to x and attempts to commit T1, the TM cannot allow
process p1 to commit, as this would violate safety. A similar situation can occur in the
case of parasitic processes, say if p1 keeps repeatedly reading from variable x. If the
maximum length of a transaction is not known, the TM cannot say whether p1 is para-
sitic or not, and thus may eventually allow process p2 to commit T2, forcing process p1

to abort T1 later.
We consider a set-based definition of liveness, i.e. we consider a TM-liveness prop-

erty L as a set of fair histories, so that a TM implementation ensures the property if
every fair history of the implementation belongs to L. A history is basically a sequence
of invocations and responses of operations executed within transactions, and a fair his-
tory is a history augmented with crash events. The focus on fair histories is necessary
because a TM-liveness property should not require progress from processes which do
not take any steps in an execution, i.e. crash in that execution. So, to distinguish crashed
processes from processes that take infinitely many steps without returning a response of
a transactional operation, we augment histories with crash events. Like fairness prop-
erties are defined in [27], we define a TM-liveness property as a weakening of local
progress, which has the strongest progress requirement among TM-liveness properties.

Since safety properties state that some events should not occur and liveness prop-
erties state that some events should eventually occur, safety and liveness requirements
might contradict each other. A safety requirement may make it impossible to guarantee
a liveness requirement and vice versa. The question is, under what conditions which
safety and liveness properties are impossible to guarantee? We address this question
in the TM context by proving an impossibility result which states that no TM imple-
mentation can ensure both local progress and opacity in any fault-prone system, i.e. in
a system in which any number of processes can crash or be parasitic. Opacity is the
safety property ensured by most TM implementations. It states that every transaction
(even aborted or live) observes a consistent state of the system. Local progress is a
TM-liveness property, highlighted above, which states that every correct process, i.e. a
process which is not parasitic and does not crash, eventually commits its transactions.
In fact, we prove a more general result stating that no TM implementation can ensure
any safety property that is at least as strong as strict serializability together with the
progress of at least two correct processes and any correct process that runs alone.

2 Preliminaries

2.1 System Model

We consider a system of n asynchronous processes p1, . . . , pn that communicate with
each other by executing operations on shared objects (which represent the shared

Liveness in Transactional Memory 35

memory, e.g., provided in hardware). A shared object is a higher-level abstraction
provided to processes, and implemented typically in software using a set of base ob-
jects. Base objects are shared objects which are accessed via atomic operations called
primitives.

For instance, if base objects are memory locations with basic operations such as read,
write, and compare-and-swap, then shared objects could be shared data structures such
as linked lists or hash tables. When a process pi invokes an operation op on a shared
object O, then pi follows the implementation of O, possibly accessing some number
of base objects and executing local computations, until pi is returned the result of op.
We assume that processes are sequential; that is, whenever a process pi invokes an
operation op on any shared object, pi does not invoke another operation on any shared
object until pi returns from op. Invocations and responses on shared objects operations
are called (invocation and response) events.

2.2 Histories and Executions

Let I be an implementation of a shared object O. A configuration C of I determines the
current state of each process and of each base object used in I. The initial configuration
C0 of I is a configuration when all processes and all base objects are at their initial
states. A step s (executed by some process pi) of I can be one of the following: (i)
an invocation event of some operation on O, (ii) a response event of some operation
from O, (iii) a single primitive operation and one or more computations local to pi. An
execution α = C0 · s1 ·C1 · s2 ·C2 . . . of I is a (finite or infinite) sequence of alternating
configurations and steps of I such that: (i) C0 is the initial configuration, and for any
Ci, si, and Ci+1 in α the execution of step si by I at configuration Ci results in the new
configuration Ci+1. We define a projection α|pk of an execution α on a process pk as
the longest subsequence of α consisting only of steps of pk.

The order in which processes take steps is determined by a scheduler. Processes and
TM implementations have no control over a scheduler. The scheduler decides which
process is allowed to execute a step at a given point in time. These decisions form a
schedule which is a finite or an infinite sequence of process identifiers.

The longest subsequence of an execution α of I consisting only of invocation and
response events is called a history of I, and is denoted by Hα . We define a projection
H|pk of a history H on a process pk as the longest subsequence of H consisting of
invocation and response events associated with pk.

2.3 Transactional Memory

Transactional memory allows processes to execute pieces of sequential code within
transactions. The code contains accesses to transactional variables (t-variables for short)
which represent shared data. For presentation simplicity, we focus on t-variables that
support read and write operations. Let K be the set of process identifiers, P = {pk|k ∈
K} be the set of processes, and let X be the set of t-variables. Each t-variable can take
values from a set V . To write a value v to a t-variable x process pk invokes x.writek(v)
and receives as a response either ok, if the write was successful, or an abort event Ak if
the transaction has to be aborted. To read a value from a t-variable x process pk invokes
x.readk and receives as a response either the value of t-variable v or an abort event Ak if

36 V. Bushkov and R. Guerraoui

the transaction has to be aborted. To commit a transaction process pk invokes a commit
request tryCk and receives as a response either a commit event Ck or an abort event
Ak. Let Invk = {x.writek(v)|x ∈ X and v ∈V}∪{x.readk|x ∈ X}∪{tryCk} be the set of
invocation events of process pk and Resk = {vk|v ∈ V}∪{okk,Ak,Ck} be the set of re-
sponse events of process pk. Also, let Inv=∪k∈KInvk and Res=∪k∈KResk. Usually TM
implementations provide additional transactional operations such as the request to start
a transaction, the request to create a new t-variable (in the case of dynamic TMs), and a
request to abort a transaction. Our theoretical results hold for TM implementations that
provide these operations. However, for simplicity, we assume TM implementations that
provide only operations to read/write a t-variable and commit a transaction.

Denote by Σk a set such that Σk = {x.writek(v) ·okk|x.writek(v)∈ Invk}∪{x.readk() ·
vk|x.readk() ∈ Invk and vk ∈ Resk}∪{tryCk ·Ck}∪{inv ·Ak|inv ∈ Invk}, i.e. Σk contains
concatenations of invocations and their possible responses associated with process pk.
Also, let Σ∞

k be the set of all finite and infinite sequences over Σk. A history H of a TM
implementation is well-formed if for every pk ∈ P either H|pk ∈ Σ∞

k or H|pk ∈ Σ∗
k · Invk

holds, i.e. H|pk is a sequence of alternating invocation and response events. In the rest
of the chapter we assume only well-formed histories.

Given projection H|pk of history H of some TM implementation, a transaction of pk

in H is a subsequence T = e1 · . . . · em of H|pk such that:

• either e1 is the first event in H|pk, or the event e′ which precedes e1 in H|pk is either
Ak or Ck, and

• em is either Ak or Ck or the last event in H|pk, and
• no event in T , except em, is Ak or Ck.

Transaction T is committed (aborted) if the last event in T is a commit (abort) event.
Given transactions T1 and T2 in history H, we say that T1 precedes T2 in H, denoted by
T1 <H T2, if T1 is committing or aborting and the last event of T1 precedes the first event
of T2 in H. Transactions T1 and T2 are concurrent if T1 does not precede T2 and T2 does
not precede T1. History H is sequential if no two transactions in H are concurrent to
each other.

Processes communicate with each other only through a TM implementation by in-
voking concurrently requests (read, write, and commit requests) and receiving corre-
sponding responses from the implementation. Processes send commit requests to the
TM implementation that decides which transactions should be committed or aborted.
To reduce contention between transactions, a TM implementation may use a logically
separate module called a contention manager. A contention manager can force the TM
implementation to abort or delay some transactions. In this work we consider a con-
tention manager as an integral part of a TM implementation. That is, all the results of
the paper apply to the entire TM, including the contention manager.

2.4 Process Failures

Let α be an infinite execution. Process pk crashes in α if α|pk is finite. That is, a process
crashes in an infinite execution if it stops taking steps in the execution.

Intuitively, a parasitic process is a process that keeps executing transactional
operations but, from some point in time, never attempts to commit (by invoking

Liveness in Transactional Memory 37

operation tryC) when given a chance to do so. Note that if starting from some moment
in time every transaction executed by the process is prematurely aborted, i.e. aborted
before the process invokes a commit request, in general, we cannot tell whether the
process intended to eventually invoke a commit request or not. Therefore, we consider
such processes as not parasitic.

Let α be an infinite execution. Process pk is parasitic in α , if there is a suffix α ′ of
α such that: (i) pk executes infinitely many transactional operations in α ′, (ii) α ′ does
not contain Ak events, and (iii) α ′ does not contain tryCk requests.

Process pk is correct in an infinite execution α if pk is not parasitic in α and does
not crash in α .

We define a crash-prone system (respectively, parasitic-prone system) Sys to be
a system of processes in which any process can crash (respectively, be parasitic). A
fault-prone system Sys is a system which is crash-prone or parasitic-prone. Note that a
fault-prone system can have both crashed and parasitic processes.

2.5 Safety Properties of TM

Intuitively a safety property of TM implementations should capture the fact that all
events within a transaction appear to other transactions as if they occur instantaneously.
If a transaction is committed, then all the changes made by write operations within the
transaction are made visible to other transactions; otherwise all the changes are rolled
back. We consider two safety properties of TM implementations: strict serializability
and opacity. Intuitively, strict serializability requires every committed transaction to
observe a consistent state of the system [24], while opacity requires every transaction
(even aborted or unfinished) to observe a consistent state of the system [12].

We say that history H is equivalent to history H ′ if for every process pk ∈ P we
have H|pk = H ′|pk. A transaction T in history H is commit-pending if T ends with a
commit request tryC. A transaction T in history H is live if T is not commit-pending,
aborted, or committed. We obtain a completion of a finite history H by aborting every
live transaction and by committing or aborting every commit-pending transaction. For-
mally a completion comp(H) of a history H is a history derived from H by appending
the following events:

• for every live transaction T (executed by pk) we append tryCk ·Ak

• for every commit pending transaction T (executed by pk) we append either Ck or
Ak.

If comp(H) = H, then H is a complete history. We say that a history H ′ preserves
the real time order of a history H if for any two transactions T1 and T2 in H if T1 <H T2,
then T1 <H′ T2. Let Hs be a complete sequential history and Tj be a transaction in H.
Denote by visible(Tj) the longest subsequence of Hs such that for every transaction Ti

in the subsequence, either j = i or Ti <Hs Tj. Transaction Tj is legal in Hs if for every
t-variable x ∈ X history visible(Tj) respects the sequential specification of x, i.e. for
every transaction Ti in visible(Tj) and every response event vk in Ti, v is the value of the
previous write to x invocation event within a committing transaction in visible(Tj) or v
is the initial value of x if there are no write to x invocation events within any committing
transaction in visible(Tj) before vk.

38 V. Bushkov and R. Guerraoui

A finite history H is opaque1 if there exists a sequential history Hs equivalent to
comp(H), such that Hs preserves the real-time order of comp(H), and every transac-
tion in Hs is legal. A finite history H is strictly serializable if there exists a sequential
history Hs equivalent to H ′, where H ′ is obtained from H by removing every aborted
and live transaction and some of the commit-pending transactions and appending to H
a commit event for every commit-pending transaction which is not removed, such that
Hs preserves the real-time order of H, and every transaction in Hs is legal. A TM imple-
mentation I ensures opacity (respectively, strict serializability) if for every execution α
of I, Hα is opaque (respectively, strictly serializable).

For example, the history in Figure 1 is opaque, while the history in Figure 2 is not
opaque but strictly serializable.

p1
r → 0

p2

w(1)
C

r → 1
A

Fig. 2. A history which is not opaque but strictly serializable. All operations access the same t-
variable. For simplicity, r → v denotes both the invocation of a read operation and its response v,
w(v) denotes both the invocation of a write operation (with value v) and its response ok, C denotes
both the invocation of a commit request and a commit event, A denotes both the invocation of a
commit request and an abort event.

3 Liveness of a TM

3.1 TM-Liveness Properties

Basically, a TM-liveness property states whether some process pk should make progress
in some execution α . Clearly, progress cannot be required for crashed or parasitic pro-
cesses: these processes have executions with a finite number of tryC operation invo-
cations. Thus, we should require progress only for correct processes (which basically
captures the fairness requirement). Like a fairness property is defined in [27], we de-
fine a TM-liveness property as a weakening of the strongest TM-liveness property. The
strongest TM-liveness property that we can require of a TM system is to ensure that
every correct process makes progress.

Next we introduce the notion of a fair history in order to distinguish a process that
crashes from a process that takes infinitely many steps without returning a response
when defining a liveness property. We derive a fair history Fα by augmenting a history
Hα , of some execution α , with crash events. Formally, we derive a fair history Fα in
the following way: for every process pk that crashes in α we insert a crash event crashk

between the last event e of pk and the event that follows after e in Hα . A process pk is

1 Since the way we define opacity is not prefix-closed it is not exactly a safety property. However,
for the sake of simplicity, we do not consider a prefix-closed definition of opacity since in terms
of TM implementations a prefix-closed definition is equivalent to a non-prefix-closed one (i.e.
every TM implementation which ensures non-prefix-closed also ensure a prefix-closed one).

Liveness in Transactional Memory 39

correct in a fair history Fα , if pk is correct in α . Herein, if α is clear from the context,
we omit α from the notation of a (fair) history Hα and use just H instead. A process pk

makes progress in a fair history F , if F contains infinitely many commit events Ck.
A fair history F ensures local progress if every correct process makes progress in

F , or F does not have any correct processes. Let Llocal denote the set of all possible
fair histories that satisfy local progress. Then, a TM-liveness property L is a set of fair
histories such that Llocal ⊆ L. Given two TM-liveness properties L1 and L2, we say that
L1 is weaker (stronger) than L2 if L2 ⊆ L1 (L1 ⊆ L2). A fair history F ensures a TM-
liveness property L iff H ∈ L. A TM implementation I ensures a TM-liveness property
L if for every execution α of I its corresponding fair history Fα ensures L.

3.2 Examples of TM-Liveness Properties

Local Progress. Roughly speaking, a TM implementation I ensures local progress if I
guarantees that every correct process in a fair history makes progress, i.e. has infinitely
many of its transactions committed. Note that local progress requirements also imply
the requirement of wait-freedom of individual transactional operations. Therefore, ev-
ery TM-implementation that ensures local progress also ensures wait-freedom [14],
which requires each individual transactional operation to receive a response. However,
a TM-implementation might ensure wait-freedom without ensuring local progress, e.g.
when all transactional operations receive a response each transaction is aborted.

For example, Figure 3 shows an infinite history which ensures local progress in a
system with two processes and one t-variable. Both processes make progress in the
history.

p1
r → 0

w(1)
C

p2
r → 0

w(1)
A

r → 1

w(0)
C

r → 1

w(0)
A

r → 0

w(1)
C

r → 0

w(1)
A

Fig. 3. An infinite fair history with two processes and one t-variable that ensures local progress.
Each process executes an infinite number of transactions that either read value 0 and write value
1 or read value 1 and write value 0.

Global Progress. A TM implementation I ensures global progress if I guarantees that
some correct process in a fair history makes progress, i.e. has infinitely many of its
transactions committed. Formally, we define global progress, as a TM-liveness prop-
erty Lglobal such that a fair history F belongs to Lglobal iff at least one correct process
in F makes progress in F , or F does not have correct processes. Note that every TM-
implementation that ensures global progress also ensures lock-freedom [14], which re-
quires some individual transactional operation to receive a response.

40 V. Bushkov and R. Guerraoui

p1
r → 0

w(1)
C

p2
r → 0

w(1)
A

r → 1

w(0)
C

r → 1

w(0)
A

r → 0

w(1)
C

r → 0

w(1)
A

Fig. 4. An infinite fair history with two processes and one t-variable that ensures global progress.
Processes execute an infinite number of transactions that either read value 0 and write value 1 or
read value 1 and write value 0.

Figure 4 shows an infinite fair history which ensures global progress in a system
of two processes and one t-variable. Both of the processes are correct in the history.
However, only process p1 makes progress in the history.

Solo Progress. A TM implementation I ensures solo progress if I guarantees that ev-
ery correct process which runs alone in a fair history makes progress, i.e. has infinitely
many of its transactions committed. A correct process runs alone if starting from some
point in time it is the only process that takes steps in an execution. Formally, a pro-
cess pk runs alone in an infinite fair history F if pk is correct in F and all other pro-
cesses crash in F (i.e. stop taking steps in the corresponding execution). We define solo
progress, as a TM-liveness property Lsolo such that a fair history F belongs to Lsolo iff
a process that runs alone in F makes progress in H, or F does not have a process that
runs alone in F . Note that every TM-implementation that ensures solo progress also en-
sures obstruction-freedom [15], which requires each individual transactional operation
to receive a response if the operation runs alone.

Figure 5 depicts an infinite fair history which ensures solo progress in a system with
three processes and one t-variable. Processes p1 and p2 crash, and process p3 runs alone
and makes progress.

Note that according to the definition of solo progress, a transaction which does not
encounter step contention with other transactions, i.e. the transaction runs alone, is
allowed to abort. This is because solo progress is a liveness property, and therefore
it should allow any possible finite fair history (by the definition of a liveness prop-
erty [2, 25]). If we change the definition of solo progress so that the new definition
requires every transaction which runs alone to commit, then the resulting new defini-
tion would not be a liveness property.

Obstruction-free TM implementations [12, 15] ensure solo progress in systems that
are not parasitic-prone. Lock-based TM implementations, such as TinySTM [9] and
SwissTM [7], ensure solo progress in systems that are not crash-prone. However, lock-
based TMs that use lazy acquire, such as TL2 [4], ensure solo progress in systems that
are not crash-prone.

Using the same formal framework we can define other kinds of TM-liveness prop-
erties. For example, in [3] we define a stronger version of solo progress which requires
progress from a process if all other processes either crash or become parasitic starting

Liveness in Transactional Memory 41

p1
r → 0 crash

p2
w(1)

C
r → 1 crash

p3
r → 1

w(0)
A

r → 0

w(1)
C

r → 1

w(0)
C

Fig. 5. An infinite fair history with three processes and one t-variable that ensures solo progress.
Process p1 starts a transaction by invoking a read operations, but then it crashes. Process p2
executes two transactions, but it crashes during the execution of the second transaction. Process
p3 executes an infinite number of transactions that either read value 0 and write value 1 or read
value 1 and write value 0.

from some point in time. Basically, such TM-liveness property states that if no other
processes attempt to commit their transactions then the only correct process should
make progress.

4 Impossibility of Local Progress

Like in any distributed problem, each execution of a TM implementation can be thought
of as a game between the environment and the implementation. The environment con-
sisting of processes and a scheduler decides on inputs (operation invocations) given to
the implementation and schedule of steps and the implementation decides on outputs
(responses) returned to the environment. To prove that there is no TM implementation
that ensures both opacity and local progress in a fault prone system we use the environ-
ment as an adversary that acts against the implementation. The environment wins the
game against a TM implementation, if the resulting infinite fair history violates local
progress. To prove the impossibility result, we show a wining strategy for the environ-
ment.

Theorem 1. For every fault-prone system, there does not exist a TM implementation
that ensures both local progress and opacity in that system.

Proof. Assume otherwise, i.e. that there exists a fault-prone system Sys for which there
exists a TM implementation I that ensures local progress and opacity in Sys. To find a
contradiction, we exhibit a winning strategy (Strategies 1 and 2 below) for the environ-
ment resulting in an infinite fair history of I which does not ensure local progress.

By its definition, a fault-prone system Sys is a system in which any number of
processes can crash or be parasitic. We thus consider two different cases:

Sys is Crash-Prone
Consider two processes p1 and p2 and the environment that interacts with I using
Strategy 1.

42 V. Bushkov and R. Guerraoui

Strategy 1

1. Step 1. Process p1 invokes a read operation on t-variable x. Only process p1 takes
steps until it receives a response. When p1 receives a response, which is either v′1
or A1, the strategy goes to Step 2.

2. Step 2. Process p2 invokes a read operation on t-variable x and takes steps until
it receives as a response v′′2 or A2. If the response is A2, then the strategy repeats
Step 2. Otherwise p2 invokes an operation on x, which writes to x either (I) value
v′+1, if p1 received v′1 in Step1, or (II) value v′′+1, if p1 received A1 in Step1, and
takes steps until it receives as a response ok2 or A2. If the response is A2, then the
strategy repeats Step 2. Otherwise p2 invokes tryC2 operation and takes steps until
it receives a response C2 or A2. If the response is A2, the strategy repeats Step 2.
Otherwise the strategy goes to Step 3. Only process p2 takes steps until it receives
C2 as a response.

3. Step 3. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise pro-
cess p1 resumes taking steps by invoking a write operation on t-variable x which
writes value v′′ + 1 to x, and then executes until it receives a response. If the re-
sponse is A1, then the strategy goes to Step 1. Otherwise p1 invokes tryC1 opera-
tion and executes the operation until it receives a response. If the response is A1,
the strategy goes to Step 1. Otherwise the strategy stops.

First, we prove that processes p1 and p2 cannot be parasitic in any execution corre-
sponding to Strategy 1. This is because Strategy 1 does not have loops in which some
process invokes infinitely many operations within the same transaction without ever in-
voking a commit request or receiving an abort event. Note that according to the strategy,
process p1 can crash when transactions of process p2 are repeatedly aborted in Step 2.
Therefore, the strategy does not describe the behavior of processes in a crash-free sys-
tem, i.e. system in which no process is allowed to crash.

Next, we show that there exists an infinite fair history F of I corresponding to some
execution of I according to Strategy 1. To do so, we prove that Strategy 1 never termi-
nates. We first prove that the individual transactional operations of I are obstruction-
free, i.e. we prove that each operation in Strategy 1 eventually returns a response. If
in Strategy 1 some process pk, where k ∈ {1,2}, executing a transactional operation,
does not return a response, then pk takes infinitely many steps, and consequently pk is
correct. However, pk does not make progress: a contradiction to the fact that I ensures
local progress. Since individual operations of the implementation are obstruction-free,
then the strategy terminates iff at Step 3 process p1 is returned C1 by I.

Assume some finite history Hf of I corresponding to an execution according to Strat-
egy 1 such that the last event in Hf is C1 (Figure 6). Since I ensures opacity, there exists
a sequential finite history Hs which is equivalent to comp(Hf), preserves the real-time
order of comp(Hf), and every transaction in Hs is legal. Since history Hf has no trans-
actions which are either live or commit-pending, then comp(Hf) = Hf . Hence Hs is
equivalent to Hf and preserves the real-time order of Hf . Since Hs is a sequential history
and preserves the real-time order of Hf , then Hs could only have one of the following
forms, where H ′

s is a prefix of Hs:

1. Hs =H ′
s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+

1) ·ok2 · tryC2 ·C2

Liveness in Transactional Memory 43

2. Hs =H ′
s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+

1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′ + 1. In the second case,
the last transaction executed by process p1 is not legal in Hs, because p1 reads value
v′ from t-variable x the value of which is v′+ 1. Thus, Hf is not opaque. Since every
history Hf of I that ends with a commit event C1 is not opaque and I ensures opacity,
then Hf is not a history of I corresponding to Strategy 1. In other words, every history
of I corresponding to some execution according to Strategy 1 is infinite.

p1 T1

p2 T2
x.read → v′′

x.write(v′+1)
commit

x.read → v′ x.write(v′′+1)
commit

Fig. 6. A suffix of history Hf corresponding to an execution according to Strategy 1 (and Strategy
2) with the last two transactions of p1 and p2

Consider some infinite execution α of I corresponding to Strategy 1. Since process
p1 never receives commit event C1 from I, then p1 does not make progress in the cor-
responding infinite fair history Fα . Since Sys is crash-prone, then process p1 either
crashes in α or does not. Therefore, we focus on the following two cases:

• Process p1 crashes in α . According to the strategy, process p1 crashes in Fα iff
starting from some point in time the strategy executes infinitely many iterations of
Step 2 without going to Step 3. Since no process can be parasitic in any execution
corresponding to Strategy 1 and p2 takes infinitely many steps in α , process p2 is
correct in Fα . Since I ensures local progress and p2 is correct in Fα , then process
p2 eventually receives commit event C2 in Step 2, and therefore the strategy should
eventually go to Step 3: a contradiction.

• Process p1 does not crash in α . Since p1 cannot be parasitic in α , then p1 is correct
in Fα . Since I ensures local progress, then p1 makes progress in Fα : a contradiction.

Sys is Parasitic-Prone. Consider two processes p1 and p2 and the environment that
interacts with I using the following strategy:

Strategy 2

1. Step 1. Process p1 invokes a read operation on t-variable x and takes steps until
it receives as a response v′1 or A1. Then process p2 invokes a read operation on x
and takes steps until it receives as a response v′′2 or A2. If the response is A2, then
the strategy repeats Step 1. Otherwise p2 invokes a write operation which writes
to x either (I) value v′ + 1, if p1 received v′1, or (II) value v′′ + 1, if p1 received
A1, and then p2 takes steps until it receives a response. If the response is A2, then

44 V. Bushkov and R. Guerraoui

the strategy repeats Step 1. Otherwise p2 invokes tryC2 operation and takes steps
until it receives a response. If the response is A2, then the strategy repeats Step 1.
Otherwise the strategy goes to Step 2.

2. Step 2. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise
process p1 invokes a write operation on x which writes value v′′ + 1 to x, and p1

takes steps until it receives a response. If the response is A1, then the strategy goes
to Step 1. Otherwise p1 invokes tryC1 operation and takes steps until it receives
a response. If the response is A1, then the strategy goes to Step 1. Otherwise the
strategy stops.

We first prove that the individual transactional operations of I are obstruction-free,
i.e. we prove that each operation in Strategy 2 eventually returns a response. If in Strat-
egy 1 some process pk, where k ∈ {1,2}, executing a transactional operation, does not
return a response, then pk takes infinitely many steps, and consequently pk is correct.
However, pk does not make progress: a contradiction to the fact that I ensures local
progress. Because the individual transactional operations are obstruction-free and be-
cause both processes take steps before Step 1 in Strategy 2 can be repeated, processes
p1 and p2 cannot crash in any execution corresponding to Strategy 2. Note that accord-
ing to the strategy, process p1 can become parasitic when transactions of process p2 are
repeatedly aborted in Step 1 and the read operation of p1 is never aborted. Therefore,
the strategy does not describe the behavior of processes in a parasitic-free system, i.e.
system in which no process is allowed to be parasitic.

Next, we prove that Strategy 2 never terminates, i.e. that at Step 2 process p1 is never
returned C1 by I in any history of I corresponding to an execution of the strategy. As-
sume some finite history Hf of I corresponding to an execution of Strategy 2 such that
the last event in Hf is C1 (Figure 6). Since I ensures opacity, there exists a sequen-
tial finite history Hs which is equivalent to comp(Hf), preserves the real-time order of
comp(Hf), and every transaction in Hs is legal. Since history Hf has no transaction
which are either live or commit-pending, then comp(Hf) = Hf . Hence Hs is equivalent
to Hf and preserves the real-time order of Hf . Since Hs is a sequential history and pre-
serves the real-time order of Hf , then Hs could only have one of the following forms,
where H ′

s is a prefix of Hs:

1. Hs =H ′
s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+

1) ·ok2 · tryC2 ·C2

2. Hs =H ′
s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+

1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′+ 1. In the second case, the
last transaction executed by process p1 is not legal in Hs, because p1 reads value v′ from
t-variable x the value of which is v′+1. Thus, Hf is not opaque. Since every history Hf

of I that ends with commit event C1 is not opaque and I ensures opacity, then Hf is
not a history of I corresponding to the execution of the strategy. In other words, every
history of I corresponding to the execution of Strategy 2 is infinite.

Consider now some infinite execution α of I corresponding to the execution of the
above strategy. Since process p1 never receives commit event C1 from I, then p1 does

Liveness in Transactional Memory 45

not make progress in the corresponding infinite fair history Fα . Since Sys is parasitic-
prone, then process p1 is either parasitic in α or not. Therefore, we focus on the follow-
ing two cases:

• Process p1 is parasitic in α . According to the strategy, process p1 is parasitic in Fα
iff starting from some point in time the strategy executes infinitely many iterations
of Step 1 without going to Step 2. Strategy 2 repeats Step 1 without going to Step 2
iff process p2 is repeatedly returned abort event A2 in Step 1. Since no process can
crash in any execution corresponding to Strategy 1 and p2 receives infinitely many
abort events in α , process p2 is correct in Fα . Since I ensures local progress and p2

is correct in Fα , then process p2 shoudl eventually receive commit event C2 in Step
1, and therefore the strategy should eventually go to Step 2: a contradiction.

• Process p1 is not parasitic in α . Since p1 does not crash in α , p1 is correct in Fα .
Since I ensures local progress, then p1 makes progress in Fα : a contradiction.

�	

5 Generalizing the Impossibility

In this section we generalize the impossibility result of the previous section. Namely,
we determine a larger class of TM-liveness properties that are impossible to implement
together with strict serializability, which is weaker than opacity, in fault-prone systems.

p1
r → 0 crash

p2
w(1)

C
r → 1 crash

p3
r → 1

w(0)
A

r → 0

w(1)
A

r → 1

w(0)
A

Fig. 7. An infinite fair history with three processes and one t-variable that does not ensure any
non-blocking TM-liveness property. Process p1 starts a transaction by invoking a read operations,
but then it crashes. Process p2 executes two transactions, but it crashes during the execution of
the second transaction. Process p3 executes an infinite number of transactions which read value
0 (read value 1) and write value 1 (write value 0).

5.1 Classes of TM-Liveness Properties

Non-blocking TM-liveness properties. Intuitively, we say that a TM-liveness property
is non-blocking if it guarantees progress for every correct process that eventually runs
alone. More precisely, a TM-liveness property L is non-blocking iff L is stronger than
Lsolo.

46 V. Bushkov and R. Guerraoui

For example, Figure 3, Figure 4, and Figure 5 show infinite fair histories which en-
sure non-blocking TM-liveness properties while Figure 7 shows an infinite fair history
which does not ensure any non-blocking TM-liveness property. Local progress, global
progress, and solo progress are non-blocking. Note that solo progress is the weak-
est among non-blocking TM-liveness properties while local progress is the strongest
among non-blocking properties.

Biprogressing TM-liveness properties. Intuitively, we say that a TM-liveness property
L is a biprogressing property if it requires that at least two correct processes make
progress. More precisely, a TM-liveness property L is biprogressing if for every F ∈ L
at least two processes are correct in F , only if at least two processes make progress
in F .

For example, Figure 3 and Figure 5 show infinite fair histories which ensure a bipro-
gressing property while Figure 4 shows an infinite fair history which does not ensure
any biprogressing property. Local progress is a biprogressing property while global
progress and solo progress are not biprogressing.

5.2 Generalized Result

In this section we show that TM-liveness properties that are both non-blocking and
biprogressing are impossible to implement together with strict serializability in any
fault-prone system. We start by stating the following lemma, which says, intuitively,
that there exists a fair history in which a process executing infinitely many transactions
can block the progress of all other processes if the TM ensures any non-blocking TM-
liveness property. The proof of the lemma follows the same line of reasoning as the
proof of Theorem 1.

Lemma 1. For any fault-prone system and every TM implementation that ensures strict
serializability and a non-blocking TM-liveness property in that system, there exists an
infinite fair history F of the implementation such that at least two processes are correct
in F and at most one process makes progress in F.

Proof. Let I be a TM implementation ensuring strict serializability and a non-blocking
TM-liveness property in a fault-prone system Sys. To exhibit a fair history in which at
least two processes are correct and at most one process makes progress we consider a
game between the environment and the implementation. The environment acts against
the implementation and wins the game if the resulting history satisfies the requirements
of the lemma.

By definition, fault-prone system Sys is a system in which any process can crash or
be parasitic. We thus consider two different cases:

Sys is Crash-Prone. Consider two processes p1 and p2 that interact with I. The envi-
ronment uses Strategy 1 to win the game. We can show that processes p1 and p2 cannot
be parasitic in any execution corresponding to Strategy 1 and that Strategy 1 never ter-
minates using the arguments as in Theorem 1 (because those arguments do not involve
live or aborted transactions).

Liveness in Transactional Memory 47

Consider some infinite execution α of I corresponding to Strategy 1. Since process
p1 never receives commit event C1 from I, then p1 does not make progress in the cor-
responding infinite fair history Fα . Since Sys is crash-prone, then process p1 either
crashes in α or does not.

Assume that process p1 crashes in fair history Fα . According to the strategy, process
p1 crashes in Fα only if process p2 invokes infinitely many operations and does not
make progress, i.e. only if p2 is returned an infinite number of abort events at Step 2.
Since p2 is returned an infinite number of abort events and p2 cannot crash, p2 is correct
in Fα . Because p2 runs alone in Fα and I ensures a TM-liveness property which is non-
blocking, then p2 makes progress in H: a contradiction. Thus, p1 does not crash in Fα .
Since p1 is not parasitic in α , p1 is correct in Fα .

According to the strategy, p2 does not crash in Fα since Step 2 is repeated infinitely
often. Since Step 2 and Step 1 are repeated infinitely often (because p1 does not crash
in Fα), then p2 receives infinitely many commit events C2, i.e. p2 is correct. Thus, in
fair history Fα both of the processes are correct and at most one process makes progress
(since p1 is never returned C1).

Sys is Parasitic-Prone. Consider two processes p1 and p2 that interact with I. The
environment uses Strategy 2 to win the game. We can show that processes p1 and p2

do not crash in any execution corresponding to Strategy 2 and that Strategy 2 never
terminates using the same line of reasoning as in Theorem 1.

Consider now some infinite execution α of I corresponding to the execution of the
above strategy. Since process p1 never receives commit event C1 from I, then p1 does
not make progress in the corresponding infinite fair history Fα . Since Sys is parasitic-
prone, then process p1 is either parasitic in α or not.

Assume that p1 is parasitic in α . According to the strategy, p1 can be parasitic only
if p2 does not make progress in Fα and is returned A2 infinitely often (i.e. p2 is correct
in Fα). Since process p2 runs alone in Fα and I ensures a non-blocking TM-liveness
property, then p2 makes progress in H: a contradiction. Thus, p1 cannot be parasitic in
α . Since p1 does not crash in α , p1 is correct in Fα .

Process p2 cannot be parasitic in α since p2 either invokes tryC2 or is returned A2

infinitely often at Step 1. Thus, in history Fα both of the processes are correct and at
most one process makes progress (since p1 is never returned C1). �	

By definition, a biprogressing TM-liveness property should ensure progress for at
least two correct processes in every infinite history. While, by the above lemma, if
the property is also non-blocking, then we can find an infinite fair history of any TM
implementation in any fault-prone system in which at least two processes are correct
and at most one process makes progress: a contradiction. Thus, we have the following
theorem.

Theorem 2. For every fault-prone system and every TM-liveness property L which is
non-blocking and biprogressing there is no TM implementation that ensures strict seri-
alizability and L in that system.

48 V. Bushkov and R. Guerraoui

6 Conclusion

In this chapter we introduced a set-based framework to formally reason about liveness
properties of TM systems. The framework separates liveness properties of transactions
from liveness properties of transactional operations. For example, a TM implementa-
tion might satisfy global progress, which requires some correct transaction to commit,
and wait-freedom, which requires every correct operation within a transaction to return
a response. Our definition of a TM-liveness property conforms to standard general def-
initions of liveness [2, 21, 25] in the sense that (i) it is a trace property [21, 25] (i.e. it
is defined in terms of invocations and responses which are external events) and (ii) it
allows any finite execution [2].

We proved that it is impossible to guarantee both local progress, the strongest TM-
liveness property, and opacity in any fault-prone system. There are several ways to cir-
cumvent our impossibility result. One way is to weaken safety or TM-liveness property
requirements, for example, to require only global progress. There are implementations
that ensure opacity and global progress, e.g., OSTM [10]. A second way is to assume
that all transactions are static and predefined. That is, when a transaction T starts a TM
implementation knows exactly which operations, on which t-variables, will be invoked
in T , and the operations invoked in T should be the same in any execution. In that case
transactions can be viewed as simple operations and one can apply classical universal
construction [14] to ensure local progress. A third way is to assume a fault-free system,
i.e. assume that no process can crash or be parasitic. However, it was shown in [20] that
even in a fault-free system it is impossible to guarantee opacity and local progress when
a TM implementation uses a direct-update algorithm and the result can be circumvented
only for deferred-update algorithms. An algorithm is deferred-update if every transac-
tion that writes a value must invoke a commit request before other transactions can read
that value; an algorithm which is not deferred-update is called direct-update. A fourth
way is to assume a different system model instead of the multi-threaded programming
model. For example, [28] shows a TM implementation that ensures local progress in
an asynchronous multicore system model which assumes that a transaction can be exe-
cuted by different processes and that some process crashes are detectable by the runtime
system.

References

[1] Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory and auto-
matic mutual exclusion. ACM Trans. Program. Lang. Syst. 33(1) (2011)

[2] Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4) (1985)
[3] Bushkov, V., Guerraoui, R., Kapałka, M.: On the liveness of transactional memory. In: Pro-

ceedings of ACM PODC 2012 (2012)
[4] Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.

LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)
[5] Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verify-

ing transactional memory. Electron. Notes Theor. Comput. Sci. 259 (2009)
[6] Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verify-

ing transactional memory. Formal Aspects of Computing 25(5), 769–799 (2013)

Liveness in Transactional Memory 49

[7] Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. SIGPLAN
Not 44(6), 155–165 (2009)

[8] Dziuma, D., Fatourou, P., Kanellou, E.: Survey on consistency conditions. Tech. Rep. 439,
FORTH-ICS (2013)

[9] Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: ACM PPoPP 2008, pp. 237–246 (2008)

[10] Fraser, K.: Practical lock freedom. PhD thesis, Cambridge University Computer Laboratory
(2003)

[11] Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings
of ACM PPoPP 2008 (2008)

[12] Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Morgan and Claypool
(2010)

[13] Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and Claypool
(2010)

[14] Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1) (1991)
[15] Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory

for dynamic-sized data structures. In: Proceedings of ACM PODC 2003 (2003)
[16] Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2) (1993)
[17] Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Lipari, G., Roy,

M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer, Heidelberg (2011)
[18] Imbs, D., de Mendivil, J.R., Raynal, M.: Brief announcement: Virtual world consistency: A

new condition for stm systems. In: ACM PODC 2009, pp. 280–281 (2009)
[19] Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus. Sci. Com-

put. Program. 57(2) (2005)
[20] Lesani, M., Palsberg, J.: Proving non-opacity. In: Afek, Y. (ed.) DISC 2013. LNCS,

vol. 8205, pp. 106–120. Springer, Heidelberg (2013)
[21] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
[22] Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L., Saha, B.,

Welc, A.: Practical weak-atomicity semantics for java stm. In: ACM SPAA 2008, pp. 314–
325 (2008)

[23] Moore, K.F., Grossman, D.: High-level small-step operational semantics for transactions.
In: ACM POPL 2008, pp. 51–62 (2008)

[24] Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4)
(1979)

[25] Segala, R., Gawlick, R., Søgaard-Andersen, J., Lynch, N.: Liveness in timed and untimed
systems. Inf. Comput. 141(2) (1998)

[26] Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of ACM PODC
1995 (1995)

[27] Völzer, H., Varacca, D.: Defining fairness in reactive and concurrent systems. J. ACM 59(3)
(2012)

[28] Wamhoff, J.T., Fetzer, C.: The universal transactional memory construction. In: TRANS-
ACT 2011. ACM, New York (2011)

Safety and Deferred Update in Transactional Memory

Hagit Attiya1, Sandeep Hans1, Petr Kuznetsov2, and Srivatsan Ravi3

1 Technion
{hagit,sandeep}@cs.technion.ac.il

2 Télécom ParisTech
petr.kuznetsov@telecom-paristech.fr

3 TU Berlin
srivatsan@srivatsan.in

Abstract. Transactional memory allows the user to declare sequences of in-
structions as speculative transactions that can either commit or abort, providing
all-or-nothing semantics. If a transaction commits, it should appear to execute
sequentially, so that the committed transactions constitute a correct sequential ex-
ecution. If a transaction aborts, none of its instructions should affect other trans-
actions. These semantics allow the programmer to incorporate sequential code
within transactions and let the transactional memory care about conflicts between
concurrent transactions. In this sense, it is important that the memory is safe, i.e.,
every transaction has a consistent view even if the transaction aborts later. Other-
wise, inconsistencies not predicted by the sequential program may cause a fatal
irrecoverable error or an infinite loop. Furthermore, in a general setting, where a
transaction may be explicitly aborted by the user or an external contention man-
ager, a transaction should not be allowed to read from a not yet committed trans-
action, which is often called deferred-update semantics. This chapter overviews
the scope of consistency criteria proposed so far to capture deferred-update se-
mantics, and shows that—under reasonable conditions—the semantics induces a
safety property.

1 Introduction

Resolving conflicts in an efficient and consistent manner is a big challenge in concur-
rent software design. Transactional memory (TM) [10, 19] addresses this challenge by
offering an interface in which sequences of shared-memory instructions can be declared
as speculative transactions. The underlying idea, borrowed from databases, is to treat
each transaction as atomic: a transaction may either commit, in which case it appears
as executed sequentially, or abort, in which case none of its update instructions affect
other transactions. The user can therefore design software having only sequential se-
mantics in mind and let the TM take care of conflicts (concurrent reading and writing
to the same memory location) resulting from concurrent executions.

In databases, a correct implementation of concurrency control should guarantee that
committed transactions constitute a serial execution [9]. Uncommitted transactions can
be aborted without invalidating the correctness of committed ones. (In the literature on
databases, the latter feature is called recoverability [9].)

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 50–71, 2015.
c© Springer International Publishing Switzerland 2015

Safety and Deferred Update in Transactional Memory 51

In the TM context, intermediate states witnessed by the read operations of an incom-
plete transaction may affect the application. If the intermediate state is not consistent
with any sequential execution, the application may experience a fatal irrecoverable error
or enter an infinite loop. Thus, it is important that each transaction, including aborted
ones observes a consistent state.

A state should be considered consistent if it could result from a serial application of
transactions observed in the current execution. In this sense, every transaction should
witness a state that could have been observed in some execution of the sequential code
put by the programmer within the transactions. Additionally, a consistent state should
not depend on a transaction that has not started committing yet (referred to as deferred-
update semantics). This restriction appears desirable, since the ongoing transaction may
still abort (explicitly by the user or because of consistency reasons) and, thus, render
the read inconsistent. Further, the set of histories specified by the consistency criterion
must constitute a safety property, as defined by Owicki and Lamport [17], Alpern and
Schneider [1] and refined by Lynch [16]: it must be non-empty, prefix-closed and limit-
closed.

In this chapter, we define the notion of deferred-update semantics formally, which
we then apply to a spectrum of TM consistency criteria. Additionally, we verify if the
resulting TM consistency criterion is a safety property, as defined by Lynch [16].

We first consider the popular criterion of opacity [7]. Opacity requires the states
observed by all transactions, included uncommitted ones, to be consistent with a global
serialization, i.e., a serial execution constituted by committed transactions. Moreover,
the serialization should respect the real-time order: a transaction that completed before
(in real time) another transaction started should appear first in the serialization.

By definition, opacity reduces correctness of a history to correctness of all its pre-
fixes, and thus is prefix-closed and limit-closed by definition. Thus, to verify that a his-
tory is opaque, one needs to verify that each of its prefixes is consistent with some global
serialization. To simplify verification and explicitly introduce deferred-update seman-
tics into a TM correctness criterion, we specify a general criterion of du-opacity [3],
which requires the global serial execution to respect the deferred-update property. In-
formally, a du-opaque history must be indistinguishable from a totally-ordered history,
with respect to which no transaction reads from a transaction that has not started com-
mitting.

Du-opacity is prefix-closed, that is, every prefix of a du-opaque history is also du-
opaque. We then show that extending opacity (and du-opacity) to infinite histories in a
non-trivial way (i.e., requiring that even infinite histories should have proper serializa-
tions), does not result in a limit-closed property. However, under certain restrictions, we
show that du-opacity is limit-closed. In particular, assuming that in an infinite history,
every transaction completes each of the operations it invoked, the limit of any sequence
of ever extending du-opaque histories is also du-opaque. Therefore, under this assump-
tion, du-opacity is a safety property [1, 16, 17], and to prove that a TM implementation
that complies with the assumption is du-opaque, it suffices to prove that all its finite
histories are du-opaque.

One may notice that the intended safety semantics does not require that all transac-
tions observe the same serial execution. Intuitively, we only need that every transaction

52 H. Attiya et al.

witnesses some consistent state, while the views of different aborted transactions do not
have to be consistent with the same serial execution. As long as committed transactions
constitute a serial execution and every transaction witnesses a consistent state, the exe-
cution can be considered “safe”: no run-time error that cannot occur in a serial execution
can happen. Recently, several definitions adopted this approach: virtual-world consis-
tency (VWC) [12] and Transactional Memory Specifications (TMS) [5]. We introduce
“deferred-update” versions of these proporties and discuss how the resulting properties
relate to du-opacity.

The chapter is organized as follows. In Section 2, we introduce our model definitions,
recall the notion of safety, and recall the original definition of opacity. In Section 3, we
define du-opacity and discuss the property from the safety perspective. In Section 4, we
relate du-opacity to the conventional notion of opacity [7]. In Section 5, we compare
du-opacity to other TM correctness criteria, such as VWC [12], TMS1 and TMS2 [5],
restricted to provide the deferred-update semantics. Section 6 gives a summary of our
comparative analysis and concludes the chapter.

2 Preliminaries

A transactional memory (in short, TM) supports atomic transactions. Each transaction
is a sequence of accesses, reading from and writing to a set of transactional objects (in
short, t-objects). Each transaction Tk has a unique identifier k.

A transaction Tk accesses t-objects with t-operations, each being a matching pair of
invocation and response events: readk(X) returns a value in some domain V or a special
value Ak /∈ V (abort); writek(X ,v), for a value v ∈ V , returns okk or Ak; tryAk returns
Ak; tryCk returns a special value Ck /∈V ∪{Ak} (commit) or Ak.

2.1 Implementations and Histories

We consider an asynchronous shared-memory system in which processes communicate
via transactions. A TM implementation provides processes with algorithms for imple-
menting readk, writek, tryCk() and tryAk() of a transaction Tk.

A history of a TM implementation is a (possibly infinite) sequence of invocation and
response events of t-operations.

For every transaction identifier k, H|k denotes the subsequence of H restricted to
events of transaction Tk. If H|k is non-empty, we say that Tk participates in H, and let
txns(H) denote the set of transactions that participate in H. In an infinite history H, we
assume that for each Tk ∈ txns(H), H|k is finite; i.e., transactions do not issue an infinite
number of t-operations.

Two histories H and H ′ are equivalent if txns(H) = txns(H ′) and for every transac-
tion Tk ∈ txns(H), H|k = H ′|k.

A history H is sequential if every invocation of a t-operation is either the last event
in H or is immediately followed by a matching response.

A history is well-formed if for all Tk, H|k begins with an invocation of a t-operation,
H|k is sequential and has no events after Ak or Ck. For simplicity, we assume that all
histories are well-formed, i.e., the client of the transactional memory never invokes a

Safety and Deferred Update in Transactional Memory 53

t-operation before receiving a response from the previous one and does not invoke any
t-operation opk after receiving Ck or Ak. Note that the assumption excludes the TM
designs providing nested parallelism discussed in a dedicated chapter of this book.

The read set of a transaction Tk in history H, denoted Rset(Tk), is the set of t-objects
that Tk reads in H; the write set of Tk in history H, denoted Wset(Tk), is the set of
t-objects Tk writes to in H. More specifically, we say that X ∈ Rset(Tk) (resp., X ∈
Wset(Tk)) in H if H contains an invocation of readk(X) (resp., writek(X ,v)). We avoid
parameterizing Rset(Tk) and Wset(Tk) with the history H since it is clear from the usage.
If Wset(Tk) �= /0, then Tk is an updating transaction.

2.2 Complete Histories and Real-Time Precedence

A transaction Tk ∈ txns(H) is complete in a history H if H|k ends with a response event.
A history H is complete if all transactions in txns(H) are complete in H.

A transaction Tk ∈ txns(H) is t-complete if H|k ends with Ak or Ck; otherwise, Tk is
t-incomplete. Tk is committed (resp., aborted) in H if the last event of Tk is Ck (resp.,
Ak). The history H is t-complete if all transactions in txns(H) are t-complete.

For t-operations opk,op j, we say that opk precedes op j in the real-time order of H,
denoted opk ≺RT

H opm, if the response of opk precedes the invocation of op j.
We overload the notation and say, for transactions Tk,Tm ∈ txns(H), that Tk precedes

Tm in the real-time order of H, denoted Tk ≺RT
H Tm, if Tk is t-complete in H and the last

event of Tk precedes the first event of Tm in H. If neither Tk ≺RT
H Tm nor Tm ≺RT

H Tk,
then Tk and Tm overlap in H. A history H is t-sequential if there are no overlapping
transactions in H.

For simplicity of presentation, we assume that each history H begins with an “imag-
inary” t-complete transaction T0 that writes initial values to all t-objects and commits
before any other transaction begins in H.

2.3 Latest Written Value and Legality

Let H be a t-sequential history. For every operation readk(X) in H, we define the latest
written value of X as follows: if Tk contains a writek(X ,v) preceding readk(X), then the
latest written value of X is the value of the latest such write to X . Otherwise, the latest
written value of X is the value of the argument of the latest writem(X ,v) that precedes
readk(X) and belongs to a committed transaction in H. (This write is well-defined since
H starts with T0 writing to all t-objects.)

We say that readk(X) is legal in a t-sequential history H if it returns the latest written
value of X , and H is legal if every readk(X) in H that does not return Ak is legal in H.

We also assume, for simplicity, that the client invokes a readk(X) at most once within
a transaction Tk. This assumption incurs no loss of generality, since a repeated read can
be assigned to return a previously returned value without affecting the history’s legality.

2.4 Safety

A property P is a set of (transactional) histories.

54 H. Attiya et al.

tryC2R2(X)→ 1

tryC1W1(X ,1)
T1 C1

T2 C2

H ′ H

Fig. 1. History H is final-state opaque, while its prefix H ′ is not final-state opaque

Definition 1 (Lynch [16]). A property P is a safety property if it satisfies the following
two conditions:

Prefix-closure: For every history H ∈P , every prefix H ′ of H (i.e., every prefix of the
sequence of the events in H) is also in P .

Limit-closure: For every infinite sequence of finite histories H0,H1, . . . such that for
every i, Hi ∈P and Hi is a prefix of Hi+1, the limit of the sequence is also in P .

Notice that the set of histories produced by a TM implementation M is, by con-
struction, prefix-closed. Therefore, every infinite history of M is the limit of an infinite
sequence of ever-extending finite histories of M. Thus, to prove that M satisfies a safety
property P, it is enough to show that all finite histories of M are in P. Indeed, limit-
closure of P then implies that every infinite history of M is also in P.

2.5 Opacity

Definition 2 (Completions). Let H be a history. A completion of H, denoted H, is a
history derived from H as follows:

– First, for every transaction Tk ∈ txns(H) with an incomplete t-operation opk in H,
if opk = readk ∨writek, insert Ak somewhere after the invocation of opk; otherwise,
if opk = tryCk(), insert Ck or Ak somewhere after the last event of Tk.

– After all transactions are complete, for every transaction Tk that is not t-complete,
insert tryCk ·Ak after the last event of transaction Tk.

Definition 3 (Guerraoui and Kapalka [7]). A finite history H is final-state opaque if
there is a legal t-complete t-sequential history S, such that

1. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk <S Tm, and

2. S is equivalent to a completion of H.

We say that S is a final-state serialization of H.

Final-state opacity is not prefix-closed. Figure 1 depicts a t-complete sequential his-
tory H that is final-state opaque, with T1 ·T2 being a legal t-complete t-sequential history
equivalent to H. Let H ′ =write1(X ,1),read2(X) be a prefix of H in which T1 and T2 are
t-incomplete. Transaction Ti (i = 1,2) is completed by inserting tryCi ·Ai immediately
after the last event of Ti in H. Observe that neither T1 ·T2 nor T2 ·T1 allow us to derive a
serialization of H ′ (we assume that the initial value of X is 0).

A restriction of final-state opacity, which we refer to as opacity [7] explicitly filters
out histories that are not prefix-closed.

Safety and Deferred Update in Transactional Memory 55

Definition 4 (Guerraoui and Kapalka [7]). A history H is opaque if and only if every
finite prefix H ′ of H (including H itself if it is finite) is final-state opaque.

It can be easily seen that opacity is prefix- and limit-closed, and, thus, it is a safety
property.

3 Deferred-Update Semantics and Its Properties

We now give a formal definition of opacity with deferred-update semantics. Then we
show that the property is prefix-closed and, under certain liveness restrictions, limit-
closed.

3.1 Du-Opacity

Let H be any history and let S be a legal t-complete t-sequential history that is equivalent
to some completion of H. Let <S be the total order on transactions in S.

Definition 5 (Local serialization). For any readk(X) that does not return Ak, let Sk,X

be the prefix of S up to the response of readk(X) and Hk,X be the prefix of H up to the
response of readk(X).

Sk,X
H , the local serialization of readk(X) with respect to H and S, is the subsequence

of Sk,X derived by removing from Sk,X the events of all transactions Tm ∈ txns(H)\{Tk}
such that Hk,X does not contain an invocation of tryCm().

We are now ready to present our correctness condition, du-opacity.

Definition 6. A history H is du-opaque if there is a legal t-complete t-sequential history
S such that

1. there is a completion of H that is equivalent to S, and
2. for every pair of transactions Tk,Tm ∈ txns(H), if Tk ≺RT

H Tm, then Tk <S Tm, i.e., S
respects the real-time ordering of transactions in H, and

3. each readk(X) in S that does not return Ak is legal in Sk,X
H .

We then say that S is a (du-opaque) serialization of H.

Informally, a history H is du-opaque if there is a legal t-sequential history S that is
equivalent to H, respects the real-time ordering of transactions in H and every t-read
is legal in its local serialization with respect to H and S. The third condition reflects
the implementation’s deferred-update semantics, i.e., the legality of a t-read in a serial-
ization does not depend on transactions that start committing after the response of the
t-read.

For any du-opaque serialization S, seq(S) denotes the sequence of transactions in S
and seq(S)[k] denotes the kth transaction in this sequence.

56 H. Attiya et al.

3.2 Du-Opacity Is Prefix-Closed

Lemma 1. Let H be a du-opaque history and let S be a serialization of H. For any
i ∈ N, there is a serialization Si of Hi (the prefix of H consisting of the first i events),
such that seq(Si) is a subsequence of seq(S).

Proof. Given H, S and Hi, we construct a t-complete t-sequential history Si as follows:

– for every transaction Tk that is t-complete in Hi, Si|k = S|k.
– for every transaction Tk that is complete but not t-complete in Hi, Si|k consists of

the sequence of events in Hi|k, immediately followed by tryCk() ·Ak.
– for every transaction Tk with an incomplete t-operation, opk = readk ∨ writek ∨

tryAk() in Hi, Si|k is the sequence of events in S|k up to the invocation of opk,
immediately followed by Ak.

– for every transaction Tk ∈ txns(Hi) with an incomplete t-operation, opk = tryCk(),
Si|k = S|k.

By the above construction, Si is indeed a t-complete history and every transaction
that appears in Si also appears in S. We order transactions in Si so that seq(Si) is a
subsequence of seq(S).

Note that Si is derived from events contained in some completion H of H that is
equivalent to S and some other events to derive a completion of Si. Since Si contains
events from every complete t-operation in Hi and other events included satisfy Defini-
tion 2, there is a completion of Hi that is equivalent to Si.

We now argue that Si is a serialization of Hi. First we observe that Si respects the
real-time order of Hi. Indeed, if Tj ≺RT

Hi Tk, then Tj ≺RT
H Tk and Tj <S Tk. Since seq(Si)

is a subsequence of seq(S), we have Tj <Si Tk.
To show that Si is legal, suppose, by way of contradiction, that there is some readk(X)

that returns v �=Ak in Hi such that v is not the latest written value of X in Si. If Tk contains
a writek(X ,v′) preceding readk(X) such that v �= v′ and v is not the latest written value
for readk(X) in Si, it is also not the latest written value for readk(X) in S, which is a
contradiction. Thus, the only case to consider is when readk(X) should return a value
written by another transaction.

Since S is a serialization of H, there is a committed transaction Tm that performs
the last writem(X ,v) that precedes readk(X) in Tk in S. Moreover, since readk(X) is
legal in the local serialization of readk(X) in H with respect to S, the prefix of H up to
the response of readk(X) must contain an invocation of tryCm(). Thus, readk(X) �≺RT

H
tryCm() and Tm ∈ txns(Hi). By construction of Si, Tm ∈ txns(Si) and Tm is committed
in Si.

We have assumed, towards a contradiction, that v is not the latest written value for
readk(X) in Si. Hence, there is a committed transaction Tj that performs write j(X ,v′);v′
�= v in Si such that Tm <Si Tj <Si Tk. But this is not possible since seq(Si) is a subse-
quence of seq(S).

Thus, Si is a legal t-complete t-sequential history equivalent to some completion of
Hi. Now, by the construction of Si, for every readk(X) that does not return Ak in Si, we

have Sik,X
Hi = Sk,X

H . Indeed, the transactions that appear before Tk in Sik,X
Hi are those with a

tryC event before the response of readk(X) in H and are committed in S. Since seq(Si)

is a subsequence of seq(S), we have Sik,X
Hi = Sk,X

H . Thus, readk(X) is legal in Sik,X
Hi . 	

Safety and Deferred Update in Transactional Memory 57

W1(X ,1) tryC1

R2(X)→ 1

Ri(X)→ 0R3(X)→ 0

T1

T2

T3 Ti

Fig. 2. An infinite history in which tryC1 is incomplete and any two transactions are concurrent.
Each finite prefix of the history is du-opaque, but the infinite limit of the ever-extending sequence
is not du-opaque.

Lemma 1 implies that every prefix of a du-opaque history has a du-opaque serialization
and thus:

Corollary 1. Du-opacity is a prefix-closed property.

3.3 The Limit of Du-Opaque Histories

We observe, however, that du-opacity is, in general, not limit-closed. We present an
infinite history that is not du-opaque, but each of its prefixes is.

Proposition 1. Du-opacity is not a limit-closed property.

Proof. Let H j denote a finite prefix of H of length j. Consider an infinite history H that
is the limit of the histories H j defined as follows (see Figure 2):

– Transaction T1 performs a write1(X ,1) and then invokes tryC1() that is incomplete
in H.

– Transaction T2 performs a read2(X) that overlaps with tryC1() and returns 1.
– There are infinitely many transactions Ti, i ≥ 3, each of which performing a single

readi(X) that returns 0 such that each Ti overlaps with both T1 and T2.

We now prove that, for all j ∈ N, H j is a du-opaque history. Clearly, H0 and H1 are
du-opaque histories. For all j > 1, we first derive a completion of H j as follows:

1. tryC1() (if it is contained in H j) is completed by inserting C1 immediately after its
invocation,

2. for all i ≥ 2, any incomplete readi(X) that is contained in H j is completed by
inserting Ai and tryCi ·Ai immediately after its invocation, and

3. for all i ≥ 2 and every complete readj(X) that is contained in H j, we include tryCi ·
Ai immediately after the response of this readj(X).

We can now derive a t-complete t-sequential history S j equivalent to the above de-
rived completion of H j from the sequence of transactions T3, . . . ,Ti,T1,T2 (depending
on which of these transactions participate in H j), where i ≥ 3. It is easy to observe that
S j so derived is indeed a serialization of H j.

However, there is no serialization of H. Suppose that such a serialization S exists.
Since every transaction that participates in H must participate in S, there exists n ∈ N

such that seq(S)[n]= T1. Consider the transaction at index n+1, say Ti in seq(S). But for
any i ≥ 3, Ti must precede T1 in any serialization (by legality), which is a contradiction.

	

58 H. Attiya et al.

Notice that all finite prefixes of the infinite history depicted in Figure 2 are also opaque.
Thus, if we extend the definition of opacity to cover infinite histories in a non-trivial
way, i. e., by explicitly defining opaque serializations for infinite histories, we can re-
formulate Proposition 1 for opacity.

3.4 Du-Opacity is Limit-Closed for Complete Histories

We show now that du-opacity is limit-closed if the only infinite histories we consider are
those in which every transaction eventually completes (but not necessarily t-completes).

We first prove an auxiliary lemma on du-opaque serializations. For a transaction
T ∈ txns(H), the live set of T in H, denoted LsetH(T) (T included), is defined as follows:
every transaction T ′ ∈ txns(H) such that neither the last event of T ′ precedes the first
event of T in H nor the last event of T precedes the first event of T ′ in H is contained
in LsetH(T). We say that transaction T ′ ∈ txns(H) succeeds the live set of T and we
write T ≺LS

H T ′ if in H, for all T ′′ ∈ LsetH(T), T ′′ is complete and the last event of T ′′
precedes the first event of T ′.

Lemma 2. Let H be a finite du-opaque history and assume Tk ∈ txns(H) is a complete
transaction in H, such that every transaction in LsetH(Tk) is complete in H. Then there
is a serialization S of H, such that for all Tk,Tm ∈ txns(H), if Tk ≺LS

H Tm, then Tk <S Tm.

Proof. Since H is du-opaque, there is a serialization S̃ of H.
Let S be a t-complete t-sequential history such that txns(S̃) = txns(S), and ∀ Ti ∈

txns(S̃) : S|i = S̃|i. We now perform the following procedure iteratively to derive seq(S)
from seq(S̃). Initially seq(S) = seq(S̃). For each Tk ∈ txns(H), let T� ∈ txns(H) de-
note the earliest transaction in S̃ such that Tk ≺LS

H T�. If T� <S̃ Tk (implying Tk is not
t-complete), then move Tk to immediately precede T� in seq(S).

By construction, S is equivalent to S̃ and for all Tk,Tm ∈ txns(H); Tk ≺LS
H Tm, Tk <S Tm

We claim that S is a serialization of H. Observe that any two transactions that are com-
plete in H, but not t-complete are not related by real-time order in H. By construction
of S, for any transaction Tk ∈ txns(H), the set of transactions that precede Tk in S̃, but
succeed Tk in S are not related to Tk by real-time order. Since S̃ respects the real-time
order in H, this holds also for S.

We now show that S is legal. Consider any readk(X) performed by some transaction
Tk that returns v ∈ V in S and let T� ∈ txns(H) be the earliest transaction in S̃ such that
Tk ≺LS

H T�. Suppose, by contradiction, that readk(X) is not legal in S. Thus, there is a
committed transaction Tm that performs writem(X ,v) in S̃ such that Tm = T� or T� <S̃
Tm <S̃ Tk. Note that, by our assumption, readk(X) ≺RT

H tryC�(). Since readk(X) must
be legal in its local serialization with respect to H and S̃, readk(X) �≺RT

H tryCm(). Thus,
Tm ∈ LsetH(Tk). Therefore Tm �= T�. Moreover, Tm is complete, and since it commits in
S̃, it is also t-complete in H and the last event of Tm precedes the first event of T� in H,
i.e., Tm ≺RT

H T�. Hence, T� cannot precede Tm in S̃—a contradiction.
Observe also that since Tk is complete in H but not t-complete, H does not contain

an invocation of tryCk(). Thus, the legality of any other transaction is unaffected by
moving Tk to precede T� in S. Thus, S is a legal t-complete t-sequential history equivalent
to some completion of H. The above arguments also prove that every t-read in S is legal
in its local serialization with respect to H and S and, thus, S is a serialization of H. 	

Safety and Deferred Update in Transactional Memory 59

The proof uses König’s Path Lemma [13] formulated as follows. Let G on a rooted
directed graph and let v0 be the root of G. We say that vk, a vertex of G, is reachable
from v0, if there is a sequence of vertices v0 . . . ,vk such that for each i, there is an edge
from vi to vi+1. G is connected if every vertex in G is reachable from v0. G is finitely
branching if every vertex in G has a finite out-degree. G is infinite if it has infinitely
many vertices.

Lemma 3 (König’s Path Lemma [13]). If G is an infinite connected finitely branching
rooted directed graph, then G contains an infinite sequence of distinct vertices v0,v1, . . .,
such that v0 is the root, and for every i ≥ 0, there is an edge from vi to vi+1.

Theorem 1. Under the restriction that in any infinite history H, every transaction Tk ∈
txns(H) is complete, du-opacity is a limit-closed property.

Proof. We want to show that the limit H of an infinite sequence of finite ever-extending
du-opaque histories is du-opaque. By Corollary 1, we can assume the sequence of du-
opaque histories to be H0,H1, . . .Hi,Hi+1, . . . such that for all i ∈ N, Hi+1 is the one-
event extension of Hi.

We construct a rooted directed graph GH as follows:

1. The root vertex of GH is (H0,S0) where S0 and H0 contain the initial transaction
T0.

2. Each non-root vertex of GH is a tuple (Hi,Si), where Si is a du-opaque serialization
of Hi that satisfies the condition specified in Lemma 2: for all Tk,Tm ∈ txns(H);
Tk ≺LS

Hi Tm implies Tk <Si Tm. Note that there exist several possible serializations for
any Hi. For succinctness, in the rest of this proof, when we refer to a specific Si, it
is understood to be associated with the prefix Hi of H.

3. Let cseqi(S
j), j ≥ i, denote the subsequence of seq(S j) restricted to transactions

whose last event in H is a response event and it is contained in Hi. For every pair
of vertices v = (Hi,Si) and v′ = (Hi+1,Si+1) in GH , there is an edge from v to v′ if
cseqi(S

i) = cseqi(S
i+1).

The out-degree of a vertex v = (Hi,Si) in GH is defined by the number of possi-
ble serializations of Hi+1, bounded by the number of possible permutations of the set
txns(Si+1), implying that GH is finitely branching.

By Lemma 1, given any serialization Si+1 of Hi+1, there is a serialization Si of Hi

such that seq(Si) is a subsequence of seq(Si+1). Indeed, the serialization Si of Hi also
respects the restriction specified in Lemma 2. Since seq(Si+1) contains every complete
transaction that takes its last step in H in Hi, cseqi(S

i) = cseqi(S
i+1). Therefore, for

every vertex (Hi+1,Si+1), there is a vertex (Hi,Si) such that cseqi(S
i) = cseqi(S

i+1).
Thus, we can iteratively construct a path from (H0,S0) to every vertex (Hi,Si) in GH ,
implying that GH is connected.

We now apply König’s Path Lemma (Lemma 3) to GH . Since GH is an infinite con-
nected finitely branching rooted directed graph, we can derive an infinite sequence of
distinct vertices

L = (H0,S0),(H1,S1), . . . ,(Hi,Si), . . .

such that cseqi(S
i) = cseqi(S

i+1).

60 H. Attiya et al.

The rest of the proof explains how to use L to construct a serialization of H. We
begin with the following claim concerning L .

Claim. For any j > i, cseqi(S
i) = cseqi(S

j).

Proof. Recall that cseqi(S
i) is a prefix of cseqi(S

i+1), and cseqi+1(S
i+1) is a prefix of

cseqi+1(S
i+2). Also, cseqi(S

i+1) is a subsequence of cseqi+1(S
i+1). Hence, cseqi(S

i) is
a subsequence of cseqi+1(S

i+2). But, cseqi+1(S
i+2) is a subsequence of cseqi+2(S

i+2).
Thus, cseqi(S

i) is a subsequence of cseqi+2(S
i+2). Inductively, for any j > i, cseqi(S

i)
is a subsequence of cseq j(S

j). But cseqi(S
j) is the subsequence of cseq j(S

j) restricted
to complete transactions in H whose last step is in Hi. Thus, cseqi(S

i) is indeed equal
to cseqi(S

j). 	

Let f : N→ txns(H) be defined as follows: f (1) = T0. For every integer k > 1, let

ik = min{� ∈ N|∀ j > � : cseq�(S
�)[k] = cseq j(S

j)[k]}

Then, f (k) = cseqik (S
ik)[k].

Claim. The function f is total and bijective.

Proof. (Totality and surjectivity)
Since each transaction T ∈ txns(H) is complete in some prefix Hi of H, for each k ∈

N, there exists i ∈N such that cseqi(S
i)[k] = T . By Claim 3.4, for any j > i, cseqi(S

i) =
cseqi(S

j). Since a transaction that is complete in Hi w.r.t H is also complete in H j w.r.t
H, it follows that for every j > i, cseq j(S

j)[k′] = T , with k′ ≥ k. By construction of GH

and the assumption that each transaction is complete in H, there exists i ∈ N such that
each T ∈ LsetHi(T) is complete in H and its last step is in Hi, and T precedes in Si

every transaction whose first event succeeds the last event of each T ′ ∈ LsetHi(T) in Hi.
Indeed, this implies that for each k ∈ N, there exists i ∈ N such that cseqi(S

i)[k] = T ;
∀ j > i : cseq j(S

j)[k] = T .
This shows that for every T ∈ txns(H), there are i,k ∈ N; cseqi(S

i)[k] = T , such that
for every j > i, cseq j(S

j)[k] = T . Thus, for every T ∈ txns(H), there is k such that
f (k) = T .

(Injectivity)
If f (k) and f (m) are transactions at indices k, m of the same cseqi(S

i), then clearly
f (k) = f (m) implies k =m. Suppose f (k) is the transaction at index k in some cseqi(S

i)
and f (m) is the transaction at index m in some cseq�(S

�). For every � > i and k < m, if
cseqi(S

i)[k] = T , then cseq�(S
�)[m] �= T since cseqi(S

i) = cseqi(S
�). If � > i and k > m,

it follows from the definition that f (k) �= f (m). Similar arguments for the case when
� < i prove that if f (k) = f (m), then k = m. 	

By Claim 3.4, F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of transactions.
Let S be a t-complete t-sequential history such that seq(S) =F and for each t-complete
transaction Tk in H, S|k=H|k; and for transaction that is complete, but not t-complete in
H, S|k consists of the sequence of events in H|k, immediately followed by tryAk() ·Ak.
Clearly, there is a completion of H that is equivalent to S.

Let F i be the prefix ofF of length i, and Ŝi be the prefix of S such that seq(Ŝi) =F i.

Safety and Deferred Update in Transactional Memory 61

W1(X ,1) tryC1

R2(X)→ 1

W3(X ,1) tryC3

T1 A1

T2

T3 C3

Fig. 3. A history that is opaque, but not du-opaque

Claim. Let Ĥ j
i be a subsequence of H j reduced to transactions Tk ∈ txns(Ŝi) such that

the last event of Tk in H is a response event and it is contained in H j. Then, for every i,
there is j such that Ŝi is a serialization of Ĥ j

i .

Proof. Let H j be the shortest prefix of H (from L) such that for each T ∈ txns(Ŝi),
if seq(S j)[k] = T , then for every j′ > j, seq(S j′)[k] = T . From the construction of F ,
such j and k exist. Also, we observe that txns(Ŝi)⊆ txns(S j) and F i is a subsequence of
seq(S j). Using arguments similar to the proof of Lemma 1, it follows that Ŝi is indeed a
serialization of Ĥ j

i . 	

Since H is complete, there is exactly one completion of H, where each transac-

tion Tk that is not t-complete in H is completed with tryCk ·Ak after its last event. By
Claim 3.4, the limit t-sequential t-complete history is equivalent to this completion, is
legal, respects the real-time order of H, and ensures that every read is legal in the cor-
responding local serialization. Thus, S is a serialization of H. 	

Theorem 1 implies the following:

Corollary 2. Let M be a TM implementation that ensures that in every infinite history
H of M, every transaction T ∈ txns(H) is complete in H. Then, M is du-opaque if and
only if every finite history of M is du-opaque.

4 Du-Opacity vs. Opacity

We now compare our deferred-update requirement with the conventional TM correct-
ness property of opacity [7].

Theorem 2. Du-opacity � Opacity.

Proof. We first claim that every finite du-opaque history is opaque. Let H be a finite
du-opaque history. By definition, there is a final-state serialization S of H. Since du-
opacity is a prefix-closed property, every prefix of H is final-state opaque. Thus, H is
opaque.

Again, since every prefix of a du-opaque history is also du-opaque, by Definition 4,
every infinite du-opaque history is also opaque.

To show that the inclusion is strict, we present an an opaque history that is not du-
opaque. Consider the finite history H depicted in Figure 3: transaction T2 performs a
read2(X) that returns the value 1. Observe that read2(X) → 1 is concurrent to tryC1,

62 H. Attiya et al.

but precedes tryC3 in real-time order. Although tryC1 returns A1 in H, the response
of read2(X) can be justified since T3 concurrently writes 1 to X and commits. Thus,
read2(X)→1 reads-from transaction T2 in any serialization of H, but since read2(X)≺RT

H
tryC3, H is not du-opaque even though each of its prefixes is final-state opaque.

We now formally prove that H is opaque. We proceed by examining every prefix
of H.

1. Each prefix up to the invocation of read2(X) is trivially final-state opaque.
2. Consider the prefix, Hi of H where the ith event is the response of read2(X). Let Si

be a t-complete t-sequential history derived from the sequence T1,T2 by inserting
C1 immediately after the invocation of tryC1(). It is easy to see that Si is a final-state
serialization of Hi.

3. Consider the t-complete t-sequential history S derived from the sequence T1,T3,T2

in which each transaction is t-complete in H. Clearly, S is a final-state serialization
of H.

Since H and every (proper) prefix of it are final-state opaque, H is opaque.
Clearly, the required final-state serialization S of H is specified by seq(S) = T1,T3,T2

in which T1 is aborted while T3 is committed in S (the position of T1 in the serialization
does not affect legality). Consider read2(X) in S; since H2,X , the prefix of H up to the
response of read2(X) does not contain an invocation of tryC3(), the local serialization
of read2(X) with respect to H and S, S2,X

H is T1 · read2(X). But read2(X) is not legal in
S2,X

H , which is a contradiction. Thus, H is not du-opaque. 	

4.1 The Unique-Write Case

We now show that du-opacity is equivalent to opacity assuming that no two transactions
write identical values to the same t-object (“unique-write” assumption).

Let Opacityuw ⊆ Opacity, be a property defined as follows:

1. an infinite opaque history H ∈ Opacityuw if and only if every transaction T ∈
txns(H) is complete in H, and

2. an opaque history H ∈ Opacityuw if and only if for every pair of write operations
writek(X ,v) and writem(X ,v′), v �= v′.

Theorem 3. Opacityuw =du-opacity.

Proof. We show first that every finite history H ∈Opacityuw is also du-opaque. Let H
be any finite opaque history such that for every pair of write operations writek(X ,v) and
writem(X ,v), performed by transactions Tk,Tm ∈ txns(H), respectively, v �= v′.

Since H is opaque, there is a final-state serialization S of H. Suppose by contradiction
that H is not du-opaque. Thus, there is a readk(X) that returns a value v ∈V in S that is
not legal in Sk,X

H , the local serialization of readk(X) with respect to H and S. Let Hk,X

and Sk,X denote the prefixes of H and S, respectively, up to the response of readk(X) in
H and S. Recall that Sk,X

H , the local serialization of readk(X) with respect to H and S,
is the subsequence of Sk,X that does not contain events of any transaction Ti ∈ txns(H)
so that the invocation of tryCi() is not in Hk,X . Since readk(X) is legal in S, there is a

Safety and Deferred Update in Transactional Memory 63

W1(X ,1) tryC1 R2(X)→ 1 R2(Y)→ 1

W3(X ,1) W3(Y,1) tryC3

T1 C1 T2

T3 C3

Fig. 4. A sequential du-opaque history, which is not opaque by the definition of [6]

committed transaction Tm ∈ txns(H) that performs writem(X ,v) that is the latest such
write in S that precedes Tk. Thus, if readk(X) is not legal in Sk,X

H , the only possibility is
that readk(X)≺RT

H tryCm(). Under the assumption of unique writes, there does not exist
any other transaction Tj ∈ txns(H) that performs write j(X ,v). Consequently, there does

not exist any H
k,X

(some completion of Hk,X) and a t-complete t-sequential history S′,
such that S′ is equivalent to H

k,X and S′ contains any committed transaction that writes
v to X . This is, Hk,X is not final-state opaque. However, since H is opaque, every prefix
of H must be final-state opaque, which is a contradiction.

By Definition 4, an infinite history H is opaque if every finite prefix of H is final-state
opaque. Theorem 1 now implies that Opacityuw ⊆ du-Opacity.

Definition 4 and Corollary 1 imply that du-Opacity ⊆ Opacityuw. 	

4.2 The Sequential-History Case

The deferred-update semantics was mentioned by Guerraoui et al. [6] and later adopted
by Kuznetsov and Ravi [14]. In both papers, opacity is only defined for sequential his-
tories, where every invocation of a t-operation is immediately followed by a matching
response. In particular, these definitions require the final-state serialization to respect
the read-commit order: in these definitions, a history H is opaque if there is a final-state
serialization S of H such that if a t-read of a t-object X by a transaction Tk precedes
the tryC of a transaction Tm that commits on X in H, then Tk precedes Tm in S. As
we observed in Figure 4, this definition is not equivalent to opacity even for sequential
histories.

The property considered in [6,14] is strictly stronger than du-opacity: the sequential
history H in Figure 4 is du-opaque (and consequently opaque by Theorem 2): a du-
opaque serialization (in fact the only possible one) for this history is T1,T3,T2. However,
in the restriction of opacity defined above, T2 must precede T3 in any serialization, since
the response of read2(X) precedes the invocation of tryC3().

5 Du-Opacity vs. Other Deferred-Update Criteria

In this section, we compare du-opacity to other TM correctness conditions, restricted
to provide the deferred-update semantics. We first discuss the stronger TMS2 prop-
erty [5], and then describe deferred-update versions of conditions weaker than opacity,
VWC [12] and TMS1 [5].

64 H. Attiya et al.

R1(X)→ 0 W1(X ,1) tryC1

R2(X)→ 0 W2(Y,1) tryC2

T1 C1

T2 C2

Fig. 5. A history that is du-opaque, but not TMS2 [5]

5.1 TMS2

Transactional Memory Specification (TMS) 1 and 2 were formulated in I/O automata
[5]. Following [2], we adapt these definitions to our framework and explicitly intro-
duce the deferred-update requirement. We start with TMS2, a restriction of opacity, and
discuss TMS1, a relaxation of du-opacity, in Section 5.3.

Definition 7 (du-TMS2). A history H is du-TMS2 if there is a legal t-complete t-
sequential history S equivalent to some completion, H of H such that

1. for any two transactions Tk,Tm ∈ txns(H), such that Tm is a committed updating
transaction, if Ck ≺RT

H tryCm or Ak ≺RT
H tryCm, then Tk ≺S Tm, and

2. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk <S Tm, and

3. each readk(X) in S that does not return Ak is legal in Sk,X
H .

We refer to S as the du-TMS2 serialization of H.

It has been shown [15] that TMS2 is a strictly stronger property than Opacity, i.e.,
TMS2 � Opacity. We now show that du-TMS2 is strictly stronger than du-opacity.
Indeed, from Definition 7, we observe that every history that is du-TMS2 is also du-
opaque. The following proposition completes the proof.

Proposition 2. There is a history that is du-opaque, but not du-TMS2.

Proof. Figure 5 depicts a history H that is du-opaque, but not du-TMS2. Indeed, there
is a du-opaque serialization S of H such that seq(S) = T2,T1. On the other hand, since
T1 commits before T2, T1 must precede T2 in any du-TMS2 serialization, there does not
exist any such serialization that ensures every t-read is legal. Thus, H is not du-TMS2.

	

Theorem 4. Du-TMS2 is prefix-closed.

Proof. Let H be any du-TMS2 history. Then, H is also du-opaque. By Corollary 1,
for every i ∈ N, there is a du-opaque serialization Si for Hi. We now need to prove
that, for any two transactions Tk,Tm ∈ txns(Hi), such that Tm is a committed updating
transaction, if Ck ≺RT

Hi tryCm or Ak ≺RT
Hi tryCm, there is a du-opaque serialization Si with

the restriction that Tk ≺Si Tm.
Suppose by contradiction that there exist transactions Tk,Tm ∈ txns(Hi), such that Tm

is a committed updating transaction and Ck ≺RT
Hi tryCm or Ak ≺RT

Hi tryCm, but Tm must
precede Tk in any du-opaque serialization Si. Since Tm �≺RT

Hi Tk, the only possibility is
that Tm performs writem(X ,v) and there is readk(X)→ v. However, by our assumption,

Safety and Deferred Update in Transactional Memory 65

writek(X ,v)≺RT
Hi tryCm: thus, readk(X) is not legal in its local serialization with respect

to Hi and Si—contradicting the assumption that Si is a du-opaque serialization of Hi.
Thus, there is a du-TMS2 serialization for Hi, proving that du-TMS2 is a prefix-closed
property. 	

Proposition 3. Du-TMS2 is not limit-closed.

Proof. The counter-example to establish that du-opacity is not limit-closed (Figure 2)
also shows that du-TMS2 is not limit-closed: all histories discussed in the counter-
example are in du-TMS2. 	

5.2 Virtual World Consistency (VWC)

Intuitively, VWC [12] and TMS1 [5] achieve intuitively understood safety of each trans-
action or response, without enforcing a single serialization. Both definitions use the
following “deferred-update” version of strict serializability [18]:

Definition 8 (Strict serializability). A finite history H is strictly serializable if there is
a legal t-complete t-sequential history S, such that

1. there is a completion H of H, such that S is equivalent to cseq(H), where cseq(H)
is the subsequence of H reduced to committed transactions in H,

2. for any two transactions Tk,Tm ∈ txns(H), if Tk ≺RT
H Tm, then Tk precedes Tm in S,

and
3. each readk(X) in S that does not return Ak is legal in Sk,X

H .

We refer to S as the (strictly serializable) serialization of H.

Notice that every du-opaque history is strictly serializable, but not vice-versa. The fol-
lowing result will be instrumental for understanding the properties of du-VWC and
du-TMS1.

Theorem 5. Strict serializability is a safety property.

Proof. (Sketch) Observe that any serialization of a finite history H does not include
events of any transaction that has not invoked tryC in H.

To show prefix-closure, a proof almost identical to that of Lemma 1 implies that,
given a strictly serializable history H and a serialization S, there is a serialization S′ of
H ′ (H ′ is some prefix of H) such that seq(S′) is a prefix of seq(S).

Consider an infinite sequence of finite histories

H0, . . . ,Hi,Hi+1, . . . ,

where Hi+1 is a one-event extension of Hi, we prove that the infinite limit H of this
ever-extending sequence is strictly serializable. As in Theorem 1, we construct an in-
finite rooted directed graph GH : a vertex is a tuple (Hi,Si) (note that for each i ∈ N,
there are several such vertices of this form), where Si is a serialization of Hi and there
is an edge from (Hi,Si) to (Hi+1,Si+1) if seq(Si) is a prefix of seq(Si+1). The resulting
graph is finitely branching since the out-degree of a vertex is bounded by the number of

66 H. Attiya et al.

possible serializations of a history. Observe that for every vertex (Hi+1,Si+1), there is
a vertex Hi,Si) such that seq(Si) is a prefix of seq(Si+1). Thus, GH is connected since
we can iteratively construct a path from the root (H0,S0) to every vertex (Hi,Si) in GH .
Applying König’s Path Lemma to GH , we obtain an infinite sequence of distinct ver-
tices, (H0,S0),(H1,S1), . . . ,(Hi,Si), Then, S = lim

i→∞
Si gives the desired serialization

of H. 	

Virtual World Consistency (VWC) [12] was proposed as a relaxation of opacity

(in our case, du-opacity), where each aborted transaction should be consistent with its
causal past (but not necessarily with a serialization formed by committed transactions).
Intuitively, a transaction T1 causally precedes T2 if T2 reads a value written and com-
mitted by T1. The original definition [12] required that no two write operations are ever
invoked with the same argument (the unique-writes assumption). Therefore, the causal
precedence is unambiguously identified for each transactional read. Below we give a
more general definition.

Given a t-sequential legal history S and transactions Ti,Tj ∈ txns(S), we say that Ti

reads X from Tj if (1) Ti reads v in X and (2) Tj is the last committed transaction that
writes v to X and precedes Ti in S.

Now consider a (not necessarily t-sequential) history H. We say that Ti could have
read X from Tj in H if Tj writes a value v to a t-object X , Ti reads v in X , and readi(X)
�≺RT

H tryC j().
Given T ⊆ txns(H), let HT denote the subsequence of H restricted to events of

transactions in T .

Definition 9 (du-VWC). A finite history H is du-virtual-world consistent if it is strictly
serializable, and for every aborted or t-incomplete transaction Ti ∈ txns(H), there is
T ⊆ txns(H) including Ti and a t-sequential t-complete legal history S such that:

1. S is equivalent to a completion of HT ,
2. For all Tj,Tk ∈ txns(S), if Tj reads X from Tk in S, then Tj could have read X from

Tk in H,
3. S respects the per-process order of H: if Tj and Tk are executed by the same process

and Tj ≺RT
H Tk, then Tj ≺S Tk.

We refer to S as a du-VWC serialization for Ti in H.

Intuitively, with every t-read on X performed by Ti in H, the du-VWC serialization S as-
sociates some transaction Tj from which Ti could have read the value of X . Recursively,
with every read performed by Tj, S associates some Tm from which Tj could have read,
etc. Altogether, we get a “plausible” causal past of Ti that constitutes a serial history.
Notice that to ensure deferred-update semantics, we only allow a transaction Tj to read
from a transaction Tk that invoked tryCk by the time of the read operation of Tj.

We now prove that du-VWC is a strictly weaker property than du-opacity. Since du-
TMS2 is strictly weaker than du-opacity (cf. Section 5.1), it follows that Du-TMS2 �

du-VWC.

Theorem 6. Du-opacity � du-VWC.

Safety and Deferred Update in Transactional Memory 67

R1(X)→ 1 R1(Y)→ 0

W2(X ,1)

W3(Y,1)R3(X)→ 0

T1 A1

T2 C2

T3 C3

Fig. 6. A history that is du-VWC, but not du-opaque

Proof. If a history H is du-opaque, then there is a du-opaque serialization S equivalent
to H, where H is some completion of H. By construction, S is a total-order on the set
of all transactions that participate in S. Trivially, by taking T = txns(H), we derive that
S is a du-VWC serialization for every aborted or t-incomplete transaction Ti ∈ txns(H).
Indeed, S respects the real-time order and, thus, the per-process order of H. Since S
respects the deferred-update order in H, every t-read in S “could have happened” in H.

To show that the inclusion is strict, Figure 6 depicts a history H that is du-VWC, but
not du-opaque. Clearly, H is strictly serializable. Here T2, T1 is the required du-VWC
serialization for aborted transaction T1. However, H has no du-opaque serialization. 	

Theorem 7. Du-VWC is a safety property.

Proof. By Definition 9, a history H is du-VWC if and only if H is strictly serializable
and there is a du-VWC serialization for every transaction Ti ∈ txns(H) that is aborted
or t-incomplete in H.

To prove prefix-closure, recall that strict serializability is a prefix-closed property
(Theorem 5). Therefore, any du-VWC serialization S for a transaction Ti in history H
is also a du-VWC serialization S for a transaction Ti in any prefix of H that contains
events of Ti.

To prove limit-closure, consider an infinite sequence of du-VWC histories H0, H1,
. . ., Hi, Hi+1 , . . ., where each Hi+1 is the one-event extension of Hi and prove that the
infinite limit, H of this sequence is also a du-VWC history. Theorem 5 establishes that
there is a strictly serializable serialization for H.

Since, for all i ∈ N, Hi is du-VWC, for every transaction Ti that is t-incomplete or
aborted in Hi, there is a VWC serialization for Ti. Consequently, there is a du-VWC
serialization for every aborted or incomplete transaction Ti in H. 	

5.3 TMS1

Given a history H, TMS1 requires us to justify the behavior of all committed transac-
tions in H by a legal t-complete t-sequential history that preserves the real-time order
in H (strict serializability), and to justify the response of each complete t-operation per-
formed in H by a legal t-complete t-sequential history S. The t-sequential history S used
to justify a complete t-operation opi,k (the ith t-operation performed by transaction Tk)
includes Tk and a subset of transactions from H whose operations justify opi,k. (Our
description follows [2].)

Let Hk,i denote the prefix of a history H up to (and including) the response of ith

t-operation opk,i of transaction Tk. We say that a history H ′′ is a possible past of Hk,i if

68 H. Attiya et al.

H ′′ is a subsequence of Hk,i and consists of all events of transaction Tk and all events
from some subset of committed transactions and transactions that have invoked tryC in
Hk,i such that if a transaction T ∈ H ′′, then for a transaction T ′ ≺RT

Hk,i T , T ′ ∈ H ′′ if and

only if T ′ is committed in Hk,i. Let cTMSpast(H,opk,i) denote the set of possible pasts
of Hk,i.

For any history H ′′ ∈ cTMSpast(H,opk,i), let ccomp(H ′′) denote the history gener-
ated from H ′′ by the following procedure: for all m �= k, replace every event Am by
Cm and complete every incomplete tryCm with including Cm at the end of H ′′; include
tryCk ·Ak at the end of H ′′.

Definition 10 (du-TMS1). A history H satisfies du-TMS1 if

1. H is strictly serializable, and
2. for each complete t-read opi,k that returns a non-Ak response in H, there exist a

legal t-complete t-sequential history S and a history H ′ such that:
– H ′ = ccomp(H ′′), where H ′′ ∈ cTMSpast(H,opk,i)
– H ′ is equivalent to S
– for any two transactions Tk and Tm in H ′, if Tk ≺RT

H′ Tm then Tk <S Tm

We refer to S as the du-TMS1 serialization for opi,k.

Theorem 8. Du-TMS1 is a safety property.

Proof. A history H is du-TMS1 if and only if H is strictly serializable and there is a
du-TMS1 serialization for every t-operation opk,i that does not return Ak in H.

To see that du-TMS1 is prefix closed, recall that strict serializability is a prefix-closed
property. Let H be any du-TMS1 history and Hi, any prefix of H. We now need to prove
that, for every t-operation opk,i �= tryCk that returns a non-Ak response in Hi, there is a
du-TMS1 serialization for opk,i. But this is immediate since the du-TMS1 serialization
for opi,k in H is also the required du-TMS1 serialization for opk,i in Hi.

To see that du-TMS1 is limit closed, consider an infinite sequence

H0,H1, . . .Hi,Hi+1, . . .

of finite du-TMS1 histories, such that Hi+1 is a one-event extension of Hi. Let let H be
the corresponding infinite limit history. We want to show that H is also du-TMS1.

Since strict serializability is a limit-closed property (Theorem 5), H is strictly serial-
izable. By assumption, for all i ∈ N, Hi is du-TMS1. Thus, for every transaction Ti that
participates in Hi, there is a du-TMS1 serialization Si,k for each t-operation opk,i. But
Si,k is also the required du-TMS1 serialization for opk,1 in H. The claim follows. 	

It has been shown [15] that Opacity is a strictly stronger property than du-TMS1,
that is, Opacity � du-TMS1. Since Du-Opacity � Opacity (Theorem 2) it follows that
Du-Opacity � du-TMS1. On the other hand, du-TMS1 is incomparable to du-VWC, as
demonstrated by the following examples.

Proposition 4. There is a history that is du-TMS1, but not du-VWC.

Safety and Deferred Update in Transactional Memory 69

W1(X ,1) tryC1

W2(X ,0) tryC2

R3(X)→ 0 tryC3

T1 C1

T2 C2

T3 A3

Fig. 7. A history which is du-VWC but not du-TMS1

tryC1

tryC2

tryC3

tryC4

R1(X)→ 0 W1(Y,1)

W2(X ,2)

R3(X)→ 0 W3(Z,3)

R4(X)→ 2 R4(Y)→ 0 R4(Z)→ 3

T1 C1

T2 C2

T3 A3

T4 A4

Fig. 8. A history which is du-TMS1 but not du-VWC

Proof. Figure 8 depicts a history H that is du-TMS1, but not du-VWC. Observe that
H is strictly serializable. To prove that H is du-TMS1, we need to prove that there is
a TMS1 serialization for each t-read that returns a non-abort response in H. Clearly,
the serialization in which only T3 participates is the required TMS1 serialization for
read3(X) → 0. Now consider the aborted transaction T4. The TMS1 serialization for
read4(X) → 2 is T2,T4, while the TMS1 serialization that justifies the response of
read4(Y)−> 0 includes just T4 itself. The only nontrivial t-read whose response needs
to be justified is read4(Z)→ 3. Indeed, tryC3 overlaps with read4(Z) and thus, the re-
sponse of read4(Z) can be justified by choosing transactions in cTMSpart(H,read4(Z))
to be {T3,T2,T4} and then deriving a TMS1 serialization S= T3,T2,T4 for read4(Z)→ 3
in which tryC3 may be completed by including the commit response.

However, H is not du-VWC. Consider transaction T3 which returns A3 in H: T3 must
be aborted in any serialization equivalent to some direct causal past of T4. But read4(Z)
returns the value 3 that is written by T3. Thus, read4(Z) cannot be legal in any du-VWC
serialization for T4. 	

Proposition 5. There is a history that is du-VWC, but not du-TMS1.

Proof. Figure 7 depicts a history H that is du-VWC, but not du-TMS1. Clearly, H is
strictly serializable. Observe that T3 could have read only from T1 in H (T1 writes the
value 0 to X that is returned by read3(X)). Therefore, T1,T3 is the required du-VWC
serialization for aborted transaction T3.

However, H is not du-TMS1: since both transactions T1 and T2 are committed and
precede T3 in real-time order, they must be included in any du-TMS1 serialization for
read3(X)→ 0. But there is no such du-TMS1 serialization that would ensure the legality
of read3(X). 	

70 H. Attiya et al.

Fig. 9. Relations between TM consistency definitions

6 Concluding Remarks

The properties discussed in this paper explicitly preclude reading from a transaction
that has not yet invoked tryC, which makes them prefix-closed and facilitates their veri-
fication. We believe that this constructive definition is useful to TM practitioners, since
it streamlines possible implementations of t-read and tryC operations.

We showed that du-opacity is limit-closed under the restriction that every operation
eventually terminates, while du-VWC and du-TMS1 are (unconditionally) limit-closed,
which makes them safety properties [16].

Figure 9 summarizes the containment relations between the properties discussed in
this chapter: opacity, du-opacity, du-VWC, du-TMS1 and du-TMS2.

Linearizability [4, 11], when applied to objects with finite nondeterminism (i.e., an
operation applied to a given state may produce only finitely many outcomes) sequen-
tial specifications is a safety property [8, 16]. Recently, it has been shown [8] that
linearizability is not limit-closed if the implemented object may expose infinite non-
determinism [8], that is, an operation applied to a given state may produce infinitely
many different outcomes. The limit-closure proof (cf. Theorem 1), using König’s
lemma, cannot be applied with infinite non-determinism, because the out-degree of the
graph GH , constructed for the limit infinite history H, is not finite.

In contrast, the TM abstraction is deterministic, since reads and writes behave de-
terministically in serial executions, yet du-opacity is not limit-closed. It turns out that
the graph GH for the counter-example history H in Figure 2 is not connected. For ex-
ample, one of the finite prefixes of H can be serialized as T3, T1, T2, but no prefix has
a serialization T3, T1 and, thus, the root is not connected to the corresponding vertex of
GH . Thus, the precondition of König’s lemma does not hold for GH : the graph is in fact
an infinite set of isolated vertices. This is because du-opacity requires even incomplete
reading transactions, such as T2, to appear in the serialization, which is not the case for
linearizability, where incomplete operations may be removed from the linearization.

Safety and Deferred Update in Transactional Memory 71

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–
185 (1985)

2. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in transactional
memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp. 376–390. Springer, Heidelberg (2014)

3. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-
ory. In: ICDCS, pp. 601–610 (2013)

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, 2nd edn. Wiley Interscience (2004)

5. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

6. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)

7. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on Dis-
tributed Computing Theory. Morgan and Claypool (2010)

8. Guerraoui, R., Ruppert, E.: Linearizability is not always a safety property. In: Noubir, G.,
Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8539, pp. 57–69. Springer, Heidelberg (2014)

9. Hadzilacos, V.: A theory of reliability in database systems. J. ACM 35(1), 121–145 (1988)
10. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)
11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
12. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a ver-

satile protocol with invisible read operations). Theor. Comput. Sci. 444 (July 2012)
13. König, D.: Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie

der Streckenkomplexe. Akad. Verlag (1936)
14. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. CoRR,

abs/1103.1302 (2011)
15. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: WTTM (2012)
16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
17. Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst. 4(3), 455–495 (1982)
18. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631–653

(1979)
19. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–213 (1995)

Disjoint-Access Parallelism
in Software Transactional Memory

Hagit Attiya1 and Panagiota Fatourou2

1 Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 FORTH ICS & University of Crete, Heraklion, Greece
faturu@csd.uoc.gr

Abstract. Disjoint-access parallelism captures the requirement that unrelated
transactions progress independently, without interference, even if they occur at
the same time. That is, an implementation should not cause two transactions,
which are unrelated at the high-level, i.e. they access disjoint sets of data items, to
simultaneously access the same low-level shared memory locations. This chapter
will formalize this notion and will discuss if and when STM can achieve disjoint-
access parallelism, by presenting impossibility results and discussing some of the
disjoint-access parallel STM implementations. For example, no dynamic STM
can be disjoint-access parallel, if it ensures wait-freedom for read-only transac-
tions and a weak liveness property, known as minimal progress, for update trans-
actions. In fact, even if transactions are static, STM implementations cannot be
disjoint-access parallel, when read-only transactions must be wait-free and in-
visible. These impossibility results hold even when only snapshot isolation is
required for the STM, and not stronger conditions like opacity or strict serial-
izability. The second of these impossibility results holds for serializable STM
as well.

1 Introduction

As anyone with a laptop or an Internet connection knows, the multi-core revolution is
here, since almost any computing appliance contains several processing cores. With the
improved hardware comes the need to harness the power of concurrency, since the pro-
cessing power of individual cores does not increase. Applications must be restructured
in order to reap the benefits of multiple processing units, without paying a hefty price
for coordination among them.

It has been argued that writing concurrent applications is significantly more challeng-
ing than writing sequential ones, and Transactional Memory (TM) has been suggested
as a way to deal with this difficulty. In the simplest form of TM, the programmer need
only wrap code with operations denoting the beginning and end of a transaction. The
transactional memory will take care of synchronizing the shared memory accesses so
that each transaction seems to execute sequentially and in isolation.

Originally suggested as a hardware platform by Herlihy and Moss [31], TM has
resurfaced as a software mechanism a couple of years later. The first software imple-
mentation of transactional memory was suggested by Shavit and Touitou [46]; it pro-
vided, in essence, support for multi-word synchronization operations on a static set of

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 72–97, 2015.
c© Springer International Publishing Switzerland 2015

Disjoint-Access Parallelism in Software Transactional Memory 73

data items, in terms of a unary operation (LL/SC), somewhat optimized over prior im-
plementations, e.g., [8,48]. Shavit and Touitou coined the term software transactional
memory (STM) to describe their implementation.

Only when the termination condition was relaxed to obstruction freedom (see Sec-
tion 2.2), the first STM handling a dynamic set of data items was presented by Herlihy
et al. [30]. Work by Rajwar et al., e.g., [39,44], helped to popularize the TM approach
in the programming languages and hardware communities.

Despite its simplicity, or perhaps because of it, transactional memory implemen-
tations incur significant cost, as has been discovered in recent theoretical work. This
chapter describes several of these impossibility results and lower bounds, and their in-
teraction with various properties of transactional memory. It also discusses some of the
disjoint-access parallel STM implementations presented in the literature.

2 Formalizing TM

This section outlines how transactional memory can be formally captured, as well as
properties expected of it. A comprehensive in-depth treatment is provided by Guerraoui
and Kapałka [27].

The model encompasses at least two levels of abstraction: The high level has trans-
actions, each of which is a sequence of operations accessing data items. At the low
level, the operations are translated into executions in which a sequence of events apply
primitive operations (or primitives) to base objects, containing the data and the meta-
data needed for the implementation. (See Fig. 1.) A primitive is non-trivial if it may
change the value of a base object, and trivial, otherwise.

A transaction is a sequence of operations executed by a single process on a set of
data items, shared with other transactions. Data items are accessed by read and write
operations; a (dynamic) transaction can dynamically create new data items by invoking
create operations. Some systems also support other operations. The interface addition-
ally includes try-commit (tryC) and try-abort (tryA) operations, in which a transaction
requests to commit or abort, respectively. If the response of try-commit is commit, the
writes of the transaction are ensured to take effect, and we say that the transaction is
committed (or has successfully completed). Any of these operations, not just try-abort,
may cause the transaction to abort, in which case, none of its writes take effect and
we say that the transaction is aborted. If the transaction is aborted not in response to
try-abort, we say that it is forcibly aborted.

A software implementation of transactional memory (abbreviated STM) provides
data representation for transactions and data items using base objects, and algorithms,
specified as sequences of primitives on the base objects. Specifically, it provides an im-
plementation, for each process, for procedures READ, WRITE, TRYCOMMIT,

Fig. 1. Levels of abstraction in transactional memory

74 H. Attiya and P. Fatourou

TRYABORT (and CREATE if the STM implementation rely on per-object metadata).
These procedures are performed by asynchronous processes in order to execute the op-
erations of transactions. The primitives can be simple reads and writes, but also more
sophisticated ones, like CAS, typically applied to memory locations, which are the base
objects for the implementation.

When processes invoke these procedures, in an interleaved manner, we obtain exe-
cutions, in the standard sense of asynchronous distributed computing (cf. [6]). A con-
figuration describes a complete state of the system at some point in time: it is a vector
with components comprising the state of each process and the state of each base object.
In an initial configuration, each process is in an initial state and each base object has
an initial value. An execution is a sequence of events. An event describes a single step
by an individual process; a step of a process consists of an application of a single prim-
itive to a base object, the response to that primitive, and local computation which may
cause the internal state of the process to change. An execution is legal starting from a
configuration C if the sequence of events caused by each process follows the algorithm
for that process (starting from its state in C) and, for each base object, the responses to
the primitives performed on the object are in accordance with its specification (and the
state of the object at configuration C). An execution α is indistinguishable from another
execution α ′ for some processes, if each of these processes causes the same events (i.e.
takes the same steps) in α and α ′. An execution is solo if all its events are caused by
the same process.

Consider any execution α produced by an STM implementation I (I may support or
not dynamic transactions). The collection of data items read or written by a transaction
in α is its data set for α; the items written by the transaction are its write set, with the
other items being its read set. A data item is static if it exists in the initial configuration.
It is dynamic, if it is created dynamically, by invoking CREATE during α .

The interval of a transaction T in α is the execution interval that starts at the first
event of T and ends at the last event of T in α . If T does not have a last event in α , then
the interval of T is the (possibly infinite) suffix of α starting at the first event of T . Two
transactions overlap if their intervals overlap. We say that a transaction T is active in
some configurationC, if C is a configuration other than the first and the last in the execu-
tion interval of T . A process can have at most one active transaction in a configuration.
A configuration is quiescent if no transaction is active in the configuration.

2.1 Safety: Consistency Properties of TM

An STM is serializable if committed transactions appear to execute sequentially, one
after the other [42]. An STM is strictly serializable if this serialization order preserves
the order of non-overlapping transactions [42]. This notion is called order-preserving
serializability in [49], and is the analogue of linearizability [33] for transactions.1

1 Linearizability, like sequential consistency [38], talks about implementing abstract data struc-
tures, and hence they involve one abstraction—from the high-level operations of the data struc-
ture to the low level primitives. It also provides the semantics of the operations, and their
expected results at the high-level, on the data structure.

Disjoint-Access Parallelism in Software Transactional Memory 75

Opacity, suggested by Guerraoui and Kapałka [25], further demands that the (global)
reads of even partially executed transactions, which may later abort, must be serializ-
able (in an order-preserving manner); a read on a data item is global if the transaction
executing it has not performed any write on this data item before the read. Opacity also
accommodates operations beyond read and write.

While opacity is a stronger condition than strict serializability, snapshot isolation [9]
is a consistency condition weaker than strict serializability. Roughly stated, snapshot
isolation requires that transactions read from some consistent snapshot of the memory
which is taken when they begin their execution (Cf. [49, Definition 10.3] and [19].)
Riegel et al. [45] proposed to use snapshot isolation for TM.

Virtual World Consistency (VWC), defined by Imbs et al. [34], is a weakening of
opacity, tailored for transactional memory. VWC allows aborted (and ongoing) transac-
tions to observe mutually inconsistent views of the execution, as long as each of them is
consistent with some sequential execution of the committed transactions in their “causal
past”. A related condition, called Transactional Memory Specification (referred to as
TMS1), was suggested by Doherty et al. [17]. TMS1 considers each aborted transaction
in isolation.

Dziuma et al. provide in [19] formal definitions for these and other consistency con-
ditions for transactional memory. Additional discussion of the relations between various
TM and database consistency conditions is given by Attiya and Hans [3].

2.2 Progress: Termination Guarantees for TM

One of the innovations of TM is in allowing transactions not to commit, when they are
faced with conflicting transactions, namely, transactions that access the same data items.
This, however, admits trivial implementations where no progress is ever made. Finding
the right balance between nontriviality and efficiency has lead to several progress prop-
erties. They are first and foremost distinguished by whether locking is accommodated
or not.

When locks are not allowed, the strongest requirement—rarely provided—is of wait-
freedom, namely, that each transaction has to eventually commit. A weaker property en-
sures that some transaction eventually commits, or that a transaction commits when it is
executed solo for long enough time. The last property is called obstruction-freedom [30]
(see further discussion in [2]).

A lock-based STM (e.g., TL2 [15]) is often required to be (weakly) progressive [26],
namely, a transaction that does not encounter a conflicting transaction must commit.
(There is a conflict between two transactions, if both of them access the same data item;
if one of these accesses is a write the conflict is nontrivial.)

Several lower bounds assume a minimal progress property, ensuring that a transac-
tion terminates successfully if it runs alone, from a situation in which no other trans-
action is pending. This property is implied both by obstruction freedom and by weak
progressiveness.

Related definitions [22,26,36] further attempt to capture the distinction between
aborts that are necessary in order to maintain the safety properties (e.g., opacity) and
spurious aborts that are not mandated by the consistency property, and to measure their
ratio.

76 H. Attiya and P. Fatourou

Strong progressiveness [26] ensures that even when there are conflicts, some trans-
action commits. More specifically, an STM is strongly progressive if a transaction with-
out nontrivial conflicts, namely, a conflict involving at least one write. is not forcibly
aborted, and if a set of transactions have nontrivial conflicts on a single item then not
all of them are forcibly aborted. (Recall that a transaction is forcibly aborted, when the
abort was not requested by a try-abort operation of the transaction, i.e., the abort is in
response to try-commit, read or write operations.)

Permissiveness tries to capture the number of unjustified, spurious aborts; it requires
a transaction to commit unless doing so violates correctness [23]; said otherwise, this
means that a transaction can abort or block only if committing may violate correctness.
A weaker condition, given by Fan et al. [43], says that an STM is multi-version (MV)-
permissive if a transaction is forcibly aborted (not because it requests to abort) only if
it is an update transaction that has a nontrivial conflict with another update transaction.

Strong progressiveness and MV-permissiveness are incomparable: The former al-
lows a read-only transaction to abort, if it has a conflict with another update transaction,
while the latter does not guarantee that at least one transaction is not forcibly aborted in
case of a conflict.

Fig. 2 shows the relations between these progress conditions.

Fig. 2. Relations between progress conditions for transactional memory

Remark 1. Strictly speaking, these properties are not liveness properties in the tradi-
tional sense [37], since they can be checked in finite executions.

2.3 Disjoint-Access Parallelism

There has been some theoretical attempts to predict how much parallelism will TM im-
plementations exploit, resulting in definitions that postulate behaviors that are expected
to yield superior performance.

The most accepted such notion is disjoint-access parallelism, capturing the require-
ment that unrelated transactions progress independently, even if they occur at the same
time. That is, an implementation should not cause two transactions, which are unrelated
at the high-level, to simultaneously access the same low-level shared memory.

Disjoint-Access Parallelism in Software Transactional Memory 77

We explain what it means for two transactions to be unrelated through a conflict
graph that represents the relations between transactions. Consider an execution α and an
execution interval I of α . The conflict graph of I is an undirected graph, where vertices
represent transactions in α whose execution intervals intersect with I, and edges connect
those pairs of transactions whose data sets are not disjoint. Two transactions T1 and T2

are disjoint access in α if there is no path between the vertices representing them in the
conflict graph of the minimal execution interval of α containing the execution intervals
of both T1 and T2; they are strictly disjoint access if there is no edge between these
vertices.

Fig. 3 illustrates the conflict graph for six transactions: T1 with data set {A,B,C},
T2 with data set {A,D}, T3 with data set {D,E}, T4 with data set {F,L}, T5 with data
set {L} and T6 with data set {J}.

Fig. 3. An example of a conflict graph

In this example, the data sets of T1 and T2 intersect, as do the data sets of T2 and T3,
while the data sets of T1 and T3 do not intersect. Hence, T1 and T2 (as well as T2 and
T3) are strictly disjoint-access, whereas T1 and T3 are disjoint access but not strictly
disjoint access.

Two events contend on a base object o if they both access o, and at least one of them
applies a nontrivial primitive to o. Transactions concurrently contend on a base object
o if they have pending events at the same configuration that contend on o.

Definition 1 (Weak Disjoint-Access Parallelism). An STM implementation is
(weakly) disjoint-access parallel if two transactions concurrently contend on the same
base object only if they are not disjoint access.

This definition captures the first condition of the disjoint-access parallelism prop-
erty of Israeli and Rappoport [35], in accordance with most of the literature (cf. [32]).
It is somewhat weaker, as it allows two processes to apply a trivial primitive on the
same base object, e.g., read, even when executing disjoint-access transactions. More-
over, this definition only prohibits concurrent contending accesses, allowing disjoint-
access transactions to contend on a base object o at different points of the execution. A
stronger requirement is:

Definition 2 (Strong Disjoint-access Parallelism). An STM implementation is
disjoint-access parallel if two transactions concurrently access the same base object
only if they are not disjoint access.

The original disjoint-access parallelism definition [35] also restricts the impact of
concurrent transactions on the step complexity of a transaction. For additional defini-
tions and discussion, see [5].

78 H. Attiya and P. Fatourou

We remark that, to ensure disjoint-access parallelism, an STM algorithm could cheat,
by including in the implementation of each transactional operation fictitious invocations
to READ (or WRITE) for all data items. To avoid such fake situations, we make the
natural assumption that each STM algorithm executes the code of each transaction as
specified by its (enhanced) sequential code and provides implementations for READ,
WRITE, CREATE, or TRYCOMMIT which do not contain further invocations of any of
these routines.

3 Lower Bounds and Impossibility Results for Providing
Disjoint-Access Parallelism

Guerraoui and Kapałka [24] proved that obstruction-free serializable implementations
of software transactional memory cannot ensure strict disjoint-access parallelism. Strict
disjoint-access parallelism requires transactions with disjoint data sets (with strict dis-
joint access) not to contend on a common base object. This notion is stronger than
(weak) disjoint-access parallelism (Definition 1), which allows two transactions with
disjoint data sets to contend on the same base objects, provided they are connected in
the conflict graph via other transactions. Note that this impossibility result does not hold
under (weak) disjoint-access parallelism, as Herlihy et al. [30] present an obstruction-
free and disjoint-access parallel STM.

The result that obstruction-free implementations of software transactional memory
cannot ensure strict disjoint-access parallelism, has been extended in several important
ways.

For the stronger case of wait-free read-only transactions, the assumption of strict
disjoint-access parallelism can be replaced with the assumption that read-only transac-
tions are invisible and do not apply non-trivial primitives, e.g., writes. It is expected that
many typical applications will generate workloads that include a significant portion of
read-only transactions.

Many STMs attempt to optimize read-only transactions, and more generally, the im-
plementation of read operations inside the transaction. By their very nature, read oper-
ations, and even more so, read-only transactions, need not leave a mark on the shared
memory, and therefore, it is desirable to avoid writing in such transactions, i.e., to make
sure that reads are invisible, and certainly, that read-only transactions do not write at all.

Remark 2. Dice et al. [14] refer to a transaction as having invisible reads even if it
writes, but the information is not sufficiently detailed to supply the exact details about
the transaction’s data set. (In their words, “the STM does not know which, or even how
many, readers are accessing a given memory location.”) This behavior is captured by
the stronger notion of an oblivious STM [4].

Specifically, an STM cannot be disjoint-access parallel and have invisible read-only
transactions that always terminate successfully [5], even if update transactions are block-
ing. A read-only transaction not only has to write, but the number of writes is linear in
the size of its read set. These results hold even if the STM supports only static trans-
actions. Both results hold for strict serializability, and hence also for opacity. (See Sec-
tion 3.1.1.) Section 3.1.3 extends the results to hold for serializability.

Disjoint-Access Parallelism in Software Transactional Memory 79

In fact, even the original result of Guerraoui and Kapałka [24] holds with consis-
tency weaker than serializability: Bushkov et al. [11] have shown that it is impossible
to ensure strict disjoint-access parallelism and obstruction-freedom even if we weaken
safety to ensure a property which is weaker than snapshot isolation.

Ellen et al. shows in [18] that dynamic STM implementations (which satisfy a nat-
ural property) cannot ensure disjoint-access parallelism, wait-freedom for read-only
transactions, and minimal progress for update transactions; this result holds for STM
implementations that ensure snapshot isolation (and therefore also for those that ensure
any stronger consistency property).

Bushkov et al. [12] showed that no TM algorithm (whether or not it is disjoint-access
parallel) can ensure local progress. The impossibility results in [5,18] assume weaker
progress and safety properties than those of Bushkov et al. [12]. Table 1 summarizes
these impossibility results.

Table 1. Impossibility of achieving disjoint access parallelism (DAP). The table entry shows the
progress condition needed for proving the result.

Strict DAP Strong DAP DAP Feeble DAP No DAP

Opacity wait-freedom [12]
Linearizability Wait-freedom [18]
Strict Invisible, wait
serializability -free reads [5]
Serializability Obstruction Invisible, wait

-freedom [24] -free reads [5]
Snapshot Obstruction Invisible, wait Wait-free reads [18]
isolation -freedom [10] -free reads [5]

3.1 Wait-Free, Invisible Reads and Disjoint-Access Parallelism

3.1.1 Strictly Serializable STMs. Formally, a read-only transaction is invisible if its
algorithm only applies trivial primitives to base objects. Theorem 1 shows that in a
disjoint-access parallel STM implementation with invisible read-only transactions, some
read-only transaction does not terminate successfully in a finite number of steps.

Specifically, we construct an infinite execution of a read-only transaction. This exe-
cution consists of a single read-only transaction with one complete update transaction
between any pair of consecutive steps by the read-only transaction; an update is a trans-
action with a singleton write set and an empty read set. We first define a special (finite)
execution of this form, called flippable, and show that such a read-only transaction can-
not terminate successfully. Then we show how a flippable execution can be repeatedly
extended to construct successively longer flippable executions.

An execution is called flippable since there are two similar executions in which we
flip the position of two update transactions and one of the executions is indistinguish-
able from the original execution. One type of flipped execution is called a forward flip
since an update transaction is moved forward in the execution, while other is called a
backward flip since an update transaction is deferred in the execution. Formally:

80 H. Attiya and P. Fatourou

q : s1 . . . sl−1 sl . . . sk
p0 : U0 . . . Ul−1 . . . Uk
p1 : U1 . . . Ul . . .

Fig. 4. αk is a flippable execution of length k with two updaters

Definition 3. A flippable execution of length k with t updaters is a finite execution
αk = U0s1U1 . . . skUk executed by processes p0, . . . , pt−1 executing update transactions
and process q executing a read-only transaction, which reads and returns the value of t
data items ı0 . . . ıt−1. The execution αk satisfies all the following conditions:

1. for j = 1, . . . ,k, s j is a single step by q,
2. for j = 0, . . . ,k, Uj is a solo execution of a complete update transaction, in which

process ph ∈ {p0, . . . , pt−1}, writes j+ 1 to the data item ıh
3. consecutive update transactions are executed by different processes, and
4. for any l, 0 < l ≤ k, the execution

αk =U0s1U1 . . . sl−1Ul−1slUl . . .skUk

is indistinguishable to all processes from one of the following executions:

←−α l =U0s1U1 . . .sl−1UlUl−1sl . . . skUk

in which the update transaction Ul is executed before Ul−1sl instead of after Ul−1sl

(forward flip) or −→α l =U0s1U1 . . .sl−1slUlUl−1 . . . skUk

in which the update transaction Ul−1 is executed after slUl instead of before slUl

(backward flip).

Figs. 5(a) and 5(b) present the forward and the backward flips of the execution in
Fig. 4.

This definition, and the structure of our proof, is similar to the lower bound of Attiya,
Ellen and Fatourou [1] on the step complexity of update operations in implementations
of atomic snapshot objects. The main difference is that our definition of a flippable exe-
cution has two types of flipped executions, and t processes executing update transactions
instead of just two.

The next lemma proves that the read-only transaction in a flippable execution does
not terminate; it is proved by arguments similar to those applied in [1], extended to
handle the possibility of two kinds of flips (forward and backward).

Lemma 1. If the STM provides strict serializability, then the read-only transaction in
a flippable execution does not terminate successfully.

Proof. Let αk = U0s1U1 . . . skUk be a flippable execution. Assume, towards a contra-
diction, that q successfully terminates its read-only transaction in αk, with a result
(v0, . . . ,vt−1). The proof first fixes the serialization of the update transactions, and then

Disjoint-Access Parallelism in Software Transactional Memory 81

q : s1 . . . sl−1 sl . . . sk
p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

(a) Forward flip: Ul is performed before Ul−1sl .

q : s1 . . . sl−1 sl . . . sk

p0 : U0 . . . Ul−1 . . . Uk

p1 : U1 . . . Ul . . .

(b) Backward flip: Ul−1 is performed after slUl .

Fig. 5. Fig. 5(a) shows the forward flip execution of αk, where the update transaction Ul by
process p1 is executed before the update transaction Ul−1 by process p0 and before the step sl of
the read-only transaction; Fig. 5(b) shows the backward flip execution of αk , where the update
Ul−1 by process p0 is deferred after the update transaction Ul by process p1 and after the step sl
of the read-only transaction

shows that it is not possible to serialize the read-only transaction among the update
transactions, using the forward and backward flip executions, which are indistinguish-
able to q from αk.

Since the update transactions in the execution αk do not overlap, they must be seri-
alized in the order U0, . . . ,Uk. Since all steps of the read-only transaction by q are after
U0 and before Uk, it has a unique serialization point between Ul−1 and Ul , for some l,
1 ≤ l ≤ k. Let ıh be the item written by Ul−1, and recall that Ul−1 writes l to ıh; hence
vh = l.

The execution αk is indistinguishable to process q from βl , which is either the for-
ward flip ←−α l =U0s1U1 . . . sl−1UlUl−1slsl+1 . . .Uk

in which update Ul is executed before Ul−1sl instead of after Ul−1sl ; or the backward
flip −→α l =U0s1U1 . . . sl−1slUlUl−1sl+1 . . .Uk

in which update Ul−1 is executed after slUl instead of before slUl . Hence, the read-only
transaction executed by q in βl returns the same vector, (v0, . . . ,vt−1), as in αk.

Since the update transactions do not overlap in βl , they are serialized in the order
U0, . . . ,Ul ,Ul−1, . . . ,Uk, that is, the same as for αk, except that Ul−1 and Ul are flipped.
Since two consecutive update transactions are to different data items, the values of
{ı0, . . . , ıt−1} are the same after both update transactions have been executed, no matter
which has been executed first. Hence, at all points in the serialization of βl , except
between Ul and Ul−1, the value of all items {ı0, . . . , ıt−1} is the same as its value in the
corresponding points in the serialization of αk. Thus, the read-only transaction of q can
only be serialized after Ul and before Ul−1 in βl . However, since Ul−1 is the first write of
l to ıh, the value of ıh is not l before Ul−1, and hence, the read-only transaction executed
by q cannot be serialized between Ul and Ul−1. This contradicts the assumption that the
read-only transaction terminates successfully. ��

82 H. Attiya and P. Fatourou

Lemma 3 (below) shows how to inductively construct a flippable execution, when
read-only transactions are invisible. The crux of this lemma is quite different from [1],
as it relies on weakly disjoint-access parallelism. A critical step in the proof is provided
by Lemma 2, showing that in a weakly disjoint-access parallel STM, two consecu-
tive updates by different processes on different items cannot contend on the same base
objects. Note that two consecutive update transactions do not contradict weak disjoint-
access parallelism since the steps of their executing processes are not interleaved. The
proof of the next lemma shows that two such consecutive updates can be perturbed to
concurrently contend on the same base object.

Lemma 2. Given a weakly disjoint-access parallel STM implementation and a quies-
cent configuration C, consider the consecutive execution of two update transactions
UjhUjh′ , executed by a process ph on an item ıh and by process ph′ on an item ıh′ ,
h 	= h′, respectively, from C. Then ph and ph′ do not contend on the same base object
when executing Ujh and Ujh′ .

Proof. Assume, towards a contradiction, that ph and ph′ contend on a base object when
executing UjhUjh′ from a quiescent configuration C. If in Ujh , ph applies a non-trivial
primitive to a base object on which they contend, let φh be the last event in Ujh in which
ph applies such a primitive, say, to base object o. Let φh′ be the first event in Ujh′ that
accesses o.

Otherwise, ph only applies trivial primitives in Ujh to base objects on which it con-
tends with ph′ in Ujh′ ; let φh′ be the first event in Ujh′ in which ph′ applies a non-trivial
primitive to some base object, say, o, on which they contend. Let φh be the last event of
ph in Ujh that accesses o.

In both cases, denote by αhφh the prefix of the execution of Uh from C and by αh′φh′
the prefix of the execution of Uh′ after Uh.

We now create an overlapping execution of the update transactions Ujh and Ujh′ , by
processes ph and ph′ , from C. We argue that ph and ph′ perform the same steps up to
the events φh and φh′ , and ph and ph′ concurrently contend on base object o.

In more detail, consider the execution αhαh′ from C, in which ph executes Ujh until it
is about to perform φh, and then ph′ executes Ujh′ until it is about to perform φh′ . Clearly,
ph is about to perform φh also after αhαh′ . By construction, the execution interval αhαh′
from C is indistinguishable to ph′ from the execution interval Ujhαh′ from C. Hence,
ph′ is about to perform the event φh′ also after αhαh′ , that is, ph′ and ph concurrently
contend on o. However, the conflict graph of the execution interval αhαh′φh′φh does not
contain a path between the data sets of Ujh and Ujh′ , contradicting the assumption that
the implementation is weakly disjoint-access parallel. ��

Since two consecutive updates cannot contend on the same base object, we can con-
struct an execution where either the previous update is deferred or the next update is
moved forward in the execution without affecting the single step of the read-only trans-
action in between them. This allows us to inductively construct a flippable execution,
in the proof of the next lemma.

Lemma 3. For every k ≥ 0, every weakly disjoint-access parallel implementation of
an STM with invisible read-only transactions, which is minimally progressive, has a

Disjoint-Access Parallelism in Software Transactional Memory 83

flippable execution αk = U0s1U1s2 . . .Uk with two updaters p0 and p1, which is indis-
tinguishable to p0 and p1 from the execution α ′

k =U0U1 . . .Uk in which only p0 and p1

take steps.

Proof. The proof is by induction on the length, k, of the flippable execution αk executed
by a process q and two updaters p0 and p1 on two items {ı0, ı1}. In the base case, k = 0,
the lemma holds with a solo execution of U0, an update transaction by p0 that writes 1
to ı0. U0 successfully terminates since it runs solo from a quiescent configuration.

For the induction step, consider a flippable execution of length k ≥ 1, αk =
U0s1U1s2 . . .Uk, which is indistinguishable to p0 and p1 from the execution α ′

k =
U0U1 . . .Uk. We show how to construct a flippable execution of length k + 1, which
is indistinguishable from an execution in which only p0 and p1 take steps.

By Lemma 1, the read-only transaction does not terminate successfully in αk. Let
sk+1 be the next step by q. Assume Uk is executed by ph′ and let h = 1 − h′; note
that h 	= h′. Let αk+1 = αksk+1Uk+1, where process ph writes k+ 2 to ıh in the update
transaction Uk+1. Note that Uk+1 terminates successfully: The execution αksk+1 is in-
distinguishable to p0 and p1 from the execution α ′

k, because the read-only transaction
is invisible. The configuration at the end of α ′

k is quiescent, and since the execution
of Uk+1 from the configuration at the end of α ′

k must terminate successfully, since the
STM is minimally progressive, Uk+1 must also terminate successfully when executing
from the configuration at the end of αksk+1.

Since the read-only transaction by q is invisible, αksk+1Uk+1 is indistinguishable to
p0 and p1 from the execution α ′

kUk+1.
It remains to prove that αk+1 is a flippable execution, i.e., that for every l, 0 < l ≤

k+1, the execution αk+1 is indistinguishable to all processes from either ←−α l or −→α l . For
every l, 0 < l ≤ k, by the inductive assumption, the execution

αk =U0s1U1 . . .sl−1Ul−1slUl . . . skUk

is indistinguishable to all processes from the flipped execution βl which is either

←−α l =U0s1U1 . . . sl−1UlUl−1sl . . .Uk

or
−→α l =U0s1U1 . . .sl−1slUlUl−1 . . .skUk.

In particular, αk+1 = αksk+1Uk+1 and βlsk+1Uk+1 are indistinguishable to all processes.
To prove the condition for l = k+1, let C′

k−1 be the configuration at the end of α ′
k−1;

C′
k−1 is quiescent, and Lemma 2 implies that ph′ and ph do not contend on the same base

object when executing Uk followed by Uk+1 from C′
k−1, namely, in the suffix of α ′

k+1.
Since α ′

k+1 is indistinguishable to ph′ and ph from αk+1, ph′ and ph do not contend on
the same base object while executing Uk and Uk+1 also in the execution αk+1. Moreover,
if q accesses a base object o in sk+1, then either at least one of the two processes ph or
ph′ does not access o in Uk+1 or Uk, respectively, or they both apply a trivial primitive
to o. In the former case, if ph does not access o in Uk+1 then

←−α k+1 =U0s1U1 . . . skUk+1Uksk+1

84 H. Attiya and P. Fatourou

is indistinguishable to all processes from αk+1, while if ph′ does not access o in Uk, then

−→α k+1 =U0s1U1 . . . sksk+1Uk+1Uk

is indistinguishable to all processes from αk+1. If both ph and ph′ apply a trivial prim-
itive to o, then both flipped executions, ←−α k+1 and −→α k+1, are indistinguishable to all
processes from αk+1. ��

The impossibility result follows from Lemmas 1 and 3.

Theorem 1. There is no weakly disjoint-access parallel implementation with invisible
read-only transactions of a strictly serializable STM, which is minimally progressive, in
which read-only transactions always terminate successfully.

Theorem 1 holds also for opaque STMs [25], since opacity implies strict
serializability.

Theorem 1 can be extended to prove that a read-only transaction with a read set of t
items in a disjoint-access parallel STM implementation, which successfully terminates
in a finite number of steps, must apply non-trivial primitives to t − 1 base objects; this
assumes that there are at least t + 1 processes. This result was proved by Attiya, Hil-
lel and Milani [5]. It relies on strong disjoint-access parallelism, which requires two
transactions to be connected (in the conflict graph) even if they both just apply a trivial
primitive to the same base object. (Definition 2; this is the definition in [35].) The lower
bound holds for strictly serializable STMs, and hence, also for opaque STMs.

3.1.2 STMs with Snapshot Isolation. Snapshot isolation [9,40,45,49] decouples the
consistency of the reads and the writes. Informally, all read operations in a transaction
return the most recent value as of the time the transaction starts. In addition, the write
sets of any pair of concurrent transactions must be disjoint. For a formal definition,
see [49, Definition 10.3]. Attiya, Hillel and Milani [5] show results for this definition.

A somewhat weaker definition is used in the context of STMs, which requires all
read operations to return the values at some point during a transaction, and requires all
write operations to appear to occur at some (later) point during the transaction. (See
Chapter 5.) Since the transactions used in our proofs are either read-only or write-only
(update) this definition boils down to strict serializability and the impossibility result
holds for STMs that satisfy this type of snapshot isolation:

Theorem 2. There is no weakly disjoint-access parallel implementation with invisible
read-only transactions of an STM providing snapshot isolation, which is minimally pro-
gressive, in which read-only transactions always terminate successfully.

This theorem can also be extended to a lower bound requiring a read-only transaction
to apply a non-trivial primitive to at least t − 1 base objects. (See [5].)

3.1.3 Serializable STMs
In this section, we show that Theorem 1 holds for serializable STMs. Recall that an
STM is serializable if transactions appear to execute sequentially, one after the other;

Disjoint-Access Parallelism in Software Transactional Memory 85

that transactions of the same process must preserve their order (per-process order). This
definition should also apply to infinite executions, implying that if a value v is written to
a data item o, then repeatedly reading o after the write eventually returns v. (Otherwise,
we will have to place an infinite sequence of reads before the write, which cannot be
done.)

The proof uses an additional process q′. Given a flippable execution
αk =U0s1U1 . . .skUk, we construct an augmented flippable execution

α̂k =U0s1S∗1U1 . . . skS∗kUk ,

where the additional process q′ performs invisible read-only transactions. For every
j ∈ {1, . . . ,k}, q′ performs solo a sequence S∗j of read-only transactions after the event
s j by process q and before the update Uj. Each read-only transaction in S∗j accesses the
items ı f j−1 and ı f j updated by Uj−1 and Uj. The result of the last read-only transaction
in the sequence S∗j , denoted S j, is the value written by Uj−1 to ı f j−1 and the last value of
ı f j before Uj updates it.

Fig. 6 shows the augmented flippable execution obtained by augmenting the flippable
execution αk of Fig. 4 with sequences of read-only transactions performed by process
q′.

q : s1 . . . sl−1 sl . . . sk
p0 : U0 . . . Ul−1 . . . Uk
p1 : U1 . . . Ul . . .
q′ : S∗1 . . . S∗l−1 S∗l . . . S∗k

Fig. 6. An augmented flippable execution α̂k derived from the flippable execution αk of Fig. 4

We apply the per-process ordering of transactions to prove that the read-only trans-
actions of q′ must eventually read the latest value written in Uj−1, and thus, S∗j is finite.

Lemma 4. Consider an augmented flippable execution of length k ≥ 0,
α̂k = U0s1S∗1U1 . . . skS∗kUk. In any serialization of α̂k that preserves the per-process or-
der, U0, U1, . . . , Uk appear in their order of execution.

Proof. We show, by induction on �, that U0, U1, . . . , U� appear in their order of execu-
tion. In the base case, k = 0, the serialization of U0 is trivial.

For the induction step, consider U�+1. By the induction assumption, the updates
U0,U1, . . . ,U� are serialized by their execution order in α̂k. By construction, S∗�+1 is
a sequence of read-only transactions that access ı f� and ı f�+1 , and the last read-only
transaction in S∗�+1, denoted S�+1, returns the value written by U� and the last value of
ı f�+1 before the one written by U�+1.

The sequence S∗�+1 is finite since the STM is serializable and so, eventually, some
transaction must return the latest values written to ı f� and ı f�+1 , and by the induction
assumption, U� is the last to write to ı f� . Moreover, S�+1 completes before U�+1 starts,
so it cannot return the value written by U�+1, since due to serializability, a read operation
can not return a value not written.

86 H. Attiya and P. Fatourou

Since each data item is written by a different process, and due to per-process order,
U�+1 can not be serialized before the last update of ı f�+1 preceding U�+1.

Moreover, U�+1 can not be serialized after this update and before S�+1, since S�+1
does not return the value written by U�+1. Hence, U�+1 is serialized after S�+1. ��

We use Lemma 4 to prove an analogue of Lemma 1.

Lemma 5. Consider an augmented flippable execution of length k ≥ 0 with t updaters,
α̂k =U0s1S∗1U1 . . . skS∗kUk. If the read-only transactions by process q′ are invisible, then
the read-only transaction by process q does not terminate successfully.

Proof. Assume, towards a contradiction, that the read-only transaction of process q in
α̂k terminates successfully and returns a value (v0, . . . ,vt−1), which does not violate
serializability. Let the augmented flippable execution α̂k = U0s1S∗1U1 . . . skS∗kUk corre-
spond to a flippable execution αk =U0s1U1 . . . skUk.

By Lemma 4, the updates in α̂k are serialized in the order U0,U1, . . . ,Uk. The vector
(v0, . . . ,vt−1) determines where q’s read-only transaction is serialized. In particular, for
some l, 0 < l ≤ k, the read-only transaction of q is serialized after Ul−1 and before Ul ,
and for each item ı f in {ı0 . . . ıt−1}, either v f is zero and no update wrote to ı f before Ul ,
or the last update to ı f before Ul wrote v f to ı f . Let S be the serialization of execution
α̂k.

Since the read-only transactions executed by process q′ are invisible, α̂k and αk are
indistinguishable to p0, . . . , pt−1 and q. Thus, they will execute the same steps in both
executions. Note that S is a serialization also for αk. Since S preserves the real-time
order among transactions, αk is a flippable execution where the read-only transaction
terminates and strict serializability is preserved, contradicting Lemma 1. ��

As discussed before the lemma, the existence of a flippable execution (guaranteed
by Lemma 3) implies there is an augmented flippable execution, and hence, Lemma 5
implies the following impossibility result:

Theorem 3. There is no weakly disjoint-access parallel implementation with invisible
read-only transactions of a serializable STM, which is minimally progressive, in which
read-only transactions always terminate successfully.

When a read-only transaction of t ≥ 2 data items applies non-trivial primitives to
at most t − 2 base objects, the read-only transactions of q′ in the augmented flippable
execution are, in fact, invisible since their read set contains only two data items. This
can be used to prove that the read-only transaction must apply non-trivial primitives
to at least t − 1 base objects, assuming the STM is strongly disjoint-access parallel
(Definition 2). (See [5].)

These results also hold for virtual world consistency, recently proposed by Imbs et
al. [34]. This consistency condition requires serializability or strict serializability of
committed transactions, and ensures that aborted transactions always see a consistent
state of the memory, although not necessarily consistent with each other. Since our
results do not consider the behavior of aborted transactions, they also hold for virtual
world consistency.

Disjoint-Access Parallelism in Software Transactional Memory 87

3.2 Feeble Disjoint-Access Parallelism, Wait-Free Reads and Minimally
Progressive Writes

In this section, we present an impossibility result stating that there is no STM imple-
mentation which ensures snapshot isolation, wait-freedom for read-only transactions,
minimal progress for update transactions, and a weak version of disjoint-access par-
allelism, called feeble disjoint-access parallelism. Feeble disjoint-access parallelism is
weaker than all existing disjoint-access parallelism definitions. Thus, the impossibility
result still holds if we replace feeble disjoint-access parallelism with any existing defini-
tion of disjoint-access parallelism. Definition 4 formally defines feeble disjoint-access
parallelism.

The impossibility result was originally presented in [18] for universal construc-
tions [29]. Our presentation below adjusts the presentation in [18] for STM.

Definition 4 (Feeble Disjoint-Access Parallelism [18]). A STM implementation is
feebly disjoint-access parallel if, for every solo execution α1 of a transaction T1 and
every solo execution α2 of a transaction T2, both starting from the same quiescent con-
figuration C, if T1 and T2 access disjoint sets of data items in α1 and α2, then α1 and
α2 contend on no base objects.

To prove the impossibility result, we employ transactions to execute operations on
an unsorted singly-linked list of integers. The list supports two operations:

– APPEND(L,k), which appends an element with key k to the end of the list L, and
– SEARCH(L,k), which searches the list L for an element with key k starting from the

first element of the list.

Fig. 7 presents C-like pseudo-code for the sequential implementation of this data struc-
ture where, for clarity, we use routines READ and WRITE to identify accesses (reads
or writes, respectively) to data items. Notice that the data items are the nodes of the
singly-linked list and the pointers L.start and L.end which point to the first and the last
element of the list, respectively. We assume that READ takes as a parameter a pointer
to a data item and returns its value. Similarly, WRITE takes as a parameter a pointer
to a data item and the new value for it and applies the change. Notice that in case the
data item is a list node, its value is a pair because the node is a struct with two fields.
Since the linked list is a dynamic data structure, the data items accessed by an instance
of SEARCH in a sequential execution depends on the sequence of nodes that have been
previously appended to the list. The state of a data structure consists of the collection
of data items in the representation and a set of values, one for each of the data items.
We remark that the pseudo-code for a transaction executing APPEND (which we will
later call a transaction of type APPEND) or a transaction executing SEARCH (which we
will later call a transaction of type SEARCH) would look like those presented in Fig. 7
(enhanced with a call to TRYCOMMIT before each return statement).

The proof of the impossibility result is by contradiction. So, we consider an arbitrary
feebly disjoint-access parallel STM implementation which ensures snapshot isolation,
wait-freedom for read-only transactions, and minimal progress for update transactions.
We construct an execution α ′ in which two processes q and p, p 	= q, perform two types

88 H. Attiya and P. Fatourou

1 struct NODE {
2 int key;
3 NODE* next;}

4 boolean SEARCH(LIST L, int k) {
5 s = READ(&L.start);
6 if (s == NULL) return(false);
7 〈k′,s〉= READ(s);
8 while(s 	= NULL AND k′ 	= k)
9 〈k′,s〉= READ(s);
10 if (k′ == k) return(true);
11 else return(false);}

12 struct LIST {
13 NODE* start;
14 NODE* end;}

15 void APPEND(LIST L, int k) {
16 new = CREATE(NODE);
17 WRITE(new,〈k,NULL〉);
18 e = READ(&L.end);
19 if (e 	= NULL) WRITE(e,〈e → key,new〉);
20 else WRITE(&L.start, new);
21 WRITE(&L.end, new);
22 return;}

Fig. 7. Sequential implementation of a singly-linked list supporting APPEND and SEARCH

of transactions. Specifically, process p performs an infinite sequence of update transac-
tions of type APPEND to continually append new elements with different values into the
list, i.e. the i-th transaction, i > 0, initiated by p executes an instance of APPEND(L, i);
p may also perform a transaction which executes an instance of APPEND(L,0). On the
other hand, process q performs a single read-only transaction T of type SEARCH which
executes an instance of SEARCH(L,0). We prove that the execution of T takes an infinite
number of steps, i.e. T never commits in α ′. This violates wait-freedom (of read-only
transactions).

Roughly speaking, in α ′, p performs each instance of its APPEND transactions be-
fore q gets to close to the end of the list. In this way, p’s knowledge is consistent with
the possibility that q’s transaction could terminate successfully before it accesses a data
item accessed by p’s current APPEND transaction. So, disjoint-access parallelism pre-
vents p from communicating to q any information which could help q decide whether it
can commit its transaction. Moreover, q cannot determine which nodes were appended
by process p after q started its SEARCH transaction.

The proof relies on a natural assumption about STM implementations. To the best of
our knowledge, all STM implementations presented thus far satisfy this assumption.

Assumption. 4 (Value-Obliviousness Assumption) In any STM implementation, the
set of base objects accessed by trivial primitives and the set of base objects accessed
by non-trivial primitives during any solo execution, starting from a quiescent configu-
ration, of a sequence of consecutive instances of the same (type of) update transaction
until each instance successfully completes, do not depend on the second parameter of
the WRITE operations they perform.

Let C0 be the initial configuration in which L is empty. Let α denote the solo ex-
ecution by p, starting from C0, in which p performs an infinite sequence of update
transactions U1,U2, . . . of type APPEND; specifically, for each integer i > 0, transaction
Ui executes APPEND(L, i). Minimal progress (for update transactions) ensures that all
these transactions commit after a finite number of steps. For i ≥ 1, let Ci be the con-
figuration obtained when p successfully completes the execution of Ui starting from
configuration Ci−1. Let αi denote the sequence of steps performed in this execution. Let
B(i) denote the set of base objects accessed by non-trivial primitives during αi. Let A(i)
denote the set of base objects not in B(i) accessed during αi, i.e. base objects in A(i) are

Disjoint-Access Parallelism in Software Transactional Memory 89

only accessed by trivial primitives during αi. In configuration Ci (which is quiescent),
the list L consists of i nodes, with values 1, . . . , i, in increasing order.

For the proof, an infinite execution α ′ is built which is indistinguishable from α to
process p. In α ′, q performs a transaction T of type SEARCH. Specifically, T executes a
single instance of SEARCH(L,0), so it is a read-only transaction. The steps taken by pro-
cess q in α ′ are chosen from the solo executions by q, starting from Ci, of transactions
executing SEARCH(L,0), for i ≥ 4.

We start by defining α ′. For i ≥ 4, let βi = αiαi+1 · · · denote the suffix of α starting
from Ci−1. The set

⋃{B(k) | k ≥ i} consists of all base objects to which p applies a
non-trivial primitive in βi and

⋃{A(k) | k ≥ i}∪⋃{B(k) | k ≥ i} is the set of all base
objects accessed by βi. Let ρi be the steps of the solo execution by q, starting from
configuration Ci, of a transaction Ri which executes SEARCH(L,0). Moreover, let πi be
the longest prefix of ρi that does not contend with βi, i.e. in πi, q does not access any
base object in

⋃{B(k) | k ≥ i} and does not apply non-trivial primitives to any base
object in

⋃{A(k) | k ≥ i}.

Lemma 6. For each i, i′, 4 ≤ i ≤ i′, πi is a prefix of πi′ .

Proof. Only base objects in
⋃{B(k) | i < k ≤ i′} can have different values in configura-

tions Ci and Ci′ . Since πi does not access any base objects in
⋃{B(k) | k ≥ i}, it follows

that πi is a prefix of ρi′ . Since πi does not contend with βi and βi′ is a suffix of βi, πi

does not contend with βi′ . By definition of πi′ , it follows that πi is a prefix of πi′ .

For i ≥ 5, Lemma 6 implies that πi−1 is a prefix of πi. Let φi be the (possibly empty)
suffix of πi such that πi = πi−1φi. Let α ′ = α1α2α3α4π4α5φ5α6φ6 · · ·. We argue in
Lemma 7 that α ′ is a legal execution starting from C0.

Lemma 7. α ′ is a legal execution starting from C0.

Proof. Since by definition, π4 does not apply non-trivial primitives to any base objects
accessed in α4α5 · · · and, for i≥ 5, πi =πi−1φi (and, hence, φi) does not apply non-trivial
primitives to any base object accessed in αiαi+1 · · ·, the executions arising from α and
α ′ starting from C0 are indistinguishable to process p. Furthermore, since πi and, hence,
φi do not access any base objects to which αiαi+1 · · · applies non-trivial primitives, it fol-
lows that α1α2α3α4π4α5φ5 · · ·αiφi and α1α2α3α4 · · ·αiπ4φ5 · · ·φi = α1α2α3α4 · · ·αiπi

are indistinguishable to process q for all i ≥ 4. Thus α ′ is a legal execution. ��
Next, we argue that, for each i ≥ 4, there exists i′ > i such that φi′ is nonempty;

specifically, Lemma 10 proves that πi 	= πi+3. Fix any arbitrary integer i ≥ 4. To obtain
a contradiction, suppose that πi = πi+3. We first argue, in Lemma 8, that πi is a proper
prefix of ρi. We then use this fact to find an integer �≥ i+3 and define two executions,
namely, α�−3

�−1 in which p executes solo a transaction U �−3
�−1 , and ρ�−3

�−1 in which q executes

solo a transaction R�−3
�−1. We argue, in Lemma 9, that U �−3

�−1 and R�−3
�−1 access disjoint sets

of data items, so feeble disjoint-access parallelism implies that ρ�−3
�−1 and α�−3

�−1 do not
contend on some base object. We then derive a contradiction by arguing, in the proof of
Lemma 10, that ρ�−3

�−1 and α�−3
�−1 do contend on some base object.

Lemma 8. πi is a proper prefix of ρi.

90 H. Attiya and P. Fatourou

Proof. Let Ci
i+3 be the configuration obtained from configuration C0 when process p

performs the first i + 3 transactions of execution α , except that the i’th transaction
now executes APPEND(L,0) instead of APPEND(L, i). Since the STM implementation
is value-oblivious, non-trivial primitives are applied to the same set of base objects dur-
ing the executions leading to configurations Ci+3 and Ci

i+3. Thus, only base objects in
B(i)∪B(i+1)∪B(i+2)∪B(i+3) can have different values in Ci+3 and Ci

i+3. Let ρ i
i+3

be the solo execution by q of a transaction Ri
i+3 which executes SEARCH(L,0) starting

from Ci
i+3. Since, by definition, πi is a prefix of ρi that does not access any base objects

in B(i)∪B(i+ 1)∪B(i+ 2)∪B(i+ 3), it follows that πi is a prefix of ρ i
i+3. Since we

have assumed that πi = πi+3, it follows that πi+3 is a prefix of ρ i
i+3. Snapshot isolation

implies that Ri
i+3 commits in ρ i

i+3 with SEARCH(L,0) being successful, whereas Ri+3

commits in ρi+3 with SEARCH(L,0) being unsuccessful. Thus, T is not completed after
πi+3. Since πi = πi+3, it follows that T is not completed after πi. Therefore πi is a proper
prefix of ρi. ��

We next define �. Lemma 8 implies that πi is a proper prefix of ρi. Let b be the base
object accessed in the first step following πi in ρi. Since πi = πi+3, b is also the base
object accessed in the first step following πi+3 in ρi+3. By definition of πi+3, there is
some � ≥ i+ 3 such that this step is either an access to b ∈ B(�) or the application of a
non-trivial primitive to b ∈ A(�).

We are now ready to define ρ�−3
�−1 and α�−3

�−1 and argue about their properties, thus

concluding the argument. Let C�−3
�−1 be the configuration obtained from configuration C0

when process p performs the first �−1 transactions of execution α , except that the (�−
3)’rd transaction now executes APPEND(L,0) instead of APPEND(L, �− 3). Let ρ�−3

�−1

be the solo execution by q, starting from C�−3
�−1, of a transaction R�−3

�−1 which executes

SEARCH(L,0). Moreover, let α�−3
�−1 be the solo execution by p of a transaction U �−3

�−1

which executes APPEND(L, �) starting from C�−3
�−1. We argue in Lemma 9 that ρ�−3

�−1 and

α�−3
�−1 do not contend.

Lemma 9. ρ�−3
�−1 and α�−3

�−1 contend on no base objects.

Proof. Let S denote the state of the data structure in configuration C�−3
�−1. In state S, the

list has �− 1 nodes and the third last node has value 0. Then, the set of data items
accessed by R�−3

�−1 in ρ�−3
�−1 consists of L. f irst and the first �− 3 nodes of the list. This is

disjoint from the set of data items accessed by U �−3
�−1 in α�−3

�−1 , which consists of L.end,
the last node of the list, and the newly appended node. Hence, by feeble disjoint-access
parallelism, ρ�−3

�−1 and α�−3
�−1 contend on no base objects. ��

Lemma 10. πi 	= πi+3.

Proof. By Lemma 6, πi is a prefix of πi′ for every integer i′ ≥ i. In particular, πi is
a prefix of ρ�−1. By the value obliviousness assumption, only base objects in B(�−
3)∪B(�− 2)∪B(�− 1) can have different values in C�−1 and C�−3

�−1. Since l ≥ i+ 3, it
follows that l−3≥ i. Thus, πi does not access any of the objects in B(�−3)∪B(�−2)∪
B(�− 1). It follows that πi is also a prefix of ρ�−3

�−1 and the first step following πi in this

Disjoint-Access Parallelism in Software Transactional Memory 91

execution is the same as the first step following πi in ρi, i.e. it is either an access to b ∈
B(�) or an application of a non-trivial primitive to b ∈ A(�). By the value obliviousness
assumption, B(�) is the set of base objects accessed by non-trivial primitives during
α�−3
�−1 and A(�) is the set of base objects not in B(�) accessed during that execution.

Thus, ρ�−3
�−1 and α�−3

�−1 contend on b. This contradicts Lemma 9. Hence, πi 	= πi+3. ��
Lemma 10 implies that φi is nonempty for infinitely many integers i > 1, so in the in-

finite execution α ′, process q never commits the read-only transaction T , despite taking
an infinite number of steps. This contradicts wait-freedom for read-only transactions.
So, the following theorem holds.

Theorem 5. There is no feebly disjoint-access parallel implementation of a STM,
which ensures snapshot isolation, wait-freedom for read-only transactions, and min-
imal progress for update transactions.

We presented Theorem 5 and its proof assuming the STM implementation is deter-
ministic. If it is randomized, fixing a sequence of coin tosses for each process and only
considering executions using these coin tosses would do [18]. Some generalizations of
this impossibility result (including more elaborated versions of the value-obliviousness
assumption and some of the definitions presented in Section 2 and here so as to hold for
universal constructions), are presented in [18].

4 Disjoint-Access Parallel TM Implementations

In this section, we discuss some of the disjoint-access parallel STM implementations
presented in the literature. We remark that the list of STM implementations described
below is probably not exhaustive.

4.1 Blocking Disjoint-Access Parallel STM Implementations

In this section, we discuss two blocking STM implementations which are strict disjoint-
access parallel.

4.1.1 TL
TL [13] was the first STM implementation in the family of “Transactional Locking”
blocking STM implementations [13,15,16,7,20]. (Some of the implementations of this
family are described in Chapter 5.)

TL comes in two flavours which are known as commit mode and encounter mode.
The description below focuses on TL’s commit mode and presents a version of TL
which employs a lock per data item; other versions of TL employ a lock per stripe.

TL stores a monotonically-increasing version number with each data item and im-
plements a lock for it. Each time a transaction T reads a data item, it stores information
about it, including its current version, in a (local) read set. TL employs a validation
mechanism to ensure the consistency of the data items read. When T validates its read
set, the version stored for each data item in the read set is compared to the actual ver-
sion of the data item stored in shared memory. If, for each data item in T ’s read-set,

92 H. Attiya and P. Fatourou

these two values are the same and the lock for the data item is free, the validation is
successful. If the validation is not successful, T aborts.

Each transaction in TL maintains a (local) write set. Updates of data items take effect
at commit time after acquiring the locks for them; each update of a data item x increases
the version of x by one.

When READ is invoked by a transaction T for a data item x that has not accessed by
T before, READ checks if the lock for x is acquired. If this is the case, then T aborts.
Otherwise, T records the data item, its value, and its version in T ’s read set. If x has
been accessed by T before, T finds the value to return for x either in its write set or in
its read set. At the end of each READ, T performs a validation to verify consistency of
its read set.

When WRITE is invoked by a transaction T for a data item x with value v, if T ’s
write set contains an entry for x, this entry is updated with v, otherwise an entry for x,
which records v, is added in T ’s write set.

During the execution of TRYCOMMIT, T attempts to lock all data items in its write
set. Locks may be acquired in some specific order to avoid deadlocks. If lock acquisition
fails for any of the data items in T ’s write set, T aborts after releasing the locks that it
has already acquired. If all locks are acquired successfully, T performs a validation of
its read set, and if this is successful, it writes the new value for each data item in its write
set to shared memory (with its version increased), and commits. Otherwise, it aborts. In
either case, T releases the locks it has acquired before it completes.

In TL, there is a transactional record for each transaction T providing access to T ’s
read and write sets. This record is accessed only by T , so the executions of two trans-
actions cannot contend on accessing transactional records. TL implements a data item x
by storing its value, its version, and its lock in a record, known as the data item record
for x. A transaction accesses the data item record for x, only if it wants to read or to
write x. Moreover, reads in TL are invisible. Thus, TL ensures that if the execution of
two transactions T and T ′ contend on the same base object, then there is a data item
x which one of the two transactions reads and the other writes. Therefore, there is an
edge between T and T ′ in the conflict graph of the minimal execution interval contain-
ing the execution intervals of the two transactions. This implies that TL ensures strict
disjoint-access parallelism.

4.1.2 PermiSTM
Attiya and Hillel presented in [3] a strict disjoint-access parallel lock-based STM im-
plementation, called PERMISTM, in which a transaction aborts only if it is an update
transaction that conflicts with another update transaction. For each data item, PER-
MISTM maintains a lock, a version number, and a read counter. Roughly speaking,
PERMISTM works in a way similar to TL. However, a read-only transaction announces
its existence in each data item it reads by incrementing its read-counter; it decrements
this read counter before it commits. Update transactions cannot commit as long as the
data items in their write sets have read counter values that are not zero. This design
ensures strict disjoint-access parallelism.

Disjoint-Access Parallelism in Software Transactional Memory 93

4.2 Non-blocking Disjoint-Access Parallel STM Implementations

The first software STM implementation [46] was disjoint-access parallel and lock-free.
However, it was restricted to static transactions, i.e. transactions that accessed a pre-
determined set of known memory locations, so we will not include its presentation be-
low. The algorithms discussed in this section are presented in Chapter 5 in more detail.

4.2.1 DSTM
DSTM [30] is a disjoint-access parallel obstruction-free STM implementation.

For each active transaction T , DSTM maintains a transactional record that stores the
current status of T , which can be ACTIVE, COMMITTED, or ABORTED, and its read
set. Moreover, for each data item x, DSTM maintains a locator, i.e. a record which
has three fields: a pointer transaction to the record of the transaction that acquired the
ownership of x most recently, and two pointers oldData and newData to values for x.
DSTM also maintains a pointer start to the locator of x.

When a transaction T invokes READ for x, T finds the current value for x by checking
the status of the transaction T ′ that acquired the ownership for x most recently. If the
status of T ′ is ACTIVE, T executes a CAS to forcibly abort T ′ and reads the status of
T ′ again; this time the status will be either COMMITTED or ABORTED. If the status is
ABORTED, then the value for x is found in the oldData field of its locator, and if it is
COMMITTED, it is found in the newData field of it.

When a transaction T invokes WRITE for x with value v, cloning and indirection are
employed: a new locator is created for x, its transaction field is initialized to point to the
transactional record of T , its oldData field is initialized to point to the current value for
x (which is found following a procedure similar to that described above for READ), and
its newData field is initialized to point to a newly allocated memory location where v
is stored. Then, T attempts to change the start pointer for x to point to this new locator.
If it does not succeed in doing so, it re-initiates the fields of the locator it has allocated
(as described above) and retries.

When T calls TRYCOMMIT, it validates its read set, and if the validation is success-
ful, it executes a CAS to change the value of its status to COMMITTED. If the CAS is
successful it commits. If the validation or the CAS are not successful, it aborts.

In DSTM, the executions of two transactions T and T ′ may contend if they both access
pointer start, the locator of the same data item x, or the transactional record to which this
locator points to. In the first two cases, both T and T ′ access x, so there is an edge between
T and T ′ in the conflict graph of the minimal execution interval containing the execution
intervals of T and T ′. To better explain the third case, assume that a third transactions
T ′′ has acquired the ownerships for two data items x and y. If T invokes WRITE for x
and T ′ invokes WRITE for y, and the executions of these writes occur while T ′′’s status
is ACTIVE, then both T and T ′ will try to forcibly abort T ′′. So, the executions of T and
T ′ may contend when they try to change the status of T ′′ to ABORTED. Notice that in
this case, there is no edge connecting T and T ′ in the conflict graph. However, there is a
path from T to T ′ in it. Thus, DSTM ensures disjoint-access parallelism.

4.2.2 OSTM
OSTM [21] is a lock-free STM which is disjoint-access parallel.

94 H. Attiya and P. Fatourou

OSTM executes each transaction T in two phases. While in its first phase, T is exe-
cuted speculatively by performing writes locally using a write set. Reads are invisible:
a read set is maintained in the transactional record of T and a validation mechanism,
similar to that of DSTM, is employed to ensure consistency. Thus, during its first phase,
T is invisible to other transactions.

The second phase of T starts when it calls TRYCOMMIT. Then, T becomes visible by
announcing its write set, i.e. by making its write set shared. Then, it tries to acquire the
ownership for each of the data items in its write set. OSTM associates a start pointer
with each data item x. In contrast to DSTM though, it does not associate a locator with
x. A transaction T acquires the ownership for x by atomically updating the start pointer
of x to point to the transactional record of T ; T releases the ownership for x by updating
start to point to the value T wrote for x. If T finds that the ownership for x is acquired,
it helps the transaction holding the ownership for x to complete, before T continues its
execution. We remark that the levels of indirections are reduced by one in OSTM in
comparison to DSTM.

OSTM is disjoint-access parallel for the same reasons as in DSTM.

4.2.3 ASTM
ASTM [41] is an adaptive, disjoint-access parallel, obstruction-free STM implemen-
tation. ASTM resembles a lot DSTM but, when accessing data items in absence of
contention, it attempts to reduce the levels of indirection that DSTM introduces. It does
so, by associating a status with each data item, which indicates whether the ownership
for the data item is acquired or not. In the first case, ASTM simulates the functioning
of DSTM (i.e. accesses to data items take place using locators, thus introducing an ad-
ditional level of indirection). In the opposite case however, start is updated to point
directly to the data. The adaptive behaviour of ASTM respects disjoint-access paral-
lelism.

We remark that a blocking version of ASTM is also discussed in [41].

4.2.4 NZTM
NZTM [47] stands for Nonblocking Zero-indirection STM. It is a disjoint-access par-
allel, obstruction-free STM implementation that further reduces, compared to ASTM,
the levels of indirection used when accessing data items in the absence of contention.
As in ASTM, each data item x is associated with a status, which can be either deflated
or inflated. In contrast to ASTM though, NZTM avoids the use of pointer start in ab-
sence of contention. So, if the status of x is deflated, its value can be read directly. If,
however, the status of x is inflated, x is accessed in a way similar to that of DSTM. The
new techniques employed by NZTM ensure disjoint-access parallelism.

4.3 Related Research

Similarly to STM, universal constructions [28,29] aim at simplifying parallel program-
ming by providing mechanisms to efficiently execute pieces of sequential code in a
concurrent environment. So, we briefly discuss some disjoint-access parallel universal
constructions below.

Barnes [8] presented a disjoint-access parallel, lock-free universal construction. Re-
markably, OSTM [21] works in a way that resembles the functioning of Barnes’ al-
gorithm. In Barnes’ algorithm, a process p first simulates locally the execution of the

Disjoint-Access Parallelism in Software Transactional Memory 95

piece of sequential code it wants to execute. It does so using a local dictionary where it
stores the data items accessed during the simulation of its piece of code, and their new
values. After completing the local simulation, p announces its dictionary (by making it
shared), and then attempts to acquire the ownerships of the data items that are stored
in it. If this ownership acquisition phase terminates successfully, p applies its modifi-
cations to shared memory and releases the ownerships. A process that wants to write
a data item x whose ownership is acquired, releases the ownerships it holds, helps the
process that owns the ownership of x to finish the piece of code it executes, and re-starts
its execution.

Ellen et al. presents in [18], a universal construction which produces concurrent
implementations that are both wait-free and disjoint-access parallel, when applied to
objects that have a bound on the number of data items accessed by each piece of se-
quential code they perform. Similarly to Barnes’ algorithm, in the algorithm of [18], a
process executing a piece of code, first simulates its execution locally by using a local
dictionary, and then it tries to apply the changes. However, in the algorithm of [18]
more advanced helping techniques are required to ensure wait-freedom and disjoint-
access parallelism. Moreover, the algorithm of [18], compared to Barnes’ algorithm,
may detect conflicts at earlier simulation stages, so helping must be introduced earlier.

Acknowledgements. The authors were supported by funding from the European
Commission under the 7th Framework Program through the TransForm (FP7-MC-ITN-
238639) project and by the ARISTEIA Action of the Operational Programme Educa-
tion and Lifelong Learning which is co-funded by the European Social Fund (ESF) and
Greek National Resources, through the GreenVM project.

References

1. Attiya, H., Ellen, F., Fatourou, P.: The complexity of updating snapshot objects. Journal of
Parallel and Distributed Computing 71(12), 1570–1577 (2011)

2. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of obstruction-free
implementations. J. ACM 56(4) (2009)

3. Attiya, H., Hans, S.: Transactions are back—but how different they are? In: TRANSACT
2012 (2012)

4. Attiya, H., Hillel, E.: The cost of privatization in software transactional memory. IEEE Trans-
actions on Computers 62, 2531–2543 (2013)

5. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory. Theory Comput. Syst. 49(4), 698–719 (2011)

6. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Simulations and Advanced
Topics, 2nd edn. Wiley (2004)

7. Avni, H., Shavit, N.: Maintaining consistent transactional states without a global clock.
In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 131–140.
Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-69355-0_12

8. Barnes, G.: A method for implementing lock-free shared-data structures. In: SPAA 1993, pp.
261–270 (1993)

9. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI
SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (SIGMOD 1995), pp. 1–10 (1995)

http://dx.doi.org/10.1007/978-3-540-69355-0_12

96 H. Attiya and P. Fatourou

10. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: Snapshot isolation does not scale ei-
ther. In: WTTM 2013 (2013)

11. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The pcl theorem: Transactions can-
not be parallel, consistent and live. In: Proceedings of the 26th ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2014, pp. 178–187. ACM, New York (2014),
http://doi.acm.org/10.1145/2612669.2612690

12. Bushkov, V., Guerraoui, R., Kapałika, M.: On the liveness of transactional memory. In: ACM
Symposium on Principles of Distributed Computing (PODC 2012), pp. 9–18 (2001)

13. Dice, D., Shavit, N.: What really makes transactions faster? In: Proc. of the 1st TRANSACT
2006 Workshop (2006)

14. Dice, D., Matveev, A., Shavit, N.: Implicit privatization using private transactions. In: 5th
ACM SIGPLAN Workshop on Transactional Computing (TRANSACT 2010) (2010)

15. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

16. Dice, D., Shavit, N.: Tlrw: return of the read-write lock. In: Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 284–293.
ACM, New York (2010), http://doi.acm.org/10.1145/1810479.1810531

17. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Aspects of Computing 25(5), 769–799 (2013)

18. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal constructions that en-
sure disjoint-access parallelism and wait-freedom. In: ACM Symposium on Principles of
Distributed Computing (PODC 2012), pp. 115–124 (2012)

19. Fatourou, P., Dziuma, D., Kanellou, E.: Consistency for transactional memory computing.
Bulletin of European Association for Theoretical Computer Science (EATCS) 113 (June
2014)

20. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2008, pp. 237–246. ACM, New York (2008),
http://doi.acm.org/10.1145/1345206.1345241

21. Fraser, K.: Practical lock freedom. Ph.D. thesis, Cambridge University Computer Laboratory
(2003), also available as Technical Report UCAM-CL-TR-579

22. Gramoli, V., Harmanci, D., Felber, P.: Toward a theory of input acceptance for transactional
memories. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp.
527–533. Springer, Heidelberg (2008)

23. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)

24. Guerraoui, R., Kapałka, M.: On obstruction-free transactions. In: SPAA 2008, pp. 304–313
(2008)

25. Guerraoui, R., Kapałka, M.: On the correctness of transactional memory. In: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP 2008), pp. 175–184 (2008)

26. Guerraoui, R., Kapałka, M.: The semantics of progress in lock-based transactional memory.
In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2009), pp. 404–415 (2009)

27. Guerraoui, R., Kapałka, M.: Principles of Transactional Memory. Synthesis Lectures on Dis-
tributed Computing. Morgan & Claypool Publishers (2010)

28. Herlihy, M.: A methodology for implementing highly concurrent data structures.
In: Proceedings of the Second ACM SIGPLAN Symposium on Principles & Prac-
tice of Parallel Programming, PPOPP 1990, pp. 197–206. ACM, New York (1990),
http://doi.acm.org/10.1145/99163.99185

29. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149
(1991)

http://doi.acm.org/10.1145/2612669.2612690
http://doi.acm.org/10.1145/1810479.1810531
http://doi.acm.org/10.1145/1345206.1345241
http://doi.acm.org/10.1145/99163.99185

Disjoint-Access Parallelism in Software Transactional Memory 97

30. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing (PODC 2003), pp. 92–101 (2003)

31. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. In: Proceedings of the 20th Annual International Symposiupm on Computer Ar-
chitecture (ISCA 1993) (1993)

32. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)
33. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
34. Imbs, D., Raynal, M., de Mendivil, J.R.: Brief announcement: virtual world consistency: A

new condition for stm systems. In: Proceedings of the 28th Annual ACM Symposium on
Principles of Distributed Computing (PODC 2009), pp. 280–281 (2009)

35. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong shared memory
primitives. In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of
Distributed Computing (PODC 2004), pp. 151–160 (2004)

36. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: SPAA 2009,
pp. 59–68 (2009)

37. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on Soft-
ware Engineering SE 3(2), 125–143 (1977)

38. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
program. IEEE Transactions on Computers 100(28), 690–691 (1979)

39. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan and Claypool (2007)
40. Lu, S., Bernstein, A., Lewis, P.: Correct execution of transactions at different isolation levels.

IEEE Transactions on Knowledge and Data Engineering 16(9), 1070–1081 (2004)
41. Marathe, V.J., Scherer, W.N., Scott, M.L.: Design tradeoffs in modern software transactional

memory systems. In: Proceedings of the 7th Workshop on Workshop on Languages, Com-
pilers, and Run-time Support for Scalable Systems, LCR 2004, pp. 1–7. ACM, New York
(2004), http://doi.acm.org/10.1145/1066650.1066660

42. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4), 631–
653 (1979)

43. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: Proceedings
of the 29th Annual ACM Symposium on Principles of Distributed Computing (PODC 2010),
pp. 16–25 (2010)

44. Rajwar, R., Goodman, J.R.: Transactional lock-free execution of lock-based programs. In:
Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2002), pp. 5–17 (2002)

45. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In:
First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Trans-
actional Computing (TRANSACT 2006) (2006)

46. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–213 (1995)
47. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: nonblocking zero-

indirection transactional memory. In: Proceedings of the Twenty-first Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 204–213. ACM, New York
(2009), http://doi.acm.org/10.1145/1583991.1584048

48. Turek, J., Shasha, D., Prakash, S.: Locking without blocking: making lock based concur-
rent data structure algorithms nonblocking. In: Proceedings of the Eleventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1992), pp. 212–
222 (1992)

49. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann, San Francisco (2001)

http://doi.acm.org/10.1145/1066650.1066660
http://doi.acm.org/10.1145/1583991.1584048

Algorithms

Algorithmic Techniques in STM Design

Panagiota Fatourou1, Mykhailo Iaremko2, Eleni Kanellou3, and Eleftherios Kosmas1

1 FORTH ICS & University of Crete, Heraklion (Crete), Greece
{faturu,ekosmas}@csd.uoc.gr

2 FORTH ICS, Heraklion (Crete), Greece
mykhailo.iaremko@gmail.com

3 FORTH ICS, Heraklion (Crete), Greece & University of Rennes 1, Rennes, France
kanellou@ics.forth.gr

Abstract. The Transactional Memory paradigm has gained a lot of momentum
in recent years. This is evidenced by the plethora of software transactional mem-
ory (STM) algorithms that can be found in the literature. Although their goal
is common - to offer the transaction abstraction to the programmer - the imple-
mentations that they provide for this abstraction show a great variation among
them. This variation appears as different algorithms aim at exhibiting different
additional properties, such as offering specific liveness guarantees or good per-
formance or both. In this chapter, we identify the basic characteristics of STM
algorithms and the mechanisms that they are made up from. In conjunction with
the design decisions, and in order to outline how they are used, we present in
detail some representative STM algorithms. We also briefly discuss a lot of other
STM algorithms found in the literature.

1 Introduction

Software transactional Memory (STM) [34,57] attempts to simplify parallel program-
ming by taking much of the pain out of writing concurrent programs. Specifically, the
naive programmer is relieved from the burden of using locks or developing efficient
non-blocking algorithms. In order to achieve this, STM employs transactions. A trans-
action executes a block of code that accesses pieces of data, called data items. Data
items may be accessed through several concurrent transactions. When a transaction
is executed, it may either commit or abort. If it commits, all its updates take effect,
whereas if it aborts, its updates are discarded.

The design of an STM algorithm is performed by a concurrency expert with the major
goal to hide the implementation details of the STM from the naive programmer who has
just to enhance its sequential code appropriately so that it can serve as a transaction. This
enhancement is relatively simple to achieve since a transaction’s code usually resembles
a lot its sequential analog. For specific workloads, the STM algorithm exhibits better
performance than running the transaction in a sequential setting.

An STM algorithm guarantees that accesses of transactions on data items are exe-
cuted consistently. The design of an STM algorithm is not an easy task since all prob-
lems encountered when concurrency is employed must be taken into consideration by
the STM designer, in order to come up with an algorithm that is correct, live and effi-
cient. To ensure liveness, deadlocks, livelocks or other progress limitations must prob-
ably be prevented, and to ensure efficiency, appropriate implementation decisions must

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 101–126, 2015.
c© Springer International Publishing Switzerland 2015

102 P. Fatourou et al.

be taken depending on the characteristics of the high-level parallel applications that
may run on top.

In this chapter, we aim at providing an introduction to STM algorithms. Specifically,
we describe the main problems encountered when designing an STM algorithm and
summarize possible solutions. We also discuss main characteristics and synchronization
mechanisms met in some of the well-known STM algorithms. In conjunction with the
design decisions, and in order to outline how they are used, we present in detail some
representative STM algorithms. We also briefly discuss other STM algorithms found in
the literature. So, this chapter provides the necessary machinery for a non-expert who
wants to become familiar with the basics of STM algorithms.

The STM algorithms in this chapter are presented from a theoretical point of view,
in order to trace a high-level overview of synchronization issues that occur in STM
computing and of how they are solved algorithmically. Therefore, the present chapter
does not attempt to delve into implementation-related characteristics and problems, or
to provide any critical evaluation of the algorithms that are discussed in terms of their
performance. We also do not touch several interesting issues of STM design such as
the privatization problem [3,41,43,45,56,59,62], the details of irrevocable transactions
[47,65], language level semantics [1,2,30], nesting in STM [5,46], distributed STM al-
gorithms [54], and others. We solely focus on software transactional memory so we
do not cover hardware or hybrid transactional memory (TM) implementations. A com-
prehensive discussion of some of these issues, including more detailed presentations of
some of the algorithms presented in this chapter, is provided in [31].

The rest of this chapter is organized as follows. Section 2 gives a brief description of
the system model, while Section 3 presents the STM model. STM design decisions and
mechanisms are explored in Section 4. Section 5 provides an interface for transactional
operations which is implemented by the STM algorithms presented in this chapter. Fi-
nally, Sections 6, 7, and 8 present some case studies and discuss some STM algorithms
from three representative categories, namely those of non-blocking, blocking, and pes-
simistic STMs.

2 The System

We consider an asynchronous shared memory system of threads communicating by
accessing base objects. A base object has a state and supports a set of primitives through
which a thread may access (read or update) the state of the object. The simplest base
object is a read-write (R/W) object O that stores a value from some set and supports two
atomic primitives: read(O), which returns the value of O leaving its content unchanged,
and write(O,v), which writes the value v into O and returns an acknowledgement.

Stronger objects, like Fetch&Inc and CAS, are usually also provided by the hard-
ware.

A Fetch&Inc object O stores a value from some set and supports, in addition to
read(O), the atomic primitive Fetch&Inc(O) that increments the value of O by one
and returns the previous value of O.

A CAS object O stores a value from some set and supports the atomic primitives
read and CAS; read(O) returns the value of O and CAS(O,u,v) checks whether the

Algorithmic Techniques in STM Design 103

value of O is u and, if so, it sets the value of O to v and returns true, otherwise, the
value of O does not change and false is returned. Similarly to CAS, a LL/SC object
O stores a value from some set and supports the atomic primitives LL and SC. LL(O)
returns the current value of O. With SC(O,v), a thread pi sets the value of O to v only
if no thread has changed the value of O since the execution of pi’s latest LL on O. In
this case, true is returned and we say that the SC is successful; otherwise, the value
of O does not change, false is returned, and we say that the SC is unsuccessful. A
primitive is non-trivial if it may change the value of the base object, for example CAS
is a non-trivial primitive; otherwise, the primitive is called trivial, for instance a read is
a trivial primitive.

A configuration provides a global view of the system at some point in time; it consists
of the state of each thread and the state of each base object. In an initial configuration,
threads and base objects are in initial states. A step consists of a primitive applied to
a base object by a thread plus probably some local computation by that thread. An
execution is a (finite or infinite) sequence of alternating configurations and steps starting
from an initial configuration. An execution is legal starting from a configuration C if
the sequence of steps performed by each thread follows the algorithm for that thread
(starting from its state in C) and, for each base object, the responses to the primitives
performed on the object are in accordance with its specification (and the state of the
object at configuration C). An execution interval of an execution α is a subsequence of
consecutive steps and configurations of α , starting (and ending) with a configuration.
An execution (or an execution interval) is solo if every step is performed by the same
thread.

We assume that threads may experience crash failures, i.e., they may stop running
at any point during their execution. If a thread p does not fail in some execution α , we
say that p is alive in α , otherwise the thread is faulty in α .

3 Transactional Memory Model

3.1 Transactions

A transaction executes a block of code that accesses pieces of data, called data items or
t-variables. A transaction may either commit or abort. A transaction that is committed
or aborted is called completed. A transaction that is not completed is live. During an
execution, each thread may execute a sequence of transactions. A transaction may read
or write several data items.

An STM algorithm provides a shared representation for each data item; this rep-
resentation may consist of several base objects. An STM algorithm also provides, for
each process, implementations for the routines: (i) READDI for a data item x which
returns a value for x or a special value abort (which indicates that the transaction which
called READDI has to abort), (ii) WRITEDI for a data item x which takes as a param-
eter a value v for x, updates x with the value v, and returns either ack or abort, (iii)
BEGINTX, which is called when a transaction starts and returns ack, (iv) COMMITTX
which is called when a transaction tries to commit and returns either a special value
commit (which indicates that the transaction which called COMMITTX has committed)
or abort, and (v) ABORTTX which aborts the transaction and returns ack. Additionally,

104 P. Fatourou et al.

an STM algorithm might provide an implementation for a routine, called CREATEDI
for creating a data item, when transactions are not static (i.e. when they create data
items dynamically). We call these routines transactional operations. Each time a pro-
cess p executing a transaction T calls an instance op of a transactional operation in
some execution, we say that p (or T) invokes op and we call the return value of op its
response. We remark that invocations and responses of transactional operations are also
considered as steps.

Consider an execution α of an STM algorithm. We say that a transaction T is in
α , if there is an invocation of BEGINTX in α for T . If T invokes a transactional
operation op in α and there is no response for op in α , we say that op (as well as
T) is active in α . The sequence of transactional operations invoked by each transac-
tion T in α is of the following form: BEGINTX(CREATEDI, READDI, WRITEDI)*
(COMMITTX|ABORTTX). We remark that each thread may perform several transac-
tions in α , but these transactions are executed sequentially, i.e. a thread cannot have
two transactional operations active at the same point in time. Also, no transaction in-
vokes any operation once it receives commit or abort as a response.

A transaction T is forcibly aborted in α if T invokes a transactional operation other
than ABORTTX in α which returns abort. This may happen, for instance, if the trans-
action has performed some action which may violate consistency or if it discovers that
the set of values for the data items it has read thus far is inconsistent.

We say that T creates a data item initialized with some value v in α , if it invokes
CREATEDI for v in α . We say that T reads or writes a data item x in α , if α contains
an invocation of READDI or WRITEDI, respectively, by T on x; then, we say that T
accesses x in α .

The set of data items read by T in α is called the read-set of T , while the set of data
items written by T in α is called its write-set. Together the read-set and the write-set of
T constitute the data-set of T (in α). If T performs only read (write) accesses is called
a read-only (or a write-only) transaction. Assume that T reads data item x in α . If T has
not written x before this read, we call this read a global read. A transaction is static, if
it never calls CREATEDI in any legal execution it is executed. A transaction that is not
static is dynamic.

The execution interval of a transaction T in α is a subsequence of α which starts
with the invocation of BEGINTX for T ; this invocation is also called the invocation of
T in α . If T is active in α , its execution interval is the suffix of α starting with the
invocation of BEGINTX for T . If T is completed in α , its execution interval ends with
the abort or commit response to the last operation it invoked; this response is called
the response of T in α . We say that a transaction T precedes a transaction T ′ in α , if
T is completed in α and the response of T precedes the invocation of T ′. We say that
transactions T and T ′ are concurrent (or that their execution intervals overlap) if neither
T precedes T ′ nor vice versa.

3.2 STM Correctness

Two well-known consistency conditions for database transactions are serializability and
its stricter variation, strict serializability, which were first introduced in [49]. The defi-
nition provided below is based on [21].

Algorithmic Techniques in STM Design 105

Definition 1 (Strict Serializability). We say that an execution α is strictly serializable
if it is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each transac-
tion T ∈ A, to associate with T a point ∗T somewhere between T ’s first invocation
of a transactional operation and T ’s last response for a transactional operation in α .

• To choose a subset B of the live transactions in α and, for each transaction T ∈ B,
associate with T a point ∗T somewhere after T ’s first invocation of a transactional
operation in α .

For each T ∈ A∪B, the point associated with T is called the serialization point of T .
Let σ be the sequential execution we get by serially executing each transaction T ∈
A∪B at the place that its serialization point has been selected in α . The set B and the
serialization points of transactions in A∪B should be selected so that:

• for each transaction T ∈ A, the same transactional operations, as in α , are invoked
by T in σ and the response of each such operation in σ is the same as that in α ,
and

• for each transaction T ∈ B, a prefix of the operations1 invoked by T in σ is the
same as the sequence of operations invoked by T in α and the response of each
such operation in σ is the same as that in α .

An STM algorithm is strictly serializable if all the executions it produces are strictly
serializable. Serializability differs from strict serializability in that it does not ensure
that the real-time order of transactions is respected by the sequential history defined by
the serialization points. Thus, every execution that is strictly serializable is also serial-
izable but not vice versa.

Consider a strictly serializable execution α and let A and B be the sets of transactions
which justify that α is serializable. Opacity [29] is a well-known consistency condition
for STM which imposes the additional property that even transactions outside A∪B
must read consistent values. Roughly speaking, for some execution α of an STM al-
gorithm, opacity requires that each transaction T that accesses a data item sees only
changes performed on the data item by transactions that have committed before T starts
its execution (or by the transaction itself). This additional property is required in order
to avoid undesired situations where a transaction may cause an exception or enter into
an infinite loop after reading a value for a data item written by a live transaction that
may eventually abort.

The production of an exception or an error code can be avoided by STM algorithms
that ensure strict serializability if we consider (1) an exception (or an error code) that
has been resulted by the execution of a transactional operation op as the response for op
and (2) a transaction that has experienced an exception or has received an error code as a
response to one of its operations, as completed (and not aborted). Then, a strictly serial-
izable STM algorithm would never produce exceptions or error codes. Additionally, no
transaction will ever enter an infinite loop in executions produced by STM algorithms
that ensure standard liveness properties, like obstruction-freedom, livelock-freedom, or

1 Notice that since σ is a sequential execution, each transaction T ∈ B commits in σ .

106 P. Fatourou et al.

any other standard liveness property (see Section 3.3 for formal definitions of some of
these properties).

Other consistency conditions for STM have been presented in [8,12,17,36,50] (this
list is not exhaustive).

3.3 STM Liveness

An STM algorithm is called blocking if it produces executions in which threads may
block waiting for some other thread to perform a step. Notice that if some thread p
crashes all threads may block. Let α be an infinite execution of a blocking STM al-
gorithm. We say that a thread p experiences starvation (or starves) in α , if p takes
infinitely many steps in α and it receives only a finite number of commit responses for
the transactions that it initiates. We say that there is a livelock in α , if all threads that
take an infinite number of steps in α , experience starvation. We say that a set of threads
experiences deadlock in α , if there is a configuration C in α in which each of these
threads has an active transaction in α , yet all of those threads are blocked in α .

Non-blocking algorithms produce executions in which threads never have to wait
for other threads. Consider now an execution α of a non-blocking STM algorithm.
Obstruction-freedom ensures that for each thread p, if p runs solo starting from any
configuration C in α , it eventually completes the execution of its transaction success-
fully (or of a newly initiated transaction if p does not have an active transaction at C)
within a finite number of steps. Thus, obstruction-freedom guarantees progress only if a
thread executes solo for sufficiently long. Lock-freedom is a stronger property which en-
sures that some non-faulty thread successfully completes the execution of a transaction
within a finite number of steps (independently of whether it runs solo or not). Finally,
wait-freedom ensures that each non-faulty thread completes the execution of each of its
transactions within a finite number of steps.

3.4 Conflicts

We say that two transactions T1 and T2 conflict in an execution α (or experience a
conflict in α) if they both access the same data item x, one of these accesses writes
the data item, and their execution intervals are overlapping in α . We describe some
execution scenaria in which conflicts may result to violations of consistency.

If both T1 and T2 write x, we say that T1 and T2 experience a W-W conflict. Denote by
W1 an instance of WRITEDI executed for x by T1 and let v1 be the value that W1 writes
for x. Similarly, let W2 be an instance of WRITEDI executed for x by T2 and let v2 be
the value that W2 writes for x. Suppose that T1 additionally executes an instance W ′

1 of
WRITEDI to update some data item y with a value v′1. Assume that T2 also performs
an instance W ′

2 of WRITEDI to update y with a value v′2. Assume that both T1 and T2

commit in α and let T be a third transaction that is initiated after the completion of
T1 and T2 and reads x and y. To ensure consistency, an STM algorithm should take
actions to guarantee that if T commits, it reads values v1 and v′1 or v2 and v′2 for x and y,
respectively, i.e. that the values it reads for x and y are written by the same transaction.

Consider next the following scenario. Suppose that T1 executes an instance W of
WRITEDI writing a distinct value v for x, T2 executes an instance R of READDI on x,

Algorithmic Techniques in STM Design 107

and R returns the value v written by W . Then, we say that T1 and T2 experience a W-R
conflict. If this happens, we say that T1 performs a dirty read [7]. Most STM algorithms
ensure that this does not occur since T1 eventually aborts. Specifically, dirty reads never
occur in executions produced by opaque algorithms.

Finally, consider the following scenario. Suppose that T1 executes an instance W1

of WRITEDI writing a distinct value v for x, and assume that another transaction T3

executes an instance W3 of WRITEDI writing a distinct value v′ for x. Let T2 perform
two instances R1 and R2 of READDI on x, and assume that R1 returns the value v written
by W1 whereas R2 returns the value v′ written by W3. Notice that T2 experiences W-R
conflicts with both T1 and T3. In addition however, T2 experiences a R-W conflict with
T3 since T2’s first read returns a value other than v′. A R-W conflict appears also if a
transaction T1 performs a WRITEDI on x and T2 performs a READDI on x so that the
response of READDI occurs before the invocation of WRITEDI.

We say that an STM algorithm uses a conflict prevention mechanism, if it prevents a
conflict from occurring. We say that it uses a conflict detection mechanism, if it detects
a conflict once it occurs and takes appropriate actions to resolve it.

4 STM Design Decisions and Mechanisms

4.1 Ownerships

Most existing TM algorithms employ some ownership acquisition mechanism to ensure
that data items are atomically accessed by each transaction. Specifically, before effec-
tuating a write to a data item x, a transaction T acquires the write ownership of x. If T
holds the ownership of x, no other transaction can update x. In some TM algorithms,
T must additionally acquire the read-ownership of each data item it reads. Notice that
in this case, a transaction T must acquire the read-ownerships just of the data items it
globally reads since any read that T performs on a data item after writing it, must return
the value written by T itself in order to ensure consistency. A transaction that holds the
ownership of a data item x at a configuration C is referred to as the owner of x at C.

The implementation of ownerships varies in different TM implementations. Block-
ing TM algorithms usually implement ownerships using (non-preemptive) locks. So,
as long as a thread p holds the ownership of a data item x, it blocks all other threads
from updating (or even reading) x. Thus, in blocking algorithms ownership is usually
non-preemptive.

On the contrary, in non-blocking TM algorithms no thread is ever blocked waiting
for other threads. Non-blocking algorithms usually implement a helping mechanism
which allows threads to help each other finishing their transactions, or a mechanism
of forcibly aborting other transactions in order to get the ownerships that they hold. In
this way, all ownerships held by a thread can be released even if the thread fails, so in
non-blocking algorithms ownerships are preemptive.

A simple blocking TM algorithm presented in [13] uses a coarse-grain lock to imple-
ment the ownerships of all data items. However, several TM algorithms [14,15,24,33]
provide a distinct ownership for each data item. This approach is called per data item
ownership assignment. Another approach is the per set of data items ownership assign-
ment (or per stripe), where a mapping is determined between a concrete number of

108 P. Fatourou et al.

ownerships and a number of disjoint sets of data items that cover the data items uni-
verse. This mapping can be accomplished using hashing.

In existing blocking TM algorithms, the representation of some data item x stores
just a boolean which describes whether the data item is occupied or free. This way a
transaction can acquire (release) x’s ownership by changing its state to occupied (free).
So, the representation of a data item is thread-unaware, i.e. it does not contain the
information of its owner at each configuration. In non-blocking algorithms, a thread
must discover which transaction T holds the ownership of some data item it wants to
access and either help T to complete or forcibly abort it. This information is usually
maintained in the representation of the data item; we then say that the representation
is thread-aware. We say that a TM implementation employs invisible reads, if in all
executions that it produces, no instance of READDI writes to any base object. A TM
implementation that does not employ invisible reads, employs visible reads.

A transaction usually acquires the ownership of some data item x either when access-
ing x for the first time, or at commit time (during the execution of COMMITTX). In the
former case, we say that the TM algorithm uses eager acquisition (or encounter-time
acquisition) of ownerships, while in the latter case it uses lazy acquisition of owner-
ships.

A transaction usually implements two sets, namely its read-set and its write-set. In
TM algorithms that use eager acquisition, each transaction T updates the value of some
data item x that writes, directly, during the execution of the corresponding WRITEDI
routine it invokes for x. Then, T maintains the old values of the data items it has up-
dated in its write-set, so that it can restore the memory to a previous consistent state if
it aborts. Such updates are called direct updates. On the other hand, in the lazy own-
ership acquisition, a transaction effectuates the update of some data item at commit
time. Updates performed in this way are called deferred updates. When deferred up-
dates are used, transactions maintain the new values for each data item they update in
their write-set, so that to be able to effectuate these updates at commit time.

The ownerships are usually released when the corresponding transaction completes
(independently of whether it commits or aborts).

4.2 Mechanisms for Preventing, Detecting and Resolving Conflicts

A TM algorithm that employs invisible reads (or visible reads with lazy acquisition for
read ownerships), must take some care for ensuring consistency. Such TM algorithms
usually implement a validation mechanism that ensures that each transaction has read
consistent values for the data items in its read-set.

The validation mechanism can be implemented in several different ways. Most TM
algorithms introduce the notion of a version for each data item but implement versions
in different ways. Some of them store a version together with the metadata of a data
item [14,15,33].

A transaction that updates some data item must update also its version, so that an-
other transaction can determine if the data item’s value has changed. Each transaction
T must maintain, for each data item x it reads, x’s version in its read-set. This way
T can check at each point in time if the value read by T for x is still consistent by
checking whether its version has changed since it was accessed for the first time by T .

Algorithmic Techniques in STM Design 109

The validation mechanism performs the previous check for all the data items read by T
and returns true if none of them has changed; otherwise, it returns false.

To ensure strict serializability, each transaction may execute the validation mecha-
nism only once at commit time. However, in order to avoid reading inconsistent values
which may result in performing illegal actions, the validation mechanism must be exe-
cuted more often. We refer to a transaction that has read inconsistent values as a doomed
transaction: such a transaction is fated to eventually abort although it is still running. A
doomed transaction may cause an exception which may result in the abnormal termina-
tion of the entire execution.

Existing TM algorithms execute the validation mechanism in different time periods.
Some of them [15,22,33,38] execute this mechanism each time a transaction reads a data
item. This is called incremental validation because each time the mechanism is executed
it has to validate one more data item. Incremental validation has been implemented
in [15] by using a global timestamp. Riegel et al. show in [52] how the global timestamp
can be replaced by an external physical clock that can be accessed efficiently or by
multiple synchronized physical clocks. The timestamp mechanism has been used since
then in many algorithms [24,58,64].

Other TM algorithms, such as TL [14] execute the validation mechanism after a
specified number of read operations have been performed, although this does not ensure
full prevention from all possible inconsistencies. Other algorithms [25] transfer to the
user the responsibility of calling the validation mechanism whenever she believes it is
necessary. This form of validation is called manual. A validation mechanism that is not
manual is automatic.

RINGSTM [61] uses a ring as a shared ordered set, and employs a bit-vector tech-
nique, like Bloom filters [11] to allow each transaction to announce, in a space-efficient
way, its write-set in the shared set. A transaction then validates its read-set by check-
ing whether there are any conflicts among its read-set and other announced write-sets.
Other algorithms that use the Bloom filters technique for implementing their validation
mechanism are presented in [26]. We remark that this chapter does not aim at describing
different implementations of validation mechanisms (or versions) in detail.

The actions that TM algorithms take when they detect a conflict vary. In a blocking
TM algorithm, a transaction T1 that has discovered a conflict with a transaction T2 may
either wait for T2 to complete or it may abort. In a non-blocking TM algorithm, T1

may either cause T2 to abort or it may help T2 to complete. Which of the two actions
will occur usually depends on the liveness property that the TM algorithm ensures.
In some TM algorithms, when T1 can cause T2 to abort, T1 may consult a software
entity, called contention manager. The contention manager then decides whether T1

should indeed forcefully abort T2 or whether T1 should wait for a particular period of
time before proceeding to any action. In such systems, it is the contention manager
that is responsible to guarantee progress. Contention managers have been studied in
[6,27,28,55,58].

The prevention (or detection) of a conflict can be eager or lazy. When eager pre-
vention (or detection) is employed the conflict is prevented (or detected) at the point
it arises in the execution. In contrast, when lazy prevention (or detection) is employed
the conflict is prevented (or detected) at a later point in the execution, e.g. at commit

110 P. Fatourou et al.

time. For example, STM algorithms that eagerly (or lazily) acquire write ownerships for
data items can prevent (or detect) W-W and W-R conflicts. Also, an STM algorithm that
acquires write-ownerships to data items, uses visible reads, and employs eager acqui-
sition of read ownerships, can prevent R-W conflicts from occurring. Another strategy
for preventing R-W conflicts employs the technique of letting the read-only transac-
tions, accessing a data item, commit before the update transactions that are writing to it
[4,9,20,44].

To resolve a conflict between two transactions T1 and T2, one of them, let’s say T1

may wait, abort or help T2 to complete. Each of these cases introduces a performance
penalty which is paid by T1 even if T2 aborts later on, in which case we call this penalty
needless. We remark that there exists a trade-off when choosing between eager and lazy
prevention (detection) of conflicts: the eager approach enables fast detection of doomed
transactions but it may lead to false positives when deciding which transactions are
doomed. On the other hand, the lazy approach decreases the possibility of needless
payments and allows more transactions to commit.

4.3 Levels of Indirection and In-Place Updates

TM algorithms follow two main approaches to represent data items and maintain their
values. The first stores, for each data item, the extra state required by the algorithm,
together with the data item’s value in a single record in memory. We call this approach
in-place. The second approach requires a thread executing a read or a write on some data
item x to perform a number of intermediate memory accesses in order to find the mem-
ory address in which x’s value is stored. Then, we say that the TM algorithm employs
indirection. The number of intermediate memory accesses that are performed in this
case is called indirection level. To reduce performance overheads, the indirection level
should be as small as possible. In some algorithms [33], performing the intermediate
memory accesses is done by following a path of intermediate pointers. Moreover, some
algorithms [33,38] have to retrieve the state of the last transaction that has acquired the
ownership of x in order to determine the current value of x. In other algorithms [25,63],
the indirection level is different if the ownership of x is acquired at the time that a trans-
action tries to read the value of x from if it is not. Finally, other algorithms adjust the
indirection level at execution time based either on the contention incurred on the data
items [63] or on statistics [38]. This last class of algorithms are called adaptive.

5 Interface for Transactional Operations

For uniformity of presentation, we assume that all TM algorithms presented in this
chapter implement the following interface for transactional operations:

• T = BEGINTX(): when invoked by a thread p, it identifies the beginning of a new
transaction T by p; it is used to allocate state variables that may be required to
execute the transaction. It returns a handle T that identifies the transaction through
which its state variables are accessed. Notice that we abuse notation by using T to
refer to both the transaction itself and its handle.

Algorithmic Techniques in STM Design 111

• x= CREATEDI(T,v): it is used for the allocation of a new data item x by transaction
T . This routine initiates the shared representation for the data item and returns a
handle x for it which is passed as a parameter to READDI or WRITEDI when they
are invoked for x. Notice that we abuse notation by using x to refer to the data item
itself and its handle. The argument v of CREATEDI specifies the initial value for x.

• (b,v) = READDI(T,x): it is called whenever transaction T wants to read the value
of a data item x; it returns the value v for x as well as a boolean value b, which
is true when the read operation completes successfully. On the other hand, if
READDI discovers that T is doomed to abort (e.g. because the values for some of
the data items that it has read are not consistent any longer) then READDI com-
pletes unsuccessfully by returning false for b.

• b= WRITEDI(T,x,v): it is called whenever transaction T wants to update the value
of a data item x with the value v; it returns a boolean value b, which is either true
to identify that the write was successful or false to identify that the write was
unsuccessful in which case T is doomed to abort.

• b = COMMITTX(T): it requests the termination of T as committed. It returns a
boolean value b, which is true if the commit attempt was successful and false
otherwise.

• ABORTTX(t): causes the termination of T as aborted.

A TM transaction resembles more an atomic code block than a database transaction.
For this reason, whenever a thread initiates a transaction, it would like it to commit.
So, the functionality of ABORTTX is not necessary. We also remark that CREATEDI
is provided only by STM algorithms that rely on per-object metadata. Both ABORTTX
and CREATEDI are included in the list above for the sake of completeness.

6 Non-blocking Algorithms

In this section, we discuss non-blocking STM algorithms. We start by presenting DSTM,
the first non-blocking STM algorithm presented in the literature for dynamic transac-
tions. We then provide shorter discussions of other non-blocking STM algorithms.

6.1 Case Study: DSTM

DSTM [33] was the first algorithm to support dynamic transactions. DSTM is an
obstruction-free algorithm.

6.1.1 Data Structures
DSTM associates a record, called transactional record, with each transaction T ; we
call T the owner of this transactional record. The transactional record of T consists of
two fields: status which is a CAS object storing the status of T and readList which
implements the read-set of T . The status of T can be either ACTIVE, COMMITTED or
ABORTED. We abuse notation and use T to refer to both the transaction itself and its
transactional record.

112 P. Fatourou et al.

DSTM uses ownership assignment per data item. Specifically, DSTM associates a
CAS object, called start, with each data item x. This object stores a pointer to a structure
called locator. The locator of x contains a pointer tran which points to the transactional
record of the transaction that either holds the ownership of x or was the last transaction
that acquired the ownership of x. Assume that tran points to some transaction T . If the
status of T is ACTIVE, then T holds the ownership of x; otherwise, no transaction holds
the ownership of x. The locator of x additionally stores two pointers, called oldData
and newData, respectively. They both point to values for x. The oldData field points to a
value that has been written for x by a transaction other than T , whereas newData points
to a value written for x by T itself. The representation of a data item x is illustrated in
Figure 1.

 transaction t-variable locator data

x

start

x’s new data

oldData

 newData

 tran

x’s old data

status

readList

Fig. 1. The representation of a data item x in DSTM

DSTM uses invisible reads: it maintains a read-set for each transaction T and imple-
ments a validation mechanism to ensure the consistency of the values of the data items
that are contained in its read-set. Specifically, T maintains in its read-set a version for
each data item x that it reads. This version is the memory address of the value read by
T for x.

6.1.2 Implementation
In DSTM, a transaction T starts its execution with its status ACTIVE and its read-set
empty. Each time T calls CREATEDI to create a new data item x, T allocates a new
locator whose tran field points to T (to indicate that T is the owner of x), its oldData
field is equal to NULL, and its newData field points to the initial value for x. T also
allocates a new pointer start for x and set start to point to the new locator. We remark
that pointer start for x will not always point to the same locator record.

Since the locator of each data item x stores pointers, namely oldData and newData,
to two values for x, whenever a transaction T wants to read the value for x, it has to take
appropriate actions to determine which of these two values it should consider as the
current value for x. To determine this, it reads the status field of the transactional record
pointed to by tran in x’s locator. Let T ′ be the owner of this transactional record.

If the status of T ′ is COMMITTED (ABORTED), then the current value for x is the
value pointed to by the newData field (oldData field, respectively) of x’s locator. No-
tice that in either case, T ′ is not the owner of x; specifically, x does not have an owner

Algorithmic Techniques in STM Design 113

at the current point in time. However, if the status of T ′ is ACTIVE, then T ′ is the cur-
rent owner of x and the current value for x cannot consistently be determined until T ′
completes. So, T tries to forcibly abort T ′: it executes a CAS on T ′’s status to change
the status of T ′ to ABORTED. If it succeeds, then it reads the value for x pointed to
by oldData; otherwise, some other CAS has been successfully executed on T ′’s status
and therefore the status of T ′ has been already updated to COMMITTED or ABORTED.
So, T reads again T ′’s status and, depending on whether its value is COMMITTED or
ABORTED, it reads the value for x pointed to by newData or oldData, respectively.

This feature of allowing a transaction to forcibly abort another transaction, makes
DSTM an obstruction-free algorithm. The procedure described above to determine the
current value for a data item, implies that DSTM uses indirection with two indirection
levels.

transaction t-variable locator data

x's data

x's data

oldData

newData

 tran

start

oldData

newData

 tran

(1)

(5)

(2)

(6)
(3)

(4)

Clone

COMMITTED

readList

T

ACTIVE

readList

x

Fig. 2. The procedure of ownership acquisition and cloning, followed by DSTM

DSTM uses eager acquisition of ownerships and direct updates. So, in order for some
transaction T to update the value for a data item x, it first has to acquire its ownership.
The procedure executed by DSTM for the acquisition of x’s ownership by T is illus-
trated in Figure 2. The gray color part of the figure illustrates the representation of x
before the acquisition of its ownership by T , whereas the black color part illustrates
its representation right after. Notice that we have assumed that the last transaction to
acquire the ownership for x before T , has committed by the time that T tries to acquire
x’s ownership.

To acquire the ownership for x, T creates a new locator for x (step 1) and initializes
it so that tran points to T (step 2), oldData points to the current value for x (step 3), and
newData points to a copy of the current value for x (step 5). Thus, T uses cloning to copy
the current value for x (step 4) in a new memory location pointed to by the newData
field of the black locator. Any updates of T on x will be performed on this copy. Notice
that the current value for x is the value pointed to by the newData pointer in the gray

114 P. Fatourou et al.

locator (since the transaction that created that locator has committed). Finally, the start
pointer of x is atomically updated (using CAS) so that it points to the new locator (step
6). After the successful execution of this CAS, and as long as T ’s status is ACTIVE, T
holds the ownership for x.

To ensure opacity, each transaction T validates its read-set each time it globally reads
a data item and a last time before it commits. The validation mechanism checks whether
the value for each data item x maintained in T ’s read-set is still consistent, i.e., it finds
the current value for x (with the procedure described above) and checks whether it is
the same with the one maintained for x in T ’s read-set. If at least one of the values
maintained in its read-set is not consistent, T aborts by executing a CAS to change
its status to ABORTED. So, DSTM employs an automatic and incremental validation
mechanism. Since the validation is performed on all elements of the read-set each time
a new data item is accessed, it incurs an overhead of O(r2) to a transaction, where r is
the size of its read-set.

Assume that T acquires the ownership of more than one data item, so the tran field
of the locators of all these data items point to T . Thus, if a CAS changes the status of T
to either COMMITTED or ABORTED, the execution of this CAS causes the ownerships
of all these data items to be atomically released and all the updates performed by T
on them are either atomically applied (if T ’s status changes to COMMITTED) or are
discarded (if T ’s status changes to ABORTED).

6.2 Other Non-blocking Algorithms

K. Fraser and T. Harris [25] presented a lock-free STM implementation, called OSTM.
OSTM uses lazy ownership acquisition, deferred updates, and invisible reads.

OSTM reduces the levels of indirection incurred by DSTM by avoiding the use of
locators: if the ownership of a data item x is not acquired, the start pointer associated
with x points directly to x’s current value, whereas when x’s ownership has been ac-
quired, start points to the transactional record of the transaction that has acquired the
ownership of x.

In order to achieve lock-freedom, OSTM executes each transaction T in two phases.
During the first phase, T simulates its execution using local versions of the data items
that it accesses. It does so in an invisible way by maintaining a read-set and a write-set.
Thus, during its first phase, T is invisible to other transactions. Its second phase starts
when T calls COMMITTX. Then, T becomes visible by making its write-set shared and
tries to acquire the ownerships of the data items in its write-set, it validates its read-set,
updates the data items in its write-set and releases the ownerships it acquired. Deadlocks
can be avoided by acquiring ownerships based on some order, which is determined by
sorting the memory addresses of the data items.

Since T becomes visible at commit time, its data-set does not change until it com-
pletes. OSTM employs a recursive helping mechanism to ensure that at each point in
time at least one of the transactions will complete successfully within a finite number
of steps. Specifically, if T discovers that the ownership of a data item x it has accessed
is already taken by some transaction T ′, it releases the ownerships it has acquired, helps
the process executing T ′ to complete the execution of T ′, and aborts. This helping

Algorithmic Techniques in STM Design 115

mechanism is recursive. Specifically, if T ′ conflicts with a third transaction T ′′, then
while helping T ′, T may also help T ′′.

This helping mechanism can result in livelocks as follows. Consider a transactions
T that reads a data item x and writes a data item y. Let T ′ be another transaction that
reads y and writes x. At commit-time, and specifically during the validation of their
read-sets, both T and T ′ will discover that there is a conflict between them, so they
may (recursively) help each other for ever. To avoid such livelocks, OSTM defines a
total order on transactions, which determines transactions’ priorities. If T discovers a
conflict with T ′ and T has priority over T ′, T causes T ′ to abort, otherwise, T helps T ′
to complete and aborts.

A second lock-free STM implementation, called NBSTM, was presented in [37].
NBSTM employs the same data item representation as DSTM. However, it replaces
DSTM’s mechanism for forcibly aborting conflicting transactions with a recursive help-
ing mechanism similar to that of OSTM [25]. As in OSTM, each transaction T is ex-
ecuted in two phases. In contrast to OSTM however, during its second phase, each
transaction in NBSTM acquires a read-ownership for each data item in its read-set, in
addition to acquiring the ownership for each data item in its write-set. By employing
read-ownerships, livelocks can easily be avoided through the helping mechanism and
the final validation is done implicitly when acquiring the read ownership of each data
item. However, more CAS instructions are executed to acquire the extra ownerships.
NBSTM ensures that all acquired ownerships by a transaction T can be released, and
all its updates can be applied (if T commits) or discarded (if T aborts), by performing
a single write primitive. This is more efficient than in DSTM which requires a CAS
primitive for the same purpose. OSTM requires two CAS primitives to change the status
of a transaction from ACTIVE to COMMITTED and O(w) write primitives, where w
is the size of the write-set, to update the data items and release their ownerships.

As in DSTM, each access of some data item in NBSTM faces two levels of indi-
rection. OSTM faces just one level of indirection when the data item’s ownership is
not acquired. Assume now that the ownership of a data item is acquired. In this case,
OSTM may face indirections up to a number proportional to the size of the write-set of
this transaction, whereas NBSTM pays only two indirections. We also remark that in
the case where the ownership of a data item is not acquired, NBSTM can exhibit just
one level of indirection, as OSTM does, by employing a similar technique as that of
OSTM.

ASTM [39] and NZTM [63] are obstruction-free STM algorithms that attempt to
reduce the levels of indirection faced by DSTM. They both originate from DSTM, so
they greatly follow the techniques of DSTM.

ASTM [39] is adaptive, i.e. it adjusts the way it works based on the characteristics of
the workload it executes. In ASTM, the start pointer of a data item x whose ownership
has not been acquired is updated so that it points directly to the value of x. This is
performed lazily as follows. Whenever a transaction reads a data item that is currently
non-acquired and its start pointer points to a locator, this pointer is updated so that it
directly points to the data item’s current data. If now the ownership of x is acquired,
ASTM follows the same indirection technique as DSTM, i.e. start is updated to point
to a locator for x, so two levels of indirection are then introduced.

116 P. Fatourou et al.

This technique has the following implication. In read-dominated workloads, data
items tend to stay in the non-acquired state. Then, performance is improved since the
levels of indirection are reduced. However, in update-dominated workloads, data items
tend to stay in the acquired state, so then the technique does not have any significant
impact in performance. ASTM implements both eager and lazy ownership acquisition
and adaptively alternates between these two modes based on a simple threshold-based
heuristic regarding the average number of WRITEDI executed by each transaction.

In NZTM [63], transactions access data items (whose ownership is not acquired)
without facing indirection. NZTM uses visible reads (i.e., a transaction acquires the
ownership of each data item it reads) and eager ownership acquisition. In NZTM, each
data item has a status. A data item x can have its status either equal to deflated and
then its value can be read directly, or equal to inflated and then the representation of x
is the same as that in DSTM. Initially, the status of each data item is deflated. When
a transaction wants to acquire the ownership of a data item with deflated status, it can
simply mark it as acquired. In case some transaction T wants to acquire the ownership
of a data item x that is marked as acquired by a transaction T ′, T informs T ′ to abort and
checks whether T ′’s status indeed changed to ABORTED. If this is so, T can proceed to
acquire the ownership of the variable itself. If however T ′ is slow in updating its status,
instead of blocking, T inflates the data item, i.e. x’s state changes to inflated. While x is
in inflated state, NZTM handles it in a way similar to that employed by DSTM. When
later T ′ aborts, the state of x may change again to deflated.

Similarly to ASTM and NZTM, RSTM [40] is an STM algorithm that aims at reduc-
ing the levels of indirection for the common case. In RSTM, a data item x is accessed
through an object header, which is a structure that contains a pointer to the data item
new metadata record. Apart from the value of the data item, the metadata record con-
tains a pointer to the transaction record of the transaction that has write ownership of x,
as well as a pointer to the immediately previous metadata record of x. The object header
further contains a limited list of visible readers. A transaction T that wishes to access x
as a visible reader, attempts to install a pointer to its descriptor into this list. A further
transaction T ′ which acquires the ownership of x for writing, aborts transactions that it
finds in x’s visible readers list. Thus, in cases like this, T may be spared the quadratic
overhead of read-set validation.

MM-STM [42] is another non-blocking STM algorithm. MM-STM is lock-free and
uses a record, called orec, to store the metadata of a data item and information about the
transaction that has ownership of it. In case a transaction T wishes to acquire ownership
of a data item x that is already owned by some other transaction T ′, MM-STM lets T
“steal” the orec from T ′ instead of aborting T ′. T is then in charge of performing T ′
update on x, apart from its own, provided that T ′ has not aborted in the meanwhile.

7 Blocking Algorithms

In this section, we discuss blocking STM implementations. We start by presenting two
case studies, NOrec [13] and TLII [15] in Sections 7.1 and 7.2, respectively. A short
discussion of additional blocking STM implementations is provided in Section 7.3.

Algorithmic Techniques in STM Design 117

7.1 Case Study 1: NOrec

NOrec [13] is a simple blocking STM implementation presented by L. Dalessandro et
al. It employs value-based validation, as does JudoSTM [48]. NOrec is livelock-free
but it does not necessarily avoid starvation.

7.1.1 Data Structures and Design Decisions
NOrec employs a shared CAS object which implements a coarse-grain lock L. L is used
to ensure that at most one transaction has the write ownership of the entire space of data
items at any given point in time. L is implemented as an integer which is initially zero
and its consecutive values are strictly increasing. If the value of L is odd, then L is locked
by some transaction, otherwise it is unlocked. During the commit phase each write
transaction tries to acquire the lock, by incrementing it, thus changing its parity. Only
one transaction will succeed in acquiring the lock, ensuring that update transactions
cannot modify data items concurrently. The transaction that manages to acquire the
lock, stores its updates into the shared memory and increments L, changing its parity
once again which results in releasing the lock. NOrec implements no indirection and
performs deferred updates.

One of the main characteristics of NOrec is that it does not store any metadata for
the data items; for each data item x, it stores only the value val for x. NOrec maintains
a transactional record for each transaction T . In addition to the pointers to T ’s read-
set and write-set, this record contains a local copy of L which is used to validate the
consistency of T ’s read-set. Specifically, after every read operation, T checks if L has
a different value than its local copy and if this is so, it waits until the lock is released
and then performs value-based validation of the data items in its read-set; the value of
each data item x in T ’s read-set is compared to the current value of x stored in shared
memory. If these two values are the same for all data items in T ’s read-set, then the
validation succeeds, in which case T updates its local copy of L to the current value of
L to avoid unnecessary validations in the future.

7.1.2 Implementation
When a transaction T starts, it first initializes its transactional record so that its read and
write-sets are empty and the current value of L, if even, is stored in its local copy. If the
value of L is odd, T spins on L until it reads an even value in it. It does so, since if T
starts its execution while the lock is acquired, it may read inconsistent values for data
items.

The local copy of L is used to implement incremental validation, each time T globally
reads a data item. Validation compares T ’s local copy of L against the current value of L.
If the values are the same, the validation terminates successfully. Otherwise, T checks
whether the value of L is odd. If this is so, T performs spinning until it reads an even
value in L. In either case, T parses its read-set and for each data item in it, it compares
the locally stored value with the data item’s current value. If discrepancies are found,
T aborts. T repeats this validation, if the value of L changes in the meantime. If none
of these cases occurs, the validation is successful. After each successful validation, T
updates the local copy of L with the value it last read in L.

118 P. Fatourou et al.

When T performs a read of a data item x, it first checks whether an entry for x already
exists in T ’s write-set, in which case it returns the value stored there. After each read
operation, T compares the current value of L with the value of the copy it maintains for
it and, if they are different, it performs a validation. If the validation is unsuccessful,
T aborts. Otherwise, T creates a new entry for x and adds it in its read-set (if it is not
already there).

When T writes a value to a data item x, it stores a pointer to it and the new value in
its write-set, if x is not already there; otherwise, it updates the already existing entry for
x with the new value.

During COMMITTX, a read-only transaction commits without any further action.
This is safe since the last incremental validation that is performed by the transaction
ensured that its read-set is consistent. An update transaction T first tries to acquire
the global lock. It does so by using CAS to increment L. A failed CAS indicates that a
different transaction T ′ has entered its commit phase. In this case, some data item in T ’s
read-set may be invalidated by some of the updates of T ′, which is why T re-validates
its read-set before it tries to acquire the lock again. An unsuccessful validation leads
T to abort. If validation succeeds and T manages to acquire the lock, T performs its
updates and releases the lock.

7.2 Case Study 2: TLII

Transactional Locking II (TLII), proposed by Dice et al. [15], is a blocking TM algo-
rithm which employs a two-phase locking scheme. Each transaction T in TLII is exe-
cuted in two phases: (1) T is first executed speculatively, i.e., its execution is simulated
locally using its read-set and write-set, and (2) T then attempts to acquire the owner-
ships of all data items in its write-set and if it does so successfully, it applies its changes,
releases the ownerships it has acquired, and commits. Some of the ideas employed by
TLII are also found in the algorithm presented in [35] (which was inspired by Ennals’s
STM algorithm [23]).

7.2.1 Data Structures and Design Decisions
TLII implements ownership assignment per stripe by employing fine-grained locking.
Reads are invisible and data items have in-place, thread-unaware representations. TLII
associates a version with each data item in order to perform validation. Moreover, it
relies on a global Fetch&Inc variable, GVC, which is used as a global versioning
clock.

TLII employs lazy ownership acquisition and deferred updates. To update the ver-
sions of the data items in its write-set, an update transaction performs a Fetch&Inc
on GVC at commit time, and assigns the value that this Fetch&Inc returns as the
new version of each data item it updates. The transactional record of each transaction T
stores the following data:

• A read version number which stores the value that T read from GVC at the be-
ginning of its execution. Each time T reads a data item x, x’s current version is
compared against the read version number of T and T may only proceed if x’s ver-
sion is less than its read version number. Furthermore, when T validates its read-set,

Algorithmic Techniques in STM Design 119

T reads the current version for each data item in its read-set and compares it with
T ’s read version number. T aborts if the current version of any of these data items
is greater than T ’s read version number.

• A write version number which is the value of GVC that T obtained as the return
value of the Fetch&Inc it performs on it at commit time. This number is used as
the new version of the data items that T updates.

• Two pointers, one to T ’s read-set and one to T ’s write-set.

7.2.2 Implementation
A transaction T starts by reading GVC to obtain its read version number and initializing
its read- and write-sets to empty.

To carry out a global read of a data item x, T verifies that x is neither owned by
another transaction, i.e. x is not locked, nor has a version number greater than the read
version number of T . If the version number of x is greater than the read version number
of T , then between the time that T initiated its read version number and the time that it
read x, some update transaction incremented GVC and updated x. Thus, if T proceeds,
it runs the risk of reading inconsistent data. The same danger holds when T finds out
that x is owned by some other transaction. T therefore aborts in both those cases. The
described validation procedure is referred to as post-validation. It is remarkable that T
does not validate the consistency of its entire read-set each time it performs a global
read. So, validation in TLII is fast. Notice also that read-only transactions in TLII do
not need to perform a final validation of their entire read-set before committing, since
the post-validation procedure that takes place at each read ensures that their read-set
remains consistent.

If T is not aborted during the validation procedure, it creates an entry for x in its
read-set. If the read is not global, x is contained in T ’s write-set (or read-set), in which
case T must read the value for x that is recorded there.

As in all algorithms that employ deferred updates, when writing to a data item x, a
transaction T either creates a new entry for x in its write-set (if there is no such an entry
in it) and stores the intended value there , or updates the entry for x in its write-set (if
there is such an entry there).

If T is an update transaction, it first tries to obtain the ownership of each data item
in its write-set. Ownership acquisition of a data item x is performed by acquiring the
lock for x. If x is already locked, T releases all ownerships it has already acquired and
aborts. If ownership acquisition is successful, then T performs the final validation of its
read-set. If validation is successful, T obtains its write version number by incrementing
GVC and proceeds to applying its intended updates to shared memory. For each data
item whose value T updates in shared memory, it also sets its version to T ’s write
version number. Once all of T ’s intended updates have been performed, T releases the
data item ownerships and commits. To avoid deadlock, ownership acquisition may be
performed in some order. TLII chooses not to do so for performance reasons. TLII is not
starvation-free.

120 P. Fatourou et al.

7.3 Other Blocking Algorithms

TLII is an indicative example of a family of algorithms that use fine-grained locking
in order to implement write ownership. TLII itself is a development of TL, a previous
blocking algorithm presented by Dice and Shavit in [14]. The important difference be-
tween TL and TLII is that TL does not employ a global lock. Instead, data items have
a version number which is incremented each time the data item is updated. This char-
acteristic hinders efficient incremental validation, which is why it was replaced with
the global version clock in TLII. A further difference is that TL offers the option of
operating in two different modes, the commit mode and the encounter mode. In commit
mode, TL employs deferred updates and must therefore implement a redo log. Con-
versely, when it operates in encounter mode, TL executes direct updates and it must
implement an undo log.

TLC, presented by Avni and Shavit in [10], is another member of the family of
transactional locking algorithms. TLC is a variation of TL/TLII that attempts to provide
better scaling prospects by avoiding contention on a single resource, such as the shared
counter GVC in TLII. Instead, the TLC scheme uses a local version counter for each
thread. Validation is then implemented through a mechanism which employs vector
clocks.

One more algorithm which employs transactional locking is TLRW [16]. In TLRW,
each data item x is equipped with a read counter which is incremented by each transac-
tion before it accesses x for reading. After the read, the transaction decrements the read
counter of the data item. Thus, TLRW employs read ownerships resulting in visible
read-only transactions. TLRW implements thread-aware write ownerships. An update
transaction that has obtained write ownership of x requires the read counter to be 0 in
order to update x. Read set consistency is ensured because a transaction is not able to
obtain read ownership of x, if some other transaction has a write ownership for it. For the
implementation of ownership, TLRW introduces byte locks, which are read/write locks
conceived to perform and scale well even in workloads with high amount of read-only
transactions.

Further algorithms in the family of TL and TLII are presented in [32,51,58,64] (this
list is probably not exhaustive).

Another well-known candidate of STM blocking algorithms is TINYSTM, presented
by Felber et. al in [24]. Like TL, it also supports two different modes, called write-
through and write-back. The write-through mode implements the same update policy as
the encounter mode in TL, i.e. direct updates, while the write-back mode implements
the same update policy as the commit mode in TL, i.e. deferred updates. Contrary to TL,
however, TINYSTM employs eager ownership acquisition in either mode. TINYSTM
uses a global version clock in the fashion of TLII. However, each time a read operation
executes a successful post-validation of the data item it is reading, it updates the corre-
sponding transaction’s read version number with the current value of the global version
clock. This way TINYSTM enhances a transaction’s possibility of committing.

Algorithmic Techniques in STM Design 121

8 Pessimistic STM Implementations

STM algorithms presented thus far have employed an optimistic approach to conflict
resolution. This means that transactions execute as if they were expecting to encounter
no conflicts and deal with conflicts only after they arise. Pessimistic STM algorithms,
on the other hand, take appropriate actions, so that transactions do not encounter any
conflicts when accessing data items. This leads to algorithms where transactions never
abort.

8.1 Pessimistic Software Lock Elision

Pessimistic Software Lock Elision (PLE) is a technique that was introduced by Afek,
Matveev and Shavit in [4]. PLE implements read-only transactions that are wait-free
but it does so by serializing the execution of update transactions.

PLE uses a coarse-grain lock WL which an update transaction T must acquire in
order to obtain ownership of the entire space of data items. Ownership acquisition is
eager as T attempts to lock WL when it starts its execution. Thus, as long as T holds the
lock, no other update transaction can make progress. Therefore, the execution of update
transactions is totally serialized.

PLE assigns versions per stripe with an additional shared variable, called GV , to
serve as a version counter. PLE employs direct updates. However, T maintains a write-
set in its transactional record where it stores the previous value and version of each
data item it updates. The data items representation is in-place and thread-aware; once
T acquires the lock, it writes the identifier of the thread that initiated T into a shared
variable, called WID. This enables read-only transactions that conflict with T to have
access to T ’s write-set (where they can find previous values for the data items updated
by T). After T has acquired W L and written the identifier of its initiator thread into
WID, it copies locally the current value of GV . It next (locally) increments this value to
obtain its write version number. Then, T performs its updates in a direct way and sets
the version of each data item it writes to be equal with its write version number.

PLE employs a global announce array A where read-only transactions announce
themselves. Thus, read-only transactions are visible. A read-only transaction T ′ reads
the value of GV when it starts its execution and stores this value - which will act as its
read version number - in the element of A that corresponds to the thread that initiated
T ′. When T ′ accesses a data item x, it compares x’s version against its own read version
number. If they are the same, T ′ reads the value of x directly. If they are not, then some
update transaction T has updated x while T ′ was executing. In this case, to preserve the
consistency of its read-set, T ′ must read the value that x had before the update by T .
T ′ can find this value in T ’s write-set. To access T ’s write-set, T ′ reads the identifier of
the thread that initiated T ′ in WID. In order for this to be safe, at commit time, T first
writes its write version number into GV and then scans the announce array until all read-
only transactions that have a read version number less than T ’s write version number,
have terminated. At commit time, a read-only transaction simply sets its announce array
element to the maximal possible value (so as not to cause any update transaction to wait
for it) and terminates.

122 P. Fatourou et al.

8.2 Other Pessimistic STM Algorithms

PLE [4] is a successor of a pessimistic STM algorithm presented in [44]. Characteristics
similar to theirs were previously exhibited by techniques such as [65], which enhances
an STM algorithm with the possibility of rendering one transaction at a time irrevocable
using a fine-grained technique. More coarse-grained techniques are explored in [47,53].
A broader spectrum of implementations was discussed in [60]. Once a transaction be-
comes irrevocable, it is guaranteed not to abort. It eagerly acquires write ownerships
and executes visible reads. It can perform its update on a data item once it ensures that
it is not concurrently accessed by other transactions, aborting them if necessary. How-
ever, a transaction does not start as irrevocable and has to compete during the course
of its execution in order to attempt to gain irrevocability. A failed attempt can lead it to
abort.

An opaque STM system, called SEMANTICTM, that executes transactions without
ever causing any aborts is presented in [18,19]. SEMANTICTM uses a set of t-var lists,
one for each transactional variable. The instructions of each transaction are placed in
the appropriate t-var lists based on which data item each of them accesses. A set of
worker threads execute these instructions. SEMANTICTM ensures that no conflict ever
occurs and exhibits fine-grained parallelism at the level of transactional instructions (in-
stead of at the level of transactions themselves). SEMANTICTM works well for simple
transactions that access a known set of data items, and their codes contain READDI
and WRITEDI instructions on them, conditionals, loops, and function calls. For such
transactions, SEMANTICTM ensures wait-freedom. The authors of [18,19] also present
ideas for extending SEMANTICTM to work for more complicated transactions.

Acknowledgments. The authors were supported by funding from project “IRAKLITOS
II - University of Crete” of the Operational Programme for Education and Lifelong
Learning 2007 - 2013 (E.P.E.D.V.M.) of the NSRF (2007 - 2013), which is co-funded by
the European Union (European Social Fund) and National Resources. They were also
supported by the European Commission under the 7th Framework Program through
the TransForm (FP7-MC-ITN-238639) project and by the ARISTEIA Action of the
Operational Programme Education and Lifelong Learning which is co-funded by the
European Social Fund (ESF) and National Resources through the GreenVM project.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory and auto-
matic mutual exclusion. ACM Trans. Program. Lang. Syst. 33(1), 2:1–2:50 (2011)

2. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman, T.: Com-
piler and runtime support for efficient software transactional memory. SIGPLAN Not 41(6),
26–37 (2006)

3. Afek, Y., Avni, H., Dice, D., Shavit, N.: Efficient lock free privatization. In: Lu, C., Ma-
suzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 333–347. Springer,
Heidelberg (2010)

4. Afek, Y., Matveev, A., Shavit, N.: Pessimistic software lock-elision. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 297–311. Springer, Heidelberg (2012)

Algorithmic Techniques in STM Design 123

5. Agrawal, K., Fineman, J.T., Sukha, J.: Nested parallelism in transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 163–174. ACM, New York (2008)

6. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as
a non-clairvoyant scheduling problem. In: Proceedings of the 25th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 308–315. ACM, New York (2006)

7. Attiya, H., Hans, S.: Transactions are back—but how different they are? In: 7th ACM SIG-
PLAN Workshop on Transactional Computing (Transact), New Orleans, LA, USA (February
2012)

8. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional mem-
ory. CoRR abs/1301.6297 (2013), http://arxiv.org/abs/1301.6297

9. Attiya, H., Hillel, E.: A single-version STM that is multi-versioned permissive. Theory Com-
put. Syst. 51(4), 425–446 (2012)

10. Avni, H., Shavit, N.N.: Maintaining consistent transactional states without a global clock.
In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 131–140.
Springer, Heidelberg (2008)

11. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

12. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The pcl theorem: Transactions cannot
be parallel, consistent and live. In: Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 178–187. ACM, New York (2014)

13. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm by abolishing ownership
records. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pp. 67–78. ACM, New York (2010)

14. Dice, D., Shavit, N.: What really makes transactions faster? In: 1st ACM SIGPLAN Work-
shop on Transactional Computing (Transact), Ottawa, Canada (June 2006)

15. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

16. Dice, D., Shavit, N.: Tlrw: return of the read-write lock. In: Proceedings of the 22nd ACM
symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 284–293. ACM,
New York (2010)

17. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Aspects of Computing 25(5), 769–799 (2013)

18. Dolev, S., Fatourou, P., Kosmas, E.: Abort free SemanticTM by dependency aware schedul-
ing of transactional instructions. In: 8th ACM SIGPLAN Workshop on Transactional Com-
puting (Transact), Houston, TX, USA (March 2013)

19. Avni, H., Dolev, S., Fatourou, P., Kosmas, E.: Abort free semanticTM by dependency aware
scheduling of transactional instructions. In: Noubir, G., Raynal, M. (eds.) NETYS 2013.
LNCS, vol. 8593, pp. 25–40. Springer, Heidelberg (2014)

20. Dragojevic, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In: Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), pp. 155–165. ACM, New York (2009)

21. Dziuma, D., Fatourou, P., Kanellou, E.: Consistency for transactional memory computing.
Bulletin of European Association for Theoretical Computer Science (EATCS) 113, 112–135
(2014)

22. Ennals, R.: Cache sensitive software transactional memory. Tech. rep., Intel Research, Cam-
bridge, United Kingdom (2005)

23. Ennals, R.: Software transactional memory should not be obstruction-free. Tech. Rep. IRC-
TR–06–052, Intel Corporation (January 2006)

http://arxiv.org/abs/1301.6297

124 P. Fatourou et al.

24. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pp. 237–246. ACM, New York (2008)

25. Fraser, K.: Practical lock freedom. Ph.D. thesis, Cambridge University Computer Laboratory
(2003), also available as Technical Report UCAM-CL-TR-579

26. Gottschlich, J.E., Vachharajani, M., Siek, J.G.: An efficient software transactional memory
using commit-time invalidation. In: Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pp. 101–110. IEEE Computer
Society, ACM, New York (2010)

27. Guerraoui, R., Herlihy, M., Kapalka, M., Pochon, B.: Robust contention management in soft-
ware transactional memory. In: Workshop on Synchronization and Concurrency in Object-
Oriented Lanugages (SCOOL) (2005)

28. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention man-
agers. In: Proceedings of the 24th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 258–264. ACM, New York (2005)

29. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 175–184. ACM, New York (2008)

30. Harris, T., Fraser, K.: Language support for lightweight transactions. SIGPLAN Not 38(11),
388–402 (2003)

31. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and Claypool Pub-
lishers (2010)

32. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions. In: Pro-
ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 14–25. ACM, New York (2006)

33. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: Proceedings of the 22nd ACM Symposium on Principles
of Distributed Computing (PODC), pp. 92–101. ACM, New York (2003)

34. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21, 289–300 (1993)

35. Hudson, R.L., Saha, B., Adl-Tabatabai, A.R., Hertzberg, B.C.: Mcrt-malloc: A scalable trans-
actional memory allocator. In: Proceedings of the 5th International Symposium on Memory
Management (ISMM), pp. 74–83. ACM, New York (2006)

36. Imbs, D., Raynal, M.: Virtual world consistency: A condition for stm systems (with a versa-
tile protocol with invisible read operations). Theor. Comput. Sci. 444, 113–127 (2012)

37. Kosmas, E.: Software Transactional Memory. Master’s thesis, University of Ioannina (Octo-
ber 2008) (in Greek)

38. Marathe, V.J., Scherer III, W.N., Scott, M.L.: Design tradeoffs in modern software transac-
tional memory systems. In: Proceedings of the 7th Workshop on Workshop on Languages,
Compilers, and Run-time Support for Scalable Systems (LCR), pp. 1–7. ACM, New York
(2004)

39. Marathe, V.J., Scherer III, W.N., Scott, M.L.: Adaptive software transactional memory. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 354–368. Springer, Heidelberg (2005)

40. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III, W.N., Scott,
M.L.: Lowering the overhead of nonblocking software transactional memory. Tech. Rep.
893, Department of Computer Science, University of Rochester (May 2006)

41. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable techniques for transparent privatization in
software transactional memory. In: Proceedings of the 37th International Conference on Par-
allel Processing (ICPP), pp. 67–74. IEEE Computer Society (2008)

Algorithmic Techniques in STM Design 125

42. Marathe, V.J., Moir, M.: Toward high performance nonblocking software transactional mem-
ory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pp. 227–236. ACM, New York (2008)

43. Martin, M.M.K., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity se-
mantics. Computer Architecture Letters 5(2) (2006)

44. Matveev, A., Shavit, N.: Towards a fully pessimistic stm model. In: 7th ACM SIGPLAN
Workshop on Transactional Computing (Transact), New Orleans, LA, USA (February 2012)

45. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J., Kozyrakis, C.,
Olukotun, K.: An effective hybrid transactional memory system with strong isolation guaran-
tees. In: Proceedings of the 34th Annual International Symposium on Computer Architecture
(ISCA), pp. 69–80. ACM, New York (2007)

46. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: Model and architecture sketches.
Sci. Comput. Program. 63(2), 186–201 (2006),
http://dx.doi.org/10.1016/j.scico.2006.05.010

47. Ni, Y., Welc, A., Adl-Tabatabai, A., Bach, M., Berkowits, S., Cownie, J., Geva, R.,
Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A., Tian, X.: Design
and implementation of transactional constructs for C/C++. In: Proceedings of the 23rd An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pp. 195–212. ACM, New York (2008)

48. Olszewski, M., Cutler, J., Steffan, J.G.: Judostm: A dynamic binary-rewriting approach to
software transactional memory. In: Proceedings of the 16th International Conference on Par-
allel Architecture and Compilation Techniques (PACT), pp. 365–375. IEEE Computer Soci-
ety, Washington, DC (2007)

49. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631–653
(1979)

50. Riegel, T.: Snapshot isolation for software transactional memory. In: 1st ACM SIGPLAN
Workshop on Transactional Computing (Transact), Ottawa, Canada (March 2006)

51. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

52. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable time bases.
In: Proceedings of the 19th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 221–228. ACM, New York (2007)

53. Riegel, T., Fetzer, C., Felber, P.: Automatic data partitioning in software transactional mem-
ories. In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pp. 152–159. ACM, New York (2008)

54. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software transactional mem-
ory systems. In: Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware (LADIS), pp. 4:1–4:4. ACM, New York (2008)

55. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: Proceedings of the 24th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 240–248. ACM, New York (2005)

56. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Transactions and privatization in
delaunay triangulation. In: Proceedings of the 26th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 336–337. ACM, New York (2007)

57. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 204–213. ACM, New York
(1995)

58. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strategy for con-
tention management in software transactional memory. In: Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pp.
141–150. ACM, New York (2009)

http://dx.doi.org/10.1016/j.scico.2006.05.010

126 P. Fatourou et al.

59. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques for soft-
ware transactional memory. In: Proceedings of the 26th ACM Symposium on Principles of
Distributed Computing (PODC), pp. 338–339. ACM, New York (2007)

60. Spear, M.F., Michael, M., Scott, M.L.: Inevitability mechanisms for software transactional
memory. In: 3rd ACM SIGPLAN Workshop on Transactional Computing (Transact), Salt
Lake City, Utah, USA (February 2008)

61. Spear, M.F., Michael, M.M., von Praun, C.: Ringstm: scalable transactions with a single
atomic instruction. In: Proceedings of the 20th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pp. 275–284. ACM, New York (2008)

62. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-based semantics for soft-
ware transactional memory. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS,
vol. 5401, pp. 275–294. Springer, Heidelberg (2008)

63. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: Nonblocking zero-
indirection transactional memory. In: Proceedings of the 21st ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pp. 204–213. ACM, New York (2009)

64. Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code generation and opti-
mization for transactional memory constructs in an unmanaged language. In: Proceedings of
the 5th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pp. 34–48. IEEE Computer Society, ACM, New York, USA (2007)

65. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable transactions and their applications. In:
Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 285–296. ACM, New York (2008)

Conflict Detection in Hardware Transactional Memory

Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata

Dept. Computer Architecture, University of Malaga, E-29071, Malaga, Spain
{quislant,eladio,zapata,oplata}@uma.es

Abstract. This chapter is dedicated to the conflict detection mechanism in the
context of hardware transactional memory (HTM) systems. An effective mecha-
nism is needed to detect conflicts amongst transactions, thus ensuring atomicity
while allowing concurrency. Together with version management and conflict res-
olution, the conflict detection mechanism is one of the main design choices in
HTM systems.

In this chapter, the two most common ways of detecting conflicts are de-
scribed: eager and lazy. Then, we discuss the main HTM approaches to conflict
detection, from the very first system proposed by Herlihy and Moss in 1993, to
the commercial systems delivered by Intel or IBM, amongst others. Finally, a sur-
vey on conflict detection virtualization, i.e. support for unbounded transactions,
is presented, emphasizing the signature topic.

1 Introduction

One of the most important design choices in hardware transactional memory (HTM)
systems is how to address the conflict detection problem. Transactions must be per-
ceived by the user as though they were a single, indivisible instruction. That is, the
HTM system must ensure the atomicity property of transactions. A single global lock
is able to provide atomicity, but eliminates concurrency. In order for a HTM system to
exploit potential parallelism, an effective mechanism must be designed that keeps track
of every memory access issued by transactions to detect conflicts amongst them and
preserve atomicity.

Conflict detection mechanisms can be classified into two main categories depending
on when data conflicts are detected: eager and lazy.

Eager Conflict Detection

When conflicts are detected eagerly, the HTM system has to intercept each memory ac-
cess so that the conflict is detected just before it occurs. This way of detecting conflicts
is conservative since it keeps transactions from working with stale data, thus reducing
the amount of useless computation.

Eager conflict detection can be combined with either form of version management,
also categorized as eager and lazy, where eager version management updates trans-
actional data directly to memory, and lazy version management isolates transactional
writes into a private buffer. We can therefore find eager-eager HTM approaches [4,19]
and eager-lazy ones [2,15,26].

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 127–149, 2015.
c© Springer International Publishing Switzerland 2015

128 R. Quislant et al.

Most HTM systems rely on the cache coherence mechanism to detect conflicts early
[2,15,19,27]. Note that having transactional state together with each cache block allows
the conflict detection mechanism to check for conflicts in an effective way. Although
the cache coherence protocol is a critical element of a multicore processor, which is
difficult to specify and verify [31], this is a common way to address eager conflict
detection implementation.

As far as conflict resolution is concerned, eager conflict detection enables another
alternative than aborting transactions, which is stalling them [19]. As conflicts are de-
tected just before happening, the HTM system might as well delay the resolution of the
conflicting memory access until it is not a conflict anymore. The involved transaction is
then stalled and its work preserved unless the transaction has to be aborted eventually,
either to ensure forward progress or to avoid performance pathologies [5].

Lazy Conflict Detection

With lazy conflict detection the HTM system allows transactions to access shared data
concurrently regardless of conflicts, whose detection is deferred to commit time. This
kind of conflict detection is optimistic, as it encourages parallelism. However, the lazy
approach could readily serialize execution when conflicts are often encountered, be-
cause the only conflict resolution possibility is to abort one of the conflicting trans-
actions. In general, stalling is impossible with lazy conflict detection. The increased
level of speculation translates into an increased amount of discarded computation in
case of conflict. On the other hand, anti-dependencies (WAR) and output dependencies
(WAW) can be filtered out as the instructions of the committing transaction are consid-
ered sequentially earlier than the instructions of the other transactions that have not yet
committed.

Unlike eager conflict detection, lazy conflict detection can be coupled only with lazy
version management. Otherwise, the isolation property of transactions would not be
enforced as conflicts are not detected until commit time. We can find several lazy-lazy
HTM systems in the literature [7,14].

The lazy conflict detection mechanism can simplify the implementation of the HTM
system by minimizing added complexity to the cache coherence protocol and primary
caches. Private buffers are often used to keep new versions of the data accessed by a
transaction. But the system must deal with an increased interconnection network traffic
as the transactional state of a transaction has to be broadcast in order for the rest of
processors to detect conflicts.

A third form of conflict detection can be considered for those systems that allow
validations inside transactions. Conflict validation consists of checking that the data
accessed by a transaction have not been updated by other transactions, and it can be
thought of as a way to attain a trade-off between eager and lazy conflict detection,
since it can be performed at any point in the transaction. Although validation is more
frequent in software transactional memory (STM) systems, we can also find it in HTM
systems [15], where the conflict is detected eagerly but users can be notified whenever
they ask for validation.

Conflict Detection in Hardware Transactional Memory 129

HTM system proposals can also be classified by the amount of transactional accesses
they are able to track. This can be determined by either the conflict detection or the ver-
sion management mechanism. Depending on whether or not HTM systems can cope
with transactions of any duration and size, they can be classified into unbounded and
bounded HTM systems. Bounded systems, also known as best-effort HTM systems,
are able to deal with transactions that do not overflow their hardware resources or do
not survive operating system events. Some of them burden programmers with the task
of handling overflow events, which defeats a key TM motivation: reducing the diffi-
culty of parallel programming. Conversely, unbounded systems deploy mechanisms to
tackle transactions of any size and duration, thus facilitating the task of transactional
programming.

In this chapter, we focus on hardware conflict detection from the point of view of
bounded and unbounded HTM systems. Section 2 discusses the main HTM proposals
with bounded conflict detection mechanisms. The recent approaches of main hardware
manufacturers are also surveyed. Section 3 is devoted to the unbounded HTM system
proposals and their conflict detection mechanisms, with special interest in signatures
as the means to effective conflict detection virtualization. Finally, Section 4 draws the
conclusions.

2 Bounded Conflict Detection

This section discusses several HTM systems that implements bounded conflict detection
mechanisms. These best-effort systems execute transactions properly as long as certain
events do not occur during the execution.

The main events that can abort transactions in a bounded HTM system, apart from
conflicts, are those coming from the operating system (OS) and the ones caused by
hardware overflow. In regard to OS events, virtual memory paging can cause the relo-
cation of pages that contain transactional data, which means that the physical address of
the data has changed and the conflict detection mechanism loses track of the locations
accessed by a transaction. Also, context switches caused by descheduling or thread mi-
gration are difficult to manage if the transactional information is not visible to the OS.
As far as hardware overflow is concerned, bounded HTM systems are not able to exe-
cute transactions whose data set (DS) is larger than the hardware structures used to hold
it. Usually, the response to these events is to abort the transaction in the hope that they
do not happen again. This can work in case of OS events. However, overflow events are
likely to recur, thus risking livelock whenever a fall-back solution is not provided.

The remainder of this section deals with bounded conflict detection in bounded HTM
systems that use the cache coherence protocol to enforce atomicity (Section 2.1). We
also discuss those systems that use alternative methods to implement the conflict detec-
tion mechanism (Section 2.2). We then review the main approaches taken by hardware
manufacturers (Section 2.3).

2.1 Leveraging the Cache Coherence Protocol

There are several bounded HTM system proposals in the literature that modify the
cache coherence protocol to implement the conflict detection mechanism [2,15,19,27].

130 R. Quislant et al.

They usually implement eager conflict detection. Next, the most relevant characteristics
of them are described.

Herlihy and Moss [15] were the first to propose a HTM implementation leveraging
the cache coherence protocol to detect conflicts amongst transactions and ensure atom-
icity. Figure 1 depicts the hardware needed to implement their proposal. They use a
transactional cache besides the private primary cache to keep track of the data accessed
by transactions, both old and new values. New transactional states are added to those
of the coherence protocol to indicate whether the entry is old or new. Data updates are
performed over the new version. Old versions are discarded (invalidated) on commits,
and new versions are invalidated on aborts. The transactional cache is fully associative
and has additional logic to perform commits and aborts in a single cache cycle, as they
assume a few entries are needed per transaction. The primary cache and the transac-
tional cache are exclusive, so a location can only be in one of them at a time, and the
coherence protocol probes both caches in parallel.

Herlihy and Moss modify an invalidation-based snoopy coherence protocol [13] to
add three more messages related to transactional accesses. One of the new messages
requests a location needed by a transactional load, the second one is for requesting a
location needed by a transactional exclusive load or a transactional store, and the third
message signals a conflict for requested transactional locations (busy message). When a
transaction loads a location, its transactional cache is searched just in case the location
was previously written by the same transaction. In case of a miss, a transactional load
message is broadcast to check all the transactional caches. This is done in one cycle,
as transactional caches are fully associative. If there is at least one hit in the transac-
tional caches, a busy message is sent to the requesting core. Then, the requesting core
sets a flag to false (aborted), indicating that the transaction conflicted and must abort.
Subsequent transactional loads and stores of the conflicting transaction do not cause
network traffic and may return arbitrary values. Therefore, conflict detection can be
said to be eager, although the conflict does not resolve until the program executes a
commit/abort/validate instruction that checks the abort flag.

The use of a fully-associative cache is an important implementation constraint due
to its higher hardware requirements and the slower access time compared with other
implementations. Also, a bus-based coherence protocol limits scalability.

Fig. 1. Herlihy and Moss
HTM implementation.
Transactional data are stored
in an exclusive transactional
cache apart from the pri-
vate primary cache. The
snooping coherence pro-
tocol probes both caches
in parallel on request. The
cache coherence protocol is
modified to detect conflicts
eagerly. Core N

...
Core 1

Data Cache
(direct mapped)

Transactional
Cache (fully assoc)

Exclusive

Shared Bus

CPU

... ...

State Tag Data State Addr Data

Conflict Detection in Hardware Transactional Memory 131

Another approach to bounded conflict detection is that of Moore et al. [19]. They
propose LogTM, a HTM system implementation devised to provide better scalability
and to support larger transactions than the Herlihy and Moss proposal. LogTM virtual-
izes version management by using the concept of before-image log taken from the data
base field, where old values are saved in a per-thread log in cacheable virtual memory.
New values are kept in place and isolation is ensured by the coherence protocol. The
log allows unbounded version management, unlike the fully-associative cache of Her-
lihy and Moss, but it has the disadvantage of slow aborts, as the log has to be undone to
restore old versions. Nevertheless, LogTM is bounded because of the conflict detection
mechanism.

Figure 2 shows the hardware needed to implement conflict detection in LogTM. Pri-
vate caches are augmented with transactional read (R) and write (W) bits per cache
block. These bits are set whenever a location is read or written by a transaction to keep
track of its read set (RS) and write set (WS). The cache must support flash clear of these
bits to reset them when a transaction commits. The system implements a directory that
holds a bit vector of sharers per memory block so that the coherence protocol knows
which cores share the block (multiple readers) or which one owns it (one writer). When
a transaction running in core X requests a block that has been written by another trans-
action running in core A, the coherence protocol (by means of the directory) forwards
the request to core A, which checks the block against its private caches. If the check
is a hit and the W bit is set, then core A accessed the block transactionally. Therefore,
core A sends a NACK message (like Herlihy’s busy message) to core X, which has to
manage the conflict.

LogTM deals with transaction overflow in a peculiar manner. A novel “sticky” state
is defined for those blocks in the directory that were evicted from the second level cache
(L2) during the execution of a transaction. Hence, subsequent requests for those blocks
are still forwarded to that core. The core should check its caches on a forwarded request
for an evicted block. However, the block is not in the caches anymore, so the core should
respond with an ACK, which would result in an atomicity violation. The Overflow bit is
used to avoid this situation. The bit is set whenever a transactional block is evicted, and

Fig. 2. LogTM implemen-
tation. Transactional state is
supported by R/W bits per
cache block. The directory
is not updated when a cache
block is evicted. Instead,
the block state is changed
to “sticky”, and requests
are still forwarded to the
core ensuring atomicity. The
cache controller’s Overflow
flag is set when transactional
data are evicted.

...

Core N
...

Core 1

L1 Data Cache

CPU

...

State Tag R W Data

State Tag R W Data

L2 Cache State Tag Sharers

Directory

Cache Controller
Overflow

Interconnect

132 R. Quislant et al.

the controller checks the bit when a block is not in the caches. If the Overflow bit is set,
the core conservatively NACKs the requester. Sticky states are cleaned lazily once the
transaction has committed. A forwarded request due to a stale sticky state is responded
with a message to clean the sticky state as long as the Overflow bit of the core is cleared.
Otherwise, false conflicts can arise because of overlapping of stale sticky states from an
earlier transactions with an overflowed current one.

Although LogTM can cope with larger transactions it is still a bounded HTM system.
OS events cannot be survived because conflict detection information is not persistent
since it cannot be saved in a context change. Furthermore, LogTM does not resolve
replacements of sticky blocks in the directory.

Having transactional bits or tags to label cache blocks that have been accessed by
transactions, along with the modification of the cache coherence protocol to maintain
atomicity are the main techniques when it comes to implementing the conflict detection
mechanism in these bounded systems. Some approaches before LogTM have used these
same techniques although with certain subtleties. Speculative lock elision (SLE) [27]
associates an Access bit with each cache block that interacts with the coherence pro-
tocol. The difference is that SLE accepts code with locks as input, elides the lock and
speculatively executes the critical section enclosed by the lock as though it is a trans-
action. In case of repeated speculation failure because of conflicts, the lock is acquired
and progress guaranteed. Large transactional memory (LTM) [2] has a T bit per cache
block to label transactional data. The cache coherence protocol uses NACK messages
to hint conflicts. LTM is different from LogTM in the way it deals with cache overflows.
Each cache set is extended with an overflow bit that is set when the block is evicted.
Then, the block moves into an uncached hash table in memory that has to be traversed
by the core on each request from other cores.

2.2 Alternatives to Cache Coherence Protocol Modification

Adding complexity to an already complex mechanism like the cache coherence pro-
tocol or to a fine-tuned structure like a cache memory could bring implementation
issues. Some alternative implementations have been proposed to manage conflict de-
tection without having to make major changes to the cache hierarchy. They are usually
based on lazy conflict detection [7,14].

Transaction coherency and consistency (TCC) [14] is proposed to ease the design of
chip multiprocessors by defining consistency and coherence at the granularity of trans-
actions. Regarding consistency, all memory accesses from a core that commits earlier
happen before the memory accesses of cores that commit later, regardless of if such ac-
cesses actually interleaved each other. The coherence protocol is also simplified since
“shared” and “exclusive” states are not needed anymore. A block can be unmodified or
modified in different cores at the same time, and coherency is enforced at transaction
boundaries.

The TCC’s conflict detection mechanism needs the deployment of the hardware
structures shown in Figure 3. Although no extra complexity is added to the coherence
protocol, the core private caches are modified to include transactional read (R) and mod-
ified (M) bits. Also, a write buffer is required to store modified data addresses. Thus, a
transactional write stores the new value in the cache, sets its M bit and stores the address

Conflict Detection in Hardware Transactional Memory 133

in the write buffer. Transactional loads simply set the R bit. Once the transaction comes
to commit, the core broadcasts the write buffer for the other cores to check it against
their R bits (notice that WAR and WAW dependencies are filtered out). If a core finds a
conflict, it invalidates its modified data by transferring (through NOT gates) the W bits
to the valid bits (V) of the cache, thus keeping caches coherent. An alternative imple-
mentation broadcasts addresses and data to update other caches instead of invalidating
their copies of the data. TCC also suggests an optimization by means of the Rename bit
field that avoids false conflicts because of false sharing of cache blocks. It extends the
M bit to each word or byte in the cache block.

Hammond et al.’s TCC conflict detection mechanism is bounded by the size of the
cache and the write buffer. If these structures overflow, they propose to request commit
permission, which ensures that all earlier transactions have committed and no other has
begun, so there is no need to track transactional information anymore. However, this
can be severely detrimental to the system performance. Also, the commit phase may
suppose a bottleneck to scalability as addresses have to be broadcast one by one, or in
packets. The network bandwidth requirements could increase dramatically, specially if
data are transferred as well.

Qian et al. present OmniOrder [21], a lazy-lazy HTM system that keeps the cache
coherence protocol untouched and conflict-serializes transactions to avoid unnecessary
aborts. The history of transactional stores to a memory block is maintained in a per-
processor fully associative buffer called speculative version buffer (SVB). The SVB’s
information for a memory block is moved piggybacked on coherence messages on each
block’s transition to the M state in a directory-based MESI coherence protocol [30].
From these transitions, each core figures out the processors that are executing prede-
cessor and successor transactions to the one it is executing, and stores that information
into bitmask registers. Thus, if processor P1 updates block B, the coherence protocol
brings B to P1’s cache an set the B’s state to M. The new value of B is also stored in the
P1’s SVB. When another processor, P2, updates B, the unmodified coherence protocol
moves B to P2’s cache and invalidates the block in the P1’s cache. P1 piggybacks the
SVB’s entry for B in the coherence message and P2 is now responsible for it. Also,

Fig. 3. TCC implementa-
tion. A write buffer is added
to store the addresses of
transactional modified data.
Such a buffer is broadcast
on commit for other cores to
check it against their trans-
actional read bits (R). In
case of conflict, their modi-
fied data (M) is invalidated
(V). Alternatively, the write
buffer can be broadcast to-
gether with the modified
values in order to update
instead of invalidating. Core N

...
Core 1

Data Cache

Shared Bus

CPU

...

V Tag Data

Addr

W
rit

e
Bu

ffe
r

StoresLoad & Stores

Rename R M

... ...

134 R. Quislant et al.

P1 is marked as predecessor of P2 so that P2 must commit after P1 filtering out the
WAW output dependence. In case of a cycle where a group of processors are both in
the predecessor and the successor list of each other, one transaction must be aborted to
break the cycle. On L1 cache evictions, OmniOrder aborts the transaction and restarts it
in a conventional transactional mode that does not expose its transactional state to other
transactions.

2.3 Hardware Manufacturers’ Approaches

Hardware manufacturers include HTM support in their multiprocessors that is bounded
and based on the cache hierarchy. Below we describe the main HTM extensions focus-
ing on the implementation of the conflict detection mechanism.

Sun Microsystems’ Rock multicore processor was the first production processor
to include HTM support [8], although it was never distributed commercially as a re-
sult of Sun acquisition by Oracle. Each Rock core has hardware support to run two
threads simultaneously. Rock implements a form of speculative threading that uses
the second thread to execute the code whose data is not yet available because of
long-latency instructions. Rock leverages the speculative threading hardware to sup-
port HTM. In addition, two new instructions have been added to the instruction set:
checkpoint fail-pc to denote the beginning of a transaction, which accepts a
pointer to compensating action code used in case of abort, and commit to denote the
end of the transaction. Also, cache lines include a bit to mark lines as transactional.
Stores within the transaction are placed in the store queue and sent to the L2 cache,
which tracks conflicts with loads and stores from other threads. If the L2 cache detects
a conflict, it reports the conflict to the core, which aborts the transaction. When the
commit instruction begins, the L2 cache locks all lines being written by the transaction.
Locked lines cannot be read or written by any other threads, thus ensuring atomicity.
Rock’s TM supports efficient execution of moderately sized transactions that fit within
the hardware resources. However, a wide variety of events may abort a transaction: in-
validation or replacement of cache lines marked as transactional, interrupts and proces-
sor exceptions, TLB misses, context switches, divide instructions, etc. These constraints
make it difficult to predict and reason about why transactions abort, thus complicating
parallel programming.

AMD Advanced Synchronization Facility (ASF) [11] is proposed as an eager-lazy
AMD64 extension. ASF adds two bits per L1 cache line to mark read and written
data inside a transaction. Besides, two queues are used to hold transactional loads and
stores to guarantee a higher minimum transaction length. This is because a 4-way set-
associative L1 cache implies a minimum transaction size of 4 different cache blocks,
since a mapping miss in a set might cause a transaction to abort. With this design choice
ASF reduces the unpredictable nature of transactions, unlike Rock’s HTM. The AMD
cache coherence protocol detects conflicts by checking the cache transactional bits on
each forwarded coherence request. On commit, the cache bits are flash-cleared and the
L1 cache is update with the data in the store queue. ASF is designed to coexist with an
out-of-order processor design and it allows a transaction to survive branch mispredic-
tions and TLB misses. Last but not least, programmers need to write software fallback
code to deal with capacity overflows.

Conflict Detection in Hardware Transactional Memory 135

Intel has released its Transactional Synchronization Extensions (TSX) [28] on the
multicore processor code-named Haswell. TSX provides two interfaces to denote trans-
actional code. The first one is known as Hardware Lock Elision (HLE — similar to SLE
described in Section 2.1), and involves two prefixes for instructions: XACQUIRE and
XRELEASE. HLE is compatible with the conventional lock-based programming model.
So, software written using the HLE prefixes can run on both legacy hardware without
TSX and new hardware with TSX, since the prefixes correspond to the REPNE/REPE
IA-32 prefixes which are ignored on the instructions whereXACQUIRE andXRELEASE
are valid. Thus, the programmer uses the XACQUIRE prefix in front of the instruction
that is used to acquire the lock which is protecting the critical section. The processor
treats the indication as a hint to elide the write associated with the lock acquire oper-
ation, and a transaction is started instead. If the transaction aborts, the processor will
roll back the execution and then resume it non-transactionally. In case of a proces-
sor not supporting TSX, the lock is acquired normally, and the execution is serialized.
The second interface provided by TSX is known as Restricted Transactional Mem-
ory (RTM) and allows more flexibility in transaction declaration than HLE. RTM adds
three new instruction to the ISA: XBEGIN, XEND and XABORT. Intel does not pro-
vide implementation details of TSX, but gives some hints which suggest that TSX is
a best effort approach to HTM, like Sun’s Rock and AMD’s ASF. That is, they do not
guarantee successful execution of transactions of any size and duration, and they abort
transactions that exceed on-chip resources for HTM, or encounter certain events like
page faults, cache misses or interrupts. Thus, Intel enumerates a list of runtime events
that may cause transactional execution to abort, namely, synchronous and asynchronous
exceptions, memory operations other than write-back cacheable type operations, exe-
cuting self-modifying code, excessive sizes for transactional regions, non-transactional
requests to a cache line accessed within a transaction (strong atomicity [17] is ensured),
and so on.

IBM BlueGene/Q hardware support for TM [33] leverages the L2 cache to imple-
ment the main transactional mechanisms. The shared L2 cache is 16-way set-associative
and it is multi-versioned, to allow multiple versions (old and new speculative data) of
the same physical memory block. Each L2 cache set guarantees up to 10 ways to be used
for transactional writes, so it can handle a maximum transaction size of up to 20MB,
out of the 32MB shared L2 cache. However, a transaction might be aborted with just
11 speculative blocks due to mapping misses. The L2 directory maintains read, write,
and speculative bits per block of the cache, and it also holds a transaction ID to iden-
tify the transaction that read or wrote the block. There are 128 transaction IDs and a
scrubbing process is executed every 132 cycles to recover IDs of aborted or committed
transactions. The conflict detection mechanism uses the read/write bits of the direc-
tory to detect RAW, WAR and WAW conflicts among transactions through the cache
coherence protocol. Also, a conflict is detected when non-transactional code writes a
memory location that was previously accessed by a transaction (BlueGene/Q ensures
strong atomicity). Transactional threads involved in a conflict are hardware interrupted
and the conflict handler resolves the conflict. A special conflict register is set to indicate
the cause of the conflict.

136 R. Quislant et al.

BlueGene/Q extends a pre-existing core design and therefore private L1 caches are
not modified. To ensure forward progress without bothering the programmer, Blue-
Gene/Q uses irrevocability [34], a special transactional mode that, once engaged, en-
sures transaction commit with the impossibility of being aborted. With the irrevocable
mode, transactions can handle I/O irreversible operations, hardware overflows and other
events. A runtime algorithm can make a transaction irrevocable after being aborted a
fixed number of times. Also, if the aborting ratio for that transaction surpasses a thresh-
old, subsequent executions will be performed in irrevocable mode after only one abort.

A different implementation approach to HTM has been used in IBM’s System z main-
frame computers with the microprocessor generation zEC12 [16]. Each IBM zEC12
chip has 6 cores with 2 levels of private caches that share a 3rd-level cache. Six of
these Central Processing (CP) chips are connected to an off-chip 4th-level cache, thus
forming a multi-chip module (MCM) with 36 cores. Up to 4 MCM’s can form a co-
herent SMP system with up to 144 cores. Coherency is managed with a MESI protocol
variant.

Unlike BlueGene/Q, System z chips implement HTM by leveraging the L1 private
cache instead of the shared one. Figure 4 depicts the core organization with the trans-
actional state highlighted. The L1 cache directory is augmented with two transactional
state bits per cache line (tx-read and tx-dirty bits) with flash-clear support to reset all
bits in one cycle on transaction commit. Also, tx-dirty bits are connected to the valid bits
so that every transactional store can be flash-invalidated on aborts. L1 and L2 caches
are store-through caches, so every store causes an L3 access. To hide L1 and L2 store
miss latencies, the core has a store queue and a store cache respectively. Both buffers
are augmented with a tx-dirty bit and are probed in parallel with the caches by the co-
herence protocol. In case of conflict, that is, an exclusive or demote (from exclusive to
shared) coherence request is received, then the core rejects the request back to the sender
which will repeat the coherence request. This mechanism, called stiff-arming [16] or
stall [19], gives more time to the requested core in the hope of finishing its transaction.
The number of rejects is determined by a counter that triggers a transaction abort when
a threshold is exceeded. Thereby, deadlock is prevented.

Fig. 4. IBM System z HTM
implementation. The L1
cache and the store buffers
(both the store queue and
the store cache are used to
hide the store miss latency)
maintain the transactional
state that comprises a tx-
read bit (tx-r) and a tx-dirty
bit (tx-d). The valid bit
is tied to the tx-dirty bit
to flush-invalidate cache
entries in case of abort. The
L1 cache and the buffers
are probed in parallel on a
coherency request.

Store Queue

Private L2

CPU

Private L1

Tags Data

V tx-r tx-d Tags Data tx-d Data

Store Cache

tx-d Data

To Shared L3From Shared L3Coherency
requests
from L3

Coherency
requests
from L2 to L1
and store buffers

Conflict Detection in Hardware Transactional Memory 137

IBM zEC12 processor’s L1 cache is a 96KB cache organized in 64 sets with 6 ways
and 256 byte lines. Its latency is 4 cycles. On the other hand, the private L2 cache is a
1MB 8-way associative cache with a 7 cycle L1 miss penalty. On abort, the tx-dirty lines
in L1 are invalidated (new values), and the old values are very close in L2 at 7 cycle L1
miss penalty. In order for transactions not to be limited by L1 size and associativity, a
special bit per L1 set is asserted whenever a transactional line is evicted from L1. Thus,
transactional footprint capability is extended to L2 size and associativity without mod-
ifying L2, and to the store cache size, at the cost of false positives. The special eviction
bits in the L1 cache do not store address information, so every coherence request for an
address that maps to a set whose eviction bit is set will abort the transaction regardless
of whether the address was transactional or not. Therefore, a false positive might occur.
However, the system can track much larger transactions, specially on the read set. The
write set is limited to the size of the store cache (64 x 128 bytes).

Finally, IBM has added a HTM facility to the POWER8 processor [1,6] from which
few implementation-specific details have been revealed. Each POWER8 core has two
data private caches, L1 and L2, and one bank of a larger shared L3 cache. Unlike Blue-
Gene/Q and System z, the POWER8 processor keeps track of transactional state in
the private L2 cache [1]. When the transaction commits, the new values stored in L2
are committed to the memory sub-system. POWER8 introduces the concept of sus-
pended transactional mode [6] to allow for transactions to survive interruptions (con-
text switches, hypervisor, debuggers,...). In this mode, memory accesses are performed
non-transactionally and cannot be undone if the transaction eventually aborts. The ini-
tiation of a new transaction is prevented, and the hardware tracks conflicts with the
transactional data of the suspended transaction. Stores to memory locations that were
transactionally accessed by the same thread will abort the suspended transaction.

3 Unbounded Conflict Detection

Programming a bounded HTM system might become a difficult task if the hardware is
overflowed persistently, and it can happen more frequently than expected. Table 1 shows
the number of overflowed transactions and the average number of evicted blocks for the
STAMP benchmark suite [18]. Those figures have been obtained from an implicitly
transactional system, where only the boundaries of transactions have to be defined and
all memory accesses within them are tracked1, and 32KB L1D caches. As a result, none
of the benchmarks would have been able to complete in a bounded HTM system that
uses the primary cache to provide transactional support.

Increasing the size of caches does not always guarantee that the HTM system can
handle larger transactions, since an eviction can happen because of mapping misses re-
gardless of whether the cache is full or empty. Bounded HTM systems usually provide
a fallback mechanism to tackle overflowing situations, which might involve the pro-
grammer. However, next we describe several unbounded HTM proposals that are able
to handle transactions of arbitrary size and duration, even in the presence of OS events,
without further programming effort.

1 Conversely, explicitly transactional systems urge the programmer to explicitly identify trans-
actional memory accesses.

138 R. Quislant et al.

Table 1. Number of transactions that overflow the L1D cache and the number of cache blocks
replaced on average, both read and written within a transaction

Benchmark
Overflowed Average Number of Block Evictions

Transactions Read Written
Bayes 102 68.2 100.8
Genome 447 78.7 1.8
Intruder 4511 2.1 0.1
Kmeans 387 1.0 0
Labyrinth 48 62.9 76.8
Vacation 2710 7 0.1
Yada 816 117.2 73.2

3.1 Persistent Meta-Data Systems

The unbounded HTM systems described in this section hold transactional meta-data
(the information needed to perform conflict detection and version management) in vir-
tual memory that persists hardware overflows and OS events.

Unbounded transactional memory (UTM) [2] holds, in virtual memory, a structure
called XSTATE that represents the state of all transactions running in the system. Be-
sides, each memory block is augmented with a transactional read/write bit and a pointer
to the old value of the block that resides in an entry of the XSTATE structure. Such an
entry of the XSTATE structure, in turn, has a pointer to the memory block. So, the XS-
TATE structure holds a linked list of memory blocks whose transactional read/write bits
are set. Conflict detection is carried out eagerly, so every memory access operation must
check the pointer and bits of the memory block to detect any conflict. The access to the
XSTATE and memory block meta-data is done by means of several hardware registers
that hold pointers to their base and bounds. For non-overflowed transactions, UTM im-
plements a conventional cache-based HTM to accelerate execution, called LTM (see
Section 2.1).

Virtual transactional memory (VTM) [26] assigns each transaction a status word
(XSW), which is used to commit or abort the transaction by modifying it atomically
with a CAS instruction. VTM also defines a transaction address data table (XADT),
which is the shared log for holding overflowed transactional data. Both structures reside
in the application’s virtual address space. However, they are invisible to the user. The
VTM system, implemented in either hardware or microcode, manages these structures
by means of new registers added to each thread context that point to them and are
initialized by the application. When a transaction issues a memory operation that is a
cache miss, it must be checked against overflowed addresses by traversing the XADT.
Traversing the XADT might be too slow, so VTM provides two mechanisms for not
interfering with transactions that do not overflow. First, an XADT overflow counter
records the number of overflowed entries. If it is set to zero, no traffic is needed as
it is locally cached at each processor. Second, an XADT filter (XF), implemented as
a software counting Bloom filter [12] that allows deletions, provides fast detection of
conflicts. A miss in the filter guarantees that the address does not conflict, and a hit
triggers an XADT walk.

Conflict Detection in Hardware Transactional Memory 139

TokenTM [4] is an unbounded, eager conflict detection HTM system that augments
each memory block with transactional meta-data. As depicted in Figure 5, the meta-
data consist of a Token and a thread identifier, TID. The system must comply with the
following invariant for each memory block: a block can be non-transactional, part of
the RS of one or more transactions, or part of the WS of only one transaction. There-
fore, a block that is non-transactional will have 0 tokens, and the TID is not necessary.
A block read by one transaction will have 1 token and the TID of the thread executing
such a transaction. A block read by n transactions will have n tokens, and the TID is not
necessary. And a block written by one transaction will have all the tokens, T, and the
TID of the thread that issued the transactional write. So, if a transaction reads a block
with (Token=T,TID=X) and the TID does not match its own TID (the TID is stored in
a CPU register, see Figure 5) a conflict is detected with the thread X. Also, if a trans-
action writes a block with (1,Y), a conflict is detected with the thread Y. However, if a
transaction writes a block with (n,-), the conflict is quickly detected, but the resolution
can be costly, as the TIDs of the n sharers cannot be stored in the TID field. In this case,
if all shared copies of the block were in the cache hierarchy, the coherence protocol
would provide the TIDs of the conflicting transactions. Otherwise, the system has to
traverse the thread logs, that hold old data versions and precise meta-data, in order to
find that information. The coherence protocol is not modified except for piggybacking
the transactional meta-data (Token, TID) in each coherence message. Then, to maintain
meta-data coherency, as multiple copies of a block can coexist in the cache hierarchy,
TokenTM defines simple rules to fission and fusion transactional meta-data.

As transactional meta-data is attached to each memory block, transactions can over-
flow the caches without losing transactional state. Also, conflict detection suffers no
false conflicts unlike other unbounded proposals (see Section 3.2). TokenTM handles
paging and context switches easily by initializing, saving, restoring meta-data, and
flash-clearing/ORing meta-data in L1 cache. Finally, by means of a Fast Release (this
CPU bit is set when none of the locations in the WS have been evicted, so Fast Release
is safe), small transactions that fit in the cache can commit at full hardware speed, just
by flash-clearing their tokens. Larger transactions must walk the log to reset all their
tokens on commit.

Fig. 5. TokenTM imple-
mentation. Each memory
block is augmented with a
field holding a token num-
ber, and another field for
the thread ID, TID, of the
transaction. Caches are also
modified to hold such meta-
data, but the coherence
protocol is not modified.
Meta-data is piggybacked
on coherence messages. Memory Bank

Shared L2 Cache Bank

CPU Private L1

...

TID
Fast
Release

Token TID State Tag Data

Token TID State Tag Data

Token TID Data

Memory Controller

140 R. Quislant et al.

3.2 Signature-Based Systems

Ceze et al. [7] propose Bulk as a mechanism to detach conflict detection from caches,
and they manage to implement an unbounded conflict detection mechanism based on
signatures that is able to track an indeterminate number of addresses and survive certain
OS events like context switches.

Bulk is a lazy-lazy HTM system that presumes an invalidation-based coherence pro-
tocol that works unmodified when dealing with non-transactional data, and puts off
invalidations until commit time when dealing with transactional data. Bulk is similar to
TCC (Section 2.2), but the latter only supports transactional data, thus simplifying the
cache coherence protocol specification. Unlike TCC, Bulk does not hold transactional
state in primary caches. Instead, a Bulk Disambiguation Module (BDM) is defined per
core which supports unbounded conflict detection.

Figure 6 shows the architecture of the BDM. The main part of the module consists
of a set of signatures. Signatures are defined as Bloom filters (see Section 3.2.1), time
and space-efficient hash structures that are implemented as a bit array and a set of hash
functions. Such functions are a surjection between a larger set of addresses, the memory
space, and a smaller set of indexes, the bit array, so the signature represents a superset
of the real RS and WS of transactions. Hence, aliases or false positives can arise that do
not compromise correctness but can hurt system performance as transactions get larger.

Bulk broadcasts fixed-sized signatures on commit for the other cores to invalidate
stale data, just as TCC does, but with the difference that addresses are compacted in
the signature instead of having a write set with individual addresses. The Bulk Func-
tional Units implement operations, like signature intersection, to quickly perform the
disambiguation of addresses. Thus, when a core receives the WS signature from other
core that attempts to commit, the former intersects the received signature with its RS
signature. If the result is not empty the conflict has to be resolved, so the receiver in-
validates its modified data. To invalidate the speculatively written data, the BDM could
walk the cache sets, retrieve the tags of valid entries and perform a membership query
to its WS signature. This could be very inefficient if the number of valid lines is small.
Instead, the BDM has a bit array (Current W Cache Sets) of length the number of sets
in the cache, that holds the valid written sets of the cache and is calculated from the

Fig. 6. Bulk Disambigua-
tion Module (BDM) im-
plementation. Bulk de-
taches transactional state
from caches and defines the
BDM to implement an un-
bounded conflict detection
mechanism. It is based on
signatures, time and space-
efficient hash structures that
are able to store an indefinite
number of addresses at the
cost of false positives.

Bulk Disambiguation Module

Controller

WS RSWS RS

Signatures

Processor

Network

Cache
Controller

...

Overflow

Bulk
Functional

Units

Current W
Cache Sets

ORed W
Cache Sets

Conflict Detection in Hardware Transactional Memory 141

WS signature with a decoding operation of the Bulk Functional Units. Invalidations are
done sequentially, regardless of that optimization.

The BDM has a set of signatures to support context switches and to keep on detect-
ing conflicts with a transaction that has been preempted. In case that the private caches
evict a transactional block, the overflow bit is set. Checking for conflicts with evicted
cache blocks does not necessarily imply traversing an overflow memory space as the
information is in the signature. However, if the module runs out of signatures, the sig-
nature of one thread is moved to the overflow memory space and conflict detection is
carried out like in VTM (see Section 3.1) until one transaction commits and clears one
signature. There is another bit array, the ORed W Cache Sets, that stores the union of
each written cache sets of every signature managed by the BDM, both current and pre-
empted. These bit arrays also help to maintain the set restriction property introduced
by Bulk, by which each cache set must only contain transactional or non-transactional
blocks.

Although Bulk can be considered as unbounded from the conflict detection mecha-
nism point of view, it does not clarify what happens on a page relocation or a thread
migration.

LogTM-SE [35] is the unbounded extension of LogTM. Unlike Bulk, LogTM-SE is
an eager-eager HTM system with an architecture that fully supports unbounded trans-
actions that can survive thread migration, paging, context switches and transactions of
indeterminate size. LogTM-SE stands for LogTM Signature Edition, so it is based on
Bulk signatures, although the eager nature of the conflict detection mechanism simpli-
fies the implementation.

The Bulk’s BDM implements Bulk Functional Units that provide intersect, decode,
and other operations to deal with address disambiguation. The BDM holds the cache
sets of transactionally modified blocks and implements a finite state machine to inval-
idate those blocks on abort, as lazy conflict detection implies bulk disambiguation at
commit time. However, LogTM-SE does not need such a complex hardware surround-
ing the signature since addresses are disambiguated individually and eagerly by the
coherence protocol. When a core, A, reads a block within a transaction, the cache co-
herence protocol forwards the request to the owner of the block, B. Core B checks its
WS signature and responds with an ACK or a NACK message depending on whether it
was a miss or a hit in the signature. If the block is not in the cache hierarchy, it is fetched
from main memory and a signature check is broadcast for the directory to rebuild the
block state in cache. If a core hits its signature, its bit in the bit vector of sharers is set,
and a conflict is signaled if the owner was not core A.

In order to support context switches and migrations, LogTM-SE proposes to add
an additional hardware summary signature per thread context that holds the union of
the signatures from all descheduled threads. In addition, the signatures are saved to the
transaction’s log header to be reinstalled in the normal signature when the thread is
rescheduled. The summary signature is maintained by the OS in software, which is in
charge of interrupting all threads of the same process to set their hardware summary
signature to the global software summary signature. The hardware summary signature
is checked before loads and stores reach the primary cache, so coherence requests do
not have to check the summary signature because that early checking filters out conflicts

142 R. Quislant et al.

1 1 0 0 0 1 0 1 0 0 0 0 ... 1 1 0

x y z

w

In
se

rti
on

Te
st

Hash function
indexes

Fig. 7. Design of a Bloom filter. A false positive scenario.

with descheduled transactions. When a conflict is detected in the summary signature,
the OS traps to a conflict handler since normal hardware conflict resolution is not valid
as one of the conflicting transactions is not running in the system.

With virtual memory paging the problem lies in the fact that signatures operates on
physical memory addresses, so if a page is relocated to a different address space, false
negatives can arise risking incorrect conflict detection. LogTM-SE proposes to interrupt
all threads to update their signatures whenever a page relocation occurs. This signature
update consists in decoding the signature to get the addresses inserted in it and check
if those addresses belonged to the old page. If so, the addresses are reinserted with the
new page address.

LogTM-SE support for virtualization is costly and can be very detrimental to per-
formance if large transactions become the norm. Otherwise, if these OS events are not
frequent, the described mechanisms prove to be an effective solution.

3.2.1 Signature Implementation Enhancements
Signatures have been proved an effective mechanism to implement unbounded conflict
detection. They are implemented as Bloom filters [3], proposed by Burton H. Bloom in
1970 as a time and space-efficient hash coding method with allowable errors. Figure 7
shows the design of a Bloom filter. It comprises a bit array of 2m bits and k different
hash functions that map elements into k randomly distributed bits of the array. Such an
array is initially set to 0, and inserting an element into the filter consists in setting to
1 the k bits indexed by the hash functions. Test for membership consists in checking
that those k bits are asserted. As the array is fixed-sized there exists the possibility of
errors of testing, called false positives. For instance, in Figure 7, elements x, y and z are
inserted in the filter and the bits indexed by the hash functions (k = 2 in this case) are
set to 1. When we test for element w, it happens to be mapped into bits that have already
been set to 1, so the test is a false positive. However, false negatives are not possible.

The probability of false positives rises as signature fills, and it might cause substantial
performance degradation because of false conflicts or false contention. Figure 8 shows
the probability of false positives for a signature implemented as a Bloom filter [3] with
a 1Kbit array and different number of hash functions. The false positive rate is given by
the equation:

pFP(M,n,k) =

(

1−
(

1− 1
M

)nk
)k

≈
(

1− e−
nk
M

)k
, (1)

Conflict Detection in Hardware Transactional Memory 143

where M is the signature size, n the number of insertions and k the number of hash
functions. And pFP can be simplified by using the Taylor series expansion of the expo-
nential function, ex = ∑∞

n=0
1
n! xn [29]. We can see that better false positive probability

is expected for low populated filters and a high number of hash functions (k ∈ {4,8}).
However, the more hash functions the Bloom filter has, the earlier the filter populates
and the higher the false positive probability is expected for high populated filters.

We can find manifold signature implementation proposals in the literature that try to
enhance signature performance by reducing both the false positive rate and the hardware
budget as well.

Bloom filter signatures can be implemented as a k-ported SRAM in its regular
version. However, Sanchez et al. [29] proposed parallel signatures as an alterna-
tive hardware-efficient implementation to regular Bloom filter signatures. Multiported
SRAMs require much hardware as they grow quadratically with the number of ports.
Figure 9 shows the implementation of both regular and parallel filters. Whereas the reg-
ular filter is implemented as a k-ported SRAM, the parallel one consists of k subfilters
implemented as single-ported SRAMs, yielding the same or better false positive rate.

Cuckoo-Bloom signatures are also proposed in [29]. They are intended to perform
like high-k Bloom filters for small transactions, while yielding the false positive rate of
Bloom filters with few hash functions when transactions are large, i.e. Cuckoo-Bloom
signatures try to get the lowest false positive rate in each situation. Cuckoo-Bloom
filters act like a hash table at the beginning of the transaction. Addresses are stored as if
in a set-associative cache, where tags and data are the result of hashing the address with
two independent hash functions, and sets are indexed by other hash function. When
a set is full, the filter executes a sequence of evictions and re-insertions to store the
incoming address. If such a sequence takes too long, the set is converted into a regular
Bloom filter with low k, after storing the addresses into a separate storage space. Then
such addresses are hashed into the newly converted Bloom filter. Lookups are fast, but
insertions are more complicate, and the filter needs certain control logic, additional
storage, a bit array to signal whether a set has been converted into a Bloom filter or
not, and other structures (comparators,...) that complicate the design and might rise the
hardware budget.

Fig. 8. False positive prob-
ability of signatures im-
plemented as regular Bloom
filters. The signature’s bit ar-
ray is 1024bit length and the
number of hash functions
k ∈ {1,2,4,8}.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of elements inserted

P
ro

ba
bi

lit
y

of
 fa

ls
e

po
si

tiv
es

k=8
k=4
k=2
k=1

144 R. Quislant et al.

100110 01010...

h0 h1 hk-1
...

0

Address

0110 1010

h0 h1 hk-1
...

Address

0110 ...

insert

...

query

...

R
eg

ul
ar

 B
lo

om
 F

ilt
er

P
ar

al
le

l B
lo

om
 F

ilt
er

query

insert

2m

2m/k 0

h0 h1 hk-1...

W
or

dl
in

es

Bitlines
k-ported SRAM

of 2m bits

h0 h1 hk-1...

k single-ported SRAM of
2m/k bits

Fig. 9. Regular Bloom filter vs. parallel Bloom filter design and implementation. The bit array is
implemented as a bidimensional SRAM where the most significant bits of the hash index select
the wordline and the less significant bits select the bitline within the word.

An alternative hardware-efficient implementation of hash functions, Page-Block-
XOR hashing (PBX), is proposed in [36]. They use the concept of entropy to find the
highest randomness bits of the address, to allow reducing the hardware complexity of
hash functions, that are usually implemented as a tree of XOR gates per hash index
bit. PBX compacts those trees to a single XOR gate per hash bit, although it requires a
profiling of the application to find the most random address bits. Notary [36] also pro-
poses a technique to reduce the number of asserted bits in the signature. Their approach
is based on segregating addresses into private and shared sets. Then, only the shared
addresses are recorded. This solution requires support at the compiler, runtime/library
and operating system levels. In addition, the programmer must define which objects are
private or shared, which might be a difficult and error-prone task.

Titos et al. [32] propose a directory-based scheme for detection of conflicts in HTM.
They detach conflict detection from the L1 caches and shift it to the directory level.
This approach optimizes eager conflict detection HTM systems with an unordered and
scalable network, when running applications with high number of conflicts. The net-
work traffic is reduced up to 30% since the directory does not have to send signature
check messages to the cores. Furthermore, transactional bookkeeping is more efficient
since transactional information is globally encoded into the directory instead of hav-
ing a local signature per core. Transactions usually access the same shared data which
is not kept redundantly into the directory. The main disadvantage of this proposal is
that hits on private caches do not go through the directory. A message has to be sent
out to notify the directory of transactional loads and stores that hit private caches. The
problem is that the critical path of a private cache cannot be slowed down by an access to

Conflict Detection in Hardware Transactional Memory 145

the directory, so the communication between cache and directory is set asynchronously,
thus introducing races in conflict detection.

Orosa et al. [20] propose FlexSig as a flexible hardware signature implementation
to change dynamically the amount of signatures per core according to system require-
ments. FlexSig groups all signatures in the system into a pool of signatures and assigns
them to the cores on demand. It relies in the fact that all cores are not always running
transactional code at the same time. Thus, if there are only two transactions running in
the system, they will use half of the signature pool each. If other cores start a trans-
action, they demand signature allocation to the pool and it is repartitioned to meet the
necessities of all the cores running transactions in the system, without incurring false
positives.

Choi and Draper [9] propose adaptive grain signatures, that keep the history of trans-
action aborts and dynamically changes the input bit range to the hash functions on the
abort history. The aim of this design is to reduce the number of false positives that harm
the execution performance.

Quislant et al. [22,25] propose locality-sensitive signatures, LS-Sig, that exploit the
spatial locality property of memory references to reduce the probability of false con-
flicts. LS-Sig defines new maps for hash functions to reduce the number of bits inserted
in the filter (occupancy) for those addresses with spatial locality. That is, nearby mem-
ory locations share some bits of the Bloom filter. As a result, false conflicts are signifi-
cantly reduced in transactions that exhibit spatial locality in their read or write sets, but
the false conflict rate remains unalterable for transactions that do not exhibit locality at
all. This is favorable particularly for large transactions that usually present a significant
amount of spatial locality. In addition, as the proposal is based on new locality-aware
hash maps, its implementation does not require extra hardware.

The probability of false positives for LS-Sig can be expressed as follows:

plocal
FP (M,n,k) =

(

1−
(

1− 1
M

)n∑k
t=1 t ft

)k

, (2)

where the exponent nk of Equation 1, which stands for the number of bits of the array
that are set after n insertions, is replaced by n∑k

t=1 t ft . Now, inserting an address in the
filter does not necessarily set k bits as fewer bits can be set depending on locality. ft
is the probability that an insertion only sets t bits in the filter because a nearby address
was already inserted.

Figure 10 shows the analytical evaluation of false positive probability for the generic
Bloom filter given by Equation 1 with several k values, and the proposed LS-Sig scheme
(Equation 2) for k = 4. To parameterize the evaluation, f = ∑k−1

t=1 ft was introduced
as the probability of an address being near to some inserted address. Consequently,
1− f = fk is the probability of being far from those already in the filter. With a generic
Bloom filter low values of k are advantageous for large transactions and high values of
k for small ones. However, it can be inferred from Figure 10 that the LS-Sig scheme
can achieve the benefits of both situations if the address sequence exhibits medium/high
spatial locality.

Unified [10], Multiset and Asymmetric [23,24] signatures are proposed to deal
with asymmetry in transactional data sets. Read and write signatures are usually

146 R. Quislant et al.

Fig. 10. Probability of false
positives of generic and LS-
Sig varying the parameter
f = ∑3

t=1 ft (the higher the
f , the more the locality).

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
f=0
f=0.2

f=0.4

f=0.6

f=0.8

f=0.875

Number of addresses inserted

P
ro

ba
bi

lit
y

of
 fa

ls
e

po
si

tiv
es

Generic Bloom vs Locality Sensitive, 1024 bits

Generic k=4
Generic k=2
Generic k=1
LS−Sig k=4

Fig. 11. Unified (UNI),
Multiset Shared (MS s)
and Asymmetric (ASYM)
signature configurations
studied in [10,23]. UNI
blind is the same as MS
s=4 (the number of hash
functions is set to 4 and
s=4 means that all hashes
are shared between the RS
and the WS). ASYM a=7
devotes 7 subfilters to the
RS and 1 to the WS. SEP
is the conventional separate
parallel signature proposed
in [29].

0

1

0

1

0

0.5

1

MS s=0MS s=1

MULTISET

MS s=2

ASYM a=4
ASYM a=5
ASYM a=6
ASYM a=7

ASYMMETRIC

SEP

MS s=3

SHARED

UNI helper

UNI blind
MS s=4

m
R

m
W

m
MS

m
SH

 ↓ ↓ ↓ ↓ ↓
 hr hw hrhw hrw

implemented as two separate, same-sized Bloom filters. In contrast, transactions fre-
quently exhibit read and write sets of uneven cardinality. In addition, both sets are not
disjoint, as data can be read and also written. This mismatch between data sets and
hardware storage introduces inefficiencies in the use of signatures that have some im-
pact on performance, as, for example, read signatures may populate earlier than write
ones, increasing the expected false positive rate.

Figure 11 shows all the signature configurations explored in [10,23]. There are three
orthogonal axes: asymmetric, shared or unified, and multiset. Asymmetric signatures
are implemented using parallel Bloom filters, where the number of subfilters devoted
to the RS and the WS can be configured via a reconfiguration register that can be set
by a new instruction of the ISA or by the HTM system. A profiled RS to WS ratio
can be computed for each application to configure the asymmetric signature. Multiset
signatures merge RS and WS bit arrays into a common array while keeping their hash
functions separate one another. However, sharing/unifying the hash functions of the
RS and the WS is also proposed and it proves to be a good and general solution to
the problem of asymmetry in data sets. Shared/Unified signatures have the problem of

Conflict Detection in Hardware Transactional Memory 147

introducing read-read dependencies, since they share all hash functions so they cannot
distinguish between read and written locations. In [10], it is proposed to augment the
signature with an extra register to filter out read-read dependencies, called the helper
register, where only writes are stored. The same helper register effect is achieved with
multiset shared signatures by segregating one hash function per set while sharing the
rest (the number of hash functions is assumed greater than one). Last but not least, a
study of the different combinations of multiset shared signatures with LS-Sig is carried
out in [23].

4 Conclusions

The conflict detection mechanism is a key element in the design and implementation
of a HTM system, as it is the means to attain atomicity while providing optimistic
parallelism. In this chapter, we have surveyed the main approaches to hardware conflict
detection implementation and we have classified them into two big groups: bounded
and unbounded.

Whereas unbounded HTM conflict detection mechanisms release the programmers
from worrying about HTM limitations and restrictions, they may require a signifi-
cant multicore architecture modification that could compromise overall system perfor-
mance. Signature-based proposals try to keep the hardware simple but suffers from
false-positives on conflict detection that can be detrimental for the performance.

On the other hand, bounded HTM conflict detection is more feasible from the point
of view of the hardware design and implementation. Several approaches have been ex-
plored that either leverage the cache hierarchy or use alternative implementation solu-
tions. Hardware manufactures have adopted this bounded approach and some of them
are releasing commercial processors with bounded HTM support. However, these HTM
extensions could fail to comply with one of the main features that transactional mem-
ory systems claim to deliver, i.e. simplifying concurrent programming. Thus, effective
unbounded HTM systems, and unbounded conflict detection in particular, could help
to ease multicore processor programming so that transactional memory becomes the
paradigm to use.

Acknowledgement. This work has been supported by the Government of Spain with
project CICYT TIN2010-16144.

References

1. Adir, A., Goodman, D., Hershcovich, D., Hershkovitz, O., Hickerson, B., Holtz, K., Kadry,
W., Koyfman, A., Ludden, J., Meissner, C., Nahir, A., Pratt, R.R., Schiffli, M., St. Onge, B.,
Thompto, B., Tsanko, E., Ziv, A.: Verification of Transactional Memory in Power8. In: 51st
Ann. Design Automation Conference (DAC 2014), pp. 1–6 (2014)

2. Ananian, C., Asanovic, K., Kuszmaul, B., Leiserson, C., Lie, S.: Unbounded transactional
memory. In: 11th Int’l. Symp. on High-Performance Computer Architecture (HPCA 2005),
pp. 316–327 (2005)

148 R. Quislant et al.

3. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM 13(7), 422–426 (1970)

4. Bobba, J., Goyal, N., Hill, M., Swift, M., Wood, D.: TokenTM: Efficient execution of large
transactions with hardware transactional memory. In: 35th Ann. Int’l. Symp. on Computer
Architecture (ISCA 2008), pp. 127–138 (2008)

5. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.: Perfor-
mance pathologies in hardware transactional memory. In: 34th Ann. Int’l. Symp. on Com-
puter Architecture (ISCA 2007), pp. 81–91 (2007)

6. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust architectural
support for transactional memory in the power architecture. In: 40th Ann. Int’l. Symp. on
Computer Architecture (ISCA 2013), pp. 225–236 (2013)

7. Ceze, L., Tuck, J., Torrellas, J., Cascaval, C.: Bulk disambiguation of speculative threads
in multiprocessors. In: 33th Ann. Int’l. Symp. on Computer Architecture (ISCA 2006), pp.
227–238 (2006)

8. Chaudhry, S., Cypher, R., Ekman, M., Karlsson, M., Landin, A., Yip, S., Zeffer, H., Trem-
blay, M.: Rock: A high-performance sparc cmt processor. IEEE Micro 29(2), 6–16 (2009)

9. Choi, W., Draper, J.: Locality-aware adaptive grain signatures for transactional memories.
In: IEEE Int’l. Symp. on Parallel and Distributed Processing (IPDPS 2010), pp. 1–10 (2010)

10. Choi, W., Draper, J.: Unified signatures for improving performance in transactional mem-
ory. In: IEEE Int’l. Parallel Distributed Processing Symp. (IPDPS 2011), pp. 817–827 (May
2011)

11. Chung, J., Yen, L., Diestelhorst, S., Pohlack, M., Hohmuth, M., Christie, D., Grossman, D.:
Asf: Amd64 extension for lock-free data structures and transactional memory. In: 43rd Ann.
Int’l. Symp. on Microarchitecture (MICRO 43), pp. 39–50 (2010)

12. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. on Networking 8(3), 281–293 (2000)

13. Goodman, J.R.: Using cache memory to reduce processor-memory traffic. In: 10th Ann. Int’l.
Symp. on Computer Architecture (ISCA 1983), pp. 124–131 (1983)

14. Hammond, L., Wong, V., Chen, M., Carlstrom, B., Davis, J., Hertzberg, B., Prabhu, M.,
Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consistency.
In: 31th Ann. Int’l. Symp. on Computer Architecture (ISCA 2004), pp. 102–113 (2004)

15. Herlihy, M., Moss, J.: Transactional memory: Architectural support for lock-free data struc-
tures. In: 20th Ann. Int’l. Symp. on Computer Architecture (ISCA 1993), pp. 289–300 (1993)

16. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and implementation
for ibm system z. In: 45th Ann. Int’l Symp. on Microarchitecture (MICRO 45), pp. 25–36
(2012)

17. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity semantics.
IEEE Computer Architecture Letters 5(2), 17–20 (2006)

18. Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Appli-
cations for Multi-Processing. In: IEEE Int’l Symp. on Workload Characterization (IISWC
2008), pp. 35–46 (2008)

19. Moore, K., Bobba, J., Moravan, M., Hill, M., Wood, D.: LogTM: Log-based transactional
memory. In: 12th Int’l. Symp. on High-Performance Computer Architecture (HPCA 2006),
pp. 254–265 (2006)

20. Orosa, L., Antelo, E., Bruguera, J.: FlexSig: Implementing flexible hardware signatures.
ACM Trans. on Architecture and Code Optimization 8(4), 30:1–30:20 (2012)

21. Qian, X., Sahelices, B., Torrellas, J.: Omniorder: Directory-based conflict serialization of
transactions. In: 41th Ann. Int’l. Symp. on Computer Architecture (ISCA 2014) (2014)

22. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Improving signatures by locality exploita-
tion for transactional memory. In: Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT 2009), pp. 303–312 (2009)

Conflict Detection in Hardware Transactional Memory 149

23. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Hardware signature designs to deal with
asymmetry in transactional data sets. IEEE Trans. on Parallel and Distributed Systems 24(3),
506–519 (2013)

24. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: Multiset signatures for transactional mem-
ory. In: Int’l. Conf. on Supercomputing (ICS 2011), pp. 43–52 (2011)

25. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.L.: LS-Sig: Locality-sensitive signatures for
transactional memory. IEEE Trans. on Computers 62(2), 322–335 (2013)

26. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: 32th Ann. Int’l.
Symp. on Computer Architecture (ISCA 2005), pp. 494–505 (2005)

27. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling highly concurrent multi-
threaded execution. In: 34th Ann. Int’l. Symp. on Microarchitecture (MICRO 34), pp. 294–
305 (2001)

28. Reinders, J.: Transactional synchronization in Haswell. Intel’s software blogs (2012),
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/

29. Sanchez, D., Yen, L., Hill, M., Sankaralingam, K.: Implementing signatures for transactional
memory. In: 40th Ann. Int’l Symp. on Microarchitecture (MICRO 2007), pp. 123–133 (2007)

30. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coher-
ence, 1st edn. Morgan & Claypool Publishers (2011)

31. Sorin, D.J., Plakal, M., Condon, A.E., Hill, M.D., Martin, M.M.K., Wood, D.A.: Specifying
and verifying a broadcast and a multicast snooping cache coherence protocol. IEEE Trans.
Parallel and Distributed Systems 13(6), 556–578 (2002)

32. Titos, R., Acacio, M.E., Garcı́a, J.M.: Directory-based conflict detection in hardware transac-
tional memory. In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2008. LNCS, vol. 5374, pp. 541–554. Springer, Heidelberg (2008)

33. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera, R., Michael,
M.: Evaluation of Blue Gene/Q hardware support for transactional memories. In: 21st Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT 2012), pp. 127–136
(2012)

34. Welc, A., Bratin, S., Adl-Tabatabai, A.R.: Irrevocable transactions and their applications. In:
20th Symp. on Parallelism in Algorithms and Architectures (SPAA 2008), pp. 285–296 (June
2008)

35. Yen, L., Bobba, J., Marty, M., Moore, K., Volos, H., Hill, M., Swift, M., Wood, D.: LogTM-
SE: Decoupling hardware transactional memory from caches. In: 13th Int’l. Symp. on High-
Performance Computer Architecture (HPCA 2007), pp. 261–272 (2007)

36. Yen, L., Draper, S., Hill, M.: Notary: Hardware techniques to enhance signatures. In: 41st
Ann. Int’l Symp. on Microarchitecture (MICRO 2008), pp. 234–245 (2008)

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

Multi-versioning in Transactional Memory

Idit Keidar1 and Dmitri Perelman2

1 Technion, Israel Institute of Technology
idish@ee.technion.ac.il

2 Facebook Inc.
dmitrip@fb.com

Abstract. Reducing the number of aborts is one of the biggest challenges of
most transactional systems: existing TMs may abort many transactions that could,
in fact, commit without violating correctness. Historically, the commonly used
method for reducing the abort rate was maintaining multiple object versions.
Multiversion concurrency control is a classical approach for providing concurrent
access to the database in database management systems. Its idea is to let a read-
ing transaction obtain a consistent snapshot corresponding to an arbitrary point
in time (e.g., defined at the beginning of a transaction) – concurrent updates are
isolated through maintaining old versions rather than via scheduling decisions.

Multi-versioning was adopted by transactional memory algorithms as well. In
this chapter we overview the multi-versioning approach by studying the inherent
properties of STMs that use multiple versions to guarantee successful commits of
all read-only transactions. We first consider the challenges of garbage collecting
of old object versions, and show that no STM can be optimal in the number of
previous versions kept, while following the naı̈ve approach of keeping a constant
number of last versions per object might lead to an exponential memory growth.
We then show the potential performance challenges of multi-versioned STMs,
including disjoint-access parallelism and visibility of read-only transactions.

We demonstrate the advantages of implementing multi-versioned STMs in
managed memory environments by presenting Selective Multi-Versioning (SMV)
algorithm. SMV relies on automatic garbage collection, and thus efficiently deals
with old versions while still allowing invisible read-only transactions.

1 Why Multiple Versions

1.1 Because Read-Only Transactions Matter

Frequent aborts, especially in the presence of long-running transactions, may have a
devastating effect on performance and predictability of the execution [3,11,18].

Of particular interest in this context is reducing the abort rate of read-only trans-
actions (transactions with empty write-sets). Read-only transactions play a significant
role in various types of applications, including linearizable data structures with a strong
prevalence of read-only operations [19], or client-server applications where an STM
infrastructure replaces a traditional DBMS approach (e.g., FenixEDU web applica-
tion [8]). Particularly long read-only transactions are employed for taking consistent
snapshots of dynamically updated systems, which are then used for checkpointing, pro-
cess replication, monitoring program execution, gathering system statistics, etc.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 150–165, 2015.
c© Springer International Publishing Switzerland 2015

Multi-versioning in Transactional Memory 151

Unfortunately, long read-only transactions might be repeatedly aborted for arbitrar-
ily long periods of time. As we show in [26], the time for completing such a transaction
varies significantly under contention, to the point that some read-only transactions sim-
ply cannot be executed without “stopping the world”. This kind of instability becomes
a practical disadvantage for STM adoption in the real-world systems.

Historically, one of the commonly used methods for reducing the number of aborts
was maintaining multiple object versions. Multiversion concurrency control is a classi-
cal approach for providing concurrent access to the database in database management
systems [6,25]. Its idea is to let a reading transaction obtain a consistent snapshot [5]
corresponding to an arbitrary point in time (typically defined at the beginning of a trans-
action) – concurrent updates are isolated through maintaining old versions rather than
through a process of locks or mutexes.

Multi-versioning technique was adopted by transactional memory algorithms as
well [3,24,14,7,26]. By keeping multiple versions it is possible to ensure that every
read-only transaction successfully commits. Consider, for example, the scenario de-
picted in Figure 1. 1 In this run transaction T2 reads an object o1, then another transac-
tion T3 updates objects o1 and o2, and commits. Assume that T2 now tries to read o2.
Reading the value o2

2 written by T3 would violate correctness, since T2 does not read the
value o1

2 written by T3. In a single-versioned STM, illustrated in Figure 1(a), T2 must
abort. However, a multi-versioned STM may keep both versions o1

2 and o2
2 of o2, and

may return o1
2 to T2, as illustrated in Figure 1(b). This allows T2 to successfully commit,

in spite of its conflict with T3.

o1
T2

o2

T3

T1

ACC

(a) Single-versioned TM, T2
aborts.

o1
T2

o2

T3

T1

CC

(b) Multi-versioned TM, T2
commits.

Fig. 1. Keeping multiple versions avoids aborts, which are inevitable in STMs with only one
object version

1.2 Formalizing the Advantages of Multi-versioned Solutions

As mentioned earlier, keeping multiple versions has a potential to significantly im-
prove STM’s performance and predictability: we now need rigorous metrics to grasp

1 We depict transactional histories in the style of [29]. An object oi’s state in time is represented
as a horizontal line, with time proceeding left to right. Transactions are drawn as polylines,
with circles representing accesses to objects. Filled circles indicate writes, and empty circles
indicate reads. A commit is indicated by the letter C, and an abort by the letter A. A read
operation returning an old value of an object is indicated by a dotted arc line. The initial value
of object oi is denoted by o0

i , and the value written to oi by the j’th write is denoted by o j
i .

152 I. Keidar and D. Perelman

this intuition. At a high level, we can talk about two aspects of transactional perfor-
mance: 1) responsiveness, for measuring the progress of individual transactional opera-
tions, and 2) permissiveness, for measuring the wasted operations belonging to aborted
transactions.

Responsiveness

We say that a TM is responsive if it guarantees that each operation invocation eventu-
ally gets a response, even if all other threads do not invoke new transactional operations.
This limits the responsive TM’s behavior upon operation invocation, so that it may ei-
ther return an operation response, or abort a transaction, but cannot wait for other trans-
actions to invoke new transactional operations. Note that we do allow for a responsive
TM to wait for concurrent transactional operations to complete, for example TL2 [9]
is responsive in spite of the use of locks. One may say that a responsive TM provides
lock-freedom at the level of transactional operations.

Multi-versioned Permissiveness

We can capture the amount of spuriously aborted transactions using the notion of per-
missiveness, first introduced by Guerraoui et al. [17]. Intuitively, permissiveness defines
properties of transactional histories for which no aborts are allowed. Various levels
of permissiveness have been defined. Single-version π-permissiveness [17] focuses on
a model with single-version objects and thus allows many spurious aborts. Another
permissiveness condition, online π-permissiveness [20], prevents all spurious aborts,
which comes with an inherent cost of extremely complex algorithms to implement.

In order to grasp the unique advantages coming with the use of multiple versions
in an STM implementation, we use multi-versioned (MV) permissiveness: an STM sat-
isfies MV-permissiveness if a transaction aborts only if it is an update transaction that
conflicts with another update transaction. In other words, with MV-permissiveness read-
only transactions never abort and do not cause aborts of update transactions. We say that
an STM satisfying MV-permissiveness is MV-permissive.

Multi-versioning Alternatives: Losing Responsiveness

Besides multi-versioning, there exist multiple approaches for avoiding aborts of
read-only transactions, demonstrating the richness of the solution space defined by re-
sponsiveness and permissiveness. As a trivial example, we can think of an STM im-
plemented with a single global lock acquired in the beginning of each transaction and
released upon commit: while being highly permissive (zero aborted transactions), the
global-lock STM is non-responsive (all transactions are mutually exclusive).

There exist various real STMs that avoid aborts of read-only transactions without
being multi-versioned:

• Dependence-aware transactional memory [28] reduces the number of aborts by al-
lowing transactions to read uncommitted values and then waiting for the successful
commit of the writer.

Multi-versioning in Transactional Memory 153

• TLRW [10] reduces the aborts of read-only transactions by using read-write locks
to block in case of concurrency.

• PermiSTM [1] provides MV-permissiveness by having every update transaction
being blocked until the termination of all the conflicting readers.

Note that in all the cases mentioned above we lose different degrees of responsiveness
(transactions cannot always progress independently) for the sake of reduced overhead
and abort rate.

2 Memory Management Challenges of Multi-versioned STMs

One of the key aspects to maintaining multiple versions is a mechanism for garbage
collecting (GC) old object versions. In this section we show that while keeping a con-
stant number of versions per object might be suboptimal, a space optimal solution is
impossible as well.

2.1 STMs with a Constant Number of Versions for Every Object

The simplest multi-versioning STM approach is to keep a constant preconfigured num-
ber of old versions for every object. However, this technique has two main issues.

First, we lose a premise that every read-only transaction successfully commits in a
non-blocking manner (responsive MV-permissiveness). Indeed, for every constant num-
ber k of object versions, there exists a scenario in which some hot object is updated k+1
times after a read of a read-only transaction Tr, such that the old version corresponding
to the consistent snapshot of Tr is deleted and the reader has to abort.

Secondly, keeping a constant number of object versions causes an inherent memory
consumption problem. A naı̈ve assessment of the memory consumption of a k-versioned
STM would probably estimate that it takes up to k times as much more memory as a
single-versioned STM.

However, in [26] we demonstrate that, in fact, the memory consumption of a k-
versioned STM in runs with n transactional objects might grow like kn. Intuitively,
this happens because previous object versions continue to keep references to already
deleted objects, which causes deleted objects to be pinned in memory.

Consider, for example, a 2-versioned STM in the scenario depicted in Figure 2. The
STM keeps a linked list of three nodes. When removing node 30 and inserting a new
node 40 instead, node 30 is still kept as the previous version of 20.next. Next, when
node 20 is replaced with node 25, node 30 is still pinned in memory, as it is referenced
by node 20. After several additional node replacements, we see that there is a complete
binary tree in memory, although only a linked list is used in the application.

More generally, with a k-versioned STM, a linked list of length n could lead to Ω(kn)
node versions being pinned in memory (though being still linear to the number of write
operations). This demonstrates an inherent limitation of keeping a constant number
of versions per object. Our observation is confirmed by the empirical results shown
in [26], where the algorithms keeping k versions cannot terminate in the runs with a
limited heap size.

154 I. Keidar and D. Perelman

10 20 30 10 20 40

30

10 25 40

3020

10

25 50

30

20

40

10

25

60

30

20

40

50

replace 30
with 40

replace 20
with 25

replace 40
with 50

replace 50
with 60

Fig. 2. Example demonstrating exponential memory growth for an STM keeping 2 versions of
each object. A linked list implementation creates a whole binary tree to be pinned in memory
because previous node versions continue keeping references to already deleted nodes.

2.2 Impossibility of Space Optimal STM

While keeping a constant number of versions does not work, we need a smarter way to
manage old object versions. Unfortunately, responsive MV-permissive cannot be space
optimal as we show below.

Definition 1. A responsive MV-permissive STM X is online space optimal, if for any
other responsive MV-permissive STM X ′ and any transactional history H, the number
of versions kept by X at any point of time during H is less than or equal to the number
of versions kept by X ′.

Theorem 1. No responsive MV-permissive STM can be online space optimal.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

?

(a) An STM does not know
whether to remove o1

3.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

T5

C
t1

(b) Removing o1
3 leads to

keeping the versions of o4 and
o5 after they are overwritten.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

T5

C
t1

(c) Keeping o1
3 allows remov-

ing the versions of o4 and o5
after they are overwritten.

Fig. 3. No STM can be online space optimal — it is not known at time t0 whether to remove the
version of o3 written by T2

Multi-versioning in Transactional Memory 155

Proof (full proof in [27]). The main idea is to construct a transactional history in which
any STM that keeps the minimum number of object versions at a time t0 will keep more
than the minimum number of object versions at time t1 > t0. Consider the transactional
history H depicted in Figure 3(a). At time t0, X should either remove object version o1

3
or keep it. In [27] we show that for either one of these decisions, there exists a responsive
MV-permissive STM that keeps fewer versions than X during H or an extension of H.
Thus, no STM can keep the minimum number of versions at all times, and so is not
online space optimal.

2.3 Garbage Collecting Useless Prefixes

Though we have just seen that no responsive MV-permissive STM is online space opti-
mal, we would still like an STM to manage old versions better than a constant number
of object versions approach. Intuitively, we want to garbage collect as many old ver-
sions as we can by truncating the whole prefix of a versions list. To this end, we define
the following.

Definition 2. An MV-permissive STM satisfies useless-prefix (UP) GC if at any point in
a transactional history H, an object version o j

i is kept only if there exists an extension

of H with an active transaction Ti, such that (1) Ti can read o j
i , and (2) Ti cannot read

any version written after o j
i .

In other words an STM satisfying UP GC, removes the longest possible prefix of
versions for each object at any point in time and keeps the shortest suffix of versions
that might be needed by read-only transactions.

Note that STMs satisfying UP GC are going to keep all the versions of an object that
have been added since the snapshot time of the oldest read-only transaction. Therefore,
the number of old versions of an object is defined by the ratio of its update rate to
the duration time of read-only transactions in the system: rarely updated objects will
usually keep the last version only, while hot objects might still keep a lot of previous
versions if a long read-only transaction is stuck.

3 Performance Challenges of Multi-versioned STMs

3.1 Disjoint-Access Parallelism

In shared memory systems, cache contention due to concurrent memory accesses, and
especially concurrent writes, is a significant performance bottleneck. Thus, it is desir-
able to try to separate the memory locations accessed by different transactions as much
as possible. One natural requirement seems to be that transactions that access differ-
ent transactional objects access only different base objects. This property is formally
captured by the notion of weak disjoint-access parallelism [2], which is defined below.

Let T1,T2 be transactions, and let α be an execution. Let T be the set of all transac-
tions whose execution interval overlaps with the execution interval of {T1,T2} in α . Let
X be the set of transactional objects accessed by T . Let G(T1,T2,α) be an undirected
graph with vertex set X , and an edge between vertices x1,x2 ∈ X whenever there is a

156 I. Keidar and D. Perelman

transaction T ∈ T accessing both x1 and x2. We say T1,T2 are disjoint-access in α if
there is no path between T1 and T2 in G(T1,T2,α). Given two sets of base steps, we say
they contend if there is a base object that is accessed by both sets of steps, and at least
one of the accesses changes the state of the object.

Definition 3. An STM is weakly disjoint-access parallel (weakly DAP) if, given any
execution α , and transactions T1,T2 that are disjoint-access in α , the base steps for T1

and T2 in α do not contend.

Theorem 2. A responsive STM satisfying MV-permissiveness cannot be weakly disjoint-
access parallel.

o1
T2

o2

C

T3

T1

C

(a) H1: T1 � T3, T2 must read the
value written by T1.

o1
T2

o2

C

T3

T1

C

(b) H2: T3 � T1, T2 cannot read
the value written by T1.

Fig. 4. In a weakly DAP STM T1 does not distinguish between H1 and H2 and cannot be MV-
permissive

Proof (full proof in [27]). Suppose for contradiction that there exists a responsive STM
satisfying MV-permissiveness that is weakly DAP. Consider the transactional histories
in Figure 4. In both H1 and H2, transactions T2 and T3 conflict on object o1: T3 writes to
o1 and commits, overriding the value read by an active transaction T2. Note that since an
STM is responsive and satisfies MV-permissiveness, T3 neither aborts nor waits for T2’s
termination upon a write to o1. In [27] we prove the following claims: (1) The second
step of T2 returns o1

2 in H1. (2) The second step of T2 returns o1
2 in H2. (3) The first step

of T2 returns o0
1 in H2. (4) H2 is not strictly serializable if the first step of T2 returns o0

1,
and the second step returns o1

2. Conclusion (4) contradicts the strict serializability of the
STM, which proves that there is no responsive STM that is both MV-permissive and
weakly DAP.

It is interesting to note that the previous result stems from the real-time order re-
quirement of opacity used as our correctness criterion: independent transactions still
need a common base object to designate their real-time order. If we are ready to tolerate
real-time order violation of disjoint transactions, we can imagine an implementation of
DAP multi-versioned STM.

3.2 Read Visibility

Another desirable property for an STM is not to update shared memory during read-
only transactions. Such STMs are said to use invisible reads. It is easy to show that an

Multi-versioning in Transactional Memory 157

STM satisfying MV-permissiveness and UP GC cannot use invisible reads. Indeed, UP
GC requires knowing about existing read-only transactions, in order to determine which
object versions to GC; such knowledge cannot be obtained unless read-only transactions
write.

However, it is possible to show a much stronger statement: UP GC is impossible even
if we allow read-only transactions to write, and only require that the external configu-
rations before and after the transaction are the same. In other words, UP GC requires
read-only transactions to leave some trace of their existence, even after they have com-
mitted. In particular, even keeping active readers lists for the objects [15], or using
non-zero indicators for conflict detection [12] does not suffice.

Theorem 3. Suppose a responsive STM satisfies MV permissiveness and UP GC. Con-
sider a read-only transaction whose execution interval does not contain base steps of
any other transaction. Then the configuration external to the transaction, immediately
before and after the transaction, cannot be the same.

o1
T4

o2

T5

T2T1

C

C

C
T3

C

(a) H1: o1
2 is GCed, T4 can read o2

2 and
commits.

o1
T4

o2

T5

T2T1

C

C
T3

C A

(b) H2: o1
2 is GCed, T4 cannot read o2

2
and aborts.

Fig. 5. H1 and H2 are indistinguishable if a read-only transaction T2 does not leave any trace after
its execution

Proof (full proof in [27]). Suppose for contradiction that there exists a responsive STM
satisfying MV-permissiveness and UP GC, in which the external configurations before
and after a read-only transaction are the same, when the transaction’s interval does not
overlap the steps of any other transaction. Consider the transactional histories in Figure
5. In [27] we prove the the following claims: (1) o1

2 is GCed in H1. (2) o1
2 is GCed in

H2. (3) T4 aborts in H2. Conclusion (3) is a contradiction, because T4 is a read-only
transaction, and cannot abort because of MV-permissiveness.

4 Multi-versioned STM in Managed Memory Environments

4.1 Concurrent Algorithms Are Simpler with Garbage Collection

As demonstrated in Sections 2 and 3, maintaining multiple versions in an STM is a
challenging task. Space optimality is impossible and even with a non-optimal useless-
prefix garbage collection, read-only transactions must leave a trace of their existence,
which might devastate STM performance.

Combining invisible readers with effective garbage collection is problematic — if
read-only transactions are invisible, then other transactions have no way of telling

158 I. Keidar and D. Perelman

whether potential readers of an old version still exist! Some STM implementations take
the approach of special cleanup threads, like JVSTM [7]: in this case the visibility of
the readers’ operations can be limited to cleanup threads only. However, in garbage
collected environments it is possible to exploit the designated GC threads, which are
running in the system anyway. GC threads have access to all the threads’ private mem-
ories, so that even operations that are invisible to other transactions are visible to the
garbage collector.

We now give a brief reminder of the garbage collection mechanism. An object can
be reclaimed by the garbage collector once it becomes unreachable from the call stack
or global variables. Reachability is a transitive closure over strong memory references:
if a reachable object o1 has a strong reference to o2, then o2 is reachable as well (strong
references are the default ones). In contrast, weak references [16] do not protect the
referenced object from being GCed; an object referenced by weak references only is
considered unreachable and may be removed.

Generally speaking, an automatic deletion of unreachable objects in garbage col-
lected environments plays a significant role in various concurrent systems way beyond
the STM world, dramatically simplifying the algorithmic part in comparison with na-
tive environments. One nice side effect of an automated GC is the elimination of the
ABA problem that might occur in dynamic data structures [22]: object memory cannot
be reallocated to another object as long as this memory is reachable by a live thread.
This property was used in the adaptation of Michael-Scott non-blocking concurrent
queue [23] to Java concurrency library, as well as in CAFÉ, scalable producer consumer
Java library [4].

4.2 Selective Multi-Versioning (SMV) STM

We now want to exemplify the principles discussed earlier in this section, in which
garbage collection of old versions is delegated to the already existing GC mechanisms
of the managed environment. For that purpose we present Selective Multi-Versioning
(SMV) [26], an STM which keeps old object versions that are still useful to poten-
tial readers, while allowing read-only transactions to remain invisible by ensuring that
old object versions become garbage collectible once there are no transactions that can
safely read them.

SMV is especially efficient for read-dominated workloads with long read-only trans-
actions, in situations where other transactions would either repeatedly abort readers or
block update transactions for extended periods of time.

4.2.1 Overview of Data Structures
SMV’s main goal is to reduce aborts in workloads with read-only transactions, without
introducing high space or computational overheads. SMV is based on the following
design choices: 1) Read-only transactions do not affect the memory that can be accessed
by other transactions. This property is important for performance in multi-core systems,
as it avoids cache thrashing issues [13,30]. 2) Read-only transactions always commit.
A read-only transaction Ti observes a consistent snapshot corresponding to Ti’s start
time — when Ti reads object o j, it finds the latest version of o j that has been written
before Ti’s start. 3) Old object versions are removed once there are no live read-only

Multi-versioning in Transactional Memory 159

transactions that can consistently read them. To achieve this with invisible reads, SMV
relies on the omniscient GC mechanism available in managed memory systems.

As in other object-based STMs, transactional objects in SMV are accessed via object
handles. An object handle includes a history of object values, where each value keeps
a versioned lock [9] – a data structure with a version number and a lock bit. In order to
facilitate automatic garbage collection, object handles in SMV keep strong references
only to the latest (current) versions of each object, and use weak references to point to
other versions.

Each transaction is associated with a transactional descriptor, which holds the rele-
vant transactional data, including a read-set, a write-set, status, etc. In addition, trans-
actional descriptors play an important role in keeping strong references to old object
versions, as we explain below.

Version numbers are generated using a global version clock, where transactional de-
scriptors act as “time points” organized in a one-directional linked list. Upon commit,
an update transaction appends its transactional descriptor to the end of the list (a spe-
cial global variable curPoint points to the latest descriptor in this list). For example, if
the current global version is 100, a committing update transaction sets the time point
value in its transactional descriptor to 101 and adds a pointer to this descriptor from the
descriptor holding 100.

Version management is based on the idea that old object versions are pointed to by
the descriptors of transactions that over-wrote these versions (see Figure 6). A com-
mitting transaction Tw includes in its transactional descriptor a strong reference to the
previous version of every object in its write set before diverting the respective object
handle to the new version.

When a read-only transaction Ti begins, it keeps (in its local variable startTP) a
pointer to the latest transactional descriptor in the list of committed transactions. This
pointer is cleared upon commit, making old transactional descriptors at the head of the
list GCable.

This way, active read-only transaction Tr keeps a reference chain to version o j
i if this

version was over-written after Tr’s start, thus preventing o j
i ’s garbage collection. Once

there are no active read-only transactions that started before o j
i was over-written, this

version stops being referenced and thus becomes GCable .
Figure 6 illustrates the commit of an update transaction Tw that writes to object o1

(the use of readyPoint variable will be explained in Section 4.2.3). In this example, Tw

and a read-only transaction Tr both start at time 9, and hence Tr references the transac-
tional descriptor of time point 9. The previous update of o1 was associated with version
5. When Tw commits, it inserts its transactional descriptor at the end of the time points
list with value 10. Tw’s descriptor references the previous value of o1. This way, the
algorithm creates a reference chain from Tr to the previous version of o1 via Tw’s de-
scriptor, which ensures that the needed version will not be GCed as long as Tr is active.

4.2.2 Basic Algorithm
We now describe the SMV algorithm. For the sake of simplicity, we present the al-
gorithm in this section using a global lock for treating concurrency on commit — in
Section 4.2.3 we show how to remove this lock.

160 I. Keidar and D. Perelman

o

ver = 5

o1

data5

Objects
M t d t

curPoint

Metadata

readyPoint

Tr ds
start =

oon

Tx dsc
time point 9
ready = true

sc
= 9

(a) Tr’s descriptor points to the
latest committed transaction.

ver = 5

o1

wstrong
ref

ddata10

ref

Objects

Tx dsc

Objects
Metadata

Tx dsc
time point 9
ready = true

readyPoint

Tr dsc
start = 9

cur

on

weak
ref

ata5

ref

Tw dscTw dsc
time point 10
ready = false

rPoint

(b) Tw commits and begins write-
back.

ver = 5

o1

wstrong
ref

ddata10

ref

Objects

Tx dsc

Objects
Metadata

Tx dsc
time point 9
ready = true

Tr dsc
start = 9

read

on

weak
ref

ata5

ref

Tw dscTw dsc
time point 10
ready = true

dyPoint curPoint

(c) Tw’s write-back is finished.

Fig. 6. Transactional descriptor of Tw references the over-written version of o1 (data5). This way,
read-only transaction Tr keeps a reference chain to the versions that have been overwritten after
Tr’s start.

SMV handles read-only and update transactions differently. We assume that trans-
action’s type can be provided to the algorithm beforehand by a compiler or via spe-
cial program annotations. If not, each transaction can be started as read-only and then
restarted as update upon the first occurrence of a write operation.

Handling Update Transactions

The protocol for update transaction Ti is depicted in Algorithm 1. The general idea is
similar to the one used in TL2 [9]. An update transaction Ti aborts if some object o j

read by Ti is over-written after Ti begins and before Ti commits. Upon starting, Ti saves
the value of the latest time point in a local variable startTime, which holds the latest
time at which an object in Ti’s read-set is allowed to be over-written.

A read operation of object o j reads the latest value of o j, and then post-validates its
version (function validateRead. The validation procedure checks that the version is not
locked and it is not greater than Ti.startTime, otherwise the transaction is aborted.

A write operation (lines 12–14) creates a copy of the object’s latest version and adds
it to Ti’s local write set.

Multi-versioning in Transactional Memory 161

Algorithm 1. SMV algorithm for update transaction Ti.

1: Upon Startup:
2: Ti.startTime ← curPoint.commitTime

3: Read o j:
4: if (o j ∈ Ti.writeSet)
5: then return Ti.writeSet[o j]
6: data ← o j.latest
7: if ¬validateRead(o j) then abort
8: readSet.put(o j)
9: return data

10: Write to o j:
11: if (o j ∈ Ti.writeSet)
12: then update Ti.writeSet.get(o j); return
13: localCopy ← o j .latest.clone()
14: update localCopy; writeSet[o j] ← localCopy

15: Function validateReadSet
16: foreach o j ∈ Ti.readSet do:
17: if ¬validateRead(o j) then return false
18: return true

19: Commit:
20: foreach o j ∈ Ti.writeSet do: o j .lock()
21: if ¬validateReadSet() then abort

� txn dsc should reference the over-written data
22: foreach o j ∈ Ti.writeSet do:
23: Ti.prevVersions.put(〈o j , o j .latest〉)
24: timeLock.lock()
25: Ti.commitTime ← curPoint.commitTime+1

� update and unlock the objects
26: foreach 〈o j , data〉 ∈ Ti.writeSet do:
27: o j .version ← Ti.commitTime
28: o j .weak references.append(o j .latest)
29: o j .latest ← data; o j .unlock()
30: curPoint.next ← Ti; curPoint ← Ti

31: timeLock.unlock()

32: Function validateRead(Object o j)
33: return (¬o j.isLocked ∧ o j .version ≤ Ti.startTime)

Commit (lines 20–31) consists of the following steps:

1. Lock the objects in the write set (line 20). Deadlocks can be detected using standard
mechanisms (e.g., timeouts or Dreadlocks [21]), or may be avoided if acquired in
the same order by every transaction.

2. Validate the read set (function validateReadSet).

162 I. Keidar and D. Perelman

3. Insert strong references to the over-written versions to Ti’s descriptor (line 23). This
way the algorithm guarantees that the over-written versions stay in the memory as
long as Ti’s descriptor is referenced by some read-only transaction.

4. Lock the time points list (line 24). Recall that this is a simplification; in Sec-
tion 4.2.3 we show how to avoid such locking.

5. Set the commit time of Ti to one plus the value of the commit time of the descriptor
referenced by curPoint.

6. Update and unlock the objects in the write set (lines 26–29). Set their new version
numbers to the value of Ti.commitTime. Keep weak references to old versions.

7. Insert Ti’s descriptor to the end of the time points list and unlock the list (line 30).

Handling Read-Only Transactions

Algorithm 2. SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP ← curPoint

3: Read o j:
4: latestData ← o j .latest
5: if (o j .version ≤ Ti.startTP.commitTime) then return latestData
6: return the latest version ver in o j .weak references, s.t.
7: ver.version ≤ Ti.startTP.commitTime

8: Commit:
9: Ti.startTP ←⊥

The pseudo-code for read-only transactions appears in Algorithm 2. Such transac-
tions always commit without waiting for other transactions to invoke any operations.
The general idea is to construct a consistent snapshot based on the start time of Ti. At
startup, Ti.startTP points to the latest installed transactional descriptor (line 2); we refer
to the time value of startTP as Ti’s start time.

For each object o j, Ti reads the latest version of o j written before Ti’s start time.
When Ti reads an object o j whose latest version is greater than its start time, it continues
to read older versions until it finds one with a version number older than its start time.
Some old enough version is guaranteed to be found, because the updating transaction
Tw that over-wrote o j has added Tw’s descriptor referencing the over-written version
somewhere after Ti’s starting point, preventing GC.

The commit procedure for read-only transactions merely removes the pointer to the
starting time point, in order to make it GCable, and always commits.

4.2.3 Allowing Concurrent Access to the Time Points List
We show now how to avoid locking the time points list (lines 24, 31 in Algorithm 1), so
that update transactions with disjoint write-sets may commit concurrently.

We first explain the reason for using the lock. In order to update the objects in the
write-set, the updating transaction has to know the new version number to use. How-
ever, if a transaction exposes its descriptor before it finishes updating the write-set, then

Multi-versioning in Transactional Memory 163

some read-only transaction might observe an inconsistent state. Consider, for example,
transaction Tw that updates objects o1 and o2. The value of curPoint at the beginning
of Tw’s commit is 9. Assume Tw first inserts its descriptor with value 10 to the list,
then updates object o1 and pauses. At this point, o1.version = 10, o2.version < 10 and
curPoint → commitTime = 10. If a new read-only transaction starts with time 10, it can
successfully read the new value of o1 and the old value of o2, because they are both less
than or equal to 10. Intuitively, the problem is that the new time point becomes avail-
able to the readers as a potential starting time before all the objects of the committing
transaction are updated.

To preserve consistency without locking the time points list, we add an additional
boolean field ready to the descriptor’s structure, which becomes true only after the
committing transaction finishes updating all objects in its write-set. In addition to the
global curPoint variable referencing the latest time point, we keep a global readyPoint
variable, which references the latest time point in the ready prefix of the list (see Fig-
ure 6).

When a new read-only transaction starts, its startTP variable references readyPoint.
In the example above, a new transaction Tr begins with a start time equal to 9, because
the new time point with value 10 is still not ready. Generally, the use of readyPoint
guarantees that if a transaction reads an object version written by Tw, then Tw and all its
preceding transactions had finished writing their write-sets.

Note, however, that when using ready points we should not violate the real time
order — if a read-only transaction Tr starts after Tw terminates, then Tr must have a start
time value not less than Tw’s commit time. This property might be violated if update
transactions become ready in an order that differs from their time points order, thus
leaving an unready transaction between ready ones in the list.

In [26] we have implemented two approaches to enforce real-time order: 1) An up-
date transaction does not terminate until the ready point reaches its descriptor. A similar
approach was previously used by RingSTM [31] and JVSTM [14]. 2) A new read-only
transaction notes the time point of the latest terminated transaction and then waits until
the readyPoint reaches this point before starting. Note that unlike the first alternative,
read-only transactions in the second approach are not wait-free.

According to [26], both techniques demonstrate similar results. The waiting period
remains negligible as long as the number of transactional threads does not exceed the
number of available cores; when the number of threads is two times the number of
cores, waiting causes a 10− 15% throughput degradation (depending on the workload)
— this is the cost we pay for maintaining real-time order.

5 Conclusions

An effective way to reduce the number of aborts in transactional memory is keeping
multiple versions of transactional objects. We studied the inherent properties of STMs
that use multiple versions to guarantee successful commits of all read-only transactions
(we call such STMs MV-permissive). We presented the challenge of efficient garbage
collection of old object versions by demonstrating that the memory consumption of
algorithms keeping a constant number of versions for each object can grow exponen-
tially. We then showed that no responsive MV-permissive STM can be optimal in the

164 I. Keidar and D. Perelman

number of previous versions kept and that no responsive MV-permissive STM can be
disjoint-access parallel. We defined an achievable garbage collection property, useless-
prefix GC, and showed that in a responsive MV-permissive STM satisfying UP GC,
even read-only transactions must make lasting changes to the system state.

Theoretical study of multi-versioning in STM is far from being complete. There are
clear tradeoffs between the quality of garbage collection, permissiveness and the com-
putational complexity of transactional operations: we believe that understanding these
tradeoffs may be valuable to improving the performance and utility of transactional
memory.

We referred to practical implications of multi-versioning by discussing SMV, a multi-
versioned STM that achieves high performance in the presence of read-only transac-
tions. Despite keeping multiple versions, SMV can work well in memory constrained
environments. It keeps old object versions as long as they might be useful while still
allowing read-only transactions to remain invisible by relying on automatic garbage
collection to dispose of obsolete versions.

SMV exemplifies the idea of delegating disposal responsibilities to the independent
GC module that is being developed and upgraded by a very large community. We think
that this approach can be the key to achieving good performance not only in STMs, but
also in a range of concurrent data structures.

References

1. Attiya, H., Hillel, E.: Single-version STMs can be multi-version permissive (Ex-
tended abstract). In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury,
R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 83–94. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=1946143.1946151

2. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory. In: Proceedings of the Twenty-first Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 69–78. ACM, New York
(2009), http://doi.acm.org/10.1145/1583991.1584015

3. Aydonat, U., Abdelrahman, T.: Serializability of transactions in software transactional mem-
ory. In: Second ACM SIGPLAN Workshop on Transactional Computing (2008)

4. Basin, D., Fan, R., Keidar, I., Kiselov, O., Perelman, D.: CAFÉ: Scalable task pools with
adjustable fairness and contention. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp.
475–488. Springer, Heidelberg (2011)

5. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI
SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, pp. 1–10 (1995)

6. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley (1987)

7. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Science
of Computer Programming 63(2), 172–185 (2006)

8. Carvalho, N., Cachopo, J., Rodrigues, L., Rito-Silva, A.: Versioned transactional shared
memory for the FenixEDU web application. In: Proceedings of the 2nd Workshop on De-
pendable Distributed Data Management, pp. 15–18 (2008)

9. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

http://dl.acm.org/citation.cfm?id=1946143.1946151
http://doi.acm.org/10.1145/1583991.1584015

Multi-versioning in Transactional Memory 165

10. Dice, D., Shavit, N.: TLRW: Return of the read-write lock. In: TRANSACT 2009: 4th Work-
shop on Transactional Computing (February 2009)

11. Dragojević, A., Harris, T.: Stm in the small: Trading generality for performance in software
transactional memory. In: Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys 2012, pp. 1–14. ACM, New York (2012),
http://doi.acm.org/10.1145/2168836.2168838

12. Ellen, F., Lev, Y., Luchangco, V., Moir, M.: Snzi: Scalable nonzero indicators. In: PODC
2007: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 13–22. ACM, New York (2007)

13. Ennals, R.: Cache sensitive software transactional memory. Tech. rep.
14. Fernandes, S.M., Cachopo, J.A.: Lock-free and Scalable Multi-Version Software Transac-

tional Memory. In: PPoPP 2011, pp. 179–188 (2011)
15. Fraser, K.: Practical lock freedom. Ph.D. thesis, Cambridge University Computer Laboratory

(2003)
16. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn.

Addison-Wesley Longman (2005)
17. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in Transactional Memories. In:

Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)
18. Heber, T., Hendler, D., Suissa, A.: On the impact of serializing contention management on

stm performance. J. Parallel Distrib. Comput. 72(6), 739–750 (2012),
http://dx.doi.org/10.1016/j.jpdc.2012.02.009

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)
20. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: SPAA 2009,

pp. 59–68 (2009)
21. Koskinen, E., Herlihy, M.: Dreadlocks: Efficient deadlock detection. In: Proceedings of the

Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, pp. 297–303
(2008)

22. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. 15, 491–504 (2004)

23. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 1996, pp. 267–275 (1996)

24. Napper, J., Alvisi, L.: Lock-free serializable transactions. Tech. rep., The University of Texas
at Austin (2005)

25. Papadimitriou, C.H., Kanellakis, P.C.: On concurrency control by multiple versions. ACM
Trans. Database Syst., 89–99 (1984)

26. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective multi-versioning
STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140. Springer, Heidelberg
(2011)

27. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: Proceedings
of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, PODC 2001,
pp. 16–25 (2010)

28. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an
STM. SIGPLAN Not 44(4), 163–172 (2009)

29. Riegel, T., Fetzer, C., Sturzrehm, H., Felber, P.: From causal to z-linearizable transactional
memory. In: Proceedings of the 26th Annual ACM Symposium on Principles of Distributed
Computing, pp. 340–341 (2007)

30. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Proceed-
ings of the 20th International Symposium on Distributed Computing, pp. 284–298 (2006)

31. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: Scalable transactions with a single
atomic instruction. In: SPAA 2008, pp. 275–284 (2008)

http://doi.acm.org/10.1145/2168836.2168838
http://dx.doi.org/10.1016/j.jpdc.2012.02.009

Framework Support for the Efficient Implementation
of Multi-version Algorithms

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço

CITI — Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
{ricardo.dias,joao.lourenco}@fct.unl.pt,

t.vale@campus.fct.unl.pt

Abstract. Software Transactional Memory algorithms associate metadata with
the memory locations accessed during a transaction’s lifetime. This metadata may
be stored in an external table and accessed by way of a function that maps the ad-
dress of each memory location with the table entry that keeps its metadata (this
is the out-place or external scheme); or alternatively may be stored adjacent to
the associated memory cell by wrapping them together (the in-place scheme).
In transactional memory multi-version algorithms, several versions of the same
memory location may exist. The efficient implementation of these algorithms re-
quires a one-to-one correspondence between each memory location and its list of
past versions, which is stored as metadata. In this chapter we address the matter
of the efficient implementation of multi-version algorithms in Java by propos-
ing and evaluating a novel in-place metadata scheme for the Deuce framework.
This new scheme is based in Java Bytecode transformation techniques and its
use requires no changes to the application code. Experimentation indicates that
multi-versioning STM algorithms implemented using our new in-place scheme
are in average 6× faster than when implemented with the out-place scheme.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the properties and in the
guarantees they provide. Among other differences, one can refer distinct strategies used
to read (visible or invisible) and update memory (direct or deferred), the consistency
(opacity or snapshot isolation) and progress guarantees (solo, global and local progress),
the policies applied to conflict resolution (contention management), and the sensitiv-
ity to interactions with non-transactional code (weak or strong atomicity). Some STM
frameworks, e.g., DSTM2 [10] and Deuce [11], address the need of experimenting with
new algorithms and their comparative evaluation by providing a single transactional
interface over which the STM algorithms are built. However, the internal architecture
each STM framework tends to favor the performance of some classes of STM algo-
rithms and disfavor others. For instance, the Deuce framework stores the metadata in
an external table and favors algorithms like TL2 [6] and LSA [14], which are resilient
to the false sharing of transactional metadata (such as ownership records), and disfavor
multi-version algorithms, which require unique metadata per memory location.

STM algorithms manage information per transaction (frequently referred to as the
transaction descriptor), and per memory location (or object reference) accessed within

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 166–191, 2015.
c© Springer International Publishing Switzerland 2015

Framework Support for the Efficient Implementation of Multi-version Algorithms 167

that transaction. The transaction descriptor is typically stored in a thread-local mem-
ory space and keeps the information required to validate and commit the transaction,
e.g., the read- and write-sets. The per memory location information, henceforth be re-
ferred as metadata, depends on the nature of the STM algorithm and may contain locks,
timestamps, version lists. Metadata is stored either adjacent to each memory location
(in-place scheme), or in an external table (out-place or external scheme). STM libraries
for imperative languages, such as C, frequently use the out-place scheme, while those
addressing object-oriented languages bias towards the in-place scheme.

The out-place scheme is implemented by using a table-like data structure that effi-
ciently maps memory references to its metadata. Storing the metadata in such a pre-
allocated table avoids the overhead of dynamic memory allocation, but incurs in the
overhead for evaluating the location-to-metadata mapping function. The bounded size
of the external table also induces a false sharing situation, where multiple memory
locations share the same table entry and hence the same metadata, in a many-to-one
relation between memory locations and metadata units. The in-place scheme is usually
implemented using the decorator design pattern [8], by extending the functionality of
an original class by wrapping it in a decorator class that contains the required meta-
data. This scheme implements a one-to-one relation between memory locations and
metadata units, thus no false sharing occurs. It allows the direct access to the object
metadata without significant overhead, but is very intrusive to the application code,
which must be heavily rewritten to use the decorator classes instead of the original
ones. The decorator pattern based technique bears two other problems: additional over-
head for non-transactional code, and multiple difficulties while working with primitive
and array types. Riegel et al. [15] briefly describe the trade-offs of using in-place versus
out-place strategies.

Deuce is among the most efficient STM frameworks for the Java programming lan-
guage and provides a well defined interface that is used to implement several STM
algorithms. On the application developer’s side, a memory transaction is defined by
adding the annotation @Atomic to a Java method, and the framework automatically in-
struments the application’s bytecode to intercept the read and write memory accesses
by injecting call-backs to the STM algorithm. These call-backs receive the referenced
memory address as argument, hence limiting the range of viable STM algorithms to
be implemented by forcing an out-place scheme. Implementing in Deuce an algorithm
that requires a one-to-one relation between metadata and memory locations, such as
a multi-version algorithm, requires the use of an external table to handles collisions,
which significantly degrades the throughput of the algorithm.

In the remaining of this Chapter we present a novel approach to support the in-place
metadata scheme that does not use the decorator pattern, and thoroughly evaluate its
implementation in Deuce. This extension allows the efficient implementation of multi-
version algorithms, which require a one-to-one relation between metadata and memory
locations. The developed extension has the following properties:

Efficiency. The extension fully supports primitive types, even in transactional code.
Transactional code does not require the extra memory dereference imposed by the
decorator pattern. Non-transactional code is in general oblivious to the presence
of metadata in objects, hence no significant performance overhead is introduced.

168 R.J. Dias, T.M. Vale, and J.M. Lourenço

And we propose a solution for supporting transactional n-dimensional arrays with
a negligible overhead for non-transactional code.

Flexibility. The extension supports both the original out-place and the new in-place
strategies simultaneously, hence it is fully backwards compatible and imposes no
restrictions on the nature of the STM algorithms to be used, nor on their implemen-
tation strategies.

Transparency. The extension automatically identifies, creates and initializes all the nec-
essary additional metadata fields in objects. No source code changes are required,
although we apply some light transformations to the non-transactional bytecode.

Compatibility. Our extension is fully backwards compatible and the already existing
implementations of STM algorithms are executed with no changes, and with zero
or negligible performance overhead.

Compliance. The extension and bytecode transformations are fully-compliant with the
Java specification, hence supported by standard Java compilers and JVMs.

The Deuce framework assumes a weak atomicity model, i.e., transactions are atomic
only with respect to other transactions, and hence their execution may be interleaved
with non-transactional code. Multi-version algorithms update objects (memory loca-
tions) by writing the new value to the object (memory cell) metadata (which contain the
lists or past values), and therefore transactional accesses cannot see non-transactional
updates, and vice-versa. We tackle this problem by proposing an algorithmic adaptation
for multi-version algorithms that enables the support of a weak atomicity model for
multi-version algorithms with meaningless impact in the overall performance.

This chapter follows with a description of the Deuce framework and its out-place
scheme in Section 2. Section 3 describes properties of the in-place scheme, its imple-
mentation, and its limitations as an extension to Deuce. We present an evaluation of
the extension’s implementation using several metrics in Section 4. Section 5 describes
the implementation of several state-of-the-art STM multi-version algorithms using our
proposed extension. In Section 6 we show how to adapt the multi-version algorithms
to support a weak-atomicity model. Finally, we present a comparison between different
single- and multi-version algorithms using standard benchmarks in Section 7.

2 The Deuce Framework

Deuce supplies a single @Atomic Java annotation, and relies heavily on bytecode in-
strumentation to provide a transparent transactional interface to application developers,
which are unaware of how the STM algorithms are implemented and which strategies
they use to store the transactional metadata. Algorithms such as TL2 [6] or LSA [14]
use an out-place scheme by resorting to a very fast hashing function and storing a single
lock in each table entry. Due to performance issues, the mapping table does not avoid
hash collisions and thus two memory locations may be mapped to the same table entry,
resulting in the false sharing of a lock by two different memory locations. In these al-
gorithms, false sharing may have some impact in the performance but does not affect
the correctness. To implement multi-version algorithms with the out-place scheme, one
has to manage collision lists in the table, which significantly degrades performance.

Framework Support for the Efficient Implementation of Multi-version Algorithms 169

public interface Context {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(Object obj, long field);
int onReadAccess(Object obj, int value, long field);
// ... onReadAccess for the remaining types
void onWriteAccess(Object obj, int value, long field);
// ... onWriteAccess for the remaining types

}

Fig. 1. Context interface for implementing an STM algorithm

To support the out-place scheme, Deuce identifies an object’s field by the object
reference and the field’s logical offset. This logical offset is computed at compile time,
and for every field f in every class C an extra static field f o is added to that class,
whose value represents the logical offset of f in class C. No extra fields are added for
array cells, as the logical offset of each cell corresponds to its index. Within a memory
transaction, when there is a read or write memory access to a field f of an object O,
or to the array element A[i], the runtime passes the pair (O, f o) or (A, i) respectively
as the argument to the call-back function. The STM algorithm shall not differentiate
between field and array accesses. If an algorithm wants to, e.g., associate a lock with
a field, it has to store the lock in an external table indexed by the hash value of the
pair (O, f o) or (A, i). STM algorithm implementations must comply with a well defined
Java interface, as depicted in Figure 1. The methods specified in the interface are the
call-back functions that are injected by the instrumentation process in the application
code. For each read and write of a field of an object, the methods onReadAccess and
onWriteAccess, are invoked respectively. The method beforeReadAccess is called
before the actual read of an object’s field.

3 Supporting the In-Place Scheme in Deuce

In our approach to extend Deuce to support the in-place scheme, we replace the previous
pair of arguments to call-back functions (O, f o) with a new metadata object f m, whose
class is specified by the STM algorithm’s programmer. We guarantee that there is a
unique metadata object f m for each field f of each object O, and hence the use of f m

to identify an object’s field is equivalent to the pair (O, f o). The same applies to arrays,
where we ensure that there is a unique metadata object am for each position of any
array A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs con-
siderably for class fields and array elements, a common interface is used to interact with
the STM algorithm implementation. This common interface is supported by a well de-
fined hierarchy of metadata classes, illustrated in Figure 2, where the rounded rectangle
classes are defined by the STM algorithm developer.

170 R.J. Dias, T.M. Vale, and J.M. Lourenço

TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Fig. 2. Metadata classes hierarchy

public class TxField {
public Object ref;
public final long offset;
public TxField(Object ref, long offset) {

this.ref = ref;
this.offset = offset;

}
}

Fig. 3. TxField class

public interface ContextMetadata {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();
void beforeReadAccess(TxField field);
int onReadAccess(int value, TxField field);
// ... onReadAccess for the remaining types
void onWriteAccess(int value, TxField field);
// ... onWriteAccess for the remaining types

}

Fig. 4. Context interface for implementing an STM algorithm supporting in-place metadata

All metadata classes associated with class fields extend directly from the top class
TxField (see Figure 3). The constructor of TxField class receives the object ref-
erence and the logical offset of the field. All subclasses must call this constructor.
For array elements, we created specialized metadata classes for each primitive type
in Java, the TxArr*Field classes, where * ranges over the Java primitive types1. All
the TxArr*Field classes extend from TxField, providing the STM algorithm with a
simple and uniform interface for call-back functions.

We defined a new interface for the call-back methods (see Figure 4). In this new
interface, the read and write call-back functions (onReadAccess and onWriteAcess

respectively) receive only the metadata TxField object, not the object reference and
logical offset of the Context interface. This new interface coexists with the original
one in Deuce, allowing new STM algorithms to access the in-place metadata while
ensuring backward compatibility.

The TxField class can be extended by the STM algorithm programmer to include
additional information required by the algorithm for, e.g., locks, timestamps, or

1 int, long, float, double, short, char, byte, boolean, and Object.

Framework Support for the Efficient Implementation of Multi-version Algorithms 171

@InPlaceMetadata(
fieldObjectClass="TL2ObjField",
fieldIntClass="TL2IntField",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
public class TL2Context implements ContextMetadata {

...
}

Fig. 5. Declaration of the STM algorithm specific metadata

class C {
int a;
Object b;

}
=⇒

class C {
int a;
Object b;
final TxField a_metadata;
final TxField b_metadata;

}

Fig. 6. Example transformation of a class with the in-place scheme

version lists. The newly defined metadata classes need to be registered in our frame-
work to enable its use by the instrumentation process, using a Java annotation in the
class that implements the STM algorithm, as exemplified in Figure 5. The programmer
may register a different metadata class for each kind of data type, either for class field
types or array types. As shown in the example of Figure 5, the programmer registers the
metadata implementation class TL2IntField for the fields of int type, by assigning
the name of the class to the fieldIntClass annotation property.

The STM algorithm must implement the ContextMetadata interface (Figure 4)
that includes a call-back function for the read and write operations on each Java type.
These functions always receive an instance of the super class TxField, but no confu-
sion arises from there, as each algorithm knows precisely which metadata subclass was
actually used to instantiate the metadata object.

Lets now see where and how the metadata objects are stored, and how they are used
on the invocation of the call-back functions. We will explain separately the management
of metadata objects for class fields and for array elements.

3.1.1 Adding Metadata to Class Fields
During the execution of a transaction, there must be a metadata object f m for each
accessed field f of object O. Ideally, this metadata object f m is accessible by a single
dereference operation from object O, which can be achieved by adding a new metadata
field (of the corresponding type) for each field declared in a class C. The general rule
for this process can be described as: given a class C that has a set of declared fields
F = { f1, . . . , fn}, for each field fi ∈ F we add a new metadata object field f m

i+n to C,
such that the class ends with the set of fields Fm = { f1, . . . , fn, f m

1+n, . . . , f m
n+n}, where

each field fi is associated with the metadata field f m
i+n for any i ≤ n. In Figure 6 we show

a concrete example of the transformation of a class with two fields.
Instance and static fields are expected to have instance and static metadata fields, re-

spectively. Thus, instance metadata fields are initialized in the class constructor, while

172 R.J. Dias, T.M. Vale, and J.M. Lourenço

static metadata fields are initialized in the static initializer (static { ... }). This
ensures that whenever a new instance of a class is created, the corresponding metadata
objects are also new and unique, while static metadata objects are the same in all in-
stances. Since a class can declare multiple constructors that can call each other, using
the telescoping constructor pattern [1], blindly instantiating the metadata fields in all
constructors would be redundant and impose unnecessary stress on the garbage collec-
tor. Therefore, the creation and initialization of metadata objects only takes place in the
constructors that do not rely in another constructor to initialize its target.

Opposed to the transformation approach based in the decorator pattern, where prim-
itive types must be replaced with their object equivalents (e.g., in Java an int field is
replaced by an Integer object), our transformation approach keeps the primitive type
fields untouched, simplifying the interaction with non-transactional code, limiting the
code instrumentation and avoiding auto-boxing and its overhead.

3.1.2 Adding Metadata to Array Elements
The structure of an array is very strict. Each array cell contains a single value of a well
defined type and no other information can be added to those cells. The common ap-
proach to overcome this limitation, and add some more information to each cell, is to
change the original array to an array of objects that wrap the original value and also
contain the additional information. This straight forward transformation has many im-
plications in the application code, as statements accessing the original array, or array
elements, will now have to be rewritten to use the new array type, or wrapping class,
respectively. This problem is even more complex if the new arrays with wrapped ele-
ments are to be manipulated by non-instrumented libraries, such as the JDK libraries,
which are unaware of the new array types.

We address this matter by changing the type of the array to be manipulated by
the instrumented application code, but with minimal impact on the performance of
non-instrumented code. We keep all the values in the original array, and have a sib-
ling second array, only manipulated by the instrumented code, that contains the addi-
tional information and references to the original array. The type in the declaration of the
base array is changed to the type of the corresponding sibling array (TxArr*Field),
as shown in Figure 7. This Figure also illustrates the general structure of the sibling
TxArr*Field arrays (in this case, a TxArrIntField array). Each cell of the sibling
array has the metadata information required by the STM algorithm, its own position/in-
dex in the array, and a reference to the original array where the data is stored (i.e., where
the reads and updates take place). This scheme allows the sibling array to keep a meta-
data object for each element of the original array, while maintaining the original array
always updated and compatible with non-instrumented legacy code. With this approach,
the original array can still be retrieved with a minimal overhead by dereferencing twice
the sibling TxArr*Field array. Since the original array serves as the backing store,
no memory allocation or copies need to be performed, even when array elements are
changed by non-instrumented code.

Non-transactional methods that have arrays as parameters are also instrumented
to replace the array type by the corresponding sibling TxArr*Field. For non-
instrumented methods, the method signature does not provide information enough
to know if there is the need to revert to primitive arrays. Take, for example, the

Framework Support for the Efficient Implementation of Multi-version Algorithms 173

class D {
int[] a; //base array

}
=⇒ class D {

TxArrIntField[] a;
TxField a_metadata;

}
class TxArrIntField {

int[] array; //base array
int index;

}

Fig. 7. Memory structure of a TxArrIntField array

void foo(int[] a) {
// ...
t = a[i];

}

=⇒
void foo(TxArrIntField[] a) {

// ...
t = a[0].array[i];

}

Fig. 8. Example transformation of array access in the in-place scheme

System.arraycopy(Object, int, Object, int, int) method from the Java
platform. The signature refers Object but it actually receives arrays as arguments. We
identify these situations by inspecting the type of the arguments on a virtual stack2 and
if an array is found, despite the method’s signature, we revert to primitive arrays. The
value of an array element is then obtained by dereferencing the pointer to the original
array kept in the sibling, as illustrated in Figure 8. When passing an array as argument to
an non-instrumented method (e.g., from the JDK library), we can just pass the original
array instance. Although the instrumentation of non-transactional code adds an extra
dereference operation when accessing an array, we still do avoid the auto-boxing of
primitive types, which would impose a much higher overhead.

3.1.3 Adding Metadata to Multi-dimensional Arrays
The special case of multi-dimensional arrays is tackled using the TxArrObjectField
class, which has a different implementation from the other specialized metadata array
classes. This class has an additional field, nextDim, which may be null in the case
of a unidimensional reference type array, or may hold the reference of the next ar-
ray dimension by pointing to another array of type TxArr*Field. Once again, the
original multi-dimensional array is always up to date and can be safely used by non-
instrumented code. Figure 9 depicts the memory structure of a bi-dimensional array of
integers. Each element of the first dimension of the sibling array has a reference to the
original integer matrix. The elements of the second dimension of the sibling array have
a reference to the second dimension of the matrix array.

2 During the instrumentation process we keep the type information of the operand stack.

174 R.J. Dias, T.M. Vale, and J.M. Lourenço

Fig. 9. Memory structure of a multi-dimensional TxArrIntField array

The limitations of our support for in-place metadata for single- and multi-dimensional
arrays in Deuce are discussed with further detail in [5].

4 Evaluation of the In-Place Scheme

The implementation of the proposed Deuce extension, described in the previous sec-
tions, introduces more complexity to the transactional processing when comparing with
the original Deuce implementation. This complexity, in the form of additional memory
operations and allocations, may slowdown the performance in some cases. In our first
step to assess the extension implementation performance, we evaluate the overhead of
the new implementation by comparing it with the original Deuce implementation.

In a second step we evaluate the performance speedup of using our extension to
implement a multi-version STM algorithm, against an implementation of the same
algorithm using the original Deuce interface. We chose a well known multi-version
STM algorithm, JVSTM, described in [3], and implemented two versions of the algo-
rithm, one using the original Deuce interface and an out-place scheme (referred to as
jvstm-outplace), and another using our new interface and extension supporting an
in-place scheme (referred to as jvstm-inplace).

Both the overhead and speedup evaluations are preformed using several micro- and
macro-benchmarks. Micro-benchmarks are composed by the Linked List, Red-Black
Tree, and Skip-List data structures. Macro-benchmarks are composed by the STAMP [4]
benchmark suite and the STMBench7 [9] benchmark. All these benchmarks were ex-
ecuted in our extension of Deuce with in-place metadata with no changes whatsoever,
as all the necessary bytecode transformations were performed automatically by our in-
strumentation process. The benchmarks were executed on a computer with four AMD
Opteron 6272 16-Core processors @2.1GHz with 8×2MB of L2 cache, 16 MB of L3
cache, and 64GB of RAM, running Debian Linux 3.2.41 x86 64, and Java 1.7.0 21.

Framework Support for the Efficient Implementation of Multi-version Algorithms 175

Lin
ke

dL
ist

0%

Lin
ke

dL
ist

10
%

Lin
ke

dL
ist

50
%

Lin
ke

dL
ist

90
%

RBTre
e 0%

RBTre
e 10

%

RBTre
e 50

%

RBTre
e 90

%

Skip
Lis

t 0
%

Skip
Lis

t 1
0%

Skip
Lis

t 5
0%

Skip
Lis

t 9
0%

STMBen
ch

7

Vac
ati

on
-lo

w+

Vac
ati

on
-h

igh
+

KMea
ns

-lo
w+

KMea
ns

-h
igh

+

Gen
om

e+

Int
ru

de
r+

La
by

rin
th+

SSCA2
0

50

100

38% 35% 33% 33%

14% 16% 16% 14%
22%

11% 9% 13%
7% 3% 3%

11% 7% 11%
1%

19%

95%
O

ve
rh

ea
d

(%
)

Fig. 10. Performance overhead measure of the usage of metadata objects relative to out-place TL2

In the following sections we describe in detail, and present the results, of the over-
head evaluation as well as the speedup evaluation.

4.1 Overhead Evaluation

To evaluate the overhead introduced by the management of the metadata object fields
and sibling arrays as required by our extension, we measured and compared the perfor-
mance of two very similar implementations of the TL2 algorithm, which only differ in
which API (context interface) is used to implement the algorithm: one uses the origi-
nal API as provided by the Deuce distribution, and another (named tl2-overhead)
uses the new interface of our modified Deuce (as described in Figure 4 in page 170). The
change of API requires the additional management of metadata objects (allocation, and
array manipulation), and two additional dereferences on the metadata object to obtain
the field’s object reference and the field offset, for each read and write operation.

Figure 10 depicts the average overhead introduced by the tl2-overhead imple-
mentation with respect to the original Deuce TL2 implementation. The Figure reports
on several benchmarks, with each benchmark aggregating results from executions rang-
ing form 1 to 64 threads. The overhead of the additional management of metadata ob-
jects and sibling arrays is in average about 20%. The benchmarks that use metadata
arrays (SkipList, Kmeans, Genome, Labyrinth, SSCA2) have in general a higher over-
head than those that only use metadata objects for class fields (RBTree, STMBench7,
Vacation, Intruder). The micro-benchmarks (Linked List, Red-Black Tree and Skip-
List) were all tested in four scenarios: with a read-only workload (0% of updates), and
read-write workloads with 10%, 50%, and 90% of updates. These micro-benchmarks
are composed of small transactions which only perform read and write accesses to
shared memory, and thus, the overhead is more visible. The higher overhead in the
LinkedList micro-benchmark is due to the long running transactions that perform a very
large number of read operations, and our extension requires an external table lookup and
an additional object dereference to retrieve the metadata object for each memory read
operation.

The STAMP benchmarks, show relatively low overhead,except for the SSCA2+
benchmark. These benchmarks have medium sized transactions which perform some

176 R.J. Dias, T.M. Vale, and J.M. Lourenço

computations with the data read from the shared memory. The SSCA2+ benchmark
only preforms read and write operations over arrays, and may be considered the worst-
case scenario for our extension. The STMBench7 benchmark was executed with a
read-dominant workload, without long-traversals, and with structural modifications ac-
tivated. In this benchmarks transactions are computationally much heavier, which hides
the small overhead introduced by the management of in-place metadata.

From this results we can conclude that out new in-place scheme introduces a small
overhead due to the management of in-place metadata, but it also enables the efficient
implementation of single- and multi-version STM algorithms in a single STM frame-
work. In the next sections we show the comparison of the performance of the same
multi-version algorithm implemented using the original Deuce framework and our ex-
tension.

4.2 Implementing a Multi-versioning Algorithm: JVSTM

The JVSTM algorithm defines the notion of version box (vbox), which maintains a
pointer to the head of an unbounded list of versions, where each version is composed
by a timestamp and the data value. Each version box represents a distinct memory
location. The timestamp in each version corresponds to the timestamp of the transaction
that created that version, and the head of the version list always points to the most recent
version. During the execution of a transaction, the read and write operations are done in
versioned boxes, which hold the data values. For each write operation a new version is
created and tagged with the transaction timestamp. For read operations, the version box
returns the version with the highest timestamp less than or equal to the transaction’s
timestamp. A particularity of this algorithm is that read-only transactions never abort.
To commit a transaction, a global lock must be acquired to ensure mutual exclusion
with all other concurrent transactions. Once the global lock is acquired, the transaction
validates the read-set, and in case of success, creates the new version for each memory
location that was written, and finally releases the global lock. To prevent version lists
from growing indefinitely, versions that are no more necessary are cleaned up by a vbox
garbage collector.

To implement the JVSTM algorithm, we need to associate a vbox with each field
of each object. For the sake of the correctness of the algorithm, this association must
guarantee a relation of one-to-one between the vbox and the object’s field. We will detail
the implementation of this association for both, the out-place and the in-place strategies.

4.2.1 Out-Place Scheme
To implement JVSTM algorithm in the original Deuce framework, which only supports
the out-place scheme, the vboxes must be stored in an external table3. The vboxes are
indexed by a unique identifier for the object’s field, composed by the object reference
and the field’s logical offset. Whenever a transaction performs a read or write operation
on an object’s field, the respective vbox must be retrieved from the table. In the case
where the vbox does not exists, we must create one and add it into the table. These two
steps, verifying if a vbox is present in the table and creating and inserting a new one

3 We opted to use a concurrent hash table from the java.util.concurrent package.

Framework Support for the Efficient Implementation of Multi-version Algorithms 177

public class VBox extends TxField {
protected VBoxBody body;
public VBox(Object ref, long offset) {

super(ref, offset);
body = new VBoxBody(read(), 0, null);

}
// ... methods to access and commit versions

}

Fig. 11. VBox in-place implementation

if not, must be performed atomically, otherwise we would incur in the case where two
different vboxes may be created for the same object’s field. Once the vbox is retrieved
from the table, either it is a read operation and we look for the appropriate version using
the transaction’s timestamp and return the version’s value, or it is a write operation and
we add an entry to the transaction’s write-set.

We use weak references in the table indices to reference the vbox objects and not
hamper the garbage collector from collecting old objects. Whenever an object is col-
lected our algorithm is notified in order to remove the respective entry from the table.

Despite using a concurrent hash map, this implementation suffers from a high over-
head penalty when accessing the table, since it is a point of synchronization for all
the transactions running concurrently. This implementation (jvstm-outplace) will be
used as a base reference when comparing with the implementation of the same JVSTM
algorithm using the in-place scheme (jvstm-inplace).

4.2.2 In-Place Scheme
The in-place version of JVSTM algorithm makes use of the metadata classes to hold
the same information as the vbox in the out-place variant. This will allow direct access
to the version list whenever a transaction is reading or writing.

We extend the vbox class from the TxField class as shown in Figure 11. The actual
implementation creates a VBox class for each Java type in order to prevent the boxing
and unboxing of primitive types. When the constructor is executed, a new version with
timestamp zero is created, containing the current value of the field identified by object
ref and logical offset offset. The value is retrieved using the private method read().
The code to create these VBox objects during the execution of the application is inserted
automatically by our bytecode instrumentation process. The lifetime of an instance of
the class VBox is the same as the lifetime of the object ref. When the garbage collector
decides to collect the object ref, all metadata objects of class VBox associated with
each field of the object ref, are also collected.

Our comparison evaluation shows that the direct access to the version list allowed by
the in-place scheme will greatly benefit the performance of the algorithm. We present
the comparison results in the next section by presenting the speedup of the in-place
version with respect to the out-place version.

178 R.J. Dias, T.M. Vale, and J.M. Lourenço

Lin
ke

dL
ist

0%

Lin
ke

dL
ist

10
%

Lin
ke

dL
ist

50
%

Lin
ke

dL
ist

90
%

RBTre
e 0%

RBTre
e 10

%

RBTre
e 50

%

RBTre
e 90

%

Skip
Lis

t 0
%

Skip
Lis

t 1
0%

Skip
Lis

t 5
0%

Skip
Lis

t 9
0%

STMBen
ch

7

Vac
ati

on
-lo

w+

Vac
ati

on
-h

igh
+

KMea
ns

-lo
w+

KMea
ns

-h
igh

+

Gen
om

e+

Int
ru

de
r+

La
by

rin
th+

SSCA2
0

10

20

30

16×

7× 7× 8×
3× 4× 4× 4×

2× 4× 4× 4× 6×
3× 3×

18×
15×

3×

23×

4×
2×

S
pe

ed
up

(×
fa

st
er

)

Fig. 12. In-place over Out-place scheme speedup: the case of JVSTM

4.3 Speedup Evaluation

From the evaluation of the in-place management overhead, we concluded that this
scheme is a viable option for implementing algorithms biased to in-place transactional
metadata. Hence, we implemented and evaluated two versions of the JVSTM algo-
rithm as proposed in [3], one in the original Deuce using the native out-place scheme
(jvstm-outplace), and another in the extended Deuce using our in-place scheme
(jvstm-inplace), as described in the previous Section.

Figure 12 depicts the average speedup of our two implementations of the JVSTM al-
gorithm: one In-Place (jvstm-inplace) and another Out-Place (jvstm-outplace).
We used the same set of benchmarks and configuration that was used for the over-
head evaluation in Section 4.1. In The in-place version of the JVSTM algorithm is in
average 7 times faster than its dual out-place version. The speedup observed for the
micro-benchmarks, where transactions are small and contention is low, shows that the
multi-versioning algorithms greatly benefit from our in-place support. In the case of
the STAMP benchmarks, where transactions are submitted to workloads of intensive
contention, the in-place version is much faster than the out-place approach as it avoids
completely the use of a shared external table, which becomes a serious bottleneck in the
presence of high contention. In the special case of KMeans and Intruder benchmarks,
the overhead of managing a shared external table drastically increases the probability
of transaction aborts as depicted in Figure 13, which in turn makes the transactional
throughput to decrease. The STMBench7 macro-benchmark has many long-running
transactions and the overall throughput for both algorithms is relatively low. Even so,
the in-place algorithm is in average 6× faster.

5 State-of-the-Art Multi-version Algorithm’s Implementations

Our main purpose for extending Deuce with support for in-place metadata was to al-
low the efficient implementation of a class of STM algorithms that require a one-to-one
relation between memory locations and their metadata. Multi-version based algorithms
fit into that class, as they associate a list of versions (holding past values) with each
memory location. With the support for in-place metadata we can implement and com-
pare the state-of-the-art multi-version algorithms, both between themselves and with
single-version algorithms.

Framework Support for the Efficient Implementation of Multi-version Algorithms 179

1 2 4 8 16 32 64
0

20
40
60
80

100
120
140

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Intruder+

jvstm-out-time

jvstm-in-time

1 2 4 8 16 32 64
0

10
20
30
40
50
60
70

KMeans-high+

Threads

0
200K
400K
600K
800K
1M
120M
140M

0
100
200
300
400
500
600
700

A
bo

rt
s

jvstm-out-aborts

jvstm-in-aborts

Fig. 13. Performance and transaction aborts of JVSTM-Inplace/Outplace for the Intruder and
KMeans benchmarks

To support this fact, we implemented two state-of-the-art multi-version algorithms:
SMV [12] and JVSTM-LockFree [7]. These algorithms are significantly different, al-
though both are MV-permissive [13]. They differ on the progress guarantees, e.g.,
JVSTM-LockFree implements a commit algorithm that is lock-free, while SMV uses
write-set locking, and also differ on the technique used to garbage collect unneces-
sary versions, where JVSTM-LockFree uses a custom parallel garbage collector, while
SMV resorts to the JVM garbage collector by using weak-references. In the following
sections we describe the implementation details of each of the above algorithms.

5.1 SMV – Selective Multi-Versioning STM

The SMV algorithm described in [12] is an MV-permissive multi-version algorithm,
which uses the JVM garbage collector to automatically collect unreachable versions.
The implementation of this algorithm in our extension of Deuce was based on the orig-
inal source code released by the authors4. The original algorithm is object-based, oppo-
site to Deuce, and our extension, which only supports word-based STMs, and hence we
adapted the SMV algorithm to work as a word-base STM.

The transactional metadata required by SMV can be depicted in Figure 14. This is a
direct adaptation of the SMVAdapterLight class provided by the original source code.
Also, we used the same source code that implements the behavior of read- and update-
transactions with minimal changes. We did this by implementing our extension’s inter-
face ContextMetadata as an adapter of the original source code, each transactional
operation (read, write, commit, abort) is forward to the original implementation.

The change from an object-based to a word-based approach only required minimal
changes on the read and write procedures. In the case of a read operation, instead of
returning an object, is returned a field’s value. And in the case of a write operation,
instead of cloning the object to be written and storing in the transaction’s write-set, the
tentative value of a field is stored in the write-set. The overall adaptation of the original
source code to our framework was very easy and fast, which proves the flexibility of
our support for implementing different STM algorithms.

4 http://tx.technion.ac.il/ dima39/sourcecode/
SMVLib-29-06-11.zip

http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip
http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip

180 R.J. Dias, T.M. Vale, and J.M. Lourenço

public class SMVObjAdapter extends TxField {
public volatile Object latest;
public int creatorTxnId;
public final AtomicInteger version = new AtomicInteger(1);
public volatile WeakReference<VersionHolder> prev =

new WeakReference<VersionHolder>(null);
// ... public methods

}

Fig. 14. SMV transactional metadata class

public class VBoxAdapter extends TxField {
protected VBox<Object> vbox;
// ... public methods

}

Fig. 15. JVSTM-LockFree transactional metadata class

5.2 JVSTM Lock Free

The JVSTM-LockFree [7] is an adaptation of the original JVSTM algorithm [3], which
enhances the commit procedure using a lock-free algorithm, instead of using a global
lock, and also improves the garbage collector algorithm by the use of a parallel collect-
ing approach. Once again, we based our implementation in the original source code5.

We created a metadata object containing a reference to a vbox, as implemented origi-
nally by the JVSTM-LockFree algorithm. We show the object metadata implementation
in Figure 15. The context class was implemented as an adapter to the original implemen-
tation of the read-only and update transactions. Actually, we used the JVSTM-LockFree
implementation as an external library (JAR file), and the Deuce context class only for-
wards the transactional calls to the external library. This approach was possible because
there was no need to make any changes to the JVSTM-LockFree algorithm, for it to
work in our framework extension.

6 Supporting Efficient Non-transactional code

Multi-version algorithms read and write the data values from and into the list of ver-
sions. This implies that all accesses to fields in shared objects must be done inside
a memory transaction, and thus multi-version algorithms require a strong atomicity
model [2]. Deuce does not provide a strong atomicity model as memory accesses done
outside of transactions are not instrumented, and hence it is possible to have non-
transactional accesses to fields of objects that were also accessed inside memory trans-
actions. This hinders the usage of multi-version algorithms in Deuce. This problem can
be circumvented by rewriting the existing benchmarks to wrap all accesses to shared

5 https://github.com/inesc-id-esw/jvstm

https://github.com/inesc-id-esw/jvstm

Framework Support for the Efficient Implementation of Multi-version Algorithms 181

objects inside an atomic method, but such code changes are always a cumbersome and
error prone process. We addressed this problem by proposing an adaptation to the multi-
version algorithms that makes them compatible with the weak atomicity model.

When using a weak atomicity model with a multi-version scheme, updates made
by non-transactional code to object fields are not seen by transactional code and, on the
other way around, updates made by transactional code are not seen by non-transactional
code. The key idea for our solution is to store the value of the latest version in the
object’s field instead of in the node at the head of the version list. When a transaction
needs to read a field of an object, it requests the version corresponding to the transaction
timestamp. If it receives the head version, then it reads the value directly from the
object’s field, otherwise it reads the value from the version node.

The main issue with this approach is how to guarantee the atomicity of the commit of
a new version, because now we have two steps: adding a new version node to the head
of the list and updating the field’s value. These two steps must be atomic with respect
to the other concurrent transactions. Our solution is to create a temporary new version
with an infinite timestamp, making it unreachable for other concurrent transactions,
until we update the value and then change the timestamp to its proper value. The algo-
rithmic adaptation that we propose is not intended to support a workload of intertwined
non-transactional and transactional accesses, but rather a phased workload where non-
transactional code does not execute concurrently with transactional code. Many of the
transactional benchmarks we used exhibit such a phased workload, because the data
structures are initialized in the program startup using non-transactional code. After this
initialization, the transactional code can now operate over the data previously installed
by non-transactional code. After the transactional processing, non-transactional code
may also post-process the data, such as in a case of a validation procedure.

6.1 Read Access Adaptation

In a multi-version scheme, read-only transactions always search for a correct version to
return its value. Each version container holds the timestamp (or version number) and
the respective value. When the transaction finds the correct version, it returns the value
contained in the version.

To support non-transactional accesses mixed with a multi-version scheme, the latest
value of an object’s field is stored in-place, and therefore the head version might not
have the correct value because of a previous non-transactional update. The read proce-
dure of a multi-version transaction must be adapted to reflect the new location of the
latest value. When a transaction queries for a version, and receives the head version, cor-
responding to the latest value, it has to return the value directly from the object’s field.
The pseudo-code of this adaptation is presented below, where the additional operations
are denoted in underline.

1. val := read()

2. ver := find version()

3. return

{
val if is head version(ver)

ver.val otherwise

182 R.J. Dias, T.M. Vale, and J.M. Lourenço

The read() function returns the value from the object’s field, the find version func-
tion retrieves the corresponding version according to the transaction timestamp, and the
is head version function asserts if version ver is the head version. This small change
introduces the additional shared memory access performed in step 1. The correctness
of this adaptation can only be assessed with the explanation of the commit adaptation,
which guarantees that whenever the is head version function returns true the value val
is correct.

6.2 Commit Adaptation

The commit operation is typical composed by a validation phase and write-back phase.
In the write-back phase, for each new value present in the write-set, a new version is
created and is stored as the head version. The write-back phase must be atomic, and this
can be achieved using a global lock (JVSTM), a write-set entry locking (SMV), or even
a lock-free algorithm (JVSTM-LockFree).

Our adaptation only makes changes to the write-back phase. In each iteration of
the write-back phase, a new version is installed as the head version of the version list
associated with the object’s field being written. The version contains the commit times-
tamp, which defines the commit ordering, and the new value. Additionally, to support
the weak-atomicity model, we also need to write the new value directly to the object’s
field. The problem that arises with this additional operation is that concurrent transac-
tions need to see the update on the version list, and the update of the object’s value as a
single operation. The key idea to solve this problem is to create a version with a tempo-
rary infinite timestamp, which will prevent concurrent transactions from accessing the
head version, and consequently the object’s field value.

Below we present the pseudo-code of the adaptation to the commit of a new version,
where tc is the timestamp of the transaction that is performing the commit, t∞ is the
highest timestamp, val is the value to be written, and verh is the pointer to the head
version. For the sake of simplicity, we assume that these steps execute in mutual ex-
clusion with respect to other concurrent commits (in Section 6.2.3 we explain how to
apply these steps to a lock-free context as in the JVSTM-LockFree algorithm).

1. verh.value := read()
2. vern := create version(new val, t∞,verh)
3. verh := vern

4. write(new val)
5. verh.timestamp := tc

Once again, the additional changes are denoted in underline. The first step is to update
the value of the head version with the current value of the object’s field. This update is
safe because until this point transactions that retrieve the head version read the value
directly from the object’s field, as described in the previous section. Then we create a
new version with an infinite timestamp and the new value to be written in the object’s
field, and the pointer to the current head version. In the third step, we make the new
version vern the current head version and it becomes visible to all concurrent transac-
tions. This version will never be accessed by any concurrent transaction because of the
infinite timestamp. Then we can safely update the object’s field value in the fourth step

Framework Support for the Efficient Implementation of Multi-version Algorithms 183

1 2 4 8 16 32 64
0.5

1

1.5

2

2.5

1x
0.9x 0.9x

1x
1.2x

1.7x

0.9x
1x 1x 1x

1.1x 1.1x

0.6x
0.7x

1.1x
1x 1x

1.4x
1.6x

0.9x
0.7x

0.9x 0.9x 0.9x
1x 1x

0.8x
1x

S
pe

ed
up

(×
fa

st
er

)
LinkedList w50% RBTree w50% SkipList w50% SB7 Read-Dom

Fig. 16. Performance comparison between original JVSTM and adapted JVSTM

because no concurrent transaction gets the head version (the head version still has an
infinite timestamp up to this point). In the last step we change the timestamp of the
current head version to its proper value making accessible to concurrent transactions.

The adaptation of the commit operation introduces three new shared memory ac-
cesses, where two of them are write accesses. Thus, this adaptation is expected to
slightly lower the throughput of the multi-version algorithm. We applied this adapta-
tion to the multi-version algorithms that we described previously, and compared the
performance of both versions of each. In the next section we report the experience of
adapting each algorithm.

6.2.1 JVSTM
The JVSTM algorithms preform the commit operation in mutual exclusion with other
concurrent committing transactions. The adaptation of these algorithms to support a
weak-atomicity model is straightforward. The changes that we presented in the previ-
ous section to modify the read and commit operation can be applied directly to both
implementations. Moreover, the Deuce framework already provides the memory value
when a read access is issued (see Figure 4 in page 170), which simplifies the first step
of the read procedure described in Section 6.1.

Figure 16 depicts the performance comparison between the original and adapted
versions of JVSTM. The comparison is done by showing the relative performance of
the adapted version over the original version. The adapted version of JVSTM shows
a performance very similar to the original versions. Sometimes, the adapted version
can even outperform the original version. This is due to the specificity of the Deuce
framework that already provides the memory value for each read access callback. In the
case of the adapted version, most of the times that value is used, opposed to the original
version where the value is always obtained by dereferencing a version container.

6.2.2 SMV
The SMV algorithm defines a different memory layout for the version list. In SMV,
the value of the latest version is stored outside of the version list, which reassembles
our adaptation proposal of storing the latest value directly on the memory location. To
apply the support for a weak-atomicity model, we simply moved the value of the latest
version from an auxiliary variable (used in SMV original implementation) directly to
the associated memory location.

184 R.J. Dias, T.M. Vale, and J.M. Lourenço

1 2 4 8 16 32 64
0.5

1

1.5

1x 1x 1x 1x 1x 1x 1x1x 1x 1x 1x 1x 1x

0.8x

1x 1x
0.9x

1x 1x 1x
0.9x

1.1x 1.1x

0.9x

1.1x 1.1x
1x

1.1x

S
pe

ed
up

(×
fa

st
er

)
LinkedList w50% RBTree w50% SkipList w50% SB7 Read-Dom

Fig. 17. Performance comparison between original SMV and adapted SMV

This modification has consequences in the commit operation, which must also be
adapted to atomically update the latest version information and the memory location
value. The first step in the SMV commit operation is to move the latest value and times-
tamp to a newly created version container and add it to the head of the version list. We
change this step by using the latest value stored in memory. In the last step of the SMV
commit operation the variable containing the latest value is updated with the new tenta-
tive value. We changed this step by writing the tentative value directly to memory. The
changes made to the SMV algorithm are minimal and thus we expect that the perfor-
mance differences between the two versions to be also minimal. The results depicted in
Figure 17 confirm our expectations, showing minimal differences between the original
version and adapted version.

6.2.3 JVSTM-LockFree
The JVSTM-LockFree implements a lock free commit operation. The assumption to
apply the adaptation for the commit procedure, presented in Section 6.2, is that the
commit should be done in mutual exclusion. This assumption is true for the previous
algorithms but not for the JVSTM-LockFree. In this algorithm, the commit of a single
version can be done by more than one thread at the same time by resorting to atomic
primitives such as compare-and-swap.

The adaptation of the read procedure is straightforward as in the JVSTM algo-
rithm. The adaptation of the commit procedure is rather complex and requires addi-
tional atomic operations to ensure the correctness of the algorithm. Figure 18 depicts
a simplified version of the original commit. The method commit preforms a compare-
and-swap to install the new version. Other threads may be executing the same method
for the same vbox, but only one of them will install the new version. Further details on
how the JVSTM-LockFree commit algorithm works can be found in [7].

Figure 19 depicts the adapted version of the JVSTM-LockFree commit algorithm
to support a weak-atomicity model. The new algorithm has roughly three times more
operations than the original one. We explain this adapted version by describing how
each step of the adaptation described in Section 6.2 is related to the code listed in the
Figure 19.

The first step verh.value := read() is preformed by lines 5 and 7-9. The update of
the head version’s value (line 8) is done inside a conditional statement because other
concurrent thread may had already preformed the same update. The creation of a new
version in the second step vern := create version(new val, t∞,verh) is preformed in

Framework Support for the Efficient Implementation of Multi-version Algorithms 185

1 public void commit(Object newValue, int txNumber) {
2 Version currHead = this.head;
3 Version existingVersion = currHead.getVersion(txNumber);
4 if (existingBody.version < txNumber) {
5 Version newVer = new Version(newValue, txNumber, currHead);
6 compare_and_swap(this.head, currHead, newVer);
7 }
8 }

Fig. 18. JVSTM-LockFree original commit operation

1 public void commit(Object newValue, int txNumber) {
2 Version currHead = this.head;
3 Version existingVersion = currHead.getVersion(txNumber);
4

5 Object latest = read(memory_location);
6 if (existingVersion == currHead
7 && existingVersion.version < txNumber) {
8 if (this.head == existingVersion) {
9 currHead.value = latest;

10 }
11 Version newVer = new Version(newValue, Integer.MAX_VALUE,
12 currHead);
13 if (compare_and_swap(this.head, currHead, newVer)) {
14 existingVersion = newVer
15 } else {
16 existingVersion = this.head;
17 Version tmpVer = existingVersion.getVersion(txNumber);
18 if (tmpVer.version == txNumber) {
19 existingVersion = tmpVer;
20 }
21 }
22 if (existingVersion.version == Integer.MAX_VALUE) {
23 compare_and_swap(memory_location, latest, newValue);
24 }
25 existingVersion.version = txNumber;
26 }
27 else {
28 if (existingVersion.version < txNumber) {
29 existingVersion = currHead;
30 if (existingVersion.version == Integer.MAX_VALUE)
31 compare_and_swap(memory_location, latest, newValue);
32 existingVersion.version = txNumber;
33 }
34 }
35 }

Fig. 19. JVSTM-LockFree adapted commit operation

186 R.J. Dias, T.M. Vale, and J.M. Lourenço

1 2 4 8 16 32 64
0

0.5

1

1.5

2
1.5x

1.4x
1.3x

1.2x
1.3x 1.3x

1.1x
0.9x 0.9x

0.6x
0.4x 0.4x 0.4x 0.4x

1.1x
1x

0.6x

0.2x
0.3x 0.3x

0.2x

0.9x
0.7x

0.4x 0.4x
0.5x

0.7x
0.6x

S
pe

ed
up

(×
fa

st
er

)
LinkedList w50% RBTree w50% SkipList w50% SB7 Read-Dom

Fig. 20. Performance comparison between original JVSTM-LockFree and adapted JVSTM-
LockFree

line 10. The publication of the new version in the third step verh := vern is preformed in
lines 11-19. In this step we preform a compare-and-swap, as in the original algorithm,
to publicize the new version, but if other concurrent thread already publicize the new
version, then we need to get a pointer to the new version. This is done in lines 14 to 18.
Using this pointer we can preform the final fourth and fifth steps write(new val) and
verh.timestamp := tc, which are done in lines 20-23. The writing of the new value
directly to memory (line 21) is done using a compare-and-swap atomic operation to
prevent lost updates. The update of the version number (line 23) is safe because we
always have a pointer to the correct version container. These last two steps are also
preformed in lines 28-31, in the case when a thread attempting to commit finds out, in
line 6, that other concurrent thread already publicized the new version, and therefore it
helps finishing the commit. Another source of overhead is caused by a limitation of the
compare-and-swap operation, which can only be preformed for reference and integer
types. Thus, for other primitive type such as float, or byte, the compare-and-swap
operations preformed in lines 21 and 29, must be substituted by some mutual exclusion
block. Fortunately the use of compare-and-swap non-supported types in the benchmarks
is rare.

Figure 20 presents the results of comparing the adapted version over the original ver-
sion of JVSTM-LockFree. In the case of the LinkedList micro-benchmark, the trans-
actions generate small write-sets (the add and remove operations only write to a single
object), and typically the commit rate is low due to the long duration of the lookup of
a node, which is linear with the size of the list. As so, the adapted version outperforms
the original version, due to the read accesses that use value directly from memory and
are immediately provided by the Deuce framework. In the case of the SkipList and
RBTree micro-benchmarks, the adapted commit overhead is more notorious when the
contention increases with the number of threads. These benchmarks generate a high
rate of commit operations, although still with small write-sets per transaction. In the
STMBench7 benchmark, known to generate very large read- and write-sets, the adapted
version can only achieve half the performance of the original version. The results con-
firm our performance expectations, and also confirm that the overhead introduced by
adapting a multi-version algorithm to support a weak-atomicity model is almost nil for
algorithms that preform the commit of versions in mutual exclusion, and has a consid-
erable cost otherwise.

Framework Support for the Efficient Implementation of Multi-version Algorithms 187

7 Performance Comparison of STM Algorithms

In this chapter we presented an extension of the Deuce framework to support the ef-
ficient implementation of STM algorithms that require a one-to-one relation between
memory locations and transactional metadata, being multi-version algorithms an
instance of this class of algorithms. We evaluated the extension considering the im-
plications in both performance and memory consumption. The results were very satis-
factory and thus we implemented two state-of-the-art multi-version algorithms (SMV
and JVSTM-LockFree).

Given this support for very different classes of STM algorithms, we may now aim
at a fair comparison of their performance, i.e., compare the algorithms implemented in
the same framework and with the same benchmarks. In this section we show the direct
comparison between several out-place and in-place STM algorithms. The list of STM
algorithms chosen for comparison are TL2, JVSTM, JVSTM-LockFree, and SMV. In
the case of TL2 we use two versions: the out-place version (TL2-Outplace) which is
distributed with Deuce, and an in-place version (TL2-Inplace) which we implemented
in our extension. The in-place version moves the locks from the external lock table
to the transactional metadata, and completely avoids the false-sharing on locks. In the
case of multi-version algorithms our measurements were conducted under two settings.
The first setup consisted on executing the (unmodified) benchmarks combined with the
weak-atomicity-adapted multi-version algorithms. In the second setup, we executed a
modified version of the micro-benchmarks and STMBench7 combined with the orig-
inal multi-version algorithms that do not support weak-atomicity. In the comparison
results, we will only use the best of the results of the original and the adapted versions
of each multi-version algorithm. As in the extension evaluation, the benchmarks were
executed on a computer with four AMD Opteron 6272 16-Core processors @2.1GHz
with 8×2MB of L2 cache, 16 MB of L3 cache, and 64GB of RAM, running Debian
Linux 3.2.41 x86 64, and Java 1.7.0 21.

Figure 21 shows the results of the execution of the micro-benchmarks Linked List,
Red-Black Tree, and Skip List. The Linked List benchmark is characterized by transac-
tions with large read-sets and by a high abort rate. In this benchmark the algorithms do
not scale well with the increase in the number of threads. The single-version algorithms
TL2-Outplace and TL2-Inplace exhibit better performance. These algorithms have very
efficient implementations and the read accesses are very lightweight. Additionally, in
the case of read-only transactions, each read access is checked for consistency but the
transaction can safely commit without further verification. To support multiple versions
per memory location, the multi-version algorithms add a high number of extra com-
putations when reading a value from a memory location, with the benefit of avoiding
spurious transaction aborts and hence avoid the re-execution of transactions. Although,
in the micro-benchmarks this possible benefit is not observed. In the Red-Black Tree
and Skip List benchmarks, transactions are very small and fast, and have a low con-
flict probability, except in the Red-Black Tree when tree rotations are preformed. These
benchmarks hide even more the advantages of multi-version algorithms when compared
with single-version algorithms. The poor performance of SMV when compared to the

188 R.J. Dias, T.M. Vale, and J.M. Lourenço

1 2 4 8 16 32 64
0

4K

8K

12K

16K

20K

LinkedList w10%

1 2 4 8 16 32 64
0

1M

2M

3M

4M

5M

6M

RBTree w10%

1 2 4 8 16 32 64
0

0.9M

1.8M

2.7M

3.6M

4.5M

SkipList w10%

1 2 4 8 16 32 64
0

0.9K

1.8K

2.7K

3.6K

4.5K

LinkedList w50%

1 2 4 8 16 32 64
0

0.6M

1.2M

1.8M

2.4M

3M

Threads

RBTree w50%

1 2 4 8 16 32 64
0

0.3M

0.6M

0.9M

1.2M

1.5M

SkipList w50%

tl2-outplace tl2-inplace jvstm-inplace smv-inplace jvstm-lf-inplace

T
hr

ou
gh

pu
t

(t
xn

/s
ec

)

Fig. 21. Micro-benchmarks comparison

1 2 4 8 16 32 64
0

2

4

6

8
9

Vacation-low+

1 2 4 8 16 32 64
0

20

40

60

80

KMeans-low+

1 2 4 8 16 32 64
0

9

18

27

36

45

Genome+

1 2 4 8 16 32 64
0

6

12

18

24

30

Intruder+

1 2 4 8 16 32 64
0

30

60

90

120

150

180

Threads

Labyrinth+

1 2 4 8 16 32 64
0

20

40

60

80

SSCA2+

tl2-outplace tl2-inplace jvstm-inplace smv-inplace jvstm-lf-inplace

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

×1
0−

1
)

Fig. 22. STAMP benchmarks comparison

other multi-version algorithms is due to the strain imposed on the Java garbage collec-
tor: the micro-benchmarks generate millions of transactions per second, generating a
lot of activity of the Java garbage collector.

Framework Support for the Efficient Implementation of Multi-version Algorithms 189

1 2 4 8 16 32 64
0

0.5K
1K

1.5K
2K

2.5K
3K

3.5K

SB7 Read-Dom w/SMS w/o Long Trav.

1 2 4 8 16 32 64
0

0.3K

0.6K

0.9K

1.2K

1.5K

1.8K

SB7 Write-Dom w/SMS w/o Long Trav.

tl2-outplace tl2-inplace jvstm-inplace smv-inplace jvstm-lf-inplace

Threads

T
hr

ou
gh

pu
t(

tx
n/

se
c)

Fig. 23. STMBench7 comparison

The comparison results for the STAMP benchmarking suite are depicted in Fig-
ure 22. In these results the y-axis represents execution time and therefore lower values
are better. The benchmarks in this suite exhibit very different workloads, some of them
even generate such high contention that hinders the scaling for all of the tested algo-
rithms. The benchmarks KMeans, Genome, and Intruder, exposes the corner cases of
the adapted JVSTM-LockFree algorithm, hence its performance is strongly penalized.
We believe that the original JVSTM-LockFree algorithm would perform much better
than the adapted version in these particular benchmarks. The TL2 based algorithms
overall exhibit a very good performance. In the Labyrinth benchmark the multi-version
algorithm JVSTM-LockFree presents a very good result. This algorithm has a low abort
rate when compared with the other algorithms, which allows it to not waist so much
work in transaction restarts. In the SSCA2 benchmark all the in-place algorithms suffer
from the high overhead of transactional metadata management shown in Figure 10 of
Section 4.1.

In Figure 23 we show the results for the STMBench7 benchmarks. This benchmark
generate CPU-intensive transactions with large read-sets and write-sets. This bench-
marks allows to exploit the benefits of multi-version algorithms which can avoid spu-
rious aborts and thus achieve better performance than single-version algorithms. The
JVSTM-Lockfree algorithm achieves a good performance, higher than the remaining
algorithms, confirming the advantages of using an MV-permissive algorithm in this
kind of workload. In this benchmark, there is a significant performance difference be-
tween the out-place and in-place versions of TL2 algorithm. The out-place version does
not even scale with the number of threads. The reason of this behavior may be due to
cache locality issues. The in-place version is much more cache-friendly than the out-
place version. The in-place version has a high probability of having the metadata in the
same cache line as the memory location. This does not happen in the out-place version,
and in the special case of STMBench7, where transactions perform a large number of
reads and writes, the out-place version must read many entries from the external lock
table, which may not fit in the cache and requiring much more page transfers from
main memory to the cache. In the write-dominated workload of STMBench7, all algo-
rithms have similar performance with the exception of TL2-Outplace. Although almost

190 R.J. Dias, T.M. Vale, and J.M. Lourenço

all transactions are read-write, the multi-version algorithms can still compete with the
single-version TL2-Inplace algorithm, and JVSTM-LockFree almost always exhibit the
best performance.

8 Concluding Remarks

In this chapter we presented an extension of Deuce that provides a performance-wise
support for implementing STM multi-version algorithms. This is achieved by a trans-
formation process of the program Java bytecode that adds new metadata objects for
each class field, and that includes a customized solution for N-dimensional arrays that
is fully backwards compatible with primitive type arrays.

We evaluated the proposed system by measuring the overhead introduced by the new
in-place scheme with respect to the original Deuce implementation. Although we can
observe a light slowdown caused by the in-place metadata management, the slowdown
is quickly absorbed by the performance gains achieved when using the in-place scheme
to store the STM algorithms metadata.

The new efficient implementation support for STM multi-version algorithms al-
lowed to implement two state-of-the-art multi-version algorithms SMV and JVSTM-
LockFree. Moreover, we present the first performance comparison between the two.

Finally, we proposed an algorithmic adaptation for multi-version algorithms to sup-
port the weak-atomicity model as provided in the Deuce framework. We reported the
experience of adapting several state-of-the-art multi-version algorithms and evaluate
their performance. In general, multi-version algorithms can be adapted to support the
weak-atomicity model without a performance penalty, except the case of the algorithms
that implement a lock-free commit operation.

Acknowledgments. This research was partially supported by the EU COST Action
IC1001 (Euro-TM) and the Portuguese Fundação para a Ciência e Tecnologia in the
research project PTDC/EIA-EIA/113613/2009 (Synergy-VM), and the research grants
SFRH/BD/41765/2007 and SFRH/BD/84497/2012.

References

1. Bloch, J.: Effective Java, 2nd edn. Addison-Wesley (2008)
2. Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing transactions: The subtleties of

atomicity. In: Fourth Annual Workshop on Duplicating, Deconstructing, and Debunking,
(WDDD) (2005)

3. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci. Com-
put. Program. 63(2), 172–185 (2006)

4. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional ap-
plications for multi-processing. In: 4th IEEE International Symposium on Workload Charac-
terization (IISWC). IEEE (2008)

5. Dias, R.J., Vale, T.M., Lourenço, J.M.: Efficient support for in-place metadata in java soft-
ware transactional memory. Concurrency and Computation: Practice and Experience 25(17),
2394–2411 (2013)

Framework Support for the Efficient Implementation of Multi-version Algorithms 191

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

7. Fernandes, S.M., Cachopo, J.A.: Lock-free and scalable multi-version software transactional
memory. In: 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), pp. 179–188. ACM (2011)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional (1994)

9. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software transactional
memory. In: 2nd EuroSys Conference (EuroSys), pp. 315–324. ACM (2007)

10. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software trans-
actional memory. In: 21th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pp. 253–262. ACM (2006)

11. Korland, G., Shavit, N., Felber, P.: Deuce: Noninvasive software transactional memory.
Transactions on HiPEAC 5(2) (2010)

12. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective multi-versioning
STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140. Springer, Heidelberg
(2011)

13. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: 29th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 16–25. ACM (2010)

14. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional memory. In:
1st ACM SIGPLAN Workshop on Transactional Computing (TRANSACT) (2006)

15. Riegel, T., Brum, D.B.D.: Making object-based STM practical in unmanaged environments.
In: 3rd ACM SIGPLAN Workshop on Transactional Computing (TRANSACT) (2008)

Nested Parallelism in Transactional Memory

Ricardo Filipe and João Barreto

Instituto Superior Técnico, Universidade de Lisboa /INESC-ID
{rfilipe,jpbarreto}@gsd.inesc-id.pt

Abstract. We are witnessing an increase in the parallel power of computers for
the foreseeable future, which requires parallel programming tools and models
that can take advantage of the higher number of hardware threads. For some ap-
plications, reaching up to such high parallelism requires going beyond the typical
monolithic parallel model: it calls for exposing fine-grained parallel tasks that
might exist in a program, possibly nested within memory transactions.

While most current mainstream transactional memory (TM) systems do not
yet support nested parallel transactions, recent research has proposed approaches
that leverage TM with support for fine-grained parallel transactional nesting.
These novel solutions promise to unleash the parallel power of TM to unprece-
dented levels. This chapter addresses parallel nesting models in transactional
memory from two distinct perspectives.

We start from the programmer’s perspective, studying the spectrum of parallel-
nested models that are available to programmers, and giving a practical tutorial on
the utility of each model, as well as the languages, tools and frameworks that help
programmers build nested-parallel programs. We then turn to the perspective of a
TM runtime designer, focusing on state-of-the art algorithms that support nested
parallelism.

1 Introduction

Harnessing the parallel power of today’s computers calls for concurrent programs that
expose and exploit as much parallelism as the ever increasing hardware thread count.
More than easily coding concurrent programs that yield some parallelism, we want
concurrent programs that expose as much parallelism as the ever increasing hardware
thread count.

This goal becomes dramatically more challenging as affordable multicore machines
include more and more cores each year. While 4-core processors supporting up to eight
simultaneous hardware threads are already regarded as commodity hardware, 8-core,
16-core and even chips with tens or hundreds of cores promise to be an affordable
reality soon [1].

Achieving such parallelism levels will not always be possible with the traditional
monolithic organization of coarse-grained parallel threads. For many real applications,
the programmer may not be able to find enough coarse-grained top-level parallelism
to fork. Hence, the alternative is to recursively expose the fine-grained parallel tasks
that might exist within coarser-grain parallel tasks in the program. This leads to nested-
parallel programs.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 192–209, 2015.
c© Springer International Publishing Switzerland 2015

Nested Parallelism in Transactional Memory 193

As a motivational example, let us assume that a programmer building an application
finds different tasks that, according to the application semantics, can safely run in par-
allel threads. Furthermore, inside such tasks, the programmer finds that some sub-tasks
of a same task can also be parallelized in a fork-join fashion. Proceeding recursively
with this approach, the final application will comprise a dynamic tree of nested fork-
join tasks, each of which can run in concurrent threads to exploit the available hardware
resources. This tree can even be deeper if we consider that some tasks may invoke func-
tions from other modules (e.g., a library call) that may themselves be implemented by
nested-parallel programs.

If the tasks work on shared data, then the above application will most likely have
concurrent accesses to that data. Concurrency in traditional parallel programming is
well known to be a hard problem to tackle, as we need to correctly synchronize access
to shared data. Shifting to nested-parallel programming can further complicate synchro-
nization to dantesque levels.

Nested-parallel programs comprise dynamic trees of tasks, running at concurrent
threads, where correct synchronization depends on ancestor-descendant relations. On
the one hand, data contention between concurrent threads needs to be synchronized.
But, on the other hand, tasks that are ancestor/descendant of each other need to be
treated differently: for instance, a nested task trying to access some memory location
locked by some ancestor may be allowed to proceed with the access. Further, deadlock
situations are more likely and harder to prevent, as they may happen between tasks at
any nesting depths.

Relying on the programmer to explicitly solve such intricate synchronization
challenges (e.g., using lock-based programming) is usually unrealistic for the average
programmer. Except for embarrassingly parallel programs, the programmer is strongly
discouraged to explore into the possibilities of nested-parallel programming.

Memory transactions, in contrast, are an elegant and effective solution to hide the
hard synchronization parallel programming, especially if nested, away from the pro-
grammer. This makes transactional memory (TM) a promising paradigm to leverage
fine-grained nested parallelism in tomorrow’s multi/many-core machines.

Hereafter, let us designate the original non-nested TM programming model as flat-
parallel (in contrast to the nested-parallel counterpart). The key insight is that the flat-
parallel TM programming model is easily extensible to support nested transactions [2],
an extension that has been introduced well earlier in the context of database transac-
tions [3]. Essentially, a nested transaction is one whose execution is contained inside
another transaction’s execution. A program may hence recursively create nested trans-
action trees while executing.

When building a parallel-nested program, the programmer simply needs to apply the
same rule that she was required to follow in traditional flat-parallel programming: to
identify each code region that needs to run atomically and wrap it inside a transaction.
Since transactions are composable [4], if all the atomic regions in a task have been
properly defined, then executing such a task nested within a nested-parallel program
will be correct. This holds true even if some of the tasks in a nested-parallel program
belong to different modules, whose implementation the programmer does not know
about (e.g. a call to a parallelized library function).

194 R. Filipe and J. Barreto

Programming in a nested-parallel fashion using TM, when compared to flat-parallel
programming, introduces new challenges that programmers must be aware of in order
to build correct and efficient programs. Firstly, the nested-parallel model is more com-
plex than the flat one. Secondly, starting nested tasks may be cumbersome, error-prone
and lead to inefficient, slow and not scalable programs if is not handled correctly. Fi-
nally, not of all today’s mainstream TM runtimes support a fully nested-parallel model.
Instead, many TM runtimes support limited nesting models, which need to be taken into
account by the programmer.

This chapter approaches parallel nesting models in TM from two distinct perspec-
tives. We start from the programmer’s perspective. Section 2 studies the spectrum of
parallel-nested models that are available to programmers, and gives a practical tutorial
on the utility of each model. Section 3 then surveys languages, tools and frameworks
that help programmers build nested-parallel programs in TM. Section 4 then focuses on
the inner works of TM runtimes that support parallel nesting, describing state-of-the art
algorithms. Finally, Section 5 summarizes.

2 Nested Parallelism Models in Transactional Memory

In theory, the TM model is extensible to support parallel-nested programs [5]. This
extension implies redefining the correctness guarantees that were originally defined in
the context of flat-parallel programming in TM.

The key insight is that correctness must now consider the ancestor-descendant rela-
tionships between parallel transactions, as we shall detail next.

However, supporting parallel nesting also implies changes to the TM runtime that
may introduce substantial overheads or limit scalability. For this reason, many current
mainstream TM runtimes opt for limited nesting models. For the sake of efficiency of
flat-parallel programs, these typically restrict the nested parallelism that programmers
can actually extract from their programs.

Hence, the reality is that, instead of a single nested-parallel model, TM runtimes
actually offer a spectrum of models. It is, of course, important that the programmer
understands each model in order to produce programs that, while ensuring correctness,
are able to fully exploit the model supported by the underlying runtime.

This section presents and discusses each different model in the spectrum of nested
models for TM. We start by focusing on the pure parallel-nested model, before delving
in restricted variants of such a model in the subsequent subsections.

2.1 Parallel Nesting

Simply put, the nested-parallel model for TM means that the TM runtime supports
nested transactions and allows the child transactions of a common parent to run in
parallel. This model is a straightforward extension of the closed nesting model proposed
by Moss and Hosking [2].

Conceptually, the execution of a nested-parallel program yields a dynamic tree of
active transactions, inter-connected by child-parent relations. At any moment, some of
the transactions will be running, while others will be waiting (for instance, for some
processor to become available, or waiting for their children to commit).

Nested Parallelism in Transactional Memory 195

Algorithm 1. Example of parallel nested transactions

1 function sb7-longTraversal(root)
2 atomic {
3 parallel {
4 sb7-traverseComplexAssembly(root.leaf1);
5 sb7-traverseComplexAssembly(root.leaf2);
6 sb7-traverseComplexAssembly(root.leaf3);
7 }
8 }

We illustrate with an excerpt taken from a modified long transaction of the popular
STMBench7 benchmark [6], presented in Algorithm 1. Method sb7-longTraversal in-
cludes an atomic region (i.e. encloses a transaction), which calls the
sb7-traverseComplexAssembly method for each leaf of the root data item. The sb7-
traverseComplexAssembly method also executes a transaction inside of it. In this ex-
ample the programmer is calling methods within the same program, but they could be
calls to an external library.

In the above example, the programmer calls the sb7-traverseComplexAssembly meth-
ods in parallel threads, thereby building a nested-parallel program. These methods
will perform accesses that may conflict with transactions running concurrently at other
threads. Furthermore, the parallel-nested threads may also contend for shared memory
locations. If that is the case, the programmer should have identified the code regions at
the called methods that need to run atomically and created transactions to ensure the
necessary synchronization.

The transactions defined by the atomic regions within sb7-traverseComplexAssembly
will compose with the parent transaction initiated at method sb7-longTraversal. In other
words, the sb7-traverseComplexAssembly methods will start nested transactions. We
call each such nested transaction a child of the parent transaction from sb7-longTraversal.
By extension, we say that two transactions are siblings if they have a common parent
transaction. Furthermore, we define that transaction t is an ancestor of transaction s if t
is included in the path from s’s node to the root node in the tree of nested transactions.

For model simplicity, most definitions of the nested-parallel transactional model (e.g.
[5]) assume that the parent transaction halts until all the threads that it spawned (and the
inherent nested transactions) complete. Only after all children tasks finish does the par-
ent’s execution continue. We adopt such assumption too. Hence, when a given nested
task is running, all its ancestors’ threads are waiting. Accordingly, when a nested trans-
action is active, all its ancestor transactions are waiting.

A nested transaction is seen as executing after all the accesses that its ancestors have
performed so far. In particular, when some transaction t reads from a memory location
that has been written by any of its ancestors, t should observe the most recently written
value by its ancestors.

Each nested transaction runs in isolation relatively to any other concurrent trans-
action. More precisely, the concurrent transactions of a given transaction include its
own siblings and all its ancestors’ siblings and their descendants (including the root

196 R. Filipe and J. Barreto

transactions that are concurrent to the transaction’s root ancestor).Note that a transac-
tion never runs concurrently with its descendants, as it waits for the descendants to
complete.

Conceptually, a nested transaction has its own read set and write set. This enables
rolling back the nested transaction without having to roll back its entire root transaction.

On commit, a nested transaction’s read and write sets are inherited by the transac-
tion’s parent. In other words, the reads and writes of the committed nested transaction
are, from that moment on, considered to have been performed on behalf of the parent
transaction.

Committing a nested transaction does not make its writes visible to the rest of the
world. 1 Instead, committing a nested transaction means that the committed writes be-
come visible to its active siblings and to its ancestors (which are blocked until all chil-
dren commit). Following this rule recursively, the writes of a nested transaction become
gradually visible to other transactions, starting at the set of siblings of the transaction
and then going upwards the nesting tree.

The nested-parallel transactional model is very powerful to ease programmers’ lives
when exploiting nested parallelism in their programs. The key insight is that the nested-
parallel model retains the composability of the traditional flat model. Hence, when shift-
ing from the flat-parallel model to the nested-parallel one, the programmer is required to
apply the very same principle as before: to identify regions within the program that are
atomic and wrap them in transactions. Having done that, correct synchronization is en-
sured by the TM runtime even for a program that has been structured in a nested-parallel
fashion. This holds true even if some of the tasks in a nested-parallel program belong
to different modules, whose implementation the programmer does not know about (e.g.
a call to a parallelized library function).

However, porting a flat parallel program with monolithic coarse-grained threads to a
nested-parallel alternative that exposes more fine-grained parallelism is not transparent
and requires caution from the programmer. Let us consider a thread that executes a
seguence of tasks. Before parallelizing such tasks, the programmer needs to carefully
confirm that:

• The candidate tasks to parallelize safely commute. Parallelizing them can yield ex-
ecutions where the serialized order of the transactions within the parallelized tasks
is different than the serial order in the original flat thread’s program. Whether such
a reordering of such tasks is safe or not depends on the semantics of the operations
being performed at each candidate task.
When two or more tasks are not commutable, spawning them inside nested-parallel
threads is not a safe choice.

• The tasks to parallelize should be long enough to compensate the overheads as-
sociated with nesting. Namely, the cost of forking/joining the new threads to run
each task in parallel, the costs of beginning and committing nested transactions, the
additional overheads of deeper nesting in the transactional tree, among others.

1 This means that we consider only a closed nesting model. An alternative is the open nesting
model introduced briefly in Section 2.3. We leave that alternative out of the scope of this
chapter, since no research work on parallel nesting support includes open nesting. In theory,
however, open nesting is applicable to both parallel and linear nesting models.

Nested Parallelism in Transactional Memory 197

Nested tasks should only be parallelized when the associated speed-ups clearly
compensate the above costs.

• There are available hardware contexts to run each task in parallel. Of course, ex-
posing additional fine-grained parallelism is advantageous as long as there are idle
hardware contexts to run the spawned nested tasks. Blindly spawning nested tasks
may lead to pathological executions where spawned tasks are actually condemned
to spend substantial periods waiting for an available core. Furthermore, it increases
thread preemption cost.

Ensuring the above conditions is not trivial and is, perhaps, the key obstacle to build-
ing efficient nested-parallel programs. There are, however, tools, frameworks and lan-
guage support that assist the programmer with some of the above issues. We describe
some examples of such items in the following sections.

Although appealing in theory, only a few of today’s state-of-the-art TMs support
this nested-parallel model. As we shall discuss in Section 4, the nested-parallel model
brings about a number of technical challenges that can substantially complicate the
implementation of a TM runtime. Hence, many TMs offer support for nesting but in-
troduce restrictions that do not exist in the pure nested-parallel model we described
previously.

We address such restricted models next.

2.2 Shallow Parallel Nesting

Volos et al. [7] define one poorer variant of the nested-parallel model, which they call
shallow nesting. In shallow nesting, a transaction can have several threads executing, in
parallel, parts of the transaction’s code. However, no nested transactions are allowed.

The memory accesses performed by the threads running on behalf of a common
(parallelized) transaction are added to the transaction’s read and write set. However, the
TM does not guarantee that such threads run in isolation.

Hence, the programmer’s role is harder, since shallow nesting places the burden of
ensuring correct synchronization among the parallel threads running on behalf of a same
transaction. Shallow nesting is, though, a nice fit for parallelizing long transactions that
perform multiple independent operations (e.g. a loop on disjoint data).

2.3 Nesting with Restricted Parallelism

Other variants of the nested-parallel model restrict the allowed parallelism among nested
tasks (and transactions).

Hierarchical Lock Atomicity. One such model consists in disallowing sibling trans-
actions (i.e., nested transactions descending from a common parent) to run in parallel.
Volos et al. [7] define this as the Hierarchical Lock Atomicity (HLA) model. In con-
cept, it is as if each parent transaction has a single lock, which the children transactions
need to obtain before proceeding. More precisely, let us consider that some transac-
tion spawned a set of threads. When any of such threads wishes to begin a (nested)

198 R. Filipe and J. Barreto

transaction, it needs to wait until there is no other sibling or any sibling’s descendant
transaction running.

Note that, like shallow nesting, HLA also allows a transaction to effectively run in
parallel - as long as such parallel threads do not begin simultaneous nested transactions.
Hence, in long transactions that can be parallelized into tasks that contain few and short
transactions, HLA is able to yield parallel executions that resemble those of the pure
nested-parallel model.

Linear Nesting. For implementation simplicity, many mainstream TMs support nested
transactions but simply disallow a transaction to spawn any threads. In other words,
if some parent transaction creates child transactions, then the children will run in the
same thread that runs the parent transaction, one after another. This is called the linear
nesting model.

Linear nesting imposes a decisive limitation on the potential parallelism that is made
available to programmers, who can only create threads in code locations that lie out-
side atomic blocks. Hence, it severely restricts composability of parallel programs [16],
as a program cannot call a parallel library function from inside a transaction without
serializing the function [1]. Or, alternatively, the programmer cannot decompose long
transactions into parts that do not conflict among each other (at least not too much).

We can actually identify three main variants of the linear nesting model, as follows:

• Flat Nesting.
The parent transaction sees all modifications to program state made by inner trans-
actions, since child and parent transactions are coupled onto a single transaction.
This is the simpler approach, since aborting the child transaction will also abort
the parent, but committing the child transaction has no effect until the parent trans-
action also commits. Flattened transactions are easy to implement, since there is
only one transaction in execution coupled with a nesting depth counter. However,
this is a poor programming abstraction, since if an explicit abort is issued in a li-
brary routine that contains transactions, all surrounding transactions must terminate
execution.

• Closed Nesting.
A closed transaction behaves similarly to a flattening one, except the inner transac-
tion can abort without terminating its parent transaction. When a closed transaction
commits or aborts, control passes to its parent. If the inner transaction commits, its
changes become visible to the parent. However, they only become visible to other
threads when the parent transaction commits. Hence, closed nesting ensures the
same correctness properties as flat nesting.

• Open Nesting.
When an open transaction commits, its changes become visible to all other trans-
actions in the system, even if the parent transaction is still executing. Further-
more, if the parent transaction aborts, the results of the nested open transactions
remain committed. Thus, open nesting allows greater concurrency between transac-
tions. For example, it allows concurrent transactions to increment a shared counter
without provoking a conflict for the whole parent transaction. While using open
transactions allows for greater concurrency in the application, they can subvert the

Nested Parallelism in Transactional Memory 199

isolation of a parent transaction, thus requiring extra care. For instance, consider
the case where a child transaction reads data tentatively written by the parent; then
the child transaction commits but the parent transaction later aborts. Now there is
some inconsistent global state which depends on a write operation that actually
never occurred. Another problematic case is the one where the parent transaction
reads some location that the child transaction writes to. The child can commit a
new value to that location, and then the parent may abort and read the value that
was updated by its child transaction upon re-execution.

2.4 Nested-Parallelism with Thread-Level Speculation

As discussed earlier in this section, the nested-parallelism model requires careful
reasoning about the semantics of the parent task being parallelized. Namely, the pro-
grammer must assert if the work performed by the parallel children tasks is actually
commutative.

This assertion may not be trivial for all applications. For the average programmer,
this may pose a significant effort and introduce a non-negligible risk of errors due to
parallelizing tasks that, after all, were not semantically commutable. At the end, most
programmers will most likely feel discouraged from exposing fine-grained parallelism
lying within their applications.

Furthermore, some tasks are simply not commutable, as the application’s semantics
require them to run accordingly to the sequential program’s order. That is, any task
reordering that leads to different results is simply prohibited by the semantics. However,
this does not mean that running the tasks in parallel will always lead to such undesirable
executions. Consider, for instance, a sequence of tasks that work on some shared data
structure (e.g., a large array or matrix) such that some tasks may occasionally read or
write to the same elements in the shared structure. Any task reading from an element
that other tasks in the sequence write to should obtain the value updated by the most
recent task that, in program order, precedes the reader. Hence, parallelizing these tasks
as sibling nested transactions may violate this condition, as the nested-parallel model
may serialize siblings in a different order than that of the original program.

A recent research direction has proposed a variant of the nested-parallel model that
address the two above issues [8]. This new model combines TM and thread-level spec-
ulation (TLS) [9].

As in the nested-parallel model, the programmer can sub-divide a transaction into
parallel tasks. The key difference in the hybrid TM+TLS model is that runtime is re-
sponsible for ensuring that any data dependencies stemming from the original sequen-
tial program order are respected in the speculatively parallelized execution.

This hybrid model eliminates the two issues discussed above. On the one hand, the
programmer in doubt about task commutativity can conservatively parallelize a trans-
action using this hybrid model. Since the underlying runtime guarantees that the paral-
lelized execution will be equivalent to a sequential execution of the same transaction,
the parallelized program is correct no matter if the tasks were actually commutable or
not. On the other hand, situations where the sequence of tasks in a transaction is not
commutable may now be safely parallelized, since the TM ensures that such tasks will
be serialized according to program order.

200 R. Filipe and J. Barreto

Algorithm 2. Example of nested-parallel programs with TFJ

9 function sb7-longTraversal-TFJ(root)
10 transaction(proc, params) {
11 onacid;
12 proc(params);
13 commit;
14 }
15 onacid;
16 spawn transaction(sb7-traverseComplexAssembly, root.leaf1);
17 spawn transaction(sb7-traverseComplexAssembly, root.leaf2);
18 spawn transaction(sb7-traverseComplexAssembly, root.leaf3);
19 commit;
20 }

It is thus pertinent to compare the the hybrid TM+TLS model with the nested-parallel
model. The TM+TLS model is perhaps more appealing to the average programmer, as
it strongly simplifies programming fine-grained parallel programs where the tasks do
not commute or the programmer simply is not sure that they commute.

However, the main question is which model is able to actually deliver higher par-
allelism. In fact, each model can, in theory, achieve more parallelism than the other,
depending on the program being parallelized. As discussed above, the TM+TLS model
can expose parallelism in situations where the pure nested-parallel model cannot.

However, in situations where the nested-parallel tasks are commutable, the TM+TLS
model is limited. Whereas the pure nested-parallel model is free to serialize the sibling
tasks in any order, the TM+TLS model will always enforce the sequential program or-
der. Unfortunately, the sequential program order may not be the serialization order that
allows for highest parallelism, when considered among the remaining possible serial-
ization orderings.

3 Support

In order to aid the programmer in building nested parallel programs it should be easy for
him to: i) create nested tasks in a fork-join pattern; ii) protect the accesses to regions of
shared data using transactions. Recently several frameworks in different programming
languages have added support for such mechanisms, which we will now address.

The flat-nesting TM API makes use of functions to start and end transactional code,
e.g. tx-begin() and tx-commit(), or simply use an annotation or construct that surrounds
the transactional code, e.g. @Atomic or atomic { }. When using nested transactions
there is, usually, a need for an extended TM API that supports each of the models
described in Section 2.

The first framework support for parallel nested transactions was proposed by Vitek et
al. in Transactional Featherweight Java (TFJ) [10]. TFJ used a spawn keyword to create
a new thread for executing a transaction, an onacid keyword that represents the start of
a transaction and a commit keyword for ending a transaction (example Algorithm 2).

Nested Parallelism in Transactional Memory 201

Algorithm 3. Example of nested-parallel programs with Cilk

21 function sb7-longTraversal-Cilk(root)
22 atomic {
23 parallel {
24 atomic {
25 traverseComplexAssembly(root.leaf1);
26 }
27 atomic {
28 traverseComplexAssembly(root.leaf2);
29 }
30 atomic {
31 traverseComplexAssembly(root.leaf3);
32 }
33 }
34 }

They proceed to define the semantics in which such keywords can be used to program
parallel nested applications. Then, they describe theoretical proofs that validate these
keywords as building blocks for any model of nested transactions.

The work on TFJ was followed by Agrawal et al. [5] implementing similar con-
structs in Cilk, a dynamic multi-threaded language. Cilk already supported executing
parallel sections of code, using a parallel { } construct, to tell the runtime that there
exists a possibility for parallelism, and transactions, using the atomic { } construct.
The combination of these two constructs allowed for the specification of parallel nested
transactions, with an unbounded nesting depth (example Algorithm 3).

The support for parallel nested transactions on TFJ and Cilk executed all sibling
transactions independently, as most parallel nested transactions’ models require. How-
ever, Ramadan et al. [11] argued that this execution model was not expressive enough,
and that siblings should affect each other’s outcomes. They introduced coordinated sib-
ling transactions in Xfork, a programming construct that allowed TM programmers to
express intra-transaction concurrency. Inside an atomic { } construct, a TM programmer
could define parallel transactions with the construct xfork (form, numForks, xforkPro-
cedure, data), where:

• form : the form of sibling coordination (AND, OR, XOR)
• numForks: the number of concurrent sibling transactions to spawn
• xforkProcedure: a list of procedures to execute inside sibling transactions
• data: a list of arguments for each of the procedures

Xfork supports three forms of coordinated sibling transactions:

• AND: All sibling transactions must succeed, or none succeed
• OR: Sibling transactions succeed or fail independently
• XOR: Only one sibling transaction must succeed

202 R. Filipe and J. Barreto

Algorithm 4. Example of nested-parallel programs with xFork

35 function sb7-longTraversal-xFork(root)
36 atomic {
37 xfork (AND, 3, { traverseComplexAssembly, traverseComplexAssembly,

traverseComplexAssembly }, {root.leaf1, root.leaf2, root.leaf3});
38 }

Algorithm 5. Example of nested-parallel programs with JVSTM

39 @Atomic
40 function sb7-longTraversal-JVSTM(root)
41 @Parallel
42 for each leaf in root do
43 traverseComplexAssembly(leaf);

The AND form is used for regular nested parallel transactions (Example Function
4). The OR form emulates independent nested transactions, where all successfully
completed siblings will commit. The XOR form allows for speculative parallel nested
transactions, where if some sibling is successful the parent is also successful.
Non-speculatively, the XOR form can execute several transactions in parallel when the
programmer knows that only one sibling will commit successfully (e.g. when doing a
parallel search for an item on a data structure).

Finally, the work by Diegues et al. [12] uses the annotations @Atomic and @Par-
allel, identical to the constructs of Agrawal et al. and DeuceSTM [13], in the Java
programming language. These annotations are enough to fully program parallel nested
transactions, with an unbounded nesting depth, in JVSTM [12] (example Algorithm 5).

4 Algorithms

Extending a TM runtime with parallel nested transactions support is not trivial. Conflict
detection, in particular, becomes much more complex. Not only does the TM need to
detect conflicts between concurrent running transactions accessing the same data object,
but now the TM must also allow accesses from child transactions to objects written to
and commited by its siblings. Handling such accesses in an efficient manner requires a
re-organization of the TM data structures.

Therefore, for a TM runtime to fully support nested parallel transactions it has to
tackle several challenges that did not exist in the traditional flat nesting scenario:

1. To support partial rollback of child transactions, without affecting the parent
2. To handle concurrent data structures correctly, such as the parent-child read and

write sets
3. To coordinate the commit or abort of parent and child transactions
4. To detect conflicts by verifying ancestor-descendant relationships, which may be

complicated for deep nested trees

Nested Parallelism in Transactional Memory 203

This section addresses several state of the art algorithms for the nested parallel trans-
actions models we presented in Section 2. Since this chapter focuses on parallel nesting
models, we omit algorithms that support only linear nesting. A survey of linear nesting
algorithms can be found in the technical report of Diegues [14].

Each of the following algorithms solves some or all of the previous challenges in
different ways, with different complexity degrees. As discussed in Section 2, some so-
lutions opt for limited models in exchange for better performance or scalability.

4.1 CWSTM

This approach builds on Cilk, a dynamic multi-threaded language that allows the pro-
grammer to use special constructs to create new threads with assigned tasks. The CW-
STM [5] dynamically unfolds the program execution into a computation tree that is used
for conflict detection. This structure serves as the basis for a work-stealing algorithm
that allows the exploration of a transaction’s inner parallelism.

The work-stealing technique is a means of distributing a set of tasks to threads: Each
thread maintains a double-ended queue of tasks; when the thread runs out of work, it
reaches the top of another thread’s dequeue and steals a task to execute on that thread’s
behalf. Given the uniform random access for stealing, there should never exist any con-
tention in accessing a dequeue, as long as there is work left to be done.

CWSTM uses the aforementioned computation tree for eager conflict detection, with
a computational intensity that is independent of the nesting depth. Each transactional
object has an associated access stack in which entries correspond to accesses performed
by active transactions. The content of these stacks is a form of multiple-readers-single-
writer locking scheme: The last entry always corresponds to the youngest descendant
writer transaction, or a set of reader transactions all descendant of a common writer
ancestor. Therefore, below the first stack entry there may only exist accesses of descen-
dants of the last access owner. This way, as soon as a transaction accesses an object,
that transaction may eagerly detect a conflict.

However, maintaining these per-object stacks is very inefficient. Hence, their effort
only resulted in providing a STM specification and a theoretical upper bound for the
execution time of a parallel nested transaction. No complete implementation of such
design was achieved for this paper, albeit the proposed design solves all of the chal-
lenges we described.

4.2 PNSTM

The Parallel Nesting STM (PNSTM) [15] followed the approach of Agrawal et al. and
succeeded in implementing an algorithm for parallel nested transactions support. PN-
STM provides a simple work-stealing approach with a single global queue, into which
the application’s blocks may be enqueued for concurrent transactional execution.

Moreover, each transactional object is associated with a stack that contains all the
accesses (both reads and writes) performed by active transactions. To achieve constant
time ancestor queries for eager conflict detection, the per-object stack is represented by
a memory word that has each bit assigned to a transaction (called a bitnum). When two

204 R. Filipe and J. Barreto

transactions access the same object, a conflict is easily detected by performing a bitwise
operation on the object’s stack.

By using a memory word for this representation they achieved performance improve-
ments but limit the maximum number of transactions on the system at all times. As a
workaround, PNSTM uses a mechanism that allows for new transactions to reuse bit-
nums of completed transactions.

The system is limited to a determined maximum number of concurrent transactions.
However, PNSTM claims that no more parallelism would be achieved over that limit if
it is larger than the maximum number of worker threads.

When a transaction commits, it leaves behind traces in all the objects it accessed,
namely the stack frames stating its ownership. To avoid having to go through all the ob-
jects in the write-set by locking and merging the frame with the previous entry, PNSTM
does that lazily, similarly to Agrawal’s algorithm. This may lead to false conflicts when
some transaction accesses an object and finds an entry in the stack that corresponds to
an already committed but not yet reclaimed transaction. The authors show that it is pos-
sible to avoid it by resorting to a global structure maintaining data about all committed
transactions.

This was the first implementation of parallel nesting with constant time ancestor
queries, for an arbitrary nesting depth. It solves all of the challenges we presented in a
more efficient way, at the cost of a bound in the active threads count.

4.3 NePalTM

The Nested Parallelism for Transactional Memory (NePalTM) [16] provides in-place
updates with strict two-phase locking for writes. Memory addresses are mapped to
transactional records with a granularity of several addresses.

The transactional records may be read in two modes: in pessimistic mode they have
to acquire a lock in read-mode, or by using version timestamps which are accessed by
optimistic readers. Therefore, it actually provides both visible and invisible readers.

NePalTM supports the Shallow Nesting model, described in Section 2, by having
each member of an atomic region store its own transactional logs (read, write and undo
logs). This way, no synchronization is required to access the logs of an atomic region,
and they are all used only at commit time of that atomic region.

NePalTM also supports the Hierarchical Lock Atomicity model, defined in Section
2. In this case, NePalTM has a major limitation of requiring such sibling transactions
to run in mutual exclusion. Hence, it does not support parallel nesting entirely. Thus,
NePalTM solves the first challenge, of supporting partial rollback, since there is no
concurrency between parent and child transactions. It also solves the second challenge,
since in shallow nesting members of an atomic region are concurrently logging trans-
actional data.

4.4 NeSTM

The Nested STM (NeSTM) [17] is based on McRT-STM [18]. McRT-STM is a tra-
ditional blocking STM, with eager conflict detection, with undo logs for writes at the
word granularity. In the extension of McRT-STM to support parallel nesting, the focus

Nested Parallelism in Transactional Memory 205

point was that it should not interfere with the performance of workloads in which nest-
ing is not used. They were also driven by the intent of keeping the memory footprint as
close to constant as possible, regardless of the nesting depth in use.

The original McRT-STM assumed that no other transaction could access a locked
variable. With nested-parallel transactions this is no longer the case: due to the parallel
nested transactions, other transactions can correctly access the locked object as long as
they are descendants of the owner. When a transaction accesses an object, it locks such
an object. That object’s lock includes a new field with information about its current
owner. This way, when another transaction wishes to access the same object, it may
confirm if it is a descendant of the lock’s owner.

Similarly, the version number of an object must also be visible at all times, in order to
serialize conflicting transactions. Consequently, the lock variable now has some reserved
bits to identify the transaction owning it, and the rest of the bits are used for the version
number. This scheme allows visible readers even when the object is locked. This leads
to two practical consequences: first, there is a maximum number of concurrent transac-
tions at a given time, since the transaction identifier is just a few bits long; second, the
transaction identifier overflows several orders of magnitude faster than normal.

At transaction start, the global clock is used to timestamp the transaction. Reads will
cause an abort if an object was written since the transaction started. This might cause
unnecessary aborts: picture two transactions Ti and Tk; Ti did not perform any access,
Tk commits values, Ti reads one of the values and will abort. When writing a value,
the transaction will attempt to acquire the lock corresponding to the variable and then
it will validate the object: The transaction attempting to write, as well as its ancestors,
must not have a timestamp smaller than the object’s timestamp, in case they read it
previously.

To reduce the work needed for this validation, only transactions that were not ances-
tors of the previous owner of the object must go through the check. Yet, this mechanism
yields considerable costs in terms of computation at deeper levels.

Given that the nested commit procedure requires validating the reads across the trans-
action and its ancestors, followed by the merge of the sets into the parent, this set of
actions must be atomic in the algorithm. This is meant to prevent concurrent siblings
from committing simultaneously and breaking serializability. This was solved by intro-
ducing a lock at each transaction and making nested transactions acquire their parent’s
lock in mutual exclusion with their siblings.

In addition, NeSTM is subject to livelocks at the level of nested transactions. Picture
two transactions, T1 who writes to x and T2 who writes to y, they will both have acquired
ownership of the respective objects. Now if the T1 spawns T1:1 while T2 spawns T2:1 and
both these nested transactions cross-access y and x, respectively, they will abort since
those variables are neither owned by them or their ancestors. However, they will have
mutually blocked each other unless one of their ancestors aborts as well and releases
the corresponding variable. The authors placed a mechanism to avoid this in which they
heuristically count consecutive aborts and abort the parent as well.

NeSTM solves all of the challenges we identified, in a more efficient manner than
PNSTM, but still with several limitations. Baek et al. [19] and Liu et al. [20] studied how

206 R. Filipe and J. Barreto

hardware acceleration could improve the performance of nested transactional systems,
using NeSTM as a baseline.

4.5 HParSTM

The Hierarchy-based Parallel STM (HParSTM) [21] allows a parent to execute con-
currently with its children nested transactions. The advantage of this is that it allows
more nodes in the transactional tree to be active in computations concurrently, which
enhances the distribution of tasks.

The same protocol used for top-level transactions is extended for nesting by replicat-
ing most control data structures. The baseline STM design promotes a mixed invalida-
tion strategy with visible readers and lazy lock acquisition and write-back on commit
time.

To achieve this, a global structure is used to register transactions that are doomed
to abort. This is accomplished by having a transaction’s commit procedure invalidate
active readers of objects that it is writing-back in the aforementioned structure. Any
transaction has to check that it does not belong to the doomed transactions list prior to
commit.

Furthermore, this information is also scattered across the shared objects which have
a forbidden set associated to them, better defined by an example: if T1 read x and T2

wrote x and y followed by commit, it not only adds T1 to the global doomed set, but also
to the forbidden set of x and y. If T1 attempts to read y it will fail to do so, in order to
prevent an inconsistent view state.

This procedure is used by nested transactions, except that they must ensure that these
invalidation sets contain neither the nested transaction’s identifier or any of its ances-
tors’. The control data structures of nested parallel transactions are merged into the
parent transaction by concurrent siblings (and the parent’s execution itself) with mutual
exclusion.

HparSTM goes even further in the design space of parallel nested transactions algo-
rithms. Although it solves all our challenges, HparSTM still has some limitations when
supporting higher levels of nested transactions.

4.6 JVSTM

The first STM to solve all challenges we described in an efficient manner was the work
by Diegues et al. in JVSTM [12]. They extended the original JVSTM [22] with parallel
nesting support, assuming that each top-level transaction may unfold a nesting tree in
which a transaction performs transactional accesses only when all its children are no
longer active.

Their approach is to extend VBoxes (JVSTM’s placeholders for transactional lo-
cations’ values) such that transactions may now write directly to the VBoxes, rather
than having to maintain a private write set mapping each location written to its new
value. In order to distinguish between globally committed values and the tentative val-
ues of ongoing transactions, a VBox now contains both values. A permanent value has
been consolidated via a commit of some top-level transaction, whereas a tentative value

Nested Parallelism in Transactional Memory 207

belongs to an active top-level transaction (or any of its children nested transactions),
and is thus part of its write-set.

Additionally, each tentative write points to an ownership record (orec) that encapsu-
lates the transaction that owns it, the version of the write, and the status of the owner.
Each writing transaction creates one such orec and propagates it to the transaction’s par-
ent when it commits. Through these orecs a nested transaction can perform the ancestor
query, which depends only on the number of tentative writes on the location.

The algorithm proposed in this work has three major features that make it efficient: a
fast path in the read operation that is performed in constant time (independently of the
nesting depth); a fast mode for writing, backed up by a slow mode for fallbacks; and a
commit operation that is independent of the write-set size.

The fast read path is achieved by checking if the read operation being performed
is not a read-after-write. In that case the read operation can be done directly from the
last permanent write, and avoid the ancestor query. The fast path for writing occurs
when the transaction that is writing to a location already owns that location, thus it
can simply overwrite the tentative value. The commit operation of nested transactions
simply changes the ownership of orecs that the child transaction owns to its parent. The
set of location orecs is usually smaller than the whole write-set.

4.7 TLSTM

TLSTM is the first algorithm to tackle the challenges of nested-parallelism using thread
level speculation. TLSTM extends an existing STM, SwissTM [23]. The key insight is
that a SwissTM transaction is used as the speculative execution unit that supports two
concepts: STM transactions (defined by the user) and TLS speculative tasks (automat-
ically created at compile time). An STM transaction is seen as a sequence of one or
more TLS speculative tasks, which can run out-of-order in a speculative fashion, until
they commit sequentially.

Most of the maintenance load of STM and TLS that typically dominates the asso-
ciated execution overheads is, in fact, common to both approaches. Namely, conflict
detection, speculative reads and writes, read-log and write-log maintenance, commit
and rollback are issues that both STM and TLS must handle. Hence, by combining
both STM and TLS in TLSTM, the overhead associated with the above aspects remains
comparable to the overhead of stand-alone STM, rather than doubling.

Cross-transaction conflict detection follows the original approach of SwissTM: using
eager, lock-based conflict detection for write/write conflicts, and lazy counter-based
validation for read/write conflicts. Within each top-level transaction, cross-task conflict
detection relies on the very data structures maintained for cross-transaction conflict
detection, with the addition of a task read-set for speculative cross-task reads. TLSTM
allows only one task to write on each location at a time, also using eager, lock-based
write-write conflict detection. TLSTM validates the task and transaction read-sets at
write and commit time, looking for cross-task Write after Read conflicts. Furthermore,
TLSTM only allow speculative reads from completed tasks within a transaction.

208 R. Filipe and J. Barreto

5 Summary

For many real applications, harnessing the hardware parallelism of modern multi- and
many-core machines calls for exposing fine-grained parallel tasks, possibly nested within
memory transactions. Memory transactions, being a composable abstraction, are a
promising way to enable the average programmer to exploit nested-parallel program-
ming.

This chapter has given an insight into the concepts, techniques and challenges behind
nested-parallel programming. We started with a view from the programmer’s point of
view, describing the nested-parallel model in transactional memory and its variants.
Complementarily, we surveyed available support to build and run nested-parallel pro-
grams. We then turn to the perspective of a TM runtime designer, studying the state-of-
the art algorithms that support currently nested parallelism.

References

1. Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D., Wilson,
H., Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella, S., Salihundam,
P., Erraguntla, V., Konow, M., Riepen, M., Droege, G., Lindemann, J., Gries, M., Apel, T.,
Henriss, K., Lund-Larsen, T., Steibl, S., Borkar, S., De, V., Van Der Wijngaart, R., Mattson,
T.: A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In: 2010 IEEE
International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.
108–109 (February 2010)

2. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: Model and architecture sketches.
Sci. Comput. Program. 63, 186–201 (2006)

3. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 1st edn. Morgan
Kaufmann Publishers Inc., San Francisco (1992)

4. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2005, pp. 48–60. ACM, New York (2005)

5. Agrawal, K., Fineman, J.T., Sukha, J.: Nested parallelism in transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2008, pp. 163–174. ACM, New York (2008)

6. Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: A benchmark for software transactional
memory. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, EuroSys 2007, pp. 315–324. ACM, New York (2007)

7. Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., Narayanaswamy, R.:
NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 123–147. Springer,
Heidelberg (2009)

8. Barreto, J., Dragojevic, A., Ferreira, P., Filipe, R., Guerraoui, R.: Unifying thread-level spec-
ulation and transactional memory. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware
2012. LNCS, vol. 7662, pp. 187–207. Springer, Heidelberg (2012)

9. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: 25 Years of the Inter-
national Symposia on Computer Architecture (Selected Papers), ISCA 1998, pp. 521–532.
ACM, New York (1998)

10. Vitek, J., Jagannathan, S., Welc, A., Hosking, A.L.: A semantic framework for designer
transactions. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 249–263. Springer,
Heidelberg (2004)

Nested Parallelism in Transactional Memory 209

11. Ramadan, H., Witchel, E.: The xfork in the road to coordinated sibling transactions. In: 4th
ACM SIGPLAN Workshop on Transactional Computing (TRANSACT 2009) (2009)

12. Diegues, N., Cachopo, J.: Practical parallel nesting for software transactional memory. In:
Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 149–163. Springer, Heidelberg (2013)

13. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with java stm. In: Third Work-
shop on Programmability Issues for Multi-Core Computers (MULTIPROG) (2010)

14. Diegues, N., Cachopo, J.: Review of nesting in transactional memory. Tech. rep., Technical
Report RT/1/2012, Instituto Superior Técnico/INESC-ID (2012)

15. Barreto, J.A., Dragojević, A., Ferreira, P., Guerraoui, R., Kapalka, M.: Leveraging parallel
nesting in transactional memory. SIGPLAN Not 45, 91–100 (2010)

16. Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., Narayanaswamy, R.:
NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 123–147. Springer,
Heidelberg (2009)

17. Baek, W., Kozyrakis, C.: NesTM: Implementing and Evaluating Nested Parallelism in Soft-
ware Transactional Memory. In: Proceedings of the 9th International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2009)

18. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-stm: A high
performance software transactional memory system for a multi-core runtime. In: Proceedings
of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2006, pp. 187–197. ACM, New York (2006)

19. Baek, W., Bronson, N., Kozyrakis, C., Olukotun, K.: Making nested parallel transactions
practical using lightweight hardware support. In: Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 61–71. ACM (2010)

20. Liu, Y., Diestelhorst, S., Spear, M.: Delegation and nesting in best-effort hardware transac-
tional memory. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 38–47. ACM (2012)

21. Kumar, R., Vidyasankar, K.: Hparstm: A hierarchy-based stm protocol for supporting nested
parallelism. In: The 6th ACM SIGPLAN Workshop on Transactional Computing (TRANS-
ACT 2011) (2011)

22. Cachopo, J.A., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci.
Comput. Program. 63, 172–185 (2006)

23. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In: Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2009, pp. 155–165. ACM (2009)

Contention Management
and Scheduling

Scheduling-Based Contention Management

Techniques for Transactional Memory

Danny Hendler1 and Adi Suissa-Peleg2

1 Department of Computer Science, Ben-Gurion University of the Negev
hendlerd@cs.bgu.ac.il

2 School of Engineering and Applied Sciences, Harvard University, Cambridge
adisuis@seas.harvard.edu

Abstract. Contention management refers to the mechanisms used by
transactional memory (TM) implementations “to ensure forward progress
– to avoid livelock and starvation, and to promote throughput and fair-
ness” [1]. Without effective contention management mechanisms, TM
implementations are susceptible to performance degradation caused by
numerous transaction collisions.

Early work on contention management focused on the narrower prob-
lem of conflict resolution. When two transactions collide, one transaction
(the winner transaction) is allowed to proceed, while the other (the loser
transaction) must wait and/or be aborted. Conflict resolution policies
decide which transaction should win and which should lose and for how
long the losing transaction should be delayed. However, it was shown
that conflict resolution alone is insufficient for guaranteeing reasonable
performance for high-contention TM workloads.

The key idea underlying transaction schedulers, introduced a few years
ago, is that the execution of conflicting transactions must be serialized
in the face of high contention and, more generally, that the level of
parallelism between transactional threads should be controlled by the
contention manager and dynamically adjusted. Transaction scheduling
allows not only to resolve conflicts after they occur, but also to proac-
tively reduce their probability, thus improving performance. This chapter
provides a survey of the key approaches and techniques used by transac-
tion schedulers.

1 Introduction

A TM implementation can allow two concurrent transactions to successfully
commit if the write-set of neither of them intersects with the data-set of the
other transaction. Otherwise, the two transactions are said to be in conflict and
at most one can successfully commit, while the other must wait before it is
allowed to proceed, or must abort, and retry after possibly waiting for some
period of time.

Herlihy et al. [2] introduced contention management as a mechanism for en-
suring progress in DSTM, the first obstruction-free [3] Software TM (STM)
implementation. Early work by Scherer and Scott [1, 4] defined the contention

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 213–227, 2015.
c© Springer International Publishing Switzerland 2015

214 D. Hendler and A. Suissa-Peleg

management problem as follows: “When two or more transactions attempt to
access transactional data concurrently, at least one transaction must be aborted.
The decision of which transaction to abort, and under what conditions, is the
contention management problem.” This definition is too narrow, however, as
there are contention managers (CMs) that attempt not only to resolve collisions
once they occur but also to avoid them in the first place.

Spear et al. [5] define contention management as: “The mechanisms used
to ensure forward progress – to avoid livelock and starvation and to promote
throughput and fairness”. According to this broader definition, which we adopt
in this chapter, contention management does not only address the resolution of
conflicts once they occur, but also takes proactive measures in order to avoid
them altogether.

We distinguish between contention managers that have full control of the
scheduling of threads executing transactions, called transaction schedulers, and
conventional contention managers, where transactional threads are directly con-
trolled by a system scheduler which is unaware of transactions. Our work focuses
on scheduling-based CMs.

The key premise of transaction scheduling is that the thread scheduler must be
TM-aware — thread scheduling decisions must take into consideration whether
a thread is transactional or not and, if it is, what the state of the transaction is.
The advantage of transaction schedulers over conventional conflict resolution is
that they have more options for coping with transactional conflicts and are very
effective for managing high-contention transactional workloads.

In this chapter, we provide an overview of transaction schedulers. We start
with a short description of conventional contention managers. We then discuss
the key ideas underlying transaction scheduling and describe a few key scheduler
implementations. This is followed by a brief survey of theoretical results. We
conclude the chapter with a discussion.

2 Conventional Contention Managers

STM implementations typically delegate the task of conflict resolution to a sep-
arate contention manager (CM) module [2]. The CM tries to resolve transaction
conflicts once they are detected. When a transaction detects a conflict with an-
other transaction, it consults the CM in order to determine how to proceed. The
CM can then decide which of the two conflicting transactions should continue,
and when and how the other transaction should be resumed.

Herilhy et al. [2] introduced Dynamic STM (DSTM), the first STM that
supports a separate contention manager module. DSTM consults the CM module
when a conflict occurs in order to decide whether a transaction should be forced
to abort. To this end, DSTM emits transactional events to the CM. For instance,
DSTM may emit an event whenever a transaction starts, a transactional object
is accessed, or a transaction commits.

In particular, DSTM notifies the CM when a transactional conflict is detected.
In this case, the CM can decide, based on the events communicated to it, which of

Scheduling-Based Contention Management Techniques 215

the conflicting transactions can continue (the winner transaction) and whether
the other transaction (the loser transaction) should be aborted or delayed. The
CM can also determine how long a loser transaction must wait before it can
restart or resume its execution.

Other STM implementations, such as [6–8], also provide their own contention
manager interface, which typically extends the interface provided with DSTM.
Figure 1 depicts the workflow of a TM System that uses a CM module when a
conflict is detected.

Conventional contention management implementations [2, 4, 9–11] have only
a few alternatives for dealing with transaction conflicts. They can only decide
which of the conflicting transactions can continue (the winner transaction) and
whether the other transaction (the loser transaction) will be aborted or delayed.
A conventional CM can also determine how long a loser transaction must wait
before it can restart or resume execution.

The scalability of STM implementations directly depends on the characteris-
tics of the workload at hand. It has been shown that STMs scale well on multiple
cores when the transactional workloads behave “well”, i.e., when there is a rel-
atively small number of transaction conflicts [12, 13]. Unfortunately, this is not
always the case.

Two transactional workload types often exhibit poor performance with con-
ventional CM. First, workloads characterized by transactions that conflict fre-
quently will trigger many aborts, sometimes even creating a livelock situation in
which the same pair of transactions may collide again and again (a.k.a. repeated
aborts). This is often the case with long running transactions. Second, when
the number of threads exceeds the number of cores, threads are frequently pre-
empted while executing transactions. This increases the transaction’s duration
by one or more scheduling time slices, which is often several orders of magnitude
longer than the actual computation time of the transaction, thus drastically in-
creasing the risk of conflicts. For these workload types, transaction throughput
(i.e., commit rate) will be relatively low. An important challenge faced by STM
implementations is to handle such scenarios gracefully.

Fig. 1. A TM System workflow. Application threads interact with the TM System using
transactional calls. The TM System detects conflicts and delegates their resolution to
a separate contention manager module. The contention manager arbitrates the conflict
by deciding which transaction should win and proceed in its execution, and which
transaction should lose.

216 D. Hendler and A. Suissa-Peleg

// Transaction related events
1 void OnBeginTransaction();
2 void OnTryCommitTransaction();
3 void OnTransactionCommitted();
4 void OnTransactionAborted();

// Object related events
5 void OnOpenRead();
6 void OnOpenWrite();
7 void OnReOpen();
8 void OnContention();

// Contention management functions
9 boolean ShouldAbort(ContentionManager* enemy, void * objectID);

Fig. 2. A contention manager interface (RSTM)

The rest of this section is organized as follows. We describe the interface
between the TM system and contention managers in Section 2.1. In Section 2.2,
we describe two sample contention managers.

2.1 Contention Manager Interface

Marathe et al. [8] presented a contention manager interface as part of their
RSTM implementation. The key functions of this interface are shown in Fig.
2.1 Each transaction is associated with a unique contention manager instance. A
contention manager can also store transaction-specific data that can be modified
or queried by the implementation of these functions. With the exception of
ShouldAbort, the implementation of all these functions is optional. If no function
is provided, then no action is performed upon the occurrence of the respective
events.

The functions in lines 1–4 are invoked by the STM implementation after a
transaction-related event occurs. Specifically, the OnBeginTransaction,
OnTryCommitTransaction, OnTransactionCommitted, and
OnTransactionAborted (lines 1–4) are invoked when a transaction starts, at-
tempts to commit, commits successfully, or aborts, respectively.

The functions in lines 5–8 are invoked by the STM implementation as a
result of an event related to an operation applied to a transactional object.
The OnOpenRead and OnOpenWrite functions are invoked after the TM imple-
mentation was successful in its read or write operations, respectively. If the
read or write operation fails, these functions are not called and the transac-
tion is aborted. The OnReOpen function is invoked when the transaction accesses
an object which was previously accessed (and opened successfully) by it. The
OnContention function is invoked when the STM implementation detects that
the current transaction attempts to access an object that is currently in another
transaction’s data-set.

1 This is the interface used by RSTM-v3, which can be downloaded from:
http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml .

http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml

Scheduling-Based Contention Management Techniques 217

Finally, the ShouldAbort function (line 9) must be implemented by a con-
tention manager. It is invoked by the STM implementation after it detects
a transactional conflict. More specifically, if, during the execution of a trans-
actional operation (such as read, write, or commit) by some transaction TA,
the STM implementation detects a conflict with transaction TB, then TA’s
ShouldAbort function is invoked and receives as arguments a pointer to TB

and a pointer to the object accessed by TA that is in TB’s data-set. The func-
tion returns true if the STM implementation should try to abort transaction
TB, or false, otherwise. In the latter case, TA calls the OnContention function,
and retries accessing the object again, possibly after waiting for some period of
time.2

If the ShouldAbort function returns true, the STM implementation attempts
to change the status of TB to ABORTED using a compare-and-swap (CAS) op-
eration. If the CAS operation fails (implying that TB already committed or
aborted), or the function returns false, then the OnContention function is
called and the transaction continues its execution.

2.2 Sample Contention Managers

The Karma contention manager [1] keeps track of how many objects were accessed
by a transaction during its execution, and favors transactions that have accessed
more objects. This is done by adding a counter to each transactional context, that
is set to one when the transaction starts and is incremented in the OnOpenRead

and OnOpenWrite functions. Upon a conflict, the counters of the two transactions
are compared in the ShouldAbort function. If the value of the counter of the
current transaction is larger than that of the other transaction, a value of true
is returned and the other transaction is aborted. If a transaction attempts to
access an object that was accessed by another transaction and should not be
aborted, the transaction is delayed for one second.

Another example is the Polite contention manager. Polite employs exponen-
tial backoff to reduce the number of aborts. To this end, the contention manager
counts the number of times an access to an object encountered contention with-
out a successful object access. Let t be this number, then the transaction is set
to wait for 2(t+c) nanoseconds, where c is an architectural tuning constant. The
OnOpenRead, OnOpenWrite, and OnReOpen functions reset the counter. The
OnContention function first waits for some random period of time and then incre-
ments the number of times a contended object was accessed. Finally, the
ShouldAbort function aborts the other transaction if the counter of the current
transaction is bigger than some predefined algorithm parameter constant (i.e., the
number of times the current transaction waited was too large). Many additional
conventional contentionmanagers are described in the literature [1, 4, 5, 10, 11, 14].

2 Later versions of RSTM allowed this function to return one of three values, indicating
that the TM implementation should either 1) abort the current transaction, 2) abort
the other transaction, or 3) wait for some time before retrying to access the object
and avoid aborting any of these two transactions.

218 D. Hendler and A. Suissa-Peleg

Guerraoui, Herlihy and Pochon showed that which contention manager works
best depends on various characteristics of the workload and the execution context,
such as transaction lengths, data access patterns and concurrency levels [15]. They
concluded that there is no universal contention management algorithm. Maldon-
ado et al. [16] evaluated both user-level and kernel-level contention management
mechanisms and reached similar conclusions.3 This motivated polymorphic con-
tention management, a mechanism that allows applications to dynamically asso-
ciate different contention managers with different transaction types [15] .

3 Scheduling-Based Contention Managers

The contention management algorithms described in Section 2 have no con-
trol of transaction threads, which remain under the supervision of the system’s
transaction-unaware scheduler. Consequently, these “conventional” (i.e., non-
scheduling) contention managers can only decide which of two conflicting trans-
actions should win, and whether the loser transaction will be aborted or delayed.
They may also determine the length of the waiting period of the loser transac-
tion.

Conventional CMs have been found to often provide poor performance with
many workloads commonly used to evaluate STMs [1, 4]. They suffer from:
(i) too many aborts, e.g., when a long running transaction conflicts with shorter
transactions; (ii) lack of precision, since a thread whose transaction was aborted
may wait for too long after the commit of the conflicting transaction to restart its
own transaction; and (iii) unpredictable benefits, as delaying the restart of a long
transaction does not necessarily guarantee its success, unless all other conflicting
transactions have completed or are delayed even longer. These problems are
particularly acute when there are more threads than cores, as can be desirable
for the execution of server-type applications where threads can block in non-
transactional code. In this case, a transaction that repeatedly aborts prevents
other useful work from being performed on the same core.

In recent years, researchers considered various contention management policies
performing some variant of serializing contention management, in which the
thread running a loser transaction is moved to a waiting-queue until the winner
transaction completes.

The rationale behind serializing CM is the following: once a pair of transac-
tions conflict, they are likely to conflict again if allowed to execute concurrently.
It follows that the execution of a loser transaction concurrently with a transac-
tion with which it conflicted before is likely to waste CPU cycles.

Using serializing CM enables increasing the effectiveness of contention man-
agement by allowing the TM implementation to directly control thread schedul-
ing. Scheduling-based contention managers are able to serialize the execution of
conflicting transactions. This is done by having the loser thread (the one exe-
cuting the loser transaction) wait in a waiting-queue managed by the CM until
the winner transaction completes its execution.

3 Refer to Section 3.3 for more details on kernel-level contention management.

Scheduling-Based Contention Management Techniques 219

Scheduling-based contention management has the potential of providing bet-
ter performance than conventional CMs, since it allows resuming the execution
of the loser transaction immediately after the winner transaction commits. To
exemplify this point, consider a collision between transactions T1 and T2. Assume
that a conventional CM decides that T1 is the winner and so T2 must wait.

• If T2 is allowed to resume execution too soon (the waiting period is too
short), it is likely to collide with T1 again. In this case, either T1 has to
resume waiting (typically for a longer period of time), or, alternatively, the
CM may now decide that T1 wins and so T2 must wait. In the latter case,
T1 and T2 may end up repeatedly failing each other in a livelock manner
without making any progress.

• On the other hand, if the waiting period of T1 is too long, then T1 may be
unnecessarily delayed beyond the point when T2 terminates.

Contrary to conventional contention managers that rely on waiting for a pre-
determined period of time, with scheduling-based contention management the
system is capable of resuming the execution of T2 immediately after T1 termi-
nates, resulting in better performance.

The rest of this section is organized as follows. We describe serializing con-
tention management algorithms in Section 3.1. In Section 3.2, we describe proac-
tive scheduling-based mechanisms for collision avoidance. Section 3.3 surveys
kernel scheduling-based contention management support.

3.1 Serializing Contention Management

Three works that appeared more-or-less at the same time were the first to present
transaction schedulers. These are the Adaptive Transactions scheduler (ATS) al-
gorithm by Yoo and Lee [17], CAR-STM by Dolev et al. [18], and Steal-on-abort
by Ansari et al. [19]. Although there are many differences between these transac-
tion schedulers, the key idea underlying them is that the execution of conflicting
transactions is serialized by the TM system and that the level of parallelism
between transactional threads is controlled by the contention manager and dy-
namically adjusted. We now provide a brief description of these schedulers.

Yoo and Lee [17] introduced ATS – a simple user-level transaction scheduler,
and incorporated it into RSTM [8] – a TM implementation from the Univer-
sity of Rochester – and into LogTM [20], a simulation of a hardware-based
TM system. ATS uses a local (per thread) mechanism to monitor the level of
contention (called contention intensity) which is used to adaptively determine
whether transactions should be serialized or not. When a thread’s level of con-
tention exceeds a parameter threshold value, its transactions are serialized to a
single global scheduling queue. As they show, this adaptive approach can improve
performance when workloads lack parallelism. To the best of our knowledge, ATS
was the first adaptive scheduling-based CM algorithm.

Dolev, Hendler and Suissa [18] introduced CAR-STM, a user-level scheduler
for collision avoidance and resolution in STM implementations. CAR-STMmain-
tains per-core transaction queues. Whenever a thread starts a transaction (we

220 D. Hendler and A. Suissa-Peleg

say that the thread becomes transactional), CAR-STM assumes control of the
transactional thread instead of the system scheduler. Upon detecting a collision
between two concurrently executing transactions, CAR-STM aborts one trans-
action and moves it to the transactions queue of the core on which the other
transaction is running; this effectively serializes their execution and ensures they
will not collide again.

Ansari et al. [19] proposed steal-on-abort, a transaction scheduler that avoids
wasted work by allowing transactions to “steal” conflicting transactions so that
they execute serially. Steal-on-abort was implemented in DSTM2 [21]. It creates
a number of worker threads, each of which is associated with a single double-
ended work queue (a.k.a. dequeue) storing transactional jobs. Similarly to CAR-
STM, each queue entry holds the information required to execute an associated
transaction. A worker thread consumes transactions from the head of its dequeue.
It also inserts newly generated transactions to the head of the dequeue. Whenever
a dequeue becomes empty, the corresponding worker thread randomly selects
another dequeue and attempts to steal a transaction from its tail. A transaction
that identifies a collision attempts to abort the other transaction and to insert it
to a private (per-thread) queue of “abort-stolen” transactions. This guarantees
that the execution of the conflicting transactions will be serialized.

Later work on serializing contention management targeted reducing their over-
head and avoiding excessive parallelism reduction (see, e.g., [22–30]).

Attiya and Milani [23] investigated scheduling transactions under read-
dominated workloads. They presented BIMODAL, a transactions scheduler that
targets workloads consisting of read-only and early-write transactions. Its archi-
tecture is similar to that of CAR-STM, as each core is associated with a work
queue and serialization is employed upon conflicts between writing transactions.
BIMODAL also maintains a single global FIFO queue for read-only transactions.
It promotes progress by alternating between periods in which it favors the ex-
ecution of writing transactions and periods in which it favors the execution of
read-only transactions. They show that BIMODAL has an optimal competitive
ratio compared to any non-clairvoyant scheduler for these workloads.

Heber et al. [27] implemented and evaluated several adaptive algorithms that
control the activation of a serializing CM according to measured contention level.
Both local-adaptive (in which each thread adapts its behavior independently of
other threads) and global-adaptive (in which transitions between serializing and
conventional operation modes are applied to the system as a whole) policies
were considered. The algorithms are based on a low-overhead serializing CM
implementation they introduced. Their empirical evaluation showed that adap-
tive contention managers are susceptible to a phenomenon of mode oscillations,
in which the adaptive algorithm oscillates between serializing and conventional
modes of operation. They showed that these mode oscillations hurt performance,
thus highlighting the importance of stabilized adaptive algorithms that mitigate
mode oscillations and improve performance.

Nicácio et al. [28] presented LUTS, a lightweight user-level transaction sched-
uler. LUTS implements a cooperative scheduler for transactional threads. Their

Scheduling-Based Contention Management Techniques 221

scheduler guarantees that a transactional thread is never preempted by another
transactional thread in the midst of execution a transaction, thus reducing the
window of vulnerability to collisions. They observe that there is a tradeoff be-
tween the effectiveness and overhead of conflict-avoidance scheduling heuristics.
As the adverse impact of conflict-avoidance overhead on short transactions is
more pronounced, they propose different heuristics for short and long transac-
tions.

3.2 Proactive Collision Avoidance

Rather than handle conflicts post factum (i.e., after the transactions doomed
to conflict have already started their execution), some schedulers attempt to
avoid possible conflicts before they occur in a proactive manner. The TM system
attempts to avoid concurrent execution of pairs of transactions that are more
likely to collide. Implementations vary according to the mechanisms by which
information on the likelihood of collisions is obtained and the manner in which
concurrent execution is restricted.

CAR-STM implements a proactive collision avoidance mechanism that pre-
assigns transactions that are more likely to collide to the same core. The rationale
behind this approach is that transactions that execute on the same core cannot
fail each other. Information about conflict probability is provided by the pro-
grammer. This is facilitated by extending the interface between applications and
the STM so that an application-specific conflict probability method can be com-
municated to the STM. This method receives two transactional contexts and
computes an estimate of the probability that the two transactions will conflict.

Another work, by Dragojevic et al. [31], introduced a scheduler called Shrink
that implements a different approach to collision avoidance. Whereas in CAR-
STM it is up to the programmer to provide information regarding the collision
probability of transactions, Shrink performs collision avoidance by predicting
the future memory accesses of a transaction based on transactional accesses
that were made by the same thread in the past.

Dragojevic et al. conducted experiments showing that for many workloads, the
read-set of the next transaction can be predicted fairly accurately based on past
transactions performed by the thread, regardless of whether these transactions
were committed or aborted, and they call this heuristic temporal locality. As for
the write-set, it is typically much smaller, and according to their experiments,
can be predicted based on the immediately preceding aborted transactions. The
resulting predicted sets are used by Shrink to decide whether or not to serialize
a new transaction.

Another heuristic employed by Shrink serializes a transaction with probability
proportional to the number of transactions that are already in the serialization
queue. They call this heuristic serialization affinity. This is a global measure of
contention, unlike contention intensity which is a local (per-thread) measure.

222 D. Hendler and A. Suissa-Peleg

Upon high contention, Shrink checks, before a transaction starts, whether
variables in its predicted sets are in the write set of other threads. Only in this
case, the transaction will be serialized to the global serialization queue.

Similarly to Shrink, the RELSTM transaction scheduler [32], proposed by
Sainz and Attiya, tracks conflict patterns between transactions. In addition to
avoiding the concurrent execution of transactions that were found to directly
conflict with each other, it also avoids executing a transaction when many of
its second-hop conflicting transactions (transactions that conflict through an
intermediate transaction) are running. They show that this approach is useful
in highly-contended workloads, when many cores are used.

Several proposals provide proactive collision avoidance by directly adjusting
the allowed number of concurrently executing transactional threads (henceforth
referred to as the concurrency level) adaptively.

Di Sanzo et al. [30] employ a machine-learning based approach that self-
regulates the concurrency level by predicting the scalability of the STM appli-
cation as a function of features derived from the actual workload profile.

Ansari et al. [33] introduce several concurrency control algorithms, with the
goal of obtaining a predefined Transaction Commit Rate (TCR) threshold. Their
best performing algorithm is named the P-only Concurrency Control (PoCC) al-
gorithm. PoCC periodically samples the number of transactions that were com-
mitted during a sampling time-window of predefined length. It then compares
the TCR of that period with the threshold TCR. The concurrency level is in-
creased if the observed TCR value is greater than the TCR threshold, and is
decreased otherwise.

Didona et al. [26] show that adaptively adjusting the concurrency level can
improve the performance of both shared-memory and distributed STMs. For
shared-memory STMs, a hill-climbing exploration based algorithm is used for
optimizing the concurrency level. Their algorithm for distributed STMs is more
complex, as it has to adjust both the number of nodes and the number of trans-
actional threads per node. It combines an analytic performance model for opti-
mizing the number of nodes and an exploration-based approach for optimizing
the number of node threads. They show that their algorithms adjust quickly to
workload changes and reduce the number of aborted transactions.

Rughetti et al. [34] introduce a technique that combines an analytical model
for concurrency level prediction and a machine-learning algorithm. Their hybrid
approach improves performance by reducing the training time of the machine-
learning algorithm and by increasing the accuracy of the analytical model. They
evaluate their implementation using the STAMP benchmark suite [35] and com-
pare it to a pure analytical model algorithm and a pure machine-learning al-
gorithm. They show that their implementation obtains higher throughput and
reduces energy consumption.

3.3 Kernel-Assisted Scheduling-Based Contention Management

Maldonado et al. [16] presented techniques for improving the performance of
software transactional memory by implementing TM contention management

Scheduling-Based Contention Management Techniques 223

support in the kernels of the Linux and OpenSolaris operating systems. They
implemented and evaluated “soft” forms of serialization in which the loser thread
is not prevented from executing, but only has its priority reduced. They also
proposed a new contention management strategy that is based on extending the
time slice of a thread running a transaction, to reduce its window of vulnerabil-
ity. This strategy is orthogonal to serialization and can be combined with either
regular or soft serialization algorithms. In addition to system calls, they evalu-
ated the use of a shared memory segment to provide lightweight communication
between the user-level STM library and the kernel-level scheduler.

Their competitive analysis established that communication via a segment of
shared memory allows defining a serialization strategy that is efficient for short
transactions with high contention, that soft serialization is beneficial for trans-
actions that may be nondeterministic, and that time slice extension can improve
scalability for some contention management strategies. Collectively, their re-
sults show that kernel scheduling-based support is effective in many situations
where an application-level contention manager cannot provide satisfactory per-
formance.

Maldonado et al. [36] investigated the transactional support required by re-
active applications and propose mechanisms that enable real-time transactions
associated with deadlines. Among other contributions, they have extended the
Linux scheduler so that it disables the preemption and migration of threads that
are in the midst of executing transactions that have deadlines.

4 Theoretical Results

A few works investigate the asymptotic complexity of online scheduling-based
contention management algorithms. The worst-case and average-case bounds
they derived provide better understanding of the potential scalability of such
algorithms.

An online scheduling algorithm is often measured by its makespan, the total
duration of time it takes to perform a set of transactions. The makespan of
an online algorithm is compared to the makespan of an optimal, clairvoyant
scheduler that schedules transactions with a-priori knowledge of transactions’
release times and durations, and their transactional object access patterns. The
worst-case ratio between the makespan of an online algorithm and the makespan
of the optimal scheduler is the competitive ratio of the algorithm and we seek to
minimize it.

In [9], Attiya et al. show that Ω(s) is a lower bound on the competitive ratio
of any deterministic online transaction scheduling algorithm, where s denotes
the number of shared objects accessed by a transaction.

In later work [23] Attiya and Milani show that this bound holds for bimodal
workloads, consisting of read-only and early-write transactions. They present
the Bimodal scheduler (described in Section 3.1), that has a tight O(s) compet-
itive ratio. Bimodal alternates between read-only and non read-only epochs, in
which it boosts the relative priority of read-only and non read-only transactions,
respectively.

224 D. Hendler and A. Suissa-Peleg

As previously mentioned, in [31], Dragojevic et al. present a scheduler called
Shrink. They show that both CAR-STM and ATS are O(n)-competitive, where n
is the number of transactions. In addition, they present Restart, an online clair-
voyant scheduler that is 2-competitive, which assumes complete knowledge (in
terms of execution times, release times, and conflict relations) of all transactions
that have already started execution.

Sharma and Busch [37] analyze the behavior of contention management al-
gorithms under a window-based scheduling model, that allows the execution
of windows of transactions. In every window, each thread performs exactly N
transactions. The window-based model restricts the number of conflicts that can
occur in the course of the transactional workload’s execution.

They present a few randomized greedy algorithms that are O(s+ log(n ·N))-
competitive and O(s · log(n · N) + log2(n · N))-competitive, respectively, w.r.t
an offline (clairvoyant) and an online (non-clairvoyant) algorithms, respectively.

In another work [38], Sharma and Busch presented the balanced workload
model, which is able to express bimodal workloads. Under this workload, the
number of write operations that are performed by any non read-only transac-
tion is guaranteed to be at most a constant fraction of its total read and write
operations. They present a deterministic clairvoyant scheduler that is O(

√
s)-

competitive, and a randomized non-clairvoyant scheduler that is O(
√
s · log(n))-

competitive.

5 Discussion

Conventional contention managers (CMs) have been found to often provide poor
performance for highly-contended workloads, due to repeated collisions that
may cause throughput to drop below that of using single-lock synchronization.
Scheduling-based CMs have the potential of providing better performance than
conventional CMs on such workloads, since they allow resuming the execution of
a loser transaction immediately after the respective winner transaction commits.

The key idea underlying transaction schedulers, introduced a few years ago,
is that the execution of conflicting transactions must be serialized in the face
of high contention and, more generally, that the level of parallelism between
transactional threads should be controlled by the contention manager and dy-
namically adjusted.

Most of the transaction schedulers that have been proposed implement some
variant of serializing contention management, in which the thread running a loser
transaction is moved to a waiting-queue until the winner transaction completes.

Rather than handle conflicts post factum, some schedulers attempt to avoid
possible conflicts before they occur in a proactive manner. Implementations of
such proactive collision avoidance mechanisms vary according to how the in-
formation on the likelihood of collisions is obtained and the manner in which
concurrent execution is restricted.

Scheduling-Based Contention Management Techniques 225

Researchers implemented and investigated scheduling-based contention man-
agement mechanisms both in operating system kernels and in user mode. In
general, which scheduling strategy is best depends on the workload and the exe-
cution context. Dynamically determining the most appropriate scheduling strat-
egy for a given workloads is therefore desired, but this seems to be a non-trivial
challenge.

References

1. Scherer III, W.N., Scott, M.L.: Contention management in dynamic software trans-
actional memory. In: Proceedings of the PODC Workshop on Concurrency and
Synchronization in Java Programs (2004)

2. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of the Twenty-second
Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 92–
101. ACM, New York (2003)

3. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: Proceedings of the 23rd IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2003), pp. 522–529 (2003)

4. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2005, pp. 240–248.
ACM, New York (2005)

5. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory. In: Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2009, pp. 141–150. ACM, New York (2009)

6. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 155–165. ACM, New York (2009)

7. Felber, P., Riegel, T., Fetzer, C.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP), pp. 237–246 (2008)

8. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III,
W.N., Scott, M.L.: Lowering the overhead of nonblocking software transactional
memory. In: Workshop on Languages, Compilers, and Hardware Support for Trans-
actional Computing (TRANSACT 2006) (2006)

9. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. In: Proceedings of the Twenty-fifth
Annual ACM Symposium on Principles of Distributed Computing, PODC 2006,
pp. 308–315. ACM, New York (2006)

10. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional con-
tention managers. In: Proceedings of the Twenty-fourth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2005, pp. 258–264. ACM, New
York (2005)

11. Guerraoui, R., Herlihy, M., Pochon, B.: Towards a theory of transactional con-
tention managers. In: Proceedings of the Twenty-fifth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2006, pp. 316–317. ACM, New
York (2006)

226 D. Hendler and A. Suissa-Peleg

12. Adl-Tabatabai, A.R., Kozyrakis, C., Saha, B.: Unlocking concurrency. Queue 4,
24–33 (2007)

13. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and
Claypool Publishers (2010)

14. Bai, T., Shen, X., Zhang, C., Scherer III, W.N., Ding, C., Scott, M.L.: A key-based
adaptive transactional memory executor. In: IPDPS, pp. 1–8 (2007)

15. Guerraoui, R., Herlihy, M.P., Pochon, B.: Polymorphic contention management. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 303–323. Springer, Heidelberg
(2005)

16. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A.,
Lawall, J.L., Muller, G.: Scheduling support for transactional memory contention
management. In: PPoPP 2010: Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 79–90. ACM, New
York (2010)

17. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory
systems. In: SPAA, pp. 169–178 (2008)

18. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoid-
ance and resolution for software transactional memory. In: Twenty-Seventh Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 125–134
(2008)

19. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

20. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Logtm: Log-
based transactional memory. In: Proceedings of the 12th International Conference
on High Performance Computer Architecture, pp. 254–265 (2006)

21. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applica-
tions, OOPSLA 2006, pp. 253–262. ACM, New York (2006)

22. Atoofian, E.: Improving performance of software transactional memory through
contention locality. The Journal of Supercomputing 64, 527–547 (2013)

23. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads.
Journal of Parallel and Distributed Computing 72, 1386–1396 (2012)

24. Blake, G., Dreslinski, R.G., Mudge, T.N.: Proactive transaction scheduling for
contention management. In: MICRO, pp. 156–167 (2009)

25. Blake, G., Dreslinski, R.G., Mudge, T.N.: Bloom filter guided transaction schedul-
ing. In: HPCA, pp. 75–86 (2011)

26. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the
optimal level of parallelism in transactional memory applications. In: NETYS, pp.
233–247 (2013)

27. Heber, T., Hendler, D., Suissa, A.: On the impact of serializing contention man-
agement on stm performance. Journal of Parallel and Distributed Computing 72,
739–750 (2012)

28. Nicácio, D., Baldassin, A., Araujo, G.: Transaction scheduling using dynamic con-
flict avoidance. International Journal of Parallel Programming 41, 89–110 (2013)

29. Pereira, M.M., Baldassin, A., Araujo, G., Buzato, L.E.: Transaction scheduling
using conflict avoidance and contention intensity. In: HiPC, pp. 236–245 (2013)

Scheduling-Based Contention Management Techniques 227

30. di Sanzo, P., Re, F.D., Rughetti, D., Ciciani, B., Quaglia, F.: Regulating concur-
rency in software transactional memory: An effective model-based approach. In:
SASO, pp. 31–40 (2013)

31. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing:
Avoiding conflicts in transactional memories. In: Proceeding of the 28th ACM
Symposium on Principles of Distributed Computing, pp. 7–16. ACM (2009)

32. Sainz, D., Attiya, H.: Relstm: A proactive transactional memory scheduler. In:
TRANSACT 2013. ACM, New York (2013)

33. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C.C., Watson, I.: Ad-
vanced concurrency control for transactional memory using transaction commit
rate, pp. 719–728 (2008)

34. Rughetti, D., di Sanzo, P., Ciciani, B., Quaglia, F.: Analytical/ml mixed ap-
proach for concurrency regulation in software transactional memory. In: 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Chicago, IL, USA, May 26-29, pp. 81–91 (2014)

35. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008: Proceedings of the IEEE
International Symposium on Workload Characterization (2008)

36. Maldonado, W., Marlier, P., Felber, P., Lawall, J.L., Muller, G., Riviere, E.:
Deadline-aware scheduling for software transactional memory. In: DSN, pp. 257–
268 (2011)

37. Sharma, G., Busch, C.: Window-based greedy contention management for transac-
tional memory: Theory and practice. Distributed Computing 25, 225–248 (2012)

38. Sharma, G., Busch, C.: A competitive analysis for balanced transactional memory
workloads. Algorithmica 63, 296–322 (2012)

Proactive Contention Avoidance

Hillel Avni1, Shlomi Dolev1, and Eleftherios Kosmas2

1 Department of Computer Science, Ben-Gurion University of the Negev
{shlomi.dolev,hillel.avni}@gmail.com

2 FORTH ICS & University of Crete
ekosmas@csd.uoc.gr

Abstract. In current TM systems, both STM and HTM, if two transactions ac-
cess the same address, and, one of them writes it, at least one of the two is aborted.
However, many times, the aborted transaction was in a valid state, and work was
lost for no good reason. In the first part of the chapter we discuss lowering such
contention. We focus on methods that never lock-out a transaction, thus, we ex-
clude approaches that serialize writing transaction to allow irrevocable transac-
tions, for example. We are interested only in mechanisms that avoid conflicts and
not in contention managers which resolves them. This part is about using the TM
that exists, both in hardware and the compiler. The second part of the chapter is
about SemanticTM, an algorithm that manages to eliminate the need for aborts,
while maintaining parallelism. SemanticTM allows the application to maintain
a consistent state without locks and aborts, but is currently restricted to specific
scenarios.

1 Introduction

In this chapter we discuss two lines of work that tackle the unwanted phenomenon
of cancelled transactions. One is practical, and aims to lower the amount of potential
contention in state of the art TM systems. This is necessary because a lot of effort,
thousands of man years, was already invested in TM. It is present in its abort prone
form, in GCC compiler, and in the hardware of the major vendors, and, least for the
near future, this infrastructure will be used.

The second part of the chapter shows a TM algorithm that never aborts. It marks a
new direction that is not optimistic (does not take risk of failure), but not pessimistic
(does not add serialization to any workload). We show the first such algorithm, Seman-
ticTM, and discuss its correctness and scope of usage.

1.1 Proactive Aborts Reduction

The simplest way to avoid contention is to grab a lock and run with mutual exclusion.
However, this solution also abolishes parallelism. Previous work on reducing aborts
without global serialization, yielded several solutions. However, some of these solutions
are specific to certain data structures, while other assume features in the TM system that
are not feasible in realistic HTM hardware or TM compiler support. The only approach
which do work with the TM industrial tools, and attempts to be general is COP, which
we discuss in Section 2.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 228–241, 2015.
c© Springer International Publishing Switzerland 2015

Proactive Contention Avoidance 229

1.1.1 TM’s Inherent Limitations
The introduction of TM into compilers and hardware might seem to imply that transac-
tions are easy to use, and that a programmer only needs to mark the atomic sections with
transaction delimiters. It is implied that creating efficient concurrent data structures is
especially easy. Simply take a good sequential implementation of the data structure, and
put each operation in a transaction. Moreover, it is implied that the many techniques in
concurrent data structures, developed throughout the past thirty years of research, can
each be dismissed and replaced by TM. These implications might be true in theory, but,
in practice, TM has fundamental limitations, especially in hardware and in the compiler.

A TM transaction maintains read and write sets, either through software (in software
transactional memory, STM) or in hardware (in hardware transactional memory, HTM).
At commit time, the TM infrastructure must verify that the read set is a snapshot, and
must atomically update the write set, relevant to that snapshot [19,?,?]. This order of
operation implies certain limitations, both in performance and in adaptation. As the
TM must log every access, it must either fit in the hardware cache for HTM or be
explicitly logged by software. This logging forces STM to call a function per access,
i.e., instrumentation. If a transaction overflows the cache in HTM, it fails, while, in
STM, an instrumentation makes a memory access consume many more resources than
the original load or store had demanded.

Once the TM transaction has logged the accessed address, it continuously monitors
all future accesses in the system in order to verify that the address is not externally
modified. If a monitored address is written by another concurrent thread, the monitoring
transaction fails, due to the conflict. If the written address is no longer being used by
the failed transaction, this failure is unjustified.

1.1.2 Previous Approaches to Overcoming TM Limitations
TM’s practical problems have motivated various research efforts, including TM algo-
rithms and tailored TM-friendly data structures.

The boosting [15] family of STM algorithms only uses TM as an operation compo-
sition method. It assumes that every method has an inverse, and it creates transactions
that are built by these methods. This approach relies upon the efficiency of existing data
structures to bypass the overhead of TM. It resolves conflicts by semantic locking, in
which each method protects the area in the data that it is going to access. In this way,
TM is only dealing with semantic conflicts, while the actual interleaving of the accesses
is being managed by underlying methods. This approach yields high performance, but
it is limited to reversible methods, and it does not benefit from hardware and compiler
support.

Another STM algorithm that only supports composition is transactional predication
[8]. Like [15], it relies upon existing concurrent libraries, but, instead of logging reverse
operations, it logs specific locations at which data should be updated by the transaction.
If the transaction fails, their value remains unchanged or is replaced by an empty slot,
in the case of insertion. Although this approach reduces aborts that arise from arbi-
trary read sets, it yields highly complicated algorithms, and, as no method has yet been
offered for releasing the empty slots, it uses an uncontrollable amount of memory.

A set of algorithms was developed to reduce the overhead of STM. These algorithms
relax some of the correctness requirements of the original TM, and, in exchange, save

230 H. Avni, S. Dolev, and E. Kosmas

some of the overhead and the false conflicts. Elastic [12], and view transactions [3]
do not log some of the accessed addresses, thus avoiding a part of the transactional
work. These algorithms improve performance, but they preserve much of the overhead
and grant an application access to transactional logs, which places a burden on the
developer, and is not possible with GCC compiler architecture. These algorithms there-
fore are unlikely to be part of a practical STM solution. In [10], they use small HTM
transactions to create concurrent algorithms for queues that are simpler than their non
transactional counterparts. While this method demonstrates the power of HTM, it is
not targeting the aborts issue. TM-friendly data structures are using other techniques to
reduce conflicts. For example, [9] is decoupling the balancing of the binary tree from
the updates, which manages to avoid some of the conflicts in highly contentious work-
loads, introduces restrictions like relax balancing or single updater, and are tailored
exclusively for specific data structure.

To benefit from the compiler support for STM and from HTM, COP [1] and, later,
[22] and [21] are leaving the read-only prefix of the atomic operation out of the trans-
action. This lazy approach stretches the usability of TM, while utilizing the hardware
and compiler support.

1.1.3 COP in a Nutshell
COP takes advantage of both TM and contemporary research developments of data
structures. In a sense, it uses TM to generalize the lazy locking approach. Consequently,
it permits a relatively simple conversion of sequential operations to efficient, scalable
and composable concurrent operations. COP enables the developer to design such op-
erations for complex data structures that do not yet have any known concurrent version.

The developer uses knowledge of the data structure algorithm to extract a read- only
prefix (ROP) of the operation, and to verify that this prefix does not crash or hit an
infinite loop, when no synchronization is involved. This prefix returns an output that
either is the output of the operation or the input to the completion of the operation.
Completion, here, means any updates necessary to finish the operation. In an insert
function of an RB-Tree, for example, the updates may include connecting a new node
to the tree and balancing it.

After extracting the ROP, the developer uses a TM transaction to perform two actions
atomically, to verify that the ROP output is valid, and to complete the updates. At this
point, the transaction may continue to execute any other code.

1.2 No Aborts and No Serialization

Since the nature of TM is optimistic, conflicts occur between transactions. To avoid
possible inconsistencies, most TM systems abort one of the conflicting transactions;
the work performed by this transaction is discarded and it is later re-executed as a new
transaction. This has a negative effect on performance. On the other hand, if either no
conflicts ever occur or transactions never abort, then no work is ever discarded.

In order to guarantee progress, all transactions should eventually commit. However,
most TM systems do not even ensure that transactions abort only when they violate
the considered consistency condition (this property is known as permissiveness [13]).

Proactive Contention Avoidance 231

In terms of achieving good performance, the system should additionally guarantee that
parallelism is achieved. So, transactions should not be executed sequentially and global
contention points should be avoided.

The design of TM algorithms that never abort transactions is highly desirable since
they additionally support transactions that perform irrevocable operations such as I/O
operations.

1.2.1 Prior TM Algorithms for Abort Elimination
TM algorithms that never abort transactions has been presented in [2,2]. They use ideas
from [20] where a TM system is presented which supports the execution of irrevocable
transactions. In the algorithms of [2,2], read-only transactions are wait-free, i.e. each of
them is completed successfully within a finite number of steps; a read-only transaction
never writes a t-variable in contrast to an update transaction that performs write opera-
tions on such variables. However, these algorithms restrict parallelism by executing all
update transactions sequentially using a global lock.

Moreover, TM systems that never abort read-only transactions are presented in [18,4].
The STM algorithm of [18] supports wait-free read-only transactions by maintaining the
previously written values to each t-variable; i.e., multiple versions for each t-variable
are maintained. Then, a read-only transaction is always able to read a consistent value
for each t-variable x, by choosing either the current value of x or one of the previously
written values to x. In order to reduce its space requirements, [18] maintains only a sub-
set of the previous versions of each t-variable. More specifically, each of the previously
written values to some t-variable is discarded only after determining that no read-only
transaction will access (or choose) it, thereafter.

Avoiding the high space complexity of [18], PrmiSTM, the STM algorithm presented
in [4], supports obstruction-free read-only transactions by maintaining a single version
for each t-variable, that is its current value. For each t-variable x, PermiSTM maintains a
dedicated read-counter for x. Then, while accessing x, a read-only transaction Tr starts
by announcing that it is going to read the value of x by atomically incrementing the
read-counter of x. Upon committing, Tr atomically decrements the read-counter of x
(and the read-counter of any other t-variable in its write-set). So, an update transaction
that wants to write x is able to figure out the presence of read-only transactions which
are concurrently reading x and postpone applying its update on x until no read-only
transaction is present.

Update transactions in [18,4] may abort and they require locks to execute some of
the transactional instructions.

In [11], CAR-STM has been presented which succeeds to reduce aborts (but not
to eliminate them) by implementing two general transactional scheduling techniques,
which can also be incorporated by any other STM algorithm. In CAR-STM, each pro-
cesses has an associated transactions queue from which it dequeues transactions in
order and execute them one by one. With its first proposed scheduling technique, CAR-
STM tries to reduce conflicts by probabilistically avoiding some of them. More specifi-
cally, whenever a new transaction is initialized, a dispatcher process undertakes the role
to enqueue it to the appropriate transactions queue. To do so, the dispatcher uses infor-
mation provided during transaction’s initialization to predict its conflict-probabilities,

232 H. Avni, S. Dolev, and E. Kosmas

i.e., the probabilities that the new transaction will conflict with any of the transactions
already executing in the system. Then, the dispatcher chooses to enqueue it in the same
transactions queue with the transaction that is most likely to conflict. Notice that the
corresponding process will execute these transactions sequentially one after the other;
so, they can not conflict.

Whenever a conflict is detected between two transactions T1 and T2, CAR-STM aborts
the newer one; let it be T1. Then, according to the second scheduling technique of CAR-
STM, when T1 is re-initialized, the dispatcher chooses to enqueue it in the same trans-
actions queue with T2, in order to reduce the probability that they will conflict again.
However, during its execution, T2 may conflict with an older transaction T3, contained
in some other transactions queue. So, T2 is moved to T3’s transaction’s queue, and T1 and
T2 may conflict again. In order to ensure that T1 and T2 will never conflict again, when
T1 is moved to T2’s transactions queue, CAR-STM groups them together. Later, when
T2 is enqueued in T3’s transactions queue, T1 is also moved to the same queue. Notice
that at the end of the example we consider, T1, T2, and T3 are all grouped together.

1.2.2 SemanticTM in a Nutshell
In this paragraph, we present SemanticTM [5] an opaque [14] STM algorithm. In con-
trast to [2,2,18,4], SemanticTM does not use locks and guarantees that no transaction
aborts while exploiting parallelism between both writers and readers. More specifi-
cally, SemanticTM ensures that both read-only and update transactions are wait-free
(i.e., they complete within a finite number of steps and never abort). In addition, Se-
manticTM achieve fine-grain parallelism at the transactional instruction level, execut-
ing concurrently both to instructions of different transactions, and to instructions of the
same transaction that do not depend on each other.

SemanticTM employs a list for each t-variable, called t-var list. The instructions of
each transaction are placed in the appropriate lists in FIFO order. Since each instruction
is executed on a single t-variable, it is placed in the list of the t-variable that it accesses.
Transactions are inserted into t-var lists, one after the other; more specifically, all the
instructions of each transaction are placed in the t-var lists before the instructions of any
subsequent transaction. We remark that several dependencies may exist among the in-
structions of a single transaction. Specifically, if the execution of an instruction requires
the result of the execution of another instruction, then there is a dependency between
them. A single instruction may have several dependencies. The dependencies that may
originate from or leading to some instruction are stored together with this instruction in
the corresponding t-var list.

An instruction is ready to be executed when all the instructions preceding it in its
t-var list have been executed and its dependencies are resolved. Each of the workers
repeatedly chooses a t-var list and executes the ready instructions of this list, in order,
starting from the first one. Processing transactions in this way ensures that conflicts
never occur; so, transactions never abort. Since several workers threads may choose the
same t-var list, the algorithm is highly fault-tolerant; all transactions whose instructions
have been placed in the t-var lists will be executed, as long as at least one process
does not fail. On the other hand, several workers may (concurrently) execute the same
instructions; so, SemanticTM employs synchronization techniques to ensure the correct
execution of each instruction.

Proactive Contention Avoidance 233

SemanticTM focuses on simple static transactions (i.e. the set of t-variables accessed
is known a priori, before the transaction’s execution) that contain Read and Write in-
structions, conditionals (i.e. if, else if, and else), loops (i.e. for, while, etc.), and function
calls. Using compiler support, these dependencies become known before the beginning
of the execution of the transactions; SemanticTM can make use of any work on dataflow
analysis to extract them.

2 Consistency Oblivious Programming

The principle behind COP is simple: Just execute the read-only prefix (ROP) of a data
structure operation as part of a transaction, but without the overhead of the transaction.
This implies that the ROP will perform un instrumented accesses to shared memory in
STM, and that its accesses will not leave a transaction footprint in HTM, and will not
subsequently be monitored in the transaction. Conversely, the ROP must see any value
that had been written in the transaction before the COP operation started. After the ROP
has run and generated output, a transaction starts or continues, verifies the output, and
uses it to perform any updates.

This chapter provides a general template for a COP operation algorithm and cor-
rectness proof, and elaborates on the composition of COP operations in STM compiler
support and HTM.

2.1 The COP Template

The COP algorithms work with any HTM and STM implementation, but the actual TM
realizations have their own limitations and characteristics that demand specific tailoring.
The template in this section is for a TM block where non transactional read accesses
inside a transaction are supported, and assumes every transaction eventually succeeds.

2.1.1 Operation Structure
Let κ (kappa) be a function, which is a sequential operation on a data structure. κ
can be written as a sequential function, as κComplete(κROP()), where κROP() is the
read-only prefix of κ and it generates κROPOutput.

The template for a COP version of κ is given in Figure 1.
To adapt κ to COP, we extract a read-only prefix of it into κROP() (line 4). κROP()

calculates κROPOutput, in an unsafe mode, i.e., without any synchronization, even
though it resides in a transaction. Thus κROPOutput might be inconsistent and wrong,
due to conflicts with a concurrent transactions.

After calculating κROPOutput, we resume the transaction in line 5, and call
κVerify(κROPOutput) in line 8. If κVerify sees κROPOutput is inconsistent, it will
abort and retry the transaction. If κOutput is consistent, the transaction continues to ex-
ecute κComplete(κROPOutput). κComplete(κROPOutput) will use κROPOutput
and performs any updates, assuming that κROPOutput is correct.

If the transaction aborts, due to explicit abort transaction or because of a conflict,
it will automatically retry, and, if there are too many retries, the TM mechanism must
execute it solo in order to verify progress, as if it were a transaction that does not include
any COP operations.

234 H. Avni, S. Dolev, and E. Kosmas

General COP Template for Function κ
1 start transaction;
2 ANY CODE;
3 suspend transaction;

4 κROPOutput ← κROP();

5 resume transaction;
6 if ¬(κVerify(κROPOutput)) then
7 abort transaction;
8 κComplete(κROPOutput);
9 ANY CODE;

10 end transaction;

Fig. 1. Generic COP template

2.1.2 Correctness Proof Method
A correct COP version of κ requires that the underlying TM and the the κROP() will
not produce arbitrary executions:

Property 1. Transactional Regular Registers: transactional locations are regular, in
the sense of regular-registers [16], i.e., if a thread reads a location L in non-transactional
context concurrently with a transaction T, which writes V to L, it will read from L, either
V, or the value that was in L when T started, but not an arbitrary value.

All variables, parameters and return value of κROP() are transactional regular reg-
isters.

Transactional regular registers are safety related, in the sense that the ROP can not
read arbitrary values, thus, it is possible to reason about its output. In addition, if the COP
version of κ demonstrates the following properties, it is correct and will not deadlock.

Property 2. Obliviousness: κROP() must complete without faults, regardless of con-
current executions, and finishes in a finite number of steps if executes alone.

Obliviousness is progress related, as if κROP() will crash or get stuck in an infinite
loop, no work will be done. The following two properties imply the correctness of the
COP operation.

Property 3. Verifiability: κROPOutput has attributes, that can be tested locally, and
that imply κROPOutput is consistent, and κVerify is checking these attributes.

Property 4. Separation: κComplete is using κROPOutput but is not aware of any
other data collected by κROP().

Verifiability imply that the consistency of κROPOutput can be checked locally, by
looking at its attributes. This may require adding to the sequential κ code, without
changing its functionality. As the κVerify and κComplete are in the same transaction,
we know that κROPOutput stays consistent until commit, and as κComplete executes
in a transaction, and according to Separation, κComplete accesses only consistent
data, thus, we have a serializable, COP version of κ .

Proactive Contention Avoidance 235

The system model here is a global lock model where a code segment that executes in
a transaction that is semantically protected by a global lock will have all its necessary
barriers inserted by the TM.

Now, if we want to implement a COP version of a function φ , we only need to
show φROP, φVerify and φComplete. If, for example, we want to demonstrate a COP
implementation of an RB-Tree Insert function, we will present ROP, InsertVerify and
InsertComplete. After creating the COP version, we have to show that it has the three
properties described above.

2.2 Composable COP Requires Non Transactional Loads

A COP operation, is based on a data-structure operation op. We split op to a read only
prefix opROP and to the writing suffix opC. To run op inside a transaction just execute
opC after opROP. However, the COP version of op, which is embedded in a transaction
T, Top, performs the following steps:

• In non-transactional mode: Execute TopROP and record its output. This part is
done without any synchronization, and may pass through inconsistent states and
return inconsistent output.

• In transactional mode: Verify that ROP output is consistent, and if it is not, abort,
otherwise execute TopC .

We remind the reader that the verification not only ensures T that the opROP output
was consistent, but also adds the addresses that prove it to the read set for monitoring
of this consistency.

The only way to compose COP operations without non transactional loads (NTL), is
the one proposed by [21], i.e., execute all ROP parts of the composed operations before
starting the transaction, then, inside the transaction, verify their output and complete
updates. This method allows composition only if an operation is not writing data that
may later be accessed by another operation in the same transaction.

To demonstrate this restriction, we split each COP operation opk, which executes in
transaction T, Topk , to TopROP

k
and TopC

k
(verify and complete). Now, assume op1 pre-

cedes op2, and op1 is writing data that op2 is reading. According to [21], the transaction
T, which executes op1 and then op2, will execute the following sequence. tm start
means the TM, either STM or HTM, goes into transactional mode, and tm end is TM
commit:

TopROP
1

→ TopROP
2

→tm start→TopC
1
→TopC

2
→tm end

As TopROP
2

must execute before TopC
1
, op1 will not see op2 updates, and T will not be

correct.

If instead of op1, T will execute any other transactional code, we will have to call
tm start before op2, so opROP

2 will be in transactional mode. For example, if T dequeues
V and then inserts V to a RB-Tree with a COP operation, then this operation will not
benefit from the usage of COP.

236 H. Avni, S. Dolev, and E. Kosmas

Using NTL allows the composition of any COP operation, with any other operations,
by using NTL in the ROP. Now T will execute the ROP with NTL, so we call the ROP
of op opROP−N. If T tries to execute the COP operation op2 after the COP operation op1,
it will go through the following sequence:

tm start→TopROP−N
1

→TopC
1
→ TopROP−N

2
→TopC

2
→tm end

As TopC
1

executes before TopROP−N
2

, and as both TopC
1

and TopROP−N
2

execute in the

context of T, TopROP−N
2

, which executes after TopC
1

performed its updates in the context

of T, can see these updates in the local cache and T is correct.

2.3 COP Data Structure

We have COP versions to linked-list, red-black tree, and a skip-list.In addition, [6]
presents a Leaplist, which is a probabilistic flavor of a T-Tree, tailored for range queries
in main-memory databases. As shown, COP is yielding great performance on many tree
data structures, and in STM, also on data structures such as union-find, which would be
extremely contentious without the incorporation of COP.

However, COP is not the silver bullet when global operations are involved. For ex-
ample, if the data structure has a prune operation, e.g., there is an option to split the
structure at any arbitrary node, COP becomes awkward. It remains an open question
how to adjust COP to supporting these global operations in an efficient way.

2.4 Evaluation of COP in Applications

To examine the potential contribution of COP to applications, we added the COP RB-
Tree from [1] to the STAMP testing suite. We implement the NTL over GCC STM, by
using TM-Pure [7] attribute for the ROP function. Our goal is to demonstrate the benefit
of NTL and COP in some applications.

We execute the standard configuration of Vacation (vacation-high from [17]). Each
transaction in this application is accessing several 1M RB trees, several times each, and
these transactions are a significant portion of the workloads.

GCC-COP GCC-STM

Transactional Loads 0.4 G 2.4 G
Aborts Rate 0.5% 3.0%

Fig. 2. STAMP Vacation Statistics (G = 109)

In Figure 2 we count transactional loads and aborts for the Vacation benchmark.
We count the transactional loads when the whole application is executing on a sin-
gle thread, to get the most accurate number. The aborts count is taken when all eight
hardware threads execute. We see that plain STM is performing more than five times
the transactional loads of COP with NTL, and there are six times more aborts in plain
STM.

Proactive Contention Avoidance 237

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

c
o
n
fl

ic
ts

 %

x% insert / x% delete

Lower is Better

STM

COP

Fig. 3. Aborts vs. update rates on a small red-black that executes on eight threads

In Figure 3 we compare the conflicts rate on a COP red-black tree vs. plain STM
one. The tree keys range is 1K and it is half full, thus it is small and has a lot of mu-
tations, which cause relatively high contention. Each update, i.e., insert or delete is a
transaction that consists of the update and four lookups, to demonstrate COP operations
composition. As each transaction is retried up to 20 times, the number of conflict aborts
can be higher that the number of successful transactions. We can see that contention on
the plain STM is rising much faster and on 100% updates, i.e., 50% inserts and 50%
deletes, STM has 6 times more aborts than COP.

3 SemanticTM

In SemanticTM, instead of executing the transactional instructions of some transaction,
each process executes the transactional instructions applied on some t-variable. To do
this, SemanticTM maintains a t-var list for each t-variable, the instructions of each
transaction are placed in the appropriate t-var lists (based on which t-variable each of
them accesses), and each process chooses a t-var list and executes its ready instructions.
Each entry of a t-var list, additionally to the instruction to be applied, records also any
dependencies that may originate from or lead to this instruction. Recall that compiler
support is employed to know the dependencies of each instruction.

It is important that transactions are inserted into t-var lists one after the other; i.e.,
the instructions of some transactions are inserted into t-var lists before the instructions
of any subsequent transaction. For example, consider transactions T1 and T2 of Fig-
ure 4; also, the instructions of these transactions together with their dependencies are
presented. Without loss of generality, assume that the instructions of T1 are placed in
the t-var lists first. Then, the write instruction on z of T1 (line 3) will be placed in the
t-var list for z before the read instruction on z by T2 (line 10). Similarly, the read instruc-
tion on x by T1 (line 4) will be placed in the t-var list for x before the read and write
instructions on x by T2 (lines 8 and 9). Finally, the write instruction on y by T1 (line 5)
will be placed in the t-var list for y before the write instructions on y by T2 (line 11).
Since processes respect the order in which instructions have been inserted in the t-var

238 H. Avni, S. Dolev, and E. Kosmas

1 z := 1
2 y := 2x

T1

3 write(z,1)
4 read(x)
5 write(y,2x) with

dependency from read(x)
Instructions of T1

6 x := x+1
7 y := z+1

T2

8 read(x)
9 write(x,x+1) with

dependency from read(x)
10 read(z)
11 write(y,z+1) with

dependency from read(z)
Instructions of T2

Fig. 4. Transactions

lists when they execute them, the instructions of T1 on each t-variable will be executed
before the instructions of T2 on this t-variable, and thus no conflict between them will
ever occur.

The conditionals and loops are called control flow statements , and the instruction
cond is used to refer to such a statement. Each cond instruction is associated with a

block of instructions, that is the set of instructions in the body of a control flow state-
ment. A dependency that either leads to or originates from a cond instruction is called
control dependency. For each cond instruction, SemanticTM maintains a control de-
pendency from cond to each instruction of the block associated with it. An an example,
consider the if . . .then . . . else statements. The two conds (for the if and the else
statement) and their blocks’ transactional instructions will be placed in the appropriate
t-var lists. Then, at runtime, one of the two cond instructions will be evaluated as false
and its block’s instructions will be invalidated, so that they are never executed. Notice
that a cond instruction can be inserted in any t-var list, since its execution affects no
t-variable.

Consider now a cond instruction that describes a loop statement. Although a loop
may be executed several times, the number of its iterations may only become known at
runtime. So, SemanticTM places the instructions of the loop’s body in the appropriate
t-var lists exactly once and associates an iteration number with the cond, describing the
current loop iteration. In SemanticTM the next iteration of a loop starts only after all
the instructions of this loop have been executed for the current loop iteration. In order
to be able to understand this, it associates an iteration number also with each instruction
in loop’s block, describing the iteration for which this instruction has been executed.

For example consider a t-var list that contains 2 instructions of the same loop (the
cond of this loop could be one of them). Then, assume that a process has executed the

first of them for the first iteration, but not the second one, since it is not ready (its de-
pendencies are still unresolved for the first iteration). So, when another process choose
the same t-var list, it uses the iteration numbers of these instructions to understand that
the second instruction has not yet be executed for the current loop iteration. So, the
cond instruction of the loop initiates a new loop iteration by incrementing its iteration

number by one. Then, whenever an instruction of this loop has been executed for the
current loop iteration, it increments by one its iteration number (so that it equals the
iteration number of the loop’s cond).

Proactive Contention Avoidance 239

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 2 3 4 5 6 7 8

M
 o

p
s
 /

 s
e
c

threads

GccSTM

SemanticTM

Fig. 5. Operations for a workload with a counter

Recall that the entry of each instruction in some t-var list, contains also its dependen-
cies. Since, SemanticTM uses a single entry for each instruction of the loop, whenever
a new iteration of the loop is initiated, the dependencies of this loop should be re-
initialized as unresolved for the new iteration. To do this, an iteration number is also
associated with each of the dependencies of these instructions. A dependency is re-
solved for the current loop iteration (that is described by the iteration number of this
loop’s cond instruction) when its iteration number is equal to the current loop itera-
tion; otherwise, (it can only be smaller) it is unresolved for the current loop iteration.
So, whenever a process resolves the dependencies of an instruction that participates in
some loop, it also update its iteration number (specifically, it increments it by one) so
that it equals to the current loop iteration.

Since several processes may choose the same t-var list, the same instruction may
(concurrently) be executed by several processes, SemanticTM employs synchroniza-
tion techniques to ensure the correct execution of each instruction. More specifically,
the status of each instruction is maintained (in its entry), which is initially ACTIVE,
indicating that e has not yet been performed, and becomes DONE, when a process
completes its execution. Moreover, in order to atomically update each t-variable, its
value is maintained in a CAS object together with a version number; an unsigned inte-
ger that is incremented by one, each time a new value is written to this t-variable.

Moreover, the iteration numbers of instructions that participate in some loop are
maintained in CAS objects; also, each dependency of these instructions, is maintained
together with its iteration number in a CAS object. Before updating a t-variable x, each
process has to read its old value. When several processes are executing a write instruc-
tion on x that participates in some loop, they should use the same old value for x, so
that x is updated consistently, and they should calculate the same new value for x, for
the current loop iteration. To ensure this, the old value of x is maintained in a CAS ob-
ject together with an iteration number, describing the iteration on which this old value
has been read. It is worth mentioning that each process consistently calculates the new
value of x on each iteration, since it uses the values of the resolved dependencies of this
write instruction for this iteration.

240 H. Avni, S. Dolev, and E. Kosmas

In Figure 5 we demonstrate the power of SemanticTM in a scenario that will reach a
live-lock in all other TM implementations, unless specialized contention management
is involved. In this benchmark each transaction is sampling a counter when it starts, and
increments that counter just before commit. In the middle it performs a small amount
of work. We can see that SemanticTM, naturally maintains maximal performance for
this serial workload, while state of the art STM from GCC is slowing down linearly as
parallelism grows.

References

1. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In: Fernàndez
Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 65–79. Springer,
Heidelberg (2011)

2. Afek, Y., Matveev, A., Shavit, N.: Pessimistic software lock-elision. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 297–311. Springer, Heidelberg (2012)

3. Afek, Y., Morrison, A., Tzafrir, M.: Brief announcement: view transactions: Transactional
model with relaxed consistency checks. In: PODC, pp. 65–66 (2010)

4. Attiya, H., Hillel, E.: A single-version stm that is multi-versioned permissive. Theory Com-
put. Syst. 51(4), 425–446 (2012)

5. Avni, H., Dolev, S., Fatourou, P., Kosmas, E.: Abort free semantictm by dependency aware
scheduling of transactional instructions. In: NETYS, vol. 51(4), pp. 425–446 (2014)

6. Avni, H., Shavit, N., Suissa, A.: Leaplist: lessons learned in designing tm-supported range
queries. In: ACM Symposium on Principles of Distributed Computing, PODC 2013, Mon-
treal, QC, Canada, July 22-24, pp. 299–308 (2013)

7. Avni, H., Suissa, A.: Brief announcement: Cop composition using transaction suspension in
the compiler. In: DISC 2014 (2014)

8. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication: high-
performance concurrent sets and maps for stm. In: PODC, pp. 6–15 (2010)

9. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In: PPOPP, pp.
161–170 (2012)

10. Dice, D., Lev, Y., Marathe, V.J., Moir, M., Nussbaum, D., Olszewski, M.: Simplifying con-
current algorithms by exploiting hardware transactional memory. In: SPAA, pp. 325–334
(2010)

11. Dolev, S., Hendler, D., Suissa, A.: Car-stm: Scheduling-based collision avoidance and reso-
lution for software transactional memory. In: Proceedings of the Twenty-seventh ACM Sym-
posium on Principles of Distributed Computing, PODC 2008 pp. 125–134 (2008)

12. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: DISC, pp. 93–107 (2009)
13. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In:

Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)
14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2008, pp. 175–184. ACM, New York (2008),
http://doi.acm.org/10.1145/1345206.1345233

15. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-concurrent
transactional objects. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2008, pp. 207–216 (2008)

16. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann (2008)
17. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applica-

tions for multi-processing. In: IISWC, pp. 35–46 (2008)

http://doi.acm.org/10.1145/1345206.1345233

Proactive Contention Avoidance 241

18. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in stm. In: Proceedings
of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC 2010, pp. 16–25 (2010)

19. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2), 99–
116 (1997)

20. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable transactions and their applica-
tions. In: Proceedings of the Twentieth Annual Symposium on Parallelism in Al-
gorithms and Architectures, SPAA 2008, pp. 285–296. ACM, New York (2008),
http://doi.acm.org/10.1145/1378533.1378584

21. Xiang, L., Scott, M.L.: Composable partitioned transactions. In: WTTM (2013)
22. Xiang, L., Scott, M.L.: Compiler aided manual speculation for high performance concurrent

data structures. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programmig, PPoPP 2013, pp. 47–56 (2013)

http://doi.acm.org/10.1145/1378533.1378584

Transactional Memory and Reliability

Safe Exception Handling with Transactional Memory�

Pascal Felber1, Christof Fetzer2, Vincent Gramoli3,��,
Derin Harmanci1, and Martin Nowack2

1 University of Neuchatel, Switzerland
pascal.felber@unine.ch, derin.harmanci@gmail.com

2 Technische Universität Dresden, Germany
{christof.fetzer,martin nowack}@tu-dresden.de

3 NICTA and University of Sydney, Australia
vincent.gramoli@sydney.edu.au

Abstract. Exception handling is notoriously difficult for programmers whereas
transactional memory has been instrumental in simplifying concurrent program-
ming. In this chapter, we describe how the transactional syntactic sugar simplifies
the exception handling problems both when writing sequential and concurrent ap-
plications. We survey exception handling solutions to prevent applications from
reaching an inconsistent state in a sequential environment on the one hand, and
extend these solutions to also prevent concurrent execution of multiple threads
from reaching an inconsistent state, on the other hand. The resulting technique
greatly simplifies exception handling and is shown surprisingly efficient.

1 Introduction

Developing robust software is a challenging, yet essential, task. A robust program has
to be able to detect and recover from a variety of faults such as the temporary discon-
nection of communication links, resource exhaustion, and memory corruption. With the
advent of multi-cores, other forms of errors appear in multi-threaded software. For ex-
ample, raising an exception in one thread does not prevent others from operating on an
inconsistent shared state. Instead, faults should ideally be handled in coordination by
all the threads that are affected by their cause. Ideally, robust software, be it sequential
or concurrent, has to tolerate runtime errors without a substantial increase in the code
complexity. Indeed, this would augment the probability of design and coding faults and
thus decrease the robustness of the application.

Exception handling has been proposed as a powerful mechanism for dealing with
failures at runtime. It simplifies the development of robust programs by allowing the
programmer to implement recovery actions and tolerate non-fatal errors. Furthermore
it relieves the programmer of the burden of specifying one action in response to each
individual error. Instead, it allows the programmer to handle errors with only one test

� Parts of Sections 3 and 4 already appeared in the proceedings of ECOOP’11 [1]. This chapter
covers exception handling in the more general context of sequential/concurrent programming.

�� NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 245–267, 2015.
c© Springer International Publishing Switzerland 2015

246 P. Felber et al.

per block (compared to error return codes requiring at least one check for each func-
tion call). Another major advantage of this technique is that it cleanly separates the
application business logic from error handling code.

Yet, exception handling is difficult to get right. In fact, the code dealing with errors
tends to be complex and lengthy [2,3]. However, neither complexity nor high volume
of code is desirable for error handling since this (i) increases the potential of bugs in the
error handling code, as well as (ii) introducing substantial development effort only to
handle (erroneous) cases that rarely occur. In particular, even though more than 4% of
the total source code is dedicated to exception handling, it is clearly neglected: in most
of the cases exception handling consists of either terminating the program or ignoring
the exception [4]. It is therefore important to reduce the complexity of writing exception
handling code while, at the same time, making sure it is correct.

In this chapter, we explore the use of transactional memory language constructs to
achieve this goal. Transactional memory has gained momentum as a technique to sim-
plify concurrent programming. It encapsulates regions of code within transactions guar-
anteeing that either all their changes take effect, when transactions commit, or none of
their changes take effect, when transactions abort. By exploiting this semantics, one can
offer failure atomicity making sure that the problematic states resulting from or causing
the exception can be rolled back. Although in the context of concurrent programming,
the decision to abort a transaction is based on conflicting shared accesses, we used
exception to decide when to roll back the effect of transactions.

The complexity of exception handling code results from several factors:

Inconsistent State: When an exception is raised, there are high chances that the appli-
cation is in an inconsistent state. Recovery is often based on retrying failed meth-
ods. But before retrying, the program might first have to correct the runtime error
condition to increase the probability of success. However, for a retry to succeed, a
failed method also has to leave changed objects in a consistent state. Consistency
can be ensured if any modification performed by the method prior to the occur-
rence of the exception is reverted, before the exception is propagated to the calling
method. This can be tricky because restoring a previous state may require com-
pensating actions to be provided (just for the sake of handling errors). Even if the
compensating actions are provided for methods, if several of them need to be com-
bined to achieve an atomic action (i.e., an action where either all functions appear
executed or none of them are executed), it remains difficult to determine the func-
tion triggering the raised exception and to apply the compensating actions correctly
and in the correct order. Another consistency issue that appears by raising excep-
tions is that exceptions can result in implicit disposal of data on the stack as the
stack is unwinded until the exception is called. In such cases there is no guarantee
that all resources are cleaned up correctly.

Complex CONTROL-Flow: Exceptions modify the flow control of the application
in a way similar to a goto statement – that is known to be dangerous – but the
destination of the jump is not known a priori. This makes exception handling code
more complex, and the situation gets worse if the exception handling code can itself
raise exceptions.

Safe Exception Handling with Transactional Memory 247

Incorrectness: Exception handling code is rarely exercised and not well tested [5,2].
This fact together with the complexity of exception handling makes exception han-
dling code to be more likely to contain software bugs than other parts of the appli-
cation code.

Lack of Composability: Although different functions may raise different exceptions,
it is generally hard to handle exceptions raised potentially by multiple functions. In
the case where a code region calls multiple functions, determining the precise cause
of the exception or the point in the execution where it was raised is not trivial. The
exception handling code for composed functions requires many checks making it
harder to parse.

Race Condition: In settings where applications can access shared resources concur-
rently, more intricate inconsistency issues related to exception handling appear.
One such issue occurs when an exception handling code performs compensating
actions to restore shared state. If not properly designed there can be race condi-
tions between the compensating actions and other business logic code leading the
application into inconsistent state.

Shared Inconsistent States: Another issue that is generally overlooked is that an ex-
ception raised by one thread can terminate safely its own execution but cannot pre-
vent other threads from accessing an inconsistent shared state because other threads
may not be aware of the raised exception. Such an exception should ideally be de-
tected by all the threads that operate on the same shared state because they can be
affected by its cause.
Consider the following code in Figure 1. The figure presents a naive implemen-
tation of a classifier program where multiple threads concurrently evaluate nodes
from the unclassifiedNodes list, process them, and move them to the tar-
get class using the assignToClass method. Note that we assume that both the
unclassifiedNodes list and the target classes class[N] are shared by all
threads.

1 Class NodeClassifier {
2 int N; // number of classes
3 List unclassifiedNodes; // shared
4 Set class[N]; // shared
5 ...
6 public void assignToClass(int srcPos, int targetClass) {
7 synchronized(this) {
8 Node selectedNode = unclassifiedNodes.remove(srcPos);
9 selectedNode.transform();

10 class[targetClass].add(selectedNode);
11 }
12 }
13 }

Fig. 1. A concurrent code that may end up in an inconsistent state if an exception is raised while
the selected node’s representation is being transformed as required by the target class object in
selectedNode.transform()

248 P. Felber et al.

When an exception is raised on line 9, the system reaches an inconsistent shared
state if the exception is not handled: the selectedNode gets lost as it is nei-
ther in the unclassifiedNodes nor in its target class. For correct execution
of the program, the exception should be handled and this should be performed be-
fore any of the other threads, unaware of the raised exception, access either the
unclassifiedNodes list or the target class, which are inconsistent. Hence, the
handling of the exception should take the existence of concurrent threads into ac-
count.
This example, albeit naive, clearly shows that exception handling becomes a first
class design consideration in development of correct concurrent programs. This fact
highlights the need for solutions that will simplify concurrent programming under
exceptional situations.

All the above factors indicate that programmers using exception handling should
think of many issues other than how to recover from the exceptional situation. The
major objectives of a programmer regarding exception handling are: a) to keep the
application in a consistent state, and b) to cope with the reasons of the exceptional state.
For programmers to apply an error handling solution more readily, we need to offer
them a simple-to-use mechanism. The purpose of this chapter is to present advanced
exception handling solutions that offer safe execution of programs in both a sequential
and a concurrent environments.

Contribution

We show how programs - both, sequential and concurrent - can effortlessly be brought to
a known consistent state after an exception is raised. Obtaining consistent state without
effort removes part of the complexity of treating an exception and, hence, exception
handling can be used much more effectively to recover from errors.

We show how TM can be utilized to remove inconsistencies upon an exception by
reverting the effects of a code portion up to a point known to be consistent. And we
extend this concept to multi-threaded applications. As explained in the previous section,
for concurrent programs handling exceptions should be part of the main application
design and development in order to not jeopardize the application correctness. However,
there are no widespread mechanisms that allow the notification and coordination of
threads upon the raise of an exception in order to safely resume the application. In this
chapter, we explain how such a mechanism can be provided on top of atomic blocks
and show how this can relieve the burden from the programmer.

For the sake of simplicity, we will focus on Java to demonstrate our language ex-
tensions. Nevertheless, the proposed extension can be adapted to other languages as
well.

Roadmap

We start by describing sequential exception handling and how one can leverage atomic
blocks to simplify it (Section 2). Then we extend our proposition for coordinated excep-
tion handling (Section 3), the abox construct and compare it to failbox [6] that prevents

Safe Exception Handling with Transactional Memory 249

the system from running in an inconsistent state. The failbox language construct allows
us to demarcate a block of code in which if a thread raises an exception, then any other
thread gets prevented from executing the same failbox. The abox goes a step further in
ensuring failure atomicity, i.e., executing its content fully or reverting its modifications
back as if nothing has executed. To this end it uses a software transactional memory
algorithm; and we will finish with an evaluation of both concepts (Section 4) and con-
clusion (Section 5).

2 From Exception Handling to Atomic Exception Handling

We start with introducing the atomic exception handling mechanism, which automati-
cally maintains an application in a consistent state, even in case of unexpected errors.

In order to provide this exception handling behavior we propose to enclose the code
that needs to be consistent within so-called atomic box blocks. These blocks provide the
“all-or-nothing” semantics for exceptions, also known as failure atomicity, i.e., either
their content executes fully (and no uncaught exception is raised within the block) or
an uncaught exception is raised and none of the code within the block appears to be
executed. We propose to use transactional memory (TM) for this purpose. The only
modification needed on top of TM is that in case an exception is raised but not caught
inside an atomic block, the rollback of the atomic box gets triggered.

Before we delve into semantic details, we introduce an example code (Figure 2),
which we later use to explain different aspects of atomic boxes. The example repre-
sents a multi-threaded application with a shared task queue taskQueue from which
threads get tasks to process. All threads execute the same code. Once a thread obtains
a task, it first performs pre-computation work (getting necessary inputs and configur-
ing the task accordingly) in the prepare method. The execution of the task is per-
formed in the execute method of the thread, by calling sequentially the process
and generateOutputmethods of the task. We assume that generateOutput can
add new tasks in the taskQueue.

In what follows, we will mainly focus on the execute method of the thread. The
code of the method is given without any exception handling. The traditional approach
would be to use a try-catch statement enclosing the content of the execute
method. However, when an exception is caught, one cannot easily determine at what
point the execution of the method was interrupted and hence, in general, it is difficult to
revert to the state at the beginning of the method. In such a case the task object could
stay in an inconsistent state, possibly even affecting the state shared with other threads,
and it would not be possible to simply put the task back into the taskQueue for later
re-processing. The loss of a task might require other threads to reconfigure, or to stop
execution altogether for safety or performance reasons: shared state may be inconsis-
tent, incomplete processing would be worthless. We will see in the next sections using
this example how abox and atomic boxes prevent the loss of the task and how they
allow us to correct the cause of the exception and coordinate threads for the program to
recover.

For the following part, we focus on syntax and semantics for sequential executed
programs.

250 P. Felber et al.

1 public void run() {
2 Task task = null;
3 while(true) {
4 synchronized(taskQueue) {
5 task = taskQueue.remove();
6 }
7 if (task == null) break;
8 prepare(task);
9 execute(task);

10 }
11 }
12
13 public void prepare(Task task) {
14 task.getInput();
15 task.configure();
16 }
17
18 // No exception handling
19 public void execute(Task task) {
20 task.process();
21 task.generateOutput();
22 }

Fig. 2. A simple example where multiple threads process tasks from a common task queue and
that would benefit from atomic and concurrent exception handling

2.1 Syntax and Semantics

Basically, an atomic box block is composed of two consecutive blocks: the first block
is called abox and the second recover. The precise syntax is as follows:

abox
{ S }

[recover(ABoxException <exceptionName>)
{ S’ }]

abox and recover are keywords, S and S’ are sequences of statements (that may
include atomic box blocks and additional keywordsor retry andleave that are later
introduced). For the sake of simplicity, in this paper we do not consider Java statements
that perform irrevocable actions (e.g., I/O operation or system calls) in an abox because
most underlying TM implementations do not support transactional execution for such
actions. There exist however practical solutions to this limitation (e.g., in [7,8,9]).

In its simplest form (i.e., when its optional parameters are omitted) the syntax for an
abox is

abox { S }
We distinguish two different operation modes for an abox-recover statement:

normal mode and failure mode. The normal mode is associated with abox and the

Safe Exception Handling with Transactional Memory 251

failure mode is associated with the recover block. An abox executes in normal
mode, i.e., an abox executes as long as no exceptions are raised or until an excep-
tion raised inside abox propagates outside of the block. Note that if the code inside
abox raises an exception, and this exception is caught in the block itself, the abox
still executes in normal mode.

When an exception is propagated out of abox boundaries (i.e., when an unhandled
exception is raised in the abox), the abox is said to fail and its abox-recover
statement switches to failure mode.

Although the functionality of the code inserted in an abox is not modified, an abox
has different semantics compared to traditional blocks: abox executes as a transaction.
That way, the modifications performed by the code inside the abox are only guaranteed
to be effective if the abox successfully terminates (hence, if it successfully commits
without switching to failure mode). Otherwise none of the modifications performed in
the context of the abox are visible by code outside the abox. Therefore, the code in
an abox executes atomically and in isolation.

Recover Blocks. The non-transactional recover-block allows the programmer to
describe the actions that should be taken if an atomic box block could not be executed
(Fig. 4). Changes inside this block (if not nested inside an atomic box block) cannot be
rolled back and therefore, just one non-transactional recover block per atomic box can
be provided.

The use of a throw statement inside the abox raises an exception in the block as
in plain Java. If the exception is handled inside the abox the behavior of the throw
statement is unchanged. However, if the exception is not handled in the abox, the abox
(and the corresponding active atomic box block) switches to failure mode. In that case,
instead of the original exception, an ABoxException is thrown.

The ABoxException. The structure of the ABoxException is as follows:

public class ABoxException {
Class causeClass;
String message;
// Fields used in concurrent setting
Thread source;
String aboxName;
int handlingContext;
// Methods omitted...

}
where the causeClass field stores the class of the exception raised by the abox

that failed (initiator abox), the message field is the message of the original exception
(the rest of the fields of the exception are used for concurrent exception handling and
will be explained later). Note that the ABoxException stores the class of the original
exception object that initiated the atomic box failure rather than its reference. This is
a deliberate choice since the original exception object can include references to other
objects that are allocated inside the initiator abox and that will be invalidated by the
rollback performed upon the failure of the atomic box.

252 P. Felber et al.

However, failure atomicity per se does not provide a complete error recovery solu-
tion. For example, if the reason for the uncaught exception still persists, the re-execution
of the atomic box will fail again. Therefore, we need further language constructs and
mechanisms to provide error recovery. Which are:

– Alternative execution path: allows the programmer to define alternatives in case of
an exception

– Transactional control flow keywords to guide to alternative execution paths or re-
cover blocks

– support for different exception-throw behaviors, namely commit-and-throw and
abort-and-throw semantics.

Alternative Execution Paths. With the ability to automatically rollback changes, it
becomes easy to provide cleanly separated alternatives. The typical use case of alterna-
tive execution paths is to provide different strategies for solving a problem ordered by
less desired properties.

To allow alternative execution paths or is introduced as one new keyword to the
language, which concatenates two abox-recover statements (Figure 3). During ex-
ecution, the runtime environment tries to execute the first atomic box. In case it fails, it
rolls back the changes and continues with the next or block until the final alternative is
reached. If that fails as well the whole atomic box can be retried.

1 public void execute(Task task) {
2 abox {
3 abox {
4 task.processFast();
5 } or {
6 task.processMemoryEfficient();
7 }
8 task.generateOutput();
9 }

10 }

Fig. 3. Example of the alternative execution path construct with or. The task is processed with a
fast but memory intensive algorithm. The slow but memory efficient method is used in case the
first fails. Furthermore, this code shows how atomic boxes can be nested.

Atomic box Control Flow Keywords. Three new keywords are introduced for this
purpose: retry, next, and leave. They can be used both - inside aboxes and in-
side recovery blocks. If used inside an atomic box block, they will abort the box
immediately, rollback the chances, executes the associated recovery block (if avail-
able), and transfer the control according to the selected keyword.

The leave keyword is used to abort the surrounding abox (i.e., to cancel all the
effects of the abox). A typical use case is upon a serious error where the software
should stop execution immediately. But it can also be used in a recovery block of
a nested atomic box block in case recovery on that level is not possible, the parent

Safe Exception Handling with Transactional Memory 253

atomic box will be aborted and associated recovery options applied. If leave is used
inside a non-nested recovery-block, the control flow is transferred beyond the last
alternative.

The other keywords give more control to the programmer in determining the control
flow inside an atomic box block. Using retry aborts the abox, executes the associated
recovery block (if available), and re-executes the box from its beginning. This is useful
in handling exceptions which typically happen in temporarily critical situations, e.g.
due to resource constraints. The next is similar to retry but transfers control flow
to the following abox alternative if available otherwise control flow will be transferred
beyond the end of the alternatives.

In general, keywords used in the recovery block have precedence over the abox.

Exceptional Control Flow Constructs. The usual mechanism to control the flow of
an application that raised an exception is to use a try-catch block. With the use of
atomic box blocks, this mechanism can still be used (even inside an abox or recover
block). However, abox-recover introduces a second mechanism for exceptional
control flow. Due to the “all-or-nothing” semantics of an abox block, the way the ex-
ception should propagate out of an abox block is a debatable issue. There are two well-
known behaviors though: commit-and-throw and abort-and-throw. The behaviors differ
in the visibility of the effects of the atomic box block when the exception is propagated
out of it. With commit-and-throw behavior the effects of the atomic box up to the point
where the exception is raised are made permanent. In other words, commit-and-throw
allows partial execution of abox blocks. The abort-and-throw behavior, however, rolls
back all the effects of abox blocks and only then throws the exception.

Since commit-and-throw behavior allows the partial effects of an abox block to be
visible to other threads at the time an exception is raised, the all-or-nothing guarantee of
the abox block will be violated upon an exception. Abort-and-throw behavior avoids
such a problem by throwing the exception only after aborting the abox block. How-
ever, with this behavior exception object cannot carry information about the actions
performed inside the abox block, which is sometimes useful for recovery.

In order to have the “all-or-nothing” guarantee together with the ability to propagate
information out of aboxes, we propose the following behavior: an exception that is
raised and uncaught within an abox causes the generation of an ABoxException
which carries only the class of the exception originally raised. Due to the raised ex-
ception, the abox block is aborted and the generated ABoxException is propagated
out of the block. Syntactically, this exception propagation behavior is provided with the
usual exception throw statement. However, an abox block without a recover block
aborts and retries the abox block automatically (without any exception propagation).
In order to provide the usual exception propagation behavior the programmer needs to
provide a recover block to propagate the exception further.

3 Concurrent Atomic Exception Handling

Our language extension for multi-threaded use cases deals mainly with code blocks that
can run in parallel but are dependent on each other in the sense that if a statement in one

254 P. Felber et al.

of the blocks raises an exception not handled within the block, none of the other code
blocks should continue executing. We call such blocks dependent blocks. An atomic
box is a group of dependent code blocks that can act together to recover from an ex-
ception that is raised in at least one of the code blocks. In order to express the fact
that abox-recover blocks belong to the same atomic box, they get the same name
assigned (as a parameter).

The already known syntax of the abox-recover statement is extended in the fol-
lowing way:

abox [(”name”, <handlingContext>)]
{ S }

[recover(ABoxException <exceptionName>)
{ S’ }]

As one can notice the only addition to the syntax to support atomic box are the
name and <handlingContext>, which are parameters of the associated abox key-
word. The dependency relation between aboxes statements is established by naming
abox-recover blocks with a common name (or with names of descendants).

Contrarily to the simplest form of abox, the named form implies that upon failure
of an abox the exception handling should be coordinated across the atomic box (i.e.
across all aboxes which run in parallel and belong to the same atomic box).

3.1 Semantics

The atomic box provides following semantics:

• Failure atomicity: An abox of an abox-recover statement can be rolled back,
i.e., either the contents of the abox performs all of its modifications successfully
(thus none of the aboxes that belong to the same atomic box fail at any point), or
the abox acts as if it has not performed any modifications.

• Dependency-safety: An atomic box ensures dependency safety; i.e., if a statement
fails and raises an exception, all statements that depend on the failing statement
do not execute. The dependency-safety is ensured by two properties of
abox-recover block: i) An abox executes in a transaction, thus its execution
is isolated from all dependent code in the system until it commits. In other words,
none of the dependent code blocks see the effects of each other as long as code
blocks do not commit. ii) If an exception is not handled in an abox it rolls back its
changes and recovery actions are taken only after all the aboxes of an atomic box
are rolled back. Thus, in no situation it is possible for a dependent code block to
see partial modifications of another dependent block that is in inconsistent state.

• Coordinated exception handling: A try-catch statement offers a recovery from
exception only for the thread on which the exception occurs. The abox-recover
statement allows the programmer to inform concurrently executing threads of an
exception raised in one of the threads. Moreover, through the recover block of
the abox-recover statement it is possible to recover from that exception in a co-
ordinated manner. Note that the coordination is possible among recover blocks
because they do not execute in a transaction.

Safe Exception Handling with Transactional Memory 255

The failure model of the abox-recover statement for concurrent utilization is
such that when the block abox fails, its associated atomic box also fails (because the
atomic box acts as a single entity upon an exception). Thus, all the abox-recover
statements associated to the atomic box switch to failure mode upon the failure of an
abox. The failure of an abox also triggers the failure of the descendent atomic boxes.

In the failure mode all the threads that execute in the atomic box coordinate together.
They wait for each other to ensure that all the associated abox-recover statements
switch to failure mode and all the aboxes are rolled back. Then they perform recov-
ery actions as specified by the abox where the exception is raised. After the recovery
actions are terminated all the threads decide locally how to redirect their local control
flow using the keywords introduced Section 2.1.

In the rest of this section, we will discuss the semantics of the abox-recover
statement under concurrently raised exceptions.

The simplest form of an abox is considered as an indication that the block is the
only block in an atomic box, and thus it does not have any dependencies on other parts
of the code. For such abox the exception handling is done locally without any coor-
dination with any other abox. Hence, this form is suitable for exception handling in
single-threaded applications as well as handling of exceptions for code blocks of multi-
threaded applications that do not have any implications on other running threads.

As an example of such scenario, assume that an OutOfMemoryError is raised
during the execution of the execute method of Figure 2. If for the running multi-
threaded application, it is known that most of the tasks have small memory footprint
but occasionally some tasks can have large memory footprint (but never exceeding the
heap size allocated by the JVM), it is possible to clean up some resources or wait for
a while before restarting execution. This would solve the problem if memory is freed
when a task with a possibly large footprint finishes executing. Using the simple form
of abox, the code for this solution would be as in Figure 4. Note that this solution is

1 public void execute(Task task) {
2 abox {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Back off (sleep) upon OutOfMemoryError
8 backOff();
9 } // Implicit restart

10 }
11 }

Fig. 4. Local recovery for an OutOfMemoryError using the simple form of abox

not possible with either a try-catch block or a failbox since the state of the task
object cannot be rolled back to its initial state.

We can slightly change the conditions to the example for which abox provided a so-
lution in Figure 4 and generate a different scenario. Let us assume that in the example

256 P. Felber et al.

there are not many solutions for solving the OutOfMemoryError and the program-
mer simply wants to stop all the threads when such an exception is raised. The code that
will provide this solution would be as in Figure 5.

1 public void execute(Task task) {
2 abox(”killAll”, all) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, propagate to terminate thread
8 throw e;
9 }

10 }
11 }

Fig. 5. Coordinated termination of a multi-threaded application upon an OutOfMemoryError.
The named form of abox can be used to provide such recovery.

Note that all the threads are running the same code. The code in Figure 5 uses the
named form of abox. The <handlingContext> parameter is given as all, which
means that when the OutOfMemoryError is raised on one thread, all the threads
running in the atomic box will execute their recover blocks. In the recover block
an exception is raised so that the currently executing thread dies (since the threads
are assumed to be running the code in Figure 2, the exception will not be caught and
each thread will be terminated). This solution is again not possible with a try-catch
statement. Since the objective in this example is to stop the application, the failbox
approach would also work: one could enclose the content of the execute method in
an enter block, which would specify that the code enters a failbox common to all
threads.

We can also think about a variant of the above example that cannot be resolved
using the failbox approach. Let us assume that, as the task object can configure itself
before execution, it is also possible to reconfigure it to perform the same job using
less memory but slower (e.g., by disabling an object pool). In such a case, the named
form of the abox allows us to resolve the problem with the code in Figure 6 (again
only by changing the content of the execute method). This solution is possible with
the named form of abox since the abox-recover statement including the abox
provides failure atomicity and coordinated exception handling. The failure atomicity
property of the abox-recover statement allows the modifications of the execution
inside the abox to be rolled back, thus the task object can be reverted to a consistent
state where it can be reconfigured. The coordinated exception handling provided by the
abox-recover statement allows the same behavior to be performed on all threads in
a synchronized way and remedy the problem in a single step.

Safe Exception Handling with Transactional Memory 257

1 public void execute(Task task) {
2 abox(”reconfigure”, all) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, reconfigure and restart
8 task.reconfigure();
9 }

10 }
11 }

Fig. 6. Coordinated recovery to reconfigure tasks (for decreasing their memory footprint) upon
OutOfMemoryError

3.2 Failure Mode Constructs

Since an atomic box corresponds to dependent code blocks, when an abox fails, its
associated atomic box also fails. We call the atomic box that fails upon the failure of an
abox an active atomic box. An active atomic box is defined as the set of aboxes of the
same atomic box that have started executing and that have not yet started committing.
This set is defined as long as at least one thread executes in the atomic box.

We argue that in terms of failure it is enough to consider an active atomic box rather
than all the statically defined atomic boxes to ensure dependency-safety and failure
atomicity. Since aboxes that have started committing are guaranteed not to execute
on any inconsistent state that can be generated by the aboxes of the active atomic
box (aboxes execute in isolation), their exclusion does not harm dependency-safety.
Moreover, the consistency of data is ensured as long as the commit of aboxes that
have started committing are allowed to finish before the aboxes of the active atomic
box start performing recovery actions. So the rollback of an active atomic box does not
require aboxes that have already started committing to rollback. Hence, it is safe to
provide failure atomicity only for an active atomic box.

To have better understanding of the concept of active atomic box consider the solu-
tion proposed in Figure 5. For this solution if we think that the tasks executed by all
of the threads have more or less the same load, the threads will generally be executing
the executemethod at about the same time periods. However, if we think of a scenario
where tasks have variable load, this may not be true. So when theOutOfMemoryError
is raised, some threads may be executing in the content of the abox, while some oth-
ers may be still committing the abox in the execute method and some others maybe
fetching a new task from the taskQueue (these threads have not yet entered in an
abox). In such a case, the proposed solution may not stop all the threads since not all
may be executing in the active atomic box when the OutOfMemoryError is raised.
However, for these non-terminated threads the execution continues safely; threads that
were committing while the exception is raised in active atomic box do not have any more
dependence on the aboxes of the atomic box, and threads that have not yet entered ex-
ecution in the atomic box may not raise an OutOfMemoryError if there is enough

258 P. Felber et al.

memory once the threads of the active atomic box get killed. Even if an
OutOfMemoryError is again raised, this will be resolved by the active atomic box
defined at the time of the second exception. Hence, we see that by applying the fail-
ure atomicity and dependency-safety only on the active atomic box it is also possible to
provide safe executions.

The failure of an active atomic box results in the following coordinated behavior in
the aboxes that constitute the active atomic box:

1. The aboxes that constitute an active atomic box switch to failure mode. This trig-
gers the coordinated failure behavior of the atomic box.

2. All the aboxes that switch to failure mode automatically rollback. At the same
time all aboxes that have started committing terminate their commit.

3. All the threads executing in an active atomic box are notified of a special exception
ABoxException (the structure of this exception is explained later).

4. All the threads executing in an active atomic box wait for each other to make
sure that they all rolled back and received the ABoxException notification. The
threads in the active atomic box also wait for threads running an abox that have al-
ready started committing to finish their commit operation (which may not succeed
and trigger an abort).

5. All the aboxes that constitute an active atomic box perform the recovery actions in
the associated recover blocks according to the ABoxException they receive.
Entry in the atomic box is forbidden for any thread during recovery.

6. All the threads executing in an active atomic box wait for each other to terminate
their recovery actions. Once all recovery actions are terminated each of the threads
executing in the active atomic box decide locally how to redirect their control after
failure.

The recover block - revisited. The additional fields of an AboxException are: the
source field is the reference to the Thread object executing the initiator abox,
aboxName is the name of the failing atomic box and handlingContext is an in-
teger value that defines which of the corresponding recover blocks associated to the
atomic box will be executed. The value of the handlingContext corresponds to the
<handlingContext> parameter of the initiator abox (the details for the values of
handlingContext are explained below together with the recover block).

A recover block encloses recovery actions to be executed when the abox it is
associated to fails. Since the recover block is related to failure of an atomic box, it
is only part of failure mode execution. Note also that the recover block does not
execute in a transactional context; it always executes after its corresponding abox
rolls back. The decision of whether the recover block will be executed depends on
the handlingContext parameter of ABoxException sent by the initiator abox.
Two values exist for the parameter handlingContext: local and all. With the
local option, only the recover block of the initiator abox will be executed, other
threads will not execute any recovery action. If the all option is chosen all the threads
executing in the atomic box execute their respective recover blocks.

Whichever of the handlingContext options is chosen, once the recover block
executions are terminated each of the threads executing in the atomic box take their own

Safe Exception Handling with Transactional Memory 259

1 public void execute(Task task) {
2 abox(”killSome”, local) {
3 task.process();
4 task.generateOutput();
5 } recover(ABoxException e) {
6 if(e.getCauseClass() == OutOfMemoryError.getClass()) {
7 // Upon OutOfMemoryError, propagate to terminate local thread
8 throw e;
9 }

10 }
11 }

Fig. 7. Coordinated recovery to decrease the memory used by the multi-threaded application by
only killing some of the threads upon OutOfMemoryError

control flow decision. If the handlingContext parameter has the value local, the
initiator abox redirects the control flow according the control flow keyword used in its
recover block (for the control flow keywords see Section 2.1). All the other threads
in the atomic box re-execute the abox for which they perform recovery actions. If the
handlingContext parameter has the value all, each of the threads redirects the
control flow according the control flow keyword used in its respective recover block.

If the recover block of abox-recover statement has been omitted, the thread
executing this abox-recover statement performs no recovery and re-executes the
abox of the abox-recover statement.

Having analyzed most of the properties of the normal and failure modes, it would
be appropriate to analyze the mechanisms described above in an example. At this
point we can use another variant of the running example of Figure 2 with an
OutOfMemoryError being raised during the execution of the execute method.
Suppose, in this case, that the programmer knows that he is using too many threads and
if the heap allocated by the JVM is not enough, it would be enough for him to kill only
some of the worker threads. This would effectively handle the exception while keeping
the parallelism of thread execution at a reasonable level. Since the programmer would
not know the size of the memory allocated in advance he can choose to implement the
solution in Figure 7 using the atomic boxes.

The solution shown in Figure 7 is the same as the code in Figure 5 except that the
name of the <handlingContext> parameter is set to local instead of all. With
this change each time an OutOfMemoryError is raised only the thread raising the
exception executes the throw statement and kills itself. This solution works better than
a simple try-catch because with the try-catch solution multiple threads could
have raised the same exception at the same time and, being unaware of the exceptions
raised in other threads, all of these threads would kill themselves leaving a smaller
amount of threads running in the system, rather than gradually decreasing the amount
of concurrency. Gradual decrease is possible thanks to the coordinated nature of the
exception handling: coordination imposes the threads to abort their aboxes (instead of
killing themselves) and restart execution after the thread of the initiator abox is killed.
Thanks to the failure atomicity provided by atomic boxes, this can safely be repeated as
many times as required until the required number of threads are killed.

260 P. Felber et al.

3.3 Nesting of Atomic Boxes

The failure of an abox can also trigger the failure of an atomic box other than the one it
belongs to. For example, if the failing abox contains another abox, also the contained
abox fails. This, furthermore, leads to their associated atomic boxes to fail as well. In
contrast, when a child atomic box fails, its parent atomic box does not fail, thus the
child atomic box switches to failure mode, while the parent atomic box does not.

The fact that atomic boxes have ascendants or descendants is reflected by a hierar-
chical naming of aboxes. The name parameter of an abox can be a list of strings of
the form x.y.z following the naming convention of Java package names 1.

3.4 Resolution of Concurrently Raised Exceptions

Up to this point we have considered only the case where a single abox initiates an
atomic box failure. If an exception needs to be treated by an abox, this is most probably
because the exception concerns all the threads executing in the atomic box. So it is
not surprising to expect that multiple aboxes raise the same exception and fail the
atomic box. It is also perfectly possible that different aboxes of the same atomic box,
concurrently raise the different exceptions and cause the atomic box to fail.

The atomic box takes a very simple approach to resolve concurrently raised excep-
tions thanks to its failure atomicity property: an atomic box allows only one exception
(the first one to be caught) to be treated in failure mode and ignores all the concurrently
raised exceptions during failure mode.

The atomic box does not consider all the concurrently raised exceptions together.
By handling one exception and removing its cause before re-execution, one may avoid
other concurrent exceptions to occur again. During re-execution, if the cause of the
concurrently raised exceptions are not removed they will again manifest and fail the
atomic box. They will thus be treated during re-execution.

As can be noticed, among other advantages, the atomic box approach brings an ele-
gant solution to the concurrent exception handling problem thanks to its failure atomic-
ity property. Actually, the solution presented in Figure 7 is a good example illustrating
the resolution of concurrently raised exceptions. In this example, other than the coordi-
nated nature of the exception handling, it is the simple concurrent exception handling
approach taken by atomic boxes that allows us to kill only as many threads as required.

3.5 Evolution of Code

The simple structure and composability of atomic boxes and aboxes allows a pro-
grammer to evolve her/his application code in an easy way. Starting from the very first
beginning, a simple abox allows to mark critical code to be executed atomic avoiding
any inconsistent state—the programmer just has to concentrate on fixing reasons for
failures if needed. If e.g. new special purpose libraries become available, they can be
easily integrated with the or statement. Furthermore, if the programmer decides to par-
allelize the application, the transition is easy. By adding a name to an abox, it allows

1 For simplicity, we just use one string instead of a list in our examples. Referencing boxes can
also be done relatively with a leading dot, e.g. .y.z.

Safe Exception Handling with Transactional Memory 261

to group multiple boxes into one atomic box allowing them to orchestrate their effort.
Which again helps to ease the development as the coordination of recovery for different
threads does not have to be implemented. This can speed up the development process
tremendously.

3.6 Implementation

We have implemented a concurrent exception handling compiler framework, called
CXH, which supports the language constructs proposed in Section 2 and 3. The CXH
compiler framework produces bytecode that is executable by any Java virtual machine
in a three-step process. First it runs our pre-compiler, TMJAVA that converts the ex-
tended language into annotated Java code. The annotations are used to detect in the
bytecode, which parts of the code have the abox semantics. Second our CXH embeds
the LSA transactional memory library [10] that provides wrappers to shared memory
accesses. Our aboxes benefit from the speculative execution of TMs to ensure that no
exceptions are raised before applying any change in the shared memory. Third, CXH
uses an existing bytecode instrumentation framework, Deuce [11], which redirects calls
within annotated methods to transactional wrappers.

We implemented TMJAVA, a Java pre-compiler that converts abox-recover con-
structs in annotated Java code. This allows us to compile the resulting code using any
Java compiler. TMJAVA converts each abox into a dedicated method that is annotated
with an @Atomic keyword. More precisely, TMJAVA analyzes the code to find the
aboxes (abox keyword) inside class methods. Then, for each such abox it creates
a new method whose body is the content of the corresponding abox and replaces the
original abox with a call to this new method. The conversion of an abox a into a
method m requires passing some variables to the produced method m to address the
following issues:

1. Variables that belong to the context of the method enclosing the abox a should
also be accessible inside the scope of the produced method m.

2. Variables that belong to the context of the method enclosing the abox a and that
are modified inside a should have their modifications effective outside the produced
method m (as it would be for abox a).

To ensure that variables are still visible inside the produced methods, the variables
whose scope are out of abox context are passed as input parameters to the correspond-
ing method. For the state of variables to be reflected outside the scope of the abox,
these variables are passed as parameters using arrays (if the variables are of primitive
types). When the method returns, we copy back these array elements into the corre-
sponding variables.

Our abox leverages memory transactions that execute speculatively on shared data.
The main difference between aboxes and the transactions lies in the fact that each
abox decides whether to abort or commit its changes also depending on (concurrent)
exceptions raised. Before committing, an aboxmakes sure that no exception was raised
inside the block or by a dependent abox.

Each memory transaction executes speculatively by buffering its modifications. If the
transaction reaches its end without having aborted, it attempts to commit by applying

262 P. Felber et al.

its modifications to shared memory. More precisely, when a transaction starts it records
the value of a global time base, implemented as a shared counter. Upon writing a shared
location, the transaction acquires an associated ownership record, buffers the write into
a log, and continues executing subsequent accesses. At the end, when the transaction
tries to commit, it reports all the logged writes in memory by writing the value, incre-
menting the global counter, and associating its new version to all written locations as
part of the ownership records. Upon reading a shared location, it first checks if the lo-
cation is locked (and aborts if locked), then compares the version of the location to the
counter value it has seen. If the location has a higher version than this value, this means
that a concurrent transaction has modified the location, indicating a conflict.

After compilation we obtain a bytecode where annotated methods directly access
the memory. To ensure that these annotated methods, which correspond to the origi-
nal aboxes, execute speculatively we have to redirect their memory accesses to the
transactional memory. To that end, we use the Deuce framework [11] to instrument the
annotated method calls at load time. Deuce instruments class methods annotated with
@Atomic such that accesses to shared data inside those methods are performed trans-
actionally. This bytecode instrumentation redirects all abox memory accesses to LSA
so that each abox executes as a transaction.

4 Evaluation

We compare our abox solution against failbox [6] on an Intel Core2 CPU running at
2.13GHz. It has 8-way associative L1 caches of 32KB and an 8-way associative L2
cache of 2MB. For abox we implemented the compiler framework as explained in
Section 3.6 whereas for failboxes we reused the original code from [6].

4.1 Producer-Consumer Example

Our first experiments consist of a simple producer-consumer application, where one
thread pushes an item to a shared stack while another pops the topmost item from the
same stack. For the sake of evaluation, the stack push() method raises an exception if
adding the new item to the stack would exceed its capacity. We evaluated two versions
of the same program: one using failbox, the other using our abox. The execution time
of these two versions has been evaluated in normal cases (where we fill the stack prior
to execution such that no exceptions are raised) and for handling exceptions (where we
try to push an item to an already full stack). Results are averaged over 100 executions.

Table 1 reports the minimum, maximum and average execution time in microsec-
onds, respectively without and with exceptions. On the one hand, we observe that our
solution executes about 2× faster (on average) than failboxes in normal executions. This
is due to a cache effect observed with failbox approach. Each time a failbox is entered a
shared variable is checked to verify whether it has failed. Since this experiment requires
very frequent entries to a failbox by multiple threads the failbox entries are serialized.
Our implementation does not suffer from this problem since the check for the failure
of an abox does not need to be verified often (an abox is executed in isolation from
other code).

Safe Exception Handling with Transactional Memory 263

Table 1. Execution times of abox and failbox in microseconds on a multi-threaded producer-
consumer application when no exception is raised (left) and if an exception is raised (right)

no exception raised exception raised

min max average min max average

abox 7.27 11.67 8.92 1.40 2.62 2.22

failbox 15.70 34.97 18.58 32.167 47.23 34.55

speedup of abox 1.34 4.81 2.08 12.28 33.74 15.7

On the other hand, our solution performs more than 15× faster (on average) than fail-
boxes to handle exceptions. We conjecture that it is due to the fact that failbox approach
uses the interrupt mechanism to communicate the exception on one thread to the
other threads. The abox approach communicates over the shared memory, resulting in
a faster notification. It is worth mentioning that our aboxes permit both push() and
pop()methods to recover from exception, allowing the program to resume, while fail-
box simply stops the program upon the first exception raised. Considering this desirable
behavior and the observed overhead, abox clearly represents a promising approach.

4.2 Sorting Examples

Our second experiments rely on two single-threaded sorting applications (quick-sort
and bubble-sort) coded in 3 ways: (i) using plain Java (with no extensions), (ii) inside
failboxes, and (iii) inside abox blocks. The plain Java version is used to measure the

 10

 100

 10 100 1000 10000

D
ur

at
io

n
(m

s)

sorted elements

Begin/end overheads (Quick sort)

abox
failbox

 10

 100

 10 100 1000 10000

D
ur

at
io

n
(m

s)

sorted elements

Begin/end overheads (Bubble sort)

abox
failbox

Fig. 8. Comparison of the overhead produced when starting and terminating an abox and a fail-
box (note the logarithmic scales on both axes)

264 P. Felber et al.

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

S
lo

w
do

w
n

sorted elements

Read/write perf. (Quick sort)

abox
failbox

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

S
lo

w
do

w
n

sorted elements

Read/write perf. (Bubble sort)

abox
failbox

Fig. 9. Comparison of the overhead due to accessing the shared memory in abox and failbox
(note the logarithmic scales on both axes)

 1

 10

 100

 1000

 10 100 1000 10000

S
lo

w
do

w
n

sorted elements

Total Duration perf. (Quick sort)

abox
failbox

 1

 10

 100

 1000

 10000

 10 100 1000 10000

S
lo

w
do

w
n

sorted elements

Total Duration perf. (Bubble sort)

abox
failbox

Fig. 10. Comparison of the total duration time of abox and failbox (note the logarithmic scales
on both axes)

inherent overhead of failbox and abox versions. The sort is performed inside a function
and the application can choose to run either a quick-sort or a bubble-sort function.

Figures 8 through 10 depict the performance of failbox and abox on quick-sort (left
column) and bubble-sort (right column). Figure 8 compares the execution overhead due
to entering and leaving an abox block or a failbox (we call this begin/end overhead).
Figure 9 shows the execution time performance of abox and failbox executions with-
out the begin/end overhead. Figure 10 depicts the total execution time performance of
abox and failbox. The execution time performance depicted in figures 9 and 10 are
given as the slowdown with respect to the performance of the plain Java version, which
does not have any begin/end overhead. Each point in the graphs corresponds to the
average of 10 runs.

Safe Exception Handling with Transactional Memory 265

The results show that although the failbox approach performs as good as plain Java
inside the failbox, its begin/end overhead is quite high. We attribute this high overhead
of the failbox approach to the memory allocation performed to generate a new failbox
(be it a child or a new failbox) before entering the failbox. Figure 10 also illustrates
that abox blocks perform better than the failbox approach for input arrays of up to
about 1000 elements. This demonstrates that our abox implementation, although using
transactions to sort array elements, performs well even compared to simpler approaches
that do not roll back state changes.

5 Conclusion

In this chapter, we have shown how a simple language extension can be provided to han-
dle exceptions correctly. The language extension addresses consistency issues that can
arise in both sequential and concurrent programs using a new abox language construct
based on software transactional memory.

In sequential programs, abox offers a “all-or-nothing” semantics. Hence the incon-
sistent state that results from or causes the exception is automatically rolled back and
alternative actions can be safely taken in a subsequent recovery block. In concurrent
programs, the abox parameters also allow for one thread to propagate the exception to
other threads to prevent others from accessing inconsistent data but also to coordinate
the recovery among multiple threads.

We also discussed another tentative solution to propagate exceptions to other threads.
Even though this solution does not provide coordination among threads, it is signifi-
cantly slower than our technique, precisely because abox exploits the recent research
results in software transactional memory.

6 Bibliographic Notes

Transactional memory was initially used in the exception handling context about a
decade ago. Harris [12] proposed to commit by default all changes when an exception is
thrown. The notion of atomic exception handling described in Section 2 was proposed
to extend the approach of Harris, for example by rolling back the exception [13].

Figure 1 is inspired by a similar example from Stelting [14]. Failboxes were proposed
by Jacobs and Piessens as a mechanism to prevent the system from running in such an
inconsistent state. The key idea is that, if one thread raises an exception in a failbox,
any other thread is prevented from executing in the same failbox [6]. Instead of letting
the system run in an inconsistent state, a failbox simply halts all concurrent threads
accessing the same failbox. However, failboxes neither revert the system to a consistent
state nor help the programmer recover from the error.

Atomic boxes were presented two years later [1]. They rely on LSA [10], an efficient
time-based software transactional memory algorithm that maps each shared memory
location with a timestamp. The LSA algorithm allows the transaction to commit despite
such a conflict thanks to incremental validation: if all previously read values are still
consistent, i.e., their versions have not changed since they have been read, the transac-
tion has a valid consistent snapshot and can resume without aborting.

266 P. Felber et al.

The Java pre-compiler TMJAVA is available for download at
http://tmware.org/tmjava. Even though LSA is key to the lightweight
and efficient implementation of abox we have experimented, other software transac-
tional memory libraries could be used. In particular, TMJAVA relies on Deuce [11]
to automatically instrument shared memory accesses within aboxes at the bytecode
level. Hence, one could easily define different abox semantics depending on their
parameters by using polymorphic transactional memory [15].

Shinnar et al. [16] proposed a try all block for C#, which is basically a try block
capable of undoing the actions performed inside the block. Cabral and Marques [17]
similarly proposed to augment the try block with transactional semantics (using trans-
actional memory as the underlying mechanism) to allow the retry of a try block when
necessary.

Other work proposed richer atomic block constructs that build upon TM and that
help with exception handling [18,12,13,11,19]. However, all the existing implementa-
tions for the above work focus on sequential executions, hence being unable to cope
with coordinated exception handling. When a thread raises an exception, it can either
rollback or propagate the exception. If the exception is not caught correctly, the thread
may stop and leave the memory in a corrupted state that other threads may access.

References

1. Harmanci, D., Gramoli, V., Felber, P.: Atomic boxes: Coordinated exception handling with
transactional memory. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 634–657.
Springer, Heidelberg (2011)

2. Cristian, F.: Exception handling and tolerance of software faults. In: Lyu, M.R. (ed.) Software
Fault Tolerance, pp. 81–107. John Wiley & Sons, Inc., New York (1995)

3. Utas, G.: Robust Communications Software: Extreme Availability, Reliability and Scalability
for Carrier-Grade Systems. Wiley, Chichester (2005)

4. Cabral, B., Marques, P.: Exception handling: A field study in java and.NET. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 151–175. Springer, Heidelberg (2007)

5. Broadwell, P., Sastry, N., Traupman, J.: Fig: A prototype tool for online verification of re-
covery. In: Workshop on Self-Healing, Adaptive and Self-Managed Systems (2002)

6. Jacobs, B., Piessens, F.: Failboxes: Provably safe exception handling. In: Drossopoulou, S.
(ed.) ECOOP 2009. LNCS, vol. 5653, pp. 470–494. Springer, Heidelberg (2009)

7. Volos, H., Tack, A.J., Goyal, N., Swift, M.M., Welc, A.: xCalls: safe I/O in memory transac-
tions. In: EuroSys, pp. 247–260 (2009)

8. Porter, D.E., Hofmann, O.S., Rossbach, C.J., Benn, A., Witchel, E.: Operating system trans-
actions. In: SOSP, pp. 161–176 (2009)

9. Smiljkovic, V., Nowack, M., Miletic, N., Harris, T., Unsal, O., Cristal, A., Valero, M.: Tm-
dietlibc: A tm-aware real-world system library. In: 2013 IEEE 27th International Symposium
on Parallel Distributed Processing (IPDPS), pp. 1266–1274 (May 2013)

10. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

11. Korland, G., Shavit, N., Felber, P.: Deuce: Noninvasive software transactional memory in
Java. Transactions on HiPEAC 5(2) (2010)

12. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2005, pp. 48–60. ACM, New York (2005)

http://tmware.org/tmjava

Safe Exception Handling with Transactional Memory 267

13. Fetzer, C., Felber, P.: Improving program correctness with atomic exception handling. J. of
Universal Computer Science 13(8), 1047–1072 (2007)

14. Stelting, S.: Robust Java: Exception Handling, Testing and Debugging. Prentice Hall, New
Jersey (2005)

15. Gramoli, V., Guerraoui, R.: Democratizing transactional programming. Commun.
ACM 57(1), 86–93 (2014)

16. Shinnar, A., Tarditi, D., Plesko, M., Steensgaard, B.: Integrating support for undo with ex-
ception handling. Technical Report MSR-TR-2004-140, Microsoft Research (2004)

17. Cabral, B., Marques, P.: Implementing retry - featuring AOP. In: Fourth Latin-American
Symposium on Dependable Computing, pp. 73–80 (2009)

18. Harris, T.: Exceptions and side-effects in atomic blocks. Sci. Comput. Program. 58(3), 325–
343 (2005)

19. Gramoli, V., Guerraoui, R.: Reusable concurrent data types. In: Jones, R. (ed.) ECOOP 2014.
LNCS, vol. 8586, pp. 182–206. Springer, Heidelberg (2014)

Transactional Memory for Reliability

Gulay Yalcin and Osman Unsal

Barcelona Supercomputing Center, Spain
{gyalcin,ounsal}@bsc.es

Abstract. It is foreseen that technology trends will increase the transient and
permanent fault rates in future processors. Thus providing reliability for both the
applications running on personal computers and running on mission-critical sys-
tems is becoming an absolute necessity. A reliable system requires the inclusion
of two key capabilities: 1) error detection and 2) error recovery mechanisms.
Transactional Memory (TM) provides an ideal base for both error detection and
error recovery. First, TM provides mechanisms to abort transactions in case of
a conflict, thus they discard or undo all the tentative memory updates and restart
the execution from the beginning of the transaction. Thus, a transaction’s start can
be viewed as a locally checkpointed stable state which can be used for error re-
covery. Second, transactional semantics allows the error detection to be deferred
until a transaction commits (or the value becomes externally visible), so that the
cost of error detection can be reduced compared to traditional error detection
schemes (in which error detection is conducted et every instruction [26]) while
its efficiency can be increased.

In this chapter, we first explain the hardware faults and aspects of reliability
schemes such as error detection and error recovery. Then, we explain the major re-
quirements of reliability schemes and the similarities between these requirements
and transactional memory basics. Finally, we present current research landscape
for reliability schemes using transactional memory.

1 Fault Categorization

In a computer system, a hardware defect is termed as a fault. Errors are the manifes-
tation of faults. This means that an error is caused by faults but not all faults lead to
errors. Also, fault within a particular scope (i.e. circuit, architecture, operating system)
may not appear as an error outside the scope if the fault is either masked or tolerated
within the scope. Failure is defined as a system malfunction that causes the system to
not meet its correctness, performance, or other guarantees.

Faults experienced by semiconductor devices fall into three main categories: tran-
sient, intermittent and permanent. Moreover, when these faults affect more than a bit
at a time, multi-bit faults occur. A transient fault (also known as Soft Error: a tran-
sient fault cause an error) is a bit flip due to some radiation event or power supply
noise. Obviously, these radiation events are unpredictable and it is not easy to mitigate
them through circuit design. The faulty data bit stays corrupted until it is overwritten,
thus, these faults are temporal (transient) [5]. As transistor dimensions and operating
voltages shrink, sensitivity to radiation increases dramatically. Thus, it is foreseen that
future systems will be more prone to transient faults. Despite the fact that transient

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 268–282, 2015.
c© Springer International Publishing Switzerland 2015

Transactional Memory for Reliability 269

faults are nondestructive functional errors and that they can be fixed by re-setting or
re-writing of the device, they may cause dramatic impact on computer systems unless
they are mitigated [6]. For instance, in 2005,Hewlett-Packard acknowledged that a large
installed base of a 2048-CPU server system in Los Alamos National Laboratory which
is located at about 7000 feet above sea level, crashed frequently because of cosmic ray
strikes to its parity-protected cache tag array [18]. It is reported that HP’s ASC Q super-
computer was crashing 15 times a week due to the inability of software and hardware
to collaborate in fault recovery [18].

Irreversible physical changes in the semiconductor devices are called permanent
faults. Permanent faults tend to occur early in the processor lifetime due to manufac-
turing defects (called ”infant mortality”), or late in the lifetime due to thermal and pro-
cess related stress. Thus they are typically characterized by the classic bathtub curve
as shown in Figure 1. Initially, the error rate is typically high because of either bugs in
the system or latent hardware defects. Beyond the infant mortality phase, a system typ-
ically works properly until the end of its useful lifetime is reached. Then, the wearout
accelerates causing significantly higher error rates. Reliability mechanisms usually dis-
connect the faulty structures hit by permanent faults, and replace them with fault-free
spare structures. Systems having these mechanisms tolerate permanent faults. In fact,
the lifetime reliability of a system is defined by its ability to tolerate these faults. A per-
manent fault can be detected by performing built-in self test (BIST) [3]. For instance, to
check that if there is a permanently faulty bit in a memory structure producing always
‘0’ or always ‘1’ (i.e. stuck-at-zero or stuck-at-1), first ‘0’s are written to the memory
structure and read back to see if they are read correctly. Then the process is repeated
with writing all ‘1’s to the memory structure.

Typically faults in the wear-out epoch are manifested first as intermittent faults, then
progress to permanent faults. Intermittent faults occur when process variation or in-
progress wear-out, combined with voltage and temperature fluctuations cause a burst
of frequent faults that last from several cycles to several seconds. An intermittent fault
occurs repeatedly at the same location; It tends to occur in bursts for a period of time
when the fault is activated. The replacement of the offending circuit mitigates the inter-
mittent fault [11,4]. It has been suggested that intermittent faults have the potential to
impact program execution to a greater extent when compared with transient faults [22].

Fig. 1. The bathtub curve showing the relationship between the hard-errors (i.e. infant mortality
and wearout errors) and lifetime [21]

270 G. Yalcin and O. Unsal

In this sense, intermittent faults can be considered as similar to permanent faults. How-
ever, similarly to transient faults, it is hard to diagnose an intermittent fault by hard-
ware/software tests because intermittent faults do not persist and the conditions that
caused the fault are hard to regenerate.

Besides this classification (i.e. transient, permanent, intermittent), faults are also
classified according to their outcomes [29]. If a fault disappears or masked without
being noticed by the user, it is termed as benign. Obviously, if the fault is not benign,
it leads to an error unless it is detected and corrected. If an error is not caught by the
system, it leads to a Silent Data Corruption (SDC). In another case, an error can be
caught by the system but it can not be corrected. In this case, the error is termed as
Detected Unrecoverable Error (DUE). Mission-critical systems such as airplanes must
have extremely low SDC and DUE because human life may be at stake.

In order to characterize the behaviour of a system in the presence of a fault, two
attributes are defined: Reliability and Availability. The reliability of a system is the
probability that the system does not experience a user-visible error. Availability, on the
other hand, is the probability that a system is functioning correctly at a particular time.
Fault-Tolerance is the ability of a computer system to survive in the presence of faults.
In the literature, Fault Tolerance and Reliability tend to be used interchangeably.

2 Aspects of Reliability

A reliable system should have two main aspects in order to avoid errors: Error Detection
and Error Recovery. Error Detection is the process of discovering that an error has
occurred. Error Recovery is the process of restoring the system’s integrity after the
occurrence of an error.

In this section, we cover microarchitectural error detection and recovery schemes.

2.1 Error Detection

Typical error detection schemes in the literature are: (1) Redundant Execution, (2) En-
coded Processing and (3) Monitoring Error Symptoms.

Redundant Execution is the most common error detection solution satisfying strict
reliability requirements of mission-critical systems [15,20,26,30]. The instruction stream
is executed redundantly and the value is generated multiple times with a single or mul-
tiple resources. Later, a voting circuit checks if result of the executions are identical.
If results diverge, a recovery mechanism is triggered. Executing instruction streams re-
dundantly in chip multi processors (CMP) provides higher reliability since it can detect
both transient and permanent faults. Thus, redundant execution can reduce the Silent
Data Corruption (SDC) rate to almost zero for components it is covering. However,
when the executions are compared in the fine-granularity, redundant execution can also
increase the rate of the false positive case (i.e. error recovery is triggered although the
detected fault is benign). More essentially, the comparison of execution results in order
to detect divergent execution causes synchronization/comparison overheads especially
if the inter-processor communication channel has a limited bandwidth. Another disad-
vantage of redundancy is that it is difficult to provide reliability to non-deterministic
programs since replicas may observe different results from different random seeds.

Transactional Memory for Reliability 271

Encoded Processing adds redundancy by applying arithmetic codes (which are simi-
lar to parity bits used in memory redundancy) to the values processed by the application.
All operations must preserve the encoding which result in more computations and high
energy consumption. Encoded Processing adds redundancy (i.e. arithmetic codes) to
values in the application so that values are transformed into a larger domain where only
a small subset of values are valid. This process is termed as Encode. In the error-free
execution of the application, all values always stay in the valid state. In case of an error
such as a bit-flip in the operand or the operation of an instruction, it is highly likely that
results would diverge to the invalid state. The Decode process of the encoded process-
ing determines this divergence and detects the error which might have affected the data
during the storage, transport, or operation. The main advantage of encoded processing
over replication is that it allows executions of non-deterministic applications.

Monitoring error symptoms (e.g. fatal traps, miss-predictions) for error detection is
proposed to provide a low-cost error detection by avoiding redundancy. However, their
error coverage is limited and they do not mitigate Silent Data Corruptions (SDCs). For
instance, a fault may cause an erroneous amount of money to be transferred to a bank
account. Thus, these schemes are not convenient to be used in mission-critical systems.

2.2 Error Recovery

Checkpoint/Recovery is the most well-known error recovery technique which stores an
error-free state of the system (checkpointing) and reverts the system state upon error
detection (recovery). Checkpointing strategies are classified into three groups [2]: (1)
Global (2) Coordinated-local and (3) Uncoordinated-Local checkpointing.

Global checkpointing schemes create system-wide checkpoints periodically. The
scalability of these schemes is limited due to two main difficulties. First, typically they
perform relatively complex barrier synchronization at checkpointing at which some pro-
cessors may stay idle if load is not properly balanced among them. Second, when re-
covery is required, they rollback all processors to an earlier validated state which causes
unnecessary rollbacks of error-free processors.

Coordinated-local Checkpointing synchronize only the set of processors which com-
municated during the checkpoint interval before creating a checkpoint. Similarly, when
the recovery is required, only the cores which communicated with the erroneous core
rollback. Thus, coordinated-local checkpointing typically outperform global
checkpointing.

Uncoordinated-local checkpointing performs checkpointing locally at each proces-
sor without any synchronization. It only stores the interactions between processors in
order to rollback to a consistent checkpoint. This approach is interesting for executions
where processors communicate rarely.

In addition to the performance degradation in the error-free execution, recovery
schemes require supplementary hardware. Moreover, this hardware is non-functional
for performance, it is only utilized for reliability (e.g buffers to save checkpoints). These
structures increase system verification and test complexity.

272 G. Yalcin and O. Unsal

3 Reliability with Transactional Memory

Transactional Memory (TM) is one of the most promising approach for concurrent pro-
gramming. Also, several key characteristics of TM are notably suitable for developing
a reliable system [14].

TM provides mechanisms to abort transactions in case of a conflict. Transactions
record their tentative reads and writes in a read-set and write-set respectively. In order
to abort a transactions, TM systems discard or undo all the tentative memory updates
and restart the execution from the beginning of the transaction. Thus, a transaction’s
start can be viewed as a checkpointed state.

A reliable system should ensure that faulty tasks do not negatively affect other tasks
in the system. Hence, it should provide a failure isolation which is not easy to achieve
since tasks need to communicate. TM executes transactions atomically and in isolation
which also supports the isolation of failures.

Error detection presents a performance overhead in reliable systems every time it is
triggered. Moreover, if it is frequently triggered, the possibility that a benign fault cause
an error recovery is increased. Transactional semantics allows the error detection to be
deferred until a transaction commits (or the value becomes externally visible), so that
the cost of error detection can be reduced while its efficiency can be increased.

One of the main challenges in TM is how to cope with external actions such as
system calls or I/O operations. Note that external operations are an issue for reliable
systems as well and they are mostly deferred after validating that all operations are
error-free. Besides external actions, TM systems have inefficiency at executing large
transactions. However, when transactions are not used for concurrency control (i.e. re-
liability purposed transactions), transaction demarcation can be changed and these two
disadvantages of TM can be eliminated for reliable systems. Thus, the size of reliability-
purposed transactions can be limited and those transactions can be committed before
system calls and I/O operations. From now on, we use the term transaction for the reli-
ability purposed transactions unless it is determined otherwise.

In this section, we present the previous reliability schemes combining an error de-
tection scheme with TM recovery.

3.1 Symptom-Based Error Detection and Recovery with TM

Symptom-based error detection mechanisms using transactions to recover from appli-
cation crashes have been proposed in SymptomTM [34] and disclosed in a patent filed
by IBM [10] (See Figure 3 for the basic design of SymptomTM). In this approach,
applications are executed in back-to-back, reliability purposed transactions which are
monitored to detect if there are any symptoms of hardware errors, which typically result
in fatal traps (e.g., undefined opcode). Unless any fatal trap exception is raised in the
transaction, the write-set is committed to shared memory at the end of the transaction.
Otherwise, the system aborts and restarts the execution from the beginning of the trans-
action. If there is no symptom at the end of the second restarted execution, that means
that the error was transient and that it was corrected. If the second execution raises
the fatal trap exception signal again, this could be due to a permanent fault. In this

Transactional Memory for Reliability 273

Fig. 2. Basic design of SymptomTM [34]

case, SymptomTM allocates another core, copies the checkpointed state of the trans-
action to the second core and re-executes the transaction. If the second core does not
raise an exception, that means the first core had a permanent fault and finally it should
be disconnected from the system. Otherwise, either the error is caused by software or
SymptomTM can not recover from it.

Since there is no replication, the scheme has virtually no area/energy overheads in
the error-free execution. It has, however, limited error coverage since it cannot detect
silent data corruptions (SDC) and, further, exceptions can be raised after the commit
of the transaction. Both SymptomTM and [10] are build on top of a HTM that features
lazy conflict detection and lazy data versioning.

Some symptoms can be observed very efficiently (e.g., catching exceptions) and
symptom-based error detection can be easily combined with other error detection mech-
anisms. Some other symptoms such as mispredictions in the high confidence branches
can also be used as symptoms of faults. However, they may cause false positive impact
(i.e. a misprediction which are not due to a fault) unlike fatal traps, thus, they are not
convenient to be used for permanent fault detection. Similarly, those symptoms (e.g.,
infinite loops due to a corruption of the stop condition) may require an instrumentation
of the code or support by the operating system (e.g, adding timeouts).

3.2 Redundancy Based Error Detection and Recovery with TM

FaulTM [31,32] and Log-Based Redundant Architecture (LBRA) [25] propose utiliz-
ing redundant transactions for error detection and leveraging the abort mechanism of
transactional memory for error recovery in order to provide high reliability for mission-
critical systems.

The FaulTM approach is built on top of a HTM that features lazy conflict
detection and lazy data versioning (See Figure 3 for the basic design of FaulTM).

274 G. Yalcin and O. Unsal

Fig. 3. Basic design of FaulTM [31]

At the beginning of the execution, FaulTM creates a backup thread which executes the
identical instruction stream to the original thread. Then the original and backup threads
are executed as two separate transactions. Each transaction independently sends load
request to shared memory or read-sets. In FaulTM, there are no conflicts between the
original and the backup transaction, because the backup transaction is only for vali-
dation of error-free execution and it does not modify shared memory. Note that, an
original transaction may conflict with other transactions (reliability or concurrence pur-
posed) except its pair transaction. When a transaction aborts to resolve a conflict, its
pair transaction also aborts and restarts. Original and backup transactions wait for each
other (spin) to reach the commit stage. Then, the transaction pair compare their write-
sets and register files through the comparators in the backup transaction. If they match,
the original transaction commits its changes to memory, and the backup transaction is
cleared as if it aborts and it does not re-execute. Mismatch means an error due to a hard-
ware fault in one of the transaction that starts the recovery in which both the original
and backup transactions abort and they restart execution. If they match in the second
execution, that means that there was a transient fault either in one of the cores or in the
comparators in the first execution. Two successive mismatch signals between the same
original and backup transactions signify that either one of the cores or the comparators
has a permanent fault. In this case, FaulTM executes the transaction in a third core to
detect the source of the permanent fault by comparing the results with this third core’s
comparators.

FaulTM has three main advantages provided by lazy data versioning of TM. First,
FaulTM reduces the comparison overhead compared to the previous redundancy-based
fault-detection schemes due to two reasons. First, it compares the write-sets (instead of
each store values) which have a fewer amount of entries than the total number of store

Transactional Memory for Reliability 275

instructions due to multiple stores to the same address. Second, register file comparison
is done only at the commit stage of reliTXs (instead of after each instruction). Further-
more, comparison only at the commit point reduces the probability of detecting benign
faults; because if a fault is masked within the reliTX, its effect is eliminated before the
end of the reliTX. Second, FaulTM eliminates the requirement of separate input repli-
cation mechanisms (a mechanism that satisfies that pair transactions load the same data)
since memory is not modified until commit and a thread perceives memory as its pair
thread. Third, FaulTM avoids the propagation of a fault to the rest of the system, thus,
it provides a very fast error recovery.

However, in FaulTM the execution is stalled at the commit stages of the transactions
since transaction pairs are tightly coupled. Also, after the verification of the correct
execution of transactions, buffered values must be visible to the rest of the system. This
commit process presents a pressure over the memory hierarchy and the performance
of the system. In order to provide an alternative design overcoming these limitations,
Log-Based Redundant Architecture (LBRA), a reliability scheme build on a eager data
versioning HTM system is proposed.

In LBRA, the thread pairs are termed master-slave threads akin to original-backup
threads of FaulTM. The master thread executes the transaction but, additionally, it keeps
the results of its progress (i.e. Verification Signature which summarizes the computa-
tion performed during the execution of the transaction) in a pair-shared log. By means
of this log, the slave verifies that the results produced by master are correct. Using the
eager-eager HTM, LBRA decouples the pair transactions so that master transaction can
commit without being stalled for the execution of the slave transaction to be finished.
However, it requires additional implementation of 3 mechanisms: i) input replication:
Since master and slave transactions are not decoupled, the execution of redundant mem-
ory instructions would probably lead to input incoherence. Input replication is required
to solve this issue. LBRA extends the log area provided by the TM to contain the history
related to memory operations for the purpose of keeping track of the data values that the
master thread accesses. The load instruction of the slave transaction is served through
this log (in program order), thus, slave thread obtain the same value as its master-pair.
ii)Providing a stable recovery state: As memory values are allowed to be shared and
shared memory is eagerly updated in LBRA, potential faults could be propagated across
the system. Thus, when a fault is detected in a transaction and this transaction aborts, all
other transactions using the data produced by this faulty transaction (i.e. consumer of
the faulty transaction) should also abort. To this purpose, in LBRA, master thread track
the producer/consumer dependencies with other threads in the system by means of the
conflict detection support provided by TM. Thus, when a faulty transaction aborts, it
also sends an abort request to all its consumers. iii) output comparison: If a thread is
the consumer of another thread, the validation of the consumer thread is accomplished
after the validation of its producers.

Replication can also be utilized in distributed systems for reliability. Distributed Soft-
ware Transactional Memory (DSTM) systems are usually object-based. Having these
transactions execute on distinct address spaces makes it appealing to duplicate objects
for reliability. There is a wide body of previous work that aim to develop duplicate
DSTMs [9,7,8,12,24,17]; these papers are inspired by the fault tolerance properties of

276 G. Yalcin and O. Unsal

Fig. 4. Algorithm for eager error detection for Transactional Encoding simplified from [28]

database replication schemes. In addition, [13] investigates how checkpointing and flat
nesting could be employed to increase the scalability of these replication mechanisms.

3.3 Encoded Processing for Error Detection and Recovery with TM

Wamhoff at el [28] proposed Transactional Encoding which combines arithmetic codes
for error detection and STM for error recovery. They provide the design for both lazy
and eager conflict detections. They use AN arithmetic codes together with symptom-
based error detection. Besides the advantage of encoding processing that allows exe-
cuting non-deterministic applications, the software-based Transactional Encoding also
provide achieving reliability using unreliable commodity hardware. However, software-
only solutions can not guarantee the detection or the recovery of permanent errors since
replicas or recovered executions can be issued to the same hardware structures.

In the transactional encoding, first, the application written in C is transformed to the
encoded version by using an encoding compiler (see Figure 4). During this transforma-
tion, the main module initializing the application is not encoded. Also, encoded versions
of public functions and wrappers of those functions are added to the encoded applica-
tion. Wrappers encode the parameters for the function, call the encoded version of the
function and then decode the returned value (if there is any). In the second step of the
transactional encoding, transactional memory semantics are added to the encoded ver-
sion. In this sense, Transaction Begin/End instructions are added to the wrapper. Also,
all accesses to the state are redirected to the TM by invoking read and write operations
from the encoded functions. Also, before reading/writing to/from memory, the memory
address is decoded so that the correct memory location can be accessed.

The error detection can be accomplished in either lazy or eager manner similar to the
conflict detection of TM. If the error detection is accomplished eagerly, all transactional
writes conduct decode operation of encoded processing for the written data. Otherwise,
if the error detection is deferred until transaction commit, the entire write-set is decoded

Transactional Memory for Reliability 277

only in the commit stage. If transactional encoding detects a divergence of any value
from the valid state, it aborts the transaction and starts it from the beginning. Otherwise,
the transaction commits and all the memory operations can visible by the system.

4 Discussion: Pros and Cons of TM Design Parameters for
Reliability

Although TM (and especially STM) is known to have a high overhead for certain work-
loads, a significant portion of this overhead is due to data synchronization when de-
tecting whether different threads accessed common data. For error recovery purposes,
however, only the checkpoint/rollback behavior is necessary and the synchronization
requirement is therefore largely reduced. Hence, it is possible to design cost-effective
TM for error recovery by providing minimal synchronization.

TM systems can be implemented in the software, in the hardware or in a hybrid fash-
ion. On the other side, TM proposals implement two key mechanisms, data versioning
and conflict detection. Each of these mechanisms can be implemented either in lazy or
eager policies. In this section, we discuss the effects of these design parameters when
transactions are leveraged for the reliability purpose. At the end of the section, we also
present possible programming modelling extensions.

4.1 TM in Software or in Hardware

Reliability is becoming one of the essential design constraint in computer systems due
to the increasing fault rate in each technology nodes. Reliability can be accomplished
in the software or in the hardware level. Software-based reliability schemes have been
proposed in order to avoid new hardware design. However, besides that they present
higher performance degradation than hardware-based schemes, also they are not ca-
pable of detecting permanent faults. Moreover, they require the recompilation of the
source code.

On the other side, there have been many hardware-based academic reliability pro-
posals. However, most of them have not been implemented in real hardware. This
is because, these proposals require supplementary hardware and design of this extra
hardware such as checkpoint buffer for restart is dedicated only for reliability. Thus,
these structures increase system implementation and test complexity. To the best of our
knowledge, lockstepping is one of the few redundancy-based error detection proposals
with a real implementation [26,30]. We believe that building reliable systems on HTM
systems is an appealing approach and appealing topic to study due to two reasons. First,
the hardware structures required for reliability are also implemented in HTM systems
for optimistic concurrency. Second, HTM is already implemented in mainstream pro-
cessors and available from large system integrators [1,35].

Although there are HTM systems available, conducting reliability experiments on
those real-systems presents several challenges. Thus, the initial real-system experiments
are conducted in STM systems which presents high overhead similar to software-based
reliability schemes. In this section, we explain the challenges of running reliability ex-
periments in HTM systems.

278 G. Yalcin and O. Unsal

First of all, the code that requires recovery should be executed within transactions
regardless of whether the original code includes transactions or not (i.e. transactifi-
cation). In TM systems, the begin/end point of parallelism purposed transactions are
defined by the programmer and passed to the hardware via allocated instructions in the
ISA. In reliable systems, it is expected that HTM does the transactification transparently
in hardware so that transaction granularity can be arranged automatically not to exceed
the HTM limitations while not introducing many delays caused between transactions.
Moreover, in this way, not only the application but also operating system can run in
reliable transactions.

Secondly, when the replication is used for error detection, replicated transactions
require exchanging data for comparing the result of the transactions. However, in an
unmodified HTM, this exchange causes a conflict since one transaction reads the data
written by another transaction. One solution could be to run the replicated code in an-
other process (instead of another thread) thus in another address space and then compare
results, but this could lead to considerable overhead.

4.2 Conflict Detection and Data Versioning Policies

TM proposals implement two key mechanisms: data versioning and conflict detection.
Each of these mechanisms can be implemented either in lazy or eager policies. Out of
four possible combinations of these policies, the lazy-lazy [16], lazy-eager [27], and
eager-eager [19] schemes are the most popular implementations. In the rest of this sec-
tion, we provide a succinct discussion of the impact of TM policies on reliability by
considering five desirable features for a reliable system:

Table 1. Reliability attributes of different TM implementations (Bold is Better)

Data Versioning - Conflict Detection

lazy-lazy lazy-eager eager-eager
Checkpointing Overhead High High Low
Recovery Overhead Low Low High
Error Containment High High Low
Error Detection Latency High Low Low
Error Detection Overhead Low High High

(1) Low checkpointing overhead,
(2) low recovery overhead,
(3) high error containment, to limit the propagation of errors in the system,
(4) low error detection latency, to detect errors as soon as possible, and
(5) low error detection overhead.

In Table 1, we summarize effects of the data versioning and conflict detection poli-
cies on reliability. As we show in the table (bolds typeface denotes the desired proper-
ties), none of the possible three TM policy combinations has all these features.

Transactional Memory for Reliability 279

The cost of providing checkpoint/rollback behavior depends mainly on the data ver-
sioning strategy. Lazy data versioning works in two stages, a pre-commit phase and a
commit phase. In the pre-commit phase the modifications are made on private copies
and at the commit phase these modifications are written to the memory. Since the mod-
ifications within transactions are repeated—at least once for the private copy and once
for the shared memory—a significant overhead is introduced for checkpointing even
for error-free executions. However, it provides a very fast error recovery. Eager data
versioning performs in-place memory updates during transaction execution and intro-
duces overhead only upon abort, i.e., upon error recovery. The abort overhead is caused
by the replacement of modified versions of data with their versions prior to the trans-
action. Thus, eager data versioning presents less overhead for checkpointing compared
to lazy data versioning, however, its recovery overhead is much higher than lazy data
versioning. Eager data versioning is preferable in terms of performance and energy effi-
ciency when the error rate is low and the system presents few rollback. On the contrary,
when the error rate is high (e.g in low Vdd or when the hardware is located in a high
attitude), using lazy data versioning is preferable since the system would require many
rollbacks and a rollback for lazy data versioning is cheaper in comparison to eager data
versioning.

In TM implementations with eager data versioning, main memory keeps the latest
speculative version of the data. If we use eager data versioning for reliability, some data
in the shared memory which is not validated for being error-free, can be read by other
cores. Assuming any of these data or any address is erroneous, this error might then
easily propagate to concurrently executing tasks. Therefore, error propagation in ea-
ger data versioning is high while lazy data versioning presents high error containment.
Thus, eager data versioning requires additional synchronization mechanisms for error
recovery in order to rollback the communicating tasks when an error is detected in a
transaction. Due to the error propagation, all transactions executing in the systems may
require recovery. On the contrary, in lazy data versioning, only error-free data is written
to the shared memory, therefore any error occurring in a certain transaction does not
propagate to the other transactions through memory. Thus, only the erroneous transac-
tion rolls back while the rest of the system keeps running without wasting any error-free
work done. A possible benefit of using eager data versioning can be detecting errors in
the shared memory besides the errors in the pipeline structures. However, it requires a
detailed design which may present a higher overhead.

For Error Detection, from time to time the normal process should stop and the error
detection operations (e.g. in redundancy-based error detection, comparing the results
of instructions) should be carried out. Thus, the higher the number of error detection
is triggered, the higher the potential performance degradation due to error detection is
presented. In TM systems, error detection is accomplished during the conflict detection
time of TM. For instance in a redundancy-based reliable system utilizing TM with lazy
conflict detection (e.g. FaulTM), the comparison operation is carried out at the commit
stage of the transaction. On the contrary, for eager conflict detection, the error detection
should be carried out at every time the shared memory is updated (i.e. every write
operation). Therefore, we could conclude that potential performance degradation of
lazy conflict detection is lower.

280 G. Yalcin and O. Unsal

On the other hand, in lazy conflict detection any error occurring earlier in the trans-
action will only be detected at the commit stage, so error detection latency will be
higher. In eager conflict detection, however, the error could be detected earlier when a
transactional store containing the error is compared.

4.3 Possible Programming Model and Software Extensions

Reliability requirements of systems depend on the application. A suitable programming
modelling featuring programmer reliability annotations can reduce resilience costs for
reliable systems [33]. To this end, FaulTM adds the keyword “vulnerable”to denote
sections of code that should be protected by FaulTM against hardware errors instead
of duplicating the entire application. Using these keywords, programmers only need to
define the vulnerable sections in their applications. They can insert vulnerability bound-
aries as if they define atomic sections in TM applications. The vulnerable sections can
be either fine-grained, lasting for a few instructions or coarse-grained such as the en-
tire application. While the fine-grained approach causes less performance degradation,
coarse-grained approach provides more reliability. For instance, for an airplane control
application, the programmer could identify that the code that is responsible for con-
trolling the flaps should be protected coarsely, whereas the code regarding the on-flight
entertainment system is not protected at all. Alternatively in the fine grained version of
flap controlling code, the programmer decides to protect only the calculation of desired
flap angle but he leaves the graphic user interface unprotected.

Riegel et al [23] also proposes programming modelling extensions for recovering
from hardware errors and software exceptions by using atomic blocks. In this study,
when an atomic block fails, the Recovery Manager controls if the atomic block should
be retried and, if so, how often it should be retried. This mechanism can be utilized to
recover from transient and intermittent faults since those faults may disappear in the
second retry.

5 Conclusion and Future Direction

Reliability is becoming one of the essential design constraint in computer systems due
to increasing fault rate in each technology nodes. However, it presents high performance
and design costs, thus, providing reliability is expensive.

On the other side, mechanisms such as checkpointing and abort are already imple-
mented in transactional memory to support optimistic concurrency. We believe these
schemes can be leveraged for reliability. In this study, we present the similarities be-
tween TM and reliability requirements as well as design challenges of adapting TM for
reliability purpose. We also present several previous proposals in this area with their
benefits and drawbacks from the reliability point of view.

Acknowledgement. This work was supported in part by the Montblanc: European
scalable and power efficient HPC platform based on low-power embedded technology
project of call FP7-ICT-2011-7 under the contract number 288777.

Transactional Memory for Reliability 281

References

1. Adir, A., Goodman, D., Hershcovich, D., Hershkovitz, O., Hickerson, B., Holtz, K., Kadry,
W., Koyfman, A., Ludden, J., Meissner, C., Nahir, A., Pratt, R.R., Schiffli, M., Onge, B.,
Thompto, B., Tsanko, E., Ziv, A.: Verification of transactional memory in power8. In: Pro-
ceedings of the The 51st Annual Design Automation Conference on Design Automation
Conference, pp. 58:1–58:6 (2014)

2. Agarwal, R., Garg, P., Torrellas, J.: Rebound: scalable checkpointing for coherent shared
memory. In: Proceedings of the 38th Annual International Symposium on Computer Archi-
tecture, ISCA 2011, pp. 153–164 (2011)

3. Franklin, M., et al.: Built-in Self-Testing of Random-Access Memories. IEEE Computer
23(10) (October1990)

4. Wells., P.M., et al.: Adapting to Intermittent Faults in Multicore Systems. In: Proceedings of
the 13th ASPLOS, pp. 255–264 (2008)

5. Baumann, R.: Soft errors in advanced computer systems. IEEE Design and Test 22, 258–266
(2005)

6. Bidokhti, N.: SEU Concept to Reality (Allocation, Prediction, Mitigation). In: RAMS (2010)
7. Bieniusa, A., Fuhrmann, T.: Consistency in hindsight: A fully decentralized stm algorithm,

pp. 1–12 (2010)
8. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large

scale clusters. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 247–258 (2008)

9. Carvalho, N., Romano, P., Rodrigues, L.: A generic framework for replicated software trans-
actional memories. In: Proceedings of the Tenth IEEE International Symposium on Network-
ing Computing and Applications, pp. 271–274 (2011)

10. Chen, D.: Local Rollback for Fault-Tolerance in Parallel Computing systems, United States
Patent Application, 12/696780 (2011)

11. Constantinescu, C.: Trends and challenges in vlsi circuit reliability. IEEE Micro 23, 14–19
(2003)

12. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2stm: Dependable distributed soft-
ware transactional memory. In: Proceedings of the 2009 15th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 307–313 (2009)

13. Dhoke, A., Ravindran, B., Zhang, B.: On closed nesting and checkpointing in fault-tolerant
distributed transactional memory. In: IEEE International Symposium on Parallel and Dis-
tributed Processing, pp. 41–52 (2013)

14. Fetzer, C., Felber, P.: Transactional memory for dependable embedded systems. In: 7th Work-
shop on Hot Topics in System Dependability (HotDep), pp. 223–227. IEEE (2011)

15. Gong, R., Dai, K., Wang, Z.: Transient Fault Recovery on Chip Multiprocessor based on Dual
Core Redundancy and Context Saving. In: International Conference for Young Computer
Scientists, pp. 148–153 (2008)

16. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu,
M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and con-
sistency. SIGARCH Computer Architecture News 32(2), 102 (2004)

17. Kotselidis, C., Ansari, M., Jarvis, K., Lujn, M., Kirkham, C., Watson, I.: Distm: A software
transactional memory framework for clusters. In: Proceedings of the International Confer-
ence on Parallel Processing (ICPP), pp. 51–58 (2008)

18. Michalak, S.E., Harris, K.W., Hengartner, N.W., Takala, B.E., Wender, S.A.: Predicting the
Number of Fatal Soft Errors in Los Alamos National Labratory’s ASC Q Computer. IEEE
Transactions on Device and Materials Reliability 5, 329–335 (2005)

282 G. Yalcin and O. Unsal

19. Moore, K., Bobba, J., Moravan, M., Hill, M., Wood, D.: LogTM: log-based transactional
memory, vol. 12, pp. 254–265. Austin, Texas (2006)

20. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed Design and Evaluation of Redundant
Multithreading Alternatives. In: Proceedings of the International Symposium on Computer
Architecture, pp. 99–110 (2002)

21. Mukherjee, S.: Architecture Design for Soft Errors (2008)
22. Rashid, L., Pattabiraman, K., Gopalakrishnan, S.: Towards understanding the effects of inter-

mittent hardware faults on programs. Dependable Systems and Networks Workshops, 101–
106 (2010)

23. Riegel, T., Felber, P., Fetzer, C.: Composable error recovery with transactional memory. Bul-
letin of the European Association for Theoretical Computer Science (BEATCS) 99 (2009)

24. Romano, P., Rodrigues, L., Carvalho, N., Cachopo, J.: Cloud-tm: Harnessing the cloud with
distributed transactional memories. SIGOPS Oper. Syst. Rev. 44(2), 1–6 (2010)

25. Sanchez, D., Cebrian, J.M., Garcia, J.M., Aragon, J.L.: Soft-error mitigation by means of
decoupled transactional memory threads. Distributed Computing, 1–16 (2014)

26. Slegel, T.J.A.: IBM’s S/390 G5 Microprocessor Design. IEEE Micro 19, 12–23 (1999)
27. Tomić, S., Perfumo, C., Kulkarni, C., Armejach, A., Cristal, A., Unsal, O., Harris, T., Valero,

M.: Eazyhtm: eager-lazy hardware transactional memory. In: Micro-42: Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, New York, NY,
USA, pp. 145–155 (2009)

28. Wamhoff, J.-T., Schwalbe, M., Faqeh, R., Fetzer, C., Felber, P.: Transactional encoding for
tolerating transient hardware errors. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-
Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 1–16. Springer, Heidel-
berg (2013)

29. Weaver, C., Emer, J., Mukherjee, S.S., Reinhardt, S.K.: Techniques to Reduce the Soft Error
Rate of a High-Performance Microprocessor. In: Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture, pp. 264–275 (2004)

30. Wood, A., Jardine, R., Bartlett, W.: Data integrity in HP NonStop servers. In: Workshop on
SELSE (2006)

31. Yalcin, G., Unsal, O., Cristal, A.: FaulTM: Fault-Tolerance Using Hardware Transactional
Memory. In: Design, Automation and Test in Europe DATE (2012)

32. Yalcin, G., Unsal, O., Cristal, A.: Fault Tolerance for Multi-Threaded Applications by Lever-
aging Hardware Transactional Memory. In: International Conference on Computing Fron-
tiers (2013)

33. Yalcin, G., Unsal, O., Cristal, A., Hur, I., Valero, M.: FaulTM: Fault-Tolerance Using Hard-
ware Transactional Memory. In: Workshop on Parallel Execution of Sequential Programs on
Multi-Core Architecture PESPMA (2010)

34. Yalcin, G., Unsal, O.S., Cristal, A., Hur, I., Valero, M.: SymptomTM: Symptom-Based Er-
ror Detection and Recovery Using Hardware Transactional Memory. In: International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), pp. 199–200. IEEE
(2011)

35. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of intel transactional
synchronization extensions for high-performance computing. In: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, pp.
19:1-19:11 (2013)

Verification Tools for Transactional Programs

Adrian Cristal1, Burcu Kulahcioglu Ozkan2, Ernie Cohen, Gokcen Kestor3,
Ismail Kuru2, Osman Unsal1, Serdar Tasiran2,
Suha Orhun Mutluergil2, and Tayfun Elmas4

1 Barcelona Supercomputing Center, Barcelona, Spain
2 Koc University, Istanbul, Turkey

3 Pacific Northwest National Laboratory, Richland, WA
4 Google, Mountain View, CA

Abstract. While transactional memory has been investigated inten-
sively, its use as a programming primitive by application and system
builders is only recently becoming widespread, especially with the avail-
ability of hardware support in mainstream commercial CPUs. One key
benefit of using transactional memory while writing applications is the
simplicity of not having to reason at a low level about synchronization.
For this to be possible, verification tools that are aware of atomic blocks
and their semantics are needed. While such tools are clearly needed for
the adoption of transactional memory in real systems, research in this
area is quite preliminary. In this chapter, we provide highlights of our
previous work on verification tools for transactional programs.

1 Introduction

The verification of both sequential and concurrent programs using static and
dynamic methods has been a field of intense study. Much research has also con-
centrated on specifying and verifying transactional memory (TM) algorithms
and implementations. However, for transactional programs, whether the trans-
actions employed are TM, database or distributed-system transactions, verifi-
cation tool support is quite preliminary. This is not only the case for verifying
data structure and program invariants, but also for simpler generic safety prop-
erties such as race freedom or the absence of null pointer dereferences. In this
chapter, as representative of research in this space, we give an overview of three
approaches we have worked on for verifying programs that mix transactional
and non-transactional accesses.

In Section 2, we motivate the problem of verifying assertions, data structure
and program invariants for transactional programs. Since the few concurrent pro-
gram verification tools that can handle practical programming languages are not
aware of even strong atomicity semantics for transactions, the work described in
this section is the first of its kind that provides a workable tool to TM users. The
static verification of properties for transactional programs becomes both more in-
volved and more necessary when the TM platform being used provides more re-
laxed consistency guarantees such as snapshot isolation for performance reasons.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 283–306, 2015.
c© Springer International Publishing Switzerland 2015

284 A. Cristal et al.

The technique presented in Section 2 builds on the VCC tool for verifying concur-
rent C programs and provides tool support for transactional programs running on
relaxed platforms.

Section 3 focuses on dynamic techniques for detecting concurrency errors
for programs that mix transactional and non-transactional accesses. A vari-
ety of programming disciplines and platform support for this setting have been
investigated. In this section, we provide highlights of two dynamic race-detection
techniques and tools that have been applied successfully. While the
Goldilocks race and transaction-aware runtime described in Section 3.1 provides
DataRaceException as a programming language construct for transactional pro-
gram, the T-Rex tool in Section 3.2 is intended to be a debugging tool used
to avoid undesirable interference between transactional and non-transactional
accesses.

This chapter is not intended to exhaustively cover the literature on verifying
properties of transactional programs. Rather, by presenting at some length three
approaches we have worked on, we intend to highlight both the correctness and
the tool-building concerns in this area. As transactional programs find wider
use, especially because of commonly-available hardware TM support on general-
purpose CPUs, we believe the need for such tools will intensify.

2 Static Verification for Transactional Programs

Transactions provide a convenient, composable mechanism for writing concur-
rent and distributed programs. A transactional execution platform can provide
a strong or more relaxed programming semantics. The former simplifies pro-
gram construction and verification, while the latter provides better performance
and availability. This section is about a technique for verifying transactional
programs that operate under relaxed semantics.

Static tools for code verification targeted at sequential programs [8,19,17],
and the VCC verification tool [12] for verifying concurrent C programs have
been quite successful. These tools are (when applicable) thread, function and
object-modular, and scale well to large programs. For programmers interested in
formally, exhaustively verifying formal specifications ranging from simple par-
tial specifications such as the absence of null-pointer dereferences and out-of-
bounds array accesses, to program invariants, assertions, procedure pre- and
post-conditions these tools are indispensable. We present an overview of a pro-
totype tool [29] for carrying out static, modular verification of assertions and
invariants.

For transactional platforms, existing static verification tools cannot be used
as is, since they are not aware of transactions or possible relaxed consistency
semantics that may be offered by a transactional platform. The goal of the tech-
nique presented in this section is to provide a verification environment exactly
like that of VCC but for programs running on transactional platforms. The veri-
fication approach provides scalability and modularity, as VCC does, but requires
programmer annotations for procedure pre- and post-conditions and loops in the
same way all existing modular static code verification tools do.

Verification Tools for Transactional Programs 285

For performance reasons, many practical transactional platforms provide a
weaker consistency guarantee than atomic, serializable transactions and non-
transactional accesses. One very widely used such consistency model is snapshot
isolation (SI), where the entire transaction is not guaranteed to be atomic, but all
of the read accesses in the transaction are atomic and all the updates performed
by the transaction are atomic. Many popular databases provide SI as the de-
fault consistency mode. Relaxed semantics and relaxed conflict detection schemes
other than SI, such as programmer-defined conflict detection [39], and early re-
lease of read set entries [36] have been investigated in the database, software
and hardware transactional memory communities. For distributed transactional
programs, relaxed consistency semantics such as session SI [14] and parallel SI
[37] have been investigated (See per-record time line consistency [11] and prefix
consistency [38] for examples). In the rest of this section, for brevity, we focus
on the SI relaxed consistency model.

When a transactional execution platform provides strong consistency and se-
rializable transactions, the code of a transaction can be treated as sequential
code. This significantly simplifies writing and verifying applications. For the in-
creasingly common transactional execution platforms with relaxed semantics,
one way to retrieve the simplicity of sequential reasoning is to enforce serializ-
ability via additional analyses or instrumentation, e.g. by preventing or avoiding
write-skew anomalies. This approach can be useful some of the time, but, for
many examples, may result in a loss of performance or availability and defeat the
purpose of relaxed semantics. On platforms with relaxed semantics, much of the
time, it is the application author’s intent to implement a transactional program
that is correct, e.g. satisfies assertions and invariants, without enforcing strong
consistency or serializability. Typically, the way relaxed consistency exhibits it-
self in transactional code is in the form of “stale reads”’ – data read by the
transaction may not be the most recent version later during the transaction, or
even at the time of the read access, in the case of geo-replicated databases. The
verification technique presented in this section can handle such transactional
programs.

We take a transactional program and the relaxed consistency semantics SI.
Using the transactional program and the relaxed consistency model, we produce
an augmented C program with VCC annotations. The program our approach
outputs has the same structure as the input program, but includes an encoding
of the relaxed transactional semantics and allows exactly the executions and
interleavings specified by the relaxed semantics through the use of auxiliary
variables in VCC. This program transformation can be viewed as augmenting
the program with a high-level implementation of the transactional platform. The
transformation is designed with special attention towards preserving the thread,
function and object modularity of the verification of the sequential version of
the program in VCC.

286 A. Cristal et al.

2.1 Motivating Examples

To motivate our approach, in this section, we use (Figure 1) the Labyrinth bench-
mark from the STAMP benchmark suite, one of the four benchmark programs
we applied our method to. The Labyrinth program satisfies the desired invari-
ants and procedure post-conditions despite its executions not being serializable.
Enforcing serializability (as is typically accomplished by enforcing conflict seri-
alizability [31]) would be an unnecessary restriction that hurts performance.

Labyrinth is an example of a common parallel programming pattern. Trans-
actions each read a large portion of the shared data, perform local computation
and update only a small portion of the shared data.

// Program invariant:

// forall int i; 0<=i && i< pathlist->num_paths

// ==> isValidPath(grid, pathsList->paths[i])

FindRoute(p1, p2) {

transaction {

1: localGridSnapshot = makeCopy(grid);

2: // Take snapshot of entire grid

3: // Local, possibly long computation

4: onePath = shortestPath(p1, p2, localGridSnapshot);

5: // Desired post-conditions of shortestPath:

6: assert(isValidPath(onePath, localGridSnapshot))

7: assert(isConnectingPath(onePath, p1, p2);

8:

9: // Register points on onePath as "taken" on grid

10: // Add onePath to pathsList

11: gridAddPathIfOK(grid, pathsList, onePath);

12:

13: // FindRoute must ensure program invariants,

14 // and the post-condition

15: // onePath in pathsList &&

16: // IsConnectingPath(onePath, p1, p2)

} }

Fig. 1. Outline for FindRoute code and specification

As shown in 1, each concurrent transaction runs an instance of the function
FindRoute to route a wire in a three-dimensional grid (grid) from point p1 to
point p2. Wires are represented as paths: lists of points with integer x, y, and z
coordinates, where consecutive entries in the list must be adjacent in the grid.
The grid is represented as a three-dimensional array, where each entry [i][j][k]

is the unique ID of the path (wire). A data structure pathList keeps pointers to
all paths in an array.

Verification Tools for Transactional Programs 287

Each execution of FindRoute(p1,p2) first takes a snapshot of the grid (line 1)
by traversing it and then performs local computation using this local snapshot
to compute a path (onePath, line 4) from p1 to p2. Observe that, during this local
computation, other executions of FindRoute may complete and modify the grid.
In other words, localGridSnapshot may be stale snapshot of grid. SI guarantees
in this example that (i) the read of the entire grid in line 4 is atomic, (ii) that
the updates to pathsList and grid in line 11 are atomic, but does not guarantee
that the entire transaction is atomic.

Specification. Desired properties for this program are that (i) the grid is
filled correctly by the information, and that (ii) no two paths overlap. The latter
of these is implicitly ensured because each grid point contains a single wire ID
number. The former is formally expressed below

isValidPath(int ***grid, path_t* p) =

(forall int i; 0<= i < path->path_len ==>

p->ID == grid[p->x[i]][p->y[i]][p->z[i]])

forall int i; 0<= i < path->path_len-1 ==>

isAdjacent(p->x[i], p->y[i], p->z[i],

p->x[i+1], p->y[i+1], p->z[i+1])

FindRoute must preserve this invariant for all paths on pathList in addition
to the post-conditions that onePath is a valid path that connects p1 to p2 and is
in pathList.

Static Verification of Sequential FindRoute: When FindRoute is viewed as
if it is running sequentially, with no interference from other transactions, it is
straightforward to verify using VCC. The following are the key steps taken:

– We verify that the code for shortestPath (not shown) satisfies the post-
conditions in lines 6 and 7.

– Using this fact, we verify that gridAddPathIfOK, if and when it terminates,
satisfies the program invariant (no two paths overlap and pathsList and grid

are consistent), and the desired post-conditions in 14.

To carry out the verification tasks above, static code verification tools, including
VCC, require the programmer to write loop invariants as annotations. The rest
of the verification of function post-conditions is carried out automatically.

Verifying FindRoute Under Relaxed Consistency: The verification of
FindRoute under SI rests on the key observation that the conditions listed above
for correctness of FindRoute under SI remain correct even when thread interfer-
ence as described by SI occurs. The technique described in this section allows us
to verify that this is the case mechanically using VCC.

In a given instance of FindRoute, if gridAddPathIfOK detects that onePath over-
laps an existing wire, it explicitly aborts the transaction. Instances of FindRoute
that complete do so because they have computed a path onePath that not only
does not overlap any of the wires in the initial snapshot localGridSnapshot, but
also does not overlap any of the paths added to the grid since.

The intuition behind FindRoute being correct while running under SI is as
follows:

288 A. Cristal et al.

1. SI ensures that the traversal and copying of the grid in line 1 is carried out
atomically.

2. SI ensures that the updates to pathList and grid performed by
gridAddPathIfOK are carried out atomically.

3. To verify that an atomic, terminating execution of gridAddPathIfOK estab-
lishes the desired program invariant and post-condition, it is sufficient to
know that the post-conditions established by shortestPath in lines 6 and 7
still hold at the time gridAddPathIfOK starts running. New paths that may
have been added to grid since grid was copied into localGridSnapshot do not
cause invariant violations, since the atomically-executed gridAddPathIfOK ex-
plicitly aborts the transaction if it detects that shortestPaths overlaps one
of the paths in grid.

In our technique, we transform and augment the code for FindRoute to obtain
another C program with VCC annotations. Verifying the resulting program in
VCC amounts to checking that (3) continues to hold under thread interleavings
constrained by (1) and (2).

Our technique accomplishes this as follows.

• The encoded program has exactly the set of thread interleavings allowed by
SI. The auxiliary variables (e.g., version numbers for each grid element and
wire, fictitious locks, etc.) and constraints (“assume” statements) on these
variables built into the encoded program only allow executions where all read
accesses in a transaction are carried out atomically and all write accesses are
carried out atomically. There are no other restrictions on how the threads
are interleaved.

• When VCC verifies the object and global invariants and procedure post-
conditions (e.g., the FindRoute program invariant or post-condition of
shortestPath) in the encoded concurrent program, it checks whether they are
preserved under thread interference possible in the encoded program. Since
the encoded program (an ordinary concurrent C program) allows exactly the
interleavings specified by SI, this amounts to verifying that properties of the
original program running under SI hold.

The encoded program preserves the structure of the original program, and
does not inline code from other possibly interfering transactions.

2.2 Preliminiaries: Transactional Programs

The user provides the code for a transaction as a C function. The beginning and
end of a transaction are indicated by calls to the beginTrans() and endTrans()

functions. We make the committing of a transaction syntactically visible by a call
to commitTrans(t, inv) in order to allow the programmer to specify an invariant
that holds when the transaction is committed. Data shared by transactions is
represented by aliasing among arguments of functions calls representing different
transactions. Unless indicated otherwise, function arguments of the same type
are treated as possibly aliasing to the same address. Shared data is represented by

Verification Tools for Transactional Programs 289

aliasing among arguments of functions calls representing different transactions.
Transaction are not allowed to be nested.

We define states and the transition relation of a program under SI as follows:
A global state is a tuple GS = (GlV ar,GlMem, T toLcSts) such that

• GlV ar is the set of global variables, i.e., shared objects (structs) that mul-
tiple transactions hold references to in GS,

• GlMem : GlV ar → V al maps global variables to their values in the memory,
and

• T toLcSts : T id → L keeps local states of each transaction.

The local state of a transaction t contains LcV ar, the set of objects local to
t, RSet ⊆ GlV ar (WSet ⊆ GlV ar) the set of global variables that have been
read (written) by t since the beginning of the transaction.

An action is a unique execution of a statement by a transaction t in a state s.
An execution prefix of a program PSI is a tuple EN = (s,α) where α is a finite
sequence of actions α0, α1, . . . , αN−1 and s = s0, s1, . . . , sN is a finite sequence
of states such that (si, αi) → si+1 for all i < N . An execution has the form:

s0
α0−→ s1

α1−→ s2
α2−→ ...

αN−1−→ sN

The transaction consistency semantics and conflict detection scheme, such
as serial execution of transactions, conflict serializability, and SI specify which
interleavings of actions from different transactions are allowed in an execution.

2.3 SI and Other Relaxed Conflict Detection

We write IdxE(αi) to refer to the index i of action αi in the execution, and
TrE(αi) to refer to the transaction performing αi. To make precise the sets of
executions of a program allowed by different relaxed conflict-detection schemes,
we define the protected span of a shared variable x within a transaction t for a
given consistency model M . Intuitively, this span is a set of indices of actions
with the property that, according to the consistency model, at none of these
indices can an update to x in shared memory take place due to the commit
action of a transactions other than t .

The following definition of snapshot isolation makes two simplifying assump-
tions. First, we assume that if a transaction both reads and writes to a variable,
then the read comes before the write. Second, we assume that the effects of
transactions that have not committed or do not commit are not visible to other
transactions. We also take as implicit the usual requirement that of two concur-
rent transactions with write-write conflicts, at least one must abort.

Definition 1. An execution E is said to obey snapshot isolation iff for all com-
mitted transactions t, (i) all read accesses performed by t are atomic, (ii) all
write accesses performed by t are atomic, and (iii) if t both reads and writes to
a variable x , the value of x in shared memory is not changed between the first
access to x by t and the commit action of t.

290 A. Cristal et al.

To specify snapshot isolation in terms of spans within an execution, we first
define the snapshot read span of a variable x read by a transaction t. Let αi be
the first read action (of any variable) in a transaction t, and let αj be the last
read of a variable x by t. Then, the snapshot read span of x in t is the interval
[i, j]. If x is never read in t, its snapshot read span is the empty interval. The
protected span of a variable x in snapshot isolation is defined as follows:

• If x is only read by the transaction, the protected span of x is the snapshot
read span of x.

• If x is both read and written to, then the protected span is the interval [i, j]
where i is the index of the first access of the transaction to x, and j is the
index of the commit action of t.

• If x is only written to, the protected span is defined to be the write span of
x, which is the interval [i, j], where i is the index of the first write access to
x by t, and j is the index of the commit action of t.

• Otherwise the protected span is empty.

Snapshot isolation requires that the protected span of each variable x does
not contain any commit actions by other threads that write to x. Due to space
restrictions, we omit a proof of the fact that this formulation of SI in terms
of protected spans, which describes how certain implementations of SI operate,
implies Definition 1.

Other related relaxed transactional semantics, such as !WAR can be defined
using the concepts of read and write spans, version numbers, fictitious locks and
assume statements in a similar way.

Relaxing Write-After-Read Conflict Detection. This semantics specifies
the executions provided by a transactional memory with relaxed detection of
conflicts using the !WAR annotation as described in [39]. In this semantics, the
programmer annotates certain read actions to be relaxed reads. The protected
span of a variable x in t is defined as the interval [i, Idx(commit(t))], where αi is
the first regular (not relaxed) read action or write action accessing x as part of
t. A relaxed read of x in t is simply required to return the result of the last write
to x. Differently from serializable semantics, in read-relaxed semantics, after a
relaxed read of x by t but before t commits other transactions are allowed to
commit and update the value of x. However, conflicting writes are never allowed
between a write access and the corresponding commit action.

2.4 Concurrency, VCC and Modular Verification

In this section, we informally, introduce the VCC mechanisms and conventions
we make use of in our approach. VCC allows programmers to think C structs as
objects and other base C types (int, char, double etc.,) as primitive types. VCC
allows programmer to create ghost objects or declare ghost structs which can
not modify the concrete program state but can be used for verification tasks.
ghost structs can be C structs defined in the program or special types provided
by VCC.

Verification Tools for Transactional Programs 291

Each object has a unique owner at any given time. The concept of ownership
is one mechanism using which access to objects shared between threads is co-
ordinated, and invariants spanning multiple objects are stated and maintained.
Objects can be annotated with any number of two-state transition invariants:
first-order formulas in terms of any variables.

VCC allows the introduction of ghost variables of all types, including all C
types, and more complex ones such as sets or maps. Ghost variables are (auxil-
iary) history variables, and they do not affect the execution of the program and
values of program variables.

VCC performs modular verification in the following manner. Each function
is annotated with pre- and post-conditions. Each loop is annotated with a loop
invariant. Every struct may be annotated with two-state transition invariants.
Code may also be annotated with assertions in VCC’s first-order specification
logic, in terms of the program and ghost variables in scope. VCC then verifies the
code for one function at a time, using pre-post condition pairs to model function
calls, loop invariants to model executions of loops, and “sequential” or “atomic”
access, as described below, to model interference from concurrent threads. In
“sequential” access, the thread accessing a variable obtains exclusive access to a
variable aVar by obtaining ownership of aVar. Another way to coordinate access
to shared variables in VCC is to mark them volatile and to require that any
state transition of the program must adhere to the transition invariants of these
objects.

2.5 Source-to-source Transformation for Simulating SI

In this section, we present our source-to-source transformation. We have chosen
to implement our verification approach in this manner in order to expose to
the users the constructs used in the encoding. Currently, this transformation is
carried out manually following the procedure described in this section. In future
work, we plan to provide tool support for this transformation.

The input to our transformation is C program PSI . PSI contains the program
text and the correctness specifications. In VCC, these specifications are provided
as

• an invariant for user-defined data types (structs),
• desired function pre- and post-conditions, given as boolean expressions in
terms of variables in scope at function entry and exit,

• assertions, given as boolean expressions over transaction-local or shared vari-
ables

A global invariant that is to hold at the time a transaction commits can also be
specified.

The output of the transformation is a program P̃SI = Encode(PSI) that will
be verified using VCC. It runs under ordinary C semantics and contains the kinds
of VCC annotations described in Section 2.4. Verifying P̃SI under ordinary VCC
semantics is equivalent to verifying PSI under transactional SI semantics.

292 A. Cristal et al.

The encoding is obtained via a high-level modelling of the operational seman-
tics of SI. Since only the effects of succeding transactions are visible to other
transactions, the high-level model does not include mechanisms such as rolling
transactions back or aborted transactions. The transformation is described for
SI. While a simpler transformation would have sufficed for SI, the construction
we present here is necessary to generalize to other relaxed consistency models,
such as early release of read entries, programmer-defined conflict detection, e.g.
ignoring write-after-read conflicts.

P̃SI , the encoded version of a program PSI is constructed as follows.
P̃SI makes use of VCC statements of the form assume(φ). A thread in a

program can take a state transition by executing assume(φ) only at a state s
that satisfies φ, in which case, program control moves on to the next statement.
Interleavings disallowed by the consistency model M are expressed as a formula
ψ in terms of objects’ version numbers, and statements of the form assume ¬ψ
are used in the encoding.

Transforming Data Types: Each primitive C type used in the original pro-
gram is replaced by a “wrapper” struct type. This is necessary so we can coor-
dinate access to these variables using mechanisms provided by VCC.

For simplicity, we present the transformation for programs that only use int

s as primitive types. In the transformation, each shared variable of type int is
replaced with a variable of type PInt as shown below:

PInt{

int inMem; int inMemVNo;

int inTM[Trans]; int inTMVNo[Trans];

Lock lock;

_(invariant \unchanged(inMemVNo) ==> \unchanged(inMem))

_(invariant \forall int t;

\unchanged(inTMVNo[t]) ==> \unchanged(inTM[t]))

};

In the definition above PInt stands for struct Int*. The “wrapper” type PInt

holds the following information:

• a field inMem value that corresponds to the value of the variable in shared
memory,

• a version number inMemVNo that gets incremented atomically each time the
inMem field is written to,

• a (ghost) field inTM[Trans] which is a map from T id to integers. inTM[t]

holds the value of the transaction-local copy of the integer
• a (ghost) field inTMVNo[Trans] which is a map from T id to integers. inTMVNo[t]
is incremented atomically with each update of inTM[t]

• a (ghost) field lock that is used to convey to VCC when a transaction has
exclusive access to the int variable

This wrapper type has an important invariant that indicates that a field’s value
remains unchanged if its version number remains unchanged. This invariant,

Verification Tools for Transactional Programs 293

along with assume statements involving version numbers allows us to represent
constraints such as the value of a variable remaining unchanged between two
accesses within a transaction.

For each global variable of type int in PSI , the encoded program P̃SI has a
global variable of type PInt. For each global int variable (a) in PSI , we denote

the corresponding PInt variable in P̃SI by ã. When transforming the program
syntactically, we use lowercase variables a to refer to variables of type int in
the original program, and uppercase versions (A) to refer to the corresponding
wrapper variable of type PInt in the encoded program.

To implement transactional semantics, we create an instance of the Trans

struct per transaction.

Trans{

bool holding[PInt];

bool readSetInt[PInt];

bool writeSetInt[PInt];

};

Fields of Trans are ghost maps. readSetInt and writeSetInt are maps that
store Int objects read and written to by this transaction.

If there are struct declarations in the original program, Trans contains three
maps for each field of these structs used following the same approach for Int s.
The structs and their fields are flattened into maps.

Transforming a Transaction. The transformation is described assuming that
the code has been decomposed so that each statement accesses a global variable
at most once, as is typical in transactional applications. The code transforma-
tion makes use of a number of C functions whose pre- and post-conditions are
presented later in this section. We only provide highlights of the transformation
rules:

• Statements of the form beginTrans(t) remain unchanged in the transformed
version. (see pre and post-conditions of this function below)

• Statements that only assign a value val to a local variable or a local variable
to a local variable remain unchanged in the transformation.

• Statements that create a new shared variable A of type Int are transformed
to newPInt(A). This is similar for creating new shared variable of other types.

• Each statement l = v by transaction t that reads a global variable v into local
variable l is transformed to an atomically-executed statement that performs
the equivalent of the following VCC code atomically.

assume(\forall PInt P;

trans->readSet[P] ==>

trans->inTMVNo[P] == P->inMemVNo);

l = transReadInt(trans, V);

The specifics of transReadInt are described later in this section.
• Each statement V = l that writes the value of a local variable l to a shared
variable V is transformed to atomically-executed statements that perform
the equivalent of the following VCC code.

294 A. Cristal et al.

assume(V->\owner == t || V->\owner == NULL);

acquireLock(V,t);

assume(V->inTMVNo[t] == V->inMemVNo);

//V has not been written to since it was read by t.

transWrite(V, l, t);

This code enforces (as per SI semantics) if V is in the transaction’s read set
and write set, then V have not changed since a snapshot was taken.

• Each statement commitTrans(t, inv), is transformed to the following
atomically-executed sequence of statements:

assume(\forall PInt P;

t->writeSetInt[P] ==>

P->inTMVNo == P->inMemVNo + 1);

commitTrans(t);

assert(inv);

• For each statement endTrans(t), in the encoded version, we replace the state-
ment with endAndCleanTrans(t).

• Each statement assert(p), where p is a boolean expression in terms of lo-
cal variables, is left as is in the encoded version. Each boolean expression e

involved in a loop invariant, and function pre- and post-condition is trans-
formed to a boolean expression E, where each appearance of a global variable
v is replaced with a reference to the transaction-local copy v->inTM[t].

The functions used in the encoded program are listed below together with
their pre-conditions and post-conditions:

• beginTrans(t) creates a Trans structure for thread t. This function has no
pre-condition and has the post-condition that the read and write sets of t

and the set of variables t has exclusive ownership of are empty, i.e.,

\forall PInt P; !t->readSetInt[P] &&

!t->writeSetInt[P] && !t->holding[P]

• acquireLock(V, t) is used to obtain exclusive access to V by transaction
t. This is accomplished by using the fictitious (ghost) lock V->lock. Since
we are verifying only succeeding executions of transactions (and assuming
that aborted transactions have no visible effect), we call acquireLock in the
encoded program only at a state where it will successfully complete. Thus,
this function has the pre-condition that the global variable V has no owner or
is owned by t, and the post-condition that the owner of V is the transaction
t. The post-condition of acquireLock(V,t) also requires that t->holding[V]

be true.
• transRelaxedRead(V,t) reads V in a transaction t. This function does not
require V to be owned by t and has the post-condition that

t->readSetInt[V] == true &&

V->inTM[t] == V->inMEM &&

V->inTMVMo[t] == V->inMEMVNo

Verification Tools for Transactional Programs 295

• newPInt(V) is used to create a new PInt variable. This function has the
post-condition that V->owner is t. All version numbers associated with V are
initialized to 0.

• transWrite(V, l,t) writes the value of the local variable l to the inMem field
of V and atomically increments v->inTMVNo[t]. If V has been read previously
by t, then this function requires that V’s version number has not changed
since. These are expressed by the pre-condition

V->\owner == t && V->inMemVNo == V->inTMVNo[t]

and the post-condition

t->writeSetInt[V] == true &&

t->inTM[t] == l &&

t->inTMVNo[t] == old(t->inTMVNo[t]) + 1

• commitTrans(t) commits a transaction by writing the updates performed by
the transaction into the memory. Note that a valid execution can have only
local statements (that only effect local state) after commitTrans(t) statement
until it ends the transaction. This function is better explained by the follow-
ing pseudocode

_(atomic t {

\foreach PInt P;

if (ptrans->writeSetInt[P]) {

P->inMEM = P->inTM[t];

P->verNoInMEM = P->verNoInTM[t];

}

})

Since VCC currently does not support loops inside atomic statements, the
state update corresponding to the loop above is expressed as the function
post-condition for commitTrans and the atomicity of the commit is accom-
plished using fictitious locks for objects for which holding is true.

• endAndCleanTrans(t) ends a transaction t by releasing the locks that the
transaction holds, cleaning its read and write sets. It has the post-condition
that t releases ownership of all objects it owns, and the readSetInt,
writesSetInt, and holding are all reset to maps corresponding to empty
sets.

The following theorem states the soundness of our verification approach.

Theorem 1 (Soundness). Let PSI be a transactional program and P̃SI be the

augmented program obtained from PSI as described above. Then P̃SI satisfies its
specifications (assertions, invariants, function pre- and post-conditions) if and
only if PSI satisfies its specifications.

296 A. Cristal et al.

It follows from this theorem that users can start with the program P , pro-
vide the desired specifications, and additional proof annotations. Then, to verify
properties of PSI , users can follow the source-to-source transformation approach
described in this section and obtain P̃SI . Verifying the transformed specifica-
tions with the transformed annotations on P̃SI is equivalent to verifying the
specifications of PSI , by the soundness theorem.

The source-to-source code transformation preserves the thread, function, and
object structure of the original program. The newly-introduced objects repre-
senting transactions are local to each thread or transaction. All additional invari-
ants introduced are per-object. There is no inlining of code from other, possibly
interfering transactions, and the size of the transformed code is linear in the size
of the original code.

2.6 Verifying Transformed Program with VCC

In this part, we explain how verification of the transformed program is performed
on the grid example. For the grid, user provides the program invariant both as
the pre-condition and post-condition of findRoute and specifications between
lines 13-16 as post-condition for the original program.

Generally, program pre- and post-conditions are not enough for verification
and the user may need extra ghost variables or annotations. Especially for the
loops or other code blocks enclosed with curly parentheses, user should provide
conditions about user defined shared or local objects that are satisfied through-
out the code block and helps verification of the post-conditions. Since findRoute

does not contain such code blocks. Hence, no extra annotation is needed.
Moreover, the user may need to provide extra annotations although the func-

tion does not contain any such code blocks. These annotations reflect the cor-
rectness intuition of the program. To our experience with SI, user should provide
a condition that holds right after end of the read phase (after snapshot has been
taken) such that this condition is preserved although other transactions interfere
and modify data. In the grid example, assertions on lines 6,7 reflect the correct-
ness intuition. onePath is a valid and connecting path for localGrid and grid

when the snapshot was taken. It continues to hold during execution although
other transactions interfere and modify grid. This information is enough for
VCC to verify post-conditions of findRoute: Since onePath is a valid and con-
necting path on the localGrid and points on the onePath stays the same in grid,
onePath becomes a valid and connecting path after call to addGridPathIfOK.

Note that the assertions added for verification on lines 6,7 do not include vari-
ables, fields or calls to functions introduced by the transformation. Therefore,
user does not need any knowledge about transformation and these extra pro-
gram parts. This is the case we encountered during the verification of examples.
Correctness intuition based on local and shared user variables are enough for
verification.

If the initial correctness intuition is not enough for verification for function
post-conditions, user may come up with tighter and stricter annotations for
verification of assertions or program post-conditions until the function is verified.

Verification Tools for Transactional Programs 297

2.7 Experimental Demonstration

We applied our technique to the Genome, Labyrinth and Self-Organizing Map
benchmarks as implemented in [39] and a StringBuffer pool example that we
wrote ourselves. These examples have pre-annotated transactional code blocks
which can be run under relaxed transactional semantics. We made precise and
formally verified the correctness arguments for these implementations and for
the StringBuffer example. Our work makes formal the correctness arguments
in the work of Titos et al. [39] about the correctness of the transactions in
the benchmarks and provides evidence that the intuitive reasoning about why
programs can function correctly under TM relaxations can be expressed and
verified systematically.

For each benchmark, we wrote partial specifications and statically verified that
they hold for transactional code running with the regarding relaxed consistency
semantics, starting from a VCC verification of the specifications on a sequential
interpretation of the benchmark.

struct node t { int key; node t* next; ghost Set reach;}
1 bool list_insert(list_t *listPtr,

2 node_t *node) {

3 node_t *prev, *curr = listPtr->head;

4

5 do {

6 prev = curr;

7 curr = curr->next;

8 } while (curr != NULL

9 && key > curr->key);

10 (invariant loopInv(prev, curr, head, node))

11 // loopInv(prev, curr, head, node) ==

12 // prevKey < key && prevKey < curKey

13 // && prev reachable from head

14 // && curr reachable from head

15

16 // assert(prev->next == curr);

17 node->next = curr;

18 prev->next = node;

19 return true; // key was not present

20 }

Fig. 2. The insertion operation of a sorted linked list

• Genome: Figure 2 shows the pseudocode for a linked list implementation
used in the Genome benchmark [10]. The code in the figure has been simpli-
fied for ease of presentation. In the part of this benchmark where relaxed
consistency is used, concurrent transactions insert into a shared linked list.
Transactions run under programmer-defined conflict detection, where write-
after-read conflicts are ignored (!WAR), i.e., do not cause transactions to abort.

298 A. Cristal et al.

Fig. 3. Sorted linked list and a write-after-read conflict

Figure 3 illustrates how concurrent insertions experience write-after-read
(!WAR) conflicts, and how, intuitively, it would be correct implementation to
let an insertion commit even though it experiences a WAR conflict. Following
[39], the body of list insert is marked with the !WAR annotation to indicate
that write-after-read conflicts should be ignored.
We verify that the linked list maintains two invariants under interference : (i)
its nodes are in ascending order and (ii) linked list is not circular. We further
verify that the addNode(newNode) Function satisfies the post-condition that
the node it adds (newNode) is reachable from the head of the linked list. The
read (traversal) phase of the addNode function finds a node prev in the list
after which newNode is to be inserted. The assertion that prev is reachable
from the head of the list and that the appropriate place for newNode to be
inserted is right after prev is preserved despite interference caused by ignoring
write-after-read conflicts.

• SOM: In this benchmark, concurrent transactions run the learning phase
of the machine learning algorithm SOM. SOM contains a shared grid of
which nodes are n-dimensional vectors. The learning function solve takes
an n-dimensional vector v and the grid as input, calculates the Euclidean
distance of v to each grid nodes, picks the closest one v′ and moves nodes in
a neighbourhood of v′ closer to v.

• StringBuffer In this example, a pool of StringBuffer objects are imple-
mented as a collection. Transactions to allocate or free a string buffer perform
relaxed read on the shared collection. When a transaction finds a suitable
object and wants to allocate it, it can commit ignoring other possible write
operations (that allocate or free a string buffer object) on the collection. The
example is written using programmer-defined conflict detection, in particu-
lar, using !WAR semantics. We verified that a data structure invariant and
post-conditions of the Allocate and Free functions are satisfied.

• Labyrinth: This example and its verification process was described earlier
in the section.

Verification Tools for Transactional Programs 299

We have demonstrated the applicability of our verification approach on these
examples that were written without assuming serializability and satisfied their
specifications despite this. In each of these examples, our encoding facilitates
thread- and procedure-modular correctness proofs that hold for an arbitrary
number of threads. Programmer annotations on encoded program makes no ref-
erence to auxiliary encoding variables. Our experience with the SI and !WAR

relaxed consistency models, which are very similar to other relaxed consistency
models described earlier leads us to believe that our static verification technique
is a useful tool for a programmer building applications in these settings.

2.8 Related Work

Relaxed Conflict Detection. Relaxed conflict detection has been devised to
improve concurrent performance by reducing the number of aborted transac-
tions. Titos et al. [39] introduce and investigate conflict-defined blocks and lan-
guage construct to realize custom conflict definition. Our work builds on this
work, and provides a formal reasoning and verification method for such pro-
grams. As we have shown with SI and !WAR, we believe that our method can
easily be adapted to support other relaxed conflict detection schemes.

Enforcing (conflict) Serializability, Detecting Write-Skew Anomalies.
There is a large body of research on verifying or ensuring conflict or view seri-
alizability of transactions even while the transactional platform is carrying out
relaxed conflict detection [15,7,5,9,3,18]. In this work, we enable programmers to
verify properties of transactional code on SI even when executions may not be
serializable. This allows the user to prove the correctness of and use transactional
code that allows more concurrency.

Linearizability. One way to allow low-level conflicts while preserving
application-level guarantees is to use linearizability as the correctness crite-
rion [26]. To prove linearizability of a transactional program P running under

SI, one could use the encoded program we construct, P̃ as the starting point
in a linearizability or other abstraction/refinement proof. In this work, we have
chosen not to do so for two reasons. First, abstract specifications with respect to
which an entire program is linearizable may not exist or may be hard to write.
Second, programmers would like to verify partial specifications such as assertions
into their program in terms of the concrete program variables in scope. Verifying
linearizability does not help the programmer with this task.

Encodings, Source-to-Source Transformations. As a mechanism for trans-
forming a problem into one for which there exist efficient verification tools,
source-to-source code transformations are widely-used in the programming lan-
guages and software verification communities. The work along these lines that
is closest to ours in spirit involves verifying properties of programs running un-
der weak memory models by transforming them into programs that run under
sequential consistency semantics [6,4]. Our work also makes use of a source-to-
source translation in order to transform the problem of verifying a transactional

300 A. Cristal et al.

program running under SI to a generic C program that can be verified using
VCC. Our transformation results in only a linear increase in code size. While
we perform an encoding for representing different semantics from these studies,
our encoding itself has some features that distinguish it from encodings devised
for different verification purposes. During the transformation, the thread, object
and procedure structure of the original program is preserved. No inlining of ex-
tra code modeling interference from other transactions is involved. We also have
the practically important advantage that while verifying his code under SI, the
user does not have to provide extra annotations in terms of the extra auxiliary
variables in the encoded program.

3 Dynamic Verification for Transactional Programs

While there has been some preliminary work on temporal specifications for pro-
grams that use optimistic concurrency, including transactional programs [35,34],
the vast majority of research on dynamic verification techniques for transac-
tional programs has focused on detecting races. As with ordinary concurrent
programs, race conditions are undesirable for two reasons. First, they result in
non-deterministic outcomes for read accesses even for a given fixed execution
and thread interleaving. Second, race conditions are symptomatic of higher-level
programming errors, such as a certain concurrency discipline not being followed
or the intended atomicity not being accomplished by the program.

As with most concurrent programming settings, there is much discussion on
the definition of race conditions for transactional programs. In this section, we
first provide an overview of various definitions of race conditions that are the
most interesting from the point of view of an application programmer. We then
highight two race detection tools for transactional programs from the literature:
the Goldilocks tool for precisely detecting races in transactional Java programs,
and the T-Rex tool for dynamic detection of potentially-harmful pairs of trans-
actional and non-transactional conflicting accesses to a shared variable.

One category of race detection approaches are based on a precise definition of a
happens-before relationship between actions in a transactional program. In such
approaches, synchronization primitives in the transactional program are modeled
in the same way as the programming language being used so that the definition of
the happens-before relation is backwards compatible. There are several different
ways of defining the happens-before relationship between software transactions
in the literature [23,20,22,25,24]. Different definitions of happens before make
different choices on whether two transactions are considered to synchronize with
each other, usually based on what variables are accessed within the transactions.

Some definitions of the happens-before relationship in the literature are ob-
tained by using an analogy to lock-protected programs. For instance, in the Single
Global Lock Atomicity (SGLA) semantics [30], the happens-before relationship
is defined as if all transactionally-executed code blocks are protected by the
same, single global lock. This definition naturally integrates the happens-before
relationship of the underlying programming language and the happens-before

Verification Tools for Transactional Programs 301

relationsips induced by the TM platform. On transactional platforms that im-
plement this semantics, Dalesandro et al. [13] call a program transactional data
race free (TDRF) if any two accesses to the same variable one of which is a write
are ordered by the happens before relationship as defined in SGLA.

A race detection algorithm can either be explicitly based on a choice of a
particular definition of a happens-before relationship in a transactional execu-
tion, or can formulate undesirable intereference between accesses without making
explicit the underlying happens-before model. The former approach has the ad-
vantage of precision, even when the race detection algorithm makes the choice to
allow false positives or negatives, since what exactly constitutes a false warning
is known. The latter approach may be more applicable for use in conjunction
with a wider variety of TM implementations. Goldilocks [16] is an example of
the former category of approaches while T-Rex [28] is an example of the latter
category.

In the transaction semantics used in Goldilocks, pairs of shared variable ac-
cesses where both accesses take place within the same transaction are considered
to be race-free. A linearization of the projection of the happens-before ordering
onto the commit actions corresponds to the atomic order of transactions as de-
fined in [20]. Naturally, pairs of accesses executed transactionally are considered
race free, reflecting the fact that these accesses are managed by the TM im-
plementation and the programmer and the dynamic race checker should not be
concerned with them.

3.1 Transaction-Aware, Precise Race Detection

The Goldilocks runtime is precise about when it throws DataRaceException in the
presence of software transactions that manage a portion of the shared data. This
issue brings about two challenges. First, for portions of the execution not con-
tained in transactions, transactions become yet another synchronization primi-
tive to be taken into account. Second, it is desirable to trust the correctness of
a TM implementation and to avoid the cost of checking at runtime that it per-
forms proper synchronization for its implementation variables and for accesses
performed transactionally.

Goldilocks builds upon the Java Memory Model, which does not specify which
happens-before edges (must) arise due to transactions and atomic code blocks.
As observed in [21], there is not yet a consensus about the interaction between
the semantics of transactions and the Java Memory Model. Such a specification
serves as an interface between the implementers and users of TM. The TM
implementer must guarantee, among other things, at least the existence of the
required synchronization edges using Java language or lower-level primitives.
The actual implementation (e.g. [27]) may actually provide more synchronization
than required.

Goldilocks is based on the following interpretation of strongly-atomic trans-
actions. All transactions, along with other synchronization operations are part
of the global synchronization order of the Java memory model. Given two trans-
actions Tx1 and Tx2, Goldilocks requires that Tx1 happens-before Tx2 if and

302 A. Cristal et al.

only if there exists a shared variable x that Tx1 writes and Tx2 reads. This does
not include variables involved in the TM implementation but not visible to the
programmer. The actual transaction manager may be performing stronger syn-
chronization and may be using some of the same locks and/or volatile variables
as the application program, but, proper synchronization of the application pro-
gram should not rely on this. The Goldilocks approach is able to accomodate
other, similar definitions of when a transaction happens-before another. For in-
stance, it can handle the case where Tx1 happens before Tx2 if and only if there
is a variable x that Tx1 reads or writes and Tx2 reads or writes.

To detect races at runtime, Goldilocks requires a transaction manager to pro-
vide or make possible for the runtime to collect the following information for
each transaction:

• the shared variables read by the transaction
• the shared variables written by the transaction
• the place of commit point of the transaction in the global synchronization
order

Goldilocks race-aware runtime makes use of the implementation of transac-
tional (atomic) blocks via source-to-source translation of Hindman et. al. [27]. In
this implementation, all shared variable reads and writes that are part of a trans-
action come after the first lock acquire associated with the transaction, and they
come before the first lock release, which also constitutes the commit point of the
transaction. Goldilocks extends the lockset update rules for the base precise race
detection algorithm for Java in order to handle transactions. The nature of the
lockset rules and the implementation made it possible to integrate this feature
without significant restructuring. In [16], we demonstrate this way of handling
transactions in our runtime on a hand-coded transactional data structure.

3.2 Detecting Potential Races in Transactional Programs

Dynamic race detection algorithms that precisely check a happens-before rela-
tionship handle many styles of synchronization. This often results in high com-
putational overhead for both transactional and non-transactional programs. A
happens-before-based algorithm needs to keep track of and synchronize access to
a large amount of analysis metadata in order to precisely capture the execution
and synchronization history. One other possible undesirable feature of such al-
gorithms is that actual execution order of memory accesses and source program
order may not co-incide because hardware and compiler instruction re-ordering
may break this correspondence. Compiler optimizations such as the elimination
of certain unnecessary accesses or, say, empty transactions may have significant
consequences regarding the happens-before relationship. While the source pro-
gram appears to have certain happens-before relationships, the actual execution
might not. Since a programmer would ideally like to base correctness reasoning
about the program on the program source, a discrepancy between source code
and execution happens-before relationships can be dangerous.

Verification Tools for Transactional Programs 303

While a runtime such as Goldilocks must precisely keep track of the happens-
before relationships observed in an execution, for a debugging tool, this precision,
even ignoring the computational cost, may not be desirable. A programmer might
want to know about potential race conditions in executions that are similar
to the one observed, even if the observed execution itself does not experience
a race condition. Race detectors such as ones based on Eraser [32] for non-
transactional programs, or the T-Rex [28] race detection tool for transactional
programs instead track adherence to a certain concurrency discipline.

For transactional programs, race detection approaches based on a happens-
before relationship necessarily make strong assumptions about TM implementa-
tions. For instance, since privatization and publication, based on program source
code and a happens-before relationship, are expected to be safe patterns. How-
ever, in practice, especially for software TM implementations, for performance
reasons, privatization and publication may not be safely supported [28]. For
software TM implementations that do not support safe privatization and pub-
lication, speculative reads, buffered writes or the abort mechanism in the TM
implementation may result in data races introduced by the TM implementation
itself [28]. Kestor et al. [28] provide examples of programs in which updates can
be lost or zombie transactions may have harmful effects on other transactions –
effects that are not visible when only the source code of the transactional pro-
gram and a precise happens-before relationship based on read and write-sets of
succesful transactions are considered. As a result, race detection based on the
happens-before relationship may not be the most appropriate practical approach
for debugging transactional programs. Such programs may experience data cor-
ruption or even program crashes even if they appear to be free of races judging by
a happens-before relationship and the program source code. Researchers have in-
vestigated concurrent programming disciplines to avoid undesirable interactions
between non-transactional and transactional accesses [1,2]. These disciplines may
be enforced by a compiler, a runtime, or by requiring the programmer’s collab-
oration by notifying the compiler or runtime of transitions of variables between
transactional and non-transactional access modes.

Instead, in T-Rex [28], Kestor et al. employ a correctness criterion that is less
dependent on particular TM implementations, and, in particular, does not rely
for correctness on a safe implementation of privatization and publication idioms.
T-Rex defines a transactional data race so that in a correctly synchronized pro-
gram, for a pair of accesses to the same shared variable at least one of which is
a write, the following hold.

• Either both accesses take place within transactions, or

• the two accesses are separated by a global (i.e., involving all threads) syn-
chronization operation such as a barrier or thread fork or join, and

• it is not the case that one of the accesses takes place in a fragment of the
execution during which there is only one live thread

This definition of transactional data race is defined based on the set of ac-
cesses observed during an execution, and, in many ways, is independent of the

304 A. Cristal et al.

particular interleaving of actions. Similar to data race detectors based on lock-
set algorithms, this definition does not need to witness a concurrent access to a
shared memory location in particular program execution to report a potential
race [33]. Consider a program that fails to protect a particular data access by
enclosing it within a transaction. Race detection tools that track the precise
happens-before relationship would signal an error only in some executions of
this program, whereas our algorithm would signal a transactional data race in
all executions of this program.

Using this pragmatic definition of correct synchronization, T-Rex is able to
both be computationally efficient and detect noteworthy violations of the cor-
rectness criterion above in STAMP benchmarks.

4 Conclusion

The tools and techniques described in this chapter represent important but pre-
liminary steps towards building software engineering and verification tools for
programs that make use of transactional memory. Mature software engineering
tools for transactional programs will need to be developed and integrated into the
program authoring, compilation, testing and debugging toolchain as TM finds
wider use. As language primitives implemented using TM become widespread,
it is expected that semantics of TM-supported programming primitives will find
their way into language and memory-model specifications.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. SIGPLAN Not. 43(1), 63–74 (2008)

2. Abadi, M., Harris, T., Moore, K.F.: A model of dynamic separation for transac-
tional memory. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 6–20. Springer, Heidelberg (2008)

3. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. PhD thesis, AAI0800775 (1999)

4. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software Verification for
Weak Memory via Program Transformation. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems. LNCS, vol. 7792, pp. 512–532. Springer,
Heidelberg (2013)

5. Alomari, M., Fekete, A., Röhm, U.: A robust technique to ensure serializable execu-
tions with snapshot isolation dbms. In: Proceedings of the 2009 IEEE International
Conference on Data Engineering, ICDE 2009, pp. 341–352. IEEE Computer Soci-
ety, Washington, DC (2009)

6. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

7. Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of serializability.
SIGPLAN Not 45, 31–42 (2010)

Verification Tools for Transactional Programs 305

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

9. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
In: Proceedings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2008, pp. 729–738. ACM, New York (2008)

10. Minh, C.C., Chung, J.W., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: Proc. of the IEEE International Sym-
posium on Workload Characterization, IISWC 2008 (September 2008)

11. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data
serving platform. Proceedings of the VLDB Endowment 1(2), 1277–1288 (2008)

12. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based
modular verification of concurrent c. In: ICSE-Companion 2009, pp. 429–430 (May
2009)

13. Dalessandro, L., Scott, M.L., Spear, M.F.: Transactions as the Foundation of a
Memory Consistency Model. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 20–34. Springer, Heidelberg (2010)

14. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In:
Proceedings of the 32nd International Conference on Very Large Data Bases, pp.
715–726. VLDB Endowment (2006)

15. Dias, R.J., Distefano, D., Seco, J.C., Lourenço, J.M.: Verification of Snapshot Iso-
lation in Transactional Memory Java Programs. In: Noble, J. (ed.) ECOOP 2012.
LNCS, vol. 7313, pp. 640–664. Springer, Heidelberg (2012)

16. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware java
runtime. In: PLDI 2007: Proc. of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 245–255. ACM, New York
(2007)

17. Fähndrich, M.: Static Verification for Code Contracts. In: Cousot, R., Martel, M.
(eds.) SAS 2010. LNCS, vol. 6337, pp. 2–5. Springer, Heidelberg (2010)

18. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Transactions on Database Systems (TODS) 30(2), 492–
528 (2005)

19. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI 2002, pp. 234–245. ACM Press, New
York (2002)

20. Grossman, D., Manson, J., Pugh, W.: What do high-level memory models mean
for transactions? In: MSPC 2006: Proc. of the 2006 Workshop on Memory System
Performance and Correctness, pp. 62–69. ACM Press, New York (2006)

21. Grossman, D., Manson, J., Pugh, W.: What do high-level memory models mean
for transactions? In: Proceedings of the 2006 Workshop on Memory System Per-
formance and Correctness, MSPC 2006, pp. 62–69. ACM, New York (2006)

22. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA
2003: Proc. of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications, pp. 388–402. ACM Press, New
York (2003)

23. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP 2005: Proc. of the Tenth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pp. 48–60. ACM Press, New York
(2005)

306 A. Cristal et al.

24. Herlihy, M.: SXM1.1: Software transactional memory package for c#. Tech. rep.,
Brown University & Microsoft Research (May 2005)

25. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proc. of the Twentieth Annual International Symposium
on Computer Architecture (1993)

26. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

27. Hindman, B., Grossman, D.: Atomicity via source-to-source translation. In: Pro-
ceedings of the 2006 Workshop on Memory System Performance and Correctness,
MSPC 2006, pp. 82–91. ACM, New York (2006)

28. Kestor, G., Unsal, O.S., Cristal, A., Tasiran, S.: T-rex: A dynamic race detection
tool for c/c++ transactional memory applications. In: Proceedings of the Ninth
European Conference on Computer Systems, EuroSys 2014, pp. 20:1–20:12. ACM,
New York (2014)

29. Kuru, I., Ozkan, B.K., Mutluergil, S.O., Tasiran, S., Elmas, T., Cohen, E.: Verify-
ing programs under snapshot isolation and similar relaxed consistency models. In:
Workshop on Transactional Computing, TRANSACT (2014)

30. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.L.,
Saha, B., Welc, A.: Practical weak-atomicity semantics for java stm. In: Proceed-
ings of the Twentieth Annual Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2008, pp. 314–325. ACM, New York (2008)

31. Papadimitriou, C.: The theory of database concurrency control. Computer Science
Press (1986)

32. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

33. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

34. Sezgin, A., Tasiran, S., Muslu, K., Qadeer, S.: Run-time verification of optimistic
concurrency. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I.,
Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418,
pp. 384–398. Springer, Heidelberg (2010)

35. Sezgin, A., Tasiran, S., Qadeer, S.: Tressa: Claiming the future. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 25–39.
Springer, Heidelberg (2010)

36. Skare, T., Kozyrakis, C.: Early release: Friend or foe?. In: Workshop on Transac-
tional Memory Workloads (June 2006)

37. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, pp. 385–400. ACM (2011)

38. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in bayou, a weakly connected replicated storage
system. ACM SIGOPS Operating Systems Review 29(5), 172–182 (1995)

39. Titos, R., Acacio, M.E., Garćıa, J.M., Harris, T., Cristal, A., Unsal, O., Valero,
M.: Hardware transactional memory with software-defined conflicts. In: High-
Performance and Embedded Architectures and Compilation (HiPEAC 2012) (Jan-
uary 2012)

Distributed Transactional Memory

Introduction to Transactional Replication

Tadeusz Kobus, Maciej Kokociński, and Paweł T. Wojciechowski

Institute of Computing Science, Poznan University of Technology
Poznań, Poland

{Tadeusz.Kobus,Maciej.Kokocinski,
Pawel.T.Wojciechowski}@cs.put.edu.pl

Abstract. Transactional replication is a new enabling technology for service
replication. Service replication means that a service runs on a group of processes
(service replicas) that work together to execute requests issued by external clients.
The characteristic feature of transactional replication is that client requests can
be processed on a single replica concurrently as atomic transactions that can read
or modify local state. Our goal is to provide an introduction to the transactional
replication algorithms. We begin by discussing state machine replication and then
present several algorithms that provide full transactional semantics such as de-
ferred update replication and many variants of thereof. Finally, we compare their
properties and performance as well as show their strong and weak points.

1 Introduction

Replication is a popular method to increase service reliability and accessibility. It means
deployment of a service on several interconnected server machines, each of which may
fail independently, and coordination of the service replicas, so that each replica main-
tains a consistent state view despite failures of communication links or crashes of other
replicas. The state is kept by every replica in its local store (the main memory and,
optionally, nonvolatile memory).

In this chapter, we survey distributed algorithms that can be used for full replication
of services with strong consistency guarantees, without resorting to any central coor-
dinator. An example application is a geo-replicated storage system that ensures strong
consistency among all service replicas. Distribution and replication can improve local-
ity and availability of a service by, respectively, moving data closer to the users and
processing many requests in parallel. The common feature of the presented algorithms
is that they all rely on the fault-tolerant total order (atomic) broadcast primitive (defined
in Section 3) that is used to make the state updates consistent among all the replicas de-
spite any crashes. We begin with a simple algorithm of this sort that implements the
classical replication scheme relying on atomic broadcast, called state machine replica-
tion (SMR) [34]. In this approach, a stream of client requests is agreed among all service
replicas (that must be deterministic state machines) and processed sequentially by each
replica.

Next, we describe example replication algorithms that fall into a different category
which we call transactional replication (TR) [37]. They can be used to implement a
replicated storage system which is then used by replicated services (processes) to pro-
cess multiple client requests as concurrent transactions. Transactions can read or mod-
ify local state and they are executed atomically—completely and successfully or not

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 309–340, 2015.
c© Springer International Publishing Switzerland 2015

310 T. Kobus, M. Kokociński, and P.T. Wojciechowski

at all, much like in transactional memory systems, but the local state is replicated and
kept consistent on many servers. We only focus on one TR scheme relying on atomic
broadcast, which is called deferred update replication (DUR) [7], and present several
algorithms that optimize DUR in various ways. In this approach, a client request can be
processed optimistically by any one replica using an atomic transaction, in parallel with
other requests (transactions) processed on the same or other replicas. Any state updates
are deferred and consistently applied on all replicas on transaction commit.

In the TR systems that provide transactional memory and support full transactional
semantics, many transactions can be executed on a single node in parallel. They can
perform arbitrary operations (with possible restrictions, such as the use of irrevocable
operations) and may also commit or abort (and possibly restart) on demand. On the
other hand, pure SMR does not offer full transactional semantics—on each node there
is only one transaction executed at a time (spawned for processing a client request)
that is only allowed to commit and its code must be deterministic. However, we largely
ignore the semantic differences and give, in Section 3, a common specification of the
SMR and TR schemes in terms of properties describing the inter-replica and client-
replica interactions.

In the chapter, we discuss the following replication algorithms:

1. SMR – state machine replication based on total order broadcast; the algorithm re-
sembles the original idea proposed in [17,33] but was modified to optimize the
read-only transactions, as in [29];

2. DUR – deferred update replication that follows the idea presented in [7];
3. MvDUR – deferred update replication with multiversioning; it extends the previous

algorithm with an optimization technique that dates back to first database systems
[4];

4. HTR – a hybrid state-machine-based and deferred-update replication scheme pro-
posed in [14], which seamlessly combines SMR and DUR with multiversioning
into one replication scheme;

5. Postgres-R – an algorithm proposed in [12] that aims at improving DUR by reduc-
ing the amount of data transmitted via a network;

6. EDUR – executive deferred update replication proposed in [15], which uses a leader
of the broadcast protocol to streamline transaction certification.

Interestingly, replication schemes designed for database systems often are not suit-
able for replication of services (processes) or software transactional memory (see e.g.,
[30,25]). This is because typical workloads in TR systems are much different than
those in SQL database systems, in which transactions are relatively long, require time-
consuming optimizations of queries, and perform costly I/O operations. On the contrary,
transactions performed by a replicated service are usually very short (take a fraction of
a millisecond to execute) and access few shared objects. The crucial observation here is
that, usually, the transaction execution times are much shorter than the latency caused
by the network communication. Hence, the main design aspect of TR systems is mini-
mizing the inter-replica synchronization footprint, both in terms of the communication
steps as well as the amount of data that need to be communicated between replicas.

We aim our chapter at developers of replication frameworks and all those who would
like to learn about transactional replication. We therefore explain the algorithms and

Introduction to Transactional Replication 311

their properties in detail. Each algorithm is presented by giving its pseudocode. We
then compare the algorithms taking into account their semantics, the overhead due to
concurrency control and transaction certification, the number of communication steps,
the number and volume of network transmissions, and the expected performace under
different workload types.

The structure of the chapter is as follows. We begin by defining the system model
and transactional replication properties in Section 2 and discuss problems that face
the designers of such systems in Section 3. Then, we present the SMR algorithm in
Section 4. Next, we describe DUR in Section 5 and various ways this scheme can be
optimized (the MvDUR, HTR, Postgres-R, and EDUR algorithms) in Sections 6–9.
Then, we compare the presented algorithms in Section 10, and finally conclude and
give references to related work in Section 11.

2 System Model and Properties

In this section, we describe the system model and properties. A replicated process
P = {P1, ...,Pn} consists of n service processes (replicas) Pi (i = 1..n) running on in-
dependent machines (nodes) connected via a network. Each process Pi has access to its
own volatile memory and stable storage; the combined content of the two constitutes
local state. S = {S1, ...,Sn} is a replicated state, where Si is a local state of process Pi

(i = 1..n). A transaction executed by process Pi can only access objects that belong to
local state Si.

We assume a crash-recovery failure model in which processes may crash indepen-
dently and later on recover and rejoin computation. Processes can recover its local state
either from stable storage or other replicas (as in e.g. JPaxos [16]). However, the re-
covery algorithms are beyond the scope of this chapter. A process is said to be up if
it correctly executes its program. Upon crash, a process fails by ceasing communica-
tion with any other processes and becomes a down process. It can rejoin distributed
computation upon a recovery event which requires executing a recovery procedure. A
process is said to be unstable if it crashes and recovers infinitely many times. A pro-
cess is correct if it is eventually permanently up (there is a time after which it never
crashes). Otherwise, it is faulty, i.e. unstable or eventually permanently down (there is
a time when it crashes and later never recovers).

Our replication algorithms are aimed at distributed asynchronous systems which can
be characterized as follows. There is no central coordinator and the processes communi-
cate solely by exchanging messages using bidirectional fair-loss links [2]. For simplicity,
however, all presented algorithms use perfect links (no messages are lost) since they can
be easily implemented on top of fair-loss links (see e.g., [5]). Messages may be lost and
no upper bound on message transmission is known. The failure pattern of messages is
independent from the one of processes. No assumption is also made on the relative com-
putation speeds of the processes. However, we assume availability of a failure detector
Ω [6], which is the weakest failure detector capable of solving consensus in a distributed
asynchronous system in which processes or communication links may fail.

In addition to service processes we consider an unspecified number of external client
processes. We assume that the clients are independent and they do not communicate

312 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Properties of a replicated process P:

R1: Validity: If a process Pj modifies object o with v during state update, then w(ok)v was exe-
cuted by some process Pi (i = j or i �= j) as part of some transaction that commits.

R2: Termination: On commit of a transaction T , every correct process Pi eventually applies T ′s
updates (modified objects) to its local state Si.

R3: Integrity: No process updates its state twice as the result of executing a transaction T .

R4: Agreement: No two correct processes update their state differently as the result of executing
a transaction T .

R5: Atomicity: Operations of a transaction T and any T ’s updates to S are performed atomically.

R6: Causal order: No process Pi updates state Si as the result of request r2 unless Pi has already
updated Si as the result of any update request r1, such that r1

c−→ r2.

R7: Total order: Let r1 and r2 be any two requests. Let Pi and Pj be any two processes that update
state as the result of r2. If Pi updates state on r1 before r2 then Pj updates state on r1 before r2.

Properties of client-P interaction:

C1: Validity: If a client sends a request r to a correct process Pi then replicated process P executes
T and eventually returns the response to r to the client.

C2: No creation: If a request r is handled by some process Pi, then r was previously sent by some
client.

C3: No duplication: No response is delivered more than once.

C4: Causal order: Let r1 and r2 be any two requests such that r1
c−→ r2. If res1 and res2 are

responses to these requests (r1 and r2, respectively) delivered to the client, then res1 is delivered
before res2.

Fig. 1. Properties of transactional replication

with each other directly. The only possible client interaction is through the replicated
service. They can submit requests to any of the service processes and await responses.
A client may submit only one request at a time. If a client does not receive any response
after submitting a request, it can choose a different replica and issue the request again.
Such a situation can occur if a replica is down or a timeout was reached due to high
communication latency. Each request is processed by an atomic transaction. In case
of optimistic replication schemes, such as DUR, transactions are executed in parallel
and some of them may conflict. The conflicting transactions are reexecuted until they
finally commit (or explicitly abort). However, the clients are not aware of transaction
reexecutions.

We assume a simple communication interface: to communicate with a replicated
service, a client sends a request message 〈Request | (id, LC, code, args)〉, denoted r,
which is then handled by a replicated process P by executing an atomic transaction T
identified by r.code, where T can use arguments args; id is the message identifier and
LC will be explaned in Section 3. Then, replicated process P will return to the client
a response to request r using a message 〈Response | (r.id,LC,res)〉, where result res

Introduction to Transactional Replication 313

depends on the local state read by transaction T . We use a notation r.a to denote a record
field a of message r.

In general, transactions can execute any legal program containing operations r(ok)v,
w(ok)v, abort, and retry, which respectively, read or write a value v to object o in
version k, and abort or retry T . Writes of transaction T to object versions on replica Pi

can be seen by other transactions on Pi only after Pi updates state Si with the modified
objects. All transactions (including retried) eventually commit or abort. On commit, T
updates a replicated state S (with modified objects) and returns result res. On abort, T
returns /0.

In Figure 1, we define the properties of a transactional replication system, taking
into account the handling of requests by a replicated process P (rules R1-R7) and the
interaction between the clients and P (rules C1-C4). All algorithms described in this
chapter guarantee these properties. In the specification, we use the symbol

c−→ to denote
a causal order relation defined as follows: if r1

c−→ r2, then request r2 depends on result
res returned by r1.

3 Replicated Algorithm Design Problems

Replication of a service means maintaining the service’s code and state on a number of
machines, so when some of them fail, others can continue to provide the service and
process clients’ requests. The service’s state consists of all data which the service and
the replication protocol operate on and their current status of execution. Developing
replication frameworks is challenging due to some known fundamental problems in
distributed systems. Below we discuss the problems which are related to inter-replica
and client-replicas synchronization, and fault-tolerance.

Inter-replica synchronization. In order to guarantee consistency of state updates,
replicas must synchronize, which is inherently difficult in a distributed system. For-
mally, many such problems can be reduced to the problem of consensus, i.e. reaching
agreement among a group of distributed processes on a single value proposed by one
of them. It has been proven that this problem is impossible to solve in a fully asyn-
chronous distributed system [10]. However, some additional assumptions can be made
about the system (e.g., the existence of partial synchrony and failure detectors) which
make this problem solvable. Solving the consensus problem efficiently is essential for
performance of TR schemes described in this chapter. The best known algorithm of this
sort is Paxos [18], which solves the consensus problem assuming that the majority of
processes is not faulty (meaning not down). If a “faulty process” is as defined in Sec-
tion 2, then also some additional mechanism is required to support process recovery (see
e.g., [16]). In fact, Paxos can solve an infinite sequence of consensus instances. Thus,
distributed processes can use this protocol to propose (in multiple consensus instances)
and agree upon a common set and order of messages. This semantics is captured by To-
tal Order Broadcast (TOB) [5,9]. This primitive enables reliable broadcast of messages
with a guarantee that all messages are delivered by all non-faulty processes in the same
order. All algorithms discussed in this chapter rely on TOB or protocols derived from
it. This, in turn, allowed us to directly compare them.

Client-replicas synchronization. The interaction between the external clients and
the replicated service is not trivial. Imagine a client who issues a request r1 to one of

314 T. Kobus, M. Kokociński, and P.T. Wojciechowski

the replicas, say Pi. Pi handles r1 and sends a response back to the client. The response
to request r1 can only be sent after the request is stable in the system, which means
that Pi has updated its local state and it is sure that all other non-faulty replicas will
also eventually update state. Therefore, some of the replicas may lag behind others. It is
possible, then, that upon receiving a response to r1, the client issues a new request r2 to a
replica Pj that lags behind Pi. If Pj subsequently executes r2 and r2 is causally dependent
on r1 (which is typical), then inconsistencies may be introduced to the system.

Fortunately, this problem can be easily solved using logical clocks LCi that are main-
tained by replicas Pi (i = 1..n). Every replica Pi will increment LCi each time it has
updated local state Si. A replica Pi which is handling a client request r1 will return to
the client the current value of LCi in response to r1 just after r1 is stable. The client can
attach the obtained clock value to a subsequent request r2 (in a field r2.clock). Since
the clock values are monotonically increased, a replica handling r2 can check whether
its state is up-to-date and so it can execute the request, or it has to postpone its process-
ing until it synchronizes with the rest of the replicas. All algorithms presented in this
chapter feature this mechanism.

Consider yet another troublesome scenario. A client sends a request r to a replica Pi

and awaits the response. Pi crashes before sending reply to the client, or it takes excep-
tionally long time for the replica to reply to the client. The client may become impatient
and issue request r again, but this time to another replica. In effect, the request may be
executed twice. To prevent this undesirable behavior, a history could be maintained (and
garbage collected after some time) of all requests sent by each client, which will allow
detection of duplicates. However, for brevity, we omit this code in the presentation of
the algorithms.

Fault-tolerance. The transactional replication systems must be robust against fail-
ures. Ideally, a replicated service should be operational when all machines except one
crash. However, this requirement is usually too strong since systems fulfilling it cannot
be implemented efficiently. It is because the replicas would have to extensively use sta-
ble storage in order to be able to recover in the event of failures. On the other hand, if
majority of processes is up and running at any time, recovery of failed processes can be
very efficient and does not require replicas to access stable storage during the normal
(non-faulty) operation. All of the replication schemes discussed in this chapter fall into
the latter category.

4 State Machine Replication

State Machine Replication (SMR) [17,33] is one of the simplest replication schemes. It
does not support full transactional semantics, but we included SMR in our discussion
as it serves as a base for some optimized TR schemes. In this replication scheme, a
service replica (process) begins execution on every server from the same initial state
and advances by processing all client requests sequentially. Note that each process has
to be deterministic. Otherwise, consistency among replicas could not be preserved as
the replicas might diverge. Then, the crucial element of SMR is the protocol which is
used for dissemination of requests to be executed by all processes in the same order. The
required semantics is provided by the Total Order Broadcast (TOB) protocol defined in
Section 3.

Introduction to Transactional Replication 315

Algorithm 1. State Machine Replication for process pi

1: integer LC ← 0

Thread q on request r from client c (executed on one replica)
2: response res ←⊥
3: upon INIT

4: if r.code is read-only then
5: wait until LC ≥ r.clock
6: lock { res ← execute r.code with r.args }
7: else
8: TO-BROADCAST r
9: wait for res
10: return (r.id,LC,res) to client c

The main thread of SMR (executed on all replicas)
11: response res ←⊥
12: upon TO-DELIVER (request r)
13: lock { res ← execute r.code with r.args
14: LC ← LC+1 }
15: if request with r.id handled locally by thread q then
16: pass res to thread q

Algorithm. In Algorithm 1, we show an optimized version of SMR which differen-
tiates between updating and read-only requests [29], thus allowing for some level of
parallelism in the execution of requests. For simplicity, we assume that each incoming
request is handled in a separate thread. Depending on whether the request is read-only
or not, the replica either executes it locally, or broadcasts it to all processes. As for
broadcast, a replica uses the TO-Broadcast primitive of TOB (line 8). The request is de-
livered by each replica (through the TO-Deliver event) and independently executed by
the replica’s main thread (line 13). Finally, the replica that received the request, sends
the response back to the client (line 10).

On the other hand, if the request is read-only, the replica has to first make sure that
it is aware of the changes performed by all requests issued by the same client earlier
(this procedure pertains to the problem described in Section 3). For this purpose, each
replica stores a logical clock variable LC and attaches its current value to every re-
sponse message that is sent to the client. This value is then enclosed in the subsequent
request message issued by the client (in the field clock) and is used to check whether
the replica that handles the request is up-to-date, so that its execution will not result in
any inconsistencies (line 5).

In the presented algorithm, replicas do not perform the above check for updating
requests since the execution order of the updating requests is determined in SMR by
TOB and so it is the same at every replica. In effect, if r1 and r2 are any two requests,
such that r2 causally depends on r1, then r2 can be executed at each replica only after
the replica executed r1.

In our SMR algorithm, the execution of requests is performed within a critical sec-
tion, guarded by a lock (lines 6 and 13). It is because read-only requests cannot be
processed concurrently with updating requests. Otherwise, they could encounter incon-
sistencies, since the updating requests do not operate on copies of objects they modify,
as it is in other schemes described in this chapter, but instead they perform write oper-
ations in place of the old values. It would be possible to run several read-only requests

316 T. Kobus, M. Kokociński, and P.T. Wojciechowski

in parallel, but this optimization would require using readers-writers locks to protect
critical sections of lines 6 and 13, respectively.

Discussion. The advantages of SMR are obvious. This replication scheme is simple
and can handle machine failures well. However, the performance of SMR is limited by
the capacity of any replica to process the updating requests sequentially. It can there-
fore neither benefit from modern multicore architectures nor scale with the increasing
number of replicas. Furthermore, the semantics of SMR is not as rich as the one avail-
able in the TR scheme, e.g., processing of requests cannot be rolled back or wait for a
condition to be met.

5 Deferred Update Replication

In the rest of the chapter, we focus on multi primary-backup replication [7] (also called
multi-master replication), where each request is executed by only one single replica that
processes the request and issues updates to other replicas, but all replicas can process
requests in parallel. In this approach, we have to be able to resolve any conflicts which
take place between concurrent threads that access the same set of objects and at least
one of the threads modifies the shared object. Here is where the transaction abstrac-
tion comes into play. Then each request is executed as an atomic transaction whose
operations logically occur at a single instant in time, so the intermediate states are not
visible to other transactions. Furthermore, atomicity prevents updates to the state from
occurring only partially.

For efficiency, it is important to limit the amount of synchronization among threads
and replicas. Hence, we focus on replication schemes featuring optimistic concurrency
control. They require much less synchronization than those relying on the pessimistic
one. It is because transactions are executed without upfront locking of objects that are to
be accessed by these transactions but, instead, they operate on their own local copies of
the objects. Any object modifications are then applied to the replica state on transaction
commit.

Deferred Update Replication (DUR) [7] is the simplest transactional replication
scheme of this sort. Typically, DUR supports full replication, and each replica can
handle multiple requests in separate threads using optimistic transactions. The trans-
actional semantics ensures that the requests are processed atomically and in isolation.
The transaction’s execution phase is followed by the committing phase in which the
replicas synchronize and certify transactions.

Transaction certification means checking if a committing transaction does not con-
flict with concurrent transactions. It is the only moment in a transaction’s lifetime
that requires replica and thread synchronization. Upon successful certification, repli-
cas update their state. Otherwise, the transaction is rolled back and restarted. Many
different protocols can be used for transaction certification. In this chapter, we discuss
DUR relying on Total Order Broadcast (see e.g., [27,26,1] among others). Using TOB
avoids blocking and limits the number of costly synchronization steps [1,13,26] (see
also [32,11]).

Algorithm. In Algorithm 2, we give pseudocode for DUR that builds on [14]. Each
replica maintains two global variables. The first one, LC, represents the logical clock

Introduction to Transactional Replication 317

Algorithm 2. Deferred Update Replication for process pi

1: integer LC ← 0
2: set Log ← /0
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid,ob j) ∈ t.updates then
5: value ← ob j
6: else
7: lock { value ← retrieve object oid }
8: return value
9: function CERTIFY(integer start, set readset)
10: lock { L ←{t ∈ Log : t.end > start} }
11: for all t ∈ L do
12: writeset ←{oid : ∃(oid,ob j) ∈ t.updates}
13: if readset∩writeset �= /0 then
14: return f ailure
15: return success

Thread q on request r from client c (executed on one replica)
16: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
17: response res ←⊥
18: upon INIT

19: wait until LC ≥ r.clock
20: raise TRANSACTION

21: return (r.id,LC,res) to client c

22: upon TRANSACTION

23: t ← (a new unique id,0,0, /0, /0)
24: lock { t.start ← LC }
25: res ← execute r.code with r.args
26: COMMIT()
27: upon READ(objectId oid)
28: t.readset ← t.readset∪{oid}
29: if CERTIFY(t.start,{oid}) = f ailure then
30: raise RETRY

31: else
32: return GETOBJECT(t, oid)
33: upon WRITE(objectId oid, object ob j)
34: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
35: procedure COMMIT

36: if t.updates = /0 then
37: return to INIT

38: if CERTIFY(t.start, t.readset) = f ailure then
39: raise RETRY

40: TO-BROADCAST t
41: wait for outcome
42: if outcome = f ailure then
43: raise RETRY

44: else // outcome = success
45: return to INIT

46: upon ROLLBACK

47: stop executing r.code and return to INIT

48: upon RETRY

49: stop executing r.code
50: raise TRANSACTION

The main thread of DUR (executed on all replicas)
51: upon TO-DELIVER (txDescriptor t)
52: outcome ← CERTIFY(t.start, t.readset)
53: if outcome = success then
54: lock { t.end ← LC
55: Log ← Log∪{t}
56: apply t.updates
57: LC ← LC+1 }
58: if transaction with t.id executed locally by thread q then
59: pass outcome to thread q

318 T. Kobus, M. Kokociński, and P.T. Wojciechowski

which is used in a similar way as in SMR, i.e., LC is incremented every time a replica
changes its state (line 57) and enables the replica to track whether its state is recent
enough to execute the client’s request (line 19). Additionally, LC is used to mark the
start and the end of the transaction execution (lines 24 and 54). The transaction’s start
and end timestamps, stored in the transaction descriptor (line 16), allow us to reason
about the precedence order between transactions. Let t1 and t2 be transaction descrip-
tors of two transactions T1 and T2. We say that transaction T1 precedes transaction T2

(denoted T1 → T2) iff t1.end < t2.start. If neither T1 → T2 nor T2 → T1, we say that
T1 and T2 are concurrent. The second variable, Log, is a set used to store the transac-
tion descriptors of committed transactions. Maintaining this set is necessary to perform
transaction certification.

The DUR algorithm detects any conflicts among transactions by checking whether a
given transaction T that is being certified read any stale data. The latter occurs when T
read any shared objects that have been modified by a concurrent but already committed
transaction. For this purpose, DUR traces the accesses to shared objects independently
for each transaction. The identifiers of objects that were read and the modified objects
themselves are stored in private, per transaction, memory spaces: readset and updates.
On every read, an object’s identifier is added to the readset (line 28). Similarly, on
every write a pair of the object’s identifier and the corresponding object is recorded
in the updates set (line 34). Then, the CERTIFY function compares the given readset
against the updates of all the committed transactions in Log that are concurrent with
the tested transaction. If it finds any non-empty intersection of the sets, the outcome
is negative. Otherwise, it is positive (no conflicts detected, the transaction is certified
successfully). Note that every time a transaction reads some shared object, a check
against conflicts is performed (line 29). This way T is guaranteed to always read from
a consistent snapshot. When a conflict is detected, T is forced to retry.

When a transaction’s code completes, the COMMIT operation (line 35) is used to end
the transaction and initiate the committing phase, which can be explained as follows. If
T is a read-only transaction (T did not modify any objects), it can commit straight away,
without performing any further conflict checks or replica synchronization, similarly as
in SMR (lines 36–37). A read-only transaction does not need to perform certification as
the possible conflicts would have been detected earlier, upon read operations (line 29).
For update transactions, first, the local certification takes place (line 38), which is not
mandatory but allows the replica to detect conflicts earlier, and thus sometimes avoid
costly network communication. Next, the transaction’s descriptor containing readset
and updates is broadcast to all processes using TO-BROADCAST (line 40). The mes-
sage is delivered in the main thread, where the final certification takes place (line 52).
Upon successful certification of transaction T , replicas apply the updates performed by
T and commit it (lines 54–57). Otherwise, T is rolled back and reexecuted by the same
replica.

To manage the control flow of a transaction, the programmer can use two additional
operations: ROLLBACK and RETRY, whose semantics is similar as in transactional mem-
ory systems. The ROLLBACK operation (line 46) stops the execution of a transaction
and revokes all the changes it performed so far. The RETRY operation (line 48) forces a
transaction to rollback and restart.

Introduction to Transactional Replication 319

For clarity, we made several simplifications. Firstly, note that the operations on LC
(lines 24, 54, 57), Log (lines 10 and 55) and the accesses to transactional objects (lines
7 and 56) have to be synchronized. For simplicity, a single global lock is used. For
better performance, the implementation can rely on fine-grained locks. Secondly, in
our pseudocode, Log can grow indefinitely. In reality, Log can easily be kept small
by garbage collecting information about the already committed transactions that ended
before the oldest live transaction started in the system.

In the presented algorithm, we use the same certification procedure for both the certi-
fication test performed upon every read operation (line 29) and the certification test that
happens after a transaction descriptor is delivered to the main thread (line 52). In prac-
tice, however, doing so would be very inefficient. It is because for every read operation,
we check for the conflicts against all concurrent transactions (line 10), thus performing
much of the same work again and again. However, this repeated actions can be easily
avoided by associating the accessed shared objects with version numbers—the value of
LC at the time the objects were most recently modified.

Discussion. It is easy to see that, at least theoretically, DUR has the potential to
perform much better than SMR. The capability of executing requests in parallel is espe-
cially valuable for CPU-intensive workloads. Unfortunately, there are also factors that
limit the robustness of DUR. Firstly, the system has to monitor transactional accesses
to all shared objects, which is costly. This overhead cannot be avoided unless we know
a priori the conflict pattern of all transactions. Secondly, the volume of data exchanged
via a network is high, mainly due to, usually large, readsets that have to be broadcast
alongside updates. Thirdly, transaction certification, which can be a costly operation,
is performed independently for every transaction by each process, thus limiting scala-
bility. In the next sections, we present several replication algorithms that address some
of the above problems.

6 Deferred Update Replication with Multiversioning

Multiversioning [4] in an important optimization technique which allows for multiple
versions of transactional objects that are transparent to the programmer. Only one ob-
ject version is accessible by a transaction at any time. Object versions are immutable,
thus they can be accessed concurrently without any synchronization. Furthermore, since
read-only transactions accessing object versions are abort-free, the system does not need
to trace accesses to shared objects for transactions a priori known to be read-only. The
latter feature can greatly improve the overall performance and scalability of the trans-
actional system when workloads are dominated by read-only transactions [30]. All TR
algorithms described in this chapter can benefit from this optimization technique.

Algorithm. In Algorithm 3, we present the DUR scheme extended with multiversion-
ing, which we call Multiversion DUR (MvDUR). In MvDUR, the information about
already committed transactions is no longer stored in Log, and each object can have
many object versions obj, each one paired with their corresponding version numbers
ver. When a transaction commits, the system creates new versions of all objects mod-
ified by the transaction (lines 56–57), all having the same version number assigned,
which is equal to the current value of logical clock LC.

320 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Algorithm 3. Deferred Update Replication with Multiversioning for process pi

1: integer LC ← 0
2: function GETVERSION(objectId oid, integer notNewerThan)
3: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
4: is the highest available such that ver ≤ notNewerThan }
5: function GETOBJECT(txDescriptor t, objectId oid)
6: if (oid,ob j) ∈ t.updates then
7: value ← ob j
8: else
9: (ob j,ver)← GETVERSION(oid, t.start)
10: value ← ob j
11: return value
12: function CERTIFY(integer start, set readset)
13: for all id ∈ readset do
14: (ob j,ver)← GETVERSION(id,∞)
15: if ver > start then
16: return f ailure
17: return success

Thread q on request r from client c (executed on one replica)
18: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
19: response res ←⊥
20: upon INIT

21: wait until LC ≥ r.clock
22: raise TRANSACTION

23: return (r.id,LC,res) to client c

24: upon TRANSACTION

25: t ← (a new unique id,0,0, /0, /0)
26: lock { t.start ← LC }
27: res ← execute r.code with r.args
28: COMMIT()
29: upon READ(objectId oid)
30: ob j ← GETOBJECT(t,oid)
31: if r.code is not read-only then
32: t.readset ← t.readset∪{oid}
33: return ob j
34: upon WRITE(objectId oid, object ob j)
35: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
36: procedure COMMIT

37: if t.updates = /0 then
38: return to INIT

39: if CERTIFY(t.start, t.readset) = f ailure then
40: raise RETRY

41: TO-BROADCAST t
42: wait for outcome
43: if outcome = f ailure then
44: raise RETRY

45: else // outcome = success
46: return to INIT

47: upon ROLLBACK

48: stop executing r.code and return to INIT

49: upon RETRY

50: stop executing r.code
51: raise TRANSACTION

The main thread of MvDUR (executed on all replicas)
52: upon TO-DELIVER (txDescriptor t)
53: outcome ← CERTIFY(t.start, t.readset)
54: if outcome = success then
55: lock { LC ← LC+1
56: for all (oid,ob j) ∈ t.updates
57: add ob j as a new version of object oid with version number LC }
58: if transaction with t.id executed locally by thread q then
59: pass outcome to thread q

Introduction to Transactional Replication 321

Compared to DUR, there is also a new function GETVERSION which takes two ar-
guments oid and notNewerThan and retrieves a version obj of an object identified with
oid that is the most recent among all those object versions that have a version number
lower than or equal to notNewerThan (lines 2–4). The function can be used to read from
a consistent snapshot of the system and return the newest object versions that existed
in the system up to a given moment in time. This way all reads which are performed
by a transaction are consistent and no conflict checks are necessary. Therefore, read-
only transactions are guaranteed to always commit. For this reason, as stated earlier, if
a transaction is a priori known to be read-only, it does not need to record its accesses in
the readset (line 31).

The transaction certification phase in MvDUR is different and much more efficient
than in DUR. Instead of checking a transaction’s readset against the update sets of (pos-
sibly many) committed concurrent transactions, the certification procedure just com-
pares the version numbers of the objects that were read. If the most recent version of a
read object has a version number which is higher than the transaction’s start timestamp,
then a conflict exists—i.e., a new version was created after the transaction had already
started execution.

The committing phase in MvDUR is similar to DUR’s one. Both algorithms differ in
the way each replica applies transaction updates. In MvDUR, replicas update their state
by adding new object versions (lines 56–57). For this, we have to use locks since these
operations must be done atomically. However, in practice MvDUR can be implemented
in a way that avoids using locks altogether.

In our pseudocode, no object version is ever removed from the system. However,
a simple garbage collection mechanism can be proposed, as follows. Let us consider
a replica R, and let t be the transaction descriptor of the oldest live transaction in R
(t.start is equal to the the lowest value among all descriptors of live transactions in R).
Let d be the set of all object versions in R whose version numbers are lower than or
equal t.start. Then, for each shared object, all its versions in d but the most recent one
can be safely dropped.

7 Hybrid SM-DUR Algorithm

The SMR and DUR (or MvDUR) replication schemes presented in previous sections
are based on different premises. In SMR, any sequential program implementing some
service can be replicated, and the replication framework simply broadcasts requests
using TOB. On the other hand, DUR requires the service’s program to be transaction-
oriented, but it offers potentially much better scalability due to its capability of process-
ing requests in parallel. The two schemes were compared both theoretically and experi-
mentally in [37]. The main corollary drawn from this comparison is that no scheme can
be considered superior.

In SMR, all requests are executed sequentially by all replicas, which does not leave
much room for performance improvement. Therefore, it might seem that DUR, which
supports parallelism, should always outperform SMR. However, this is not the case for

322 T. Kobus, M. Kokociński, and P.T. Wojciechowski

several reasons. Firstly, the size of messages broadcast can be an order of magnitude
larger than in SMR since a message contains not only the updates that result from
the transaction execution but also the readset, necessary for transaction certification.
Especially the latter set can be of significant size. Also, the cost of bookkeeping readset
and updates is not negligible. On the other hand, a message broadcast in SMR usually
only contains a client request with a reference (with some arguments) to a function that
executes this request. Therefore, it is sometimes more efficient to broadcast a client
request, as in SMR, rather than broadcast the state changes, as in DUR, even at the
cost of executing the request n times independently on each replica. Secondly, there is
also the aspect of concurrency control and its inherent cost in the optimistic replication
schemes. In DUR, transactions may be forced to retry due to conflicts, so a transaction
can be executed multiple times before it eventually commits. If the contention level
is high, the benefits of parallel execution in DUR may not only be overshadowed but
even completely outweighed by the costly transaction reruns. This, in turn, causes the
performance of the system to diminish. On the contrary, in SMR no conflicts ever occur.

The SMR and DUR (or MvDUR) replication schemes also differ in the semantics
offered to the programmer. Unlike DUR, SMR only supports deterministic services.
Otherwise, replicas could diverge when processing the same request and eventually
cause the system to run into inconsistencies. On the other hand, the fact that each request
(transaction) is executed in SMR exactly once by each process, and is never forcefully
retried can be an advantage. For instance, it allows SMR to support operations with
side-effects that cannot be easily undone, such as I/O, system calls, etc. On the other
hand, the basic DUR scheme cannot deal with irrevocable operations well because each
transaction may execute multiple times before it eventually commits. In transactional
memory systems, various techniques were developed to deal with this problem, such
as buffering or executing irrevocable transactions sequentially w.r.t. other transactions.
They can be used to extend DUR accordingly.

These insights led us to merge SMR and DUR into Hybrid Transactional Replication
(HTR) [14]. In this replication scheme, the programmer can use transactional constructs
to encode handlers of client requests as atomic transactions, similarly as in DUR. How-
ever, each transaction is executed in one of two execution modes that are selected dy-
namically: a pessimistic one (SM mode) and an optimistic one (DU mode). A transaction
which is executed in the SM mode is guaranteed an abort-free execution, but its code has
to be deterministic. Moreover, HTR makes sure that only one such a transaction is run in
the system at a time. On the other hand, a transaction which is executed in the DU mode
can run in parallel with any SM transaction and any other DU transactions. Because a DU
transaction is executed only by one replica process, it can also contain non-deterministic
operations. However, a DU transaction may abort, so the client requests that require ir-
revocable operations should only be executed as SM transactions.

Algorithm. Before we dive into the details of HTR, let us discuss the key idea of how
the two transaction execution modes can coexist. The way SM and DU transactions are
executed in HTR closely resembles how the client requests are handled, respectively, by
SMR and DUR, but objects are not modified in place as it is in SMR. HTR manages the
two modes by serializing the execution of SM transactions with the certification of DU
transactions. Therefore, during the execution of a SM transaction, no other transaction

Introduction to Transactional Replication 323

can modify the system state. This way a SM transaction operates on consistent state and
is guaranteed an abort-free execution. Note that DU transactions execute in isolation on
copies of shared objects, so no interference with other transactions is possible. The order
in which the main HTR thread certifies DU transactions and executes SM transactions
is determined by TOB. Therefore, each replica advances exactly in the same way.

The pseudocode of the HTR algorithm (see Algorithm 4) shares many parts with
MvDUR, on which HTR is based. 1 HTR features an abstraction called the transaction
oracle. After a replica receives a request, the oracle is queried to asses whether to ex-
ecute the request as a DU or SM transaction (line 25). In practice, the decision made
by the oracle relies on hints declared by the programmer as well as on dynamically
collected data regarding various aspects of system’s performance. Note that, the request
execution mode is determined on per transaction execution basis. It means that a request
can be first executed multiple times as a DU transaction (due to aborts) and then as a
SM transaction (which is guaranteed to always commit).

The execution and committing phases of DU transactions are almost identical as in
MvDUR. The only difference lies in feeding the oracle with the statistics regarding
transaction execution (lines 54, 57 and 61) which, in turn, allow the oracle to adjust
its future decisions. On the other hand, if the oracle determines that a request is to be
executed as a SM transaction, it is first broadcast using TOB (line 32). When the re-
quest is delivered, it is processed by the same thread that certifies DU transactions and
applies their updates (lines 76–79). A SM transaction does not execute directly on the
shared objects as in SMR. Instead, it uses shared object copies as a DU transaction does.
By doing so, a SM transaction can be easily rolled back on demand at any time. More-
over, SM transactions produce versions of objects that can be used by other transactions
(including the read-only ones) exactly the same way as the versions produced by reg-
ular DU transactions. For this purpose, HTR features the appropriate upon statements
(TRANSACTION, READ, WRITE, ROLLBACK, and RETRY) in the main thread section.
Since a SM transaction is guaranteed to commit, it does not need to maintain readset
(line 86). A SM transaction commits by simply applying the updates it produced (lines
90–92) and returning the result to the thread that originally received the request (lines
78–79).

Discussion. HTR brings together the best features of both SMR and DUR. It of-
fers rich transactional semantics, also when the client requests are executed in the SM
mode. Additionally, it supports irrevocable operations, which is not typical in replica-
tion schemes featuring optimistic concurrency control. In terms of performance, HTR
is at least as good as either SMR or DUR. Moreover, HTR can dynamically adapt to
a changing workload because the oracle can monitor the system’s performance and
adjust its decisions accordingly. However, for HTR to perform well, the oracle has
to be tailored to the application in question. In [14], we outline the most important
aspects of a good oracle design and describe example oracles for several benchmark
applications.

1 HTR does not require multiversioning in order to work. However, the only existing implemen-
tation of HTR is based on MvDUR [14].

324 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Algorithm 4. Hybrid Transactional Replication for process pi (part 1)

1: integer LC ← 0
2: function GETVERSION(objectId oid, integer notNewerThan)
3: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
4: is the highest available such that ver ≤ notNewerThan }
5: function GETOBJECT(txDescriptor t, objectId oid)
6: if (oid,ob j) ∈ t.updates then
7: value ← ob j
8: else
9: (ob j,ver)← GETVERSION(oid, t.start)
10: value ← ob j
11: return value
12: function CERTIFY(integer start, set readset)
13: for all id ∈ readset do
14: (ob j,ver)← GETVERSION(id,∞)
15: if ver > start then
16: return f ailure
17: return success

Thread q on request r from client c (executed on one replica)
18: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates, stats)
19: response res ←⊥
20: upon INIT

21: wait until LC ≥ r.clock
22: raise TRANSACTION

23: return (r.id,LC,res) to client c

24: upon TRANSACTION

25: mode ← TransactionOracle.query()
26: if mode = DU then
27: t ← (a new unique id,0,0, /0, /0, /0)
28: lock { t.start ← LC }
29: res ← execute r.code with r.args
30: raise COMMIT()
31: else // mode = SM
32: TO-BROADCAST r
33: wait for (outcome,res, t)
34: UPDATEORACLESTATISTICS(t)
35: if outcome = retry then
36: raise TRANSACTION

37: upon READ(objectId oid)
38: ob j ← GETOBJECT(t,oid)
39: if r.code is not read-only then
40: t.readset ← t.readset∪{oid}
41: return ob j
42: upon WRITE(objectId oid, object ob j)
43: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
44: procedure COMMIT // for DU transactions
45: if t.updates = /0 then
46: return to INIT

47: if CERTIFY(t.start, t.readset) = f ailure then
48: raise RETRY

49: TO-BROADCAST t
50: wait for outcome
51: if outcome = f ailure then
52: raise RETRY

53: else // outcome = success
54: UPDATEORACLESTATISTICS(t)
55: return to INIT

56: upon ROLLBACK // for DU transactions
57: UPDATEORACLESTATISTICS(t)
58: stop executing r.code and return to INIT

59: upon RETRY // for DU transactions
60: stop executing r.code
61: UPDATEORACLESTATISTICS(t)
62: raise TRANSACTION

63: procedure UPDATEORACLESTATISTICS(txDescriptor t)
64: TransactionOracle. f eed(t.stats)

Introduction to Transactional Replication 325

Algorithm 4. Hybrid Transactional Replication for process pi (part 2)
The main thread of HTR
65: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates, stats)
66: enum outcome ←⊥ // type: enum {committed, rolledback, retry, success, failure}
67: response res ←⊥
68: upon TO-DELIVER (txDescriptor t)
69: outcome ← CERTIFY(t.start, t.readset)
70: if outcome = success then
71: lock { LC ← LC+1
72: for all (oid,ob j) ∈ t.updates
73: add ob j as a new version of object oid with version number LC }
74: if transaction with t.id executed locally by thread q then
75: pass outcome to thread q
76: upon TO-DELIVER (request r)
77: raise TRANSACTION

78: if request r handled locally by thread q then
79: pass (outcome,res, t) to thread q

80: upon TRANSACTION // for SM transactions
81: t ← (a new unique id,0,0, /0, /0, /0)
82: lock { t.start ← LC }
83: res ← execute r.code with r.args
84: COMMIT()
85: upon READ(objectId oid) // for SM transactions
86: return GETOBJECT(t,oid)
87: upon WRITE(objectId oid, object ob j) // for SM transactions
88: t.updates ← t.updates∪{(oid, ob j)}
89: procedure COMMIT // for SM transactions
90: lock { LC ← LC+1
91: for all (oid,ob j) ∈ p.updates
92: add ob j as a new version of object oid with version number LC }
93: outcome ← committed
94: return to TO-DELIVER

95: upon ROLLBACK // for SM transactions
96: outcome ← rolledback
97: stop executing r.code and return to TO-DELIVER

98: upon RETRY // for SM transactions
99: outcome ← retry
100: stop executing r.code and return to TO-DELIVER

8 Postgres-R

In the previous sections we explained that the great strength of the algorithms such as
DUR (or MvDUR) is the fact that there is only one communication step for each trans-
action’s run. However, there is no such thing as free lunch. DUR trades low commu-
nication latency for a high volume of data to be broadcast and transaction certification
which has to be performed independently by each replica. In this section we present
Postgres-R [12], an algorithm originally proposed for database replication, which ap-
pears similar to DUR but is able to compensate some of its limitations. Postgres-R has
also been used in distributed TM [8]. Unlike in DUR, in Postgres-R no readset is broad-
cast after a transaction completes its execution. Also, in total, all processes perform less
certification, thus saving resources. Postgres-R, however, requires an additional com-
munication phase—a process that executed the transaction broadcasts to all replicas the
final decision on whether to commit or abort the transaction. This additional broad-
cast is performed after the process broadcasts and delivers the updates produced by the
transaction.

326 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Algorithm 5. Postgres-R for process pi (part 1)

1: integer LC ← 0
2: set AbortedTx ← /0, DecidedTx ← /0
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid,ob j) ∈ t.updates then
5: value ← ob j
6: else
7: lock { acquire read lock on oid for transaction t.id }
8: value ← retrieve object oid
9: return value

Thread q on request r from client c (executed on one replica)
10: txDescriptor t ←⊥ // type: record (process, id, start, end, updates)
11: response res ←⊥
12: upon INIT

13: wait until LC ≥ r.clock
14: raise TRANSACTION

15: return (r.id,LC,res) to client c

16: upon TRANSACTION

17: t ← (pi,a new unique id,0,0, /0)
18: lock { t.start ← LC }
19: res ← execute r.code with r.args
20: COMMIT()
21: upon READ(objectId oid)
22: return GETOBJECT(t, oid)
23: upon WRITE(objectId oid, object ob j)
24: lock { acquire write lock on oid for transaction t.id }
25: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
26: procedure COMMIT

27: if t.updates �= /0 then
28: TO-BROADCAST t
29: wait for outcome
30: lock { release all the locks held by transaction t.id }
31: return to INIT

32: upon ROLLBACK

33: lock { release all the locks held by transaction t.id }
34: stop executing r.code and return to INIT

35: upon RETRY

36: lock { release all the locks held by transaction t.id }
37: stop executing r.code
38: raise TRANSACTION

39: upon ABORT

40: raise RETRY

Algorithm. The pseudocode for Postgres-R is given in Algorithm 5. Similarly to
DUR, Postgres-R executes a transaction on copies of shared objects. Unlike DUR, how-
ever, Postgres-R does not maintain readsets for executed transactions and extensively
relies on the read-write locks associated with each shared object (lines 7 and 24). The
locks prevent live transactions from reading an inconsistent snapshot. In this sense, the
locks fulfill the same function as the local certification procedure performed upon every
read operation in DUR.

Once a transaction T finishes execution, the transaction’s descriptor containing the
process ID, the transaction ID, start timestamp and the updates that T produced, is
broadcast to all replicas using TOB (line 28). Since the message does not contain
readset (as in DUR), replicas cannot independently certify T . In Postgres-R certifi-
cation happens somewhat indirectly and is driven by TOB. Similarly as in DUR, TOB
is used to establish the serialization order on all (updating) transactions in the system.

Introduction to Transactional Replication 327

Algorithm 5. Postgres-R for process pi (part 2)
The main thread of Postgres-R (executed on all replicas)
41: upon TO-DELIVER (txDescriptor t) lock
42: if t.id ∈ AbortedTx then
43: return
44: if transaction with t.id executed locally by thread q then
45: outcome ← commit
46: R-BROADCAST (t.id,outcome)
47: DecidedTx ← DecidedTx∪{t.id}
48: apply t.updates
49: LC ← LC+1
50: pass outcome to thread q
51: else
52: for all (oid,ob j) ∈ t.updates do
53: if read or write lock acquired on oid by some transaction t ′.id executed locally by thread q then
54: AbortedTx ← AbortedTx∪{t ′.id}
55: R-BROADCAST (t ′.id,abort)
56: raise ABORT on thread q
57: enqueue write lock request on oid for transaction t.id
58: upon R-DELIVER(integer id, decision d) lock
59: if id ∈ DecidedT x then // transaction executed locally
60: return
61: if d = commit then
62: DecidedTx ← DecidedTx∪{id}
63: else // d = abort
64: AbortedTx ← AbortedTx∪{id}
65: release all the locks held by transaction id
66: upon GRANTED ALL LOCKS ENQUEUED FOR TRANSACTION t.id AND t.id ∈ DecidedTx lock
67: apply t.updates
68: release all the locks held by transaction t.id
69: LC ← LC+1
70: upon PROCESS pj CRASH // reliable information from group membership mechanism
71: lock { release all locks/dequeue all lock requests for transactions t.id such that t.process = pj }

Transactions in committing state that are TO-Delivered preempt earlier transactions
whose updates are not yet TO-Delivered. This is done in the following way: upon de-
livery of a new transaction descriptor (line 41) a replica tries to acquire write locks
for every object in the update set on behalf of the incoming transaction; if the lock is
held by a local transaction whose updates were not yet broadcast and delivered, the
local transaction is aborted (lines 54–56) and its locks are released (line 36). At this
point the replica is the sole process which has the knowledge about the outcome of
this local transaction. Because the aborted transaction might have already broadcast its
transaction descriptor, which other processes will eventually deliver, the replica needs
to inform them of its decision to abort the transaction.2 For this purpose the reliable
broadcast (RB) is used (line 55). It is sufficient because decision messages do not need
to be ordered.

If a committing transaction is not preempted and it gets to the point where it is TO-
Delivered by the replica which initiated it, then the transaction can finally commit (lines
45–50). Similarly as in case of an aborted transaction, only one process knows about
the outcome, so it has to inform others of the decision to commit (line 46). The next
step is to apply the updates and increment LC. The updates can be applied straight

2 If the aborted transaction was still in the executing phase, i.e. it did not reach the commit phase,
then this step can be ignored. However, this optimization is not reflected in the pseudocode.

328 T. Kobus, M. Kokociński, and P.T. Wojciechowski

away, because in case of a local transaction we are sure that it holds the locks for every
modified object since its execution phase.

The commitment of a foreign transaction (initiated by a different replica) is more
complicated (lines 52–57). As previously stated, first, the transaction needs to acquire
write locks for every updated item. If they are held by local (executing or committing)
transactions, the local transactions need to be preempted. However, locks may also be
held by other foreign committing transactions which wait to be committed. Therefore,
the replica enqueues lock requests on behalf of the incoming transaction (line 57). The
operation of acquiring locks and enqueuing lock requests for individual objects must
be atomic and the lock requests need to respect FIFO order. Note, that three upon
statements handled by the main Postgres-R thread feature a lock in its declaration (lines
41, 58 and 66) meaning the whole statement is guarded by a global lock. Therefore, all
accesses to read/write locks in the pseudocode are protected from interleaving with each
other. Besides acquiring the locks one more condition needs to be met for a transaction
to be able to commit. The replica that initiated it must take the actual decision to commit
it and then broadcast this decision. Only when the appropriate decision is R-Delivered
(line 58) and all the required locks are granted (line 66) the process of committing can
be finished (lines 67–69). Naturally, if the R-Delivered decision is to abort, then the
waiting transaction is dropped and all the locks it managed to acquire are released (line
65).

Sometimes the decision message for some transaction T may arrive at some process
before the message with T ’s transaction descriptor. Postgres-R, therefore, maintains two
sets AbortedTx and DecidedTx, so it knows whether to apply or drop the updates once
they arrive. Now, consider a scenario in which the decision message for a transaction T
never arrives because of a replica crash. In such a case, every replica would indefinitely
hold locks for all objects modified by T . It is easy to show that a simple timeout-based
mechanism running independently on each replica is not sufficient. Therefore, replicas
need to abort such transactions in a coordinated fashion. For this purpose, Postgres-R
utilizes group communication services. Whenever processes leave (because of failures
or shutdowns) or join (recovering processes), the group communication module creates
different views in the computation. A view gives an illusion of a stable configuration
consisting of only operational processes. All messages sent within a view are confined
to that view.

In case of failures, upon a view change, we can identify active transactions origi-
nating at the failed site and we can safely abort them (line 71) without compromising
consistency of the non-faulty processes. Even if the crashed replica has broadcast a
commit decision just before the crash, this message will not be delivered to any of the
processes. This is because a new view is established, and all the messages from previous
view were already delivered or are discarded.

Discussion. As described above, the process of certification in Postgres-R is some-
what indirect. Incoming transactions, whose order is established with TOB, invalidate
live transactions that are local to specific replicas. Therefore, the certification is dis-
tributed and replicas need additional synchronization to disseminate the result of cer-
tification. Instead of certifying each transaction directly, the processes have to rely on
others to broadcast the final decision in a second phase. The additional broadcast greatly

Introduction to Transactional Replication 329

increases the latency of a transaction’s commit. It means that the concurrent transactions
may have to wait significant amount of time on locks held by a transaction waiting for
the decision message. In turn, these concurrent transactions are more prone to abort
induced by transactions executed by other replicas. One can see, then, that even low
contention is problematic to Postgres-R. It seems, therefore, that Postgres-R is not suit-
able for transactional replication where transactions are usually short and access few
objects but may conflict often. One has to remember, though, that Postgres-R was orig-
inally designed for database systems, not distributed TM.

So what types of workloads does Postgres-R handle well? Transactions in Postgres-
R have to be long and access many objects. Only then the potential gains that stem
from not having to broadcast readset (as in DUR) are worth the cost of an additional
communication phase.

9 Executive Deferred Update Replication

In this section we present yet another DUR-based algorithm, called Executive Deferred
Update Replication (EDUR) [15]. The key idea behind EDUR lies in an observation re-
garding some distributed agreement protocols, such as Paxos. These algorithms feature
a distinguished process, the leader, which is responsible for coordination of message
broadcast. It means that a message broadcast by some process is first received by the
leader who, essentially, stamps it with a sequence number before sending it to the rest
of the processes. This way each process knows the final message delivery order. Since
all messages pass through the leader, we can use the leader to perform some additional
work before it forwards the messages to the rest of the replicas. In particular, EDUR
uses the leader to certify transactions on behalf of all replicas. Streamlining transaction
certification with the broadcast protocol has several advantages. Firstly, certification is
performed only by one process, not by all process as in DUR. Secondly, the network
traffic is greatly reduced which can be explained as follows. Once a transaction is certi-
fied successfully, only the set containing the updates resulting from transaction execu-
tion has to be forwarded to all replicas. The often large readset required for transaction
certification is no longer needed. In case a transaction fails certification, the leader only
needs to inform the process that executed the transaction that it has to be restarted. Fi-
nally, unlike Postgres-R, EDUR does not increase the number of communication steps
for each transaction’s run. It means that EDUR can be implemented efficiently.

It is worth to note that the load of the leader in EDUR not only does not increase
compared to DUR but even can be lower. Both in DUR and EDUR the leader certifies
transactions but in the latter case the certification procedure occurs earlier and the size
of messages broadcast is often much smaller, which attribute to lower load.

Let us focus for a while on a broadcast protocol that serves as a base for EDUR. It
turns out that it is insufficient to simply extend this protocol so that the leader executes
some routine before a message is forwarded to the rest of the processes. It is because
the leader, by processing the messages and possibly changing their content, establishes
a prefix order on the sequence of messages it sends. In other words, the messages which
were concurrently issued by different replicas and pass through the leader are no longer
independent with regard to each other. Any message m that appears later in the sequence

330 T. Kobus, M. Kokociński, and P.T. Wojciechowski

is logically dependent on any message m′ that appears in the sequence prior to m.3 This
would not be problematic if the leader coordinated only one consensus instance at a
time. Then, a new transaction did not undergo a certification until the message regarding
the previously certified transaction would not be delivered by the leader (in the total
order broadcast sense). This way, upon leader change, the new leader would be aware
of all transactions certified by the previous one, thus preserving consistency. However,
for performance reasons, TOB protocols such as Paxos allow for concurrent processing
of several consensus instances. This means that a different solution is required.

In [15], we point out that it would be possible to build EDUR on top of Extended
Virtual Synchrony (EVS) [22]. In EVS, processes are organized within groups of pro-
cesses that maintain dynamic views of processes that are considered to be operational.
As noted in Section 8, a process view gives an illusion of a stable group configuration
consisting of only correct processes that never crash. Whenever a process is suspected
to have crashed or voluntarily joins or leaves the group a new view is formed. Messages
sent within a view are confined to that view. It is therefore possible to safely elect some
process in each view and make it responsible for transaction certification. However,
EVS limits the performance of EDUR in several ways. Most importantly, EVS requires
a system to pause computation upon every view installation event. The overhead should
not be noticeable if views do not change often. Unfortunately, a new view has to be
installed every time any process begins to be suspected of a failure by any other process
from the same group. If a group is large such a situation can be a commonplace. For
these reasons, EDUR uses a new broadcast protocol called Executive Order Broadcast
(EOB).

Below we characterize EOB informally (see [15] for a formal specification). EOB
extends TOB in two aspects. Firstly, EOB introduces a number of new primitives that
allow the programmer to define actions to be undertaken by the leader before a message
is forwarded to the rest of the replicas (see below). Secondly, in EOB the total order
property of TOB is substituted by the executive order. This property guarantees that not
only all messages are delivered by each replica in the same order but also it ensures
that the prefix order imposed by the leader is always preserved. The definition of EOB
accounts for multiple concurrent leaders, so it is possible to devise an EOB-enabled
algorithm similar to Paxos. In fact, the implementation of EOB in [15] is based on
Paxos.

Let us review the primitives and events of EOB. EO-BROADCAST(id,mc) and
EO-DELIVER(id,mc′) correspond to the ones of TOB. In addition they account for the
fact that the content mc of the broadcast message can be changed by the leader. Therefore,
the unique identifier id is used to distinguish between messages. The next four primitives
are characteristic for EOB: EO-LEADERELECT and EO-LEADERRECALL are used by
a local failure detector to inform the process that it has to, respectively, take on or relin-
quish the duties of the leader process (and we say that during the time periods between
these events the process is a leader). A leader receives EO-LEADERDELIVER(id,mc)

3 Naturally, all messages issued by replicas as a result of processing requests from the same
client form a sequence of logically dependent messages. However, a client cannot issue a new
request, until the previous one returns.

Introduction to Transactional Replication 331

events, so it can process the incoming messages. To broadcast a (possibly) modified
message, the leader invokes the EO-LEADERBROADCAST(id,mc′) primitive.

When the leader promptly forwards all messages that it received through the EO-
LeaderDeliver events, with no additional action, EOB is reduced to TOB. In fact, EOB
is strictly stronger than TOB. One can also show that EOB is strictly weaker than EVS.
It is because, unlike EVS, EOB does not feature the group membership service. Most
importantly, however, under stable conditions, EOB can operate as efficiently as TOB
but, unlike EVS, it requires reconfiguration only when the current leader is suspected
to have crashed (groups in EVS are reconfigured each time any process is suspected).

Algorithm. Once we understand how EOB works, we can describe pseudocode for
EDUR, given in Algorithm 6. It is based on MvDUR presented in Section 6. The most
apparent difference between MvDUR and EDUR lies in the fact that EDUR features a
leader thread running on each replica (lines 54–78). During the time between the EO-
LeaderElect and EO-LeaderRecall events (lines 62 and 68), the thread performs transac-
tion certification on behalf of other replicas (line 72). Note that, the EO-LEADERELECT

primitive takes as an argument initialHistory. It is an ordered set which represents the
initial (unreliable) knowledge of the leader about the EO-Broadcast but not yet EO-
Delivered transaction descriptors. The order in initialHistory is consistent with the or-
der in which the transaction descriptors were TO-LeaderBroadcast by previous leaders
and in which they will most probably be TO-Delivered soon. It allows the leader to
start certifying incoming transactions as soon as possible, i.e. without waiting for the
appropriate EO-Deliver events. In case the set contains incorrect information, e.g., it
does not include a transaction successfully certified by the previous leader, which was
agreed on by majority of processes, EOB guarantees to invalidate all decisions made
by the new leader, thus preventing any inconsistencies.4 The leader thread maintains
its own tentative logical clock TLC, which is incremented every time a new transaction
descriptor is EO-LeaderDelivered and the transaction is successfully certified (line 73).
The information about successfully certified transactions that are not yet EO-Delivered
is stored in the ProcessedTx set.

The certification procedure performed by the leader (lines 54–61) is a bit different
from the standard one, featured in MvDUR, and also used in EDUR for local transaction
certification (lines 14–19). It is because each transaction T needs to be certified by
the leader also against all transactions T ′ which are (a) concurrent with respect to T ,
(b) have been successfully certified by the leader, and (c) are not yet EO-Delivered
(line 57). After the certification, the transaction descriptor is transformed before it is
EO-LeaderBroadcast. Since the certification is already performed, readset is no longer
needed. Moreover, if the transaction failed certification, the updates set also need not
be broadcast. In such a case, only the transaction identifier is included in the forwarded
message, so that the replica that executed the transaction knows to restart it.5

4 In this sense, the EOB primitives give a leader an impression of being the sole leader in the
system, capable of making authoritative decisions on behalf of the rest of the processes. Obvi-
ously, this makes the work of the programmer much easier.

5 In fact, only a unicast message would suffice in such circumstances. This optimization, how-
ever, would require extending EOB with new primitives, thus making the protocol unjustifiably
more complicated [15].

332 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Algorithm 6. Executive Deferred Update Replication for process pi (part 1)

1: integer LC ← 0, T LC ← 0
2: set ProcessedTx ← /0
3: boolean IsLeader ← f alse
4: function GETVERSION(objectId oid, integer notNewerThan)
5: lock { return (ob j,ver) such that ob j is a version of object oid whose version number ver
6: is the highest available such that ver ≤ notNewerThan }
7: function GETOBJECT(txDescriptor t, objectId oid)
8: if (oid,ob j) ∈ t.updates then
9: value ← ob j
10: else
11: (ob j,ver)← GETVERSION(oid, t.start)
12: value ← ob j
13: return value
14: function CERTIFY(integer start, set readset)
15: for all id ∈ readset do
16: (ob j,ver)← GETVERSION(id,∞)
17: if ver > start then
18: return f ailure
19: return success

Thread q on request r from client c (executed on one replica)
20: txDescriptor t ←⊥ // type: record (id, start, end, readset, updates)
21: response res ←⊥
22: upon INIT

23: wait until LC ≥ r.clock
24: raise TRANSACTION

25: return (r.id,LC,res) to client c

26: upon TRANSACTION

27: t ← (a new unique id,0,0, /0, /0)
28: lock { t.start ← LC }
29: res ← execute r.code with r.args
30: COMMIT()
31: upon READ(objectId oid)
32: ob j ← GETOBJECT(t,oid)
33: if r.readOnly = f alse then
34: t.readset ← t.readset∪{oid}
35: return ob j
36: upon WRITE(objectId oid, object ob j)
37: t.updates ←{(oid′,ob j′) ∈ t.updates : oid′ �= oid}∪{(oid, ob j)}
38: procedure COMMIT

39: if t.updates = /0 then
40: return to INIT

41: if CERTIFY(t.start, t.readset) = f ailure then
42: raise RETRY

43: EO-BROADCAST t
44: wait for outcome
45: if outcome = f ailure then
46: raise RETRY

47: else // outcome = success
48: return to INIT

49: upon ROLLBACK

50: stop executing r.code and return to INIT

51: upon RETRY

52: stop executing r.code
53: raise TRANSACTION

Introduction to Transactional Replication 333

Algorithm 6. Executive Deferred Update Replication for process pi (part 2)
The leader thread of EDUR (executed on all replicas)
54: function LEADERCERTIFY(integer start, set readset)
55: if CERTIFY(start,readset) = f ailure then
56: return f ailure
57: lock { con f lictingT x ←{(id,updates,clock) ∈ ProcessedTx :
58: clock > start∧ ∃(oid,ob j) ∈ updates : oid ∈ readset} }
59: if con f lictingT x = /0 then
60: return success
61: return f ailure
62: upon EO-LEADERELECT (ordered set initialHistory) lock
63: TLC ← LC
64: for all t ∈ initialHistory : t.updates �= /0 do
65: TLC ← T LC+1
66: ProcessedTx ← ProcessedTx∪{(t.id, t.updates,T LC)}
67: IsLeader ← true
68: upon EO-LEADERRECALL lock
69: IsLeader ← f alse
70: ProcessedTx ← /0
71: upon EO-LEADERDELIVER(txDescriptor t)
72: if LEADERCERTIFY(t.start, t.readset) = success then
73: TLC ← T LC+1
74: lock { ProcessedTx ← ProcessedTx∪{(t.id, t.updates,TLC)} }
75: else
76: t.updates ← /0
77: t.readset ← /0
78: EO-LEADERBROADCAST t

The main thread of EDUR (executed on all replicas)
79: upon EO-DELIVER(txDescriptor t)
80: if updates �= /0 then
81: outcome ← success
82: lock { if IsLeader = true then
83: ProcessedTx ←{(id,updates,clock) ∈ ProcessedTx : id �= t.id}
84: LC ← LC+1
85: for all (oid,ob j) ∈ t.updates
86: add ob j as new version of object oid with version number LC }
87: else
88: outcome ← f ailure
89: if transaction with t.id executed locally by thread q then
90: pass outcome to thread q

The rest of the pseudocode of EDUR is very similar to MvDUR’s. In fact, the exe-
cution phase of EDUR differs from MvDUR only in using EOB to broadcast messages
(line 43). Naturally, in EDUR processes do not perform certification upon delivering the
message (line 79). Instead, they only update their state if the transaction successfully
passed certification (lines 81–86).

Discussion. It is easy to see why EDUR introduces no inconsistencies during stable
periods, i.e., when a leader process does not change. All messages pass through the
leader which certifies, transforms and finally forwards them to all processes. The leader
does not wait for a transaction it successfully certified to be committed before it certi-
fies other transactions. It means that implicit order on message delivery is introduced.
Since the leader does not change, each process EO-Delivers messages in the order the
leader sent them. The consistency is therefore preserved. During unstable periods the
consistency is preserved as well. It is because EOB makes sure that the prefix order es-
tablished on the messages EO-LeaderBroadcast by the leader is always respected, even
when the leader changes. The system performance during the leader transition periods
is comparable to DUR’s since in EOB the changes of the leader occur smoothly (thanks

334 T. Kobus, M. Kokociński, and P.T. Wojciechowski

to initialHistory passed to EO-LEADERELECT and the fact that multiple concurrent
leaders are allowed). In fact, the new leader starts just when the old one is suspected to
have crashed, and not only after a distributed agreement is reached to elect a new leader
or establish a new view.

Having only one process to certify the transactions enables us to devise all kinds of
interesting optimizations, not possible with standard DUR/MvDUR [15]. One of the
most interesting involves using a multithreaded certification procedure to improve the
throughput of the leader.

10 Comparison

In Table 1, we compare replication algorithms discussed in this chapter, looking at their
selected features and performance characteristics. We excluded DUR with multiver-
sioning (MvDUR). This powerful optimization technique boosts DUR’s performance
but does not change the characteristics of DUR in any aspect that we consider in our
comparison. Below we discuss and explain our results.

Semantics. All discussed replication algorithms (except SMR) support full transac-
tional semantics, so the programmer can use additional constructs to manage the flow
of control, such as abort and retry (and possibly also commit). In DUR, Postgres-R and
EDUR, a transaction is always executed optimistically. Therefore, these algorithms do
not support irrevocable operations. Naturally, requests executed with SMR may include
irrevocable operations, because SMR always executes all (updating) requests sequen-
tially. Similarly, abort-free execution of irrevocable transactions is guaranteed in HTR
for transactions executed in the SM mode. Additionally, DUR, HTR, Postgres-R and
EDUR guarantee abort-free execution of read-only transactions if only they support
multiversioning.

Complexity. We consider three aspects in the quantitative evaluation of the algo-
rithms. Firstly, we compare the overhead due to the used concurrency control mecha-
nisms. All replication schemes featuring transactional semantics require some
additional computation steps and data structures, which result in some extra overhead
during request processing. DUR, HTR, Postgres-R and EDUR do not update the ac-
cessed shared objects directly. Instead, the updates are performed on copies of shared
objects and stored in the updates set. Additionally, DUR, HTR in DU mode and EDUR
maintain readset containing object IDs of all shared objects read by the transaction.6

Postgres-R does not maintain readset but acquires locks on accessed shared objects.
Similarly, all algorithms but SMR feature a transaction certification phase. Depending
on the algorithm, certification is performed by all replicas (DUR, HTR in DU mode), by
all replicas but the one that executed the transaction (Postgres-R) or by a single replica
(EDUR). Transaction certification differs between the algorithms. Its complexity de-
pends either on the size of readset (DUR, HTR in DU mode and EDUR) or updates
(Postgres-R).

6 Readset does not need to be maintained for read-only transactions.

Introduction to Transactional Replication 335

Ta
bl

e
1.

C
om

pa
ri

so
n

of
tr

an
sa

ct
io

na
lr

ep
li

ca
ti

on
sc

he
m

es

SM
R

D
U

R
H

T
R

P
os

tg
re

s-
R

E
D

U
R

Se
m

an
ti

cs
:

-
co

nt
ro

lfl
ow

m
an

ag
em

en
t

no
ye

s

-
su

pp
or

tf
or

ir
re

vo
ca

bl
e

op
er

at
io

ns
ye

s
no

ye
s

no
no

O
ve

rh
ea

d
du

e
to

co
nc

ur
re

nc
y

co
nt

ro
l

no
ne

tr
ac

ki
ng

ac
ce

ss
es

to
sh

ar
ed

ob
je

ct
s,

w
ri

te
s

pe
rf

or
m

ed
on

ob
je

ct
co

pi
es

a

C
om

m
it

-t
im

e
tr

an
sa

ct
io

n
ce

rt
ifi

ca
ti

on
:

-
nu

m
be

r
of

ti
m

es
pe

rf
or

m
ed

0
n

n
or

0
a

n
−

1
1

-
co

m
pl

ex
it

y
n/

a
O
(|r

ea
ds

et
|)

O
(|r

ea
ds

et
|)

or
n/

a
a

O
(|u

pd
at

es
|)

O
(|r

ea
ds

et
|)

N
um

be
r

of
co

m
m

un
ic

at
io

n
st

ep
s

3
(T

O
B
)

3
(T

O
B
)

3
(T

O
B
)

5
(T

O
B
+

R
B
)

3
(E

O
B
)

N
um

be
r

of
ne

tw
or

k
tr

an
sm

is
si

on
s:

-
cl

ie
nt

’s
re

qu
es

tm
es

sa
ge

n
1

1
or

n
a

1
1

-
tr

an
sa

ct
io

n
re

ad
se

t
0

n
n

or
0

a
0

1

-
tr

an
sa

ct
io

n
up

da
te

s
0

n
n

n
n

or
0

b

Se
ns

it
iv

it
y

to
a

w
or

kl
oa

d
ty

pe
:

-
hi

gh
co

nt
en

ti
on

no
ne

hi
gh

m
ed

iu
m

ve
ry

hi
gh

m
ed

iu
m

-
C

P
U

in
te

ns
iv

e
w

or
kl

oa
d

hi
gh

lo
w

lo
w

lo
w

lo
w

-
m

an
y

re
ad

op
er

at
io

ns
no

ne
hi

gh
m

ed
iu

m
lo

w
lo

w

a
D

ep
en

ds
on

th
e

tr
an

sa
ct

io
n

ex
ec

ut
io

n
m

od
e

(H
T

R
on

ly
).

b
D

ep
en

ds
on

th
e

ou
tc

om
e

of
tr

an
sa

ct
io

n
ce

rt
ifi

ca
ti

on
.

336 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Secondly, we compare the number of communication steps per transaction run which
are required for replica synchronization. Naturally, the least number of communication
steps is two: the processes send data in the first phase and, to ensure reliable commu-
nication, exchange acknowledgments in the second phase. Additionally, if the order of
messages is important, the message needs to be first forwarded to the leader/sequencer
process which then orders and broadcasts it. Thus under stable conditions two broad-
cast protocols featured in this chapter, i.e. TOB and EOB, require three communica-
tion steps, and third one, RB (reliable broadcast), requires only two. Hence, for each
transaction’s run SMR, DUR, HTR and EDUR need three communication steps while
Postgres-R needs five communication steps.

Thirdly, we check the amount of data that replicas need to exchange in order to
synchronize. Typically, SMR requires the least data to be transferred. It is because SMR
broadcasts only the request’s code and data needed for request execution. On the other
hand, other algorithms require to broadcast the updates resulting from the local request
execution, and usually some metadata that are necessary for transaction certification.
Of course, when using the SM execution mode in HTR, the amount of data needed to
be broadcast is the same as in SMR. EDUR reduces the network traffic by performing
certification only on one process—this reduction is particularly significant in case of
transactions that failed certification.

Finally, we compare three different types of workloads and discuss how they influ-
ence the performance and scalability of the algorithms. Replication schemes featuring
optimistic concurrency control typically do not tolerate high contention well (i.e., when
multiple concurrent requests access the same data). It is because under such workloads
many transactions are rolled back and restarted, thus wasting resources. This type of
workload is particularly troublesome for Postgres-R because it requires two broadcasts
to be performed for each transaction’s run. In HTR and EDUR, the negative aspects
of high contention can be compensated. HTR allows for transaction execution with
abort-free guarantees thus reducing the overall contention. In EDUR, conflict detection
is streamlined with message broadcast, thus reducing the total amount of computation
and the volume of data transferred through the network. Moreover, other processes do
not need to bother with processing transactions that failed certification. On the other
hand, in SMR, no conflicts can occur, because all (updating) requests are executed
sequentially. However, for the same reason, SMR is not suitable for CPU intensive
workloads. On the contrary, DUR, HTR, Postgres-R and EDUR perform better under
CPU intensive workloads because they allow for the concurrent execution of all re-
quests, not necessarily the read-only ones.

DUR does not handle well requests that execute multiple read operations. It is be-
cause DUR gathers the information about read objects in readset and later broadcasts it
alongside updates to all replicas. Large readsets put strain on the network stack and so
limit the system’s scalability. In HTR, a transaction accessing a large number of objects
can be executed in the SM mode (thus no readset need to be broadcast). Such a work-
load is also not problematic for EDUR or Postgres-R as well (in EDUR readset is only
sent to the leader process; in Postgres-R replicas do not exchange any information about

Introduction to Transactional Replication 337

objects read by transactions). On the other hand, the type of operations (read/write)
executed within a request does not influence the performance of SMR because it does
not feature transactional semantics.

11 Conclusion and Further Reading

In this chapter, we studied distributed algorithms for full transactional replication. We
defined the properties of transactional replication in terms of the rules that define the
replicated process as well as the interaction between the replicated process and exter-
nal clients. Then we described and discussed several core algorithms. They included
basic schemes, such as state machine replication (SMR) and deferred update replica-
tion (DUR), as well as optimized variants that use multiversioning (MvDUR), combine
SMR and DUR (HTR), optimize broadcast data (Postgres-R), and optimize the broad-
cast protocol itself (EDUR).

We then compared their main features and complexity, taking into account concur-
rency control, computation overhead, network communication overhead, and the appli-
cation workload type. One can see from this comparison that there is no one solution
that fits all purposes. The results of experimental evaluation (see e.g., [37,14]) show
that a simple scheme such as SMR performs surprisingly well compared to DUR, even
though it provides limited parallelism. However, the optimizations of DUR make it a lot
more viable, especially given its full transactional semantics which basic SMR lacks.

We only presented selected SMR and DUR-like algorithms whose main feature is
that they all rely on the total order broadcast to serialize the execution of transactions or
state updates. There exist many other transactional replication methods and algorithms
that differ in a number of ways, e.g., they use pessimistic concurrency control or specu-
lative executions, build the replication protocols on top of non-distributed transactional
memory, or explore other models of data space and failure. Below we give some exam-
ple references to the recent work that is close to the work discussed in this chapter, but
they are by no means complete.

Romano, Palmieri, Quaglia, Carvalho, and Rodrigues [31] (see also [24]) explore
speculative replication protocols for transactional systems. The key idea is to run an
optimistic atomic broadcast (OAB) algorithm to provide an early, possibly erroneous,
guess on transactions’ serialization order, in parallel with the algorithm that is used to
determine the actual order.

Marandi, Primi, and Pedone [21] optimize the SMR scheme by using speculative
execution to reduce the response time and state partitioning to increase the throughput
of SMR. In the follow-up paper [19], the authors propose parallel state-machine repli-
cation (P-SMR), which optimizes SMR by exploiting service semantics to determine
when commands can execute concurrently and when serial execution is needed (see
also [20], where a more aggressive speculative strategy is used).

Arun, Hirve, Palmieri, Peluso, and Ravindran [3] observe that in DUR even in case
when remote transactions rarely conflict with each other, the conflicts among local
transactions (on the same replica) can significantly decrease performance. They explore
speculation to optimize this scenario and prevent some local transactions from aborting
each other.

338 T. Kobus, M. Kokociński, and P.T. Wojciechowski

Sciascia, Pedone, and Junqueira [36] propose scalable deferred update (S-DUR)
aimed at increasing scalability of DUR through optimizing the execution of update
transactions. The key idea is to divide the state into logical partitions, replicate each
one among a group of servers, and orchestrate the execution and termination of transac-
tions across partitions using a 2PC-like protocol. Pacheco et al. [23] build on this idea
to scale DUR on multicore processors.

In [35], Sciascia and Pedone research the application of DUR to geo-replicated stor-
age systems. The paper discusses two optimizations of DUR for geo-replication which
essentially explore delaying and reordering of transactions.

Some researchers investigated transactional replication algorithms considering com-
plex failure models, in which servers mail fail arbitrarily. For example, Pedone and
Schiper [28] discuss DUR under Byzantine faults and propose suitable extensions of
this replication scheme in this failure model.

Acknowledgements. This work was funded from National Science Centre funds
granted by decision No. DEC-2012/06/M/ST6/00463.

References

1. Agrawal, D., Alonso, G., Abbadi, A.E., Stanoi, I.: Exploiting atomic broadcast in replicated
databases (extended abstract). In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997.
LNCS, vol. 1300, pp. 496–503. Springer, Heidelberg (1997)

2. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-recovery
model. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 231–245. Springer, Heidelberg
(1998)

3. Arun, B., Hirve, S., Palmieri, R., Peluso, S., Ravindran, B.: Speculative client execution
in deferred update replication. In: Proc. of MW4NG 2014: The 9th Middleware for Next
Generation Internet Computing Workshop (December 2014)

4. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and algorithms.
ACM Transactions on Database Systems (TODS) 8(4), 465–483 (1983)

5. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming. Springer (2011)

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consen-
sus. Journal of the ACM (JACM) 43(4), 685–722 (1996)

7. Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication - Theory and Practice. LNCS,
vol. 5959. Springer, Heidelberg (2010)

8. Couceiro, M., Romano, P., Rodrigues, L.: Polycert: Polymorphic self-optimizing repli-
cation for in-memory transactional grids. In: Proc. of Middleware 2011: The 12th
ACM/IFIP/USENIX International Conference on Middleware (December 2011)

9. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: Taxon-
omy and survey. ACM Computing Surveys (CSUR) 36(4), 372–421 (2004)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

11. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
Proc. of SIGMOD 1996: The ACM SIGMOD International Conference on Management of
Data (June 1996)

12. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication. In: Proc. of VLDB 2000: The 26th International Conference on Very
Large Data Bases (September 2000)

Introduction to Transactional Replication 339

13. Kemme, B., Pedone, F., Alonso, G., Schiper, A.: Processing transactions over optimistic
atomic broadcast protocols. In: Proc. of ICDCS 1999: The 19th IEEE International Confer-
ence on Distributed Computing Systems (1999)

14. Kobus, T., Kokociński, M., Wojciechowski, P.T.: Hybrid replication: State-machine-based
and deferred-update replication schemes combined. In: Proc. of ICDCS 2013: The 33rd
IEEE International Conference on Distributed Computing Systems (July 2013)

15. Kokociński, M., Kobus, T., Wojciechowski, P.T.: Make the leader work: Executive deferred
update replication. In: Proc. of SRDS 2014: The 33rd IEEE International Symposium on
Reliable Distributed Systems (October 2014)

16. Kończak, J., Santos, N., Żurkowski, T., Wojciechowski, P.T., Schiper, A.: JPaxos: State ma-
chine replication based on the Paxos protocol. Tech. Rep. EPFL-REPORT-167765, Faculté
Informatique et Communications, EPFL (July 2011)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM (CACM) 21(7), 558–565 (1978)

18. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems (TOCS)
16(2) (May 1998)

19. Marandi, P.J., Bezerra, C.E., Pedone, F.: Rethinking state-machine replication for paral-
lelism. In: Proc. of ICDCS 2014: The 34th IEEE International Conference on Distributed
Systems, pp. 368–377 (June 2014)

20. Marandi, P.J., Pedone, F.: Optimistic parallel state-machine replication. In: Proc. of SRDS
2014: The 33rd International Symposium on Reliable Distributed Systems (October 2014)

21. Marandi, P.J., Primi, M., Pedone, F.: High performance state-machine replication. In: Proc.
of DSN 2011: The 41st IEEE/IFIP International Conference on Dependable Systems and
Networks (June 2011)

22. Moser, L.E., Amir, Y., Melliar-Smith, P.M., Agarwal, D.A.: Extended virtual synchrony.
In: Proc. of ICDCS 1994: The 14th International Conference on Distributed Computing
Systems (June 1994)

23. Pacheco, L., Sciascia, D., Pedone, F.: Parallel deferred update replication. In: Proc. of NCA
2014: The 13th IEEE International Symposium on Network Computing and Applications
(August 2014)

24. Palmieri, R., Quaglia, F., Romano, P.: OSARE: Opportunistic speculation in actively REpli-
cated transactional systems. In: Proc. of SRDS 2011: The 30th IEEE International Sympo-
sium on Reliable Distributed Systems (October 2011)

25. Palmieri, R., Quaglia, F., Romano, P., Carvalho, N.: Evaluating database-oriented replica-
tion schemes in software transactional memory systems. In: The 15th IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems (April 2010)

26. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Distributed
and Parallel Databases 14(1) (July 2003)

27. Pedone, F., Guerraoui, R., Schiper, A.: Exploiting atomic broadcast in replicated databases.
In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 513–520. Springer,
Heidelberg (1998)

28. Pedone, F., Schiper, N.: Byzantine fault-tolerant deferred update replication. Journal of the
Brazilian Computer Society 18, 3–18 (2012)

29. van Renesse, R.: Paxos made moderately complex, available electronically (2012)
30. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software transactional mem-

ory systems. In: Proc. of LADIS 2008: The 2nd Workshop on Large-Scale Distributed Sys-
tems and Middleware (September 2008)

31. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: On speculative repli-
cation of transactional systems. Journal of Computer and System Sciences 80(1), 257–276
(2014)

340 T. Kobus, M. Kokociński, and P.T. Wojciechowski

32. Schiper, A., Raynal, M.: From group communication to transactions in distributed systems.
Communications of the ACM (CACM) 39(4) (April 1996)

33. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR) 22(4), 299–319 (1990)

34. Schneider, F.B.: Replication management using the state-machine approach, pp. 169–197.
ACM Press/Addison-Wesley (1993)

35. Sciascia, D., Pedone, F.: Geo-replicated storage with scalable deferred update replication.
In: Proc. of DSN 2013: The 43rd Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (June 2013)

36. Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In: Proc. of
DSN 2012: The 42nd IEEE/IFIP International Conference on Dependable Systems and
Networks (June 2012)

37. Wojciechowski, P.T., Kobus, T., Kokociński, M.: Model-driven comparison of state-
machine-based and deferred-update replication schemes. In: Proc. of SRDS 2012: The 31st
IEEE International Symposium on Reliable Distributed Systems (October 2012)

Transaction Execution Models in Partially Replicated
Transactional Memory: The Case
for Data-Flow and Control-Flow

Roberto Palmieri1, Sebastiano Peluso2, and Binoy Ravindran3

1 Virginia Tech, 453 Durham Hall, Blacksburg, VA 24061, USA
robertop@vt.edu

2 Virginia Tech, 452 Durham Hall, Blacksburg, VA 24061, USA
peluso@vt.edu

3 Virginia Tech, 459 Durham Hall, Blacksburg, VA 24061, USA
binoy@vt.edu

Abstract. In this chapter we describe solutions for managing concurrency of
distributed transactional memory accesses in partially replicated deployments.
A system is classified as partially replicated if, for each shared object, there is
more than one node responsible for storing the object, thus resulting in multiple
copies available in the system. In contrast to full replication, where all objects are
replicated on all nodes, partial replication allows storing a huge amount of data
that, by nature, cannot fit in a single node and improving scalability by (signifi-
cantly) increasing the number of node serving transaction requests. Solutions that
assume partially replicated deployments are categorized according to the mobil-
ity of shared objects. In the control-flow approach shared objects are pinned to
nodes for the entire system’s lifetime, whereas in the data-flow objects are al-
lowed to change residence node (also called owner) whenever a transaction com-
mits a new version of the object. Intuitively, adopting the data-flow model, objects
follow committing transactions whereas, relying on the control-flow model, trans-
actions’ flow is routed towards objects. There is a number of key factors to
be evaluated before preferring one transaction execution model to another. This
chapter surveys all of them and provides solutions suited for different deploy-
ments. The chapter aims for helping designers to understand the execution model
that better fits their requirements.

1 Introduction

Replication applied to transactional systems has been already successfully consolidated
in the literature as the reference methodology for building available, fault-tolerant and
high performance data management systems. These properties become fundamental
when the transactional processing is entirely executed in-memory, without relying on
any stable storage support. This is the case of Software Transactional Memory (STM)
based systems where, if the machine experiences a failure, undesirable events such that
loss of data, service interruption and unfinished computations can happen.

In the last decade, several replication protocols have been proposed. They can be cat-
egorized into the full replication model [18,25,15,27], in which each node (or replica)

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 341–366, 2015.
c© Springer International Publishing Switzerland 2015

342 R. Palmieri, S. Peluso, and B. Ravindran

keeps the entire shared data set, and the partial replication model [20,23,19], in which
each object is replicated on a subset of all the replicas in the system. In this chapter
we focus on the latter model, and we provide an overview on the main different design
choices that can be adopted in the implementation of transactional partial replication so-
lutions. We underline the challenges posed by that model, by also discussing its benefits
and drawbacks, and we give an overview of some state-of-the-art solutions designed for
the execution of transactions in partially replicated STMs.

Partial replication is typically adopted for increasing the scale of the system’s de-
ployment, as well as for coping with (very-) large data-set. In fact, replicating each
shared object on a limited number of machines (also called nodes or replicas) allows
the system’s administrator to reserve just a small part of the resources available on a
single node to store replicated objects, while still having a large amount free space for
hosting new objects. In addition, in order to commit a transaction, the partial replication
model enables the design of genuine protocols [11,23,20], namely schemes that involve
only the nodes responsible for storing the objects accessed by the committing transac-
tion, rather than all the nodes in the system, hence increasing the system’s parallelism.
This can lead to the processing of an ever growing number of client requests and an
enhancement of the overall system throughput.

On the other hand, when compared with the full replication model, partial replication
has two major downsides: it offers a smaller degree of resilience, limited to the number
of replicas maintaining the same shared object; and it is prone to poor performance due
to remote communications that can happen during transaction processing for retrieving
objects stored on nodes different from the node where the transaction executes.

Designing a protocol for running transactions in partially replicated systems includes
deciding whether the protocol adheres the basic scheme of data-flow or control-flow.
This decision is affected by a number of factors that we discuss in Section 3. Subse-
quently we present two protocols implementing the data-flow and control-flow model
in Sections 4 and 5, respectively. After that, in Section 6 we show a hybrid protocol
that inherits the advantages from both these models. Before the protocols, a common
system model is reported in Section 2. Finally Section 7 concludes the chapter.

2 System Model

We consider a classical asynchronous distributed system [10], which consists of a set
of nodes Π = {n1,n2, · · · } that communicate with each other by message-passing links
over a communication network. Messages may experience arbitrarily long (but finite)
delays, and no bound on relative site speeds or clock skews is assumed. Nodes have
neither a globally shared memory nor a global notion of time. We consider the crash-
stop failure model [24], where nodes may fail by crashing, but they do not behave
maliciously.

A set of distributed transactions T Set = {T1,T2, · · ·} is assumed. Transactions share
a set of objects OSet = {O1,O2, . . .}, which are assumed to be distributed on the nodes
of the system. Objects are subdivided across m partitions, and each partition is repli-
cated across r nodes, i.e., r represents the replication degree for each object. The set
Γ = {g1, . . . ,g j, . . . ,gm} denotes the set of m groups of nodes, where g j is the group

Transaction Execution Models in Partially Replicated Transactional Memory 343

replicating the j-th objects partition. Each group is composed of exactly r nodes (to en-
sure the target replication degree), of which at least a majority is assumed to be correct.
In order to maximize flexibility of the data placement strategy, groups are not required
to be disjoint (they can have nodes in common), and a node may participate to multiple
groups, as long as

⋃
j=1...m g j = Π . In addition groups(pi) denotes the set of groups

which pi belongs to, and replicas(S) denotes the set of nodes that replicate the objects
partitions containing all the objects O ∈ S, called also owners of S.

The replication protocols presented in this chapter rely on Two-Phase Commit-based
(2PC) [2] atomic commitment algorithms in order to ensure atomicity on the commit of
a transaction. Even though 2PC is well known to be blocking upon failure of the coor-
dinator, the issue of how to ensure high availability of the transaction coordinator state
is well understood, and a range of orthogonal solutions have been proposed in literature
to deal with such failure scenarios. Therefore, in this chapter we do not explicitly focus
on how handling the failure of a node, even if one may use, for instance, protocols such
as Paxos Commit [9] or other consensus based abstractions [8,17], to replicate the state
of the coordinator of a transaction T across the replicas of any of the data partitions
accessed by T . Note that, since a majority of nodes is assumed to be correct for each
replica group, failures of transactions’ participants (different from transactions’ coordi-
nators) will not lead to blocking scenarios during the execution of a remote read opera-
tion. Failures of transactions’ participants can, instead, lead to aborts during the commit
phase, as the coordinator unilaterally aborts the transaction if it times out while waiting
for some reply during the prepare phase. To ensure the liveness of the commit phase, the
presented protocols rely on an underlying Group Communication System [3] in order
to handle the removal of faulty replicas from the system and manage its reconfigura-
tion, which might also imply the re-distribution of data across replicas to guarantee a
desirable replication degree.

Transactions are modeled as a set of begin, read, write, commit and abort operations
on transactional data, and they define a total order in which these operations are exe-
cuted; therefore a transaction is sequential by nature and no multiple operations of a
same transaction can be executed simultaneously (i.e. concurrently). Transactions that
do not execute any write operation are called read-only transactions, otherwise they are
called update (or equivalently write) transactions.

The last operation of a transaction Ti is either a commit operation, which indicates
that Ti is completed successfully, or an abort operation, otherwise. There is at most one
commit or abort per transaction, and the first operation of a transaction is the begin,
which indicates the transaction starts its execution at that point in time. Furthermore,
we suppose that a transaction Ti is always associated with an identifier, Ti.id, which
univocally identifies Ti in the system.

A client requests the execution of a transaction Ti by contacting one node of the
system, which is named Ti’s originating node (or equivalently Ti’s coordinator).

3 Transaction Execution Models: Data-Flow and Control-Flow

Under the partial replication data model, transactions are commonly executed according
to two different flow models, named data-flow and control-flow, which differ depending

344 R. Palmieri, S. Peluso, and B. Ravindran

on the “mobility” of the shared objects. In particular the distinguishing point between
them is the capability of an object to move its physical content, as well as its ownership,
from one node to another in the system whenever a transaction commits a change on it.
For the sake of clarity, hereafter in this chapter we will refer to the action of moving an
object from node n1 to n2 as transferring both the ownership and the physical content
of the object from n1 to n2.

The data-flow model has been introduced by Herlihy and Sun in [14]. In this model,
transactions are immobile and objects are dynamically migrated to invoking nodes. This
way, when a transaction T is performed by some thread executing on a node n, then T
is pinned to n and it executes all its transactional operations on n. Clearly, given the
partial replication model, T could require to act on objects that are not maintained by
n. If so, T first fetches the object from the node that currently is responsible for storing
the object, then it uses this local copy for accomplishing those operations that need the
object. Finally, if T is committed successfully, the updated objects are moved to n (i.e.,
n becomes an owner of those objects).

The control-flow model defines a transactional execution where objects are immobile
and transactional operations are invoked on the owners of the accessed objects. In this
model, the nodes responsible for maintaining an object are fixed since the creation of
the object and until its deletion. When a transaction performs an operation on an object
stored on a remote node, the operation is invoked as a remote procedure call on that
node.

Intuitively, data-flow differs from control-flow because the former allows objects
to migrate among nodes. This feature is appealing because it provides the flexibility
to exploit application’s locality (e.g., moving data closer to the nodes that represent
the source of transactions accessing those objects), but it requires a distributed proto-
col to implement the functionalities of looking-up, publishing (or adding), moving and
deleting objects. This entity is commonly named as distributed cache-coherence (or
DCC) protocol [14,28,1,26]. On the other hand, protocols implementing the control-
flow model cannot physically move objects, thus they do not need a distributed compo-
nent, such as the DCC protocol, for retrieving and managing the location of the accessed
objects. They usually determine an owner by simply executing a local, so called “con-
sistent”, logic which, given some invariant of the object (e.g., the object identifier), is
able to consistently return the node storing that object despite further modifications to
its content and without keeping any explicit mapping between the object and its owner
nodes. This approach has the advantage to be application independent because objects’
invariants are provided by the application itself. There is another approach that solves
the problem of biasing the initial placement of objects by defining appropriate objects’
invariants given desired destination nodes. This approach can be leveraged in applica-
tions where objects can be customized due to the actual deployment.

In the data-flow model, despite the advantages to move objects, the mapping be-
tween objects and nodes cannot be implemented entirely local at each node, as the case
of control-flow, because it changes over time and all nodes should be aware of this
change. As a result, maintaining updated information about this mapping and retrieving
them represent a clear performance bottleneck and one of the main reasons of data-flow
protocols’ limited scalability. A significant research effort has been made in the area

Transaction Execution Models in Partially Replicated Transactional Memory 345

of DCC protocols for increasing their performance, spanning from theoretical aspects
to practical optimizations. A commonly used implementation of a DCC protocol, also
called directory, uses a hash function that, given the invariant of an object, it retrieves
the node responsible for maintaining the mapping between the object and the actual
owner. This way, if the hash function provides a uniform distribution of keys across
nodes, also the load for handling object look-up requests is uniformly distributed.

The simple directory implementation just described shows that the process of retriev-
ing an object involves remote interactions that have an inevitable consequence on the
transaction critical path, stretching it in time. As a result, deciding an approach such as
control-flow or data-flow is a critical design decision that affect significantly the overall
system’s performance and scalability.

4 TFA: A Data-Flow Based Replication Protocol

The data-flow model [14] is inspired by the usual hardware mechanisms adopted for
executing atomic operations (or transactions) in multiprocessor (and multicore) archi-
tectures [12,13]. In those systems, when an object is accessed, the object is marked as
“monitored” in the cache memory, such that no other operations are allowed to execute
on that object. A transaction T can safely commit only if no other transaction attempted
to write any object accessed by T during its execution. Modifications are made in place
on the cache memory and written back to the main memory only if the transaction is
successfully committed. With this approach, the parallelism of executing transactions
is limited because two transactions are always prevented to act on the same object if
at least one operation is a write. Despite that, there can be identified two main advan-
tages of such a protocol: i) leveraging the data-flow model, objects are moved closer
to the transactions such that application locality is exploited; ii) the commit operation
is lightweight because all objects are already and exclusively fetched through the DCC
protocol during the transaction’s execution, thus no additional coordination phase is
needed to finalize the commit.

When we export this model into a distributed system, the distributed DCC proto-
col has the duty of ensuring that for each object there exists only a single monitored
copy. This model applies also in replicated systems because the DCC protocol treats
the multiple object copies as a single copy. However, due to the longer delays caused
by the network interactions, blocking two transactions from accessing the same object
has a (possibly high) negative impact on performance because the time each object is
taken away from other concurrent transactions is much higher than in multiprocessor
architectures. As an example, if a transaction is doomed and will abort, a protocol di-
rectly inspired by the hardware cache coherence mechanism forbids other transactions
to access the last committed version of objects already accessed by the transaction, lim-
iting the concurrency. In order to overcome this limitation, in this section we describe a
protocol that still implements the data-flow model but allows multiple concurrent trans-
actions to execute optimistically on same objects. Whenever a transaction commits a
new object version, all other concurrent transactions that accessed that object recognize
the commit and abort accordingly.

346 R. Palmieri, S. Peluso, and B. Ravindran

4.1 Protocol Overview

The Transaction Forwarding Algorithm (TFA) [22] is a data-flow distributed transac-
tions management algorithm. It is inspired by the TL2 algorithm, already proposed
for multiprocessor STM [6]. TFA ensures One-Copy Serializability [2] by buffering
write operations on shared objects until commit time and adopting a distributed atomic
commitment protocol (i.e., Two-Phase Commit [2]) for deterministically validating read
objects and making new written objects available to other transactions. Also, TFA guar-
antees that all transactions (including those aborted) always observe consistent states.
This property is highly desirable for in-memory processing systems in order to avoid
unexpected application crash. In contrast to TL2’s unique clock, TFA uses independent,
per node transactional clocks and provides a mechanism to establish the happened-
before relationship [16] among significant events (e.g., read, write, commit) by updating
clocks accordingly.

In this section we focus on detailing TFA and we scope out the problem of managing
the location of objects because we assume the existence of a directory or a cache coher-
ence protocol, such as Arrow [5], Ballistic [14], or others [28,1,26], which provide the
required services. In particular, we assume a Directory Manager module for locating
objects. Its interface includes two methods: publish(Ox, nc) that registers the node nc,
as an owner of object Ox; locate(Ox), which finds the set of owner nodes of object Ox.

Even though TFA provides fault-tolerance by replicating each object on multiple
nodes, for the sake of clarity in the description of the protocol, we assume the existence
of a single owner node for each object Ox that is responsible for managing the object
against transactions’ requests. This node is named Ox’s primary owner in order to dis-
tinguish it from all the other nodes that can maintain a copy of Ox, which are named
Ox’s secondary owners.

Secondary owners of object Ox are still updated synchronously at commit time by
Ox’s primary owner, but they are not involved for serving read and write operations.
However they become fundamental in case a failure happens and a new primary owner
should be elected for avoiding any loss of data.

Each node has a local logical clock, named LC, which is advanced whenever any
local transaction commits. LC is piggybacked on all messages, and Lamport’s based
synchronization mechanism [16] is used to keep the clocks synchronized. When a trans-
action starts, it records the current LC into a transaction timestamp, called WV, which
is used during the transaction execution for determining whether an object can be con-
sistently accessed or not. Each object is associated with a version number (vid), which
represents the LC value used by the transaction that committed the last version of the
object, and a lock, acquired when a transaction is currently committing a new version
of the object.

In the classical multiprocessor timestamp-based TM protocols, when a transaction Ti

accesses an object with a version number less than or equal to Ti’s timestamp, this means
that the object has been committed by a transaction Tj serialized before Ti [6,7]. This
invariant does not apply in distributed genuine deployments where a node clock (i.e.,
LC) is advanced independently of other nodes and only whenever a transaction commits
on that node. In fact, in this case, the comparison between transaction’s WV and object
versions becomes meaningless if objects are not stored on the same node where the

Transaction Execution Models in Partially Replicated Transactional Memory 347

transaction is executing. To solve this problem and guaranteeing the above invariant
in genuine partial replication model, TFA proposes a forwarding mechanism, which
provides the support for updating LCs values according to dependencies developed by
transactions in the system. As a result, TFA can rely on the usual reading rule adopted
by timestamp-based protocols [6,7] where a version is visible is its version number not
greater than WV. In addition, with the purpose of increasing the set of visible objects,
TFA provides also a procedure, similar to the one adopted in [21], which tries to increase
WV whenever an accessed object is detected with a version number greater than that.

4.2 Accessing Objects and Committing Transactions

Algorithms 1–6 describe TFA’s main procedures. When a transaction begins, it reads the
current clock value of the node on which it is executing. Due to the data-flow model,
if the primary owner of an accessed object is remote, read and write operations may
involve communication steps. Whenever a remote object is accessed, a local object
copy is created and cached at the current node till the transaction terminates. This way, a
transaction makes only object modifications to a local copy of the object. Every written
object ob j, identified by oid is buffered into a private per-transaction memory space
called write-set (ws) as a couple 〈oid,ob j〉. Equivalently, objects returned from read
operations are stored in the read-set, as 〈oid,vid〉, where vid represents the version
number of oid. If a read operation involves an object that appears also in the write-
set, the last value written by the current transaction is retrieved. In the following, we
detail the two major operations of TFA: fetching an object (denoted as Open in the
Algorithm 2) and committing a transaction (Algorithm 6).

When a transaction starts (Algorithm 1), it fetches the value of LC and stores it to
the transaction’s WV.

Algorithm 1. Begin operation (node ni)
1: void Begin(Transaction T)
2: T.WV ← ni.LC

A read operation, as well as a write operation, requires to retrieve the object from the
current primary owner node before to act on the object. To do so, the Open procedure
is called (Algorithm 2).

The node executing the transaction ni sends a request for retrieving an object with
ObjectId oid to oid’s primary owner. The current node clock value of ni, called LC, is
piggybacked on this message. Upon receiving the message for retrieving an object at
receiver node n j (i.e., the primary oid object owner) (Algorithm 4), a copy of the object
is sent back, and the current clock value, namely n j’s LC, is included in the reply. In
addition the Forward operation is called (see Algorithm 5). This way, the incoming
clock value, ni’s LC, is extracted and compared with the current clock value of n j. If
n j’s LC < ni’s LC, then n j’s LC is advanced to the value ni’s LC; otherwise nothing is
changed.

348 R. Palmieri, S. Peluso, and B. Ravindran

Algorithm 2. Open operation (node ni)
1: Object Open(Transaction T, ObjectId oid)
2: Node n j ← locate(oid)
3: [Ob ject ob j, SnapshotId vid, bool locked, SnapshotId n j.LC] ←

retrieveOb ject(n j,oid,ni.LC)
4: Forward(n j.LC)
5: if locked =� then
6: throw ABORT
7: if vid > T.WV ∧ Extend(T,n j .LC) =⊥ then
8: throw ABORT
9: return ob j

When ni receives the reply from n j and the object is locked, then the transaction is
immediately aborted. In case the object is free of lock and the object’s version number is
not greater than the transaction’s WV, the object can be returned. If the object’s version
number is grater than the transaction’s WV, then the transaction tries to extend its WV
(Algorithm 3) to n j’s LC, in order to read the object. The procedure for extending the
transaction’s WV includes the validation of the entire read-set. For each object read so
far by the transaction, the procedure locates that object and checks its current version
number. If it is higher than the version number recorded in the read-set but still less than
or equal to n j’s LC (the target clock value of the transaction), then the transaction’s WV
cannot be extended and this causes its abort. Otherwise WV is extended to n j’s LC.

Finally, whenever ni receives a reply for a retrieve object request, it calls the Forward
operation to forward (if needed) ni’s LC to n j’s LC.

Algorithm 3. Extend operation (node ni)
1: bool Extend(Transaction T, SnapshotId target)
2: for all 〈roid,rvid〉 ∈ T.rs do
3: Node n j ← locate(roid)
4: [Ob ject ob j, SnapshotId vid, bool locked, SnapshotId n j.LC] ←

retrieveOb ject(n j,roid,ni.LC)
5: Forward(n j.LC)
6: if locked =� then
7: return ⊥
8: if vid > rvid ∧ vid ≤ target then
9: return ⊥

10: T.WV ← target
11: return �

When a transaction completes all its transactional operations we need to guarantee
that the transaction appears as executed at a unique point in time. If the transaction is a
read-only one, it appears as executed at the logical time WV thanks to the TFA’s read-
ing rule, and it can safely commit without any additional step. Otherwise, in case of
an update transaction, we have to guarantee that the entire read-set remains unchanged

Transaction Execution Models in Partially Replicated Transactional Memory 349

Algorithm 4. Reception of a RETRIEVEOBJECTMSG (node ni)
1: upon receive RETRIEVEOBJECTMSG([ObjectId oid, SnapshotId n j.LC]) from n j
2: Forward(n j.LC)
3: Ob ject ob j ← getOb ject(oid)
4: SnapshotId vid ← getVersionId(oid)
5: bool locked ← isLocked(oid)
6: send RETRIEVEOBJECTRETURN([ob j,vid, locked,ni.LC]) to n j

Algorithm 5. Forward operation (node ni)
1: void Forward(SnapshotId target)
2: if target > ni.LC then
3: ni.LC ← target

Algorithm 6. Commit phase (node ni).
1: void Commit(Transaction T)
2: for all 〈oid,ob j〉 ∈ T.ws do
3: acquireLock(oid) on all n j ∈ replicas({oid}) � Lock acquisition on n j .

4: for all 〈roid,rvid〉 ∈ T.rs do
5: bool valid ←Validate(roid,rvid) on all n j ∈ replicas({oid}) � Validation on n j .
6: if valid =⊥ then
7: throw ABORT
8: ni.LC++
9: for all 〈oid,ob j〉 ∈ T.ws do

10: ob j.commitValue()
11: setVersionId(oid,ni.LC)
12: releaseLock(oid) on all n j ∈ replicas({oid}) � Lock release on n j .
13: publish(oid,ni)

14:
15: void Validate(ObjectId roid, SnapshotId rvid)
16: SnapshotId vid ← getVersionId(roid)
17: bool locked ← isLocked(roid)
18: if locked =�∨ vid > rvid then
19: return ⊥
20: return �

350 R. Palmieri, S. Peluso, and B. Ravindran

at the time when the transaction is actually serialized (i.e., when all objects are made
available to other transactions). In order to ensure that, TFA accomplishes the following
procedure (see Algorithm 6).

TFA acquires locks for objects belonging to the write-set. As some (or all) of these
objects may be remote, a lock request is sent to all object owner nodes. If the lock
cannot be acquired for any of the objects, the transaction is aborted and restarted.

After the lock acquisition, the whole read-set is validated against the current version
of the accessed objects. The validation succeeds if none of the read objects has a current
version number greater than the version stored in the read-set and is locked by other
transactions. Upon successful completion of this step, a transaction can safely proceed
to commit on the node where the transaction is running.

Before publishing the new object versions, the local clock value LC is incremented
by 1, and those new versions are tagged with the new value of LC. After that, all new
object versions are published through the directory manager. This step includes the
update of other object copies maintained by secondary owners. The commitment phase
finishes releasing all acquired locks.

The abort of a transaction consists of releasing all acquired locks (if any), clears its
read and write sets, and restarts again by assigning the new WV.

4.2.1 Example
Figure 1 illustrates an example of how TFA operates in a network of three nodes, N1,
N2, and N3. Initial values of the respective node clocks are 10, 20, and 5. Lines between
the nodes represent requests and replies, and stars represent object access. Any changes
in the clock values are due to successfully committed transactions. In this example we
consider only primary object owners and we skip the updates to other object copies.

Fig. 1. An execution of a distributed transaction under TFA

Transaction T1 is invoked at node N1 with a local clock value, LC = 10. Thus, T1.WV
= 10. Afterwards, T1 reads the value of the local object Ox and finds its version number,
denoted as Ver(Ox) in the figure, as 7 < T1.WV , and adds it to its read-set. The remote
object Oy is then accessed for read. N1 sends an access request to N2 (Oy’s primary
object owner) with its current clock value LC. Upon receiving the request at N2 at time
27 (according to N2’s clock), N2 replies with the object value and its local clock. N1

processes the reply and finds that it has to advance its local clock to time 27. In addition,

Transaction Execution Models in Partially Replicated Transactional Memory 351

the transaction extension needs to be done. T1.WV is therefore set to 27. Furthermore,
early commit-validation is done on the read-set to ensure that this change will not hide
changes happened to any object in the read-set since the transaction started (at any time
tA).

Subsequently, T1 accesses object Oz located at node N3, and includes its local clock
value to the request. After N3 replies with a copy of the object and its local time, N3

detects that its time lags behind N1’s time. Thus, N3 will advance its time to 30 (the last
detected clock value from N1). Note that in this case, N1 will not advance its clock, nor
will do the transaction extension, as it has a leading clock value.

Now, T1 requests object Ou at node N2. Assume that N2’s clock value is still 27 since
the last request, while N1 advances its clock due to other transactions’ commit. Now,
N2 will advance its clock to 31 upon receiving object Ou’s access request.

Eventually, T1 completes its execution and does the commit-validation step by ac-
quiring locks on objects in its write-set (i.e., Ou), and validating versions of objects in
its read-set (i.e., Ox, Oy, and Oz). Upon successful validation, N1’s local clock is incre-
mented atomically and its old value is written to Ou’s versioned-lock. N1 is published
as the new owner of the write-set objects.

5 SCORe: A Control-Flow Based Replication Protocol

In control-flow protocols, shared objects are immobile while transactional flow moves
from node to node by following the location of the accessed objects. Therefore in case a
transaction T originated by a node ni issues an operation (either read or write operation)
on an object O that is located on a node n j (different from ni), the execution flow of T
moves from ni to n j in order to finalize that operation. This means that, to access a
remote object, a transaction makes a remote procedure call (RPC) to the object’s owner
node, which in turn makes a tentative update (in case of write operation) or returns a
result (in case of read operation).

Compared to data-flow based protocols, control-flow based protocols can be more
scalable since they do not need to move objects during transactions execution or com-
mit, and they do not rely on expensive distributed protocols for managing (and retriev-
ing) the location of objects. As a result, in case of favorable placement of objects, a
transaction is likely executed locally at the originating node without exchanging any
additional message in the system for executing remote operations or retrieving objects’
location.

However control-flow model has drawbacks in case the distribution of transactional
accesses in the system (i.e., the application locality) does not follow the initial distri-
bution of objects, thus generating a significant amount of remote read operations per
transaction. Furthermore, since nodes committing a change on an object do not acquire
an exclusive ownership on that object, determining the outcome of a transaction after
its execution in control-flow based protocols cannot be implemented as a local deci-
sion only at the transaction’s originating node. In particular, nodes storing the objects
accessed by a transaction T need to coordinate in order to determine whether T can
be committed or not, and T ’s commit order against the commits of other concurrent
transactions that conflict with T .

352 R. Palmieri, S. Peluso, and B. Ravindran

Therefore, as soon as a client requests the execution of a transaction to a given node,
the node executes the transaction optimistically by returning to the client the values of
the read operations and buffering the outcome of write operations in the write-set. The
output of a transaction should not be externalized at this stage because its execution
advances optimistically without taking into account possible conflicts with concurrent
transactions running at other nodes. At commit time, namely whenever the transaction
requests the commit, the results of the local processing are replicated on the nodes stor-
ing the objects to be updated. The replication does not necessarily entail the application
of the updates, which can only happen if all the involved nodes determine a successful
completion of the transaction. The decision on whether committing a transaction T or
not can be made by relying on an atomic commitment protocol [4,2] in order to execute
a deterministic validation procedure of T on the nodes storing the objects in T ’s read-
set, and to apply the changes of T on all the nodes storing the objects in T ’s write-set.
The atomic commitment protocol guarantees that: i) for each object Oi in T ’s read-set,
the validation of T produces the same outcome on all the nodes replicating Oi, and ii)
the updates of T are atomically applied in the same order (with respect to the commits
of other concurrent transactions) on all the nodes replicating objects in T ’s write-set.

In the following, we present SCORe, a multi-version control-flow based partial repli-
cation protocol that follows the aforementioned scheme and is able to guarantee One-
Copy Serializability on the set of executed transactions (either aborted or committed).
This way SCORe ensures that no transaction observes an inconsistent state and there-
fore read-only transactions are never forcefully aborted without incurring a distributed
validation procedure either.

5.1 Protocol Overview

SCORe is a genuine partial replication protocol that implements a One-Copy Serializ-
able distributed multi-version scheme [19]. Unlike data-flow protocols, in control-flow
maintaining multiple versions of an object is a common practice to guarantee higher
parallelism of transactions execution. This is because a read operation of a transaction
T is always able to return the version that is compatible with (i.e., does not violate se-
rializability of) the history of transactions observed by T so far, and read operations do
not interfere with the execution of write operations. As a consequence, read-only trans-
actions (i.e., transactions that do not execute any write operation) are never forcefully
aborted by the concurrency control scheme.

As in typical non-distributed multi-version algorithms [2], SCORe replicas store
multiple versions of the objects that they maintain. Each object o is a sequence of ver-
sions ver = 〈val,vid〉, all associated with an id Oid representing O’s identifier, and
ordered according to the order of the write operations committed on O. The fields val
and vid of a version ver are respectively a value of O and a logical scalar timestamp, i.e.,
an integer non-negative number, associated with the commit of ver. Given a sequence of
versions associated with O and stored on a node ni, the values of vid are monotonically
decreasing going from the most recent committed version to the oldest one. Throughout
the description of the protocol, Oid.last identifies the sequence of committed versions
associated with the object Oid (i.e., that is identified by Oid), and its value is the last
committed one among them. Furthermore, for each version ver of object Oid, ver.prev

Transaction Execution Models in Partially Replicated Transactional Memory 353

identifies the version preceding ver (e.g., that has been committed before ver) in the
sequence of versions associated with Oid.

SCORe introduces a novel distributed timestamp management scheme that addresses
two main issues: (i) establishing the snapshot visible by transactions, i.e., selecting
which one, among the multiple versions of an object (replicated across multiple nodes)
should be observed by a transaction upon a read operation; (ii) determining the final
global serialization order for update transactions via a distributed agreement protocol
that takes place during the transactions’ commit phase.

To this end SCORe maintains two scalar variables per node, namely commitId and
nextId. The former one maintains the timestamp that was attributed to the last update
transaction when committed on that node. nextId, on the other hand, keeps track of the
next timestamp that the node will propose when it will receive a commit request for a
transaction that accessed some of the objects that it maintains. The sequences of values
assigned to both variables are guaranteed to be monotonically increasing, since they
represent the advancement of logical time on each node.

Snapshot visibility for transactions is determined by associating with each transac-
tion T a scalar timestamp, called snapshot identifier or, more succinctly, sid. The sid
of a transaction is established upon its first read operation. In this case the most recent
version of the requested object is returned, and the transaction’s sid is set to the value of
commitId at the transaction’s originating node, if the read can be served locally. Other-
wise, if the requested object is not maintained locally, T.sid is set equal to the maximum
between commitId at the originating node and commitId at the remote node from which
T reads. From that moment on, any subsequent read operation is allowed to observe the
most recent committed version of the requested object having timestamp less than or
equal to T.sid, as in classical multi-version concurrency control algorithms.

Therefore, unlike the TFA protocol presented in Section 4, SCORe does not advance
the observable snapshot on every read operation, and it only ensures that a transaction
can observe at least all the writes committed on the transaction’s originating node be-
fore the transaction began. Note that a procedure for extending the observable snapshot
of a read operation in SCORe would follow the one presented for TFA, and however
it is not necessary for correctness. In fact, trying to extend the observable snapshot in-
creases the probability of reading the last available version of an object, which in TFA
means increasing the probability to commit transactions since no multiple versions are
available for each object.

To guarantee that the logical timestamps univocally identify committed snapshots of
the transactional state (whether they are commitId, nextId, sid or vid), in SCORe they
are represented in such a way for any pair of timestamps idi and id j, if idi ≤ id j ∧ id j ≤
idi then i = j, hence they are the same identifier associated to a unique commit. In
addition if i �= j, then either idi ≤ id j or id j ≤ idi, and for any triple idi, id j and idk, if
id j ≤ id j ∧ id j ≤ idk, then idi ≤ idk. Therefore a set of identifiers in SCORe is always
totally ordered under the binary relation ≤, and this property is ensured by implicitly
supposing that a timestamp identifier can be represented as a pair of integer and node
identifier (which can be a compact representation of its address that univocally identifies
it in the system). In addition, throughout the following description, the notation idi < id j

is used to indicate that idi ≤ id j and id j �≤ idi, .

354 R. Palmieri, S. Peluso, and B. Ravindran

Analogously to other control-flow partial replication protocols (e.g., [20]), SCORe
relies on a genuine atomic commit protocol that can be seen as the fusion of the Two-
Phase Commit algorithm (2PC) [2] and the Skeen’s total order multicast [11]. 2PC is
used to validate update transactions and to guarantee the atomicity of the application
of their post-images. Overlapped with 2PC, SCORe runs a distributed agreement pro-
tocol that allows to achieve a twofold goal: (i) totally ordering the commit events of
transactions that update any object in a partition j among all the nodes that replicate
j (namely, g j); (ii) tracking the serialization order between update transactions that
exhibit (potentially transitive) data dependencies by totally ordering them via a scalar
commit timestamp that is also used as version identifier of the post-images of committed
transactions.

A key mechanism used in SCORe to correctly serialize transactions, and in particular
to track write-after-read dependencies [2], is to update the nextId of a node upon the
processing of a read operation. Specifically, if a node receives a read operation from a
transaction T having a sid larger than its local nextId, this is advanced to T.sid. This
mechanism guarantees that any update transaction T up that requests to commit on node
ni at time t is attributed a commit timestamp larger than the timestamp of any transaction
T that read a value from ni before time t, hence ensuring that T up is serialized after T .

An analogous tracking of dependencies is adopted by TFA as well, because read/write
operations executed on a node ni in TFA may entail an advancement of the logical time
on ni. However, unlike TFA, a read operation in SCORe cannot directly advance the
commitId of a node (it can only advance nextId) because, as it will be clearer in the
following, this could result in incorrect behaviors. In fact, if read operations directly
changed the value of commitId, then in case of concurrent commits of update transac-
tions on ni, the invariant of monotonically increasing sequence of values assigned to
commmitId could be violated.

Finally, since a transaction is attributed a snapshot identifier upon its first read, which
is used throughout its execution, SCORe guarantees that the snapshot read by a transac-
tion is always consistent with respect to a prefix of the equivalent serial history of com-
mitted transactions. As a consequence, in SCORe read-only transactions never abort
and do not need to undergo any distributed validation.

The pseudocode of the SCORe protocol is reported in Algorithms 7, 8, 9, 10, 11 and
12, and discussed and analyzed in the following subsections.

5.2 Handling of Read and Write Operations

SCORe buffers write operations of transactions in the write-set (denoted as ws in Algo-
rithm 7), which is only made visible upon transaction’s commit.

Read operations on an object O first check whether O has already been updated by the
transaction, returning in this case the value present in the transaction’s write-set (lines
5-6 of Algorithm 7). Otherwise, it is necessary to establish which of the versions of O
is visible to the transaction. As already mentioned, transactions establish the sid that
they use to determine version’s visibility upon their first read. If this read operation is
local, the transaction’s sid is simply set equal to the originating node’s commitId (lines
7-8 of Algorithm 7). Otherwise, it is set equal to the maximum between the commitId
of the remote node from which the object is read and the commitId of the transaction’s

Transaction Execution Models in Partially Replicated Transactional Memory 355

originating node (lines 17-18 of Algorithm 7 and lines 3-4 of Algorithm 9). Further,
if the transaction’s sid is higher than the node’s nextId, the latter is set equal to T.sid
(line 3 of Algorithm 8). This ensures that update transactions that subsequently issue a
commit request on that node are serialized after T .

Algorithm 7. Write and Read operations (node ni).
1: void Write(Transaction T, ObjectId oid, Value val)
2: T.ws ← T.ws \ {〈oid,−〉} ∪ {〈oid,val〉}
3:
4: Value Read(Transaction T, ObjectId oid)
5: if ∃< oid,val >∈ T.ws then
6: return val
7: if is first read of T then
8: T.sid ← ni.commitId

9: if ni ∈ replicas({oid}) then
10: [val, last]← doRead(T.sid,oid)
11: else
12: if is first read of T then
13: send READREQUEST([T.id,oid,T.sid,�]) to all n j ∈ replicas({oid})
14: else
15: send READREQUEST([T.id,oid,T.sid,⊥]) to all n j ∈ replicas({oid})
16: wait receive READRETURN([tid,val,newRsid, lastCsid, last]) from any nh ∈

replicas({oid})
17: if is first read of T then
18: T.sid ← newRSid
19: if last =⊥∧T.ws �= /0 then
20: throw ABORT
21: T.rs ← T.rs ∪ {oid}
22: return val

Next, the version visible by transaction T is determined, as in conventional MVCC
algorithms [2], by selecting the most recent version having commit timestamp less than
T ’s snapshot identifier (lines 6-11 of Algorithm 8). Before doing so, however, T first
waits for the completion of the commit phase of any transaction T ′ that i) is updating
O, and ii) is currently in its commit phase (line 5 of Algorithm 8). In fact, in case T ′
is committed successfully, as it will be clearer in the following, it might be attributed
a timestamp smaller than T.sid. Hence, T ′ would be totally ordered before T and the
version of O created by T ′ would be visible to T . If T ′ aborted, on the other hand, T
should not see its updates. In order to enforce the correct tracking of this read-after-
write dependence, SCORe forces any transaction T reading an object O to wait until
there are no longer transaction commit events pending on O and with a (either final or
temporary) commit timestamp smaller than T.sid.

The logic for handling remote read operations is defined by Algorithm 9. It is wor-
thy to highlight that, even though transactions update their own sid only upon their first
read operation, a node attempts to advance its local timestamps commitId and nextId

356 R. Palmieri, S. Peluso, and B. Ravindran

Algorithm 8. Version visibility logic (node ni).
1: [Value, bool] doRead(SnapshotId readSid, ObjectId oid)
2: // Track write-a f ter-read dependence
3: ni.nextId ← max(ni.nextId, readSid)
4: // En f orce read-a f ter-write dependence
5: wait until (ni.commitId ≥ readSid ∨ oid.exclusiveUnlocked())
6: Version ver ← oid.last
7: bool last ←�
8: while ver.vid > sid do
9: ver ← ver.prev

10: last ←⊥
11: return [ver.val, last]

whenever it receives a message (associated with the request or the response of a read op-
eration) from another node in the system informing it that snapshots with higher times-
tamps have been already committed. This mechanism, which aims for maximizing the
freshness of visible snapshots, is encapsulated by the updateNodeTimestamps function
(lines 12-15 of Algorithm 9). This function advances immediately the nextId times-
tamp, which is used to determine the timestamp proposed for future commit requests.
However, additional care needs to be taken before advancing the node’s commitId
timestamp. As this timestamp determines the (minimum) snapshot visible by locally
generated transactions, in fact, it can be increased to a new value, say commitId′, only
if it is found that there are no committing transactions that may be given a timestamp
less than or equal to commitId′ (lines 17-18 of Algorithm 9).

Finally, SCORe includes a simple, yet effective, optimization that consists in imme-
diately aborting update transactions which, based on their snapshot identifier, are forced
to observe, upon a read operation, object versions that have been already overwritten by
more recently committed transactions (lines 19-20 of Algorithm 7).

5.3 Handling Commits

As already mentioned, in SCORe read-only transactions (lines 2-3 of Algorithm 10) can
be committed without undergoing distributed validation phases (unlike, for instance, in
[23]).

Update transactions, on the other hand, execute a Two-Phase Commit protocol, which
is detailed in the following. To guarantee genuineness, SCORe involves in the commit
phase of a transaction T only the nodes that maintain replicas of the objects that T ac-
cessed plus the coordinator of T , namely the node originating T . More in detail, when
a node ni requests to commit transaction T , it broadcasts a PREPARE message to all
nodes n j belonging to replicas(T.rs∪ T.ws)∪ ni (line 6 of Algorithm 10). Upon the
receipt of this message, node n j verifies whether the transaction can be serialized after
every transaction that has locally committed so far. To this end, it attempts to acquire
exclusive locks for the objects in T ’s write-set, and shared locks for the objects in T ’s
read-set. This lock acquisition is non-blocking since the node waits for a busy lock only
for a certain amount of time, which is determined by means of a configurable timeout

Transaction Execution Models in Partially Replicated Transactional Memory 357

Algorithm 9. Handling of remote reads (node ni).
1: upon receive READREQUEST([int tid, ObjectId oid, SnapshotId readSid, bool firstRead])

from n j

2: SnapshotId newReadSid ← readSid
3: if f irstRead =�∧ni.commitId > newReadSid then
4: newReadSid ← ni.commitId

5: [val, last]← doRead(newReadSid,oid)
6: send READRETURN([tid,val,newReadSid,ni.commitId, last])
7: updateNodeTimestamps(readSid)

8:
9: upon receive READRETURN([int tid, Value val, SnapshotId newRsid, SnapshotId lastCsid,

bool last]) from n j
10: updateNodeTimestamps(lastCsid)

11:
12: void updateNodeTimestamps(SnapshotId lastCommittedSid)
13: // U pdate global snapshot knowledge
14: ni.nextId ← max(ni.nextId, lastCommittedSid)
15: ni.maxSeenId ← max(ni.maxSeenId, lastCommittedSid)

16:
17: upon (ni.maxSeenId > ni.commitId∧CommitQueue.isEmpty())
18: ni.commitId ← max(ni.maxSeenId, ni.commitId)

parameter (lines 2-3 of Algorithm 11). Next, if the acquisition of the locks succeeds,
the node validates T ’s read-set (line 4 of Algorithm 11), verifying that none of the items
read by T has been overwritten by a more recently committed transaction (in terms of
timestamp identifiers). If any of these operations fails, T is simply rolled back, which
will yield to the abort of the whole distributed transaction, as in classic 2PC (lines 6-7
of Algorithm 11).

If the transaction passes the validation phase, however, the VOTE message of 2PC
is exploited to overlap a distributed agreement scheme similar in spirit to Skeen’s to-
tal order multicast algorithm that aims for establishing the final serialization order for
the transaction. More in detail, n j increments the nextId timestamp, inserts the triple
〈T,n j.nextId, pending〉, defined on the domain Transaction×SnapshotId×{pending,
ready} in a queue of pending committing transactions (denoted as CommitQueue)
ordered by SnapshotId, and sends back to the transaction coordinator the value of
n j.nextId in piggyback to the VOTE message (lines 8-11 of Algorithm 11). The co-
ordinator gathers the VOTE messages (aborting the transaction in case one of the con-
tacted node does not respond within a predefined timeout), determines the final commit
timestamp for T as the maximum among the timestamps proposed by the transaction’s
participants, and broadcasts back a DECIDE message with the transaction’s final commit
timestamp (lines 7-15 of Algorithm 10).

Upon the receipt of the DECIDE message (lines 13-25 of Algorithm 11) with a
positive outcome, unlike classical 2PC, the transaction is not necessarily immediately
committed. In fact, as each object is replicated over more than one node, and since
One-Copy Serializability has to be ensured without requiring the validation of

358 R. Palmieri, S. Peluso, and B. Ravindran

Algorithm 10. Commit phase (node ni).
1: bool Commit(Transaction T)
2: if T.ws = /0 then
3: return �;
4: bool outcome ←�;
5: Set proposedSn ← /0;
6: send PREPARE([T,T.sid,T.rs,T.ws]) to all n j ∈ replicas(T.rs∪T.ws)∪{ni}
7: for all n j ∈ replicas(T.rs∪T.ws)∪{ni} do
8: wait receive VOTE([T,sn,res]) from n j or timeout
9: if res =⊥ ∨ timeout then

10: outcome ←⊥
11: break
12: else
13: proposedSn ← proposedSn ∪ sn

14: T.sid ← max(proposedSn)
15: send DECIDE([T,T.sid,outcome]) to all n j ∈ replicas(T.rs∪T.ws)∪{ni}
16: wait until T.completed =�
17: return T.outcome
18:
19: bool validate(Set rs, SnapshotId sid)
20: for all k ∈ rs do
21: if k.lastFinal.vid > sid then
22: return ⊥
23: return �

read-only transactions, SCORe guarantees that the commit events of all update trans-
actions (even non-conflicting ones) are totally ordered across all the replicas of a same
partition. To ensure this result, when a DECIDE message is received on n j for trans-
action T with final commit timestamp f sn, T is removed from CommitQueue and it
is immediately committed (atomically increasing n j.nextId) only if there are no other
transactions in CommitQueue with snapshot id less than f sn. If this is not the case,
the old entry of T is updated in CommitQueue with the values 〈T, f sn,ready〉 and it
is ordered accordingly, while the commit of T is delayed till it can be ensured that no
other pending transaction will ever receive a final commit snapshot id less than f sn
(Algorithm 12).

6 Hybrid-Flow: A Hybrid Approach for Exploiting Application
Locality

Hybrid-Flow is a partial replication protocol proposing a hybrid model between data-
flow and control-flow, which is optimized for applications with inherent time locality
on their objects accesses. On the one hand Hybrid-Flow inherits the advantages of the
control-flow model by (i) avoiding to look-up objects remotely in order to serve write
requests, thus saving network communication steps; (ii) avoiding to change objects’
ownership at commit time when the application locality requirements are met; (iii) re-
solving objects’ position locally in case application exposes locality. On the other hand,
it exploits the advantages of data-flow by allowing the possibility to change the object

Transaction Execution Models in Partially Replicated Transactional Memory 359

Algorithm 11. Prepare and Decide messages (node ni).
1: upon receive PREPARE([Transaction T]) from n j

2: bool outcome ← getExclLocksWithTimeout(T.id,T.ws)
3: outcome ← outcome∧getSharedLocksWithTimeout(T.id,T.rs)
4: outcome ← outcome∧ validate(T.rs, T.sid)
5: SnapshotIdsn ← NULL SID
6: if outcome =⊥ then
7: releaseLocks(T.id,T.ws,T.rs)
8: else
9: sn ← ni.nextId ← ni.nextId+1

10: CommitQueue.put(〈T,sn, pending〉)
11: send VOTE ([T.id,sn,outcome]) to n j

12:
13: upon receive DECIDE([Transaction T, SnapshotId fsn, bool outcome]) from n j
14: if outcome =� then
15: ni.nextId ← max(ni.nextId, f sn)
16: if ni ∈ replicas(T.ws∪T.rs) then
17: CommitQueue.update(〈T, f sn,ready〉)
18: else
19: T.outcome ←�
20: T.completed ←�
21: else
22: CommitQueue.remove(T)
23: releaseLocks(T.id,T.ws,T.rs)
24: T.outcome ←⊥
25: T.completed ←�

Algorithm 12. Finalizing the commit phase of transaction T (node ni).
1: upon (∃〈T, f sn,s〉 : 〈T, f sn,s〉 = CommitQueue.head ∧ s = ready ∧ (�〈T̄ , s̄n, s̄〉 ∈

CommitQueue : s̄n < f sn))
2: ∀〈oid,val〉 ∈ T.ws : ni ∈ replicas({oid}) do apply(oid,val, f sn)
3: ni.commitId = f sn
4: CommitQueue.remove(T)
5: releaseLocks(T.id,T.ws,T.rs)
6: T.outcome ←�
7: T.completed ←�

360 R. Palmieri, S. Peluso, and B. Ravindran

ownership when a non optimal data placement is detected, according to the application’s
need.

Hybrid-Flow is genuine [11,20,23]: only nodes storing objects accessed by a trans-
action T during its execution participate in exchanging messages for executing and
committing T . The protocol ensures 1-copy-serializability [2] by acquiring locks on
accessed objects at commit time (using two-phase commit) and validating the read ob-
jects after lock acquisition. Since Hybrid-Flow does not implement multi-versioning,
each shared object only stores the most recent version that was committed on it.

The ownership is transferred, along with object’s content, at commit time when ob-
jects are locked by a committing transaction and a distributed directory service tracks ob-
jects’ location. To make the resolution of objects ownership fast, each node is equipped
with an own local view of the directory (we assume the directory, or a compact represen-
tation of, can be stored in a single node). In case few updates happen on the distributed
directory, the local directory is an accurate representation of its distributed version.

Hybrid-Flow uses a locality-aware transactional scheduler, called LTS, for manag-
ing concurrent object requests from processing nodes. LTS uses information collected
during the transactions dispatching for monitoring the performance of the distributed
system and it uses this information for detecting the effectiveness of the current data
placement. If the monitoring process does not highlight misplaced objects, transactions
take advantage of the local directory, boosting the owner look-up phase whenever they
perform an operation on a shared object. Conversely, when the Hybrid-Flow monitor-
ing detects that a considerable number of transactions issue requests for an object from
a node different from the current object owner (e.g., due to a fluctuation in the ap-
plication workload) it enables a change of ownership for that object. This change can
actually take place during the commitment of a transaction that is locking that object
and it entails transferring the ownership among nodes, along with the content of the
object. Therefore objects are not migrated spontaneously or by an external component,
instead their ownership changes during the process of committing a transaction that has
accessed those objects.

6.1 Protocol Details

Hybrid-Flow is suited for applications that exhibit locality without having any a priori
knowledge of data access pattern. When transactions mostly access remote objects in-
stead of local objects, the impact of communication costs on total transaction execution
time is significant, resulting in poor performance. Hybrid-Flow addresses this problem
by detecting the best location for misplaced objects and moving them closer to their cur-
rent requesting nodes. The requesting node nr for an object Oi is a node that, according
to the current transactions’ data access pattern, is mostly performing operations on Oi.
Transferring Oi to nr means avoiding remote communications for those transactions ex-
ecuting on nr that need Oi. In case Oi is frequently requested by multiple nodes, Oi is
replicated and each replica is sent to each requesting node (the object replication degree
can be tuned based on the average number of requesting nodes per object).

Objects are transferred exploiting the transactions’ commit phase: whenever a trans-
action commits, it checks whether the current location of the accessed objects is still an
appropriate location according to the application locality; in case a change of ownership

Transaction Execution Models in Partially Replicated Transactional Memory 361

is needed (see Section 6.2 for details on the policy that decides the trigger of a change),
objects are transferred along with their ownership. In this case, the commit phase ends
only when the entire transfer is completed.

A local view of current objects location (i.e., distributed directory), called CurrMap,
is stored at each node. Whenever the transfer of an object takes place, updates on Cur-
rMap are propagated to all nodes. Conversely, when the workload is stable (i.e., most of
requests are on local objects), CurrMap is occasionally updated and it is only queried
locally for objects localization, thus minimizing the distributed interactions. This ar-
chitecture is particularly effective in applications having locality properties. Clearly, in
the case of highly dynamic applications, where accesses do not comply with specific
locality-patterns, Hybrid-Flow is not optimized, thus incurring in the same costs paid
by conventional data-flow protocols (e.g., TFA in Section 4).

Each object is associated with a scalar identifier tracking its version, called version
number (or vid), and that is incremented whenever a transaction commits a modification
on that object. Different copies of the same object have the same vid. The timestamp
of an object Or is read by a transaction T during a read operation of T on Or and
it is stored with the Or’s read version in the T ’s read-set in order to be used during
T ’s validation in the commit phase: the timestamp of the actual committed version of
the object Or is compared with the timestamp of the version stored in the T ’s read-set.
This comparison reveals possible concurrent commits happened during the transaction’s
execution, which may invalidate the version read.

Hybrid-Flow relies on the two-phase commit protocol [2] at commit time for locking
accessed objects and validating read objects. Lock requests are implemented based on
predefined timeout, this way there is a maximum waiting time for a busy lock after that
the lock is considered as not available. This represents a lightweight mechanism for
detecting possible deadlock conditions.

When a transaction Tx on node nx reads an object Or, CurrMap is queried for deter-
mining the current location of Or and a read request message is issued to Or’s owner
according to nx’s CurrMap. In case the object has been recently moved and the nx’s
CurrMap is not yet updated, Tx may receive an object-not-found notification to its read
request. In this case, Tx simply monitors CurrMap waiting the expected update and
re-issuing the read request to the proper node. However, in applications with locality
properties, this aforementioned scenario happens a very limited number of times. When
Or’s owner receives the read request of Tx and no other transactions are committing Or

concurrently (i.e., Or is not locked), then an object copy is returned to Tx and the read
operation ends successfully. In case Or is locked by another transaction committing a
new version of Or, an abort is immediately triggered for Tx and Tx restarts its execution.
This “early” abort is done only for performance but it is not needed for preserving the
correctness of Hybrid-Flow because, otherwise, Or will be locked and validated by Tx

when Tx will enter its commit phase.
When Tx requests a write operation of a value val on an object Ow, this is locally

executed without interacting with Ow’s owner and by inserting the pair < Ow,val > in
the Tx’s write-set.

After completing all its transaction operations, Tx enters its commit phase. Before
proceeding further, it must ensure that all the objects in its read-set are still consistent

362 R. Palmieri, S. Peluso, and B. Ravindran

and no other transactions are currently committing objects in its write-set. This is done
in the following four steps:

i) For each object Otx in either Tx’s write-set or Tx’s read-set, Tx contacts all of Otx’s
owners in order to acquire the locks corresponding to Otx.

ii) Tx validates each object Or in its read-set by comparing Or’s current timestamp
with the timestamp associated with Or at the time Tx read it. This ensures that a
committed transaction sees a consistent view of its accessed objects. Upon suc-
cessful completion of this step, Tx can proceed to commit safely, otherwise an abort
is issued.

iii) The timestamp of each written object is incremented. Subsequently, for local ob-
jects written by Tx can be safely committed to shared memory, while for remote
objects, the updated version is sent using a commit message. During this phase, in
case some object needs to be moved to another node, the transfer along with the
change of ownership happens. Notice that objects are still locked at this time, thus
no other transactions can access them.

iv) Local locks are instantly released and the remote objects are unlocked after re-
ceiving the commit message. This message, received by object owners, triggers the
operation of LTS (see Sections 6.2).

Hybrid-flow does not guarantee executing transactions to always read consistent
snapshots as TFA and SCORe (described in Sections 4 and 5, respectively). In fact,
it detects inconsistent executions only at commit time and prevents those transactions
to commit by aborting them. A solution like the one SCORe proposes, in which an
agreement on a unique timestamp is established at commit time and read operations
advance the node timestamp in order to handle write-after-read dependencies, can be
integrated for making Hybrid-flow’s read operations always consistent.

6.2 Exploiting Locality

In order to exploit locality, we design LTS, a locality-aware transactional scheduler.
The key goal of LTS is to help determining when objects are not correctly located in
the system. LTS establishes a connection between objects and frequency of accesses
classified according to the nodes that are running transactions on those objects.

We define a fixed time window, called time-frame, during which each node collects
information on the number of accesses observed. Time-frame represents a local time
interval. Specifically, each object owner (say own) records, for each object (say ob j),
two lists of pairs < ni,access rate >, where each pair represents the number of accesses
(access rate) in the last time-frame generated by the node ni. The first list, called LO,
tracks the access rate of ob j’s owners. The second list, LNO, contains the access rate of
all the other nodes (non-owners).

Whenever a transaction commits a new version of an object Oa, its replicas are up-
dated and all transactions that concurrently requested Oa are aborted. Each object owner
knows the transactions that have accessed Oa, therefore the access rate is incremented
whenever both, a transaction requests Oa and a commit request on Oa is received, for
read and write operations, respectively. If the time when the access rate is updated is
within the current time-frame, its value is incremented, otherwise it is set to 1.

Transaction Execution Models in Partially Replicated Transactional Memory 363

The list LO is maintained in the ascending order of access rate, whereas the list
LNO is maintained in the descending order. When a new object version is committed
and the lists are updated, LTS compares the access rate of LO and LNO, node-by-node,
starting from the first location of LO, and generates the subset N̄ of nodes in LNO that
have higher access rate than those in the same positions of LO (the size of N̄ is less
than the object replication degree). N̄ represents candidate nodes for becoming new
object owners. For each node now ∈ N̄, let y represent its index in LNO. If the difference
between Now’s access rate and the access rate of the node stored at position y of LO
(named LO[y]) is higher than a threshold, then the ownership is changed from LO[y]
to Now. When the ownership is moved the object’s value is transferred along with its
lists LO and LNO. The threshold represents the maximum difference between number
of accesses of a non-owner node and a owner node allowed per time-frame without
changing the ownership.

Algorithm 13 shows the procedure for deciding whether to migrate the ownership of
an object O or not. This procedure is invoked during the commit phase while objects
are locked thus preventing any inconsistency on concurrent accesses. This results in an
additional overhead on the transaction commit phase which, however, consists of only
local computation (i.e., traversing LO and LNO) without any remote interactions. This
additional overhead does not include the cost of moving the object through the network
because it would have still been paid by the data-flow model.

Algorithm 13. LTS - Locality.
1: void MovingObject(LO, LNO)
2: candidateList = null
3: for all O node,O accessRate} ∈ LO do
4: {node,accessRate} = LNO.getFirst() � getFirst returns the first key and element in

the list
5: if accessRate−O accessRate > threshold then
6: LNO.remove(node)
7: candidateList.append(node)

8: if candidateList.length �= 0 then
9: updateOwnerList(candidateList) � updateOwnerList includes changing the owner-

ship

This mechanism captures workload changes. When the workload is stable, the num-
ber of transactions started on non-object-owner nodes is negligible. Thus, there is no
need to change ownership. The protocol manages this scenario using the aforemen-
tioned threshold. When the workload changes, a non-trivial number of transactions may
request remote objects and, if the workload fluctuation is not temporary, this number
will eventually exceed the threshold, triggering a change of ownership.

6.2.1 Example
Figure 2 illustrates an example of how LTS works with four nodes and one object oA,
where n1 and n2 are the current owners of oA. Therefore n1 and n2 store the current
status of the accesses on oA in the lists LO and LNO. Let us assume that transactions T1

and T2, executed at nodes n3 and n4, respectively, both access object oA by executing a

364 R. Palmieri, S. Peluso, and B. Ravindran

Fig. 2. Example of LTS

read operation followed by a write operation. In particular, after they have both issued
a remote read operation on oA, T2 executes a write operation on oA and it commits.
On the execution of the read operations, the lists LNO are updated on n1 and n2 in
order to track the two new accesses on oA. This increases the number of the accesses
associated with nodes n3 and n4, by setting them to 11 and 5 respectively. Afterwards
the commit of T2 executed via 2PC on nodes n1 and n2 causes the abort of T1, since it
invalidates T1’s read-set. If we assume that the threshold for LTS is 4, the commit of T2

also triggers a transfer of the object oA from node n1 to node n3. This is because node
n3 has the maximum number of accesses among the nodes in LNO and the difference
between that number and the LTS threshold is greater then the minimum number of
accesses among the ones in LO (which is associated to n1). Note that even though that
becomes true as soon as T1 executes the read operation on oA, the actual migration of
object oA can only be executed whenever oA is locked by T2 in order to ensure that
no other transactions (except the one locking the object) can concurrently commit an
update on oA during its migration.

7 Conclusion

The transaction execution model is one of the critical choices to be taken while design-
ing a partially replicated transactional system. The data-flow model assumes transac-
tions immobile and objects moving to committing transactions; the control-flow model
pins objects to nodes and moves the transaction’s flow towards nodes storing accessed
objects. On the one hand, the data-flow execution model allows the replication protocol
to benefit from application locality and local commit phase, at the cost of maintaining a
distributed directory for storing the actual location of objects. Whenever an object is re-
quested or published in the directory, a distributed cache-coherence protocol is needed
for querying or updating atomically the directory. On the other hand, the control-flow
execution model does not need any directory for retrieving and publishing data because
objects cannot move from its original node. Starting from an invariant (e.g., the object
Id), the location of an object is computed relying only on a local consistent logic. This
way transactions’ executions are not burden with additional communication steps. As a

Transaction Execution Models in Partially Replicated Transactional Memory 365

disadvantage, the control-flow model is not able to meet application locality, especially
if the workload changes over time. Summarizing, the decision of adopting a data-flow
or a control-flow transaction execution model is affected by the expected application de-
ployment workload. Both the models expose desirable advantages but their drawbacks
could be in unaffordable if the actual deployment does not match the expectation. Hy-
brid solutions are the way to encompass different requirements and produce effective
trade-offs.

Acknowledgements. This work is supported in part by US National Science Founda-
tion under grants CNS-1116190 and CNS-1217385.

References

1. Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Directory Pro-
tocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp.
405–419. Springer, Heidelberg (2010)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman Publishing Co., Inc. (1987)

3. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications: A Compre-
hensive Study. ACM Comput. Surv. 33(4), 427–469 (2001)

4. Défago, X., Schiper, A., Urbán, P.: Total Order Broadcast and Multicast Algorithms: Taxon-
omy and Survey. ACM Comput. Surv. 36(4), 372–421 (2004)

5. Demmer, M.J., Herlihy, M.P.: The Arrow Distributed Directory Protocol. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional Locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

7. Fernandes, S.M., Cachopo, J.: Lock-free and Scalable Multi-version Software Transactional
Memory. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP 2011, pp. 179–188. ACM (2011)

8. Frølund, S., Guerraoui, R.: Implementing E-Transactions with Asynchronous Replication.
IEEE Trans. Parallel Distrib. Syst. 12(2), 133–146 (2001)

9. Gray, J., Lamport, L.: Consensus on Transaction Commit. ACM Trans. Database Syst. 31(1),
133–160 (2006)

10. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming. Springer-
Verlag New York, Inc. (2006)

11. Guerraoui, R., Schiper, A.: Genuine Atomic Multicast in Asynchronous Distributed Systems.
Theor. Comput. Sci. 254(1-2), 297–316 (2001)

12. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu,
M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory Coherence and Con-
sistency. In: Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture, ISCA 2004, pp. 102–113. IEEE Computer Society (2004)

13. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-Free Synchronization: Double-Ended
Queues As an Example. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems, ICDCS 2003, pp. 522–529. IEEE Computer Society (2003)

14. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Dis-
tributed Computing 20(3), 195–208 (2007)

366 R. Palmieri, S. Peluso, and B. Ravindran

15. Kobus, T., Kokocinski, M., Wojciechowski, P.T.: Hybrid Replication: State-Machine-Based
and Deferred-Update Replication Schemes Combined. In: Proceedings of the 33rd Inter-
national Conference on Distributed Computing Systems, ICDCS 2013, pp. 286–296. IEEE
Computer Society (2013)

16. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM 21(7), 558–565 (1978)

17. Patterson, S., Elmore, A.J., Nawab, F., Agrawal, D., El Abbadi, A.: Serializability, Not Se-
rial: Concurrency Control and Availability in Multi-datacenter Datastores. Proc. VLDB En-
dow. 5(11), 1459–1470 (2012)

18. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach. Distrib. Par-
allel Databases 14(1), 71–98 (2003)

19. Peluso, S., Romano, P., Quaglia, F.: SCORe: A Scalable One-Copy Serializable Partial
Replication Protocol. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS,
vol. 7662, pp. 456–475. Springer, Heidelberg (2012)

20. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability Meets Consis-
tency: Genuine Multiversion Update-Serializable Partial Data Replication. In: Proceedings
of the 32nd International Conference on Distributed Computing Systems, ICDCS 2012, pp.
455–465. IEEE Computer Society (2012)

21. Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Validation. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

22. Saad, M.M., Ravindran, B.: Supporting STM in Distributed Systems: Mechanisms and a Java
Framework. In: 6th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT
2011 (2011)

23. Schiper, N., Sutra, P., Pedone, F.: P-Store: Genuine Partial Replication in Wide Area Net-
works. In: Proceedings of the 29th Symposium on Reliable Distributed Systems, SRDS 2010,
pp. 214–224. IEEE Computer Society (2010)

24. Schlichting, R.D., Schneider, F.B.: Fail-stop Processors: An Approach to Designing Fault-
tolerant Computing Systems. ACM Trans. Comput. Syst. 1(3), 222–238 (1983)

25. Schneider, F.B.: Replication Management Using the State-machine Approach. In: Distributed
systems, 2nd edn., pp. 169–197. ACM Press/Addison-Wesley Publishing Co. (1993)

26. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed Transactional Memory for Gen-
eral Networks. In: Proceedings of the 26th International Parallel and Distributed Processing
Symposium, IPDPS 2012, pp. 1045–1056. IEEE Computer Society (2012)

27. Wojciechowski, P.T., Kobus, T., Kokocinski, M.: Model-Driven Comparison of State-
Machine-Based and Deferred-Update Replication Schemes. In: Proceedings of the 31st Sym-
posium on Reliable Distributed Systems, SRDS 2012, pp. 101–110. IEEE Computer Society
(2012)

28. Zhang, B., Ravindran, B.: Dynamic Analysis of the Relay Cache-Coherence Protocol for
Distributed Transactional Memory. In: Proceedings of the 24th International Parallel and
Distributed Processing Symposium, IPDPS 2010, pp. 1–11. IEEE Computer Society (2010)

Directory Protocols
for Distributed Transactional Memory�

Hagit Attiya1, Vincent Gramoli2, and Alessia Milani3

1 Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 NICTA and University of Sydney, Sydney, Australia
vincent.gramoli@sydney.edu.au

3 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
alessia.milani@labri.fr

Abstract. Distributed directory protocols for shared objects play an important
role in providing access to higher level abstractions like transactional memory.
They offer primitives to retrieve data and read it, or to move data and allow to
write it. This chapter describes directory protocols for large-scale distributed sys-
tems and discusses the subtleties of incorporating them in a large-scale distributed
transactional memory. We survey existing protocols, their advantages and draw-
backs, and detail one protocol, COMBINE, which addresses these drawbacks.

1 Introduction

In large-scale distributed systems, remote accesses require expensive communication,
several orders of magnitude slower than local ones. Implementing transactional mem-
ory (TM) in large-scale distributed systems, abbreviated DTM, is challenging due to
the cost of communication with objects. Reducing communication costs by accessing
nearby data is crucial for achieving good scalability, that is, improving performance as
the number of nodes increases [2].

In a data-flow DTM, a transaction runs at a single node, obtaining copies of the ob-
jects it needs from other nodes. Each object has one writable copy, but it may have
several read-only copies. A critical part of implementing a DTM is maintaining coher-
ence of the transactional objects through a directory protocol for locating and moving
copies of an object: the writable copy of the object is obtained with a move request,
and a read-only copy of the object is obtained with a lookup request. When the writable
copy of the object changes, the directory either updates or invalidates the other copies.

Instead of channeling all requests to the current location of the writable copy of the
object, some directory protocols implement a distributed queue [3], in which a request
from node p is enqueued until the object is acquired and released by a predecessor node
q, which p identifies as having requested the object previously.

� The COMBINE directory protocol was presented in the proceedings of SSS 2010 [1]. The new
material in this chapter (1) compares the combine directory protocol with four other directory
protocols, (2) discusses the role of directory protocols in the implementation of a distributed
transactional memory and (3) analyzes the bit complexity of COMBINE.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 367–391, 2015.
c© Springer International Publishing Switzerland 2015

368 H. Attiya, V. Gramoli, and A. Milani

When communication is asynchronous and requests are concurrent, it is difficult to
ensure starvation-freedom, namely, that each request is eventually served. As we show,
it is possible that while node p is waiting to get the object from a node q, many other
requests are passing over it and being placed ahead of it in the queue, so p’s request is
never served. This creates a finite, acyclic waiting chain between q and the node owning
the object (the head of the queue).

In large-scale distributed systems, communication is often performed over unreli-
able overlay networks, where logical links between nodes is often supported over sev-
eral physical paths. This increases the possibility of message reordering and requires
directory protocols to cope with non-fifo links.

This chapter deals with directory protocols for DTM. We overview several directory-
based consistency protocols, which were presented in the context of DTM implemen-
tations [1, 4–6], and explain why some of them do not avoid starvation, while others
do not accommodate non-FIFO links. Then we present the COMBINE protocol, which
addresses these problems, providing a distributed queue protocol, and accommodating
asynchrony and concurrent requests.

The rest of this chapter is organized as follows. Section 2 introduces the terminology.
Section 3 provides a high level description of some directory protocols that can be used
in the context of DTM, and describes some of their limitations. Sections 4 describes and
analyzes COMBINE, a directory protocol that copes with these issues. Section 5 studies
the difficulties of incorporating a directory protocol into a DTM. We conclude with a
discussion, in Section 6.

2 Preliminaries

We consider a set of nodes V , each with a unique identifier, communicating over an
asynchronous network. We assume that every pair of nodes can communicate; if two
nodes p and q do not have a direct physical link between them, then an underlying
routing protocol directs the message from p to q through the physical communication
edges. The cost of communication between nodes is symmetric but non-uniform, and
each edge (p,q) has a positive weight which represents the cost for sending a message
from p to q (or vice versa), denoted δ (p,q). The cost of communication is a metric,
that is, δ (., .) satisfies the triangle inequality. The diameter of the network, denoted Δ ,
is the maximum of δ (p,q) over all pairs of nodes.

We assume reliable message delivery, that is, every message sent is eventually re-
ceived. A node is able to receive a message, compute some local task and send a mes-
sage in a single atomic step.

An overlay tree on the network, T , is a tree whose leaves are all physical nodes and
inner nodes are mapped to (a subset of the) physical nodes. Let dT (p,q) be the number
of hops needed to go from a leaf node p up to the lowest common ancestor of p and
leaf node q in T , and then down to q (or vice versa); δT (p,q) is the sum of the costs of
traversing this path, that is, the sum of δ (., .) for the edges along this path. The depth of
T , denoted DT , is the number of hops on the longest path from the root of T to a leaf;
the diameter of T , denoted ΔT , is the maximum of δT (p,q), over all pairs of nodes.

Directory Protocols for Distributed Transactional Memory 369

The stretch of a tree is the worst case ratio between the cost of direct communication
between two nodes p and q in the network, and the cost of communicating along the
shortest tree path between p and q, that is, δ (p,q)

δT (p,q) .

3 Overview of Some Directory Protocols

Our description concentrates on the case where there is a single object in the system.
Section 5 discusses the extension to multiple objects, in the context of implementing a
DTM.

All directory protocols presented share the same idea: at the beginning, the object is
associated to a particular node; as it moves around, the object leaves a trail of pointers
to its new location. This idea was originated in ARROW [3], which was not presented in
the context of DTM.

The protocols differ on the overlay network used to serve the requests. ARROW and
RELAY run on top of a spanning tree, while BALLISTIC, COMBINE and SPIRAL run on
a hierarchical overlay network. In particular, BALLISTIC and COMBINE run on top of
an overlay tree, while SPIRAL uses a hierarchy of clusters. To decrease communication
cost, BALLISTIC and SPIRAL augment their overlay network with shortcuts. In BAL-
LISTIC, shortcuts can generate executions where a request by a node p travels far away
to be finally served by a neighbour of p. This can be avoided by making BALLISTIC

blocking. In SPIRAL, a lookup request can get stuck due to shortcuts, and to ensure it
eventually completes, the request backtracks.

In all protocols but RELAY, a request redirects the pointers to the object while travel-
ing towards it. This ensures that once the object is reached, the path is already directed
to the new owner. In RELAY, pointers are redirected only when the object travels back
to the requesting node. This allows several transactions to reach the object location con-
currently and then decide on the new owner of the object, according to the priorities of
the requesting transactions. However, as we detail later, requests may starve because of
this design choice.

Finally, all protocols but COMBINE assume that communication links are FIFO. If
links are not FIFO, problems arise when concurrent requests overtake each other, as
detailed in this section. As explained in the next section, COMBINE solves these is-
sues by letting a request piggybacks a concurrent one, by having lookup requests store
information at nodes they travel through.

3.1 ARROW

ARROW [3] is a distributed directory protocol, maintaining a distributed queue, using
path reversal. The protocol operates on a spanning tree, where all nodes (including inner
ones) may request the object. Every node holds a pointer to one of its neighbors in the
tree, indicating the direction towards the node owning the object; the path formed by
all the pointers indicates the location of a sink node either holding the object or that is
going to own the object. Figure 1 provides an example.

A move request redirects the pointers as it follows this path to find the sink, so the
initiator of the request becomes the new sink. More precisely, a node sends a move

370 H. Attiya, V. Gramoli, and A. Milani

u

p

v

q

w

v vv

q q

(a)

u

p

v

q

w

1

1 1

1

4

2
2 2

3 3

(b)

Fig. 1. (a) depicts a spanning tree, in which the object is stored at node v, built on top of the
physical overlay in (b)

message towards the object location and sets its pointer to itself. If the receiver points
to itself, this means it owns the object. In this case, the receiver sends the object directly
to the requester as soon as it no longer needs it. Otherwise, the receiver sends a move
message to pointer in turn and flips its pointer setting it to the sender of the message.
Hence the path formed by all the pointers indicates the location of a sink node either
owning the object or about to own the object. Figure 2 shows a functioning scenario.

u

p

v

q

w

v vv

q q

(a) Initially, v owns
the object.

u

p

v

q

w

v vv

w w

q qqq

(b) Node w issues a
move request

u

p

v

q

w

vv

q q

w w

v vv

(c) Pointers lead to w.

Fig. 2. A move request initialized by node w when the object is located at v

The original paper on ARROW analyzes the protocol under the assumption that
requests are sequential. Herlihy, Tirthapura and Wattenhofer [7] analyze ARROW as-
suming concurrent requests in a one-shot situation, where all requests arrive together;
starvation-freedom is trivial under this assumption. Kuhn and Wattenhofer [8] allow
requests at arbitrary times, but assume that the system is synchronous. They provide a
competitive analysis of the distance to the predecessor found by a request (relative to
an optimal algorithm aware of all requests, including future ones). The communication
cost of ARROW is, at best, proportional to the stretch of the spanning tree used.

3.2 RELAY

RELAY [6] is a directory protocol that also runs on a spanning tree. In RELAY, pointers
lead to the node currently holding the object, and they are changed only after the object
moves from one node to another. (This is similar to the tree-based mutual exclusion
algorithm of Raymond [9].)

In particular, upon receiving a move message, the receiver does not flip its pointer
towards the sender yet. Instead, the move request piggybacks the path it travels so that

Directory Protocols for Distributed Transactional Memory 371

when the sink receives the request, it simply sends a message back following the re-
versed path to flip the pointers of the intermediate nodes. Here the requester does not
always wait for the sink to release the object, but may force the sink to release the ob-
ject. RELAY allows several move requests to be at the sink at the same time, and the
sink can decide in which order to serve these requests. The object is then sent to the
node p whose request has the highest priority together with the remaining requests. The
path piggybacked by the requests is modified accordingly.

u

p

v

q

w

v vv

q q

(a) Initially, v owns
the object.

u

p

v

q

w

v vv

qqqqq q

(b) Node w issues a
move request

u

p

v

q

w

q

vv

q q

v vv
[w,q]

(c) The request pig-
gybacking its path
reaches node v.

u

p

v

q

w

vv

qq qq

(d) The object travels
towards w and point-
ers are set.

u

p

v

q

w

vv

q qq

ww ww

(e) The object
reaches w

Fig. 3. A move request initialized by node w when the object is located at v

Ravindran and Zhang [10] present a competitive analysis of RELAY. Given a set of
dynamically generated requests, they compare the makespan of RELAY with an optimal
clairvoyant offline algorithm, showing that the competitive ratio of RELAY is O(logD),
where D is the diameter of the spanning tree.

3.2.1 Problem with Concurrent Moves
When requests are concurrent, a request can starve, or may travel to a distant node
currently holding the object, while it ends up obtaining the object from a nearby node
(which receives the object first).

The problems of RELAY with concurrent moves happen because pointers are re-
versed only on the way back to the requesting node.

Figure 4 shows why concurrent moves cause a problem in RELAY, in a manner
similar to BALLISTIC. If two close-by nodes s1 and s2 issue concurrent move requests,
called m1 and m2 respectively, then one move message may follow the other in the tree
up to the destination node j. If the second move m2 reaches node j when m1 has just

372 H. Attiya, V. Gramoli, and A. Milani

i j

s1

s2

k k'

i j

s1

s2

k k'

1

2

Fig. 4. Long traversal to reach a close-by node in RELAY. (1) Node s2 sends a move message that
follows the move message sent by s1 up to node i. (2) Messages are re-ordered between i and j
and the move message follows the move message up to the close-by node s2.

taken is way back to s1, it will simply follow m1 up to the close-by node s2 where the
object finally ends up. Hence the communication cost of the move can be proportional
to the diameter of the tree, regardless of the distance from s1 to s2.

In the worst case, a request m can starve following the object as it moves from an old
sink to a new one. This happens if another request m′ reaches the new sink before m.
So m follows m′ and we can repeat the reasoning.

3.2.2 Problem with Message Reordering
In RELAY, the move request brings back the object to the initiator by setting all in-
termediary node pointers. However, transmitting the object to a node p and flipping
the pointer at p cannot be done atomically. Consider the scenario depicted in Figure 5
(where white arrows represent the pointers). Suppose we are in a configuration where
the owner of the object is node d, as depicted on the top, and no copy of the object
is in transit. Suppose that node j issues a move request m. Then, while m leaves node
d in its way back to j, a concurrent move m′ is issued by node s. When receiving the
move message m, node i sets the pointer towards j and sends a message (denoted by a
solid black arrow) with the object towards j. When receiving this message, j redirects
the pointer that was pointing to i. If the concurrent move message is sent by i to j right
after the object was sent to j, it may reach j before the object reaches j and the pointer
towards i be redirected. The state in which the system is when m′ is received by j is
depicted on the bottom. In this scenario, j will simply send back the move message m′
to i, because the pointer still points to i at the time this message is received. The lookup
message will be sent from i to j following the pointer and eventually m will catch up,
so m′ will stop looping.

3.3 BALLISTIC

BALLISTIC [4] assumes a hierarchical overlay tree structure, whose leaves are the phys-
ical nodes, enriched with some shortcuts. Each node at some level � has a single parent
but can also access a parent set of nodes at level �+ 1. More precisely, the BALLISTIC

Directory Protocols for Distributed Transactional Memory 373

i j

d

s

i j

d

s

1

2

Fig. 5. The loop problem in RELAY. Nodes i and j continuously exchange lookup messages as
long as the move message (the black arrow) remains in-transit.

overlay is built starting from the physical connectivity graph at level 0 and by con-
structing recursively another overlay at level � that is a maximal independent set of the
level-(�-1) overlay where nodes within distance < 2�+1 are connected. The lookup par-
ent set of level-� node x is the set of level-(�+1) nodes within distance 10× 2�+1 of x.
The move parent set of level-� node x is the set of level-(�+1) nodes within distance
4× 2�+1 of x.

u p v q w

u1 q1

u2

u11 q1

Fig. 6. Ballistic overlay construction resulting from the physical overlay in Figure 1(b)

Figure 6 depicts the BALLISTIC overlay, constructed from the physical overlay in
Figure 1(b). In this simplified exemple, for each node the lookup \ move parent set at
level 1 is {u1,q1}.

Initially, the tree is similar to other protocols’, except that no upward pointers are
set. Only nodes on the path from the root to the object owner have pointers directed
downward. This downward path is initialized when the object x is created.

Each request proceeds has phases: in the up phase, the request message is sent up-
ward in the tree until it reaches a node with a downward pointer set, then, in the down
phase, the request message follows the downward pointers to the object owner. During
the up phase, the node probes all nodes of its parent set to detect if the pointer of one

374 H. Attiya, V. Gramoli, and A. Milani

of them is oriented downward in the tree. If such a pointer is detected, then the down
phase starts and the request message is sent following this pointer, since it indicates
a shortcut towards the destination. If no such pointer is detected, then the request is
forwarded through the parent p.

BALLISTIC differentiates move requests, providing exclusive access to the object,
from lookup requests, providing shared access to the object. The lookup does not mod-
ify any pointer and at the end of its down phase, only a read-only copy of the object
is sent to the requester. In contrast, during its up phase, a move sets the pointer of p
downward. In the down phase, the downward pointers of the path to the destination leaf
node are unset. Then the leaf sends the object to the requester, as soon as it releases it.

BALLISTIC allows read sharing so that multiple nodes can get a read-only copy of
the object without conflicting. To this end, the protocol allows a lookup to return to
node i a read-only copy of the object by routing a lookup message to the destination
node j, which is one of the next object’s owners. The destination node j sends a read-
only copy to node i, as soon at it has the object and keeps a link to node i to send
potential invalidation. After modifying the object, it invalidates the read-only copy that
node i has obtained. If node i has not committed before receiving the invalidation, then
it aborts.

Herlihy and Sun [4] estimate the ratio between the communication cost of an opera-
tion in BALLISTIC and the cost of communicating directly from the requesting node to
its destination, for executions where move requests do not overlap. Their analysis fo-
cuses on constant-doubling networks.1 They show that a lookup that does not overlap a
move has constant ratio. Then, they prove a similar result for the case where some move
requests can overlap the lookup, but they consider the maximum cost of communicating
directly from the requesting node to the source of any overlapping move request. We
next show that when there are concurrent move requests, the communication cost of an
operation in BALLISTIC could be equal to the diameter of the overlay tree, even when
the the direct communication cost is constant.

3.3.1 Problem with Concurrent Moves
The move(x) operation modifies the direction of the tree links by setting pointers indi-
cating the new location of object x, thus, it may impact the performance of concurrent
operations targeting x. Since no move(x) can happen before the publish(x) terminates,
it can only affect a concurrent lookup(x) or another concurrent move(x).

We present an execution example showing that in BALLISTIC, the communication
performance of both operations may degrade if executed concurrently with another
move(x). This problem stems from the additional shortcuts of the BALLISTIC tree struc-
ture: during the up-phase of an operation, each node at level � probes multiple nodes
at level �+ 1, its parent-set, using these shortcuts to locate a potential downward link.
During this probe, a node probes its father in the tree last, before the node issuing the
move sets a downward pointer from its father to itself. There can be two nodes i and j
at the same level �, each of their fathers belonging to the parent-set of the other. This
is illustrated in Figure 7, where the father of i is in the parent-set of j and vice-versa,

1 A network is constant-doubling if every neighborhood of radius 2r can be covered by at most
C neighborhoods of radius r, for a fixed constant C.

Directory Protocols for Distributed Transactional Memory 375

as depicted by the dashed links. If i is executing the up-phase of a move while j is exe-
cuting the up-phase of its operation, j may miss the downward pointer to i that is being
set. The same scenario may occur at higher levels between the father of i that sets the
pointer to itself and the father of j. Consequently, even though i and j have one common
ancestor among their respective ancestors at level �+1, the operation of j may traverse
higher levels before reaching i. Sun’s thesis [11] discusses this problem and suggests a
variant that integrates a mutual exclusion protocol in each level; however, this version
is blocking and introduces further delay.

i jlevel l

level l+1

i j i j

1 2 3

Fig. 7. The concurrent move problem in BALLISTIC. The lookup issued by j misses the pointer
set by i during a concurrent move. Dashed links indicate shortcuts of the BALLISTIC tree struc-
ture, solid black arrows indicate in-transit messages while the white arrows are the pointers to-
wards the next object owner.

In BALLISTIC, overtaking can happen when serving concurrent move requests: a
move invoked at a later time than another move can be served earlier. This can happen
a finite number of times, as proved in [4]. So BALLISTIC ensures starvation-freedom,
provided that communication links are FIFO. In the next section, we show that a request
can starve if links are not FIFO.

3.3.2 Problem with Message Reordering
Message reordering may cause BALLISTIC to get stuck, as described in the following
scenario. Assume a lookup and a move concurrently follow the downward pointers to-
wards the node that owns the object. Assume that node i sends first the lookup message
to j before sending the move message to j. If the move message reaches j before the
lookup message, then the move will discard the pointer from j towards the destination
before j can send a lookup message to the destination. The result is that the lookup
gets stuck and will not terminate because j has become a sink node without outgoing
pointers when the lookup reaches it.

3.4 SPIRAL

SPIRAL [5] also operates on a hierarchical overlay of clusters: at level 0, each physical
node constitutes a cluster, at the highest level of the hierarchy, all the nodes form a
single cluster, and for each level i, several clusters exist such that each physical node u
belongs to O(logn) clusters and at least one of these clusters contains all the neighbors

376 H. Attiya, V. Gramoli, and A. Milani

of u within distance 2i−1. Each cluster has a leader, chosen arbitrarily. At each level,
clusters are labeled, so that no two clusters containing the same node have the same
label.

The request of a node u go through the hierarchy following the spiral path of u. This
path is built by visiting all designated leaders of all the clusters u belongs to, starting
from level 0 up to the highest level, and according to the total ordering of the labels at
each level.

SPIRAL supports three operations: publish, lookup and move. A publish operation is
used by the creator of the object to introduce it into the network and create the directory
path from the leader of the highest cluster (called the root) downwards to the physical
node corresponding to the owner of the object. The directory path is a sequence of
downward pointers in the spiral path from the root to the owner.

Figure 3.4 depicts an overlay hierarchy for SPIRAL, built from the physical overlay
depicted in Figure 1(b), where the object is published and owned by node v.

Each request has phases: In the up phase, the request message is sent upward fol-
lowing the spiral path of the requesting node until it reaches a node with a downward
pointer set. In the down phase, the request message follows the downward pointers to
the object owner. If the request is a move, the pointers are set in the up phase and erased
in the down phase, to update the directory path in a way similar to BALLISTIC. Once
the request of a node u reaches the owner of the object, the object or a read-only copy
of it is sent to u, depending on whether the request is a move or a lookup. The object is
sent via a shortest path.

Figure 8 depicts the execution of SPIRAL, where node v publishes the object and
then node w issues a move request. For each cluster the corresponding leader is pointed
out. For clarity, we do not show the spiral path of each node and only show the spiral
path of node v, which is the directory path to the object at the beginning.

As pointed out in [5], to avoid the problem suffered by BALLISTIC when concurrent
moves occur, the leaders of clusters have to be contacted one after the other, and the
protocol has to use shortcuts. Because of these shortcuts (not depicted in Figure 8),
however, a lookup request that is concurrent with move may reach a node u without a
downward link. In this case, to avoid that the lookup is stuck, node u sends the lookup
request back to the sending node. Finally, like BALLISTIC and RELAY, SPIRAL requires
FIFO links to work correctly.

Spiral guarantees starvation freedom. The corresponding proof as well as the com-
plexity analysis of SPIRAL are provided in [5].

4 COMBINE Directory Protocol

In this section, we describe a protocol that avoids the problems caused by concurrent
moves, message reordering and non-FIFO overlay links. COMBINE [1] is particularly
suited for systems in which the cost of communication is not uniform, that is, some
nodes are “closer” than others. Scalability in COMBINE is achieved by communicating
on an overlay tree and ensuring that the cost of performing a lookup or a move is
proportional to the cost of the shortest path between the requesting node and the serving
node (its predecessor), in the overlay tree. The simplicity of the overlay tree, and in

Directory Protocols for Distributed Transactional Memory 377

u p v q w

u1

v1 q1
p1

q1

v1 w1

qq1

vv1w1

u2 p2 v2

q2 w2

uu22 p2 vv222

qq22 ww2

vv1

p1

(a) Initially, v owns the ob-
ject.

u p v q w ww

u2 p2 v2

q2 w2

u1

v1 q1
p1

q1

v1 w1

(b) Node w issues a move
request

u p v q w w wvv

u2 p2 v2

q2 w2

q1

v1 w1

u1

v1 q1
p1

(c) The move follows the
spiral path of w and sets the
pointer.

u p v q w wwvv

u2 p2 v2

q2 w2

q1

v1 w1

u1

v1 q1
p1

(d) In the down phase the
pointers are erased.

Fig. 8. A move request invoked by node w when the object is located at v

particular, the fact that the object is held only by leaf nodes, greatly facilitates the proof
that a node finds a previous node holding the object.

The communication cost of COMBINE is proportional to the cost of the shortest path
between the requesting node and the serving node, times the stretch of the overlay tree.
Thus, the communication cost improves as the stretch of the overlay tree decreases.
Specifically, the cost of a lookup request by node q that is served by node p is propor-
tional to the cost of the shortest tree path between p and q, that is, to δ (p,q) times the
stretch of the tree. The cost of a move request by node p is the same, with q being the
node that will pass the object to p.

COMBINE does not require FIFO communication links; ensuring this property through
a link-layer protocol can significantly increase message delay. Instead, as its name sug-
gests, COMBINE handles requests that overtake each other by combining multiple re-
quests that pass through the same node. Originally used to reduce contention in multi-
stage interconnection networks [12,13], combining means piggybacking information of
distinct requests in the same message.

4.1 Overview

The protocol works on an overlay tree. When the algorithm starts, each node knows its
parent in the overlay tree. Some nodes, in particular, the root of the overlay tree, also
have a downward pointer towards one neighbor.

378 H. Attiya, V. Gramoli, and A. Milani

The downward pointers create a path in the overlay tree, from the root to the leaf
node initially holding the object; in Figure 9(a), the arrows indicate downward pointers
towards p.

A node requesting the object x tries to find a predecessor: a nearby node waiting
for x or the node currently holding x, if no node is waiting for x. Initially, p, the node
holding the object is this predecessor.

We combine multiple requests, by piggybacking information of distinct requests in
the same message, to deal with concurrent requests.

– A node q obtains the current value of the object by executing a lookup request. This
request goes up in the overlay tree until it discovers a pointer towards the downward
path to a predecessor; the lookup records its identifier at each visited node. When
the request arrives at the node holding x, it sends a read-only copy directly to q.
Each node stores the information associated to at most one request for any other
node.

– A node q acquires an object by sending a move request that goes up towards the root
of the overlay tree upon it finds a pointer to a predecessor. This is represented by
the successive steps of a move as indicated in Figure 9. The move sets downward
pointers towards q while climbing in the tree, and resets the downward pointers
it follows while descending towards a predecessor. If the move discovers a stored
lookup it simply embeds it rather than passing over it. When the move and (pos-
sibly) its embedded lookup reach a predecessor p, they wait until p receives the
object. After having received the object and released it, p sends the object to q and
a read-only copy of the object to the node that issued the lookup.

Since the downward path to the object may be changing while a lookup (or a move)
is trying to locate the object, the lookup may remain blocked at some intermediate node
u on the path towards the object. Without combining, a move request could overtake a
lookup request and remove the path of pointers, thus, preventing it from terminating.
However, the identifier stored in all the nodes a lookup visits on its path to the prede-
cessor allows an overtaking move to embed the lookup. This guarantees termination of
concurrent requests, even when messages are reordered. Information stored at the nodes
ensures that a lookup is not processed multiple times.

4.2 Details of COMBINE

The state of a node appears in Algorithm 1. Each node knows its parent in the overlay
tree and may have a pointer towards one of its children. It maintains a variable lookups
where it can store information useful for combining.

A lookup request r issued by a node q carries a unique identifier including its se-
quence number ts and its initiator q. Its pseudocode appears in Algorithm 2. A lookup
can be in three distinct states: it is either running and no move overtook it (not served),
it is running and a move request overtook and embedded it (passed), or it is over
(served).

The lookup request proceeds in two subsequent phases. First, its initiator node sends
a message that traverses its ancestors up to the first ancestor whose pointer indicates the

Directory Protocols for Distributed Transactional Memory 379

v

v2

u q p w

p1v1

(a) Initially, p owns the object

v

v2

u q p w

p1v1

(b) Node q issues a move re-
quest

v

v2

u q p w

p1v1

(c) Pointers from the root lead
to q

v

v2

u q p w

p1v1

(d) Previous pointers are dis-
carded

v

v2

u q p w

p1v1

(e) The request reaches p

v

v2

u q p w

p1v1

(f) Object is moved from p to
q

Fig. 9. A move request initialized by node q when the object is located at p

Algorithm 1. State
1: State of a node u at level �:
2: parent ∈ N∪{⊥}, representing the parent node in the tree
3: pointer ∈ N∪{⊥}, the direction towards the known predecessor, initially ⊥
4: lookups a record with fields:
5: q ∈ N, the identifier of the node initiating the request, initially ⊥
6: ts ∈ N, the version number of the request, initially 0
7: status ∈ {not served,served,passed}, the request status, initially not served
8: moves a record with fields:
9: q ∈ N, the identifier of the node initiating the request, initially ⊥

10: ts ∈ N, the version number of the request, initially 0
11: message a record with fields:
12: type ∈ {move, lookup}
13: phase ∈ {up,down}
14: ts ∈ N

15: id ∈ N×N

16: lookups

direction towards a predecessor—this is the up phase (Lines 1–8). Second, the lookup
message follows successively all the downward pointers down to a predecessor—this is
the down phase (Lines 9–16). The protocol guarantees that there is a downward path of
pointers from the root to a predecessor, hence, the lookup finds it (see Lemma 2).

A node keeps track of the lookups that visited it by recording their identifier in the
field lookups, containing some lookup identifiers (i.e., their initiator identifier q and
their sequence number ts) and their status. The information stored by the lookup at

380 H. Attiya, V. Gramoli, and A. Milani

Algorithm 2. Lookup of object x at node u
1: Receiving 〈up, lookup,q, ts〉 from v: � Lookup up phase

2: if �〈q, ts′,∗〉 ∈ lookups : ts′ ≥ ts then
3: if ∃rq = 〈q,τ,∗〉 ∈ u.lookups : τ < ts then
4: u.lookups ← u.lookups \{sq}∪{〈q, ts,not served〉}
5: else u.lookups ← u.lookups∪{〈q, ts,not served〉}
6: if u.pointer =⊥ then
7: send(u,〈up, lookup,q, ts〉) to u.father
8: else send(u,〈down, lookup,q, ts〉) to u.pointer

9: Receiving r = 〈down, lookup,q, ts〉 from v: � Lookup down phase

10: if �〈q, ts′,∗〉 ∈ u.lookups : ts′ ≥ ts then
11: if ∃rq = 〈q,τ,∗〉 ∈ u.lookups : τ < ts then
12: u.lookups ← u.lookups \{rq}∪{〈q, ts,not served〉}
13: else u.lookups ← u.lookups∪{〈q, ts,not served〉}
14: if u is a leaf then
15: send(u,xread only) to q � Blocking send, executes as soon as u releases x

16: else send(u,〈down, lookup,q, ts〉) to u.pointer

each visited node ensures that a lookup is embedded at most once by a move. When
a new lookup is received by a node u, u records the request identifier of this freshly
discovered lookup. If u had already stored a previous lookup from the same initiator,
then it overwrites it by the more recent lookup (Lines 3–4).

Due to combining, the lookup may reach its predecessor either by itself or embedded
in a move request. If the lookup request r arrives at its predecessor by itself, then the
lookup sends a read-only copy of the object directly to the requesting node q (Line 15
of Algorithm 2).

The move request, described in Algorithm 3, proceeds in two phases to find its pre-
decessor, as for the lookup. In the up phase (Lines 1–16), the message goes up in the
tree up to the first node whose downward pointer is set. In the down phase (Lines 17–
36), it follows the pointers down to its predecessor. The difference in the up phase of a
move request is that an intermediate node u receiving the move message from its child
v sets its u.pointer down to v (Line 13). The difference in the down phase of a move
request is that each intermediary node u receiving the message from its parent v resets
its u.pointer to ⊥ (Line 26).

For each visited node u, the move request embeds all the lookups stored at u that need
to be served and stores at u those lookups as served (Lines 8–11, 27–30 of Algorithm 3).

Along its path, the move may discover that either some lookup r it embeds has been
already served or that it overtakes some embedded lookup r′ (Line 39 or Line 41, re-
spectively, of Algorithm 3). In the first case, the move just erases r from the lookups it
embeds, while in the second case the move marks, both in the tuple it carries and locally
at the node, that the lookup r′ has been passed (Line 40 or Lines 42–43, respectively, of
Algorithm 3).

As shown in Algorithm 3, once obtaining the object at its predecessor, the move
request first serves all the lookups that it embeds (Lines 33, 34), then sends the object

Directory Protocols for Distributed Transactional Memory 381

to the node that issued the move (Line 35) and finally deletes the object at the current
node (Line 36). Sending reliably at Lines 34 and 35 ensures that the object is received
remotely before being locally deleted.

If the object is not at its predecessor when the request arrives, the request is enqueued
and its initiator node will receive the object as soon as the predecessor releases the
object (after having obtained it).

4.3 Handling Concurrent Requests

Note that a lookup may not arrive at its predecessor because a concurrent move request
overtook it and embeds it, that is, the lookup r found at a node u that u.pointer equals v,
later, a move m follows the same downward pointer to v, but arrives at v before r. The
lookup detects the overtaking by m and stops once at node v (Line 23 of Algorithm 3,
and Line 10 of Algorithm 2). Finally, the move m embeds the lookup r and serves it once
it reaches its predecessor (Lines 33, 34 of Algorithm 3 and Lines 41, 42 of Algorithm 3).

Additionally, note that no multiple move requests can arrive at the same predecessor
node, as a move follows a path of pointers that it immediately removes. Similarly, no
lookup arrives at a node where a move already arrived, unless embedded. Finally, ob-
serve that no move is issued from a node that is waiting for the object or that stores the
object.

4.4 Constructing an Overlay Tree

Constructing an overlay tree with good stretch is the key to obtaining good performance
in COMBINE. We discuss two approaches for doing so.

The first approach is a direct construction of an overlay tree, in a manner similar
to [4]. At level 0 we consider all the nodes, denoted Π0. Then, for each level � > 0, the
set of nodes that belong to �, denoted Π�, are nodes that constitute a maximal indepen-
dent set of the graph G�−1 =(Π�−1,E�−1), where (u,u′)∈E�−1 iff δ (u,u′)< 2�. Finally,
we create a link between each node u ∈ Π�−1 and one of its closest nodes u′ ∈ Π�, that
is, δ (u,u′) ≤ δ (u,u′′) for any u′′ ∈ Π�. Observe that a node may be linked to itself at
several levels of the construction; we abuse notation and write δ (u,u) = 0, because
there is no cost to traverse this virtual link.

There are distributed algorithms to compute maximal independent sets in constant-
doubling metric networks in O(logΔ log∗ n) time, where Δ is the diameter of the graph
(e.g., [14]). Using these constructions yields lookup and move with communication cost
that is only a constant times the optimal.

Another approach is to derive an overlay tree T from any spanning tree ST = (VST ,
EST), without deteriorating the stretch, as follows:

Pick a center v of ST as the root of the overlay tree. (I.e., a node minimizing the
longest hop distance to a leaf node.)

Let k be the level of u in the resulting rooted tree.
By backwards induction, we augment ST with virtual nodes and virtual links to ob-

tain an overlay tree T where all nodes of ST are leaf nodes, without increasing the
stretch of the tree. (See Figure 10.) The depth of T , DT , is k. At level k− 1 we add to
T a duplicate of the root u and create a virtual link between this duplicate and u itself.

382 H. Attiya, V. Gramoli, and A. Milani

Algorithm 3. Move of object x at node u
1: Receiving m = 〈up,move,q, ts〉 from v: � Move up phase

2: send(ack) to v
3: if �〈q, ts′〉 ∈ u.moves : ts′ ≥ ts then
4: if ∃〈q,τ〉 ∈ u.moves : τ < ts then
5: u.moves ← u.moves\{〈q,τ〉}∪{〈q, ts〉}
6: else u.moves ← u.moves∪{〈q, ts〉}
7: clean(m)
8: for all τa = 〈a, ts,not served〉 ∈ u.lookups do
9: if �〈a, ts′,∗〉 ∈ m.lookups : ts′ ≥ ts then

10: m.lookups ← m.lookups∪{τa}
11: u.lookups ← u.lookups \{τa}∪〈a, ts,served〉
12: oldpointer ← u.pointer
13: u.pointer ← v
14: if oldpointer =⊥ then
15: send(u,〈up,move,q, ts,m.lookups〉) to u.father
16: else send(u,〈down,move,q, ts,m.lookups〉) to u.oldpointer

17: Receiving m = 〈down,move,q, ts, lookups〉 from v: � Move down phase

18: send(ack,move,q, ts) to v
19: if �〈q, ts′〉 ∈ u.moves : ts′ ≥ ts then
20: if ∃〈q,τ〉 ∈ u.moves : τ < ts then
21: u.moves ← u.moves\{〈q,τ〉}∪{〈q, ts〉}
22: else u.moves ← u.moves∪{〈q, ts〉}
23: clean(m)
24: if u not a leaf then
25: oldpointer ← u.pointer
26: u.pointer ←⊥
27: for all τa = 〈a, ts,not served〉 ∈ u.lookups do
28: if �〈a, ts′,∗〉 ∈ m.lookups : ts′ ≥ ts then
29: m.lookups ← m.lookups∪{τa}
30: u.lookups ← u.lookups \{τa}∪{〈a, ts,served〉}
31: send(u,m) to u.oldpointer
32: else
33: for (〈a, ts,status〉 ∈ m.lookups : �〈a, ts′,∗〉 ∈ u.lookups with ts′ ≥ ts) do
34: send(v,〈ts,xread only〉) to a � Blocking send, executes as soon as u releases x

35: send(v,〈ts,x〉) to q � Blocking send, executes as soon as u releases x

36: delete(x)

37: clean(m): � Clean-up the unused information

38: for all 〈a, ts,not served〉 ∈ m.lookups do
39: if ∃τa = 〈a, ts′,status〉 ∈ u.lookups : (status = served∧ ts′ = ts)∨ (ts′ > ts) then
40: m.lookups ← m.lookups \{〈a, ts,not served〉}
41: if 〈a, ts,∗〉 /∈ u.lookups then
42: m.lookups ← m.lookups \{〈a, ts,not served〉}∪{〈a, ts,passed〉}
43: u.lookups ← u.lookups∪{〈a, ts,passed〉}

Directory Protocols for Distributed Transactional Memory 383

Then, for every level � < k− 1, we augment level � of the spanning tree with a virtual
node for each (virtual or physical) node at level �+ 1 and create a virtual link between
a node at level � and its duplicate at level �+ 1.

q

u2

wp u

u1w1w

u

p

v

q v

v1

Fig. 10. Deriving an overlay tree from a spanning tree

To see why the stretch of the overlay tree T is equal to the stretch of the underlying
spanning tree ST , note that we do not change the structure of the spanning tree, but
augment it with virtual paths consisting of the same node, so that each becomes a leaf.
Since the cost of sending a message from a node u to itself is negligible compared with
the cost of sending a message from u to any other node in the system, the cost of these
virtual paths (which have at most k hops) is also negligible.

There are constructions of a spanning tree with low stretch, e.g., [15], which can be
used to derive an overlay tree with the same stretch.

4.5 Complexity Analysis of COMBINE

A request initiated by node p is served when p receives a copy of the object, which is
read-only in case of a lookup request. This section shows that every request is eventu-
ally served, and analyzes the communication cost. We start by considering only move
requests, and then extend the analysis to lookup requests.

Inspecting the pseudocode of the up phase shows that, for every �> 1, a move request
m sets a downward pointer from a node u at level � to a node u′ at level �− 1 only if it
has previously set a downward pointer from u′ to a node at level �− 2. Thus, assuming
no other move request modifies these links, there is a downward path from u to a leaf
node. The proof of the next lemma shows that this path from u to a leaf exists even if
another move request redirects a pointer set by m at some level �′ ≤ �.

Lemma 1. If there is a downward pointer at a node u, then there is a downward path
from u to a leaf node.

Proof. We prove that if there is a downward pointer at node u at level �, then there is a
path from u to a leaf node. We prove that this path exists even when move requests may
redirect links on this path from u to a leaf node.

The proof is by induction on the highest level �′ such that no pointer is redirected
between levels �′ and �. The base case, �′ = 1, is obvious.

384 H. Attiya, V. Gramoli, and A. Milani

For the inductive step, �′ > 1, assume that there is always a path from u to a leaf
node, even if move requests change any of the pointers set by m at some level below
�′ − 1. Let m′ be a move request that redirects the downward pointer at level �′, that is,
m′ redirects the link at node u′ to a node v at level �′−1. (Note that the link redirection is
done atomically by assumption, so that two nodes can not redirect the same link in two
different directions.) However, by the inductive hypothesis (applied to m′), this means
that there is a downward path from v to a leaf node. Hence, there is a downward path
from u′ to a leaf node, and since no pointer is redirected at the levels between �′ and �,
the inductive claim follows. ��

Initially, there is one path of downwards pointers from the root to a leaf node, and
Lemma 1 shows that this is an invariant, since there is always a downward pointer at
the root.

Lemma 2. At any configuration, there is a path of downward pointers from the root to
a leaf node.

We next argue that a request never backtracks its path towards the object.

Lemma 3. A move request m does not visit the same node twice.

Proof. Assume, by way of contradiction, that m visits some node twice. Inspecting the
pseudocode shows that during the up / down phase, a request always moves to a higher
/ lower (resp.) level, relative to its previous one. Thus, the only way for a move request
m to visit a node twice is that m visits this node first in its up phase and then in its down
phase.

Let u be the first node that m visits twice. By the tree structure, this means that during
its up phase, m visits node u and later visits the parent u′ of u, where m finds a downward
pointer to u. By Lemma 1, this means that also at u there is a downward pointer.

The downward pointer from u′ to u does not exist immediately before m visited u.
Otherwise, by Lemma 1, a downward pointer exists at u at the same time and m starts
its down phase at u.

Observe that the reception of a move request and the creation of a link happens in
an atomic step. Thus, any move request that visits u at some time between the time at
which m visits u and the time at which m visits u

′
, will start its down phase at u. This

is because a move erases a downward link only in the second step of its down phase.
Hence, the downward pointer from u′ to u does not exist when m visits u′, which is a
contradiction. ��

A node p is the predecessor of node q if the move message sent by node p has
reached node q and p is waiting for q to send the object.

Lemma 4. A move request m by node p reaches its predecessor q within dT (p,q) hops
and δT (p,q) total cost.

Proof. Since there is always a downward pointer at the root, Lemma 1 implies that the
request m eventually reaches its predecessor q. Moreover, by Lemma 3 and the tree
structure, the up-phase eventually completes by reaching the lowest common ancestor

Directory Protocols for Distributed Transactional Memory 385

of p and q. Then m follows the path towards q using only downward pointers. Observe
that a move request is not passed by another move request, since setting of the link and
sending the same request in the next step of the path (upon receiving a move request)
happen in an atomic step. Thus, the total number of hops traversed by m during both
phases is dT (i, j) and the total cost is δT (p,q). ��

This means that DT is an upper bound on the number of hops for a request to find its
predecessor.

Lemma 4 already allows to bound the communication cost of a request issued by
node q, that is, the cost of reaching the node p from which a copy of the object is sent
to q. Observe that once the request reaches p, the object is sent directly from p to q
without traversing the overlay tree.

Theorem 1. The communication cost of a request issued by node q and served by node
p is O(δT (p,q)).

Note that finding a predecessor does not immediately imply that the request of p
does not starve, and must be eventually served. It is possible that although the request
reaches the predecessor q, q’s request itself is still on the path to its own predecessor.
During this time, other requests may constantly take over p’s request and be inserted
into the queue ahead of it. We next limit the effect of this to ensure that a request is
eventually served.

For a given configuration, we define a chain of requests starting with the initiator of
the request m. Let u0 be the node that initiated m; the node before u0 is its predecessor,
u1. The node before u1 is u1’s predecessor, if u1 has reached it. The chain ends at a node
that does not have a predecessor (yet), or at the node that holds the object.

The length of the chain is the number of nodes in it. So, the chain ends at a node
whose request is still on its way to its predecessor, or when the node holds the object.
In the last case, where the end of the chain holds the object, we say that the chain is
complete.

Observe that at a configuration, a node appears at most once in a chain, since a node
cannot have two outstanding requests at the same time.

For the rest of the proof, we assume that each message takes at most one time unit,
that is, d hops take at most d time units.

Lemma 5. A chain is complete within at most n ·DT time units after m is issued.

Proof. We show, by induction on k, that after k ·DT time units, the length of the chain is
either at least k, or the chain is complete. Base case, k = 0, is obvious. For the induction
step, consider the head of the chain. If it holds the object, then the chain is complete
and we are done. Otherwise, as it has already issued a request, by Lemma 4, within at
most DT hops, and hence, time units, it finds its predecessor, implying that the length
of the chain grows by one.

Since a node appears at most once in a chain, its length, k, can be at most n, and
hence, the chain is complete within n ·DT time units. ��

Once a chain is complete, the position of r in the queue is fixed, and the requests
start waiting.

386 H. Attiya, V. Gramoli, and A. Milani

Assume that the time to execute a request at a node is negligible, and that the object
is sent from one node in the chain to its successor within one hop. Thus, within n hops
the object arrives at i0, implying the next theorem.

Theorem 2 (No starvation). A request is served within n ·ΔT + n time.

We now discuss how to modify the proof to accommodate a lookup request r.
Lemma 1 (and hence, Lemma 2) does not change since only move requests change
the downward paths. For Lemma 3, the path can be changed only if r is passed by m,
so r stops once at u′. The move request m that embeds r will not visit u twice, as ar-
gued above. Hence, the claim follows. For Lemma 4, if a lookup request is passed at
a node u, then a move request m embeds the lookup at a node u′, that is, the parent or
the child of u, respectively, if m passed the lookup in the up or down phase. Thus, the
move request will reach its predecessor, which is also the predecessor of the lookup. A
read-only copy of the object will be sent to the lookup before the object is sent to the
node that issued the move request that embeds the lookup.

COMBINE may embed many lookup request in a single move request. This does
not increase the message complexity, but could lead to long messages consuming large
communication bandwidth. We evaluate the total number of bits sent on behalf of a
request (possibly, weighted by distances), and show that combining does not increase
the number of bits transmitted due to a lookup request. (The argument is straightforward
for move requests, which are never embedded.)

This is done by proving that the information about a lookup request issued by a node
q and served by p, travels at most twice (once embedded in a move) the links in the
shortest path from q to p (this node exists by Theorem 2). Moreover, we prove that
the information about the lookup travels only through the above links. In other words,
the bit complexity due to a lookup is at most twice the bit complexity if combining is
avoided.

Lemma 6. A lookup request r by a node q visits only a single leaf node p �= q (either
by itself or embedded in a move request).

Proof. Consider a lookup request r and assume, by way of contradiction, that r visits
two different leaf nodes p and p′, either by itself or embedded in a move request.

First, assume r reaches by itself a leaf node p′. To visit another leaf node p, r has to
be embedded in a move request m, issued by a node u. Since m embeds r when it arrives
at p, there is a node v in the shortest path from u to p, such that r visited v before m and
no other move request visited v after r and before m. Let S be the sequence of nodes
visited by r after v on its path towards the object. If m visits the same sequence of nodes
as r, then m arrives at the same leaf node, which is a contradiction. Otherwise, another
move request m′ redirected the path of m at some node v′ ∈ S (i.e., m′ either creates
a downward pointer at v′ or redirects the existing one), after r visited v′ and before m
visited v′. Hence, r is stored as served at v′ when m arrives, and m does not embed the
lookup r after v′, which is a contradiction.

Otherwise, assume that r does not arrive at a leaf by itself. Let v be the node where
r stops because it is overtaken by a move request m. For r to be overtaken at v, we have
that r visited a node v′ before m, but it arrived at v after m; v′ is either an ancestor of

Directory Protocols for Distributed Transactional Memory 387

v or vice versa, depending on whether r was in its down or up phase when it visits v.
Every other move request m′ that embeds r should visit some node visited by r before
reaching v. But then m′ will either visit v′ or there is a node v

′′
in the path of r to v′,

where m′ will be redirected either because of a new downward pointer or because of the
redirection of an existing pointer. In both nodes v′ and v

′′
, r is stored as served. Hence,

m stops embedding r when visiting one of these nodes. Thus, the lookup does not arrive
at two different leaf nodes, and the lemma follows. ��
Lemma 7. Consider a lookup request r issued by a node q, which is served by node p.
Then r visits (either by itself or embedded in a move request) only nodes in the shortest
path from q to p in T .

Proof. Because of the tree structure, r looks for a downward pointer at the parent of
q. Once a downward pointer is found, the request follows the downward path to a leaf
node p. By Lemma 3, the first downward pointer is found at u, the lowest common
ancestor of node p and q.

Assume that r is embedded in a move request m. By Lemma 6, m either stops to
embed r at some point, or eventually reaches the same leaf node p. But for m to embed
r, it has to be the first move request to visit some node v visited by r. If r visits v during
its up phase, then m finds its first downward pointer at u, the lowest common ancestor
of p and q. Otherwise, another move request redirected the path at some node between
v and u. This means that, at this node, r is stored as served and m stops embedding it.

Therefore, in the worst case, m embeds the lookup at each node in the shortest path
from v to p, which is a subset of the nodes in the shortest path from q to p, which proves
the lemma. ��
Lemma 8. Consider a lookup request r by node q, which is served by node p. Let
q = u0, . . . ,ug = p be the shortest path from q to p, in the overlay tree. For every node
ui, 0 ≤ i ≤ g− 1, at most one move request embeds r when traveling from ui to ui+1.

Proof. The proof is by induction on i. For i= 0, observe that u0 = q, the node that issued
r, and thus it does not store the information about r, so no successive move request can
embed r at u0. Hence, no move embeds r when traveling from u0 to u1.

For the inductive step, assume that at most one move request embeds r when travel-
ing from uk−1 to uk for any k = 1, . . . , i. We prove that at most one move request embeds
r when traveling from node ui to ui+1.

By the inductive hypothesis, only a move request m reaches ui embedding r. Observe
that the first move request that visits node ui immediately after r, records at ui that the
lookup r has been served. Thus, if m is not the first move request to reach ui after r, m
will stop to embed r at ui. Any other move request that reaches ui will not embed r at ui

because m stored r as served, implying the lemma. ��

5 Using a Directory Protocol in DTM

Directory protocols were suggested as a way to manage objects, when implementing
DTM in large-scale distributed systems [4]: The lookup and move requests support read

388 H. Attiya, V. Gramoli, and A. Milani

and write operations of transactional objects, respectively: Before reading or writing a
transactional object, a transactional memory proxy module checks whether the object
is in the local cache, and calls the directory protocol to fetch it, if it is not. A lookup
request is issued to obtain a read-only copy of the object, while a move request is issued
to obtain the writable copy of the object.

It can be shown that each object is linearizable [16]. However, the DTM has to en-
sure that an entire transaction, accessing several objects, is atomic. This is often done by
handling conflicts between concurrent transactions accessing the same object (at least
one of them for a write) with a a contention manager (CM). The CM decides which
transaction is delayed or aborted in case of a conflict, and when to restart an aborted
transaction. The CM should ensure progress: at any time, at least one running transac-
tion eventually commits (if it executes in isolation for long enough).

ARROW was not designed in the context of DTM, so no description is provided on
how to incorporate it with a CM. In BALLISTIC, when a request arrives at the node
having the object, if there is a running transaction the CM decides whether to surrender
the object by aborting the local transaction or to give the local transaction a chance to
commit, by postponing the response for a fixed duration. SPIRAL also considers the
possibility of aborting the requesting transaction. A similar policy can be implemented
in COMBINE.

Transactions must have globally-consistent priorities for arbitration. If transactions
can have different priorities for different objects, then it is simple to see that we can
have either a deadlock or a livelock. Moreover, as we show next, regardless of the
policy applied by the CM to arbitrate conflicts, transactions accessing several objects
may deadlock when executing on top of BALLISTIC, SPIRAL and COMBINE.

Consider two transactions T1 and T2 issued by two different nodes i and j, respec-
tively, such that T1 has higher priority than T2 in some globally-consistent scheme.
Transaction T1 first requests and obtains object o1 and then requests object o2 to com-
plete. Similarly, transaction T2 first requests and obtains object o2 and then requests
object o1 to complete. A third transaction T3 with lower priority than T2 is concurrently
issued by node k and requests object o2. Different objects have different directory paths,
so it is possible that T3 reaches node j first, so T1 is redirected to node k. This means
that T3 is the immediate predecessor of T1 in the distributed queue for o2. Transaction
T2 reaches node i where T1 is executing.

If the transaction with lower priority waits for the local transaction to complete, then
a deadlock is possible. Specifically, we have a deadlock if T3 waits for T2 to commit and
release o2 while T2 waits for T1 to commit and release o1. The other option, where the
transaction with a lower priority aborts the transaction with higher priority, may cause
a livelock where transactions continuously abort each other. For instance, consider two
transactions T1 and T2 trying to acquire a single object o. Suppose that initially o is
owned by the node i where T1 is executing, and that T2 reaches node i following the
directory path. Suppose that T2 can abort T1 independently of their priority. Then T1

will abort, the object will be sent to the node j that issued T2 and T1 will restart its
execution. Since the next directory path finishes at node j where T2 is executing, T1 will
reach node j and abort T2. This can be repeated infinitely many times.

Directory Protocols for Distributed Transactional Memory 389

SPIRAL sends the object o1 to node j regardless of whether T2 is aborted or not.
Thus, while waiting for the object at node j, transaction cannot know whether T2 was
aborted or not at node i.

Intuitively, the problem arises because these directory protocols order requests in
FIFO order, while a CM orders requests according to the priority of the transaction
they belong to. Priority inversion happens when transactions with higher priority are
enqueued behind transactions with lower priority.

RELAY avoids this problem, since when a transaction reaches its predecessor in the
queue, the predecessor owns the object. This is guaranteed because a request redirects
the link when the object travels back to the requesting node. So when the directory path
is redirected, it points to the node owning the object. To avoid deadlock and livelocks
RELAY has to use a CM with a globally-consistent priority assignment. The authors
suggest to use the greedy contention manager, because it guarantees that the transaction
with the highest priority is executed without interruption. Originally devised for the
shared memory model, the greedy contention manager relies on a global clock, which is
not always available in a distributed system. Furthermore, as explained in section 3.2.1,
RELAY does not avoid starvation of individual requests.

Finally, BALLISTIC, SPIRAL and COMBINE support read sharing. After modifying
the object, the owner of the object has to invalidate the read-only copies of it, in order
to guarantee consistency. If a node using a read-only copy has not committed before
receiving the invalidation, then it aborts its transaction regardless of the priority policy.
As a result, there might be an infinite execution where a transaction T1 that successively
writes x and reads y, and another transaction T2 that successively writes y and reads x,
repeatedly invalidate the read-only copy of each other.

To the best of our knowledge, no existing CM can be integrated with an existing
directory protocol, to ensure that eventually some transaction will complete. More gen-
erally, it is not clear if it is possible to integrate a CM with an independently-designed
directory protocol. It seems that to ensure the progress of a DTM, the directory protocol
must incorporate contention management.

6 Discussion

Table 1 summarizes the protocols discussed in this chapter, and compares the commu-
nication cost of a request by node p, served by node q. In the table, δST (p,q) denotes
the (weighted) distance between p and q on a spanning tree; while ΔST is the diameter
of the spanning tree. As implied by the construction of Section 4.4, these are not better

Table 1. Comparison of directory protocols presented in this chapter

Protocol Communication cost Assumes FIFO Runs on

ARROW O(δST (p,q)) Yes Spanning tree
BALLISTIC O(ΔT) Yes Hierarchical overlay
RELAY O(ΔST) Yes Spanning tree
SPIRAL O(δ (p,q)log4n) Yes Hierarchical overlay
COMBINE O(δT (p,q)) No Overlay tree

390 H. Attiya, V. Gramoli, and A. Milani

(asymptotically) than the distance and diameter of the overlay tree (δT (p,q) and ΔT).
Competitive analysis of the protocols in sequential, concurrent, one-shot and dynamic
executions, appears in [5].

Existing data-flow DTMs [17–20] incorporate a component similar to a directory
protocol. Some of these DTMs follow a lazy conflict detection strategy, e.g., by acquir-
ing a global lock [17]. TM2C [20] has both lazy and eager conflict detection. It encap-
sulates a specialized distributed contention manager, FairCM, which ensures progress.
Each object has a unique owner and the directory protocol does not move objects. Pro-
cesses access objects remotely without moving them, and concurrent reading is allowed.

Smaller-scale cluster-based systems offer some form of broadcasting, whose cost is
uniform across all pairs of nodes. Broadcasting can be used at commit-time to main-
tain consistency of objects [18, 19]. DTM is also different than TM implementations
on hardware shared-memory systems. These systems provide fast access to local and
remote objects, and the critical factor in TM implementations is the single-processor
overhead of bookkeeping [21].

Directory protocols were originally presented in the context of hardware cache-
coherent systems, as a mechanism for storing the memory addresses of all data in
the cache of each node, and for maintaining coherence by allowing cache hits or by
(re)reading a block of data from the memory [22–24]. A block can be in one of three
states: shared, exclusive or invalid [22]. A block is invalidated either when some specific
action may violate coherence or when receiving an invalidation broadcast message [25].
In addition, the directory can maintain information to restrict the broadcast to affected
nodes [26].

The size of the directory can be reduced by linking the nodes that hold a copy of
a block [27]. Upon invalidation of the block, a message successively invalidates the
caches of all linked nodes. This method is similar to the distributed queue, where it is
used for passing exclusive accesses and not for invalidating read-only copies. Hardware
directory protocols are space constraints, which may suffer from false conflicts when
a whole block is invalidated due to the modification of only one of its data. A recent
directory protocol that avoids this constraint by detecting conflicts at the byte level was
used in a transactional memory that does not need cache coherence [20].

References

1. Attiya, H., Gramoli, V., Milani, A.: A provably starvation-free distributed directory protocol.
In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 405–
419. Springer, Heidelberg (2010)

2. Nussbaum, D., Agarwal, A.: Scalability of parallel machines. Communications of the ACM
(March 1991)

3. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

4. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Dis-
tributed Computing 20(3), 195–208 (2007)

5. Sharma, G., Busch, C.: Distributed transactional memory for general networks. Distributed
Computing, 1–34 (2014)

6. Zhang, B., Ravindran, B.: Relay: A cache-coherence protocol for distributed transactional
memory. In: OPODIS, pp. 48–53 (2009)

Directory Protocols for Distributed Transactional Memory 391

7. Herlihy, M., Tirthapura, S., Wattenhofer, R.: Competitive concurrent distributed queuing. In:
PODC, pp. 127–133 (2001)

8. Kuhn, F., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. In: SPAA, pp.
294–301 (2004)

9. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. TOCS 7(1), 61–77
(1989)

10. Zhang, B., Ravindran, B.: Dynamic analysis of the relay cache-coherence protocol for dis-
tributed transactional memory. In: IPDPS, pp. 1–11 (2010)

11. Sun, Y.: The Ballistic Protocol: Location-aware Distributed Cache Coherence in Metric-
Space Networks. PhD thesis, Brown University (May 2006)

12. Kruskal, C.P., Rudolph, L., Snir, M.: Efficient synchronization of multiprocessors with
shared memory. In: PODC, pp. 218–228 (1986)

13. Pfister, G.F., Norton, V.A.: “hot spot” contention and combining in multistage interconnec-
tion networks. IEEE Trans. on Comp. 34(10), 943–948 (1985)

14. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maxi-
mal independent set computation on growth-bounded graphs. In: Fraigniaud, P. (ed.) DISC
2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005)

15. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted
graphs. SIAM Journal on Computing 38(5), 1761–1781 (2008)

16. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

17. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a
transactional memory cluster. In: PPoPP, pp. 198–208 (2006)

18. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large
scale clusters. In: PPoPP, pp. 247–258 (2008)

19. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable distributed
software transactional memory. In: PRDC, pp. 307–313 (2009)

20. Gramoli, V., Guerraoui, R., Trigonakis, V.: TM2C: A software transactional memory for
many-cores. In: EuroSys, pp. 351–364 (2012)

21. Dice, D., Shavit, N.: Understanding tradeoffs in software transactional memory. In: Pro-
ceedings of the International Symposium on Code Generation and Optimization, pp. 21–33
(2007)

22. Censier, L.M., Feautrier, P.: A new solution to coherence problems in multicache systems.
IEEE Trans. on Comp. C-27(12), 1112–1118 (1978)

23. Chaiken, D., Fields, C., Kurihara, K., Agarwal, A.: Directory-based cache coherence in large-
scale multiprocessors. Computer 23(6), 49–58 (1990)

24. Agarwal, A., Chaiken, D., Kranz, D., Kubiatowicz, J., Kurihara, K., Maa, G., Nussbaum,
D., Parkin, M., Yeung, D.: The MIT Alewife machine: A large-scale distributed-memory
multiprocessor. In: Proceedings of Workshop on Scalable Shared Memory Multiprocessors
(1991)

25. Archibald, J.K., Baer, J.L.: An economical solution to the cache coherence problem. In:
ISCA, pp. 355–362 (1984)

26. Agarwal, A., Simoni, R., Hennessy, J.L., Horowitz, M.: An evaluation of directory schemes
for cache coherence. In: ISCA, pp. 280–289 (1988)

27. James, D.V., Laundrie, A.T., Gjessing, S., Sohi, G.: Scalable coherent interface. Com-
puter 23(6), 74–77 (1990)

Applications and Self-tuning

Tuning the Level of Concurrency in Software
Transactional Memory: An Overview of Recent

Analytical, Machine Learning and Mixed Approaches

Diego Rughetti, Pierangelo Di Sanzo, Alessandro Pellegrini,
Bruno Ciciani, and Francesco Quaglia

DIAG — Sapienza, University of Rome, Rome, Italy
{rughetti,disanzo,pellegrini,ciciani,quaglia}@dis.uniroma1.it

Abstract. Synchronization transparency offered by Software Transactional Mem-
ory (STM) must not come at the expense of run-time efficiency, thus demanding
from the STM-designer the inclusion of mechanisms properly oriented to perfor-
mance and other quality indexes. Particularly, one core issue to cope with in STM
is related to exploiting parallelism while also avoiding thrashing phenomena due
to excessive transaction rollbacks, caused by excessively high levels of contention
on logical resources, namely concurrently accessed data portions. A means to
address run-time efficiency consists in dynamically determining the best-suited
level of concurrency (number of threads) to be employed for running the appli-
cation (or specific application phases) on top of the STM layer. For too low lev-
els of concurrency, parallelism can be hampered. Conversely, over-dimensioning
the concurrency level may give rise to the aforementioned thrashing phenomena
caused by excessive data contention—an aspect which has reflections also on the
side of reduced energy-efficiency. In this chapter we overview a set of recent tech-
niques aimed at building “application-specific” performance models that can be
exploited to dynamically tune the level of concurrency to the best-suited value.
Although they share some base concepts while modeling the system performance
vs the degree of concurrency, these techniques rely on disparate methods, such as
machine learning or analytic methods (or combinations of the two), and achieve
different tradeoffs in terms of the relation between the precision of the perfor-
mance model and the latency for model instantiation. Implications of the different
tradeoffs in real-life scenarios are also discussed.

1 Introduction

As mentioned earlier in this book, the TM paradigm has been conceived to ease the
burden of developing concurrent applications, which is a major achievement when con-
sidering that, nowadays, even entry-level computing platforms rely on hardware par-
allelism, in the form of, e.g., multi-core chips. By simply encapsulating code that is
known to access shared data within transactions, the programmer can produce a par-
allel application which is guaranteed to be correct, without incurring the complexities
related to, e.g., lock-based programming.

The achievement of optimized run-time efficiency is clearly another core objective,
given that the TM paradigm is not meant to achieve synchronization transparency while

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 395–417, 2015.
c© Springer International Publishing Switzerland 2015

396 D. Rughetti et al.

(excessively) sacrificing, e.g., performance. For STM systems, synchronization is de-
manded to an STM-library whose (run-time) configuration is crucial to achieve effi-
cient runs of the overlying applications. This requires proper techniques to be put in
place in order to effectively exploit the computing power offered by modern parallel
architectures. Particularly, the central problem to be addressed by these techniques is
related to exploiting parallelism while also avoiding thrashing phenomena due to exces-
sive transaction rollbacks, caused by excessive contention on logical resources, namely
concurrently-accessed data portions. We note that this aspect has reflections also on the
side of resource provisioning in the Cloud, and associated costs, since thrashing leads
to suboptimal usage of resources (including energy) by, e.g., PaaS providers offering
STM based platforms to customers (see, e.g., [1]).

In order to cope with this issue, a plethora of solutions have been proposed, which
can be framed into two different sets of orthogonal approaches. On one side, we find
optimized schemes for transaction conflict detection and management [7,11,15,16,24].
These include proposals aimed at dynamically determining which threads need to ex-
ecute specific transactions, so as to allow transactions that are expected to access the
same data to run along a same thread in order to sequentialize and spare them from
incurring the risk of being aborted with high probability. Other proposals rely instead
on pro-active transaction scheduling [2,25] where the reduction of performance degra-
dation due to transaction aborts is achieved by avoiding to schedule (hence delaying
the scheduling of) transactions whose associated conflict probability is estimated to be
high.

On the other side we find solutions aimed at supporting performance optimization via
the determination of the best-suited level of concurrency (i.e., number of threads) to be
exploited for running the application on top of the STM layer (see, e.g., [5,8,14]). These
solutions are clearly orthogonal to the aforementioned ones, being potentially usable
in combination with them. We can further distinguish these approaches depending on
whether they cope with dynamic or static application execution profiles, and on the
type of methodology that is used to predict the well-suited level of concurrency for
a specific application (or application phase). Approaches coping with static workload
profiles are not able to predict the optimal level of concurrency for applications where
typical parameters expressing proper dynamics of the applications (such as the average
number of data objects touched by a transactional code block) can vary over time.

The focus of this chapter is exactly on approaches for the (dynamic) tuning of the
level of concurrency. Particularly, we will overview the STM-suited solutions we re-
cently provided in [6,20,21]. The reason for selecting and focusing on these works in
this comparative overview is twofold:

• They share the same basic model describing the level of performance as a function
of the level of concurrency, which leads them to exhibit some kind of homogeneity;
this will help drawing reliable conclusions while comparing them, which are likely
to generalize. Also, the exploited basic model is able to capture scenarios where the
application profile can vary over time, hence they appear as solutions whose usage
is not limited to contexts with static profiles.

• They rely on alternative techniques to instantiate “application-specific” performance
models, which range from analytical approaches to machine learning to a mix of

Tuning the Level of Concurrency in STM 397

the two. However, all of them are based on model-instantiation schemes exploit-
ing training samples coming from the observation of the real application behavior
during an (early) phase of deploy, which do not require stringent assumptions to be
met by the real STM application in order for its dynamics to be reliably captured
by the model. This further widens their usability in real life contexts.

Nonetheless, we will also provide a comparative discussion with literature approaches
that stand as valuable alternatives for predicting the level of performance vs the degree
of concurrency and/or for dynamically regulating the concurrency level to suited values.

We will initially start by discussing common points to all the overseen approaches,
then we will enter details of each of them. Successively, we will provide hints on the
organization of associated concurrency regulation architectures and present experimen-
tal data for an assessment of the different alternatives. A comparative discussion with
literature alternatives ends the chapter.

2 The Common Base-Ground

We overview concurrency-regulation approaches targeted at STM systems where the
execution flow of each thread is characterized by the interleaving of transactional and
non-transactional code blocks. During the execution of a transaction, the thread can
perform read/write operations on a set of shared data objects and can run code blocks
where it does not access shared data objects (e.g. it accesses variables within its own
stack). Read (written) data objects by a transaction are included in its read-set (write-
set). If a data conflict between concurrent transactions occurs, one of the conflicting
transactions is aborted and is subsequently re-started. A non-transactional code block
starts right after the thread executes the commit operation of a transaction, and ends
right before the execution of the begin operation of the subsequent transaction along
the same thread.

Typical STM-oriented concurrency-control algorithms [7] rely on approaches where
the execution flow of a transaction never traps into operating system blocking services.
Rather, spin-locks are exploited to support synchronization activities across the threads.
In such a scenario, the primary index having an impact on the throughput achievable
by the STM system (which also impacts how energy is used for productive work) is the
so called transaction wasted time, namely the amount of CPU time spent by a thread
for executing transaction instances that are eventually aborted. The ability to predict the
transaction wasted time for a given application profile (namely for a specific data access
profile) while varying the degree of parallelism in the execution is the fulcrum of the
concurrency regulation techniques presented in [6,20,21], which we are overseeing in
this chapter.

In more details, these proposals aim at computing pairs of values 〈wtime,i , i〉 where
i indicates the level of concurrency, namely the number of threads which are supposed
to be used for executing the application, and wtime,i is the expected transaction wasted
time (when running with degree of concurrency equal to the value i). Denoting with t the
average transaction execution time (namely the expected CPU time required for running
an instance of transaction that is not eventually aborted) and with ntc the average time
required for running a non-transactional code block (which is interleaved between two

398 D. Rughetti et al.

subsequent transactional code blocks in the target system model), the system throughput
when running with i threads can be computed as

thri =
i

wtime,i + t + ntc
(1)

By exploiting Equation (1), the objective of the concurrency regulation proposals in
[6,20,21] is to identify the value of i, in the reference interval [1,max threads], such
that thri is maximized1.

As we will see, wtime,i is expressed in the different considered approaches as a func-
tion of t and ntc. However, these quantities may depend, in their turn, on the value of i
due to different thread-contention dynamics on system-level resources when changing
the number of threads. As an example, per-thread cache efficiency may change de-
pending on the number of STM threads operating on a given shared cache level, thus
impacting the CPU time required for a specific code block, either transactional or non-
transactional. To cope with this issue, once the value of t (or ntc) when running with
k threads—which we denote as tk and ntck respectively—is known, analytic correction
functions are typically employed to predict the corresponding values when supposing a
different number of threads. This yields the final throughput prediction (vs the concur-
rency level) to be expressed as:

thri =
i

wtime,i(ti,ntci)+ ti+ ntci
(2)

where for wtime,i we only point out the dependence on ti and ntci, while we intentionally
delay to the next sections the presentation of the other parameters playing a role in
its expression. Overall, the finally achieved performance model in Equation (2) has
the ability to determine the expected transaction wasted time when also considering
contention on system-level resources (not only logical resources, namely shared data)
while varying the number of threads in the system.

As already pointed out, one core objective of the concurrency-regulation proposals
that we are overseeing consists in modeling the system performance so as to capture
the effects of variations of the application execution profile. This has been achieved by
relying on a model of wtime,i that has the ability to capture changes in the transaction
wasted time not only in relation to variations of the number of threads running the ap-
plication, but also in relation to changes in the run-time behavior of transactional code
blocks (such as variations of the amount of shared-data accessed in read/write mode by
the transaction). In fact, the latter type of variation may require changing the number
of threads to be used in a given phase of the application execution (exhibiting a spe-
cific execution profile) in order to re-optimize performance. The proposals in [6,20,21]

1 Approaches to regulate concurrency typically rely on setting max threads to the maximum
number of CPU-cores available for hosting the STM application. This choice is motivated by
the fact that using more threads than the available CPU-cores is typically unfavorable since the
overhead caused by context-switches among the threads may become predominant [10]. Also,
thread-reschedule latencies may further unfavor performance due to secondary effects related
to increasing the so-called transaction vulnerability-window, namely the interval of time along
which actions by concurrent transactions can ultimately lead to the abort of some ongoing
transaction [17].

Tuning the Level of Concurrency in STM 399

all share the common view that capturing the combined effects of concurrency degree
and execution profile on the transaction wasted time can be achieved in case wtime,i is
expressed as a function f depending on a proper set of input parameters, namely

wtime,i = f (rs,ws,rw,ww, t,ntc, i) (3)

where t, ntc and i have the meaning explained above, while the other input parameters
are explained in what follows:

• rs is the average read-set size of transactions;
• ws is the average write-set size of transactions;
• rw (read-write conflict affinity) is an index providing an estimation of the likelihood

for an object read by some transaction to be also written by some other transaction;
• ww (write-write conflict affinity) is an index providing an estimation of the likeli-

hood for an object written by some transaction to be also written by another trans-
action.

We note that the above parameters cover the set of workload-characterizing param-
eters that have been typically accounted for by performance studies of concurrency
control protocols for traditional transactional systems, such as database systems (see,
e.g., [23,26]). In other words, the idea behind the above model is to exploit a knowl-
edge base (provided by the literature) related to workload aspects that can, more or less
relevantly, impact the performance provided by concurrency-control protocols.

The objective of the modeling approaches in [6,20,21] is to provide approximations
of the function f via proper estimators. The first estimator we discuss, which we refer
to as fA, has been presented in [6] and is based on an analytic approach. The second
one, which we refer to as fML, has been presented in [20] and relies on a pure Machine
Learning (ML) approach. Finally, the third estimator, which we refer to as fAML, has
been presented in [21] and is based on a mixed approach combining analytic and ML
techniques.

We refer the reader to the technical articles in [6,20,21] for all the details related to
the derivation of these estimators, so that the following presentation is intended as an
overview of each of the approaches, and as a means to discuss virtues and limitations of
each individual solution. The discussion will be then backed by experimental data we
shall report later on in this chapter.

3 The fA Estimator

The solution presented in [6] tackles the issue of predicting the optimal concurrency
level (and hence regulating concurrency) in STM via an analytic approach that differ-
entiates from classical ones. Particularly, it relies on a parametric analytic expression
capturing the expected trend in the transaction abort probability (versus the degree of
concurrency) as a function of a set of features associated with the actual workload pro-
file. The parameters appearing in the model exactly aim at capturing execution dynam-
ics and effects that are hard to be expressed through classical (non-parametric) analytic
modeling approaches (such as [5]), which typically make the latter reliable only in case

400 D. Rughetti et al.

the modeled system conforms the specific assumptions that underlie the analytic ex-
pressions.

Further, the parametric analytic model is thought to be easily customizable for a
specific STM system by calculating the values to be assigned to the parameters (hence
by instantiating the parameters) via regression analysis. One relevant virtue of this kind
of solution is that the actual sampling phase, needed to provide the knowledge base
for regression, can be very lightweight. Specifically, a very limited number of profiling
samples, related to few different concurrency levels for the STM system, likely suffices
for successful instantiation of the model parameters via regression.

The core analytical expression provided by the study in [6] is the one encapsulating
the probability for a transaction to be aborted, namely pa, which is built as a function
of the parameters appearing in input to Equation (3). Particularly, the abort probability
is expressed as:

pa = β (rs,ws,rw,ww, t,ntc, i) (4)

More precisely:
pa = 1− e−ρ ·ω·φ (5)

where the function ρ is assumed to depend on the input parameters rs, ws, rw and ww,
the function ω is assumed to depend on the parameter i (number of concurrent threads),
and the function φ is assumed to depend on the parameters t and ntc. For the reader’s
convenience, we report below the final shape of each of these functions as determined
in [6]:

ρ =[c · (ln(b ·ws+ 1)) · ln(a ·ww+ 1)]d

+[e · (ln(f · rw+ 1)) · ln(g · rs+ 1) ·ws]z
(6)

ω = h · (ln(l · (k− 1)+ 1) (7)

φ = m · ln(n · t
t + ntc

+ 1) (8)

where m, n, h, l, e, f , g, z, c, b, a, d are all fitting parameters to be instantiated via
regression. In more details, regression analysis is performed by exploiting a set of sam-
pling data gathered through run-time observations of the STM application. Each sample
includes the average values of all the input parameters (independent variables) and of
the abort probability (dependent variable) in Equation (4), measured over different time
slices. Hence, Equation (5) is used as regression function, whose fitting parameters’
values are estimated to be the ones that minimize the sum of squared residuals [3].

The abort probability expression, as provided by relying on Equations (4)–(8), has
been exploited in order to analytically express the expected transaction wasted time
(when running with i threads), namely to instantiate the function fA, as

wtime,i = fA =
pa

1− pa
· tr (9)

where tr is the average CPU time for a single aborted run of the transaction, and
pa/(1− pa) is the expected number of aborted transaction runs (per successful transac-
tion commit).

Tuning the Level of Concurrency in STM 401

4 The fML Estimator

The solution presented in [20] addresses the issue of concurrency regulation by a per-
spective that stands as different from the one in [6]. Particularly, this solution is based on
a pure ML approach, whose general virtue is to provide an extremely precise representa-
tion of the target system behavior, provided that the training process is based on a suffi-
ciently wide set of configurations, spanning many of the parameters potentially impact-
ing this behavior. Generally speaking, good coverage of the domain typically guarantees
higher accuracy of ML based models when compared to their analytic counterpart [19].

The exploited ML method in [20] is a Neural Network (NN) [19], which provides the
ability to approximate various kinds of functions, including real-valued ones. Inspired
by the neural structure of the human brain, a NN consists of a set of interconnected
processing elements which cooperate to compute a specific function, so that, provided
a given input, the NN can be used to calculate the output of the function. By relying
on a learning algorithm, the NN can be trained to approximate an unknown function
f exploiting a data set {(i,o)} (training set), which is assumed to be a statistical rep-
resentation of the function f such that, for each element (i,o), o = f{i}+ δ , where δ
is a random variable (also said noise). In [20], the training set is formed by samples
(input,output), with input = {rs,ws,rw,ww, t,ntc, i} and output = wtime,i , which are
collected during real executions of the STM application.

On the other hand, significant coverage of the domain of values for the above input
parameters may require long training phases, imposing a delay in the optimization of
the actual run-time behavior of the STM application. Overall, this ML based scheme
might not fully fit scenarios where fast construction of application-specific performance
models needs to be actuated in order to promptly optimize performance and resource
usage (including energy). An example case is the one of dynamic deploy of applications
in Cloud Computing environments.

5 The fAML Estimator

The proposal in [21] is based on mixing analytic and ML techniques (hence AML) ac-
cording to a scheme aimed at providing a performance prediction model fAML showing
the same capabilities (in terms of precision) as the ones offered by the ML approach,
namely fML, but offering a reduced training latency, comparable to the one allowed by
the pure parametric-analytic based approach fA. In other words, the attempt in this pro-
posal is to get the best of the two worlds, which is operatively achieved by a sequence
of algorithmic steps performing the combination of fA and fML.

A core aspect in this combination is the introduction of a new type of training set for
the machine learning component fML, which has been referred to as Virtual Training
Set (denoted as VTS). Particularly, VTS is a set of virtual (inputv,outputv) training
samples where:

• inputv is the set {rsv,rsv,rwv,wwv, tv,ntcv, iv} formed by stochastically selecting
the value of each individual parameter belonging to the set;

• outputv is the output value computed as fA(inputv), namely the estimation of
wtime,iv actuated by fA on the basis of the stochastically selected input values.

402 D. Rughetti et al.

In other word, VTS becomes a representation of how the STM system behaves, in
terms of the relation between the expected transaction wasted time and the value of
configuration or behavioral parameters (such as the degree of concurrency), which is
built without the need for actually sampling the real system behavior. Rather, the repre-
sentation provided by VTS is built by sampling Equation (9), namely fA. We note that
the latency of such sampling process is independent of the actual speed of execution of
the STM application, which determines in its turn the speed according to which indi-
vidual (input,output) samples, referring to real executions of the application, would
be taken. Particularly, the sampling process of fA is expected to be much faster, espe-
cially because the stochastic computation (e.g. the random computation) of any of its
input parameters, which needs to be actuated at each sampling-step of fA, is a trivial
operation with negligible CPU requirements. On the other hand, the building the VTS
requires the previous instantiation of the fA model. However, as said before, this can
be achieved via a very short profiling phase, requiring the collection of a few samples
of the actual behavior of the STM application. Overall, we list below the algorithmic
steps required for building the application specific VTS, to be used for finalizing the
construction of the fAML model:

(A) A number Z of different values of i are randomly selected in the domain
[1,max threads], and for each selected value of i, the application run-time behavior is
observed by taking δ real-samples, each one including the set of parameters {rs,ws,rw,
ww, t,ntc, i}∪{tr}.

(B) Via regression all the fitting parameters requested by Equations (6)–(8) are instan-
tiated. Hence, at this stage an instantiation of Equation (5), namely the model instance
for pa, has been achieved.

(C) The instantiated model for pa is filled in input to Equation (9), together with the
average value of tr sampled in step A, and then the VTS is generated. This is done
by generating δ ′ virtual samples (inputv,outputv) where, for each of these samples,
inputv = {rsv,wsv,rwv,wwv, tv,ntcv, iv} and outputv = wtime,iv as computed by the
model in Equation (9). Each inputv sample is instantiated by randomly selecting the
values of the parameters that compose it2. For the parameter i the random selection is
in the interval [1,max threads], while for the other parameters the randomization needs
to take into account a plausible domain, as determined by observing the actual appli-
cation behavior in step A (recall that all these parameters have anyhow non-negative
values). Particularly, for each of these parameters, its randomization domain is defined
by setting the lower extreme of the domain to the minimum value that was observed
while sampling that same parameter in step A. On the other hand, the upper extreme
for the randomization domain is calculated as the value guaranteeing the 90-percentile
coverage of the whole set of values sampled for that parameter in step A, which is done
in order to reduce the effects due to spikes.

After having generated the VTS, the proposal in [21] uses it in order to train the
machine learning component fML of the modelling approach. However, training fML by

2 Generally speaking, this step could take advantage of a selection algorithm providing minimal
chances of collision.

Tuning the Level of Concurrency in STM 403

only relying on VTS would give rise to the scenario where the curve learned by fML

would correspond to the one modelled by fA. Hence, in order to improve the quality
of the machine learning based estimator, the actual combination of the analytical and
machine learning methods presented in [6,20] relies on additional algorithmic steps
where VTS is used as the base for the construction of an additional training set called
Virtual-Real Mixed Training Set (denoted as VRMTS). This set represents a variation
of VTS where some virtual samples are replaced with real samples taken by observing
the real behavior of the STM application (according to proper rules aimed at avoid-
ing clustering phenomena leading the final VRMTS image to contain training samples
whose distribution within the whole domain significantly differs from the original dis-
tribution determined by the random selection process used for the construction of VTS).
The rationale behind the construction of VRMTS is to improve the quality of the final
training set to be used to build the machine learning model by complementing the vir-
tual samples originally appearing in VTS with real data related to the execution of the
application.

Once achieved the final VRMTS image, it is used to train fML in order to determine
the final AML estimator. Overall, fAML is defined in [21] as the instance of fML trained
via VRMTS.

6 Correcting Functions

As pointed out, the instantiation of the different estimators of the function f in Equa-
tion (3), which are ultimately aimed at predicting wtime,i, needs to be complemented
with a predictor of how t and ntc are expected to vary vs the degree of parallelism i. In
fact, wtime,i is expressed in the various modeling approaches as a function of t and ntc.
Further, the final equation establishing the system throughput, namely Equation (2),
which is used for evaluating the optimal concurrency level by all the overseen propos-
als, also relies on the ability to determine how t and ntc change when changing the
level of parallelism (due to contention on hardware resources). To cope with this issue,
one can rely on correcting functions aimed at determining (predicting) the values ti and
ntci once known the values of these same parameters when running with parallelism
level k �= i. To achieve this goal, the early samples taken in all the approaches for in-
stantiating the performance models can be used to build, via regression, the function
expressing the variation of the number of clock-cycles the CPU-core spends waiting
for data or instructions to come-in from the RAM storage system. The expectation is
that the number of clock-cycles spent in waiting phases scales (almost) linearly vs the
number of concurrent threads used for running the application. Hence, even if applied
on a very limited number of samples, regression should suffice for reliable instantiation
of the correction functions. To support this claim, we report in Figure 1 and in Figure
2 the variation of the clock-cycles spent while waiting for data to come from RAM for
two different STM applications of the STAMP benchmark suite [18], namely intruder
and vacation3, while varying the number of threads running the benchmarks between
1 and 16. These data have been gathered on top of a 16-core HP ProLiant machine,

3 The description of these (and other) STAMP benchmarks exploited in this chapter is postponed
to Section 8.

404 D. Rughetti et al.

equipped with 2 AMD OpteronTM6128 Series Processor, each one having eight hard-
ware cores, and 32 GB RAM, running a Linux Debian distribution with kernel version
2.6.32-5-amd64. By the curves, the close-to-linear scaling is fairly evident, hence, once
determined the scaling curve via regression, which we denote as sc, we let:

ti = tk · sc(i)
sc(k)

ntci = ntck · sc(i)
sc(k)

(10)

where:

• ti is the estimated expected CPU time (once known/estimated tk) for a committed
transaction in case the application runs with level of concurrency i;

• ntci is the estimated expected CPU time (once known/estimated ntck) for a non-
transactional code block in case the application runs with level of concurrency i;

• sc(i) (resp. sc(k)) is the value of the correction function for level of concurrency i
(resp. k).

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ta

lle
d

C
yc

le
s

Concurrent threads

Percentage

Fig. 1. Stalled cycles for the intruder benchmark

7 The Concurrency Regulation Architecture

Beyond providing the performance models and the concurrency regulation schemes, the
works in [6,20,21] also provide guidelines for integrating concurrency regulation capa-
bilities within operating STM environments. In this section we provide an overview
of how the concurrency regulation architecture based on fAML, selected as a reference
instance, has been integrated with a native STM layer. Given that fAML is the combi-
nation of the other two approaches, the architectures relying on the corresponding two
estimators fA and fML can be simply derived by removing functional blocks from the
one presented here.

Tuning the Level of Concurrency in STM 405

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ta

lle
d

C
yc

le
s

Concurrent threads

Percentage

Fig. 2. Stalled cycles for the vacation benchmark

The organization of the reference instance4, which we name AML-STM, is shown
in Figure 3. AML-STM is composed of the following three building blocks:

• A Statistics Collector (SC);
• A Model Instantiation Component (MIC);
• A Concurrency Regulator (CR).

The MIC module initially interacts with CR in order to induce variations of the number
of running-threads i so that the SC module is allowed to perform the sampling process
requested to support the instantiation of the AML model5. After the initial sampling
phase, the MIC module instantiates fA (and the correction function sc) and computes
VTS. It then interacts again with CR in order to induce variations of the concurrency
level i that are requested to support the sampling process (still actuated via SC) used
for building VRMTS. It then instantiates fAML by relying on a neural network imple-
mentation of the fML predictor, which is trained via VRMTS. Once the fAML model is
built, MIC continues to gather statistical data from SC, and depending on the values of
wtime,i that are predicted by fAML (as a function of the average values of the sampled pa-
rameters rs, ws, rw, ww, ti, and ntci), it determines the value of i providing the optimal
throughput by relying on Equation (2). This value is filled in input to CR (via queries by
CR to MIC), which in its turn switches off or activates threads depending on whether
the level of concurrency needs to be decreased or increased for the next observation
period.

As noted above, in case the concurrency regulation architecture would have been
based on fA or fML, then the initial training set TS would have been directly used

4 The source code of the actual implementation is freely available at
http://www.dis.uniroma1.it/˜hpdcs/AML-STM.zip. It exploits TinySTM [12]
as the core STM layer.

5 As for the parameters to be monitored via SC, rw can be calculated as the dot product between
the distribution of read operations and the distribution of write operations (both expressed in
terms of relative frequency of accesses to shared data objects). Similarly, ww can be calculated
as the dot product between the distribution of write operations and itself. This can be achieved
by relying on histograms of relative read/write access frequencies.

http://www.dis.uniroma1.it/~hpdcs/AML-STM.zip

406 D. Rughetti et al.

Fig. 3. System architecture

to instantiate fA (as already shown in the picture), or fML (which could be achieved
by simply collapsing VRMTS onto TS in the architectural organization). On the other
hand, the training phase, namely the phase along which real samples of the application
behavior are collected in order to instantiate the different estimators, would be of dif-
ferent length. We will provide data for a quantitative assessment of this aspect in the
next section. We recall again that the shorter such a length, the more promptly the final
performance model (based on a given estimator) to be used for concurrency regulation
is available. Hence, a reduction in the length of this phase, while still guaranteing ac-
curacy of the finally built performance model, will allow more prompt optimization of
the run-time behavior of the STM-based application.

8 Experimental Assessment

In this section we provide experimental data for a comparative assessment of the con-
currency regulation techniques (and of the associated performance prediction models)
we have overseen in this chapter. The experimentation has been based on applications
belonging to the STAMP benchmark suite [18], which have been run on top of the
aforementioned 16-cores HP ProLiant machine. Particularly, we focus the discussion
on the results achieved with kmeans, yada, vacation, and intruder, which have been
selected from the STAMP suite as representatives of a mix of applications with very
different transactional profiles, as we shall describe below.

kmeans is a transactional implementation of a partition-based clustering algorithm
[4]. A cluster is represented by the mean value of all the objects it contains, and during
the execution of this benchmark the mean points are updated by assigning each object to
its nearest cluster center, based on Euclidean distance. This benchmark relies on threads
working on separate subsets of the data and uses transactions in order to assign portions
of the workload and to store final results concerning the new centroid updates. The
peculiarity of this benchmark lies in a very reduced amount of shared data structures
being updated by transactions.

Tuning the Level of Concurrency in STM 407

yada implements Ruppert’s algorithm for Delaunay mesh refinement [22], which is
a key step used for rendering graphics or to solve partial differential equations using the
finite-element method. This benchmark discretizes a given domain of interest using tri-
angles or thetraedra, by iteratively refining a coarse initial mesh. In particular, elements
not satisfying quality constraints are identified, and replaced with new ones, which in
turn might not satisfy the constraints as well, so that a new replacement phase must be
undertaken. This benchmark shows a high level of intrinsic parallelism, due to the fact
that elements which are distant in the mesh do not interfere with each other, and oper-
ations enclosed by transactions involve only updates of the shared mesh representation
and cavity expansion. Also, transactions are relatively long.

intruder is an application which implements a signature-based network intrusion
detection systems (NIDS) that scans network packets for matches against a known set
of intrusion signatures. In particular, it emulates Design 5 of the NIDS described in [13].
Three analysis phases are carried on in parallel: capture, reassembly, and detection. The
capture and reassembly phases are both enclosed by transactions, which are relatively
short and show a contention level which is either moderate or high, depending on how
often the reassembly phase re-balances its tree.

vacation implements a travel reservation system supported by a single-instance
database, where tables are implemented as red-black trees. In the database, there are
four different tables, each one representing cars, rooms, flights, and customers, respec-
tively. The customers’ table is used to keep track of the reservations made by each
customer, along with the total price of the reservations they made. The other tables
have relations with fields representing, e.g., reserved quantity, total available quantity,
and price. In this benchmark several clients (concurrently) interact with the database,
making actual reservations. Each client session is enclosed in a coarse-grain transaction
to ensure validity of the database. Additionally, the amount of shared data touched by
transactions is (on average) non-negligible.

Fixed the above applications as the test-bed, we initially focus on assessing the qual-
ity of the different performance prediction models we have overseen, hence of the dif-
ferent estimators of the function f in Equation (3). This is done by reporting how the
error in predicting wtime,i changes for the different estimators (fA, fML and fAML) with
respect to the length of the sampling phase used to gather training data to instantiate
each individual performance model. In other words, the focus is initially on determin-
ing how fast we can build a “reliable” model for performance estimation vs the level of
concurrency in STM systems when considering the three different target methodologies
(analytical, machine learning and mixed) in comparison with each other. To this end,
we have performed the following experiments. We have profiled STAMP applications
by running them with different levels of concurrency, which have been varied between
1 and the maximum amount of available CPU-cores in the underlying computing plat-
form, namely 16. All the samples collected up to a point in time have been used either
to instantiate fA via regression, or to train fML in the pure machine learning approach.
On the other hand, for the case of fAML they have been used according to the following
rule. The 10% of the initially taken samples in the observation interval are used to in-
stantiate fA (see steps A and B in Section 5), which is then used to build VTS, while the
remaining 90% are used to derive VRMTS. Each real sample taken during the execution

408 D. Rughetti et al.

of the application aggregates the statistics related to 4000 committed transactions, and
the samples are taken in all the scenarios along a single thread, thus leading to similar
rate of production of profiling data independently of the actual level of concurrency
while running the application. Hence, the knowledge base on top of which the models
are instantiated is populated with similar rates in all the scenarios.

Table 1. Comparison of error by different
predictors/sampling times

A ML AML

1
m

in

intruder 15.79% 80.04% 15.91%
kmeans 5.82% 9.63% 2.66%
vacation 6.08% 99.43% 6.19%
yada 41.25% 99,82% 41.48%

5
m

in
s intruder 15.79% 80.04% 15.85%

kmeans 5.90% 2.66% 2.59%
vacation 4.93% 71.58% 5.01%
yada 4.20% 13.24% 1.15%

10
m

in
s intruder 12.57% 45.01% 12.45%

vacation 3.77% 3.31% 3.26%
yada 4.20% 1.15% 1.16%

15
m

in
s

intruder 11.46% 14.13% 8.84%

25
m

in
s

intruder 10.00% 5.36% 5.35%

Then, for different lengths of the initial sampling phase (namely for different amounts
of samples coming from the real execution of the application), we instantiated the three
different performance models and compared the errors they provide in predicting wtime,i.
These error values are reported in Table 1, and refer to the average error while compar-
ing predicted values with real execution values achieved while varying the number of
threads running the applications between 1 and the maximum value 16. Hence, they are
average values over the different possible configurations of the concurrency degree for
which predictions are carried out.

By the data we can draw the following main conclusions. We cannot avoid relying
on machine learning if extremely precise predictions of the level of performance vs the
degree of concurrency are required. In fact, considering the asymptotic variation of the
prediction error of wtime,i (while increasing the length of the sampling phase used to
build the knowledge base for instantiating the performance prediction models), the fA

estimator gives rise to an error which is on the order of 100% (or more) greater than
the one provided by the other two estimators fML and fAML. The machine learning tech-
nique would therefore look adequate for scenarios where the error in predicting the level
of performance may have a severe impact on, e.g., some business process built on top

Tuning the Level of Concurrency in STM 409

of the STM system, such as when the need for guaranteeing predetermined Quality-of-
Service levels by the transactional applications arises. However, we note that the sam-
pling times reported in Table 1 for instantiating performance models offering specific
levels of reliability have all been achieved for the case of pre-specified transactional
profiles (e.g. a pre-specified mix of transactional operations), for which the domain of
values for the parameters characterizing the actual workload are essentially known (or
easily determinable). This has led to building adequate training sets allowing, e.g., good
coverage of the whole domain along the sampling period, which would lead to kinds of
best-case latencies for instantiating machine learning based schemes. On the other hand,
in case the transactional profile of the application is not predetermined (as it may occur
when deploying new applications, whose actual profile can be determined a-posteriori
of the real usage by its clients), the length of the sampling phase for building the reliable
machine learning based model can be significantly stretched, which may also negatively
impact the overlying business process (e.g. because the application can be forced to run
with sub-optimal concurrency levels for longer time due to the need for longer laten-
cies for materializing good approximation and coverage of the actual domain during
some on-line operated sampling phase). The role of the analytical component in coping
with the reduction of the number of samples (hence the reduction of the coverage of
the domain of values for the parameters determining the actual application workload)
for the achievement of reliable predictions is clearly evident by the reported data. In
particular, the fAML estimator provides non-asymptotic results which outperform both
the analytic approach and the pure machine learning approach (see, e.g., kmeans—5
minutes, yada–5 minutes, vacation–10 minutes, or intruder–15 minutes). This is ex-
actly related to the fact that fAML is able to get benefits from both prediction methods,
and is therefore able to provide a faster convergence to the “optimal” estimator.

As a second assessment, we provide experimental data related to the runtime perfor-
mance that can be achieved when relying on concurrency regulation architectures based
on the different performance models we are comparing (which we refer to as A-STM,
ML-STM and AML-STM). As a matter of fact, this part of the assessment provides
hints on whether (and to what extent) concurrency regulation, operated according to
each of the discussed approaches, can be effective. Also, we study the actual perfor-
mance delivered by the different solutions while again varying the length of the sam-
pling phase along which the knowledge base for instantiating the different performance
models is built, which we refer to as model instantiation time in the reported graphs.
The concurrency regulation architectures here considered adhere to the architectural or-
ganization depicted in Section 7 and all rely on TinySTM as their core STM layer. The
experimental data we provide refer again to the four STAMP benchmark applications as
before, namely intruder, kmeans, vacation, and yada. In Figures 4–7 we report plots
showing how the throughput provided by the different solutions (which is expressed in
terms of committed transactions/second, on the average run) varies vs the model instan-
tiation time. We also report the throughput values obtained when running with plain
TinySTM (i.e. with no concurrency regulation scheme) or sequentially, which will be
used as baselines in the discussion. Clearly, these data appear as flat curves, given that
they do not depend on any performance model to be instantiated along time via appli-
cation sampling.

410 D. Rughetti et al.

By the data we can draw the following main conclusions. First, (dynamically) con-
trolling the level of concurrency is a first class approach to achieve speedup as com-
pared to the case where all the operations are processed sequentially along a single
thread. In fact, settings where the level of concurrency is simply determined by the
number of available CPU-cores (namely by deploying a single thread per CPU-core),
as for the case of plain TinySTM, do not provide significant speedup, and may even
give rise to significant slow down in the execution speed (of committed work), as for
the case of yada (see Figure 7). Further, a machine learning based performance model
gives rise to the asymptotically optimal approach for concurrency regulation, while an-
alytical techniques provide the orthogonal advantage of allowing faster instantiation of
an “adequate” performance model to be employed for concurrency regulation purposes.
However, the additional information convoyed by the reported plots is the quantification
of the final (asymptotic) performance gain achievable thanks to the increased precision
by machine learning based approaches (such as ML-STM or AML-STM), which is on
the order of up to 30% as compared to the analytical approach (say A-STM).

0

1.0⋅105

2.0⋅105

3.0⋅105

4.0⋅105

5.0⋅105

6.0⋅105

7.0⋅105

8.0⋅105

9.0⋅105

1.0⋅106

 0 10 20 30 40 50 60

th
ro

ug
hp

ut
 (

tr
an

s.
/s

ec
.)

Model instantiation time (minutes)

A-STM
ML-STM

AML-STM
TinySTM

Sequential

Fig. 4. Throughput – intruder

The last aspect we would like to point in this experimental assessment relates to
energy efficiency, and its improvement thanks to concurrency regulation. As for this
aspect, we focus on kmeans given that it is more likely to incur logical contention
(hence transaction aborts and unfruitful usage of energy for rolled back work) when a
larger number of threads is used. Hence, the energy saving via concurrency regulation
(e.g. vs the TinySTM baseline) with this benchmark likely represents a kind of lower
bound on the saving that we may expect with the other benchmarks.

In Figure 8 we report measurements related to per-transaction energy consump-
tion (in Joule/Transaction)—which is an index of how much power is required by the

Tuning the Level of Concurrency in STM 411

0

2.0⋅105

4.0⋅105

6.0⋅105

8.0⋅105

1.0⋅106

1.2⋅106

 0 0.5 1 1.5 2 2.5

th
ro

ug
hp

ut
 (

tr
an

s.
/s

ec
.)

Model instantiation time (minutes)

A-STM
ML-STM

AML-STM
TinySTM

Sequential

Fig. 5. Throughput – kmeans

0

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

1.8⋅105

2.0⋅105

 0 2 4 6 8 10 12

th
ro

ug
hp

ut
 (

tr
an

s.
/s

ec
.)

Model instantiation time (minutes)

A-STM
ML-STM

AML-STM
TinySTM

Sequential

Fig. 6. Throughput – vacation

412 D. Rughetti et al.

0

2.0⋅104

4.0⋅104

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1.6⋅105

 0 2 4 6 8 10 12

th
ro

ug
hp

ut
 (

tr
an

s.
/s

ec
.)

Model instantiation time (minutes)

A-STM
ML-STM

AML-STM
TinySTM

Sequential

Fig. 7. Throughput – yada

0

 1⋅10-5

 2⋅10-5

 3⋅10-5

 4⋅10-5

 5⋅10-5

 6⋅10-5

 7⋅10-5

 8⋅10-5

 9⋅10-5

 1⋅10-4

20 40 60 70 100 150 170

E
ne

rg
y

C
on

su
m

pt
io

n
(jo

ul
e/

tr
an

s.
)

Model instantiation time (seconds)

A-STM
ML-STM

AML-STM
Sequential

Fig. 8. Energy consumption per committed transaction – kmeans

Tuning the Level of Concurrency in STM 413

application to successfully complete the execution of a single transaction—again while
varying the model instantiation time. By the results we note first of all that the config-
uration exhibiting the lowest energy consumption is the sequential one. This is clearly
due to the fact that in a sequential execution no operation is aborted, and therefore the
amount of energy used on average per each operation is exactly the one strictly re-
quired for carrying on the associated work. Nevertheless, this configuration exploits no
parallelism at all. On the other hand, AML-STM and ML-STM asymptotically show
the same energy consumption. At the same time, we note that AML-STM and A-STM
give rise to comparable (but non-minimal) energy consumption in case of very reduced
model instantiation times (say on the order of 20 secs).

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20 40 60 70 100 150 170

S
pe

ed
up

 p
er

 E
ne

rg
y

U
ni

t

Model instantiation time (seconds)

A-STM
ML-STM

AML-STM
TinySTM

Sequential

Fig. 9. Iso-energy speedup – kmeans

To provide more insights into the relation between speed and usage of energy, we
report in Figure 9 the curves showing the variation of the ratio between the speedup
provided by any specific configuration (again while varying the performance model in-
stantiation time) and the energy scaling per committed transaction (namely the ratio
between the energy used in a given configuration and the one used in the sequential
run of the application). Essentially, the curves in Figure 9 express the speedup per unit
of energy, when considering that the unit of energy for committing a transaction is the
one employed by the sequential run. Hence they express a kind of iso-energy speedup.
Clearly, for the sequential run this curve has constant value equal to 1. By the data
we see how AML-STM achieves the peak observed iso-energy speedup for a signif-
icant reduction of the performance model instantiation time. On the other hand, the
pure analytical approach does not achieve such a peak value even in case of signifi-
cantly stretched application sampling phases, used to build the model knowledge-base.

414 D. Rughetti et al.

Also, the configuration with concurrency degree set to 16, namely TinySTM, further
shows how not relying on smart (and promptly optimized) concurrency regulation may
degrade both performance and energy efficiency.

9 A Look at Literature Alternatives

Other studies exist in literature coping with predicting/identifying the optimal level of
concurrency in STM systems and (possibly) dynamically regulating this level while the
application is in progress. We can classify them in two categories, for each of which
recent achievements are described in what follows.

Model-Based Approaches. In this category we include all the solutions where the pre-
diction of how the STM system performance scales vs the level of concurrency (and
thus the identification of the optimal level of concurrency) is based on the a-priori con-
struction of a performance model. Along this path we find the work in [5], where an
analytical model has been proposed to evaluate the performance of STM applications
as a function of the number of concurrent threads and other workload configuration pa-
rameters. The actual target of this proposal is to build mathematical tools allowing the
analysis of the effects of the contention management scheme on performance while the
concurrency level varies. For this reason a detailed knowledge of the specific conflict
detection and management scheme used by the target STM is required, and needs to
be dealt with by a specialized modeling scheme capturing its dynamics. The proposed
analytical model is in fact build up by coupling two building block sub-models: one in-
dependent of the actual concurrency control scheme, and another one which is instead
specific to a given concurrency control algorithm. The latter has been instantiated in the
work in [5] for the case of the Commit-Time-Locking (CTL) algorithm, and cannot be
directly reused for algorithms based on different rules. Further, the model globally relies
on assumptions to be met by the real STM system (e.g. in terms of data access pattern)
in order for it to provide reliable predictions. In other words, this solution stands as kind
of scenario specific approach.

The work in [14] presents an analytical model taking in input a workload characteri-
zation of the application expressed in terms of transaction profiles, contention probabil-
ity and hardware resources consumption. This model is able to predict the application
execution time as function of the number of concurrent threads sustaining the applica-
tion. However the prediction only accounts for the average system behavior over the
whole lifetime of the application (as expressed by the workload characterization). In
other words, given an application, a unique “optimal” concurrency level can be identi-
fied via this approach, the most suited one for coping with situations where the appli-
cation would behave according to expected values of the parameters determining the
actual workload. In case of employment of this model in a real concurrency regulation
architecture, the binding to the average system behavior would reduce the ability to cap-
ture the need for readapting the concurrency level on the basis of run-time variations of
the application transactional profile in the different phases of its execution.

The proposal in [9] is targeted at evaluating scalability aspects of STM systems. It
relies on the usage of different types of functions (e.g. polynomial and logarithmic func-
tions) to approximate the application performance when considering different numbers

Tuning the Level of Concurrency in STM 415

Table 2. Comparison of the different approaches

Approach Suitable for
any conflict
manager

Bound to a
given Tx
profile

Explicitly
captures
variations of
Tx profiles

Initial
training
required

Reduced
training
latency

fA / A-STM ✓ ✗ ✓ ✓ ✓

fML / ML-STM ✓ ✗ ✓ ✓ ✗

fAML / AML-STM ✓ ✗ ✓ ✓ ✓

[5] ✗ ✓ ✗ ✓ ✗

[14] ✓ ✗ ✗ ✓ ✓

[9] ✓ ✗ ✗ ✓ ✓

[2] ✓ ✗ ✗ ✗ –
[8] ✓ ✗ ✗ ✗ –

of concurrent threads. The approximation process is based on measuring the speed-up
of the application over a set of runs, each one executed with a different number of con-
current threads, and then on calculating the proper function parameters by interpolating
the measurements, so as to generate the final function (namely the performance model)
used to predict the speed-up of the application vs the number of threads. In this approach
the workload profile of the application is not taken into account, hence the prediction
may prove unreliable when the profile changes wrt the one characterizing the behavior
of the application during measurement and interpolation phases. Variance, or shifts, in
the profile due to changes in the data-set content (possibly giving rise to, e.g., changes
in the read/write set size) are therefore not captured by this kind of approach, and hence
cannot be dealt with in terms of dynamic re-tuning of the level of concurrency in case
of their materialization.

Heuristic Methods. In this category we find solutions that do not rely on a-priori con-
structing any model expressing the variation of performance vs the level of concurrency.
The idea underlying these proposals is to try to push the system to its “optimal” perfor-
mance level without building/relying on any knowledge base on how the level of perfor-
mance would actually vary when chancing the number of threads. In this category we
find the proposal in [2], which presents a control algorithm that dynamically changes
the number of threads concurrently executing transactions on the basis of the observed
transaction conflict rate. It is decreased when the rate exceeds some threshold value
while it is increased when the rate is lower than another threshold. Another proposal
along this direction can be found in [8], where a concurrency regulation approach is pro-
vided, based on the hill-climbing heuristic scheme. The approach determines whether
the trend of increasing/decresing the concurrency level has positive effects on the STM
throughput, in which case the trend is maintained. These works do not directly attempt
to capture the relation between the actual transaction profile and the achievable perfor-
mance (depending on the level of parallelism). This leads them to be mostly suited for
static application profiles.

416 D. Rughetti et al.

We also report in Table 2 a summary comparison of the approaches we have overseen
in this chapter with literature alternatives. It is based on five indexes we identify as rele-
vant, which are related to either the extent to which each approach is widely applicable,
or its operating mode.

References

1. Cloud-TM: A Novel Programming Paradigm for the Cloud, http://www.cloudtm.eu/
2. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Advanced con-

currency control for transactional memory using transaction commit rate. In: Luque, E.,
Margalef, T., Benı́tez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 719–728. Springer,
Heidelberg (2008)

3. Bates, D., Watts, D.: Nonlinear regression analysis and its applications. Wiley series in prob-
ability and mathematical statistics. Wiley, New York [u.a.] (1988)

4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Aca-
demic Publishers, Norwell (1981)

5. Di Sanzo, P., Ciciani, B., Palmieri, R., Quaglia, F., Romano, P.: On the analytical modeling
of concurrency control algorithms for software transactional memories: The case of commit-
time-locking. Performance Evaluation 69(5), 187–205 (2012)

6. Di Sanzo, P., Del Re, F., Rughetti, D., Ciciani, B., Quaglia, F.: Regulating concurrency
in software transactional memory: An effective model-based approach. In: Proceedings of
the Seventh IEEE International Conference on Self-Adaptive and Self-Organizing Systems.
SASO, IEEE Computer Society (September 2013)

7. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Proceedings of the 20th Inter-
national Symposium on Distributed Computing, pp. 194–208. ACM, New York (2006)

8. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the optimal level
of parallelism in transactional memory applications. In: Gramoli, V., Guerraoui, R. (eds.)
NETYS 2013. LNCS, vol. 7853, pp. 233–247. Springer, Heidelberg (2013)

9. Dragojević, A., Guerraoui, R.: Predicting the scalability of an STM: A pragmatic approach.
Presented at: 5th ACM SIGPLAN Workshop on Transactional Computing (2010)

10. Ennals, R.: Software transactional memory should not be obstruction-free. Tech. rep., Intel
Research Cambridge Tech Report (January 2006)

11. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming PPoPP, pp. 237–246. ACM (2008)

12. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: Proceedings of the 13th ACM Symposium on Principles and Practice
of Parallel Programming, pp. 237–246. ACM, New York (2008)

13. Haagdorens, B., Vermeiren, T., Goossens, M.: Improving the performance of signature-based
network intrusion detection sensors by multi-threading. In: Lim, C.H., Yung, M. (eds.) WISA
2004. LNCS, vol. 3325, pp. 188–203. Springer, Heidelberg (2005)

14. He, Z., Hong, B.: Modeling the run-time behavior of transactional memory. In: Proceedings
of the 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pp. 307–315. IEEE Computer Society, Washington,
DC (2010)

15. Herlihy, M.P., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. ACM SIGARCH Computer Architecture News 21(2), 289–300 (1993)

16. Lev, Y., Luchangco, V., Marathe, V.J., Moir, M., Nussbaum, D., Olszewski, M.: Anatomy
of a scalable software transactional memory. In: Proceedings of the 4th ACM SIGPLAN
Workshop on Transactional Computing, TRANSACT. ACM (2009)

http://www.cloudtm.eu/

Tuning the Level of Concurrency in STM 417

17. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A., Lawall, J.L.,
Muller, G.: Scheduling support for transactional memory contention management. In: Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP, pp. 79–90 (2010)

18. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Ap-
plications for Multi-Processing. In: Proceedings of the IEEE International Symposium on
Workload Characterization, pp. 35–46. IEEE Computer Society, Washington, DC (2008)

19. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill (1997)
20. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-adjusting

concurrency in software transactional memory systems. In: Proceedings of the 20th IEEE
International Symposium On Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems, MASCOTS, pp. 278–285. IEEE Comp. Soc. (August 2012)

21. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Analytical/ML mixed approach for
concurrency regulation in software transactional memory. In: Proceedings of the 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid. IEEE
Comp. Soc. (August 2014)

22. Ruppert, J.: A delaunay refinement algorithm for quality 2-dimensional mesh generation.
Journal of Algorithms 18(3), 548–585 (1995)

23. Di Sanzo, P., Ciciani, B., Quaglia, F., Romano, P.: A performance model of multi-version
concurrency control. In: Proceedings of the 16th IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MAS-
COTS, pp. 41–50 (2008)

24. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strategy for con-
tention management in software transactional memory. In: Proceedings of the 14th ACM
Symposium on Principles and Practice of Parallel Programming, pp. 141–150. ACM, New
York (2009)

25. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory systems.
In: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA, pp. 169–178. ACM (2008)

26. Yu, P.S., Dias, D.M., Lavenberg, S.S.: On the analytical modeling of database concurrency
control. Journal of the ACM, 831–872 (1993)

Self-tuning in Distributed

Transactional Memory

Maria Couceiro, Diego Didona, Lúıs Rodrigues, and Paolo Romano

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa,
Lisbon, Portugal

Abstract. Many different mechanisms have been developed to imple-
ment Distributed Transactional Memory (DTM). Unfortunately, there is
no “one-size-fits-all” design that offers the desirable performance across
all possible workloads and scales. In fact, the performance of these mech-
anisms is affected by a number of intertwined factors that make it hard,
or even impossible, to statically configure a DTM platform for optimal
performance. These observations have motivated the emergence of self-
tuning schemes for automatically adapting the algorithms and param-
eters used by the main building blocks of DTM systems. This chapter
surveys existing research in the area of autonomic DTM design, with a
focus on the approaches aimed at answering the following two funda-
mental questions: how many resources (number of nodes, etc.) should a
DTM platform be provisioned with, and which protocols should be used
to ensure data consistency.

1 Introduction

After more than a decade of research, implementations of the Transactional
Memory (TM) abstraction have matured and are now ripe to enter the realm of
mainstream commodity computing. Over the last couple of years, TM support
has been integrated in the most popular open-source compiler, GCC, and also
in the CPUs produced by industry-leading manufacturers such as Intel [1] and
IBM [2]. Distributed Transactional Memory (DTM) [3,4,5] represents a natural
evolution of this technology, in which transactions are no longer confined within
the boundaries of a single multi-core machine but, instead, may be used as a syn-
chronization mechanism to coordinate concurrent executions taking place across
a set of distributed machines. Just like TM have drawn their fundamental mo-
tivation in the advent of multi-core computing, the need for identifying simple,
yet powerful and general programming models for the cloud is probably one of
the key factors that have garnered growing research interest in the area of DTM
over the last years [6]. Another major driver underlying existing research efforts
in the area of DTM is fault-tolerance: as TM-based applications are expected
to turn mainstream in the short term, it becomes imperative to devise efficient
mechanisms capable of replicating the state of a TM system across a set of dis-
tributed nodes in order to ensure their consistency and high-availability despite
the failures of individual nodes [7,8].

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 418–448, 2015.
c© Springer International Publishing Switzerland 2015

Self-tuning Distributed Transactional Memories 419

From the existing literature in the area of DTM, it can be observed that the
design space of DTM platforms is very large and encompasses many complex
issues, such as data placement and caching policies, replication protocols, con-
currency control mechanisms, and group communication support, just to name a
few. The performance of these fundamental building blocks of a DTM is affected
by multiple intertwined factors. This has motivated the development of a wide
range of alternative implementations, each exploring a different trade-off in the
design space and optimized for different workload types, platform’s scales, and
deployment scenarios. As a result, the body of literature on DTM encompasses
solutions tailored for read-intensive [7] vs conflict-prone [9,10] workloads, replica-
tion mechanisms optimized for small clusters [11], large scale data centers [12,13],
as well as approaches specifically targeting geographically distributed DTM plat-
forms [3].

One of the key conclusions that can be easily drawn by analyzing the results
above is that there is no “one-size-fits-all” solution that can provide optimal
performance across all possible workloads and scales of the platform. This rep-
resents a major obstacle for the adoption of DTM systems in the cloud, which
bases its success precisely in its ability to adapt the type and amount of pro-
visioned resources in an elastic fashion depending on the current applications’
needs. Besides, a DTM encompasses an ecosystem of complex subcomponents
whose performances are governed by a plethora of parameters: manually identi-
fying the optimal tuning of these parameters can be a daunting task even when
applications are faced with static workloads and fixed deployments. Guaran-
teeing optimal efficiency in presence of a time varying operational envelope, as
typically occurs in cloud computing environments, requires to adjust these pa-
rameters in a dynamic fashion — a task that is arguably extremely onerous, if
not impossible, without the aid of dedicated self-tuning mechanisms.

This is precisely the focus of this chapter, in which we dissect the problem of
architecting self-tuning mechanisms for DTM platforms, with a special emphasis
on solutions that tackle the following two fundamental issues:

• elastic scaling: DTM systems can be deployed over platforms of different
scales, encompassing machines with different computational capacities in-
terconnected via communication networks exhibiting diverse performances.
Hence, a fundamental question that needs to be addressed when architecting
a DTM-based application is how many and what types of resources (number
of nodes, their configuration, etc.) should be employed (e.g., acquired from
an underlying IaaS (Infrastructure as a Service) cloud provider) in order to
ensure predetermined performance and reliability levels. In cloud comput-
ing environments, where resources can be dispensed elastically, this is not
a one-off problem, but rather a real-time optimization problem. Its opti-
mal solution requires not only to estimate the performance of applications
when deployed over infrastructures of different scale and types, but also to
encompass economical aspects (e.g., by comparing the cost of a DTM de-
ployment over a large number of relatively slow nodes against a deployment
on a smaller number of more powerful machines) as well as issues related to

420 M. Couceiro et al.

the on-line reconfiguration of the platform (namely, how to rearrange data
after scaling);

• adapting the data consistency protocol: the literature on data consistency
protocols for distributed and replicated transactional systems is a quite pro-
lific one. Existing approaches explore a number of different design choices,
concerning aspects such as whether to execute transactions on all nodes (as
in active replication [14]) or executing in just one replica and only propagat-
ing the transaction’s updates (a.k.a. deferred update schemes [15]), how to
implement transaction validation [16], and whether to use distributed lock-
ing [17] vs total order communication protocols [18] to serialize transactions.
This has motivated research aimed at supporting the automatic switching
between multiple data consistency protocols, and, in some cases even the si-
multaneous coexistence of different protocols. The key challenges addressed
in these works are related to how to preserve consistency despite the (possi-
bly concurrent) employment of alternative consistency protocols, as well as
to the identification of the best strategy to adopt given the current workload
and system’s characteristics.

The remainder of this chapter is structured as follows. We first provide, in
Section 2, an overview of the main building blocks encompassing typical DTM
architectures, and illustrate some of the key choices at the basis of their design.
Next, in Section 3, we identify the DTM components that would benefit the
most from the employment of adaptive, self-tuning designs. In Section 4, we
provide background on the main methodologies employed in the literature to
decide when to trigger an adaptation and to predict which among the available
strategies to adopt. In Section 5 we focus on elastic scaling, and in Section 6 we
discuss adaptation of the consistency protocols. Finally, Section 7 concludes the
paper.

2 Background on DTM

This section is devoted to overview on the key mechanisms that are encompassed
by typical DTM architectures. It should be noted that the discussion that follows
does not aim at providing a thorough and exhaustive survey of existing DTM
designs, but rather to facilitate the description of the self-tuning DTM systems
described in the remainder of this chapter.

The diagram in Figure 1 depicts the high level architecture of a typical DTM
platform, illustrating the key building blocks that compose the software stack of
this type of system.

DTM API. At their top most layer, existing DTM platforms expose APIs
analogous to those provided by non-distributed TMs that allow to define a set
of accesses to in-memory data to be performed within an atomic transaction.
The actual API exposed by a DTM is ultimately influenced by the data model
that it adopts; the range of data models explored in the DTM literature in-
cludes, besides the object-based [7] and word-based [5] ones (typically employed

Self-tuning Distributed Transactional Memories 421

Fig. 1. High level architecture of typical DTM platforms (single node)

in non-distributed TMs), also popular alternatives in the NoSQL domain, like
the key-value [13,19] model. Certain DTM platforms [20,21] that support par-
tial replication schemes (i.e., which do not replicate data at every replica of the
system) provide also dedicated API support to influence the policies employed
to determine the placement of data (and its replicas) across the nodes of the
system, with the goal of enhancing the data locality achieved by DTM applica-
tions. These include programmatic mechanisms to ensure the co-location of data
items [21] or to provide the data placement service with semantic information
(like the data item’s type and the relations in which it is involved) concerning
the data access patterns generated by the nodes of the platform [20].

Data Placement Service. The data placement service, as the name suggests,
is responsible for locating the nodes that maintain (replicas of) the data items
accessed during the transaction execution. This module is required exclusively in
case the DTM platform adopts a partial replication scheme (as in fully replicated
systems each node maintain a replica of every data item), although certain DTM
platforms may rely on analogous abstractions to establish ownership privileges
of nodes on data items [21]. The actual implementation of this service is strongly
affected by the transaction execution model embraced by the DTM, which can
be either control-flow or data-flow. In control-flow systems data items are stati-
cally assigned (unless the platform is subject to elastic scaling) to the nodes of
the platform, which retrieve non-local data items via RPC. In data-flow systems,
conversely, transactions are immobile and objects are dynamically migrated to
invoking transactional nodes. As in the control-flow model the placement of data
is static, several control-flow DTM systems [21,22,12] adopt simple policies based
on consistent hashing [23]. This technique, which essentially maps data items to

422 M. Couceiro et al.

nodes of the platform randomly via the use of a hash function, has the desirable
properties of executing data items look ups locally (i.e., the nodes that replicate
a given data item can be identified by computing the hash of its identifier) and
achieving a good balance in the data distribution. Data-flow DTMs, on the other
hand, rely on ad-hoc (distributed) directory or cache coherence protocols, such
as the Arrow [24] or the Ballistic [25] protocols. These protocols require that, in
order for a node to access a data item, it must first acquire its ownership (which
implies locating the current data item owner). As a result, data-flow models
can introduce additional network hops along the critical path of execution of
transactions with respect to control-flow solutions (that do not allow migration
of data). On the pro-side, by dynamically moving the ownership of items to
the nodes that access them, data-flow systems can spontaneously lead to data
placement strategies achieving better locality than static policies, like consistent
hashing, supported exclusively by control-flow systems. A detailed discussion on
control-flow and data-flow models, as well as on systems adopting these models,
can be found in Chapter 16.

Transaction Dispatcher. The transaction dispatcher is a component present
in several DTM platforms [10,5,26], and is in charge of determining whether
the execution of a transaction should take place on the node that generated it,
on a different one, or even by all nodes in the platform. This decision can be
driven by different rationales, such as reducing data contention [26] or enhanc-
ing data locality [10,5,21]. In order to support the migration and execution of
entire transactions at remote nodes, the transaction dispatching mechanism typ-
ically requires ad-hoc support at the DTM API layer in order to ensure proper
encapsulation of the transaction logic, i.e., a function/procedure encoded in a
programming language, and of its input parameters (using classic RPI mecha-
nisms).

Local STM. As for the local data stores, existing DTM platforms typically
leverage on state of the art local STMs, which implement efficient concurrency
control algorithms optimized for modern multi-core architectures [7,11,9,27].

Cache for Remote Data. Some partially replicated DTM platforms [28,21]
cache frequently accessed remote data items, and update them using lazy/
asynchronous invalidation strategies. Clearly, it must be possible to manipulate
also cached data without breaking consistency: therefore they are maintained in
memory and their manipulation is subdued to some form of concurrency control.
However, cached data need typically to be associated with different meta-data
and managed with different rules than the data stored in the local STM (whose
ownership can be established via the data placement service). As a consequence,
cached data are normally maintained in separate in-memory structures.

Distributed Consistency Protocol. Clearly, the data accesses performed by
local transactions need to be synchronized with those issued by transactions

Self-tuning Distributed Transactional Memories 423

Single Master
(Primary Backup)

[32]

Multi Master

2PC based
 [12, 21]

TO based

Certification
 [7, 36, 37]

State Machine Replication
 [14, 35]

Consistency protocol

Fig. 2. Taxonomy for consistency protocols in transactional systems

executing at different nodes. The responsibility of this task is delegated to a dis-
tributed consistency protocol, which is ultimately responsible for enforcing the
consistency guarantees ensured by the DTM platform. The literature on DTM
(and more in general on distributed transactional platforms, e.g., distributed
DBMS) has explored a number of alternative consistency levels, like 1-copy seri-
alizability [13], virtual world consistency [9], extended update serializability [12]
and parallel SI [29]. Clearly, the choice of the consistency criterion has a strong
impact on the design of the underlying distributed consistency protocol. An-
other factor that has a key impact on the distributed consistency protocol is
whether the system employs full or partial replication. In fully replicated DTM
platforms, in fact, once the transaction serialization order is established (typi-
cally by means of a consensus or atomic broadcast service [7]), the nodes can
determine the outcome of committing transactions locally (by validating their
read-set with respect to the most recent committed version). Conversely, in par-
tially replicated DTM systems, some sort of 2PC-like agreement is unavoidable,
as the snapshot accessed by a committing transaction needs to be validated, in
general, by multiple nodes, which must certify the freshness of the transaction’s
snapshot with respect to the locally stored authoritative copies of data. Over the
last decades, a vast literature on distributed consistency protocols for transac-
tional systems has emerged [15,30,31]. A possible taxonomy of existing solutions
is reported in Figure 2.

Single-master. In single master schemes, also known as primary backup, write
transactions are executed exclusively at a single node (also called master or

424 M. Couceiro et al.

primary), whereas the remaining replicas can only run read-only transactions [32].
Upon failure of the master, a backup replica is elected to become the new master.

Note that, as the write transactions can be serialized locally by the master
using its local concurrency control algorithm, this approach can rely on a simpler
replica synchronization scheme with respect to multi-master solutions (as we will
see shortly). On the down side, the throughput of write transactions does not
clearly scale up with the number of nodes in the system, which makes the master
prone to become the system bottleneck.

Multi-master. Multi-master schemes, on the other hand, are typically more scal-
able as transactions can be processed on all nodes. There are two types of syn-
chronizing the accesses to data: eager and lazy. The first relies on a remote
synchronization phase upon each (read/write) access, which normally results in
very poor performance results [33].Conversely, the lazy approach defers replica
synchronization till the commit time, which is when the transaction is finally
validated. Lazy multi-master schemes can be classified based on whether they
rely on Atomic Commit Protocols (such as Two-Phase Commit) or Total Or-
der (TO) [34] broadcast/multicast schemes to determine the global serialization
order of transactions.

Two-Phase Commit. In solutions based on Two-Phase Commit (2PC), transac-
tions attempt to atomically acquire locks at all nodes that maintain data ac-
cessed by the transaction. Even though these schemes normally incur in minor
communication overheads with respect to those relying on TO, these solutions
are well known to suffer of scalability problems due to the rapid growth of the
distributed deadlock rate as the number of replicas in the system grows [17].

Total Order based schemes. Conversely, TO-based replication is a family of (dis-
tributed) deadlock-free algorithms that serializes transactions according to the
total order established by a TO service [34]. These solutions can be distinguished
into two further classes: state machine replication and certification.

State Machine Replication. In the state machine replication [14,35], all replicas1

execute the same set of transactions in the same order. The transactions are
shipped to all replicas using total order broadcast and, consequently, all replicas
receive transactions in the same order and execute them in that order. However,
both transactions and validation scheme must be fully deterministic so that all
replicas begin and finish transactions in the same state.

Certification. Unlike State Machine Replication, certification based techniques
undertake a speculative approach, which can achieve higher scalability, in low
conflict workloads, by fully executing the transaction only at one node. This
means that different transactions may be executed on different replicas concur-
rently. If the transaction aborts during its execution, no further coordination is

1 This technique has been proposed for fully replicated systems.

Self-tuning Distributed Transactional Memories 425

required. However, if the transaction is ready to commit, a transaction validation
phase is triggered in order to certify that it has not accessed stale items. The in-
formation exchanged to certify transactions varies depending on the considered
certification protocol (e.g., non-voting [36], voting [37] or bloom-filter based [7]),
but the certification request is disseminated by means of a TO broadcast service
that targets all the nodes that maintain replicas of the data items accessed by the
transaction. In case of partial replication, as already mentioned, this certification
phase may have to involve a voting phase to gather positive acknowledgements
from at least one replica of each data item accessed within the transaction; in
this case the message pattern of the distributed consistency protocols coincides
with the one of the 2PC scheme, in which the prepare messages are disseminated
using a TO service.

3 What Should Be Self-tuned in a DTM?

As it clearly emerges from the discussion in the previous section, the design and
configuration space of DTM is quite vast, and there are several components in
the DTM stack whose setting and parametrization has a strong impact on DTM
performance. Indeed, performance of a DTM application are driven by com-
plex non-linear dynamics stemming from the intertwined effects of workload’s
resource utilization (e.g., in terms of CPU and network bandwidth), data access
pattern (e.g., data contention and locality), inter-nodes communication (e.g., for
remote read operations) and distributed synchronization (e.g., for committing
transactions).

Typical Key Performance Indicators (KPIs) of a DTM are general purpose
metrics like transactions response time and achievable throughput. DTM-specific
KPIs include also metrics like transactions abort probability, execution time of
the distributed commit phase, number of remote accesses during the execution
phase, and number of nodes involved in the transaction processing. While Qual-
ity of Service specifications are typically expressed in terms of throughput and
response time, DTM-specific KPIs are fundamental metrics in many DTM self-
tuning schemes, as they allow for pinpointing bottlenecks and for identifying
sub-optimal configurations. For example, a high abort rate may imply an ex-
cessive concurrency level in the platform and may lead to the decrease of the
number of concurrently active transactions in the platform.

Recent research [26,38,39,40] has shown that transactional workloads are very
heterogeneous and affected by so many variables that no-one-size-fits-all solution
exists for the DTM configuration that guarantees optimal performance across
all possible applications’ workloads. To address this issue, a number of alterna-
tive solutions have been proposed to tackle the problem of self-tuning DTMs.
Such solutions draw from different fields of performance modeling and forecast-
ing and aim to optimize several major building blocks/configuration parameters
of DTMs, focusing in particular on the following five aspects: elastic scaling,
choice of the consistency protocol, data placement and replication degree, com-
munication layer and local TM implementation.

426 M. Couceiro et al.

In the following, we analyze the main trade-offs that emerge in the self-tuning
of these DTM building blocks. In Section 5 and Section 6 we will return to in-
vestigate in greater detail the problems of automating the elastic scaling process
and the choice of consistency protocol, by surveying existing research in these
areas.

Scale. The scale of a DTM consists in the number of nodes composing the plat-
form and, possibly, the maximum number of active threads allowed on each node,
namely, the multiprogramming level (MPL). Accordingly, the elastic scaling, i.e.,
dynamic resizing, of a DTM can take place horizontally, by altering number of
nodes in the platform, or vertically, by adapting the MPL.

Different scales in the DTM not only result in a different physical resources
utilization, but also into different data access patterns. In fact, increasing the
number of active transactions in the system, either by scaling horizontally or
vertically the platform, other than requiring more processing power, also results
into a higher concurrency in accessing and modifying shared data, with a possible
commensurate increase of conflicts and, hence, abort rate. This poses a major
challenge when devising elastic scaling schemes for DTMs as the bottleneck of a
DTM application may lie in data contention. Hence, scalability trends of DTM
applications are far from being easily predictable, as increasing the processing
power, i.e., number of nodes, or processing units, i.e., number of threads, does
not always entail better performance.

Scaling out a DTM poses additional challenges than altering its MPL level:
changing the number of nodes composing a DTM, in fact, results not only into
an increased processing power, but also into a modification of the placement
of data, which can get redistributed across the nodes of the platform (as it
is case, for instance, when using consistent hashing-based placement policies).
Such modification can imply a shift in data locality, and affect the probability
that a transaction accesses data maintained by its originating node. For write
transactions this results also in a change in the number of nodes to be con-
tacted at commit time to propagate updates and, hence, in the duration of the
corresponding phase.

The aforementioned DTM dynamics are not encompassed by the vast major-
ity of available state-of-the-art solutions for automatic resource provisioning, as
they mainly target stateless applications or neglect the impact of elastic scaling
on data distribution and contention [41,42,43,44,45,46]. Devising an optimal au-
tonomic elastic scaling schemes for DTM is, thus, a very challenging task, which
needs to be tackled by means of ad hoc solutions.

Distributed Consistency Protocol. Like for the scale, the choice of the dis-
tributed consistency protocol has a huge impact on both logical and physical
resource utilization. Single master approaches deal with the concurrency control
of update transactions on the master node: on one side this tends to mitigate
data contention, as conflicts can be resolved more efficiently, i.e., in a fully lo-
cal fashion and without the need to run a distributed consensus algorithm to

Self-tuning Distributed Transactional Memories 427

determine the outcome of a transaction; on the other hand, the master node
may become a bottleneck in case the arrival rate of update transactions exceeds
its processing capacity.

Multi-master schemes, instead, allow for a better load balancing among nodes
even in write dominated workloads (by distributing update transactions across
all the nodes of the DTM platform), but generally require onerous inter-node
synchronization mechanisms for detecting and resolving conflicts among trans-
actions. As mentioned in Section 2, consistency protocols based on 2PC require
only two round-trip between a transaction’s initiator and other involved nodes to
agree on the outcome of the transaction, but are liable to distributed deadlocks;
TO-based protocols, conversely, achieve deadlock freedom, but the latency in-
duced by the TO primitive may lead to higher synchronization costs at commit
time [39].

Data Placement and Replication Degree. Data locality plays a role of
paramount importance in DTMs, as it determines the frequency of access to
remote data present in the critical path of execution of transactions [20]. The
tuning of the data placement and of the replication degree is aimed at enhancing
the quality of the data layout, so as to increase data locality and reduce the
execution time of transactions.

Two fundamental challenges that need to be tackled for implementing effective
self-tuning data placement schemes are i) how to identify the optimal data lay-
out (i.e., the data layout that maximizes the performance of the platform), and
ii) how to keep track of the new mapping between data item replicas and nodes
in the DTM platform. The former is in fact a distributed optimization problem,
which has been addressed both in its on-line [20,47] and off-line [48,49] formula-
tion, considering different objective functions and constraints (e.g., maximizing
locality [20,48] vs balancing load [47]) and both centralized [48] and decentral-
ized [20] solutions. As for the tracking of the mapping between data items and
nodes of the DTM platform, there are two main trade-offs that need to be taken
into account. Approaches relying on external (and properly dimensioned) direc-
tory services [48,47] can typically support fine-grained mapping strategies also
for large data sets, but impose non-negligible additional latency in the transac-
tion’s critical path. Approaches that explicitly store the mapping of the entire
data set at each node either rely on random hash functions [21] or on coarse
grained mapping strategies — as the overhead for storing and keeping synchro-
nized a fine-grained mapping would be unbearable with large data sets. This has
motivated the usage of probabilistic techniques [20,49] that sacrifice accuracy of
data items lookups in order to reduce the memory footprint of the meta-data
used to encode the data-to-nodes mapping.

The tuning of the replication degree in a DTM [50,38] is another closely re-
lated problem, which encompasses a subtle trade-off between the probability of
accessing locally stored data and the cost of the synchronization phase neces-
sary to validate committing transactions. On one hand, in fact, increasing the
replication degree generally results into a higher probability that a transaction

428 M. Couceiro et al.

accesses a data item that is maintained by the local node; on the other hand, for
update transactions, it also typically leads to an increase in the number of nodes
to be contacted at commit time for validating the transaction and propagating
its updates [38].

Group Communication System. Inter-nodes communication represents a
major source of overhead in DTM, as it can introduce relatively large latencies in
the critical path of execution of transactions, both for the retrieval of remote data
items and to support the distributed commit phase [4,51]. Other than increasing
transactions’ completion time (and hence reducing the achievable throughput),
these latencies can have a great impact also on the conflict rate of transactions:
in fact, the longer a transaction takes to execute, the higher is the chance that
another transaction will try to concurrently access and/or modify a common
datum.

A typical trade-off that arises in the design of coordination services, like
consensus or total order multicast primitives, is that configurations/protocols
that exhibit minimum latencies at low message arrival rate tend also to sup-
port relatively low throughputs. Conversely, protocols/configurations optimized
for supporting high throughputs normally introduce much higher latencies when
operating at low throughput levels. These trade-offs have motivated the devel-
opment of self-tuning mechanisms supporting both the dynamic switching be-
tween alternative implementations of communication primitives (e.g., variants of
TO) [52,53], as well as automatic configuration of internal parameters of these
protocols (e.g., message batching) [54,55].

Local TM. As discussed in Section 4.2, the typical architecture stack of DTM
systems includes a non-distributed (S)TM, which is used to regulate concurrent
access to locally stored data. The problem of self-tuning TM has also been largely
explored in literature, as TM and DTM, unsurprisingly, exhibit similar trade-
offs, e.g., the workload characteristics can strongly affect the performance of the
concurrency control algorithm, as well as the optimal MPL. Examples of self-
tuning solutions that dynamically adjust these TM mechanisms/parameters can
be found in [56,57,58,59].

Another TM parameter that has been object of self-tuning techniques is the
lock granularity [60]. Lock granularity expresses what is the atomic portion of
the data set (or of the memory space, for centralized TMs) that the concurrency
control scheme deals with. The finer is the granularity, the higher is the con-
currency that the concurrency control scheme allows for, but also the overhead
incurred to maintain and manage meta-data. For example, in a per-item locking
scheme, every data item is guarded by a lock and conflicts can be detected at
the granularity of the single item. A coarser scheme, instead, reduces the num-
ber of employed locks at the cost of inducing false conflicts, i.e., conflicts among
transactions that access different data items, which, nonetheless, insist on the
same lock.

Self-tuning Distributed Transactional Memories 429

Finally, self-tuning techniques have been proposed to optimize the thread
mapping strategy [61] and efficiently exploit the memory hierarchy of modern
multiprocessors. In these architectures, just like we just described for the dis-
tributed case, data locality plays a fundamental role in determining the perfor-
mance of an application. Thread mapping consists in placing threads on cores
so as to amortize memory access latency and/or to reduce memory contention,
i.e., it tries to allocate a thread that frequently accesses a given memory region
on the core that incurs the minimal latency when accessing that portion of the
memory space.

4 When and Which Adaptation to Trigger?

In this section, we provide background on the main methodologies that are
commonly employed in the literature of self-tuning systems to tackle two key
issues: when to trigger an adaptation, and how to predict which among the
available reconfigurations to enact.

4.1 When to Trigger Adaptations?

An important aspect to consider when dealing with self-tuning of systems is
determining when to trigger an adaptation. This aspect gains a paramount im-
portance in DTMs, in particular when performing elastic scaling, replication
switching or change in the replication degree. In fact, global reconfigurations and
data migration can pose significant overhead on transactions processing, which
may severely hinder performance during a non-negligible time window [62].

In this context, a key classification of existing self-tuning techniques is whether
they react to workload changes, or they try to anticipate them. Another funda-
mental problem is related to the issue of distinguishing in a robust way actual
workload changes from transient noise, which frequently affect workload metrics
measurements in large scale systems. Finally, another relevant issue, which is
at the basis of proactive schemes, is how to predict future workload trends. In
the following we provide an overview of the key methodologies/building blocks
that are used to address these issues. It should be noted that the techniques
described below can be employed in a broad range of self-tuning systems, and
their applicability is not restricted to adaptive DTM platforms.

Before describing each of these techniques, it is worth noting that in a DTM
environment a workload can be characterized using a multitude of metrics. Be-
sides classical/general-purpose metrics, like transactions arrival rate and CPU/
bandwidth demand to perform operations, the workload of a DTM can be char-
acterized also using DTM-specific metrics, such as the ratio of read-only vs
update transactions, the number of accessed data items per transaction, and the
transaction conflict probability.

Reacting to vs Predicting Workload Changes. A key characteristic that
allows for coarsely classifying existing self-tuning mechanisms is whether they

430 M. Couceiro et al.

rely on reactive vs proactive approaches. Reactive schemes evaluate the need
for reconfiguration based on the current workload, whereas proactive self-tuning
strategies attempt to anticipate the need for changing system’s configuration by
predicting future workload trends.

Since reactive schemes track variations of the workload based on recent obser-
vations,they typically allow the system to react promptly even to abrupt work-
load changes due to exogenous factors (like flash crowds [63]), which would be
very hard, if not impossible, to predict using proactive schemes. However, given
that the reconfiguration is carried out against the current workload, reactive
schemes can yield sub-optimal performance during transitory phases, especially
in case the adaptation phase incurs a non-negligible latency.

On the other hand, the pros of proactive strategies coincide with the cons
of reactive ones. By anticipating the need for changing system’s configuration,
adaptations can be enacted before the occurrence of workload changes. As a
result, proactive approaches can reduce the period of time during which subop-
timal configurations are used. On the other hand, the effectiveness of proactive
approaches is strongly dependent on the accuracy of the mechanisms that they
adopt to predict future workload trends (which we will overview shortly). For
this reason, proactive and reactive schemes are sometimes combined into hybrid
schemes [63,64,45].

Robust Change Detection. Workload measurement, especially in complex
distributed platforms like DTMs, are typically subject to non-negligible noises.
Hence, the robustness of any self-tuning scheme is strongly affected by its ability
to distinguish small workload fluctuations, e.g., due to short transitory phases or
transient spikes, from actual workload shifts, i.e., transitions from one workload
to a different, stable one. This is a fundamental requisite to enforce the system’s
stability, i.e., to avoid its continuous oscillation among different states, namely
configurations, due to frequent re-adaptations triggered by unavoidable, fleeting
workload’s fluctuations.

A principled approach to tackle this issue is based on the idea of considering
the workload as a generic signal. Filtering techniques [65] can, then, be applied in
order to reduce/remove noise and extract statistically meaningful information.
One of the simplest examples of a filter is the Moving Average (MA), in which,
given a time window composed by t intervals, the value v at observation j is given
by vj =

∑j
i=j−t+1

vi
t ; in the Exponential Moving Average (EMA), elements in

the summation are given a weight that decreases as the measurement becomes
older, in order to give more importance to recent measurements.

A more advanced filter employed to perform measurements in presence of
noise is the Kalman Filter [66], which computes the value of the target metric as
a weighted sum of the last prediction and the latest measurement. The weights
reflect the confidence of such estimate and measurement and it is inversely pro-
portional to the variance associated with those two values. The Kalman Filter
represents a reference technique to track systems’ parameters [67] and have
been successfully applied in a wide range of applications, from CPU

Self-tuning Distributed Transactional Memories 431

provisioning in virtualized environments [68] to performance optimization with
energy constraints [69].

Another prominent related technique, originally introduced in the literature
on statistical process control [70] to verify whether a process complies to its
behavioral expectations, is the CUSUM (Cumulative Sum Control Chart) [71].
CUSUM involves the computation of a cumulative sum: noting xn the n-th mea-
surement for the target metric and wn the corresponding weight, the cumulative
sum at the n-th step, namely Sn, is expressed as Sn = max{0, Sn−1 + wnxn},
with S0 = 0. When Sn grows over a predefined threshold, a change in the metric
is identified.

The CUSUM technique, whose employment has been borrowed from the man-
ufacturing field, has been applied not only to workload monitoring and charac-
terization for distributed transactional platforms [72], but also to tackle other
issues like tracking faults in distributed systems [73] and detecting divergence
from a desired QoS [74].

Workload Forecasting. As already mentioned, workload forecasting is a key
problem at the basis of proactive self-tuning techniques. The techniques used to
this purpose are typically borrowed from the literature on time-series analysis
and forecasting, and can be classified depending on whether they operate in the
time or in the frequency domain [75].
Time-domain methods. Techniques belonging to this category forecast the value
for a metric in the next time window based on the raw measurements of such
metric in the past. Auto Regression and Moving Averages methods are at the
basis of a broad family of time-domain solutions: ARMA (Auto-Regressive Mov-
ing Average), which combines the two; ARIMA (AR Integrated MA), which
generalizes the previous one to the case of non-stationary time series (i.e., time
series whose shape changes over time); SARIMA (Seasonal ARIMA), which al-
lows the ARIMA technique to incorporate preexistent knowledge about seasonal,
namely recurring, behaviors [76]. Other popular solutions are based on the use
of filtering techniques, such as the aforementioned Kalman Filter. In fact, due
to its recursive nature, once instantiated, the Kalman Filter can be queried not
only to filter out noisy components from the current measurements, but also to
predict future values of the tracked workload metrics.

Frequency-domain methods. Techniques belonging to this category are aimed
at extracting from time series information about seasonality and recurrence.
Frequency-domain methods rely either on spectral analysis or on wavelet anal-
ysis. They are both based on the idea of decomposing a time series into a sum-
mation in the frequency domain: the former uses sinusoids as basis, the latter
uses wavelets [76].

4.2 Which Adaptation to Trigger?

Once workload changes are detected, self-tuning systems need to decide which
adaptation to trigger, if any, to react to such change. The identification of the
optimal configuration is typically performed by means of performance models,

432 M. Couceiro et al.

White box
[100, 101]

Black box

Off-line
[38, 72]

Performance Modeling

Grey box

 Off-line
 [16, 39, 102]

 On-line
 [55]

 On-line
 [94]

Fig. 3. Taxonomy of performance modeling techniques

which allow for the estimation/prediction of the system’s performance in the
various available configurations. The literature on performance modeling of com-
puting systems is very prolific, and the models used in self-tuning system differ
significantly in their nature and complexity. In Figure 3, we classify them into
white, black and gray (an hybrid of black and white) box techniques, according
to whether (and how) they exploit knowledge on the internal dynamics of the
system. Moreover, we further classify black box, and hence grey box, approaches
into off-line and on-line, depending on whether the model is built before putting
the application in execution or at runtime.

White Box Modeling. This approach leverages on available expertise on the
internal dynamics of systems and/or applications, and uses such knowledge to
build an Analytical Model (AM) (e.g., based on queueing theory) or simula-
tors, aimed at capturing how system’s configuration and workload’s parameters
map onto performance [77]. Once defined, analytical models typically require
no training (or a minimal profiling to obtain the value for some basic parame-
ters) for being instantiated. In order to ensure their mathematical tractability,
however, analytical models typically rely on approximations and simplifying as-
sumptions on how the modeled system and/or its workload behave. Their accu-
racy can hence be challenged in scenarios (i.e., areas of the configurations’ space
or specific workload conditions) in which such approximations are too coarse,
or are simply not matched. In addition, aside from possible re-evaluations of
internal parameters, analytical models’ inaccuracies are not amendable, as the
mathematical characterization of the system’s dynamics in encoded by means of
immutable equations.

Black Box Modeling. This approach lies on the opposite side of the spectrum
with respect to the white box solutions. Black box modeling does not require any
knowledge about the target system/application’s internal behavior. Conversely,
it relies on a training phase, namely on observing the system’s actual behavior

Self-tuning Distributed Transactional Memories 433

under different configurations and while subject to different workloads, in order
to infer a statistical performance model via different Machine Learning (ML)
techniques [78]. Over the last years, these approaches have become more and
more popular as tools for performance prediction of modern systems and ap-
plications, whose ever growing complexity challenges the viability of developing
sufficiently detailed, and hence accurate, analytical models.

In practice, the accuracy achievable by black box models strongly depends
on the representativeness of configurations and workloads that the ML has wit-
nessed with during its training phase. This results in the ability of black box
models to achieve a very good accuracy for scenarios sufficiently close to the
ones observed during the training phase; on the other hand, predictions’ accu-
racy of ML techniques is typically poor in regions of the parameters’ space that
were not sufficiently sampled during the training (in which case the model is
often said to be used in extrapolation).

Unfortunately, the space of all possible configurations for a target sys-
tem/application grows exponentially with the number of variables (a.k.a. fea-
tures in the ML terminology) that can affect its performance — the so called
curse of dimensionality [79]. Hence, in complex systems, like DTMs, the cost
of conducting an exhaustive training process, spanning all possible configura-
tions of the design and configuration’s space and experimenting with all possible
workloads, can typically be prohibitive.

Grey Box Modeling. Grey box approaches, as the name suggests, employ
white and black model methodologies in hybrid fashions, so as to inherit the
best features of the two worlds: the good accuracy in extrapolation (i.e., for
unseen configuration/workloads) and minimal training time typical of white box
models, and the robustness and possibility to incrementally enhance accuracy,
via periodic retraining, of black box models.

Grey box techniques can, in their turn, be grouped into three categories.

• Parameter fitting: this solution relies on fitting techniques [80] to identify
the values of (a subset of) the input parameters of a white box model, whose
direct measurement is undesirable or infeasible. This is the case, for instance,
of models that require detailed workload characterization [42] or service de-
mand times [41], and whose measurement from an operational system may
introduce prohibitive overheads. This technique is used also in case some
parameters of white-box models do not map directly to any physical as-
pect of the system, and are instead used to encapsulate complex systems’
dynamics that would be otherwise hard to capture explicitly via analytical
techniques [58]. In these situations, fitting techniques can be used to de-
termine the values of the unknown parameters that minimize the model’s
prediction errors over a given training set.

• Divide et impera: this technique consists in building performance models
of individual parts of the entire system, which are either based on AM or
on ML. The sub-models are then combined in order to obtain a prediction
of the system as a whole [72,38]. This approach is particularly suited for

434 M. Couceiro et al.

scenarios in which the internals dynamics of certain sub-components of the
system are not known and/or are not easy to model using white-box analyt-
ical models, e.g., the networking infrastructure in a cloud-based distributed
platform. The performance of these sub-components can then be predicted
using black-box ML-based techniques, whereas white-box modeling can be
used for the remainder of the system. By narrowing the domain over which
ML techniques are used, their learning time is normally significantly reduced;
also, the joint usage of white box models allows for achieving better accuracy
in extrapolation when compared with pure black-box approaches.

• Bootstrapping: this methodology relies on an AM predictor to generate an
initial synthetic training set for the ML, with the purpose of avoiding the
initial, long profiling phase of the target application under different settings.
Then, the ML is retrained over time in order to incorporate the knowledge
coming from samples collected from the operational system [59,55].

While white box modeling is an inherently off-line technique, ML solutions, at
the basis of purely black or grey box models, can be instantiated either off-line
or on-line.

Off-line Learning. Off-line black box performance models are typically built
by means of Supervised Learning (SL), in which the ML algorithm is trained on
labeled features, i.e., input for which the output is known.

In SL, the training algorithm, noted γ, is a function defined over the training
set Dtr = {< x, y >}, where x =< x1, . . . , xn > is a point in a n−dimensional
features’ space, noted F , and y is the value of some unknown function φ : F → C.
The co-domain C of the function may be a discrete set, whose elements are called
classes, or a continuous space. The problem of learning the mapping of elements
of F to C is called classification in the first case, and regression in the second
one.

The output of γ is a function, also called model, noted Γ , which represents
an approximation of φ over the features’ space F . More precisely, a model Γ :
F → C takes as input a point x ∈ F , possibly not observed in Dtr, and returns
a value ŷ ∈ C.

In off-line SL, the training set Dtr is assumed fully available to the learning
algorithm. When new data is available, e.g. by gathering new sample from a
running application, a new model can be built from scratch, considering the
whole available training data set. Note that this palingenesis of the statistical
model does not qualify as an instance of on-line learning, as we shall discuss
briefly, as the model is built ex novo over an ever-increasing training set. Exam-
ples of off-line SL algorithms are Decision Trees, Support Vector Machines and
Artificial Neural Networks [78].

On-line Learning. We distinguish three main approaches to on-line black box
learning. The first one consists in on-line SL, according to which the model is
built incrementally over a stream of training samples, i.e., only a subset of Dtr

(possibly of cardinality 1) is available at the time, and it has to be incorporated

Self-tuning Distributed Transactional Memories 435

in the model without being stored for further consideration [81]. Approaches in
this domain typically assume that the learning algorithm can access each sample
only once during the training phase. As a consequence, they normally require
considerably less computational resources than off-line techniques, but may also
achieve lower prediction accuracy.

A second on-line ML technique is Reinforcement Learning (RL). RL aims at
inferring the best way of performing actions in an environment (characterized
in DTM context by a set of workload and performance indicators) given a state
(i.e., a workload), so as to maximize some notion of cumulative reward (e.g.,
throughput). The main challenge tackled by RL techniques [82,83] is finding a
balance between exploration (of untested actions for a given state) and exploita-
tion (of available, and typically incomplete, knowledge), while minimizing the,
so called, regret, that is the cumulative error with respect to the optimal strat-
egy. Frequent explorations allow for acquiring a good knowledge of the rewards
corresponding to different actions in a given state, but also causes the system
to oscillate among several sub-optimal configurations, yielding to instability and
hindering performance. On the other hand, an overly conservative policy, which
does not test the available options sufficiently often, may get stuck in local max-
ima, especially in scenarios in which the reward distribution is subject to large
variance (and may hence require a relatively large number of samples to be
accurately estimated).

Finally, on-line black box self-tuning schemes can be based on optimization
techniques like Gradient Descent or Genetic algorithms [84]. These approaches
seek to minimize/maximize a given application’s performance indicator: similarly
to RL approaches, they combine exploration and exploitation; however, they do
not encompass the notion of cumulative reward, thus differing from RL in the
way the search of the optimal configuration is carried out and in the amount
of information maintained about the system/application’s state and previously
performed explorations.

5 Elastic Scaling in DTM Systems

In this section we review solutions aimed at self-tuning the scale of DTMs.
Though we focus on this kind of platform, we also include in the analysis solutions
that have been proposed and evaluated in the broader field of elastic scaling of
distributed data platforms and which could be applied also to the case of DTMs.

In our analysis we will focus on three main technical challenges, which need
to be tackled in order to implement effective elastic scaling solutions for DTM,
namely: how to preserve consistency during elastic scaling, when to trigger elastic
scaling, how to determine the new scale of the DTM.

How Is Elastic Scaling Supported? DTM can either scale vertically,
namely, by changing the number of concurrent threads active in each of the
platform’s nodes, or horizontally, namely, changing the number of nodes in the
platform. In the first case, the scaling procedure does not encompass inter-node

436 M. Couceiro et al.

synchronization or state transfer, as it simply consists of activating/deactivating
the desired number of threads [57].

Scaling out a DTM is, conversely, a much more challenging task given the
stateful nature of the platform that implies the need for a state transfer phase and
the constraint of preserving the consistent and atomic access to data items during
the reconfiguration. In this paragraph we survey some state transfer techniques
that have been proposed to elastically scale databases but that are applicable
also to the case of DTMs.

The simplest solution to scale out a distributed transactional platform is the
stop and go technique, which naively consists in blocking transactions execution
during the state transfer and restoring it when it is over. Of course, the major
drawback of this solution is that it implies service unavailability during the
scaling phase, and it is, thus, employed only when there is no other option
available [21].

For this reason, a number of solutions have been proposed to perform the
state transfer at the application level, i.e., relying only on the transactional
middleware of the platform.

A first one represents an improvement over the stop and go: while a new node
is being initiated it cannot serve requests, but other nodes can, thus maintaining
the service available. This technique basically consists of three phases. In the
first one, a new node is spawned and starts receiving data from the source nodes
designated by the data placement component. In the second one, it receives newer
versions of data that it has already received during the first phase, but which
have been updated in the meanwhile. In the last phase, the new node receives the
last stream of data and starts processing transactions; in order to allow the new
node to catch up with the state of running nodes without breaking atomicity
and consistency, this phase may require all the nodes in the system to stop
processing transactions, thus resulting into a short service unavailability window.
This technique has been applied to the context of live migrations of databases in
multi-tenant [85] and single instance [86,46] environments. Optimized variants
for partially replicated systems also exist, in which the amount of data sent by
live nodes to the joining one(s) is evenly split, thus resulting into an optimal
load balancing [87].

A further optimization of the aforementioned scheme consists in allowing the
new node to start serving transactions as soon as it gets data. In order to main-
tain atomic and consistent access to data, schemes relying on this optimization
integrate the state transfer with the distribution and concurrency control pro-
tocol employed by the platform [88].

Another technique employed for elastic scaling of distributed databases, espe-
cially in the case of multi-tenant infrastructures, consists in transferring a snap-
shot of the database, i.e., an image of the database state at a given point in time.
This can be achieved by means of VM migration [89] and backup tools [90,91]
or by relying on the presence of a Network Attached Storage [85].

Finally, Barker et al. [92] show that no-one-size-fits-all solutions exists in the
landscape of the described techniques for databases migration and state transfer.

Self-tuning Distributed Transactional Memories 437

Therefore, they introduce a hybrid scheme that automatically selects the best
elastic scaling scheme to employ, choosing between a black-box VM migration
and a database-aware, application-level state transfer.

When to Trigger Elastic Scaling? As introduced in Section 4, the literature
on elastic scaling of distributed data platforms includes proposals based on the
reactive and proactive approaches.

Among the solutions based on reactive schemes, Exponential Moving Aver-
age (EMA) is employed in the provisioning of a one-copy serializable database
by Soundararajan et Amza [46] and of an eventually consistent data store by
Trushkowsky et al. [93]: given a current raw measurement vr and the output
of last EMA computation vl, the current value for target metric vc (average
response time of queries in the first case and arrival rate to a dataset partition
in the second one) is obtained as vc = αvr + (1 − α)vl. Here, α is a weighting
factor: the higher, the faster older observation are discounted.

Scaling the size of a DTM, however, is a very onerous operation, as it triggers
a state transfer phase that can induce significant additional load on the system
for a potentially long time [62,92,89]. Thus, as a result of relying on a reactive
scheme to trigger the elastic scaling, during the whole reconfiguration phase, the
platform can suffer from severe performance degradation due to a sub-optimal
configuration with respect to the incoming workload. To avoid such a shortcom-
ing, the majority of recent research works on automatic resource provisioning
rely on proactive schemes to trigger the elastic scaling of data platforms.

Approaches operating in the time domain, based on simple linear extrapo-
lation [94] and filtering [62], have been applied to drive the elastic scaling of
distributed databases. Solutions relying on time series analysis, namely ARMA
and ARIMA, have also been frequently applied to drive automatic elastic scaling
policies for Cloud applications [43,95,44].

Likewise, works based on time series analysis in the frequency domain find
application in automatic resource provisioning scheme for Cloud infrastructures.
They are either used alone, as in the case of the Agile system [96], or in con-
junction with ANN in a recent work by Napoli et al. [97].

Approaches [45,64] combining reactive and proactive techniques, especially in
QoS-oriented and SLA-based Cloud platforms, typically favor a more aggressive
scheme in adding nodes and more conservative ones in scaling down removing
nodes from a platform. The rationale behind this choice is that the cost, both
monetary and in terms of performance, for maintaining resources that are not
strictly necessary to guarantee a desired QoS is lower than the one resulting from
an unfortunate scaling down choice, both because of the overhead due to a new
scaling up phase and to the penalties stemming from possible SLA violations.

In the Cloud-TM data platform [40,98], Kalman filter and polynomial re-
gression are employed to predict future workloads; however, they are comple-
mented by a reactive scheme based on a filter that detects variations of average
values over two consecutive time-windows, and the CUSUM algorithm. Differ-
ent trade-offs between pro and reactiveness can be achieved depending on the

438 M. Couceiro et al.

parametrization of such algorithms. A similar approaches is undertaken also in
ShuttleDB [92], where a threshold-based reactive scheme is complemented by
times series forecasting by means of an ARIMA model. Iqbal et al. [45] pro-
pose a hybrid scheme which is reactive in acquiring resources, while it employs
a second order regression to detect over-provisioning with respect to the in-
coming workload and, accordingly, release resources. In MeT [64], resources are
greedily acquired in a non-linear and iterative fashion, i.e., if the system is under-
provisioned, the number of acquired nodes at iteration i is twice as much as at
last iteration; nodes in the system are, instead, released linearly, namely, one by
one. Ali-Eldin et al. [63] provide a thorough analysis of controllers for elastic
Cloud-based application relying on nine different schemes combining reactive
and proactive approaches. Their work suggest that, indeed, hybrid schemes do
perform better than pure ones.

With the exception of the techniques integrated in the Cloud-TM platform,
the aforementioned solutions typically target either stateless/non-transactional
platforms or transactional ones with external storage systems (e.g., Network
Attached Storages) or backup services.

Their application to DTMs without those specific supports or in typical,
commercial Cloud deployment is, hence, not straightforward. Moreover, such
proposals do not account for other potential concurrent reconfigurations of the
platforms at other levels, e.g., at the consistency protocol one. Challenging re-
search problems in this direction that demand further investigation are the es-
timation of the duration of the reconfiguration phase and of SLA violations
incurred during that time.

Which Scale to Choose? A plethora of analytical and simulative models for
distributed transactional data platforms exist [99,100] that are aimed at com-
puting the performance of the platform when deployed over different number of
nodes. However, they mainly target relational databases and do not encompass
complex dynamics that stem from elastically scaling the platform at runtime, like
the variation in data locality. For this reason, in recent years, performance mod-
eling and forecasting specifically aimed at supporting elastic scaling of DTM has
garnered much attention, resulting into solutions that cover the whole spectrum
of the techniques introduced in Section 4.2.

A pure white box model, relying on Parallel Discrete Event Simulation, has
been proposed by Di Sanzo et al. [101]. It allows for the definition of trace based
workloads in order to forecast the effect of elastically scaling, both vertically
and horizontally, a DTM, encompassing generic data placement schemes and
arbitrary data access patterns exhibited by the hosted application.

Pure black box approaches, instead, have been undertaken in [50,102], where
ANN are employed to predict transactions’ throughput and response time while
varying the number of nodes composing a DTM. In particular, the work in [102]
allows for supporting what-if analysis at the granularity of individual transac-
tional classes, and not only on the overall average performance of the entire
transactional workload.

Self-tuning Distributed Transactional Memories 439

A divide et impera grey box modeling approach is proposed by Didona et al.,
which targets performance prediction of fully [72] and partially replicated [38]
DTMs when varying its scale over Cloud infrastructures. In such approach,
analytical modeling is employed to model resource contention over the CPU
and to capture transactions’ conflict probability on data. Conversely, ML, and
specifically decision tree based regression, is employed to predict the latency of
network-bound operations, e.g., the retrieval of remote data and the execution
of the distributed commit phase.

A variant of the bootstrapping grey box methodology is proposed in [57], and
extended in [103], with the aim of determining the scale for a DTM application
that results in the higher throughput. This approach combines analytical mod-
eling, supervised learning and pure exploration in order to build a performance
model that incrementally enhances its accuracy. A DT regressor is employed to
learn at runtime a corrective function to be applied to the output of the base
performance predictor (based on [72]) so as to progressively reduce its prediction
error. The DT is incrementally trained over the base model’s mis-predictions for
workloads and scales that the DTM has experienced with. In order to widen the
training set of the DT without incurring the cost of state transfer, different levels
of MPL are explored for a given workload and number of nodes in the DTM.

6 Adaptation of the Data Consistency Protocol

In this section we review the most relevant solutions that focus on the adaptation
of the protocol used to enforce data consistency in DTM platforms. Each system
is described according to the three major concerns for supporting automatic
protocol switching in DTM platforms: how is consistency ensured despite the
on-line switching between different data consistency protocols, when the system
should switch the protocol, and which is the most suitable consistency protocol
according to the current conditions.

How Is Protocol Switching Supported? There are two main architectural
approaches for protocol switching in DTM platforms, ad-hoc and generic, which
explore different trade-offs between simplicity, efficiency and generality.

In the ad-hoc approach, the system is designed to accommodate specific and
predetermined protocols and it is highly tailored to provide seamless switching
mechanisms between protocols, i.e., to minimize the impact on performance dur-
ing the switching phase. By exploiting the knowledge on the internal dynamics
of the origin and target consistency protocols (for instance, how they are imple-
mented), one can indeed design specialized switching mechanisms that exploit
possible compatibilities with the purpose of reducing the overhead and/or dura-
tion of the switching phase. Typically, it is not possible to support the switching
from/to additional protocols without making profound changes in the system.

Examples of these systems include PolyCert [16] and HTR [26]. PolyCert is a
DTM that relies on three certification-based consistency protocols: non-voting cer-
tification, which sends the read-set of transactions as is; Bloom filter certification,

440 M. Couceiro et al.

which encodes the transaction’s read-set in a Bloom filter, minimizing the size of
the messages exchanged by nodes but increasing the complexity of processing the
received message; and voting certification, in which only the write-set of transac-
tions is disseminated but replicas must wait for a commit decision from the node
where the transaction originally executed. As transactions finish their local execu-
tion, the protocol thatminimizes the commit phase is selected from the three avail-
able (using techniques described further ahead in the section), improving therefore
the throughput of the system. HTR also determines the optimal protocol on a per
transaction basis: based on the abort rate on the moment each transaction is is-
sued, either the deferred update model, which takes advantage of multicore hard-
ware to process transactions in parallel, is chosen or the state machine approach,
which guarantees an abort free execution. Both systems are tailored for those spe-
cific protocols and do not contemplate the addition of others.

Ideally, developers should be allowed to choose the most suitable replication
protocols for their systems and workloads. Also, these protocols should be easy
to plug into the system, and oblivious of other protocols (i.e., there should be no
dependencies between protocols neither while the system is in normal operation
nor when during the switching phase).

Recently, a new approach was proposed that offers both flexibility and perfor-
mance. MorphR [39] is a framework that supports multiple replication protocols
by only requiring their adherence to a specified API. It provides two mechanisms
for the switching phase: stop and go and fast switching. The first approach re-
lies on a blocking scheme to guarantee that there is no transaction from the old
protocol running in the system when the new protocol starts executing, ensuring
isolation between the switching protocols and avoiding the need to implement
interactions between protocols. The second approach leverages on the knowl-
edge of developers to implement specialized switching algorithms between pairs
of protocols enabling their co-existence so that the performance of the system is
not affected by this adaptation. MorphR’s prototype was tested with three very
different protocols representing distinct classes of replication approaches: 2PC,
PB and a TOB-based scheme.

When to Switch? The most common approach to trigger switching in these
systems is employing reactive schemes, that detect changes in the workload and
react to those changes. Most adaptive DTM systems [39,72] rely on this ap-
proach, especially systems like HTR and PolyCert, which determine the best
protocol on a per-transaction basis and transactions’ operations are not known
prior to their actual execution.

On the opposite side of the spectrum, CloudTM platform [40] integrates work-
load and resource demand prediction schemes, by including algorithms for time-
series forecasting which allow predicting future workload’s trends and allow the
system to enact proactive self-tuning schemes. This functionality represents a
fundamental building block for any proactive adaptation scheme, i.e., schemes
triggering reconfigurations of the platform anticipating imminent workload’s
changes, which are particularly desirable in case the platform’s reconfiguration
(as in the case of elastic scaling) can have non-negligible latencies.

Self-tuning Distributed Transactional Memories 441

Which Protocol to Choose? The most straightforward way to approach the
problem of determining the most suitable protocol is to set thresholds that, using
one or more metrics, define the scenarios in which each protocol delivers (or is ex-
pected to deliver) the best performance. HTR follows this approach: it monitors
the abort rate of the system before each transaction and if it exceeds a certain
threshold, the transaction is executed in the state machine mode, which guaran-
tees abort free execution. When the abort rate is lower than the set threshold,
transactions will revert to executing in the deferred update mode.

However, threshold-based approaches become very hard to properly tune when
the complexity of the replication schemes and workloads increases, as the increas-
ing number of metrics and thresholds will eventually become unmanageable by an
administrator. Let aside, the lack of flexibility imposed by the usage of fixed val-
ues for the thresholds. Both PolyCert andMorphR rely on the black box approach,
namely machine learning techniques which were previously presented in Section 4,
to cope with a larger number of protocols, with potentially complex algorithms,
system configurations and workloads.While PolyCert assesses protocol suitability
on a per transactionbasis (i.e., each transaction issuedwill be certifiedwith the pro-
tocol that minimizes its total execution time), MorphR evaluates the state of the
system periodically (at a frequency tuned by the administrator) to verify whether
the protocol in use is the optimal one and, if not, changes the protocol used by the
entire system to match the most suitable option for the observed conditions.

However, a pure black box approach will not be able to cope with work-
loads and system configurations that were not included in the data used as its
training set. The grey box approach, used in TAS [72,38], relies on analytical
models designed to predict the behavior of 2PC and PB regardless of the work-
load and system configuration (number of machines, hardware used, etc.). This
method is especially well tailored for systems in which administrators do not
have prior knowledge of workloads and deployment configurations or when these
two aspects are constantly varying. On the other hand, taking advantage of this
approach entails possessing a very deep knowledge of the system’s internals to
be able to design a complete and accurate model.

7 Conclusions and Open Research Questions

In this chapter we have investigated the problem of designing self-tuning DTM
platforms. Along the way, we have exposed some of the key trade-offs in the
design of the main components of DTM systems, and recalled some of the base
methodologies that are commonly employed in self-tuning systems. We have
then focused our attention on two specific self-tuning problems, elastic scaling
and adaptation of the distributed consistency protocol, and critically analyzed
existing literature in these areas.

The analysis that we have conducted in this chapter shows that, despite be-
ing a relatively young research area, the existing literature encompasses already
a number of self-tuning solutions that target the key building blocks of DTM
platforms. On the other hand, our analysis suggests also that there are still a

442 M. Couceiro et al.

number of unexplored areas and open research problems, which represent inter-
esting opportunities for future research.

In the elastic scaling area, for instance, we are not aware of solutions for es-
timating the impact on performance due to the occurrence of the state transfer
activities that are necessary to redistribute data across nodes of the DTM plat-
form. Another aspect that has not been satisfactorily addressed, to the best of
our knowledge, by existing solutions in the area of elastic scaling of DTM is the
prediction of the locality shifts (i.e., the change in the probability of incurring
in remote accesses) due to the redistribution of data among the nodes caused by
the elastic scaling process.

As for the dynamic switching of the DTM consistency protocol, existing
solutions only take into account adaptations of the distributed consistency
mechanisms, and do not seek integration with the self-tuning mechanisms for
non-distributed TMs (e.g., targeting the local concurrency control or the thread
mapping).

A related, albeit more fundamental open question, is how to effectively in-
tegrate the various self-tuning mechanisms proposed in literature and targeting
different modules/parameters of DTM platforms. These systems are constituted
by a complex ecosystem of components, each one associated with specific key
performance indicators, utility functions and monitorable/tunable parameters.
These components exhibit non-trivial mutual interdependencies; hence, in gen-
eral, it is not possible to optimize separately different modules of a DTM, as the
effect on performance of tuning different parameters are often intertwined. The
complexity of this type of system is simply too high for monolithic self-tuning
approaches, i.e., approaches that try to optimize the system as a whole by try-
ing to identify all possible relations among the feasible adaptation alternatives
of the entire ecosystem of components. Alternative, modular approaches would
be highly desirable, as they would allow for unifying the large set of existing
self-tuning mechanisms that target different aspects of DTMs. To the best of
our knowledge, this problem is still unexplored by existing research.

References

1. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of Intel R©
transactional synchronization extensions for high-performance computing. In: In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–19. ACM (2013)

2. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and imple-
mentation for ibm system z. In: Proceedings of the Annual nternational Symposium
on Microarchitecture (MICRO), pp. 25–36. IEEE Computer Society (2012)

3. Herlihy, M.P., Sun, Y.: Distributed transactional memory for metric-space net-
works. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 324–338. Springer,
Heidelberg (2005)

4. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software transac-
tional memory systems. In: Proceedings of the Workshop on Large-Scale Dis-
tributed Systems and Middleware (LADIS), pp. 1–4. ACM (2008)

5. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for
large scale clusters. In: Proceedings of the Symposium on Principles and Practice
of Parallel Programming (PPoPP), pp. 247–258. ACM (2008)

Self-tuning Distributed Transactional Memories 443

6. Romano, P., Rodrigues, L., Carvalho, N., Cachopo, J.: Cloud-tm: harnessing the
cloud with distributed transactional memories. SIGOPS Operating Systems Re-
view 44, 1–6 (2010)

7. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable dis-
tributed software transactional memory. In: Proceedings of the Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC), pp. 307–313. IEEE
Computer Society (2009)

8. Palmieri, R., Quaglia, F., Romano, P.: Aggro: Boosting stm replication via ag-
gressively optimistic transaction processing. In: Proceedings of the International
Symposium on Network Computing and Applications (NCA), pp. 20–27. IEEE
Computer Society (2010)

9. Carvalho, N., Romano, P., Rodrigues, L.: Asynchronous lease-based replication of
software transactional memory. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 376–396. Springer, Heidelberg (2010)

10. Hendler, D., Naiman, A., Peluso, S., Quaglia, F., Romano, P., Suissa, A.: Exploiting
locality in lease-based replicated transactional memory via task migration. In: Afek,
Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 121–133. Springer, Heidelberg (2013)

11. Fernandes, S.M., Cachopo, J.A.: Strict serializability is harmless: A new architec-
ture for enterprise applications. In: Proceedings of International Conference Com-
panion on Object Oriented Programming Systems Languages and Applications
Companion (SPLASH), pp. 257–276. ACM (2011)

12. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When scalability
meets consistency: Genuine multiversion update-serializable partial data replica-
tion. In: International Conference on Distributed Computing Systems (ICDCS),
pp. 455–465. IEEE (2012)

13. Peluso, S., Romano, P., Quaglia, F.: SCORe: A scalable one-copy serializable par-
tial replication protocol. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware
2012. LNCS, vol. 7662, pp. 456–475. Springer, Heidelberg (2012)

14. Schneider, F.B.: Replication management using the state-machine approach. ACM
Press/Addison-Wesley Publishing Co. (1993)

15. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distributed Parallel Databases 14(1), 71–98 (2003)

16. Couceiro, M., Romano, P., Rodrigues, L.: PolyCert: Polymorphic self-optimizing
replication for in-memory transactional grids. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 309–328. Springer, Heidelberg (2011)

17. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. In: Proceedings of the SIGMOD International Conference on Management
of Data, pp. 173–182. ACM (1996)

18. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic
atomic broadcast in transaction processing systems. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 15(4), 1018–1032 (2003)

19. Ruivo, P., Couceiro, M., Romano, P., Rodrigues, L.: Exploiting total order multi-
cast in weakly consistent transactional caches. In: Proceedings of the Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 99–108. IEEE
Computer Society (2011)

20. Paiva, J., Ruivo, P., Romano, P., Rodrigues, L.: Autoplacer: Scalable self-tuning
data placement in distributed key-value stores. In: Proceedings of the International
Conference on Autonomic Computing (ICAC), pp. 119–131. USENIX, San Jose
(2013)

21. Marchioni, F., Surtani, M.: Infinispan Data Grid Platform. Packt Publishing (2012)
22. Dash, A., Demsky, B.: Integrating caching and prefetching mechanisms in a dis-

tributed transactional memory. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 22(8), 1284–1298 (2011)

444 M. Couceiro et al.

23. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Symposium on Theory of
Computing (STOC), pp. 654–663. ACM (1997)

24. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Kutten,
S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

25. Herlihy, M.P., Sun, Y.: Distributed transactional memory for metric-space net-
works. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 324–338. Springer,
Heidelberg (2005)

26. Kobus, T., Kokocinski, M., Wojciechowski, P.T.: Hybrid replication: State-
machine-based and deferred-update replication schemes combined. In: Proceedings
of the International Conference on Distributed Computing Systems (ICDCS), pp.
286–296. IEEE (2013)

27. Carvalho, N., Romano, P., Rodrigues, L.: A generic framework for replicated soft-
ware transactional memories. In: Proceedings of the International Symposium on
Networking Computing and Applications (NCA), pp. 271–274. IEEE Computer
Society (2011)

28. Pimentel, H., Romano, P., Peluso, S., Ruivo, P.: Enhancing locality via caching
in the gmu protocol. In: Proceedings of the International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE Computer Society (2014)

29. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proceedings of the Symposium on Operating Systems Prin-
ciples (SOSP), pp. 385–400. ACM (2011)

30. Kemme, B., Alonso, G.: A suite of database replication protocols based on group
communication primitives. In: Proceedings of the International Conference on
Distributed Computing Systems (ICDCS), pp. 156–163. IEEE Computer Society
(1998)

31. Patiño-Mart́ınez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Scalable replica-
tion in database clusters. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp.
315–329. Springer, Heidelberg (2000)

32. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: Proceedings of the Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 198–208. ACM
(2006)

33. Franklin, M.J., Carey, M.J., Livny, M.: Transactional client-server cache consis-
tency: Alternatives and performance. ACM Transactions on Database Systems
(TODS) 22(3), 315–363 (1997)

34. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys (CSUR) 36(4), 372–421 (2004)

35. Lamport, L.: The part-time parliament. ACM Transactions on Computing Systems
(TOCS) 16(2), 133–169 (1998)

36. Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in
replicated databases (extended abstract). In: Lengauer, C., Griebl, M., Gorlatch,
S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 496–503. Springer, Heidelberg (1997)

37. Muñoz-Escóı, F.D., Irún-Briz, L., Galdámez, P., Decker, H., Bernabéu, J., Bataller,
J., del Carmen Bañuls, M.: Globdata: A platform for supporting multiple con-
sistency modes. In: Proceedings of the International Conference on Information
Systems and Databases (ISDB), pp. 104–109. Acta Press (2002)

38. Didona, D., Romano, P.: Performance modelling of partially replicated in-memory
transactional stores. In: Proceedings of the International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS). IEEE (2014)

Self-tuning Distributed Transactional Memories 445

39. Couceiro, M., Ruivo, P., Romano, P., Rodrigues, L.: Chasing the optimum in repli-
cated in-memory transactional platforms via protocol adaptation. In: Proceedings
of the International Conference on Dependable Systems and Networks (DSN), pp.
1–12. IEEE Computer Society (2013)

40. Didona, D., Romano, P.: Self-tuning transactional data grids: The cloud-tm ap-
proach. In: Proceedings of the Symposium on Network Cloud Computing and Ap-
plications (NCCA), pp. 113–120. IEEE (2014)

41. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.J.: Autonomic mix-aware provision-
ing for non-stationary data center workloads. In: Proceedings of the International
Conference on Autonomic Computing (ICAC), pp. 21–30. ACM (2010)

42. Zhang, Q., Cherkasova, L., Mi, N., Smirni, E.: A regression-based analytic model
for capacity planning of multi-tier applications. Cluster Computing 11(3), 197–211
(2008)

43. Roy, N., Dubey, A., Gokhale, A.S.: Efficient autoscaling in the cloud using predic-
tive models for workload forecasting. In: Proceedings of the International Confer-
ence on Cloud Computing (CLOUD), pp. 500–507. IEEE (2011)

44. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware
server provisioning and load dispatching for connection-intensive internet services.
In: Symposium on Networked Systems Design & Implementation (NSDI), pp. 337–
350. USENIX Association (2008)

45. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Generation Comput-
ing Systems 27(6), 871–879 (2011)

46. Soundararajan, G., Amza, C.: Reactive provisioning of backend databases in shared
dynamic content server clusters. ACM Transactions on Adaptive and Autonomous
Systems (TAAS) 1(2), 151–188 (2006)

47. You, G.-w., Hwang, S.-w., Jain, N.: Scalable load balancing in cluster storage sys-
tems. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp.
101–122. Springer, Heidelberg (2011)

48. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: A workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB En-
dowment 3(1-2), 48–57 (2010)

49. Turcu, A., Palmieri, R., Ravindran, B.: Automated data partitioning for highly
scalable and strongly consistent transactions. In: Proceedings of the International
Systems and Storage Conference (SYSTOR), pp. 1–11. ACM (2014)

50. di Sanzo, P., Rughetti, D., Ciciani, B., Quaglia, F.: Auto-tuning of cloud-based
in-memory transactional data grids via machine learning. In: Proceedings of the
Symposium on Network Cloud Computing and Applications (NCCA), pp. 9–16.
IEEE (2012)

51. Vale, T.M., Dias, R.J., Lourenço, J.M.: On the relevance of total-order broadcast
implementations in replicated software transactional memories. In: Lourenço, J.M.,
Farchi, E. (eds.) MUSEPAT 2013 2013. LNCS, vol. 8063, pp. 49–60. Springer,
Heidelberg (2013)

52. Mocito, J., Rodrigues, L.: Run-time switching between total order algorithms. In:
Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 582–591. Springer, Heidelberg (2006)

53. Mocito, J., Rosa, L., Almeida, N., Miranda, H., Rodrigues, L., Lopes, A.: Context
adaptation of the communication stack. International Journal of Parallel, Emergent
and Distributed Systems 21(3), 169–181 (2006)

54. Didona, D., Carnevale, D., Galeani, S., Romano, P.: An extremum seeking algo-
rithm for message batching in total order protocols. In: Proceedings of the Inter-
national Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp.
89–98. IEEE (2012)

446 M. Couceiro et al.

55. Romano, P., Leonetti, M.: Self-tuning batching in total order broadcast protocols
via analytical modelling and reinforcement learning. In: Proceedings of the Inter-
national Conference on Computing, Networking and Communications, ICNC, pp.
786–792. IEEE (2011)

56. Wang, Q., Kulkarni, S., Cavazos, J., Spear, M.F.: A transactional memory with
automatic performance tuning. ACM Transactions on Architecture and Code Op-
timization (TACO) 8(4), 1–54 (2012)

57. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the op-
timal level of parallelism in transactional memory applications. Computing (2013)

58. di Sanzo, P., Re, F.D., Rughetti, D., Ciciani, B., Quaglia, F.: Regulating concur-
rency in software transactional memory: An effective model-based approach. In:
Proceedings of the International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pp. 31–40. IEEE (2013)

59. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Analytical/ml mixed approach
for concurrency regulation in software transactional memory. In: Proceedings of
the International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
pp. 81–91. IEEE (2014)

60. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the Symposium on Principles and
Practice of Parallel Programming, pp. 237–246. ACM (2008)

61. Castro, M.B., Góes, L.F.W., Méhaut, J.F.: Adaptive thread mapping strategies for
transactional memory applications. Journal of Parallel and Distributed Computing
(JPDC) 74(8), 2845–2859 (2014)

62. Chen, J., Soundararajan, G., Amza, C.: Autonomic provisioning of backend
databases in dynamic content web servers. In: Proceedings of the International
Conference on Autonomic Computing (ICAC), pp. 231–242. IEEE (2006)

63. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for
cloud infrastructures. In: Proceedings of the Network Operations and Management
Symposium (NOMS), pp. 204–212. IEEE (2012)

64. Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J., Pereira, J., Vilaça, R.: Met:
workload aware elasticity for nosql. In: Proceedings of EuroSys, pp. 183–196. ACM
(2013)

65. Shenoi, B.A.: Introduction to Digital Signal Processing and Filter Design. John
Wiley & Sons (2005)

66. Kalman, R.: A new approach to linear filtering and prediction problems. Journal
of Basic Engineering 82, 35–45 (1960)

67. Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Transactions on Software Engineering (TOSE) 34(3),
391–406 (2008)

68. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured cpu
resource provisioning for virtualized servers using kalman filters. In: Proceedings
of the International Conference on Autonomic Computing (ICAC), pp. 117–126.
IEEE (2009)

69. Hoffmann, H., Maggio, M.: Pcp: A generalized approach to optimizing performance
under power constraints through resource management. In: Proceedings of the
International Conference on Autonomic Computing (ICAC), pp. 241–247. USENIX
Association (2014)

70. Wheeler, D.J.: Understanding Statistical Process Control, 3rd edn. SPC Press &
Statistical Process Control, Inc. (2010)

71. Page, E.S.: Continuous inspection schemes. Biometrika 41(1), 100–115 (1954)
72. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: elastic

scaling of replicated in-memory transactional data grids. ACM Transactions on
Adaptive and Autonomous Systems (TAAS) 9(2) (July 2014)

Self-tuning Distributed Transactional Memories 447

73. Nguyen, H., Tan, Y., Gu, X.: Pal: Propagation-aware anomaly localization for
cloud hosted distributed applications. In: Proceedings of Managing Large-scale
Systems via the Analysis of System Logs and the Application of Machine Learning
Techniques (SLAML), pp. 1–8. ACM (2011)

74. Amin, A., Colman, A., Grunske, L.: Statistical detection of qos violations based
on cusum control charts. In: Proceedings of the International Conference on Per-
formance Engineering (ICPE), pp. 97–108. ACM (2012)

75. Chatfield, C.: The analysis of time series: An introduction, 6th edn. CRC Press
(2004)

76. Shumway, R.H., Stoffe, D.S.: Time Series Analysis and Its Applications, 3rd edn.
Springer Texts in Statistics (2011)

77. Tay, Y.C.: Analytical Performance Modeling for Computer Systems, 2nd edn. Syn-
thesis Lectures on Computer Science. Morgan & Claypool Publishers (2013)

78. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
79. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
80. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-

ters. SIAM Journal on Applied Mathematics 11(2), 431–441 (1963)
81. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the

International Conference on Knowledge Discovery and Data Mining (KDD), pp.
71–80. ACM (2000)

82. Auer, P.: Using upper confidence bounds for online learning. In: Proceedings of
the Annual Symposium on Foundations of Computer Science (FOCS), pp. 270–
279. IEEE Computer Society (2000)

83. Watkins, C.J.C.H., Dayan, P.: Technical note q-learning. Machine Learning 8, 279–
292 (1992)

84. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 2nd edn.
Pearson Education (2010)

85. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Albatross: Lightweight
elasticity in shared storage databases for the cloud using live data migration.
PVLDB 4(8), 494–505 (2011)

86. Minhas, U.F., Liu, R., Aboulnaga, A., Salem, K., Ng, J., Robertson, S.: Elastic
scale-out for partition-based database systems. In: ICDE Workshops, pp. 281–288
(2012)

87. Raghavan, N., Vitenberg, R.: Balancing the communication load of state transfer in
replicated systems. In: International Symposium on Resliable Distributed Systems
(SRDS), pp. 41–50. IEEE (2011)

88. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In: Proceedings of the SIGMOD
International Conference on Management of Data, pp. 301–312. ACM (2011)

89. Cecchet, E., Singh, R., Sharma, U., Shenoy, P.J.: Dolly: virtualization-driven
database provisioning for the cloud. In: Proceedings of the International Conference
on Virtual Execution Environments (VEE), pp. 51–62. ACM (2011)

90. Barker, S.K., Chi, Y., Moon, H.J., Hacigümüs, H., Shenoy, P.J.: “cut me some
slack”: latency-aware live migration for databases. In: International Conference on
Extending Database Technology (EDBT), pp. 432–443. ACM (2012)

91. Sousa, F.R.C., Machado, J.C.: Towards elastic multi-tenant database replication
with quality of service. In: Proceedings of the International Conference on Utility
and Cloud Computing, pp. 168–175. IEEE (2012)

92. Barker, S., Chi, Y., Hacigümüs, H., Shenoy, P., Cecchet, E.: Shuttledb: Database-
aware elasticity in the cloud. In: Proceedings of the International Conference on
Autonomic Computing (ICAC), pp. 33–43. USENIX Association (2014)

448 M. Couceiro et al.

93. Trushkowsky, B., Bod́ık, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.:
The scads director: Scaling a distributed storage system under stringent perfor-
mance requirements. In: Proceedings of the Conference on File and Storage Tech-
nologies (FAST), pp. 163–176. USENIX Association (2011)

94. Ghanbari, S., Soundararajan, G., Chen, J., Amza, C.: Adaptive learning of metric
correlations for temperature-aware database provisioning. In: Proceedings of the
International Conference on Autonomic Computing (ICAC), pp. 1–26. IEEE (2007)

95. Chandra, A., Gong, W., Shenoy, P.J.: Dynamic resource allocation for shared data
centers using online measurements. In: Proceedings of the International Conference
on Measurements and Modeling of Computer Systems, pp. 300–301. ACM (2003)

96. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: Agile: Elastic distributed
resource scaling for infrastructure-as-a-service. In: Proceedings of the International
Conference on Autonomic Computing (ICAC), pp. 69–82. USENIX (2013)

97. Napoli, C., Pappalardo, G., Tramontana, E.: A hybrid neuro–wavelet predictor for
qoS control and stability. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R.
(eds.) AI*IA 2013. LNCS, vol. 8249, pp. 527–538. Springer, Heidelberg (2013)

98. Cloud-TM: Cloud-tm, d4.6: Final architecture (2013),
http://cloudtm.ist.utl.pt/cloudtm/final-deliverables/

D4.6-ArchitectureReport.pdf

99. Elnikety, S., Dropsho, S.G., Cecchet, E., Zwaenepoel, W.: Predicting replicated
database scalability from standalone database profiling. In: Proceedings of Eu-
roSys, pp. 303–316. ACM (2009)

100. Nicola, M., Jarke, M.: Performance modeling of distributed and replicated
databases. IEEE Transactions on Knowledge and Data Engineering 12(4), 645–
672 (2000)

101. di Sanzo, P., Antonacci, F., Ciciani, B., Palmieri, R., Pellegrini, A., Peluso, S.,
Quaglia, F., Rughetti, D., Vitali, R.: A framework for high performance simulation
of transactional data grid platforms. In: Proceedings of the International Confer-
ence on Simulation Tools and Techniques (SimuTools), pp. 63–72. ACM (2013)

102. di Sanzo, P., Molfese, F., Rughetti, D., Ciciani, B.: Providing transaction class-
based qos in in-memory data grids via machine learning. In: Proceedings of the
Symposium on Network Cloud Computing and Applications (NCCA), pp. 46–53.
IEEE (2014)

103. Didona, D., Quaglia, F., Romano, P., Torre, E.: Enhancing Performance Predic-
tion Robustness by Combining Analytical Modeling and Machine Learning. In:
Proceedings of the International Conference on Performance Engineering (ICPE).
ACM (2015)

http://cloudtm.ist.utl.pt/cloudtm/final-deliverables/D4.6-ArchitectureReport.pdf
http://cloudtm.ist.utl.pt/cloudtm/final-deliverables/D4.6-ArchitectureReport.pdf

Case Study: Using Transactions in Memcached

Michael Spear, Wenjia Ruan, Yujie Liu, and Trilok Vyas

Lehigh University, Bethlehem PA
spear@cse.lehigh.edu

Abstract. To synthesize the topics in previous chapters of this book, we now
turn to the question of how to use transactions in real-world code. We use a con-
crete example, transactionalization of the memcached application, as a vehicle
for exploring the challenges and benefits that arise from using transactions in-
stead of locks. Specific topics that receive attention in this chapter include irre-
vocability, contention management, language-level semantics and privatization,
write-through and write-back algorithms, and condition synchronization.

1 Introduction

Prior to 2007, software transactional memory implementations were distributed as li-
braries, and programmers were required to manually annotate their code to achieve
transactional behavior. This entailed both (a) using macros to indicate the beginning
and ending points of the transactions, and (b) instrumenting the individual shared mem-
ory accesses within the transaction, and within all functions called by that transaction.
In order to ensure that rollback of transactions ran smoothly, it was also necessary to
perform some manner of manual checkpoint and recovery of thread-local variables that
could be modified within transactions that aborted and then retried.

Needless to say, this situation did not encourage the creation of large or realistic
benchmarks. Library interfaces encouraged excessive optimization of programs (i.e.,
based on complex reasoning about which locations were or were not shared between
threads). Worse, the absence of transaction-safe standard libraries resulted in program-
mers re-implementing basic data structures and functions in ad-hoc ways. Frequently,
the resulting code did not behave in the same manner as the original standard library
codes. By 2008, there were a number of small transactional benchmarks, and even one
large benchmark suite [29]. All relied on hand-instrumentation of individual shared
memory accesses.

The Draft C++ TM Specification released in 2009 helped to change this situation, by
introducing platform-independent TM extensions for C++ [3]. Existing compiler sup-
port for TM rapidly converged upon this draft standard, resulting in GCC [4], ICC, and
xlC all supporting transactions in C and C++ programs. Based on experience using the
specification [32], the mechanisms for self-abort and error handling were refined [2].
While the draft specification is still under review and revision, at the time this chap-
ter was written, the specification was relatively stable and feature-complete, and the
implementations in modern compilers fairly mature. Consequently, it was at last possi-
ble to use transactions in complex programs, without requiring manual (and mostlikely
incomplete) instrumentation of every single access to shared memory.

R. Guerraoui and P. Romano (Eds.): Transactional Memory, LNCS 8913, pp. 449–467, 2015.
c© Springer International Publishing Switzerland 2015

450 M. Spear et al.

The use of transactions in large software systems allows an exploration of many
questions pondered by researchers. Among them are questions of whether transactions
can be used “in the small” (i.e., only in limited portions of a program) [26], how to
perform condition synchronization [18], whether privatization is a significant issue in
practice [49, 27], how choices of algorithm affect performance [14, 41, 40], and the
need for irrevocability and I/O within transactions [46, 44].

In this chapter, we first review the Draft C++ TM Specification. We then motivate
our decision to transactionalize the open-source memcached application.With that back-
ground in place, we discuss the steps necessary to transform memcached into an appli-
cation in which transactions provide value. The value is not strictly in terms of perfor-
mance; after all, memcached employs fine-grained locks to avoid contention in most
cases. However, transactions both (a) offer good performance without requiring a com-
plex locking protocol, and (b) enable interesting simplifications and optimizations that
are not obvious with locks.

2 The Draft C++ TM Specification

The Draft C++ TM Specification [2] serves two roles: it defines an interface that pro-
grammers can use to employ TM in their programs, and it also defines the transforma-
tions and analyses that a compiler must perform in order to guarantee the correctness of
a program that uses the specification.

The specification is careful to describe how transactions must behave, but not how
they must be implemented. In particular, the specification does not require any spe-
cific TM algorithm: transactions can be implemented in either hardware or software,
with the software TM using eager [14] or lazy [41] acquisition of ownership records,
reader/writer locks [10], or other mechanisms [9, 43]. The specification does, however,
require TM to be compatible with the C++ memory model. At the time this chapter was
written, this requirement roughly equated to single global lock atomicity [27].

2.1 Types of Transactions

The specification is broad, supporting many use cases for TM. In particular, there
is support both for transactions that can perform I/O, and transactions that can ex-
plicitly self-abort. To distinguish between these two uses, there are two keywords:
transaction relaxed and transaction atomic. Both precede a state-

ment or lexically scoped block of code that ought to run as a transaction. A relaxed
transaction is allowed to perform I/O and system calls, acquire and release locks, ac-
cess volatile and atomic variables, execute in-line assembly code, and generally call
code whose effects cannot be rolled back (“unsafe code”). However, such transactions
must be run in a “serial irrevocable” mode [35, 31]. That is, relaxed transactions that
execute unsafe code run non-speculatively, and to ensure that these transactions never
abort, the system forbids concurrent execution of other transactions [46, 44]. In con-
trast, atomic transactions can abort and roll back at any time, and may even do so at the
request of the programmer (via the transaction cancel statement). However,
atomic transactions must only call code whose effects can be undone by the run-time
system (“safe code”).

Case Study: Using Transactions in Memcached 451

When the body of a transaction is visible to the compiler, and that body is free of
unsafe code, relaxed and atomic transactions behave identically. However, if an atomic
transaction is to call a function from a separate compilation unit, then it is necessary
to somehow convey to the compiler that the function can be rolled back. To this end,
the draft specification includes the transaction safe keyword. When compiling a
function marked as transaction safe, the compiler statically verifies the absence
of unsafe code, and then generates two versions of the function, where the second is
instrumented such that its reads and writes can be rolled back. Every function called
from an atomic transaction must be annotated as transaction safe, and every
such call will be directed to the instrumented version of the function.

When a relaxed transaction calls a function that is not annotated, it must serialize.
However, there are cases in which a function is not safe, but there exist flows of con-
trol through the function that do not entail calls to unsafe code. The transaction-
callable annotation instructs the compiler to generate two versions of a function

that is unsafe, such that a relaxed transaction can avoid serializing when a specific call
to that function only results in instructions that can be rolled back. Note that trans-
action callable is a performance optimization, whereas transaction safe
is required for correctness.

2.2 Exceptions and Self-abort

When a transaction encounters an exception that cannot be handled within the transac-
tion scope, there are two possibilities: that the transaction should commit its intermedi-
ate state and continue to throw the exception, or that it should discard its effects and act
as if it never executed. Both options have their merits [1]. To support the latter behavior,
the transaction cancel statement indicates that a transaction ought to undo its
effects and jump to the first statement after the end of the transaction body.

It is forbidden to call transaction cancel from an relaxed transaction, since
that transaction might be irrevocable. Unfortunately, when there is separate compilation,
the compiler may not be able to tell whether a transaction safe function called
by a relaxed transaction calls transaction cancel. To assist in this analysis,
the draft specification also provides a may cancel outer annotation. Like trans-
action safe, this is required for correctness.

2.3 Extensions to the Draft Specification

There are three additional features in the GCC TM implementation that warrant discus-
sion. The first is an annotation, transaction pure, which indicates that a function
is safe to call from atomic transactions, but does not require the compiler to create a
separate instrumented version (e.g., a function with no side effects). This annotation is
intended for the case where the safety of a function can be checked by the compiler,
but that safety needs to be communicated between compilation units. However, in prac-
tice this annotation is interpreted as an un-checked contract between the programmer
and the compiler: if the function is not, indeed, safe, then the behavior of the transac-
tion is undefined. This means, for example, that it is possible to call printf from a
transaction pure function.

452 M. Spear et al.

Secondly, within the TM implementation, GCC provides a mechanism for registering
actions to run after a transaction commits or aborts. These onCommit and onAbort
handlers [7] take a single untyped parameter. Strictly speaking, registration of handlers
is not part of the public API. However, the symbols for the registration functions are
visible, and can be accessed via code. The GCC implementation does not allow the code
registered with these handlers to use transactions, and if the code accesses memory that
can be concurrently accessed by transactions, the behavior is undefined.

Finally, GCC provides a transaction wrap attribute. Using this attribute, one
can associate a safe function s() with an unsafe function u(). In this manner, when
the compiler encounters a call to u() from within a transaction, it will replace the call
with a call to the safe variant of s() instead. within

3 Why Memcached?

There are many C/C++ transactional benchmarks in existence, covering a broad design
space. STAMP [29] consists of eight applications written in C. Its components cap-
ture some common use cases for TM, such as multi-word compare and swap (SSCA2),
explicit speculation (Labyrinth), and shared transactional data structures (Vacation).
EigenBench [20] is a synthetic workload generator that can produce access patterns
and behaviors similar to STAMP. STMBench7 [17] models the data structures and op-
erations of a Computer Aided Design (CAD) workload. Lee-TM [5], SynQuake [24],
and RMS-TM [21] demonstrate the use of TM in realistic settings (circuit routing, gam-
ing, and data mining). Atomic Quake [50] employs TM within the Quake game engine
itself. Though not benchmarks per se, studies by Rossbach et al. [36] and Pankratius
and Adl-Tabatabai [32] produced transactional C and C++ code.

These benchmarks and programs vary along many dimensions. Among the most im-
portant are whether a library or compiler API is used to achieve transactional behavior;
whether I/O within transactions is acceptable; whether fundamental data structures and
libraries were rewritten to be usable within transactions, and whether the API to the
TM allows escape actions [30]. A host of other issues also differentiate the efforts, such
as whether read-only transactions abound, and whether transactions access scalars of
varying sizes. Unfortunately, we are not aware of any large-scale use of these programs
in a production environment. Such an outcome is not surprising, since these programs
were either written by TM researchers, or are transactional versions of older versions
of existing programs. Nonetheless, the question arises as to whether TM works well for
the latest version of widely-used programs.

To answer this question, we will transactionalize memcached. Memcached possesses
many of the quirks and peculiarities researchers should expect of high-performance
production-grade code [37, 34]: there is a lock hierarchy that is sometimes violated;
reference counting with volatile variables (analogous to C++11 atomics) and in-line as-
sembly is on the critical path; high-performance external libraries (i.e., libevent [25])
and internal libraries (i.e., the C standard library) are used frequently; and locks are
used for both mutual exclusion and condition synchronization. The experience of trans-
actionalizing such an application, using the C++ TM implementation present in GCC,
should be instructive both when designing new applications, and when transactionaliz-
ing existing code.

Case Study: Using Transactions in Memcached 453

4 Preparing to Transactionalize

The primary data structure in memcached is an in-memory key-value store, imple-
mented as a hash table. The individual key/value pairs are protected by item locks,
which serve as the top of the lock hierarchy. When the hash table needs to be resized,
a cache lock is used to ensure only one resize occurs at a time; this lock comes sec-
ond in the lock hierarchy. A slab subsystem (protected by the slabs lock) simplifies
memory management when a key’s value changes in size. Program-level statistics are
protected by a global stats lock, and each thread has a single-writer, many-reader
set of statistics, protected by a per-thread lock. Statistics locks are the bottom of the
lock hierarchy.

By profiling a workload for 5 minutes using mutrace [33], we found that the cache-
lock and stats lock were the only locks that exhibited contention. However, it is

difficult to replace only those critical sections guarded by these locks with transactions.
First, consider lock hierarchies: in the case of cache lock and slabs lock, when a
cache lock critical section acquires slabs lock, then the corresponding transac-
tion must acquire slabs lock. Lock acquisition forces a transaction to become serial,
so unless slabs lock is replaced with transactions, slabs lock acquisitions will
cause cache lock transactions to serialize. Likewise, critical sections related to per-
thread statistics locks must be transformed into transactions, or else statistics updates
would cause transactions to serialize.

Second, under certain circumstances, an item lock is acquired after cache lock.
To prevent serialization, one must either (a) replace all item lock critical sections with
transactions, or (b) implement the item lock with a transaction. While option (a) ulti-
mately performed better, option (b) merits further discussion. Consider the examples in
Figure 1: In func1, a cache lock transaction must perform a simple operation on
an item. In func2, there is no running transaction when the thread performs a complex
operation on an item. To avoid races, func1 cannot access the item concurrently with
func2.

The left side uses privatization [27, 42]: func2 uses a transaction only to acquire
and release the item lock, not to access the item. This is advantageous when
use item complex performs an operation that cannot be undone (e.g., I/O). How-
ever, when func2 is holding the lock, func1 must explicitly deal with the fact that a
lock it needs is currently held. This necessitates a mechanism (save for later) for
deferring the work, or else the transaction must explicitly self-abort. In contrast, on the
right side, all accesses to items use transactions. There is no longer the need for an item
lock, and if func1 and func2 conflict, the underlying TM system will chose which
transaction to abort. Put another way, when privatization is used, the programmer is
effectively circumventing the TM system’s contention manager. Contention managers
play several roles, to include ensuring progress guarantees [39, 19] and maximizing
throughput [48, 6]. In general, using privatization in place of contention management
should be discouraged.

Third, cache lock and slabs lock are used both for mutual exclusion and con-
dition synchronization via pthread cond t objects. Condition synchronization is
not currently supported by the Draft C++ TM Specification, though it is a well-known
problem [47, 13, 49, 18, 8, 23]. Recently, an OS and hardware-neutral solution to the

454 M. Spear et al.

func1a:
transaction atomic {
. . . // cache lock work
if ¬i.lock
use item simple(i)

else
save for later(i)

}

func2a:
transaction acquire(i.lock)
use item complex(i)
transaction release(i.lock)

func1b:
transaction atomic {
. . . // cache lock work
use item simple(i)

}

func2b:
transaction atomic {
use item complex(i)

}

Fig. 1. On the left, func2 privatizes i, and func1must check the lock guarding i. On the right,
there is no privatization, but all accesses to i must be made from within transactions.

problem was proposed [45]. However, a simpler but less general approach is possi-
ble: In both cases, the condition variable is used to wake a dedicated maintainer thread
only when a data structure (the hash table or the slab table) becomes unbalanced, and
waiting is the last operation within a critical section. That being the case, it is possible
to replace each condition variable with a semaphore, replace calls to cond signal
with semaphore increments (made within the critical section), and replace calls to
cond wait with semaphore decrements (made immediately after the critical section).
This change, which is valid even prior to transactionalizing the program, had no notice-
able impact on performance.

5 Naive Transactionalization

With condition variables removed and a set of possibly-contended locks identified, it
is now possible to replace critical sections with transactions. The easiest approach is to
remove the declarations of the locks from the program, and then use compiler errors
to guide the placement of transactions. In order to get a program executing as quickly
as possible, the programmer can use relaxed transactions throughout the program, and
omit annotations. Since relaxed transactions serialize whenever calling code that can-
not be shown to be transaction-safe, it is useful to annotate every function called by
a transaction, using the transaction callable attribute. In memcached 1.4.15,
this results in 51 relaxed transactions, and 49 annotations.

The performance of this naive transactionalization, both with and without the use
of callable annotations, appears in Figure 2. The figure also shows performance of the
baseline memcached versus the performance when condition variables are replaced with
semaphores. The experimental platform consisted of a dual-chip Intel Xeon 5650 sys-
tem with 12 GB of RAM, running Ubuntu Linux 13.04, kernel version 3.8.0-21. Each
chip has 6 cores, each two-way multithreaded, for a total of 24 hardware threads. Code
was compiled for 64-bit execution using GCC 4.9.0. Results are the average of 5 trials,
and error bars show one standard deviation.

Case Study: Using Transactions in Memcached 455

1 2 4 8 12
0

20

40

60

80

100

120

140

160

Worker Threads

Ti
m

e
(s

ec
on

ds
)

Baseline

+Semaphore

+Relaxed

+Callable

Fig. 2. Performance of baseline transactional memcached

Table 1. Frequency and cause of serialization for a 4-thread execution from Fig. 2
Branch Transactions In-Flight Switch Start Serial Abort Serial
Relaxed 3.46M 625K (18%) 1.25M (36%) 0
Callable 3.46M 625K (18%) 1.25M (36%) 0

The workload for this experiment was generated using memslap v1.0. Both mem-
slap and memcached ran on the same machine, so that network latencies did not hide
any change in latency for transactions versus locks. The experiment used parameters
--concurrency=x --execute-number=625000 --binary. By varying the
memslap concurrency parameter (x) from 1 to 12, we assessed performance with up to
12 concurrent requests to memcached. It is important to note that each memslap thread
performs 625K operations; perfect scaling should correspond to the execution time re-
maining unchanged as the thread count increases.

Figure 2 shows that the switch from condition variables to semaphores has a neg-
ligible impact on performance, but that for 4 or more threads, the use of transac-
tions in place of locks results in increased latency. Furthermore, the application of the
transaction callable attribute has no impact on performance. To gain further
insight into why performance degraded, we instrumented GCC to report the frequency
of serialization. GCC relies on serialization in two cases: First, if a transaction aborts
too many times, then serialization is used as a form of contention management [39] to
ensure that the aborting transaction runs in isolation and completes. Second, when a re-
laxed transaction wishes to perform an unsafe operation (e.g., one that cannot be rolled
back), the transaction must run in isolation, so that it does not encounter inconsistencies
that require it to abort. When GCC determines that all paths through a relaxed trans-
action require serialization, it starts the transaction in serial mode on the first attempt.
Otherwise, it starts the transaction in non-serial mode, and aborts and restarts in serial

456 M. Spear et al.

mode when an unsafe operation is requested. As Table 1 shows, more than half of all
transactions are serializing.

6 Replacing Volatiles and Reference Counts

Memcached uses volatile variables as an approximation of C++ atomics. Volatile vari-
ables serve two roles: first, they are assumed to be un-cached, and are thus employed as
flags for communicating between threads (typically a maintainer and a non-maintainer
thread). Second, items are reference counted, and the reference counts are stored as
volatile variables, which are modified via fetch-and-add and other atomic read-modify-
write operations. These operations are achieved via inline assembly.

The Draft C++ TM Specification requires a transaction to serialize before access-
ing a volatile variable, or before using assembly code. Thus any such access within a
transaction was causing the transaction serialize. Given that the current draft specifi-
cation defines a transaction’s start to have acquire fence semantics, and a transaction’s
end to have release fence semantics, it is acceptable to replace C++ atomic variable
accesses with transactions that access non-atomic variables. The easiest way to achieve
this transformation was to rename volatile variables and then use compilation errors as
a guide for fixing the code. There were only three such variables in memcached.

This change introduced the capacity for an unbounded increase in the number of exe-
cuted transactions, since a loop waiting on a volatile condition became a loop executing
a read-only transaction repeatedly. This is particularly concerning since single-location
transactions are not currently optimized in GCC. It also required manual inspection
to ensure that there was never bi-directional communication between critical sections
via volatile variables; such communication is not possible with transactions. We used
the same technique, with the same caveats, to replace reference count operations with
transactions.

The net effect of these changes was to introduce a large number of new transactions,
when the corresponding access was performed outside of a transaction, in order to allow
accesses to these variables from within a transaction to proceed without serialization.
Figure 3 depicts the impact on performance. Surprisingly, performance decreased. As
Table 2 shows, we only removed a handful of cases where transactions serialized during
execution. In return, more transactions required serialization in order to ensure progress.
This is an unfortunate, but expected, consequence of the interleaving of almost 3M
single-location transactions alongside of the original 3.46M transactions of memcached.
Furthermore, these transactions aborted more frequently, in order to reach the point
where they requested serialization. Since the underlying TM algorithm in GCC uses
eager locking and undo logs [14, 38], these aborts are expensive.

7 Handling Standard Library Calls

At this point, a large number of transactions still encounter mandatory serialization.
In most cases, this serialization is due to calls to standard libraries. While Miletic et
al. have shown that creating a transaction-safe standard library interface is a complex
research problem [28], it is possible to employ ad-hoc solutions.

Case Study: Using Transactions in Memcached 457

1 2 4 8 12
0

50

100

150

200

250

Worker Threads

Ti
m

e
(s

ec
on

ds
)

Baseline

+Callable

+Volatiles

Fig. 3. Performance without volatile variables

Table 2. Frequency and cause of serialization for a 4-thread execution from Fig. 3

Branch Transactions In-Flight Switch Start Serial Abort Serial
Callable 3.46M 625K (18%) 1.25M (36%) 0
Volatiles 6.37M 559K (9%) 1.25M (20%) 66K

We observed three categories of unsafe code. First, there were calls to functions that
take variable arguments. Variable argument functions are not currently supported, but
we were able to create multiple versions of each variable-argument function, to match
all possible parameter combinations that occurred in the program. Though tedious, it
was sufficient to avoid serialization.

Secondly, there were functions that are not currently safe, but that are easy to im-
plement in a safe manner. These include memcmp, memcpy, strlen, strncmp,
strncpy, and strchr. By using the transaction wrap attribute, it was possible
to provide our own “safe but slow” versions of these functions (i.e., no inline assem-
bly). Similarly, we provided our own realloc, which employed application-specific
knowledge to know the size of the initial object without having to access allocator meta-
data.

Lastly, there were unsafe string functions. Instead of reimplementing these functions,
at considerable developer cost, we combined transaction purewith a lightweight
marshaling scheme: First, we would write any input parameters to a stack object. Sec-
ond, we would pass the address of the stack object to the original (unsafe) function,
which we annotated as being pure. We could then marshal the return value back from
the stack to the heap.

Figure 4 demonstrates the technique. We assume there exists a function called
copy mutate, which takes as input a constant string, and returns a new string. We
also assume that transaction wrap has been used to provide a safe version of

458 M. Spear et al.

// Allow calls to unsafe copy mutate()
transaction pure
extern void copy mutate(const char *in, char *out);

void example() {
transaction atomic {
. . .
// prepare buffers
int size = strlen(shared in string);
char *in = malloc(size), *out = malloc(size);
// marshal data onto stack, using transactional reads
for (int i = 0; i < size; ++i)
in[i] = shared in string[i];

// invoke function with non-shared parameters
copy mutate(in, out);
// marshal data off of stack, using transactional writes
for (int i = 0; i < size; ++i)
shared out string[i] = out[i];

. . .
}

}

Fig. 4. Example of marshaling shared memory onto the stack to invoke an unsafe library function

strlen. We begin by indicating that the function is pure, so that the compiler will
allow its use from within a transaction.

Now that we have coaxed the compiler into calling the un-instrumented function
from within a transaction, we must make sure that such calls both (a) have access to the
correct data, even if there are speculative writes to that data by the current transaction,
and (b) do not result in the function modifying the heap without proper instrumentation,
or else a transaction rollback will result in partially-visible state.

For simplicity of presentation, we assume in Figure 4 that the output string is the
same length as the input string. This being the case, the process is as follows: first,
two temporary buffers are created, named in and out. Then, the input parameter to
copy mutate is copied to in, using transactional reads. GCC optimizes accesses to
the stack [35] and captured memory [12], and thus while reads of shared in string
will be instrumented, writes to in will not. When copy mutate is called, it will see
the input values via in, and it will write its output to out. Lastly, we copy out back
to shared out string. This will use regular reads to the captured memory of out,
but transactional writes, thereby ensuring that the final result can be rolled back.

This technique must be used with care. In addition to manually inspecting the
compiler-generated code to ensure that accesses to in and out do not use compiler
instrumentation, we must also be sure that the implementation of copy mutate does
not use transactions, access static variables, or in any other way risk introducing races
if it is not instrumented.

While these techniques do not generalize, they succeeded in reducing the incidence
of serialization: Table 3 shows that half of the transactions that previously started in
serial mode were now able to run concurrently, and all transactions that previously

Case Study: Using Transactions in Memcached 459

1 2 4 8 12
0

50

100

150

200

250

Worker Threads

Ti
m

e
(s

ec
on

ds
)

Baseline

+Callable

+Volatiles

+Libraries

Fig. 5. Performance with safe library functions

Table 3. Frequency and cause of serialization for a 4-thread execution from Fig. 5
Branch Transactions In-Flight Switch Start Serial Abort Serial
Callable 3.46M 625K (18%) 1.25M (36%) 0
Volatiles 6.37M 559K (9%) 1.25M (20%) 66K
Safe Libs 8.21M 0 625K (8%) 10K

switched to serial mode during execution now could run to completion. Furthermore,
the use of serialization for contention management decreased, largely because there
were fewer cascading aborts to cause serialization. However, Figure 5 shows that per-
formance increases only slightly: serialization is still hurting performance with 4 or
more threads.

8 Delaying Transactional I/O

The remaining serialization in memcached can be traced to six functions: event-
get version, assert, sem post, fprintf, perror, and abort. Of these,
event get version returns the version of libevent being used. We assumed that
the version would not change during execution, and moved this code to a program
initialization routine, so that the function was called once and the value cached.

Since the Draft C++ TM Specification implies that the underlying TM algorithm
must be opaque [16], any call to assert or abort that ought to result in program
termination is free to simply terminate the program, even if the call was made from
within an active transaction: since all reads performed up to the point of the error are
valid, it must be the case that in an equivalent non-transactional execution, the program
would have also requested termination. To prevent the compiler from serializing, we

460 M. Spear et al.

1 2 4 8 12
0

20

40

60

80

100

120

140

160

180

200

Worker Threads

Ti
m

e
(s

ec
on

ds
)

Baseline

+Callable

+Libraries

+onCommit

Fig. 6. Performance with delayed I/O via onCommit

Table 4. Frequency and cause of serialization for a 4-thread execution from Fig. 6

Branch Transactions In-Flight Switch Start Serial Abort Serial
Callable 3.46M 625K (18%) 1.25M (36%) 0
Safe Libs 8.21M 0 625K (8%) 10K
onCommit 8.13M 0 0 8K

marked these functions as pure. Any I/O they might induce (which would only involve
string constants) is not a concern.

Of the remaining functions, none requires atomicity with respect to its critical sec-
tion: the many-to-one communication with maintainer threads allows for the sem post
to run after the calling transaction commits; similarly, any non-fatal error messages can
be printed after the corresponding transaction commits (especially since the I/O only
involved constants). Consequently, we were able to delay these calls, by using GCC
onCommit handlers.

Table 4 shows that with these changes, all mandatory serialization in memcached
is eliminated. Only a small number of transactions serialize, and only for the sake of
contention management. Furthermore, performance improves notably, though still only
to the level seen in the original naive transactionalization.

9 Removing Bottlenecks in GCC

Even without any mandatory serialization, our transactional memcached performs much
worse than locks, particularly at higher thread counts. Though we initially thought
that contention management for the handful of serializing transactions might be to
blame, ultimately we discovered that bottlenecks within GCC itself were causing the
slowdown.

Case Study: Using Transactions in Memcached 461

1 2 4 8 12
0

20

40

60

80

100

120

140

160

Worker Threads

Ti
m

e
(s

ec
on

ds
)

Baseline

+Callable

+onCommit

+New GCC

Fig. 7. Performance with a modified GCC TM implementation

GCC’s TM implementation is complex, with support for dynamically changing the
underlying TM algorithm, arbitrary arrival and departure of threads, and both relaxed
and atomic transactions. It also assumes that serialization is unavoidable. To keep serial-
ization fast, and to avoid complex coordination between serializing and non-serializing
transactions, GCC uses a global readers/writer lock to coordinate transaction begin.
Regular (abortable) transactions serve as readers, and serialized transactions are writ-
ers.

Our efforts move memcached outside of the common case: there are no transactions
that require serialization, and during a long-running execution, the workload is expected
to be sufficiently homogeneous that changing the TM algorithm would be unnecessary.
By specializing GCC’s TM to this case we were able to substantially improve perfor-
mance.

Making this change necessitated an explicit contention manager. We experimented
with various forms of exponential backoff [19], and also a modified form of serialization
called “hourglass” [15, 22]. We also ran with no contention management whatsoever.
We found backoff to be sensitive to its parameters, resulting in occasional steep perfor-
mance drops. Otherwise, the various options all performed roughly on par with each
other. Figure 7 shows performance with no contention manager.

In Figure 7, we see that removing support for serialization from GCC brings perfor-
mance to within 10% of the original memcached performance. Unfortunately, our mod-
ifications to GCC could not be applied until after all serialization was eliminated; thus it
is not possible to evaluate the impact of our changes to GCC on variants of memcached
other than our last, which used onCommit handlers. Still, the result is impressive: TM
performs almost as well as the original, well-tuned code. It does so without the benefit
of a complex lock hierarchy for preventing non-conflicting operations from contending
over locks, and without much TM-specific optimization.

462 M. Spear et al.

10 The Road Forward

Our transactionalization of memcached validates many years of research. Of the many
sub-areas of transactional memory research, we note two areas as being particularly
relevant.

Most important is semantics: In this work, we needed to choose between privatiza-
tion and transactionalization when handling locks, and had to reason about the ordering
guarantees of transactions used as replacement for volatile variable accesses. Years of
research, and dozens of competing proposals for how to specify the interaction between
transactions and other concurrent code, are the foundation upon which the GCC TM
implementation and Draft C++ TM Specification are built.

Second, irrevocability plays a critical role. While our goal was to eliminate serial-
ization, it is nonetheless true that irrevocability (and efficient implementations thereof)
is vital to the acceptance of TM. If we did not have relaxed transactions as a starting
point, replacing lock-based critical sections in virtually any real-world code would be
impossible.

With that said, this work raises many questions, relevant to programmers, researchers,
and system designers. The most pressing is how a programmer ought to identify and
eliminate sources of serialization. In this work, we took the position that since manda-
tory serialization of atomic transactions (e.g., due to unsafe code) is forbidden, that
there was an implicit performance model offered by the specification. Our two-step ap-
proach was to first transactionalize the program with relaxed transactions, and then to
replace relaxed transactions with atomic transactions. Whenever a transaction could not
be made atomic, we used compiler errors to identify what line(s) of code were unsafe.
We then categorized unsafe code, and systematically removed it. But is this appropriate?
Should programmers think of relaxed transactions as a “last resort”, and favor atomic
transactions due to their static guarantee that they need not serialize? Would it be better
to think of relaxed transactions as the default, reserve atomic transactions for situations
in which explicit self-abort is desired, and build new tools to help identify causes of
serialization?

A second question for programmers is when, and how, to optimize based on transac-
tional features. There are two interesting examples in memcached. First, as reported by
Yoo et al. [47], performance can improve through transaction coarsening. Coarsening
can also remove bugs. Consider the code segments in Figure 8 and Figure 9. Both ap-
proximate code appear in memcached. In the first case, we see two tiny critical sections,
one of which runs infrequently. While lock re-acquisition is usually cheap, the process
of starting a transaction (especially a software transaction) is orders of magnitude more
expensive. Thus coarsening to a single transaction that includes a condition should de-
crease latency. In the second case, the lack of atomicity between the first and second
reads of volatile var seems like a bug. Coarsening the two single-statement trans-
actions into a larger transaction will both (a) reduce latency when the first condition is
not true, and (b) prevent erroneous calls to action3.

Third, programmers may need to re-consider the use of techniques like reference
counting, access a datum, and then decrement the reference count. With transactions,
it might be possible to replace the modifications of the reference count with a simple
read [11].

Case Study: Using Transactions in Memcached 463

stats lock.lock()
counter1.increment()
stats lock.unlock()
if (unlikely condition()) {
stats lock.lock()
counter2.increment()
stats lock.unlock()

}

Fig. 8. Rapid re-locking

volatile int v
. . .
if (1 == transaction read(v))
action1()

else if (2 == transaction read(v))
action2()

else
action3()

Fig. 9. Re-reading a volatile within a condi-
tional

Lastly, maintainers of legacy code will need to decide when the benefits of sim-
pler transactional program become compelling enough to accept a small performance
penalty. In addition to removing a complex locking protocol, transactional memcached
admits a simpler protocol for accepting new connections. Currently, every new con-
nection must first query the cache lock to determine whether a hash table resize is
in-flight or not. In the transactional version, this small constant overhead on every trans-
action can be removed, eliminating a handshake that adds latency to every operation.
Reference counts could also be simplified, as in [11]. When coupled with increased
maintainability (handshaking spans two files and involves a libevent callback; the com-
ments in the code suggest that some reference counts may not be right), this becomes
yet another incentive to transactionalize.

For implementers of transactional systems, we also see many opportunities. If we
take memcached as a proxy for real-world applications, then flag-based communica-
tion (like that in Figure 9) will be common, so adding optimizations for single-location
transactions could have significant impact: it is likely that a thread checkpoint will not
be needed. Furthermore, since the code in Figure 9 could easily be called from a trans-
actional context, it would be worth evaluating heuristics for when and how to flatten
nested transactions. It would certainly be a waste of cycles to use closed nesting to
execute the individual accesses of volatile var.

We also encourage implementers to begin the long and painful process of making
standard libraries transaction-safe. While it is easy to dismiss this task as being relevant
only to “legacy code”, the truth is that no real-world application starts from scratch;
every program is built upon a huge body of run-time libraries and data structures. To
prevent programmers from using the unsafe techniques we used in Section 7, it will
be necessary to transactionalize as much of the C++ standard template library and C
standard library as possible. We are encouraged by recent work by Miletic et al. [28].

For researchers and language designers, we suggest a focus on providing simple syn-
tax for advanced features. Allowing programmers to fine-tune contention management
policies is an obvious first step, and our experience also suggests that some form of
onCommit and transaction wrap support will be useful, so long as the imple-
mentation can ensure safety. Inventing new mechanisms to allow relaxed transactions
to serialize without introducing bottlenecks, and to permit condition synchronization as
a language-level feature of TM, are also critical steps.

464 M. Spear et al.

11 Conclusions

In this chapter, we applied transactional memory to replace locks with transactions in
the memcached in-memory web cache. Our focus was analyzing the effectiveness of
the Draft C++ TM Specification, and on providing recommendations to programmers
and researchers.

Among our most significant findings is that the core research in transactional mem-
ory that has taken place over the last decade has, indeed, been fruitful. From semantics
to compiler optimizations to irrevocability mechanisms, the contributions of researchers
have had a profound impact on both the Draft C++ TM Specification, and its implemen-
tation in GCC. Without these contributions, this work would not have been possible.
The performance of transactional memcached, and the opportunities to optimize and
simplify that are afforded by TM, confirm that TM is poised to begin delivering on its
promises.

Acknowledgments. We thank the TRANSACT 2013 and ASPLOS 2014 communities,
for their feedback on previous versions of this work. We also thank Justin Gottschlich,
Victor Luchangco, Jens Maurer, and Torvald Riegel for many helpful conversations
about the Draft C++ TM Specification. This work was supported in part by the Na-
tional Science Foundation under grants CNS-1016828, CCF-1218530, and CAREER-
1253362.

Source Code

The source code for our transactional version of memcached is available at
https://github.com/mfs409/tm memcached.

References

[1] Adl-Tabatabai, A.R., Luchangco, V., Marathe, V.J., Moir, M., Narayanaswamy, R., Ni, Y.,
Nussbaum, D., Tian, X., Welc, A., Wu, P.: Exceptions and Transactions in C++. In: Proceed-
ings of the First USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA (March
2009)

[2] Adl-Tabatabai, A.R., Shpeisman, T., Gottschlich, J.: Draft Specification of Transactional
Language Constructs for C++, version 1.1 (February 2012),
http://justingottschlich.com/tm-specification-for-c-v-1-1/

[3] Adl-Tabatabai, A.R.: Shpeisman (Eds.), T.: Draft Specification of Transactional Language
Constructs for C++, version 1.0 (August 2009),
http://software.intel.com/file/21569

[4] Afek, Y., Drepper, U., Felber, P., Fetzer, C., Gramoli, V., Hohmuth, M., Riviere, E., Sten-
strom, P., Unsal, O., Maldonado, W., Harmanci, D., Marlier, P., Diestelhorst, S., Pohlack,
M., Cristal, A., Hur, I., Dragojevic, A., Guerraoui, R., Kapalka, M., Tomic, S., Korland,
G., Shavit, N., Nowack, M., Riegel, T.: The velox transactional memory stack. In: Proceed-
ings of the 43rd IEEE/ACM International Symposium on Microarchitecture, Atlanta, GA
(December 2010)

http://justingottschlich.com/tm-specification-for-c-v-1-1/
http://software.intel.com/file/21569

Case Study: Using Transactions in Memcached 465

[5] Ansari, M., Kotselidis, C., Jarvis, K., Lujan, M., Kirkham, C., Watson, I.: Lee-TM: A Non-
trivial Benchmark for Transactional Memory. In: Proceedings of the International Confer-
ence on Algorithms and Architectures for Parallel Processing, Ayia Napa, Cyprus (June
2008)

[6] Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as
a non-clairvoyant scheduling problem. In: Proceedings of the 25th ACM Symposium on
Principles of Distributed Computing, Denver, CO (August 2006)

[7] Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C., Oluko-
tun, K.: The Atomos Transactional Programming Language. In: Proceedings of the 27th
ACM Conference on Programming Language Design and Implementation, Ottawa, ON
(June 2006)

[8] Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C., Saraswat,
V., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform Cluster Computing.
In: Proceedings of the 20th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, San Diego, CA (October 2005)

[9] Dalessandro, L., Spear, M., Scott, M.L.: NOrec: Streamlining STM by Abolishing Owner-
ship Records. In: Proceedings of the 15th ACM Symposium on Principles and Practice of
Parallel Programming, Bangalore, India (January 2010)

[10] Dice, D., Shavit, N.: TLRW: Return of the Read-Write Lock. In: Proceedings of the 22nd
ACM Symposium on Parallelism in Algorithms and Architectures, Santorini, Greece (June
2010)

[11] Dragojevic, A., Herlihy, M., Lev, Y., Moir, M.: On The Power of Hardware Transactional
Memory to Simplify Memory Management. In: Proceedings of the 30th ACM Symposium
on Principles of Distributed Computing, San Jose, CA (June 2011)

[12] Dragojevic, A., Ni, Y., Adl-Tabatabai, A.R.: Optimizing Transactions for Captured Memory.
In: Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architec-
tures, Calgary, AB, Canada (August 2009)

[13] Dudnik, P., Swift, M.M.: Condition Variables and Transactional Memory: Problem or Op-
portunity? In: Proceedings of the 4th ACM SIGPLAN Workshop on Transactional Comput-
ing, Raleigh, NC (February 2009)

[14] Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based Software
Transactional Memory. In: Proceedings of the 13th ACM Symposium on Principles and
Practice of Parallel Programming, Salt Lake City, UT (February 2008)

[15] Fich, F.E., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free Algorithms Can Be Prac-
tically Wait-free. In: Proceedings of the 19th International Symposium on Distributed Com-
puting, Cracow, Poland (September 2005)

[16] Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: Proceedings
of the 13th ACM Symposium on Principles and Practice of Parallel Programming, Salt Lake
City, UT (February 2008)

[17] Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A Benchmark for Software Transac-
tional Memory. In: Proceedings of the EuroSys 2007 Conference, Lisbon, Portugal (March
2007)

[18] Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable Memory Transactions.
In: Proceedings of the 10th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, Chicago, IL (June 2005)

[19] Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N.: Software Transactional Mem-
ory for Dynamic-sized Data Structures. In: Proceedings of the 22nd ACM Symposium on
Principles of Distributed Computing, Boston, MA (July 2003)

[20] Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.: Eigenbench:
A Simple Exploration Tool for Orthogonal TM Characteristics. In: Proceedings of the IEEE
International Symposium on Workload Characterization, Atlanta, GA (December 2010)

466 M. Spear et al.

[21] Kestor, G., Stipic, S., Unsal, O., Cristal, A., Valero, M.: RMS-TM: A Transactional Memory
Benchmark for Recognition, Mining and Synthesis Applications. In: Proceedings of the 4th
ACM SIGPLAN Workshop on Transactional Computing, Raleigh, NC (February 2009)

[22] Liu, Y., Spear, M.: Toxic Transactions. In: Proceedings of the 6th ACM SIGPLAN Work-
shop on Transactional Computing, San Jose, CA (June 2011)

[23] Luchangco, V., Marathe, V.: Transaction Communicators: Enabling Cooperation Among
Concurrent Transactions. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, San Antonio, TX (February 2011)

[24] Lupei, D., Simion, B., Pinto, D., Misler, M., Burcea, M., Krick, W., Amza, C.: Transactional
Memory Support for Scalable and Transparent Parallelization of Multiplayer Games. In:
Proceedings of the EuroSys2010 Conference, Paris, France (April 2010)

[25] Mathewson, N., Provos, N.: Libevent – An Event Notification Library (2011–2013),
http://libevent.org/

[26] McKenney, P.E., Michael, M.M., Walpole, J.: Why The Grass Not Be Greener On The Other
Side: A Comparison of Locking vs. Transactional Memory. In: Proceedings of the 4th ACM
SIGOPS Workshop on Programming Languages and Operating Systems, Stevenson, WA
(October 2007)

[27] Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R., Saha, B., Welc,
A.: Practical Weak-Atomicity Semantics for Java STM. In: Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures, Munich, Germany (June 2008)

[28] Miletic, N., Smiljkovic, V., Perfumo, C., Harris, T., Cristal, A., Hur, I., Unsal, O., Valero,
M.: Transactification of a Real-World System Library. In: Proceedings of the 5th ACM
SIGPLAN Workshop on Transactional Computing, Paris, France (April 2010)

[29] Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Ap-
plications for Multi-processing. In: Proceedings of the IEEE International Symposium on
Workload Characterization, Seattle, WA (September 2008)

[30] Moravan, M., Bobba, J., Moore, K., Yen, L., Hill, M., Liblit, B., Swift, M., Wood, D.: Sup-
porting Nested Transactional Memory in LogTM. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA (October 2006)

[31] Ni, Y., Welc, A., Adl-Tabatabai, A.R., Bach, M., Berkowits, S., Cownie, J., Geva, R.,
Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A., Tian, X.: De-
sign and Implementation of Transactional Constructs for C/C++. In: Proceedings of the
23rd ACM Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations, Nashville, TN (October 2008)

[32] Pankratius, V., Adl-Tabatabai, A.R.: A Study of Transactional Memory vs. Locks in Prac-
tice. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, San Jose, CA (June 2011)

[33] Poettering, L.: Measuring Lock Contention (2009–2013),
http://0pointer.de/blog/projects/mutrace.html

[34] Pohlack, M., Diestelhorst, S.: From Lightweight Hardware Transactional Memory to
Lightweight Lock Elision. In: Proceedings of the 6th ACM SIGPLAN Workshop on Trans-
actional Computing, San Jose, CA (June 2011)

[35] Riegel, T., Fetzer, C., Felber, P.: Automatic Data Partitioning in Software Transactional
Memories. In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and
Architectures, Munich, Germany (June 2008)

[36] Rossbach, C., Hofmann, O., Witchel, E.: Is Transactional Programming Really Easier? In:
Proceedings of the 15th ACM Symposium on Principles and Practice of Parallel Program-
ming, Bangalore, India (January 2010)

http://libevent.org/
http://0pointer.de/blog/projects/mutrace.html

Case Study: Using Transactions in Memcached 467

[37] Ruan, W., Vyas, T., Liu, Y., Spear, M.: Transactionalizing Legacy Code: An Experience
Report Using GCC and Memcached. In: Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems, Salt Lake
City, UT (March 2014)

[38] Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: A
High Performance Software Transactional Memory System For A Multi-Core Runtime. In:
Proceedings of the 11th ACM Symposium on Principles and Practice of Parallel Program-
ming, New York, NY (March 2006)

[39] Scherer III, W.N., Scott, M.L.: Advanced Contention Management for Dynamic Software
Transactional Memory. In: Proceedings of the 24th ACM Symposium on Principles of Dis-
tributed Computing, Las Vegas, NV (July 2005)

[40] Spear, M.: Lightweight, Robust Adaptivity for Software Transactional Memory. In: Pro-
ceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures,
Santorini, Greece (June 2010)

[41] Spear, M., Dalessandro, L., Marathe, V.J., Scott, M.L.: A Comprehensive Strategy for Con-
tention Management in Software Transactional Memory. In: Proceedings of the 14th ACM
Symposium on Principles and Practice of Parallel Programming, Raleigh, NC (February
2009)

[42] Spear, M., Marathe, V., Dalessandro, L., Scott, M.: Privatization Techniques for Software
Transactional Memory (POSTER). In: Proceedings of the 26th ACM Symposium on Prin-
ciples of Distributed Computing, Portland, OR (August 2007)

[43] Spear, M., Michael, M.M., von Praun, C.: RingSTM: Scalable Transactions with a Single
Atomic Instruction. In: Proceedings of the 20th ACM Symposium on Parallelism in Algo-
rithms and Architectures, Munich, Germany (June 2008)

[44] Spear, M., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Implementing and
Exploiting Inevitability in Software Transactional Memory. In: Proceedings of the 37th In-
ternational Conference on Parallel Processing, Portland, OR (September 2008)

[45] Wang, C., Liu, Y., Spear, M.: Transaction-Friendly Condition Variables. In: Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms and Architectures, Prague, Czech
Republic (June 2014)

[46] Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable Transactions and their Applications.
In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architec-
tures, Munich, Germany (June 2008)

[47] Yoo, R., Hughes, C., Lai, K., Rajwar, R.: Performance Evaluation of Intel Transactional
Synchronization Extensions for High Performance Computing. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
Denver, CO (November 2013)

[48] Yoo, R., Lee, H.H.: Adaptive Transaction Scheduling for Transactional Memory Systems.
In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architec-
tures, Munich, Germany (June 2008)

[49] Yoo, R., Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A.R., Lee, H.H.: Kicking the Tires of
Software Transactional Memory: Why the Going Gets Tough. In: Proceedings of the 20th
ACM Symposium on Parallelism in Algorithms and Architectures, Munich, Germany (June
2008)

[50] Zyulkyarov, F., Gajinov, V., Unsal, O., Cristal, A., Ayguade, E., Harris, T., Valero, M.:
Atomic Quake: Using Transactional Memory in an Interactive Multiplayer Game Server.
In: Proceedings of the 14th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, Raleigh, NC (February 2009)

Author Index

Attiya, Hagit 50, 72, 367
Avni, Hillel 228

Barreto, João 192
Bushkov, Victor 32

Ciciani, Bruno 395
Cohen, Ernie 283
Couceiro, Maria 418
Cristal, Adrian 283

Dias, Ricardo J. 166
Didona, Diego 418
Di Sanzo, Pierangelo 395
Dolev, Shlomi 228
Dziuma, Dmytro 3

Elmas, Tayfun 283

Fatourou, Panagiota 3, 72, 101
Felber, Pascal 245
Fetzer, Christof 245
Filipe, Ricardo 192

Gramoli, Vincent 245, 367
Guerraoui, Rachid 32
Gutierrez, Eladio 127

Hans, Sandeep 50
Harmanci, Derin 245
Hendler, Danny 213

Iaremko, Mykhailo 101

Kanellou, Eleni 3, 101
Keidar, Idit 150
Kestor, Gokcen 283
Kobus, Tadeusz 309
Kokociński, Maciej 309
Kosmas, Eleftherios 101, 228
Kuru, Ismail 283
Kuznetsov, Petr 50

Liu, Yujie 449
Lourenço, João M. 166

Milani, Alessia 367
Mutluergil, Suha Orhun 283

Nowack, Martin 245

Ozkan, Burcu Kulahcioglu 283

Palmieri, Roberto 341
Pellegrini, Alessandro 395
Peluso, Sebastiano 341
Perelman, Dmitri 150
Plata, Oscar 127

Quaglia, Francesco 395
Quislant, Ricardo 127

Ravi, Srivatsan 50
Ravindran, Binoy 341
Rodrigues, Lúıs 418
Romano, Paolo 418
Ruan, Wenjia 449
Rughetti, Diego 395

Spear, Michael 449
Suissa-Peleg, Adi 213

Tasiran, Serdar 283

Unsal, Osman 268, 283

Vale, Tiago M. 166
Vyas, Trilok 449

Wojciechowski, Pawe�l T. 309

Yalcin, Gulay 268

Zapata, Emilio L. 127

	COST Description
	Preface
	Table of Contents
	Theoretical Foundations
	Consistency for Transactional Memory Computing
	1Introduction
	2Model
	2.1System
	2.2STM Definitions

	3TM Consistency
	3.1Strict Serializability
	3.2 Serializability
	3.3Opacity
	3.4Causality-Related Consistency Conditions
	3.5Snapshot Isolation
	References

	Liveness in Transactional Memory
	1Introduction
	2Preliminaries
	2.1System Model
	2.2Histories and Executions
	2.3Transactional Memory
	2.4Process Failures
	2.5Safety Properties of TM

	3Liveness of a TM
	3.1TM-Liveness Properties
	3.2Examples of TM-Liveness Properties

	4Impossibility of Local Progress
	5Generalizing the Impossibility
	5.1Classes of TM-Liveness Properties
	5.2Generalized Result

	6Conclusion
	References

	Safety and Deferred Update in Transactional Memory
	1 Introduction
	2Preliminaries
	2.1Implementations and Histories
	2.2Complete Histories and Real-Time Precedence
	2.3Latest Written Value and Legality
	2.4Safety
	2.5city

	3Deferred-Update Semantics and Its Properties
	3.1Du-Opacity
	3.2Du-Opacity Is Prefix-Closed
	3.3The Limit of Du-Opaque Histories
	3.4Du-Opacity is Limit-Closed for Complete Histories

	4Du-Opacity vs. Opacity
	4.1 The Unique-Write Case
	4.2The Sequential-History Case

	5Du-Opacity vs. Other Deferred-Update Criteria
	5.1TMS2
	5.2Virtual World Consistency (VWC)
	5.3TMS1

	6Concluding Remarks
	References

	Disjoint-Access Parallelism in Software Transactional Memory
	1Introduction
	2Formalizing TM
	2.1Safety: Consistency Properties of TM
	2.2Progress: Termination Guarantees for TM
	2.3Disjoint-Access Parallelism

	3Lower Bounds and Impossibility Results for Providing Disjoint-Access Parallelism
	3.1Wait-Free, Invisible Reads and Disjoint-Access Parallelism
	3.2Feeble Disjoint-Access Parallelism, Wait-Free Reads and Minimally Progressive Writes

	4Disjoint-Access Parallel TM Implementations
	4.1Blocking Disjoint-Access Parallel STM Implementations
	4.2Non-blocking Disjoint-Access Parallel STM Implementations
	4.3Related Research
	References

	Algorithms
	Algorithmic Techniques in STM Design
	1Introduction
	2The System
	3Transactional Memory Model
	3.1Transactions
	3.2STM Correctness
	3.3STM Liveness
	3.4Conflicts

	4STM Design Decisions and Mechanisms
	4.1Ownerships
	4.2Mechanisms for Preventing, Detecting and Resolving Conflicts
	4.3Levels of Indirection and In-Place Updates

	5Interface for Transactional Operations
	6Non-blocking Algorithms
	6.1Case Study: DSTM
	6.2Other Non-blocking Algorithms

	7 Blocking Algorithms
	7.1Case Study 1: NOrec
	7.2Case Study 2: TLII
	7.3Other Blocking Algorithms

	8Pessimistic STM Implementations
	8.1Pessimistic Software Lock Elision
	8.2Other Pessimistic STM Algorithms
	References

	Conflict Detection in Hardware Transactional Memory
	1Introduction
	2Bounded Conflict Detection
	2.1Leveraging the Cache Coherence Protocol
	2.2Alternatives to Cache Coherence Protocol Modification
	2.3Hardware Manufacturers' Approaches

	3Unbounded Conflict Detection
	3.1Persistent Meta-Data Systems
	3.2Signature-Based Systems

	4Conclusions
	References

	Multi-versioning in Transactional Memory
	1Why Multiple Versions
	1.1Because Read-Only Transactions Matter
	1.2Formalizing the Advantages of Multi-versioned Solutions

	2Memory Management Challenges of Multi-versioned STMs
	2.1STMs with a Constant Number of Versions for Every Object
	2.2Impossibility of Space Optimal STM
	2.3�Garbage Collecting Useless Prefixes

	3Performance Challenges of Multi-versioned STMs
	3.1Disjoint-Access Parallelism
	3.2Read Visibility

	4Multi-versioned STM in Managed Memory Environments
	4.1Concurrent Algorithms Are Simpler with Garbage Collection
	4.2Selective Multi-Versioning (SMV) STM

	5Conclusions
	References

	Framework Support for the Efficient Implementation of Multi-version Algorithms
	1Introduction
	2The Deuce Framework
	3Supporting the In-Place Scheme in Deuce
	3.1Implementation

	4Evaluation of the In-Place Scheme
	4.1Overhead Evaluation
	4.2Implementing a Multi-versioning Algorithm: JVSTM
	4.3Speedup Evaluation

	5State-of-the-Art Multi-version Algorithm's Implementations
	5.1SMV – Selective Multi-Versioning STM
	5.2JVSTM Lock Free

	6Supporting Efficient Non-transactional code
	6.1Read Access Adaptation
	6.2Commit Adaptation

	7Performance Comparison of STM Algorithms
	8Concluding Remarks
	References

	Nested Parallelism in Transactional Memory
	1Introduction
	2Nested Parallelism Models in Transactional Memory
	2.1Parallel Nesting
	2.2Shallow Parallel Nesting
	2.3Nesting with Restricted Parallelism
	2.4Nested-Parallelism with Thread-Level Speculation

	3Support
	4Algorithms
	4.1CWSTM
	4.2PNSTM
	4.3NePalTM
	4.4 NeSTM
	4.5HParSTM
	4.6JVSTM
	4.7TLSTM

	5Summary
	References

	Contention Managementand Scheduling
	Scheduling-Based Contention Management Techniques for Transactional Memory
	1Introduction
	2Conventional Contention Managers
	2.1Contention Manager Interface
	2.2Sample Contention Managers

	3Scheduling-Based Contention Managers
	3.1Serializing Contention Management
	3.2Proactive Collision Avoidance
	3.3Kernel-Assisted Scheduling-Based Contention Management

	4Theoretical Results
	5Discussion
	References

	Proactive Contention Avoidance
	1Introduction
	1.1Proactive Aborts Reduction
	1.2No Aborts and No Serialization

	2Consistency Oblivious Programming
	2.1The COP Template
	2.2Composable COP Requires Non Transactional Loads
	2.3COP Data Structure
	2.4Evaluation of COP in Applications

	3SemanticTM
	References

	Transactional Memory and Reliability
	Safe Exception Handling with Transactional Memory
	1Introduction
	2From Exception Handling to Atomic Exception Handling
	2.1Syntax and Semantics

	3Concurrent Atomic Exception Handling
	3.1Semantics
	3.2Failure Mode Constructs
	3.3Nesting of Atomic Boxes
	3.4Resolution of Concurrently Raised Exceptions
	3.5lution of Code
	3.6Implementation

	4Evaluation
	4.1ducer-Consumer Example
	4.2Sorting Examples

	5Conclusion
	6Bibliographic Notes
	References

	Transactional Memory for Reliability
	1Fault Categorization
	2Aspects of Reliability
	2.1Error Detection
	2.2Error Recovery

	3Reliability with Transactional Memory
	3.1Symptom-Based Error Detection and Recovery with TM
	3.2Redundancy Based Error Detection and Recovery with TM
	3.3Encoded Processing for Error Detection and Recovery with TM

	4Discussion: Pros and Cons of TM Design Parameters for Reliability
	4.1TM in Software or in Hardware
	4.2Conflict Detection and Data Versioning Policies
	4.3Possible Programming Model and Software Extensions

	5Conclusion and Future Direction
	References

	Verification Tools for Transactional Programs
	1Introduction
	2Static Verification for Transactional Programs
	2.1Motivating Examples
	2.2Preliminiaries: Transactional Programs
	2.3SI and Other Relaxed Conflict Detection
	2.4Concurrency, VCC and Modular Verification
	2.5Source-to-source Transformation for Simulating SI
	2.6Verifying Transformed Program with VCC
	2.7Experimental Demonstration
	2.8Related Work

	3Dynamic Verification for Transactional Programs
	3.1Transaction-Aware, Precise Race Detection
	3.2Detecting Potential Races in Transactional Programs

	4Conclusion
	References

	Distributed Transactional Memory
	Introduction to Transactional Replication
	1Introduction
	2System Model and Properties
	3Replicated Algorithm Design Problems
	4State Machine Replication
	5Deferred Update Replication
	6Deferred Update Replication with Multiversioning
	7Hybrid SM-DUR Algorithm
	8Postgres-R
	9Executive Deferred Update Replication
	10Comparison
	11Conclusion and Further Reading

	Transaction Execution Models in Partially Replicated Transactional Memory: The Casefor Data-Flow and Control-Flow
	1Introduction
	2System Model
	3Transaction Execution Models: Data-Flow and Control-Flow
	4TFA: A Data-Flow Based Replication Protocol
	4.1Protocol Overview
	4.2Accessing Objects and Committing Transactions

	5SCORe: A Control-Flow Based Replication Protocol
	5.1Protocol Overview
	5.2Handling of Read and Write Operations
	5.3Handling Commits

	6Hybrid-Flow: A Hybrid Approach for Exploiting Application Locality
	6.1Protocol Details
	6.2Exploiting Locality

	7Conclusion

	Directory Protocols for Distributed Transactional Memory
	1Introduction
	2Preliminaries
	3Overview of Some Directory Protocols
	3.1Arrow
	3.2Relay
	3.3Ballistic
	3.4Spiral

	4Combine Directory Protocol
	4.1Overview
	4.2Details of Combine
	4.3Handling Concurrent Requests
	4.4Constructing an Overlay Tree
	4.4Complexity Analysis of Combine

	5Using a Directory Protocol in DTM
	6Discussion

	Applications and Self-tuning
	Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches
	1 Introduction
	2The Common Base-Ground
	3The fA Estimator
	4The fML Estimator
	5The fAML Estimator
	6 Correcting Functions
	7The Concurrency Regulation Architecture
	8Experimental Assessment
	9A Look at Literature Alternatives

	Self-tuning in Distributed Transactional Memory
	1Introduction
	2Background on DTM
	3 What Should Be Self-tuned in a DTM?
	4When and Which Adaptation to Trigger?
	4.3When to Trigger Adaptations?
	4.2Which Adaptation to Trigger?

	5Elastic Scaling in DTM Systems
	6Adaptation of the Data Consistency Protocol
	7Conclusions and Open Research Questions

	Case Study: Using Transactions in Memcached
	1Introduction
	2The Draft C++ TM Specification
	2.1 Types of Transactions
	2.2Exceptions and Self-abort
	2.3Extensions to the Draft Specification

	3Why Memcached?
	4Preparing to Transactionalize
	5Naive Transactionalization
	6Replacing Volatiles and Reference Counts
	7Handling Standard Library Calls
	8Delaying Transactional I/O
	9Removing Bottlenecks in GCC
	10The Road Forward
	11Conclusions

	Author Index

