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Abstract Wireless body area networks (BANs) are the latest generation of personal
area networks (PANs) and describe radio networks of sensors, and/or actuators,
placed in, on, around and some-times near the human body. BANs are motivated
by the health-care application domain where reliable, long-term, operation is
paramount. Hence understanding, and modeling, the body-area radio propagation
channel is vital. In this chapter we describe channel models for wireless body
area networks, in terms of operating scenarios—including on the human body,
off the body, in the body, and body-to-body (or interfering); carrier frequencies
from hundreds of MHz to several GHz; and bandwidth of operation, including
narrowband and ultra-wideband. We describe particular challenges for accurate
channel modeling such as the absence of wide-sense-stationarity in typical on-
body narrowband BANs. We describe results following from a large amount of
empirical data, and demonstrate that the BAN channel is dominated by shadowing
with slowly-changing dynamics. Finally two particularly challenging scenarios for
BAN operation are described: sleep-monitoring and also where there is a large
number of co-located BANs.
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1 Introduction

Wireless body area networks (BANs) are radio networks of sensors and/or actuators,
placed on, in, around and/or near the human body, and represent the latest generation
of personal area networks. As such, BANs describe radio networks that will
often employ ultra-low-power short-range radios. One of the principal application
domains of BANs is for use in health-care, with other applications including
consumer fitness, emergency services and consumer entertainment. Considering
application in health-care, long-term, reliable operation at low-power is very
important. We will show that reliable operation is a real challenge for BANs
by considering typical characteristics of the radio channel. It is also then very
important, so that system design can respond to these characteristics, to derive
appropriate channel models for the BAN radio channel.

The main focus of this chapter will be the on-body radio channel, for com-
munications from one location on a given subject’s body to another location on
the subjects body, which is envisaged as the most common BAN implementation.
However there will be some focus on the off-body channel and the body-to-body
channel. The body-to-body channel is important due to the anticipated prevalence of
body area networks, where this interfering channel, with multiple co-located BANs,
can dominate the on-body radio channel. It will be shown that there are various
difficulties in channel modeling for BAN, which are particular to the BAN channel,
underlining the importance of BAN reliability and life-time enhancing system
design, such as relay-assisted communications, transmit power control and link
adaptation. Important first and second-order statistics can be derived from extensive
empirical campaigns, and alternate evaluations can be given directly from empirical
data. The “everyday” BAN channel scenario presents a challenging environment
for radio propagation and system design, but there are even more challenging
environments in which BANs can operate, namely monitoring a person sleeping,
and where there is a large number of coexisting BANs, which we will address.

2 Operational Scenarios for Wireless Body
Area Network Channels

There are four scenarios for wireless body area network channels, namely

1. On-body: for radio communications from one part on the surface of the human
body to another part on the surface of the human body;

2. In-body: for radio communications from inside the human body, typically to the
body surface;

3. Off-body: for radio communications from the surface of the human body to a
device closely located to the body, typically within 3 m of the body (or vice-
versa, i.e., from off the body to on the body);
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Fig. 1 BAN on a male subject, illustrating gateway (hub), sensors and in-body, on-body and
off-body links, adapted from [44]

4. Body-to-body or interfering: for radio communications, target or interfering,
from one subject’s body to another subject’s body.

A BAN on a subject, illustrating a gateway (hub), sensor nodes, on,-body in-body
and off-body links, is shown in Fig. 1. The hub locations will be typically near the
torso, either at the hips or on the chest; places where a subject could comfortably
wear a device that is expected to be larger than a sensor node. These locations are
also reasonably central on the human body.

We now describe the four scenarios in more detail, particularly with respect to
challenges, operating environments and applications for each.

2.1 On-Body Channel

The on-body channel is the most prevalent channel for wireless body area net-
works and is the focus in this chapter. This channel will operate in various
environments and will be dominated by slowly-varying dynamics from human-
body movement and variations in shadowing by body parts. It presents significant
difficulties to the radio systems designer, but there are also some benefits as follows:

• Difficulties: When operating with small low-power radios, long sensor/actuator
radio lifetime is desired, thus requiring small power demands on the battery of
the radio, as well as desired low electromagnetic radiation specific absorption
rate (SAR) to the subject’s body. This all leads to a desired transmit power
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significantly less than 0 dBm (or 1 mW) , �10 dBm (or 0.1 mW) may often be
desirable. Further, as will be described later, at typical carrier frequencies of
several hundreds of MHz up to a few gigahertz, communication on the human
body provides a difficult radio channel, where instantaneous path losses can
become very significant and typical (or median) path losses for a lot of on-body
radio links are still (relatively) very large. Further the variations in signal strength
are not uniform, from one time interval to the next, such that the channel is in
general not wide-sense-stationarity.

• Benefits: However there are a few benefits/aids available to the radio system
designer from the typical on-body radio channel, particularly with narrowband
communications in everyday environments:

1. The channel shows reciprocity, that is the radio channel for communications
from position a. to position b. on the body, has the same channel profile as for
communications b. to a.;

2. The channel, for the majority of on-body BAN usage, is stable for at least
hundreds of milliseconds (typically more than 0.5 s), enabling relatively
accurate channel prediction across multiple communications frames, simply
with the last channel gain sample, which can help transmit power control and
resource allocation;

3. Although the direct, sensor-to-hub, link may be in outage, the slowly varying
on-body channel, and possible postures of the human body, means there will
often be another dual-hop link between source and hub, through suitably
located relay/s transmission paths, giving significant reliability benefit to radio
communications;

4. Although the overall information transfer over the whole on-body BAN may
be large, for typical applications such as in health-care, high data rates for
particular links may not be required (often in orders of tens of kilobits per
second);

5. Finally for narrowband BAN communications, although the on-body channel
is slowly time-selective, it is frequency non-selective, with no resolvable
multipath, and one channel tap, such that inter-symbol interference (ISI) does
not need to be mitigated.1

2.2 In-Body Channel

The in-body channel will be, almost always, applied for medical applications, and
mostly operate at lower carrier frequencies than the on-body channel. The main
frequency of operation is most likely to be the medical implant communication
system (MICS) band, which operates from 402–405 MHz. The in-body channel will

1However, we note that for typical IR-UWB, broadband, communications, IEEE 802.15.6 compli-
ant, there are approximately ten resolvable channel taps.
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also predominantly be from implants/devices, with miniature radios, to radios on
the surface of, or just outside the body. Transmission from one radio in the body
directly to a radio in another location inside the body will be highly uncommon.
The in-body channel, apart from transmissions at tens of MHz, will suffer from
significant attenuation for radiowaves propagating through the body, and will often
depend on radio propagation from the nearest body surface to the implant radio
device [32].

With respect to the mentioned challenging properties of the on-body channel,
the in-body channel will be affected by similar challenges. However restrictions
with respect to output Tx power, and reducing battery power consumption are even
further magnified, as it is desirable for batteries inside the human body to have
a lifetime of several years (frequent surgery is not desirable), as well as reducing
radio-wave absorption inside the human body.

As the in-body communication channel includes various additional components
(e.g., creeping waves) we shall not discuss this further in this chapter as it is
significantly different to the other parts. We note that there is some good description
of in-body communications in, e.g. [4, 32].

2.3 Off-Body Channel

The off-body channel is the radio channel the most similar to standard small cell and
personal area networks radio communications. However transmission from one part
of the human body to a gateway/hub radio at a small distance from the human body
will also often be dominated by shadowing, similar as for the on-body channel. It is
also slowly time selective and a one-tap channel—but it can reasonably be expected
that it is more wide-sense-stationary than the on-body channel, and also median path
losses will often be lower, even though often over a greater distance than on-body
links. In applications such as health-care, suitable placement of the radio device/s
off the body may be particularly important to maximize the typical channel gains
from desired off-body transmission, or to enhance the on-body communications,
where one or more relays is placed off the human body. Also the off-body channel
may have less energy-constrained relays than the on-body radio channel. All the
other benefits for radio systems design for the on-body channel also apply for the
off-body channel, such as reciprocity—but the data rates may sometimes be larger
than for the on-body channel.

2.4 Body-to-Body (or Interference) Channel

In most wireless body area networks, it is unlikely that one network will be spread
over multiple human bodies, apart from obvious exceptions for uses such as in the
military and emergency services. But the body-to-body radio channel characteristics
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are still very important, as in many cases for BAN operation there will be some,
or significant, mobility, which coupled with the large anticipated large take-up of
BANs, implies there will often be multiple people wearing BANs closely located,
requiring coexistence without coordination between BANs. Thus, understanding
radio propagation from one BAN to the sensor, relay or hub, of another BAN
becomes very important.

This interfering channel will often demonstrate lower path losses than for an
on-body Tx/Rx radio link-of-interest, due to on-body shadowing, and a lack of
shadowing from the body-to-body interfering channel. Further the body-to-body
channel does not demonstrate free-space path loss, and is strictly not distance
dependent, unless a slowly varying shadowing factor is added to a distance-based
path loss description with a larger path loss exponent than free space. The dynamics
of the on-body channel, and body-to-body channel, are also similar to each other
in that they are slowly time selective and frequency non-selective when considering
narrowband communications.

The operation of BANs can also be significantly enhanced, when co-located with
other BANs experiencing body-to-body interference, by both transmit power control
and relay-assisted communications. In fact these two techniques may be particularly
important to achieve performance benchmarks for on-body BANs to coexist with
other BANs.

3 Technical Requirements for IEEE 802.15.6 BANs

There are various technical requirements, or, more precisely, guidelines for BANs
from the IEEE 802.15.6 [47]. These broadly represent how BANs should operate
and significantly influence key parameters for channel modeling.

• BANs should be scalable up to 256 nodes.
• A BAN link should support bit-rates between 10 kb/s and 10 Mb/s.
• The packet error rate (PER) should be �10 % for a 256 octet payload (i.e., 256�8

bits of data) for the 95 % best-performing links according to PER (i.e., at a given
signal-to-noise ratio, those 5 % of channels that give the worst PER performance
should not be used to determine whether this PER guideline is met).

• Maximum radiated Tx power should be 0 dBm (or 1 mW), and all devices should
be able to transmit at �10 dBm (or 0.1 mW).2 This automatically meets specific-
absorption-rate (SAR) guideline of the FCC of 1.6 W/kg in 1 g of body tissue
[13] (which equates to a max Tx radiated power of 1.6 mW).

• Nodes should be able to be added and removed (insertion/de-insertion) to/from
the network in less than 3 s.

• Reliability, latency (delay) and jitter (variation of one-way transmission delay)
should be supported for those BAN applications that need them. Latency in

2Please note this maximum Tx power is a requirement in the standard.
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medical applications should be less than 125 ms, and should be less than 250 ms
in non-medical applications. Jitter should be less than 50 ms.

• Power saving mechanisms (such as duty cycling) should be provided.
• The physical layer should support co-located operation of at least ten randomly

distributed BANs (i.e. up to 2,560 nodes) in a 6 � 6 � 6m3 volume.
• In-body BAN and on-body BAN should coexist in and around the body.

4 Narrowband and UWB Radio Channels for BANs

BANs can use narrowband communications or UWB communications, classifica-
tions in terms of carrier frequencies and bandwidths are given in Table 1. We exclude
mm-wave communications, such as at 60 GHz carrier frequency, as there is no
BAN specification for this, and with very large path losses around the body at
these frequencies, reliable communications is very difficult. We also exclude optical
wireless and human-body communications (using body conduction), as typical
radios do not use these techniques.

4.1 BAN Propagation Scenarios

There are two physical layer radio propagation methods defined by the IEEE
802.15.6 BAN standard [23],

1. Narrowband communications: The use of narrowband in healthcare has been
described extensively, e.g., [17, 24]. Narrowband communications is better suited
to most healthcare applications due to its lower carrier frequencies that suffer less
attenuation from the human body and due to better established electromagnetic
compatibility. Its smaller bandwidth (1 MHz or less) also means that multipath is
unlikely to cause significant inter-symbol-interference (ISI) [36].

Table 1 Frequency bands and channel bandwidths (BW) for the two BAN radio propagation
methods: Narrowband, Ultra-wideband [23]

Narrowband communications UWB communications

Frequency band Frequency band Bandwidth

Frequency band Bandwidth (MHz) Bandwidth (GHz) (MHz)

402–405 MHz 300 kHz 420–450 300 kHz 3.2–4.7 499

863–870 MHz 400 kHz 902–928 500 kHz 6.2–10.2 499

950–956 MHz 400 kHz 2,360–2,400 1 MHz

2,400–2,483.5 MHz 1 MHz

For any of the methods, IEEE 802.15.6 compliant devices must operate in one of the
associated bands
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2. Ultra-wideband (UWB) communications: Frequency-modulated FM-UWB and
impulse-radio IR-UWB are both supported by the standard, with IR-UWB being
better suited to BAN, because for IR-UWB noncoherent receivers can be imple-
mented very efficiently and promises low power consumption to meet stringent
constraints on battery autonomy [26]. One particularly suitable application of
UWB in BAN is in consumer electronics as UWB offers higher throughput due
to its larger bandwidth; each UWB channel has a bandwidth of 499 MHz in IEEE
802.15.6 [23].

5 Suitable Small-Scale First Order Statistics
of BAN Channels

First-order small-scale statistical modeling of narrowband channels, has been per-
formed by fitting statistical distributions that are commonly used to describe fading
(Rayleigh, normal, lognormal, Ricean, Nakagami-m, Weibull, gamma) to measured
channel gain (channel gain is the inverse of path loss) data, e.g., [8, 17, 35, 39],
and, some unusual (e.g., kappa-mu (� � �)) distributions [9]. Statistical modeling
of channel gain has mostly been performed indoors e.g., [17, 35]. A chart that
summarizes the distributions considered, from [44], is given in Fig. 2.

In general, lognormal, gamma and Weibull are most-often found to be a best-
fit.3 Whilst Nakagami-m is often attempted as a fit, it has a smaller success rate;
and Ricean has considerably smaller success rate than Nakagami-m. Further, it is
very clear from Fig. 2 that the Rayleigh distribution is a poor fit for almost every
scenario and environment for which it is attempted. Conversely, for any distribution,
an author has invariably found at least one scenario that fit.

The lognormal, gamma and Weibull distributions are specified as follows:

• Lognormal

f .xj�l ; �l / D 1

x�l

p
2�

exp

(
� .ln.x/ � �l/

2

2�2
l

)
; (1)

where ln.�/ is the natural logarithm.
• Gamma

f .xja; b/ D 1

ba� .a/
xa�1 exp

n
�x

b

o
; (2)

where � .�/ is the Gamma function.

3According to the ratio of the first two bars for each of these in Fig. 2 (only considering those
distributions tested ten or more times.)
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• Weibull

f .xjaw; bw/ D bwa�b
w xbw�1 exp

˚�.x=aw/bw
�

: (3)

We now give three example narrowband scenarios where the lognormal, Weibull,
and gamma distributions are good fits for measured fading statistics of channel gain
data, all scenarios’ data is open-access [43].

5.1 Experimental Narrowband Measurement Campaigns

1. On-Body: We captured hundreds of hours of on-body channel gain data for
“everyday” mixed activity of ten different adult subjects, using a range of
transceiver Tx/Receiver(Rx) locations. The everyday mixed activity included
indoor office work, at-home general activity, driving in a car and jogging
outdoors, as well as transitions between each activity. Small wearable radios as
described in [19], were used to capture the data. The radios transmit 540 kHz
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a b

Fig. 3 On-body and off-body experiment scenarios [39]. (a) Subject wearing two wearable radios,
Rx at right wrist, Tx at upper right arm. (b) Off-Body experimental environment. An angle of 0ı

corresponds to the test subject facing the receive antenna

bandwidth signals at a carrier frequency of 2,360 MHz, with the Rx radio
sampling digital channel gain at 200 Hz. Each subject wore between 3 and 20
of these radios, some which operated as Rx, some as Tx, and some as both Tx
and Rx. A subject wearing two of these wearable radios is shown in Fig. 3a.
The measured data for each Tx/Rx link was normalized by the mean path loss
for that link, and the data for all links was agglomerated, i.e., combined into
one large set of channel gain samples. A typical channel gain profile from a
subset of the complete open-access “everyday” data [43], is shown in Fig. 4a.
The empirical probability density function (pdf) histogram of the complete
normalized agglomerate data is shown in Fig. 4b, with various distribution fits
overlayed. It is clear from Fig. 4b that the gamma and Weibull distributions
provide excellent fits. In fact, gamma fading is a slightly better fit than Weibull
according to a negative log-likelihood criterion of the parameter estimates. The
very poor fits of Rayleigh and Normal distributions are also obvious in Fig. 4b.
The gamma distribution fits to the 10 main Tx/Rx links channel gains, and overall
fits, are given in Table 2.

2. On-Body: We chose a set dynamic activity, with a male adult subject running
on the spot; a single Tx to Rx link from back to the chest; and a bandwidth
of 10 MHz. Complex channel gain data was sampled over 2,048 data bits
every 2.5 ms, for a 10 s period. Here the lognormal distribution is the best
fit to normalized channel gain, as shown in Fig. 5a. Interestingly, the gamma
distribution also provides a good fit. Once again the very poor fit of the Rayleigh
distribution is obvious from Fig. 5a.

3. Off-Body channel measurements were made using a commercial wearable
antenna at carrier frequencies, 427, 820 and 2,360 MHz, for 10 MHz bandwidth
and 100 kHz bandwidth, with a male adult test-subject walking on the spot
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Fig. 5 On-body and off-body probability density functions (PDFs) with running and walking
activity respectively from [39]. (a) PDF back to chest, running, 10 MHz bandwidth at 2,360 MHz.
(b) PDF off-body agglomerate of subject walking, 10 MHz bandwidth, at 820 MHz
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Table 3 Agglomerate scenarios, bandwidths and the best fitting model with parameters (in
brackets) to those off-body scenarios at 427 MHz, 820 MHz and 2.36 GHz [39]

Action Carrier frequency (MHz) Bandwidth Fading distribution

Moving 820 10 MHz Weibull,(aw D 1:05; bw D 3:04)

Moving 2; 360 10 MHz Nakagami-m,(m D 1:6; ! D 1)

Moving 427 100 kHz Weibull,(aw D 1:02; bw D 2:25)

Moving 2; 360 100 kHz Weibull,(aw D 1:01; bw D 2:15)

Standing 820 10 MHz Lognormal,(�l D �0:000839; �l D 0:0289)

Standing 2; 360 10 MHz Gamma,(a D 384; b D 0:0026)

Standing 427 100 kHz Gamma,(a D 44; b D 0:0224)

Standing 2; 360 100 kHz Normal,(� D 0:987; � D 0:161)

for 5 s. Measurements were taken with a vector signal analyzer (VSA) with the
test subject placed in four different locations in a room, with set-up in Fig. 3b.
The horizontal distance between the test subject and Rx was either 1, 2, 3 or
4 m at each location. At each location measurements were taken with the subject
facing in four directions: 0ı, 90ı, 180ı and 270ı, with 0ı when the subject faced
the Rx and 90ı when he moved 90ı clockwise from the 0ı position. In Fig. 5b
the best-fitting distribution to channel gain is Weibull for the scenario of the
subject Walking, 10 MHz bandwidth, at 820 MHz carrier frequency, considering
all distances and directions [39]. The lognormal distribution also provides a good
fit in Fig. 5b. A summary table of best fitting distributions for all scenarios is
given in Table 3.

5.2 First-Order UWB BAN Channel Modeling

The lognormal distribution is by far the most commonly found best fit for UWB
BAN channels, this lognormal fit, and measurements campaigns used in this
characterization, can be found in, e.g., [11, 15, 31]. BAN channels, particularly
those with large bandwidths, contain a large number of factors that contribute to
the attenuation of the transmitted signal; these include diffraction, reflection, energy
absorption, antenna losses, etc. . . , which are additive in the log-domain [15]. The
addition of multiple lognormally distributed paths results in another lognormal
distribution.4 When compared to narrowband BAN, there is also more large-scale
fading with UWB from larger path losses due to its higher carrier frequencies [46].

4The negative effects of multipath are more common in UWB as there is increased inter-symbol
interference (ISI) with its higher sampling rates.
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5.3 Difficulty Choosing the Best Channel Model

It is clear from the variety of models and modeling techniques the choice of a most-
suitable or best BAN model is difficult. There is also a bigger issue that we will
address in the following section, that of non wide-sense-stationarity.

In terms of choosing the best statistical model, particularly according to small-
scale first-order statistics, an argument has been made for separate characterization
of individual links (i.e., from a Tx at a particular position to an Rx at another
position on the body) in various literature [11, 35]. In fact, the best-fitting statistical
distributions have often been specified with their relevant parameter estimates,
according to particular positions on the body. However, in some studies, a fit to
normalized agglomerate data from many on-body links, where each link’s channel
gain data is normalized by the mean path loss, i.e., mean-removed, is made for
the whole-body with fewer parameters [39, 41]. This is often preferable, because
channel dynamics are more important than the static attenuation represented by
the mean path loss for any individual link. Whilst a parameterized “model” might
give better fit by specifying the precise location of the sensor nodes, such a model
is useless to a sensor node designer: would they use different radios for each part of
the body? Would a consumer be told: “this sensor only goes on your arm, this one
only works on your ankle”? A good model fit in such a setup is meaningless.

5.4 Body-to-Body Ban Interference Modeling

The following summary of body-to-body BAN modeling, follows from description
in [10], and further details can be found in [10]. In [22] the body-to-body radio
channel was investigated for carrier frequencies of 2.45 and 5.8 GHz with two
subjects. Channel gains followed a gamma distribution with mean and variance
values following a power law in terms of distance between two BANs; almost
independent of carrier frequency but dependent upon on-body antenna position and
body orientation. Small-scale Ricean fading was found with the Ricean K-parameter
depending mainly upon on-body antenna position rather than Tx-Rx separation,
while large-scale gamma fading was found at a constant distance, with large-scale
lognormal fading when the distance changed randomly.

Investigations on UWB body-to-body communications have been described
in [33]. Measured data was obtained in an anechoic chamber for two subjects
standing at various distances with different body orientations and showed that the
path loss was strongly related to the placement of the devices on the body as well as
to the relative position of the human bodies.

In [20] it was shown, for an indoors environment, that the interference channel
gain is dominated mostly by subject movements and not the distance between
BANs. The results showed that the signal-to-interference-ratio could be very low,
with greater interfering channel gain, than for target on-body signal, because of
significant shadowing from the human body. It was also shown that on-body links
and interfering links are uncorrelated.
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6 Important Second-Order Statistics for BANs

The BAN channel is significantly influenced by the movement of the wearer of the
BAN (whether moving very slowly or quickly). Considering such BAN dynamics,
second-order statistics are also important for characterizing BAN channels, both
on-body and off-body. As also described in [44], the following summarizes key
second-order statistical characterizations for BAN radio propagation:

1. Delay spread and the power delay profile of BAN channels can be used to
determine the number of channel taps and hence the presence of inter-symbol
interference (ISI). Significant multiple resolvable signal paths; i.e., significant
multiple channel taps, and hence ISI, only occurs in the UWB BAN channel
[16, 29]. This is different to the narrowband BAN channel, with bandwidths
up to 10 MHz, which can be well-approximated by a single-tap channel [36].
This is an obvious result as the amount of ISI in a channel increases with its
bandwidth. The 499 MHz UWB channel bandwidth specified for IEEE 802.15.6
[23] is approximately 50 times that of the peak narrowband channel bandwidth.
Measurements using 500 MHz bandwidth IR-UWB report that more than 10
channel taps can be resolved [14].

2. Average fade duration—i.e., the average time the received signal strength is
below any given level—can be used to determine the amount of time for which
successful packet transmission on a given Tx/Rx link may not be possible. Hence
it is an important parameter for BAN communications. The level crossing rate
(LCR)—i.e., the average rate at which the signal strength crosses from above to
below any given signal level (particularly at the mean path loss [38])—can be
used to infer the rate of fading. The LCR can be used to determine the Doppler
spread, which is approximately 1 Hz in “everyday” BAN channels [44], but can
be above 4 Hz with someone running [37]. It has been determined that both
average fade duration and level crossing rate are highly dependent on channel
dynamics, as they depend on the rate and amount of body movement [38, 39].
In many typical BAN channels the average fade duration is 300 ms or more
[38], significantly larger than the 250 ms latency requirement for many BAN
applications [25] (as outlined in Sect. 3).

3. Autocorrelation of time-varying channel gain, which can be used to determine
coherence time [37], for any BAN link can determine for how much time
successful packet transmission is possible, as with average fade duration. Thus
autocorrelation drives the design of packet lengths, as well as driving the
placement of pilots for channel estimation, making it an important parameter for
BAN communications. It is also important for power control based on channel
prediction [40]. Longer coherence times, of up to 1 s for the ‘everyday’ mixed
activity for on-body narrowband BAN channel [39, 40], allow for successful
transmit power control over the duration of multiple BAN superframes (even
when a superframe is hundreds of milliseconds in length). With continuous
movement, the channel coherence time can drop to between 70 and 25 ms [37],
indicating much smaller time for successful packet transmission.
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4. Cross-correlation is of some importance and has been investigated in [11, 45].
It is important because BAN sensors may be densely placed on the body, and the
quality of one gateway-to-sensor link could be used to determine the quality of
the same gateway to another proximate sensor link via the cross-correlation of
their signal strengths. However, we have found that with a medium density of 10
on-body sensors such spatial cross-correlation coefficients are 0.5 or lower.5 This
may not be sufficient given that spatial cross-correlation is generally considered
to be significant for values of 0.7 or greater.

7 Significant Issues in Wireless BAN Channel Modeling

There are several issues, or challenges presented, in determining suitable channel
models for wireless BANs, which will be outlined here.

7.1 Statistical Fits: User Beware

The narrowband on-body BAN channel, is not wide-sense-stationary (WSS) outside
timeframes of 500 ms or less [6], unlike networks such as mobile cellular com-
munications and wireless LANs. This implies that any channel model, no matter
how seemingly accurate, will provide a limited representation of the channel with
respect to accuracy in terms of statistics of any order, across time, for all time.6

This implies that resource allocation, based on long-term statistical analysis, may
not be a practical mechanism for narrowband BAN. Although lack of wide-sense
stationarity has only been shown, thus far, for narrowband BAN, it can be reasonably
be expected to also be present for UWB BAN. The fact that BAN radio channels are
not wide-sense-stationary, calls into question the statistical fits in the open literature
where WSS is implicitly assumed.

Amongst statistical fits, the Rayleigh distribution is a very poor choice for BAN
fading statistics. Although the Rayleigh distribution is a good fit when various
multipath in the radio channel are additive in the linear domain. Thus, in contrast
to many other radio networks, the combinations of multipath that occur in the BAN
are not additive in the linear domain—these effects are additive in the log-domain,
as indicated by the good fit of the lognormal distribution; and the small-scale fading
is also often dominated by shadowing, as indicated by the good-fit for gamma

5This is corroborated by results for 5 on-body sensors in [11].
6As wide-sense-stationarity is generally considered to be both necessary and sufficient for nth-
order statistical channel characterization across time.
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fading [1]. Although the Rayleigh model is a consistently poor fit in most cases,
[12] notes “we can approximate the fading statistic with a Rayleigh distribution,”
suggesting that a Rayleigh model might be useful in some cases.

Unfortunately, most authors provide only their goodness-of-fit result, based on
their particular measurement and comparison criteria: one cannot retrospectively
test if the measurements might support a new model choice, nor can one test the
impact of an invalid stationarity assumption. This means that the models in the
literature cannot necessarily be relied upon. The lack of reliable representation
reinforces the need for large datasets, such as the “open-access” dataset [43],
capturing many hundreds of hours of BAN link data, to test the appropriateness and
validity of various radio system designs using deterministic modeling with respect
to reliable empirical data, rather than statistical modeling. It also reinforces that
traditional approaches to system design are not applicable to BANs and that the
presumptions implicit in standard radio communications must be validated in BANs.

7.2 Issue: Path Loss for BAN Channels Is Not
Well-Characterized by Propagation Distance

Some of the efforts for large-scale statistical modeling have been to model expected
path loss in terms of distance for both narrowband and ultra-wideband propagation,
and hence determine path loss exponents as a function of the carrier frequency,
e.g., [4, 7, 15, 29]. A wide variation of path loss exponents for both narrowband
and UWB, even within similar environments, have been reported, e.g., [3, 5, 15,
29]. Such variation suggests that the distance-based path loss modeling approach is
poor; path loss exponents in the UWB bands for indoors measurements, have been
reported from below 2 (better than free space) [29] to above 7 [15], and even up
to 10 [3]. When measured in anechoic chambers, 2.4 GHz narrowband path loss
exponents have been reported from below 3 [4], but have also been reported to
be above 6 [48]. It is clear that path loss exponents are very much measurement
campaign and environment dependent—this is more severe than simply “indoor” or
“outdoor” and seems to indicate that the specifics of the building would be needed
before distance-based path loss could be used reliably.

A distance-based path loss model, which ignores sensor placement and move-
ment, produces a misleading model of the received signal strength for a BAN
link. This is seen by measured path losses for set activities (standing, walking, and
running) given in Table 4, see [28]. Two points are immediately clear:

1. the “distance” between the hip and wrist/ankle is very different for standing still
vs running;

2. the path-loss is dominated by the whether-or-not of the path that includes the
human body: the direct distance back-to-chest is much less than hip-to-ankle, yet
the path loss is lower for the longer distance—because the path to the ankle is
predominantly free-space, while back-to-chest is shadowed.
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Table 4 Average path loss (dB), set activities, at 2.36 GHz [28].

Action

Receiver at right hip Receiver at chest

Transmitter at Transmitter at

Right Left Right Left Right Right
Chest wrist wrist ankle ankle Back wrist ankle Back

Standing 65:3 44:5 74:7 60:9 70:7 75:3 70:5 66:3 73:0

Walking 59:1 47:3 59:8 53:9 58:5 67:4 64:9 62:4 72:0

Running 55:9 36:3 52:5 55:0 59:0 68:5 57:4 63:3 71:7
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Fig. 6 Left wrist to right hip path loss v. time, 10 MHz bandwidth at 2.36 GHz [28], subject
standing, walking and running

7.3 Issue: It Is Not Appropriate to Categorize On-Body BAN
Links as Either Non-Line-of-Sight (NLOS) or
Line-of-Sight (LOS)

Consider a left wrist to right hip link. Figure 6 shows a transition between NLOS
and partially obstructed LOS as the subject movements increasing from standing
to running. The subject is exposing and blocking the LOS link between the wrist
and hip with their torso. Hence, characterizing a link as either LOS or NLOS is not
meaningful for this link. The number of signal states is more than just LOS and
NLOS, particularly with respect to dynamics, with moving body parts and changes
in posture. It is more appropriate to capture the rate of movement and statistically
characterize the path loss for this link.



44 D.B. Smith and L.W. Hanlen

8 Alternative Model Evaluations

Much of the previous statistical description has been based on relative comparisons
of different statistical models. Here we provide an absolute measure, following from
the description in [34, 41], to evaluate accuracy of channel models.

8.1 New Goodness-of-Fit Criterion to Characterize BAN
Channel

In order to choose the best characterization of data we propose a goodness of fit
function [34, 41]. This function, which represents a generalization of various criteria
for model selection,7 for a model with p parameters � D f�1; : : : ; �pg applied to
data x with n samples is:

G f�; xg , E f�; xg C C f�; xg; (4)

where E f�g is an increasing function of error between model and data, and C f�g is a
monotonically increasing function of number of parameters, for a given number of
samples. Here goodness-of-fit improves as G f�g ! 0.

The Akaike-information-criterion (AIC) [2] (which has previously been used to
determine best BAN model selection, e.g., [15, 39]) can be represented according to
the framework of (4),

GAICf�; xg D � � 2 ln
�
L. O�jx/

� �
„ ƒ‚ …

EAICf�;xg

C
�
2p C 2p.p C 1/

.n � p � 1/

�
„ ƒ‚ …

CAICf�;xg

; (5)

where G�f�g implies goodness and ln.L. O�jx// is the maximized log-likelihood, based
upon the maximum-likelihood estimate of model parameters � , given the data x.

For BANs with measurements across many Tx/Rx links the AIC approach suffers
from the problem that it only provides an ordering of models. For different data
sets with different parameterizations it is meaningless to compare AIC values. The
goodness-of-fit form (4) can be used to develop a natural reference point, which is
the joint empirical histograms of the many-link channel gain data sets. That is, given
M data sets, we choose B histogram bins, and for each set m D f1; : : : ; M g find
the histogram Hm.b/ with b D f1; : : : ; Bg. This ‘model’ has P D M � B free
parameters.

7Hence this function is not limited to propagation data.



Channel Modeling for Wireless Body Area Networks 45

Fig. 7 Example error calculation between fitted distribution (model) and reference histogram [44]

Criteria for our systematic goodness of fit include:

• The comparison of any model against a reference histogram, with a given number
of bins, is a metric. This metric is defined as the sum of errors (squared) between
the model pdf and the reference histogram, evaluated at the histogram bin centres.
The application of the metric is illustrated in Fig. 7, with histogram and fitted
model.

• The number of parameters is given by the number of model options M over all
sets, as well as the number of free-parameters, pm, per option, m D f1; : : : ; M g.

This is formulated as follows. Consider M ‘empirical models’ comprising uni-
variate empirical histograms. Each histogram, Hm, m D f1 : : : ; M g, comprises a set
of values Hm .ˇb/. Consider M ‘continuous models’, with density functions Fm.x/,
that may be evaluated at histogram points ˇb . An absolute goodness-of-fit G
follows as

G , 1

MB

X
m;b

ˇ̌
Hm .ˇb/ � Fm .ˇb/

ˇ̌2
„ ƒ‚ …

E

C log2

 
MX

mD1

pm

!
„ ƒ‚ …

C

; (6)

and the base-2 logarithm, log2.�/ above, follows complexity suggestions of [21].
Note that in (6) we assume (very) large n, which implies that the complexity is
predominantly due to the number of parameters similar to the AIC approach in (5),
and hence we ignore the number of samples n.
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8.1.1 Evaluation of First-Order Statistics by Absolute Measure

With a subset of the complete open-access dataset in [43], the everyday activities
of an adult male subject (height 1.84 m) over a period of 9 h are captured. There
are M D 4 links (left/right-hip ! right wrist; left/right hip ! right-ankle) and the
data contains over 2:9 million samples per link, sampled at 200 Hz. Figure 8 shows
error E vs complexity C for various model options for the everyday data. Equivalent
goodness G is given by E CC D constant and ‘better’ models will appear closer to
the origin.

In all cases the lognormal distribution was the best-fit. The number of parameters
for the mean per-link & agglomerate stat is P D M C 2, since there are M means,
and 2 free parameters. In terms of goodness G and as a trade-off between error
E and complexity C , Fig. 8 shows that one of either: (a) a mean-per-link with a
lognormal statistic (1) fitted to agglomerate data with mean-removed from each
link (parameters �l D �1:02; �l D 0:87); or (b) a lognormal fit to agglomerate
data (parameters �l D �7:66; �l D 1:02); is the preferable model. Option (a) is
preferable in terms of E , and (b) is preferable in terms of C .

8.1.2 Evaluation of Second-Order Statistics by Absolute Measure

It is important to note that in various earlier radio propagation literature, direct
statistical characterization of second-order statistics of level crossing intervals8 and

8Level-crossing interval is the inverse of level crossing rate.
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fade durations has been performed, in, e.g., [27, 30]. Such an approach has been
adopted in some BAN propagation characterization, in, e.g., [38, 46]. With direct
characterization of second-order statistics we apply the same measure of (6) to
�150 h of the “everyday” on-body link dataset in [43]. We show some results for
comparing different direct statistical characterization techniques for fade durations
and level crossing intervals in Fig. 9.

Figure 9a, b show that the empirical histogram for all data sets gives zero error but
excessive complexity, P D MT . Similarly, a combined histogram is also complex,
P D T , and has moderate error. The error caused by using simple agglomerate
mean level crossing interval, in Fig. 9a or simple agglomerate average fade duration
at median channel gain in Fig. 9b, is very large. Similarly a set of mean level
crossing intervals or average fade durations per link also has large error. For Fig. 9a

Fig. 9 Error v. complexity,
second-order statistics [34];
LN-lognormal. (a) Error E v.
complexity C for models of
level crossing intervals with
respect to median channel
gains. Mean intervals range
specified. (b) Error E v.
complexity C for models of
fade duration data with
respect to median channel
gains. Mean durations range
specified
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Table 5 Best lognormal (LN) agglomerate fits, parameters: �l is log-mean, �l is
log-standard deviation

Statistic LN parameters at hmd LN parameters at hm

Level crossing interval (s) �l D �2:71; �l D 1:62 �l D �2:78; �l D 1:68

Fade duration (s) �l D �3:81; �l D 1:65 �l D �3:82; �l D 1:82

Non-fade duration (s) �l D �3:81; �l D 1:67 �l D �3:93; �l D 1:56

Statistics, in seconds (s), captured at median and mean channel gains, hmd and hm

respectively [34]

for level crossing intervals, and Fig. 9b for fade durations, goodness G is clearly
optimized across all links simply with a 2 parameter lognormal fit.

The best lognormal agglomerate fits, with respect to both mean and median
channel gains (where channel gain is the inverse of path loss), for level crossing
intervals, fade duration and non-fade duration data, measured in seconds, are
summarized in Table 5. It can be observed that for respective statistics, whether fade
duration, non-fade duration or level crossing interval, that the best lognormal fit is
very similar (according to both parameters of log-mean and log-standard deviation)
whether with respect to mean or median channel gains—even though mean channel
gain is typically several-dB larger than the median gain.

9 Particularly Difficult Scenarios for BAN Operation

Although BANs may be used in any scenario, they are motivated from a healthcare
viewpoint. As such, significant work is needed to ensure that the BAN is functional
when a subject sleeps, and when a subject is in close proximity to others. Both
scenarios are unusual and difficult from a wireless communication standpoint.

9.1 BAN Channels for Sleep-Monitoring

We demonstrate effective performance measures and show that transmit-receive
(Tx-Rx) links are often in outages for periods of minutes over a range of receive
sensitivities [42]. The outages are in excess of latency requirements for many
medical BAN applications [25, 47], with a packet error rate greater than 10 %
at a very optimistic Rx sensitivity of �100 dBm, 100 dB below transmit power.
The sleeping experiment set-up with the particular links is outlined in Fig. 10.

The on-body channel gain profiles for the left-wrist to the hip (back), and the
off-body time series for the hip (front) to the radio next to the bed (head) are
given in Fig. 11a, There is clearly channel temporal stability with long periods
of little movement while subjects are sleeping. The channel provides unreliable
communications due to very low channel gain. The empirical outage probability
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Fig. 10 Illustration of the
sleeping experiment
set-up [42]

for the on-body and off-body channel is shown in Fig. 11b. The best case outage
probability is more than 10 % for both on-body (13.5 %) and off-body (10.9 %)
channels. Figure 11b illustrates that the packet error rate (PER) for a BAN radio
will be at least 10 % for a standard one-hop star topology with a person sleeping—
which demonstrates the need for relays, and potential two-hop links.

The sleeping channel is also best characterized with gamma fading. For the on-
body sleeping channel the shape parameter a D 1:60, and the scale parameter b D
0:480; and for the off-body channel a D 3:54 and b D 0:254 [42], with median path
losses of 80 dB for both these channels.

In [42] it is also shown that, e.g., a receiver with a sensitivity of �88 dBm,
or 88 dB below transmit power of 0 dBm, will experience outages of larger than
1,000 s 5 % of the time. Further, in terms of BAN latency requirements for medical
applications at 88 dB below transmit power for example, outages of larger than a
typical latency requirement of 125 ms [25, 47], occur more than 22 % of the time.

9.2 Large Numbers of Co-located BANs

Up to 10 BANs must be capable of coexisting (operating properly) within a 6 �
6 � 6 m3 cube. For example, if a group of subjects enters an elevator. BANs do
not have a global coordination mechanism, hence understanding, and mitigating the
interference of multiple co-located BANs, the body-to-body channel, becomes very
important. Further it provides a particularly challenging scenario for the operation
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Fig. 12 CDF for required (needed) SIR to achieve outage probability value given in y-axis for
co-located BANs [18]. (a) SIR outage for BAN with 1 co-channel interferer. (b) SIR outage for
BAN with 9 co-channel interferers
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of multiple BANs. To illustrate this in Fig. 12, we show from extensive interference
measurements, that to ensure 10 % outage with 9 cochannel interferers, e.g., Tx/Rx
links from 10 BANs operating in the same time-division-multiple-access (TDMA)
time slot, the SIR that needs to be tolerated is �15 dB, Fig. 12b, with one co-channel
interferer this is �5 dB, Fig. 12a, [18]. This is very difficult, and underlines the need
for interference mitigation techniques including significant duty cycling to ensure
best operation, and demonstrates that re-transmits may often be necessary when
significant numbers of BANs are co-located.

10 Conclusion

In this chapter we have investigated channel modeling for wireless body area
networks (BANs). We have shown that the BAN radio channel is particularly
different from other typical radio channels—and in consideration of the stated
technical requirements for BANs as they employ ultra-low-power short-range
radios, there are many challenges presented to the radio system designer, including
large path losses and non wide-sense-stationarity over any significant length of
time. But, as described, there are mitigating benefits, including BAN channel
temporal stability and channel reciprocity. We have highlighted the importance of
mitigating interference with large numbers of co-located, non globally-coordinated,
BANs, as well as other difficult channels for BAN operation, such as sleep
monitoring. Also emphasized has been the importance of long-term radio channel
measurements, to use as the basis for radio design, particularly considering non
wide-sense-stationarity. In terms of first-order statistics, lognormal, and sometimes
gamma or Weibull distributed fading characterizations have been shown to be
most prevalent, but Rayleigh fading is not a good characterization. Finally an
alternative means of evaluation, using an absolute histogram representation with
respect to measurements, has been described that is very helpful in deciding the
best characterization of the BAN channel, for both first and second-order statistics.
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