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Abstract One of the important features that a robot must possess when working in
an unstructured environment is the ability to deal with objects. Such objects can be a
part of the task, e.g., in assembly operations, or they can represent an obstacle. In the
case when contact with the objects is not desired, the main issue is how to perform
the desired task without any risk of collisions with the objects in the workspace. A
general strategy for obstacle avoidance is to reconfigure the robot so that it is not
in the contact with the obstacle. However, a reconfiguration without changing the
task motion is only feasible if the robot has sufficient redundant degrees of freedom
(DOFs). In this chapter we present different approaches to the control methods of
redundant robot manipulators performing multiple tasks with obstacle avoidance.
The pros and cons of the presented methods and the differences between them are
also discussed. The performance of the methods is also demonstrated by simulation
and on real robots.
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1 Introduction

In this chapter we give a brief overview of the most commonly applied
obstacle-avoidance algorithms. In general, the algorithms can be divided into global
and local. While the former rely on planning, the latter are control-based. We present
different control-based approaches, that rely on kinematic algorithms to avoid the
obstacles with the end-effector or with any other part of the body of the robot.We also
discuss how to include obstacle-avoidance algorithms in novel trajectory-generation
methods, such as dynamic movement primitives.

Just as with humans, robotic mechanisms have to act in environments with other
objects and agents moving around, interacting with them, influencing the very same
environment. The environment can be highly structured, like an industrial setting, or
it can be very cluttered, like a kitchen or a workshop. Contact between the robot and
an object is very likely to happen in any environment. The contacts can be part of
the task, but they may very well also be an undesired event, and consequently, it is
necessary to give the highest priority to avoiding them. Different obstacle algorithms
have been proposed for this to ensure that tasks that demand no contact with objects,
perceived as obstacles either at the end-effector or at any other point of the robot,
can be successfully fulfilled.

A natural strategy of obstacle avoidance is to move the manipulator into a con-
figuration where it is not in contact with the obstacle. In order to avoid interference
with the motion of the end-effector, redundant degrees of freedom (DOFs) have to be
utilized to achieve a collision-free configuration. The amount of flexibility depends
on the degree of redundancy, i.e., on the number of redundant DOFs. The kinematic
control of redundant mechanisms, where the redundancy is defined as the difference
between the required and available DOFs, was thoroughly studied [1–4].

Two different strategy classes can be employed when solving the obstacle-
avoidance problem, i.e., global and local. Global strategies rely on planning. They
guarantee to find a collision-free path from the initial point to the goal point, if such a
path exists. Typically, they are applied in the configuration space, which is also where
themanipulator and all the obstacles aremapped. A collision-free path is found in the
unoccupied portion of the configuration space [5–7]. One of the major drawbacks is
that suchmethods rely on the assumption that the environment is not changing, as the
computational complexity of the algorithms prevents any re-calculation within the
typical response time of a manipulator. Despite efforts to reduce the computational
complexity of such global algorithms [8–10], these methods cannot offer ability for
real-time implementations. This limits their applicability to static and well-defined
environments.

Local strategies, on the other hand, treat obstacle avoidance as a control prob-
lem. They exploit the capabilities of low-level control, e.g., they can use the sensor
information to change the path if an obstacle appears or moves in the workspace.
They are primarily suitable when the obstacle position is not known in advance, but
is detected in real-time during the task’s execution. In this sense, they are not meant
to replace the global, higher-level path-planning methods. Local methods are also
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computationally less demanding than global methods. However, local methods may
cause suboptimal behavior or may even become stuck when a collision-free path
cannot be found from the current configuration.

The collision avoidance of redundant manipulators was thoroughly studied
[11–20]. The approach proposed by Maciejewski and Klein [17] is to assign to
the critical point an avoiding task-space motion, with which the point is then moved
away from the obstacle. Colbaugh et al. [12, 13] used configuration control and
they defined the constraints representing the obstacle avoidance. On the other hand,
Khatib [15] proposed to use potential fields where obstacles generate repulsive forces
that prevent the roboto to come too close to the obstacle. Similar approaches were
used later by several authors proposed potential functions where a repulsive potential
is assigned to obstacles and an attractive potential is assigned to the goal position
[16, 18, 20–25]. Yet another approach uses the optimization of an objective function
maximizing the distance between the manipulator and the obstacles [14].

Many of the methods are applied at the kinematic level of control, using null-
space velocity control for the internal motion of a redundant manipulator. However,
some of the control strategies are acceleration based or torque based, considering
also the manipulator dynamics [11, 15, 26, 27]. It has been established that cer-
tain acceleration-based control schemes exhibit instabilities [28]. An alternative is
the augmented Jacobian, as introduced in [2]. Here, a secondary task is added to
the primary task to obtain a square and, therefore, an invertible Jacobian matrix.
The drawback to this technique is the algorithmic singularities, which occur when
the secondary task causes a conflict with the primary task. The use of the second-
order inverse kinematic, either at the torque or acceleration level, was thoroughly
explored by Khatib [29], resulting in the recent task-prioritized humanoid applica-
tions [30–32].

Most of the local obstacle-avoidance strategies at the kinematic level aimat assign-
ing a motion component away from the obstacle for every point on the manipulator
close to the obstacle [12–14, 16, 17, 19]. A similar situation applies to the pre-
sented proposed strategies. The emphasis of the presentation is on the definition of
the avoiding motion. The latter is typically defined in Cartesian space, and this can
be used to define the obstacle avoidance as a simple one-dimensional problem, with
a one-dimensional operational space for each critical point. This avoids singularity
issues when the redundancy level is locally too low. Alternatively, an approximative
calculation can be used for the avoiding motion. In contrast to the exact avoiding
motion as proposed in [17], the obtained velocity direction does not exactly coincide
with the direction away from the obstacle [33]; however, the calculation is faster. In
the case of multiple obstacles the situation is even more complex and more specific
methods have to be applied, which also consider the relationship between the obsta-
cles and the required avoidance movements. In the chapter we discuss strategies that
consider multiple, simultaneously active obstacles in the neighborhood of the robot.

Control of a manipulator, that is redundant with respect to the task can be broken
down to control subtasks with different priorities. The main, also called the primary,
task is commonly associated with the end-effector pose (position and orientation).
Other sub-tasks, such as obstacle avoidance, joint configuration, etc., are then given
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lower priorities. Sometimes, this is not the case. For example, the safety of the robot or
objects/people in its workspace could be more important, and should also be fulfilled
if the end-effector motion is disturbed. In dynamical environments the priority of the
tasks can also change with time. In general, task-priority algorithms do not provide
a simple means of changing the priority of tasks or transitions between them [34]. In
the chapter we present a formulation that makes the end-effector pose the secondary
task and obstacle avoidance the primary one. The novelty is in making the primary
task (the obstacle avoidance) active only when necessary, i.e., only when the robot
crosses a predefined distance-to-the-obstacle threshold. In this aspect, while far from
the obstacle, the algorithm allows undisturbed control of the secondary task (as if it
were the primary task) [35–37]. Upon reaching the threshold distance, the primary
task (obstacle-avoidance) smoothly takes over and only allows motion in the null-
space of the primary task. A similar approach was proposed by Sugiura et al. [38],
who proposed a blending solution for the end-effector motion, and by Mansard et al.
[30], with a generic solution to build a smooth control law for any kind of unilateral
constraints.

The last approach we present is solving the obstacle-avoidance problem with
the use of novel methods of generating and encoding trajectories with dynamical
systems.We show howDMPs offer themeans for on-linemodulation and adaption of
the trajectory in order to take into account the dynamic events from the environment.
Introducing a coupling term to the dynamical equations encoding the trajectory, we
can modulate its spatial evolution to avoid an obstacle. The choice of the coupling
term may be specialized for a given task. Various aspects and applications of the
proposed dynamical systems approach are discussed and evaluated.

The computational efficiency of the proposed algorithms, both at the kinematic
level using classic control, and using the dynamical systems, allows real-time applica-
tion in cluttered and/or time-varying environments. We demonstrate the applicability
with simulations of a highly redundant planar manipulator moving in an unstructured
and time-varying environment and by experiments on a real robot manipulator.

2 Background

The robotic systems under study are redundant serial manipulators. We consider
the robot as a redundant system when the dimension of the joint space n exceeds
the dimension of the task space m. The difference between n and m is denoted as the
degree of redundancy r = n − m. Note that this definition of the redundancy is not
only a characteristics of the manipulator itself, but also of the task. This means that a
nonredundant manipulator may also become a redundant manipulator for a specific
task.

The relationship between the configuration variable q and the task variable x can
be described by the following equation

x = f (q) (1)
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where f is an m-dimensional vector function. The corresponding relationship
between the joint velocities q̇ and the task velocities ẋ is obtained by differenti-
ating (1)

ẋ = Jq̇ (2)

where J is the m × n Jacobian matrix. The control problem is how to generate the
motion in joints that will result in the desired task-space motion. At the velocity
kinematic level this means calculating q̇ using the desired task-space velocities ẋ.
For a non-redundant manipulator (n = m) and when the robot is not in a singular
configuration q̇ (J has full rank, rank(J) = n) the joint velocities q̇ can be calculated
from (2) as

q̇ = J−1 ẋ (3)

where J−1 is the inverse of the Jacobian matrix J. To avoid any drifts, a task-space
controller is usually implemented for ẋ, namely

ẋ = ẋe + Ke (4)

where ẋe is the desired task-space velocity, e, e = xd − x, is the task-space error,
and K is a positive definite gain matrix.

In the case of a kinematically redundant manipulator, the manipulator possesses
more DOFs then required to execute a task, i.e., the dimension of the joint space n
exceeds the dimension of the task space m, n > m. It is obvious that the Jacobian J
is no longer a square matrix, but an m ×n matrix, and hence the inverse J−1 does not
exist and (3) cannot be used. The classic general solution of (2) for a kinematically
redundant manipulator is

q̇ = J# ẋ + Nϕ̇ (5)

where J# is a generalized inverse of the Jacobian matrix J, N is a matrix representing
the projection into the null space of J, and ϕ̇ is an arbitrary n-dimensional joint-
velocity vector. From (5) it is clear that N projects the velocity q̇n into the null-space
of J and the corresponding motion does not affect the task motion. Remarkably,
there is an infinite number of solutions q̇. In most cases it is required to pursue a
minimum-norm velocity leading, to the selection of the Moor-Penrose inverse J+,
J+ = JT (JJT )−1, as the generalized inverse in (5)

q̇ = J+ ẋ + (I − J+J)ϕ̇ (6)

The first r.h.s. term in (6), i.e., the particular solution, provides the least-squares
solution, i.e., it minimizes ‖ẋ − Jq̇‖, with a minimum joint-velocity norm. With the
second r.h.s. term in (6) different joint velocities q̇ can be obtained that result in
the same end-effector velocity ẋ. This additional joint motion can be exploited to
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achieve some additional goals, i.e., some kind of optimization, obstacle avoidance,
to fulfill some functional constraints or to execute additional constraint tasks. To
perform this additional subtask, the velocity ϕ̇ is used. Then the secondary task is
defined by some motion xt = ft (q) like in the case of obstacle avoidance, the
velocity ϕ̇ can be defined as

ϕ̇ = J+ ẋ (7)

Another possibility is to define ϕ̇ as

ϕ̇ = Kp∇ p, (8)

where, p is a function representing the desired performance criterion, ∇ p is the
gradient of p, and Kp is a gain. So, using (8) the optimization of p can be achieved.

3 Obstacle-Avoidance Strategy

The obstacle-avoidance problem usually defines how to control the manipulator
in order to track the desired end-effector trajectory while simultaneously ensuring
that no part of the manipulator collides with any obstacle in the workspace of the
manipulator. To avoid any possible obstacles the manipulator has to move away from
them into a configuration where the distance between them becomes larger, as shown
in Fig. 1. Reconfiguration of themanipulator without changing themotion of the end-
effector is only possible if the manipulator has redundant DOFs. Note that in some
cases it is possible that the redundant manipulator cannot avoid an obstacle, because
it might be in a configuration where the avoiding motion in the desired direction is
not feasible. Having a high degree of redundancy reduces the chance of getting into
a such configuration, especially if the manipulator is working in an environment that
has many potential collisions with obstacles.

Usually, the basic strategy for obstacle avoidance is to identify the points on the
robotic arm that are near obstacles and then assign to them the motion component
that moves those points away from the obstacle, as shown in Fig. 1. The robot motion
(configuration) is changed if at least one part of the robot is at a critical distance from
an obstacle. We denote the obstacles that are closer to the critical distance as the
active obstacles and the corresponding closest points on the body of the manipulator
as the critical points.

For industrial robots it is usually assumed that the motion of the end-effector is
not disturbed by any obstacle. If such a situation occurs, either the task execution
has to be interrupted and the higher-level path planning has to recalculate the desired
motion of the end-effector or if the path-tracking accuracy is not important the control
algorithms that move the end-effector around obstacles on-line can be used.

Since the position of the obstacle is usually not known in advance, the obstacle-
avoidance algorithm must work in real-time. In order to ensure these requirements
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Fig. 1 Manipulator motion in the presence of some obstacles

some sensors have to be used to determine the position of the obstacles or to measure
the distance between the obstacles and the body of the manipulator. There is a variety
of sensor systems that can be used for such obstacle detection. In many cases a vision
system is used to detect obstacles. Another possibility is offered by tactile sensors,
like artificial skin, which can detect the obstacle only if they touch it, or by proximity
sensors, which can sense the presence of an obstacle in the neighborhood.

4 Obstacle Avoidance Using Kinematic Control

The basic strategy for obstacle avoidance considers the obstacle-avoidance problem
at the kinematic level. We denote ẋe as the desired velocity of the end-effector, and
Ao as the critical point on the obstacle (see Fig. 1). To avoid a possible collision, one
possibility is to assign a velocity to Ao such that it would move the manipulator away
from the obstacle, as proposed in [17]. Here, the motion of the end-effector and the
critical point can be defined as

Jq̇ = ẋe Jo q̇ = ẋo (9)

where Jo is a Jacobianmatrix associated with the point Ao. In the following, different
possibilities for finding the solution for both equations will be presented.

4.1 Exact Solution

Let ẋ in (5) be equal to ẋe. Then, by combining (5) and (9) we obtain

ϕ̇ = (JoN)#(ẋo − JoJ# ẋe) (10)



120 T. Petrič et al.

Using ϕ̇ in (5) gives the final solution for q̇ in the form

q̇ = J# ẋ + (JoN)#(ẋo − JoJ# ẋe) (11)

Note that N is both hermitian and idempotent [4, 17]. Here the first term J# ẋ guar-
antees the tacking of the desired end-effector. Also, ẋ is used in (11) instead of ẋe

to indicate that a task-space controller can be used to compensate for any task-space
tracking errors

ẋ = ẋd + Ke. (12)

where ẋd is the desired task-space velocity, K is an m × m positive-definite matrix
and e is the task-position error, defined as

e = xd − x. (13)

Here, xd is the desired task-space position. The second term in (11), i.e., the homo-
geneous solution q̇h , represents the part of the joint velocity causing the motion of
the point Ao. The term JoJ# ẋe is the velocity in Ao due to the end-effector’s motion.
The matrix JoN is used to transform the desired critical point velocity from the oper-
ational space of the critical point into the joint space. Note that the above solution
guarantees that we achieve exactly the desired ẋo only if the degree of redundancy
of the manipulator is sufficient.

4.2 Exact Solution with Reduced Operational Space

The system’s ability to avoid obstacles is defined with the matrix JoN, which com-
bines the kinematics of the critical point Ao and the null-space matrix of the whole
manipulator. Here, the properties of the matrix JoN depend on the position of the
point Ao and also on the definition of the operational space associated with the crit-
ical point Ao. Usually, all the critical points are defined in Cartesian space, which
implies that the velocity ẋo is a 3-dimensional vector and the dimension of the matrix
JoN is 3× n. This means that at least 3 DOFs are needed to move one point from an
obstacle. Consequently, it might seem that a manipulator with two redundant DOFs
is not capable of avoiding obstacles. However, we know from our experience that
this is not true. For example, consider a planar 3 DOF manipulator that can move
along a straight line and only the positions of the end-effector are important. In this
case, the task space is 2-dimensional and the manipulator has one free degree of
redundancy. Defining the velocity ẋo in the same space as the end-effector velocity,
i.e., as a 2-dimensional vector, reveals the matrix JoN to have the dimension 2 × 3.
Furthermore, due to one degree of redundancy the components of the velocity vector
ẋo are not independent. Hence, the rank of JoN is one, and the pseudo-inverse (JoN)#

does not give a feasible solution, at least the desired avoiding velocity ẋo cannot be
achieved.
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On the other hand, as the obstacle-avoidance strategy only requires motion in the
direction of the line connecting the critical pointwith the closest point on the obstacle,
this is a one-dimensional constraint for which only one degree of redundancy is
needed. Therefore,we propose using a reduced operational space [39] for the obstacle
avoidance and define the Jacobian Jo as follows.

Let do be the vector connecting the closest points on the obstacle and the manip-
ulator (see Fig. 1) and let the operational space in Ao be defined as one-dimensional
space in the direction of do. Then, the Jacobian that relates the joint-space velocities
q̇ and the velocity in the direction of do can be calculated as

Jdo = nT
o Jo (14)

where Jo is the Jacobian defined in the Cartesian space and no is the unit vector
in the direction of do, no = do‖do‖ . Now, the dimension of the matrix Jdo is 1 × n,

and the velocities ẋo and Jdo J# ẋe become scalars. Consequently, the computation
of (Jdo N)# is also much faster [33, 35, 39]. Note that in this case we do not have to
invert any matrix because the term (Jdo NJT

do
) is a scalar.

4.3 Selection of Avoiding Velocity

The performance of the obstacle-avoidance algorithm mainly depends on the selec-
tion of the desired critical point velocity ẋo. We propose changing ẋo with respect to
the distance to the obstacle ‖do‖

ẋo = αvvo (15)

where vo is the nominal velocity and αv is the obstacle-avoidance gain defined as

αv =
⎧
⎨

⎩

(
dm‖do‖

)2 − 1 for ‖do‖ < dm

0 for ‖do‖ ≥ dm

(16)

where dm is the critical distance to the obstacle. If the obstacle is too close (‖do‖
≤ db) the main task should be stopped. The distance db is subjected to the dynamic
properties of the manipulator and can also be a function of the relative velocity ḋo.
To ensure smooth transitions it is important that the magnitude of ẋo at dm is zero.
Special attention has to be given to the selection of the nominal velocity vo. Large
values of vo would cause unnecessarily high velocities, which results in a rapid
movement far from the obstacle. Suchmotion is undesirable andmay cause problems,
especially if there are more obstacles in close proximity. Namely, the manipulator
may bounce between them. On the other hand, too small a value of vo would not
move the manipulator away from the critical point, which is undesirable as well.
Selecting the right vo is a trade-off between how quickly and how smoothly the robot
avoids the obstacle.
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For smoothing the motion Maciejewski et al. [17] proposed a factor αh , which
changed the amount of homogenous solution to be included in the total solution

q̇ = J# ẋ + αh(Jdo N)#(ẋo − Jdo J# ẋe) (17)

In our case we have selected αh as

αh =

⎧
⎪⎪⎨

⎪⎪⎩

1 for ‖do‖ ≤ dm
1
2

(
1 − cos

(
π

‖do‖−dm
di −dm

))
for dm < ‖do‖ < di

0 for di ≤ ‖do‖
(18)

where di is the distance at which the obstacle influences the motion. Note that in
the region between db and dm the complete homogenous solution is included in the
motion specification and the avoidance velocity is inversely related to the distance.
Between dm and di the avoidance velocity is zero and only a part of the homogenous
solution is included. As the homogenous solution compensates for the motion in
the critical point due to the end-effector motion, the relative velocity between the
obstacle and the critical point decreases when approaching from di to dm , if the
obstacle is not moving. With such a selection of αv and αh , smooth velocities can be
obtained.

The control law given by (17) was derived for a single obstacle. When more than
one obstacle is active at the same time, then the worst-case obstacle, which is the
nearest, has to be used. This solution may result in discontinuous velocities and
may cause oscillations in some cases. In particular when switching between active
obstacles the particular homogenous solutions are not equal and a discontinuity in
the joint velocities may occur. To improve this behavior we propose using a weighted
sum of the homogenous solution of all the active obstacles

q̇ = J# ẋ +
no∑

i=1

wiαh,i q̇h,i (19)

where no is the number of active obstacles, and wi , αh,i and q̇h,i are the weighting
factor, the gain and the homogenous solution for the i th active obstacle, respectively.
The weighting factors wi are calculated as

wi = di − ‖do,i‖
∑no

i=1(di − ‖do,i‖) (20)

Although the actual velocities in the critical points differ from the desired ones, using
an exact solution significantly improves the performance.

As an illustration we present the simulation of a planar manipulator with five
revolute joints. The primary task is to move along a straight line from point P1
to point P2. The desired trajectory is shown by the green line in Fig. 2. The task
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Fig. 2 Planar 5 DOF
manipulator: tracking of a
line from point P1 to P2 and
obstacle avoidance using an
exact solution

P1

P2

trajectory has a trapezoid velocity profile with an acceleration of 4ms−2 and a max.
velocity of 0.4ms−1. We chose the critical distance dm = 0.2m and the radius of the
obstacle was r = 0.2m. The initial configuration of the manipulator was selected
such that the motion was obstructed by an obstacle. The simulation results using the
exact velocity controller EX (17) are presented in Figs. 2 and 3.

In the top plot in Fig. 3 we can see that the critical distance dm is always above
the predefined threshold d0 = 0.2. However, in the middle plot we can see that with
the exact method in some cases the joint velocities may not be smooth, which may
also reflect in the tracking accuracy, as shown in the bottom plot. Even so, note that
the tracking accuracy of the end-effector is in the range of 10−6.

4.4 Approximate Solution

Another possible solution for ϕ̇ is to calculate the joint velocities for the secondary
goal as

ϕ̇ = J#do
ẋo (21)

without compensating for the contribution of the end-effector motion and then sub-
stituting ϕ̇ into (5) yields
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Fig. 3 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

q̇ = J# ẋ + NJ#do
ẋo (22)

This approach avoids the singularity problem of (Jdo N) [1]. The formulation (22),
however, does not guarantee that the desired ẋo will be exactly achieved even if the
degree of redundancy is sufficient. This is because in general Jdo NJ#do

ẋo is not equal
to ẋo.

To avoid the obstacle the goal velocity in Ao is represented by the vector ẋo.
Using the original method (11) the velocity in Ao is exactly ẋo. The joint velocities
in the exact solution ensure that the component of the velocity at point Ao (i.e., Jo q̇)
in the direction of ẋo is as required. The approximate solution gives, in most cases, a
smaller magnitude of the velocity in the direction of ẋo. Therefore, the manipulator
moves closer to the obstacle when an approximate solution is used. This is not
so critical, because the minimum distance also depends on the nominal velocity vo,
which can be increased to achieve largerminimumdistances, if needed. Additionally,
the approximate solution possesses certain advantages when many active obstacles
have to be considered. The joint velocities can be calculated as

q̇ = J# ẋ + N
no∑

i=1

J#do,i ẋo,i (23)



Obstacle Avoidance with Industrial Robots 125

Fig. 4 Planar 5 DOF
manipulator: tracking of a
line from point P1 to P2 and
obstacle avoidance using an
approximate solution

P1

P2

where no is the number of active obstacles and, therefore, the matrix N has to be
calculated only once. However, the pseudo-inverses J#o,i have to be calculated for
each active obstacle.

We have implemented the approximate velocity controller AP (22) for the
same system and the task as shown in Figs. 2 and 3. The results are presented in
Figs. 4 and 5. We can see that the links are coming closer to the obstacle compared to
the case of using the exact controller. Note that discontinuities in the joint velocities
may also occur here, and that the tracking error of the end-effector is in the same
range as in the case of the exact controller.

4.5 Experimental Results

To support the simulation results we applied the obstacle-avoidance control using
the approximated solution (23) to the 7 DOF Kuka LWR robot. The primary task for
the robot was manipulating the ball in the Cartesian task space and the secondary
task was avoiding human contact (a human was treated as an obstacle for the robot).
The experimental setup is shown in Fig. 6.

The human motion is captured using the Microsoft Kinect sensor. Microsoft
Kinect is based on a range camera developed by PrimeSense, which interprets
3D scene information from a continuously projected infrared structured light.
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0

0.05

0.1

0.15

0.2

−1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3
x 10

−7

d m
[m

]
e
[m

]
q d

[r
ad
]

t [s]

link1
link2
link3
link4
link5

Fig. 5 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

Fig. 6 Experimental setup for the manipulation task with the KUKA LWR robot, while avoiding
the human in the robot workspace. The picture is taken with the Microsoft Kinect camera. Note
that the picture from the Microsoft Kinect camera is mirrored
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Fig. 7 The image sequence shows obstacle avoidance using an approximate solution

By processing the depth image, the PrimeSense API enables the tracking of human
limbmovements in real time. To acquire the closest points (interpreted as point obsta-
cles) between the human and the robot, we calibrated the Microsoft Kinect sensor
to the robot base coordinate system. To obtain the proper transformation matrix, we
recorded at least four pairs of points in both coordinate systems. During the cal-
ibration procedure the human placed his hand at the same locations as the robot
end-effector and the position of the human hand and the position of end-effector
were measured in the Kinect and robot base coordinate systems, respectively. The
transformation matrix was calculated using least-squares fitting of two points set, as
described in [40].

The results are shown as a sequence of photos in Fig. 7, where we can see a
successful pose adaptation in order to prevent human contact, while maintaining the
position of the end-effector.

5 Obstacle Avoidance as a Primary Task

The development of multi-arm robot mechanisms and humanoid robots emphasized
the importance of being able to perform multiple tasks simultaneously [41–43], like
controlling multiple points on the robot structure, stability, pose control or obstacle
avoidance. Whether it is feasible that the robot can achieve all the goals at the
same time depends on the one hand upon the robot’s dexterity and its configuration,
and on the other hand upon the goals themselves. Although highly redundant robot
manipulators can perform multiple tasks, it is not likely that all the tasks can be
fulfilled simultaneously or at least not all the time. For example, the robot may be
able to perform all the tasks in one configuration, but when the robotmoves to another
configuration, some goals may become conflicting with the motion. In this case, it is
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impossible to satisfy all the goals and the conflict can be handled in the framework
of the task priority, where the tasks are arranged by their relevance. The priority
indicates how important a task is compared to others and it can also imply some
other things, like how important it is to execute the task accurately. Typically, the
lower-priority tasks are less important and they are fulfilled completely only if not
they are interfering with higher-priority tasks. The task with the highest priority is
usually referred to as the primary task.

With multiple tasks it is important to know the relationship between the tasks.
Assuming that each task can be executed per se, i.e., a feasible solution exists for
all the tasks, this is not a guarantee that all tasks can be executed simultaneously.
Namely, the motion necessary to perform one task can disturb the execution of other
tasks and, hence, some tasks may become unfeasible with respect to others. The
dependency between tasks can be determined by analyzing the range of the associated
Jacobian inverse mappings [44–46]. It is important to know the relationship between
the mapping, but it is not essential for the solution. When two tasks are disturbing
each other, then it is necessary to ensure that the task with higher priority is fulfilled
and then we should try to fulfil the lower-priority task as well as possible.

For a redundant robot one possible solution for obstacle avoidance is to consider
the obstacle-avoidance task as a primary task Ta , and the end-effector tracking as a
secondary task Tb defined by

xa = f a(q) xb = f b(q) (24)

For each of the tasks, the corresponding Jacobian matrices can be defined as Ja and
Jb, with the corresponding null-space projections denoted by Na and Nb. Assuming
that task Ta is the primary task, Eq. (5) can be rewritten as

q̇ = J#a ẋa + NaJ#b ẋb (25)

Previously, we have assumed that the end-effector motion is not disturbed by an
obstacle. Now, it is assumed that the motion of the end-effector can be disturbed by
anyobstacle. If such a situation occurs, the task execution usually has to be interrupted
and higher-level path planning has to be employed to recalculate the desired motion
of the end-effector. However, if the end-effector path tracking is not essential, we
can use the proposed control (25). Consequently, no end-effector path recalculation
or higher-level path planning is needed.

Figure8 shows an example of the prioritized control where we can see that in this
case the robot can avoid obstacles even if they appear on the Cartesian task path. The
same parameter set was used as in Sect. 4, except for the obstacle diameter, which
was now set to r = 0.4m. In Fig. 9 we can also see that the critical distance dm is
exactly the same as the predefined d0 = 0.2, which was expected since the obstacle-
avoidance task is now the task with the highest priority. In contrast, in this particular
example, we can see that such an approach has a disadvantage when compared to
the global path search algorithms since the resulting motion may be suboptimal and
as a result it may become stuck.
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P1 P2

Fig. 8 Planar 5 DOF manipulator: tracking of a line from point P1 to P2 is a secondary task and
obstacle avoidance is the primary task
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Fig. 9 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

5.1 Smooth Transition Between Tasks

Another important aspect that should be considered with multiple tasks is the ability
to change the task priority. When a robot is working in a changing environment, it
may happen that the situation requires that one task becomes more important than
before. A good example is obstacle avoidance, where the priority of the avoiding task
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may depend on the type of obstacle and on the distance to the obstacle. Therefore, it
is beneficial if the control method enables a smooth change of task priorities. Using
formulation (25) this cannot be done in a smooth way. Therefore, we propose a new
definition of the velocity q̇ [35]. The velocity q̇ is now defined as

q̇ = J#a ẋa + N′
aJ#b ẋb, (26)

where the matrix N′
a is given as

N′
a = I − λ(xa)J#J, (27)

where λ(xa) is a scalar measure of how “active” is the primary task Ta , scaling the
vector xa to the interval [0, 1]. When the primary task Ta is active λ is λ(xa) = 1,
and when the task Ta is not active, it is λ(xa) = 0.

The proposed algorithm allows a smooth transition in both ways, i.e., between
observing the task Ta and the task Tb in the null-space of the task Ta or just the
unconstrained movement of the task Tb. The proposed approach is general and can
be used for different robotic tasks.

For obstacle avoidance using (26), we define the primary task Ta to be the motion
in the direction d0 and the motion of the end-effector to be the task Tb. Using the
reduced operational space yields

Ja = Jdo , (28)

Jb = J. (29)

Next, (26) can be rewritten in the form

q̇ = J#do
ẋo + N′

0J# ẋ. (30)

Here, ẋ is the task controller for the end-effector tracking and let λ (d0) = αh , then
N′
0 is given by

N′
0 = I − αhJ†oJo. (31)

Formulation (30) allows an unconstrained joint movement while αh is close to
zero (αh ≈ 0). Thus, the robot can track the desired task-space path while it is
away from the obstacle. On the other hand, when the robot is close to the obstacle
(αh ≈ 1), the null space in (31) takes the form N′

0 = N0, and only allows movement
in the null space of the primary task, i.e., the obstacle-avoidance task. In this case,
we can still move the end-effector, but the tracking error can increase due to the
obstacle-avoiding motion.

Simulation results using the control algorithm (30) are presented in Figs. 10
and 11. We can see in Fig. 10 and in the top plot of Fig. 11 that in the case of a
smooth transition between tasks the tracking error may become significant while
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P1 P2

Fig. 10 Planar 5 DOF manipulator: smooth transition between the primary task of obstacle avoid-
ance and the secondary task of tracking a line from point P1 to point P2
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Fig. 11 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

the robot is close to the obstacle. The main reason for such behaviour is that in this
case the obstacle-avoidance becomes primary and the end-effector tracking is the
secondary task projected into the null space of the obstacle-avoidance task. Even
though this may seen impractical, it is useful in situations when the obstacle is in the
path of the end-effector. Since by using such control, the robot can avoid obstacles
in real-time without using any additional path-planners if obstacles appear on the
end-effector path during the motion.
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An important observation is also that for this particular task and for the same
configuration and parameter set as used in the example presented in Fig. 9, the robot
does not become stuck in the local minimum. The main reason for such behaviour
is that the transition to obstacle avoidance is now smooth and consistent. However,
as we can see in the top plot in Fig. 11, as a consequence the robot comes closer to
the obstacle. Note that this minimal distance to the obstacle could be increased by
increasing the value of d0.

5.2 Prioritized Damped Least-Squares Inverse

Another possibility for simultaneous end-effector tracking and obstacle-avoidance
simultaneously is to treat them equally. Let us stack all the tasks the robot should
perform xi , i = 1, . . . , k into an extended task vector

xE =
[

xT
1 , xT

2 , . . . , xT
k

]T
(32)

Then, the relation between the task space velocities and the joint velocities is given as

ẋE = JE q̇ (33)

where the extended Jacobian is given in the form

JE =
[
JT
1 , JT

2 , . . . , JT
k

]T
(34)

The solution to (33) (denoted later as E) is given in the form

q̇ = J#E ẋE (35)

As all the tasks are included in ẋE there is no need to consider the homogenous part
of the solution, i.e., the null-space velocity, to solve these tasks. If the rank of JE

equals at least the dimension of all the tasks, rank(JE ) ≥ mt , then the solution to
(35) results in q̇, which fulfill all the tasks.

Even though the approaches proposed by [2, 44, 47–49], for the calculation of
joint velocities in the case of multiple prioritized tasks, solve the inverse kinematic
problemwhen the systemof equations is not ill-conditioned, it is likely that during the
execution of multiple tasks the manipulator moves toward the configuration where
one of the Jacobian matrices is near singularity and, consequently, the obtained joint
velocities q̇ become unfeasible. To overcome the problem of unfeasible velocities
we could apply the damped least-squares (DLS) technique. Applying DLS to the
extended Jacobian method gives feasible joint velocities. However, if the rank of the
extended Jacobian JE is not sufficient with respect to the dimensions of all the tasks
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rank(JE ) <

k∑

i=1

mi (36)

then (35) results in a “best fit” (in a least-squares sense) solution. Since in (35) all
the tasks are treated equally, it is not possible to prioritize some of the tasks in favor
of others. To overcome this drawback we propose an approach in the framework of
a DLS extended Jacobian [48, 50].

The basis of this method is a combination of the extended Jacobian approach (35)
and the DLS inverse technique. The proposed solution is given in the form

q̇ = J#E ẋE (37)

where

J#E = JT
E (JE JT

E + λ2P)−1 (38)

and (P) is an mt × mt diagonal matrix

P =

⎡

⎢
⎢
⎢
⎣

p1I1 0 . . . 0
0 p2I2 . . . 0
...

...
. . .

...

0 0 . . . pkIk

⎤

⎥
⎥
⎥
⎦

(39)

where pi are scalars depending on the desired priority of the task Ti , and Ii are
mi × mi unit matrices. We denote this method as the priority weighted damped
least-squares Jacobian method (denoted later as PWDLS). The proposed solution
(38) with priority factors (39) minimizes

λ2‖q̇‖ +
k∑

i=1

pk‖ẋk − Jk q̇‖ (40)

The method is similar to the method proposed in [50] except that the weighting
factors are defined by the priority of the tasks. For improving the performance it
is essential to suitably select the factors in the damping term in (38). To focus on
the priority issue of the problem, we assume that the optimal value for the damping
factor λ has been selected using one of the well-known methods [48, 51–54]. To
determine the optimal value of λ all the values pi are set to 1, i.e., P = I.

When dealing with the priority in the framework of redundancy resolution, the
terms primary task, secondary task, and so on, imply that the control has fulfilled
the primary task first, and next the secondary task, without disturbing the primary
task. This philosophy is used by all redundancy-resolution schemes dealing with
prioritized tasks. None of the redundancy schemes can deal with the information
about “how much” one task is more important than the other. For example, even for
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the obstacle-avoidance schemes, where the distance to the obstacle can be used as a
measure of the importance of particular critical points, this information is actually
used only to order the critical points. On the other hand, the parameters pi can be
used to quantify the relative importance of the tasks Ti . So, it is possible to quantify
the priorities of the tasks [55]. It is obvious that the following relation must hold

Priority(Ti ) > Priority(Tj ) ⇔ pi < p j , i, j ∈ {1, . . . , k} (41)

To gain more insight into the relation between the tasks Ti one can compare the
desired task velocities ẋ and the task velocities ẋa obtained as a solution of (42)

ẋEa = JE q̇ = JE J#E ẋe = Aẋ (42)

The ma ×ma matrix A represents the mapping between ẋ and ẋa and can be divided
into several submatrices

A =

⎡

⎢
⎢
⎢
⎣

A1,1 A1,2 . . . A1,k
A2,1 A2,2 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . Ak,k

⎤

⎥
⎥
⎥
⎦

(43)

where Ai, j are mi × m j matrices. Remarkably, the diagonal matrices Ai,i represent
the transformation of the task velocity ẋi in the space of the task Ti , and the off-
diagonal submatrices represent the influence between the tasks. Note that as pi are
not equal, A is a non-symmetric matrix. The explanation is apparent, the task with
higher priority influences the task with lower priority more a vice versa.

An example of using the (42) algorithm is shown in Figs. 12 and 13. Here we can
see similar behaviour as when using a smooth transition between tasks, e.g., Figs. 10
and 11. By comparing the results, the main difference between those two approaches
while using the same parameter set is that in the case of PWDLS the robot comes
closer to the obstacle.

In the following we present how the selection of pi influences the solution of (42).
For a better understanding we present a 4 DOF planar manipulator with revolute

Fig. 12 Planar 5 DOF
manipulator: tracking of a
line from point P1 to point
P2 and obstacle avoidance
using PWDLS Jacobi

P1 P2
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Fig. 13 Top plot shows the distance between the obstacle and the nearest link. Middle plot shows
the joint velocities and the bottom plot shows the end-effector tracking error

joints where three control points have to be moved in different directions due to
the obstacles near the robot. Note that in this example, the distance between each
obstacle and the robot body is the same for all obstacles. Consequently, the desired
avoiding motion is similar for all the critical points (except the direction, of course).
We assume that only the positions of the control points are important and so the
tasks are 2-dimensional, mi = 2. Consequently, mt = 6 and n = 4. As JE has
more rows than columns, the system is overdetermined and no exact solution exists.
Figure14 shows the situation for four different selections of P . The case a) presents
the solution without prioritizing tasks (as a classic extended Jacobian approach). The

T1

T2

T3 T1

T2

T3 T1

T2

T3 T1

T2

T3

(a) (b) (c) (d)

Fig. 14 Influence of different priority factors in (42) for three tasks and for four priorities sets:
a p = [1, 1, 1], b p = [1, a, a2], c p = [a, 1, a2], d p = [a, a2, 1], where a = 5 and λ =
10−8. The circles represent the geometrical representation of submatrices Ai,i : unit sphere (red)→
ellipsoid (blue). Red vectors are the desired task velocities ẋ and blue vectors are the resulting task
vectors ẋa
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other three cases show the situation when each of the tasks becomes the main task.
Note that the motion in a particular control point is not only due to the desired motion
in that point but in other control points the desired motion contributes to. Actually,
in case (d) most of the motion in control point 2 is due to the motion of the other two
tasks. As one can see, with a suitable selection of pi the proposed method makes it
possible to achieve the desired behavior of the whole system.

As the priority can be defined by changing the controller parameters rather a
by changing the controller structure, the proposed method is also suitable when the
priority has to change during the tasks’ execution.Note that the priority change can be
done continuously and no discontinuity in the joint-space solution q̇ is experienced.
A method for determining the actual values of pi is beyond the scope of this chapter.
In general, it depends on the needs of all the tasks and the specific circumstances
during the tasks’ execution.

5.3 Experimental Results

To demonstrate the properties of the algorithm given with (42) we extended the task
of the bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle [56] with the task of preventing
human contact. As in the case of the experiment in Sect. 4, the human motion was
obtained using the Microsoft Kinect sensor. The results are shown in Fig. 16 and
as a sequence of photographs in Fig. 15, where we can see that robots are able to
successfully perform multiple tasks simultaneously, i.e., preventing human-robot
contact and preserving the plate’s orientation.

Fig. 15 A sequence of still photographs shows the movement of two Kuka LWR robots, while
they successfully avoid a human arm that is approaching the robot in the robot’s work space. The
detection and tracking of the human arm was done in real time using a Microsoft Kinect sensor
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Fig. 16 Results of a bimanual cooperation of two Kuka LWR robots equipped with Barret-Hand
grippers holding a plate while balancing a bottle with the task of preventing human contact. The
top plot shows the closest distance between human and nearest robot link. Second and third plot
shows the joint velocities for obstacle avoidance for left and right robot respectively. Bottom plot
shows the task error of balancing a bottle on a plate

6 Obstacle Avoidance Using Dynamical Systems

In this section we introduce dynamic movement primitives, which can be used
to encode arbitrary trajectories, and are often associated with the learning-by-
demonstration approach of controlling robots. We first provide the basics of the
dynamic motor primitives, followed by obstacle-avoidance modulation. The obsta-
cle avoidance in the DMP framework presented here is a modified approach of [57].
Simulated and real-world results are presented.

6.1 Dynamic Movement Primitives

The theoretical foundations of the dynamic movement primitives (DMPs) trajec-
tory representation was developed by Ijspeert et al. [58]. Here the discussion is
limited to discrete movement primitives, which can encode control policies for
discrete point-to-point movements. See [59–61] for the discussion of rhythmic
DMPs. The representation proposed by Ijspeert et al. is based on a set of nonlinear
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differential equations with a well-defined attractor dynamics. We used the most
current formulation as outlined in [57]. For a single degree of freedom denoted by
y, which can either be one of the internal joint angles or one of the external task-
space coordinates, the following system of linear differential equations with constant
coefficients denotes a dynamic movement primitive

τ ż = αz(βz(g − y) − z) + f (x), (44)

τ ẏ = z. (45)

f (x) is defined as a linear combination of nonlinear radial basis functions

f (x) =
∑N

i=1 wiΨi (x)
∑N

i=1 Ψi (x)
x, (46)

Ψi (x) = exp
(
−hi (x − ci )

2
)
, (47)

where ci are the centers of radial basis functions distributed along the trajectory and
hi > 0 their widths. Provided that the parameters αz, βz, τ > 0 and αz = 4βz , the
linear part of the system (44) and (45) is critically damped and has a unique attractor
point at y = g, z = 0. A phase variable x is used in (44), (46) and (47). It is utilized
to avoid the direct dependency of f on time. Its dynamics is defined by

τ ẋ = −αx x, (48)

with the initial value x(0) = 1. αx is a positive constant.
The weight vector w, composed of weights wi , defines the shape of the encoded

trajectory. [58, 62] describe the learning of the weight vector. Multiple DOFs are
realized by maintaining separate sets of (44)–(47), while a single canonical system
given by (48) is used to synchronize them.

6.2 Obstacle Avoidance

A control policy given by the DMP can encode either separate joint trajectories,
or external task-space coordinates. Obstacle avoidance in Cartesian space is easier
to implement since the trajectory is usually planned in Cartesian space as well.
Let us assume a three degree-of-freedom DMP system that encodes point-to-point
reaching in Cartesian space. The 3-D position vector of the 3DOF discrete dynamical
system is encoded by y = [y1, y2, y3]T . The objective is to generate a reaching
movement to a goal state g = [g1, g2, g3]T . On the way to the goal state, an obstacle
is positioned at o = [o1, o2, o3]T and needs to be avoided. A suitable coupling term
Ct = [Ct,1, Ct,2, Ct,3]T for the obstacle avoidance can be formulated as follows:

Ct = γ sig (‖o − y‖) Rẏ (π − φ) exp (−βφ), (49)
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where

φ = arccos

(
(o − y)T ẏ
‖o − y‖‖ẏ‖

)

, (50)

sig(x) = 1

1 + eη(x−d)
, (51)

R = exp
((π

2
− φ

)
n
)
, (52)

n = (o − y) × ẏ
‖o − y‖‖ẏ‖ . (53)

γ , β, and η are the scaling factors and d is the distance at which the obstacle should
start affecting the robot’s motion. The coupling term as defined above generates a
velocity component that is in a plane defined by the vectors o − y and ẏ. It is also
orthogonal to the line o−y, which is connecting the tip of the robot and the obstacle.

We can ensure that the tip of the robot, i.e., the end-effector, avoids the obstacle
by adding the coupling term Ct to Eq. (45)

τ ż = αz(βz(g − y) − z) + f(x) + Ct (54)

The resulting behavior is shown in Fig. 17. Note that in this way we can only ensure
that the robot tip avoids the obstacle. However, the rest of the robot could still collide
with it. Effectively, such an implementation of obstacle avoidance treats the problem
of the end-effector collision as the primary task. Given that the DMP encodes a
task-space trajectory, the actual joint trajectories are calculated using IK algorithms.
Null-space obstacle avoidance such as discussed in Sect. 4 can be employed for the
obstacle avoidance of separate segments of the robot.

6.3 Experimental Results

To show the applicability of the dynamic system for trajectory generation we applied
it to two Kuka LWR robots. The task was a bimanual cooperative manipulation
while avoiding obstacles. The obstacles in this example were detected using the

Fig. 17 The obstacle is the
black sphere, which is
directly in the path of the
robot, denoted by green.
When the obstacle-avoidance
term is introduced, the robot
takes the blue trajectory

P1 P2
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Fig. 18 The image sequence shows a bimanual task, controlled with dynamical systems

stereo-vision cameras. The results are shown in Fig. 19 and as an image sequence in
Fig. 18. As we can see one of the arms encounters an obstacle, given by the orange
ball, and has to adapt its predefined trajectory (straight line) similar to that shown in
the example given in Fig. 17. The control of the other arm is adapted as well in order
to maintain a constant distance between them.

7 Conclusion

The presented approaches for on-line obstacle avoidance for redundant manipulators
are based on redundancy resolution at the velocity level. For the first presented
methods, the primary task is determined by the end-effector trajectories and for the
obstacle avoidance the internal motion of the manipulator is used. The goal is to
assign each point on the body of the manipulator, which is close to the obstacle, a
velocity component in a direction that is away from the obstacle. We have shown
that it is reasonable to define the avoiding motion in a one-dimensional operational
space. In this way, some singularity problems can be avoided when not enough
“redundancy” is available locally. Additionally, the calculation of the pseudo-inverse
of the Jacobian matrix Jo is simpler as it includes a scalar division instead of a
matrix inversion. Using an approximate calculation of the avoiding velocities has
its advantages computationally and it makes it easier to consider more obstacles
simultaneously.

Next, the control algorithms are presented, where the tasks’ priorities can be
altered during the execution of the motion. In the context of obstacle avoidance this
means that the obstacle can also appear on the desired end-effector trajectory. For
changing the priorities of the task we first show how to modify the prioritized task-
control algorithm at the velocity level to implement smooth transitions between tasks
with different priorities. The higher-priority task will only be active when the desired
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Fig. 19 Top plot shows the distance between the obstacle and the nearest link. Note that obstacle
avoidance is active only under 0.25m and that it only acts while the velocity is towards the obstacle.
Once the robot is past the obstacle, the perturbation-rejection properties of DMPs ensure smooth
return to the original trajectory. Second and third plot shows the joint velocities for left and right
robot respectively, which are continuous and derivable. Bottom plot shows the task error

criterion is met and otherwise the higher-priority task is smoothly deactivated. This
characteristic to separate tasks and to activate them only when necessary, improves
the performance of the robot significantly. Furthermore, the presented method does
this activation/deactivation of tasks in a smooth way. We also explain how to find
the necessary motion of the robot for all the tasks simultaneously using the extended
Jacobian. As such an approach does not always give a feasible solution we propose
to use a priority weighted damped least-squares Jacobian for arranging the tasks
by priority. In this way the best solution can be found for the particular situation.
With some examples we show how the priority-based damping factors influence the
motion generation for particular tasks. With a proper choice of these factors it is
possible to get such joint velocities which ensure the desired behavior in the best
possible way.
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Finally, we show how a dynamical system for trajectory generation can be
modified to be suitable for online control. Since the dynamical system can only
avoid obstacles that appear in the trajectory path, it is necessary to use a control
method that can modify the robot null-space configuration if needed. The combina-
tion of both dynamical systems for trajectory generation and control with obstacle
avoidance is a powerful framework that can easily be used in different applications.
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