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Abstract This chapter introduces a methodology for the vision-based motion
control of robot manipulators. The motion control problem is decomposed into three
computational stages: motion planning, trajectory generation and trajectory tracking.
While the two latter activities are always executed in real time, motion is planned
in traditional robot systems off line, by learning robot points or by using numerical
output data from programs that plan minimal paths, avoid obstacles, etc. Guidance
vision is introduced as an advanced motion control method, which provides flexibility
when integrating industrial robots in computer-controlled manufacturing structures.
A dynamic look-and-move system architecture is discussed, as a robot-vision system
which is closed at task level. An open architecture is proposed as implementing solu-
tion for vision-based scene management and robot guidance, which integrates any
types of robot controllers and image processing libraries. The chapter also presents
a motion control algorithm for robots which are required to pick objects randomly
moving on conveyor belts. The algorithm for visual tracking of conveyor belts for
“on—the-fly” object grasping is partitioned in two stages: (i) visual planning of the
instantaneous destination of the robot, (ii) dynamic re-planning of the robot’s destina-
tion while tracking the object moving on the conveyor belt. The ensemble [conveyor
belt + actuator + sensor] is configured as a single-axis Cartesian robot, leading to
a cooperation problem between robot manipulators subject to multitasking control.
Experimental results are finally reported in what concerns the statistics of object
locating errors and motion planning errors function of the size of the objects of the
belt speed and of the light strobe.

Keywords Robot-vision system - Vision guided robot planning * Visual robot
servoing - Joint-space trajectory planning

T. Borangiu (X)) - F. Anton - S. Anton

Department of Automation and Applied Informatics,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: theodor.borangiu@cimr.pub.ro

© Springer International Publishing Switzerland 2015 63
G. Carbone and F. Gomez-Bravo (eds.), Motion and Operation Planning

of Robotic Systems, Mechanisms and Machine Science 29,

DOI 10.1007/978-3-319-14705-5_3



64 T. Borangiu et al.

1 Introduction

The motion control problem refers to controlling the robot manipulator such that it
follows a pre-planned path. The motion control problem is generally decomposed into
three computational stages (Fig. 1): (1) Motion planning; (2) Trajectory generation;
(3) Trajectory tracking [1].

In the motion planning stage, desired paths are described in the r-dimensional task
space T (i.e. the locus of the positions and orientations that the robot tool must attain
in O C R™—the operational space, 7 C O), which is isomorphic to the special
Euclidian group SE>.

T ={x(t)|x e R",t e R"},7 C SE* = R* x SO’

The vectors X = xg =[po ]T, n = no. of d.o.f. express the location of the nth
coordinate frame (x,,, y,,, Z»), attached to the end-effector, relative to the world frame
(x0, Yo, zo) attached to the base of the robot, p € R3 specifies the coordinates of the
origin of the task frame (or end-effector frame), whereas the current orientation ¢ of
the task frame is described either by the rotation matrix R—a member of the special
orthogonal group SO?, or minimally by a set of 3 Euler angles (in the sequel, the yaw,
pitch and roll angles will be considered). If the tool is a single rigid body moving
arbitrarily in the Cartesian 3D workspace, then 7 = SE? = R3 x SO, m = 6.

Because on one hand robotic tasks are specified with respect to one or more
coordinate frames, and on the other hand visual servoing of robots makes intensive
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Fig. 1 Functional architecture for the global robot motion planning and control problem
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use of a number of specific, additional coordinate frames, coordinate transformations
are used in motion planning and tracking as a generalisation of poses to express
relative locations between such frames of interest [2, 3].

Coordinate transformations must be often composed in the stage of motion plan-
ning and tracking, off line or at run time, to obtain the desired pose of the end-effector.
Assuming that we are given the coordinate transformations xeis and XZZS expressing
respectively the location of the coordinate frame (x,;s, yyis)attached to the image
plane relative to the world frame (xo, Yo, zo) in the base of the robot, and the loca-
tion of the frame (xop;, Yo»j) attached to an object relative to (xys, yvis), then the
coordinates M%7 of a point in the object frame can be expressed in the world frame
by the composition rule (:):

MO [les [Mob]]] _ (X . vzs )[Mob]] _ XO [M()b]]

vzv obj vis ob]

The associated relative rotation matrix and translation are given by Rob] =
R(v)l sR;Z; ,p° obj RW Sp(‘jlb; + pw ;- In the V+ structured robot programming environ-
ment, the simple transformations: to.cam[cam]—available from camera-robot
calibration, and vis.loc—the object location computed at run time, stand respec-
tively for xm and XV” the object-attached frame is related to the world frame by
the composed transformatlon obj.loc <« to.cam[cam]:vis.loc

During motion planning stage, the desired paths are generated without timing
information, i.e., without specifying the velocity and the acceleration along the path.
Of primary concern is the definition of collision-free paths in the workspace. A
secondary objective may be included, for example the optimization of some cost
functions like: minimization of the total travel time or distance, keeping as low as
possible changes in direction, continuity of velocity, etc. [4].

The trajectory planner (generator) parameterises the end-effector path directly
in the task space either as a curve in SE3, or in R® when a minimal Euler rep-
resentation is used for SO3. The trajectory planner may also compute a trajectory
for the individual joints of the manipulator as a curve in the configuration space

={q(t)|qeR". 1 € Z",n = no.of do.f.}.

The trajectory planner TP, represented as block—and connection diagram in
Fig.2, is a software module, component of the basic software system of the robot
controller, being characterised as follows:

1. The inputs to the TP are the path description and constraints, and the constraints
imposed by the manipulator’s dynamics.

2. The output from the TP is the joint—or end-effector trajectory data, expressed
as a discrete time sequence of the values which must be attained by the position,
velocity and acceleration computed respectively in the configuration space q € C
or in the task space x = (p, ¢) € R, from the initial to the final pose.

3. The trajectory planning task is executed by the TP in one of the two following
modes:

e Assuming that a set of constraints (e.g. continuity or smoothness) on position,
velocity and acceleration of the manipulator’s joint variables has been explicitly
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Fig. 2 Trajectory planner task and I/O representation

specified at selected joint configurations (called support—or interpolating
points) along the trajectory, the TP selects then a parameterised trajectory from
a class of polynomial functions in the total travelling time interval, which inter-
polates and satisfies the imposed constraints at the support points.

e A path that the end-effector must traverse is explicitly specified by an analyt-
ical function (e.g. a 3D straight-line path, a 2D circular-arc path in Cartesian
coordinates or any computed curve), and the TP adds a time law to compute
a trajectory that approximates the desired path either in joint coordinates or in
Cartesian coordinates.

In the first mode, the constraint specification and the planning of the manipulator
trajectory are performed in joint coordinates. In the second mode, the path constraints
are specified in Cartesian coordinates, and the joint actuators are servoed in joint
coordinates.

To compute a joint-space trajectory, a given end-effector path must be transformed
into a joint-space path via the Inverse Kinematics (IK) mapping. Due to the difficulty
of computing on line this mapping, the usual approach is to compute a discrete set of
joint vectors along the end-effector path (joint support vectors), and then to interpolate
in joint space between these support points in order to complete the joint-space
trajectory. Common approaches to trajectory interpolation include polynomial spline
interpolation using trapezoidal velocity profiles and time laws of blended polynomial
type, cubic polynomial trajectories, or trajectories generated by reference models [5].

2 The Trajectory Generation Problem in Robot
Motion Control

A path can be defined either in the joint space or in the operational space. Usually,
the latter is preferred since it allows:

e a natural description of the task the manipulator has to do,
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e a simple description of the path constraints—these are due to regions of the
workspace which are forbidden to the manipulator (e.g. due to the presence of
obstacles), and

e adirect knowledge of the pose of the end-effector in the workspace [6].

A geometric path cannot be fully specified by the user due to complexity reasons.
Typically, areduced number of parameters are specified, such as: final points, possible
intermediate points, geometric primitives interpolating the points. Also, the motion
time law is not typically specified at each point of the geometric path, but rather
it regards: the total trajectory time, the constraints on the maximum velocities and
accelerations or the eventual assignment of velocity and acceleration at some points
of particular interest.

This section presents algorithms and implementing solutions for operational-
space and joint-space and motion planning. Real-time computational aspects and
performances are analysed.

2.1 Joint-Space Trajectory Planning

For this type of trajectory planning, the time history of all joint variables and of their
first two derivatives is planned to describe the desired motion of the manipulator.
Planning in the joint space has the following advantages:

e the trajectory is planned directly, in terms of the controlled joint variables q(#)
during motion execution;

e the trajectory planning can be done nearly in real time;

e the joint trajectories are planned with a reasonable computational effort.

The main disadvantage is the difficulty in determining the locations of the various
links and of the end-effector in the operational space, a condition which is usually
required to guarantee obstacle avoidance along the trajectory.

The global algorithm for generating joint-trajectory set points is given next:

[=ty;
loop: wait for next control interval;
t=t+At;
Update the trajectory planner tp(f) — compute the necessary joint posture
of the manipulator: {q(t), q(1), ('j(t)} attime 7,
if  t=ty, exit

else goto loop.

Four constraints are imposed to the planned joint-space trajectory:

1. The trajectory set points must be non-iteratively readily calculable.
2. Intermediate points must be evaluated in a deterministic mode.
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3. The continuity of the joint position and its first two time derivatives must be
guaranteed so that the planned joint trajectory is smooth.
4. Extraneous motions must be avoided.

The constraints 1-4 for the planned trajectory will be satisfied if the time history
of the joint variables can be specified by polynomial sequences.

Robot controllers use electronic gearing in the joint-space trajectory generator in
order to synchronize the movement of one or more slave axes to the movement of a
master device, which can be an encoder, A/DC, or the trajectory of another axis, e.g.
the robot’s leading axis which must execute the longest displacement.

2.2 Operational-Space Trajectory Planning

The general case of Cartesian-space planning is considered, for which the global
algorithm is given below:

1=1y;
loop:  wait for next control interval;
t=t+At;

Update the operational hand planner TP(#) — compute the necessary
position and orientation of the end-effector: {p(t), o), p@), m(t)}
in the operational space at current control time interval 7 ;

Compute the closed IK joint solution — CIKS, IK[TP(#)], corresponding to
TP(?);

lf = tfmal eXit;

else goto loop.
In general, task-space planning is done in two steps:

STEP 1: Generating or selecting the set of support points in operational coordinates
according to some rules, along the operational path

STEP 2: Specifying a class of functions to link the support points defined in STEP
1 (or to approximate the path segments) according to some criteria. The
criteria which are chosen are often dictated by the control algorithm fol-
lowing the trajectory planning, which tracks the desired path.

There are two approaches which can be used for achieving STEP 2:

1. The operational space—oriented approach: support points are generated along
the task path in operational coordinates. Then, the TP interpolates in operational
space between these support points and adds the time law expressed in terms
of the desired speed and acceleration profiles. The result will be the discrete
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time sequence of values that must be attained by the end-effector’s position and
velocity computed in the task space, i.e. the trajectory in the task space.

Next, the task-space trajectory is converted into the corresponding joint-space
trajectory, by applying for inverse kinematics computation. Several techniques can
be used to this purpose:

e The kinematics inversion using the Jacobean pseudo-inverse J* or the Jacobean
transpose JT [1, 71;
e The resolved motion rate control (RMRC) algorithm in the form:

8qc(1) = T 1(qe(1))8xc (1)
where:

8qc(t) = q(tir1) — q(tr), 89c(t) = los(Xq(tkv1) — dk(q(%))

This corresponds to an incremental IK task space computation /og, §X.(¢) being
the incremental displacement along the operational path, and dk(q) is the time func-
tion that computes the Direct Kinematics model. Hence it can be observed that the
two time-consuming computing tasks:

— operational path interpolation between support points, and
— conversion of the task-space trajectory to a joint-space trajectory

are performed incrementally with arguments representing relative position and speed
values. This will consequently reduce the computation time and augment the band-
width of the TP (Fig. 3).
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Moreover, in order to additionally reduce the computing time, truncation of
results and approximations like sin ~ 0,cosf ~ 1 — 6%/2for |#| < & with &
a small, positive quantity, or reduced-order series development are accepted for the
IK computation task. This is because any induced errors will be compensated by
the DK task, placed on the feedback path and operating with the absolute values of
the argument “q.—the computed joint configuration on the operational path” [5, 8].
In the case of linear interpolation, the resulting output trajectory generated by the TP
is a piecewise straight line in the task space.

Attention must be paid as IK transformations do not produce unique solutions; in
addition, if the manipulator dynamics is included in the trajectory planning, then path
constraints will be specified in operational coordinates, while physical constraints
such as force, torque, velocity and acceleration limits of each joint motor will be
bounded in joint coordinates.

2. The joint space—oriented approach: converts first the support points that have
been defined along the operational path into their corresponding joint coordi-
nates, and the uses low-degree polynomial functions to interpolate between these
converted support points (Fig.4). Figures 3 and 4 represent two approaches used
for interpolating between support points generated along the operational path.

If the TP must generate a linear trajectory in the task space, the support points will
be on this linear path, but the linear joint-space interpolation between support points
will produce a final output trajectory which is a non—piecewise straight line in the
task space. According to the maximum allowed deviation in position of the planned
trajectory with respect to the ideal, linear one in the task space, a certain number of
support points will be defined on the operational path. The smaller the admitted devi-
ation, the larger the number of support points to be defined on the operational path.
This second approach is widely used, because of its reduced computational effort.

In the trajectory tracking stage, the computed reference trajectory is input to the
motion controller, whose function is to determine the end-effector to track the given
trajectory as close as possible. The trajectory tracking task is executed in real time
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Fig. 4 Linking support points by interpolating in joint space
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by the motion controller and consists in computing the time history of joint control
inputs u, i.e. the vector of control voltages for the n axes’ servomotors.

Task description is in most cases expressed in the m-dimensional operational
space (with a particular minimal representation for the end-effector orientation),
whereas control inputs (control velocities or forces/torques for the joint actuators)
are generated in the n-dimensional joint space. Consequently, two types of motion
control schemes have been thought of: with joint-space trajectory tracking and with
operational-space trajectory tracking.

3 The Taxonomy of Visual Robot Servoing

The Al approach to intelligent robot automation is best characterised as the attempt
to provide a robot with a symbolic representation of its environment and of its own
actions, to be exploited by some kind of inference procedure. In this field, the main
contributions of Al have been significant in two directions [9-11]:

e perception, with particular regard to object recognition and locating through vision;
e planning,i.e. the automatic construction of a sequence of actions capable to achieve
a predefined goal.

The behavioural intelligence of arobotic system refers to the following properties:

1. Flexibility: in different situations, the robot controller is able to produce appro-
priately different behavioural patterns in pursuit of different goals.

2. Robustness: the robotic system can absorb and neutralise the effects of incomplete
and noisy information and of limited changes in the environment’s structure and
dynamics.

3. Adaptiveness: the ability of the robotic system to alter behaviour significantly in
response to radical changes in the environment.

Robot-vision systems use intelligent image processing to detect, recognize or
track object features and act in consequence to plan and guide the motion of the
robot. The chapter introduces the Look-and-Move approach for guidance vision
(visually planning the robot’s motion—the industry solution), see Fig.5.

This is a hierarchical motion control structure, with the vision processor providing
(planning) set-points as references to the robot’s joint-level controller—thus using
joint data feedback to internally stabilise the robot. This structure leads to an inter-
laced look-and-move control scheme, where motion tracking and image processing
are pipelined as follows:

e while a motion segment is executed, no image is acquired and processed, and
e while an image is taken and treated according to the specific needs of a robot task,
the motion controller does not start generating a trajectory and tracking it.
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Fig. 5 Position-based look-and-move visual servoing architecture for object tracking

It can be observed that, whereas the global robotic system operates in an open
loop structure at motion control level, it is subject to a closed loop control at the
global task level.

Position-based look-and-move control is further discussed in this section. As
described in Fig.5, features are extracted from the image and used to estimate
the pose )A(Z’bsj = (x;’}jsj.)est of the target (object, point) with respect to the camera.
Using these values, an error between the current estimated and the desired pose
of the robot, (XZZSJ-)d is defined in the task space 7. Thus, position-based control
neatly separates the control actions, i.e. the computation of the feedback signal
(x?)m = dk(qm,s),n —3 < s < n using the direct kinematics model dk(-) of
the robot manipulator, from the estimation problem involved in computing position
or pose ig}fl from visual data (f).;.

A visual positioning task is expressed by an error function E : 7 — R™. This
function is referred to as the virtual kinematic error function VKE. A positioning
task is fulfilled when the end-effector has been moved in pose x,, = x2 if E(x,) = 0.

Once a suitable VKE function defined and its parameters instantiated from visual
data, a compensator can be designed that reduces the value of the VKE function
to zero. This compensator computes at every sampling time instant the necessary
end-effector position (x,). that is sent as dynamic reference to the joint-space
(or operational-space) motion tracking controller [1]. Since the VKE functions are
defined usually in the Cartesian space, it is common sense to develop the compen-

sator’s control law through geometric insight.
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4 Guidance Vision for Robot Motion Planning

The problem of visual feature tracking for robot motion planning and object access
control will be further presented for two types of working environments: (1) fixed
scene, e.g. workstation, storage, ASRS, and (2) mobile scene, e.g. conveyor belts
[12, 13].

4.1 Open, Vision-Based Robot Motion Planning for Fixed
Scene Foreground

An open, vision-based robot motion planning and control method and implementing
solution is presented in this section. The method allows using any general purpose
machine vision system (here an industrial camera with c-mount and AdeptSight
software) with any type of industrial robot controller (here ABB), with a proper
interfacing (Ethernet or serial communication).

In order to be used, a camera calibration is needed (which is provided by vision
any image processing library based on a calibration pattern), and also a robot-camera
calibration (which must be done manually by the robot technician); the models of
the objects to be accessed by the robot and the robot-object (class) grasping will be
off-line taught for collision free motion at execution time.

In industrial applications of position-based dynamic look-and-move control struc-
tures, the robot-vision system works in most cases with off line learned objects which
can be visually recognised and located at run time [14, 15]. It becomes thus possible:

e to recover the object’s pose, )A(gbj , relative to the base frame of the robot, from the
direct estimate iza of the object’s pose in the vision frame and by composing it
with the camera-robot calibration estimate X,;;

e to define stationing points S°/ on the object’s image, relative to a suitable object-

attached frame (Xop;, Yob;)-

Figure 6 shows a fixed camera configuration and related camera-robot transfor-
mations; this is an endpoint open-loop (EOL) system that only observe the target
object to guide the robot’s motion for grasping it.

The physical camera is related to the base coordinate system of the robot by the
time-invariant pose evaluated a single time during an interactive off line camera-
robot calibration session, and to the object in the scene by. The camera image of
the object is independent of the robot motion (unless the target is the end-effector
itself, described for example by image feature of the gripper’s fingerprints pro-
jected onto the image plane). The pose is computed at run time, and involves
the search, recognition and locating of image features(s) on the object of interest
[16-18].
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respectively for the feature tracking and feature tracking for object grasping tasks

For object grasping, the image features must unambiguously describe the entire
object for its successful identification and locating at run time. In addition, the pose
of the gripper, relative to the frame attached to the object in its current location, is
required.

For a stationary camera, the relationship between these poses is:

Xg = xgi s XZ’; : xzbj , for feature tracking for object grasping.
J

Assuming a random part presentation in the robot workstation, the object’s pose
relative to a (unique) camera frame, ﬁ:})é;sj_l will be estimated at run time in a first
stage in terms of the following image feature parameters:

e xc, yc: coordinates of the centre of mass C of the 2D projection of the object’s
visualised surface onto the image plane (xyis, Yyis);
e orient = Z(MIA, x,;,): orientation angle of the object.

The object-attached frame (xop;_1, Yonj_1) has the origin in C and the abscissa
Xopj_1 = MIA, where MIA stands for the object’s Minimum Inertia Axis (Fig. 7).

To move the robot to grasp objects of a certain class always in the same way,
irrespective of their location in the robot scene, the desired (unique) pose of the
gripper, xflf] , relative to the object-attached frame must be a priori learned.

Let us denote by G the projection of the end-tip point T, the origin of the gripper-
attached frame (x,, yn., z»), onto the image plane: G = projl(, . {T}.

For a desired grasping style, G?”-! is a stationing point in the object’s coordinates
(Xobj_1, Yobj_1), irrespective of the current position and orientation of the object. Its
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coordinates are: xg = dcg - cos(alpha); y¢ = dcg - sin(alpha), where dcg =
dist(C, G), and alpha = Z(dir(C, G), MIA) measured CCW from the Minimum
Inertia Axis MIA) to dir(C, G). In a second stage, the object-attached frame will be
shifted to origin G, by a translation of distance dc along dir(MIA) followed by arota-
tion of angle alpha about the normal in C to the image plane, as represented in Fig. 7.

Given an object pose, x(v)ﬁfj, estimated visually at run time, and assuming that the
object was recognised as a member of that class for which a relative grasping pose
le*” was a priori learned using a stationary camera calibrated to the robot base frame
by Xy;s, then the positioning error can be defined by the VKE function

. o0bj ~vis g n on .3 . gvis . gobj
E(xy; X, »Xop» Xpis) = X0 = Xy Xyjg Xopj - Xy s

where:

obj iori ki from learni icular ing style”
_obj _ | X, apriori known from learning, particular “grasping style

X
n ~obj . . « . "
[ X, visually updated at run time, general “grasping style

With an EOL system, Xj = inverse(fcg) will be dynamically updated by the
trajectory generator to bring to zero the positioning error x'.. This can be simply
done applying for an IK-based Resolved Motion Rate Control algorithm.

The closed-loop servo control uses the visually estimated pose of the object, ﬁ;}};,
the estimated camera-robot calibration pose Xy;s, and assumes that reduced-error
direct kinematics (f(g)—and inverse kinematics (X;j) models are available. As for
the imposed grasping pose, for a priori unknown object location in the scene, some
components in ﬁZi’j must be estimated at run time whenever the “style" in which the
object will be grasped is general, i.e. such that G £ C and G ¢ MIA [19-21].



76 T. Borangiu et al.

For object access and handling using vision, the problem is reduced to expressing
the object position in the image relative to the robot base. This is done in the robot-
camera calibration session, the result of which is a relative transformation expressing
the position and orientation of the vision frame relative to the robot base. Once the
calibration is executed, robot points will be computed relative to the position and
orientation of the vision-attached frame, and the robot motion planning follows the
procedure described in Sect. 2.

The robot-camera calibration procedure requires the usage of an object that will
be handled by the robot; during the execution of the procedure the robot will move
the object to different locations and will acquire pictures, generating a set of pairs
of descriptions of the object’s location: (a) from the camera and (b) from the joint
encoders. The solution of this set of equations will describe the camera’s field of
view location relative to the robot base.

For testing purpose an AdeptSight system and ABB robot manipulator were used,
the robot-vision calibration process and the training of the object grasping model have
been integrated in a single procedure. The procedure consists in four human-robot
interactive steps where the robot grasps the object and places it different positions in
the workspace for image acquisition and processing [2]:

The calibration object is placed in the workspace and grasped by the robot and then
released (position P1), after which the robot clears the vision plane and the object’s
position in the vision plane is computed by the AdeptSight library. The point P1 is
the point which will be used to express all the positions of the objects in the image.
For example a position of an object will be computed as Po where Po is P1 shifted
with a set of offsets (for translations on X and Y and rotation on the Z axis). The
position of the object in point P1 is also computed in the vision plane, having the
coordinates Ply,, Ply, (the position of the coordinate system attached to the object
model) [22, 23].

In the second step the robot grasps the object and places it in the same position, but
rotated with 180° (point P 1’), in the vision coordinates P1’y,, P1’y,. By comparing
the position of the coordinate system of the object in these positions the system can
compute the position of the mass centre of the object (the mass centre of the model
relative to the grasping point). In this case the grasping point is located in the image
on the middle of the segment [P 1, P1'] (see Fig.8).

’

p [ Poise = min(PLy, PUy) 4| Pl = P1y
85| Pyyisy = min(P1y, P1'y) + |P1, — P1/,

where Py, is the grasping point in the vision workspace.

Next the object is placed in a position P2 which is trained relative to the position
P1 shifted with 100 mm on X axis of the base coordinate system of the robot.

In the final step the robot places the object in the position P3 which is trained
relative to the position P1 shifted with 100mm on Y axis of the base coordinate
system of the robot. By knowing the correspondence robot-point—image-point, the
system can compute now the orientation of the vision plane relative to the robot base
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dist(P1,P1’)

Fig. 8 The relationship robot point—vision point

coordinate system, and also the distance which the robot must cover to reach an object
which is placed at a certain distance from the initial point P1 in the image plane.
This can be expressed as follows: for 100 mm travelling length along the X coor-
dinate system (base coordinate system) the object moves in the image P2, — P1,
along the X,; axis, and P2y — P1, along Y,;s; the same travelling length on the Y
coordinate system generates P3; — P1y on X,;s axis, and P3, — P1y on Y, in
the vision workspace. It results also that the vision system is rotated with the angle:

o =atan2(P2y — Ply, P2x — Ply)

toward the base coordinate system. Hence for an object which is recognized in the
image at the location P,, the object will be grasped at the coordinates:

Pro=Po_i+ (P = P + (P — P, )2
~cos( +atan2(P,_y — P1_y, P,y — P1_;)

Py = Po_y+\(P1y = P)? + (P — P,_)?
-sin(e +atan2(P,_y — P1_y, P, x — P1 ;)
Prot = PG_rot + (Pv_rot - Pl_rot)

where Py, Py, Py, are the position coordinates and the rotation of the grasping
point of the object which was located in the vision workspace at the location P,
(Py_xs Py_y, Py_yor); P (PG_x, PG_y, PG_ror) is the grasping point (in the object’s

centre of the mass in the base coordinates system) for the object located in the image
inP1 (P1 , P1,, Pl ).
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After the calibration is executed, the object model must be trained; this stage
involves object edges processing in order to obtain the geometrical model of the
object. The grasping position must be also trained in order to validate a collision
free point for accessing the object. The grasping position (for grasping validation)
is defined by two or more rectangular areas placed around the object and linked to
the object frame. These areas represent the projections of the gripper fingerprints on
the image plane and by processing the image colour inside these areas the program
detects the presence of obstacles and can invalidate the grasping position.

These three pieces of information are used for robot motion planning; first the
location of the field of view is used by extracting it from the calibration data, then
the location of the object in the field of view is computed (online) using the object
model and in the last stage the action of grasping the object is validated by using the
grasping model and collision free tests. Experimental results validating the proposed
solution are shown from a robotized ceramic production line (Fig.9).

The experimental application runs two communications threads: a TCP/IP server
and a serial communication thread. Both threads have the same role, they are lis-
tening and if they receive an acquisition request, they initialize the execution of the
AdeptSight sequence of tools (the vision program), returning three numbers specify-
ing the position and orientation of the plate (X, Y in mm, and the angle in degrees).
The position and orientation is specified relative to the calibration object.
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Fig. 9 Real-time locating a ceramic plate for robot motion planning and grasping control
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The requests are sent as ASCII characters, and they are of two types (i—
information for debugging or r—real requests); when the vision server receive a
request the vision sequence is executed, the object is recognized based on its bound-
ary contours, and the values (X, Y and rotation) relative to the initial grasping point
(from the calibration procedure) are computed and sent to the ABB robot.

When the robot receives the three values, it shifts the initial grasping position
(from the calibration) and grasps the plate. The following pseudo-code describes
how the communication is integrated with the vision server [24]:

Open the communication channel (Serial line)
Clear the serial line buffer
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
Request object coordinates from vision
Read the data streams (X,Y coordinates and rotation)
Transform the coordinates from string to real
/*In order to avoid problems caused by communication errors
the coordinates are sent twice and only if they are the
same at the destination then the position can be computed*/
Verify if the coordinates are the same
IF YES
Compute the grasping position
//The position is computed relative to a predefined
//position pl
Close the communication
ELSE
Repeat the request

The presented image processing system, AdeptSight, is robust, offers generic
robot-vision functions, and can be easily integrated with controllers of other industrial
equipment (robots, measuring machines, ASRS, part feeders). AdeptSight allows a
rapid development of visually planned applications, based on visual tools which
can be combined and configured leading to sequences which can be executed from
external C# applications.

4.2 Multitasking Robot Motion Planning for Object Tracking
on Mobile Scenes

The problem of robot tracking objects of interest moving on conveyor belts and
randomly entering the robot’s dexterous space can be solved by integrating the fol-
lowing devices in a multitasking control structure, implemented on multiprocessor
robot controllers:

e the robot manipulator, tracking a conveyor belt;
e the conveyor belt, driven at constant, regulated speed;
e the vision module, inspecting parts on the conveyor belt.
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Conceptually, the problem is solved by defining a number of user tasks which
attach two types of “robots”: the n—d.o.f. manipulator grasping on-the-fly objects
moving on the conveyor belt, and one m < 3—axis “robot” emulating the conveyor
belt under vision control; m is the number of non-null projections of the conveyor belt
displacement direction on the 3 axes of an orthonormal reference frame (e.g., defined
in the belt tracking robot environment). These user tasks run concurrently with the
internal system tasks of a multitasking belt tracking robot controller, which are
responsible for trajectory generation, axis servoing and resources management [20].

In this respect, the minimum number of tasks to be defined for the tracking problem
is equal to 3:

e Task 1: Dynamic re planning of the destination location (grasping the moving
object) for the robot manipulator.

e Task 2: Continuously moving (driving) the m-axis vision belt. (e.g., m = 1)

e Task 3: Reading once the belt’s location the very moment an object of interest
has been recognised, located and its grasping estimated as collision-free, and then
continuously until the object is effectively picked.

4.2.1 Tasks and Priorities for the Multitasking Robot Motion
Planning Problem

Consider that each control system cycle of the robot is divided into 16 time slices of
one millisecond, the time slices being numbered 0 through 15. A single occurrence
of all 16 time slices is referred to as a major cycle. For a robot system, each of these
cycles corresponds to one output from the trajectory generator to the digital servos. A
number of user tasks, e.g. from O to 6, can be used and configured to suit the needs of
specific applications. Tasks are normally assigned default time slices and priorities
according to the current system configuration [5, 8].

Anexecution cycle is terminated when a STOP instruction is executed, a RETURN
instruction is executed in the top-level program, or the last defined step of the program
is encountered. Tasks are scheduled to run with a specified priority in one or more
time slices. Tasks may have priorities from —1 to 64, and the priorities may be
different in each time slice. The priority meanings are: 1-31 (normal user tasks); 32—
62 (used by robot controller’s device drivers and system tasks); 63 (used by trajectory
generator); 64 (used by the servo).

4.2.2 Scheduling Program Execution Tasks with Simultaneous
Belt Tracking

An analysis of the time slice and priority allocation for the system, and of default user
tasks imposes several requirements for timing and priority assignment of tasks: vision
guided robot planning (“‘object recognition and locating”), and dynamical re planning
of robot destination (“robot tracking the belt”) should always be configured on user
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tasks 0 and/or 1, in “Look-and-Move” interlaced robot motion control applications,
due to the continuous assignment of these two tasks, over the first 13 time slices,
with high priorities [25].

Because vision guidance and motion re planning programs complete their compu-
tation in less than the 13 time slices (0—12), in order to give the chance to conveyor-
associated tasks (“drive” the vision belt, “read” the current position of the vision
belt) to provide the “robot tracking” programs with the necessary position update
information earlier than the slice 13, and to the high-priority trajectory generation
system task to effectively use this updates, a WAIT instruction should be inserted in
the loop-type vision guidance and motion re planning programs of tasks 0 and/or 1.

All time slices are checked, wrapping around from slice 15 to slice O until the
original slice is reached. If no runnable tasks are encountered, a null task executes.
Whenever a 1 ms interval expires, the multitasking OS performs a similar search of
the next time slice. If the next time slice does not contain a runnable task, execution
of the current task continues. If more than one task in the same time slice has the
same priority, they become part of a round-robin scheduling group. Programs that
execute in continuous loops, like vision guidance and motion re planning for belt
tracking, should generally execute a WAIT instruction occasionally (for example,
once through each loop execution). This should not be done, however, if timing
considerations for the tracking application preclude such execution delays in some
stages of vision and motion processing [6, 26].

As previously stated, the problem of conveyor tracking with vision guiding for
moving part identification and locating requires the definition of three user tasks, to
which the following programs were associated:

1. Task 1: program “track” executes in this task, withrobot 1 (e.g., SCARA) selected.
This program has two main functions, carried out in a 2—stage sequence:

STAGE 1: Continuous checking whether an object travelling on the conveyor
belt (it will be called in the sequel vision belt) entered the field of
view of the camera and the reachable workspace of the SCARA
robot. If such an event occurs, the vision is activated to identify
whether the object is of interest and to locate it. Processing on this
stage terminates with the computation of the end-effector’s location
which would move the SCARA robot in the object picking location
evaluated once by vision.

STAGE 2: Continuously re planning the end-effector’s location, computed
when the object of interest was located by vision, by consuming
the belt position data produced by encoder reads in the program
“read” which executes on task 3, and by dynamically altering the
robot’s target in the current motion segment.

2. Task 2: program “drive” executes in this task, with robot 2 ((m = 1)-axis robot,
i.e. the conveyor belt) selected. This program moves the belt in linear displace-
ment increments, at a sufficiently high rate to provide a jerk-free, continuous belt
motion. This program executes in stages 1 and 2 previously defined.
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3. Task 3: program “read” executes in this task, with robot 2 selected. This program
executes differently in the two stages of the application:

STAGE 1: Executes a single time upon receiving an input signal (“la_reco”,
e.g. for “LA” objects of interest) from vision in task 1, confirming
the recognition and successful locating of an “LA” part. In response,
“drive” reads the instantaneous belt position, which from now on
will be used as an offset for the position updates.

STAGE 2: Continuously reads the belt position, upon a request (“info” in the
example of the first case study) issued by “track” in task 1, when it
starts its dynamic target re planning process.

From the three user tasks, the default priority assignment is maintained. This leads
to the following priority analysis for a major cycle:

e Task 1 has the highest priority in time slices 0—12 (inclusively), with values of 19,
21,9 and 11.

e Task 2 has the highest priority (20) in a single time slice: 13.

e Task 3 never detains a position of highest priority with respect to tasks 1 and 2.

e The three tasks become part of a round-robin group as follows:

— tasks 2 and 3 in slices 0—12 inclusively,
— tasks 1, 2 and 3 in slices 14 and 15.

Because tasks 2 and 3 are in more than one round-robin group on different slices,
then all three tasks in the corresponding pairs of different slices appear to be in a big
group. This property can cause, in general, a task to be run in a slice one does not
expect; however, this risk is eliminated for task 1 in STAGE 2 since it will never be
runnable in slices 14 and 15 (after generating a WAIT).

As for tasks 2 and 3, they cannot generate this risk in the remaining slices
from 0-12, after “track” generates the WAIT, because they will switch continuously
between them at the beginning of each new time slice.

As aresult of the priority scan and scheduling, the programs in the three user tasks
execute as follows:

e STAGE l—vision is processing, the SCARA robot is not moving and no WAIT is
issued by task 1 (Fig. 10):

e STAGE 2—vision is not processing, the SCARA robot is moving and WAIT
commands are issued in task 1 by the “track” program after each re planning of
the end-effector’s target destination within a V4 major cycle of 16 ms:

— Task 1 runs in slices i — j,i < j,i > 0, j < 12, (when it detains the highest
priority), i.e., starting with the time moment when it is authorised to run by the
highest-priority system tasks “trajectory generation” and “servo” (in slice i), and
executing until it accesses the position update provided by task 3 from the most
recent belt encoder read, alters the last computed end-effector destination and
issues a WAIT (in slice j), to give the trajectory generator a chance to execute.



Open Architecture for Vision-Based Robot Motion Planning and Control 83

207 task 1 running "track", task priority,>=9
10T RR,RR

before request for
belt offset read
psm== after request for

I pr— 1

o) o
'g 20 T task 2 running "drive", task priority =20 belt offset read
2 104 RR RR
a.
g [refioteaiamaineieamanaspaceasnsinemm s )ofore request
s
)
220+ "4 after request
E 20 task 3 running "read", task priority =15 % q

10 1 RRRR

[Em eI SN RN RN NN IR RN RN IR IR RN befgre request

=24 after request
01112 1 millisecond time slices 12113114115

[¢——— One major system cycle ————»

==r = task waiting
== = task running

RR = round-robin member selection

Fig. 10 Priority assignment and tasks running in STAGE 1 of vision guidance for motion planning
in the belt tracking problem

— Task 2 runs: in slices (j + 1) — 12 switching alternatively with task 3 whenever
it is selected as the member of the round-robin group following task 3 that run
most recently, in slice 13 (it detains the highest priority), and in slice 15 (it is
member of the round-robin group following task 3 that run more recently—in
slice 14). Task 2 runs always exactly for 1 ms whenever selected, so that the
round-robin group scanning authorises task 3 to run always at the beginning of
the next time slice.

— Task 3 runs in slices (j + 1) — 12 switching alternatively with task 2 when-ever
it is selected as the member of the round-robin group following task 2 that run
most recently, and in slice 14 (it is member of the round-robin group following
task 2 that run more recently—in slice 13). The task 3 runs, whenever selected,
for less than 1 ms and issues a RELEASE “to anyone” command.

4.2.3 Dynamically Altering Belt Locations as Robot Motion References

The three previously discussed user tasks, when runnable and selected by the system’s
task scheduler, attach respectively the robots:

e Task 1: robot 1—a SCARA-type robot (e.g. Adept Cobra 600) is considered in
this case

e Task 2, 3: robot 2—the “vision conveyor belt” of a flexible feeding system is
considered.
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Program “track” executing in task 1 has two distinct timing aspects: during
STAGE 1, “track” waits first the occurrence of the on-off transition of a signal from
the photocell, indicating that an object passed over the sensor and will enter the field
of view of the camera. Then, after waiting for a period of time set up function of the
belt’s speed, “track” commands the vision system to acquire an image, identify an
object of interest and locate it [27, 28].

During STAGE 2, “track” alters continuously, once per each major 16 ms sys-
tem cycle, the target location of the end-effector, part.loc, that was computed (when
one “LA”-part was located by vision and returned in the vis.loc transformation) by
composing the following relative transformations (the ““:” character stands for com-
position)

part.loc=to.cam[1l]:vis.loc:grip.la

Here grip.la is the off line learned grasping transformation for the class of “LA”
objects. The updating of the end-effector target location for picking-on-the-fly “LA”
objects according to a predefined grasping style uses the V4 operation:

ALTER () Dx,Dy,Dz,Rx,Ry,Rz

which specifies the magnitude of the real-time path modification that is to be applied
to the robot path during the next trajectory computation (Dx, Dy, Dz/Rx, Ry, Rz
are the translations/ rotations respectively along the X, Y, Z axes).

This operation is executed by “track” in task 1 that is controlling the robot 1
(SCARA) in alter mode, enabled by the ALTON command. When alter mode is
enabled, this instruction should be executed once during each trajectory cycle. The
stopping decision is taken in “track” by using the STATE (select) function,
which returns information about the state of robot 1 (“Motion stopped at planned
location”) selected by task 1 executing the ALTER loop. The ALTOFF operation
was used to terminate real-time path-modification mode (alter mode) [3, 10, 14].

Program “drive” executing in task 2 has a unique timing aspect in both STAGES 1
and 2: when activated by the main program, it issues continuously motion commands
for the individual joint number 1 of robot 2—the vision belt.

Program “read” executing in task 3 evaluates the current motion of robot 2—the
vision belt along its single axis, in two different timing modes. During STAGE 1,
upon receiving from task 1 the request 1a_reco (an instance of “LA” was recog-
nised) to compute the belt’s offset, reads the current robot 2 location and extracts the
component along Y.

This invariant offset component, read when the “LA” was successfully located by
vision and the grasping authorised as collision-free, will be further used in STAGE
2 to estimate the updates of the yv_of f motion, to alter the SCARA robot’s target
location along the Y axis.

The program below shows how the STATE function is used to stop the con-
tinuous updating of the end-effector’s target location by altering at every major
cycle the position along the Y axis. The altering loop will be exit when motion
stopped at planned location, i.e. when the robot’s gripper, moving to track the part
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travelling on the conveyor belt, arrives in the imposed picking position relative to
the moving part.

ALTON () 2 ;Enable altering mode

;The robot is commanded to move towards the grasping position
;computed when the object was VLOCATEd by vision.

MOVES part.loc
WHILE STATE(2)<>2 DO

;While the robot is far from the moving target (motion not

;completed at planned location...
ALTER(),-pulse.to.mm*y_off

;Continuously alter the target grasping location
WAIT

;Wait for the next major time cycle to give the trajectory

;generator a chance to execute

END

ALTOFF ;Disable altering mode

CLOSETI ;Robot picks the tracked object
DEPARTS ;Robot exits the belt tracking mode

MOVES place
;Robot moves towards the fixed object-placing location place

In the example presented, the ALTOFF operation has been used to terminate
real-time path-modification mode (alter mode). The instruction suspends program
execution until any previous robot motion has been completed (similarly to a BREAK
instruction), and then terminates real-time path-modification mode.

After alter mode terminates, the robot is left at a final location that reflects both
the destination of the last robot motion and the total AL TER correction that has been
applied [13, 17, 29].

The cooperation between the tasks on which run “track”, “drive” and “read” is
shown in Fig. 11.
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Fig. 11 Cooperation between tasks in the robot-vision belt tracking problem

5 Experimental Results and Conclusions

Visual robot motion planning allows relaxation of the numerous constraints which
arise when setting up a manufacturing environment, as well as the need for high-
precision material transportation and presentation devices, such as conveyors, vibrat-
ing bowls, a.o. The look-and-move motion planning methodology offers a robust
solution to create workstations with components from different manufacturers: image
sensors and cameras, vision software, robot manipulators, shop floor conveyors and
other mechanical devices.

The open architecture system for vision-based robot motion planning application
was developed in C# and managed the robot-vision communication and sequence exe-
cution. Also the camera-robot calibration procedure and the learning of the grasping
model learning were developed in the same open system concept based on standard
communication means [30, 31].

Figure 12 shows a screen capture of the open architecture robot-vision user appli-
cation interface. The application consists in precision locating with AdeptSight of
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Fig. 12 Screen of the application interface for high-precision plate locating and vision-based robot
motion planning for stationary plate grasping

ceramic plates travelling on a conveyor belt and guiding the motion of an ABB
robot with help of the location data sent via standard communication channels and
interfaces.

The motion control method presented above for robots picking on-the-fly objects
on moving scenes was implemented in the V4 robot programming environment
with AdeptSight vision extension, and tested on a robot vision platform containing
one Adept Cobra 600 SCARA-type manipulator, a 3-belt flexible feeding conveyor
Adept Flex Feeder 250 and a stationary, down looking matrix camera Panasonic GP
MF 650 inspecting the vision belt with backlighting [10]. The vision belt on which
parts are travelling and are viewed by a fixed, down looking camera was positioned
parallel to the Y( axis of the manipulator, for a convenient robot access within a
window of 460 mm. Experiments have been carried out at several speed values of
the conveyor belt, in the range from 5 to 180 mm/s.

Table 1 shows the correspondence between the belt speeds and the maximum time
intervals from the visual detection of a part up to its effective grasping.

It can be observed that at the maximal speed of 180 mm/s, the robot-vision mul-
titasking controller is still able to direct the SCARA-type manipulator to access
visually detected, recognised and located objects.
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Table 1 Correspondence Belt speed (mm/sec) s |10 [30 [50 [100 [ 180
between belt speed and part 16115120 123 123

access time

=
~

Grasping time (max) (sec)

In the experiment reported in Chap. 4.1, the vision library was successfully inter-
faced to an ABB 1570 vertical articulated robot.

The novelty of the research consist in developing an open architecture system
for vision-based robot motion planning, allowing to use closed vision systems (here
AdeptSight), that can be integrated with proprietary systems (for example AdeptSight
has native functions which can be integrated only with Adept robots), with any other
devices (robots, machines, feeders, a.0.) using standard communication mechanisms
(serial line or Ethernet). Another novel contribution is the multitasking solution for
picking objects in motion from any type of conveyor modelled as a m < 3 degree of
freedom Cartesian robot.
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