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Abstract Minimum Jerk based control is part of optimal control laws. Its main
contribution resides in the generation of smooth trajectories allowing the avoidance
of sudden and abrupt motion. This chapter proposes the elaboration of appropriate
control laws, with controller parameters computed offline, able to produce stable
smooth and safe walking cycles for bipedal robots evolving in the three dimen-
sional space. To alternate footsteps, Minimum Jerk and Impedance control principles
are used to switch successively between single support, impact and double support
phases. A new methodology of Minimum Jerk control is proposed to produce human
like trajectories. Its originality mostly relies on the generation of Cartesian three-
dimensional reference trajectories that do combine benefits of trigonometric and
polynomial functions. When considering the impact and double support phases, an
appropriate impedance control law is proposed to ensure the robot stability and safe
balance during the contact with the ground. Simulation results performed on a 15
link/26 degrees of freedom Humanoid robot with a weight of 70 kg and a height of
1.73 m walking at a velocity of 0.6 m s−1, show that the dynamics of the robot during
the swing phase are very attractive since smooth trajectories without dynamic vibra-
tions are observed and a stable and safe elastic contact takes place while achieving
the constrained phases even in presence of sensory noise and uncertainties on the
environment stiffness.
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1 Introduction

Despite the numerous technology advances in the field of Humanoid Robotics,
mobility and ability to move like a human being remains an essential required fea-
ture. In that context, gait pattern generation seems to be the key problem to research
dedicated to walking robots [1]. Actually, there are two major walking patterns to
be found in bipedal robotics: static walking and dynamic walking [2, 3] and sev-
eral stability criteria may be used depending on the walking pattern selected. The
recourse to a given stability criterion ensures the bipedal robot’s balance at every
moment in order to avoid falls and collapses. Besides, whether considering the static
or dynamic walking pattern, each gait pattern involves the same various phases that
are the single support phase, the impacts with the ground and the double support
phase. A satisfying control strategy for a gait pattern has to provide good dynamic
performances in these different modes in terms of similarity with human gait by
guaranteeing at the same time stability, smoothness and safety.

Thus, in this work, to control bipedal robots during the single support stage, we
have chosen to focus on Minimum Jerk based control strategy. The main benefit of
such approach resides in the generation of smooth trajectories in order to avoid any
abrupt motion and consequently limit the robot vibrations [4]. The concept of Jerk
Minimization has been developed by Hogan, the pioneer in using the Minimum Jerk
principle for robotic systems to reproduce realistic human arm movements [5, 6]
and antagonistic muscles [7]. Minimum Jerk Theory comes from the finding that the
degree of smoothing of a curve can be quantified by a function counting the number
of shocks performed [8]. Hogan named this function Jerk and associated it mathe-
matically to the third time derivative of a given trajectory. Among researchers having
recourse to the Minimum Jerk criterion, there are divided opinions between those
using trigonometric curves and others using polynomial curves to describe the robot
trajectory. Actually, very few research papers consider trigonometric functions to
describe the Jerk function [9–11]. They note that all joints involved in the movement
are less oscillatory. It seems that most works dealing with the Minimum Jerk criterion
are based on polynomial trajectories. As proved by Amirabdollahian et al. [12], the
use of polynomial trajectories has some advantages. The control of the movement is
easily achievable since the first and second derivatives of the polynomial are known.
Also, some studies [13] show that Minimum Jerk control laws based on polynomials
of high degrees are more effective because the dynamics of the robot are smoother
and the trajectory references are easily followed by the actuators involved. Finally,
for applications using real-time control, the trajectories can be corrected or adjusted
at any time by simply redefining the polynomials describing the trajectory or by
the superposition of a new path to the previous one [14]. Another issue that has also
divided opinions among researchers is the space on which reference trajectories must
be planed: the Cartesian or the joint space. Actually, Kyriakopoulos and Saridis in [8]
are the first to raise the issue of choice of planned trajectories in the Cartesian space
or in the joint one. They show that if the minimization problem and its solutions are
formulated in the joint space, only physical limitations of the joints actuators will



A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 387

be included in the constraints statement. However, in a realistic environment,
obstacles exist and are causing changes in the trajectory direction. Therefore, gen-
erating reference trajectories based on the Minimum Jerk criterion may be done
whether in the joint or Cartesian space. The space’s choice should only be deter-
mined according to the constraints and the shape of the desired trajectory. Finally,
it can be noted that very few works using Minimum Jerk criterion were devoted to
optimize humanoid motion through gait pattern generation [15–17].

On the other side, to control bipedal robots during the IP and DSP, we have chosen
in this work to focus on impedance control strategy. Such control approach was orig-
inally proposed by Hogan in [18]. Its goal is to establish a dynamic relation between
the end-effector position and the contact force [19]. There are two methodologies
stemming from the impedance control law: the classical impedance [6] and dynamic
impedance based control laws [20]. The first approach does not take into consider-
ation the dynamic of the robotic system and includes the active stiffness control. In
opposition, the dynamic impedance control is based on two assumptions: the con-
sideration of the constraint dynamic model when an external force is applied and the
environment characterization by three parameters: inertia, damping and active stiff-
ness. Thus, the dynamic impedance control law represents an efficient control law
to overcome difficulties raised in the impact phase. Moreover, it guaranties a stable
and safe elastic contact with the ground as it takes into consideration environmental
parameters related to the nature of the ground and the contact type. As a result, many
research works have recourse to this control law to generate bipedal robots walking
gaits as [20–24].

To produce stable, smooth and safe walking cycles for bipedal robots evolving in
the 3D space, this chapter proposes the elaboration of appropriate control strategies
to be implemented to biped robots. Indeed, during the swing phase, a Minimum Jerk
based control law is produced in order to generate a semi-ellipsoidal trajectory for
the swing foot while an appropriate impedance control law is proposed to ensure
the robot stability and safe balance at foot landings on the ground. Minimum Jerk
control is inspired by the human brain cognitive such that trajectories are planned in
the Cartesian space system whereas controllers are expressed in the joint space. For
the IP and DSP, the impedance control law is designed such that it ensures stable
and safe impacts with the ground. Also, it allows the environment characterization
through inertia, damping and active stiffness parameters inspired from the recent
work [25] where sufficient conditions of stability and discussions about safety during
the impacts are given.

This chapter is then organized as follows: in the next section, the novel approach
of Jerk optimal control and the impedance control laws are designed. The stability
conditions for the two control approaches are rigorously given. Section 3 is dedicated
to the application of the proposed approach to a bipedal robot prototype. Indeed,
the anthropomorphic model of the Humanoid robot is presented and kinematic and
dynamic models of the lower body are developed. Simulations performed on the
Humanoid robot do validate both designed control laws and show the generation
of a satisfactory walking gait pattern even in presence of measurement noise and
uncertainties on the environment stiffness.
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2 Stable and Safe Gait Pattern

2.1 The Gait Cycle

A walking gait cycle involves various phases such as single support phase, impacts
with the ground and the double support phase [26]. According to Kajita and his
colleagues [2, 3], whether considering human or artificial gait, the walking function
is based on an alternate displacement of the two legs with a support point permanently
in contact with the ground. The leg that is totally in contact with the ground is called
the supporting leg whereas the leg starting the foot step is the swinging leg also called
free leg. For each lower limb, a human walking cycle is always composed of two
phases (see Fig. 1) [27]:

• A support phase where the foot remains in contact with the ground. This stage
starts at the first foot/ground contact and ends when the foot toe is completely off
the ground. This phase represents 60 % of the whole walking cycle.

• A swinging phase where the foot is free, without any ground contact. This stage
starts at the completion of the supporting phase and it ends when the second foot
begins its own swinging phase. This phase generally corresponds to the 40 % left
of the whole walking cycle.

For a usual walking gait, the lower limb playing the role of supporting leg ensures
the three main functions of support, damping and propulsion while the swinging leg
is being moved from rear to front [28]. Two distinct phases of double support are
often considered:

• The double support of reception that takes places at the initial foot/ground contact
of the previously free leg and is proceeding with the whole weight transfer of the
other limb to the current leg.

Fig. 1 Phases of a walking cycle
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• The double support of propulsion occurs at the level of the previously supporting
leg at the instant the foot is landing off the ground. This phase also corresponds to
the weight transfer from this limb to the other one that becomes the new supporting
leg.

Artificial walking aims at reproducing all phases composing a natural walking gait.
However, walking bipedal robots are not able to provide a sustained rhythm of walk.
Thus, a supplementary phase has to be added and considered. Indeed, a typical
walking cycle includes three main stages [26, 29–31]: The single support phase
(SSP), the impact phase (IP) and the double support phase (DSP).
The SSP occurs when one limb is pivoted to the ground while the other is swinging
from the rear to the front. At the beginning of this stage, the heel of the forward foot
is lifted with the toe used as a pivot. When a sufficient rotational motion is done,
the foot is to be completely off the ground and swings in the air. The free dynamic
model corresponding to the SSP is described by:

M(θ)θ̈ + H(θ, θ̇ ) + G(θ) = D.U (1)

where θ , θ̇ , θ̈ ∈ Rn are the joint position vector, the joint velocity vector and the joint
acceleration vector of the bipedal robot, respectively. M(θ) ∈ Rn×n is the inertia
matrix, H(θ, θ̇ ) ∈ Rn is the vector of the Coriolis and centripetal forces G(θ) ∈ Rn

and is the gravity vector. The matrix D ∈ Rn×n is a nonsingular input map matrix
whereas U ∈ Rn is the control input vector.

The IP occurs when the toe of the forward foot starts touching the ground. The
impact between the toe of the swing leg and the ground takes place during an infini-
tesimal length of time [32]. The DSP occurs when both limbs remain in contact with
the ground. This phase begins with the heel of the forward foot touching the ground.
Then the foot rotational motion continues until the entire sole of the foot becomes in
contact with the ground. This stage finally ends with the toe of the rear foot taking
off the ground. The length of this phase depends on the walking cycle’s rhythm. The
constrained dynamic model during the IP and DSP of the bipedal robot is generally
described by [33]:

M(θ)θ̈ + H(θ, θ̇ ) + G(θ) = DU + ∂c(θ)T

∂θ
F (2)

where C(θ) ∈ R3 is the contact point and F ∈ R3 is the contact force with the
ground. During the gait cycle, the supporting foot does not change its position and
orientation, and the whole part of its sole is in contact with the ground. As soon as
the third phase of the swing foot ends, the foot of the supporting leg goes into its
own first stage of the swing motion.
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2.2 Minimum Jerk Based Control for the Swing Phase

2.2.1 Minimum Jerk Control: Theoretical Foundations

According to [5], the Jerk is defined as the third time derivative of a given trajectory
β(t) such that:

···
β(t) = d3β(t)

dt3 (3)

The main benefit of Minimum Jerk based control resides in the generation of smooth
trajectories in order to avoid any abrupt motion and consequently limit the robot
vibrations [4]. To find among all possible trajectories, the one that allows the achieve-
ment of the smoothest motion, a Jerk cost must be assigned. Thus, for a trajectory
β(t) describing a particular path starting at and ending at t f , the Minimum Jerk cost
criterion is generally defined by [34]:

CJerk = min
1

2

∫ t f

t=t0

···
β(t)2dt (4)

Even if not essential, some additional terms could be included in the criterion function
to minimize a weighted sum of multiple criteria. In [35], for example, the objective
function to be minimized is the integral of a weighted sum of squared jerk and the
execution time. Among all possible solutions, the following fifth order polynomial
trajectories seems to be the most recommended one in the literature [36]:

β(t) = at5 + bt4 + ct3 + dt2 + et + f (5)

where a, b, c, d, e, f are constants to be determined for each trajectory β(t). The
corresponding velocity and acceleration functions are easily deduced as:

β̇(t) = 5at4 + 4bt3 + 3ct2 + 2dt + e (6)

β̈(t) = 20at3 + 12bt2 + 6ct + 2d (7)

To compute the parameters a, b, c, d, c, e and f two main methods are used in the
literature: The Point-to-point method and the Via-point method. The Point-to-point
method requires the expression of the function to be minimized and the values of
positions, velocities and accelerations of only two points corresponding to the initial
and final time of the movement. The control algorithm corresponding to the Point-
to-point method only needs to run once. For each a trajectory β(t) the following
relation is used to compute the parameters a, b, c, d, e and f [37]:
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(8)

where:
β0, β̇0 and β̈0 are respectively the position, velocity and acceleration of the trajectory
β(t) at t0.
β f , β̇ f and β̈ f are respectively the position, velocity and acceleration of the trajectory
β(t) at t f .
For the Via-point method, such approach is recommended when obstacles occur in
the operating space where the robotic system evolves. In such cases, not only the
initial and final positions must be specified but also a number of desired intermediate
positions characterized by the time at which these positions must be reached. There-
fore, the number of intermediate points determines the accuracy of the reference
trajectory. This method implies that the algorithm is executed several times. If only
one desired intermediate position is specified, the parameters a, b, c, d, e and f are
computed as follows [38]:

⎛
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⎞
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(9)

where:

• td is an intermediate instant satisfying t0 < td < t f .
• βd , β̇d and β̈d are respectively the position, velocity and acceleration of the variable

βi (t) at td.

2.2.2 A Novel Approach of a Jerk Optimal Control

To optimize the Jerk for gait pattern generation in the three dimensional space during
the swing phase, we propose in this section a new optimal jerk approach different
from the Point-to-Point and Via-Point methods. Indeed, the Point-to-Point method
implies constraints on positions, velocities and accelerations on boundary conditions
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whereas the Via-Point method imposes the same boundary constraints in addition
to other constraints related to some intermediate desired positions at the instants at
which these specific positions have to be reached.

Actually, the proposed approach is based on the generation of reference trajec-
tories specifying at each time iteration not only constraints at boundary conditions
or intermediate points but also constraints on the current positions, velocities and
accelerations. Furthermore, the proposed method induces three-dimensional refer-
ence trajectories involving both trigonometric and polynomial functions. This par-
ticular choice provides at the same time benefits of trigonometric functions requiring
fewer resources for real time implementation and benefits of polynomial functions
giving smoother dynamics and fewer vibrations. Finally, in order to realize an effi-
cient control law, easy to implement, trajectories will be planned in the Cartesian
space while the control law is depending on angular variables. Such control design
is very close to the human brain cognitive [39].

Considering the swing foot of the bipedal robot, the differential kinematic model
of the bipedal robot is given by:

Ẋ f (t) = J (θ)θ̇(t) (10)

where Ẋ f ∈ R3 is the Cartesian velocity vector for the swing foot and J (θ) ∈ R3×n

is the Jacobian matrix defined by:

J (θ) = ∂ X f (θ)

∂θ

∣∣∣
θd

(11)

where θd ∈ Rn is the desired joint position vector. The inverse kinematic model is
then given by:

θ(t) = J (θ)+
(
X f (t) − X f,d(t)

) + θd(t) (12)

where J (θ)+ is the pseudo-inverse of the Jacobian matrix. X f,d ∈ R3 is the desired
Cartesian position vector for the swing foot. The joint velocity vector θ̇ (t) is obtained
using the following equation:

θ̇ (t) = J (θ)+ Ẋ f (t) (13)

where Ẋ f is the Cartesian velocity. To get the joint acceleration vector θ̈ (t), one just
has to determine the first time derivative of the previous equation so that:

θ̈ (t) = J (θ)+
(
Ẍ f (t) − J̇ (θ)θ̇(t)

)
(14)

where J̇ (θ) is the first time derivative of the Jacobian matrix J (θ). Ẍ f is the Cartesian
acceleration. In order to produce a walking gait closed to a human one, the toe of
the biped robot has to follow a path similar to the one generated by the human
foot when performing a walking step. To reach this goal, we impose to the toe
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end effector a semi-elliptical trajectory in the sagittal plane such that the three-
dimensional Cartesian desired trajectory is described by:

X f,d = [g + v cos (α β(t) + π) w h + y sin (α β(t) + π)]T (15)

where, in this case, β(t) ∈ R designs the ankle joint trajectory in the sagittal plane
defined by the five order polynomial (5) and where its corresponding velocity and
acceleration functions are defined by (6) and (7), respectively. Furthermore, the
different constant coefficients of the polynomial function (5) are computed using
the relation (8) related to the Point-to-point approach. The pair (g, h) represents
the initial coordinates of the center of the ellipse in the sagittal plane. Parameter v
represents a half step length whereas w defines the distance between the two legs
and y represents the maximum height of the step. Parameter α is a multiplier used
in order to increase the variation range of the variable β(t). The first and second
derivatives of (15) with respect to time are respectively given by the two following
expressions:

Ẋ f,d = [−vα β̇(t) sin (α β(t) + π) 0 yαβ̇(t)cos (α β(t) + π)]T (16)

Ẍ f,d = [ẍ f,d ÿ f,d z̈ f,d ]T (17)

where:

⎧⎪⎨
⎪⎩

ẍ f,d = −v
(
αβ̇(t)

)2
cos (αβ(t) + π) − vαβ̈(t)sin (αβ(t) + π)

ÿ f,d = 0

Z̈ f,d = −y
(
αβ̇(t)

)2
sin (αβ(t) + π) + yαβ̈(t)cos (αβ(t) + π)

During the SSP, the Minimum Jerk criterion is applied to reduce abrupt displacements
of the bipedal robot which is controlled via a linearizing control law. Actually, we
impose to the bipedal robotic model (1) to follow the following second order linear
input-output behavior [40]:

(
θ̈ (t) − θ̈d(t)

) + Kv,1
(
θ̇ (t) − θ̇d(t)

) + K p,1 (θ(t) − θd(t)) = 0

where Kv,1 and Kv,1 ∈ Rn×n are two positive definite diagonal matrices computed
offline to ensure global stability, decoupling properties and desired performances
[41]. If λ is the desired bandwidth, then to obtain a critically damped closed-loop
performance, we must select [16]:

Kv,1 = diag [2 λ] (18)

K p,1 = diag [λ2]
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Using (1) and (18), the control law of the bipedal robot when achieving the swing
phase is deduced as:

U (t) = D−1
(

M(θ)
[
θ̈d(t) − Kv,1

(
θ̇ (t) − θ̇d(t)

) − K p,1 (θ(t) − θd(t))
]

+ H(θ, θ̇ ) + G(θ)
)

(19)

Figure 2 explains all required steps for the achievement of the novel Jerk optimal
control approach.

The calculus of a control law based on the proposed approach of the Jerk optimal
control includes the following steps:

i. Computing the initial joint position vector θi and the final joint position vector
θ f using the inverse kinematic model (12).

ii. Generation of β(t), β̇, β̈(t) trajectories based on the Point-to-Point method
according to Eqs. (5)–(7) applied to the initial and final joint constraints and
taking also account of time data t0 and t f .

iii. Generation of semi-ellipsoidal reference trajectories in the Cartesian space by
computing at each time iteration the reference Cartesian positions, velocities and
accelerations X f,d(t), Ẋ f,d(t) and Ẍ f,d(t) according to Eqs. (15)–(17), respec-
tively.

Fig. 2 The novel approach of Minimum Jerk based control during the swing phase
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iv. Generation of the desired joint trajectories θd(t), θ̇d(t) and θ̈d(t) using (12)–(14).
v. Computing the Jerk optimal control law U (t) using (19).

vi. Implementation of the control law U (t) to the free robotic system (1) in order
to generate joint position and velocity vectors θ(t) and θ̇ (t) using (13) and (14).
θ(t) and θ̇ (t) are supposed to be measured via online sensors.

vii. Generation of Cartesian trajectories X f (t) and Ẋ f (t) by applying the direct
kinematic model (10).

2.3 Impedance Based Control for the Constrained Phases

To control the bipedal robot during the impact and double support stages, we have
chosen to implement the impedance based control proposed in [25]. Indeed, the
impedance control represents an efficient control law to overcome difficulties raised
in the impact phase. Moreover, it guaranties a stable and safe elastic contact with the
ground as it takes into consideration environmental parameters related to the nature
of the ground and the contact type. Regarding the control law implementation to
the bipedal robot, it is simple since the same control expression is used in IP and
DSP. During the ground contact, the free end of the biped, at the completion of the
step, comes into contact with the ground. This phase is assumed to take place in an
infinitesimal time interval [32]. For the constrained model (2), the ground reaction
force is given by [25]:

F = Fd − Kd(X f,d − X f ) − Bd
(
Ẋ f,d − Ẋ f

) − Md
(
Ẍ f,d − Ẍ f

)
(20)

where Fd ∈ R3 is a desired reaction force and Kd , Bd , Md ∈ R3×3 are the stiffness,
the damping and the inertia matrices, respectively. These three parameters character-
ize the contact type and the environment nature where the contact takes place, under
the following control law:

U = D−1 J (θc)
+[K p,2(X f,d − X f ) − Kv,2

(
Ẋ f,d − Ẋ f

) + K f (Fd − F) + Fd ]
+ D−1G(θ) (21)

where J (θc)
+ is the pseudo-inverse of the Jacobian matrix of the bipedal robotic

system at the contact point c and where K p,2, Kv,2 and K f ∈ R3×3 are diagonal
matrices representing respectively the position, velocity and force gains related to the
impedance control law. Using a Lyapunov approach, the asymptotic stability of the
robotic system (2) is guaranteed if the following stability conditions are satisfied [25]:

K p,2 > 0

Kv,2 > 0 (22)

k f = −I

where I ∈ R3×3 is the identity matrix.
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Fig. 3 The impedance based control implemented during the constrained phases

Figure 3 shows all involved parameters in the impedance control implementation.
Parameters Kp,2, Kv,2 and Kf are computed offline to satisfy the Lyapunov asymptotic
conditions (22). However and even if a trajectory inside a sagittal plane is imposed,
some step parameters like the reference Cartesian positions, velocities and accelera-
tions X f,d(t), Ẋ f,d(t) and Ẍ f,d(t) and the desired joint trajectories θd(t), θ̇d(t) and
θ̈d(t) are calculated online at each time iteration. Online sensors are used to measure
real joint trajectories θ(t), θ̇ (t) and θ̈ (t) and the contact forces with the ground F .

3 Application to a Humanoid Robot Prototype

In this section the control laws proposed in the last section will be applied to a
Humanoid robot prototype which a particular morphology very close to a human
one [41].

3.1 The Anthropomorphic Model of the Humanoid Robot

The Humanoid robot prototype [41] considered in this paper is composed of fif-
teen links associated to twenty-six degrees of freedom (DOF). The morphological
constitution of the humanoid robot corresponds to a human being’s whole anatomy
with a weight of 70 kg and a height of 1.73 m. Furthermore, we take account on the
following assumptions:
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Assumption 1: The connection between upper and lower bodies is made by a pas-
sive joint. Indeed, trunk and pelvis rigid bodies are assumed not to
be subject to rotations however their mere presence allows the rigid
bodies to move in a correct way. Hence, the upper body’s mass is
considered and taken into account during the gait calculation and
simulations of the lower body.

Assumption 2: The vectors of joint position θ , joint velocity θ̇ , joint acceleration
θ̈ and contact forces with the ground F are measured via online
sensors.

Assumption 3: During the gait cycle, the humanoid robot is supposed to evolve
in a well known environment where no obstacles are encountered.
Therefore, no adaptive controls are required.

Assumption 4: The ground contact surface is assumed to be smooth and regular.

Figure 4 and Table 1 show the involved rotations for each link. The whole
humanoid robot is composed of two independent robotic systems: the upper body
and the lower body.

Fig. 4 The Humanoid robot
prototype
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Table 1 Rigid bodies and articulations

Link Link description Joint Joint description Degrees of freedom

C1 Right foot J1 Right ankle ξ1 = [0 θ1 θ2 ]

C2 Right leg J2 Right knee ξ2 = [0 θ1 θ3 ]

C3 Right thigh J3 Right hip ξ3 = [ θ4 θ5 θ6]

C4 Pelvis J7 Passive joint ξ4 = [0 0 0]

C5 Left thigh J4 Left hip ξ5 = [ θ7 θ8 θ9]

C6 Left leg J5 Left knee ξ6 = [0 θ10 θ11 ]

C7 Left foot J6 Left ankle ξ7 = [0 θ10 θ12 ]

C8 Trunk J7 Passive joint ξ8 = [0 0 0]

C9 Head and neck J8 Neck ξ9 = [0 θ13 θ14 ]

C10 Right arm J9 Right shoulder ξ10 = [ θ15 θ16 θ17]

C11 Right forearm J10 Right elbow ξ11 = [0 θ18 0 ]

C12 Right hand J11 Right wrist ξ12 = [0 θ19 θ20 ]

C13 Left arm J12 Left shoulder ξ13 = [ θ21 θ22 θ23]

C14 Left forearm J13 Left elbow ξ14 = [0 θ24 0 ]

C15 Left hand J14 Left wrist ξ15 = [0 θ25 θ26 ]

Winter statistical model [42] was used to determine all physical parameters corre-
sponding to each link Ci. Each rigid body Ci of the humanoid robot is characterized
by the following physical parameters (see Fig. 5):

• ki ∈ �: Proximal distance defined as the distance from the center of gravity to the
connect joint of the previous link Ci−1.

• li ∈ �: Distal distance defined as the distance from the center of gravity to the
connect joint of the next link Ci+1.

Since the kinematic model is elaborated in the three dimensional space, we define
Ki ∈ �3×1 and Li ∈ �3×1 as respectively the proximal and distal distance vectors
of the link Ci given by:

Ki = [0 0 Ki ]T and Li = [0 0 li ]T

Each rigid body Ci of the bipedal robot is characterized by the previous physical
parameters plus the following physical parameters:

• mi ∈ �: Mass of the link Ci
• ii ∈ �: Inertia about the center of mass of the link Ci

Since the dynamic model is elaborated in the three dimensional space, the fol-
lowing three dimensional parameters are considered:
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Fig. 5 Segmental
proportions of rigid bodies

– Mi ∈ �3×3: mass matrix of the link Ci given by:

Mi =
⎛
⎝ mi 0 0

0 mi 0
0 0 mi

⎞
⎠

– Ii ∈ �3×3: Inertia matrix about the center of mass of link Ci described by:

Ii =
⎛
⎝ ii x 0 0

0 iiy 0
0 0 ii z

⎞
⎠

Table 2 gives all segmental physical parameters.
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Table 2 Physical parameters obtained via winter model

Link ki (m) li (m) mi (kg) Inertia about center of mass (kg m−2)

ii x ii x ii x

Right foot 0.034 0.034 1.015 0.001 0.001 0.001

Right leg 0.184 0.241 3.255 0.051 0.051 0.051

Right thigh 0.184 0.240 7.000 0.113 0.113 0.113

Pelvis 0.021 0.178 9.940 0.112 0.112 0.112

Left thigh 0.240 0.184 7.000 0.113 0.113 0.113

Left leg 0.241 0.184 3.255 0.051 0.051 0.051

Left foot 0.034 0.034 1.015 0.001 0.001 0.001

3.2 Kinematic and Dynamic Modelling of the Bipedal Robot

All along this chapter, we focus only on the bipedal part of the humanoid robot
presented in the last section. The direct and inverse kinematics of the humanoid robot
are obtained using Euler’s transformation principle [43]. Let X = [X1, . . . , X7]T

be the vector of Cartesian positions for links center of gravity and let Ai be the
transformation matrix of link Ci from the body coordinate system to the inertial
coordinate one. The robot implicit kinematic model is then described by:

Xi = Ai (Li − Ki ) + Xi−1, i = 1, . . . , 15 (23)

where Xi is the vector of Cartesian positions of the link Ci. An explicit expression
of the bipedal robot kinematic model is given here under:

X7 = A7(L7 − K7) + A6(L6 − K6) + A5(L5 − K5) + A4(L4 − K4)

+ A3(L3 − K3) + A2(L2 − K2) + A1(L1 − K1)

We consider at this level a number of standard scenarios [44–46] to validate the
lower body kinematic model. Figure 6 shows validation of standard scenarios for
the Humanoid robot lower body. The different postures are represented in both the
sagittal and frontal planes.

The three dimensional dynamic modeling of the seven linked bipedal robot has
been accurately developed using the Newton-Euler formalism [47] for the SSP, the
IP and DSP.

In order to reach the dynamic model we use Hemami’s works [29, 43] and we
suggest a generalized motion equation for the translation as in (24) and the rotation
as in (25) of each link Ci:

Mi Ẍi = Mig + Γi − Γi+1. (24)

Ii ẇi = fi + Fi + Fi+1 + Gi + Gi+1 + τi + τi+1 (25)
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Fig. 6 Standard scenarios for the Humanoid robot lower body
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where:
Wi , Ẇi : Angular position and acceleration of the link Ci.
Xi , Ẍi : Linear position and acceleration of the link Ci
Fi , Ḟi+1: Torques due to the holonom force applied respectively to the proximal and
distal articulation of the link Ci expressed in the body coordinate system
Gi , Gi+1: Non-holonom torques applied respectively to the proximal and distal artic-
ulation of the link Ci expressed in the body coordinate system
τi , τi+1: Muscular torques applied respectively to the proximal and distal articulation
of the link Ci expressed in the body coordinate system
Γi , Γi+1: Holonom forces applied respectively to the proximal and distal articulation
of the link Ci expressed in the inertial coordinate system
fi : Intrinsic torque of the link Ci expressed in the body coordinates system (xi, yi, zi)

and relating angular velocity to the link inertia.
Human body’s balance of forces and torques reveals that humanoid limbs are

subject to three kinds of forces: holonom, non holonom and mechanic forces [43].
Figure 7 shows the applied forces and torques to the humanoid lower body.

A clear and sequential methodology to follow in order to establish a reduced and
expendable dynamic model is rigorously explained in [47]. Using this method, the
dynamic model of the Humanoid robot lower body has been reduced such moving
from 42 initial DOFs to only 12 state variables.

Fig. 7 Applied forces and
torques to the Humanoid
robot lower body
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3.3 Jerk Optimal Control

Obviously initial conditions have a great influence on the bipedal robot’s trajectory
and equilibrium as the robotic system has an inherent nonlinear and very complex
dynamical model due to the high number of degrees of freedom involved. To the
best of our knowledge, there is no specific methodology that could be used to obtain
optimal initial conditions. Therefore, based on previous standard validation scenarios,
initial angular conditions are inspired on the one hand by the usual and common
posture of a Human being when starting a walking step with a swinging left foot
and on the other hand by very intensive simulations. The combination of angular
corresponding positions is validated with Fig. 8 and is given by:

θi =
[

− π

11
0 0 0 − π

9
0 0

π

9
0

π

11
− 0.0089 0

]T

Indeed, Fig. 8 shows the bipedal robot initial posture in the 3D space.
Using direct kinematic modelling given, initial Cartesian conditions are given by:

X f,i = [0 0.53 0]T

A semi-elliptical trajectory for a walking step of 0.5 s duration is generated using
the parameters given in Table 3. It corresponds to a velocity of 0.6 m s−1 which is an
acceptable Cartesian velocity when compared to current state of the art gait velocities
rates for walking Humanoid robots [48, 49].

The fifth order angular trajectory is given then by:

β(t) = −3.18t5 + 6.36t4 − 3.39t3 − 0.0089

Position and velocity gains related to the Minimum Jerk control law are chosen
so that global stability conditions (18) are satisfied for a desired bandwidth λ = 12
such that:

Fig. 8 Initial posture for the
bipedal robot
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Table 3 Parameters of the Cartesian desired trajectory

v (m) w (m) y (m) α (m) (g, h) (m)

0.15 0.53 0.1 16.5 (0.15, 0)
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Fig. 9 Desired and real Cartesian positions of the swing foot for a walking step

K p,1 = diag [24 24 24]
Kv,1 = diag [144 144 144]

Figure 9 shows the evolution of the desired and real positions of the swing foot in
the 3D Cartesian space while Fig. 10 represents the real Cartesian trajectory of the
swing foot during the realization of a walking step.

Fig. 10 Real Cartesian
trajectory of the swing foot
during a walking step
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Fig. 11 Evolution of the joint positions, velocities and accelerations of the swing foot during the
swing phase

Figure 11 shows the evolution in time of the position, velocity and acceleration of
the swing foot joints. All angular position reach after the step duration their desired
values, this is emphasized by the very low values of velocities and accelerations at
the step completion.

Figure 12 emphasizes the control laws involved in the swing foot motion for a
walking step of 0.5 s duration.

Simulation results show the efficiency of the Minimum jerk control. Minimum
Jerk observed benefits are the smoothness of the foot trajectory and the absence of
sudden movements.



406 A. Aloulou and O. Boubaker

0 0.1 0.2 0.3 0.4 0.5
-500

0

500

Time (s)

 U
7 

(N
m

 / 
s)

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

200

Time (s)

 U
8 

(N
m

 / 
s)

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

50

100

Time (s)

 U
9 

(N
m

 / 
s)

0 0.1 0.2 0.3 0.4 0.5
-500

0

500

Time (s)
 U

10
 (

N
m

 / 
s)

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

200

Time (s)

 U
11

 (
N

m
 / 

s)

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

50

Time (s)

 U
12

 (
N

m
 / 

s)

Fig. 12 Evolution of the control laws of the swing foot during the swing phase

3.4 Impedance Based Control

Simulation of the bipedal robot during the IP and DSP is established using the
constrained model (2) for the control law (21) and the ground reaction force (20).
Environmental parameters used to describe the contact environment are inspired by
the Park’s research work [50] as:

Kd = diag [104 104 104]
Bd = diag [630 630 630]
Md = diag [10−2 10−2 10−2]

Regarding the reference ground reaction force, its role is to allow the free leg located
at a height of 0.01 m from the ground to land on the contact area and at the same
time to enable a low foot sliding along the x-axis. The resulting ground reaction
force is composed of a vertical component and a normal one. According to [21],
the vertical component of the reference external force has to emphasize the weight
transfer of the bipedal robot from the right supporting foot to the left free foot.
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The normal component of the reference ground reaction force is usually a low value
but high enough to enable a short translation of the left foot along the x-axis. Thus,
Fd is chosen as follows:

Fd = [30 0 300]T

Position, velocity and force gains related to the impedance control law are computed
offline so that the Lyapunov asymptotic stability conditions (22) are satisfied:

K p,2 = diag [104 104 104]
Kv,2 = diag [600 600 600]
K f = − diag [1 1 1]

Actually, the final position reached by the swinging foot while applying a Minimum
Jerk control law during the SSP represents the initial position of the robotic system
when starting the IP. The duration of the free phase is 0.5 s and the constrained phases’
duration is 0.2 s. Consequently, the swinging foot initial Cartesian position for the
impact and double support phases is given by:

X f,i = [0.3 0.53 0.01]T

The final desired Cartesian position of the active foot at the step completion is:

X f, f = [0.35 0.53 0]T

To explore the relevance of the proposed approach, we consider two case studies for
simulation.

3.4.1 Case Study 1: Smooth and Regular Ground Surface and No
Sensory Noise

This case study validates the proposed methodology of Minimum Jerk control for gait
pattern generation under the stated assumptions. The Humanoid robot is supposed
then to evolve in a smooth and regular ground contact surface. Furthermore, no
sensory noise occurs here. Simulation results show the evolution of the active leg
variables when the robot end-effector achieves a complete walking step. The ground
reaction force is shown in Fig. 13. The active foot Cartesian components along x and
z axis are represented in Fig. 14 while the real Cartesian trajectory of the humanoid
robot free foot is shown in Fig. 15.

During the SSP, the ground reaction force is null. Then at the impact, it takes the
shape of a delta impulse such reaching a maximal value of 750 N. Finally after the
impact, the ground reaction force gradually decreases and gets stabilized at the value
of 300 N.
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Fig. 13 Evolution of the ground reaction force during a walking step
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Fig. 14 Real Cartesian components of the active foot during a walking step
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Fig. 15 Real Cartesian trajectory of the active foot during a walking



A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking … 409

Figure 14 emphasizes the real Cartesian positions evolution for the swinging foot
during the achievement of a whole walking step. At the moment of impact, it clearly
appears that Cartesian positions along x and z axis observe a decrease of their velocity
convergence in order to avoid that the foot gets pushed across the floor. Desired
Cartesian positions of the free foot are reached tf = 0.7 s which is the specified time
for step completion. The Cartesian trajectory of the moving leg is represented in
Fig. 15. During the free stage, the swinging leg follows a semi-ellipsoidal trajectory.
This shape is quite close to a human leg motion while achieving a walking step. At
the contact point, the trajectory taken by the bipedal robot is similar to a line segment
with a negative slope and at the end of the double support phase, the Humanoid robot
leg slides along the contact area.

3.4.2 Case Study 2: Uncertain Stiffness of the Ground Surface and
Sensory Noise

In this case, the objective is to analyze the robustness of the proposed approach
to the environment uncertainties and sensory noise. Actually, the Humanoid robot
evolves in an unknown environment as we consider an uncertainty on stiffness in the
environment model. Furthermore, sensory noise is introduced. Indeed we consider
a Gaussian noise of 0.01◦ mean and 0.01◦ standard deviation for the joint position
measurements and 0.05◦ s−1 mean and 0.05◦ s−1 standard deviation for the joint
velocity measurements. Damping and inertia environmental parameters previously
given are used while the stiffness parameter is subject to uncertainties such that:

Kd = [1 + 2000 ∗ sin(t)] ∗ diag [104 104 104]

Simulation results show the effect of sensory noise and stiffness uncertainties on the
contact force and torques during the impact and double support phases. Hence, the
ground reaction force is represented in Fig. 16 while Fig. 17 shows the control laws
involved in the swing foot motion.

The active foot Cartesian components along x and z axis are represented in Fig. 18.
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Fig. 16 Evolution of the ground reaction force during a walking step
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Fig. 17 Evolution of the control laws of the swing foot during the swing phase
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Fig. 18 Real Cartesian components of the active foot during a walking step

Even if the noise and environment uncertainties are not modeled in the design of
the controller, simulation results emphasize the efficiency of the control law and the
robustness of the proposed method as perturbations have no effect on the bipedal
robot trajectory. We must however note that the effects of vibration are observed in
control laws.
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Fig. 19 The 3D gait pattern generation during a walking cycle

3.5 Walking Cycle Generation

To show the walking gait pattern generation during a whole walking cycle, the differ-
ent rigid bodies composing the bipedal robot are represented in the Cartesian three
dimensional space in Fig. 19. Figure 20 gives the evolution in time of the z coordi-
nate of the two feet and the ground reaction force during the achievement of three
alternate walking steps.
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Fig. 20 The two feet z coordinate and the contact force during a walking cycle
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Fig. 21 Intermediate positions of the whole Humanoid robot during a walking cycle

In Fig. 19, the several postures taken by the bipedal robot emphasize its motion
along the time and shows well the achievement of three alternate footsteps starting
with a step initiated by the left foot (in blue). Two steps initiated by the left foot are
alternate with one step by the right foot. Thus, the alternation of the Minimum Jerk
and impedance based control laws represents an efficient control combination for the
achievement of a stable walking cycle. Actually, it combines benefits of both control
laws a smooth motion during the swing phase and a stable and safe elastic contact
with the ground in the constrained phases.

In order to realize the whole Humanoid motion, we adopt two separate controls
for the upper and lower bodies where position, velocity and time objectives allow the
synchronization of movements between upper and lower limbs during gait. Thus,
using the same strategy of linearizing control law (19), we impose to the arms a
movement from the inside to the outside according to the walking cycle phase con-
sidered. Figure 21 represents in the Cartesian 3D space the several postures taken by
the robot during the achievement of two alternate footsteps. We notice that only the
two arms, forearms and hands are moving from the inside to the outside in a motion
that is alike a human being’s one.

4 Future Works

Even if stability conditions are guaranteed, tuning control parameters remains a dif-
ficult issue considering the complexity of models (1) and (2). The optimization of
the controller parameters using multi-objective criteria and biological-inspired opti-
mization techniques known for their global convergence and good performances and
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also using results of [51] will be addressed in future works. On the other hand, safety
is mostly ensured through control software level during the SSP and DSP. Actually,
the current control system is designed in order to authorize corrective forces and
torques to the ground characteristics through suitable choice of stiffness, damping
and inertia parameters for the impedance control approach. In future works, a quan-
titative index must be established to evaluate the safety criterion [52]. Furthermore,
robust safe motion under unknown environment and in presence of obstacles will be
addressed based on [53, 54].

5 Conclusion

In this chapter, satisfying control laws have been proposed to provide good dynamic
performances in terms of stability, smoothness and safety for bipedal robots during a
gait cycle resembling as much as possible to a Human being one. Indeed, during the
swing phase a novel Minimum Jerk control strategy is produced to generate a stable
semi-ellipsoidal motion trajectory without dynamic vibrations and control shakings
while an appropriate impedance control law is proposed to ensure stable and safe
elastic contact balance at foot landings on the ground even in presence of sensory
noise and uncertainties on the environment stiffness. Simulation results performed
on a 15 link/26 DOF Humanoid robot with a weight of 70 kg and a height of 1.73 m
walking at a velocity of 0.6 m s−1 show the effectiveness of the proposed strategy
and better performances compared to related approaches. Future works will focus
on optimizing tuning controller parameters to ensure faster speed for the SSP and
better safety performances and robustness for the IP and DSP.
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