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Abstract As a new member of mobile robot family, spherical mobile robot (shortly
spherical robot) is well-known for its compact structure and agile motion, but its spe-
cial motion principle and nonholonomic characteristic complicate its motion plan-
ning. This chapter first overviews the previous research work of the motion planning
of spherical robot, and then introduces the structure and motion principle of spheri-
cal robot BHQ-1, and last presents one kinematic motion planning method and one
dynamic motion planning method for BHQ-1 respectively. Compared with other
motion planning methods of spherical robot, those two methods realize the motion
planning of a spherical robot in 3D space and focus more on practical applications.

Keywords Spherical mobile robot · Nonholonomic constraints · Kinematic
planning · Dynamic planning

1 Introduction

Spherical mobile robot (shortly spherical robot) is a new type of mobile robot boomed
in recent decades [1–8, 18], which usually has a ball-shaped outer shell to include all
its mechanism, control system and batteries inside. Different from those traditional
mobile robots, such as wheeled robot, legged robot and tracked robot, spherical robot
has no apparent locomotion mechanism and its outer shell works as that. Although
many different kinds of spherical robots have been developed, there are mainly two
principles to realize its motion: center of gravity displacement and angular momen-
tum conservation. Spherical robot is characterized as compact structure and agile
motion, which make it very suitable to be applied in those unmanned environments.
For example, like a tumbler a spherical robot can never overturn, even if suffered with
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collision or falling down it can resume stability quickly. The research on spherical
robot mainly focuses on the mechanism design and motion control.

From the control point of view, spherical robot is a nonholonomic system that
can control more configuration variables than the number of its degrees of freedom
or control inputs but accompanied with much more complexity. Aarne Halme et al.
established the kinematic motion model and dynamic motion equation of a spherical
robot in one dimensional space by regarding it as a rolling disk, and analyzed its such
motion capabilities as uphill motion and overrunning an obstacle as well as some
basic motion features [1, 13]. Antonio Bicchi et al. deduced a planar quasi-static
kinematic model of a spherical robot by linking a unicycle and a plate-ball system
together through some constraints, and planned its motion through solving a set of
nonlinear equations [2, 14, 15]. Bhattacharya and Agrawal deduced a first-order
mathematical motion model of a spherical robot under the constraints of non-slip
and angular momentum conservation, and presented three types of motion plan-
ners by considering feasibility, minimum energy and minimum time separately [3].
Mukherjee et al. presented two geometric motion planning strategies to realize the
partial and complete reconfiguration of a spherical robot respectively, and the partial
reconfiguration strategy uses spherical triangles to bring the sphere to a desired posi-
tion and a specific orientation and the complete reconfiguration strategy generates a
four-steps motion to move the sphere along a trajectory composed of straight lines
and curves [4, 16]. Javadi et al. established a dynamic model of a spherical robot with
Newton formulation and presented a trajectory planning method by directly calcu-
lating the best solution of each step-motor’s movement [5]. Cameron et al. discussed
the kinematic and dynamic modeling of nonholonomic system and deduced a sim-
plified Boltzmann-Hamel equation for both holonomic and nonholonomic systems
[9]. Zhan et al. established a dynamic model of a spherical robot with the simplified
Boltzmann-Hamel equation, based on which the motion of a spherical robot is divided
into linear motion and circular motion so as to realize complex trajectory planning
by dividing it into line segments and curve segments [10]. Chen et al. presented a
time and energy optimal trajectory planning method based on quasi-velocity motion
model and Hamiltonian function, and discussed the influence of three key factors
on the shape and direction of the planned trajectory [11]. Jaimez et al. established
the dynamic model of a spherical robot Omnibola with Newton-Euler equations and
compared its actual motions with the simulated ones through experiments [18].

In the following of this chapter, a brief introduction of spherical robot BHQ-1
will be given first, and then one motion planning method based on kinematics and
one motion planning method based on dynamics will be introduced separately.

2 Brief Introduction of Spherical Robot BHQ-1

BHQ-1 is the first kind of spherical robot designed by our lab and the first prototype
was implemented in 2001 [8], which is designed for the exploration of unmanned
environments. As shown in Fig. 1, BHQ-1 is mainly composed of two motors, one
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Fig. 1 Structure of spherical
robot BHQ-1 (1: motor 1, 2:
motor 2, 3: mass, 4: shell, 5:
camera, 6: bearing, 7:
controller & battery, 8:
hollow axle)
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hollow axle, one mass, one camera, one controller and battery combination, and one
ball-shaped shell. In Fig. 1 frame {XbYbZb} is a body frame attached to the hollow
axle and its origin is coincident with the geometric center of the sphere. The hollow
axle connects with the shell through two ball bearings at the two ends and serves as a
chassis or frame to install other components, so the outer shell can rotate around the
axis of the hollow axle freely and the camera installed on the hollow axle can keep a
relatively steady posture no matter BHQ-1 is moving or static. Motor 1 is installed on
the hollow axle but its output axle is fixed to the shell, so its rotation can result in the
displacement of the mass along Yb direction. Motor 2 is also installed on the hollow
axle and its output axle is fixed to a link so as to drive the mass along Xb direction.
Installed on the hollow axle the camera is used to take pictures of environments which
can be transmitted to a remote control center through a wireless image transmission
system. According to the received pictures an operator can not only observe the
environment but also control the motion of the spherical robot through a joy stick.

The motion principle of the spherical robot is that the rotations of motor 1 and
motor 2 make the mass rotate about axes Xb and Yb respectively and result in the
displacement of the center of gravity of the whole system, which produces a dis-
placement moment to counteract the friction moment and makes the robot move. As
shown in Fig. 1, when motor 1 rotates and motor 2 keeps still, the mass, the hollow
axle, the controller and battery combination, and motor 2 will rotate about the axis
of the hollow axle. If the angle displacement θ ≥ θ0 (θ0 is the angle displacement
of the mass to balance the moment caused by static friction), the robot will move
forward or backward. Because the moment caused by dynamic friction is less than
that caused by static friction, the mass will stay at a position where the angle dis-
placement of the mass is less than θ0. So the system is balanced and the robot can
go forward or backward continuously. If motor 1 and motor 2 both rotate the mass
will rotate around both axes Xb and Yb, and the compound motion of the mass will
produce a displacement gravity moment to cause the robot to turn to the side where
the mass stays. For example, if the mass moves to the +Xb direction the robot will
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turn to +Xb direction and if the mass moves to the –Yb direction the robot will turn
to the –Yb direction. So any required motion of spherical robot BHQ-1 can be easily
achieved by the separate control or compound control of two motors.

3 Kinematics Based Motion Planning of BHQ-1

3.1 Nonholonomic Constraint Equations of BHQ-1

In order to describe the configuration of spherical robot BHQ-1, such following
frames are established as shown in Fig. 2. Frame {OXYZ} is the reference frame,
frame {ObX′Y′Z′} is a body reference frame with its origin locating at the geometric
center of the sphere and its orientation the same as that of reference frame {OXYZ},
frame {ObXbYbZb} is the body frame fixed to the hollow axle of BHQ-1 and its origin
is the geometric center of the sphere. It’s obvious that BHQ-1 cannot move along Z
axis, so it requires five variables to describe its configuration: x, y, ψ, θ, ϕ, among
which x, y are the position coordinates of the geometric center of BHQ-1 expressed
in the reference frame {OXYZ}, ψ, θ, ϕ are the ZXZ Euler angle to describe the
orientation of BHQ-1.

When spherical robot BHQ-1 moves on the ground, it will come under a velocity
constraint due to rolling without slipping: the velocity of the contact point of BHQ-1
and the ground must be the same. Then the following velocity constraint equations
can be deduced. {

ẋ + r(ϕ̇ cos ψ sin θ − θ̇ sin ψ) = 0
ẏ + r(ϕ̇ sin ψ sin θ + θ̇ cos ψ) = 0

(1)

where, r is the radius of BHQ-1.
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Fig. 2 Frames describing the configuration of BHQ-1
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For nonholonomic systems quasi-coordinates are widely used due to its several
advantages when compared with generalized coordinates. For example, the non-
holonomic constraints could be expressed more easily with quasi-coordinates and
the projections of kinetic energy can be expressed more simply with quasi-velocities.
Normally, the left part of the nonholonomic constraint equations of some systems
can be chosen as quasi-velocities and the choice of other quasi-velocities should
facilitate the calculation [12].

Here, five quasi-velocities ω1, ω2, ω3, ω4, ω5 of spherical robot BHQ-1 are chosen
as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω1 = ϕ̇ sin ψ sin θ + θ̇ cos ψ

ω2 = −ϕ̇ cos ψ sin θ + θ̇ sin ψ

ω3 = ψ̇ + ϕ̇ cos θ

ω4 = ẋ − rω2
ω5 = ẏ + rω1

(2)

where ω1, ω2, ω3 are the projections of the angle velocities of BHQ-1 on the three
axes of frame {ObX′Y′Z′}, ω4, ω5 are defined according to the rolling without slip-
ping constraint equations (1). It is easy to get ω4 = 0, ω5 = 0.

3.2 Optimized Motion Planning Based on Hamiltonian
Function

Spherical robot includes all the energy sources inside its shell, so the available energy
sources are limited to its size and structure. In order to make a spherical robot move
further with the limited energy sources, time and energy based optimized motion
planning is greatly preferred.

When spherical robot BHQ-1 moves on the ground, its hollow axle will always
keep horizontal except it turns aside. Furthermore, for the ZXZ Euler angles the first
two rotations angles ψ and θ cannot result in the rotation of the hollow axle around
Yb axis, that means only ϕ can do that, so we can suppose ϕ = 0 in order to simplify
the motion planning problem, and then the configuration of BHQ-1 is simplified as
P = [x, y, ψ, θ ]T . So Eq. (2) can be simplified as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω1 = θ̇ cos ψ

ω2 = θ̇ sin ψ

ω3 = ψ̇

ω4 = ẋ − rω2 = 0
ω5 = ẏ + rω1 = 0

(3)

From Eq. (3) we can get the kinematics model of BHQ-1 as



366 Q. Zhan

⎧⎪⎪⎨
⎪⎪⎩

ẋ = rω2
ẏ = −rω1

ψ̇ = ω3

θ̇ = ω1 sec ψ

(4)

Rewrite Eq. (4) in the matrix form as
⎡
⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 r 0
−r 0 0
0 0 1
sec ψ 0 0

⎤
⎥⎥⎦ ·

⎡
⎣ω1

ω2
ω3

⎤
⎦ = f (P, u), u = [ω1 ω2 ω3 ]T (5)

In order to plan an optimized trajectory from the initial configuration Pi =
[xi , yi , ψi , θi ]T to the goal configuration Pg = [xg, yg, ψg, θg]T , following cost
function is introduced.

J =
∫ tg

0

[
k + 1

2
(1 − k)(b1ω2

1 + b2ω2
2 + b3ω2

3)

]
dt, (b1 ≥ 0, b2 ≥ 0, b3 ≥ 0, 0 ≤ k ≤ 1)

(6)
where, k describes the tendency of the function to the least time or the least energy, if
k is much smaller the function trends to approach the least energy more, if k is much
bigger the function trends to approach the least time more; b1, b2, b3 describes the
weight values of three angle velocities ω1, ω2, ω3.

A Hamiltonian function is constructed as follows.

H = L + λT f (P, u)

=
[
k + 1

2
(1 − k)(b1ω2

1 + b2ω2
2 + b3ω2

3)

]
+ λ1rω2 − λ2rω1 + λ3ω3 + λ4ω1 sec ψ

(7)

where, λ = [λ1, λ2, λ3, λ4]T is the Lagrange multiplier vector. In order to optimize

the trajectory of BHQ-1, λ̇ = −( ∂ H
∂ P )T must be satisfied, namely

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1 = − ∂ H
∂x = 0

λ̇2 = − ∂ H
∂y = 0

λ̇3 = − ∂ H
∂ψ

= −λ4ω1 sin ψ sec2 ψ

λ̇4 = − ∂ H
∂θ

= 0

(8)

From Eq. (8) we can find that λ1, λ2, λ4 are all constants, but λ3 is a variable on
the entire trajectory. In order to optimize the quasi-velocities ω1, ω2, ω3, the entire
trajectory should satisfy ∂ H

∂u = 0, namely
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⎧⎪⎪⎨
⎪⎪⎩

∂ H
∂ω1

= 0 ⇒ (1 − k)b1ω1 − λ2r + λ4 sec ψ = 0
∂ H
∂ω2

= 0 ⇒ (1 − k)b2ω2 + λ1r = 0
∂ H
∂ω3

= 0 ⇒ (1 − k)b3ω3 + λ3 = 0

(9)

From Eq. (9) the optimized quasi-velocities can be got as following.

⎧⎪⎪⎨
⎪⎪⎩

ω1 = λ2r−λ4 sec ψ
b1(1−k)

ω2 = − λ1r
b2(1−k)

ω3 = − λ3
b3(1−k)

(10)

Because on the entire optimized trajectory Hamiltonian function must be 0 [9],
namely

H = L + λT f (x, u) = k + 1

2
(1 − k)(b1ω

2
1 + b2ω

2
2 + b3ω

2
3) + λ1rω2 − λ2rω1

+ λ3ω3 + λ4ω1 sec ψ = 0 (11)

Substitute the three optimized angle velocities in Eq. (10) for those in Eq. (11) we
can get

λ3 = ±
√

−b3
2b1b2(k2 − k) + r2(b1λ

2
1 + b2λ

2
2) − 2rb2λ2λ4 sec ψ + b2λ

2
4 sec2 ψ

b1b2
(12)

From the above equation we can find λ3 = λ3(ψ). The symbol of λ3 can be got
from experiments, and for spherical robot BHQ-1 we choose it as a negative one
according to experience. Then the trajectory equation of spherical robot BHQ-1 can
be deduced from Eq. (4) as follows.

ẋ = rω2

ψ̇ = ω3

}
⇒ dx

dψ
= rω2

ω3
= λ1r2b3

λ3b2
= h1(ψ)

ẏ = −rω1

ψ̇ = ω3

}
⇒ dy

dψ
= − rω1

ω3
= (λ2r−λ4 sec ψ)rb3

λ3b1
= h2(ψ)

(13)

From Eq. (13) we can find that dx
dψ

,
dy
dψ

are all functions of ψ , which means the

calculation of x, y can be greatly simplified because it can be got by integrating the
above equation from initial ψ = 0 to final ψ = ψg , namely

{
x = ∫ ψg

0 h1(ψ)dψ

y = ∫ ψg

0 h2(ψ)dψ
(14)
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Fig. 3 Trajectory planning simulations a Planned trajectory. b Change of ψ . c Change of θ

It’s clear that Eq. (14) has no variables of time t, so there is no need to find the
final time tg when computing x and y. However, ψ cannot be a monotone function,
so it should be divided into several segments and the piecewise points are those that
make ψ̇ = 0. Thus in each segment ψ will increase or decrease monotonously. From
Eq. (4) we can find that ω3 = 0 must be satisfied in order to make ψ̇ = 0, and then
from Eqs. (8) and (10) we can get λ3 = λ3(ψ) = 0, so those piecewise points can
be decided according to the equation. So the optimized trajectory of spherical robot
BHQ-1 can be deduced.

In real applications a group of suitable or optimized coefficients λ1, λ2, λ4 should
be decided first for the given goal position and orientation (xg, yg, ψg, θg), and which
are usually got according to experiences.

For spherical robot BHQ-1, suppose the initial configuration is Pi = [0, 0, π
2 , 0]

and the final configuration is pg = [1.25, 1.25, π
2 , 0], then the optimized motion can

be planned as follows. First, choose a group of coefficients λ1, λ2, λ4, here according
experience we choose λ1 = 0.5, λ2 = 0.5, λ4 = 0.3. Then we choose k = 0.5,
b1 = b2 = b3 = 1. The optimized trajectory and the changes of two orientation
variables of spherical robot BHQ-1 are shown in Fig. 3. From the simulations we can
find that the planned trajectory and the curves of two orientations are all smooth.

3.3 The Influence of λ1, λ2, λ4 on Planned Trajectory

In order to facilitate the choice of coefficients λ1, λ2, λ4, of which the influence on
the trajectory shape and the moving direction of robot BHQ-1 are discussed by a
group of simulations. Here, suppose ψg = 2π

5 .
First, let λ2 and λ4 be constants and let λ1 change from −1.5 to 1.5, different

planned trajectories are shown in Fig. 4. From the simulation results we can find that
the change of λ1 can affect the trajectory shape greatly and the symbol of λ1 can
affect the moving direction of BHQ-1 along Y direction.

Then let λ1 and λ4 be constants and let λ2 change from −0.9 to 0.9, those different
planned trajectories are shown in Fig. 5. From the simulation results we can find that
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Fig. 4 Trajectory planning results when λ1 changes

Fig. 5 Trajectory planning results when λ2 changes

the change of λ2 affects the trajectory shape little and the symbol of λ2 cannot change
the moving direction of spherical robot BHQ-1.

At last, let λ1 and λ2 be constants and let λ4 change from −0.3 to 0.3, those
different planned trajectories are shown in Fig. 6. From the simulation results we can
find that the change of λ4 can greatly affect the trajectory shape and the final position
(x, y), and the symbol of λ4 can change the moving direction of BHQ-1 along X
direction.

The above simulations reveal the influence of λ1, λ2, λ4 on the planned trajectory
of spherical robot BHQ-1 respectively, which can help to decide a group of suitable
λ1, λ2, λ4 for a real application by experience.
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Fig. 6 Trajectory planning results when λ4 changes

Fig. 7 Optimal trajectory
from (0, 0) to (1.5, 3) by
shooting method

One way to directly get a group of optimized λ1, λ2, λ4 has been proposed in [17],
which is called “shooting” method. Using the “shooting” method, we can plan an
optimal trajectory of spherical robot BHQ-1 from start position (0, 0) to final position
(1.5, 3), as shown in Fig. 7. Here, k = 0.5, b1 = b2 = b3 = 1, λ1 = 0.08, λ2 =
0.78, λ4 = 0.56. Although the “shooting” method can get the optimized variables,
it’s not always effective for some cases.

3.4 Motion Planning Experiments

In order to validate the proposed trajectory planning method motion experiments of
spherical robot BHQ-1 avoiding an obstacle were done. BHQ-1 is planned to move
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Fig. 8 Motion planning experiments of BHQ-1

straight first, but there is an obstacle in its path, when it detects the obstacle it will
avoid it. An infrared sensor was used by BHQ-1 to detect obstacles, and the motion
commands were sent to BHQ-1 from a PC through a wireless system. The radius of
the experimental spherical robot BHQ-1 is 200 mm, and its total mass is about 2.5 kg.

Figure 8 shows some pictures of one experiment during which spherical robot
BHQ-1 avoided an obstacle successfully. To be honest, there were also several cases
that BHQ-1 could not avoid the obstacle successfully due to some practical reasons,
such as the motion errors, the delay on re-planning.

4 Dynamics Based Motion Planning of BHQ-1

4.1 Dynamic Model of BHQ-1

Compared with kinematics based motion planning, dynamics based motion planning
can achieve more steady motion and better performance when meeting unpredicted
external disturbances. But not all the dynamic modeling methods can be used for
nonholonomic systems except Gibbs-Appell equation, improved Lagrange equation,
Kane equation and Boltzmann-Hamel equation, etc. However, it is always difficult
to use those methods to establish a simplified dynamic model of a spherical robot
that can be used in real applications due to the complex deduction procedures and
time-consuming computations.

From D’Alembert-Lagrange principle:
∑n

k=1
(

d

dt

∂T

∂ q̇k
− ∂T

∂qk
− Qk)δqk = 0,

Cameron et al. deduced a simplified Boltzmann-Hamel equation that can be applied
to both holonomic system and nonholonomic system [9], shown in the following.

d

dt

∂ Ē

∂ωI
+

n∑
j=1

n∑
i=1

ηi I γi j
∂ Ē

∂ω j
−

n∑
j=1

η j I
∂ Ē

∂q j
= MI (15)

where, ω is the vector of quasi-velocities, E is the kinetic energy, M is the generalized
driving force, η and γ are coefficients, I denotes the independent quasi-coordinates,
n is the number of the generalized coordinate q j , t is the time.

Different from the traditional Boltzmann-Hamel equation, the new one is
expressed explicitly in terms of generalized coordinate q j and coefficient γ can
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be easily calculated. So the dynamic model has a more compact expression and can
be used more easily.

A configuration vector P = [x, y, ψ, θ, ϕ]T is used to describe the position and
orientation of spherical robot BHQ-1, and the definition of those variables are the
same as that in Sect. 3.

Rewrite Eq. (2) in matrix form as

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 0 cos ψ sin θ sin ψ

0 0 0 sin ψ − sin θ cos ψ

0 0 1 0 cos θ

1 0 0 −r sin ψ r sin θ cos ψ

0 1 0 r cos ψ r sin θ sin ψ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ = α

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ (16)

where α is a 5 × 5 transformation matrix. From Eq. (16) we can deduce

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

θ̇

ϕ̇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 r 0 1 0
−r 0 0 0 1
− sin ψ cot θ cos ψ cot θ 1 0 0
cos ψ sin ψ 0 0 0
sin ψ csc θ − cos ψ csc θ 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ = β

⎡
⎢⎢⎢⎢⎣

ω1
ω2
ω3
ω4
ω5

⎤
⎥⎥⎥⎥⎦ (17)

where β is also a 5 × 5 transformation matrix.
Coefficient γi j in Eq. (15) can be calculated by α and β according to the following

equation.

γi j =
5∑

k=1

5∑
s=1

ωsβks

(
∂αi j

∂qk
− ∂αk j

∂qi

)
(18)

Kinetic energy Ē of spherical robot BHQ-1 is

Ē = 1

2
m(ẋ2 + ẏ2) + 1

2
× 2

5
mr2 · (ψ̇2 + θ̇2 + ϕ̇2 + 2ψ̇ϕ̇ cos θ) (19)

where m is the total mass of BHQ-1. Equation (19) can be expressed by quasi-
velocities as

Ē = 1

2
m

[
5

7
r2(ω2

1 + ω2
2) + 2

5
r2ω2

3 + 2rω2ω4 − 2rω1ω5 + ω2
4 + ω2

5

]
(20)

From Eq. (20) we can get
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ē
∂ω1

= 7
5 mr2ω1 − mrω5

∂ Ē
∂ω2

= 7
5 mr2ω2 + mrω4

∂ Ē
∂ω3

= 2
5 mr2ω3

(21)

Because ω4 = ω5 = 0, we can get the simplified form of Eq. (21) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ Ē
∂ω1

= 7
5 mr2ω1

∂ Ē
∂ω2

= 7
5 mr2ω2

∂ Ē
∂ω3

= 2
5 mr2ω3

(22)

From Eq. (19) we can get ∂ Ē
∂x = ∂ Ē

∂y = ∂ Ē
∂ψ

= ∂ Ē
∂ϕ

= 0.

Substituting those calculated η, γ and Eq. (21) for those in Eq. (15) the dynamic
model of spherical robot BHQ-1 can be deduced as

⎧⎪⎨
⎪⎩

7
5 mr2ω̇1 = m0

1 − r f 0
2

7
5 mr2ω̇2 = m0

2 + r f 0
1

2
5 mr2ω̇3 = m0

3

(23)

where, m0
1, m0

2, m0
3 are the projections of the principal moment m0 on the three axes

of the body reference frame {Ob X ′Y ′Z ′}, f 0
1 , f 0

2 are the projections of the principal
force f 0 on axes X ′, Y ′ of frame {Ob X ′Y ′Z ′}, f 0 and m0 are the principal force
and principal moment imposed on the geometric center of spherical robot BHQ-1
respectively.

4.2 Motion Planning Based on Dynamic Model of BHQ-1

4.2.1 Linear Trajectory Planning

In Fig. 9, frame {o′ijk} is located on the geometric center of BHQ-1 and its orientation
is the same as that of frame {oxyz}. When spherical robot BHQ-1 moves along a
linear trajectory its hollow axle and those installed components will rotate around
axis i to reach a high position supposed as the one shown in Fig. 9.

Because there is no rotation about axes j and k, ψ = 0 and ϕ = 0 are obtained,
substituting them for the variables in Eq. (16), we can get those quasi-velocities as

ω1 = θ̇ , ω2 = 0, ω3 = 0, ω4 = 0, ω5 = 0 (24)
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Fig. 9 Straight motion

In Fig. 9, the gravity direction is along the −k direction (downward vertically),
so the projection of gravity on plane io′ j is zero, that it to say f 0

1 = 0, f 0
2 = 0,

substituting them for the variables in the dynamic model (23), the following simplified
dynamic model of BHQ-1 can be got.

⎧⎪⎨
⎪⎩

m0
1 = 7

5 mr2θ̈

m0
2 = 0

m0
3 = 0

(25)

So the gravity moment exists only around axis i and the mass sways only in the
plane o′k j . From Eq. (25) and

m0
1 = mg�l j + �f r (26)

we can get the driving moment of motor 1 is

M1 (t) = mg�l j + mL2β̈ = −7

5
mr ÿ(t) − �f · r + mL2β̈(t) (27)

where, L is the distance between the center of the mass and the rotation axis of the

hollow axle,
⇀

l j is the projection vector of L on axis j, β is the angle that the mass
deviates from axis k, f is the friction vector imposed on the spherical robot by the
ground, g is the gravity acceleration. The driving moment of motor 2 is

M2 (t) = 0. (28)

If spherical robot BHQ-1 moves along a straight trajectory with a constant velocity
it is obvious that ÿ = 0. So we get ω̇1 = 0 from Eq. (16), θ̈ = 0 from Eq. (24) and
m0

1 = 0 from Eq. (25), substituting them for the variables in Eq. (26) we can get
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�l j = − �f · r

mg
(29)

β (t) = arcsin
�l j

L
= arcsin

(
− �f · r

mgL

)
(30)

Thus when spherical robot BHQ-1 moves along a straight trajectory with a con-
stant velocity the driving moments of two motors are

{
M1 = mg�l j = − �f r
M2 = 0

(31)

The simulation results of BHQ-1 moving straight are shown in Fig. 10, where the
dashed line is the planned trajectory in theory or the target trajectory and the solid
line is the planned trajectory by adding 1 % noise disturbance. From the simulation
we can conclude that BHQ-1 can realize motion along a linear trajectory with the
deduced dynamic model.

4.2.2 Circular Trajectory Planning

Assume spherical robot BHQ-1 moves along a circular trajectory from the initial
configuration to the final configuration, as shown in Figs. 11 and 12. In Fig. 11,
a frame {oi xi yi } is established on the geometric center of BHQ-1 with its axis xi

pointing to the center of the circular trajectory and its axis yi pointing to the tangential
direction of the circular trajectory.

Fig. 10 Simulation results
of BHQ-1 moving straight
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Fig. 11 Theoretic trajectory of circular motion of BHQ-1
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Fig. 12 Two views of the mass during circular motion

With similar derivation to that of linear trajectory planning, we can deduce f 0
1 =

0, f 0
2 = 0, m0

3. Let p = 7mr2

5 and substitute the above variables for those Eq. (23),
we can get ⎧⎪⎨

⎪⎩
m0

1 = pω̇1

m0
2 = pω̇2

ω̇3 = 0

(32)

Because m0
1, m0

2 are projections of the principal moment on axes i and j, it’s easy
to get ⎧⎨

⎩
m0

1 (t) = mg
⇀

l y + ⇀

jy · r

m0
2 (t) = mg

⇀

lx + ⇀

fx · r
(33)
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where,
⇀

lx ,
⇀

l y are the projections of length L on axes x and y respectively,
⇀

fx ,
⇀

fy are
the projections of the friction force f on axes x and y respectively.

From Eqs. (16), (32) and (33), we can get

⎧⎪⎪⎨
⎪⎪⎩

⇀

lx = 1
mg

(
p
r ẍ − ⇀

fx · r

)

⇀

lx = 1
mg

(
− p

r ÿ − ⇀

fx · r

) (34)

Through coordinates transformation we can get

⎡
⎣ lxi

lyi

0

⎤
⎦ = R(z,−α) ·

⎡
⎣ lx

ly

0

⎤
⎦ =

⎡
⎣ cos(−α) − sin(−α) 0

sin(−α) cos(−α) 0
0 0 1

⎤
⎦ ·

⎡
⎣ lx

ly

0

⎤
⎦ (35)

where, α is the angle that spherical robot BHQ-1 has moved along the circular trajec-

tory from origin o (as shown in Fig. 11), lx , ly are the norms of
⇀

lx ,
⇀

l y respectively,
⇀

lxi ,
⇀

l yi are the projections of length L on axes xi and yi respectively (shown in

Fig. 11), lxi , lyi are the norms of
⇀

lxi ,
⇀

l yi respectively.
From Eqs. (34) and (35) we can obtain

{
lxi = p

mgr (ẍ cos α − ÿ sin α)

lyi = − p
mgr (ẍ sin α + ÿ cos α) + f ·r

mg

(36)

Because α = ωt , the driving moment of motor 1 can be got as

M1 = mg
⇀

l j + mβ̈y L2 = − p

r
(ẍ sin α + ÿ cos α) + mβ̈y L2 (37)

where,
⇀

l j is the projection vector of L on axis j, βy is the angle that the mass deviates
from axis k measured on plane o′k j (as shown in Fig. 12).

The driving moment of motor 2 is

M2 = mg
⇀

li + mβ̈x L2 = p

r
(ẍ cos α − ÿ sin α) + mβ̈x L2 (38)

where,
⇀

li is the projection vector of L on axis i, βx is the angle that the mass deviates
from axis k measured on planes o′ki (as shown in Fig. 12).

If spherical robot BHQ-1 moves along a circular trajectory with a fixed velocity
its acceleration A = v2

R should point to the center of the circular trajectory and the
tangential velocity of circular trajectory v = ωR should be a constant. Where, R is
the radius of the circular trajectory, is the angle velocity of BHQ-1. The projections
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of the acceleration A on axes x and y are

{
Ax = −A cos(π − α) = −A cos(π − ωt)
Ay = −A sin(π − α) = −A sin(π − ωt)

(39)

From,

{
ẍ = Ax

ÿ = Ay
, Eqs. (16), (32), (39) we can get

{
m0

1(t) = p A
r sin(ωt)

m0
2(t) = p A

r cos(ωt)
(40)

From Eqs. (2), (17), (36) and (40) and the values of p and A, we can get

⎧⎨
⎩

lxi = 7rv2

5gR

lyi = f ·r
mg

(41)

From Eq. (41) we can get

⎧⎪⎪⎨
⎪⎪⎩

βx1 = arcsin

(
⇀
li
L

)
= arcsin

(
7rv2

5gRL

)

βy1 = arcsin

( ⇀
l j
L

)
= arcsin

(
f r

mgL

) (42)

If spherical robot BHQ-1 moves along a circular trajectory with a fixed velocity
the driving moments of two motors are

{
M1 = mg · l j = fr

M2 = mg · li = 7mrv2

5R

(43)

A simulation result of spherical robot BHQ-1 moving along a circular trajectory
is shown in Fig. 13, where the dashed circle is the planned trajectory in theory or the
target trajectory and the solid circle is the planned trajectory by adding 1 % noise
disturbance. From the simulation we can conclude that BHQ-1 can realize circular
motion with the deduced dynamic model.

4.2.3 Complex Trajectory Planning

Theoretically any complex trajectory can be approximately divided into line seg-
ments and curve segments, so the deduced linear trajectory motion planning model
and circular trajectory motion planning model can also be used to plan the motion
of complex trajectories. In order to validate that, a motion planning simulation of
spherical robot BHQ-1 moving along a complex trajectory was presented in Fig. 14.



Motion Planning of a Spherical Mobile Robot 379

Fig. 13 Simulation of circular motion of BHQ-1

The given trajectory is composed of three straight line segments and two curves,
which are described by functions as

y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 ≤ x < 1
6 − √

36 − (x − 1)2 1 ≤ x < 4√
3

3 x + 6 − 13
3

√
3 4 ≤ x < 7

6 − 3
√

3 − √
4 − (x − 8)2 7 ≤ x < 9

−
√

3
3 x + 6 + √

3 9 ≤ x ≤ 10

(44)

In Fig. 14, the given trajectory is shown in dashed line and the planned trajectory
is shown in solid line. 1 % disturbance noise was introduced to the dynamic trajectory
planning method in order to test the robustness of the method. From the simulation we

Fig. 14 Motion simulation of a complex trajectory planning of BHQ-1
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can find that the dynamic motion planning method can plan an accurate trajectory for
spherical robot BHQ-1, and the small error comes from the noise added intentionally.
If there is no disturbance noise the planned trajectory will superpose the target one.

5 Conclusion

Spherical mobile robot has compact structure and flexible motion, but because of its
special nonholonomic characteristic, traditional motion planning methods proposed
for wheeled mobile robots cannot be applied to it. This chapter introduces two motion
planning methods for spherical robot BHQ-1, one is a kinematics based motion
planning method and another is a dynamics based motion planning method. The
kinematic motion planning method uses Hamiltonian function to realize the time and
energy based optimal motion planning, and the characteristics of three coefficients
λ1, λ2, λ4 are revealed through simulations. The dynamic motion planning method
uses a simplified Boltzmann-Hamel equation to get the dynamic model of spherical
robot BHQ-1, and the moments of two motors to realize the linear motion and circular
motion are deduced respectively. Simulations and experiments are provided in order
to validate those motion planning methods. It should be noted that although the two
methods are proposed for spherical robot BHQ-1, which can be also used by other
spherical robots with similar structure or similar motion principle.

Thanks very much for the help and research work of my students JIA Chuan, LIU
Zengbo, CHI Xing and SHANG Zhimeng.
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